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PPreface 
 
 
 
Introduction 

The use and importance of observational data such as naturalistic real-world trials, patient 
registries, and health care claims database analyses have grown in recent years. Observational 
research produces real-world data information on how treatments or policies work in 
practice that is critical to consumers interested in actual practice information. Such data are now 
commonly used by researchers and health care decision-makers to assess treatment strategies and 
make policy decisions.  However, techniques and standards for statistical analysis are less well-
developed for observational data compared with randomized clinical trials. Quality analyses of 
observational data are more challenging due to such issues as selection bias. Literature reviews of 
recent manuscripts from various types of observational data have criticized the lack of quality, 
consistency, and transparency of observational data reporting. Low-quality analyses and limited 
experience with such data by many decision-makers has led to a lack of optimal use and even 
mistrust of such work.  Several research groups, recognizing these analytical and reporting issues, 
are starting to provide general guidance on improving the quality of such analyses. However, 
there is still a lack of practical detailed guidance on implementing such methodology.   

Our goal for creating this book was to provide a resource that would make high-quality, thorough, 
transparent analysis of observational data easy to perform. Each chapter includes background 
information, data examples, SAS code, output, and references to allow for implementation of 
these methods in accordance with the highest quality manuscripts and guidelines that exist for 
these topics. As a result, this book should be beneficial to a wide variety of researchers who use 
observational data (from sources such as prospective and retrospective observational studies, 
patient registries, survey research, and claims [billing] databases) for analyses and decision-
making. Given the breadth of observational research, potential users include statisticians, health 
outcomes researchers, epidemiologists, medical researchers, health care administrators, statistical 
programmers, analysts, economists, professors, and graduate students, among others.   

 
Outline of the Book 

The main objective of this book is to provide information allowing researchers to perform high-
quality analyses of observational data, to present the data in a transparent manner, and to ensure 
accurate interpretation and appropriate decision-making based on the data.  To achieve this, the 
book includes detailed sections on the general methodological issues of both cross-sectional and 
longitudinal bias adjustment, followed by shorter sections focused on claims database analyses, 
economic analyses, and design of observational research.   

Chapter 1 provides an overview of the issues involved in analyzing observational data.  From a 
statistical perspective, the most common challenge in observational data analysis is addressing 
the selection bias (confounding) resulting from a lack of randomization.  When the groups of 
interest are not randomized, they are likely to differ on many key characteristics and might not be 
comparable.  Thus, standard statistical methods will most likely produce associations, not causal 
inferences.  This book includes a detailed section with six chapters covering the core issue of bias 
adjustment.  This section includes the commonly used propensity scoring approaches (applied via 
regression, stratification, and matching), as well as alternatives of doubly robust estimation, 
instrumental variables, and newly developed approaches such as local control.  In addition, a 
separate chapter discusses the practical issue of addressing missing covariate data.   
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Cross-Sectional Selection Bias Adjustment: 

 Chapter 2, “Propensity Score Stratification and Regression” 
 Chapter 3, “Propensity Score Matching for Estimating Treatment Effects” 
 Chapter 4, “Doubly Robust Estimation of Treatment Effects”  
 Chapter 5, “Propensity Scoring with Missing Values” 
 Chapter 6, “Instrumental Variable Method for Addressing Selection Bias” 
 Chapter 7, “Local Control Approach Using JMP” 

 
The analysis of longitudinal naturalistic data includes these challenges along with the potential 
for patients to switch treatments, time-dependent confounding, and censored records. The next 
section of the book provides details on performing four different analysis methods designed for 
longitudinal naturalistic data:  

 Chapter 8, “A Two-Stage Longitudinal Propensity Adjustment for Analysis of 
Observational Data”  

 Chapter 9, “Analysis of Longitudinal Observational Data Using Marginal Structural 
Models”  

 Chapter 10, “Structural Nested Models” 
 Chapter 11, “Regression Models on Longitudinal Propensity Scores” 

 
Claims database analyses have become a growing area of research because such billing databases 
provide immediate access to data from thousands of patients.  Such databases are being used 
more frequently to assess questions such as resource utilization, patient outcomes, treatment 
costs, and safety information that can not be practically addressed in clinical trials. For instance, 
detecting rare events requires many more patients than are typically included in clinical trials. 
Also, issues such as drug combinations and patient subsets might be assessed in such data. This 
book includes a chapter providing general guidance on such analyses as well as a chapter 
demonstrating a safety analysis from a health care database: 

 Chapter 12, “Good Research Practices for the Conduct of Observational Database  
Studies”  

 Chapter 13, “Dose-Response Analyses Using Large Health Care Databases” 
 

With rising medical costs becoming a major issue, another growing area of research with 
observational data is cost and cost-effectiveness analyses. Clinical trials are typically not the best 
source of data for assessing real-world costs that health care payers must cover trials have strict 
entry criteria, restrictions on co-morbidities, polypharmacy, concomitant medications, required 
compliance, and mandatory visits and procedures. Thus, observational data are the preferred 
source for such information. However, proper analysis and presentation of cost data can be 
difficult, and a recent literature review has raised issues with the lack of consistency of 
methodology and the quality of reporting of cost analyses.1

 Chapter 14, “Cost and Cost-Effectiveness Analysis Using Propensity Score  
Bin Bootstrapping” 

  

 Chapter 15, “Incremental Net Benefit” 
 Chapter 16, “Cost and Cost-Effectiveness Analysis with Censored Data”  

 

                                                           
1 See Doshi, J.A., H.A. Glick, and D. Polsky 2006. “Analyses of cost data in economic evaluations conducted  
  alongside randomized controlled trials.” Value in Health 9: 334 340. 
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While the majority of the material focuses on analytical methods for existing data, researchers 
often are faced with the challenge of designing observational studies. The last section includes 
guidance on sample size determination and dealing with broader issues such as measurement and 
sponsor bias:  

 Chapter 17, “Addressing Measurement and Sponsor Biases in Observational Research”  
 Chapter 18, “Sample Size Calculation for Observational Studies” 
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1.1 Observational vs. Experimental Studies 
When a researcher designs and performs an experimental study, the assignment of exposure (or 
treatment)*

Whereas subjects in RCTs are assigned to treatment or control in a randomized fashion, in 
observational studies the subjects assign themselves or are assigned to one of the groups in a non-
random manner and the investigators just observe what happens. Observational studies are non-
interventional; that is, the treatment and care of the patient are not influenced by the study but are 
conducted as in usual practice. Cochran (1965) defined an observational study as an empirical 
comparison of control and treated groups in which: 

 is under the researcher’s control and is done randomly. Random assignment uses 
chance to form treatment groups that are expected to be comparable. Studies without this feature 
are collectively referred to as observational or non-experimental studies. In research involving 
human subjects, experimental studies are typically called randomized controlled trials (RCTs).  

The objective is to elucidate cause-and-effect relationships . . . [in which it] is not feasible to use 
controlled experimentation, in the sense of being able to impose the procedures or treatments 
whose effects it is desired to discover, or to assign subjects at random to different procedures. 

The advantages and disadvantages of an observational study compared to an RCT have been 
well-documented (Concato et al., 2000; Benson and Hartz, 2002; Grimes and Schulz, 2002; Roy-
Byrne et al., 2003; Rubin, 2007). The main strength of an RCT is that the average causal effects  

                                                 
*Throughout this chapter, we use the terms exposure and treatment interchangeably. Treatment can be viewed as a part of  
  exposure, and the effectiveness of treatment is a common research question for both RCTs and observational studies. 
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can be estimated from a well-designed and well-conducted RCT using standard statistical 
analyses, where well means being sufficiently powered and eliminating or minimizing subject 
withdrawal, noncompliance, loss to follow-up, differential attrition, unblinding, compensated 
reactions, and other factors that can cause bias in RCTs (Little and Rubin, 2000; Bang and Davis, 
2007; Park et al., 2008). Therefore, randomization itself is not a panacea. Due to randomization, it 
is hoped that the comparison groups are much alike (or approximately equal on average) in all 
aspects except for the treatments, where all includes both observed and unobserved 
characteristics. Hence, if there is a difference in the outcomes, it is likely caused by the treatment. 
Indeed, this property makes RCTs the best approach for evaluating the efficacy/effectiveness of 
treatment, placing it in the highest position within a widely accepted hierarchy of study designs 
(see Figure 1.1 in Section 1.3). In an RCT, researchers hope to reduce not only bias and any 
potential confounding but also variability (by having homogeneous samples), with a goal to 
maximize the treatment effect should one exist. 

However, RCTs involve a high level of restrictions and regulations. They typically evaluate the 
efficacy of treatments in a narrow subset of individuals with the illness in question, and they have 
carefully planned treatment rules specified in the protocol (e.g., treatment allocation, dosing, 
compliance, visit structure, procedures, and concomitant treatments). Due to the strict 
inclusion/exclusion criteria, the generalizability of an RCT can be quite limited. Conversely, by 
excluding people with specific co-morbidities or concomitant medications, RCTs might fail to 
identify subjects who, in clinical practice, are found to be at increased risk for certain adverse 
events (Levi et al., 2008) or even rule out the enrollment of people who could benefit. Most 
importantly, it is impossible to conduct RCTs to answer many research questions due to 
infeasibility; permissibility; or ethical, financial, or other practical reasons. For example, 
researchers cannot randomize people to smoking or gender to study their effects on lung cancer. 
Can researchers design experimental studies to determine the effects of pollution or global 
warming on people? The answer is no. Indeed, randomization could be a fear factor to patients 
(Rimm and Bortin, 1978)! 

The fact that observational studies do not use randomization presents analytical challenges. Due 
to the lack of randomization, the treatment and control groups tend to differ in many ways, 
because allocation is not under the control of the investigator. It is typically hard or impossible to 
determine exactly why and how they differ. As a result, standard statistical techniques applied to 
observational studies may yield biased estimates of true effects. In fact, strong additional 
assumptions and advanced methods are required to adjust for bias and confounding. In addition, 
when randomization is not used, an understanding of the scientific context of the study becomes 
much more important. (Sometimes, observational research is conducted without any plans to 
compare groups such as studies to assess usual care treatment patterns, risk factors, and burden 
of illness.) 

On the other hand, observational settings reflect less artificial and more naturalistic 
circumstances; people’s lives and behaviors are not being modified by restrictive rules or specific 
recommendations, and the natural history of disease occurrence and progression can be better 
observed. As such, these studies may provide opportunities to evaluate the effectiveness of 
treatment in people who are more like those who are in need of treatment in the community. Also, 
observational data are helpful in examining the safety or unintended (particularly, rare or late) 
effects of treatment. If health care professionals were to wait for RCTs to be designed and 
conducted, relevant information would not be available for several years. Thus, health care 
providers and policy makers must act, at least in the near term, on the currently available 
findings, mostly from observational studies (Ware, 2003). In fact, the growing availability of 
large amounts of relatively inexpensive data in health care claims databases and electronic 
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medical records, compared to prospective RCTs, will result in an increased use of observational 
data in medical decision-making. 

Here, it is worthwhile to mention landmark observational studies that have changed our lives in 
various ways. Among others, let me introduce two studies: the Framingham Heart Study (FHS) 
and the Women’s Health Initiative (WHI). In 1948, the FHS embarked on an ambitious project in 
health research, under the direction of the National Institutes of Health (NIH). At the time, little 
was known about the general causes of heart disease and stroke, but the death rates for 
cardiovascular disease had been increasing steadily since the beginning of the century and had 
become an American epidemic. Fifty years of data collected from this epidemiologic study 
identified major risk factors associated with cardiovascular disease, paved the way for researchers 
to undertake singular clinical trials based on Framingham findings, created a revolution in 
preventive medicine, and changed the way the medical community and general public view the 
genesis of disease (http://www.framinghamheartstudy.org/). In 1991, the NIH also established the 
WHI to address the most common causes of death, disability, and impaired quality of life in 
postmenopausal women, including cardiovascular disease, cancer, and osteoporosis. The WHI 
was a 15-year endeavor and one of the largest US prevention studies of its kind. The three major 
components of the WHI were:  

1. an RCT of promising but unproven approaches to prevention 
2. an observational study to identify predictors of disease  
3. a community prevention study to investigate healthful behaviors  

 
where the observational study provided information that complemented the findings obtained in 
the RCT (http://www.nhlbi.nih.gov/whi/). 

11.2 Issues in Observational Studies 

1.2.1 Association vs. Causation 
To study whether an exposure causes an outcome, we first must understand the difference 
between association or correlation (meaning that one is found more commonly in the presence of 
the other) vs. causation. It is not infrequent for observational data to produce counterintuitive 
(i.e., contrary to what we expect or to the way that mechanisms are thought to work) or 
inconsistent findings concerning treatment-outcome relationships. Typical scenarios with 
nonrandomized treatment are provided here: Sicker people tend to take more medications at 
higher doses (selection by indication). As a result, high-dose medication takers may show poorer 
outcomes in a naive analysis. Similarly, some treatments, supplements, or diets are thought to be 
beneficial, even if this is not so. Why? It is possibly because persons who take these are different 
from those who do not in other ways (such as by being economically better off or doing 
additional things for their health). Another example is that people tend to have low expectations 
of inexpensive products (or services), so these products may provide higher satisfaction than 
expensive ones. One could naively conclude that the less expensive product results in greater 
satisfaction. In circumstances of this kind, it can be inappropriate to interpret a crude association 
as a causal relationship because such findings are likely simple associations. If RCTs were 
conducted for the same comparisons, it is possible to reach reversed results.  
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Why is cause considered so important? Rose (1985) points out that if causes can be removed, 
susceptibility ceases to matter. Neither associates nor correlates have this power. A treatment is 
said to have a true causal effect if the values that would have been observed under all possible 
assignments of treatments, including treatments that had not been given to experimental units 
(i.e., contrary to the fact or counterfactual), differ; see Rubin (1978), Maldonado and Greenland 
(2002), and Höfler (2005). In research, counterfactual causality is the basis for the use of control 
groups (Rychetnik et al., 2004). 

The idea of a counterfactual causal effect originated with the 18th century philosopher David 
Hume, who stated that “we may define a cause to be an object followed by another . . . where, if 
the first object had not been, the second never had existed.” A perhaps even more profound quote 
from Hume might be that “all arguments concerning existence are founded on the relation of 
cause and effect.” The counterfactual concept of causation and the role of randomization were 
introduced to statistics by Neyman (1923) and Fisher (1926).  

Let me illustrate basic concepts by formulating a simple setting for an RCT with a binary 
treatment and a continuous outcome (e.g., blood pressure or cholesterol) using counterfactuals. 
Let Z denote a treatment indicator, equal to 1 if an active treatment is assigned and 0 if a control 
treatment or placebo is assigned. We suppose that, at each treatment level Z, there exists a 
counterfactual outcome Y(Z) for a subject. Here, Y(1) and Y(0) are never observed simultaneously 
because it is impossible to both treat and not treat a single individual at the same time so that 
treatment effects cannot be calculated for individual subjects. One assignment of treatments is 
chosen and only the value under that assignment, either Y(1) or Y(0), is observed. A treatment 
effect on a single subject is conceptually well defined as the unobservable quantity, Y(1) Y(0) = 
(More realistically, an alternative stochastic view is more viable; the unknown true treatment 
effect can be defined as E{Y(1)}-E{Y(0)} 1  0 , where E denotes expectation.) 
nonzero, the treatment would then have a causal effect on the outcome. In addition, it can be 
assumed that there is a counterfactual (say, binary) dose at each treatment level, D(Z). In reality, 
however, we are only able to see d=Z*D(1)+(1-Z)*D(0) and y=d*Y(1)+(1-d)*Y(0). See Bang and 
Davis (2007) for details on construction of different treatment effect estimators using the 
observables.  

Confusion between causation and association is one of the biggest problems in most health-
related reports, especially sensational findings covered by the news media and major 
controversies within scientific communities. The word cause is severely abused, misused, or 
misunderstood (Meister, 2007). To determine whether the association between a factor and an 
outcome may be causal, Hill (1965) proposed the following set of considerations: 

 Strength  
 Consistency 
 Specificity 
 Temporality  
 Biological gradient 
 Plausibility 
 Coherence 
 Experiment 
 Analogy 
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Although these considerations, frequently called causal criteria mistakenly (Phillips and 
Goodman, 2004), have had enormous influence on epidemiologic thinking, Hill expressed his 
ambivalence about their usefulness by saying, “None of my nine viewpoints can bring 
indisputable evidence for or against the cause-and-effect hypothesis, and none can be required as 
a sine qua non.” Actually, temporality (i.e., the cause must precede the effect) is a sine qua non 
for causality, whereas the other conditions are neither necessary nor sufficient for determining 
whether an observed association is causal (Rothman and Greenland, 1998). Rothman and 
Greenland (2005) concluded that there are no causal criteria in epidemiology by saying that 
“[c]ausal inference in epidemiology is better viewed as an exercise in measurement of an effect 
rather than as a criterion-guided process for deciding whether an effect is present or not.” 

1.2.2  Bias and Confounding 
Selection bias and confounding are the two major threats to the internal validity of observational 
studies. Actually, they are closely related concepts because confounding can cause selection bias. 
These possibilities should always be checked or considered as possible alternative explanations 
for the observed results.  

Selection bias occurs when there is a different probability of a unit or individual being chosen to 
participate in a study or assigned to a treatment condition, and the characteristics of that 
individual are confounded with treatment outcomes. If selection biases are not taken into account, 
then any conclusions drawn may be wrong and certainly are not generalizable. Selection biases or 
pre-treatment differences are of two distinct types: those that have been accurately measured 
(measured confounders), called overt biases, and those that have not been measured (unmeasured 
confounders) but are suspected to exist, called hidden biases. Removing overt biases and 
addressing uncertainty about hidden biases are central methodological issues in observational 
studies. Overt biases can be removed by statistical techniques, while hidden biases can be 
addressed partly in study design; see Rosenbaum (2005) for more details. (The pitfalls of non-
random or defective random samples and lack of control groups are well-documented in 
elementary texts [Aliaga and Gunderson, 1998].) 

Confounding/confounder can lead to the erroneous conclusion that an association between the 
dependent variable (or outcome) and the independent variable (e.g., treatment/exposure) is causal. 
If the parameter of interest (e.g., risk ratio or difference or odds ratio) cannot be validly estimated 
without data on another variable, then that variable is a confounder. Unfortunately, but 
understandably, confounding and confounder are difficult concepts. Various definitions for them 
exist, but most definitions available in the literature are descriptions of properties. Indeed, their 
definitions seem to evolve. See Miettinen and Cook (1981), Robins and Morgenstern (1987), and 
Greenland et al. (1999) for more rigorous and deeper discussions on this issue.  

Let me give some real-life examples of confounding/confounders. Alcohol drinkers die at higher 
rates from lung cancer than non-drinkers. Drinking causes liver cancer, but it is not known to 
cause lung cancer. What explains this association? The confounder may be smoking: drinkers 
smoke more, and smoking causes lung cancer. In order to elucidate the possible effect of drinking 
on lung cancer, we can compare drinkers and non-drinkers within levels of smoking. In another 
example, gray hair appears to be a risk factor for heart disease. If age is unknown, a gray-haired 
man is more likely to have a heart attack than a man without gray hair. However, if two men are 
the same age, but only one has gray hair, it is not likely that the gray-haired man will be at 
elevated risk. The initial association is spurious because gray hair, a proxy for age, is no longer an 
independent risk factor when age is added to the model (Brotman et al., 2005; Gotto, 2007). In a 
third example, there appeared to be a positive correlation between population growth and the 
number of storks in Oldenberg, Germany, in 1930 1939, but we would find it hard to believe that 
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shooting storks would decrease the birth rate of humans! In this case, the third variable might be 
time (Box et al., 1978; Davidian, 1998). 

In general, confounding is a complex process in which multiple (known and unknown) factors 
affect the outcome, so standard statistical approaches, such as those used in regression or 
stratification, may not fully resolve this issue. Moreover, strictly speaking, there is no statistical 
test for confounding, although many believe there is. Pearl (2000) argues that confounding 
variables cannot be defined in terms of statistical notions alone; some causal assumptions are 
necessary.  

1.2.3  Replicability and Type I Error 
Replicability (i.e., Hill’s consistency) is a very important scientific concept for RCTs as well as 
for observational studies; essentially it means that the findings of a particular study are expected 
to occur again if the same hypothesis was tested in another study. Chance alone cannot explain 
this expectation. Association is a powerful word and should be reserved for something more than 
a change that could be accounted for by chance (Dunn, 2004). A scientific finding that cannot be 
replicated should be immediately discredited. The importance of replicability can never be 
overemphasized. Results that are significant or predictive without being replicable will misinform 
the public, lead to needless expenditures of time and resources, and provide no service to the 
investigators or to science.  

The literature on the replicability of observational studies is mixed (Benson and Hartz, 2002; 
Ioannidis, 2005). Austin et al. (2006) demonstrated that the search for significance takes the 
investigator into uncharted territory. Indeed, modeling, the search for significance, the preference 
for novelty, ignoring multiple testing, confusion between association and causation, and lack of 
interest in assumptions—these norms generate a flood of nonreproducible results (Freedman, 
2008; Breslow, 2003). Given that we currently have too many research findings, often with low 
credibility, replication and rigorous evaluation become as important as, or more important than, 
discovery (Ioannidis, 2006). A prudent motto for health care researchers who want to establish 
themselves as experts in observational studies appears to be replicate or perish or validate or 
perish, rather than publish or perish.  

While some analyses of observational data are specified a priori, others need to be developed on 
a post hoc basis—that is, during the actual data analysis (Gelman and Hill, 2006). No analysis is 
truly prospective if it is retrospectively constructed in light of the data. Findings based on the 
primary hypotheses are much stronger than those emerging from secondary analyses or 
discovered through post hoc analyses, because the universe of possible secondary analyses is so 
large. There are an exceedingly large number of associated and correlated factors, compared with 
true causes. Post hoc arguments about biological plausibility must be viewed with some 
skepticism, since the human imagination seems capable of developing a rationale for most 
findings, however unanticipated (Ware, 2003).  

Because even the most carefully designed observational study could have weaknesses and 
ambiguities, replication is necessary. When attempting to replicate findings, one should try to 
estimate actual treatment effects without repeating biases that might have affected the original 
study (Rosenbaum, 2005). Lindsay and Ehrenberg (1993) argue that “repetitions need not and 
should not be mere repetitions.” Rather, they state that repetitions “can be designed to extend the 
scope of previous results, so as to lead to more powerful empirical generalizations.” The strength 
of evidence comes from the fact that the same result is obtained despite the differences in 
conditions. These authors suggest some strategies for the design of replicated studies.  
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Throughout this chapter, I emphasize the importance of cause. However, a different perspective 
on cause would be useful to readers. Taleb (2001) and Lund (2007) argue that society needs to be 
more cognizant of randomness. Society wants to identify a cause for every occurring event. Is an 
extra hurricane or two this year really due to El Niño and/or global warming? Are the two less 
murders your city had this year attributable more to the new police patrol car (the newspaper 
headline) or to less severe domestic disputes (randomness)? Although we seek causes whenever 
we can, some phenomena may be explained by randomness and/or extreme events with nonzero 
probabilities.  

11.3 Study Design 
All science must begin with observation. Science is only concerned with objects or events that are 
observable, either directly or indirectly. Much epidemiologic, biomedical, economic, and social 
science research is observational. A lot of what we know or think we know comes from 
observational studies that serve a wide range of purposes, on a continuum from the discovery of 
new findings to the confirmation or refutation of previous findings (Vandenbroucke et al., 2007; 
Freedman, 2008). Some studies are basically exploratory and raise interesting hypotheses that 
tentatively account for the observation, while others pursue clearly defined hypotheses in 
available data. In yet another type of study, the collection of new data is carefully planned on the 
basis of an existing hypothesis (von Elm et al., 2007). 

Cohort, cross-sectional, and case-control designs (and some hybrid designs such as nested case-
control and case-cohort) are the typical designs covering most observational studies, including 
genetic studies. In cohort studies, subjects that have a particular common exposure (the cohort) 
are identified and outcomes are observed over time. In case-control designs, subjects are 
identified by whether or not they have the outcome of interest. Then a comparison of the groups 
with respect to exposures or some other attribute is made. In cross-sectional studies, the exposure 
and outcome information is assessed simultaneously at a single point in time. Because these and 
other observational or epidemiologic study designs are discussed in standard textbooks and 
numerous papers, they are not reviewed here.  

As outlined in Figure 1.1, observational studies generally rank below RCTs in a hierarchy of 
evidence. However, full consensus has not yet been reached on this hierarchy, in part because an 
inadequate RCT is not necessarily superior to a well-conducted observational study. 

Of particular note, bias and confounding are not affected by sample size. While large sample 
sizes provide real advantages in the accurate and powerful detection of association, one should 
not get too excited about their ability to help identify causality. Indeed, with a very large sample 
size, a small effect estimate can yield a very low p-value, making many researchers claim cause 
and effect. Study design can be much more important than p-values in this context. If you hear a 
news release or read an article claiming that A causes B, remember that the design of the study in 
question can be much more important than the number of the participants and the magnitude of 
the association. If the report comes from an analysis of a nonrandomized study, it is wise not to 
simply accept the finding without scrutiny and to wait for more evidence.  

No amount of fancy statistical analysis can help an experiment that was conducted without 
attention to key issues such as study design, potential sources of variation, and confounding. 
Also, design and statistical analysis should go hand in hand (Davidian, 1998).  
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Figure 1.1  Hierarchy of study designs and scientific evidence 
 

Total Evidence Establish causality 
 
 
 
 
 
 

Generate hypotheses 

Meta-analysis of RCTs* 
RCTs 
Cohort studies 
Case-control studies 
Cross-sectional studies 
Ecologic studies 
Case series and reports 

                *assuming that publication bias is minimal or absent. 

11.4 Methods 

1.4.1  Methodological Issues and Considerations  
Standard statistical procedures generally lead to satisfactory results when subjects are properly 
randomized, implying that the treatments and the risk factors are not subject to selection bias and 
confounding. The goal of the research endeavor in comparative observational studies is unbiased 
estimation of treatment effects (or bias reduction, when unbiased estimation is unachievable), so 
that valid inferences can be drawn. The limitations of standard statistical controls in observational 
studies have been documented (Christenfeld et al., 2004; Petitti and Freedman, 2005; Freedman 
and Petitti, 2005). Before introducing some novel methods, however, we must say that to the best 
of our knowledge there is no optimal or universally applicable causal method. (Of particular note, 
the theme of the 7th International Conference on Health Policy Statistics in 2008, “Striving for 
Consensus on Methods,” was heavily influenced by discussions of competing or discrepant causal 
methods.)  

Moreover, the sort of partial corrections that we often end up getting can be equally misleading 
because they may represent advanced statistical modeling, rather than unquestionable 
improvements. For example, these corrections can be used to reconfirm the wrong or problematic 
analysis and thus the false conclusion. To illustrate, if the odds ratio for a treatment is 0.9 in the 
standard analysis, but it is reduced to 0.5 in the causal analysis, then most researchers would 
probably conclude that bias has been eliminated or decreased by the causal model and that this 
new, supposedly correct or improved, analysis has shown the treatment to be beneficial. 
However, what if the odds ratio is 0.9 in both analyses? Shall we simply blame the method or 
unmeasured confounders or declare that 0.9 is the true estimate? Interpretation of causal results is 
not simple at all. 

Although using RCTs as the gold standard approach for confirmatory analyses provides the 
strongest evidence achievable in clinical research, the use of observational studies to replace or 
supplement RCTs can be useful, if not mandatory, because of the aforementioned limitations 
inherent in RCTs. Nevertheless, inferring causality from observational studies is conceptually and 
methodologically difficult or even impossible when participant characteristics known to be 
relevant to outcomes were not (or could not be) collected or when an understanding of underlying 
mechanisms is lacking (leading to unmeasured confounders and/or misspecification of statistical 
models, which can produce biased estimates of effects). It is also important to note that 
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randomization resolves the issues of selection bias and confounding but not of model 
misspecification. 

Because choosing and implementing an appropriate causal inference methodology is not 
straightforward, many researchers still analyze observed data by relatively simple standard 
statistical procedures and draw their conclusions from these analyses. It is ideal to analyze RCTs 
as RCTs and observational studies as observational studies. The analysis of treatment effects in 
longitudinal observational studies becomes more difficult because of additional complexities due 
to the dynamic nature of associations among variables (i.e., treatment, confounders, and outcome) 
over time. Just like real-life stories, observational studies can take on a number of qualitatively 
and quantitatively different scenarios. In the absence of a uniform analysis solution, each specific 
scenario requires a tailored approach depending on data structure and availability, treatment 
operation/mechanism, and assumptions needed. The key components of observational data 
analyses can be:  

 causal knowledge  
 identification of the best-suited approach for the given data  
 proper adaptation of the approach to the specific situation at hand  
 thorough assumption checking, along with a rigorous sensitivity analysis  

 
Paradigmatic shifts must be undertaken in moving from traditional statistical analysis to causal 
analysis of multivariate data (Pearl, 2000). 

Over the last two decades at least, the development of methodologies for establishing causality 
using observational data has been an active research area in a variety of scientific disciplines, 
including (bio)statistics, epidemiology, econometrics, and social sciences. By virtue of recent 
advances in statistical techniques, causal methods for observed data have become more promising 
than ever before. If causality can be inferred from observational or secondary data analysis, 
resources can be saved. Today, obtaining consistent or comparable results from RCTs and 
observational studies is being emphasized. This combination may lead to definite conclusions 
about treatment effectiveness. 

1.4.2  Statistical Methods 
In many applications, the following rules are suggested: 

 Rule #1: Define your research question. Do not even collect data until the scientific 
questions are well-formulated!  

 Rule #2: Consider the possibility that an RCT or its variant would be more appropriate for 
your objectives than an observational study, where group randomized trial (Cornfield, 
1978; Hannan, 2006), quasi-randomized trial (Shadish et al., 2002) and practical clinical 
trial (Tunis et al., 2003; MacPherson, 2004) can be an option. In terms of causal inference 
of treatment/exposure effect, experimentation trumps observation and design trumps 
analysis (Petitti, 1998; Rubin, 2008). 

 Rule #3: When an RCT is not an option and an observational study will be conducted, 
choose a suitable design and statistical methods that are appropriate for observational 
research carefully with proper understanding of the scientific context of the study.  
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Commonly used statistical tools for observational data are summarized here:   

Propensity score (PS)  
The PS is the conditional probability of receiving the treatment rather than the control, given 
the observed covariates. This single summary score can be used to control many variables 
and is often called the balancing score. It can be used for stratification (i.e., sub-
classification), model-based adjustment, matching, or a combination of these techniques 
(Rosenbaum and Rubin, 1983). 

 
Instrumental variable (IV) 

An IV is a factor that is associated with the exposure but not with the outcome (see Chapter 
6). For example, the price of cigarettes can affect the likelihood of smoking in expectant 
mothers, but there is no reason to believe that it directly affects the child’s birthweight 
(Greenland, 2000; Wunsch, 2007; Moffitt, 2003). Thus, IVs can change an individual’s 
exposure and, through and only through this effect, also the outcome of interest (Wright, 
1928; Angrist et al., 1996).  
 

Marginal structural model (MSM) and structured nested model (SNM)  
MSMs generate a pseudo-population via inverse treatment probability weighting, so that 
potential confounders are no longer confounders. This mimics an RCT. MSMs can also be 
used to estimate the causal effect of a time-dependent exposure in the presence of time-
dependent confounders that are themselves affected by previous exposure in longitudinal 
studies. SNMs are an alternative to MSMs and estimate the parameters through the method of 
g-estimation (Robins, 1999; Robins et al., 2000). 
 

In the following chapters of this book, these and other approaches for analyses of observational 
data are presented in detail. Specifics on implementing various PS-based adjustments are 
provided in Chapters 2 through 5. IV analyses are presented in Chapter 6. Longitudinal 
naturalistic data approaches that address time-dependent confounding and the switching of 
treatments over time, such as MSM and SNM, are described in Chapters 8 through 11. Each 
chapter demonstrates how SAS can be utilized to implement common and newly developed 
methods for addressing the complexities of observational data.  SAS was selected as the analysis 
software tool in this text because it is a commonly used tool for statistical analysis by a wide 
variety of researchers and has the flexibility to handle the complexity of such methods. While 
pre-set procedures for many of these statistical methods do not exist, the code presented in each 
chapter may allow for relatively easy implementation of these approaches.  

Both the characterization of and methodology for handling selection bias and confounding can 
vary substantially by disciplinary tradition. In the social sciences and economics, IV-based 
approaches dominate. Identifying IVs is a key to success, but it is not always clear how to 
recognize such variables. In contrast, in public health and medicine (e.g., epidemiology and 
biostatistics), selection bias is typically viewed in terms of confounders, and prevailing methods 
are geared toward making proper adjustments via explicit use of observed confounders, as in PS 
and MSM methods (Hogan and Lancaster, 2004). Statisticians, epidemiologists, and 
econometricians are often interested in similar topics, but they often use different languages to 
interpret and discuss their results, which can create a barrier to mutual communication. Some 
researchers try to assist in bridging this gap by defining key terms in these fields (Imlach 
Gunasekara et al., 2008). 
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Recently, some attempts have been made to address specific treatment scenarios such as optimal 
dynamic or adaptive treatment (Murphy, 2003; Moodie et al., 2007) and nonrandomized 
concomitant/adjunctive treatment in longitudinal RCTs (Wu et al., 2008). Further research is 
currently under way. 

1.4.3  Importance of Sensitivity Analysis 
Even after novel methods are applied, some questions and doubts usually remain: Can we believe 
causal estimates? How sure are we? Is any hidden bias still unaccounted for? If unobserved 
confounders had been measured and adjusted for in the analysis, would conclusions about 
treatment effects have meaningfully changed?  

Because causal inference entails making assumptions that are either testable or untestable with 
observed data, the plausibility and/or verification of assumptions are critical. In practice, we 
cannot expect any assumptions to hold precisely. No unmeasured confounders and existence and 
identification of IVs are extremely strong assumptions. Indeed, the untestable absence of 
unmeasured confounders assumption is what makes economists reluctant to adopt methods based 
on PS or MSM, causing them to rely instead on IV methods for causal inference in common 
economic settings. On the other hand, some epidemiologists question whether IV is just an 
epidemiologist’s dream (Hernán and Robins, 2006), and even economists advise caution 
(Heckman, 1995). 

The magnitude of bias depends on the degree of deviation from an assumed model, but the size of 
the deviation may be addressed in specialized sensitivity analyses. Since the first formal 
sensitivity analysis to detect hidden bias was published by Cornfield et al. (1959), various 
methodological strategies have been proposed to appraise sensitivity quantitatively. Individual 
methods are not discussed here. Particularly, Brumback et al. (2004) illustrated the importance of 
sensitivity analysis even after applying a state-of-the-art method to the data by Hernán et al. 
(2002) through the reanalysis of the same data. Their reanalysis was somewhat sensitive to 
unmeasured confounding, thus providing an alarming message that it is legitimate to reasonably 
doubt the validity and credibility of any causal estimates. A good attitude for health care 
researchers would be to avoid reliance on only one approach. While comprehensive sensitivity 
analyses are not typically performed, they should be a key component of all causal analyses.  

Another source of bias is model misspecification. Because causal modeling is vulnerable to more 
than one type of model misspecification, doubly robust estimation has been suggested. See 
Chapter 4, Lunceford and Davidian (2004), and Bang and Robins (2005). 

11.5 Some Guidelines for Reporting 
Reporting is the last step in research. Transparent reporting is the best assurance of scientific 
quality and is crucial for assessing the validity of studies. It facilitates synthesis of the findings 
for evidence-based recommendations. Often, the reporting of observational research is not 
detailed and clear enough to enable evaluation of the strengths and weaknesses of the 
investigation, including study design, conduct, and analysis. Transparent reporting is particularly 
critical in observational research due to potential biases, the making of extra assumptions, and the 
need for sensitivity analyses. Because inadequacies are common, some recommendations and 
guidelines have been suggested to ensure quality. Researchers may want to familiarize 
themselves with the following international collaborative initiatives proposed by teams of  
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epidemiologists, statisticians, researchers, and journal editors for the conduct of observational 
studies and the dissemination of results: 

• Transparent Reporting of Evaluations with Nonrandomized Designs (TREND) 
(http://www.trend-statement.org/) 

•  STrengthening the Reporting of OBservational studies in Epidemiology (STROBE) 
(http://www.strobe-statement.org/) (von Elm et al., 2007) 

• Good epidemiological practice: proper conduct in epidemiologic research 
(http://www.ieatemp.com/pdfs/GEPNov07.pdf) 
 

These guidelines may be regarded as the observational study counterparts of the CONsolidated 
Standards Of Reporting Trials (CONSORT) statement for RCTs (http://www.consort-
statement.org/) (Begg et al., 1996; Moher et al., 2001).  

Other important guidelines include the following: 

• Meta-analysis Of Observational Studies in Epidemiology (MOOSE) (Stroup et al., 2000) 
• Guidelines for pharmacoepidemiology evaluation and practices 

(http://www.pharmacoepi.org/resources/guidelines_08027.cfm) 
• Guidelines for pharmacoeconomics (http://www.ispor.org/workpaper/adpanel/index.asp) 
• Guidelines for drug, device, and vaccine research  

(http://www.rcnrx.com/ISPE guidelines_for_good_epidemiology.htm) 
 

Because meta-analyses of observational studies are more prone to publication bias (within or 
across studies) and other biases than are those involving RCTs, it is particularly important to 
perform sensitivity analyses (Rosenthal, 1979; Duval and Tweedie, 2000; Copas and Shi, 2000) 
and to interpret the results appropriately (Shapiro, 2004; Young and Bang, 2004; Phillips, 2004; 
Fisher et al., 2007). The potential roles of meta-analysis of observational studies in the drug 
development and regulatory process are also discussed (Berlin and Colditz, 1999; Temple, 1999).  

We should remember, however, that all of these statements are general guidelines and do not 
suggest specific statistical methods for data analysis, perhaps because analyses of observational 
studies are highly complex, analytic methods are advanced, and/or we still need to strive for 
consensus on methods. It is hoped that this book will aid in bringing greater understanding and 
consistent application of appropriate statistical methods for naturalistic data.  
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Abstract  
Comparing the effectiveness of interventions in nonrandomized studies is difficult because 
usually there are baseline differences between the interventions. Propensity scores are a suitable 
methodology for adjusting for such differences and, therefore, for obtaining unbiased 
effectiveness estimates. In this chapter, stratification and regression methods, two commonly used 
propensity score approaches, are presented. To illustrate, data from an observational study 
comparing the effectiveness of two antidepressant treatments were analyzed by using 
stratification and regression propensity score methods. 

2.1 Introduction  
One of the main aims of medical studies is to elucidate causality between medical interventions or 
treatments and health outcomes. Randomized clinical trials (RCTs) are the gold standard study 
designs for judging treatment benefits (Grimes and Schulz, 2002). However, the controlled 
circumstances in which they are conducted limit the generalizability of results to day-to-day clinical 
practice (Rothwell, 2005). Furthermore, there are situations in which they are not feasible for either 
ethical or practical reasons. Observational studies are considered to complement RCTs because they 
aim to represent the real clinical situation (McKee et al., 1999). Their design maximizes external 
validity, but this is usually at the expense of losing some degree of internal validity.  
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In RCTs, treatment influences on outcomes are usually considered as causal because the patients 
taking different treatments are supposed to be exchangeable (i.e., their characteristics, except the 
intervention that is evaluated, are expected to be the same) (Hernán, 2004). However, in 
observational studies, the assumption of exchangeability is not valid because patients are 
prescribed different medications precisely because they differ in prognostic factors (Hernán and 
Robins, 2006a). Hence, applying sound statistical methods to reduce confounding is needed when 
analyzing observational studies. 

22.2 Propensity Score: Definition and Rationale 
In 1983, Rosenbaum and Rubin developed the concept of propensity scores as an alternative to 
conventional multivariable regression modeling to estimate the effects of interventions or 
treatments in observational studies. The goal of propensity scores is to balance observed 
covariates between subjects from the study groups (usually two groups: treatment and control) in 
order to mimic what happens in a randomized study (Joffe and Rosenbaum, 1999).  

To formally define the concept of propensity score, we need some notation. Let X represent the 
observed covariates for the subjects included in the study (observed before treatment is assigned) 
and Z represent an indicator of subject treatment (i.e., Z=1 if treated and Z=0 if control). Then, the 
propensity score for a subject is the conditional probability of exposure to treatment given his/her 
observed covariates, or PS=P[Z=1|X]. 

The propensity score has several theoretical properties that have been rigorously proven 
elsewhere (Rosenbaum and Rubin, 1983) and, therefore, they are not shown here. Nevertheless, 
insight into how propensity scores achieve balance is presented. In a balanced two-arm 
randomized study, the propensity score of each patient is equal to 1/2 for every X (i.e., subjects 
with different observed covariates have the same probability of receiving treatment, and 
reversibly each possible value of the observed covariates is as likely to occur in either of the two 
groups). Typically, in observational studies there are subjects that are more likely to receive 
treatment than to be controls because of some of the pre-treatment characteristics included in the 
observed covariates X, i.e., PS=P[Z=1|X]>1/2. Analogously, other subjects are more likely to be 
controls than to receive treatment given X, i.e., PS<1/2. However, suppose that we compare two 
subjects who have the same propensity score (for instance PS=1/3 for both subjects). These 
subjects could be different in terms of their observed covariate X’s. What is important is that 
these differences cannot predict which subject has more chance of receiving treatment. Given 
their observed covariates, both have the same probability (1/3) to be treated despite being quite 
different in terms of X’s. Hence, if we group subjects with the same propensity scores, both 
treated and control subjects in these groups will have on average covariate patterns similar to 
those that would occur in a randomized study. 

2.3 Estimation of Propensity Scores 
Generally, propensity scores are unknown in observational studies and, therefore, they must be 
estimated from data. Several methods are available (Setoguchi et al., 2008; Woo et al., 2008):  

 probit regression 
 discriminant analysis 
 classification and regression trees 
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 neural networks 
 generalized additive models  

 
However, they are most commonly estimated by logistic regression. The dependent variable of 
the logistic regression is Z, with Z=1 the event of being in the treated group, and the independent 
variables are the observed covariates X. These variables can be both categorical or continuous.  

Despite the common use of propensity scoring, there is little guidance on the details of building 
the propensity score model (i.e., which variables should be included in the model). Weitzen and 
colleagues (2004) surveyed the methods utilized in the literature and found a variety of 
approaches—including the non-parsimonious approach, univariate significance testing, various 
stepwise approaches, a priori selection, and goodness-of-fit testing. Further research (Weitzen et 
al., 2005) led them not to recommend goodness-of-fit testing. However, no single method was 
demonstrated as clearly superior. Common advice is to err toward being overinclusive in order to 
avoid leaving out a confounding variable. That is, add all covariates potentially related to 
outcome and exposure (even if the p-value is greater than 0.05) and consider nonlinear terms for 
continuous measures. This is recommended because only the predicted values are utilized, not the 
parameter estimates for the model factors, so modeling issues such as overparameterization and 
collinearity are not considered critical here.  

Brookhardt and colleagues (2006) as well as Senn and colleagues (2007) pointed out that a non-
parsimonious approach of including all possible covariates is not without its disadvantages. They 
argue that including variables that are related to treatment selection but not outcome, or including 
variables not related to outcome, decreases the efficiency of the analysis. Thus, optimal selection 
of a model is likely not one where all variables are included. 

While there is not complete consensus in the literature on the best method for modeling the 
propensity score, there is general agreement that the most important issue is that the propensity 
score produces balance between the groups (Weitzen et al., 2004; D’Agostino, 1998). In fact 
D’Agostino and D’Agostino (2007) state that “the success of the propensity score modelling is 
judged by whether balance on pretreatment characteristics is achieved between the treatment and 
control groups.”     

In practice, we have often utilized prespecification of covariates followed by a thorough 
sensitivity analysis. In this chapter, we focus not on modeling but on methods to assess the 
balance achieved by the propensity adjustment on the treatment groups (see Section 2.5). 

To aid the credibility of the analysis, Rubin (2007) recommends completing the estimation of the 
propensity score prior to accessing the outcome data. Thus, one can guarantee that the choice of 
the propensity model is not influenced by its impact on the final analysis. That is, one did not run 
multiple analyses with various propensity models, and choose the model that ultimately produced 
the most desired results for the researcher. This approach to completing the propensity score 
modeling by no means eliminates the need for thorough sensitivity analyses, but it appears to us 
to be a useful approach, especially for prospective observational research. 

Also note that if more than two treatments are compared, propensity scores for each treatment can 
be estimated by fitting a multinomial logistic regression, selecting one treatment as the reference 
category (Imbens, 2000). 
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22.4 Using Propensity Scores to Estimate Treatment Effects:  
 Stratification and Regression Adjustment 

Once the propensity scores are estimated, there are several ways they can be used to control for 
confounding. These include stratification, regression adjustment as a covariate into a 
multivariable regression model, and matching, among others (Austin and Mamdani, 2006; 
D’Agostino, 1998; Rosenbaum and Rubin, 1983). In this chapter, we focus on the two first 
methods. Propensity score matching is covered in Chapter 3. 

In propensity score stratification, subjects are stratified into groups based on their estimated 
propensity scores. The use of five groups, based on quintiles of the propensity score, is common 
because it was shown that five groups can remove approximately 90% of the bias from a 
confounding variable (Cochran, 1968). However, when sample sizes are large, such as in the 
analysis of health care claims databases, the use of a larger number of propensity score groups 
produces greater homogeneity among patients within groups. Of course, too many propensity 
groups may result in small or zero sample sizes for particular treatments within propensity 
groups. While there is no clear guideline on the optimal number of propensity groups, one should 
consider these tradeoffs and thorough analyses to make sure that results are insensitive to 
rationale choices on the number of propensity groups.   

Once the patients have been grouped into homogeneous strata based on their propensity scores, 
treatment differences are estimated within each quintile, and the five estimated treatment effects 
are pooled into one overall treatment effect. The basic idea is, as in stratification, valid 
comparisons are made as treatments are compared within like patients—with like being defined 
as patients with similar propensity scores.  

In propensity score regression adjustment, the treatment effect is estimated by a multivariable 
regression model that includes as covariates an indicator of treatment, Z, and the propensity score 
itself, either as a continuous covariate or as a categorical covariate by using the propensity score 
quintile as a categorical variable. For more than two treatments, the propensity scores of all 
treatments except the propensity scores of the reference treatment must be included as covariates 
into the multivariable regression model either as continuous covariates or as categorical 
covariates by using the propensity score quintiles as categories.  

While there is a lack of detailed guidance from theoretical or simulation research in this area, 
often researchers include additional variables in the multivariable regression model (D’Agostino 
and D’Agostino, 2007; Cadarette et al., 2008). D’Agostino and D’Agostino (2007) suggest fitting 
a model to estimate the treatment effect that includes a subset of patient characteristics that are 
thought to be the most important known potential confounders. This is done in order to add 
precision to the treatment effect estimate (as one would do in a regression model analysis of a 
randomized trial) and adjust for any residual imbalances that might exist after the propensity 
score modeling. Thus, either variables with strong relationship with the outcome measure or 
variables with noted residual imbalance after propensity scoring might be included. A similar 
extension for the propensity score stratification analysis is to utilize a regression model for each 
quintile stratum analyses. Such extensions correspond to the doubly robust approaches presented 
in Chapter 4 (see also Lunceford and Davidian, 2004).  

Regardless of whether propensity score stratification or propensity score regression is selected, a 
thorough evaluation of the success of the propensity adjustment should be made prior to 
performing the outcome analysis. The primary function of the propensity scoring is to account for 
confounding. Thus, as discussed in Section 2.3, the use of the propensity scores should produce 
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balance across covariates between the treatments being compared. Specific methods for assessing 
the balance produced by propensity adjustment are described in Section 2.5.  

Last, sensitivity analyses are critical. Producing causal inferences from observational data 
requires assumptions beyond those in randomized research (e.g., no unmeasured confounders, 
positivity), and such assumptions should be examined. For instance, while one cannot ever prove 
there are no missing confounders, one can consider running an analysis that may relax this 
assumption, such as an instrumental variable analysis (as described in Chapter 6). However, to 
obtain unbiased estimates with an instrumental variable, several other strong conditions must hold 
(Hernán and Robins, 2006b). Another option is quantifying the sensitivity of the results to 
unmeasured confounding (Schneeweiss, 2006; see also Section 2.6.1). Examination of the 
propensity distribution for each treatment group can aid in assessing positivity (positive 
probability for selection of each treatment for any combination of covariates). Sensitivity 
surrounding the covariate balance within treatment groups can be assessed by using methods such 
as propensity score matching, which can provide superior balance but with the potential tradeoff 
of a reduced sample (Austin et al., 2007a).  

In summary, a quality propensity score stratification or regression analysis involves more than 
simply estimating the propensity score and running an adjusted model. Quality analyses include 
an assessment of the balance produced by the propensity score, assessment of statistical 
assumptions, sensitivity analyses, and transparency in reporting. Transparency is important as a 
reader should be able to understand the quality of the analyses that were performed, knowing 
what decisions were made, when they were made, and why.   

22.5 Evaluation of Propensity Scores 
In the report of a randomized study, a table comparing the distribution of the most important 
pretreatment assignment covariates between treatment and control groups is usually shown in 
order to assess if randomization was effective. Because the objective of propensity scores is to 
create a quasi-randomized experiment from a non-randomized observational study, a similar 
approach can be performed to assess if the quasi-randomization was achieved. As discussed in 
Section 2.3, the key assessment of the success of the propensity score adjustment is 
demonstrating that the propensity score produced balance between the treatments for 
comparisons. 

There are multiple approaches to assessing the balance produced by a propensity model. Austin 
and Mamdani (2006) and Austin (2008) provide a nice summary of methods. At a high level the 
methods include the following:  

1. assessment of standardized differences of each covariate between treatment groups  
2. assessment of the propensity score distribution  
3. comparison of distributions of the covariates between treatments 
4. assessment of goodness-of-fit statistics  

 
More specifically, for propensity score stratification analyses, because the treatment comparisons 
are ultimately made within each propensity score stratum, the focus is on assessing balance 
within strata. Three common approaches for propensity score stratification balance assessment 
are the use of two-way ANOVA modeling for each covariate, within-strata standardized 
differences for each covariate, and within-strata side-by-side box plots of the propensity score and 
covariate distributions.  
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Rosenbaum and Rubin (1984) proposed a two-way ANOVA (or logistic regression for binary 
covariates), with each covariate as the dependent variable and a model including treatment, 
propensity score strata, and the interaction of treatment and propensity score strata. This approach 
detects differences in mean covariate values between the treatment groups that are both consistent 
across strata (significance of the treatment factor) and not consistent (significance of the 
interaction term). This approach corresponds to standard baseline comparison tables commonly 
used in randomized controlled trials and is thus readily accepted.  

Standardized differences are defined here as the difference in means between the two groups 
divided by a measure of the standard deviation of the variable. Standardized differences can be 
computed for both continuous and binary covariates (Austin, 2008). Computation of the 
standardized differences for all covariates allows for an assessment, on a common scale, of 
differences in means between treatment groups within each quintile. One can then identify the 
specific covariates with the largest residual imbalance after propensity adjustment. As a rule of 
thumb, standardized differences greater than 0.10 indicate an imbalance that might require further 
investigation (Austin and Mamdani, 2006).   

As opposed to standardized differences, which assess differences in means, box plots can be used 
to investigate differences in the distributions of a covariate or the propensity score between the 
treatment groups. If balancing is achieved, one would expect that the distributions of propensity 
scores for treated and control groups within each quintile are similar (Austin and Mamdani, 
2006). Also, by investigating the overall distribution of the propensity scores, one can detect if 
there are different ranges for the two treatment groups that might indicate a violation of the 
positivity assumption. Recall that positivity (positive probability for either treatment group being 
selected regardless of the combination of the covariates) is a key assumption for causal inference. 
If box plots identify nonoverlapping regions (i.e., patients in one group have propensity scores in 
a given range but patients in the other group do not), this should result in further investigation by 
the researcher. For instance, sensitivity analyses without patients in nonoverlapping regions 
should be conducted.  

As mentioned previously, these balance diagnostics may suggest the need for modification of the 
propensity model or other sensitivity analyses. For instance, one can modify the propensity model 
by adding or deleting covariates, adding interaction terms, or adding nonlinear terms for the 
continuous covariates.  

For propensity score regression analyses, fewer methods have been developed for assessing 
balance. The assumption for analysis here is that patients in both treatment groups who have the 
same propensity score will have similar distributions of the covariates. Two approaches have 
been proposed for propensity regression analyses: weighted conditional standardized differences 
and quantile regression. The standardized differences approach corresponds to assessments for 
propensity stratification and matching analyses. Standardized differences are estimated at each 
value of the propensity score and averaged across the observed distribution of propensity scores. 
Quantile regression assesses the distribution of the covariates for patients in each treatment group 
with the same propensity score. We demonstrate here the assessment of the weighted 
standardized differences—given its similarity to methods used for other propensity based 
analyses. We also recommend assessing the distribution of propensity scores in this situation as 
well—to avoid positivity assumption violations. In addition, when propensity score regression is 
used with propensity score strata as the covariate, the methods for assessing balance in the 
stratification analysis could be utilized. 
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22.6 Limitations and Advantages of Propensity Scores 

2.6.1  Unmeasured Confounding 
The main limitation of propensity scores is that they do not control for unobserved covariates (or 
hidden bias) unless they are correlated with the observed covariates X’s (Haro et al., 2006). 
However, this is a limitation of observational studies rather than a limitation of the technique 
itself. The usual way to avoid hidden bias is by designing a randomized experiment but, as we 
have discussed previously, a randomized study may be not feasible or it may have low external 
validity. Nevertheless, Rosenbaum (2002) has proposed sensitivity analyses that indicate the 
magnitude of hidden bias that would need to be present to modify the conclusion of an 
observational study. Schneeweiss (2006) provides an overview of various approaches to assessing 
the sensitivity of observed results to potential unmeasured confounding. These approaches 
include quantifying the level of unmeasured confounding necessary to change the observed 
results (e.g., the rule out approach) and internal or external adjustment. Stürmer and colleagues 
(2005) provide an example of internal adjustment, specifically propensity score calibration. This 
approach is possible when detailed information on a subset of patients is available to make the 
propensity adjustment computed based on a limited number of variables in the full set of patients. 
McCandless and colleagues (2007) also provide a Bayesian approach to such sensitivity analyses. 

2.6.2  Propensity Score vs Conventional Regression 
The use of conventional regression modeling, where potential confounders are simply entered 
directly into the regression model as opposed to the use of a propensity score, is common in 
observational research. In fact, in a survey of the literature, Shah and colleagues (2005) noted that 
among 78 comparisons where both conventional regression and propensity scoring were used, 
there was disagreement in the results in only 10% of the cases. In each case of disagreement, the 
propensity approach produced more conservative results. Stürmer and colleagues (2006), in 
another review of the published literature through 2003, found agreement between conventional 
regression and propensity score approaches in nearly 90% of the reports. While in many cases 
similar results can be obtained, there are important potential advantages to a propensity based 
approach.  

To begin, since the goal of the first step of the propensity score process is to obtain the best 
estimated probabilities of treatment assignment, one is not concerned with overparameterization 
of the model and, therefore, can include, for example, nonlinear terms or interactions. Then, once 
the propensity scores are estimated, one can include only treatment, propensity scores, and a 
small subset of the most important observed covariates into the final model. In this simple model, 
diagnostic checks can be performed more easily than in a more complex multivariable regression 
model that includes more variables (D’Agostino, 1998). 

Second, if we are studying a rare dichotomous health outcome but the treatment is common, 
propensity scores may be a better option than conventional logistic regression. In this case, 
adjustment using propensity scoring is feasible; however, the conventional logistic regression 
may not be if we need to include many confounding covariates into the model (Braitman and 
Rosenbaum, 2002). Moreover, it has been proven by Monte Carlo simulations that if we have less 
than eight events per confounder, propensity score estimates are a better alternative than logistic 
regression to control for imbalances (Cepeda et al., 2003). 

In addition, a simulation study suggests that regression is more efficient than propensity scoring 
when the model is correctly specified, but propensity score estimates are much more robust to 
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model misspecification than classical multivariable regressions (Lunceford and Davidian, 2004). 
Thus, propensity scoring is recommended because situations where we know the model is 
completely correct are limited to simulation studies. Another simulation study shows that 
propensity score methods, in general, give treatment effect estimates that are closer to the true 
treatment effect than a logistic regression model in which all confounders are modeled (Martens 
et al., 2008).  

Others have noted various advantages of propensity scoring. Shah and colleagues (2005) noted 
that regression analysis does not alert investigators to situations where the confounders do not 
adequately overlap between treatment groups, threatening the validity of the conclusions. Such 
situations become obvious in a propensity score approach with the non-overlapping distributions. 
Thus, the ease in which regression can be conducted can falsely lead researchers to biased results. 
D’Agostino and D’Agostino (2007) noted that conventional regression can produce biased 
estimates of treatment effects if there is extreme imbalance of the background characteristics 
and/or the treatment effect is not constant across values of the background characteristics. Such 
scenarios are certainly possible in observational research. 

Austin and colleagues (2007b) and Senn and colleagues (2007) noted there is also a fundamental 
difference between conventional regression, which obtains conditional estimates of the treatment 
effect, and propensity scoring, which estimates marginal treatment effects. Such approaches may 
differ in certain scenarios and readers are referred to these references for more details.  

In summary, while in many situations the analyses will prove similar and either approach may be 
appropriate, propensity scoring is considered a more robust approach. One does not have to make 
additional assumptions regarding specific (e.g., linear) effects of the covariates on the outcome, 
and propensity analyses have built-in sensitivity checks.   

22.7 Example 

2.7.1  Study Description 
To illustrate the implementation of a propensity score analysis, we analyze simulated data based 
on a study of the effectiveness of medications for patients with depression in usual-care settings. 
A brief description of the study design follows. Data were simulated based on a study of 192 
patients with depression who were treated with a new treatment A (experimental group) or with 
the usual treatment B (control group). The decision to treat patients with treatment A or B was 
based on the clinical judgment of physicians; hence, the treatment assignment was not 
randomized. Sociodemographic and clinical characteristics were recorded at the baseline visit: 
age, sex, marital status, employment, and symptom severity measured with the Patient Health 
Questionnaire (PHQ) score. The PHQ is a nine-item self-report questionnaire designed to 
evaluate the presence and severity of depressive symptoms. Each of the nine items can be scored 
from 0 to 3. Then, the final score can range from 0 (absence of depressive symptoms) to 27 
(severe depressive symptoms). The outcome of interest for this analysis was remission at three 
months after the treatment initiation. Remission was defined as a score of 4 or less in the PHQ 
score at the three-month visit. 

2.7.2  Data Analysis 
Before conducting the propensity score analysis, we provide a brief summary of the data. The two 
treatment groups were balanced with respect to baseline patient characteristics except for baseline 
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symptom severity: patients treated with B were more severe than patients treated with A (see 
Output 2.1 from Program 2.1). For simplicity of presentation, we considered only five covariates, 
though in practice one will likely encounter a longer list of potential confounders. After three 
months, the remission rate of patients treated with A was statistically significantly greater than 
patients treated with B (62.5% vs. 46.9%, p<0.05 using an unadjusted chi-square test).  

Program 2.1  Baseline Group Comparisons 
/* This section of code performs the baseline treatment */  
/* comparisons */ 
 
PROC TTEST DATA=ADOS; 
CLASS TX; 
VAR AGE PHQ1; 
RUN; 
PROC FREQ DATA=ADOS; 
TABLE (SEX SPOUSE WORK)*TX / CHISQ ; 
RUN; 

Output from Program 2.1 
                               The TTEST Procedure 
 
                                    Statistics 
 
                    Lower CL        Upper CL Lower CL           Upper  CL 
Variable  TX   N      Mean   Mean    Mean    Std Dev  Std Dev  Std Dev Std Err 
 
age       _B   96    42.329  45.344  48.359  13.033   14.881   17.345  1.5188 
age       A    96    40.219  42.844  45.469  11.347   12.956   15.101  1.3223 
age       Diff (1-2) -1.472     2.5  6.4722  12.679   13.952   15.511  2.0138 
phq1      _B   96    14.902   15.99  17.077  4.6991   5.3656   6.2541  0.5476 
phq1      A    96    12.568  13.688  14.807  4.8393   5.5257   6.4407  0.564 
phq1      Diff (1-2) 0.7515  2.3021  3.8527  4.9493   5.4462   6.0549  0.7861 
 
 
                                      T-Tests 
 
      Variable    Method           Variances      DF    t Value    Pr > |t| 
 
      age         Pooled           Equal         190       1.24      0.2160 
      age         Satterthwaite    Unequal       186       1.24      0.2160 
      phq1        Pooled           Equal         190       2.93      0.0038 
      phq1        Satterthwaite    Unequal       190       2.93      0.0038 

 
 

Table 2.1 provides a concise summary of the PROC FREQ output (which is not shown). 

Table 2.1  Baseline Patient Characteristics for Each Treatment Group 
 

  Treatment A 
(N=96) 

Treatment B 
(N=96) 

 

  n % n % p-value 
       
Female  79 82.3 75 78.1 .469 
With Partner  60 62.5 64 66.7 .546 
Employed  39 40.6 30 31.3 .176 
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PROC LOGISTIC (see Program 2.2), with treatment as the dependent variable, was utilized to 
estimate the propensity scores of being treated with A. The available baseline covariates were 
included in this model: age, sex, marital status, employment, and symptom severity measured 
with the PHQ score. For simplicity, only main effects were included, though as described before, 
other, more complex models (including, for example, two-way interactions) may be considered. 

PROC RANK (see Output from Program 2.2) was used to group the estimated propensity scores 
into five strata based on quintiles. The GROUPS= option can be used to easily change the number 
of strata. The range of estimated propensity scores was 0.238 to 0.784 for treatment A and 0.198 
to 0.754 for treatment B. Thus, the distributions were largely overlapping, with a total of three 
subjects on treatment A with propensity scores higher than all treatment B subjects and a total of 
two subjects on treatment B with propensity scores lower than all treatment A subjects. This 
suggested one sensitivity analysis excluding these five patients (results basically unchanged). 
Table 2.2 provides the number of patients from each treatment group and the outcome measure 
within each propensity score stratum. Due to the relatively small total sample size, there were 38 
or 39 patients per stratum with the minimum within-strata sample size of 9.  

Table 2.2  Outcome Measure within Each Propensity Score Stratum 
Propensity 

Stratum 
 Treatment A  Treatment B 

   
N 

Remission 
(%) 

  
N 

Remission (%) 

       
0  9 55.6  29 27.6 
1  20 30.0  19 47.4 
2  21 81.0  17 47.1 
3  23 56.5  16 62.5 
4  23 82.6  15 66.7 

Program 2.2  Computing Propensity Scores and Quintiles 
/* This section of code computes the propensity scores and */ 
/* the quintiles of the propensity scores */ 
 
/*estimation of propensity scores*/ 
PROC LOGISTIC DATA = ADOS; 
  CLASS GENDER SPOUSE WORK; 
  MODEL TX = GENDER SPOUSE WORK AGE PHQ1; 
  OUTPUT OUT = ADOS2 PREDICTED = PS; 
  RUN; 
 
DATA ADOS2; 
SET ADOS2; 
LABEL PS='PROPENSITY SCORE'; 
RUN; 
 
/*quintiles of propensity scores*/ 
PROC RANK DATA=ADOS2 OUT=ADOS3 GROUPS=5; 
RANKS QUINTILES_PS; 
VAR PS; 
RUN; 
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Output from Program 2.2 
                              Response Profile 
 
                        Ordered                Total 
                          Value     tx     Frequency 
 
                              1     A             96 
                              2     _B            96 
 
                       Probability modeled is tx='A'. 
 
                         The LOGISTIC Procedure 
 
                           Odds Ratio Estimates 
 
                                   Point          95% Wald 
           Effect               Estimate      Confidence Limits 
 
           gender 0 vs 1           1.111       0.528       2.342 
           spouse Yes vs _No       0.875       0.471       1.623 
           work   Yes vs _No       1.330       0.719       2.462 
           age                     0.981       0.960       1.003 
           phq1                    0.919       0.868       0.973 

 
 

The next step in the analysis is to evaluate the balance produced by our a priori selected 
propensity model—and to make any adjustments necessary to improve the balance prior to 
assessing the outcome variable. However, as we are demonstrating here the use of multiple 
propensity approaches, for simplicity we first present the analysis with our preselected model 
using each approach. Then we follow with the assessment of the propensity adjustment and 
sensitivity analyses. 

To estimate treatment effect by stratification on propensity score, one can estimate a regression 
model for treatment effect for each quintile and then pool the five estimates into one. 
Nevertheless, if the outcome is binary as remission, one can estimate the pooled estimate by using 
the Mantel-Haenszel approach. PROC FREQ (see Program 2.3) was used to obtain the difference 
in treatment effect on remission stratified by propensity score.  

Two approaches were used to estimate treatment effects by regression adjusting for propensity 
score. First, a logistic regression model with remission as the dependent variable and treatment 
and quintiles of propensity score as independent variables was fitted. Second, the same model 
was fitted but included propensity scores as a continuous covariate, instead of a categorical 
variable for the propensity score (the quintiles). The two models were fitted by using PROC 
LOGISTIC (see Program 2.3). 

Output from Program 2.3 shows the unadjusted odds ratios (ORs) of treatment effect on 
remission and the corresponding estimated ORs by using the three different propensity score 
methods presented. The apparent superiority of treatment A vs. B from the unadjusted analysis 
disappeared once baseline imbalances were taking into account by the propensity score estimates. 
The three estimates of treatment effect from the different propensity scores were highly consistent 
as summarized in Table 2.3.  
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Table 2.3  Summary of Estimated Odds Ratios 
 Odds Ratio 95% CI P-value 

Unadjusted  1.89 (1.06, 3.36) .030 
PS Stratified  1.50 (0.82, 2.75) .178 
PS Regression 
(categorical) 

1.54 (0.83, 2.86) .173 

PS Regression 
(continuous) 

1.44 (0.78, 2.65) .247 

 
The interaction between treatment and propensity score was also assessed in each case. Though 
there is considerable numeric variation in group differences across strata, these differences were 
not statistically significant (p-values > 0.10). Kurth and colleagues (2006) provide an example of 
issues to consider when the treatment effect varies by propensity score. 

Program 2.3  Computing Treatment Effects 
/* This section of code computes 1) the unadjusted treatment effects, 
2) the treatment effects by stratifying on propensity scores, 3) the 
treatment effects by regression adjusting for quintiles of propensity 
scores, and 4) the treatment effects by regression adjusting for 
propensity scores as a continuous covariate */ 
 
/* unadjusted treatment effects*/ 
TITLE 'UNADJUSTED ESTIMATE'; 
PROC LOGISTIC DATA=ADOS3; 
CLASS TX; 
MODEL  REMISSION = TX; 
RUN; 
 
/* treatment effects by stratifying on propensity scores*/ 
TITLE 'STRATIFYING ON PROPENSITY SCORES ESTIMATE'; 
PROC FREQ DATA=ADOS3; 
TABLE QUINTILES_PS*TX*REMISSION / NOCOL CMH ; 
RUN; 
 
/* treatment effects by regression adjusting for quintiles of 
propensity scores*/ 
TITLE 'REGRESSION ADJUSTING FOR QUINTILES OF PROPENSITY SCORES 
ESTIMATE'; 
PROC LOGISTIC DATA=ADOS3; 
CLASS TX QUINTILES_PS; 
MODEL  REMISSION = TX QUINTILES_PS; 
RUN; 
 
/* treatment effects by regression adjusting for propensity score as 
a continuous covariate*/ 
TITLE 'REGRESSION ADJUSTING FOR PROPENSITY SCORES AS A CONTINUOUS 
COVARIATE ESTIMATE'; 
PROC LOGISTIC DATA=ADOS3; 
CLASS TX; 
MODEL  REMISSION = TX PS; 
RUN; 
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Output from Program 2.3 
                             UNADJUSTED ESTIMATE  
     Response Profile 
 
                         Ordered                       Total 
                           Value     remission     Frequency 
 
                               1     Yes                 105 
                               2     _No                  87 
 
                      Probability modeled is remission='Yes'. 
 
    Type 3 Analysis of Effects 
 
                                             Wald 
                     Effect      DF    Chi-Square    Pr > ChiSq 
 
                     tx           1        4.6882        0.0304 
 
                          Odds Ratio Estimates 
 
                                 Point          95% Wald 
               Effect         Estimate      Confidence Limits 
 
              tx A  vs _B       1.889       1.062       3.359 
 
                  STRATIFYING ON PROPENSITY SCORES ESTIMATE 
   Cochran-Mantel-Haenszel Statistics (Based on Table Scores) 
 
    Statistic    Alternative Hypothesis    DF       Value      Prob 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
        1        Nonzero Correlation        1      1.8177    0.1776 
        2        Row Mean Scores Differ     1      1.8177    0.1776 
        3        General Association        1      1.8177    0.1776 
 
              Estimates of the Common Relative Risk (Row1/Row2) 
 
 Type of Study     Method                  Value     95% Confidence Limits 
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 Case-Control      Mantel-Haenszel        1.5036       0.8215       2.7520 
   (Odds Ratio)    Logit                  1.5187       0.8063       2.8606 
 
  REGRESSION ADJUSTING FOR QUINTILES OF PROPENSITY SCORES ESTIMATE 
       Response Profile 
 
                    Ordered                       Total 
                    Value     remission     Frequency 
 
                        1     Yes                 105 
                        2     _No                  87 
 
                   Probability modeled is remission='Yes'. 
 
                       Type 3 Analysis of Effects 
                                          Wald 
             Effect            DF    Chi-Square    Pr > ChiSq 
 
             tx                 1        1.8561        0.1731 
             quintiles_ps       4       16.3637        0.0026 
 

                                                                                                                                                       (continued) 
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Output from Program 2.3  (continued)          
   Odds Ratio Estimates 
                             Point          95% Wald 
     Effect                   Estimate      Confidence Limits 
 
     tx           A  vs _B       1.539       0.828       2.863 
     quintiles_ps 0 vs 4         0.186       0.067       0.518 
     quintiles_ps 1 vs 4         0.198       0.074       0.535 
     quintiles_ps 2 vs 4         0.608       0.222       1.667 
     quintiles_ps 3 vs 4         0.446       0.166       1.197 
 
REGRESSION ADJUSTING FOR PROPENSITY SCORES AS A CONTINUOUS COVARIATE ESTIMATE 
                        Response Profile 
 
                Ordered                       Total 
                  Value     remission     Frequency 
 
                      1     Yes                 105 
                      2     _No                  87 
 
                Probability modeled is remission='Yes'. 
 
                  Type 3 Analysis of Effects 
 
                                         Wald 
                 Effect      DF    Chi-Square    Pr > ChiSq 
 
                 tx           1        1.3428        0.2465 
                 ps           1       14.7809        0.0001 
 
                Odds Ratio Estimates 
   
                                   Point          95% Wald 
                 Effect         Estimate      Confidence Limits 
 
                 tx A  vs _B       1.436       0.779       2.648 
                 ps              153.900      11.808    >999.999 

 
Prior to analyzing the outcome data, one should evaluate whether balancing the baseline 
characteristics was achieved by the propensity scores. Program 2.4 displays the SAS code for 
assessing the quality of the propensity score adjustment for the stratification approach (two-way 
models, within-quintile strata box plots, and within-quintile strata standardized differences) and 
for the regression approach (weighted standardized differences).  

Macro GEN1 (see Program 2.4) runs the two-way models (Rosenbaum and Rubin, 1984) to 
assess covariate imbalance after propensity stratification. PROC GENMOD is used for the two-
way models because it can handle continuous and binary covariates as outcome measures. The 
GEN1 macro is run to assess each possible confounder. The summary listing displays the test 
statistics and p-values for both the treatment effect and the treatment by propensity strata 
interaction. For comparison, the unadjusted treatment effect is also included. For each covariate, 
one can see the reduction in imbalance produced by the propensity scoring (smaller test statistics 
and larger p-values). There was no indication of significant residual imbalance. However, the 
significance of the covariate differences is a function (among other things) of the sample size—
and thus the ability to detect differences in this sample may be limited.  

PROC BOXPLOT in Program 2.4 produces box plots of the propensity score distributions for 
each treatment group within each propensity stratum. The within-strata box plots showed general 
agreement, with potential exceptions of strata 1 and 5. However, assessment of treatment by 
strata interaction in the analysis model did not suggest differential results in these strata. The box 
plot can also be used to assess the distributions of each continuous covariate by treatment group 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 2  Propensity Score Stratification and Regression   37 
 

 

within each propensity score stratum. The box plots of the baseline PHQ1 variable are provided 
in the output. 

Macro GEN2 computes standardized differences for the unadjusted sample (without propensity 
scoring), averaged across propensity scores (adjusted) and within each propensity score stratum. 
The standardized differences are output to a data set so that summaries, listings, or box plots of 
the standardized differences can easily be created.  Four of the five unadjusted standardized 
differences were greater than 0.10, while all of the standardized differences averaged over the 
strata were small. However, within-propensity score strata demonstrated many standardized 
differences greater than 0.10. While such differences are not greater than chance (as indicated by 
the two-way models), this does show the difficulty in producing and assessing balance with 
relatively small samples within each stratum. Balance in the propensity score does not necessarily 
mean balance in each individual covariate. Because of this, we examined other propensity 
models, including interactions as well as term removal. A model with significant two-way 
interactions and two-way interactions involving the PHQ1 term reduced the standardized 
differences, though modest imbalances were still noted in strata 1 and 5. Ultimately, variables 
other than PHQ1 did not appear strongly related to outcome, and the various models did not 
affect the outcome. One possible sensitivity analysis here would be to consider a propensity score 
matching analysis in order to obtain greater balance (see Chapter 3).   

Macro GEN3 computes the weighted standardized differences for assessing covariate balance in a 
propensity score regression analysis. Output data sets from PROC GENMOD are used to 
compute the standardized differences and the MEANS procedure is used to summarize the data 
set with results from all the covariates. Both age and PHQ1 have standardized differences slightly 
greater than 0.1, indicating further assessment might be warranted. Adding these variables to the 
regression model as a sensitivity analysis once again did not result in any differences in the final 
results (OR=1.47; p=.235).  

For this analysis, we assumed that there were no missing data for the covariate values, no 
dropouts, and no treatment changes (from A to B or from B to A) during the three months of the 
study. Chapter 5 covers computation of the propensity scores with missing covariate data, and 
Chapters 8 through 11 discuss methods used to address issues found in longitudinal naturalistic 
data. 

In conclusion, various sensitivity analyses were all supportive of the initial analysis results. Thus, 
while unadjusted results suggested treatment differences, the propensity adjusted techniques 
revealed that the differences between treatments A and B on remission were not statistically 
significant. 

Program 2.4  Evaluating Balance Produced by Propensity Score 
/* This section of code evaluates the balance produced by the 
propensity score by 1) summarizing the distribution of the propensity 
scores via box plots, 2) running two-way models to compare the 
balance of covariates before and after adjustment, and 3) computing 
standardized treatment differences for each covariate before and 
after adjustment.   */ 
 
/*1.  assessing balance between covariates by treatment and quintiles 
of propensity scores by box plots*/ 
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PROC FORMAT; 
     VALUE BPF   1 = 'Q1-A'                               
                 2 = 'Q1-B'                               
               3 = 'Q2-A'                               
     4 = 'Q2-B'                               
     5 = 'Q3-A'                               
     6 = 'Q3-B'                               
     7 = 'Q4-A'                               
     8 = 'Q4-B'                               
     9 = 'Q5-A'                               
    10 = 'Q5-B'; 
RUN; 
 
DATA ADOS4; 
  SET ADOS3; 
  LABEL BP='QUINTILE-TREATMENT'; 
  FORMAT BP BPF.; 
 
  IF TX=1 AND QUINTILES_PS=0 THEN BP=1; 
    ELSE IF TX=0 AND QUINTILES_PS=0 THEN BP=2;  
    ELSE IF TX=1 AND QUINTILES_PS=1 THEN BP=3; 
    ELSE IF TX=0 AND QUINTILES_PS=1 THEN BP=4; 
    ELSE IF TX=1 AND QUINTILES_PS=2 THEN BP=5; 
    ELSE IF TX=0 AND QUINTILES_PS=2 THEN BP=6; 
    ELSE IF TX=1 AND QUINTILES_PS=3 THEN BP=7; 
    ELSE IF TX=0 AND QUINTILES_PS=3 THEN BP=8; 
    ELSE IF TX=1 AND QUINTILES_PS=4 THEN BP=9; 
    ELSE IF TX=0 AND QUINTILES_PS=4 THEN BP=10; 
RUN; 
 
PROC SORT DATA=ADOS4; 
BY BP; 
RUN; 
 
TITLE 'Distribution of propensity scores by quintiles and treatment'; 
PROC BOXPLOT DATA=ADOS4; 
  PLOT PS*BP; 
RUN; 
TITLE 'Distribution of Baseline PHQ1 by quintiles and treatment'; 
PROC BOXPLOT DATA=ADOS4; 
  PLOT PHQ1*BP; 
RUN;   
 
***********************************************************; 
* MACRO GEN1 assesses balance produced by a propensity    *; 
* stratification adjustment via a two-way model approach  *; 
* (Rosenbaum and Rubin, 1984). A data set with the test   *; 
* statistics and p-values for the treatment effect and the*; 
*  treatment by ps strata is produced.                    *; 
* INPUT VARIABLES:                                        *; 
*    VAR - covariate to be evaluated                      *; 
*    DST - NOR for normal, BIN for binary variables       *; 
*    LNK - ID for normal, LOGIT for binary variables      *; 
***********************************************************; 
 
%MACRO GEN1(VAR,DST,LNK); 
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  * Run main effect and ps-adjusted models using GENMOD,  
    output parameter estimates to data sets for compilation*;                     
 PROC GENMOD DATA = ADOS3 DESCENDING; 
   CLASS TX; 
   MODEL &VAR = TX / DIST = &DST LINK = &LNK TYPE3; 
   ODS OUTPUT TYPE3 = TEST1; 
   TITLE2 'TESTING FOR COVARIATE BALANCE: WITHOUT PS'; 
   TITLE3 "VAR: &VAR"; RUN; 
            
 PROC GENMOD DATA = ADOS3 DESCENDING; 
   CLASS TX QUINTILES_PS; 
   MODEL &VAR = TX QUINTILES_PS TX*QUINTILES_PS / DIST =  
                &DST LINK = &LNK TYPE3; 
   LSMEANS TX / DIFF; 
   ODS OUTPUT TYPE3 = TEST2; 
   ODS OUTPUT LSMEANS = TESTL1; 
   TITLE2 'TESTING FOR COVARIATE BALANCE: WITH PS'; 
   TITLE3 "VAR: &VAR"; RUN; 
              
 DATA TEST1; 
   SET TEST1; 
   OVAR = "&VAR"; 
   DUM = 1; 
   PVAL_TX_UNADJ = PROBCHISQ; 
   TSTAT_TX_UNADJ = CHISQ; 
   TSTATDF_TX_UNADJ = DF; 
   KEEP DUM OVAR TSTAT_TX_UNADJ TSTATDF_TX_UNADJ PVAL_TX_UNADJ; 
       
 DATA TEST2A; 
   SET TEST2; 
   IF SOURCE = 'tx'; 
   OVAR = "&VAR"; 
   DUM=1; 
   PVAL_TX_ADJ = PROBCHISQ; 
   TSTAT_TX_ADJ = CHISQ; 
   TSTATDF_TX_ADJ = DF; 
   KEEP DUM OVAR TSTAT_TX_ADJ TSTATDF_TX_ADJ PVAL_TX_ADJ; 
 DATA TEST2B; 
   SET TEST2; 
   IF SOURCE = 'tx*QUINTILES_PS'; 
   OVAR = "&VAR"; 
   DUM=1; 
   PVAL_TXPS_ADJ = PROBCHISQ; 
   TSTAT_TXPS_ADJ = CHISQ; 
   TSTATDF_TXPS_ADJ = DF; 
   KEEP DUM OVAR TSTAT_TXPS_ADJ TSTATDF_TXPS_ADJ PVAL_TXPS_ADJ; 
          
  PROC SORT DATA = TEST1; BY DUM; RUN; 
  PROC SORT DATA = TEST2A; BY DUM; RUN; 
  PROC SORT DATA = TEST2B; BY DUM; RUN; 
          
 DATA BPP_&VAR; 
   MERGE TEST1 TEST2A TEST2B; 
   BY DUM; 
 
%MEND GEN1; 
 
 
* Call GEN1 macro to assess balance for each covariate and summarize  
  output in single data set*; 
  ODS LISTING CLOSE; 
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%GEN1(GENDER, BIN, LOGIT); RUN; 
%GEN1(SPOUSE, BIN, LOGIT); RUN; 
%GEN1(WORK, BIN, LOGIT); RUN; 
%GEN1(AGE, NOR, ID); RUN; 
%GEN1(PHQ1, NOR, ID); RUN; 
    
 ODS LISTING; 
 
DATA BPP_ALL; 
  SET BPP_GENDER BPP_SPOUSE BPP_WORK BPP_AGE BPP_PHQ1; 
       
PROC PRINT DATA = BPP_ALL; 
  VAR OVAR TSTAT_TX_UNADJ PVAL_TX_UNADJ TSTAT_TX_ADJ 
      PVAL_TX_ADJ PVAL_TXPS_ADJ; 
  TITLE 'PROPENSITY STRAT. BALANCE ASSESSMNT: 2-WAY MODELS'; 
  TITLE2 'TEST STATISTICS (TSTAT) AND PVALUES (PVAL) FOR 
          MODELS WITHOUT PROPENSITY'; 
  TITLE3 'ADJUSTMENT (UANDJ) AND WITH PROPENSITY ADJUSTMENT 
          (ADJ)'; RUN; 
   
 
***********************************************************; 
* MACRO STRATA is called by MACRO GEN2 and computes the   *; 
* standardized differences for a given subgroup (quintile)*; 
* of the data.                                            *; 
*   Input Variables:          *; 
*        DATAIN - analysis data set                       *; 
*        DATOUT - output data set containing standardized *; 
*                 differences                             *; 
*        STRN - strata number                             *; 
***********************************************************; 
 
%MACRO STRAT(DATIN,DATOUT,STRN); 
   
  DATA ONE; 
    SET &DATIN; 
    IF QUINTILES_PS = &STRN; 
 
  DATA ONE_A ONE_B; 
    SET ONE; 
    IF TX = 1 THEN OUTPUT ONE_A; 
    IF TX = 0 THEN OUTPUT ONE_B; 
 
  DATA ONE_A; 
    SET ONE_A; 
    MN_A_&STRN = MN; 
    SD_A_&STRN = SD; 
    NUM_A_&STRN = NUM; 
    DUMM = 1; 
    KEEP MN_A_&STRN SD_A_&STRN NUM_A_&STRN DUMM; 
 
  DATA ONE_B; 
    SET ONE_B; 
    MN_B_&STRN = MN; 
    SD_B_&STRN = SD; 
    NUM_B_&STRN = NUM; 
    DUMM = 1; 
    KEEP MN_B_&STRN SD_B_&STRN NUM_B_&STRN DUMM; 
  * This step merges the summary stats for each treatment and  
    computes the pooled variances and then the standardized 
    difference. For binary data variances a percentage value 
    between .05 and .95 is used to avoid infinite values. *;                      
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 DATA &DATOUT; 
   MERGE ONE_A ONE_B; 
   BY DUMM; 
   MN_DIFF_&STRN = MN_A_&STRN - MN_B_&STRN; 
   MN2_A_&STRN = MAX(MN_A_&STRN,.05); MN2_A_&STRN = 
     MIN(MN2_A_&STRN,.95);  
   MN2_B_&STRN = MAX(MN_B_&STRN,.05); MN2_B_&STRN = 
      MIN(MN2_B_&STRN,.95); 
   IF &BNRY = 0 THEN SD_DIFF_&STRN = SQRT( 0.5*( 
      SD_A_&STRN**2 + SD_B_&STRN**2 ));  
   IF &BNRY = 1 THEN SD_DIFF_&STRN = SQRT( (MN2_A_&STRN*(1- 
      MN2_A_&STRN) + MN2_B_&STRN*(1-MN2_B_&STRN)) / 2 );  
   STDDIFF_&STRN = MN_DIFF_&STRN / SD_DIFF_&STRN; 
 
 %MEND STRAT; 
 
 
***********************************************************; 
* MACRO GEN2 computes the standardized differences for a  *; 
*  given covariate within each propensity score strata    *; 
*  (by calling the MACRO STRAT), unadjusted in the full   *; 
*  sample (without propensity scoring), and averaging     *; 
*  across the propensity score strata (adjusted)          *; 
* INPUT VARIABLES:                                        *; 
*    VAR  - covariate to be evaluated                     *; 
*    BNRY - enter 1 for binary covariate, 0 for continuous*; 
***********************************************************; 
 
%MACRO GEN2(VAR,BNRY); 
          
* Generate summary statistics for entire sample using PROC SUMMARY  
  and then compute the standardized difference for the unadjusted  
  full sample      *; 
 
 PROC SUMMARY DATA = ADOS3; 
   CLASS TX; 
   VAR &VAR; 
   OUTPUT OUT=SSTAT MEAN=MN STD=SD N=NUM; 
 
 DATA SSTAT1; 
   SET SSTAT; 
   IF TX = 1; 
   MEAN_A = MN; 
   SD_A = SD; 
   N_A = NUM; 
   DUMM = 1; 
 DATA SSTAT2; 
   SET SSTAT; 
   IF TX = 0; 
   MEAN_B = MN; 
   SD_B = SD; 
   N_B = NUM; 
   DUMM = 1; 
    
  PROC SORT DATA = SSTAT1; BY DUMM; RUN; 
  PROC SORT DATA = SSTAT2; BY DUMM; RUN; 
 
 DATA SSTATF; 
   MERGE SSTAT1 SSTAT2; 
 BY DUMM; 
   MN_DIFF = MEAN_A - MEAN_B; 
   SDP = SQRT( ( (SD_A**2) + (SD_B**2) ) / 2 ); 
   MEAN_A2 = MAX(MEAN_A,.05); MEAN_A2 = MIN(MEAN_A2,.95); 
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   MEAN_B2 = MAX(MEAN_B,.05); MEAN_B2 = MIN(MEAN_B2,.95); 
   IF &BNRY = 1 THEN SDP = SQRT( (MEAN_A2*(1-MEAN_A2) + 
     MEAN_B2*(1-MEAN_B2)) / 2 );  
   STDDIFF_UNADJ = MN_DIFF / SDP; 
   OVAR = "&VAR"; 
   KEEP OVAR DUMM MN_DIFF SDP STDDIFF_UNADJ; 
 
  * Generate summary statistics for each propensity strata  
    using PROC SUMMARY and then compute the standardized            
    difference for each strata using STRAT macro  *; 
 
 PROC SORT DATA = ADOS3; BY QUINTILES_PS; RUN; 
 
 PROC SUMMARY DATA = ADOS3; 
   BY QUINTILES_PS; 
   CLASS TX; 
   VAR &VAR; 
   OUTPUT OUT=PSSTAT MEAN=MN STD=SD N=NUM; 
     
 DATA PSSTAT; 
   SET PSSTAT; 
   IF TX = ' ' THEN DELETE; 
        
 %STRAT(PSSTAT,SD0,0); RUN; 
 %STRAT(PSSTAT,SD1,1); RUN; 
 %STRAT(PSSTAT,SD2,2); RUN; 
 %STRAT(PSSTAT,SD3,3); RUN; 
 %STRAT(PSSTAT,SD4,4); RUN; 
 
 DATA MRG; 
   MERGE SD0 SD1 SD2 SD3 SD4; 
   BY DUMM; 
   ADJ_DIFF = (MN_DIFF_0 + MN_DIFF_1 + MN_DIFF_2 + MN_DIFF_3 
     + MN_DIFF_4) / 5; 
 
 
  * Create final data set with standardized differences from 
    unadjusted, adjusted, and within each quintile approach. 
    The unadjusted SD is used here rather than a pooled 
    within SD across strata to provide a direct comparison  
    with the unadjusted standardized difference. *;                               
  
 DATA FINAL_&VAR; 
   MERGE MRG SSTATF; 
   BY DUMM; 
   STDDIFF_ADJ = ADJ_DIFF / SDP; 
   KEEP OVAR STDDIFF_UNADJ STDDIFF_ADJ  STDDIFF_0 STDDIFF_1 
        STDDIFF_2 STDDIFF_3 STDDIFF_4 ; 
 
%MEND GEN2; 
 
  * Compute the standardized difference for each covariate by     
    running GEN2 macro and then compile results into a single data  
    set for summarizing. *; 
 
%GEN2(GENDER,1); RUN; 
%GEN2(SPOUSE,1); RUN; 
%GEN2(WORK,1); RUN; 
%GEN2(AGE,0); RUN; 
%GEN2(PHQ1,0); RUN; 
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DATA FINAL; 
  SET FINAL_GENDER FINAL_SPOUSE FINAL_WORK FINAL_AGE 
      FINAL_PHQ1; 
 
PROC PRINT DATA = FINAL; 
  VAR OVAR STDDIFF_UNADJ STDDIFF_ADJ STDDIFF_0 STDDIFF_1 
      STDDIFF_2 STDDIFF_3 STDDIFF_4; 
  TITLE 'STANDARDIZED DIFFERENCES BEFORE PS ADJUSTMENT 
    (STAND_DIFF_UNADJ), AFTER PS ';  
  TITLE2 ' ADJUSTMENT AVERAGING ACROSS STRATA  
    (STAND_DIFF_ADJ), AND WITHIN EACH PS'; 
  TITLE3 ' QUINTILE (STDDIFF_0 ... STDIFF_4)'; RUN; 
 
 
***********************************************************; 
* MACRO GEN3 assesses the balance produced by a propensity*; 
*  scoring for a propensity score regression analysis.    *; 
*  Weighted standardized differences (Austin, 2007a) are  *; 
*  produced for a given covariate.                        *; 
* INPUT VARIABLES:                                        *; 
*    DVAR - covariate to be evaluated                     *; 
*    BNR - enter 1 for binary variable, 0 for continuous  *; 
*    DST - NOR for normal, BIN for binary variables       *; 
*    LNK - ID for normal, LOGIT for binary variables      *; 
***********************************************************; 
 
%MACRO GEN3(DVAR,BNR,DST,LNK); 
 
* Run the two-way model and output parameter estimates *; 
 
PROC GENMOD DATA = ADOS3; 
  CLASS TX; 
  MODEL &DVAR = TX PS TX*PS / DIST = &DST LINK = &LNK TYPE3; 
  LSMEANS TX / DIFF; 
  ODS OUTPUT PARAMETERESTIMATES = TEST11; 
  ODS OUTPUT MODELFIT = TEST111; 
  TITLE2 'TESTING FOR COVARIATE BALANCE: WITH PS'; RUN; 
 
DATA TRT_EST (KEEP = DUM TRT0_EST) PS_EST (KEEP = DUM  
  PS_EST) TRTPS_EST (KEEP = DUM TRT0PS_EST) INTRCPT_EST  
  (KEEP = DUM INTRCPT_EST); 
  SET TEST11; 
  DUM = 1; 
  IF PARAMETER = 'tx' AND LEVEL1 = ‘A’ THEN DO; 
    TRT0_EST = ESTIMATE; 
 OUTPUT TRT_EST; 
  END;  
  IF PARAMETER = 'PS' THEN DO; 
    PS_EST = ESTIMATE; 
 OUTPUT PS_EST; 
  END;  
  IF PARAMETER = 'PS*tx' AND LEVEL1 = ’A’ THEN DO; 
    TRT0PS_EST = ESTIMATE; 
 OUTPUT TRTPS_EST; 
  END;  
  IF PARAMETER = 'Intercept' THEN DO; 
    INTRCPT_EST = ESTIMATE; 
 OUTPUT INTRCPT_EST; 
  END;  
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DATA TEST111; 
  SET TEST111; 
  IF CRITERION = 'Deviance'; 
  SIGHAT = SQRT(VALUEDF); 
  DUM = 1; 
  KEEP DUM SIGHAT; 
 
DATA EST; 
  MERGE TEST111 TRT_EST PS_EST TRTPS_EST INTRCPT_EST; 
  DUM = 1; 
  KEEP TRT0_EST PS_EST TRT0PS_EST INTRCPT_EST SIGHAT DUM; 
 
 * Merge parameter estimates with analysis data to allow computation  
   of predicted values for each patient.   *;   
                                                                 
DATA ADOS3; 
  SET ADOS3; 
  DUM = 1; 
 
PROC SORT DATA = ADOS3; BY DUM; RUN; 
PROC SORT DATA = EST; BY DUM; RUN; 
      
DATA ALL; 
  MERGE ADOS3 EST; 
  BY DUM; 
   * For each observation, compute the predicted value assuming each  
     treatment group *; 
  PRED0 = INTRCPT_EST + TRT0_EST + PS_EST*PS +  
          TRT0PS_EST*PS; 
  PRED1 = INTRCPT_EST + PS_EST*PS;  
      * Compute the standardized difference for continuous and binary 
covariates *; 
  IF &BNR = 0 THEN DO; 
    TRTDIFF = TRT0_EST + TRT0PS_EST*PS; 
    STDDIFF = ABS(TRT0_EST + TRT0PS_EST*PS) / SIGHAT; 
  END; 
  IF &BNR = 1 THEN DO; 
    PRED0B = EXP(PRED0) / (1 + EXP(PRED0)); 
    PRED1B = EXP(PRED1) / (1 + EXP(PRED1)); 
    TRTDIFF = PRED0B - PRED1B; 
    STDDIFF = ABS( TRTDIFF / SQRT( (PRED0B*(1-PRED0B) +  
              PRED1B*(1-PRED1B)) / 2  ) ); 
  END; 
 
DATA OUT_&DVAR; 
  SET ALL; 
  STDDIFF_&DVAR = STDDIFF; 
  KEEP AGE PHQ1 GENDER SPOUSE WORK PS STDDIFF_&DVAR; 
     
%MEND GEN3; 
 
 
* Call GEN3 macro for each covariate to compute the weighted  
  standardized differences and then combine the results into a  
  single data set for reporting. *; 
 
ODS LISTING CLOSE; 
%GEN3(GENDER, 1, BIN, LOGIT); RUN; 
%GEN3(SPOUSE, 1, BIN, LOGIT); RUN; 
%GEN3(WORK, 1, BIN, LOGIT); RUN; 
%GEN3(AGE, 0, NOR, ID); RUN; 
%GEN3(PHQ1, 0, NOR, ID); RUN; 
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ODS LISTING; 
 
DATA REGSTD; 
  SET OUT_GENDER OUT_SPOUSE OUT_WORK OUT_AGE OUT_PHQ1; 
 
PROC MEANS DATA = REGSTD N MEAN STD MIN MAX; 
  VAR STDDIFF_GENDER STDDIFF_SPOUSE STDDIFF_WORK  
      STDDIFF_AGE STDDIFF_PHQ1; 
  TITLE 'Assessing Propensity Score Balance for PS  
     Regression Analyses'; 
  TITLE2 'Summary of Weighted Standardized Differences for 
     all covariates'; RUN; 

Output from Program 2.4 
           PROPENSITY STRATIFICATION BALANCE ASSESSMENT: 2-WAY MODELS                 
   TEST STATISTICS (TSTAT) AND PVALUES (PVAL) FOR MODELS WITHOUT PROPENSITY 
             ADJUSTMENT (UANDJ) AND WITH PROPENSITY ADJUSTMENT (ADJ) 
 
                         TSTAT_     PVAL_TX_     TSTAT_    PVAL_TX_      PVAL_ 
          Obs  OVAR    TX_UNADJ      UNADJ      TX_ADJ       ADJ      TXPS_ADJ 
 
           1   GENDER   0.52574     0.46840    0.75414     0.38517     0.43693 
           2   SPOUSE   0.36448     0.54603    0.12642     0.72217     0.91679 
           3   WORK     1.83639     0.17537    0.26352     0.60771     0.39002 
           4   AGE      1.55113     0.21297    0.00735     0.93168     0.55912 
           5   PHQ1     8.47659     0.00360    0.38192     0.53658     0.38868 
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     STANDARDIZED DIFFERENCES BEFORE PS ADJUSTMENT (STAND_DIFF_UNADJ), AFTER PS          
       ADJUSTMENT AVERAGING ACROSS STRATA (STAND_DIFF_ADJ), AND WITHIN EACH PS 
                          QUINTILE (STDDIFF_0 ... STDIFF_4) 
 
 
                STDDIFF_   STDDIFF_    STDDIFF_   STDDIFF_   STDDIFF_   STDDIFF_  STDDIFF_ 
Obs   OVAR       UNADJ       ADJ          0          1          2          3         4 
 
 1    GENDER   -0.10472   -0.027202   -0.27458    0.09386    0.15247   -0.30824   0.34522 
 2    SPOUSE   -0.08720   -0.038501   -0.12512   -0.23010    0.08454    0.14960  -0.11032 
 3    WORK      0.19633    0.084570    0.47314   -0.28228   -0.01852    0.43424  -0.17660 
 4    AGE      -0.17919   -0.012030   -0.41389   -0.11483    0.36707    0.12328  -0.10241 
 5    PHQ1     -0.42270   -0.055802    0.35965   -0.03898   -0.42395    0.16759  -0.35988  

 
 
               Summary of Weighted Standardized Differences for all covariates               
 
                                   The MEANS Procedure 
 
   Variable             N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
   STDDIFF_GENDER     192       0.0176960       0.0129160     0.000075936       0.0660873 
   STDDIFF_SPOUSE     192       0.0520099       0.0343423     0.000088147       0.1374309 
   STDDIFF_WORK       192       0.0167626       0.0052507       0.0042665       0.0233658 
   STDDIFF_AGE        192       0.1976337       0.1329724       0.0018827       0.5687586 
   STDDIFF_PHQ1       192       0.1702790       0.1142801       0.0039389       0.4802105 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

22.8 Summary 
This chapter presents the stratification and regression methods for conducting a propensity score 
analysis. We have demonstrated how these analyses are conducted and discussed how to assess 
the quality of the propensity adjustment, the sensitivity analyses, and the differences from 
classical regression modeling. Finally, we have illustrated the details of the methods using SAS 
code applied to data from an observational study. In summary, propensity scores are a valuable 
approach for estimating the causal effects of exposures in naturalistic data.  
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Abstract 
Propensity score matching entails forming matched sets of treated and untreated subjects who 
have a similar propensity score value. The most common implementation of propensity score 
matching is 1:1 or pair matching, in which matched pairs of treated and untreated subjects with 
similar propensity score values are formed. The estimation of the treatment effect is then done in 
the resultant matched sample. In this chapter, we discuss  

 estimating the propensity score 
 forming matched sets of subjects 
 assessing the similarity of baseline characteristics between treated and untreated subjects 

in the matched sample 
 estimating the effect of treatment on outcomes in the matched sample 
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33.1 Introduction 
The focus of this chapter is propensity score matching. Propensity score matching entails the 
formation of matched sets of treated and untreated subjects with similar values of the propensity 
score. Estimation of the effects of treatment on outcomes is done in the matched sample 
consisting of all propensity score matched sets. 

Treatment selection bias arises in observational studies because treatment allocation is not 
random. Instead, treatment assignment may be influenced by subject and provider characteristics. 
Therefore, treated subjects can differ systematically from untreated subjects in both observed and 
unobserved baseline characteristics. Propensity score matching is increasingly being used, 
particularly in the medical literature, to eliminate confounding due to measured covariates when 
estimating treatment effects in the presence of treatment selection bias. 

This chapter is divided into sections as follows:  

 Section 3.2 discusses estimation of the propensity score.  
 Section 3.3 discusses methods for forming propensity score matched sets of treated and 

untreated subjects.  
 Section 3.4 reviews methods for assessing the comparability of treated and untreated 

subjects in the propensity score matched sample.  
 Section 3.5 discusses methods for estimating the effect of treatment in the propensity 

score matched sample.  
 Section 3.6 describes sensitivity analyses for studies that employ propensity score 

matching. 
 Section 3.7 compares propensity score matching to other methods of using the propensity 

score for estimating treatment effects.  
 Section 3.8 illustrates the application of propensity score matching using SAS in a large 

sample of patients undergoing coronary percutaneous intervention (PCI) with either a 
bare-metal stent (BMS) or a drug-eluting stent (DES). 

3.2 Estimating the Propensity Score 
The propensity score is the probability of treatment assignment conditional on observed baseline 
characteristics (Rosenbaum and Rubin, 1983a). The propensity score model is the statistical 
model that relates measured baseline covariates to the probability of treatment assignment. In 
medical research, the propensity score is usually estimated using a logistic regression model. 
Although less commonly encountered, probit regression or classification and regression trees can 
also be employed for estimating the propensity score. When you are using logistic regression, a 
dichotomous variable denoting receipt of the treatment is regressed on measured baseline 
characteristics. Importantly, outcome variables and variables that may be modified by the 
treatment and that are in the causal pathway are not included in the propensity score model. Only 
variables that are measured at baseline, prior to exposure, should be considered for inclusion in 
the propensity score model. 

Because the propensity score is defined as a subject’s probability of treatment assignment 
conditional on measured baseline characteristics, it is natural to consider including in the 
propensity score model only those variables that influence treatment assignment. However, recent 
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research into variable selection for propensity score models suggests that other sets of variables 
should be considered for inclusion in the propensity score model (Austin et al., 2007a). One can 
consider four categories of variables for inclusion in the propensity score model:  

 Baseline covariates that affect treatment assignment.  
 Baseline covariates that affect both treatment assignment and outcome. These variables 

are the true confounders of the treatment outcome relationship (Rothman and Greenland, 
1998).  

 Baseline covariates that affect the outcome. These have been referred to as the potential 
confounders (Austin et al., 2007a).  

 All measured baseline variables, regardless of their effect on treatment and outcome.  
 

Including only the true confounders or the potential confounders in the propensity score model 
has been shown to result in the formation of a larger number of propensity score matched pairs, 
thus resulting in estimates of treatment effect with greater precision (Austin et al., 2007a). 
Including only those variables that affect treatment selection or all measured variables (including 
those that do not affect the outcome) resulted in the formation of fewer propensity score matched 
pairs. Furthermore, including either the potential or true confounders in the propensity score 
model did not result in an increase in the residual systematic differences in prognostically 
important covariates between treated and untreated subjects in the propensity score matched 
sample compared to including the variables that affect treatment assignment. 

An advantage of including all potential confounders in the propensity score model is that the 
outcome predictors are likely to be relatively consistent across different jurisdictions and regions. 
Therefore, the existing medical literature may be used to identify baseline characteristics that 
affect the outcome. In contrast, factors influencing treatment assignment may vary across 
jurisdictions and regions, since treatment assignment can be influenced by health policy, 
insurance coverage, local availability, physician and patient preferences, and national regulations, 
all of which may vary regionally. A disadvantage of including only the potential or true 
confounders in the propensity score model is that a separate propensity score model may be 
required for each outcome. In contrast, including only the predictors of treatment assignment in 
the propensity score model allows one to use the same propensity score model for multiple 
outcomes. 

33.3 Forming Propensity Score Matched Sets 
Propensity score matching entails the formation of sets of treated and untreated subjects with 
similar propensity scores. A matched set is a set of at least one treated subject and at least one 
untreated subject with similar propensity score values. The most commonly used approach to 
propensity score matching in the medical literature is to form pairs of treated and untreated 
subjects with similar propensity scores. This approach is the focus of this section. At the end of 
this section, we briefly describe alternative approaches for propensity score matching. 

Propensity score matching typically involves the formation of pairs of treated and untreated 
subjects with a similar propensity score. The most commonly used method for the formation of 
these pairs is greedy matching using calipers of a specified width (Rosenbaum, 1995). This 
method is so named because, for a given treated subject, the closest untreated subject within the 
specified caliper distance is selected for matching to this treated subject, even if the untreated 
subject would better have served as a match for a different treated subject.  
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In this approach, a treated subject is randomly selected, and the untreated subject with the closest 
propensity score that lies within a fixed distance (the propensity score caliper) of the treated 
subject’s propensity score is selected for matching. If multiple untreated subjects have propensity 
scores that are equally close to that of the treated subject, then one of these untreated subjects is 
selected at random. If no untreated subjects have propensity scores that lie within the caliper 
distance of the treated subject, then that treated subject is not included in the propensity score 
matched sample. Similarly, unmatched untreated subjects are excluded from the propensity score 
matched sample.  

In matching without replacement, once an untreated subject has been matched to a treated subject, 
that untreated subject is not available for consideration as a match for subsequent treated subjects. 
Therefore, when matching without replacement is employed, the final propensity score matched 
sample consists of unique subjects. Although matching without replacement is almost always 
used in practice in the medical literature, matching with replacement is also possible. When using 
matching with replacement, a single untreated subject may be matched to multiple treated 
subjects. Matching with replacement may allow for a greater use of the available data. However, 
variance estimation can be more complex due to the inclusion of the same untreated subject in 
multiple matched pairs (Hill and Reiter, 2006).  

An alternative to greedy matching is optimal matching (Rosenbaum, 1995), where matched pairs 
are formed to minimize the total difference in propensity scores between matched treated and 
untreated subjects. Optimal matching appears to be rarely used in the medical literature. This may 
be related either to the computational complexity of this method for large data sets or to the 
limited awareness of the existence of this method. 

Recent systematic reviews have shown that a wide range of calipers have been used for 
propensity score matching in the medical literature (Austin, 2007a; Austin, 2008; Austin, 2008d). 
The choice of calipers may affect the variance bias trade off: increasing the width of the caliper 
can result in the matching of more dissimilar subjects. This can result in greater bias in estimating 
the treatment effect due to greater systematic differences between treated and untreated subjects 
in the matched sample. However, it can also result in the formation of a larger number of matched 
pairs, thus increasing the precision of the estimated treatment effect. Conversely, decreasing the 
width of the calipers used can result in the matching of more similar subjects, and thus eliminate a 
greater degree of the bias in the estimated treatment effect. However, it may also result in the 
formation of fewer matched pairs, thus decreasing the precision of the estimated treatment effect. 

In a large number of applied studies, researchers used calipers of a predetermined width that 
appeared to be independent of the distribution of the propensity score. For instance, researchers 
have used calipers of width 0.1, 0.05, 0.03, 0.02, 0.01, 0.005, and 0.001 on the probability scale 
(Austin 2007a; Austin 2008a; Austin 2008b). A limitation to the choice of these calipers is that 
the caliper width appears to have been selected on an ad hoc basis. They did not appear to have 
been selected based on the distribution of the estimated propensity scores. An alternative 
approach that has greater theoretical justification is to match subjects on the logit of the 
propensity score using a caliper width that is defined as a proportion of the standard deviation of 
the logit of the propensity score. In this way, one is using the distribution of the propensity score 
to influence the width of the calipers used for matching. In the medical literature, researchers 
have used calipers of width 0.6 and 0.2 of the standard deviation of the logit of the propensity 
score (Austin and Mamdani, 2006; Austin et al., 2007a; Normand et al., 2001). The use of this 
approach is motivated by a study that examined the reduction in bias when matching on a single 
normally distributed confounding variable (Cochran and Rubin, 1973). Rosenbaum and Rubin 
extended this result to matching on the propensity score (1985). They determined the reduction in 
bias when using matching on the logit of the propensity score using calipers that were defined as 
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a proportion of the standard deviation of the logit of the propensity score. Recent research has 
found that matching on the logit of the propensity score using calipers of width 0.2 of the 
standard deviation of the logit of the propensity score resulted in estimates of treatment effect 
with lower mean squared error compared to other methods that are commonly used in the medical 
literature (Austin, 2009a). 

Until now in this section, we have focused on matching only on the propensity score. One can 
also require that subjects are matched on both the propensity score and a small number of 
baseline covariates. This approach can be employed for two reasons. First, you can use this 
approach if there are factors that are strongly prognostic of the outcome and you want to ensure 
that these factors are equally balanced between treated and untreated subjects in the propensity 
score matched sample. The rationale for this approach is similar to that for stratified 
randomization within randomized controlled trials. Second, you can use this approach if you want 
to pursue subsequent subgroup analyses (subject to the caveats of the limitations of subgroup 
analyses) (Freemantle, 2001; Rothwell, 2005; Austin et al., 2006). Conducting subgroup analyses 
without forcing both subjects within a matched pair to lie within the same subgroup can result in 
a violation of the matched nature of the propensity score matched sample. By forcing agreement 
on the subgroup variables, the members of each matched pair will belong to the same subgroup. 
For instance, if one matched only on the propensity score, then the sex of the subjects would be 
balanced between treated and untreated subjects in the matched sample. However, individual 
matched pairs could consist of one male treated subject and one female untreated subject. 
Examining the effect of treatment in subgroups defined by the sex of the subject would result in 
these matched pairs being broken, with one subject from the matched pair lying within each 
subgroup. As a result, the distribution of baseline characteristics between treated and untreated 
subjects might no longer hold within a given subgroup. An adverse consequence of matching on 
both the propensity score and a limited number of covariates is that it might result in fewer 
matched sets being formed compared to matching on the propensity score alone. 

While one-to-one matching without replacement is the most commonly implemented method of 
propensity score matching in the literature, other methods exist. Many-to-one matching, in which 
each treated subject is matched to multiple untreated subjects, can also be employed. An 
advantage of this method is that it may enable a greater proportion of the sample to be used. 
Given a rare exposure, pair matching on the propensity score would result in only a minority of 
the subjects being included in the matched sample. For instance, if only 10% of the sample were 
exposed to the treatment, then pair matching would result in at most 20% of the original sample 
being included in the propensity score matched sample. However, if each treated subject was 
matched to multiple untreated subjects, a greater proportion of the sample could be included in 
the matched sample. This may allow for greater precision when estimating treatment effects. For 
instance, if each untreated subject were matched to up to four untreated subjects, then up to 50% 
of the original sample could be included in the propensity score matched sample. As another 
alternative, Hansen (2004) has described full matching, in which all subjects are included. Full 
matching results in matched sets containing variable numbers of treated and untreated subjects. 
See Rosenbaum (1995) and Hansen (2004) for further discussion of these methods. 

33.4 Assessing Balance in Baseline Characteristics 
Rosenbaum and Rubin (1983a) demonstrated that in strata matched on the true propensity score, 
treatment assignment is independent of measured baseline characteristics. Therefore, the true 
propensity score is a balancing score: the distribution of measured baseline variables will be 
similar between treated and untreated subjects within stratum matched on the true propensity 
score. 
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In observational studies, the propensity score must be estimated using the observed study data. 
The test of whether the propensity score model has been adequately specified is an empirical one: 
whether observed baseline covariates are balanced between treated and untreated subjects in the 
matched sample. Ho and colleagues (2007) refer to this as the propensity score tautology: “We 
know we have a consistent estimate of the propensity score when matching on the propensity 
score balances the raw covariates.” In other words, Ho and colleagues are suggesting that one has 
adequately specified the propensity score model when, after matching on the estimated propensity 
score, the distribution of measured baseline covariates is similar between treated and untreated 
subjects. Therefore, the appropriateness of the specification of the propensity score is assessed by 
examining the degree to which matching on the estimated propensity score has resulted in a 
matched sample in which the distribution of measured baseline covariates is similar between 
treated and untreated subjects. 

Imai and colleagues (2008) discuss appropriate statistical methods for assessing balance in 
matched samples. Importantly, they criticize the use of significance testing to assess balance in 
baseline covariates as being inappropriate for two reasons. First, they suggest that balance is a 
property of a sample and not of a hypothetical superpopulation about which one wishes to make 
inferences. Second, significance testing is confounded with sample size. The matched sample will 
have a smaller sample size than the initial sample. Therefore, the use of significance testing to 
assess balance may result in misleading conclusions solely due to the decreased statistical power 
to detect imbalance in baseline covariates. See Hansen (2008) for a dissenting argument against 
these criticisms of using significance testing to assess balance. 

Reflecting the prescription of Imai and colleagues, we describe a variety of sample-specific 
methods for assessing the comparability of treated and untreated subjects. These methods include 
standardized differences, side-by-side box plots, quantile-quantile plots, and non-parametric 
density estimates to compare the distribution of measured baseline covariates between treated and 
untreated subjects. We then describe sample-specific methods that are inappropriate for assessing 
the adequacy of the specification of the propensity score model. For a more in-depth discussion of 
balance diagnostics when propensity score matching is used, see Austin (2009b). 

Many researchers have used the standardized difference to assess balance between treated and 
untreated subjects in propensity score matched samples (Rosenbaum and Rubin, 1985; Normand 
et al., 2001; Austin and Mamdani, 2006; Austin et al., 2007a). For continuous covariates, the 
standardized difference is defined as: 

2
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where treatmentx  and controlx  denote the sample mean of the covariate in treated and untreated 

subjects, and 2
treatments and 2

controls are the sample standard deviations of the covariate in the treated 
and untreated subjects, respectively (Flury and Riedwyl, 1986). For dichotomous covariates, the 
standardized difference is defined as: 
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where Tp̂  and Cp̂  denote the prevalence of the dichotomous covariate in treated and untreated 
subjects, respectively. The standardized difference is typically defined without the use of absolute 
values. The sign of the standardized difference then denotes the direction of the difference in 
means. Because we are usually not interested in the direction of the difference, we have used the 
absolute value of the difference in the numerator. The standardized difference is the absolute 
difference in sample means divided by an estimate of the pooled standard deviation (not the 
standard error) of the variable (the standardized difference should not be confused with z-scores, 
which contain an estimate of the standard error in the denominator). It represents the difference in 
means between the two groups in units of standard deviation (Flury and Riedwyl, 1986). The 
standardized difference does not depend on the unit of measurement nor is it influenced by 
sample size. Therefore, it can be used to compare the relative balance of variables measured in 
different units. It can also be used to compare the balance of a given variable in the initial sample 
with the balance of the same variable in the propensity score matched sample. Unlike significance 
testing, where the convention that a p-value of less than 0.05 denotes statistical significance, no 
such universally accepted criterion exists for the use of standardized differences. However, some 
authors have suggested that standardized differences of less than 0.10 (10%) likely denote a 
negligible imbalance between treated and untreated subjects (Austin and Mamdani, 2006; Austin 
et al., 2007a; Normand et al., 2001). 

The standardized difference allows one to compare the mean of continuous variables between 
treated and untreated subjects in the propensity score matched sample. However, conditional on 
the true propensity score, treated and untreated subjects have the same distribution of measured 
baseline characteristics. Therefore, not only the mean but the distribution of each continuous 
variable should be similar between treated and untreated subjects in the propensity score matched 
sample. It has been suggested that one should compare higher order moments and interactions 
between variables between treated and untreated subjects (Imai et al., 2008; Ho et al., 2007). 
Rosenbaum and Rubin (1985) state that if the outcome has a nonlinear relationship with a 
baseline covariate in each of the two exposure groups, then balancing the mean of that covariate 
between treated and untreated subjects does not necessarily imply that bias due to that covariate 
has been eliminated. In such a setting, both the mean and the variance of the covariate in each of 
the two groups are important. Thus, one should assess the comparability of both the mean and the 
variance of that covariate between treated and untreated subjects. Furthermore, the use of side-by-
side box plots and quantile-quantile plots can be used to compare the distribution of continuous 
baseline covariates between treated and untreated subjects (Imai et al., 2008; Ho et al., 2007; 
Austin, 2009b).  

The balance diagnostics proposed here are appropriate for pair matching on the propensity score. 
When many-to-one matching on the propensity score is used, these methods must be modified to 
account for the possible imbalance in the number of subjects within each matched set. 
Adaptations for some of these balance diagnostics for many-to-one matching have been described 
elsewhere (Austin, 2008d). In brief, assume that each matched set consists of one treated subject 
and at least one untreated subject. Then each treated subject is assigned a weight of one, while 
each untreated subject is assigned a weight that is the reciprocal of the number of untreated 
subjects in that matched set. These weights are then incorporated when computing sample-
specific measures of balance. 

These balance diagnostics are used for comparing the distribution of measured baseline covariates 
between treated and untreated subjects. However, balance diagnostics based on the distribution of 
the estimated propensity score in treated and untreated subjects may not be appropriate. It has 
been shown that the distribution of the estimated propensity score can be similar between treated 
and untreated subjects despite a misspecified propensity score model (Austin, 2009b). Thus, side-
by-side box plots or quantile-quantile plots comparing the distribution of the estimated propensity 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



58   Analysis of Observational Health Care Data Using SAS 
 

score in treated and untreated subjects may not serve as appropriate diagnostics of whether the 
propensity score model has been adequately specified. Appropriate balance diagnostics for the 
estimated propensity score model consist of comparing the distribution of measured baseline 
covariates between treated and untreated subjects. While many authors report the Receiver 
Operating Characteristic (ROC) curve area (equivalent to the c-statistic) of the propensity score 
model, this information provides no information on whether the propensity score model has been 
adequately specified or whether important confounders have been omitted from the model 
(Austin et al., 2007a; Weitzen et al., 2005; Austin, 2009b). 

In many applications, the initially specified propensity score model may require modification. 
Rosenbaum and Rubin (1984) describe an iterative approach to specifying the propensity score 
model. While Rosenbaum and Rubin’s method was illustrated in the context of stratification on 
the quintiles of the propensity score, one can modify their approach to the context of propensity 
score matching. Using this approach, an initial propensity score model is specified. Treated and 
untreated subjects are then matched on the estimated propensity score. The balance in baseline 
variables between treated and untreated subjects in the propensity score matched sample is then 
assessed. If there are measured baseline variables that are unbalanced between treated and 
untreated subjects in the matched sample, and these variables are not in the current propensity 
score model, then the propensity score model can be modified by including them. If continuous 
variables that are already in the current propensity score model are unbalanced between treated 
and untreated subjects in the matched sample, then the propensity score model can be modified 
by adding higher order terms (for example, quadratic or cubic terms) of these continuous 
variables (alternatively, one could model these variables using cubic splines). If there are 
variables that are already in the propensity score model and are unbalanced between treated and 
untreated subjects in the matched sample, then the initial propensity score model can be modified 
by including interactions between these variables and other variables that are currently in the 
propensity score model. See Rosenbaum and Rubin (1984) for an application of this iterative 
approach. 

Remember that in randomized controlled trials (RCTs), randomization will, on average, result in 
both measured and unmeasured baseline variables being balanced between the treatment arms of 
the study. Propensity score methods only provide the expectation that measured baseline 
covariates will be balanced between treated and untreated subjects. They make no claim to 
balance unmeasured covariates between treated and untreated subjects (Austin et al., 2005, 
2007a). 

33.5 Estimating the Treatment Effect 
Once the propensity score has been estimated, a propensity score matched sample has been 
created, and the balance in measured baseline variables between treated and untreated subjects 
has been assessed and found to be acceptable, researchers must estimate the effect of the 
treatment on the outcome and assess its statistical significance.  

The propensity score matched sample does not consist of independent observations. Matched 
treated and untreated subjects have similar propensity scores. Therefore, their observed baseline 
covariates come from the same distribution. Thus, matched subjects will, on average, be more 
similar than randomly selected treated and untreated subjects from the matched sample. In the 
presence of confounding, some of the baseline covariates are related to the outcome. Therefore, 
matched subjects are, on average, more likely to have similar outcomes than are randomly 
selected treated and untreated subjects. Thus, outcomes are not independent within matched pairs, 
and conventional statistical methods that assume independent observations are not appropriate for 
estimating treatment effects in propensity score matched samples.  
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For further information, see Austin (2009c), a paper examining variance estimation in propensity 
score matched samples. It was shown that accounting for the matched nature of the sample 
resulted in estimates of standard error that more closely reflected the sampling variability of the 
treatment effect compared with instances when matching was not taken into account. 
Furthermore, accounting for the matched nature of the propensity score matched sample tended to 
result in type I error rates that were closer to the advertised level and confidence intervals with 
coverage rates closer to the nominal level, compared with instances where matching was not 
accounted for.    

In health research, outcomes are typically continuous, dichotomous, or time-to-event in nature. 
We discuss appropriate statistical methods for each of these families of outcomes in the 
subsequent subsections. 

3.5.1  Continuous Outcomes 
When the outcome variable is continuous, the treatment effect can be measured by the differences 
in means between treated and untreated subjects. The statistical significance of the difference in 
means can be assessed using a paired t-test. When the response variables are non-normally 
distributed, then the difference between treated and untreated subjects within propensity score 
matched pairs may be more likely to be normally distributed than the raw responses themselves. 
Therefore, a one-sample t-test on the differences may still be appropriate. In the event that the 
paired differences are still strongly non-normal, then a paired nonparametric test, such as the 
Wilcoxon Signed Ranks test, may be employed (Conover, 1999). 

3.5.2  Dichotomous Outcomes 
When the outcome variable is dichotomous, there are several options for metrics with which to 
quantify the effect of treatment on outcomes. In randomized controlled trials with dichotomous 
outcomes, risk differences and relative risks are frequently reported. Indeed, some clinical 
journals require that the number needed to treat (NNT the reciprocal of the absolute risk 
reduction) be reported for any randomized clinical trial with dichotomous outcomes 
(http://resources.bmj.com/bmj/authors/types-of-article/research. Site accessed February 5, 2009). 
Because matching on the propensity score can be expected to eliminate all or most of the 
observed systematic differences between treated and untreated subjects, one can report risk 
differences and relative risks by comparing outcomes directly between treated and untreated 
subjects in the matched sample. Agresti and Min (2004) describe appropriate statistical methods 
for constructing confidence intervals and assessing the statistical significance of risk differences 
and relative risks in matched samples. For instance, the statistical significance of differences in 
proportions (risk differences or absolute risk reduction) can be assessed using McNemar’s test for 
paired binary data. In a matched sample, let us use the following definitions: 

 Let a denote the number of matched pairs in which both the treated and untreated subjects 
experience the event of interest. 

 Let b denote the number of matched pairs in which the treated subject does not experience 
the event of interest, while the untreated subject does experience the event. 

 Let c denote the number of matched pairs in which the treated subject experiences the 
event of interest, while the untreated subject does not experience the event. 
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 Let d denote the number of matched pairs in which both the treated and untreated subjects 
do not experience the event (defining d helps visualize the 2x2 table for outcomes within 
matched pairs. However, d is not used in any of the computations described here).  
 

Then the relative risk is estimated by (a+c)/(a+b). The asymptotic variance of the log-relative risk 
is estimated by (b+c)/(a+b)(a+c) (Agresti and Min, 2004). A z-test can be constructed by taking 
the ratio of the log-relative risk and its asymptotic standard error. 

In randomized controlled trials, some authors have recommended conducting adjusted analyses in 
which the effect of exposure on the outcome is adjusted for possible residual imbalance in 
important prognostic variables that are measured at baseline (Senn, 1994; Senn, 1989; Rothman, 
1977). This approach can be implemented in the propensity score matched sample. Logistic 
regression models, estimated using generalized estimating equation (GEE) methods, can be used 
to determine the effect of the treatment on outcomes after adjusting for residual imbalance in 
measured baseline variables. The use of GEE methods allows one to account for the potential 
homogeneity of outcomes within propensity score matched pairs (Diggle et al., 1994). 

Regression adjustment can be useful in small samples in which prognostically important baseline 
covariates may be imbalanced between treated and untreated subjects in the matched sample. A 
limitation of this method is that, when the outcome is dichotomous, the measure of treatment 
effect is the odds ratio, rather than the relative risk or risk difference. The use of the odds ratio 
has been discouraged as a measure of effect in prospective studies for several reasons 
(Newcombe, 2006). Prior research has shown that propensity score methods can result in biased 
estimation of conditional odds ratios (Austin et al., 2007b), while risk differences and relative 
risks do not suffer from this effect (Rosenbaum and Rubin, 1983a; Austin, 2008c). Furthermore, 
propensity score methods can result in suboptimal inferences about marginal odds ratios (Austin, 
2007b). For these reasons, using odds ratio as a measure of treatment effect in propensity score 
matched studies is discouraged. 

Because propensity score matching tends to reduce much of the systematic differences between 
treated and untreated subjects, subsequent regression adjustment within the matched sample may 
not be necessary. When outcomes are dichotomous, investigators are encouraged to report 
absolute risk reductions, relative risks, and numbers needed to treat, rather than odds ratios. 
Several authors in clinical journals have suggested that these measures of effect are of greater 
clinical relevance compared to the odds ratio (Schechtman, 2002; Cook and Sackett, 1995; 
Jaeschke et al., 1995; Sinclair and Bracken, 1994). 

3.5.3  Time-to-Event Outcomes 
When the outcome is a time-to-event outcome with possible censoring, then multiple options are 
present for the analysis. Differences in survival between treated and untreated subjects in the 
propensity score matched sample can be compared using Kaplan-Meier survival curves. 
However, conventional tests such as the log-rank test are not appropriate for testing the statistical 
significance of the difference in survival curves. Klein and Moeschberger (1997) have proposed a 
test that is appropriate for comparing survival curves that arise from matched data. We describe 
this test briefly. Let D1 denote the number of matched pairs in which the treated subject 
experiences the event first, while D2 denotes the number of matched pairs in which the untreated 

subject experiences the event first. The test statistic is 
21

21

DD
DD

, which has a standard normal 

distribution under the null hypothesis and the number of matched pairs is large. Note that data 
from matched pairs where one of the paired observations is censored will not contribute to the test 
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statistic if the censored observation occurs at an earlier time point than the observed event. The 
test is analogous to McNemar’s test for correlated binary proportions. As an alternative to non-
parametric analyses, Cummings and colleagues (2003) have suggested that in matched cohort 
studies, one can use Cox proportional hazards models that stratify on the matched sets. In the 
context of propensity score matching, one can fit a propensity score model that stratifies on the 
matched pairs (Therneau and Grambsch, 2000). Alternatively, one could fit a Cox proportional 
hazards model and use a robust variance estimator, as proposed by Lin and Wei (1989), to 
account for the paired nature of the data. 

33.6 Sensitivity Analyses for Propensity Score Matching 
Conditioning on the propensity score allows for unbiased estimation of the treatment effect under 
the assumption that all variables that affect treatment assignment have been measured. 
Rosenbaum and Rubin developed sensitivity analyses that allow one to determine the potential 
impact of unmeasured confounding variables on the significance of the observed treatment effect 
(Rosenbaum and Rubin, 1983b; Rosenbaum, 1995). The sensitivity analyses assume that two 
subjects have the same vector of observed covariates, and hence the same probability of treatment 
assignment conditional on the observed covariates. However, their true odds of receiving the 

 In the remainder of this section, we use the terminology of 
Rosenbaum (1995). 

Let i and j denote two subjects in the original sample. Let ][ix and ][ jx denote the observed vector 

of covariates for these two subjects, respectively. Furthermore, let ][i and ][ j denote the 

probability of treatment assignment for these two subjects, respectively. Assume that ][][ ji xx , 

but that ][][ ji . Therefore, despite having the same vector of observed covariates, these two 
subjects have different probabilities of treatment assignment. Thus, these two subjects may be 
placed in the same matched pair, despite having different probabilities of receiving the treatment. 
Assume that 

)1(
)1(1

][][

][][

jk

kj  for all j, k with ][][ kj xx and with 1 

Thus, for two subjects with the same observed covariate pattern, the odds of receiving the 
treatment diff  . Rosenbaum (1995) demonstrates that this is equivalent to the 
following two relationships: 

][][
][

][ )(
1

log jj
j

j ux  

10 ][ ju  

where ][ jx  denotes the vector of observed covariates and ][ ju  denotes an unobserved covariate. 
This relationship says that the odds of receiving the treatment are related to both the observed 
covariates and an unobserved covariate. Furthermore, this unobserved covariate takes values that 
lie between 0 and 1 (therefore, the unobserved covariate can be a binary covariate). The 
sensitivity analyses proposed by Rosenbaum allow one to determine, for a fixed value of 
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)exp( , the range of significance levels for the treatment effect that would be observed had 
the unobserved covariate been accounted for. In particular, the extremes of this range would be 
achieved when the unobserved covariate was almost perfectly associated with the outcome. 

, 0 ), the extreme right of the range of plausible 
significance values exceeded 0.05. Then one would conclude that if there was an unmeasured 
binary variable that increased the odds of exposure by a factor of 0  and if this factor was a near-
perfect predictor of the outcome, then accounting for this unmeasured factor would nullify the 
statistical significance of the observed treatment effect (Rosenbaum, 1995). Rosenbaum provides 
details on how to estimate the range of significance levels in the context of McNemar’s test and 
the Signed Rank Test. 

33.7 Propensity Score Matching Compared with Other  
 Propensity Score Methods 

Three propensity score methods were proposed by Rosenbaum and Rubin (1983a) in their initial 
paper: matching on the propensity score, stratification on the propensity score, and covariate 
adjustment using the propensity score. In a subsequent paper, Rosenbaum (1987) proposed 
weighting by the inverse probability of treatment using the propensity score. A limitation to the 
use of covariate adjustment using the propensity score compared with propensity score matching 
and stratification on the propensity score is that it requires the assumption that the outcomes 
regression model has been correctly specified (Rubin, 2004). In contrast, propensity score 
matching and stratification on the propensity score do not require the specification of an 
outcomes model to estimate the treatment effect. Additionally, covariate adjustment using the 
propensity score does not explicitly determine the degree of overlap of the distribution of the 
propensity score within each treatment group. For instance, there may be no untreated subjects 
with high propensity scores and no treated subjects with low propensity scores. Including these 
subjects with low or high propensity scores when using covariate adjustment using the propensity 
score would result in extrapolating the treatment effect from the area of common support to those 
areas of the distribution of the propensity that consist only of treated subjects or untreated 
subjects. Both empirical studies and Monte Carlo simulations have found that propensity score 
matching eliminates a greater degree of the systematic differences in observed covariates between 
treated and untreated subjects compared to stratification on the propensity score (Austin and 
Mamdani, 2006; Austin et al., 2007a; Austin, 2009d). When outcomes are dichotomous, 
propensity score matching and stratification on the propensity score allow for the estimation of 
risk differences, relative risks, and numbers needed to treat, while covariate adjustment using the 
propensity score only allows odds ratio estimation. 

3.8 Case Study 
In this section, we illustrate these methods using SAS software applied to data from a previously 
published observational study to examine the safety and efficacy of drug-eluting stents (DES) 
with that of bare metal stents (BMS) in patients undergoing percutaneous coronary interventions 
(PCI) (Tu et al., 2007). 

3.8.1  Data Sources 
The data were obtained from a prospective clinical registry maintained by the Cardiac Care 
Network of Ontario (CCN) of all patients undergoing invasive cardiac procedures in Ontario, 
Canada. The registry contains information on patient demographic characteristics, cardiac history, 
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cardiac procedures, and relevant coexisting conditions. The current case study is intended only to 
illustrate the application of propensity score matching. It is not intended to be a clinical 
examination of the safety and efficacy of DES, which is a complex question. See Tu and 
colleagues (2007) for an examination of these clinical issues. 

The sample for the current tutorial consisted of 13,338 patients who underwent a PCI with 
placement of either a DES or a BMS in Ontario between December 1, 2003, and March 31, 2005. 
Patients could have either a single stent or multiple stents placed during the procedure. However, 
patients who had stents of both types inserted were excluded from the study. The study subjects 
and the CCN Cardiac Registry are described in greater detail elsewhere (Tu et al., 2007). 

3.8.2  Outcomes and Baseline Covariates 
There were three outcomes of interest in the original study: target-vessel revascularization, 
myocardial infarction, and death. The original study identified 21 baseline characteristics that 
were associated with these outcomes. These characteristics are the baseline covariates in the 
current study. Baseline characteristics were compared between patients receiving DES and 
patients receiving BMS when undergoing PCI. Categorical variables were compared using the 
chi-squared test, while continuous variables were compared using a t-test. Baseline characteristics 
of DES and BMS patients are reported in Table 3.1.  

Table 3.1  Comparison of Baseline Characteristics between DES and BMS Patients in the  
                  Original Sample 
Variable BMS (N=8,241) DES (N=5,097) P-value 

Demographic characteristics 
Age, Mean ± SD 62.64 ± 11.83 61.71 ± 11.54 <.001 
Male, N (%) 6,130 (74.4%) 3,568 (70.0%) <.001 
Income quintile, N (%)   0.884 
   1 1,548 (18.8%) 955 (18.7%)  
   2 1,676 (20.3%) 1,012 (19.9%)   
   3 1,709 (20.7%) 1,080 (21.2%)   
   4 1,775 (21.5%) 1,080 (21.2%)   
   5 1,533 (18.6%) 970 (19.0%)   

Cardiac condition or procedure 
Hypertension, N (%) 3,057 (37.1%) 1,858 (36.5%) 0.455 
Myocardial infarction, N (%)   <.001 
    Same day as index PCI 1,128 (13.7%) 378 (7.4%)  
    1-7 days before index PCI 1,837 (22.3%) 933 (18.3%)   
    8-365 days before index PCI 932 (11.3%) 649 (12.7%)   
    None within 365 days before index  
    PCI 

4,344 (52.7%) 3,137 (61.5%)   

CCS angina classification, N (%)   <.001 
    0 616 (7.5%) 326 (6.4%)  
    I 397 (4.8%) 285 (5.6%)   
    II 1,135 (13.8%) 795 (15.6%)   
    III 1,700 (20.6%) 1,336 (26.2%)   
    IVA 2,343 (28.4%) 1,288 (25.3%)   
    IVB 913 (11.1%) 553 (10.8%)   
    IVC 998 (12.1%) 479 (9.4%)   
    IVD 139 (1.7%) 35 (0.7%)   

                                                                                                                                         (continued) 
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Table 3.1  (continued) 
Variable BMS (N=8,241) DES (N=5,097) P-value 
Congestive heart failure, N (%) 411 (5.0%) 276 (5.4%) 0.278 
Previous coronary artery bypass surgery, N 
(%) 

639 (7.8%) 486 (9.5%) <.001 

PCI > 1 year before index PCI 361 (4.4%) 313 (6.1%) <.001 
Coexisting condition 

Diabetes, N (%) 2,018 (24.5%) 1,937 (38.0%) <.001 
Peripheral vascular disease, N (%) 473 (5.7%) 294 (5.8%) 0.945 
Chronic obstructive pulmonary disease, N 
(%) 

435 (5.3%) 203 (4.0%) <.001 

Cerebrovascular disease, N (%) 295 (3.6%) 300 (5.9%) <.001 
Primary cancer, N (%) 87 (1.1%) 48 (0.9%) 0.523 
Renal failure requiring dialysis, N (%) 67 (0.8%) 67 (1.3%) 0.005 

Index PCI 
Ad hoc PCI, N (%) 4,833 (58.6%) 2,576 (50.5%) <.001 
Stent length (mm), Mean ± SD 24.73 ± 15.27 28.68 ± 16.81 <.001 
Stent diameter (mm), Mean ± SD 3.06 ± 0.49 2.76 ± 0.36 <.001 
No. of stents per patient, Mean ± SD 1.47 ± 0.81 1.48 ± 0.76 0.959 
No. of vessels stented, Mean ± SD 1.12 ± 0.35 1.13 ± 0.35 0.158 
ACC-AHA lesion type, N (%)   <.001 
   A 1,091 (13.2%) 328 (6.4%)  
   B1 2,443 (29.6%) 1,320 (25.9%)   
   B2 2,966 (36.0%) 1,928 (37.8%)   
   C 1,741 (21.1%) 1,521 (29.8%)   
    

In examining Table 3.1, one observes that the distribution of 14 out of the 21 baseline variables 
differed significantly between DES and BMS patients. The distribution of age, gender, history of 
myocardial infarction, CCS angina classification, previous coronary artery bypass graft surgery, 
PCI over a year prior to index procedure, diabetes, chronic obstructive pulmonary disease, 
cerebrovascular disease, renal disease requiring dialysis, ad hoc PCI, stent length, stent diameter, 
and ACC-AHA lesion type differed between the two treatment groups. 

3.8.3  Estimating the Propensity Score Model 
The initial propensity score was estimated using a logistic regression model that had a 
dichotomous variable indicating receipt of a DES as the response variable and that contained as 
predictor variables the 21 baseline variables listed in Table 3.1. Categorical variables with more 
than two levels were represented using multiple indicator variables (for example, CCS angina 
classification). The propensity score model was fit using the SAS code in Program 3.1: 

Program 3.1  SAS Code for Fitting Propensity Score Model 
/*************************************************************************/ 
/* SAS code for estimating propensity score model.             */ 
/* Indicator variable denoting receipt of a DES is regressed on baseline */ 
/* characteristics.                 */ 
/*************************************************************************/ 
 
proc logistic descending data=stent_data; 
  model des = cov_1ocancer cov_adhoc cov_age cov_ccnprevacb  
   cov_ccnprevptca ccscat_1 ccscat_2 ccscat_3 ccscat_4A ccscat_4B ccscat_4C 
   ccscat_4D cov_cerebvd cov_chf prevmi_index prevmi_7days prevmi_1year 
   cov_copd cov_diab_2cat cov_dialysis 
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   cov_hyperten income2 income3 income4 income5 
   lesion_type_B1 lesion_type_B2 lesion_type_C 
   cov_male cov_pvd cov_s_lensum cov_s_sizemin cov_vesnum stents; 
  output out=out_ps prob=ps xbeta=logit_ps; 
  /* Output the propensity score and logit of the propensity score */ 
run; 

3.8.4  Propensity Score Matching 
Patients were then matched on the logit of the propensity score using a caliper of 0.2 standard 
deviations of the logit of the propensity score. The Division of Biostatistics at the Mayo Clinic 
provides a set of SAS macros on its Web site that can be used for propensity score matching 
(http://mayoresearch.mayo.edu/mayo/research/biostat/sasmacros.cfm)1

Program 3.2  SAS Code for Forming Propensity Score Matched Sample 

. The %GMATCH macro 
performs greedy matching, while the %VMATCH macro can be used for optimal matching (these 
two macros replaced the earlier %MATCH macro that performed both greedy matching and 
optimal matching). The SAS code for using the %GMATCH macro to form pairs of DES and 
BMS patients matched on the logit of the propensity score using calipers of width equal to 0.2 of 
the standard deviation of the logit of the propensity score is shown in Program 3.2. 

/*************************************************************************/ 
/* Compute standard deviation of the logit of the propensity score       */ 
/*************************************************************************/ 
 
proc means std data=out_ps; 
  var logit_ps; 
  output out=stddata (keep = std) std=std; 
run; 
 
data stddata; 
  set stddata; 
  std = 0.2*std; 
  /* calipers of width 0.2 standard deviations of the logit of PS.      */ 
run; 
 
/* Create macro variable that contains the width of the caliper for matching */ 
 
data _null_; 
  set stddata; 
  call symput('stdcal',std); 
run; 
 
/* Match subjects on the logit of the propensity score.   */ 
 

                                                 
1 These SAS macros were written locally and are maintained by Mayo Clinic staff. They contain the SAS source code, a brief  
  description of the macro's function, and an example of the macro call. Copyright 2005 Mayo Foundations for Medical Education  
  and Research. This software is free software; you can redistribute it and/or modify it under the terms of the GNU General Public  
  License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.  
  These macros are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied  
  warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for  
  more details. If you use functions from the Mayo Clinic, please acknowledge the original contributor of the material. 
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proc sort data=out_ps; 
  by des; 
run; 
 
data out_ps; 
  set out_ps; 
  id=_N_; 
run; 
 
%include 'gmatch.sas'; 
 
/* The macro %gmatch.sas uses the following parameters: 
   Data: the name of the SAS data set containing the treated and untreated subjects. 
   Group: the variable identifying treated/untreated subjects. 
   Id: the variable denoting subjects’ identification numbers. 
   Mvars: the list of variables on which one is matching. 
   Wts: the list of non-negative weights corresponding to each matching variable. 
   Dist: the type of distance to calculate [1 indicates weighted sum (over matching 
        variables) of absolute case-control differences]. 
   Dmaxk: the maximum allowable difference in the matching difference between matched 
 treated and untreated subjects. 
   Ncontls: the number of untreated subjects to be matched to each treated subject. 
   Seedca: the random number seed for sorting the treated subjects prior to matching. 
   Seedco: the random number seed for sorting the untreated subjects prior to  
           matching. 
   Out: the name of a SAS data set containing the matched sample. 
   Print: the flag indicating whether the matched data should be printed. */ 
 
%gmatch( 
  data = out_ps, 
  group = des, 
  id = id, 
  mvars = logit_ps, 
  wts = 1, 
  dist = 1, 
  dmaxk = &stdcal, 
  ncontls = 1, 
  seedca = 25102007, 
  seedco = 26102007, 
  out = matchpairs, 
  print = F 
); 
 
data matchpairs; 
  set matchpairs; 
  pair_id = _N_; 
run; 
 
/* Create a data set containing the matched BMS patients (untreated subjects) */ 
 
data control_match; 
  set matchpairs; 
  control_id = __IDCO; 
  logit_ps = __CO1; 
  keep pair_id control_id logit_ps; 
run; 
 
/* Create a data set containing the matched DES patients (treated subjects) */ 
 
data case_match; 
  set matchpairs; 
  case_id = __IDCA; 
  logit_ps = __CA1; 
  keep pair_id case_id logit_ps; 
run; 
 
proc sort data=control_match; 
  by control_id; 
run; 
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proc sort data=case_match; 
  by case_id; 
run; 
 
data exposed; 
  set out_ps; 
  if des = 1; 
  case_id = id; 
run; 
 
data control; 
  set out_ps; 
  if des = 0; 
  control_id = id; 
run; 
 
proc sort data=exposed; 
  by case_id; 
run; 
 
proc sort data=control; 
  by control_id; 
run; 
 
data control_match; 
  merge control_match (in=f1) control (in=f2); 
  by control_id; 
  if f1 and f2; 
run; 
 
data case_match; 
  merge case_match (in=f1) exposed (in=f2); 
  by case_id; 
  if f1 and f2; 
run; 
 
data long; 
  set control_match case_match; 
  prop_score = exp(logit_ps) / (exp(logit_ps) + 1); 
run; 
 
data wide_des; 
  set case_match; 
 
  death_1_yr_des = death_1_yr; 
  tvra_time_des = tvra_time; 
  tvra_des = tvra; 
run; 
 
data wide_bms; 
  set control_match; 
 
  death_1_yr_bms = death_1_yr; 
  tvra_time_bms = tvra_time; 
  tvra_bms = tvra; 
run; 
 
proc sort data=wide_des; 
  by pair_id; 
run; 
 
proc sort data=wide_bms; 
  by pair_id; 
run; 
  
/* Data set containing outcomes for the matched subjects.    */ 
/* Each row contains outcomes for the treated and untreated subjects */ 
/* in the matched pair.       */ 
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data wide_combo; 
  merge wide_des (in=f1) wide_bms (in=f2); 
  by pair_id; 
  if f1 and f2; 
run; 
 
This resulted in the formation of 3,746 matched pairs of DES and BMS patients. Of the 5,097 
DES patients in the initial sample, 3,746 (73.5%) were matched to a BMS patient, while 1,351 
(26.5%) DES patients were excluded from the matched sample because an appropriate BMS 
patient was not identified. Similarly, 4,495 (54.5%) of the BMS patients were excluded from the 
matched sample. Two SAS data sets containing the matched subjects were constructed. The first 
(Long) contained one row per subject, while the second (Wide_Combo) contained one row per 
matched pair. 

3.8.5  Assessing BBalance in Measured Covariates  
We examined the similarity of treated and untreated subjects in the propensity score matched 
sample. Standardized differences were computed for each of the baseline variables listed in Table 
3.1. Program 3.3 shows the SAS code for calculating standardized differences. 

Program 3.3  SAS Code for Calculating Standardized Differences between Treated and  
                       Untreated Subjects 
/******************************************************************************/ 
/* Compute standardized differences for each covariate in the matched sample. */ 
/******************************************************************************/ 
 
proc sort data=long; 
  by des; 
run; 
 
/******************************************************************************/ 
/* Macro for computing standardized differences for continuous variables.     */ 
/******************************************************************************/ 
 
%macro cont(var=,label=); 
 
proc means mean stddev data=long noprint; 
  var &var; 
  by des; 
  output out=outmean (keep = des mean stddev) mean = mean stddev=stddev; 
run; 
 
data des0; 
  set outmean; 
  if des = 0; 
  mean_0 = mean; 
  s_0 = stddev; 
  
  keep mean_0 s_0; 
run; 
 
data des1; 
  set outmean; 
  if des = 1; 
  mean_1 = mean; 
  s_1 = stddev; 
 
  keep mean_1 s_1; 
run; 
 
data newdata; 
  length label $ 25; 
  merge des0 des1; 
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  d = (mean_1 - mean_0)/ sqrt((s_1*s_1 + s_0*s_0)/2); 
  d = round(abs(d),0.001); 
 
  label = &label; 
 
  keep d label; 
run; 
 
proc append data=newdata base=standiff force; 
run; 
 
%mend cont; 
 
/******************************************************************************/ 
/* Macro for computing standardized differences for binary variables.         */ 
/******************************************************************************/ 
 
%macro binary(var=,label=); 
 
proc means mean data=long noprint; 
  var &var; 
  by des; 
  output out=outmean (keep = des mean) mean = mean; 
run; 
 
data des0; 
  set outmean; 
  if des = 0; 
  mean_0 = mean; 
  
  keep mean_0; 
run; 
 
data des1; 
  set outmean; 
  if des = 1; 
  mean_1 = mean; 
 
  keep mean_1; 
run; 
 
data newdata; 
  length label $ 25; 
  merge des0 des1; 
 
  d = (mean_1 - mean_0)/ sqrt((mean_1*(1-mean_1) + mean_0*(1-mean_0))/2); 
  d = round(abs(d),0.001); 
 
  label = &label; 
 
  keep d label; 
run; 
 
proc append data=newdata base=standiff force; 
run; 
 
%mend binary; 
 
%cont(var=cov_age,label="Age"); 
%cont(var=cov_s_lensum,label="Length of stents"); 
%cont(var=cov_s_sizemin,label="Stent diameter"); 
%cont(var=stents,label="Number of stents"); 
%cont(var=cov_vesnum,label="Number of vessels"); 
 
%binary(var=cov_male,label="Male sex"); 
%binary(var=income1,label="Income 1"); 
%binary(var=income2,label="Income 2"); 
%binary(var=income3,label="Income 3"); 
%binary(var=income4,label="Income 4"); 
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%binary(var=income5,label="Income 5"); 
%binary(var=cov_hyperten,label="Hypertension"); 
%binary(var=prevmi_none,label="Previous MI: none within 365 days of index PCI"); 
%binary(var=prevmi_index,label="Previous MI: same day as index PCI"); 
%binary(var=prevmi_7days,label="Previous MI: 1-7 days before index PCI"); 
%binary(var=prevmi_1year,label="Previous MI: 8-365 days before index PCI"); 
%binary(var=ccscat_0,label="CCS Class 0"); 
%binary(var=ccscat_1,label="CCS Class I"); 
%binary(var=ccscat_2,label="CCS Class II"); 
%binary(var=ccscat_3,label="CCS Class III"); 
%binary(var=ccscat_4A,label="CCS Class IVA"); 
%binary(var=ccscat_4B,label="CCS Class IVB"); 
%binary(var=ccscat_4C,label="CCS Class IVC"); 
%binary(var=ccscat_4D,label="CCS Class IVD"); 
%binary(var=cov_diab_2cat,label="Diabetes"); 
%binary(var=cov_chf,label="CHF"); 
%binary(var=cov_pvd,label="PVD"); 
%binary(var=cov_copd,label="COPD"); 
%binary(var=cov_cerebvd,label="Cerebrovascular disease"); 
%binary(var=cov_1ocancer,label="Primary cancer"); 
%binary(var=cov_dialysis,label="Renal disease requiring dialysis"); 
%binary(var=cov_ccnprevacb,label="Previous CABG surgery"); 
%binary(var=cov_ccnprevptca,label="PCI > 1 year before index PCI"); 
%binary(var=cov_adhoc,label="Ad hoc procedure"); 
%binary(var=lesion_type_A,label="Lesion Type A"); 
%binary(var=lesion_type_B1,label="Lesion Type B1"); 
%binary(var=lesion_type_B2,label="Lesion Type B2"); 
%binary(var=lesion_type_C,label="Lesion Type C"); 
 
 
proc print data=standiff; 
  title 'Standardized differences in propensity score matched sample'; 
run; 
 

Output from Program 3.3 
Standardized differences in propensity score matched sample 
 
        Obs    label                                               d 
 
          1    Age                                               0.006 
          2    Length of stents                                  0.014 
          3    Stent diameter                                    0.003 
          4    Number of stents                                  0.004 
          5    Number of vessels                                 0.005 
          6    Male sex                                          0.009 
          7    Income 1                                          0.006 
          8    Income 2                                          0.007 
          9    Income 3                                          0.005 
         10    Income 4                                          0.013 
         11    Income 5                                          0.007 
         12    Hypertension                                      0.016 
         13    Previous MI: none within 365 days of index PCI    0.004 
         14    Previous MI: same day as index PCI                0.012 
         15    Previous MI: 1-7 days before index PCI            0.017 
         16    Previous MI: 8-365 days before index PCI          0.005 
         17    CCS Class 0                                       0.001 
         18    CCS Class I                                       0.010 
         19    CCS Class II                                      0.018 
         20    CCS Class III                                     0.031 
         21    CCS Class IVA                                     0.013 
         22    CCS Class IVB                                     0.010 
         23    CCS Class IVC                                     0.020 
         24    CCS Class IVD                                     0.014 
         25    Diabetes                                          0.011 
         26    CHF                                               0.011 

                                                                                                                                                      (continued) 
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Output from Program 3.3 (continued) 
         27    PVD                                               0.019 
         28    COPD                                              0.010 
         29    Cerebrovascular disease                           0.018 
         30    Primary cancer                                    0.003 
         31    Renal disease requiring dialysis                  0.008 
         32    Previous CABG surgery                             0.014 
         33    PCI > 1 year before index PCI                     0.012 
         34    Ad hoc procedure                                  0.013 
         35    Lesion Type A                                     0.019 
         36    Lesion Type B1                                    0.026 
         37    Lesion Type B2                                    0.011 
         38    Lesion Type C                                     0.003 

 
Table 3.2 reports the baseline characteristics of DES and BMS patients in the propensity score 
matched sample, along with the associated standardized differences in both the matched sample 
and the initial sample. 

Table 3.2  Standardized Differences of Baseline Covariates in Original and Matched Sample 
 
 
 
 
Variable 

 
 
 
BMS 
(N=3,746) 

 
 
 
DES 
(N=3,746) 

 
Standardized 
difference 
(matched 
sample) 

Standardized 
difference 
(original 
unmatched 
sample) 

Demographic characteristics 
Age, Mean ± SD 62.33 ± 

11.67 
62.26 ± 11.57 0.006 0.080 

Male, N (%) 2,657 
(70.9%) 

2,672 
(71.3%) 

0.009 0.098 

Income quintile 1, N (%) 722 (19.3%) 713 (19.0%) 0.006 0.001 
Income quintile 2, N (%) 754 (20.1%) 765 (20.4%) 0.007 0.012 
Income quintile 3, N (%) 772 (20.6%) 780 (20.8%) 0.005 0.011 
Income quintile 4, N (%) 799 (21.3%) 779 (20.8%) 0.013 0.009 
Income quintile 5, N (%) 699 (18.7%) 709 (18.9%) 0.007 0.011 

Cardiac condition or procedure 
Hypertension 1,356 

(36.2%) 
1,384 
(36.9%) 

0.016 0.013 

Previous MI: None within 
365 days of index PCI 

2,200 
(58.7%) 

2,207 
(58.9%) 

0.004 0.179 

Previous MI: same day as 
index PCI 

329 (8.8%) 342 (9.1%) 0.012 0.199 

Previous MI: 1-7 days 
before index PCI 

753 (20.1%) 727 (19.4%) 0.017 0.098 

Previous MI: 8-365 days 
before index PCI 

464 (12.4%) 470 (12.5%) 0.005 0.044 

CCS angina class 0 259 (6.9%) 258 (6.9%) 0.001 0.042 
CCS angina class I 213 (5.7%) 204 (5.4%) 0.010 0.035 
CCS angina class II 573 (15.3%) 549 (14.7%) 0.018 0.052 
CCS angina class III 853 (22.8%) 902 (24.1%) 0.031 0.133 
CCS angina class IVA 1,019 

(27.2%) 
998 (26.6%) 0.013 0.071 

CCS angina class IVB 422 (11.3%) 410 (10.9%) 0.010 0.007 
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Table 3.2  (continued) 
 
 
 
 
Variable 

 
 
 
BMS 
(N=3,746) 

 
 
 
DES 
(N=3,746) 

 
Standardize
d difference 
(matched 
sample) 

Standardized 
difference 
(original 
unmatched 
sample) 

CCS angina class IVC 371 (9.9%) 394 (10.5%) 0.020 0.087 
CCS angina class IVD 36 (1.0%) 31 (0.8%) 0.014 0.088 
Congestive heart failure 193 (5.2%) 202 (5.4%) 0.011 0.019 
Previous coronary artery 
bypass surgery 

338 (9.0%) 323 (8.6%) 0.014 0.064 

PCI > 1 year before index 
PCI 

201 (5.4%) 211 (5.6%) 0.012 0.080 

Coexisting condition 
Diabetes 1,215 (32.4%) 1,196 (31.9%) 0.011 0.299 
Peripheral vascular 
disease 

225 (6.0%) 208 (5.6%) 0.019 0.001 

Chronic obstructive 
pulmonary disease 

176 (4.7%) 168 (4.5%) 0.010 0.061 

Cerebrovascular disease 184 (4.9%) 199 (5.3%) 0.018 0.112 
Primary cancer 39 (1.0%) 40 (1.1%) 0.003 0.011 
Renal failure requiring 
dialysis 

40 (1.1%) 43 (1.1%) 0.008 0.050 

Index PCI 
Ad hoc PCI 2,006 (53.6%) 2,030 (54.2%) 0.013 0.164 
Stent length (mm) 26.17 ± 16.68 26.40 ± 15.00 0.014 0.249 
Stent diameter (mm) 2.83 ± 0.39 2.84 ± 0.36 0.003 0.678 
No. of stents per patient 1.45 ± 0.76 1.45 ± 0.76 0.004 0.001 
No. of vessels stented 1.13 ± 0.36 1.13 ± 0.35 0.005 0.025 
ACC-AHA lesion type:  
A 

280 (7.5%) 299 (8.0%) 0.019 0.222 

ACC-AHA lesion type:  
B1 

1,105 (29.5%) 1,061 (28.3%) 0.026 0.083 

ACC-AHA lesion type:  
B2 

1,421 (37.9%) 1,441 (38.5%) 0.011 0.038 

ACC-AHA lesion type:  
C 

940 (25.1%) 945 (25.2%) 0.003 0.204 

 
The estimated propensity score ranged from 0.0138 to 0.9587 in DES patients and from 0.0138 to 
0.9610 in BMS patients. Figure 3.1 compares the distribution of the propensity scores between 
DES and BMS patients in both the original sample and the matched sample. Figure 3.1 depicts 
non-parametric density estimates of the distribution of the propensity score in both DES and BMS 
patients. The upper panel is in the original (unmatched) sample, while the lower panel is in the 
matched sample. The distribution of the propensity score appears to be essentially identical 
between DES and BMS patients in the matched sample. The top panel of Figure 3.1 demonstrates 
that the range of propensity scores is similar between DES and BMS patients. Therefore, for each 
DES patient, there was a BMS patient with a comparable propensity score. 
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Figure 3.1  Distribution of the Propensity Score in Treated (DES) and Untreated (BMS)  
                   Subjects 
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Because the standardized differences were all small in the matched sample (standardized 
differences 0.031), the initial propensity score model was not modified. The largest 
standardized difference in the matched sample was 0.031 (CCS angina class III; prevalence of 
22.8% vs. 24.1% in BMS and DES patients, respectively). By comparison, the largest 
standardized difference in the original (unmatched) sample was 0.678 (for the variable denoting 
stent diameter). The mean stent diameters in the original (unmatched) sample were 3.06 mm and 
2.76 mm in BMS and DES patients, respectively. 

Graphical balance diagnostics for comparing the distribution of measured baseline covariates 
between the two treatment groups are not presented here. Statistical software with high-level 
graphics can optimize the presentation of quantile-quantile plots of baseline covariates in the 
matched sample and other methods of comparing the distribution of baseline covariates between 
treated and untreated subjects in the propensity score matched sample. 

3.8.6  Effect of Exposure on Outcomes 
In this case study, we considered two outcomes: a safety outcome and an efficacy outcome. The 
safety outcome we considered was a dichotomous outcome, death within 1 year of the index PCI 
procedure. In the matched sample, there were 5 matched pairs in which both subjects died within 
1 year of the procedure, 3,516 matched pairs in which neither subject died within 1 year of the 
procedure, 138 matched pairs in which the BMS patient died and the DES patient did not die, and 
87 matched pairs in which the DES patient died and the BMS patient did not die. The 1-year 
mortality rates in the DES and BMS patients were 2.46% and 3.82%, respectively. According to 
McNemar’s test, the 1-year mortality rates were significantly different between the two treatment 
groups (P = 0.0008 using the exact version of McNemar’s test). The relative risk of 1-year 
mortality for DES patients compared to BMS patients was 0.64. The 95% confidence interval, 
computed using methods appropriate for matched data, was (0.50, 0.83). The SAS code for 
estimating the statistical significance of the effect of treatment on mortality (as measured using 
the risk difference) appears in Program 3.4. 

Program 3.4  SAS Code for Estimating Effect of Treatment on Dichotomous Outcomes 
proc freq data=wide_combo; 
  exact agree; 
  tables death_1_yr_bms*death_1_yr_des /nopercent agree; 
  title "McNemar's test for comparing risk of death within 1 year of  
    procedure"; 
run; 
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Output from Program 3.4 
McNemar's test for comparing risk of death within 1 year of procedure 
 
                              The FREQ Procedure 
 
                   Table of death_1_yr_bms by death_1_yr_des 
 
                      death_1_yr_bms 
                                death_1_yr_des 
 
                      Frequency| 
                      Row Pct  | 
                      Col Pct  |       0|       1|  Total 
                      ---------+--------+--------+ 
                             0 |   3516 |     87 |   3603 
                               |  97.59 |   2.41 | 
                               |  96.22 |  94.57 | 
                      ---------+--------+--------+ 
                             1 |    138 |      5 |    143 
                               |  96.50 |   3.50 | 
                               |   3.78 |   5.43 | 
                      ---------+--------+--------+ 
                      Total        3654       92     3746 
 
 
           Statistics for Table of death_1_yr_bms by death_1_yr_des 
 
                                McNemar's Test 
                        ------------------------------ 
                        Statistic (S)          11.5600 
                        DF                           1 
                        Asymptotic Pr >  S      0.0007 
                        Exact      Pr >= S   8.197E-04 
 
                              Sample Size = 3746 

 
We conducted a sensitivity analysis to determine the sensitivity of the observed effect of 
treatment on mortality to unmeasured confounders. There were 225 discordant pairs. Of these, 
138 were pairs in which the BMS patient died and the DES patient did not. For a given value of 

)1/(p  and )1/(1p . 
Then, the bounds for the significance of the treatment effect if the unmeasured confounder were 
taken into account are as follows: 
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where T is McNemar’s statistic and m denotes the observed data. The exact boundaries of the 
 in 

Program 3.5. 
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Program 3.5  SAS Code for Examining the Sensitivity of the Propensity Score Matched  
                       Analysis to an Unmeasured Confounding Variable 

data gamma; 
  do gamma_init = 0 to 5; 
    gamma = 1 + gamma_init/20; 
    p_plus = gamma/(1 + gamma); 
    p_neg = 1/(1 + gamma); 
 
    p_upper = 2*(1 - probbnml(p_plus,225,137) ); 
    p_lower = 2*(1 - probbnml(p_neg,225,137) ); 
    output; 
  end; 
run; 
 
proc print data=gamma noobs; 
  var gamma p_plus p_neg p_lower p_upper; 
  title "Sensitivity analysis for McNemar's test"; 
run; 
 

Output from Program 3.5 
                 Sensitivity analysis for McNemar's test 
 
             gamma     p_plus     p_neg        p_lower     p_upper 
 
              1.00    0.50000    0.50000    .000819738    0.000820 
              1.05    0.51220    0.48780    .000206443    0.002869 
              1.10    0.52381    0.47619    .000049244    0.008434 
              1.15    0.53488    0.46512    .000011232    0.021289 
              1.20    0.54545    0.45455    .000002469    0.047026 
              1.25    0.55556    0.44444    .000000527    0.092418 

 
If there was an unmeasured binary variable that increased the odds of exposure by no more than 
20%, the statistical significance of the observed treatment effect would be at most 0.047. 
However, if there was an unmeasured binary variable that increased the odds of exposure by 
25%, and if this variable was almost perfectly associated with mortality, then the significance 
level of the treatment effect could be as large as 0.092. 

The efficacy outcome we considered was a time-to-event outcome: time to total vessel 
revascularization. Figure 3.2 depicts the Kaplan-Meier survival curves in each of the two 
treatment arms of the study. Survival free of total vessel revascularization was better in the DES 
group than it was in the BMS group. The difference between the survival curves was significant, 
according to the test proposed by Klein and Moeschberger (1997) (P < 0.0001). The SAS code 
for assessing the difference between the survival curves is shown in Program 3.6.  
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Figure 3.2  Kaplan-Meier Survival Curves in PS-Matched Sample: Time to Target Vessel  
                   Revascularization 

 

Program 3.6  SAS Code for Comparing the Kaplan-Meier Survival Curves between DES and  
                       BMS Patients in the Propensity Score Matched Sample 

data long; 
  set long; 
  if des = 1 then stent = "DES"; 
    else stent = "BMS"; 
run; 
 
proc lifetest data=long outsurv=kmdata_tvra notable; 
  time tvra_time*tvra(0); 
  strata stent; 
   /* ‘tvra_time’ denotes time to total vessel revascularization */ 
   /* ‘tvra’ is the censoring indicator: 1 indicates that the event  
       occurred, while   */ 
   /* 0 indicates that the subject has been censored.  */ 
   /* ‘stent’ denotes the exposure group: DES vs. BMS.  */ 
  title 'Kaplan-Meier survival curves for DES and BMS patients'; 
run; 
 
data km_compare; 
  set wide_combo; 
  if (tvra_time_des < tvra_time_bms) and (tvra_des = 0) then delete; 
  if (tvra_time_bms < tvra_time_des) and (tvra_bms = 0) then delete; 
 /* Delete pairs in which the shorter of the two observation times */ 
 /* is for a subject who is censored.        */ 
 
  if (tvra_time_des < tvra_time_bms) and (tvra_des = 1) then D1 = 1; 
    else D1 = 0; 
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  if (tvra_time_bms < tvra_time_des) and (tvra_bms = 1) then D2 = 1; 
    else D2 = 0; 
run; 
proc means sum data=km_compare noprint; 
  var D1 D2; 
  output out=km_stat (keep = D1 D2) sum = D1 D2; 
run; 
 
data km_stat; 
  set km_stat; 
  z = (D1 - D2)/sqrt(D1 + D2); 
  /* Test statistic for comparing K-M curves from matched sample */ 
 
  p_value = 2*(1 - probnorm(abs(z))); 
run; 
 
proc print data=km_stat; 
  var D1 D2 z p_value; 
  title 'Comparing K-M survival curve from matched sample'; 
run; 

 

Output from Program 3.6 
Comparing K-M survival curve from matched sample 
 
                  Obs     D1     D2        z          p_value 
 
                   1     222    336    -4.82600    .000001393 

 
A Cox proportional hazards model was fit to the matched sample. The model contained exposure 
status as the sole predictor variable, stratified on the matched pairs. The hazard ratio for DES 
compared to BMS was 0.661 (95% CI = [0.558, 0.783]) (P < 0.0001). When a univariate Cox 
proportional hazards model was fit and a robust variance estimate was obtained, the associated 
hazards ratio was 0.683 (95% CI = [0.582, 0.800]) (P < 0.0001). The SAS code for each of these 
survival regression models is provided in Program 3.7. 

Program 3.7  SAS Code for Fitting Cox Proportional Hazards Models in the Propensity  
                       Score Matched Sample 

/* Cox proportional hazards model stratifying on matched pairs */ 
 
proc phreg data=long nosummary; 
  model tvra_time*tvra(0) = des/ties=exact rl; 
  strata pair_id; 
  title 'Cox proportional hazards model stratifying on matched sets'; 
run; 
 
/* Cox proportional hazards model with robust standard errors to */ 
/* account for clustering in matched pairs.    */ 
 
proc phreg data=long covs(aggregate); 
  model tvra_time*tvra(0) = des/ties=exact rl; 
  id pair_id; 
  title 'Cox proportional hazards model with robust standard errors'; 
run; 
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Output from Program 3.7 
Cox proportional hazards model stratifying on matched sets 
 
                              The PHREG Procedure 
 
                              Model Information 
 
                      Data Set                 WORK.LONG 
                      Dependent Variable       tvra_time 
                      Censoring Variable       tvra      
                      Censoring Value(s)       0         
                      Ties Handling            EXACT     
 
 
                    Number of Observations Read        7492 
                    Number of Observations Used        7492 
 
 
                              Convergence Status 
 
                Convergence criterion (GCONV=1E-8) satisfied.           
 
 
                             Model Fit Statistics 
  
                                     Without           With 
                    Criterion     Covariates     Covariates 
 
                    -2 LOG L         773.552        750.097 
                    AIC              773.552        752.097 
                    SBC              773.552        756.532 
 
 
                    Testing Global Null Hypothesis: BETA=0 
  
            Test                 Chi-Square       DF     Pr > ChiSq 
 
            Likelihood Ratio        23.4551        1         <.0001 
            Score                   23.2903        1         <.0001 
            Wald                    22.9594        1         <.0001 
 
 
                   Analysis of Maximum Likelihood Estimates 
  
                       Parameter      Standard 
    Variable    DF      Estimate         Error    Chi-Square    Pr > ChiSq 
 
    des          1      -0.41443       0.08649       22.9594        <.0001 
 
                   Analysis of Maximum Likelihood Estimates 
  
                               Hazard      95% Hazard Ratio 
                 Variable       Ratio      Confidence Limits 
 
                 des            0.661       0.558       0.783 
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Output from Program 3.7 (continued) 
 
Cox proportional hazards model with robust standard errors 
 
                              The PHREG Procedure 
 
                              Model Information 
 
                      Data Set                 WORK.LONG 
                      Dependent Variable       tvra_time 
                      Censoring Variable       tvra      
                      Censoring Value(s)       0         
                      Ties Handling            EXACT     
 
                    Number of Observations Read        7492 
                    Number of Observations Used        7492 
 
              Summary of the Number of Event and Censored Values 
  
                                                      Percent 
                    Total       Event    Censored    Censored 
 
                     7492         623        6869       91.68 
 
 
                              Convergence Status 
 
                Convergence criterion (GCONV=1E-8) satisfied.           
 
                             Model Fit Statistics 
  
                                     Without           With 
                    Criterion     Covariates     Covariates 
 
                    -2 LOG L       10307.321      10284.920 
                    AIC            10307.321      10286.920 
                    SBC            10307.321      10291.354 
 
 
                    Testing Global Null Hypothesis: BETA=0 
  
          Test                    Chi-Square       DF     Pr > ChiSq 
 
          Likelihood Ratio           22.4017        1         <.0001 
          Score (Model-Based)        22.3257        1         <.0001 
          Score (Sandwich)           22.1856        1         <.0001 
          Wald (Model-Based)         22.0567        1         <.0001 
          Wald (Sandwich)            22.1776        1         <.0001 
 
 
                   Analysis of Maximum Likelihood Estimates 
  
                   Parameter     Standard   StdErr 
  Variable   DF     Estimate        Error    Ratio   Chi-Square   Pr > ChiSq 
 
  des         1     -0.38187      0.08109    0.997      22.1776       <.0001 
 
Cox proportional hazards model with robust standard errors 
 
                              The PHREG Procedure 
 
                   Analysis of Maximum Likelihood Estimates 
  
                               Hazard      95% Hazard Ratio 
                  Variable      Ratio      Confidence Limits 
 
                  des           0.683       0.582       0.800 
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33.9 Summary 
Three recent systematic reviews found that propensity score matching was poorly implemented in 
the medical literature overall between 1996 and 2003 (Austin, 2008b) and, in a more recent era, 
in the cardiovascular surgery literature between 2004 and 2006 (Austin, 2007a) and in the general 
cardiology literature between 2004 and 2006 (Austin, 2008d). Indeed, in the first review of 47 
articles, it was found that only two studies conducted all aspects of propensity score matching 
correctly, while in the second review it was found that none of the 60 articles examined 
conducted all of the statistical analyses correctly. Similar findings were observed in the third 
review. Common errors included employing inappropriate methods for assessing the balance of 
measured baseline covariates between treated and untreated subjects in the propensity score 
matched sample and failing to account for the matched nature of the sample when estimating the 
variance of the treatment effect. Furthermore, many studies did not provide sufficient detail on 
how the propensity score matched pairs were formed, thereby limiting the ability of other 
researchers to replicate the study methods. 

In this chapter, we have discussed and illustrated the use of propensity score matching for 
estimating causal treatment effects. In particular, there are four important components to properly 
conducting an analysis using propensity score matching. First, specify the propensity score 
model. Second, create matched sets of treated and untreated subjects by matching on the 
propensity score. Fully report how the propensity score matched sample was formed. This allows 
other researchers to replicate your study methods and thereby confirm the findings of your study. 
Third, assess whether matching on the propensity score has resulted in a matched sample in 
which the distribution of measured baseline covariates are similar between treated and untreated 
subjects. Investigators should employ sample-specific methods for assessing the similarity of the 
distribution of measured covariates between treated and untreated subjects. The first three steps 
may need to be repeated iteratively until an acceptable balance between treated and untreated 
subjects has been achieved. Finally, statistical methods that account for the matched nature of the 
propensity score matched sample should be employed for estimating the treatment effect and its 
statistical significance. 

Acknowledgments  
The Institute for Clinical Evaluative Sciences (ICES) and the PATH Research Institute are 
supported in part by a grant from the Ontario Ministry of Health and Long-Term Care 
(MOHLTC). The opinions, results, and conclusions are those of the authors, and no endorsement 
by the Ministry of Health and Long-Term Care or by the Institute for Clinical Evaluative 
Sciences is intended or should be inferred. Dr. Austin is supported in part by a Career Investigator 
award from the Heart and Stroke Foundation of Ontario. Dr. Ko is supported in part by a 
Clinician Scientist award from the Heart and Stroke Foundation of Ontario. Dr. Tu is supported 
by a Tier 1 Canada Research Chair in Health Services Research and a Career Investigator award 
from the Heart and Stroke Foundation of Ontario. The authors wish to acknowledge the Ontario 
Health Technology Advisory Committee (OHTAC) for funding support for the comparative stent 
study in Ontario. The authors acknowledge that the clinical registry data used in this chapter are 
from the Cardiac Care Network of Ontario and its member hospitals. The Cardiac Care Network 
of Ontario serves as an advisory body to the MOHLTC and is dedicated to improving the quality, 
efficiency, access, and equity in the delivery of the continuum of adult cardiac services in 
Ontario, Canada. The Cardiac Care Network of Ontario is funded by the MOHLTC. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



82   Analysis of Observational Health Care Data Using SAS 
 

RReferences 
Agresti, A., and Y. Min. 2004. “Effects and non-effects of paired identical observations in 

comparing proportions with binary matched-pairs data.” Statistics in Medicine. 23: 65–
75. 

Austin, P. C. 2007a. Propensity-score matching in the cardiovascular surgery literature from 2004 
to 2006: a systematic review and suggestions for improvement.” Journal of Thoracic and 
Cardiovascular Surgery 134: 1128–1135. 

Austin, P. C. 2007b. “The performance of different propensity score methods for estimating 
marginal odds ratios.” Statistics in Medicine 26: 3078–3094. 

Austin, P. C. 2008a. “Assessing balance in baseline covariates when using many-to-one 
propensity-score matching.” Pharmacoepidemiology and Drug Safety 17: 1218–1225. 

Austin, P. C. 2008b. “A critical appraisal of propensity-score matching in the medical literature 
between 1996 and 2003.” Statistics in Medicine 27 (12): 2037–2049. 

Austin, P. C. 2008c. “The performance of different propensity-score methods for estimating 
relative risks. Journal of Clinical Epidemiology 61 (6): 537–545. 

Austin, P. C. 2008d. “Primer on statistical interpretation or methods report card on propensity-
score matching in the cardiology literature from 2004 to 2006: A systematic review.” 
Circulation: Cardiovascular Quality and Outcomes 1(1): 62–67. 

Austin, P. C. 2009a. “Some methods of propensity-score matching had superior performance to 
others: results of an empirical investigation and Monte Carlo simulations.” Biometrical 
Journal 51: 171–184. 

Austin, P.C. 2009b. “Balance diagnostics for comparing the distribution of baseline covariates 
between treatment groups in propensity-score matched samples.” Statistics in Medicine 
28: 3083-3107.  

Austin, P.C. 2009c. “Type 1 Error Rates, Coverage of Confidence Intervals, and Variance 
Estimation in Propensity-score Matched Analyses.” The International Journal of 
Biostatistics 5: Article 13. DOI: 10.2202/1557-4679.1146. 

Austin, P.C. 2009d. “The relative ability of different propensity-score methods to balance 
measured covariates between treated and untreated subjects in observational studies.” 
Medical Decision Making 29:661-677. 

Austin, P. C., and M. M. Mamdani. 2006. “A comparison of propensity score methods: a case-
study estimating the effectiveness of post-AMI statin use.” Statistics in Medicine. 25: 
2084–2106. 

Austin, P. C., M. M. Mamdani, D. N. Juurlink, and J. E. Hux. 2006. “Testing multiple statistical 
hypotheses resulted in spurious associations: a study of astrological signs and health.” 
Journal of Clinical Epidemiology 59: 964–969. 

Austin, P. C., M. M. Mamdani, T. A. Stukel, G. M. Anderson, and J. V. Tu. 2005. “The use of the 
propensity score for estimating treatment effects: administrative versus clinical data.” 
Statistics in Medicine. 24: 1563–1578. 

Austin, P. C., P. Grootendorst, and G. M. Anderson. 2007a. “A comparison of the ability of 
eifferent propensity score models to balance measured variables between treated and 
untreated subjects: a Monte Carlo study.” Statistics in Medicine 26: 734–753. 

Austin, P. C., P. Grootendorst, S. L. T. Normand, and G. M. Anderson. 2007b. “Conditioning on 
the propensity score can result in biased estimation of common measures of treatment 
effect: a Monte Carlo study.” Statistics in Medicine 26: 754–768. 

Cochran, W. G., and D. B. Rubin. 1973. “Controlling bias in observational studies: a review.” 
Sankhya Series A 35: 417–446. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 3  Propensity Score Matching for Estimating Treatment Effects   83 
 

  

Conover, W. J. 1998. Practical Nonparametric Statistics. 3d ed. New York: John Wiley & Sons, 
Inc. 

Cook, R. J., and D. L. Sackett. 1995. “The number needed to treat: a clinically useful measure of 
treatment effect.” British Medical Journal 310: 452–454. 

Cummings, P., B. McKnight, and S. Greenland. 2003. “Matched cohort methods for injury 
research.” Epidemiologic Reviews 25: 43–50. 

Diggle, P. J., K. Y. Liang, S. L. Zeger, and P. Heagerty. 1994. Analysis of Longitudinal Data. 
Oxford: Oxford University Press. 

Flury, B. K., and H. Riedwyl. 1986. “Standard distance in univariate and multivariate analysis.” 
The American Statistician 40: 249–251. 

Freemantle, N. 2001. “Interpreting the results of secondary end points and subgroup analyses in 
clinical trials: should we lock the crazy aunt in the attic?” British Medical Journal 322: 
989–991. 

Hansen, B.B. 2004. “Full matching in an observational study of coaching for the SAT.” Journal 
of the American Statistical Association 99: 609–618. 

Hansen, B. B. 2008. “The essential role of balance tests in propensity-matched observational 
studies: comments on ‘A critical appraisal of propensity-score matching in the medical 
literature between 1996 and 003’.” Statistics in Medicine 27: 2050–2054. 

Hill, J., and J. P. Reiter. 2006. “Interval estimation for treatment effects using propensity score 
matching.” Statistics in Medicine 25: 2230–2256. 

Ho, D. E., K. Imai, G. King, and E. A. Stuart. 2007. “Matching as nonparametric preprocessing 
for reducing model dependence in parametric causal inference.” Political Analysis 15: 
199–236. 

Imai, K., G. King, and E. A. Stuart. 2008. “Misunderstandings between experimentalists and 
observationalists about causal inference.” Journal of the Royal Statistical Society, Series 
A (Statistics in Society) 171: 481–502. 

Jaeschke, R., G. Guyatt, H. Shannon, S. Walter, D. Cook, and N. Heddle. 1995. “Basic statistics 
for clinicians: 3. Assessing the effects of treatment: measures of association.” Canadian 
Medical Association Journal 152 (3): 351–357. 

Klein, J. P., and M. L. Moeschberger. 1997. Survival Analysis: Techniques for Censored and 
Truncated Data. New York: Springer-Verlag. 

Lin, D. 1989. “Goodness-of-fit tests and robust statistical inference for the Cox proportional 
hazards model.” Journal of the American Statistical Association 84: 1074–1078. 

Newcombe, R. G. 2006. “A deficiency of the odds ratio as a measure of effect size.” 
Statistics in Medicine 25: 4235–40. 

Normand, S. T., M. B. Landrum, E. Guadagnoli, et al. 2001. “Validating recommendations for 
coronary angiography following acute myocardial infarction in the elderly: a matched 
analysis using propensity scores.” Journal of Clinical Epidemiology 54(4): 387–98. 

Rosenbaum, P. R. 1987. “Model-based direct adjustment.” The Journal of the American 
Statistical Association 82: 387–394. 

Rosenbaum, P. R. 1995. Observational Studies. New York: Springer-Verlag. 
Rosenbaum, P. R., and D. B. Rubin. 1983a. “The central role of the propensity score in 

observational studies for causal effects.” Biometrika 70: 41–55. 
Rosenbaum, P. R., and D. B. Rubin. 1983b. “Assessing sensitivity to an unobserved binary 

covariate in an observational study with binary outcome.” Journal of the Royal Statistical 
Society, B (StatisticalMethodology) 45: 212–218. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



84   Analysis of Observational Health Care Data Using SAS 
 

Rosenbaum, P. R., and D. B. Rubin. 1984. “Reducing bias in observational studies using 
subclassification on the propensity score.” Journal of the American Statistical 
Association 79: 516–524. 

Rosenbaum, P. R., and D. B. Rubin. 1985. “Constructing a control group using multivariate 
matched sampling methods that incorporate the propensity score.” The American 
Statistician 39: 33–38. 

Rothman, K. J. 1977. “Epidemiologic methods in clinical trials.” Cancer 39 (S4): 1771–1775. 
Rothman, K. J., and S. Greenland. 1998. Modern Epidemiology. Philadelphia, PA: Lippincott 

Williams & Wilkins.  
Rothwell, P. M. 2005. “Treating individuals 2: Subgroup analysis in randomised controlled trials: 

importance, indications, and interpretation.” The Lancet 365: 176–186. 
Rubin, D. B. 2004. “On principles for modeling propensity scores in medical research.” 

Pharmacoepidemiology and Drug Safety 13(12): 855–857. 
Schechtman, E. 2002. “Odds ratio, relative risk, absolute risk reduction, and the number needed 

to treat––which of these should we use?” Value in Health 5(5): 431–436. 
Senn, S. 1994. “Testing for baseline balance in clinical trials.” Statistics in Medicine 13: 1715–

1726. 
Senn, S. J. 1989. “Covariate imbalance and random allocation in clinical trials.” Statistics in 

Medicine 8: 467–475. 
Sinclair, J. C., M. B. Bracken. 1994. “Clinically useful measures of effect in binary analyses of 

randomized trials.” Journal of Clinical Epidemiology 47(8): 881–889. 
Therneau, T. M., and P. M. Grambsch. 2001. Modeling Survival Data: Extending the Cox Model. 

New York: Springer-Verlag. 
Tu, J. V., J. Bowen, M. Chiu, D. T. Ko, P. C. Austin, Y. He, R. Hopkins, J. Tarride, G. 

Blackhouse, C. Lazzam, E. A. Cohen, and R. Goeree. 2007. “Effectiveness and safety of 
drug-eluting stents in Ontario.” The New England Journal of Medicine 357(14): 1393–
1402. 

Weitzen, S., K. L. Lapane, A. Y. Toledano, A. L. Hume, and V. Mor. 2005. “Weakness of 
goodness-of-fit tests for evaluating propensity score models: the case of the omitted 
confounder.” Pharmacoepidemiolgy and Drug Safety 14(4): 227–238. 

 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 4 
 
Doubly Robust Estimation of Treatment Effects 
  
       Michele Jonsson Funk 
       Daniel Westreich 
      Chris Weisen 
      Marie Davidian 
 
 
 
Abstract .................................................................................................... 85 

4.1  Introduction ........................................................................................ 85 

4.2  Implementation with the DR Macro...................................................... 88 

4.3  Sample Analysis ................................................................................ 95 

4.4  Summary .......................................................................................... 101 

4.5  Conclusion ........................................................................................ 102 

References .............................................................................................. 103 

 

Abstract 
Estimation of the effect of a treatment or exposure with a causal interpretation from studies 
where exposure is not randomized may be biased if confounding is not taken into appropriate 
account. Adjustment for confounding is often carried out through regression modeling of the 
relationships among treatment, confounders, and outcome. Doubly robust (DR) estimation 
produces a consistent effect estimator as long as one of two component regression models is 
correctly specified and assuming that there are no unmeasured confounders, giving the analyst 
two chances to correctly specify at least one of the regression models. In this chapter, we provide 
a brief introduction to DR estimators; present sample code using a SAS macro; illustrate the use 
of the macro with results from analyses of simulated data; and discuss issues including 
interpretation of estimates, assumptions, and limitations of this approach. 

4.1 Introduction 
Correct specification of the regression model is one of the most fundamental assumptions in 
statistical analysis. In an observational data analysis, it is common to estimate the causal effect of 
treatment using a regression model for the relationship between outcome, treatment, and 
confounders.  Even when all relevant confounders have been measured, an unbiased estimator for 
the causal treatment effect can be obtained only if the model itself reflects the true relationship 
among treatment, confounders, and outcome. This is the case for a typical analysis in which the 
outcome is modeled as a function of exposure and covariates as well as propensity score-based 
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methods, in which the exposure is modeled as a function of covariates. Outside of simulation 
studies, we can never know whether or not the model we have constructed accurately depicts 
those relationships. Thus, correct specification of the regression model is an unverifiable 
assumption. The DR estimator does not eliminate the need for such an assumption but does give 
the analyst two chances to satisfy it. 

4.1.1  Conceptual Overview 
Doubly robust (DR) estimation builds on the propensity score approach of Rosenbaum and Rubin 
(1983) and the inverse probability of weighting (IPW) approach of Robins and colleagues 
(Robins, 1998; Robins, 1999a; Robins, 1999b; Robins et al., 2000). DR estimation combines 
inverse probability weighting by a propensity score with regression modeling of the relationship 
between covariates and outcome for each treatment. It combines it in such a way that, as long as 
either the propensity score model or the outcome regression models are correctly specified, the 
effect of the exposure on the outcome will be correctly estimated, assuming that there are no 
unmeasured confounders (Robins et al., 1994; Robins, 2000; van der Laan and Robins, 2003; 
Bang and Robins, 2005). Specifically, one builds and fits a (binary) regression model for the 
probability that a particular patient received a given treatment as a function of that individual’s 
covariates (the propensity score). Maximum likelihood regression is conducted separately within 
the exposed and unexposed populations to predict the mean response (outcome) as a function of 
confounders and risk factors. (These two sets of models are visually represented in Figure 4.1.) 
Finally, each individual observation is given a weight equal to the inverse of the probability of 
the treatment he/she received based on baseline covariates (as in IPW analysis) to create two 
pseudopopulations of subjects that represent the expected response in the entire population under 
those two treatment conditions. Results from simulations confirm that the estimator is consistent 
when an important confounder is omitted entirely from one of the two models (Lunceford and 
Davidian, 2004; Bang and Robins, 2005) and, in more realistic scenarios, when one of the 
component models is misspecified by categorizing a continuous variable when the true relation 
with the outcome is a function of the continuous form (Jonsson Funk and Westreich, 2008).  

Figure 4.1  Component Models of the DR Estimator 

 

The DR estimator is an alternative to the usual approach of estimating the causal treatment effect 
based on a regression model for the relationships among the outcome and covariates and 
treatment (or using standard propensity scoring adjustment methods). If the outcome regression 
model is correctly specified, then the estimator for the causal effect will be at least as precise 
asymptotically as the DR estimator. However, if the outcome regression is misspecified, the 
resulting causal effect estimator need not be consistent for the true casual effect. The DR 
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estimator is consistent if either the propensity score or treatment-specific outcome regression 
models are correct; thus, one trades a possible loss of precision in using the DR estimator for this 
additional protection. 

The DR effect estimates have a marginal, rather than a conditional (on covariates), interpretation 
and are directly comparable to the effect estimates that one would obtain from a randomized trial 
in which a population is randomly assigned to receive treatment. Because the estimates from a 
standard outcome regression model have a conditional interpretation, the two estimates might not 
agree simply because they are averaging the effect in two different target populations. In 
particular, this could arise in the presence of effect measure modification (Kurth et al., 2006) or 
due to the non-collapsibility of the effect estimate (Stürmer et al., 2006; Petersen et al., 2006). 

4.1.2  Statistical Expression and Assumptions 
We use the following notation: Y is the observed response or outcome, Z is a binary treatment 
(exposure) variable taking values 0 or 1, and X represents a vector of baseline covariates. Y1 and 
Y0 are the counterfactual responses under treatment and no treatment, respectively (Hernán, 
2004). All of these variables are further subscripted by i for subjects i=1, ..., n. In this example, 
the causal effect of interest is the difference in means if everyone in the population received 
treatment versus everyone not receiving treatment, or =E(Y1)-E(Y0). In the following equation, 

 is a postulated model for the true propensity score (from logistic regression), and m0 0) 
and m1 1) are postulated regression models for the true relationship between the vector of 
covariates (confounders plus other prognostic factors) and the outcome within each stratum of 
treatment. With these definitions, the estimator of the causal effect is: 
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The standard error for the DR estimator is estimated using the delta method (Casella and Berger, 
2002). The sampling variance for the DR estimator is calculated as: 
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The DR estimator is consistent for the true value of  if the following assumptions are satisfied: 
1) no unmeasured confounding (also called the assumption of exchangeability); 2) correct 
specification of at least one of the two component models; 3) positivity (the true propensity score 
is bounded away from 0 and 1 so that there is always a positive probability of receiving both 
treatments under any combination of covariates); and 4) stable unit treatment value (SUTVA) 
(Rubin, 1980), comprising consistency and no interference (Cox, 1958). The delta method 
standard error is appropriate when the sample size is sufficiently large and when both the 
propensity score model and the outcome regression models have been correctly specified. For 
reporting estimates from an analysis of data where the true propensity score and outcome 
regression models are not known and may have been misspecified, standard errors should be 
obtained using the bootstrap. 

44.2 Implementation with the DR Macro 
While several estimators have been found to have the doubly robust property (Robins et al., 
2007), we will describe the augmented IPW estimator identified by Robins and colleagues (1994) 
that was subsequently recognized to be doubly robust (Scharfstein et al., 1999). This DR 
estimator has been implemented in a macro developed at the University of North Carolina at 
Chapel Hill for use with Base SAS (validated with SAS 9.1.3). The DR macro can be 
downloaded from the Resources section of http://harryguess.unc.edu/sas.htm along with the 
sample data. This chapter reflects the features of the macro as of version 1.0. Please review the 
readme file (ReadMe.pdf) for important information regarding setup and installation as well as 
updated details of features prior to use. 

4.2.1  Getting Started 
The DR macro runs two sets of models: one for the probability of receiving a dichotomous 
treatment or exposure (the propensity score) and another to predict either the probability of the 
outcome (for a dichotomous outcome) or its mean value (for a continuous outcome) within strata 
of the exposure (treatment-specific outcome regression models). We describe the general syntax 
for each model statement, the use of optional commands, and the resulting output in the 
following sections.  

4.2.2  Specifying the Weight Model 
The general weight (or propensity score) model is specified in the first MODEL statement using 
the form: 

wtmodel exposure = <covariates> / method=dr dist=bin <other options> 
 
We model the main exposure or treatment on the left side of the equal sign as a function of the 
covariates on the right side. Method=dr indicates that the DR estimation method should be 
used, while dist=bin indicates that this is a binary exposure. Therefore, logistic regression 
will be used to model the relationship between the covariates and the exposure. 

The weight model should be specified with the same care and rigor that you would use in the 
specification of any other IPW or propensity score model based on substantive knowledge. 
Brookhart and colleagues (2006) have found that the propensity score (exposure) model should 
include all confounders as well as those covariates that are risk factors for the outcome. 
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Including covariates unrelated to the outcome can result in increased variance of the ultimate 
effect estimator of interest without reducing bias, although Greenland (2008) has recently 
suggested that the net benefit of variable reduction is limited and that it is preferable to report 
results from a full model.  

In order to assess the positivity assumption, the analyst can invoke the SHOWCURVES option 
in the WTMODEL statement to produce graphs of the propensity score distribution in the two 
treatment groups. To limit the range of data for a sensitivity analysis, the analyst might enter an 
optional common_support=number, where the number is between 0 and 1 (inclusive). This 
limits the region of analysis to those observations for which there is common support for 
counterfactual inference. A value of 1 indicates that the program should use the entire region of 
common support; a value of 0.8 indicates that the program should use only the middle 80% of the 
region of common support. If the lack of common support is limited to one tail of the 
distribution, specifying common_support=1 excludes only those observations in the affected 
tail. There is no option at this time that allows for defining an asymmetric region within the range 
of propensity score values for which there is some overlap (5th percentile through 80th 
percentile, for instance). If common_support=number is not specified, the macro uses all 
available data, including any regions of non-overlapping propensity score distributions. In 
addition, the region of common support appears as vertical lines in the plot generated by the 
SHOWCURVES option.  

4.2.3  Specifying the Outcome Regression Models 
The outcome regression models are specified in the second MODEL statement using the 
following form: 

model outcome = <covariates> </options> 

 
This models the main outcome of interest (continuous or dichotomous) as a function of the 
covariates within each exposure group. The main exposure should not be specified here a second 
time. Options should be specified after a slash (/). Dist=n indicates that the model form is a 
linear regression, with a normal error distribution. This is appropriate for a continuous outcome. 
If the outcome is dichotomous, dist=bin is appropriate and logistic regression is used. 

We know of no studies at this time that have specifically addressed which variables to include in 
the outcome regression models in the context of DR estimation, but we suggest that the analyst 
develop this model with the same rigor that would be used in a single multivariable regression 
model (Harrell, 2001).  

4.2.4  Output 
The DR macro outputs several results nodes in the results pane (the vertically oriented pane, to 
the left of main window). Each of these nodes is described below. 

+ Logistic: Weight Model 
 

This is the logistic regression for the propensity score model (wtmodel) portion of DR 
estimation. The related SAS code from the macro is as follows, where &desc corresponds to the 
descending option and &wtm is of the form exposure = <covariates>: 
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Program 4.1  Excerpt of SAS Code from DR Macro v1.0 for Weight Model 
proc logistic data=_usedata_ &desc; 
  ods exclude modelinfo; 
 ods exclude nobs; 
  model &wtm; 
 output out=_ps_ p=__ps; 
run; 

 
+ Print: Descriptive statistics for Exposure Probability 
 

This node provides the mean, standard deviation, and minimum and maximum of the estimated 
propensity scores stratified by exposure group. 

+ Print: Extreme Values by Exposure Group 
 

This node provides the five highest and five lowest propensity score values in each exposure 
group. 

+ Univariate: Propensity Score Curves Stratified by <Exposure> 
 

This is the graph of the propensity score curves stratified by exposure group generated by the 
WTMODEL statement only if the SHOWCURVES option is specified. If the 
COMMON_SUPPORT option is also invoked, this graph has lines indicating the region of 
common support, as well. Program 4.2 shows the SAS code that produces the histograms, where 
&expvar represents the exposure variable and &cmspt is a flag to indicate whether or not the 
common support option was invoked: 

Program 4.2  Excerpt of SAS Code from DR Macro v1.0 for Propensity Score Curves  
                       Stratified by Exposure Group 

proc univariate noprint data=_shcrvs_; 
  var __ps; 
  class &expvar; 
  histogram __ps/kernel  
  %if &cmspt=1 %then %do; 
        href=(&lo_spt, &hi_spt) 
  %end; 
  ; 
run; 

 
+ Print: Observation Information for Exposure=0 
 

This node reports for the first exposure group the total number of observations read from the 
original data set, the number with no missing covariate values, and the number used in the 
outcome regression model after applying any optional common support criteria. 

+ Logistic | GLM: Outcome Model for Exposure=0 
 

This node reports the results of the outcome regression model within the first exposure group. If 
the distribution (DIST=) option of the MODEL statement is set to bin, then this node is labeled 
Logistic; if the distribution option is set to normal (dist=n), then this node is labeled GLM. 
Program 4.3 shows the related SAS code for a dichotomous outcome from the macro, where 
&desc corresponds to the descending option and &outmod is of the form outcome = 
<covariates>: 
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Program 4.3  Excerpt of SAS Code from DR Macro v1.0 for Outcome Regression Models  
                       within Exposure Groups for a Dichotomous Outcome 

title "Outcome Model for &expvar=&_exp0_"; 
    proc logistic data=_wgts0_ &desc;* noprint; 
      ods exclude modelinfo; 
   ods exclude nobs; 
   model &outmod; 
   output out=_modres0_(keep=__m0) p=__m0; 
    run; 
 
title "Observation Information for &expvar=&_exp1_"; 
    proc logistic data=_wgts1_ &desc;* noprint; 
      ods exclude modelinfo; 
   ods exclude nobs; 
   model &outmod; 
   output out=_modres1_(keep=__m1) p=__m1; 
    run; 
 

Program 4.4 shows the related SAS code for a continuous, normally distributed outcome from the 
macro, where &outmod is of the form outcome = <covariates>: 

Program 4.4  Excerpt of SAS Code from DR Macro v1.0 for Outcome Regression Models  
                       within Exposure Groups for a Continuous Outcome 

title "Outcome Model for &expvar=&_exp0_"; 
 proc glm data=_wgts0_; 
   model &outmod; 
   output out=_modres0_(keep=__m0) p=__m0; 
 run; 
 
title "Outcome Model for &expvar=&_exp1_"; 
 proc glm data=_wgts1_; 
   model &outmod; 
   output out=_modres1_(keep=__m1) p=__m1; 
 run; 
 
+ Print: Observation Information for Exposure=1 
 

This node reports for the second exposure group the total number of observations read from the 
original data set, the number with no missing covariate values, and the number used in the 
outcome regression model after applying any optional common support criteria. 

+ Logistic | GLM: Outcome Model for Exposure=1 
 

This node reports the results of the outcome regression model within the second exposure group. 
If the distribution (DIST=) option of the MODEL statement is set to bin, then this node is 
labeled Logistic; if the distribution option is set to normal (dist=n), then this node is 
labeled GLM. The related SAS code from the macro is shown in Programs 4.3 and 4.4. 

+ Print: DR Estimate 
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This results node produces output in the following format: 

Output Displayed in Print DR Estimate Node  
 
                Modeled    Modeled 
Total   Used   Mean for   Mean for 
 Obs     Obs   STATIN=0   STATIN=1      deltadr   SEdeltadr      Z       Probz 
 
10000   9858   -10.6783   -10.6744   .003914308    0.023986   0.16319  0.87037 
 

 
Total Obs  

is the number of observations in the specified data set. 
 

Used Obs  
is the number of observations actually used in the analysis. Usedobs is always less than or 
equal to totalobs; usedobs is less than totalobs when there are missing values for 
some individuals for some covariates and/or when the COMMON_SUPPORT option is used 
in the WTMODEL statement. 
 

Modeled Mean for Exposure=0 
is an estimate of the average response under the assumption that no one in the population 
receives treatment. This is the mean of dr0. 
 

Modeled Mean for Exposure=1 
is an estimate of the average response under the assumption that everyone in the population 
receives treatment. This is the mean of dr1. 
 

In the case of a continuous outcome, this is the mean value for that continuous variable (such as 
blood pressure, cholesterol, weight). In the case of a dichotomous outcome, this is the average 
risk of the outcome. This is the expected mean response in subjects rather than the expected 
value for an average subject; these two values are the same in a linear model but not so for a 
logistic regression model, which could lead to discrepancies. 

Deltadr 
is the difference between the mean responses (dr1–dr0). In the case of a continuous 
outcome, this is the mean difference due to treatment or exposure.  In the case of a 
dichotomous outcome, this is the difference in the average predicted probability of the 
outcome, comparing the response rate in the pseudopopulation if everyone had been 
unexposed (or untreated) to the response rate in the pseudopopulation had everyone been 
exposed (or treated).  
 

Sedeltadr 
is the delta method standard error associated with the measure deltadr and should be 
reported only when the weight and outcome regression models are known to be correctly 
specified. 
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Z 
is the Z score based on the delta method standard error. 
 

ProbZ 
is the two-tailed probability that deltadr=0 based on the Z score. Like the estimated 
standard error and Z score, this p value should be reported only when the weight and 
outcome regression models are known to be correctly specified. 
 

Program 4.5 shows the related SAS code. 

Program 4.5  Excerpt of SAS Code from DR Macro v1.0 for Calculation of DR Estimate of  
                       the Mean Difference Due to Exposure and Estimated Standard Error 
/* combine M0 and M1 */ 
 data _modres01_(keep=&expvar &resvar __ps __m0 __m1 __exp01 __res01); 
   merge _ps_ _modres0_ _modres1_; 
   %if ("&desc"="") %then %do; 
     __ps=1-__ps; 
  __m0=1-__m0; 
  __m1=1-__m1; 
   %end; 
 run; 
 
/* create DR0 and DR1 and their difference DR1_DR0 statistics */ 
 data _dr01_; 
   set _modres01_; 
   dr0=((1-__exp01)*__res01+(__exp01-__ps)*__m0)/(1-__ps); 
   dr1=(__exp01*__res01-(__exp01-__ps)*__m1)/__ps; 
   dr1_dr0=dr1-dr0; 
    run; 
 
/* obtain mean, variance and n of difference DR1_DR0 */ 
/* and the means of DR0 and DR1 */ 
 proc means noprint data=_dr01_ vardef=n; 
   var dr1_dr0 dr0 dr1; 
   output out=_mdr01_(drop=_type_) mean=deltadr dr0 dr1 var=i2 vdr0 vdr1 
n=__n; 
 run; 
 
/* get the SE of the difference */ 
/* and the two variance components */ 
 data _mdr01_; 
   merge _mdr01_; 
   SEdeltadr=sqrt(i2/__n); 
   vdr0=vdr0/__n; 
   vdr1=vdr1/__n; 
 run; 
 
In the case of a dichotomous outcome, a separate table with parameter estimates is displayed in 
the output. The following parameters, with their standard errors, Z scores and p values, are 
displayed. Program 4.6 shows the relevant SAS code. 

LogRiskRatio 
The natural log of the risk ratio. Exponentiating this value returns the risk ratio. 
 

LogOddsRatio 
The natural log of the odds ratio. Exponentiating this value returns the odds ratio. 
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Program 4.6  Excerpt of SAS Code from DR Macro v1.0 for Calculation of DR Estimates of  
                       the Mean Difference, Log Relative Risk, Log Odds Ratio, and Estimated  
                       Standard Errors 

/* if the distribution of the response is binary */ 
/* get the ratio and the standard error of the ratio */ 
    %if (&mdist=BINOMIAL or &mdist=B or &mdist=BIN) %then %do; 
 
      /* obtain the 2 variances and the covariance */ 
      ods listing close; 
      proc corr cov data=_dr01_ vardef=n; 
     var dr0 dr1; 
        ods output cov=_cov_; 
      run; 
      ods listing; 
      data _cov_; 
        set _cov_; 
        if _n_=1 then do; 
          v0=dr0; 
         v01=dr1; 
        end; 
        else do; 
          v1=dr1; 
       keep v0 v1 v01; 
       output; 
        end; 
        retain v0 v01; 
      run; 
 
/* risk ratio, odds ratio and standard errors */ 
 
/* combine the covariance information with the means information */ 
/* get the variance estimates of some functions of the means */ 
      data  _mdr01_; 
        merge _mdr01_ _cov_; 
/* derivatives */ 
/* log odds */ 
        alo=(1/(dr1*(1-dr1))); 
        blo=(-1/(dr0*(1-dr0))); 
/* mean difference */ 
        am=1;  
        bm=-1; 
/* log risk ratio */ 
        alrr=1/dr1; 
        blrr=-1/dr0; 
/* log odds ratio and log risk ratio */ 
  LogOddsRatio=log((dr1*(1-dr0))/((1-dr1)*dr0)); 
  LogRiskRatio=log(dr1/dr0); 
/* special for DESCENDING */ 
  %if "&desc"="" %then %do; 
    LogOddsRatio=-1*logoddsratio; 
    LogRiskRatio=-1*logriskratio; 
  %end; 
/* standard error estimates */ 
  SELogOddsRatio=sqrt((alo*alo*v1+blo*blo*v0+2*alo*blo*v01)/__n);         
        SEMeanDifference=sqrt((am*am*v1+bm*bm*v0+2*am*bm*v01)/__n);             
        
SELogRiskRatio=sqrt((alrr*alrr*v1+blrr*blrr*v0+2*alrr*blrr*v01)/__n);   
  drop alo blo am bm alrr blrr v0 v1 v01; 
      run; 
  %end; 
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44.3 Sample Analysis 

4.3.1  Introduction to Sample Data 
The examples presented here are based on a simulated observational cohort with 10,000 
individuals. The main exposure is statin initiation at baseline (statin, p[statin=1]=0.51). The main 
outcomes are rmi1a (mean=-10.7, sd=4.7), which represents the change in lipid levels between 
the baseline and a follow-up visit, and mi1 (p[mi1=1]=0.19), which represents the occurrence of 
an acute myocardial infarction during the follow-up period for the cohort. The data set is 
structured as one record or observation per person with the individuals represented in rows. 
Because these data are simulated, we know the true causal effect of the exposure on the 
outcomes as well as the true relationships between the covariates and the exposure and between 
the covariates and the outcomes. In both cases, the true effect of statin use on the outcomes is 
null. While the true mean response for the continuous outcome in each treatment group is 
negative (representing a decrease in lipid levels at follow-up relative to the baseline), these are 
simulated data and the methods described here apply equally to an outcome with a mean positive 
value. The association between the exposure and the outcomes is confounded by seven variables, 
four continuous (Age, BMI, Chol, and Exer) and three dichotomous (Hs, Smk, and Hxcvd). In 
addition, there is one variable that is a risk factor only for the outcome (Female) and two 
variables that are risk factors only for the exposure (Black and Income).  

To run these example analyses, download the simulated study data set from 
http://harryguess.unc.edu/sas.htm and create a libname for SampleData that points to the 
appropriate directory on your computer. 

4.3.2  DR Analysis of a Continuous Outcome 
This example represents an analysis of simulated data where the exposure of interest is statin use 
(statin) and the outcome of interest is a continuous cardiovascular disease score (rmi1a). The true 
effect of statin use on the outcome is null. Both the weight (propensity score) model and the 
regression model are specified correctly in this analysis (see Program 4.7): 

Program 4.7  Call to DR Macro v1.0 for Analysis of rmi1a Outcome 
title 'Continuous Example'; 
%dr(%str(options data=sampledata.study descending; 
       wtmodel statin=hs smk hxcvd black bmi age income chol exer  
  / method=dr dist=bin showcurves common_support=.99; 
model rmi1a=hs female smk hxcvd bmi bmi2 age age2 chol exer /dist=n;) 
); 
 

The first component of the output is the usual SAS output from a logistic regression model 
(Program 4.1). From this, we can confirm the total number of observations and that the 
probability modeled is statin=1. These results also allow the analyst to identify covariates 
that are strongly associated with exposure and assess the fit of the model. 
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Output Node from rmi1a Analysis: Logistic Weight Model  
 
                                   The LOGISTIC Procedure 
 
                                      Response Profile 
 
                              Ordered                    Total 
                                Value     statin     Frequency 
 
                                    1     Yes             5073 
                                    2     No              4927 
 
                            Probability modeled is statin='Yes'. 
 
...more results... 
 
                         Analysis of Maximum Likelihood Estimates 
 
                                           Standard          Wald 
            Parameter   DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
            Intercept    1     -8.0728      0.2589      972.0943        <.0001 
            hs           1      0.3587      0.0457       61.7075        <.0001 
            smk          1     -0.4534      0.0529       73.4696        <.0001 
            hxcvd        1      0.9101      0.0563      260.9287        <.0001 
            black        1     -0.6783      0.0489      192.5989        <.0001 
            bmi          1      0.0567     0.00460      152.1308        <.0001 
            age          1      0.0590     0.00328      323.4639        <.0001 
            income       1    6.171E-6    1.141E-6       29.2467        <.0001 
            chol         1      0.0181    0.000599      916.7678        <.0001 
            exer         1     0.00789    0.000917       74.0638        <.0001 
 
...more results... 
            Association of Predicted Probabilities and Observed Responses 
 
                    Percent Concordant        77.8    Somers' D    0.557 
                    Percent Discordant        22.1    Gamma        0.558 
                    Percent Tied               0.2    Tau-a        0.279 
                    Pairs                 24994671    c            0.779 

 
The next node in the results pane presents the mean, standard deviation, and minimum and 
maximum predicted probabilities (or propensity scores) stratified by exposure group. This allows 
the analyst to check the assumption of positivity. This assumption states that for each 
combination of characteristics, there must be a non-zero probability of being exposed and 
unexposed (Cole and Hernán, 2008). In the event that positivity is violated, consider whether this 
is a case of structural nonpositivity, in which it is not possible for individuals with a particular 
combination of characteristics to receive one of the exposures. Instances of structural 
nonpositivity suggest that these observations should not be included in the analysis. There may 
also be cases of random nonpositivity, particularly when some covariates are continuous. The 
regression models smooth over these instances of nonpositivity, but it is helpful to investigate the 
sensitivity of the findings to violation of the positivity assumption.  
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Output Node from rmi1a Analysis:  Descriptive Statistics for Exposure Probability  
 
     Descriptive Statistics For Exposure Probability 
                    by Exposure Group              
 
                        Standard 
  statin      Mean     Deviation     Minimum    Maximum 
 
   No       0.38962     0.21121     0.014905    0.96883 
   Yes      0.62159     0.21006     0.037478    0.98576 
 

 
The SHOWCURVES option produces a histogram that compares the distributions of the 
propensity score for the two levels of exposure with a nonparametric smoothed curve overlaid 
(see Figure 4.2, produced by Program 4.2). This allows the analyst to visually assess the degree 
to which there are unexposed individuals who can serve as counterfactuals for those who were 
exposed and vice versa.  

Output Node from rmi1a Analysis:  Propensity Score Curves Stratified by Exposure  

Figure 4.2  Estimated Propensity Score Distributions Stratified by Exposure with  
                   Nonparametric Smoothed Curve 
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Estimated Probabil i ty  
The COMMON_SUPPORT option directs the outcome regression model to trim off observations 
that lie at the extreme ends of the propensity score distribution in order to support sensitivity 
analyses.1

                                                 
1 We have used it in this example only to demonstrate its application. There is no indication that it is needed in these data based  
  on the good overlap across the full range of the propensity score distributions. 

 Using common_support=0.99, the regression models are limited to those 
observations with a propensity score between the 0.5th percentile and the 99.5th percentile. The 
vertical dashed lines in Figure 4.2 indicate the boundaries for this portion of the data.  
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The following two nodes present the results of linear regression within the unexposed 
(statin=0) and exposed (statin=1, not shown) groups, respectively (Program 4.3). The 
number of observations used may be less than the total number of observations in the data set 
(the number of observations read). In this example, there are 9,858 total observations rather than 
10,000 because of the use of the COMMON_SUPPORT option, of which 4,857 (out of the 
original 4,927) were in the unexposed group and, therefore, contribute to the outcome regression 
among the unexposed (shown here). In addition, observations without complete data for all 
covariates are excluded in a case-wise deletion manner.  

Output Nodes from rmi1a Analysis:  Observation Information for Exposure=0 and 
GLM Outcome Model for Exposure=0    
 
             Statin=0 
                                       The GLM Procedure 
 
                               Number of Observations Read        9858 
                               Number of Observations Used        4857 
 
<some results omitted here save space> 
 
                                                    Standard 
Parameter         Estimate           Error    t Value    Pr > |t| 
 
Intercept     -35.24558550      0.63717979     -55.31      <.0001 
hs             -0.96761996      0.02874527     -33.66      <.0001 
female          1.50190505      0.02936782      51.14      <.0001 
smk             2.02010820      0.03152377      64.08      <.0001 
hxcvd           2.01384495      0.03986875      50.51      <.0001 
bmi             0.12632269      0.02201941       5.74      <.0001 
bmi2            0.00951336      0.00041793      22.76      <.0001 
age             0.07753889      0.02195693       3.53      0.0004 
age2            0.00121005      0.00020904       5.79      <.0001 
chol            0.05018018      0.00036380     137.93      <.0001 
exer           -0.02076545      0.00058327     -35.60      <.0001                  

 
Finally, under the node labeled Print: DR Estimate, we find the results of interest 
(Program 4.5). Again, the number of observations under Used Obs may be less than the total 
number of observations in the event of missing data for some observations for some covariates 
and/or use of the COMMON_SUPPORT option in the MACRO statement. Under Modeled 
Mean for Statin=0, we find the estimated mean response if all subjects in this cohort had 
been unexposed (statin=0) and, likewise under Modeled Mean for Statin=1, the 
estimated mean response if all subjects in this cohort had been exposed (statin=1).  The 
doubly robust estimate (deltadr) of the average treatment effect (also known as the mean 
difference due to treatment) when we have specified both models correctly is a difference of 0.00 
with a standard error of 0.02, a p value of 0.87, and a 95% confidence interval of -0.04 to 0.05 
(calculated using the estimated standard error for the delta DR). 
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Output Node from rmi1a Analysis:  DR Estimate    
                                      DR Estimates 
 
                Modeled    Modeled 
 Total   Used   Mean for   Mean for 
  Obs     Obs   STATIN=0   STATIN=1     deltadr  SEdeltadr      Z       Probz 
 
 10000   9858   -10.6783   -10.6744  .003914308   0.023986   0.16319   0.87037 
 

 
Results from a standard linear outcome regression model including treatment and all covariates 
can be obtained, for comparison, using the following SAS code: 

Program 4.8  Standard Linear Regression Model 
proc reg data=sampledata.study; 
model rmi1a=statin hs female smk hxcvd bmi bmi2 age age2 chol exer; 
run; 

 
Results from this model are shown here. The mean difference due to statin use conditional on all 
other covariates in a single linear regression model is -0.01, similar to the DR estimate. The 
standard error of the DR estimate (0.024) is slightly greater than that from the single linear 
regression model (0.022), as we would expect. Recall that the DR estimate used a sample in 
which some observations at the extreme were trimmed, so these are not strictly comparable 
estimates. 

Output from Program 4.8Standard Linear Regression Model 
                             Parameter Estimates 
 
                     Parameter      Standard 
  Variable    DF      Estimate        Error    t Value    Pr > |t| 
 
  Intercept   1      -34.70314       0.43740   -79.34      <.0001 
  statin      1       -0.01064       0.02229    -0.48      0.6333 
  hs          1       -0.96683       0.01994   -48.48      <.0001 
  female      1        1.51607       0.02032    74.60      <.0001 
  smk         1        2.02120       0.02303    87.76      <.0001 
  hxcvd       1        2.00006       0.02412    82.93      <.0001 
  bmi         1        0.10456       0.01507     6.94      <.0001 
  bmi2        1        0.00989    0.00027799    35.57      <.0001 
  age         1        0.06559       0.01463     4.48      <.0001 
  age2        1        0.00133    0.00013566     9.77      <.0001 
  chol        1        0.05039    0.00024814   203.06      <.0001 
  exer        1       -0.02034    0.00039787   -51.13      <.0001 

4.3.3  DR Analysis of a Dichotomous Outcome 
The second example represents an analysis of simulated data where the exposure of interest is 
statin use (statin) and the outcome of interest is a dichotomous variable indicating whether the 
subject experienced a myocardial infarction within the follow-up period (mi1). Both the weight 
(propensity score) model and the regression model are specified correctly: 
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Program 4.9  Call to DR Macro v1.0 for Analysis of mi1 Outcome 
title 'Dichotomous Example'; 
%dr(%str(options data=sampledata.study descending; 
       wtmodel statin=hs smk hxcvd black bmi age income chol exer  
  / method=dr dist=bin showcurves; 
model mi1=hs female smk hxcvd bmi bmi2 age age2 chol exer /dist=bin; 
) ); 

 
As before, the first node in the results pane includes the complete output from the logistic 
regression model for the propensity score model. Because we specified the SHOWCURVES 
option, a graph of the two propensity score distributions is also produced. The results are 
identical because the same exposure and covariates were specified as in the previous example. 
There are two additional logistic regression nodes: the first for the model of the predicted 
response among the exposed and the second among the unexposed, respectively. The results of 
interest appear under the Print: DR estimates node (Program 4.6). These results include 
DR estimates of the risk (or probability) of the outcome had everyone in the population been 
untreated (dr0) or treated (dr1), the risk difference (delta DR), the log risk ratio, and the log odds 
ratio. In addition, the standard errors, Z score, and p value for each parameter are provided. 

Output Node from mi1 Analysis:  DR Estimate    
     Sample size and DR Estimates   
 
                   Modeled     Modeled 
Total     Used    Mean for    Mean for 
 Obs      Obs     STATIN=0    STATIN=1 
 
10000    10000     0.19032     0.19540 
 
 
 
                     Parameter Estimates 
 
Parameter         Estimate    StdError       Z        ProbZ 
 
Delta DR          0.005081    0.005667    0.89660    0.36993 
Log Risk Ratio    0.026347    0.029545    0.89174    0.37253 
Log Odds Ratio    0.032641    0.036556    0.89292    0.37190 

 

Due to the noncollapsibility of the odds ratio, it is not particularly meaningful to compare the DR 
estimate of the odds ratio to that from a typical logistic regression model. Instead, we compare 
the DR estimate of the risk ratio to the risk ratio estimated using the GENMOD procedure 
(Spiegelman and Hertzmark, 2005). (Poisson regression is used in this case because of problems 
with convergence of binomial regression.) 

Program 4.10  Analysis of mi1 Using Poisson Regression Model 
 

title 'Estimate of RR using Poisson Regression'; 
proc genmod data=sampledata.study descending; 
    class i; 
    model mi1=statin hs female smk hxcvd bmi bmi2 age age2 chol exer 
/dist=poisson link=log; 
    repeated subject=i/type=ind; 
    estimate 'log RR statin' statin 1/exp; 
run; 
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The estimate of logrRR (0.12) is further from the true null value than the DR estimator (0.03), 
and the standard error of the logRR from Poisson regression is less efficient (0.04 vs. 0.03). 

Output from Program 4.10—Poisson Regression Model 
 
                                      Contrast Estimate Results 
 
                              Standard                               Chi- 
 Label            Estimate    Error     Alpha  Confidence  Limits  Square   Pr > ChiSq 
 
 Log RR statin      0.1151    0.0402    0.05   0.0363      0.1939  8.20      0.0042 
 Exp(log RR statin) 1.1220    0.0451    0.05   1.0370      1.2140 
 

 
In the examples provided, the true forms of the propensity score and outcome regression models 
are used, but one can also explore the robustness of this method by intentionally misspecifying 
one of the two models using these sample data.  

44.4  Summary 
Given that we rarely know the true relations among exposures, outcomes, and confounders, the 
DR estimator is a potentially valuable tool for obtaining more robust effect estimates in 
observational studies of the effects (intended and unintended) of drugs, devices, and other 
interventions. The SAS macro described here makes this method relatively straightforward to 
apply to real-world analyses. But given the relative novelty of this estimator, we suggest that 
researchers take an especially careful approach to this type of analysis, with particular 
consideration of the method’s limitations, the SAS macro’s implementation in particular, and a 
variety of issues that remain under active debate. Given that this is a relatively new approach, we 
suggest using this method along with a more traditional bias adjustment approach as a sensitivity 
analysis.  

4.4.1  Limitations 
While the DR estimator provides the analyst with two chances to specify a regression model 
correctly, it still requires assumptions common to most regression models for causal effect 
estimation. While some of these can be verified, the most critical assumption of no unmeasured 
confounders is unverifiable. One of the two models must be correctly specified for the estimator 
to remain consistent, which means that all confounders must have been measured in order to be 
included in at least one of the models. In the event that neither model is correct, the estimator is 
no longer consistent and is not necessarily closer to the true effect than that from a single 
misspecified outcome regression model (Jonsson Funk and Westreich, 2008; Kang and Schafer, 
2008).  

Because this method reweights observations, the results can be sensitive to observations that are 
given a very large weight, as is the case with IPW methods more generally (Robins et al., 2000; 
Cole and Hernán, 2008). This can arise when an individual has a particular combination of 
characteristics that is almost always associated with one of the two exposure conditions. For 
instance, if there are 100 individuals over the age of 80 but only one of them is unexposed, that 
single unexposed individual will be reweighted in the final calculation of the treatment effect to 
count as 100 observations, making his or her outcome potentially overinfluential. In this 
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situation, the analyst should first seek to understand which combinations of characteristics define 
these unusual individuals. Next, the analyst needs to make a decision based on the research 
question and substantive knowledge regarding whether these individuals are properly part of the 
population of interest. If so, then further investigations of effect measure modification would be 
appropriate in combination with sensitivity analyses to assess the degree to which the estimated 
treatment effect is sensitive to omission of individuals where there is limited positivity.  

4.4.2  Practical Considerations 
While there are other DR estimators and means of computing these estimators, the SAS macro 
for DR estimation described here has specific advantages and limitations. One advantage is that 
it provides estimates of the absolute risks, risk difference, and risk ratio in addition to the usual 
odds ratio for analyses of dichotomous outcomes. The macro also includes some built-in 
diagnostics to aid the analyst in evaluating the appropriateness of the propensity score (weight) 
model. 

In terms of limitations, the current version (v1.0) is designed only to handle binary exposures and 
binary or continuous outcomes. In the event that there are more than two exposure groups, the 
analyst would need to conduct pairwise comparisons to make use of the macro. Estimated 
standard errors are provided for reference but appropriate estimates of the standard error and 
confidence limits should be obtained by bootstrapping for purposes of reporting results from 
original research where either the propensity score or outcome regression models may be 
misspecified. With respect to missing data, if a given observation has a missing value for any 
covariate, the individual’s data will not be utilized, as is the case with most SAS procedures. 
While methods such as multiple imputation can be used to more adequately address missing data, 
the analyst will need to do so outside of the macro. Although the code used by the analyst to run 
the macro was designed to look much like a typical SAS procedure to improve its usability, there 
are some SAS conventions that are not currently recognized. Specifically, variables for 
interaction terms and higher order terms must be created in a DATA step—not within the 
MODEL statements. The CLASS statement is also not recognized and, therefore, all categorical 
variables should be coded using indicator variables. Other common statements such as WHERE 
and BY are also not recognized. Development of the macro is ongoing, so the analyst should 
review the documentation provided with the current version on the Web site to be aware of any 
changes subsequent to this publication. 

4.4.3  Areas of Onoing Investigation 
Doubly robust estimation is a relatively new method. As such, many questions remain to be 
answered about its performance in applied analyses and its optimal use. Key questions under 
active discussion include detecting and handling effect modification, selecting covariates for the 
propensity score and outcome regression models, using diagnostics, and addressing violations of 
the assumption of positivity.  

44.5  Conclusion 
Doubly robust estimation methods—which provide the analyst with two chances to correctly 
specify the true relationships among exposures, covariates and outcomes—are potentially 
valuable tools for epidemiologic research. In this chapter, we have presented a basic introduction 
to the method, provided specific instruction on the use of DR estimation as implemented with a 
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SAS macro, illustrated the use of the macro with two sample analyses of a simulated 
observational cohort, and discussed several issues that the analyst should take into consideration 
when using this approach. 
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Abstract 
Propensity scores have been used widely as a bias reduction method to estimate the treatment 
effect in nonrandomized studies. Because many covariates are generally included in the model for 
estimating propensity scores, the proportion of subjects with at least one missing covariate can be 
relatively large. In this chapter, we review existing methods for estimating propensity scores 
when missing values are present. The methods include a complete covariate (CC) method, an 
indicator variable (IND) method, various multiple imputation (MI) methods, a missingness 
pattern (MP) method, and a multiple imputation missingness pattern (MIMP) method. We 
provide SAS programs to implement all five methods for a data set from a clinical study in 
osteoporosis. We also provide a SAS macro for pooling small patterns of missing data to increase 
the stability and efficiency of MP and MIMP estimators. Because estimation may be sensitive to 
model misspecification for imputation and/or propensity score estimation as well as to the tuning 
parameters of associated algorithms, we also suggest various sensitivity analyses. 

5.1 Introduction 
Observational studies are becoming increasingly important because they allow us to observe 
treatment outcomes for large numbers of subjects in real-world treatment practice. Well-designed 
observational studies could provide valuable information to enhance information from 
randomized controlled trials (Concato, Shah, and Horwitz, 2000). The propensity score concepts 
introduced by Rosenbaum and Rubin (1983) are tools for estimating causal effects of alternative 
treatments in the presence of imbalance in baseline covariate (X) distributions between treatment 
groups due to lack of randomization.  
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Let T denote a binary treatment group indicator. Throughout this chapter, we restrict attention to 
only two treatment groups, with T=0 indicating the reference treatment group and T=1 indicating 
the investigational or active treatment group. The propensity score )|1Pr( XT , which is the 
probability of a subject being assigned to the active treatment given X, is essentially a mapping of 
multiple covariates onto a single, scalar valued variable. Propensity scores are typically estimated 
using a multiple logistic regression model, as follows: 

XXTXT T ),1())]|1Pr(1/()|1log[Pr( . 

It has been shown that using propensity scores results in substantial reduction of bias in 
estimating the treatment effect when treatment assignments are subject to selection bias 
(Rosenbaum and Rubin, 1983). Furthermore, the propensity score method provides advantages 
compared to simply incorporating all the covariates in the model for the treatment effect. For 
example, propensity score methods tend to be more robust than direct covariate adjustment with 
respect to model overparameterizations (including too many covariates) and situations with 
different covariance matrices within treated and untreated groups (D’Agostino, 1998, page 2286.)  

Propensity score methods encourage use of many covariates because only predicted probabilities 
of alternative treatment choices end up being used, while the relative magnitudes, numerical 
signs, and p-values of fitted coefficients tend to be ignored. The generally larger number of 
missing values recorded in observational studies, compared to well-controlled trials, implies that 
a large proportion of subjects have at least one missing covariate value. The first simple approach 
is using only the observations without missing covariates. We call this method the complete 
covariate (CC) method. Clearly, simply ignoring patients with at least one missing covariate 
value is not a viable strategy. A simple and intuitive way for handling categorical missing values 
is to treat a missing value for each categorical variable as an additional category. For a continuous 
covariate with missing values, we can impute the missing values with the marginal mean and 
create a new dummy variable to indicate the missingness. We call this the indicator variable 
(IND) method. However, creating this new value ignores any observed correlations among 
original covariate values and, thus, is not an efficient approach.  

A more sophisticated method is to fit separate regressions in estimation of the propensity score 
for each distinct missingness pattern (MP) (D’Agostino, 2001). Although this approach includes 
all nonmissing values for those subjects with the same MP, it increases the variability of 
estimated propensity scores because only a subset of subjects is included in the propensity score 
model. A much more complicated and computationally intensive approach is to jointly model the 
propensity score and the missingness, and then use the EM/ECM algorithm (Ibrahim et al., 1999) 
or Gibbs sampling (D’Agostino et al., 2000) to estimate parameters and propensity scores. 
Because there is currently no SAS procedure to perform such analyses, the computational 
complexity makes this alternative approach less attractive and practical. 

As a different approach, propensity scores in the presence of missing covariates could also be 
estimated using multiple imputation (MI) concepts proposed by Rubin (1978, 1987). Recently, 
Crowe, Lipkovich, and Wang (2009) studied the performance of different multiple imputation 
strategies in propensity score-based estimation through a simulation study. The central idea of 
MIs is to randomly fill in any missing values multiple times with sampling from the posterior 
predictive distribution of the missing values given the observed values, thereby creating a 
sequence of complete data sets. One advantage to this method is that each data set in the imputed 
sequence can be analyzed using standard complete data methods. Another advantage is that MI 
procedures allow us to include ancillary variables that, although they do not directly affect 
propensity scores, may none the less contain useful information about missing values in important 
variables.  
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Recently, Qu and Lipkovich (2009) developed a new method called multiple imputation 
missingness pattern (MIMP), which utilizes not only a multiple imputation method but also the 
pattern of missing data in the estimation of propensity scores. In this approach, missing data are 
imputed using a multiple imputation procedure. Then, the propensity scores are estimated from a 
logistic regression model including the covariates (with missing values imputed) and a factor (a 
set of indicator variables) indicating the missingness pattern for each observation. A simulation 
study showed that MIMP performs as well as MI and better than MP when the missingness 
mechanism is either “missing completely at random” or “missing at random,” and it performs 
better than MI when data are missing not at random (Qu and Lipkovich, 2009).  

We will use a data example from a clinical trial in osteoporosis to show how to estimate 
propensity scores in the presence of missing data for some covariates using the CC, IND, MI, 
MP, and MIMP methods. There are many ways to use these estimated propensity scores to 
estimate treatment effects, including regression, stratification, inverse probability weighting, 
matching, and some combinations of these (see Chapters 2–4 for detailed discussions of these 
methods). Note that each of the approaches for estimating propensity scores discussed in this 
chapter can be used in combination with any method of using the propensity scores to estimate 
treatment effects. In this chapter, for illustration, we use the inverse probability weighting (IPW) 
approach to estimate the treatment difference. It has been shown that standardizing the weights 
before performing the IPW estimation provides a more stable estimator for the treatment 
difference. Therefore, we use the standardized IPW estimation throughout this chapter. 
Specifically, the estimated treatment effects is estimated as the difference in mean outcome 
between the two treatment groups, 01
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and individual propensity scores, jp̂ , are estimated from the logistic regression model described 
previously (Lunceford and Davidian, 2004).  

55.2 Data Example 
In this section, we apply the five methods of handling missing data when estimating propensity 
scores to a set of data from an osteoporosis study: Multiple Outcomes of Raloxifene Evaluation 
(MORE) (Delmas et al., 2002). In this study, 7,705 women with osteoporosis were randomly 
assigned to one of the three treatment groups with an intended ratio of 1:1:1 for placebo, 
raloxifene 60 mg/day, or raloxifene 120 mg/day and were followed up for 4 years. After 3 years 
of follow-up, women were allowed to take other bone-active agents such as bisphosphonates. In 
this analysis, we compared the change in the femoral neck bone mineral density (BMD) during 
the fourth year (Y) between women not taking bisphosphonates (referred to in this analysis as the 
untreated group, T=0) and women taking bisphosphonates (the treated group, T=1) among the 
1,643 women who were originally randomized to placebo. Our primary analytic method for 
evaluating treatment difference is an analysis of variance (ANOVA) model for the outcome (Y) 
against the assigned treatment group (T). However, because taking bisphosphonates was not a 
randomized factor, the response variable Y in treated and untreated groups may be confounded 
due to selection bias. Therefore, we use a weighted ANOVA model with weights taken as the 
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standardization of the inverse of the estimated probability of treatment received. Because PROC 
MIXED in SAS automatically standardizes the weights before performing the analysis, there is no 
need to explicitly compute standardized weights in the SAS program. These propensities were 
estimated using a logistic regression model with 16 covariates (Table 5.1): age at baseline (i.e., 
prior to randomization), body mass index (BMI) at baseline, family history of breast cancer, 5-
year breast cancer risk score (Costantino et al.,1998) at baseline, whether a woman had had a 
hysterectomy at baseline, lumbar spine BMD at baseline, femoral neck BMD at baseline, change 
in lumbar spine BMD during the first 3 years, change in femoral neck BMD during the first 3 
years, previous hormone replacement therapy status, prevalent vertebral fracture at baseline, new 
nonvertebral fracture in the first 3 years, new vertebral fracture in the first 3 years, weighted 
adverse event score during the first 3 years calculated as (1 × #mild AE + 2 × #moderate AE + 3 
× #severe AE + 4 × #serious AE), smoking status at baseline, and baseline semi-quantitative 
vertebral fracture status (0=no fracture, 1=mild fracture, 2=moderate fracture, and 3=severe 
fracture).  

A total of 1,643 women (1,512 with T=0 and 131 with T=1) were included in this sub-analysis 
and 603 women (36.7%) had at least one missing covariate. Table 5.1 displays the variable names 
and the numbers of missing values for women originally treated with the placebo. There were 14 
distinct patterns of the missing data. The largest pattern included 1,040 subjects with no missing 
covariates, and each of the three smallest patterns consisted of only one subject.  

Table 5.1  Variables in the Example Data Set 
 
Variable Name 

 
Variable Description 

# Missing 
Observations 

AGE Age at MORE baseline 0 
BMIR Body mass index (BMI) at MORE baseline 1 
GAILMORE 5-year breast cancer risk score 562 
LSC Change in lumbar spine BMD during the first 3 years 6 
LTOTBMR Lumbar spine BMD at baseline 6 
FNC Change in femoral neck BMD during the first 3 years 0 
NECKBMDR Femoral neck BMD at baseline 0 
AESCORE Weighted adverse event score during the first 3 years 0 
SQ Baseline semi-quantitative vertebral fracture status (0=no 

fracture, 1=mild fracture, 2=moderate fracture, and 
3=severe fracture) 

9 

FAMHXBCN Family history of breast cancer (Y/N) 41 
KHYSYN Whether hysterectomized at MORE baseline (Y/N) 0 
NVFX New nonvertebral fracture in the first 3 years (Y/N) 0 
PREVHRT Previous hormone replacement therapy status (Y/N) 3 
PREVVERT Prevalent vertebral fracture at MORE baseline (Y/N) 8 
SMOKE Smoking status at MORE baseline (Y/N) 23 
VFX New vertebral fracture in the first 3 years (Y/N) 8 
FNBMD_C Change in the femoral neck BMD during the fourth year 

(Outcome variable) 
0 

BISMORE Taking bisphosphonates versus not taking (treatment 
group), (Y/N) 

0 
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55.3 Using SAS for IPW Estimation with Missing Values  
SAS procedures (MEANS, GLM, and MIXED) automatically standardize the weights before 
performing the analysis. Therefore, although there is no explicit code for standardizing the 
weights (defined as the inverse of the propensity scores in the SAS programs), the standardized 
IPW estimation is actually performed for all methods of handling missing data.  

5.3.1  Complete Covariates (CC) Analysis  
The CC method simply omits observations with at least one missing covariate. Program 5.1 
shows the SAS code to perform the CC analysis and Output from Program 5.1 shows the results.  

Program 5.1  Complete Covariate (CC) Analysis 
PROC FORMAT; 
   VALUE FORMATYN 0 = 'NO' 
                  1 = 'YES'; 
RUN; 
 
********************************************************************; 
* COMPLETE COVARIATE (CC) ANALYSIS; 
********************************************************************; 
 
PROC LOGISTIC DATA = ANALDATA NOPRINT; 
    MODEL BISMORE = &VARLIST; 
    OUTPUT OUT=PRED PREDICTED=P; 
RUN; 
 
 
DATA PRED; 
   SET PRED; 
   IF BISMORE = 0 THEN PROB = P; 
   IF BISMORE = 1 THEN PROB = 1-P; 
   W = 1/PROB; 
RUN; 
 
PROC SORT DATA=PRED; 
   BY BISMORE; 
RUN; 
 
TITLE 'ANALYSIS RESULTS USING THE COMPLETE COVARIATE (CC) METHOD'; 
PROC MIXED DATA = PRED; 
   CLASS BISMORE; 
   MODEL FNBMD_C = BISMORE; 
   WEIGHT W; 
   FORMAT BISMORE FORMATYN.; 
   LSMEANS BISMORE/DIFF=ALL; 
RUN; 
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Output from Program 5.1 
ANALYSIS RESULTS USING THE COMPLETE COVARIATE (CC) METHOD 
 
The Mixed Procedure 
 
                             Least Squares Means 
         Bisphosphonates 
         use in the 4th                Standard 
Effect   yr of MORE        Estimate       Error      DF    t Value    Pr > |t| 
 
BISMORE  No                -0.00225    0.001224    1038      -1.84      0.0668 
BISMORE  Yes               0.006102    0.001180    1038       5.17      <.0001 
 
 
                          Differences of Least Squares Means 
 
        Bisphosphonates  Bisphosphonates 
        use in the 4th   use in the 4th         Standard 
Effect  yr of MORE       yr of MORE  Estimate  Error     DF  t Value  Pr > |t| 
 
BISMORE No               Yes        -0.00835  0.001700  1038  -4.91   <.0001 

 

5.3.2  Indicator Variable (IND) Analysis  
The IND approach is a straightforward method for categorical data where the missing value is 
treated as a special category. For continuous variables, we generally impute the missing values 
with the marginal means and create a dummy variable to indicate missingness. Program 5.2 
shows the SAS code to perform the IND analysis and Output from Program 5.2 shows the results.  

Program 5.2  Indicator Variable (IND) Analysis 
**********************************************************************; 
* INDICATOR VARIABLE (IND) ANALYSIS; 
**********************************************************************; 
PROC MEANS DATA = ANALDATA NOPRINT; 
   VAR AGE BMIR GAILMORE LSC LTOTBMDR FNC NECKBMDR AESCORE SQ; 
   OUTPUT OUT = ANALDATA_MEAN MEAN=AGE_M BMIR_M GAILMORE_M LSC_M 
LTOTBMDR_M FNC_M NECKBMDR_M AESCORE_M SQ_M; 
   BY STUDY; 
RUN; 
 
DATA ANALDATA_2; 
   MERGE ANALDATA ANALDATA_MEAN; 
   BY STUDY; 
RUN; 
 
DATA ANALDATA_IV; 
   SET ANALDATA_2; 
   ARRAY X{9} AGE BMIR GAILMORE LSC LTOTBMDR FNC NECKBMDR AESCORE SQ; 
   ARRAY M{9} M1-M9; 
   ARRAY XM{9} AGE_M BMIR_M GAILMORE_M LSC_M LTOTBMDR_M FNC_M NECKBMDR_M  
               AESCORE_M SQ_M; 
   DO I = 1 TO 9; 
      IF X{I} = . THEN DO; 
      M{I} = 1; 
   X{I} = XM{I}; 
   END; 
   ELSE M{I} = 0; 
   END; 
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   ARRAY XC{7} FAMHXBCN KHYSYN NVFX PREVHRT PREVVERT SMOKE VFX; 
   DO I = 1 TO 7; 
      IF XC{I} = . THEN XC{I} = -1; 
   END; 
RUN; 
 
 
PROC LOGISTIC DATA = ANALDATA_IV NOPRINT; 
    CLASS FAMHXBCN KHYSYN NVFX PREVHRT PREVVERT SMOKE VFX; 
    MODEL BISMORE = &VARLIST M1-M9; 
    OUTPUT OUT=PRED PREDICTED=P; 
RUN; 
 
DATA PRED; 
   SET PRED; 
   IF BISMORE = 0 THEN PROB = P; 
   IF BISMORE = 1 THEN PROB = 1-P; 
   W = 1/PROB; 
RUN; 
 
PROC SORT DATA=PRED; 
   BY BISMORE; 
RUN; 
 
TITLE 'ANALYSIS RESULTS USING THE INDICATOR VARIABLE (IND) METHOD'; 
PROC MIXED DATA = PRED; 
   CLASS BISMORE; 
   MODEL FNBMD_C = BISMORE; 
   WEIGHT W; 
   LSMEANS BISMORE/DIFF=ALL; 
   FORMAT BISMORE FORMATYN.; 
RUN; 

 

Output from Program 5.2 
ANALYSIS RESULTS USING THE INDICATOR VARIABLE (IND) METHOD 
 
The Mixed Procedure 
 
                               Least Squares Means 
 
           Bisphosphonates 
           use in the 4th                 Standard 
Effect     yr of MORE         Estimate       Error      DF    t Value    Pr > |t| 
 
BISMORE    No                 -0.00217    0.001031    1641      -2.11      0.0354 
BISMORE    Yes                0.008131    0.000995    1641       8.17      <.0001 
 
 
                          Differences of Least Squares Means 
 
         Bisphosphonates  Bisphosphonates 
         use in the 4th   use in the 4th            Standard 
Effect   yr of MORE       yr of MORE      Estimate     Error    DF  t Value  Pr > |t| 
 
BISMORE  No               Yes             -0.01030  0.001433  1641    -7.19    <.0001 

5.3.3  Multiple Imputation (MI) Analysis  
Applying MI for categorical predictors may be challenging because most commercially available 
statistical software for MI works with continuous data under an assumption of normality. 
Unfortunately, there is no current procedure in SAS to perform multiple imputation easily for 
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categorical covariates. As an alternative, we could create dummy variables for categorical 
variables and perform MI treating the dummy variables as continuous variables, which is readily 
justified for binary variables. For example, let X=1 indicate a subject who smoked regularly at 
baseline, and X=0 indicate a subject who did not. The imputed value for X could then be, say, 0.4, 
indicating a subject who has a 40% chance of smoking. This might provide better information 
about a patient than rounding the probability down to 0 (no smoking). In this chapter, we impute 
missing binary predictors with probabilities without rounding down or up.  

Another difficulty in applying MI inference in the context of propensity-based estimation of 
treatment effects is that using combining rules (Rubin, 1987) may result in variance estimators 
that are not valid because the uncertainty in estimated weights has not been accounted for. 
Another reason why Rubin’s variance estimator may not be appropriate is that one’s imputation 
model (for baseline covariates) and analysis model (for treatment effects) are unlikely to be 
compatible. See Meng (1994), Wang and Robins (1998), and Robins and Wang (2000) for more 
information. One general recipe for improving the variance estimator is bootstrapping the entire 
estimation procedure. This can be easily done using the available SAS macro suite for 
bootstrapping and implementing various bootstrap-based confidence intervals 
(http://cuke.hort.ncsu.edu/cucurbit/wehner/software/pathsas/jackboot.txt). In Section 5.3.6, we 
outline how to use this macro. 

Program 5.3 shows the SAS code to perform the MI analysis and Output from Program 5.3 shows 
the results. Program 5.3 shows how to calculate the point estimator when PROC MI is used to 
impute missing values. Essentially, it is the average of the estimates from samples generated by 
multiple imputations.  

Program 5.3  The Multiple Imputation (MI) Analysis 
**********************************************************************; 
* ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION (MI) METHOD; 
**********************************************************************; 
PROC MI DATA = ANALDATA ROUND=.001 NIMPUTE=5 SEED=6731205 
OUT=IMPUTED_DATA NOPRINT; 
   VAR &VARLIST FNBMD_C BISMORE;  
RUN; 
 
 
PROC LOGISTIC DATA = IMPUTED_DATA NOPRINT; 
    MODEL BISMORE = &VARLIST; 
   OUTPUT OUT=PRED PREDICTED=P; 
   BY _IMPUTATION_; 
RUN; 
 
 
DATA PRED; 
   SET PRED; 
   IF BISMORE = 0 THEN PROB = P; 
   IF BISMORE = 1 THEN PROB = 1-P; 
   W = 1/PROB; 
RUN; 
 
PROC SORT DATA=PRED; 
   BY _IMPUTATION_ BISMORE; 
RUN; 
 
ODS LISTING CLOSE; 
ODS OUTPUT LSMEANS = LSM DIFFS=DIFFS; 
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PROC MIXED DATA = PRED; 
   CLASS BISMORE; 
   MODEL FNBMD_C = BISMORE; 
   WEIGHT W; 
   BY _IMPUTATION_; 
   LSMEANS BISMORE/ DIFF=ALL; 
RUN; 
ODS LISTING; 
 
TITLE 'ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION (MI) METHOD'; 
TITLE2 'POINT ESTIMATES BY TREATMENT GROUP'; 
PROC MEANS DATA=LSM; 
   CLASS BISMORE; 
   VAR ESTIMATE; 
   FORMAT BISMORE FORMATYN.; 
RUN; 
 
TITLE2 'POINT ESTIMATE FOR THE TREATMENT DIFFERENCE'; 
PROC MEANS DATA = DIFFS; 
   VAR ESTIMATE; 
RUN; 

 

Output from Program 5.3 
ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION (MI) METHOD 
POINT ESTIMATES BY TREATMENT GROUP 
 
The MEANS Procedure 
 
                            Analysis Variable : Estimate 
 
Bisphosphonates 
use in the 4th      N 
yr of MORE        Obs    N           Mean        Std Dev        Minimum        
Maximum 
------------------------------------------------------------------------------------- 
No                  5    5     -0.0021784    0.000011247     -0.0021881     -
0.0021606 
 
Yes                 5    5      0.0083319    0.000191791      0.0081308      
0.0086499 
------------------------------------------------------------------------------------- 
ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION (MI) METHOD 
POINT ESTIMATE FOR THE TREATMENT DIFFERENCE 
 
The MEANS Procedure 
 
                  Analysis Variable : Estimate 
 
N            Mean         Std Dev         Minimum         Maximum 
----------------------------------------------------------------- 
5      -0.0105103     0.000189049      -0.0108240      -0.0103159 
----------------------------------------------------------------- 

 
The following SAS code produces the MI estimators of treatment effect with naïve estimates of 
standard error using PROC MIANALYZE. Specifically, it proceeds in three steps: first one 
creates multiple data sets without missing baseline values by imputation using a multivariate 
normal model (PROC MI), then one computes IPW estimates of treatment effects for each 
completed data set (PROC MIXED), and finally one computes a single MI estimator of treatment 
effect and associated approximate 95% confidence interval (CI) using Rubin’s combining rules 
(PROC MIANALYZE).  
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Note that PROC MIANALYZE has different formats for input data sets PARMS and COVB for 
SAS versions 8 and 9. Our example assumes use of SAS 9. Remember also that the variance 
estimator from PROC MIANALYZE may not be valid for the reasons mentioned here. Program 
5.4 shows the SAS code to summarize the estimates from the MI method using PROC 
MIANALYZE and Output from Program 5.4 shows the results.  

Program 5.4  Summarize the Estimates from the MI Method Using PROC MIANALYZE 
TITLE2 'ESTIMATE THE TREATMENT DIFFERENCE USING PROC MIANALYZE'; 
DATA FOR_MI_EST (KEEP = _IMPUTATION_ EFFECT ESTIMATE RENAME=(EFFECT=  
                 PARAMETER)); 
   SET DIFFS; 
   EFFECT = 'DIFF'; 
RUN; 
  
DATA FOR_MI_COV (KEEP = _IMPUTATION_ ROWNAME BISMORE DIFF ); 
   SET DIFFS; 
   DIFF = STDERR**2; 
   ROWNAME = "DIFF"; 
RUN;  
 
PROC MIANALYZE PARMS=FOR_MI_EST COVB=FOR_MI_COV; 
   MODELEFFECTS DIFF; 
   ODS OUTPUT PARAMETERESTIMATES=MI_EST 
             VARIANCEINFO=MI_VAR; 
RUN; 

Output from Program 5.4 
ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION (MI) METHOD 
ESTIMATE THE TREATMENT DIFFERENCE USING PROC MIANALYZE 
 
The MIANALYZE Procedure 
 
            Model Information 
 
PARMS Data Set            WORK.FOR_MI_EST 
COVB Data Set             WORK.FOR_MI_COV 
Number of Imputations     5 
 
            Multiple Imputation Variance Information 
 
             -----------------Variance----------------- 
Parameter         Between         Within          Total       DF 
 
DIFF         3.5739427E-8    0.000002072    0.000002115   9729.1 
 
       Multiple Imputation Variance Information 
 
                 Relative       Fraction 
                 Increase        Missing       Relative 
Parameter     in Variance    Information     Efficiency 
 
DIFF             0.020696       0.020478       0.995921 
 
                  Multiple Imputation Parameter Estimates 
 
Parameter        Estimate      Std Error    95% Confidence Limits        DF 
 
DIFF            -0.010510       0.001454     -0.01336     -0.00766   9729.1 
 
                       Multiple Imputation Parameter Estimates 
 
                                                                 t for H0: 
Parameter         Minimum        Maximum         Theta0   Parameter=Theta0   Pr > |t| 
 
DIFF            -0.010824      -0.010316              0              -7.23     <.0001 
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The two data sets passed to PROC MIANALYZE contain estimated treatment effects (data set 
FOR_MI_EST) and their associated variance-covariance matrices (squared estimated standard 
errors in data set FOR_MI_COV) for each imputation. The output of PROC MIANALYZE 
contains information on partitioning of the total variance associated with estimated treatment 
effect into between- and within-imputation pieces, multiple imputation parameter estimates, 
approximate 95% confidence intervals based on t-distributions, and total variance. Note that for a 
finite number of imputations (M), Rubin’s variance estimator is inconsistent because it has a non-
degenerate chi-squared limiting distribution. Therefore, a standard Wald-type inference based on 
the normal distribution is invalid and a t-distribution is used (Rubin, 1987). The impact of 
missing covariates on the final estimates of treatment effect can also be assessed by the fraction 
of missing information (about treatment effect), which is fairly low in this case (only 2%).  

5.3.4  Missingness Pattern (MP) Analysis  
The MP method essentially estimates propensity scores separately for each missingness pattern 
by including only variables without missing values within a missingness pattern. As a result, the 
independent variables included in the propensity score estimation models differ across 
missingness patterns. One challenge in implementing MP analysis is that usually there are some 
missingness patterns with a small number of observations, which renders estimation using the 
described model unstable. To address this problem, we developed an algorithm for pooling small 
missingness patterns according to their similarities to reach a prespecified minimum number of 
observations in each pattern (Qu and Lipkovich, 2009). After combining similar patterns, we 
impute all missing values within each pooled pattern with the marginal means (to avoid “holes”) 
and estimate the propensity scores using a logistic regression model. In this example, we pooled 
missingness patterns with a minimum of 100 observations for each pooled cell. Program 5.5 
provides a macro to create these pooled patterns. 

Program 5.5  Macro to Pool Small Missingness Pattern  
****************************************************************************; 
* Input parameters: 
*    indata = input data set; 
*    outdata = output data set; 
*    varlist = a list of variables to be included in the propensity score 
estimation; 
*    M_MP_MIN = minimum number of observations for each missing pattern. 
*             Missing patterns with less than MIN_MP observations will be 
pooled; 
***************************************************************************; 
%MACRO MP_ASSIGN(MSDATA = , OUTDATA =, VARLIST =, N_MP_MIN = 100); 
 
     /* Determine how many variables to include in the propensity score 
estimation */ 
     %LET N = 1; 
  %LET VARINT = ; 
     %DO %UNTIL(%QSCAN(&VARLIST., &N. , %STR( )) EQ %STR( )); 
       %LET VAR = %QSCAN(&VARLIST. , &N. , %STR( )); 
       %LET VARINT = &VARINT  &VAR.*MP; 
          %LET N = %EVAL(&N. + 1); 
     %END; 
  %LET KO = %EVAL(&N-1); 
  %LET M_MISSING = %EVAL(&N-1); 
  %PUT &VARINT; 
  %PUT &KO; 
  %PUT &M_MISSING; 
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   /* Create indicators for missing values and missingness patterns */ 
   DATA MS; 
      SET &MSDATA; 
   ARRAY MS{&M_MISSING} M1-M&M_MISSING.; 
   ARRAY X{&M_MISSING} &VARLIST; 
   MV = 0; 
   DO I = 1 TO &M_MISSING; 
      IF X{I} = . THEN MS{I} = 1; 
   ELSE MS{I} = 0; 
      MV = 2*MV + MS{I}; 
   END; 
   MV = MV + 1; 
   DROP I; 
   RUN; 
 
   /* Only keep one record for each missingness pattern */ 
   PROC SORT DATA = MS OUT = PATTERN NODUPKEY; 
      BY MV; 
   RUN; 
 
   /* Calculate the number of observations in each missingness pattern */ 
   PROC FREQ DATA = MS NOPRINT; 
      TABLES MV / OUT = M_MP(KEEP = MV COUNT); 
   RUN; 
 
   DATA PATTERN; 
      MERGE PATTERN M_MP; 
   BY MV; 
   RUN; 
 
   PROC SORT DATA = PATTERN; 
      BY DESCENDING COUNT; 
   RUN; 
 
   /* Assign missingness pattern to new index from the largest to the smallest */  
   DATA PATTERN; 
      RETAIN M1-M&M_MISSING MV COUNT MV_S; 
      SET PATTERN; 
   KEEP M1-M&M_MISSING MV COUNT MV_S; 
   MV_S = _N_; 
   RUN; 
 
PROC IML; 
   USE PATTERN; 
      READ ALL INTO A; 
   CLOSE PATTERN; 
   MS = A[, 1:&M_MISSING]; 
   MV = A[, 1+&M_MISSING]; 
   N_MP = A[, 2+&M_MISSING]; 
   MV_S = A[, 3+&M_MISSING]; 
 
   M_MP = NROW(MS); 
   M = NCOL(MS); 
 
   /* Calculate the distance between missingness patterns */ 
   DISTANCE = J(M_MP, M_MP, 0); 
   DO I = 1 TO M_MP; 
      DO J = 1 TO I-1; 
      D = 0; 
      DO L = 1 TO M; 
         D = D + ( (MS[I,L]-MS[J,L])*(MS[I,L]-MS[J,L]) ); 
   END; 
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   DISTANCE[I,J] = D; 
   DISTANCE[J,I] = D; 
   END; 
   END; 
 
   I = 0; 
   K_MV_POOL = 0; 
   MV_POOL = J(M_MP, 1, 0); 
 
     /*Pooling small missingness patterns according to their similarities to  
      reach a prespecified minimum number of observations (&N_MP_MIN) in each  
      pattern */ 
 
   DO WHILE( I < M_MP); 
      I = I + 1; 
      IF MV_POOL[I] = 0 THEN 
   DO; 
         K_MV_POOL = K_MV_POOL + 1; 
    N_MP_POOL = N_MP[I]; 
         IF N_MP_POOL >= &N_MP_MIN THEN 
      DO; 
      MV_POOL[I] = K_MV_POOL; 
      END; 
      ELSE  
      DO; 
      IF I < M_MP THEN 
   DO; 
          A = DISTANCE[(I+1):M_MP, I]; 
    B = MV[(I+1):M_MP]; 
    C = N_MP[(I+1):M_MP]; 
    D = MV_S[(I+1):M_MP]; 
    E = MV_POOL[(I+1):M_MP]; 
    TT = A || B || C || D || E; 
    CALL SORT( TT, {1 3}); 
    J = 0; 
    DO WHILE( (N_MP_POOL < &N_MP_MIN) & (I+J < M_MP) ); 
               J = J+1; 
       IF (TT[J,5] = 0) THEN 
       DO; 
          N_MP_POOL = N_MP_POOL + TT[J,3]; 
       TT[J,5] = K_MV_POOL; 
       END; 
    END; 
   END; 
   IF ( N_MP_POOL >= &N_MP_MIN ) THEN 
   DO; 
      MV_POOL[I] = K_MV_POOL; 
      DO K = 1 TO J; 
         MV_POOL[TT[K,4]] = K_MV_POOL; 
      END; 
   END; 
   ELSE 
   DO J = I TO M_MP; 
      SGN_TMP = 0; 
      K = 1; 
      DO WHILE(SGN_TMP = 0 & K <= M_MP); 
           DO L = 1 TO M_MP; 
         IF (DISTANCE[J,L] = K) & (MV_POOL[J]=0) &  
                                                  (MV_POOL[L]>0) THEN 
         DO; 
         MV_POOL[J] = MV_POOL[L]; 
      SGN_TMP = 1; 
         END; 
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      END; 
      K = K + 1; 
      END; 
   END; 
 
      END; 
      END; 
   END; 
 
   MV_FINAL = MV || MV_POOL; 
 
   VARNAMES={'MV' 'MV_POOL'}; 
   CREATE MVPOOL FROM MV_FINAL[COLNAME=VARNAMES]; 
   APPEND FROM MV_FINAL; 
QUIT; 
 
PROC SORT DATA = MVPOOL; 
   BY MV; 
RUN; 
 
PROC SORT DATA = MS; 
   BY MV; 
RUN; 
 
/* The variable MVPOOL in the &OUTDATA set indicates the pooled missingness 
pattern */ 
 
DATA &OUTDATA(RENAME=(MV=MP_ORIG MV_POOL=MP)); 
   MERGE MS MVPOOL; 
   BY MV; 
RUN; 
 
%MEND MP_ASSIGN; 
 

Program 5.6 shows the SAS code to perform the MP analysis after the macro %MP_ASSIGN is 
applied. Output from Program 5.6 shows the results.   

 

Program 5.6  The Missingness Pattern (MP) Analysis 
**********************************************************************; 
* MISSINGNESS PATTERN (MP) METHOD; 
**********************************************************************; 
 
%MP_ASSIGN(MSDATA = ANALDATA, OUTDATA = ANALDATA2, VARLIST = &VARLIST, 
N_MP_MIN = 100); 
 
PROC MEANS DATA = ANALDATA2 NOPRINT; 
   VAR &VARLIST; 
   OUTPUT OUT = MN MEAN = XM1-XM16; 
   BY STUDY; 
RUN; 
 
DATA TEMP; 
   MERGE ANALDATA2 MN; 
   BY STUDY; 
RUN; 
 
DATA TEMP; 
   SET TEMP; 
   ARRAY X{16} &VARLIST; 
   ARRAY XM{16} XM1-XM16; 
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   DO I = 1 TO 16; 
      IF X{I} = . THEN X{I} = XM{I}; 
   END; 
   DROP I; 
RUN; 
 
PROC SORT DATA = TEMP; 
   BY MP; 
RUN; 
 
PROC LOGISTIC DATA = TEMP NOPRINT; 
   CLASS MP; 
   MODEL BISMORE = &VARLIST; 
   OUTPUT OUT=PRED PREDICTED=P; 
   BY MP; 
RUN; 
 
 
DATA PRED; 
   SET PRED; 
   IF BISMORE = 0 THEN PROB = P; 
   IF BISMORE = 1 THEN PROB = 1-P; 
   W = 1/PROB; 
RUN; 
 
PROC SORT DATA=PRED; 
   BY BISMORE; 
RUN; 
 
TITLE 'ANALYSIS RESULTS USING THE MISSINGNESS PATTERN (MP) METHOD'; 
PROC MIXED DATA = PRED; 
   CLASS BISMORE; 
   MODEL FNBMD_C = BISMORE; 
   WEIGHT W; 
   LSMEANS BISMORE/DIFF=ALL; 
   FORMAT BISMORE FORMATYN.; 
RUN; 
 

Output from Program 5.6  
ANALYSIS RESULTS USING THE MISSINGNESS PATTERN (MP) METHOD 
 
The Mixed Procedure 
 
                               Least Squares Means 
 
           Bisphosphonates 
           use in the 4th                 Standard 
Effect     yr of MORE         Estimate       Error      DF    t Value    Pr > |t| 
 
BISMORE    No                 -0.00222    0.001021    1641      -2.18      0.0295 
BISMORE    Yes                0.007187    0.000987    1641       7.28      <.0001 
 
 
                          Differences of Least Squares Means 
 
         Bisphosphonates  Bisphosphonates 
         use in the 4th   use in the 4th            Standard 
Effect   yr of MORE       yr of MORE      Estimate     Error    DF  t Value  Pr > |t| 
 
BISMORE  No               Yes             -0.00941  0.001420  1641    -6.63    <.0001  
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5.3.5  Multiple Imputation Missingness Pattern (MIMP) Analysis  
The MIMP method essentially is a combination of MI and MP methods. First of all, missing 
values are multiply imputed. Then, for each imputed data set, propensity scores are estimated 
using the baseline covariates and the categorical variable for the missingness pattern. Similar to 
the MP method, we combine small missingness patterns to reach a minimum of 100 observations 
for each cell. Once we create data sets with indicators for pooled patterns (as shown in Section 
5.3.4), we simply apply PROC MI to this data set (as shown in Section 5.3.3). Program 5.7 shows 
the SAS code to perform the MIMP analysis and Output from Program 5.7 shows the results.  

Program 5.7  The Multiple Imputation Missingness Pattern (MIMP) Analysis 
**********************************************************************; 
* Multiple Imputation Missingness Pattern (MIMP) Method; 
**********************************************************************; 
 
PROC MI DATA = ANALDATA2 ROUND=.001 NIMPUTE=5 SEED=6731205 OUT=IMPUTED_DATA 
NOPRINT; 
   VAR &VARLIST FNBMD_C BISMORE; 
RUN; 
 
 
PROC LOGISTIC DATA = IMPUTED_DATA NOPRINT; 
   CLASS MP; 
    MODEL BISMORE = &VARLIST MP; 
   OUTPUT OUT=PRED PREDICTED=P; 
   BY _IMPUTATION_; 
RUN; 
 
 
DATA PRED; 
   SET PRED; 
   IF BISMORE = 0 THEN PROB = P; 
   IF BISMORE = 1 THEN PROB = 1-P; 
   W = 1/PROB; 
RUN; 
 
PROC SORT DATA=PRED; 
   BY _IMPUTATION_ BISMORE; 
RUN; 
 
 
ODS OUTPUT LSMEANS = LSM DIFFS=DIFFS; 
PROC MIXED DATA = PRED; 
   CLASS BISMORE; 
   MODEL FNBMD_C = BISMORE; 
   WEIGHT W; 
   BY _IMPUTATION_; 
   LSMEANS BISMORE/ DIFF=ALL; 
RUN; 
 
 
TITLE 'ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION MISSINGNESS PATTERN 
(MIMP) METHOD'; 
TITLE2 'POINT ESTIMATES BY TREATMENT GROUP'; 
PROC MEANS DATA=LSM; 
   CLASS BISMORE; 
   VAR ESTIMATE; 
   FORMAT BISMORE FORMATYN.; 
RUN; 
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TITLE2 'POINT ESTIMATE FOR THE TREATMENT DIFFERENCE'; 
PROC MEANS DATA = DIFFS; 
   VAR ESTIMATE; 
RUN; 

Output from Program 5.7 
ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION MISSINGNESS PATTERN (MIMP) METHOD 
POINT ESTIMATES BY TREATMENT GROUP 
 
The MEANS Procedure 
 
                            Analysis Variable : Estimate 
 
Bisphosphonates 
use in the 4th      N 
yr of MORE        Obs   N           Mean        Std Dev        Minimum        Maximum 
------------------------------------------------------------------------------------- 
No                  5   5     -0.0021775    0.000011208     -0.0021870     -0.0021596 
 
Yes                 5   5      0.0083296    0.000190528      0.0081254      0.0086443 
------------------------------------------------------------------------------------- 
 
 
ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION MISSINGNESS PATTERN (MIMP) METHOD 
POINT ESTIMATE FOR THE TREATMENT DIFFERENCE 
 
The MEANS Procedure 
 
                  Analysis Variable : Estimate 
 
N            Mean         Std Dev         Minimum         Maximum 
----------------------------------------------------------------- 
5      -0.0105070     0.000187855      -0.0108178      -0.0103096 
----------------------------------------------------------------- 

 
One can also use PROC MIANALYZE to get the point estimate for the treatment difference. 
However, the variance estimation from PROC MIANALYZE is not valid. This approach is 
shown in Program 5.8, and Output from Program 5.8 shows the results. 

Program 5.8  Summarize the Estimates from the MIMP Method Using PROC MIANALYZE 
TITLE2 'ESTIMATE THE TREATMENT DIFFERENCE USING PROC MIANALYZE'; 
DATA FOR_MIMP_EST (KEEP = _IMPUTATION_ EFFECT ESTIMATE RENAME=(EFFECT= 
PARAMETER)); 
   SET DIFFS; 
   EFFECT = 'DIFF'; 
RUN; 
  
DATA FOR_MIMP_COV (KEEP = _IMPUTATION_ ROWNAME BISMORE DIFF ); 
   SET DIFFS; 
   DIFF = STDERR**2; 
   ROWNAME = "DIFF"; 
RUN;  
 
PROC MIANALYZE PARMS=FOR_MIMP_EST COVB=FOR_MIMP_COV; 
   MODELEFFECTS DIFF; 
   ODS OUTPUT PARAMETERESTIMATES=MI_EST 
             VARIANCEINFO=MI_VAR; 
RUN;  
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Output from Program 5.8 
ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION MISSINGNESS PATTERN (MIMP) METHOD 
ESTIMATE THE TREATMENT DIFFERENCE USING PROC MIANALYZE 
 
The MIANALYZE Procedure 
 
             Model Information 
 
PARMS Data Set            WORK.FOR_MIMP_EST 
COVB Data Set             WORK.FOR_MIMP_COV 
Number of Imputations     5 
 
 
            Multiple Imputation Variance Information 
 
             -----------------Variance----------------- 
Parameter         Between         Within          Total       DF 
 
DIFF         3.5289507E-8    0.000002072    0.000002115   9972.9 
 
       Multiple Imputation Variance Information 
 
                 Relative       Fraction 
                 Increase        Missing       Relative 
Parameter     in Variance    Information     Efficiency 
 
DIFF             0.020436       0.020224       0.995972 
 
 
                  Multiple Imputation Parameter Estimates 
 
Parameter        Estimate      Std Error    95% Confidence Limits        DF 
 
DIFF            -0.010507       0.001454     -0.01336     -0.00766   9972.9 
 
                       Multiple Imputation Parameter Estimates 
 
                                                                 t for H0: 
Parameter         Minimum        Maximum         Theta0   Parameter=Theta0   Pr > |t| 
 
DIFF            -0.010818      -0.010310              0              -7.23     <.0001 

 

5.3.6  Obtaining Bootstrap Confidence Intervals 
Direct estimation of standard errors for the point estimators in all of these propensity score-based 
IPW methods is challenging because the additional variability in the estimated weights is difficult 
to account for. Therefore, we use bootstrap methods to estimate the standard error and the 
confidence interval for the point estimates. The SAS macros %BOOT and %BOOTCI 
(http://cuke.hort.ncsu.edu/cucurbit/wehner/software/pathsas/jackboot.txt) provide nonparametric 
estimates of standard errors and various bootstrap confidence intervals (including the popular 
bias-corrected accelerated [BCa] method; Efron, 1987) for the IPW treatment difference. First, 
we need to create a user-defined macro that has to be named %ANALYZE. This macro computes 
the point estimate of the IPW treatment difference that will be repeatedly called from the 
%BOOT and %BOOTCI macros. Next, the %BOOT and %BOOTCI macros are called to 
compute bootstrap estimates. Note that the %ANALYZE macro must have two parameters: data 
to identify the input data set and out to name the output data set. Program 5.9 is an illustration of 
the %ANALYZE macro and calls to the %BOOT and %BOOTCI macros.  
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Program 5.9  Estimation of the Variance and Confidence Interval Using the Bootstrap Method  
/*****************************************************************************  
 MIMP_ANALYSIS is a macro which calculates CC, MI, MP and MIMP estimates; 
 Q_METH indicates the method  
*****************************************************************************/ 
 
%INCLUDE ‘BOOTS.SAS’; /* the file can be found in 
http://cuke.hort.ncsu.edu/cucurbit/wehner/software/pathsas/jackboot.txt */ 
 
%MACRO ANALYZE(DATA=BMDPS, OUT= ); 
   %MIMP_ANALYSIS(INDATA = &DATA, VARLIST = &VARLIST, Y = FNBMD_C, G = 
BISMORE, M_MP_MIN = 100); 
 
   PROC SORT DATA = EST OUT = &OUT; 
      BY Q_METH; 
   RUN; 
%MEND ANALYZE; 
PROC PRINTTO LOG=NOLOG; 
RUN; 
 
TITLE 'BOOSTRAP: NORMAL ("STANDARD") CONFIDENCE INTERVAL WITH BIAS 
CORRECTION'; 
TITLE2; 
%BOOT(DATA=BMDPS, ALPHA=.05, SAMPLES=1000, RANDOM=123, ID=Q_METH); 
 
TITLE 'BOOTSTRAP BCA'; 
%BOOTCI(BCA, ID=Q_METH); 
 
PROC PRINTTO; 
RUN; 
 

Carpenter and Bithell (2000) used simulation to show that the BCa bootstrap method generally 
produces reliable results, even if the distribution of the test statistic is far from symmetric. In this 
example, we use BCa bootstrapping to estimate confidence intervals for the data set in Section 
5.2 (see Table 5.2). The naive estimator (a direct unweighted estimator of treatment effect using a 
t-test) appears to overestimate the treatment difference. The CC method had the widest 
confidence interval and the MP method had wider confidence intervals than the MI and MIMP 
methods, whereas the last two methods produced similar results. It should be noted that for this 
example, the 95% confidence intervals produced by the CC and MP methods contained 0 while 
those for the MI and MIMP methods did not.  

Table 5.2  The Mean (95% CI) of the Change in Femoral Neck BMD (g/cm2) During the Fourth Year  
                  of MORE Study for Women Assigned to Placebo (n = 1,643)*. 

Method Untreated (n=1512) Treated (n=131) Treated vs. Untreated 
NAIVE -0.002(-0.004,-0.001) 0.011( 0.006, 0.017) 0.013( 0.007, 0.019) 

CC -0.002(-0.004,-0.001) 0.006(-0.002, 0.020) 0.008( 0.000, 0.022) 
MP -0.002(-0.004,-0.001) 0.007(-0.003, 0.016) 0.009(-0.001, 0.018) 
MI -0.002(-0.003,-0.001) 0.009( 0.002, 0.017) 0.011( 0.004, 0.019) 

MIMP -0.002(-0.003,-0.001) 0.009( 0.002, 0.017) 0.011( 0.004, 0.019) 
*Results are from Qu and Lipkovich (2009). The estimates for MI and MIMP were slightly different from the SAS  
  output presented previously due to the choice of different seeds in PROC MI.  
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55.4  Sensitivity Analyses 
Estimation of treatment effects using propensity scores may be sensitive to the misspecification 
of imputation and propensity score models, as well as to the tuning parameters of the associated 
algorithms. To address this issue, we discuss several strategies for performing sensitivity analysis 
in the context of propensity-based analyses with missing data.  

5.4.1  Varying Analytic Methods  
Examples of alternative analytic methods were illustrated in Section 5.3. Within each method, 
one can also vary parameters. For example, one can vary the minimum pattern size to test how 
sensitive the results are to the selection of the minimum size of the pooled pattern in MP and 
MIMP. We also recommend, as illustrated here, computing propensity-stratified estimates of 
treatment effects in addition to IPW estimates.  

The SAS code here constructs five strata (subgroups, bins) based upon fitted values of propensity 
for treatment and computes the corresponding stratified estimators of treatment effects. This can 
be done in various ways. For example, one can compute treatment effects within each stratum and 
combine them by weighting inversely to the square of estimated standard errors. In general, this 
approach is not recommended because it always down-weights results from the strata with highly 
different observed treatment fractions and up-weighs results from the strata with nearly equal 
observed treatment fractions. Here we follow a stratified regression (SR) approach described in 
D’Agostino (1998) and Lunceford and Davidian (2004) that combines stratification on propensity 
scores and regression and computes the overall estimator of treatment effect as an average of 
regression-adjusted estimators within each strata. Specifically, for stratum s, a regression-based 
estimator of treatment effect is computed as follows: 
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where Qs is the set of indices of subjects with estimated propensity scores falling within stratum 
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regression of the form ),|(),,( XX TYETm fitted to the data within stratum s, with 
predictors T and X, and )(ˆ s  representing the vector of estimated parameters. When a linear 
regression model is used, as in the following example, the estimated treatment effect within 
stratum is simply the estimated regression coefficients for treatment, )(ˆ s
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In this example, shown in Program 5.10, the estimated propensity scores are divided into K=5 
strata and the overall SR estimator of treatment effect is computed as an average of strata-specific 

estimators based on linear regression within each stratum, 
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standard error can be obtained using bootstrapping, as explained in Section 5.3.6. 

This alternative stratified estimator may be more robust compared to the IPW estimator when the 
estimated propensity for the treatment actually received is close to 0 for a few patients, resulting 
in these few subjects having undue impact on the overall estimated treatment difference. Program 
5.10 shows the SAS code to perform the SR method and Output from Program 5.10 shows the 
results. The SR estimate for the treatment effect is 0.0099.  
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Program 5.10  Illustration of the Sensitivity Analysis Using Propensity Score Stratified Regression  
                         Estimator 
/* THIS STEP CAN BE REPLACED WITH ANY METHOD FOR OBTAINING PROPENSITY SCORES */ 
PROC LOGISTIC DATA = ANALDATA DESC NOPRINT; 
    MODEL BISMORE = &VARLIST; 
    OUTPUT OUT=PRED PREDICTED=P; 
RUN; 
 
/* DEFINE THE QUINTILES WITH PROC RANK (GROUP=5) */ 
PROC RANK DATA = PRED OUT=PRED GROUPS=5; 
   VAR P; 
   RANKS PS_STRATA; 
RUN; 
 
PROC SORT DATA=PRED; BY PS_STRATA; RUN; 
 
ODS LISTING CLOSE; 
ODS OUTPUT SOLUTIONF=SF; 
PROC MIXED DATA = PRED (WHERE=(PS_STRATA NE .)); 
   BY PS_STRATA;   
   MODEL FNBMD_C = BISMORE &VARLIST/SOLUTION; 
RUN; 
ODS LISTING; 
 
 
TITLE 'ESTIMATING TREATMENT EFFECT BY ADJUSTING FOR BASELINE COVARIATES WITHIN 
EACH STRATA'; 
PROC MEANS DATA = SF N MEAN; 
   CLASS PS_STRATA; 
   TYPES PS_STRATA (); 
   VAR ESTIMATE; 
   where effect = 'BISMORE'; 
RUN; 
 

Output from Program 5.10 
ESTIMATING TREATMENT EFFECT BY ADJUSTING FOR BASELINE COVARIATES WITHIN EACH STRATA 
 
The MEANS Procedure 
 
Analysis Variable : Estimate 
 
  N 
Obs     N            Mean 
------------------------- 
  5     5       0.0099243 
------------------------- 
 
      Analysis Variable : Estimate 
 
    Rank for      N 
  Variable P    Obs     N            Mean 
----------------------------------------- 
           0      1     1       0.0144995 
 
           1      1     1       0.0102909 
 
           2      1     1       0.0023628 
 
           3      1     1       0.0143711 
 
           4      1     1       0.0080970 
----------------------------------------- 
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5.4.2  Using Different Imputation Strategies 
For methods involving multiple imputation, try several imputation models using different sets of 
predictors for imputation. It has been suggested (Meng, 1994; Schafer, 1997) that it is better to 
include as many variables as possible in one’s imputation model, because omitting an important 
covariate results in an incorrect analysis while keeping an irrelevant predictor may only lower 
efficiency. Also, a recent simulation study comparing performance of different imputation 
strategies for propensity-based estimation (Crowe, Lipkovich, and Wang, 2009) showed that 
including treatment (T) and treatment outcome (Y) in imputation models improves estimation of 
the treatment effect. While it may appear counterintuitive to incorporate future outcomes in the 
imputation model for baseline covariates, it makes the imputation model more compatible with 
the analysis model (ANOVA for Y and T, in our case) and, therefore, helps reduce bias in 
estimating the treatment effect (Meng, 1994). Note that, in our examples of multiple imputation 
in Sections 5.3.3 and 5.3.5, we include both treatment and outcome variables in addition to 
baseline covariates in the VAR statement of PROC MI. 

It is useful to evaluate the impact of missingness by examining the fraction of missing 
information (FMI), which is part of the output from PROC MIANALYZE. While the FMI may 
be substantial when estimating some of the coefficients of the propensity score model, the overall 
impact of missing covariates may be fairly low when estimating treatment effects (which, after 
all, is the ultimate goal of one’s analysis). This is the case because variables that have the largest 
FMI may contribute little to the probability of treatment assignment. In our example, the FMI for 
estimating the treatment difference was only about 2% (see the output in Section 5.3.3); for some 
variables included in the logistic model, it was fairly large, such as for FAMHXBCN (30%) and 
GAILMORE (31%). However, these variables were not significant predictors of treatment 
assignment, given other covariates, and, therefore, their missing values did not contribute much to 
the uncertainty associated with estimating treatment effects. On the other hand, the FMI for the 
most significant predictor of treatment assignment, LTOTBMDR, FNC, and NECKBMDR was 
estimated as <0.1%, 0.1%, and 0.1%, respectively. Program 5.11 shows the SAS code of PROC 
MIANALYZE for logistic regression coefficients. Output from Program 5.11 shows the results. 

Program 5.11  Calculation of the Fraction Missing Information 
/**** ASSESING FRACTION MISSING INFORMATION FOR COEFFICIENTS IN PS  MODEL 
*****/ 
PROC MI DATA = ANALDATA ROUND=.001 NIMPUTE=5 SEED=6731205 OUT=IMPUTED_DATA 
NOPRINT; 
   VAR &VARLIST FNBMD_C BISMORE;  
RUN; 
 
ODS LISTING; 
ODS OUTPUT PARAMETERESTIMATES = _EST 
           COVB=_COV; 
PROC LOGISTIC DATA = IMPUTED_DATA; 
   MODEL BISMORE = &VARLIST/COVB; 
   OUTPUT OUT=PRED PREDICTED=P; 
BY _IMPUTATION_; 
RUN; 
TITLE 'ANALYSIS RESULTS USING THE MULTIPLE IMPUTATION (MI) METHOD'; 
DATA _EST; 
  SET _EST; 
  RENAME VARIABLE=PARAMETER; 
  KEEP _IMPUTATION_ VARIABLE ESTIMATE; 
RUN;  
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PROC MIANALYZE PARMS= _EST COVB=_COV; 
  MODELEFFECTS INTERCEPT &VARLIST; 
  ODS OUTPUT PARAMETERESTIMATES=MI_EST 
             VARIANCEINFO=MI_VAR; 
RUN; 
 
Output from Program 5.11  
       Multiple Imputation Variance Information 
 
                 Relative       Fraction 
                 Increase        Missing       Relative 
Parameter     in Variance    Information     Efficiency 
 
intercept        0.003791       0.003784       0.999244 
AGE              0.041368       0.040481       0.991969 
BMIR             0.003756       0.003749       0.999251 
FAMHXBCN         0.380552       0.301688       0.943096 
GAILMORE         0.395063       0.310298       0.941567 
KHYSYN           0.000864       0.000863       0.999827 
LSC              0.008437       0.008401       0.998323 
LTOTBMDR         0.000264       0.000264       0.999947 
FNC              0.001002       0.001001       0.999800 
NECKBMDR         0.001434       0.001433       0.999713 
NVFX             0.001993       0.001991       0.999602 
PREVHRT          0.003607       0.003601       0.999280 
PREVVERT         0.008648       0.008610       0.998281 
AESCORE          0.007936       0.007904       0.998422 
SMOKE            0.073996       0.071100       0.985979 
SQ               0.010930       0.010870       0.997831 
VFX              0.002259       0.002256       0.999549 
 
 
                  Multiple Imputation Parameter Estimates 
 
Parameter        Estimate      Std Error    95% Confidence Limits        DF 
intercept       -3.910976       1.415616     -6.68554     -1.13641   280408 
AGE              0.032916       0.016281      0.00099      0.06484   2534.8 
BMIR             0.011069       0.027360     -0.04256      0.06469   285733 
FAMHXBCN        -0.131857       0.410049     -0.95444      0.69073   52.643 
GAILMORE        -0.130776       0.168963     -0.47017      0.20862   49.879 
KHYSYN          -0.042621       0.230992     -0.49536      0.41011   5.37E6 
LSC              5.866674       1.922807      2.09796      9.63539    57142 
LTOTBMDR         2.713227       0.893752      0.96150      4.46495   5.73E7 
FNC              9.155874       2.772187      3.72249     14.58926   3.99E6 
NECKBMDR         4.221311       1.430553      1.41748      7.02515   1.95E6 
NVFX            -0.255861       0.294621     -0.83331      0.32159   1.01E6 
PREVHRT         -0.245808       0.210377     -0.65814      0.16652   309625 
PREVVERT        -0.338755       0.372863     -1.06957      0.39206    54417 
AESCORE         -0.015502       0.007301     -0.02981     -0.00119    64523 
SMOKE            0.562806       0.311964     -0.04951      1.17512   842.65 
SQ              -0.134405       0.184790     -0.49660      0.22779    34218 
VFX             -0.600087       0.282802     -1.15437     -0.04581   787654 

5.4.3  Handling Extreme Weights 
One major drawback for the IPW estimator is that it can produce unstable estimators if there are 
extreme large or small weights when the propensity scores are close to 0 or 1. One immediate 
remedy is to set boundaries for the weights. For example, for propensity scores < , we set them 
to be  for propensity scores > 1 , we set propensity scores to be 1 , where  is an 
empirical small number. In our experience, we used  = 0.001 in some simulations, and it yields 
great results. For the data example presented in Section 5.3, there were no very small or large 
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weights, so we did not use this empirical technique. Program 5.12 shows how to set boundaries 
for weights to produce stable estimators. 

Program 5.12  Setting Boundaries for the Weights Derived from Propensity Scores 
%LET DELTA = 0.001; 
DATA PRED; 
    SET PRED; 
    IF . < P < &DELTA. THEN P = 0.001; 
    IF P > 1-&DELTA. THEN P = 1-&DELTA.; 
RUN; 

55.5  Discussion 
We have presented several methods of estimating propensity scores in the presence of missing 
values for some covariates. The CC method simply includes only subjects without any missing 
covariates. The IND method creates dummy variables to indicate the missingness. The MP 
method estimates the propensity scores within each missingness pattern. For some missingness 
patterns with a small number of observations, we proposed a method to pool small missingness 
patterns according to their similarities. The MI method estimates propensity scores with missing 
values imputed by multiple imputations. The MIMP method essentially combines the MI and MP 
methods by first imputing missing values with multiple imputations and then including 
information on the missingness pattern as a covariate in estimating propensity scores.    

These approaches to estimating propensity scores can be combined with any propensity score-
based method to estimate the treatment difference in the presence of treatment selection bias. In 
this chapter, all the analytic methods presented were based on the assumption of two treatment 
groups and used standardized inverse-probability weighted ANOVA with estimated propensities 
from a logistic regression. When more than two treatment arms are present, propensities are 
vectors of probabilities that sum to 1. The IPW approach is thus easily extended, with 
probabilities estimated using a multinomial logistic model (e.g., in SAS using PROC LOGISTIC 
with GLOGIT in its MODEL statement). Sometimes multiple treatment groups can be naturally 
ordered (e.g., when representing increasing levels of exposure/dose), and propensity scores can be 
estimated using ordinal logistic regression as shown in Leon and Hedeker (2005). 

If the proportion of subjects with at least one missing value is low (e.g., < 10%), intuitively all 
approaches handling missing values will produce similar results. Therefore, one can choose the 
most convenient method such as the complete covariate analysis.  
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Abstract 
Observational data can provide powerful answers to research questions when properly addressing 
selection bias due to non-randomization. The medical literature has relied mostly on 
conventional regression and propensity score methods, which rely on observed variables, to 
adjust for selection bias. Such methods might deliver biased estimates due to unmeasured 
confounding. In this chapter, we introduce the instrumental variable method, an econometric 
method, to adjust for selection bias and illustrate its use in evaluating treatment effects on 
medication compliance. If properly applied, this method might be more useful in addressing 
selection bias. 

6.1 Introduction 
A key strength of observational studies is their ability to estimate the effect of treatments and 
interventions in real-world conditions. However, the lack of random group assignment may 
impose a serious threat to the results of observational studies (D’Agostino and Kwan, 1995). 
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Non-randomized groups usually differ on observed and unobserved characteristics, which in turn 
result in differential selection into treatment groups. This non-random sampling selection is one 
form of selection bias that distorts the effect of treatment on outcomes. In other words, it is 
unclear whether the observed treatment effect is due to the treatment itself or to the differential 
selection into treatment groups due to non-randomization.  

This selection bias problem has been shown to have a substantial impact on the treatment effect 
in some studies, while in other studies adjusting for selection bias has resulted in minor changes 
in the treatment effect (Wang, 2005; Foster, 2000; McClellan, 2000; Grimes, 2002; Glesby, 
1996). Therefore, several studies caution that overestimating the selection bias may lead to 
further biased estimates (Hernán, 2006; Stukel, 2007). In this chapter, we provide an overview of 
instrumental variable (IV) methodology and demonstrate an example of applying this approach to 
adjust for selection bias using administrative claims data. The IV approach is an econometric 
method that is less prevalent in the medical literature than methods of matching, stratification, 
conventional regression, and propensity scoring, but it may have advantages over these methods 
if used appropriately. 

66.2 Overview of Instrumental Variable Method to Control for  
 Selection Bias 

Observational studies that lack randomization of subjects into treatment groups must address 
selection bias to properly estimate the effect of treatment while addressing potential confounds. 
Instrumental variable (IV) analysis is a common tool in economics and social sciences to adjust 
for selection bias but less used in health care research. Where conventional selection adjustment 
methods use only observed variables, the IV method, on the other hand, acknowledges that a set 
of observed variables may not capture residual confounding due to unobserved factors (Angrist et 
al., 1996). By implementing the IV method, researchers find variables, called instruments or 
instrumental variables, which are highly correlated with the treatment selection but not directly 
correlated with the outcome variable. When incorporated into the analysis, the IV creates 
additional variance that is unaccounted for from the observables to obtain an unbiased estimate 
of the effect of treatment on the outcome. In 2000, the Health Services Research journal 
published a special supplemental issue devoted to IV analysis (McClellan and Newhouse, 2000). 
This issue contains explanations of the methodology and provides examples of its use in health 
outcomes research. 

Figure 6.1 illustrates how an instrumental variable works. Observable risk factors or confounders 
(X) (such as age, gender, and co-morbid conditions) may affect both the outcome (Y) and 
treatment (T). The presence of this association makes treatment allocation dependent on 
observables and not truly an independent variable. That is, treatment is correlated with the error 
term in the model. Thus, estimating the effect of treatment (T) on outcome (Y) without any 
adjustment creates difficulty in deciphering cause and effect between treatment and outcome. 
Traditional regression methods can account for observables but won’t capture bias from 
unobservables. The goal of IV analyses is to find an instrument or instruments that are correlated 
with treatment selection but are not directly correlated with the outcome variable. These IVs are 
then used in estimating a treatment effect that is independent from the observables (X). The 
objective is to mimic randomization of subjects into treatment groups to be able to attribute 
changes in outcome due to treatment rather than observables. 
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Figure 6.1  Schematic Representation of IV Methodology 

 

While the intuition of IV methodology is appealing, the difficulty in finding a valid instrument 
may be the reason for its relatively limited use. For the IV method to overcome unmeasured 
confounding, several assumptions must be addressed (Angrist, 1996; Landrum, 2001; Greenland, 
2000). Most noteworthy assumptions include the independence assumption, exclusion restriction, 
and non-zero causal effect of the instrument on treatment. The independence assumption states 
the lack of relation between the instrument and the observed risk factors. The exclusion 
restriction requires that the IV have no effect on the outcome other than through treatment or that 
the IV affect the outcome exclusively through treatment. The non-zero causal effect of the 
instrument on treatment assumes that the instrument is associated with treatment or a predictor of 
treatment. 

In order to estimate a treatment effect that is adjusted for selection bias using the instrumental 
variable approach, two equations need to be estimated. The first equation estimates the effect of 
the IV and observables (X) on treatment (T). The second equation estimates the effect of 
observables (X) and treatment (T) on outcome (Y). The maximum likelihood ratio method is 
usually used in conducting this two-stage regression estimation of treatment on outcome. Using 
the Heckman two-stage estimation to calculate the inverse Mills ratio is another way to 
accomplish the IV approach (Heckman, 1978). 

The remaining sections of this chapter discuss an example of using the instrumental variable 
methodology to evaluate the effect of drug choice on medication adherence in a population of 
diabetic patients. Determining differences between treatments is important because increased 
adherence to medications may indicate better diabetes disease management, which consequently 
may slow disease progression. These data are often used when deciding on a preferred treatment 
for larger populations. We conducted our instrumental variable analysis using the Qualitative and 
Limited Dependent Model (QLIM) procedure in SAS/ETS.  

Instrumental 
Variables (IV) 

 
Treatment (T) 

 
Outcome (Y) 

Observable Risk 
Factors (X) 
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66.3 Description of Case Study 
A large pharmacy claims database was used to identify newly started patients using one of two 
oral antidiabetic medications in a 7-month time period (N=19,433). The purpose of the study was 
to compare compliance rates over a 180-day period between the two treatments. Compliance was 
measured as the proportion of days a medication was covered or supplied to the patient after 
treatment initiation (Benner, 2002). Patients new to therapy, or new starts, were chosen for 
review because this sample gives a more accurate estimate of initial compliance with the 
medication. New starts are also less confounded by previous medication use and more exposed to 
selection of treatment through the prescriber. We suspected the presence of selection bias 
because evidence shows the two drug treatments differ in patient tolerance, adverse events, and 
side effects, which possibly influence treatment selection as well as compliance with each drug 
(Lago et al., 2007; Lincoff et al., 2007). Additionally, selection of treatment is influenced by 
recent findings, changes in clinical guidelines, and policy changes (Schneeweiss, 2002). 
Knowing that traditional regression techniques may fall short in estimating the treatment net 
effect on the outcome, we chose the IV approach to minimize bias attributed to unmeasured data. 

The TABULATE procedure code in Program 6.1 was used to create a table displaying patient 
characteristics by drug treatment for the new starts sample. Additionally, PROC TTEST and 
PROC FREQ were used to test for differences and associations between groups. Descriptors 
include demographic variables (age, gender), type of health plan insurance, and medication use 
in a 6-month period prior to treatment initiation (baseline period). Age was the age of the patient 
at date of treatment initiation (index date). Type of insurance was categorized by health 
maintenance organization (HMO) or other. Prior medication use was measured for sulfonylureas, 
antihypertensives, lipid lowering agents as well as asthma and antidepressant medications. Refill 
patterns of medications for chronic diseases, or maintenance medications, were used to estimate 
patient compliance behavior with the following prescribed dosings. 

Program 6.1  Displaying Patient Characteristics by Drug Treatment Using  
                       PROC TABULATE 
proc format; 
  picture pct 0-100=009.0% (mult=1000); 
run; 
 
proc tabulate data=newstarts; 
  class tx; 
  var age age_18to44 age_45to54 age_55to64 age_65plus b_hmo b_medicaid 
      b_medicare b_self pre_sulf _0106 _0109 _0112 _0113 _0149 female  
      maintrefillratio pre_stc_class_cnt_subset pre_drug_cnt_subset; 
  table N='Member Count'*f=comma8. 
      (age='Age')*(mean std='SD')*f=4.1 
      (age_18to44='Age Group 18-44' age_45to54='Age Group 45-54' 
         age_55to64='Age Group 55-64' age_65plus='Age Group >=65' 
         female='Female')*(mean='')*f=pct. 
      (b_hmo='HMO Enrollee')*(mean='')*f=pct. 
      (pre_drug_cnt_subset='# of Drugs Utilized')*(mean std='SD')*f=4.1 
      (maintrefillratio='Maintenance Medication Refill %')*(mean='')*f=pct. 
      (pre_sulf='Sulfonylurea' _0106='Hypertension' _0109='Lipid 
         Irregularity' _0112='Pain Management' _0113='Antidepressant' 
         _0149='Asthma')*(mean='')*f=pct. 
       , tx='Treatment' /box='Unadjusted Demographic and Baseline 
         Characteristics'; 
run; 
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proc ttest data=newstarts; 
  var age pre_drug_cnt_subset maintrefillratio; 
  class tx; 
 
proc freq data=newstarts; 
  tables tx*(female b_hmo pre_sulf _0106 _0109 _0112 _0113 _0149)/chisq; 
run; 

 
Output from Program 6.1 

Unadjusted Demographic and Baseline Characteristics 
Treatment 

Drug A Drug B 

Member Count 611 815 

Age Mean 55.5 56.0 

SD 11.8 12.6 

Age Group 18-44  16.3% 16.3% 

Age Group 45-54  30.9% 28.3% 

Age Group 55-64  32.8% 34.1% 

Age Group >=65  19.8% 21.2% 

Female  44.6% 46.3% 

HMO Enrollee *  65.3% 74.8% 

# of Drugs Utilized Mean 3.1 3.3 

SD 3.1 3.8 

Maintenance Medication Refill % *  36.3% 41.3% 

Sulfonylurea  27.6% 31.5% 

Hypertension  56.6% 57.7% 

Lipid Irregularity  34.5% 38.7% 

Pain Management *  21.1% 26.1% 

Antidepressant  14.5% 13.6% 

Asthma *  7.2% 10.6% 

              * p < .05 
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Output from Program 6.1 describes the two treatment groups. Those observables that differed 
significantly in the two groups of patients include type of insurance (proportion of patients 
enrolled in an HMO), previous refill rate for maintenance medication, asthma medication use, 
and pain medication use. Differences in observables between groups led us to believe differences 
existed in unobservables between the two groups.  

To compare methods to control for selection bias, our analytic plan proceeds as follows. We use 
three methods in estimating the difference in outcome between Drug A and Drug B. First, a 
simple t-test crudely compares the mean compliance rates for drugs A and B using PROC 
TTEST. Second, we use conventional ordinary least squares regression to compare drug 
effectiveness on compliance for Drugs A and B, adjusting for measured covariates. Third, we 
estimate compliance rates for the two treatments, adjusting for selection bias using the IV 
method. 

Our compliance outcome was measured as the proportion of days the medication was supplied 
over the 180-day period; hence, the maximum allowable value was 1. Mean compliance for Drug 
A and Drug B was 0.4774 and 0.5122, respectively. The unadjusted comparison of mean 
compliance values using PROC TTEST (Program 6.2) indicates the difference is approaching 
statistical significance (p = 0.0609) at the 0.05 level of significance. This unadjusted 3% 
difference in compliance between treatments indicates better compliance to prescribed dosings, 
which may translate into better diabetes disease management. Such evidence can influence 
formulary management decisions on the preferred treatment for large populations. Displaying 
distributions of the outcome for the two treatment groups can be done using the CLASS 
statement in PROC UNIVARIATE, as shown in Program 6.2.  

Program 6.2  Computation of t-test Comparison of Mean Compliance Values and  
                       Generation of Histograms 

proc ttest data=newstarts; 
  var pdc; 
  class tx; 
 
proc univariate data=newstarts noprint plot; 
  var pdc; 
  class tx; 
  histogram pdc / ctext=purple cfill=blue 
    kernel (k=normal color=green w=3 l=1) 
    normal (color = red w=3 l= 2) 
    ncols=1 nrows=2; 
  inset n='N' (comma6.0) mean='Mean' (6.2) median='Median' (6.2) 
    mode='Mode'(6.2) 
    normal kernel(type)/ position=NW; 
run; 
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Output from Program 6.2  

 

                                      The TTEST Procedure 
 
                                           Statistics 
 
                              Lower CL          Upper CL  Lower CL           Upper CL 
 Variable  tx              N      Mean    Mean      Mean   Std Dev  Std Dev   Std Dev  Std Err 
 
 pdc       Drug A        611    0.4494  0.4774    0.5055    0.3345   0.3532    0.3742   0.0143 
 pdc       Drug B        815    0.4887  0.5122    0.5356    0.3248   0.3405    0.3579   0.0119 
 pdc       Diff (1-2)           -0.071  -0.035    0.0016    0.3338    0.346    0.3592   0.0185 
 
 
                                             T-Tests 
 
              Variable    Method           Variances      DF    t Value    Pr > |t| 
 
              pdc         Pooled           Equal        1424      -1.88      0.0609 
              pdc         Satterthwaite    Unequal      1288      -1.87      0.0623 
 
 
                                      Equality of Variances 
 
                  Variable    Method      Num DF    Den DF    F Value    Pr > F 
 
                  pdc         Folded F       610       814       1.08    0.3317 
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66.4 Traditional Ordinary Least Squares Regression Method  
 Applied to Case Study  

Using ordinary least squares regression methods to adjust for observed risk factors, we obtained 
adjusted estimates of compliance for the two treatment groups. The GLM procedure can conduct 
an analysis of variance to calculate least squares means while using the Tukey-Kramer (Kramer, 
1956) adjustment for multiple comparisons (Program 6.3). Tests of univariate associations with 
the outcome were used to select the independent variables in this model.  

Program 6.3  Creating Adjusted Outcome Values Using PROC GLM 
proc glm data=newstarts; 
  class tx age_18to44 female b_hmo pre_sulf _0112; 
  model pdc = tx age_18to44 female b_hmo maintrefillratio _0112 
    /solution; 
  lsmeans tx/OM ADJUST=TUKEY PDIFF CL; 
quit; 
 

Output from Program 6.3 
                                   The GLM Procedure 
                                  Least Squares Means 
                   Adjustment for Multiple Comparisons: Tukey-Kramer 
 
                                                   H0:LSMean1= 
                                                     LSMean2 
                         tx          pdc LSMEAN       Pr > |t| 
 
                         Drug A      0.47863394         0.0747 
                         Drug B      0.51124635 
 
 
                  tx          pdc LSMEAN      95% Confidence Limits 
 
                  Drug A        0.478634        0.451623     0.505645 
                  Drug B        0.511246        0.487889     0.534604 
 
 
                           Least Squares Means for Effect tx 
 
                              Difference         Simultaneous 95% 
                                 Between      Confidence Limits for 
                  i    j           Means       LSMean(i)-LSMean(j) 
 
                  1    2       -0.032612       -0.068480     0.003255 

 
Adjusted compliance means for Drug A and Drug B are 0.4786 and 0.5112, respectively. The 
difference between means using the Tukey-Kramer adjustment shows no statistically significant 
difference in mean compliance values. Comparing these adjusted mean values to unadjusted 
mean values (Section 6.3) shows little change when adjusting for these observables. 
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66.5 Instrumental Variable Method Applied to Case Study  
Suspecting that selection bias is not resolved with standard ordinary least squares methods, we 
employed the IV method. Among the few studies that apply the IV approach when comparing the 
treatment effectiveness of drugs, Brookhart and colleagues (2006, 2007) used physician 
prescribing preference as an instrumental variable when assessing drug treatment effectiveness 
on morbidity and mortality outcomes. The authors used these preference-based instruments in 
two separate studies to assess the risk of gastrointestinal toxicity associated with nonsteroidal 
anti-inflammatory drug treatment and the mortality in elderly patients using types of 
antipsychotic medications. Replicating their instruments, we used the last prescription written by 
the prescriber for the drug class (Drug A or Drug B) as the instrument for our study. Brookhart 
and colleagues hypothesized that a physician’s immediate history of prescribing as measured by 
the last written prescription estimates the prescriber’s preference for one treatment or another. 
That choice, according to the hypothesis, therefore, affects the choice of treatment for the 
prescriber’s next patient. We believed that in our study this measure would act as a valid 
instrument because it influences the treatment choice but is uncorrelated with the outcome for the 
next patient. To construct our IV, prescribers of the initial prescription for each of the 1,426 
study patients were identified. Prescription claims for these prescribers for the two drugs were 
extracted in a period preceding this initial prescription to calculate the prescriber’s preference. 
Prescribers were classified as a Drug A prescriber or a Drug B prescriber based on their most 
recent prescription in the drug class. Some prescribers were not identified correctly. Some 
prescribers had no history of prescribing either drug; therefore, patients with these physicians 
were excluded from the analysis. A total of 1,226 prescribers were classified. 

As stated earlier, the validity of an instrumental variable relies on many assumptions. 
Administrative data can’t confirm these assumptions, but they can be used to look into the 
credibility of the assumptions. To test the validity of our method, we first looked at the 
distribution of the IV to show that prescribers’ preference to prescribe these two drugs varied. 
Preference for Drug A or Drug B for the 1,226 identified prescribers was 47% and 53%, 
respectively. To address the non-zero causal effect of IV treatment assumption, we evaluated 
associations between the instrument and treatment selection by using PROC FREQ to estimate 
how well our instrument predicted treatment or the extent of prescriber preference in predicting 
the treatment choice of the prescriber’s next patient (Program 6.4). Results showed a strong, 
positive relationship between our IV and treatment selection. Prescribers with a preference for 
Drug A were more than three times more likely to prescribe Drug A for the identified patient in 
our sample (OR = 3.44, CI = 2.766 – 4.293).  

To address the independence assumption, we checked relationships between our IV and 
observables factors. Potential violations of the independent assumption could include differing 
patient profiles by prescriber group (that is, Drug A prescribers treating patients who are much 
different than patients seen by Drug B prescribers). A stratification of patient demographic and 
baseline characteristics by prescriber preference using the TABULATE, TTEST, and FREQ 
procedures can compare observables by the instrument. More complicated models can address 
time variant clustering relationships (Brookhart, 2007). Smaller differences between groups 
indicate treatment choice by the prescriber for the previous patient is unrelated to the observables 
of the current patient. Those differences that persist suggest possible violations of this 
assumption; however, those covariates can be addressed later in the two-stage least squares 
regression. 
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prescriber that may affect outcome (Brookhart, 2006). Prescriber preference might affect 
compliance through other services provided by the prescriber or because of differing skill level 
among providers. However, review of the literature shows patients’ long-term adherence to 
medications is mostly due to the self-efficacy of the patient or the patient’s beliefs and behavior 
(Bodenheimer et al., 2002; Jerant et al., 2005) rather than instruction by the prescriber (Haynes, 
2002). The degree of physician skill on our compliance outcome is difficult to measure so we use 
this research to defend the possibility of violating the exclusion restriction. 

Program 6.4  Code Used in Validating IV Assumptions 
proc freq data=newstarts; 
  tables iv*tx/chisq measures; 
run; 
 
proc format; 
  picture pct 0-100=009.0% (mult=1000); 
run; 
 
proc tabulate data=newstarts; 
  class tx iv; 
  var age age_18to44 age_45to54 age_55to64 age_65plus b_hmo b_medicaid 
      b_medicare b_self pre_sulf _0106 _0109 _0112 _0113 _0149 female 
      maintrefillratio pre_stc_class_cnt_subset pre_drug_cnt_subset; 
  table N='Member Count'*f=comma8. 
      (age='Age')*(mean std='SD')*f=4.1 
      (age_18to44='Age Group 18-44' age_45to54='Age Group 45-54' 
        age_55to64='Age Group 55-64' age_65plus='Age Group >=65' 
        female='Female')*(mean='')*f=pct. 
      (b_hmo='HMO Enrollee')*(mean='')*f=pct. 
      (pre_drug_cnt_subset='# of Drugs Utilized')*(mean std='SD')*f=4.1 
      (maintrefillratio='Maintenance Medication Refill 
        %')*(mean='')*f=pct. 
      (pre_sulf='Sulfonylurea' _0106='Hypertension' _0109='Lipid 
        Irregularity' _0112='Pain Management' _0113='Antidepressant' 
        _0149='Asthma')*(mean='')*f=pct. 
      , iv='IV (Prescriber Preference)' /box='Unadjusted Demographic and 
        Baseline Characteristics'; 
run; 
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Output from Program 6.4 

 Table of iv by tx 

iv tx 

Total 

Frequency 
Percent 
Row Pct 
Col Pct Drug A Drug B 

Drug A 390 
27.35 
58.56 
63.83 

276 
19.35 
41.44 
33.87 

666 
46.70 

 
 

Drug B 221 
15.50 
29.08 
36.17 

539 
37.80 
70.92 
66.13 

760 
53.30 

 
 

Total 611 
42.85 

815 
57.15 

1426 
100.00 

 
Statistic DF Value Prob 

Chi-Square 1 125.9656 <.0001 

Likelihood Ratio Chi-Square 1 127.5668 <.0001 

Continuity Adj. Chi-Square 1 124.7647 <.0001 

Mantel-Haenszel Chi-Square 1 125.8773 <.0001 

Phi Coefficient  0.2972  

Contingency Coefficient  0.2849  

Cramer's V  0.2972  

 
Estimates of the Relative Risk (Row1/Row2) 

Type of Study Value 95% Confidence Limits 

Case-Control (Odds Ratio) 3.4463 2.7665 4.2931 

Cohort (Col1 Risk) 2.0138 1.7717 2.2890 

Cohort (Col2 Risk) 0.5843 0.5281 0.6465 
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Unadjusted Demographic and Baseline 

Characteristics 
IV (Prescriber Preference) 

Drug A Drug B 

Member Count 666 760 

Age* Mean 54.7 56.7 

SD 11.7 12.6 

Age Group 18-44  18.3% 14.6% 

Age Group 45-54  28.5% 30.2% 

Age Group 55-64  35.8% 31.5% 

Age Group >=65  17.2% 23.5% 

Female  45.1% 46.0% 

HMO Enrollee* 66.0% 74.8% 

# of Drugs Utilized Mean 2.8 3.5 

SD 3.0 3.9 

Maintenance Medication Refill %  35.1% 42.8% 

Sulfonylurea*  26.7% 32.6% 

Hypertension*  53.0% 61.0% 

Lipid Irregularity*  33.0% 40.3% 

Pain Management  22.0% 25.6% 

Antidepressant  13.5% 14.4% 

Asthma  8.5% 9.7% 

                    * p < .05. 

This output reinforces our choice of instrument for estimating treatment effectiveness in the 
presence of unmeasured confounding. Next, we applied the two-stage IV method to our study 
example. First, we used our instrument variable and other observables to predict the treatment 
(see Figure 6.2). 

Figure 6.2  Schematic Representation of First Stage of IV Analysis  

 

IV=Prescriber 
Preference 

 
Treatment 

Observed 
Risk Factors 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 6  Instrumental Variable Method for Addressing Selection Bias   143

In the second stage of the process, an outcome equation approximates the compliance outcome 
by using the predicted treatment (from the first model) and other observables (see Figure 6.3). 
This two-stage approach has the advantage of incorporating the predicted treatment into the 
outcome model because it represents the portion of treatment selection related to prescriber 
preference.  

Figure 6.3 Schematic Representation of Second Stage of IV Analysis

 

66.6 Using PROC QLIM to Conduct IV Analysis 
The two-stage IV process described here can be done in one step using the Qualitative and 
Limited Dependent Model (QLIM) procedure in SAS/ETS. We chose the QLIM procedure 
because of its capability to analyze models that involve simultaneous relationships. This fits our 
example because we are simultaneously estimating treatment selection and compliance. The 
QLIM procedure let us submit two model statements in one procedure, allowing us to 
simultaneously estimate an unbiased effect of treatment on the outcome. 

Proper modeling in PROC QLIM requires a subject-level data set (for example, one observation 
per patient). A quick look at the data set using PROC PRINT shows noteworthy variables of the 
data set (Program 6.5). 

Program 6.5  Creating IV-Adjusted Outcome Value Using PROC QLIM  
proc print data=newstarts (obs=10); 
  var tx druga iv pdc age female b_hmo copay_idxdrug 
      pre_drug_cnt_subset 
      pre_sulf _0106 _0109 _0112 _0113 _0149 maintrefillratio; 
run; 
 
proc qlim data = newstarts ; 
  class iv; 
  model druga = iv age female copay_idxdrug pre_drug_cnt_subset 
       maintrefillratio pre_sulf _0106 _0109 _0112 _0113 _0149 /discrete; 
  model pdc = age female copay_idxdrug pre_drug_cnt_subset 
       maintrefillratio pre_sulf _0106 _0109 _0112 _0113 _0149  
       /select(druga=0); 
  output out=drugb predicted; 
run; 

Predicted 
Treatment 

 
Compliance 

Observable 
Risk Factors 
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where  
druga = treatment selection indicator 
tx = treatment classification variable 
iv = instrumental variable (prescriber preference) 
pdc = outcome (compliance as proportion of days of medication covered) 
age = age of patient at date of treatment initiation (index date) 
female = indicator variable 
b_hmo = HMO enrollee 
copay_idxdrug = patient co-payment for initial prescription 

 
Remaining variables describe utilization in the pre-treatment baseline period:  

pre_drug_cnt = number of distinct medications utilized 
pre_sulf = use of sulfonylurea 
_0106 = use of antihypertensive  
_0109 = use of asthma medication 
_0112 = use of pain medication  
_0113 = use of lipotropic  
_0149 = use of antidepressant 
maintrefillratio = refill percentage for maintenance medications 

 
The first MODEL statement is a selection equation that uses the probit model (indicated by using 
the DISCRETE option) and creates the predicted probability of each subject receiving Drug B 
based on our IV and other observables. The second MODEL statement is the outcome equation, 
which uses linear regression to model the compliance outcome while controlling for covariates. 
This assesses the effect of the treatment while controlling for the probability produced from the 
first equation plus other believed confounders. Some believe that including independent 
variables other than the treatment group in this step is redundant because they are included in the 
first MODEL statement. We believe that adding variables to the model provides additional 
information on predictors of the outcome. The selection model can include covariates believed to 
be predictive of treatment where the outcome model can include covariates prognostic of 
outcome. The OUTPUT statement creates a data set named DrugB. With the addition of the 
PREDICTED option, the newly created data set includes all variables from the input data set plus 
two new variables named P_druga and P_pdc, which contain predicted values of the treatment 
and compliance values, respectively. The predicted compliance outcome values are generated for 
all subjects in the sample, assuming that all patients have been prescribed Drug B. 
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Output from Program 6.5 

 
 
 

Parameter Estimates 

Parameter  Estimate 
Standard 

Error t Value 
Approx 
Pr > |t| 

pdc.Intercept  0.468902 0.064961 7.22 <.0001 

pdc.age  0.001444 0.000929 1.55 0.1201 

pdc.female  -0.068086 0.022960 -2.97 0.0030 

pdc.copay_idxdrug  -0.001525 0.000305 -4.99 <.0001 

pdc.pre_drug_cnt_subset  -0.001683 0.004240 -0.40 0.6915 

pdc.maintrefillratio  0.168015 0.036034 4.66 <.0001 

pdc.pre_sulf  -0.042180 0.025716 -1.64 0.1010 

pdc._0106  -0.001649 0.025733 -0.06 0.9489 

pdc._0109  0.047814 0.025504 1.87 0.0608 

pdc._0112  -0.045605 0.028238 -1.61 0.1063 

pdc._0113  -0.008500 0.034562 -0.25 0.8057 

pdc._0149  -0.006435 0.038786 -0.17 0.8682 

_Sigma.pdc  0.297051 0.009963 29.82 <.0001 

druga.Intercept  -0.420098 0.186430 -2.25 0.0242 

druga.iv Drug A 0.740991 0.074652 9.93 <.0001 

druga.iv Drug B 0 . . . 

druga.age  -0.000008433 0.003272 -0.00 0.9979 

druga.female  -0.112074 0.076919 -1.46 0.1451 

druga.copay_idxdrug  0.000094205 0.001086 0.09 0.9308 

druga.pre_drug_cnt_subset  0.004108 0.014939 0.28 0.7833 

druga.maintrefillratio  -0.206794 0.118055 -1.75 0.0798 

druga.pre_sulf  -0.100354 0.087456 -1.15 0.2512 

druga._0106  0.108600 0.088306 1.23 0.2188 

druga._0109  -0.078342 0.087028 -0.90 0.3680 

druga._0112  -0.211746 0.098552 -2.15 0.0317 

      

Obs tx druga iv pdc age female b_hmo 
copay_id

xdrug 

pre_drug
_cnt_ 

subset 
pre_
sulf _0106 _0109 _0112 _0113 _0149 

Maintrefill 
ratio 

1 Drug A 1 Drug B 0.00556 55 0 0 23.000 11 1 1 1 0 1 0 0.45946 

2 Drug B 0 Drug B 0.16667 76 1 0 20.000 0 0 0 0 0 0 0 0.00000 

3 Drug A 1 Drug A 0.07222 44 1 0 0.000 10 1 0 0 1 0 0 0.00000 

4 Drug B 0 Drug B 0.91111 74 1 0 15.333 4 1 1 0 0 0 0 0.50000 

5 Drug B 0 Drug B 0.16667 77 0 0 7.000 1 1 1 0 0 0 0 1.00000 

6 Drug A 1 Drug A 0.61667 74 0 0 109.362 5 1 0 0 0 0 0 0.00000 

7 Drug B 0 Drug A 0.16667 59 1 0 0.000 5 1 1 1 1 0 0 0.00000 

8 Drug A 1 Drug B 0.28333 51 1 0 0.000 4 0 1 1 1 0 1 0.22222 

9 Drug B 0 Drug A 0.27778 43 1 0 0.000 17 1 1 1 1 1 1 0.29167 

10 Drug A 1 Drug A 0.16667 69 0 0 0.000 2 0 0 0 0 0 0 1.00000 
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Parameter Estimates 

Parameter  Estimate 
Standard 

Error t Value 
Approx 
Pr > |t| 

druga._0113  0.105211 0.117267 0.90 0.3696 

druga._0149  -0.179984 0.139948 -1.29 0.1984 

_Rho  -0.235728 0.162230 -1.45 0.1462 

 
Output from the QLIM procedure in Program 6.5 includes a table of parameter estimates for both 
MODEL statements (first for the outcome equation and second for the treatment selection 
equation), indicating direction and magnitude of the effect of each independent variable. Of most 
importance are the treatment selection/IV parameter (drugb.iv in our example), which indicates 
the effect of the IV on treatment selection, and the _rho parameter estimate, which indicates 
correlation between the error terms in the two equations. A significant rho parameter estimate 
indicates the presence of treatment selection bias in the outcome equation. The drugb parameter 
estimate indicates a strong effect of the IV on treatment selection (p <. 0001), and the _rho 
parameter estimate indicates the effect of treatment selection bias on the outcome. In this case, 
the estimate is -0.235728 (p=0.1462). 

A second submission of this code was done to estimate compliance values if all patients received 
Drug A. By changing the SELECT option in the first MODEL statement to druga=1 we 
generated predicted compliance values if all patients used Drug A. Comparing these predicted 
compliance values to the first scenario—wherein all patients were assumed to have used Drug 
B—gave us comparative effectiveness on compliance. Mean estimated compliance if all 
members were on Drug A was 0.5353. Mean estimated compliance if all patients were on Drug B 
was 0.5276. After running code for both scenarios, the two newly generated data sets were sorted 
and merged by subject. Using this final patient-level data set, containing predicted compliance 
values for each scenario, we can compare means using a paired t-test via PROC TTEST to test 
for an estimated treatment difference. 

66.7 Comparison to Traditional Regression Adjustment
 Method 

Table 6.1 compares results from the IV approach to an unadjusted result and, more notably, to a 
traditional regression adjustment method (adjusted OLS model) that adjusts for observables. The 
mean unadjusted compliance for Drug A and Drug B was 47.7% and 51.2%, respectively. 
Calculating adjusted compliance values using PROC GLM show the mean values change 
slightly, although the model controls for the various factors. Calculated values from the QLIM 
procedure show the effect of selection bias. Mean compliance values increase to 0.5390 and 
0.55327 for Drug A and Drug B, respectively. Although our example shows minimal change in 
compliance when using the IV approach, many studies show considerable differences between 
methods (Brookhart, 2006; Landrum, 2001). 
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Table 6.1  Mean Compliance by Treatment: IV Model vs. Adjusted Model 
 

Model Treatment 
Compliance 

Outcome 95% Confidence Limits 
Unadjusted Model 

   
 Drug A 0.477 0.449 0.504 
 Drug B 0.512 0.488 0.535 
 Estimated 

Treatment 
Difference 

-0.034 -0.071 0.001 

Regression Adjusted 
Model    
 Drug A 0.478 0.451 0.505 
 Drug B 0.511 0.487 0.534 
 Estimated 

Treatment 
Difference 

-0.032 -0.068 0.003 

IV Adjusted Model    
 Drug A  0.535 0.530 0.540 
 Drug B 0.527 0.522 0.533 
 Estimated 

Treatment 
Difference 

0.007  0.003  0.011 

 

66.8 Discussion 
Where traditional regression adjustment techniques use observable measures to control for 
confounding, IV methods rely on instrumental variables to account for measured as well as 
unmeasured factors. This added element of the IV approach is valuable when compared with 
conventional methods to adjust for risk factors such as propensity scoring. The rather large 
assumption with propensity scoring is that all factors that affect group assignment and outcome 
are used in modeling. The abundance of unmeasured factors should not be overlooked by 
researchers. Among patient attitudes and other influencing factors, selection of treatment or 
group assignment is also prompted by changing guidelines and policies (Schneeweiss, 2002). 
Implementation of IV methods can be especially helpful when analyzing data sets not generated 
for the purpose of the research question. That is, studies relying on existing databases contain 
limited information. Those studies that can prospectively gather data on hypothesized 
confounders may depend less on unobservables. 

Challenges to IV methods include the difficulty of identifying a proper instrument and of 
validating the instrument when found. Exercise caution when using an instrument because it 
could do more harm than good (Murray, 2006). Validation of instruments by subject matter 
experts is helpful to counter arguments of invalid instruments. The relationship between IV and 
treatment is based on hypothesis. It is empirically hard to test. Murray (2006) points to using a 
conditional likelihood ratio test when an instrument is weakly correlated with treatment. Another 
trade-off when using the two-stage least squares estimator is the presence of larger standard 
errors as compared with ordinary least squares. 
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In the demonstrated example, available data allowed us to address some but not all assumptions 
stated by Angrist (1996) and Landrum (2001). The stable unit treatment value assumption states 
that there is no relationship between the treatment statuses of other patients. We assumed that the 
prescriber’s preference affects the treatment of the next patient. It is unlikely that one patient’s 
treatment influences another patient’s choice of treatment. It was also challenging to address the 
monotonicity of our instrument. It holds naturally that if a patient received Drug A from a Drug 
B prescriber, the patient would have also received Drug A from a Drug A prescriber. The 
difficulty in addressing the many assumptions for IV validity provides evidence of the difficulty 
in finding a strong instrument. In many examples, consistency of results using a combination of 
methods may suggest limited selection bias and/or not capturing the bias with observed and 
unknown data elements. 

Limitations to study design that are present for both methods include the possibility that actual 
compliance may differ from observed compliance. Also, there may well be additional predictors 
of treatment selection and adherence that are not captured, including patient attitudes, 
socioeconomic status, education level, and number of other medications used. 

One can conduct the IV method with SAS procedures other than SAS/ETS using the same two-
step process described in our example. The LOGISTIC and GENMOD procedures can both 
estimate predicted probabilities for a response value. Using PROC LOGISTIC for the first 
treatment selection model would create the predicted treatment based on the IV. With these 
predicted treatment values, we could conduct the second step, the outcome model, using PROC 
GLM to assess treatment on the outcome while controlling for the predicted treatment values 
plus other observables that may affect the outcome. In other case studies, PROC REG or PROC 
LOGISTIC can be used depending on the nature of the outcome. We are not, however, aware of 
developed and validated SAS code that could be readily used. 

66.9 Conclusion 
Although observational studies can yield unique findings on treatment effectiveness on outcomes 
in routine care settings, the non-randomized nature of observational studies calls for addressing 
potential selection bias. Using conventional regression techniques that account for observables 
may resolve some bias, but it may also be biased when covariates are correlated with the error 
term in the model. Accounting for unobservables is necessary to maximize bias control; however, 
no method can totally eliminate selection bias when you are using observational data. 

In this study, we demonstrate that controlling for observables alone shows little adjustment from 
crude, unadjusted mean values in compliance between two drug treatments. When using an IV 
approach that contains additional variance that is unaccounted for from the observables, we 
created a less biased estimate of the treatment effect on our compliance outcome. The result was 
a change in mean compliance values, with the conclusion that there was no difference in 
compliance between treatments. 

We showed only one approach to conducting IV methods. Variations to IV approach depend on 
the type of treatment and the type of outcome, such as multiple treatments and nonlinear outcome 
measures. 
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Although IV methodology is less known and less widely used in observational and clinical 
studies, it can be used in conjunction with traditional risk adjustment techniques, such as 
propensity scoring and multivariable regression, to reduce selection bias. If applied correctly, IV 
can adjust for unobservables and add value to comparative effectiveness studies. 
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Abstract 
The local control approach to adjustment for treatment selection bias and confounding in 
observational studies is illustrated here using JMP because local control is best implemented and 
applied in highly visual ways. The local control approach is also unique because it hierarchically 
clusters patients in baseline covariate x-space; applies simple nested analysis of variance 
(ANOVA) models (treatment within cluster); and ends up being highly flexible, non-parametric, 
and robust. Although the local control approach is classical rather than Bayesian, its primary 
output is a full distribution of local treatment differences (LTDs) that contains all potential 
information relevant to patient differential responses to treatment. All concepts are illustrated 
using freely distributable data on 10,000 patients that were generated to be like those from a 
published cardiovascular registry containing 996 patients. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



152   Analysis of Observational Health Care Data Using SAS 
 

 

77.1 Introduction 
The key roles played by blocking and randomization in the statistical design of experiments are 
universally recognized. This chapter emphasizes that relatively simple variations on these same 
concepts can lead to powerful and robust analyzes of observational studies. Because adequate 
blocking and randomization usually is not (or cannot be) incorporated into the data collection 
phase of observational research, the two variations (local control and resampling) that we discuss 
here are both applied post hoc. 

Since the work of Cochran (1965, 1968), many methods for analysis of observational data have 
stressed formation of subclasses, subgroups, or clusters of patients leading to treatment 
comparisons that summarize locally defined outcome averages and/or differences. Traditionally, 
local control is just another name for blocking. Here, the local control approach is characterized 
as being a dynamic process in which the number and size of patient clusters (subgroups) is not 
pre-specified. Rather, built-in sensitivity analyses are used first to identify and then to focus on 
only the most relevant patient comparisons. This strategy ends up reducing treatment selection 
bias and revealing the full distribution of local treatment differences (LTDs) (that is, it identifies 
any patterns of patient differential response).  

At least since the work of Fisher (1925), randomization has consistently been placed at the top of 
the hierarchy of research principles. See Concato and colleagues (2000). After all, randomization 
of patients to treatment is essential in all situations where nothing is known about the patients 
except their treatment choice(s) and observed outcomes. Without randomization in this situation, 
there would be no reason to believe (or at least hope) that the treated and untreated groups were 
comparable before treatment and definitely no way to identify meaningful patient subgroups and 
demonstrate that they are comparable in any way! 

7.1.1  Fundamental Problems with Randomization in Human Studies 
The main, practical problem with randomization of patients to treatment is that, due to ethical or 
pragmatic considerations, humans with acute conditions can be randomized at most one, single 
time. In other words, crossover designs are not possible. In theory, a single randomization can 
make a real difference. However, to get anywhere, one must then also be willing to make an 
almost endless litany of unverifiable assumptions about causal effects and counterfactual 
outcomes. See Holland (1986) on Rubin’s causal model. 

By the way, rather than using old-fashioned, complete randomization (where balance is merely 
expected on long-range averages), it is now widely recognized that the only way to come 
anywhere close to assuring relatively good balance in a study featuring only one treatment 
randomization per patient is to use separate, dynamic randomizations within each block of 
patients who are most comparable at baseline (McEntegart, 2003). Still, patients do not like to be 
randomized and blinded to the treatment they receive. As a result, the treatment arms of most 
studies typically tend, due to differential patient dropout over time, toward becoming unbalanced 
on baseline x-characteristics of the patients who end up being evaluable. 

For me, the bottom line is simply that randomization unquestionably yields powerful and robust 
inferences only when each experimental subject can be exposed (like animals in cages, plots in a 
field, or Fisher’s lady tasting tea) to a sequence of blinded challenges, ideally of variable length. 
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Example:  Consider the following experiment on a collection (finite, nonrandom sample) of 
ancient coins of different designs and grades (amounts of circulation). Suppose each coin is to be 
treated by either being flipped in the usual way or else spun on edge on a hard flat surface, 
resulting in an observed outcome designated as either heads or tails. See Gelman and Nolan 
(2002) and Diaconis and colleagues (2007), especially Figure 7. How much information could 
randomization to treatment (flip vs. spin) add to this experiment under the stifling restriction that 
each coin is both treated and tested only one time? Due to such severe limitations on 
randomization in this experiment, nothing particularly interesting can be inferred about either the 
fairness of the coins or the effects of the treatments! 

Situations where very little is known about the patients actually entering a study are rare. In fact, 
researchers frequently have such a good idea of which patient baseline characteristics are 
predictive of outcomes (and/or treatment choices) that they would not consider performing a 
serious (prospective or retrospective) study without first confirming that these key patient 
characteristics will be observed in each patient. 

Here, we propose using a form of resampling (without replacement) in Section 7.3.3 to verify that 
an observed LTD distribution is salient. To avoid any possibility of bad luck in a single 
randomization of all patients to an exhaustive set of distinct subgroups, we certainly recommend 
accumulating results across multiple, independent resamples (default: 25 replications).  

7.1.2  Fundamental Local Control Concepts 
When performing a local control (LC) analysis, the more one knows about the most relevant pre-
treatment characteristics of the patients, the better. This information is used to form blocks 
retrospectively. Blocks are potentially meaningful patient subgroups, which one might call 
empirically defined strata or subclasses (Cochran, 1965, 1968) or clusters. Because human 
subjects are notoriously heterogeneous in terms of their (baseline) x-characteristics, there really is 
little reason for optimism about reproducibility of findings when one cannot at least make 
treatment comparisons within subgroups of patients who really are very much alike. 

Most importantly, a key feature of the LC approach is that one can indeed verify that the local 
subgroups one has formed reveal statistically meaningful differences, which are called salient 
treatment differences here. The basic LC terminology needed to establish the concept of salient 
differences is as follows. 

Within any subgroup that contains both treated and untreated patients, the local treatment 
difference (LTD) is defined as the mean outcome for treated patient(s) minus the mean outcome 
for untreated patient(s). Because LTDs are calculated from mean outcomes, the local numbers of 
patients treated or untreated do not need to be balanced (that is, occur in a 1:1 ratio) for the LTD 
to be an unbiased estimate of the unknown, true local difference.  

Any subgroup containing only treated patient(s) or only untreated patient(s) is said to be 
uninformative. The LTD for this subgroup is not estimable and is represented in JMP and SAS by 
the missing value symbol, a period. 

When all N available patients are divided into K mutually exclusive and exhaustive subgroups (or 
clusters) of patient(s), each containing one or more patients (K≤N), the corresponding LTD 
distribution consists of K values for the LTDs within the distinct subgroups, some of which may 
be missing values. The sufficient statistic for a given LTD distribution is assumed to be its 
empirical cumulative distribution function (CDF), where the height of the step at each observed, 
non-missing LDT value is (total number of patients in that subgroup) / (total number of patients 
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within all informative subgroups). Because these steps can be of different heights, the CDF is 
described here as patient weighted. Because observed LTDs are heteroskedastic (due to variation 
in within-subgroup treatment fractions and to local heteroskedasticity in outcomes as well as to 
variation in subgroup sizes), several alternative weightings for CDFs could also be considered. 

A useful rule of thumb is that K ≤ (N/11), so that the overall average number of patients per 
subgroup is at least 11. While smaller subgroups tend to be more local, they also tend to become 
uninformative about their LTD, thereby wastefully discarding information and increasing overall 
uncertainty. 

In the LC approach, the CDF for an observed LTD distribution resulting from K subgroups of 
well-matched patients is compared with the CDF for the corresponding artificial LTD 
distribution, defined as follows. An artificial LTD distribution results from randomly assigning 
the N observed patient outcomes to K subgroups of the same size and with the same fractions of 
treated and untreated patients as the K observed subgroups. The precision of the overall, artificial 
LTD CDF is typically deliberately increased by merging several complete replications (typically 
25) of independent, random assignments of N patients to K clusters. In particular, note that patient 
x-characteristics are deliberately ignored when forming artificial LTD distributions; specifically, 
only the observed patient-level y-outcomes and their observed t-treatment assignments are used to 
estimate an LTD distribution. The artificial replicates can then be merged (averaged) or 
maximum and minimum values can be calculated at individual y-values. 

When the CDF for an observed LTD distribution is truly different (in a possibly subtle way) from 
its corresponding artificial CDF, the observed LTD distribution is said to be salient. After all, like 
the overall comparison of all treated patients with all untreated patients in the full data set, 
treatment comparisons based upon randomly defined subgroups are biased whenever differential 
treatment selection or other confounding (x-characteristic imbalance) information is present. In 
sharp contrast, the observed LTDs formed within subgroups of truly comparable patients are 
unbiased. 

When the empirical distributions of biased and unbiased estimates are not distinguishable from 
each other, the unbiased estimates are certainly not clearly superior to the biased estimates! Once 
the CDFs for the observed and artificial LTD distributions are seen to be truly different, the 
logical explanation is that the observed LTD distribution has been (at least partially) adjusted for 
treatment selection bias and confounding. 

Similarly, the mean LTD value across the subgroups that constitute a salient LTD distribution is 
the corresponding adjusted main effect of treatment. Finally, the empirical CDF for a salient LTD 
distribution is assumed here to constitute an adjusted sufficient statistic for addressing questions 
about patient differential response to treatment as function(s) of their x-characteristics.  

7.1.3  Statistical Methods Most Useful in Local Control 
The LC concepts discussed and illustrated in this chapter rely heavily on cluster analysis 
methodology (see, for example, Kaufman and Rousseeuw [1990]) applied to the observed 
baseline x-characteristics of patients. Clustering is a form of unsupervised learning (Barlow, 
1989); no information from the ultimate outcome variables (y) or treatment assignment indicators 
(t) is used to guide (supervise) formation of patient clusters. While the bad news is that patient 
clustering is an extremely difficult (NP∗ hard) computational task, the good news is that several  

                                                 
∗ Non-deterministic polynomial-time. 
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versatile and relatively fast (approximate) algorithms have been developed recently. For example, 
see Fraley and Raftery (2002) or Wegman and Luo (2002). 

In the early phases of an LC analysis, the only statistical modeling and estimation tools needed 
are those of a simple nested ANOVA model with effects for clusters, for treatment within cluster, 
and for error in Table 7.1.  

Table 7.1  Nested ANOVA Table with Effects for Treatment within Cluster 

Source Degrees of Freedom Interpretation 
Clusters 
(Subgroups) 

K = Number 
of Clusters 

Cluster Means are Local Average Treatment 
Effects (LATEs) when Xs are Instrumental 
Variables (IVs)  

Treatment 
within Cluster 
 

I = Number of 
Informative Clusters  K 

Local Treatment Differences (LTDs) are of 
interest when X Variables 
either are or are not IVs. 

Error Number of Patients  K 
 I 

Outcome Uncertainty 
and/or Model Lack of Fit 

 

In Sections 7.3.2 and 7.3.3, we will see that the LC focuses on new ways to analyze, visualize, 
and interpret nested treatment effects and their uncertainty. 

While the LC approach to adjustment for selection bias and confounding clearly makes very good 
sense intuitively, it may be comforting to some readers to note that the basic strategy and tactics 
of LC are also fully compatible with the propensity scoring (PS) principles of Rosenbaum and 
Rubin (1983, 1984) as well as with the clustering-based instrumental variable (IV) approach of 
McClellan, McNeil, and Newhouse (1994). The appendix to this chapter discusses the common 
foundational aspects shared by both the PS and LC approaches. 

7.1.4  Contents of the Remaining Sections of Chapter 7   
Section 7.2 introduces the LSIM10K numerical example that will be used to illustrate LC 
analyses. Section 7.3 outlines the four basic phases of a local control analysis and then illustrates 
that LC can lead to deeper and more detailed insights than the traditional approaches described in 
Section 7.2. Finally, Section 7.4 provides some conclusions about LC as well as a brief, general 
discussion of the advantages and disadvantages of LC methodology relative to 

 covariate adjustment using global multivariable models 
 inverse probability weighting 
 propensity score matching or subgrouping 
 instrumental variable approaches 
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77.2 Some Traditional Analyses of Hypothetical Patient  
 Registry Data  

7.2.1  Introduction to the LSIM10K Data Set  
We have tried to gain access to any of a number of relatively large and rich data sets that have 
recently been described and analyzed in high profile, published observational studies, typically 
using some form of covariate adjustment for treatment selection bias as well as confounding 
among predictors of outcome. Unfortunately, the owners of these data sets often refuse to share 
them publicly. 

We ultimately decided to simulate a data set with a relatively large number of patients (10,325), 
yielding data that can be distributed on the CD that accompanies this publication. This simulated 
patient registry-like data will also be used to illustrate a wide assortment of alternative 
methodologies, like the traditional, global analyses outlined in Sections 7.2.2 through 7.2.4. 

To make the simulated data at least somewhat realistic, the Linder Center data described and 
analyzed in Kereiakes and colleagues (2000) served as our simulation starting point. This study 
collected 6-month follow-up data on 996 patients who underwent an initial percutaneous coronary 
intervention (PCI or angioplasty) in 1997 and were treated with usual care alone or usual care 
plus a relatively expensive blood thinner (IIB/IIIA cascade blocker). We decided to simulate the 
same two-outcome y-variables (measures of treatment effectiveness and cost) and use the same 
basic variable correlations and patient clustering patterns observed among seven patient baseline 
x-characteristics (listed here) in the original data set. These patient characteristics apparently help 
quantify differences in disease severity and/or patient frailty between treatment groups. In any 
case, they proved to be predictive of outcome and/or treatment selection. 

The LSIM10K.SAS7BDAT data set contains the values of 10 simulated variables for 10,325 
hypothetical patients. To simplify analyses, the data contain no missing values. The 10 variables 
are defined as follows: 

mort6mo 
This binary, numeric variable characterizes 6-month mortality.  It contains either 0, to 
indicate that the patient survived for 6 months, or 1, to indicate that the patient did not survive 
for 6 months. 

cardcost 
This variable contains the cumulative, cardiac-related charges, expressed in 1998 dollars, 
incurred within 6 months of the patient’s initial PCI.  Reported costs are truncated by death 
for patients with mort6mo=1. 

trtm 
This binary, numeric variable identifies treatment selection.  It contains either 0, to indicate 
usual care alone, or 1, to indicate usual care augmented with a hypothetical blood thinner. 

stent  
This binary, numeric variable identifies coronary stent deployment.  A value of 0 means that 
no stent was deployed, while a value of 1 means that a stent was deployed. 

height 
This numeric variable records the patient’s height rounded to the nearest centimeter.  These 
integer values range from 133 to 197. 

  

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 7  Local Control Approach Using JMP   157 
 

female 
This binary, numeric variable equals 0 for male patients or 1 for female patients. 

diabetic  
This binary, numeric variable equals 0 for patients with no diagnosis of diabetes mellitus or 1 
for patients with a diagnosis of diabetes mellitus. 

acutemi 
This binary, numeric variable equals 0 for patients who had not recently suffered an acute 
myocardial infarction or 1 for patients who had suffered an acute myocardial infarction 
within the previous 7 days. 

ejfrac 
This numeric variable records the patient’s left ejection fraction rounded to the nearest full 
percentage point.  These integer values range from 18 to 77 percent. 

ves1proc 
This numeric variable records the number of vessels involved in the patient’s initial PCI.  
These integer values, ranging from 0 to 5, may be best viewed as six ordinal values.  Here, 
we treat ves1proc as either a factor with 6 levels (5 degrees of freedom) or as continuous (1 
degree of freedom when entering a model linearly). 

7.2.2  Analyses of Mortality Rates and Costs Using Covariate  
          Adjustment  
The observed 6-month mortality rate among 4,679 treated patients in the LSIM10K data is 
1.218%, while that among 5,646 untreated patients is 3.719%, which corresponds to a mortality 
risk ratio of more than 3:1 in favor of treatment. Equivalently, the risk percentage difference 
(treated minus untreated) of 2.501% is highly significant (t-statistic = 8.38, two-tailed p-value 
= 0.0000+). 

A simple model appropriate for covariate adjustment (also called multivariable modeling) of 6-
month mortality using the LSIM10K data would be logistic regression of the binary mortality 
indicator, mort6mo, on the binary trtm indicator plus all seven baseline patient characteristics 
(say, with height and ejfract entering linearly and model degrees of freedom = 12, not counting 
the intercept). The area under the receiver operating characteristic (ROC) curve is 0.7107 for this 
model, and it suffers no significant lack of fit. On the other hand, the R-squared statistic for this 
simple model is 0.0653, which is quite poor (low). 

Most importantly, the implied predictions of 6-month mortality from this logistic model average 
0.01218 for treated patients and 0.03720 for untreated patients, which are essentially the same as 
those previously observed, unadjusted results (differing only in the fifth decimal place). In other 
words, covariate adjustment essentially accomplishes nothing on average when outcomes are 
discrete.  

When outcome measures are continuous, such as the 6-month cardiac-related cost variable 
(cardcost), covariance adjustment methods can be more interesting. For example, the mean costs 
in the LSIM10K data are $15,188 when untreated and $15,443 when treated; the t-statistic for the 
unadjusted difference in mean cost between treatment groups (+$255) is t = 1.24, with a p-value 
of 0.892. Using the simple linear covariate adjustment multivariable model with 12 degrees of 
freedom (R-squared = 0.0364), with right-hand-side structure identical to the logit model  
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described previously, the least squares mean costs are $12,176 when untreated and $12,305 when 
treated. The t-statistic for the adjusted difference in mean cost (+$129) is t = 0.62, with a p-value 
of 0.538. Thus, covariate adjustment methods clearly can accomplish something when outcomes 
are continuous. However, smooth, global models offer little hope for making realistic adjustments 
for treatment selection bias and confounding. Typically, they provide only relatively poor fits to 
large data sets covering numerous, heterogeneous patient subpopulations.  

A highly touted variation on these sorts of covariate adjustment modeling is known as inverse 
probability weighting (IPW). This approach typically uses simple logistic or linear regression 
models like the ones considered here, but each observed patient outcome is then weighted 
inversely proportional to the conditional probability that he/she would receive the observed 
choice of treatment given his/her baseline x-characteristics. These estimated conditional 
probabilities are called fitted propensity scores and the appropriate calculations and graphical 
displays are illustrated next, in Section 7.2.3. We will then use the propensity score estimates 
from Section 7.2.3 to illustrate the IPW approach in Section 7.2.4. 

7.2.3  Analyses of Mortality Rates Using Estimated Propensity  
          Score Deciles 
The conditional probability that a patient will choose a specified treatment given his/her baseline 
x-characteristics is that patient’s true propensity score. The conditional probability of that patient 
choosing some other treatment is thus (1–PS). Propensity score estimates are typically generated 
by fitting a logit (or probit) model to binary indicators, trtm = 0 or 1, of observed choices for 
given patient baseline x–characteristics. Because all attention will ultimately be focused only on 
the resulting propensity score estimates (rather than on any p-values or other characteristics of the 
model), no penalties are assumed to result from overfitting. Thus, researchers typically fit 
nonparsimonious global models; here, we fit a full factorial-to-degree-two logit model in all 
seven available covariates. This model uses up 46 degrees of freedom, not counting the intercept.  

The area under the ROC curve is 0.6993 for this model, and it suffers no significant lack of fit. 
On the other hand, the R-squared statistic for this model is 0.0867, which is again quite poor 
(low). 

An essential feature of satisfactory propensity score estimates is that they behave, at least 
approximately, like unknown, true propensity scores. Specifically, conditioning upon (rounded) 
propensity score estimates should yield pairs of x-covariate distributions (treated vs. untreated) 
that are not significantly different. After all, conditioning upon true propensity scores would 
make all such pairs of subdistributions identical; see equation A.2 in the appendix. In other 
words, if patients are sorted by estimated propensity scores and divided into 10 ordered deciles 
(in the current context, 10 subgroups of size 1,032 or 1,033 patients each), then the pairs of within 
propensity score decile subdistributions (treated vs. untreated) for every x-covariate should be 
approximately the same. For example, Figure 7.1 shows (in the left panel) the relatively 
dissimilar marginal distributions of ejfract within the two treatment arms, which is due to 
treatment selection bias and confounding. On the other hand (in the right panel), we see the 10 
pairs of relatively well-matched subdistributions of ejfract by treatment choice, which is due to 
subgrouping using estimated propensity score deciles. Again, in the left panel, note that the lower  
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tail of the marginal ejfract distribution (that is, patients with the most severe impairment in 
circulation) tends to be dominated by treated patients. Meanwhile, within the 10th estimated 
propensity score decile (last pair of box plots in the right panel), note that the corresponding pair 
of conditional distributions for ejfract appears nearly identical. 

Figure 7.1  Marginal and Within Propensity Score Decile Distributions of ejfract by  
                   Treatment 

 
 

What may not be particularly clear from Figure 7.1 is that the treatment ratio is more than 3:1 
(791 treated to 241 untreated) within the 10th estimated propensity score decile. In fact, the 
within propensity score decile treatment ratios are not very close to 1:1 here except in deciles 5, 
6, and 7. See Figure 7.3. As a result, it is best to think of the objective of subgrouping via 
estimated propensity score deciles as being formation of valid blocks of patients. Within each 
block, the x-covariate distributions for treated and untreated patients need to be almost the same, 
yet the treatment fractions within each block may be quite different across blocks (deciles). 

As well as examining these sorts of plots for each continuous x-covariate, researchers need to 
compare the corresponding 2  L contingency tables for each discrete x-covariate (factor) with L 
levels. In other words, researchers need to verify that the patient deciles implied by their 
propensity score estimates do indeed constitute 10 valid blocks of patients. This propensity score 
modeling/validation process can be somewhat tedious and time-consuming, at least when 
mismatches in x-covariate distributions don’t go away! Again, propensity score estimates are 
clearly inadequate and unrealistic when they cannot be verified to at least approximately behave 
like unknown, true propensity scores.  

An even more elementary requirement of estimated propensity scores is that they do indeed 
predict the observed local fractions of patients actually treated, as demonstrated by the least 
squares regression fit in Figure 7.2. As a direct result, the observed numbers of treated and 
untreated patients are expected to vary by propensity score decile to reveal the familiar X-shaped 
pattern of Figure 7.3. 
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Figure 7.2  Estimated Within Decile Propensity Score Means vs. Observed Fractions of  
                   Patients Treated 

 

Local Fraction Treated = 0.0101 + 1.0223 * Mean Estimated Propensity Score within Decile 

Figure 7.3  Numbers of Treated and Untreated Patients by Propensity Score Decile 

 

Another fundamental concept that differentiates the propensity score (and local control) 
approaches from covariate adjustment (CA) and IPW modeling is that it can be best to simply 
ignore the data from certain patients. For example, if all the patients with the lowest propensity 
score estimates in the first decile of Figure 7.3 were untreated, then the data from these patients 
should be set aside. Similarly, if all the patients with the highest propensity score estimates in the 
10th decile of Figure 7.3 were treated, then their data should also be set aside. A more technical 
explanation for these sorts of patient exclusions is discussed next. 

The distributions of propensity score estimates are portrayed in Figure 7.4 using histograms with 
40 cells each. Only those patients within the common support of these two distributions are 
considered sufficiently comparable to be included in propensity score analyses. For the LSIM10K 
data, these two distributions luckily have essentially the same range, from 0.025 to 0.925. For 
pairs (treated vs. untreated) of distributions of propensity score estimates with different ranges, 
data from all patients falling outside of the maximum range supported by both distributions 
should be set aside. The propensity score deciles should then be formed using only the patients 
falling within this maximum supported range.  
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Figure 7.4  Detailed Histograms of Estimated Propensity Scores 

 

The remaining steps in a propensity score decile analysis are    

1. compute the LTDs within each decile and their variances    
2. compute the LTD main effect = the average of within decile LTDs across deciles and its 

variance 
3. compute the t-statistic and p-value for the test of significance of the LTD main effect  

 
For the LSIM10K data, t = 2.95 and p = 0.026. Note in Figure 7.5 that the hypothetical 
treatment in the LSIM10K data tends to deliver its greatest, incremental mortality benefit to the 
patients in the ninth and 10th propensity score deciles (that is, those who are most likely to 
choose/receive it). In summary, compared with the covariate adjustment approach that used a 
global (“wrong”) model, the propensity score deciles approach yields a much larger (less biased) 
estimate for the main effect of treatment with somewhat lower (more realistic) precision. 

Figure 7.5  LTDs for 6-Month Mortality (Treated minus Untreated) by Propensity  
                   Score Decile 
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7.2.4  Analyses of Mortality Rates and Costs Using Inverse  
          Probability Weighting  
The model appropriate for inverse probability weighting of 6-month mortality on the LSIM10K 
data would be a (weighted) logistic regression with the binary trtm indicator and all seven 
baseline patient characteristics as dependent variables (again, with height and ejfract entering 
linearly and model degrees of freedom = 12, not counting the intercept). Here, the IPW is 
proportional to 1/PS for treated patients or 1/(1 PS) for untreated patients. To give results 
comparable to those from the unweighted analyses of Section 7.2.2, the estimated weights need to 
be rescaled to sum to 10,325, which is the total number of patients in the LSIM10K data. Without 
this rescaling, the weights here would sum to 20,796, which would yield a false increase in 
implied precision equivalent to assuming that the data are available for more than twice as many 
patients as actually are available! 

The rescaled weights that sum to 10,325 range from 0.519 to 11.38 and are summarized in Figure 
7.6. The mean weight for untreated patients is then 0.9114 (that is, less than one for the larger 
sample of 5,646 patients) while that for treated patients is 1.1050 (that is, more than one for the 
smaller sample of 4,679 patients). 

Figure 7.6  IPWs for Treated or Untreated Patients Derived from Propensity Score Estimates 

 

The area under the ROC curve for the resulting IPW prediction of 6-month mortality increases to 
0.7550, again with no significant lack of fit. On the other hand, the R-squared statistic for this 
simple model is still only 0.1041, which is poor. The IPW predictions of 6-month risk of 
mortality average 0.01278 for treated patients and 0.03994 for untreated patients. The IPW 
adjusted main effect difference in mortality is thus 0.02716, which differs from the observed, 
unadjusted difference in the third decimal place. In other words, the IPW variation on covariate 
adjustment also accomplishes very little on average for a binary outcome. 

Figure 7.7 compares predictions of the risk of 6-month mortality from simple logistic regression 
models, including the least squares regression of covariance adjustment risks (the unweighted 
logit) on IPW risks. The correlation between these risk predictions is 0.9177, so the fitted slope is 
0.8421.  

Using an IPW linear covariance adjustment model (with R-square = 0.0312), the IPW least 
squares mean costs are $13,761 when untreated and $13,647 when treated, and the t-statistic for 
the adjusted difference in mean cost ( $114) is t = 0.56, with a p-value of 0.573. Thus, while 
IPW methods do change the numerical sign of the estimated cost difference (treated minus 
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untreated), this difference remains insignificant statistically. The fact remains that smooth, global 
models offer little hope for making realistic adjustments for treatment selection bias and 
confounding. 

Figure 7.7  IPW versus Unweighted Predictions of 6-Month Risk of Mortality 
                                            Treated or Untreated 

 

                              RiskCA = 0.00259 + 0.8421*RiskIPW 

77.3  The Four Phases of a Local Control Analysis 

7.3.1  Introduction to the Four Tactical Phases of a Local Control  
          Analysis 
Start by examining Table 7.2, which gives a brief title and description for each of the four phases 
of local control analysis. Sections 7.3.2 through 7.3.5 then provide more detailed motivations for 
each phase as well as illustrations of the use of JMP scripts on the LSIM10K.SAS7BDAT data 
set plus detailed interpretations for the resulting graphical and tabular outputs. 

7.3.2  Phase One: Revealing Bias in Global Estimates by Making  
          Local Comparisons 
The local control approach is a highly graphical and computationally feasible way to bypass 
validation of propensity score estimates (as discussed in Section 7.2.3) and still end up with an 
even better (more robust) view of treatment effects that has been fully adjusted for treatment 
selection bias, local imbalance in treatment fractions, and confounding. 

The primary concept behind the local control approach is that, within all data sets, comparisons 
between treated and untreated patients who are most similar should be more relevant than the 
same sorts of comparisons between dissimilar patients. Unfortunately, the x-covariate(s) most 
relevant to determining patient similarity may not be known or may be unobserved (missing from 
the data set). 
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Table 7.2  The Four Tactical Phases of Local Control Analysis 
 
Phase One LC Tactics: 
 
Revealing Bias in Global Estimates 
by Making Treatment 
Comparisons More and More 
Local  
 

 
The first phase of LC analysis needs to be highly 
interactive so that the researcher can literally see not only 
the direction and magnitude of potential bias introduced 
by treatment selection (channeling) and confounding but 
also the extent to which this bias can be reduced by 
simply increasing the number (and thereby decreasing the 
size) of relevant, local patient clusters. 
 
The primary objective in phase one is to identify the most 
revealing Local Treatment Difference (LTD) distribution 
(that is, an ideal number of clusters) when using available 
patient x-characteristics to define clusters and also 
weighting them equally.  Systematic exploration of 
alternative clustering strategies and tactics are best 
postponed until phase three. 
 

 
Phase Two LC Tactics: 
 
Determining Whether an Observed 
LTD Distribution is Salient 
(Statistically Meaningful) 
 

 
As pointed out in the second paragraph of Section 7.1.2, a 
key feature of the LC approach is that a researcher can 
indeed verify whether an observed set of patient x-space 
clusters yields a meaningful LTD distribution.  The 
artificial distribution resulting from random assignment of 
treated or untreated patients to the same number of 
clusters with the same within-cluster treatment fractions 
deliberately ignores all observed patient x-characteristics.  
If the observed and artificial LTD distributions are not 
different, the observed LTD distribution is, for all 
practical purposes, meaningless. 
 
The key principle here is that, like the overall 
comparison(s) between treated and untreated groups 
within the full data set, comparisons within artificial 
subgroups are also biased whenever x-imbalance and/or 
confounding are present. Differences between an observed 
LTD distribution and its artificial LTD distribution thus 
provide strong evidence of removal of bias and/or 
adjustment for confounding. 
 
Again, treatment comparisons made strictly within 
clusters of patients with highly comparable characteristics 
(other than treatment choice) are relatively unbiased.  The 
LC approach emphasizes these most relevant comparisons 
and de-emphasizes all less local (less relevant) 
comparisons. 
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Table 7.2 (continued)   
 
Phase Three LC Tactics: 
 
Performing Systematic Sensitivity 
Analyses 
 

 
In the third (and most important) phase of LC analysis, a 
researcher explores the implications of using alternative 
ways to form clusters (for example, using different subsets 
of the available x-covariates, different patient similarity or 
dissimilarity metrics, alternative clustering algorithms and 
[again] various numbers of clusters). Because this third 
phase is tedious and repetitive, it is best performed by 
invoking algorithms using some form of batch mode 
processing. 
 
The primary objective in phase three is to identify, say, 
the three most interesting LTD distributions that are 
typical (representative) of all the salient LTD distributions 
that have been identified. For example, which distribution 
is typical of the salient distributions most favorable to 
treatment? Which distribution is most representative of 
the LTD distributions least favorable to treatment? And, 
which LTD distribution is most typical of all salient 
distributions? 
 

 
Phase Four LC Tactics: 
 
Identifying Baseline Patient 
Characteristics Predictive of 
Differential Treatment Response  
 

 
Because results from the first three phases of LC analyses 
can make the differential patient response question moot, 
the LC approach rightfully postpones all causal and/or 
predictive types of analyses until last. 
 
Once the LTD for a cluster has been estimated, an 
extremely helpful LC tactic is to replace the observed 
outcomes for all patients in that cluster (whether treated or 
untreated) with this LTD value. As we will see, this 
simple tactic can be a big help in evaluating fitted models 
and making them more relevant and easy to interpret. 
 
Traditional covariate adjustment (CA) methods using 
global, parametric models (possibly combined with 
inverse probability weighting, IPW) are disadvantaged in 
the sense that they essentially have to start here at what is 
really the final, least well-defined, and potentially most 
frustrating phase of LC analysis. The researcher may well 
find that differential response is really rather difficult to 
predict. 
 

 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



166   Analysis of Observational Health Care Data Using SAS 
 

In any case, the logical way to start learning about the potential value of concentrating upon local 
(within-subgroup) treatment comparisons is to simply jump in by using whatever patient baseline 
x-characteristics one does have to literally see, using the JMP scripts illustrated here, how far they 
can take you.  

A convenient way to launch my JMP Script Language (*.JSL) files for automating local control 
analyses is to select Edit  Customize  Menus and Tool Bars in JMP to modify the list of 
Analyze options on the JMP main menu. Figure 7.8 illustrates that I have chosen the fifth and 
sixth positions on my JMP Analyze menu to display icons and titles for my local control and 
artificial LTD distribution scripts. 

Figure 7.8  Customized JMP Analyze Menu 

 

If no data set is currently open in JMP when the Local Control menu option is selected, JMP first 
displays the dialog box for opening a *.JMP or *.SAS7BDAT data set, as is illustrated in Figure 
7.9. To follow along with the computations illustrated here, open the LSIM10K data set. 

JMP then displays the customized Select Columns dialog box, as shown in Figure 7.10. Note that 
the figure shows that the first two columns (mort6mo and cardcost) were first highlighted (using 
left mouse shift-clicks) in the left-hand variable list and then transferred to the right-hand side by 
clicking on the y, Outcomes selection box. Similarly, the third column (trtm) was selected as the 
t, Treatment Factor, while columns four to ten (stent, height, …, ves1proc) were selected as the 
seven x, Predictors of outcome and/or treatment choice. 
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Figure 7.9  Open Data File Dialog Box with the LSIM10K Data Set Highlighted 

 

Figure 7.10  JMP Select Columns Dialog Box for Local Control 

 

 
My JMP scripts for local control and artificial LTD distribution have a key restriction. All 
outcome y-variables are analyzed by computing averages, and all x-variables are used to cluster 
patients by computing distances (dissimilarities) between patients. Therefore, all y- and x-
variables need to be declared both numeric and continuous in JMP. In other words, discrete y- and 
x-variables need to be first recoded using one or more dummy (0-1) variables, and all other y- and 
x-variables need to be coded using only finite, real numbers. A binary (class) variable may be 
declared nominal (or ordinal) in JMP only if it will be used as the t, treatment factor. Location 
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and scaling of y- and x-variables input to my JMP script for local control are unimportant because 
the script re-centers all x-variables at 0 and standardizes their scale. 

Note that the pair of radio buttons toward the lower left corner of the dialog box in Figure 7.10 
allow the user to choose between the assumptions of either homoskedasticity or 
heteroskedasticity of variances in local control analysis. To be informative about local 
heteroskedasticity, each patient cluster must contain at least two treated patients plus at least two 
untreated patients. Because estimated within-cluster variances can be as small as 0, supposedly 
optimally weighted averages of LTDs across clusters can actually ignore much of the data. Thus 
the assumption of homoskedasticity is generally recommended for initial local control analyses. 

Once the user has clicked on the OK box displayed in Figure 7.10, intensive and lengthy 
calculations are triggered. Depending on the speed of your computer and/or the amount of RAM 
it contains, somewhere between 15 seconds and 90 seconds are required to compute the full 
hierarchical clustering tree for the LSIM10K data set. 

Eventually, a dendrogram like that displayed in Figure 7.11 is displayed in a JMP window and a 
dialog box like that in Figure 7.12 appears in the foreground on your screen. The main 
computational advantages of using hierarchical clustering in local control analysis is that all 
clusters are strictly nested and (vertical) cuts of the dendrogram tree (as illustrated in Figure 7.11) 
can yield almost any requested number of terminal clusters. 

Figure 7.11  Vertical Cuts of the JMP Clustering Dendrogram Produce a Requested Number  
                     of Clusters from the Hierarchy 
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In the Next Number of Clusters dialog box in Figure 7.12, note that the initial default value is 50 
clusters. When one cluster is requested, the average outcome from all untreated patients is 
subtracted from the average outcome for all treated patients to yield the (potentially badly biased) 
traditional estimate of the main effect of treatment. 

Figure 7.12  JMP Dialog Box for Selecting a Desired Number of Clusters 

 

 
With 10,325 patients and an overall average cluster size of at least 11 patients, the number of 
clusters would be constrained to be at most 938, as noted in this dialog box. It is possible that 
clusters as small as only two patients will still be informative. However, my experience is that 
when the average cluster size dips to 10 or fewer patients, there is usually a wasteful abundance 
of clusters that are uninformative; so many clusters have been requested that some clusters have 
essentially been forced to be too small. 

To change the number of clusters (NCnow) being requested, use your cursor to move the slider 
right or left. In response, the displayed value of NCnow usually changes in jumps of 10 patients 
or 100 patients. To select values of NCnow that are not in such a sequence, highlight the 
displayed value of NCnow using your cursor and edit that value using the number keys and the 
DELETE or BACKSPACE key. Once the desired value of NCnow is displayed, click Calculate 
in the dialog box. 

Caution: My local control JMP script does not verify that the number of clusters specified is 
actually a new number (that is, a value different from all previously specified values of NCnow). 
Specifying the same number of final clusters more than once produces unnecessary and 
undesirable duplication of effort. On the other hand, the user can always simply delete duplicate 
rows in the unbiasing TRACE table as well as any duplicate tables created unintentionally.  

Once you have clicked Calculate at least three times, the local control script starts displaying the 
LC unbiasing TRACE display(s) of LTD main effects (  two sigma), as in Figures 7.13 and 7.14, 
respectively. At each such iteration within phase one, the user should examine these trace 
displays to help decide whether to     

 extend the graph to the left 
 extend it to the right  
 fill in gaps between displayed values for the number of clusters 
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Figure 7.13  LC Unbiasing TRACE for the LTD Main Effect in the First Outcome  
First Outcome:  Y1 = Mortality within Six Months 

Y1 = Across Cluster Average LTD Outcome  Two Sigma 

NCreq = Number of Clusters Requested 

 

Table 7.3  Across Cluster Summary Statistics Displayed in Figure 7.13 
NCreq NCinfo Y1 LTD 

MAIN 
Y1 Local 
Std Err 

Y1 Lower 
Limit 

Y1 Upper 
Limit 

1 1 0.0250 0.00313 0.0313 0.0188 
5 5 -0.0270 0.00319 -0.0333 -0.0206 
10 10 -0.0306 0.00326 -0.0371 -0.0241 
20 20 -0.0315 0.00338 -0.0383 -0.0248 
50 50 -0.0351 0.00340 -0.0419 -0.0283 
100 100 -0.0372 0.00346 -0.0441 -0.0302 
200 199 -0.0393 0.00351 -0.0463 -0.0322 
500 492 -0.0398 0.00360 -0.0470 -0.0326 
700 660 -0.0383 0.00363 -0.0456 -0.0311 
900 816 -0.0365 0.00363 -0.0438 -0.0293 

 
NCreg = Number of Clusters Requested 

NCinfo = Number of Informative Clusters Found 
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Figure 7.14  LC Unbiasing TRACE for the LTD Main Effect in the Second Outcome 
Second Outcome: Six-Month Cumulative Cardiac-Related Cost  

Y2 = Across Cluster Average LTD Outcome  Two Sigma 

NCreq = Number of Clusters Requested 

 

 

Once you decide to stop exploring different numbers of clusters, click End, also shown in Figure 
7.12. While this action terminates the automated sequence of iterations within phase one, you will 
still want to explore one or more of the individual JMP data tables that were created for each 
specified number of clusters. As we see here, each of these tables has one or more built-in scripts 
to generate detailed data visualizations and/or to perform further analyses. 

For example, the JMP table LSIM10K_UT contains the statistics displayed in the LC unbiasing 
TRACE graphics for LTD main effects on outcome(s). This table also contains script(s), named 
UTsumy1 and UTsumy2, for redisplaying these graphics. This allows the graphs to be 
customized. For example, the user can change the tic-mark spacing, orientation of tic-mark labels, 
and specification of descriptive axis labels. The resulting graphs and tables can then be saved in a 
JMP journal file and, ultimately, written to the user’s hard disk as, say, RTF or DOC files. 

In Figure 7.13 and its corresponding table (numerical listing), note that negative values for the 
mean of the LTD distribution (main effect of treatment) on the Y1=mort6mo outcome imply 
that treated patients have a lower expected 6-month mortality rate than untreated patients. 
Furthermore, this mean difference initially becomes more negative in the unbiasing TRACE as 
patient comparisons are made more and more local (by using more or smaller clusters). After all, 
the initial global result (treated minus untreated mort6mo rates = 0.025) essentially assumes that 
all available patients are in the same, single cluster, In fact, as shown on the left side of Figure 
7.15, the LTD distribution is nowhere near to being smoothly continuous. For example, it has a 
point mass of probability 0.690 at LTD = 0 when 900 clusters are requested (and 816 informative 
clusters are found). In other words, there is strong evidence that treatment selection and 
confounding were biasing the mean of the nonlocal comparisons of mort6mo outcomes in a way 
unfavorable to treatment. The mean of the LTD distribution for mort6mo thus shifts mostly left 
(from 0.0250 to 0.0398 at NCreq = 500 to 0.0365 at NCreq = 900) as its comparisons become 
more local, but this LTD distribution remains rather complicated (unsmooth) but bounded on 
[ 1.00, +1.00].  
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The second unbiasing TRACE of Figure 7.14 for the Y2=cardcost outcome suggests some 
potentially confusing and complicated possibilities. In fact, the mean of the cardcost LTD 
distribution (main effect of treatment on cardcost) bounces around, first sharply up, then 
distinctly down, and then partially back up again. As seen on the right side of Figure 7.15, the 
LTD distribution of cardcost contains some obvious outliers ( $38K, $21K, +$28K, +$29K, 
+$34K, +$82K, and +$98K). On the other hand, the LTD distribution for cardcost is much 
smoother than the LTD distribution for mort6mo.  

In summary, there is no real evidence that treatment selection and confounding are biasing mean 
cardcost either up or down in the LSIM10K data set. In fact, a relatively wide range of LTD 
cardcost point estimates of main effect (ranging from +$699 to $74) are all supported by Figure 
7.14. Note that the point estimates of uncertainty (sigma) displayed in Figure 7.14, which are 
computed at fixed values for the number of clusters, are clearly underestimating the true 
uncertainty about the cardcost main effect that is revealed by varying the number of clusters. 

Table 7.4  Across Cluster Summary Statistics Displayed in Figure 7.14 
NCreq 

 
NCinfo Y2 LTD 

MAIN 
Y2 Loc 
Std Err 

Y2 Low 
Limit 

Y2 Upr 
Limit 

1 1 255.08 206.21 -157.33 667.50 
5 5 664.94 208.99 246.96 1082.92 
10 10 698.80 214.19 270.42 1127.19 
20 20 341.77 220.48 -99.19 782.74 
50 50 -71.92 214.84 -501.59 357.75 
100 100 -73.59 212.71 -499.02 351.83 
200 199 -24.28 209.32 -442.93 394.37 
500 492 127.11 184.59 -242.08 496.30 
700 660 248.93 183.97 -119.01 616.87 
900 816 312.96 181.35 -49.74 675.66 

 
NCreg = Number of Clusters Requested 

NCinfo = Number of Informative Clusters Found 
All results expressed in 1998 US Dollars ($) 

 

To create the graphs displayed in Figure 7.15, open the LC_900 data table created by the 
LocalControl script. This table contains 900 rows for clusters (numbered 1 to 900) but only 816 
non-missing values for the LTD estimates, Y1LTD and Y2LTD, from informative clusters. The 
table also contains script(s), named LTDdist1 and LTDdist2, for displaying detailed graphics that 
describe the LTD distributions (for mort6mo and cardcost) using histograms, normal probability 
plots, and tabulated summary statistics, as shown in Figure 7.15. The script Y12dist generates the 
graphic displayed in Figure 7.16, while the fourth script, LTDjoin, is useful in phase two (and 
four) local control analyses. 
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Figure 7.15  LTD Graphics and Summary Stats for 816 Informative Clusters 
    LTD Distribution for Y1 = mort6mo LTD Distribution for Y2 = cardcost 

 
 

 Mean LTD 0.0385   Mean LTD 168.74  
 Std Dev 0.14882   Std Dev 4,962.92  
 Std Err Mean 0.00150   Std Err Mean 50.09  
 Upper 95% Mean 0.0356   Upper 95% Mean 266.93  
 Lower 95% Mean 0.0415   Lower 95% Mean 70.55  
 Nonparametric Density   Nonparametric Density  
 Kernel Std 0.02131   Kernel Std 710.55  

 
Note also that both of these LTD distributions tend to be more leptokurtic than 

the best fitting normal distributions in the histograms and probability plots. 

Note that point-masses in the mort6mo LTD distribution at 1 and 0 are clearly visible on the 
left-hand side of Figure 7.15. Furthermore the LTD mean for the 2,332 patients (23.7%) like 
those predicted to have better mort6mo average outcomes when treated was 0.1957, while the 
corresponding mean LTD for the 718 patients (7.3%) like those predicted to have better average 
mort6mo outcomes when untreated was +0.1350. In other words, the mort6mo LTD main effect 
of 0.0365 is not descriptive or representative of this LTD distribution, where 69.0% of patients 
have an expected mort6mo LTD of exactly 0.0. In fact, 0.0385 could also be viewed as the 
mort6mo LTD main effect for only the 31.0% of patients with non-zero LTDs, and (again) the 
LTDs for these patients still range all from 1 to +1.  
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Figure 7.16  Bivariate LTD Scatter for 816 Informative Clusters 

 

Finally, as is clear from Figure 7.9, there is little or no association (correlation) between mort6mo 
and cardcost LTD outcomes within their (bivariate) joint distribution. In fact, note that the 
patients with the most extreme cardcost LTDs tend to have mort6mo LTDs of 0. Similarly, 
patients with extreme mort6mo LTDs tend to have relatively small cardcost LTDs. 

7.3.3  Phase Two: Determining Whether an LTD Distribution Is  
          Salient 
Suppose that a researcher has used phase one local control tactics to define a set of clusters from 
patient baseline characteristics and has estimated the corresponding LTD distribution. This 
distribution cannot be meaningful unless it is different from the artificial LTD distribution that 
results from purely random assignment of patients to clusters. In other words, when these two 
distributions are not different, the measures of patient similarity or dissimilarity used to form 
clusters are really no more informative than random patient characteristics!   

Specifically, the objective of phase two local control tactics is to ask whether observed x-
covariates are predictive of true patient similarity in the sense that their observed LTD 
distribution is indeed different from the corresponding artificial (completely random) LTD 
distribution. When these two LTD distributions are different, the observed LTD distribution is 
said to be salient (statistically meaningful). Importantly, the artificial LTD distribution can be 
estimated with increased precision using replicated Monte Carlo simulations. One simply uses 
repeated, random resampling without replacement for the same fixed number of clusters and the 
same treatment fractions within each cluster as in the observed clusters. 

Due to heteroskedasticity of LTD estimates from clusters of different sizes with different local 
treatment fractions, the sufficient statistic that characterizes both the observed and the artificial 
LTD distributions is the (weighted) empirical cumulative distribution function (eCDF). The 
observed and artificial LTD distributions can also be compared in many revealing alternative 
ways, but comparison of LTD sCDFs (observed vs. artificial) is key for establishing saliency. 

If no (open) data set is currently selected in JMP when the artificial LTD distribution script is 
selected, JMP again displays a dialog box for opening a *.JMP or *.SAS7BDAT data set, as 
illustrated in Figure 7.9. On the other hand, this script is usually invoked when the target JMP 
table has just been created and opened. Specifically, to follow along with the computations 
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illustrated here, you should first invoke the LTDjoin script built into the LC_900 data set (for 900 
requested clusters) for the LSIM10K data. While the LC_900 table has 900 rows (one for each 
cluster) and 816 non-missing LTD estimates for the 816 informative clusters, the resulting joinDt 
table contains 10,325 rows for individual patients, a cluster ID variable (containing an integer 
from 1 to 900, inclusive, for each patient), and 9,839 non-missing LTD estimates for the patients 
within the 816 informative clusters. This is the specific type of JMP table that the artificial LTD 
distribution script is designed to operate upon. 

Invoking the JMP aLTD script then displays the customized Select Columns dialog box in Figure 
7.17. Here, only one outcome variable (mort6mo), one binary treatment factor, and no patient 
baseline x-characteristics are specified. However, the researcher must also specify    

1. the name of the cluster ID variable (C_900 here) 
2. a total number of replications (displayed default value is 25)  
3. a random number seed value (displayed default value is 12,345) 

 

Figure 7.17  Artificial LTD Distribution Dialog Box 

 

Researchers may wish to first specify a smaller number of replications (for example, three) to 
estimate how long calculations will take. Whenever a second invocation of the aLTD script is 
then used to increase precision, be sure to use a different initial seed in the second run so that the 
two batches of artificial LTD estimates will be independent and can be merged. On the other 
hand, if a second invocation is used to evaluate a different y-outcome, be sure to use the same 
number of replications and the same initial seed in both runs if you wish to estimate the joint 
artificial LTD distribution of the two outcomes. 

Figure 7.18 illustrates the standard way to compare two unrelated samples (here, of very different 
sizes) in JMP using the Y by X platform. In Figure 7.18, the Y variable contains estimated LTDs 
while the binary X variable labels each LTD estimate as either observed or artificial. The 
observed LTD distribution consists of 816 estimates from the 9,816 patients within informative 
clusters. Here, the artificial LTD distribution consists of 25×816 = 20,400 non-missing LTD 
estimates; each set of 816 artificial LTD estimates uses the data from 9,839 patients randomly 
selected from the original 10,325. On the other hand, because the mort6mo variable is binary, 
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only 254 distinct numerical values for LTDs occur in the merged observed and artificial LTD 
samples, as seen in Figures 7.18 and 7.19. 

Figure 7.18  JMP Side-by-Side Comparison Using the Spread 
Option of the Artificial and Observed LTD Distributions 

 

Even when individual patient outcomes are assumed to be homoskedastic, some might argue that 
LTD estimates need to be weighted because they can still be distinctly heteroskedastic. For an 
informative cluster containing n > 1 patients, let n p represent the number of treated patients, 
where p denotes the local propensity to be treated, and 0 < 1/n  p  (n 1)/n < 1. The number of 
untreated patients is thus n (1 p). It follows that the variance of the local difference, 
( )treated untreatedY Y , would be proportional to 1/[n p (1 p)]. Thus a weight could be assigned to 
the LTD estimate from this cluster that is proportional to n p (1 p) (that is, inversely 
proportional to variance). These weights would then need to be renormalized so as to sum to n = 
9,839 in this example. Instead, here we simply assign a frequency of n to the LTD computed from 
an informative cluster of n patients, thereby assuring that f = 9,839. 

Unfortunately, Figure 7.19 doesn’t strike me as being particularly helpful in comparing the 
observed and artificial LTD distributions. In addition to several variations on the sort of 
visualization shown in Figure 7.18, the JMP Y by X platform also contains several alternative 
ways to test for differences between the distributions represented by (two) samples. Alas, 
comparisons of the 9,839 observed LTD main effect estimates with the 245,975 artificial LTD 
main effect estimates are more or less expected to suggest that even small differences are highly 
significant due to such gigantic sample sizes! For example, Dunnett's method for comparing the 
aLTD mean with the observed LTD mean yielded a Abs(Dif) LSD = 0.009 (p < .0001); 
variances of the LTD distributions are different (p < 0.0001) using all four tests routinely 
performed by JMP, and the Welch test assuming unequal variances yields a t-statistic of 7.986 
with 10,401 estimated degrees of freedom (p < 0.0001). The Wilcoxon/Kruskal-Wallis rank sums 
test yields a z-score of 5.508 (p < 0.0001). 
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Still, it is clear that the observed LTD distribution has a larger atom of probability at 1 and a 
smaller atom of probability at 0 than does the artificial LTD distribution: 

 
LTD 

Estimate 

Observed 
Frequency 

in 9,839 

Observed 
Fraction 

of Patients 

Artificial 
Frequency 
in 20,400 

Artificial 
Fraction 

of Patients 
1.00 60 0.0061 48 0.0024 

0.00 6,789 0.690 15,192 0.745 
+1.00 14 0.0014 33 0.0016 

 
Similarly, the comparison of empirical CDFs displayed in Figure 7.19 strongly suggests that the 
observed LTD distribution for 816 informative clusters is indeed salient. Specifically, the 
observed LTD distribution has a thicker left-hand tail (of negative LTDs favorable to treatment) 
and a possibly thinner right-hand tail (of positive LTDs unfavorable to treatment).  

Our local control analysis has definitely revealed some bias. After all, the initial observed mean 
difference in mortality fraction (for 4,679 treated patients minus that for 5,646 untreated patients 
when all patients are assumed to be within a single cluster) was 0.0250 (that is, 2.5%). The 
artificial LTD main effect for 816 informative clusters of 2.45% is very slightly larger (less 
negative), but it is also clearly biased. In sharp contrast, the mort6mo observed LTD main effect 
of 3.85% is clearly less biased and more favorable to treatment. 

Of course, LTD means (main effects) are not particularly descriptive or representative of these 
sorts of relatively complex (zero-inflated) LTD distributions, where more than 2 out of 3 patients 
have an expected mort6mo LTD of 0.0. In fact, the 3.85% observed reduction in mort6mo and 

2.45% artificial reduction could be viewed as the mort6mo LTD main effects for the fewer than 
1 in 3 patients with non-zero LTD estimates. Besides, the LTD distributions for these patients still 
range from 1.0 to +1.0. In summary, visual comparison of eCDFs provides essential information 
about saliency, providing insights that are much more relevant and robust than tests for 
differences in mean values!  

Figure 7.19  Visual Comparison of Patient Frequency-Weighted Empirical CDFs for the  
                     Observed LTD (Solid) and Artificial LTD (Dotted) Distributions 

 

Left Tails Right Tails 
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7.3.4  Phase Three: Performing Systematic Sensitivity Analyses 
The fundamental concept that forms the basis for phase three of the local control approach is that 
observed LTD distributions need to be shown to be relatively stable over a range of meaningful, 
alternative patient clusterings. While the number of clusters is increased in phase one to show 
that, as comparisons are forced to become more and more local, they typically also become more 
and more different from—and more interesting than—simplistic overall comparisons. In contrast, 
careful and systematic sensitivity analyses are badly needed in phase three to illustrate that a 
range of alternative clusterings can yield realistic, salient LTD distributions that actually have 
much in common. 

This third phase of local control calls for rather tedious and repetitive calculations best done using 
some sort of batch mode processing. Unlike the interactive approach implemented in my local 
control and alternative LTD distribution scripts in JMP that implement tactics for phases one and 
two, no automatic implementation for the phase three sensitivity analyses currently exists. Thus, I 
describe here some alternative clusterings for the LSIM10K data that the reader may find 
interesting and then review the basic clustering concepts that should be used in phase three 
sensitivity analyses. 

7.3.4.1  Alternative Clusterings That Readers Can Try on Their Own 
The three patient baseline x-characteristics that appear to be most predictive of t-treatment choice 
and the mortality y-outcome are stent, acutemi, and ejfract. Thus, a local control analysis using 
only these three patient characteristics is parsimonious. Interestingly, the resulting local control 
unbiasing trace for mort6mo is similar to Figure 7.13 while the corresponding cardcost trace is 
much smoother than Figure 7.14. Furthermore, the number of informative clusters drops to only 
166 when between 300 and 900 clusters are requested. The 166 informative clusters out of 300 
contain 98.4% of the patients, while the 166 informative clusters out of 900 are somewhat smaller 
(containing 92.6% of all patients, 96.0% of treated patients and 89.9% of untreated patients). 
Finally, the observed LTD distributions for 900 requested clusters are again salient! 

7.3.4.2  Review of Clustering Concepts Useful in Sensitivity Analysis 
The objective of cluster analysis is to partition patients into mutually exclusive and exhaustive 
subgroups. All patients within a cluster should have x-vectors that are as similar as possible, 
while patients in different clusters should have x-vectors that are as dissimilar as possible. A 
metric for measuring similarity or dissimilarity between any two x-vectors is needed to do this 
(Kaufman and Rousseeuw, 1990). My local control JMP script uses the standardize (mean 0 and 
variance 1) principal co-ordinates of the x-covariates to represent patients in Euclidean space, 
which is equivalent to computing Mahalanobis distances between patients (Rubin, 1980). A 
variety of distance and similarity measures, such as the Dice coefficient, the Jaccard coefficient, 
and the cosine coefficient, are also widely used for clustering. All of these unsupervised methods 
can identify patient closeness relationships that may be impossible to visualize in only two or 
three Euclidean dimensions. 

Suppose that some patient x-characteristics are qualitative factors either with only relatively few 
levels or with only unordered levels. The analyst may then wish to require that all patients within 
the same cluster match exactly on these particular x-components. Alternatively, an x-factor with k 
levels can be recoded as k 1 dummy (binary) variables. 
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If certain x-covariates are being used primarily as instrumental variables, the analyst may wish to 
give them extra weight when defining patient dissimilarity. For example, McClellan and 
colleagues (1994) used approximate distance from the hospital of admission (derived from pairs 
of ZIP codes) as their initial key variable in clustering 205,021 elderly patients; the only other 
available x-characteristics were age, sex, and race. With such a gigantic number of subjects, the 
logical strategy is to start by stratifying patients into several distance-from-the-hospital bands. 
Smaller clusters can be easily formed within these initial strata by, for example1, matching 
patients on both sex and race and then grouping them into age ranges. 

Patient clusterings certainly do not need to be hierarchical, but the resulting dendrogram (tree) 
can be quite helpful computationally in sensitivity analyses designed to deliberately vary the total 
number of clusters to study the stability of the observed LTD distribution. 

Agglomerative (bottom-up) clustering methods start with each patient in his/her own cluster and 
iteratively combine individual patients and/or clusters of patients to form larger and larger 
clusters. This is a “natural” way to do unsupervised, hierarchical analyses, and the vast majority 
of clustering algorithms work this way. 

Divisive (top-down) clustering methods start with a single cluster containing all patients and 
focus on making the few, very large clusters at the top of the tree more meaningful. The “diana” 
method of Kaufman and Rousseeuw (1990) is divisive.  

To get more compact clusters, it also makes sense to use complete linkage methods that minimize 
the maximum patient dissimilarity within a cluster rather than single linkage methods. 

Again, a cluster is said to be uninformative (pure) if all subjects within that cluster received the 
same treatment (either all t = 0 or all t = 1). There is no possibility of observing any local 
outcome (y) difference between treatments using only subjects from within a pure cluster! In this 
sense, local control methods automatically discard all information from treated patients who are 
different from all untreated patients and all information from untreated patients who are different 
from all treated patients. Again, patients lying outside of the common support of the estimated 
propensity score distributions for treated and untreated patients are supposed to be excluded from 
analyses, but this fundamental principle (that is, compare only patients who are comparable) is 
typically ignored by practitioners of the covariate adjustment augmented with propensity score 
covariates methods. 

To be fully informative about a within-cluster local treatment difference without assuming 
homoskedasticity of patient outcomes (equal variances), a cluster must contain at least two 
patients on each treatment. These patients are needed first to compute the heteroskedastic 
standard errors of the two treatment outcome means and then to compute the conventional 
standard error of the resulting local treatment difference. 

7.3.5  Phase Four: Identifying Baseline Patient Characteristics  
          Predictive of Differential Treatment Response 
The objective of the fourth and final phase of local control analysis is to answer questions such 
as, “Do the differential benefits and/or risks of treatment vary systematically with observed 
patient characteristics?” and “Which types of patients are better off being treated rather than left 
untreated?” The first three phases of local control analysis pave the way to answering these 
ultimate questions by addressing a more fundamental question: “Do important differences in 
outcomes due to treatment exist?” Specifically, phase one identifies LTD distributions, phase two 
determines whether an LTD distribution is salient, and phase three establishes which salient LTD 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



180   Analysis of Observational Health Care Data Using SAS 
 

distributions are most typical. Before phase four even starts, results from the first three phases 
may have rendered the ultimate questions (that is, the prediction of differential benefit / risk 
variation) essentially moot because little or no evidence of any form of patient differential 
response to treatment has been uncovered. 

Phase four analyses can use conventional covariate adjustment methods to predict LTD variables 
constructed by assigning the (salient and typical) LTD value for a cluster to all patients within 
that cluster (whether treated or untreated). Similarly, the LTD outcome for each patient that fell 
into an uninformative cluster is set to missing. This tactic allows researchers to address questions 
such as, “How do the patients in the left-hand and right-hand tails of an observed LTD 
distribution differ in their baseline x-characteristics?” and “Which types of patients are least 
likely (or most likely) to make their optimal treatment choice?” 

Given my personal distrust of smooth, global models, my favorite phase four local control 
strategy for predictive modeling is to rely on local, semi-parametric methods like regression 
(partition) tree models to the LTD variable from patient baseline x-characteristics. The tree model 
of Figure 7.20 can be fit using the Partition option on the JMP Analyze: Modeling menu and is, 
as usual, easy to interpret. 

Figure 7.20  JMP Partition (Regression) TREE for Predicting mort6mo LTDs from Seven  
                     Baseline Patient x-Characteristics 

All Rows
Count
Mean
Std Dev

9816
-0.022019
0.2034422

258.87699
LogWorth

0.08252
Difference

ejfract<48
Count
Mean
Std Dev

2443
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LogWorth
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Difference

stent(1)
Count
Mean
Std Dev

1617
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stent(0)
Count
Mean
Std Dev

826
-0.028099
0.1657327

ejfract>=48
Count
Mean
Std Dev

7373
-0.011376
0.1498723

66.62226
LogWorth

0.07126
Difference

acutemi(1)
Count
Mean
Std Dev

688
-0.080189
0.219051

acutemi(0)
Count
Mean
Std Dev

6685
-0.008927
0.1373545

71.723956
LogWorth

0.02781
Difference

height>=166
Count
Mean
Std Dev

4821
-0.014523
0.1375914

height<166
Count
Mean
Std Dev

1864
0.0132903
0.1273371

 

Treatment is most highly effective for the 16.5% of patients with a left-ejection fraction less than 
48% and who are to receive a stent; these patients experience a 12.7% absolute reduction in 6-
month mortality. Similarly, the 7% of patients who have suffered an acute myocardial infarction 
within the previous 7 days but have a left-ejection fraction of at least 48% experience an 8.0% 
reduction in 6-month mortality when treated. In fact, treatment is expected to yield a numerically 
lower 6-month mortality rate for 81% of all patients; patients expected to do better when 
untreated tend to be short (height < 166 cm or 5 feet, 5 inches).  

Also as usual, the global, multivariable model for predicting mort6mo LTD described in Figure 
7.21 is complicated and, thus, not particularly easy to interpret or visualize. I used the JMP effect 
screening platform to fit a factorial to degree 2 model in the seven available patient x-
characteristics. Like the regression tree model, this model has an R-squared statistic of only 14%, 
so it too has considerable lack of fit. For example, the mort6mo LTDs vary from 1.0 to +1.0, but 
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the estimates from this covariate adjustment model range only from 0.4 to +0.14 (see Figure 
7.21). Furthermore, many terms are significant primarily because the data set contains so many 
observations (9,816 non-missing values of LTDs for patients within informative clusters). Having 
such a large number of terms in the prediction equation greatly hampers use of such a model in 
practical applications, where an expected LTD typically needs to be computed for each individual 
patient to make a treatment recommendation. 

Figure 7.21  JMP Multivariable Model for Predicting mort6mo LTDs from Seven Baseline Patient  
                     x-Characteristics 
Summary of Fit 

RSquare 0.144396 

RSquare Adj 0.141948 

Root Mean Square Error 0.188451 

 

Analysis of Variance 

Source DF Sum of 

Squares 

Mean 

Square 

F Ratio 

Model 28 58.65786 2.09492 58.9892 

Error 9787 347.57256 0.03551 Prob > F 

C. Total 9815 406.23042  <.0001 
 

 

 

Sorted Parameter Estimates 

Term Estimate Std Error t Ratio Prob>|t| 
stent[0]*(ejfract-53.3258) -0.002267 0.000151 -14.97 <.0001 
diabetic[0]*(ves1proc-1.15983) 0.0309841 0.00346 8.96 <.0001 
(height-173.388)*(ejfract-53.3258) 0.0001851 2.255e-5 8.21 <.0001 
ejfract 0.0030098 0.000375 8.04 <.0001 
acutemi[0]*(ves1proc-1.15983) -0.042697 0.005336 -8.00 <.0001 
diabetic[0]*(ejfract-53.3258) -0.001307 0.000171 -7.66 <.0001 
stent[0]*acutemi[0] 0.0187662 0.002453 7.65 <.0001 
acutemi[0] 0.0313478 0.004146 7.56 <.0001 
female[0]*(ejfract-53.3258) -0.001634 0.00023 -7.11 <.0001 
female[0] -0.029563 0.004364 -6.77 <.0001 
female[0]*acutemi[0] 0.0202919 0.003597 5.64 <.0001 
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Term Estimate Std Error t Ratio Prob>|t| 
(height-173.388)*diabetic[0] -0.001409 0.000276 -5.11 <.0001 
stent[0]*diabetic[0] -0.008277 0.001828 -4.53 <.0001 
acutemi[0]*(ejfract-53.3258) 0.0014733 0.000344 4.28 <.0001 
height  0.0012274 0.00038 3.23 0.0012 
stent[0] -0.007796 0.002929 -2.66 0.0078 
female[0]*diabetic[0] 0.0071039 0.002721 2.61 0.0091 
(height-173.388)*acutemi[0] -0.000705 0.000301 -2.34 0.0194 
female[0]*(ves1proc-1.15983) 0.0078406 0.003395 2.31 0.0209 
stent[0]*female[0] -0.004199 0.001942 -2.16 0.0306 
(ejfract-53.3258)*(ves1proc-1.15983) 0.0005172 0.000272 1.90 0.0572 
(height-173.388)*(ves1proc-1.15983) -0.000434 0.00033 -1.32 0.1882 
(height-173.388)*female[0] 0.0001881 0.000197 0.95 0.3400 
diabetic[0]*acutemi[0] -0.00349 0.003981 -0.88 0.3806 
ves1proc 0.005063 0.006262 0.81 0.4188 
stent[0]*(ves1proc-1.15983) 0.0004261 0.002269 0.19 0.8510 
diabetic[0] -0.000365 0.004074 -0.09 0.9287 
stent[0]*(height-173.388) -5.615e-6 0.000193 -0.03 0.9767 

 

In summary, I find it interesting that the local control approach can generate LTD distributions 
that are sufficiently rich and detailed that they actually are difficult to model using conventional 
regression techniques (parametric or semi-parametric). Clearly, LTD distributions can capture 
both signal and (considerable) noise from raw data! 

77.4  Conclusion 
We have seen that the fundamental concepts of blocking and randomization that play such 
important roles in the prospective design of experiments (DoE) have variations that can play 
similarly fundamental roles in the analysis of data on human subjects. These variations are 
retrospective local control and resampling (with or possibly without replacement). Use of these 
highly flexible, post-data collection tools is typically avoided when study objectives are primarily 
confirmatory (that is, when the study’s statistical analysis plan needs to be completely pre-
specified and deterministic). 

Table 7.5 gives brief definitions of the five basic alternative approaches to analysis of 
observational data and also discusses their major advantages and disadvantages. 
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Table 7.5  Five General Approaches to Analysis of Observational Data 
Covariate Adjustment (CA) 
Using Multivariable Models  

History:  Generalization of ANOVA and regression models. 
Advantages:  Ubiquitous; widely taught and well accepted; 
implemented in all statistical analysis packages. 
Disadvantages:  Essentially ignores imbalance (for example, always 
uses all available data); global, parametric models are difficult to 
visualize and thus may be unrealistic; results are frustratingly sensitive 
to model specification details; p-values can be small simply due to 
large sample sizes. 

Inverse Probability Weighting 
(IPW) 

History:  Heuristic modification of CA somewhat similar to Horvitz-
Thompson adjustment in sample surveys. 
Advantages:  As easy to perform as CA; does attempt to adjust for 
local variation in treatment selection fraction (imbalance); requires 
software for (diagonally) weighted regression. 
Disadvantages: Basically the same as CA; IPW focuses on up-
weighting rarely observed outcomes (never really ignores observations 
from uninformative clusters); basic variance assumptions somewhat 
counterintuitive (least frequently observed outcomes are treated as 
being more precise). 

Propensity Score (PS) 
Matching and Subgrouping 

History:  Fundamental PS theory has attracted more and more 
attention over the last 25 some years; motivates use of traditional 
matching and subclassifying approaches. 
Advantages:  Intuitive, weak assumptions; widely applicable; many 
results easily displayed using histograms. 
Disadvantages:  Results may be less precise than they appear (are 
reported) to be; no built-in sensitivity analyses; not a standard method 
implemented in current commercial statistical software. 

Instrumental Variable (IV) 
Methods 

History:  Adding IV variable(s) to structural equation models can 
identify causal effects when the given x-covariates are correlated with 
model error terms due to endogenous effects, omitted covariates, or 
errors in variables.  Newest IV approaches use patient clustering and 
nonparametric, local PS estimates. 
Advantages:  Near the top of the theoretical pecking order. 
Disadvantages:  IV assumption is very strong and not testable; 
implemented only in some commercial statistical packages. 

Local Control Methods Using 
Patient x-clusterings 
(Unsupervised Learning)   

History:  Generalization of nested ANOVA (treatment within cluster) 
and hierarchical models. 
Advantages:  Intuitive, weak assumptions; widely applicable; 
guaranteed asymptotic balancing scores finer than propensity scores; 
inferences based upon bootstrap confidence or tolerance intervals; 
built-in sensitivity analyses. 
Disadvantages:  Quite new; completely different focus from that of 
traditional parametric models; not a standard method implemented in 
current statistical software packages. 
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The local control approach is interesting primarily because it directly addresses the highly 
relevant subject of the distribution of LTDs in an almost non-parametric way (using nested cell-
means models, as in Row 2 of Table 7.1). In fact, the only obvious down sides of this approach 
are that taking this local difference essentially doubles the variance of the resulting outcome point 
estimates and that LTDs definitely are not identically distributed because they have local means 
and variances that depend upon cluster size and local treatment fractions. 

In contrast, the IV plotting approach (based upon Row 1 of Table 7.1) of McClellan, McNeil, and 
Newhouse (1994) requires parametric modeling across clusters on the plot of LATEs versus 
observed within-cluster treatment fractions (local propensity score estimates). By averaging 
outcomes over both treated and untreated patients within clusters, at least IV methods do avoid 
doubling the variance in outcome point estimates. However, doing only a pure IV analysis (and 
thus failing to examine LTDs) strikes me as an extremely high price to pay! 

Randomized studies will probably long remain the gold standard for scientific research on 
humans. I think that this is unfortunate, especially in health outcomes research and 
pharmacoeconomic settings, where performing prospective experiments within otherwise general 
medical practice settings typically implies imposing strong enrollment / participation incentives 
that result in unrealistic (unnatural) behaviors from both patients and clinicians. If you want to 
develop real insight into what happens when new treatments become available, shouldn’t you use 
real data from actual experience? There is absolutely nothing wrong with using real-world data to 
try to realistically answer real-world questions. On the other hand, it is quite obvious that more 
and much better insights could be developed if researchers had access to better (much more 
complete) observational data and to better local control software, especially for phase three local 
control systematic sensitivity analyses. 

All of the five basic approaches covered by Table 7.4 address the problem of unobserved 
confounders only obliquely. After all, the unknown and unobserved could actually represent 
anything. Still, observed variables that are surrogates for those unobserved (that is, those that are 
correlated with them) can be used in all of these approaches. The strength of the local control 
approach in this regard is that it directly addresses the question of whether the observed LTD 
distribution is salient. While one can never know how much better they could do with better data, 
it is essential to be confident that at least some progress has been made. 

In any case, the good news is that much more sensitive, robust, and data-driven methods for 
assessing treatment effects in observational data are practical. Meanwhile, the bad news is that 
these approaches will rely heavily on unsupervised learning methods (clustering and density 
estimation) that address the most challenging / difficult computational problems in statistics. 

AAcknowledgments 
The author wishes to thank Gerhardt Pohl and Stan Young for helpful discussions of many of the 
topics addressed in this chapter.  

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 7  Local Control Approach Using JMP   185 
 

AAppendix: Propensity Scores and Blocking/Balancing Scores 

A.1 Review of the Fundamental Theorem of Propensity Scoring 
For a patient with a given x-–vector of baseline characteristics, that patient’s propensity score is 
their conditional probability of receiving the first of, say, two treatments, t = 1. This conditional 
probability is denoted in equation (A.1) by the symbol “p.”  Thus, by definition, p is a function 
only of the given x–vector of patient baseline characteristics. 

p    Pr( t = 1 | x )  (A.1) 

A simple four-line proof of the fundamental conditional independence theorem of propensity 
scoring (Rosenbaum and Rubin, 1983) is displayed in equation (A.2).  The Pr( x, t | p) factor on 
the left-hand side of the first line denotes the conditional joint distribution of a patient’s baseline 
x-vector and their treatment choice, t, given that patient’s (possibly unknown, true) propensity 
score, p.  The factoring of the right-hand side of the first line then follows from the very 
definition ( ) of conditional probability.  In the second line, the second factor on the right-hand 
side is simplified by noting that p is a function of x and, thus, conditioning upon both x and p is 
really no stronger than conditioning on x alone.  The third line then follows because equation 
(A.1) shows that Pr( t | x ) is either p or (1  p).  Finally, the fourth line follows because the third 
line result shows that conditioning on the distribution of t given x is no stronger than conditioning 
on only p.  

Pr( x, t | p )    Pr( x | p ) Pr( t | x, p )  
=   Pr( x | p ) Pr( t | x ) 
=   Pr( x | p ) p   or   Pr( x | p ) (1  p) 
=   Pr( x | p ) Pr( t | p )  

 
 
 

                                          (A.2)    
 

In summary, equation (A.2) establishes that the joint conditional distribution of x and t given the 
true p must necessarily factor into the product of the conditional distribution of x given p times 
the conditional distribution of t given p.  In statistics and probability theory, this factoring has 
profound implications.  The distribution of baseline patient x-characteristics has thereby been 
shown to be statistically independent of the distribution of treatment choice, where both 
distributions are conditional upon the given (possibly unknown, true) p. 

Technically, the first, Pr( x | p ) factor in the fourth line of equation (A.2) actually shows that 
conditioning on a fixed value of p defines a block of patients. To avoid forming too many blocks, 
p can be rounded to two or at most three decimal places.  The conditional distribution of x for a 
given, rounded value of p may be rather complicated, but at least one knows (due to 
independence) that this distribution will be the same for both treated and untreated patients within 
each block (defined by a single, rounded value of p).  On the other hand, the fact that the x-
distribution can vary across blocks (that is, as p varies) provides ample motivation and 
justification for calling these patient subgroupings blocks. 

Similarly, the second, Pr( t | p ) factor in the fourth line of equation (A.2) defines local treatment 
balance (or imbalance) on the local fraction treated.  Specifically, the local (within-block) ratio of 
treated to untreated patients is expected to be very close to 1:1 only within the block with p = 
0.50. 
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In data sets where p does not appear to vary with x, there is, for all practical purposes, only one 
block in the entire data set!  In randomized clinical trials (RTCs), p is typically not only known 
but also usually does not vary with x.  In observational (nonrandomized) studies, the true value of 
p is typically unknown.  Furthermore, p must vary with x whenever patient differential treatment 
selection is present. 

A.2  Practical Problems with Estimated Propensity Scores 
The result expressed by equation (A.2) is really rather profound and yet requires only relatively 
weak assumptions to be valid.  Unfortunately, the true propensity score, p, for a given x-–vector 
is unknown in observational studies, and estimates of p can easily be sufficiently poor 
(unrealistic) that treated and untreated patients matched on rounded propensity score estimates 
can actually have rather different x-–vector distributions.  Any such patients may really belong in 
different true conditional blocks rather than within the same block. 

An illustration of how this can happen when propensity scores are estimated using logistic 
regression and the space of x–-vectors is three-dimensional is depicted in Figure A.1.  This model 
uses a linear functional (vector inner product) of the form x   to estimate the logit transform, 
{log[p/(1–p)]}, of propensity to be treated.  Two different patients then have the same rounded 
propensity score estimate if and only if their corresponding x-–vectors lie strictly on or between a 
pair of parallel, two–dimensional planes (depicted as a thin slab in Figure A.1) that are orthogonal 
to the three–dimensional estimated –hat vector (depicted in Figure A.1). 

Note that, because the thin slab extends out to infinity in all directions strictly orthogonal to the 
estimated –hat vector, two patients with essentially the same fitted propensity score can actually 
be very far apart in x–space.  In other words, all of the x–vectors for treated patients might 
possibly be well separated from the corresponding x–vectors for untreated patients.  Thus, there is 
absolutely no assurance that the conditional x–distributions for given rounded propensity score 
estimates will be identical (or even similar). 

When using estimated propensity scores, it is absolutely essential to verify that conditioning upon 
such estimates does yield blocks that behave, at least approximately, like those resulting from 
conditioning upon true propensity scores.  This sort of validation process, which is described and 
illustrated here in Section 7.2.3 and in publications like Kereiakes and colleagues (2000) and Yue 
(2007), can be rather tedious and frustrating. 

Figure A.1  The x-Space Geometry of Linear Functionals from Logistic Regression 
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As we will see in Section A.4, a major practical advantage of the local control approach is that it 
can be performed without either modeling propensity or validating propensity scores estimates!  

A.3 Range of Blocking/Balancing Scores: From Most Fine to Most Coarse 
Rosenbaum and Rubin (1983) proposed calling any statistic, such as , a balancing score if the 
conditional distributions of x-covariates and treatment choice are independent given , as in 
equation (A.2). Here, we will call any such statistic, , a blocking/balancing (or B/B) score 
because, again, Pr( x |  ) characterizes the within-block conditional x-distribution independently 
from the Pr( t |  ) factor that describes treatment fraction balance (or imbalance) within that 
block. 

A patient’s true propensity score, p, is clearly a B/B score due to equation (A.2). However, unlike 
true propensity scores that are well defined as conditional probabilities,  statistics can apparently 
be specified in many alternative ways. 

Rosenbaum and Rubin (1983) established that the patient x–vector of baseline characteristics is 
the most detailed possible B/B score. They accomplished this by simply noting that 

Pr( x, t )      Pr( x ) Pr( t | x ), (A.3) 

where Pr( x ) denotes a degenerate distribution (point mass at the given x). When the given x–
vectors contain continuous measures and/or many components, the bad news here is simply that 
there may be no exact matches and only few relatively good matches within the entire data set!  

Even more importantly, Rosenbaum and Rubin (1983) also successfully argued (by contradiction) 
that true propensity scores are also extreme in the sense that they are always the most coarse 
(least detailed) B/B scores. 

A.4 Cluster Membership Is an Asymptotic Blocking/Balancing Score 
A simple two-line proof of our desired approximate conditional independence result is displayed 
in equation (A.4). The Pr( x, t | C) factor on the left-hand side of the first line denotes the 
conditional joint distribution of a patient’s baseline x–vector and their treatment choice, t, given 
that the patient is a member of cluster C. The factoring of the right-hand side of the first line then 
again follows from the very definition ( ) of conditional probability. In the second line, the first 
factor on the right-hand side is then simplified by noting that Pr( x | t, C ) and Pr( x | C ) are 
approximately equal ( ) whenever clusters are small and information about treatment choice, t, is 
not used to help define clusters. Unfortunately, Pr( x, t | C ) = Pr( x | C ) Pr( t | C ) cannot possibly 
hold when clusters are large because cluster membership would then be a B/B score that is more 
coarse than the propensity score. What we will be able to argue is that Pr( x, t | C ) does 
approximately factor as shown in the limit as clusters become small, compact, and numerous.  

Pr( x, t | C )  Pr( x | t, C ) Pr( t | C ) 

 Pr( x | C ) Pr( t | C )  

 

(A.4) 

Note that the last factor, Pr( t | C ), on both lines of equation (2.4) has an extremely natural, non-
parametric estimator: namely, the observed fractions of treated and untreated patients within 
cluster C. Furthermore, Pr( t=1 | C ) can be as extreme as 0 or 1, and cluster C is then said to be 
pure or uninformative about the corresponding local treatment difference (LTD). After all, such a 
cluster then contains either only treated patients or only untreated patients.  
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Consider the following heuristic argument that the Pr( x | t, C ) factor in the first line of equation 
(A.4) is asymptotically well represented by the Pr( x | C ) factor in the second line. First of all, 
observed treatment assignment is used in the approaches known as optimal matching, 
(Rosenbaum, 2003) or full matching (Hansen, 2004) that are designed specifically to prevent 
creating uninformative clusters. Supposing that a potential cluster contains only, for example, 
treated patients, full matching would then distort and extend that cluster until it includes at least 
one untreated patient (that is, the clustering algorithm is primarily based on observed x-vectors 
but is semi-supervised by t). On the other hand, even when clustering does not depend upon t-
assignment, Pr( x | t, C ) and Pr( x | C ) can still be quite different whenever cluster C is large. 

For example, the distribution of x–vectors within a very large cluster can be quite inelegant, with 
large separation of all treated patients from all untreated patients having occurred simply by 
accident. Furthermore, a large cluster might contain patients with a wide range of values for their 
true p = Pr( t=1 | x ). If Pr( x | t, C ) and Pr( x | C ) were equal in this case, cluster membership 
would again be a B/B score more coarse than the true p, which is impossible. 

At the opposite extreme, where all clusters contain only one patient, C = x and Pr( x | t, x ) = 
Pr( x | x ) is a degenerate distribution with unit mass at x. Thus, the smallest possible clusters are 
clearly exact B/B scores. 

OK, so when is cluster membership an approximate B/B score? When clusters are small, 
compact, and numerous, patients with the same rounded propensity scores could be in different 
clusters. For all practical purposes, this means that cluster membership has become an 
approximate B/B score finer than p but clearly coarser than individual x–vectors. Furthermore, 
this situation is likely to occur whenever Pr( t = 1 | x ) tends to be a smooth function of x and 
clusters have small x-space volume. Meanwhile, when these small clusters have not been 
distorted to prevent creation of uninformative clusters, the conditional distribution of x given both 
t and C is also clearly less dependent upon t-assignment. When all of this happens, one would 
certainly not need to confirm blocking (x-distribution balance between treatment groups within 
informative clusters); their local B/B properties will have been assured. This concept is illustrated 
in Figure A.2. 

First, note that the three-dimensional cubes depicted in Figure A.2 represent relatively small, 
compact, and numerous clusters. Here, the displayed clusters just happen to intersect a thin slab 
of rounded propensity score estimates from a fitted logistic regression model for treatment choice. 
Suppose now that the white cubes denote uninformative clusters while each dark cube contains at 
least one treated patient as well as at least one untreated patient. If the rounded propensity score 
estimates satisfied equation (A.2), then all of these clusters would need to have nearly the same 
within-cluster treatment fraction, namely the rounded estimate of p. Fortunately, there is no such 
restriction when using clusters to define B/B scores; the within-cluster treatment fraction is 
simply the observed local fraction. Furthermore, because each cluster is small and compact, the 
local x-distributions for treated and untreated patients must necessarily be quite similar, and the 
resulting B/B scores must be finer than propensity scores. 
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Figure A.2  The x-Space Geometry of Small, Compact, and Numerous Clusters that  
                    Intersect a Thin Slab of Rounded Propensity Score Estimates from Logistic  
                    Regression 

 

RReferences  
Angrist, J. D., G. W. Imbens, D. B. Rubin, J. M. Robins, et al. 1996. “Identification of causal 

effects using instrumental variables.” Journal of the American Statistical Association 91: 
444–472. 

Bang, H., and J. M. Robins. 2005. “Doubly robust estimation in missing data and causal inference 
models.” Biometrics 61(4): 962–973. 

Barlow, H. B. 1989. “Unsupervised learning.” Neural Computation 1(3): 295–311. 
Board on Life Sciences. 2003. Sharing Publication-Related Data and Materials: Responsibilities 

of Authorship in the Life Sciences. Washington, DC: The National Academies Press. 
Available at http://www.nap.edu/books/0309088593/html. 

Box, G. E. P. 1979. “Robustness Is the Strategy of Scientific Model Building.” Robustness in 
Statistics: Proceedings of a Workshop, 202. Edited by R. L. Launer and G. N. Wilkinson. 
New York: Academic Press. 

Cochran, W. G. 1965. “The planning of observational studies of human populations (with 
discussion).” Journal of the Royal Statistical Society A: (Statistics in Society) 128: 234–
266. 

Cochran, W. G. 1968. “The effectiveness of adjustment by subclassification in removing bias in 
observational studies.” Biometrics 24: 295–313. 

Concato, J., N. Shah, and R. I. Horwitz. 2000. “Randomized, controlled trials, observational 
studies, and the hierarchy of research designs.” The New England Journal of Medicine 
342: 1887–1892. 

D’Agostino, Jr., R. B. 1998. “Propensity score methods for bias reduction in the comparison of a 
treatment to a non-randomized control group. Statistics in Medicine 17: 2265–2281. 

D'Agostino, Jr., R. B., and D. B. Rubin. 2000. “Estimating and using propensity scores with 
partially missing data.” Journal of the American Statistical Association 95: 749–759. 

D'Agostino, Jr., R. B., W. Lang, M. Walkup, T. Morgan, and A. Karter. 2001. “Examining the 
impact of missing data on propensity score estimation in determining the effectiveness of 
self-monitoring of blood glucose (SMBG).” Health Services and Outcomes Research 
Methodology 2: 291–315. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



190   Analysis of Observational Health Care Data Using SAS 
 

Diaconis, P., S. Holmes, and R. Montgomery. 2007. “Dynamical bias in the coin toss.” SIAM 
Journal 49: 211–235. 

Efron, B. 1979. “Computers and the theory of statistics: thinking the unthinkable.” SIAM Review 
21: 460–480. 

Efron, B., and R. J. Tibshirani. 1993. An Introduction to the Bootstrap. London: Chapman & 
Hall/CRC. 

Federal Judicial Center. 2000. Reference Manual on Scientific Evidence. 2d ed. Available at 
http://www.fjc.gov/public/pdf.nsf/lookup/sciman00.pdf/$file/sciman00.pdf.  

Fisher, R. A. 1925. Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. 
Fraley, C., and A. E. Raftery. 2002. “Model-based clustering, discriminant analysis, and density 

estimation.” Journal of the American Statistical Association 97: 611–631. 
Gelman, A., and D. Nolan. 2002. “You can load a die but you can’t bias a coin.” The American 

Statistician 56: 308–311. 
Gu, C. 2002. Smoothing Spline ANOVA Models. New York: Springer-Verlag.  
Hansen, B. B. 2004. “Full matching in an observational study of coaching for the SAT.” Journal 

of the American Statistical Association 99: 609–618. 
Hayward R. A., D. M. Kent, S. Vijan, and T. P. Hofer. 2005. “Reporting clinical trial results to 

inform providers, payers and consumers.” Health Affairs 24(6): 1571–1581. 
Holland, P. W. 1986. “Statistics and causal inference.” Journal of the American Statistical 

Association 81: 945–960. 
Horvitz, D. G., and D. J. Thompson. 1952. “A generalization of sampling without replacement 

from a finite universe.” Journal of the American Statistical Association 47(260): 663–
685. 

Imbens, G. W., and J. D. Angrist. 1994. “Identification and estimation of local average treatment 
effects.” Econometrica 62: 467–475. 

Ioannidis, J. P. A. 2005. “Contradicted and initially stronger effects in highly cited clinical 
research.” The Journal of the American Medical Association 294: 218–229. 

Ioannidis, J. P. A. 2005. “Why most published research findings are false.” PLoS Medicine 2(8): 
e124. Available at 10.1371/journal.pmed.0020124. 

Kaufman, L., and P. J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster 
Analysis. New York: John Wiley & Sons, Inc. 

Kent, D. M., and R. A. Hayward. 2007. “Limitations of applying summary results of clinical 
trials to individual patients: the need for risk stratification.” The Journal of the American 
Medical Association 298(10): 1209–1212. 

Kent, D. M., and R. A. Hayward. 2007. “When averages hide individual differences in clinical 
trials.” American Scientist 95(1): 60–68. 

Kereiakes, D. J., R. L. Obenchain, B. L. Barber, A. Smith, M. McDonald, T. M. Broderick, J. P. 
Runyon, T. M. Shimshak, J. F. Schneider, C. R. Hattemer, E. M. Roth, D. D. Whang, D. 
L. Cocks, and C. W. Abbottsmith. 2000. “Abciximab provides cost-effective survival 
advantage in high volume interventional practice.” American Heart Journal 140(4): 603–
610. 

Leamer, E. E. 1978. Specification Searches: Ad Hoc Inference with Nonexperimental Data. New 
York: John Wiley & Sons, Inc. 

McClellan, M., B. J. McNeil, and J. P. Newhouse. 1994. “Does more intensive treatment of acute 
myocardial infarction in the elderly reduce mortality? Analysis using instrumental 
variables.” The Journal of the American Medical Association 272:859–866. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 7  Local Control Approach Using JMP   191 
 

McEntegart, D.J. 2003. “The pursuit of balance using stratified and dynamic randomization 
techniques: an overview.” Drug Information Journal 37: 293–308. 

Müllner, M., H. Matthews, and D. G. Altman. 2002. “Reporting on statistical methods to adjust 
for confounding: a cross-sectional survey.” [Brief Communication] Annals of Internal 
Medicine 136(2): 122–126.  

Newhouse, J. P., and M. McClellan. 1998. “Econometrics in outcomes research: the use of 
instrumental variables.” Annual Review of Public Health 19: 17–34. 

Obenchain, R. L. 2004. “Unsupervised propensity scoring: NN and IV plots. In ASA Proceedings 
of the Joint Statistical Meetings. Alexandria, VA: American Statistical Association, 
1899–1906. 

Obenchain, R. L. 2005. “USPS: R package for unsupervised and supervised propensity scoring 
and instrumental variable adjustment.” Available at http://www.r-project.org. 

Obenchain, R. L. 2006. “Identifying meaningful patient subgroups via clustering––sensitivity 
graphics.” In ASA Proceedings of the Joint Statistical Meetings. Alexandria, VA: 
American Statistical Association. 

Obenchain, R. L. 2009. JMP scripts for local control and artificial LTD distribution. Available at 
http://members.iquest.net/~softrx/other/LC_aLTD.zip. 

Obenchain, R. L., and C. A. Melfi. 1997. “Propensity score and Heckman adjustments for 
treatment selection bias in database studies.” In ASA Proceedings in the 
Biopharmaceutical Section. Alexandria, VA: American Statistical Association, 297–306. 

Pocock, S. J., S. E. Assmann, L. E. Enos, and L. E. Kasten. 2002. “Subgroup analysis, covariate 
adjustment and baseline comparisons in clinical trial reporting: current practice and 
problems.” Statistics in Medicine 21: 2917–2930. 

Rao, C. R. 1973. Linear Statistical Inference and Its Applications. 2d ed. New York: John Wiley 
& Sons, Inc.  

Robins, J. M., M. A. Hernan, and B. Brumback. 2000. “Marginal structural models and causal 
inference in epidemiology.” Epidemiology 11: 550–560.  

Rosenbaum, P. R. 2002. Observational Studies. 2d ed. New York: Springer-Verlag. 
Rosenbaum, P. R., and D. B. Rubin. 1983. “The central role of the propensity score in 

observational studies for causal effects.” Biometrika 70: 41–55. 
Rosenbaum, P. R., and D. B. Rubin. 1984. “Reducing bias in observational studies using 

subclassification on the propensity score.” Journal of the American Statistical  
Association 79: 516–524. 

Rubin, D. B. 1980. “Bias reduction using Mahalanobis-metric matching.” Biometrics 36: 293–
298. 

Rubin, D. B. 1997. “Estimating causal effects from large data sets using propensity scores.” 
Annals of Internal Medicine 127: 757–763. 

Salsburg, D. 2002. The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth 
Century. New York: Owl Books. 

Shah, B. R., A. Laupacis, J. E. Hux, and P. C. Austin. 2005. “Propensity score methods gave 
similar results to traditional regression modeling in observational studies: a systematic 
review.” Journal of Clinical Epidemiology 58(6): 550–559. 

Stürmer, T., M. Joshi, R. J. Glynn, J. Avorn, K. J. Rothman, and S. Schneeweiss. 2006. “A 
review of the application of propensity score methods yielded increasing use, advantages 
in specific settings, but not substantially different estimates compared with conventional 
multivariable methods.” Journal of Clinical Epidemiology 59(5): 437.e1–437.e24. 

Wainer, H., M. Gessaroli, and M. Verdi. 2006. “Finding what is not there through the unfortunate 
binning of results: the Mendel effect.” Chance 19: 49–52. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



192   Analysis of Observational Health Care Data Using SAS 
 

Wegman, E. J., and Q. Luo. 2002. “On methods of computer graphics for visualizing densities.” 
Journal of Computational and Graphical Statistics 11: 137–162. 

Yue, L. Q. 2007. “Statistical and regulatory issues with the application of propensity score 
analysis to nonrandomized medical device clinical studies.” Journal of 
Biopharmaceutical Statistics 17: 1–13. 

 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



 

 

 

Part 3 
 

Longitudinal Bias Adjustment 
  
 
 
Chapter 8    A Two-Stage Longitudinal Propensity Adjustment for Analysis  
                   of Observational Data ............................................................. 195 

Chapter 9    Analysis of Longitudinal Observational Data Using Marginal  
                   Structural Models .................................................................... 211 
Chapter 10  Structural Nested Models ........................................................ 231 

Chapter 11  Regression Models on Longitudinal Propensity Scores ............ 263 
 
 
  
 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



194   

 
Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



 

 

Chapter 8 
 
A Two-Stage Longitudinal Propensity Adjustment 
for Analysis of Observational Data 
  
       Andrew C. Leon 
      Donald Hedeker 
      Chunshan Li 
 
 
 
Abstract .................................................................................................. 195 

8.1  Introduction ...................................................................................... 195 

8.2  Longitudinal Model of Propensity for Treatment ................................ 196 

8.3  Longitudinal Propensity-Adjusted Treatment Effectiveness Analyses . 197 

8.4  Application ....................................................................................... 198 

8.5  Summary .......................................................................................... 207 

Acknowledgments .................................................................................... 208 

References .............................................................................................. 208 
 

Abstract 
A two-stage longitudinal propensity adjustment is described for treatment effectiveness analyses 
of observational data. The propensity score is estimated in a mixed-effects logistic regression 
model. Treatment effectiveness is then examined with quintile-stratified mixed-effects grouped-
time survival models. Tests of model assumptions are described, including representativeness of 
treatments in each quintile, treatment by quintile interaction, and balance between treatment 
groups. An application that evaluates the effectiveness of antidepressants is presented for 
illustration.    

8.1 Introduction 
Treatment effectiveness evaluations of observational data face several fundamental challenges. 
First, because of non-randomized treatment assignment, there is the clear possibility of non-
equivalent comparison groups. This is because selection biases often play a role in the particular 
treatment that is received by those in need. For instance, those who seek and receive treatment are 
likely to be more severely ill than those who do not. As a consequence, unadjusted effectiveness 
analyses would likely find that untreated subjects have better outcomes. In part, this is because 
the factors that contribute to treatment choices are confounding variables because they are also 
associated with outcome. Second, a longitudinal observation study will have repeated measures 
on many of the subjects. Third, unlike randomized controlled clinical trials, the duration of 
treatment is not standardized in a research protocol but instead determined by the clinician and 
the patient.  
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Rosenbaum and Rubin (1983) proposed the propensity score as a balancing score for comparison 
of non-equivalent comparison groups. They defined the propensity score as the conditional 
probability of assignment to receive a particular treatment given a vector of observed covariates 
(x):   

e(xi ) = P (Ti = 1 xi ), 

for subject i (i = 1, … , N), for Ti, which represents treatment.   

The propensity adjustment is used to reduce the impact of confounding variables on effectiveness 
analyses and, thus, the propensity score can reduce bias in estimates of treatment effect in an 
observational study (Rosenbaum and Rubin, 1983, 1984). They proposed implementation through 
matching, subclassification, or covariate adjustment, yet discussed caveats regarding use of the 
latter. Here we use subclassification, also called stratification. 

88.2 Longitudinal Model of Propensity for Treatment   
A strategy to implement the propensity for longitudinal, observational data has been proposed. It 
was a dynamic adaptation of the propensity adjustment for ordinal doses (Leon et al., 2001, 
2003). For simplicity, here we simply consider the longitudinal propensity adjustment for binary 
treatment. It is a two-stage, longitudinal data analytic strategy that includes a model of propensity 
for treatment and a model of treatment effectiveness. In the first stage, the propensity model 
examines repeated observations of binary treatment over time. The model can include multiple 
treatment intervals per subject over time and variations in both within-subject propensity for 
treatment and within-subject treatment over the course of the study. The model characterizes 
those who either did or did not receive treatment over time based on covariates such as clinical 
and demographic features. In the second stage, a treatment effectiveness model examines the time 
from the start of each treatment until a prespecified event. In this chapter we examine the time 
until recurrence.    

The mixed-effects framework accounts for the correlated recurrence times that represent the 
successive within-subject treatment intervals. A mixed-effects logistic regression model examines 
treatment as a function of these characteristics, whether time-invariant or time-varying:   

e(xij, i ) = P (Tij = 1 i,  xij ), 

for subject i (i = 1, … , N), at time j  (j = 1, … , Ji), and where i is a subject-specific random 
intercept. Assuming this mixed-effects logistic model, the propensity score, which ranges in value 
from 0 to 1, can be expressed using the logistic response function for subject i at time j as: 

,
exp1

exp
, '

'

iij

iij
iij x

x
xe  

A subject with a low propensity score presents as someone unlikely to receive treatment at time 
point j, whereas a subject with a high propensity score has characteristics of someone more likely 
to receive treatment.  
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88.3 Longitudinal Propensity-Adjusted Treatment  
Effectiveness Analyses  
The propensity adjustment is implemented in the treatment effectiveness analyses through 
stratification. This is based on the assumption that treatment assignment is ignorable within a 
propensity score stratum. (Here we stratify into quintiles.) Stated differently, within a quintile 
subjects who do and do not receive treatment will not differ on the covariates (x) that are included 
in the propensity score. Next, we discuss a method to examine the extent to which balance 
between groups has been achieved with the adjustment. Based on the ignorability assumption, 
causal inferences can be drawn regarding direct effects of treatment, conditioned on the random 
intercept. 

8.3.1  Propensity-Based Quintile Classification    
Based on the distribution of the propensity score, each observation of subject i at time j is 
classified into one propensity quintile, q(1) … q(5). The propensity score e(xij, i ) comprises both 
time-varying and time-invariant variables. Therefore, each subject’s propensity score varies over 
time and, consequently, the subject’s propensity quintile could also vary in a longitudinal study. 
Quintile classification is conducted so that treatment effectiveness analyses can be conducted 
separately for each quintile. The rationale is that this approach will remove much of the 
confounding effect of each variable that is included in the propensity score. However, before 
quintile-specific analyses can be conducted, the representation of each treatment group in each 
quintile must be examined. If a treatment is not well-represented in a particular quintile, of 
course, treatment effectiveness analyses cannot be conducted for that quintile. Quintile 
representation is evaluated by examining cell frequencies in a propensity quintile by treatment 
contingency table.   

8.3.2  Longitudinal Treatment Effectiveness Analyses 
The effectiveness of treatment is examined using survival analysis methods in which the time 
until recurrence of disease is the dependent variable. In the example used in this chapter, the 
measurement of survival is ascertained in time intervals, examining whether the event occurred 
since the prior follow-up visit. Therefore, a grouped-time approach to survival analysis is used. 
Furthermore, in an effort to incorporate all data throughout follow-up, which typically involves 
multiple observations per subject (for example, multiple recurrences), a mixed-effects grouped-
time survival analysis model is used (Hedeker et al., 2000). The model examines the probability 
of recurrence up to, and including, time interval t for observation j of subject i as:   

Pijt = Pr(tij t) 

Using a complementary log-log link function, the model is a proportional hazards regression 
model that describes the cumulative probability of recurrence as a function of treatment: 

Pijt =1-exp(-exp( t + x’ij  + i)) 

where t represents the intercept term (that is, the baseline hazard), x is an indicator variable to 
represent the treatment group, and i represents a random subject effect. Of note, marginal 
structural models, which we do not consider here, provide an alternative approach to evaluating  
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time-varying treatments in which inverse probability weighting attempts to produce between-
group balance in covariates. (See Chapter 9.)  

8.3.3  Effectiveness Analysis Stratification 
As stated earlier, the treatment effectiveness analyses are conducted separately for each 
propensity quintile. This is based on the work of Cochran (1968), who showed that quintile-
stratification on a confounding variable removes a substantial proportion of the bias associated 
with that variable. The quintile-specific estimates of treatment effectiveness are then pooled to 
obtain one unified estimate of the treatment effect.   

8.3.4  Pooling the Quintile-Specific Effectiveness Results    
The quintile-specific results are pooled using the Mantel-Haenszel (1959) procedure as described 
by Fleiss (1981). Using this strategy, each quintile-specific parameter estimate is weighted by the 
inverse of its squared standard error and the pooled estimate is calculated as a weighted mean. 
The strategy assumes that there is not a treatment by propensity interaction (that is, that the 
treatment effect does not differ across quintiles). We assess this assumption in analyses of the 
pooled data set, which includes all observations from the five quintiles. A likelihood ratio test 
compares two mixed-effects models:  

1. main effects terms for treatment and quintile (expressed with indicator variables)    
2. main effects and the interaction of treatment and quintile  

 
A significant interaction would indicate that the effect of treatment varies across propensity 
quintiles. In such a case, pooling of quintile-specific results is not indicated. Instead, treatment 
effectiveness conclusions must be reported at the quintile-specific level. In contrast, if there is no 
treatment by propensity interaction, the focus of the hypothesis test is the pooled treatment effect: 
H0: = 0.   

88.4 Application 
This application examines data from the National Institute of Mental Health Collaborative 
Depression Study. The study enrolled subjects with affective disorders from 1978–1981 who 
sought treatment for one of the major affective disorders at five medical centers in the United 
States (Boston, Chicago, Iowa City, New York, and St. Louis). Each subject provided written 
informed consent. The design and objectives of this longitudinal, observational study have been 
described elsewhere (Katz and Klerman, 1979). Subjects were followed with semi-annual 
assessments for the first five years and annual assessments for as much as 23 additional years. We 
examine somatic antidepressant treatment effectiveness for relapse prevention among those who 
recovered from unipolar major depression as defined by the Research Diagnostic Criteria (RDC) 
(Spitzer et al., 1978). The data that were used in the analyses reported here include up to 20 years 
of follow-up assessments.  
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8.4.1  Data Analytic Procedures 
The analyses proceeded in two stages, as previously described. Initially, the model of propensity 
for treatment examined the magnitude of the association of demographic and clinical variables 
that were hypothesized to be associated with receiving somatic antidepressant treatment. In this 
example, treatment was the binary dependent variable. (An ordinal treatment intensity variable, 
described in Keller, 1988, and Leon et al., 2003, was dichotomized so that a treatment intensity of 
0 was compared with intensities of 2, 3, and 4 combined. Intensity levels of 1 were excluded in 
the analyses for this application.) A mixed-effects logistic regression model was used because 
many subjects had multiple observations of treatment over time. A subject-specific random 
intercept was included in this model to account for the within-subject clustering of the repeated 
observations within subjects. 

The second stage involved a mixed-effects grouped-time survival model of antidepressant 
treatment effectiveness that examined the time from the start of the course of treatment until the 
recurrence of an affective episode. The survival variable, time until recurrence, represented the 
number of consecutive weeks during which treatment status (yes/no) remained unchanged during 
a well period. The survival intervals could terminate in one of three ways:  

1. recurrence of an affective episode    
2. change in treatment status  
3. end of follow-up  

 
The latter two were classified as censored. In these analyses, it was assumed that censoring due to 
the end of follow-up was unrelated to time until recurrence. Subjects accrued additional survival 
intervals, also referred to here as treatment intervals, with each new episode and each change in 
treatment status while in episode. Treatment intervals were the unit of analysis for both the 
propensity and effectiveness models. Thus the data set included multiple observations per subject, 
one observation for each treatment interval. The intervals represent the distinct courses of 
treatment, including no treatment, that each subject received. Separate propensity scores were 
calculated for each of the treatment intervals.   

8.4.2  Results 

8.4.2.1  Subjects  
Four hundred thirty-one subjects had major depressive disorder at study intake (Keller et al., 
1992). Eighty-two of those subjects were excluded from the analyses because they developed 
bipolar disorder and another 46 of them did not recover from their intake episode and, therefore, 
were also excluded. Of those who otherwise met criteria for these analyses, 19 were excluded due 
to missing covariate data required for calculating a propensity score. Therefore, the analyses 
described here include 284 subjects with 1,319 observations.  
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8.4.2.2  Propensity for Treatment 
The propensity models includes five variables: symptom severity (Psychiatric Status Rating, PSR, 
which ranges from 0 6: variable name meanpsr), symptom trajectory over the prior 8 weeks 
(increasing vs. decreasing vs. stable: symdec and syminc), educational status (colgrad, somecol, 
and highsch), age category (agelt30, age40t49, age50t59, and agege60), and study site (site1, 
site3, site4, and site5). (See Program 8.1.) Three of the findings in the model are highlighted. (See 
Output from Program 8.1.) Subjects with more severe symptoms were significantly more likely to 
receive treatment (odds ratio [OR]: 1.99; 95% confidence interval [CI]: 1.70 2.34). Those whose 
symptom severity decreased in the 8 weeks prior to the interval were marginally less likely to get 
treated (OR: 0.70; 95% CI: 0.49 1.02). Similarly, subjects from three of the study sites (New 
York, Iowa, and Chicago) were more likely to get treatment than were subjects from the other 
sites. Whether or not a subject received treatment, across the multiple treatment intervals, was 
moderately consistent over time (intraclass correlation coefficient=0.305). 

Program 8.1  Computing the Propensity Score with Mixed-Effects Logistic Regression 
TITLE1 'Performing Mixed-effects Logistic Regression of Propensity 
Model’; 
 
/* Propensity Analysis for Binary tx   */ 
/* Binary LOGISTIC RANDOM-INTERCEPT MODEL */ 
 
Data data1; 
 SET “c:\uniint.sas7bdat”; 
 
 
PROC NLMIXED; 
PARMS b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0 b8=0 b9=0 b10=0 b11=0 
b12=0 b13=0 b14=0 sd=1; 
z = b0 + b1*meanpsr + b2*colgrad + b3*somecol + b4*highsch + b5*site1 
+ b6*site3 + b7*site4 + b8*site5 + b9*agelt30 + b10*age40t49 + 
b11*age50t59 
  + b12*agege60 + b13*symdec + b14*syminc + sd*u; 
IF (tx=0) THEN  
  p = 1 – (1 / (1 + EXP(-z))); 
ELSE IF (tx=1) THEN 
  p = 1 / (1 + EXP(-z)); 
like = LOG(p); 
MODEL tx ~ GENERAL(like); 
RANDOM u ~ NORMAL(0,1) SUBJECT=id; 
PREDICT z OUT=zest; 
ESTIMATE 'ICC' sd*sd/((((ATAN(1)*4)**2)/3)+sd*sd); 
RUN; 
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Output from Program 8.1 
The NLMIXED Procedure 
 
                                                                                                                 
Observations Used                   1319                                                                         
Observations Not Used                  0                                                                         
Total Observations                  1319                                                                         
Subjects                             284                                                                         
Max Obs Per Subject                   27                                                                         
Parameters                            16                                                                         
Quadrature Points                      5                                                                         
                                                                                                                 
                                                                                                                 
          NOTE: GCONV convergence criterion satisfied.                                                           
                                                                                                                 
                                                                                                                 
             Fit Statistics                                                                                      
                                                                                                                 
-2 Log Likelihood                 1537.3                                                                         
AIC (smaller is better)           1569.3                                                                         
AICC (smaller is better)          1569.8                                                                         
BIC (smaller is better)           1627.7                                                                         
 
                                             Parameter Estimates                                                 
                                                                                                                 
                        Standard                                                                                 
Parameter   Estimate     Error    DF  t Value  Pr > |t|   Alpha     Lower     Upper    Gradient           
                                                                                                                 
b0          -3.5115     0.4758    283    -7.38   <.0001    0.05     -4.4481  -2.5749    0.003336           
b1           0.6898     0.08074   283     8.54   <.0001    0.05      0.5309   0.8487    0.008001           
b2           0.6704     0.3528    283     1.90   0.0584    0.05    -0.02410   1.3649    0.000295           
b3          -0.1628     0.3320    283    -0.49   0.6241    0.05    -0.8162    0.4906   -0.00037           
b4           0.4327     0.3210    283     1.35   0.1788    0.05    -0.1992    1.0645    0.003104           
b5           1.3591     0.4779    283     2.84   0.0048    0.05     0.4185    2.2997    0.001145           
b6           0.4026     0.3673    283     1.10   0.2739    0.05    -0.3203    1.1255   -0.00018           
b7           1.1222     0.3770    283     2.98   0.0032    0.05     0.3802    1.8642    0.000473           
b8           1.0876     0.4245    283     2.56   0.0109    0.05     0.2520    1.9232    0.0013           
b9          -0.5782     0.2439    283    -2.37   0.0184    0.05    -1.0584   -0.09803   0.000034           
b10          0.3813     0.2100    283     1.82   0.0705    0.05    -0.03206   0.7946    0.002361           
b11          0.2037     0.2979    283     0.68   0.4948    0.05    -0.3827    0.7900    0.000226           
b12          0.5608     0.3100    283     1.81   0.0715    0.05    -0.04930   1.1710    0.00244           
b13         -0.3508     0.1889    283    -1.86   0.0644    0.05    -0.7226    0.02108   0.000302           
b14          0.3339     0.2110    283     1.58   0.1148    0.05    -0.08154   0.7493    0.001543           
sd           1.2023     0.1390    283     8.65   <.0001    0.05     0.9287    1.4759    0.001859           
                                                                                                                 
                                                                                                                 
                                     Additional Estimates                                                        
                                                                                                                 
                     Standard                                                                                    
Label    Estimate       Error      DF    t Value    Pr > |t|     Alpha       Lower       Upper                   
                                                                                                                 
ICC        0.3053     0.04903     283       6.23      <.0001      0.05      0.2088      0.4018                   
                                                                                                                 
                                                                                                                 

The results of the propensity model (see Output from Program 8.1) were used to calculate a 
propensity score for each observation. Note that because time-varying covariates (that is, 
symptom severity and symptom trajectory) are included in the propensity score, the propensity 
score itself is time-varying. Each observation was then classified into one of the propensity score 
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quintiles. (See Program 8.2.) A contingency table is displayed to evaluate the representativeness 
of treatments in each quintile. (See Output from Program 8.2.) It is clear that subjects in the lower 
quintiles were less likely to receive treatment, whereas those in higher quintiles were more likely 
to receive treatment. This lends some support to the validity of the model. Importantly, each 
treatment group is represented in each quintile and, therefore, quintile-specific treatment 
effectiveness analyses can be used to compare the groups. 

Program 8.2  Quintile Stratification 
/* Generate QUINTILE values (0 to 4) based on estimates from above model */ 
DATA data2 (Keep = id event tx meanpsr colgrad somecol highsch site1 
site3 site6 site7 agelt30 age40t49 age50t59 agege60 symdec syminc surv2 
pred ppred); 
MERGE data1 zest;  
 
/* convert to probability scale */ 
ppred =  1 / (1 + EXP(-pred)); 
 
PROC RANK GROUPS=5 OUT=rankout; 
     VAR ppred; 
     RANKS QUINT; 
 
DATA all; SET rankout; 
q1=0;q2=0;q3=0;q4=0; 
if quint eq 1 then q1 = 1; 
if quint eq 2 then q2 = 1; 
if quint eq 3 then q3 = 1; 
if quint eq 4 then q4 = 1; 
 
/* Table of Quintile by tx */ 
PROC FREQ;  
TABLES tx*QUINT; 
RUN; 
 

Output from Program 8.2   
The FREQ Procedure 
 
Table of tx by QUINT 
 
tx(Treated yes/no)     QUINTILE(Rank for Variable ppred) 
 
Frequency| 
Percent  | 
Row Pct  | 
Col Pct  |       0|       1|       2|       3|       4|  Total 
---------+--------+--------+--------+--------+--------+ 
       0 |    247 |    224 |    169 |    104 |     24 |    768 
         |  18.73 |  16.98 |  12.81 |   7.88 |   1.82 |  58.23 
         |  32.16 |  29.17 |  22.01 |  13.54 |   3.13 | 
         |  93.92 |  84.85 |  64.02 |  39.39 |   9.09 | 
---------+--------+--------+--------+--------+--------+ 
       1 |     16 |     40 |     95 |    160 |    240 |    551 
         |   1.21 |   3.03 |   7.20 |  12.13 |  18.20 |  41.77 
         |   2.90 |   7.26 |  17.24 |  29.04 |  43.56 | 
         |   6.08 |  15.15 |  35.98 |  60.61 |  90.91 | 
---------+--------+--------+--------+--------+--------+ 
Total         263      264      264      264      264     1319 
            19.94    20.02    20.02    20.02    20.02   100.00 
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8.4.3  Treatment Effectiveness Analyses    
Initially, the treatment by propensity interaction was evaluated with a likelihood ratio test that 
compared the fit of the main effect model ( 2 log likelihood = 3203.7; see Output from Program 
8.5) with that of the main effects and interaction model ( 2 log likelihood = 3197.3; see Output 
from Program 8.6). The interaction is not statistically significant ( 2=6.40, df=4, p=0.171). 
Therefore, results from the quintile-specific treatment effectiveness analyses were pooled as 
described previously. The pooled results show that when subjects received somatic antidepressant 
therapy, they were 35% less likely to have a recurrence than when they did not receive somatic 
treatment (OR: exp [ 0.427] = 0.65; 95% CI: 0.50 0.85; see Output from Program 8.4), after 
controlling for propensity for treatment.  

Program 8.3  Quintile-Specific Treatment Effectiveness Analyses  
/* Analysis for Grouped-Time Survival – QUINTILE-SPECIFIC ANALYSES        
*/ 
/* Binary Complementary Log-Log RANDOM-INTERCEPT MODEL with censoring 
*/ 
PROC SORT; BY QUINT ID; 
PROC NLMIXED; 
PARMS b0=0 b1=0 sd=1 t2=1 t3=1.25 t4=1.5 t5=1.75 t6=2 t7=2.25; 
ODS OUTPUT ParameterEstimates=estb; 
z = b0 + b1*tx + sd*u; 
IF (event = 1) THEN   
DO;                                     /* event occurred */ 
  IF (surv2=1) THEN  
    p = 1 - EXP(0 - EXP(0+z)); 
  ELSE IF (surv2=2) THEN 
    p = (1 - EXP(0 - EXP(t2+z))) -  (1 - EXP(0 - EXP(0+z))); 
  ELSE IF (surv2=3) THEN 
    p = (1 - EXP(0 - EXP(t3+z))) -  (1 - EXP(0 - EXP(t2+z))); 
  ELSE IF (surv2=4) THEN 
    p = (1 - EXP(0 - EXP(t4+z))) -  (1 - EXP(0 - EXP(t3+z))); 
  ELSE IF (surv2=5) THEN 
    p = (1 - EXP(0 - EXP(t5+z))) -  (1 - EXP(0 - EXP(t4+z))); 
  ELSE IF (surv2=6) THEN 
    p = (1 - EXP(0 - EXP(t6+z))) -  (1 - EXP(0 - EXP(t5+z))); 
  ELSE IF (surv2=7) THEN 
    p = (1 - EXP(0 - EXP(t7+z))) -  (1 - EXP(0 - EXP(t6+z))); 
END; 
IF (event = 0) THEN   
DO;                      /* event did not occur - censored */ 
  IF (surv2=1) THEN  
    p = 1 - (1 - EXP(0 - EXP(0+z))); 
  ELSE IF (surv2=2) THEN 
    p = 1 - (1 - EXP(0 - EXP(t2+z))); 
  ELSE IF (surv2=3) THEN 
    p = 1 - (1 - EXP(0 - EXP(t3+z))); 
  ELSE IF (surv2=4) THEN 
    p = 1 - (1 - EXP(0 - EXP(t4+z))); 
  ELSE IF (surv2=5) THEN 
    p = 1 - (1 - EXP(0 - EXP(t5+z))); 
  ELSE IF (surv2=6) THEN 
    p = 1 - (1 - EXP(0 - EXP(t6+z))); 
  ELSE IF (surv2=7) THEN 
    p = 1 - (1 - EXP(0 - EXP(t7+z))); 
END; 
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like = LOG(p); 
MODEL surv2 ~ GENERAL(like); 
RANDOM u ~ NORMAL(0,1) SUBJECT=id; 
ESTIMATE 'ICC' sd*sd/((((ATAN(1)*4)**2)/6)+sd*sd); 
BY QUINT; 
RUN; 

Program 8.4  Pooling Quintile-Specific Treatment Effectiveness Results  
/* Generate pooled results based on results from the above quintile- 
   specific models */ 
DATA estw; SET estb; 
w = 1 / StandardError**2; 
west = Estimate*w; 
 
PROC SORT; BY Parameter; 
 
PROC MEANS NOPRINT; CLASS Parameter; VAR west w;  
OUTPUT OUT=sums SUM = sumwest sumw; 
 
DATA poolest; SET sums; IF _TYPE_ EQ 1; 
poolest = sumwest / sumw; 
poolse  = 1 / sqrt(sumw); 
poolz   = poolest / poolse; 
poolp   = 2*(1 - probnorm(abs(poolz))); 
 
/* Print the pooled results */ 
PROC PRINT; 
VAR Parameter poolest poolse poolz poolp; 
RUN; 

Output from Program 8.4 
Obs    Parameter     poolest     poolse      poolz      poolp 
 
 1        b0        -3.84229    0.23478    -16.3656    0.00000 
 2        b1        -0.42659    0.13324     -3.2016    0.00137 
 3        sd         0.13043    0.09210      1.4161    0.15674 
 4        t2         0.50464    0.13715      3.6795    0.00023 
 5        t3         0.89581    0.16553      5.4118    0.00000 
 6        t4         1.60004    0.19464      8.2204    0.00000 
 7        t5         2.45576    0.21083     11.6482    0.00000 
 8        t6         2.86478    0.21645     13.2354    0.00000 
 9        t7         4.10759    0.23911     17.1784    0.00000 

 
Program 8.5  Treatment Effectiveness Analyses Pooled across All Subjects: Main Effects  

/* Analysis for Grouped-Time Survival - all subjects – all QUINTILES  
   main effects */ 
/* Binary Complementary Log-Log RANDOM-INTERCEPT MODEL with censoring   */ 
PROC NLMIXED; 
PARMS b0=0 b1=0 b2=0 b3=0 b4=0 b5=0  sd=1   
      t2=1 t3=1.25 t4=1.5 t5=1.75 t6=2 t7=2.25; 
z = b0 + b1*tx + b2*q1 + b3*q2 + b4*q3 + b5*q4 + sd*u; 
 
...more SAS statements... 
 
like = LOG(p); 
MODEL surv2 ~ GENERAL(like); 
RANDOM u ~ NORMAL(0,1) SUBJECT=id; 
ESTIMATE 'ICC' sd*sd/((((ATAN(1)*4)**2)/6)+sd*sd); 
RUN; 
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Output from Program 8.5   
NOTE: GCONV convergence criterion satisfied. 
 
             Fit Statistics 
 
-2 Log Likelihood                 3203.7 
AIC (smaller is better)           3229.7 
AICC (smaller is better)          3230.0 
BIC (smaller is better)           3277.2 

 
 

Program 8.6  Treatment Effectiveness Analyses Pooled across All Subjects: Main Effects  
                       and Interactions 

 
/* Analysis for Grouped-Time Survival - all subjects – all QUINTILES 
main effects and interactions */ 
/* Binary Complementary Log-Log RANDOM-INTERCEPT MODEL with censoring    
*/ 
PROC NLMIXED; 
PARMS b0=0 b1=0 b2=0 b3=0 b4=0 b5=0 b6=0 b7=0  b8=0 b9=0 sd=1   
      t2=1 t3=1.25 t4=1.5 t5=1.75 t6=2 t7=2.25; 
z = b0 + b1*tx + b2*q1 + b3*q2 + b4*q3 + b5*q4  
       + b6*tx*q1 + b7*tx*q2 + b8*tx*q3 + b9*tx*q4 + sd*u; 
 
...more SAS statements... 
 
 
like = LOG(p); 
MODEL surv2 ~ GENERAL(like); 
RANDOM u ~ NORMAL(0,1) SUBJECT=id; 
ESTIMATE 'ICC' sd*sd/((((ATAN(1)*4)**2)/6)+sd*sd); 
RUN; 
 

Output from Program 8.6 
NOTE: GCONV convergence criterion satisfied. 
 
 
             Fit Statistics 
 
-2 Log Likelihood                 3197.3 
AIC (smaller is better)           3231.3 
AICC (smaller is better)          3231.7 
BIC (smaller is better)           3293.3 

 

8.4.4  Evaluating Balance across Treatment Groups    
The propensity score is a balancing score that, if assumptions are fulfilled, allows for comparison 
of non-equivalent groups. The extent to which balance has been achieved can be examined. In an 
effort to parallel the propensity adjustment that has been described, balance is examined here by 
using a quintile-stratification strategy in each of a series of mixed-effects models for the time-
varying variables that comprise the propensity score. In this case, however, the independent 
variable is the treatment group and the respective dependent variables in the successive models 
are the variables that were included in the propensity score. (Contrast this with the propensity 
model described previously in which the dependent variable is the treatment and the independent 
variables are those that are components of the propensity score.) If the primary objective of the 
propensity adjustment has been achieved, there would not be substantial differences between 
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treatment groups on each variable included in the propensity score. We illustrate this for one 
time-varying continuous variable, symptom severity (PSR). The results show that the magnitude 
of the association between treatment group and symptom severity has been muted (B=.589 and 
p<.0001 [in Output from Program 8.7] vs. B=0.037 and p=0.425 [in Output from Program 8.8]) 
and therefore, in the case of symptom severity, the objective has been achieved. Note that this 
examination must focus not simply on whether the statistical significance of the association has 
been attenuated but also on the reduction in the magnitude of the bivariate association between 
treatment and symptom severity.   

Program 8.7  Evaluating Balance of Psychiatric Status Rating (PSR) across Treatment  
                      Groups with No Propensity Adjustment   

Title2 "Compare the treatment groups on PSR using unadjusted model"; 
PROC SORT DATA=ALL; BY ID; 
RUN; 
PROC MIXED data =ALL; 
MODEL meanpsr = tx / S; 
RANDOM INTERCEPT / SUB=id; 
RUN; 

Output from Program 8.7 
Compare the treatment groups on PSR using unadjusted model 
 
The Mixed Procedure 
 
                   Solution for Fixed Effects 
 
                         Standard 
Effect       Estimate       Error      DF    t Value    Pr > |t| 
 
Intercept      2.4170     0.04891     283      49.42      <.0001 
tx             0.5889     0.06359    1034       9.26      <.0001 

 

Program 8.8  Evaluating Balance of Psychiatric Status Rating across Treatment Groups with  
                       a Propensity Adjustment   

Title2 "Compare the treatment groups on PSR using quintile 
adjustment"; 
/*Linear random intercept model*/ 
PROC SORT DATA=ALL; BY QUINT ID; 
 
PROC MIXED data=ALL; 
ODS OUTPUT SolutionF=estc1; 
MODEL meanpsr = tx / S; 
RANDOM INTERCEPT / SUB=id; 
BY QUINT; 
RUN; 
 
/* Generate pooled results based on results from the above quintile-
specific models */ 
DATA estw1; SET estc1; 
w = 1 / StdErr**2; 
west = Estimate*w; 
 
PROC SORT; BY Effect; 
 
PROC MEANS NOPRINT; CLASS Effect; VAR west w;  
OUTPUT OUT=sums1 SUM = sumwest sumw; 
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DATA poolest1; SET sums1; IF _TYPE_ EQ 1; 
poolest = sumwest / sumw; 
poolse  = 1 / sqrt(sumw); 
poolz   = poolest / poolse; 
poolp   = 2*(1 - probnorm(abs(poolz))); 
 
/* Print the pooled results */ 
PROC PRINT; 
VAR Effect poolest poolse poolz poolp; 
RUN; 

 

Output from Program 8.8 
Compare the treatment groups on PSR using quintile adjustment. 
 
Obs    Effect        poolest     poolse        poolz     poolp 
 
 1     Intercept     2.47631    0.044452     55.7073    0.00000 
 2     tx           -0.03650    0.045767     -0.7976    0.42512 

 
This approach is not necessary for time-invariant components of the propensity score (for 
example, ethnicity). Instead, a simpler approach (not shown here) is to compare the strength of 
the association of each (time-invariant) component of the propensity score (in this case, the 
independent variable) with treatment (in this case, the dependent variable). Results from two 
models, the unadjusted model and a propensity-adjusted model that includes four quintile 
indicator variables as covariates, can be compared (for example, see Leon et al., 2007). If balance 
is achieved, the propensity-adjusted models will show substantially attenuated, and presumably 
nonsignificant, associations.   

88.5 Summary 
A two-stage longitudinal propensity adjustment has been described for treatment effectiveness 
analyses of observational data. A mixed-effects logistic regression model is used to estimate the 
propensity for treatment, and quintile-stratified, mixed-effects, grouped-time survival models are 
used to estimate the treatment effect. Tests of three of the model assumptions have been 
described, including the representativeness of treatments in each quintile, the treatment by 
quintile interaction, and the balance.    

Finally, we mention two topics that have not been considered here. First, the impact of model 
propensity misspecification on cross-sectional and longitudinal analyses has been examined in 
simulation studies (Drake, 1993; Leon and Hedeker, 2007b). Sensitivity analyses to evaluate 
propensity model misspecification have been described in detail elsewhere (Rosenbaum, 2002). 
Second, the sample size required for the propensity adjustment has not been discussed. The 
choice of sample size is guided by statistical power analyses and the N needed for stable estimates 
in mixed-effects models, which each have been examined in simulation studies (Leon and 
Hedeker, 2005; Leon et al., 2007). The sample size is also driven by the stratification process, 
which necessitates analyses of five quintile-specific effectiveness models, each of which contains 
only 20% of the observations.  
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Abstract 
Assessing treatment effectiveness in longitudinal, observational data can be complex because in 
observational treatment patients can change medications at any time. In addition to the need to 
control for selection bias at baseline due to the lack of randomization, time-varying confounders 
can influence treatment changes over time and, thus, affect treatment group effectiveness 
comparisons. One approach to producing causal treatment effect estimates—even in the presence 
of treatment switching, missing data, and time-varying confounders—is to use marginal structural 
models. To illustrate, simulated data based on an observational schizophrenia study were 
analyzed using a marginal structural model approach. SAS code for performing the analysis is 
provided, and output using data from the schizophrenia study is examined. 

9.1 Introduction 
Assessing the causal effect of medications in longitudinal, observational (naturalistic) data 
presents analytical challenges—including the need to address selection bias; missing data; and 
switching, stopping, and augmenting medications. Addressing the issue of selection bias is 
critical because treatment groups likely differ in aspects other than treatment choice, and 
adjustment in the analysis is necessary (Rosenbaum and Rubin, 1983; Grimes and Schulz, 2002; 
Haro et al., 2006). In addressing data that are both longitudinal and observational, the issue of 
selection bias also extends to treatment switching over time (Robins et al., 2000, Hernán et al., 
2000) as patients may switch, stop, augment, or otherwise not comply for a variety of reasons. In 
addition, such patient/physician choices are typically based upon stochastic and/or time-varying 
factors that may well differ among treatments. Because of such issues, statistical methods 
commonly used for longitudinal analyses of randomized clinical trial data, such as intent-to-treat 
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(ITT) last observation carried forward (LOCF) or repeated measures models, may not be 
appropriate. 

ITT analyses group patients based only on their initial treatment assignment and ignore all 
information on other medications prescribed or taken. Patient dropout in such studies is often 
addressed by utilizing a LOCF approach. Clearly, such a technique does not directly address 
treatment effectiveness when there has been a substantial amount of switching among treatments. 
ITT analyses certainly have their place in longitudinal, observational research, such as in studies 
to compare policies or treatment strategies where one is not primarily interested in the effects of 
individual medications (Tunis et al., 2006). 

While utilizing repeated measures models with treatment as a time-dependent variable may seem 
to provide a simple solution, Hernán and colleagues (2004, 2005) explain that such an approach 
does not provide estimates with a causal interpretation (see the following) in the presence of time-
dependent confounders (a predictor of subsequent outcome and subsequent treatment) that are 
also affected by prior treatment. For instance, any longitudinal measure of disease severity would 
likely be problematic because it could be associated with the outcome measure, it could predict 
subsequent treatment, and it could have been affected by prior treatment. Thus, even if treatment 
is randomized at the beginning of a study, the result of usual-care treatment over time will 
ultimately result in imbalance in key patient characteristics among treatment groups. To address 
the switching of treatments, one could ignore the data after the medication switch and use 
standard repeated measures mixed models that have proven very useful in longitudinal data 
analyses (Verbeke and Molenberghs, 2000; Mallinckrodt et al., 2003). Such an approach treats 
the data after the switch as missing data but clearly does not make use of the information gathered 
after the medication switch. 

In this chapter, we examine the use of marginal structural models (MSMs) for longitudinal, 
observational data. To explain the potential benefits of the MSM approach, we first must briefly 
review the notions of counterfactual outcomes and causal effect. We will follow the notation 
provided by Hernán and colleagues (2002). Let a denote the treatment history for a patient over a 
period of time (for example, a  = [a(1), a(2), …,a(t)], where a(1) denotes the treatment used at 
time 1). A counterfactual outcome for patient i on treatment sequence a  denotes that patient’s 
outcome if, possibly contrary to fact, the patient received treatment a . It is denoted by )(

,
tY

ia
. 

Each patient has an unknown counterfactual outcome for each treatment he did not receive, plus 
an observed outcome for the treatment actually received. On an individual basis, treatment is said 
to have a causal effect on a patient’s outcome if )()(

,,
tYtY iaia

 for some time point t and 

treatment patterns a  and 'a . That is, the outcome for the patient differs based on the treatment 
taken. On a population basis, treatment is said to have a causal effect on outcome if the mean 
outcome had all patients followed a particular treatment pattern ( a  for example) differs from the 
mean outcome had all patients followed a different treatment pattern ( a  for example) (that 
is, )]([)]([ tYEtYE aa

 for some time point and treatment pattern).  

Robins and colleagues (1999) demonstrated that MSMs, under a set of assumptions discussed 
here, produce consistent estimates of the average causal treatment effects—even in the presence 
of treatment changes, time-dependent confounders, and missing at random study dropout. In this 
chapter, we first describe the MSM approach (Section 9.2) and then present the MSM analysis of 
a longitudinal schizophrenia study (Section 9.3). SAS code is provided, and SAS output is 
discussed to allow readers to understand the implementation of the analysis and to modify the 
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code for their own use. Faries and colleagues (2007) also summarize data from this study using a 
variety of methods, including MSMs. Some other applications of MSMs in the literature include 
Hernán and colleagues (2000, 2002), Ko and colleagues (2003), Brumback and colleagues 
(2004), and Cole and colleagues (2005), who examined time to event outcomes for HIV patients;  
and Bodnar and colleagues (2004), Yamaguchi and Ohashi (2004a and 2004b), Mortimer and 
colleagues (2005), Suarez and colleagues (2006), Peterson and colleagues (2007), and 
Vansteeldandt and colleagues (2009), who assessed other applications.  

99.2 MSM Methodology 
An MSM analysis is basically a weighted repeated measures approach – using treatment as a 
time-varying covariate. Weights, based on inverse probability of treatment weighting, control for 
time-dependent confounders and essentially produce a pseudo-population with balance in both 
time-invariant and time-varying covariates allowing for causal treatment comparisons using 
standard repeated measure models. The weighting can also be adjusted to incorporate adjustments 
for missing data—providing validity under missing at random (MAR; missing data may depend 
upon observed but not unobserved measures) and missing completely at random (MCAR; missing 
data does not depend upon observed or unobserved measures) data. 

Conducting an MSM analysis is a two-step process. First, one estimates two weights for each 
observation (patient visit): one adjusting for treatment selection and one adjusting for study 
discontinuation. Computation of these estimated weights can incorporate time-independent and 
time-dependent factors. The stabilized weight is recommended by Hernán (2002), and we use the 
notation from that manuscript (here for the treatment selection weight), 

t

k kLkAkAf

VkAkAf
SW

0 )](),1()([

]),1()([
 

where A(k) represents the treatment at time k and )1(kA  represents the treatment history prior 
to time k, V represents a vector of time-independent variables (baseline covariates), and 

)(kL represents a vector of time-varying covariates through time k—which includes baseline 
variables V. The numerator of the weight is the probability a patient is on the observed treatment 
at time k, given the prior treatment history and baseline covariates. The denominator is basically 
the same factor, except it incorporates time-varying covariates as predictors. Thus, one can see 
that observations where the time-varying factors are strong predictors of the current treatment 
selection are down-weighted in the analyses (because such observations are over-represented in 
the observed data). 

To incorporate adjustment for early patient dropout, the same stabilized weight approach is 
used—except the outcome is not treatment selection but a flag variable denoting whether the 
patient remained in the study. The final weight for each patient’s observation is obtained by 
multiplying the treatment selection weights and the censoring weights. 

For the second step of the MSM analysis, one simply conducts a weighted repeated measures 
model analysis using generalized estimating equations. In this second stage, time-dependent 
confounders are not included in the repeated measures model—as their effects have been 
incorporated into the weights. Treatment is included as a time-dependent factor, and time-
invariant covariates may also be included as appropriate (just as in a cross-sectional analysis 
where variables may be included in a propensity model and in the analysis model). 
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As mentioned previously, MSMs can produce consistent estimates of the average causal 
treatment effects—even in the presence of treatment changes, time-dependent confounders, and 
missing at random study dropout. The assumptions necessary for causal inference from an MSM 
correspond to the same assumptions necessary for common cross-sectional bias control methods 
such as propensity scoring: 

1. no unmeasured confounders—that is, all variables that relate to treatment assignment and 
outcome were collected and utilized in the analysis; called conditional exchangeability; 
formally: )(),1()()1( kLkAkAtYa , for all a and .kt  

2. positivity—there is a positive probability of each treatment for each set of covariates (no 
perfect confounding); formally 0)](),1()([0)](),1([ klkakafklkaf . 

3. use of the correct models (weighting and analysis models). 
 

As strong assumptions are necessary, assessing the appropriateness of the assumptions and 
performing sensitivity analyses are critical to a quality analysis. The no unmeasured confounders 
and correct models assumptions can never be fully proven and are discussed here. The positivity 
assumption basically says that all treatment options are possible given any combination of 
covariate values. Mortimer and colleagues (2005) recommended assessing this by computing 
predicted probabilities of treatment selection using the covariates from the models across the 
entire study (looking for 0 or 1 predicted probabilities). Mortimer and colleagues (2005) also 
provide an example of assessing the correctness of the models used in an MSM analysis using test 
and training data sets. 

To limit the possibility of unmeasured confounding, every effort should be made to identify and 
collect data on potential confounders by searching the literature, examining relevant data, having 
discussions with experts, and utilizing potential confounding variables in the analysis. Such 
diligence will still never allow one to completely conclude no bias is unaccounted for, but an 
analyst first needs to make sure that all known confounders are addressed. Robins and colleagues 
(1999) and Brumback and colleagues (2004) have also provided a more formal method to study 
the sensitivity of an MSM analysis to unmeasured confounding. They quantify such confounding 
through a sensitivity parameter (alpha) and confounding function and assess the amount of 
unmeasured confounding that can be present before inferences would change. The confounding 
function (or alpha itself when a simple constant function is used) represents the difference in 
potential outcomes between patients in the different treatment groups. We use a simple constant 
function in our analysis, referring the reader to Brumback and colleagues (2004) for more 
options. 

9.3 Example: MSM Analysis of a Simulated Schizophrenia  
 Trial 

9.3.1  Study Description 
To illustrate the implementation of an MSM analysis, we simulated data based on a study of the 
effectiveness of medications for patients with schizophrenia in usual-care settings. A brief 
description of the design for the actual study follows, though the reader is referred to Tunis and 
colleagues (2006) for details. This was a one-year study of patients with schizophrenia, 
schizoaffective disorder, or schizophreniform disorder who were randomized to one of three 
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different treatment regimens. After randomization, the remainder of the study was observational 
in the sense that physicians/patients were allowed to stop or switch medications as deemed 
necessary in usual practice. Data on a variety of domains were captured at five post-baseline 
visits (approximately 2 weeks and 2, 5, 8, and 12 months post-baseline). The outcome measure of 
interest for this analysis was the Brief Psychiatric Rating Scale (BPRS) total score, a measure of 
schizophrenia symptom severity where lower scores indicate lesser symptom severity. For 
demonstrative purposes, we simulated data for this analysis (see Tunis et al., 2006, for actual data 
results) maintaining the design and data structure and focused the final comparison between two 
groups rather than three. These groups are referred to as treatment and control during this 
example analysis. However, each treatment is considered as a separate treatment in the analytical 
steps until the final model to demonstrate how one can handle more than two groups with the 
MSM approach. 

9.3.2  Data Analysis 

9.3.2.1  Data Overview 
Before conducting the MSM analysis, we provide a brief summary of the simulated data 
pertaining to medication changes and the steps taken to prepare the data set for analysis. The 
treatment groups were balanced with respect to demographics and baseline patient characteristics 
due to the randomization. After randomization, study discontinuation was similar across the 
treatment groups though rates of switching medication differed, with almost half (47.7%) of the 
control group (treatment C) switching medications during the study with a lower rate for the 
treatment group (treatment groups A and B pooled; 20.4%). At each visit, patients were 
considered to be on a particular medication if they had been treated with that medication for at 
least the previous 14 days. Given this definition, on 41.6% of the 2,548 patient visits during the 
study, patients were taking treatment A, 25.1% were taking treatment B, 23.8% were taking 
treatment C, 4.8% were taking both A and C, and 4.8% were not taking any antipsychotic 
medication. A total of 17 patient visits were excluded from the analysis due to small sample sizes 
for certain treatment combinations (A and B n=16; A and B and C n=1). In addition, 
approximately 4% of the patient visits had missing covariate information (see the list of 
covariates later) that was imputed using a LOCF approach. Outcome data were not imputed, only 
covariate data and only when the outcome measure was available. The analysis data set, INPDS, 
used a one observation per patient per visit format. A description of the key variables follows.   

Table 9.1  Description of Key Variables in MSM Analysis 

Variable Description  Variable Description 
INVSC Investigator number  BPRS BPRS at this visit 
PATSC Patient number  GAFC GAF at this visit 
AGEYRS Age in years  EVNT Events during visit 
GENDER Gender  HOSP Hosp. during visit 
ORIGIN2 Race  PR1TRTA Trt A previous visit 
THERAPY Randomized trtmnt  PR1TRTB Trt B previous visit 
VIS Visit number  PR1TRTC Trt C previous visit 
BAVAR Baseline BPRS total  PR1BPRS Previous vis BPRS 
BGAF Baseline GAF score  PR1GAF Previous vis GAF 
BEVNT Baseline adv events  PR1EVNT Previous vis event 
BHOSP Baseline hospitaliz.  PR1HOSP Previous vis hosp 

                                                                                                                                                 (continued) 
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Table 9.1  (continued) 

Variable Description  Variable Description 
TRTA On Trt A during vis    
TRTB On Trt B during vis    
TRTC On Trt C during vis    
TRT Treatment during vis    

9.3.2.2  Computation of Inverse Weights 
Step one in conducting the MSM analysis requires estimation of the treatment selection and 
censoring weights (using the formula for stabilized weights [SW] from Section 9.2). For 
estimating the treatment selection weights, separate multinomial models for the numerator and 
denominator were implemented using PROC LOGISTIC with the LINK= GLOGIT option (see 
Program 9.1). Treatment was the dependent variable for both models and the GLOGIT option 
was used because the treatment choice at each visit had five potential outcomes (three individual 
treatments, no treatment, and one combination). Output from the LOGISTIC procedure contains 
the predicted probabilities of treatment selection (data sets PREDTRT0 and PREDTRT1). In 
addition to previous treatment, the following time-varying covariates were included in this model: 

 BPRS total 
 global assessment of functioning (GAF)  
 events (the presence or absence of at least one moderate or severe adverse event) 
 hospitalization  

 
These variables were chosen a priori to cover the domains of symptom severity, functioning, 
tolerability, and resource utilization. Time-independent variables included in this initial model 
included age, gender, ethnicity, and baseline value for each of the time-dependent variables. 
Macro variables could be utilized to input all model parameters at the beginning of the code; 
however, we chose to simplify the understanding of the process by simply showing the models 
directly in the LOGISTIC statements. In addition, output from the weight models is suppressed 
for simplification of the output. However, one can easily remove the restriction to evaluate the 
weight model in more detail.  

PROC GENMOD was used to compute the estimated stabilized weights to adjust for censoring 
using a logistic regression model (see Program 9.1). The dependent variable for the censoring 
weight model was a binary flag for remaining in the study. The independent variables for this 
model were the same as for the treatment selection weight model—though the time-varying 
covariates were offset by one visit due to the structure of the data as censoring looked forward 
(did the patient return for a following visit?) relative to treatment (what was the treatment 
assigned in the previous time period?). The Logit LINK function was used here because the 
outcome measure was binomial. The GENMOD approach could be used for both weight 
calculations in studies where only two treatment groups are assessed.  

Partial output from the multinomial and logistic regression denominator weights models is 
provided in the Output from Program 9.1. Previous treatment was the strongest predictor of 
present treatment. None of the time-varying covariates were strong predictors of treatment 
changes—suggesting bias in treatment selection over time may not be particularly strong in these 
data. Along with previous treatment, higher (time-varying) symptom severity was found to be a 
predictor of censoring. Patients with more severe symptoms were more likely to discontinue from 
the study.  
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Program 9.1  Computing Treatment Selection and Censoring Weights 
/* This section of code computes the treatment selection and censoring 
weights. This is accomplished in 4 steps:      
1) multinomial model to compute numerator of treatment selection weights;    
2) multinomial model to compute denominator of treatment selection weights;   
3) binomial model to compute numerator of censoring adjustment weights;  
4) binomial model to compute denominator of censoring adjustment weights.*/ 
 
/* treatment selection weights:  numerator calculation  
(probability of treatment using only baseline covariates) */ 
PROC LOGISTIC DATA = INPDS; 
  CLASS VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP BEVNT;  
  MODEL TRT = VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP 
  BEVNT AGEYRS BGAF BBPRS  
    /LINK=GLOGIT; 
  OUTPUT OUT=PREDTRT0(WHERE=(TRT=_LEVEL_)) PRED=PREDTRT0; 
run; 
 
/* treatment selection weights:  denominator calculation  
(probability of treatment with baseline covariates and time-dependent 
covariates) */ 
PROC LOGISTIC DATA = INPDS; 
  CLASS VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP BEVNT 
        PR1EVNT PR1HOSP;  
  MODEL TRT = VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP 
     BEVNT AGEYRS BGAF BBPRS PR1EVNT PR1HOSP PR1BPRS PR1GAFC  
    /LINK=GLOGIT; 
  OUTPUT OUT=PREDTRT1(WHERE=(TRT=_LEVEL_)) PRED=PREDTRT1; 
run; 
 
/* censoring adjustment weights:  numerator calculation  
(probability of censoring using only baseline covariates) */ 
ODS LISTING EXCLUDE OBSTATS; 
PROC GENMOD DATA = INPDS; 
  CLASS PATSC   VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT; 
  MODEL CFLAG = VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT  
                AGEYRS BGAF BBPRS  
    /DIST = BIN LINK = LOGIT TYPE3 OBSTATS; 
  REPEATED SUBJECT = PATSC / TYPE = EXCH; 
  ODS OUTPUT OBSTATS = PREDCEN0(RENAME=(PRED=PREDCEN0)); 
run; 
ODS LISTING SELECT ALL; 
 
/* censoring adjustment weights:  denominator calculation  
(probability of censoring using baseline covariates and time-dependent 
covariates) */ 
ODS LISTING EXCLUDE OBSTATS; 
PROC GENMOD DATA = INPDS; 
  CLASS PATSC VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT 
  EVNT HOSP; 
  MODEL CFLAG = VIS THERAPY TRTA TRTB TRTC GENDER ORIGIN2 BHOSP BEVNT 
          EVNT HOSP AGEYRS BGAF BBPRS BPRS GAFC  
    /DIST = BIN LINK = LOGIT TYPE3 OBSTATS; 
  REPEATED SUBJECT = PATSC / TYPE = EXCH; 
  ODS OUTPUT OBSTATS = PREDCEN1(RENAME=(PRED=PREDCEN1)); 
run; 
ODS LISTING SELECT ALL; 
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Output from Program 9.1 
                          weight denominator model: treatment weights 
 
                                 Type 3 Analysis of Effects 
 
                                                   Wald 
                          Effect       DF    Chi-Square    Pr > ChiSq 
 
                          VIS          16      124.2743        <.0001 
                          THERAPY       8       11.8349        0.1587 
                          PR1TRTA       4      229.7185        <.0001 
                          PR1TRTB       4      100.6526        <.0001 
                          PR1TRTC       4      269.8939        <.0001 
                          GENDER        4        3.3971        0.4937 
                          ORIGIN2       8       10.4911        0.2322 
                          BHOSP         4        0.4611        0.9772 
                          BEVNT         4        3.0900        0.5429 
                          AGEYRS        4        1.4473        0.8359 
                          BGAF          4        1.9736        0.7406 
                          BBPRS         4        2.2390        0.6919 
                          PR1EVNT       4        7.5905        0.1078 
                          PR1HOSP       4        4.6487        0.3253 
                          PR1BPRS       4        2.5962        0.6275 
                          PR1GAFC       4        2.5983        0.6271 
 
 
                        weight denominator model: censoring weights 
 
                           Score Statistics For Type 3 GEE Analysis 
 
                                                    Chi- 
                          Source           DF     Square    Pr > ChiSq 
 
                          VIS               4      13.21        0.0103 
                          THERAPY           2       9.04        0.0109 
                          TRTA              1       3.95        0.0468 
                          TRTB              1       3.74        0.0532 
                          TRTC              1       0.39        0.5346 
                          GENDER            1       0.15        0.6964 
                          ORIGIN2           2       0.99        0.6087 
                          BHOSP             1       0.88        0.3473 
                          BEVNT             1       0.93        0.3338 
                          EVNT              1       0.61        0.4338 
                          HOSP              1       0.05        0.8163 
                          AGEYRS            1       4.89        0.0270 
                          BGAF              1       0.04        0.8431 
                          BBPRS             1       0.67        0.4115 
                          BPRS              1      12.21        0.0005 
                          GAFC              1       0.32        0.5726 
 

                        

To produce the overall weights for each observation (patient visit) in this analysis, the inverse 
probability weights for treatment selection and censoring computed here were multiplied together 
cumulatively in a DATA step based on the formula for SW in Section 9.2 (see Program 9.2). In 
the SAS code, the SQL procedure gathers data from the four output data sets from the treatment 
selection and weight models (PREDTRT0, PREDTRT1, PREDCENS0, and PREDCENS1) and 
produces the stabilized weights. Variable STABWT is the final estimate of SW. Output from 
Program 9.2 displays the distribution of the final weights across all patient visits in box plot form. 
The mean is near 1 (mean = 1.002, SD = 0.1555), as would be expected from the average of 
weights, and no major outliers were noted in the box plot.  
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Program 9.2  Merging Output from Program 9.1 
/* This section of code performs the steps necessary to merge the output 
from the weight models (Program 9.1) to allow for computation of a single 
adjustment for each observation in the analysis data set (stabilized 
weight). This is followed by code to produce summaries of the final 
weights.   */ 
 
PROC SQL; 
  /*ratio of probabilities for treatment*/ 
  CREATE TABLE PREDTRT AS 
    SELECT *,PREDTRT0/PREDTRT1 AS PREDTRT 
    FROM PREDTRT1(KEEP=PATSC VIS PREDTRT1) 
         NATURAL FULL JOIN 
         PREDTRT0(KEEP=PATSC VIS PREDTRT0) 
    ORDER PATSC,VIS 
  ; 
  /*ratio of probabilities for censoring*/ 
  CREATE TABLE PREDCEN AS 
    SELECT *,PREDCEN0/PREDCEN1 AS PREDCEN 
    FROM (SELECT INPUT(PATSC,BEST.) AS PATSC, INPUT(VIS,BEST.) AS VIS, 
PREDCEN0 FROM PREDCEN0) 
         NATURAL FULL JOIN 
         (SELECT INPUT(PATSC,BEST.) AS PATSC, INPUT(VIS,BEST.) AS VIS, 
PREDCEN1 FROM PREDCEN1) 
    ORDER PATSC,VIS; 
QUIT; 
 
/*calculate stabilized weight*/ 
PROC SORT DATA=INPDS OUT=WEIGHTS; 
  BY PATSC VIS; 
RUN; 
 
DATA WEIGHTS; 
  MERGE WEIGHTS PREDTRT PREDCEN;  
  BY PATSC VIS; 
  VWT=PREDTRT*PREDCEN; 
  IF FIRST.PATSC THEN STABWT=VWT;    
                 ELSE STABWT=VWT*DUM; 
  RETAIN DUM; 
  DROP DUM; 
  DUM=STABWT; 
RUN; 
 
/*diagnostic plot for weights*/ 
DATA GRPH; 
  SET WEIGHTS; /*assignment of months to visits is study-specific*/ 
  IF VIS = 3 THEN MONTH = 0.5; 
  IF VIS = 4 THEN MONTH = 2; 
  IF VIS = 5 THEN MONTH = 5; 
  IF VIS = 6 THEN MONTH = 8; 
  IF VIS = 7 THEN MONTH = 12; 
 
  IF MONTH = 0.5 THEN DELETE; /*simplify plot by focusing on months  
     with greater switching and thus greatest variability in weights */ 
RUN; 
 
PROC SORT DATA = GRPH;  
  BY MONTH;  
RUN; 
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ODS RTF FILE="%SYSFUNC(PATHNAME(WORK))\FIG1.RTF"; 
 
FILENAME FIGURE "%SYSFUNC(PATHNAME(WORK))\SASGRAPH.EMF"; 
 
GOPTIONS RESET=ALL TARGET=SASEMF DEVICE=SASEMF FTEXT=DUPLEX HTEXT=.75 
   CBACK=WHITE XMAX=6IN XPIXELS=1200 YMAX=5IN YPIXELS=1000  
   GSFNAME=FIGURE GSFMODE=REPLACE; 
 
SYMBOL1 COLOR=BLACK INTERPOL=JOIN 
        WIDTH=2 VALUE=SQUARE 
        HEIGHT=1; 
 
AXIS1 MINOR = NONE COLOR = BLACK LABEL=("STABILIZED WEIGHT" ANGLE=90 
ROTATE=0); 
 
PROC BOXPLOT DATA=GRPH; 
  PLOT STABWT*MONTH / CFRAME = WHITE    
                      CBOXES = DAGR 
                      CBOXFILL = WHITE 
                      VAXIS = AXIS1; 
  TITLE "SUMMARY OF VISITWISE WEIGHT VALUES"; 
  TITLE2 "(box and whiskers: min, 1st quartile, median, 3rd quartile, max; 
square: mean)"; 
RUN; 
 
GOPTIONS RESET=ALL; 
 
ODS RTF CLOSE; 

 

Output from Program 9.2  
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9.3.2.3  Treatment Effectiveness Analysis Model 
The final step of the MSM analysis is to estimate causal treatment effects using a weighted 
repeated measures model with generalized estimating equations (PROC GENMOD—see 
Program 9.3) and an exchangeable correlation matrix. Change from baseline BPRS total score 
was the dependent measure in the analysis model. Independent variables for the analysis model 
were investigational site, age, gender, race, baseline BPRS, visit, time-varying treatment, and the 
treatment-by-visit interaction. The WEIGHT statement in PROC GENMOD incorporates the 
inverse probability weighting, which allows for the causal treatment effect estimates. The 
ESTIMATE statement utilized in PROC GENMOD pooled individual treatments together and 
produced estimated mean group differences for pooled groups (as opposed to comparing 
individual treatment groups). This portion of the code is not necessary for many applications. 
Output from Program 9.3 displays a summary of the final model results and a figure displaying 
the least squares means at each visit. Results showed a statistically significant treatment 
difference favoring the treatment group (pooled treatments A and B) relative to the control group, 
with an estimated average treatment difference in BPRS changes of 1.8 [0.4, 3.2], p=.015 across 
the 1-year period. Though treatment differences grew numerically over time, the treatment-by-
visit interaction term was not statistically significant (p=.158).  

Program 9.3  Running Final Analysis Model 
/* This section of code runs the final analysis model using a weighted 
repeated measures approach. The results are presented graphically using 
PROC GPLOT.*/ 
 
/*final analysis model*/ 
PROC GENMOD DATA = WEIGHTS; 
  CLASS VIS PATSC GENDER ORIGIN2 INVSC TRT; 
  WEIGHT STABWT; 
  MODEL CAVAR = INVSC BAVAR VIS AGEYRS GENDER ORIGIN2 TRT VIS*TRT 
                / DIST=NORMAL LINK=ID TYPE3; 
  REPEATED SUBJECT = PATSC / TYPE=EXCH; 
  LSMEANS TRT VIS*TRT / PDIFF; 
  TITLE 'MSM FINAL ANALYSIS MODEL'; 
  ESTIMATE 'A+B VS C'  
    TRT 0 .5 .5 -1 0; 
  ESTIMATE 'A+B VS C AT VIS 3'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 .5 .5 -1 0     0 0 0 0 0     0 0 0 0 0    
            0  0  0  0 0     0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 4'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0      0 .5 .5 -1 0  0 0 0 0 0    
            0 0 0 0 0       0  0  0  0 0; 
  ESTIMATE 'A+B VS C AT VIS 5'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 .5 .5 -1 0 
            0 0 0 0 0  0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 6'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0    
            0 .5 .5 -1 0 0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 7'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0    
            0 0 0 0 0  0 .5 .5 -1 0; 
  ODS OUTPUT LSMEANS=LSMEANS; 
RUN; 
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/*LS means plot for the final model*/ 
DATA LSMEANS2; 
  SET LSMEANS; 
  WHERE TRT IN ('A__','_B_','__C'); 
  IF TRT IN ('A__','_B_') THEN TRT2='A+B'; 
                          ELSE TRT2='C  '; 
RUN; 
 
PROC SQL; 
  CREATE TABLE LSMEANS3 AS 
    SELECT TRT2 AS TRT, VIS, MEAN(ESTIMATE) AS ESTIMATE 
    FROM LSMEANS2 
    GROUP TRT2, VIS; 
QUIT; 
 
ODS RTF FILE="%SYSFUNC(PATHNAME(WORK))\FIG2.RTF"; 
 
FILENAME FIGURE "%SYSFUNC(PATHNAME(WORK))\SASGRAPH.EMF"; 
 
GOPTIONS RESET=ALL TARGET=SASEMF DEVICE=SASEMF FTEXT=DUPLEX HTEXT=.75 
CBACK=WHITE  
         XMAX=6IN XPIXELS=1200 YMAX=5IN YPIXELS=1000 GSFNAME=FIGURE 
GSFMODE=REPLACE; 
 
AXIS1 MINOR = NONE COLOR = BLACK LABEL=(ANGLE=90 ROTATE=0 "CHANGE IN BPRS 
TOTAL SCORE"); 
 
SYMBOL1 I=JOIN W=2 L=1 C=RED   V=SQUARE; 
SYMBOL2 I=JOIN W=2 L=2 C=BLACK V=CIRCLE; 
 
PROC GPLOT DATA=LSMEANS3; 
  PLOT ESTIMATE*VIS=TRT/VAXIS=AXIS1; 
  TITLE "MSM ESTIMATED MEAN CHANGE FROM BASELINE BPRS SCORES"; 
  LABEL VIS="VISIT"; 
  LABEL TRT="TREATMENT"; 
RUN; 
 
GOPTIONS RESET=ALL; 
 
ODS RTF CLOSE; 
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Output from Program 9.3 
 
                                 MSM FINAL ANALYSIS MODEL 
                           Score Statistics For Type 3 GEE Analysis 
 
                                                    Chi- 
                          Source           DF     Square    Pr > ChiSq 
 
                          INVSC            19      84.25        <.0001 
                          BAVAR             1      71.12        <.0001 
                          VIS               4      37.69        <.0001 
                          AGEYRS            1       0.80        0.3725 
                          GENDER            1       0.09        0.7624 
                          ORIGIN2           2       0.86        0.6500 
                          TRT               4      11.70        0.0197 
                          VIS*TRT          16      21.57        0.1576  
 
 
                                   Contrast Estimate Results 
 
                              Standard                                Chi- 
Label               Estimate   Error   Alpha  Confidence Limits   Square   Pr > ChiSq 
 
A+B VS C            -1.7852   0.7321    0.05   -3.2201   -0.3504    5.95       0.0147 
A+B VS C AT VIS 3   -0.7336   0.9615    0.05   -2.6181    1.1509    0.58       0.4455 
A+B VS C AT VIS 4   -1.1225   0.9417    0.05   -2.9682    0.7232    1.42       0.2333 
A+B VS C AT VIS 5   -1.7746   1.2532    0.05   -4.2307    0.6815    2.01       0.1567 
A+B VS C AT VIS 6   -2.1785   1.2752    0.05   -4.6778    0.3208    2.92       0.0876 
A+B VS C AT VIS 7   -3.1169   1.3185    0.05   -5.7012   -0.5327    5.59       0.0181 
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9.3.2.4  Sensitivity Analysis  
To assess the robustness of the findings, one should evaluate the plausibility of the three main 
assumptions for causality (no unmeasured confounding, positivity, correct model) as well as 
implementing other statistical methods that are based on different assumptions. Regarding the 
unmeasured confounding assumption, effort was made to collect and incorporate information 
from experts and the literature on potential confounders prior to the analysis. The variables 
included in the model were selected in order to cover the domains of symptom severity, 
functioning, tolerability, and resource use burden. To assess the potential impact of unmeasured 
confounding on the results, we implemented a simple, unmeasured confounding function (we 
chose a constant function alpha) based on Brumback and colleagues (2004). Using this function, a 
missing confounder resulting in a shift of 0.45 (in BPRS total score) in potential outcomes on the 
BPRS scale favoring patients with high probability of being in the treatment group would result 
in a loss of the statistically significant finding. In other words, our finding of a significant 
difference between groups depends upon the assumption that such a confounder (or a group of 
confounders combining to have the same effect) does not exist. Multiple constants were evaluated 
using the ALPHA=c statement in the SAS code (see Program 9.4). The value of 0.45 was retained 
because this was the smallest value producing a p-value of approximately 0.05. While it is 
challenging to interpret the implications of a particular alpha, such an effect (<1 point on BPRS) 
does not appear to be extremely large, and the existence of such a confounder is certainly possible 
in an actual application. However, it is greater than the observed confounding (the difference 
between unweighted and weighted analyses) of 0.29 in the opposite direction observed in this 
study. Regardless of the sensitivity analysis results, one can simply not dismiss the possibility of 
unaccounted for factors that would result in this analysis failing to produce an estimate of a causal 
treatment effect. Thus, one must view the results with some caution. Different sensitivity 
functions can easily be tested using the provided SAS code by altering the calculation of the 
variables CAVAR_SENS and SAPT. 

Program 9.4  Finding Level of Confounding That Would Eliminate Treatment Difference 
/* This section of code examines the sensitivity of the results to 
unmeasured confounding by finding the level of confounding that would 
eliminate the observed treatment difference.*/ 
  
/*sensitivity analysis per Brumback et al. (2004) - constant  
function alpha is used*/ 
DATA WEIGHTSS; 
  SET WEIGHTS;  
  BY PATSC VIS; 
  IF TRT IN ('A__','_B_') THEN SNSTRT = 1; 
                          ELSE SNSTRT = -1; 
  SAVT = -SNSTRT*(1 - PREDTRT1); 
  IF FIRST.PATSC THEN SAPT = SAVT; 
                 ELSE SAPT = SAVT + DUM; 
  RETAIN DUM; 
  DROP DUM; 
  DUM=SAPT; 
  ALPHA = 0.45;  
  CAVAR_SENS = CAVAR - ALPHA*SAPT; 
RUN;  
 
PROC GENMOD DATA = WEIGHTSS; 
  CLASS VIS PATSC GENDER ORIGIN2 INVSC TRT; 
  WEIGHT STABWT; 
  MODEL CAVAR_SENS = INVSC BAVAR VIS AGEYRS GENDER ORIGIN2 TRT VIS*TRT 
                / DIST=NORMAL LINK=ID TYPE3; 
  REPEATED SUBJECT = PATSC / TYPE=EXCH; 
  LSMEANS TRT VIS*TRT / PDIFF; 
  TITLE 'MSM SENSITIVITY ANALYSIS: ALPHA = 0.45'; 
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  ESTIMATE 'A+B VS C'  
    TRT 0 .5 .5 -1 0; 
  ESTIMATE 'A+B VS C AT VIS 3'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 .5 .5 -1 0     0 0 0 0 0     0 0 0 0 0    
            0  0  0  0 0     0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 4'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0      0 .5 .5 -1 0  0 0 0 0 0    
            0 0 0 0 0       0  0  0  0 0; 
  ESTIMATE 'A+B VS C AT VIS 5'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 .5 .5 -1 0 
            0 0 0 0 0  0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 6'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0    
            0 .5 .5 -1 0  0 0 0 0 0; 
  ESTIMATE 'A+B VS C AT VIS 7'  
    TRT 0 .5 .5 -1 0 
    VIS*TRT 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0    
            0 0 0 0 0  0 .5 .5 -1 0; 
RUN; 
 

Output from Program 9.4 
                       MSM SENSITIVITY ANALYSIS: ALPHA = 0.45     
    
                                 Contrast Estimate Results 
 
                              Standard                               Chi- 
Label               Estimate   Error  Alpha   Confidence Limits   Square   Pr > ChiSq 
 
A+B VS C             -1.3911  0.7303   0.05    -2.8224    0.0402    3.63       0.0568 
A+B VS C AT VIS 3    -0.6203  0.9615   0.05    -2.5048    1.2642    0.42       0.5188 
A+B VS C AT VIS 4    -0.8879  0.9417   0.05    -2.7335    0.9577    0.89       0.3457 
A+B VS C AT VIS 5    -1.3184  1.2534   0.05    -3.7750    1.1383     1.11       0.292 
A+B VS C AT VIS 6    -1.6479  1.2726   0.05    -4.1422    0.8464    1.68       0.1954 
A+B VS C AT VIS 7    -2.4810  1.3143   0.05    -5.0569    0.0950    3.56       0.0591 

 

To assess the positivity assumption, we followed the ideas of Mortimer and colleagues (2005) 
and estimated the probability of selection of each of the five treatment possibilities using all 
possible covariates across all study visits. The CATMOD procedure is used here in order to 
generate predicted probabilities for all possible treatment options. While theoretically there were 
no issues with the positivity assumption in this study (all patients had the opportunity of being 
switched from and to any combination of treatments at any time), the goal was to assess whether 
any observed set of covariates produced a predicted probability of 0 or 1 for this set of data. This 
was done as shown with Program 9.5 where we computed the predicted probabilities of treatment 
for each observed set of covariates and then summarized the predicted probabilities (summary 
statistics using PROC MEANS by treatment). We observed that the smallest (nonzero but 
<.00015) probabilities were for the theoretical switch from no treatment to the combination of 
treatments A and C at earlier study visits. In general, the smaller probabilities were associated 
with the no treatment and combination treatment groups—as would be expected given their 
observed frequencies. Sensitivity analyses were then performed without the more extreme records 
and then with combination patients re-assigned to the initial randomized single treatment (for 
example, a patient randomized to treatment A but treated with A and C would be counted as 
being treated only with treatment A). No major changes in the inferences were observed from 
these sensitivity analyses and these results are not shown. 
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Program 9.5  Examining Positivity Assumption for Causal Inference 
/* This section of code examines the positivity assumption for causal 
inference by examining the predicted values of all possible treatment 
changes. Summary statistics are presented as well as a listing to allow 
examination of outliers.*/ 
 
/*positivity check Mortimer (2005) - generate predicted probabilities*/ 
ODS LISTING CLOSE; 
PROC CATMOD DATA = INPDS; 
  DIRECT AGEYRS BGAF BBPRS PR1BPRS PR1GAFC; 
  MODEL TRT = VIS THERAPY PR1TRTA PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP 
      BEVNT AGEYRS BGAF BBPRS PR1EVNT PR1HOSP PR1BPRS PR1GAFC  
        /PRED=PROB; 
  ODS OUTPUT PREDICTEDPROBS=PREDTRT1POS(KEEP=VIS TRT THERAPY PR1TRTA 
             PR1TRTB PR1TRTC GENDER ORIGIN2 BHOSP BEVNT AGEYRS BGAF  
   BBPRS PR1EVNT PR1HOSP PR1BPRS PR1GAFC  
             SAMPLE OBSFUNCTION PREDFUNCTION 
              RENAME=(PREDFUNCTION=PREDTRT1)); 
RUN; 
ODS LISTING; 
 
ODS RTF FILE="%SYSFUNC(PATHNAME(WORK))\FIG3.RTF"; 
 
FILENAME FIGURE "%SYSFUNC(PATHNAME(WORK))\SASGRAPH.EMF"; 
 
GOPTIONS RESET=ALL TARGET=SASEMF DEVICE=SASEMF FTEXT=DUPLEX HTEXT=.75  
         CBACK=WHITE XMAX=6IN XPIXELS=1200 YMAX=5IN YPIXELS=1000 
GSFNAME=FIGURE GSFMODE=REPLACE; 
 
PROC UNIVARIATE DATA = PREDTRT1POS; 
  VAR PREDTRT1; 
  HISTOGRAM; 
  PROBPLOT; 
  TITLE 'SUMMARY STATS ON PREDICTED VALUES';  
RUN; 
 
GOPTIONS RESET=ALL; 
 
ODS RTF CLOSE; 
 
PROC MEANS DATA = PREDTRT1POS; 
  CLASS TRT; 
  VAR PREDTRT1; 
  TITLE 'Positivity Check: Summary Stats on Predicted Values by Observed 
Treatment';  
RUN; 
 
PROC SORT DATA = PREDTRT1POS; 
  BY PREDTRT1;  
RUN; 
 
PROC PRINT DATA = PREDTRT1POS; 
  TITLE 'Positivity Check: Sorted Listing of Predicted Values';  
RUN; 
 
   * (PROC PRINT output not shown but is used to identify individual 
patients with combinations of covariates with extreme values *; 
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Output from Program 9.5 
       Positivity Check: Summary Stats on Predicted Values by Observed Treatment 
 
                                The MEANS Procedure 
 
                  Analysis Variable : PREDTRT1 Predicted: Probability 
 
 TRT    N Obs       N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 A_C     2547    2547       0.0475067       0.1254780               0       0.9758886 
 
 A__     2547    2547       0.4157827       0.4165088    4.0755123E-7       0.9999826 
 
 _B_     2547    2547       0.2508929       0.3999598    1.8471036E-8       0.9999993 
 
 __C     2547    2547       0.2383188       0.3699969    3.4082211E-7       0.9998542 
 
 ___     2547    2547       0.0474988       0.1179316               0       0.9817690 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 

 
In addition to the assessment of the no unmeasured confounders and positivity assumptions, the 
appropriateness of the models was assessed by adding interactions, quadratic terms, and other 
potential confounder variables to the models. No significant changes to the outcome were noted. 
The model assessment was done by adjusting the appropriate models in the SAS code—which 
could be automated by putting the model variables as macro variables at the top of the code. In 
addition, we analyzed the data using other methods:  an ITT LOCF analysis (using all data), a 
repeated measures model (excluding data after a medication switch) and an epoch analysis (see 
Chapter 8). Analysis of these simulated data using a simple ITT LOCF analysis failed to show a 
significant difference between treated and control groups (estimated difference of 1.16, p=.334). 
The repeated measures mixed model (discarding the data after switching) and epoch analyses 
results were fairly similar to the MSM approach.  The disagreement between the ITT analysis and 
other analyses appears to be a result of ignoring treatment information for the data after a 
treatment switch, as discussed by Faries and colleagues (2007). Switchers from treatment C 
performed well after the switch to treatments A and B, information not attributed to treatments A 
and B in the ITT analysis.  

99.4 Discussion 
This chapter has presented the issue of assessing the effects of treatment in longitudinal, 
observational data—with a focus on addressing treatment switching using MSM. We were 
interested in the performance of MSM because this approach utilizes all of the study data and 
produces consistent estimates of the causal effect of treatments, even when there are treatment 
switching, missing data, and time-varying confounders. Validity of the MSM analysis rests on 
three key assumptions:  

1. no unmeasured confounding  
2. positivity 
3. correct models 

 
Also, the missing data are assumed to follow a missing completely at random (MCAR) or missing 
at random (MAR) pattern. Thus, well-planned sensitivity analyses are important. This should 
include an assessment of the assumptions supporting the causal effect estimation by the MSM as 
well as use of other methodology supported by differing assumptions. In addition, presentation of 
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results should make it clear to the reader that causal interpretation of the results rests on 
unverifiable assumptions as well as being transparent about which steps were taken to assess the 
robustness of the results. 

In summary, marginal structural models are a promising approach for estimating the causal 
effects of treatment in longitudinal, observational data. Other chapters in this book provide details 
on alternative methodologies.  
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Abstract 
This chapter reviews Robins’ Structural Nested Mean Model (SNMM) for assessing the effect of 
predictors that vary over time. The SNMM is used to study the effects of time-varying predictors 
(or treatments) in the presence of time-varying covariates that are moderators of these effects. We 
describe a SAS implementation of a maximum likelihood (ML) estimator of the parameters of an 
SNMM using PROC NLP. The proposed ML estimator requires correct model specification of 
the distribution of the primary outcome given the history of time-varying moderators and 
predictors, including proper specification of both the causal and non-causal portions of the 
SNMM. The estimator also relies on correct model specification of the observed data distribution 
of the putative time-varying moderators given the past. We illustrate the methodology and SAS 
implementation using data from a weight loss study. In the empirical example, we assess the 
impact of early versus later weight loss (or gain) on end-of-study health-related quality of life as a 
function of prior weight loss and time-varying covariates thought to be moderators of these 
effects. 
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110.1  Introduction 
Longitudinal randomized trials are now commonplace in clinical research. This, together with the 
growing number of health-outcomes databases and improved access to medical records for 
research purposes, has given rise to an abundance of data sets in which patients contribute 
measures on a large number of variables repeatedly over time. This wealth of longitudinal data, in 
turn, has allowed researchers to examine more varied and detailed scientific questions 
concerning, for example, the etiology of diseases or the different causal pathways through which 
behavioral and other medical interventions produce positive health effects. Due to the ample 
availability of longitudinal data, these questions often involve time-varying predictors or 
treatments of interest (in addition to possibly longitudinal outcomes). Because the primary time-
varying predictors (or treatments) of interest—that is, the primary independent or right-hand side 
variables of interest—often are not (or, as in the case of this chapter’s motivating example, cannot 
be) randomized or directly manipulated by experimentation, empirical longitudinal studies of this 
sort are often termed observational studies. 

The methodology we discuss in this chapter focuses on a particular type of question involving 
time-varying predictors (or treatments). Specifically, we are interested in conceptualizing and 
estimating scientific questions concerning time-varying causal effect moderation (Petersen et al., 
2007; Almirall et al., 2009). 

To illustrate, informally, what we mean by time-varying effect moderation, consider a 
simplification of our motivating example (described in more detail in Section 10.4) in which 
repeated measures of body weight (Zj) and a dichotomous time-varying covariate (Xj), exercise 
(yes/no), are available at multiple time points  j (j = 0,1,2,…,T) over the course of a study. We 
define measures of body weight change between successive time points as Dj = Zj – Zj-1 (j=1, 
2,…, T). Suppose our outcome is a health-related quality of life measure (QOL = Y), available at 
the end of study (at or after time T). Using these data, at each time point j we are interested in 
asking how the impact of weight loss or weight gain (Dj) on end-of-study health-related quality of 
life (Y) differs as a function of the history of exercise through time j-1. In other words, we are 
interested in the effect of Dj on Y as a function of (X0, X1,…, Xj-1). Thus, by time-varying causal 
effect moderation we refer to the way in which the time-varying covariate exercise moderates 
(changes, tempers, or modifies) the causal effects of the time-varying predictor weight loss or 
weight gain on end-of-study health-related quality of life (HRQOL). 

In our motivating example, identifying and understanding time-varying moderators of the effect 
of weight change on health-related quality of life is important because it enhances our 
understanding of the causal pathways by which weight loss (or gain) leads to improved (or 
decreased) health-related quality of life. The process also can help us to better appreciate the 
relationship among the outcome (HRQOL), time-varying moderators (for example, exercise), and 
factors that do not vary with time but may moderate both the outcome and the time-varying 
moderators. Examples of these factors include patient characteristics (for example, demographics, 
medical diagnoses) and weight loss intervention type (for example, diet composition, weight loss 
medication, bariatric surgery) or structure (for example, visit frequency, individual vs. group 
sessions). This specified knowledge can be used to corroborate old hypotheses or to generate new 
ideas about the relationships among weight loss, health-related quality of life, and time-varying 
moderators of both weight loss and HRQOL, including exercise or adherence to the intervention. 
This additional knowledge, in turn, may help clinicians predict the positive health effects of 
weight loss given current knowledge about a patient’s exercise behavior and/or adherence to diet. 
It may also serve as a guide that behavioral scientists can use to help develop future interventions 
for weight loss or body weight management. 
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In linear regression models, effect moderation (or effect modification) is typically associated with 
interaction terms between the primary predictor variable and the covariate (or putative moderator) 
of interest. For example, in the point-predictor setting in which the primary predictor D, weight 
change, and the covariate of interest, X, do not vary over time, the following regression model 
could be used to study effect moderation: 

                                                 E(Y | X, D) = 0 + 1X + 2D + 3DX                                          (1) 
 

In this model, the cross-product term quantifies the extent to which the impact of D on Y varies 
according to levels of X. That is, a one- 2 + 3X 
unit change in health-related quality of life at the end of the study, which differs by the levels of 
X, exercise (yes/no). Thus, in this model, 3 = 0 is evidence that there is no effect moderation by 
X, or exercise level.  

Unfortunately, this regression modeling strategy does not translate straightforwardly to the time-
varying setting. Consider the following extended model for the time-varying setting where T = 2: 

              E(Y | X0, D1, X1, D2 0 1X0 2D1 3D1X0 4X1 5D2 6D2X1 7D2X0 8X0X1  (2) 

 
In this model, X0 is exercise level prior to baseline (j=0), X1 is exercise level between time j=0 
and time j=1, D1 is weight change between baseline (j=0) and time j=1, and D2 is weight change 
between time j=1 and time j=2. Even if (2) is the correct model (that is, the correct functional 
form) for the conditional expectation (association) of Y given (X0, D1, X1, D2), the parameters 
associated with the D1 and the D1X0 cross-product terms may not necessarily represent the 
conditional causal effect of weight change D1 on end-of-study quality of life Y within levels of 
exercise  X0. 2 + 3X0 may or may not represent the true conditional causal 
effect of unit changes in weight change (between baseline and j = 1) on end-of-study quality of 
life. 

The problem with naively extending the cross-product modeling strategy to the time-varying 
setting, as in (2), is that it is not clear what causal effects, if any, the coefficients of D1 and D1X0 
in (2) are measuring. The main source of the problem (for causal inference) is that model (2) 
conditions on X1 (exercise level between time j=0 and j=1), which is likely affected by D1, weight 
loss or weight gain between time j=0 and time j=1 (Robins, 1987, 1989, 1994, 1997, 1999a; Bray 
et al., 2006). This has two undesirable consequences. First, naively conditioning on X1 cuts off 
any portion of the effect of weight change (D1) on Y that is transmitted using X1; that is, the 

2 + 3X0 does not include the effects (including effect moderation by X0) of D1 on Y that 
are mediated (Baron and Kenny, 1986; Kraemer et al., 2001) by X1. Second, naively conditioning 
on X1 2 3) due to nuisance associations between X1 and Y 
that are not on the causal pathway between D1 and Y. These include nuisance associations due to 
variables that are related to both X1 and Y. Thus, while the scientist wishes to condition on the 
time-varying covariate X because of interest in X’s role as a time-varying moderator of the effect 
of time-varying D on Y, doing so in the traditional way (that is, using standard regression 
adjustment) is not suitable because of the potential for bias. 

Robins’ Structural Nested Mean Model (1994) overcomes these problems by clearly specifying 
the causal and non-causal portions of the conditional mean of Y given the past (the history of 
weight change and time-varying moderators). The SNMM clarifies the meaning of causal effect 
moderation when both primary predictors of interest and putative moderators are time varying. 
The SNMM serves as a guide for properly incorporating potential time-varying moderators in the 
linear regression. 
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In Section 10.2 we define, more formally, what is meant by time-varying effect moderation in the 
context of a causal model for the conditional mean of the outcome given the past (that is, using 
Robins’ SNMM). In Section 10.3 we describe a maximum likelihood (ML) estimator of 
parameters of the SNMM. In Section 10.4, we demonstrate a SAS PROC NLP implementation of 
the ML estimator using real data from a weight loss study. In the empirical example, we assess 
the impact of early versus later weight loss (or gain) on end-of-study vitality (a health-related 
quality of life measure) as a function of prior weight loss and time-varying covariates (exercise, 
diet adherence, and prior vitality scores) thought to be moderators of these effects. 

110.2  Time-Varying Causal Effect Moderation 

10.2.1  Notation 
We rely on the potential outcomes notation to define the causal parameters of interest 
(Rubin, 1974; Holland, 1986, 1990). As described briefly in the introduction, we consider 
the following general temporal data structure: 
 
                  (X0, d1, X1(d1), d2,…, XT-1(d1, d2,…, dT-1),  dT,  Y(d1, d2,…, dT )).                     (3) 
 
In this notation, dj (j = 1, 2,…, T) is an index for the primary time-varying predictor variable (for 
example, time-varying weight change) at time j. In our example, dj is the change in body weight 
defined as the difference between weight at the current visit (time j) and the previous visit (at 
time j-1). For instance, (d1, d2) = (-3, 0) denotes a loss of 3 pounds in body weight between the 
first and second visits and no change in body weight between the second and third visits. We use 
lowercase dj to distinguish it from the observed data predictors, which are random variables, 
denoted by uppercase Dj (see Section 10.3). Xj(d1, d2,…, dj) (j = 1,2,…,T-1), possibly a vector, 
denotes the time-varying covariate(s) (the putative time-varying moderator(s) of interest) at time 
j. X0 may include assignment to a diet type or structure, baseline patient traits, characteristics, or 
demographics (such as age, race, gender, and income), as well as baseline measures of the time-
varying covariates. We impose no restriction on the type of time-varying covariates considered; 
Xj(d1, d2,…, dj) and X0 may be continuous or categorical. Finally, Y(d1, d2,…, dT ) denotes the 
potential outcome at the end of the study (that is, occurring after dT ; for example, end-of-study 
health-related quality of life). In this chapter, we consider only continuous, unbounded outcomes 
Y. For example, Y(d1, d2,…, dT ) is the outcome a patient would have had had they lost (or gained) 
weight over the course of the study in increments (decrements) of (d1, d2,…, dT ). That is, Y(d1, 
d2,…, dT ) describes the end-of-study outcome under a particular trajectory or course of weight 
loss or gain. Note that in our notation, Xj(d1, d2,…, dj) (j = 1,2,…,T-1) are also indexed by dj 
because they are potentially affected by prior levels of dj. That is, they are also conceived as 
potential outcomes. Indeed, the vector of time-varying covariates may include prior time-varying 
instances of the primary outcome variable Y(d1, d2,…, dT ). For instance, in the context of our 
motivating example, prior levels of quality of life may also moderate the future impact of weight 
loss on end-of-study quality of life. 

We use the underscore notation as short-hand to denote the history of a variable or index, as 
follows:  

dj = (d1, d2,…, dj); 
Xj(dj) = (X0, X1(d1), X2(d2), …, Xj(dj)); and 

Y(dT) = Y(d1, d2,…, dT ). 
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In this chapter, we do not consider longitudinal outcomes; we consider only outcomes measured 
at the end of the study (post-dT). Therefore, we do not index the outcome Y(dT) by a subscript 
denoting time. It is possible, however, to extend the methods presented here to handle 
longitudinal outcomes (Robins, 1994). 

10.2.2  Robins’ Structural Nested Mean Model 
In this subsection, we define our primary causal functions of interest in the context of Robins’ 
SNNM. In general, there are T causal effect functions of interest, one per time point. For 
simplicity, we present the SNMM in the simple T = 2 post-baseline (meaning, post-X0) time 
points setting. Thus, we have the following objects to define our causal effects with: 

                                                (X0,  d1,  X1(d1),  d2,  Y(d1, d2)).                                         
 
The first causal effect is denoted by 

                                        μ1(X0 ,d1) = E( Y(d1, 0) – Y(0, 0) | X0).                                      (4) 
 
μ1(X0 ,d1) is the average causal effect of (d1,0) versus (0,0) on the outcome conditional on X0. In 
the context of our motivating example, μ1(X0 ,d1) represents the causal effect on end-of-study 
health-related quality of life of having lost (or gained) d1 pounds between the first and second 
visits to the clinic and no change in weight thereafter (Y(d1, 0)) versus no change in weight during 
the entire study (Y(0, 0)), as a function of X0, baseline exercise and/or other demographic 
characteristics that are a part of X0. 

The second causal effect is defined as 

                                     μ2(X1(d1),d2) = E( Y(d1,d2) – Y(d1,0) | X1(d1)),                             (5) 
 
which is the average causal effect of (d1,d2) versus (d1,0) on the outcome, conditional on both X0 
and X1(d1). In the context of our motivating example, μ2(X1(d1),d2) represents the causal effect on 
end-of-study health-related quality of life of having lost (or gained) d2 pounds between the second 
and third visits to the clinic (Y(d1,d2)) versus no change in weight between the second and third 
visits to the clinic (Y(d1,0)) as a function of both X0 and X1(d1), and supposing a change in weight 
of d1 between the first and second clinic visits.  

In our example, then, μ1(X0 ,d1) captures the effect of losing (or gaining) weight early on in the 
study and not losing any weight thereafter, whereas, μ2(X1(d1),d2)  captures the effect of losing (or 
gaining) weight later on in the study. In addition, by conditioning on the history of time-varying 
covariates, these functions allow us to model the average effect of losing weight early versus later 
while taking into account changing patterns in the evolving state of patients in terms of Xj (for 
example, exercise). 

Robins’ SNMM is a particular additive decomposition of the conditional mean of Y(d1,d2) given 
X1(d1) that includes the functions μ1(X0 ,d1) and μ2(X1(d1),d2) as part of the decomposition. 
Specifically, for T = 2 the SNMM can be written as follows:  

          E( Y(d1,d2) | X1(d1) ) = 0 + 1(X0) + μ1(X0 ,d1)  + 2(X1(d1)) + μ2(X1(d1),d2),        (6) 
 

0 is the intercept equal to E( Y(0,0) ), which is the mean outcome under no weight gain or 
loss during the course of the study. 1(X0 2(X1(d1)) are defined to make the 
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right-hand side of (5) equal the conditional mean of Y(d1,d2) given X1(d1). That is, the functions 
1(X0 2(X1(d1)) are defined as follows: 

                                          1(X0) = E( Y(0,0) | X0) – E( Y(0,0) )                                     (7) 
 
                               2(X1(d1)) = E( Y(d1,0) | X1(d1)) – E( Y(d1,0) | X0)                            (8) 

 
1(X0 2(X1(d1)) as nuisance functions to distinguish them from our 

primary causal functions of interest, μ1(X0 ,d1) and μ2(X1(d1),d2). They connote both causal and 
non-causal relationships (associations) between the time-varying moderators and the outcome Y. 

The components of the SNMM exhibit two properties, which dictate how we model these 
quantities:   

First, we note that μj = 0 whenever dj = 0.                                                                                     (9) 
Second, the nuisance functions are mean-zero functions conditional on the past:                      (10) 
         j(Xj-1(dj-1)) | Xj-2 ) = 0.  
 
Thus, in the T = 2 time points setting, for instance: 

a. 1(X0) ) = 0, where the expectation is over the X0 random variable(s), and 
b. 2(X1(d1)) | X0 ) = 0,where the expectation is over the X1(d1) random variable(s) 

conditional on X0.  
 

Property (9) makes sense because causal effects should be 0 when comparing the same course of 
weight change over time, regardless of covariate history. Property (10) is what makes the SNMM 
a non-standard regression model because it is a function of conditional mean-zero error terms. 

2(X1(d1)) captures the mean association between Y(d1,0) and having more (X1(d1)) 
versus less (X0) covariate information. Property (10) indicates that this information deficit can be 
expressed as a function of the mean residual information in X1(d1) not explained by d1 and X0 
(which has mean zero). Recognition of the nuisance functions in the model for E(Y(d1,d2) | X1(d1)) 
is what makes the SNMM distinct from the standard regression model shown in (2). Further, 
understanding how to model the nuisance functions properly helps resolve the challenges with the 
standard regression model (2) that were discussed in the Introduction. 

110.3  Estimation 

10.3.1  Observed Data and Causal Assumptions 
Section 10.2.1 introduced the potential outcomes that were used to define the causal parameters 
of interest. In this section, we describe the observed data—and their connection to the potential 
outcomes—which are used to estimate the causal parameters of interest. Let Dj denote the 
observed value of the primary time-varying predictor of interest at time j; and let Dj = (D1, 
D2,…,Dj) denote the history of the observed time-varying predictor through time j. Let Xj 
(possibly a vector) denote the observed value of the time-varying covariate (or potential 
moderator) at time j, and let Xj = (X1 , X2,…, Xj). Let Y denote the observed end-of-study outcome. 
The full set of observed data, O, has the following temporal order: 

                                             O = (X0,  D1,  X1,  D2,… ,  XT-1, DT, Y).                              (11) 
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The connection (link) between the potential outcomes in (2) and the observed data in (11) is 
established by invoking the Consistency Assumption (Robins, 1994) for both the observed time-
varying covariates and the observed end-of-study outcome Y. For all subjects in the study, the 
Consistency Assumption for the end-of-study outcome states that 

                                                              Y = Y(DT),                                                         (12) 
 

where the right-hand side Y(DT) denotes the potential outcome indexed by values of dT equal to 
DT. Intuitively, this assumption states that the observed outcome Y for a subject that follows the 
trajectory of observed primary predictor values DT agrees with the potential outcome indexed by 
the same trajectory of values. Note that the observed potential outcome Y = Y(DT) is just one of 
many potential outcomes that could have been observed. Similarly, we assume consistency for 
each of the potential putative time-varying moderators in XT-1(dT-1), to link them up with the 
observed values XT. 

In order to estimate the values of μj using the observed data, we also assume the No Unmeasured 
(or Unknown) Confounders Assumption (Robins, 1994): 

For every j (j = 1,2,…,T), Dj is independent of (Y(dT) for all dT) conditional on Xj-1.                 (13) 
 
Intuitively, this untestable assumption states (for every j) that aside from the history of  
putative time-varying moderators up to time j, there exist no other variables (measured or 
unmeasured, known or unknown) that are directly related to both Dj and the potential  
outcomes. Together with the Consistency Assumption, the No Unmeasured Confounders 
Assumption allows us to draw causal inferences from observed differences in the data (see 
Supplementary Web Appendix B in Almirall et al., 2009). 

10.3.2  Parametric Models for the Components of the SNMM:  
            Modeling Assumptions 
Properties (9) and (10) serve as a guide for parametric models for the causal and non-causal 
portions of the SNMM. In this chapter, we consider simple linear parametric models for the 
values of μj such as the following: 

                                μj(Xj-1,Dj; j) = Dj j0 j1 Xj-1 j0 Dj j1 Dj Xj-1,                     (14) 
 

j j0, j1) is an unknown column vector of parameters. This model, for example, implies 
that the effect of a unit change in D1 (for example, weight change between baseline and t = 1) on 
the outcome varies linearly in Xj-1 j1. 

Assume for the moment that Xj-1 is univariate for all j. j, j = 1, 2,…,T, we consider 
parametric models for the nuisance functions such as the following: 

                                           j(Xj-1, Dj-1 ; j j) = j(Xj-1, Dj-1 j j                                                  (15) 
 

j is an unknown scalar parameter. More complex forms— j’s are indexed by a 
row j—are discussed in Almirall and colleagues (2009). The 
residual j is equal to Xj-1 - mj(Xj-2,Dj-1; j), where mj(Xj-2,Dj-1; j) = gj(Fj j) is a general linear 
model (GLM), with link function gj(), for the conditional expectation E(Xj-1 | Xj-2,Dj-1) based on 

j. For binary Xj-1, gj() can be either the inverse logit transform or the 
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inverse probit transform. On the other hand, if Xj-1 were continuous, then gj() would be the 
identity function. Note that E( j(Xj-1, Dj-1 j) | Xj-2,D

As an example, suppose Xj is a binary indicator of exercise measured at time j. In this case, a 
j is j(Xj-1, Dj-1 ; j j) = (Xj – pj( j) j, where pj( j) is the predicted 

probabilities of a logistic regression of Xj on the past. 

j-1)  = 0 by definition. 

The parameterization shown in (15) ensures that models for the nuisance functions satisfy the 
constraint in (10). Observe that since E( j(Xj-1, Dj-1 j) | Xj-2,Dj-1 j(Xj-1, Dj-1 ; j j) | 
Xj-2,Dj-1) = E( j(Xj-1, Dj-1 j j | Xj-2,Dj-1) = E( j(Xj-1, Dj-1 j) | Xj-2,D

The parameterization shown in (15) assumes that each Xj is univariate. For multivariate Xj (say, Xj 
= (Xjk :k = 1, 2,…, sj ), a vector of sj covariates at time j) jk’s 
for each Xjk as in (15) and then summing them together to create a model for jth time-point 

j. 

j-1 j = 0. 

j 0; and 
functions of the SNMM. Note that 

-
varying covariates given the past. Next, we describe maximum likelihood estimation of the causal 

-causal (nuisa  

10.3.3  Maximum Likelihood Estimation 
Recall that the full observed data for one person are denoted by O. The probability density 
function fO of the observed data O can be written as a product of conditional densities, as follows: 

      fO (O)  =  fY(Y | XT-1, DT)   fj(Xj | Xj-1, Dj-1) f0(X0)   j(Dj | Xj-1, Dj-1),      (16) 
 

where fY is the conditional density of Y given (XT-1, DT),  fj is the conditional density of Xj given 
(Xj-1, Dj-1),  f0(X0) is the density of X0, and j is the conditional density of Dj given (Xj-1, Dj-1).  

In this chapter we assume that the conditional distribution of Y given (XT-1, DT) follows a normal 
distribution with conditional mean structure following an SNMM with para  
residual square-root Y. Thus, fY  is assumed to be a normal probability density function 

 Y). The form of the conditional densities fj and f0 depend on the type of 
time-varying covariates found in the data. In our data example here, we encounter both 
continuous and binary random variables in XJ-1; for continuous time-varying covariates, we 
assume normality, whereas for binary time-varying covariates, we assume a Bernoulli distribution 
with conditional probability modeled by the logistic transform. In general practice, the 
quantity  fj(Xj | Xj-1, Dj-1) f0(X0) may be a mixture of continuous and categorical conditional 
probability density functions. In any case, fj(Xj | Xj-1, Dj-1) f0(X0) is 
the unknown parameters indexing models for the expectation (mean) of Xj  given the past. This is 

y for Y 
given the past and other portions of the multivariate distribution of O. This happens because 
models for the conditional mean of the time-varying covariates are employed in the nuisance 
functions— j’s—of the SNMM. The densities fj and f0 may also be a function of other 
va j 0, if there are continuous time-varying covariates 
assumed to follow a normal distribution). 
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fY(Y | XT-1, DT)   fj(Xj | Xj-1, Dj-1) 
f0(X0).   Y) in fY for 
example j 0) in fj(Xj | Xj-1, Dj-1) f0(X0). 

, (O1, O2,…,ON), of N independent 
random variables, each assumed to be drawn from the distribution fO (O | . Therefore, written as 

 data log-likelihood is 

   loglik1  = log fO (Oi |  
               = (log fY (Yi | XT-1, i, DT, i Y) + log fj(Xj, i | Xj-1, i, Dj-1, i;     (17) 
    j j) f0(X0, i 0 0)  

    + log j(Dj, i | Xj-1, i, Dj-1, i) ), 
 

where i denotes subject i in the data set (i = 1, 2, …, N). Because the conditional distribution of Dj 
given (Xj-1, Dj-1
maximum likelihood : 

   loglik2  = log fO (Oi |  
    = ( log fY (Yi | XT-1, i, DT, i Y) + log fj(Xj, i | Xj-1, i, Dj-1, i;   (18) 

    j j) f0(X0, i 0 0) ). 
 

. That is,  = argmax  loglik2  

The following section demonstrates how to  

110.4  Empirical Example: Maximum Likelihood Data Analysis  
         Using SAS PROC NLP 

In this section, we demonstrate how to obtain ML estimates of the SNMM using SAS PROC 
NLP. Data for our illustrative example come from a randomized, controlled clinical trial 
comparing a low-carbohydrate (LC; NLC = 59) diet versus a low-fat diet (LF; NLF = 60) for weight 
loss, hereafter referred to as the LCLF Study (Yancy et al., 2004). Participants in both arms of the 
LCLF Study had measures of body weight, health-related quality of life (HRQOL), and exercise 
collected during clinic visits at baseline and every 4 weeks over the course of 16 weeks. In 
addition, adherence to diet was measured at every clinic visit post-baseline. Our total sample size 
is N = 119. 

Using the LCLF Study data, Yancy and colleagues (2004) demonstrated improved weight loss, on 
average, for patients in the LC diet as compared with those following the LF diet, with most 
improvements in both arms of the study occurring during the first 12 weeks of study. Yancy and 
colleagues (2009) examined the effect of the LC diet versus the LF diet on a variety of quality of 
life measures and found that the LC diet group had greater improvements in the Mental 
Component Summary score of the Short Form 36 (SF-36), a commonly used and widely 
validated instrument for assessing HRQOL (McHorney et al., 1992; Ware and Sherbourne, 1992). 
In ongoing, unpublished research, we have also investigated the marginal impact of weight loss 
on quality of life using a Marginal Structural Model (MSM) (Robins, 1997, 1999a; Robins et al., 
2000) and found some evidence that patients who lose weight faster enjoy a better intermediate 
and end-of-study health-related quality of life. Given these preliminary findings, we are also 
interested in better understanding the relationship among diet, weight loss, and quality of life, by 
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studying the impact of weight change (that is, time-varying body weight) on health-related quality 
of life conditional on (that is, as modified by) the evolving state of the patient with respect to 
exercise, compliance with the diet, and prior levels of quality of life. While MSMs can be used to 
study the impact of time-varying weight loss, they cannot be used to study time-varying causal 
effect moderation (modification) because they do not allow conditioning on time-varying 
covariates. 

10.4.1  Primary Scientific Question of Interest 
In this chapter, we apply the SNMM to the LCLF data to study the extent to which assigned diet 
(LC versus LF), time-varying exercise, time-varying adherence to assigned diet, prior weight 
change, and prior levels of quality of life moderate the effect of losing (or gaining) weight early 
versus later over the course of 12 weeks on end-of-study vitality. In other words “do the effects of 
losing weight early versus later during the course of 12 weeks on end-of-study vitality scores 
differ depending on diet arm and time-varying covariates such as adherence to diet, exercise, and 
prior levels of quality of life?” 

While our data arise from an experimental study, the causal effect moderation question we are 
interested in constitutes an observational study of the data because our primary right-hand side (or 
causal) variable of interest is longitudinal weight (change), which, unlike assignment to diet type 
(LC versus LF), cannot be manipulated experimentally. 

10.4.2  Study Measures and Temporal Ordering 
For our illustrative example, we are using LCLF Study data gathered at baseline and at clinic 
visits occurring every 4 weeks from baseline through week 16. Thus, for our purposes, there are 
five measurement occasions. In our study, the time-varying covariates of interest—measures of 
adherence to diet (COMPLY), exercise (EXER), and vitality (VIT)—are self-reported 
recollections designed to capture these constructs since the last visit or in the past 2 weeks. Thus, 
the time at which a measure is collected (clinic visits) is not necessarily the time at which the 
construct being measured actually occurred. In our causal analyses, therefore, we lag our 
measures appropriately to account for this feature of the data. We also do this acknowledging that 
in our conception of time-varying causal effect moderation in Section 10.2 we require that time-
varying moderators Xj-1 occur prior to, or concurrent with, the primary predictor (or treatments) of 
interest at time j, Dj. In addition, the primary outcome Y must be measured at the end of the study, 
meaning after the occurrence of the final measure of the time-varying predictor, DT.  

The first step in our data analysis, therefore, is to identify the primary measures of interest and 
their temporal ordering both in the data and in terms of the quantities they measure. Figure 10.1 
summarizes the relationship among our study measures of interest, their timing in the LCLF 
Study, and how we use these measures in our data analysis.  
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Figure 10.1  Temporal Ordering of Study Measurements in LCLF Study  
Time 
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Week 16 
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Measurements Collected in LCLF Study† 
 WGT0  WGT4  WGT8  WGT12  WGT16 
   COMP4  COMP8  COMP12  COMP16 
 EXER0  EXER4  EXER8  EXER12  EXER16 
 VIT0  VIT4  VIT8  VIT12  VIT16 
 DIET         
 
Measurements in Real Temporal Order 
 WGT0  WGT4  WGT8  WGT12  WGT16 
  COMP4  COMP8  COMP12  COMP16  
EXER0  EXER4  EXER8  EXER12  EXER16  
VIT0  VIT4  VIT8  VIT12  VIT16  
 DIET         
 
Measurements Used for Data Analysis 
  D1 = D2 = D3 =  
 WGT4 – WGT0 WGT8 – WGT4 WGT12 – WGT8  

          
X0 =  X1 =  X2 =    Y =  

  COMP4  COMP8      
EXER0  EXER4  EXER8      
VIT0  VIT4  VIT8    VIT16  
DIET          

 
†All measurements were collected at the clinic visits, starting at the baseline visit and every 4 weeks thereafter. 
Definitions (see also Section 10.2):  

DIET = diet type, a binary measure (1=LC diet; 0=LF diet) 
WGT = weight, a continuous measure 
COMP = adherence to diet, a binary measure 
EXER = exercise, a binary measure 
VIT = vitality (a quality of life outcome), a continuous measure 

 

10.4.2.1  Primary Predictor of Interest: Successive Changes in Body Weight 
Let Zj be the measure of body weight taken at visit j, where j = 0 denotes the baseline visit. Dj is 
defined as the difference in body weight between successive clinic visits: Dj = Zj – Zj-1. For our 
study, we consider measures of weight change over the course of 12 weeks post-baseline. 
Because clinic visits were 4 weeks apart, T = 3 (j = 1, 2, 3). Thus, we have D1 = weight change 
between baseline and the first clinic visit, D2 = weight change between the second and third clinic 
visits, and D3 = weight change between the third and fourth clinic visits. 

10.4.2.2  Baseline and Time-Varying Moderators of Interest 
The putative time-varying moderators (Xj-1: j = 1, 2, 3) include continuous time-varying measures 
of vitality (VIT0, VIT4, VIT8, respectively) and binary (yes/no = 1/0) time-varying indicators of 
self-reported exercise (EXER0, EXER4, EXER8, respectively). In addition, (X1, X2) include 
binary (yes/no = 1/0) indicators of compliance to diet between the baseline and the first visit 
(COMPLY4) and compliance to diet between the first and second visits (COMPLY8), 
respectively. In addition, X0 also includes a binary (LC/LF = 1/0) indicator of assigned diet arm 
(DIET).  
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We note that X0 does not include a compliance to diet measure because the diet arm was not 
assigned until the first clinic visit; therefore, compliance to diet is included only in (X1, X2). 
Technically, the diet arm was assigned immediately after the first body weight measure was taken 
at the baseline clinic visit. However, we can justify including DIET in X0 because diet assignment 
was randomized and, therefore, is unaffected by baseline levels of body weight (Z0). Further, it is 
sensible to ask whether the impact of body weight change between the baseline and the first 
follow-up clinic visit differs according to DIET. 

10.4.2.3  Primary Outcome: Vitality 
HRQOL is assessed using the Medical Outcomes Study SF-36 instrument (McHorney et al., 
1992; Ware and Sherbourne, 1992), which measures HRQOL along eight dimensions of physical 
and mental health. The primary outcome measure for our analysis, Vitality, is one of the 
continuous physical HRQOL subscales derived from the SF-36 instrument. We use the Vitality 
component of the SF-36 for illustrating the SNMM methodology; however, we could have used 
one or more of the other HRQOL subscales, as well. Let Y = VIT16, a continuous measure of 
vitality during the interval of time just prior to the week 16 clinic visit. For illustrative purposes, 
we have restricted the outcome to be an end-of-study outcome, but the methods described in this 
chapter can be readily extended to handle a longitudinal outcome variable (Robins, 1994). 

10.4.3  Parametric Models 
For the conditional distribution of VIT16 given the past (that is, for fY), we assumed a normal 
distribution with residual square-root Y and conditional mean following a SNMM with 
this parameterization: 

E( VIT16 | DIET, EXER8, VIT8, COMP8
 

, D3)                                                                         (19) 

= 0          [intercept] 
 

14 1DIET 15 1EXER0 16 1VIT0                                                       1(X0; 1)]  
 

10 D1 11 D1EXER0 12 D1VIT 13 D1DIET   [μ1(X0, D1; 1)] 
 

21 2COMPLY4 22 2EXER4 23 2VIT4      2(X1, D1; 2)]  
 

20 D2 21 D2 EXER4 22 D2 VIT 23 D2 COMPLY4  [μ2(X1, D2; 2)] 
 

31 3COMPLY8 32 3EXER8 33 3VIT8      3(X2, D2; 3)] 
 

30 D3 31 D3 EXER8 32 D3 VIT 33 D3 COMPLY8  [μ3(X2, D3; 3)] 
 
The μj models in this SNMM are Markovian in the sense that each model for the effect of Dj on Y 
is only a function of prior weight change and measures of the time-varying covariates 
immediately preceding Dj. More complicated models could also be considered—for instance, 
models that allow the full history of time-varying covariates Xj-1 to moderate the impact of 
subsequent weight change on vitality.  
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Because EXER, COMPLY, and DIET are binary, we assume Bernoulli distributions for their 
conditional distributions given the past (that is, the fj’s), with probabilities modeled using logistic 
link functions (that is, g = inverse logit link). For example, for COMPLY4, the Bernoulli 
likelihood takes the form  

f COMPLY4 = pCOMPLY4 (COMPLY4) + (1-pCOMPLY4) (1-COMPLY4), 
 

where pCOMPLY4 denotes the predicted probability that COMPLY4 = 1 from a logistic regression 
of COMPLY4 on covariates (EXER0, VIT0, DIET, and D1). (See Section 10.4.4.2 for the 
corresponding SAS PROC NLP code.)  For baseline (VIT0) and follow-up (VIT4, VIT8), which 
are continuous time-varying variables, we assume normal distributions for their conditional 
distributions with residual square- VIT0, VIT4, VIT8 respectively (with g = 
identity function). In terms of the specific form of the linear portion of the GLMs (that is, models 
for the Fj j), all models for the post-baseline variables included main effects for the history of 
covariates that preceded it and first-order interactions with prior levels of weight change, whereas 
for the baseline covariates, we use intercept-only models.  

10.4.4  SAS PROC NLP 
The NLP procedure in SAS provides a powerful set of optimization tools for minimizing or 
maximizing multi-parameter non-linear functions with constraints, such as our loglik2 (Property 
[18]). Recall from Property (18) that the complete data log-likelihood is a function of fY and fj and 

.   Y 
variance components (for example j and 0) depending on the distribution of the time-varying 
covariates that are used. Here we demonstrate how to use PROC NLP to find the value of the 

2 . PROC NLP is particularly well-suited for this 
application because the log-likelihood function loglik2 is both non-
simple inequality constraints. fY portion of 
the log-
portions of the log-likelihood. In addition, we constrain the variance components (for example, 

Y) in loglik2 to be positive. 

We begin by inputting our data set into SAS and printing the data to ensure they were loaded 
correctly:  

libname lib1 '\My Documents\WeightData'; 
 
proc print data=lib1.weight_data; 
 var subject diet exer0 vit0 d1 comply4 exer4 vit4 d2 comply8 exer8 
vit8 d3 vit16; 
run; 

 
We show the first 12 lines of data here. The outcome is VIT16. DIET, EXER0, and VIT0 are 
baseline moderators of interest; D1 is weight change between baseline and week 4; COMPLY4, 
EXER4 and VIT4 are week 4 moderators; D2 is weight change between week 4 and week 8; 
COMPLY8, EXER8, and VIT8 are week 8 moderators of interest; and D3 is weight change 
between week 8 and week 12.  
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Output 10.1  SAS PROC NLP Analysis Data Set 

Obs subject DIET exer20 VIT0 D1 comply4 exer24 VIT4 D2 comply8 exer28 VIT8 VIT16 

1 1 0 0 75.00 -7.40 0 0 75.00 -4.00 0 0 70.00 80.00 

2 2 1 0 60.00 -12.4 1 1 80.00 -6.40 1 1 65.00 65.00 

3 3 0 1 80.00 -4.20 0 1 80.00 -3.40 0 1 80.00 87.92 

4 4 1 1 53.33 -12.4 1 1 50.00 -4.20 1 1 45.00 65.00 

5 5 1 1 65.79 -6.85 0 1 52.65 -4.97 0 1 50.80 83.38 

6 6 0 0 70.00 -6.00 1 1 90.00 -0.20 1 0 90.00 65.00 

7 7 1 0 55.00 -11.6 1 1 80.00 -5.20 0 1 90.00 75.00 

8 8 1 1 70.00 -16.6 1 1 90.00 -1.20 0 1 90.00 100.0 

9 9 0 1 55.00 -4.00 1 1 50.00 -5.00 1 1 60.00 75.00 

10 10 0 0 55.00 -13.2 1 1 55.00 -6.80 1 1 50.00 80.00 

11 11 0 0 70.00 -10.0 1 1 90.00 -7.40 1 0 90.00 100.0 

12 12 1 0 45.00 -18.0 1 1 69.53 -3.27 0 1 73.51 74.85 

 
The data set should have only one record per subject with time-varying variables coded 
appropriately. For example VIT0 represents the vitality measure for baseline, VIT4 is the vitality 
measure taken at week 4, and so on. If the data set is in person-period format (one record per 
measurement time period), it should be converted to a wide data set (one record per subject). 

10.4.4.1  Initial Model Selection and Starting Values Using a Two-Stage Regression  
               Approach 
PROC NLP requires starting values for the numerical optimization routine that maximizes loglik2 
(Property [18]). Appendix 10.A describes the SAS code we used to obtain the starting values for 
PROC NLP. We employed a moments-based two-stage regression estimator to obtain starting 
values and to carry out initial model selection for our working models. For more details 
concerning the two-stage regression estimator, see Almirall and colleagues (2009). For 
completeness, we briefly describe the two-stage regression estimator here. 

The two-stage regression estimator is the moments-based analog of the ML estimator described in 
Section 10.3.3. j are estimated, separately for each j, by GLM. 
In fitting the models mj(Xj-2,Dj-1; j) = gj(Fj j), we performed an ad hoc stepwise model selection 
procedure to find the best fitting, parsimonious models for the conditional mean E(Xj-1 | Xj-2,Dj-1). 
Details are explained in Appendix 10.A. j, the residuals j are 
calculated and subsequently used as covariates in a second regression (that is, the second stage) of 
the outcome based on the SNMM in Property (19). 

10.4.4.2   Explanation of the PROC NLP Code 
Once initial model selection for the nuisance models has been performed and starting values 
based on the initial working models have been calculated using the two-stage approach, we are 
ready to set up our PROC NLP code to obtain ML estimates that maximize Property (18). The 
complete program is presented in Appendix 10.B. This section provides a step-by-step 
explanation of portions of the code. 

In the first line of code, we give our SAS data analysis a title; the ODS OUTPUT statements in the 
second and third lines of code instruct SAS to output the estimated parameters and variance-
covariance matrix as SAS data sets. 
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TITLE "MLE of the Weight Data Using PROC NLP -- &sysdate. "; 
ods output "Resulting Parameters"=lib1.NLPestimates; 
ods output "Covariances"=lib1.NLProbustvarcov; 

 
Next, we call the NLP procedure and specify the name of the data set using the DATA= option:   

PROC NLP data=lib1.all_weight_data vardef=n covariance=1 pcov; 
 
Here, we also specify the type of standard errors we want calculated using the VARDEF= and 
COVARIANCE= options. SAS PROC NLP uses standard asymptotic results from ML theory (for 
example, Section 5.5 in Vaart, 1998) to compute an estimate of the so-called robust (or sandwich) 
variance-covariance matrix of , which we denote by  . We can obtain  by specifying 
vardef=n covariance=1. Estimated standard errors are computed as the square roots of the 
diagonal elements of . The PCOV option instructs PROC NLP to print the estimated 
variance-covariance matrix in the output. As mentioned previously, the ODS OUTPUT statement 
shown earlier allows us to retrieve  as a SAS data set for later computations. In Section 
10.4.4.3, the variance-covariance matrix is used to calculate standard errors (and, thus, confidence 
intervals) for particular linear combinations of the estimated parameters. 

The next statement specifies the numerical optimization to be carried out. In our case, we are 
interested in carrying out ML estimation; therefore, we instruct SAS PROC NLP to maximize 
loglik, which we define for PROC NLP in subsequent programming statements: 

MAX loglik; 
 
The next statement needed is the PARMS statement. The PARMS statement identifies the 
parameters to be estimated and sets starting values for the numerical optimization routine. It is 
easier to set up the PARMS statement after one has written out the programming statements for 
the likelihood. The syntax for the PARMS statement, which we shorten here for reasons of space, 
is as follows: 

PARMS sig2= 17.18, sig2_vit4= 15.99,sig2_vit8= 11.96, sig2_vit0= 
18.23, beta0= 65.45, /*...etc...*/;  

 
The complete PARMS statement for our data analysis is shown in Appendix 10.B. 

The BOUNDS statement, which follows next, is where we specify parameter constraints. In our 
analysis, we bound the residual square-root variances to be positive, as follows: 

BOUNDS sig2 > 1e-12, sig2_vit0 > 1e-12, sig2_vit4 > 1e-12, sig2_vit8 
> 1e-12; 

 
No other parameters in loglik2 have constraints. 

Next we move to the programming statements used to set up the log-likelihood to be maximized. 
The goal here is to work toward defining loglik. Recall that the log-likelihood is a function of the 
distribution of the moderators given the past, the fj’s, as well as a function of the distribution of 
VIT16 given the past, fY, which includes our primary SNMM of interest. For clarity, pedagogical 
purposes, and ease of debugging later, we found it better to set up the likelihood using multiple 
programming statements rather than writing out the likelihood in one line of code. PROC NLP 
allows one to do this immediately after the BOUNDS statement. 
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First, we calculate portions of the log-likelihood corresponding to the baseline nuisance 
conditional density functions, the f0’s. In addition, we calculate the relevant portions of the f0’s 
that will be used in the SNMM conditional likelihood. Here we show the code for DIET, a binary 
baseline moderator:  

dietlin1=gamma11_0;     /* intercept only logistic regression model  */ 
dietp=exp(dietlin1)/(1+exp(dietlin1));  

/* probability using inverse-logit transform */ 
fdiet=diet*dietp+(1-diet)*(1-dietp);  

/* used in Bernoulli likelihood for DIET*/  
ddiet=diet-dietp;   /* residual to be used in the SNMM for VIT16 */  
 
The residual ddiet is 1DIET in Property (19) (see Section 10.3.2 for details concerning parametric 
models for the nuisance functions). To maintain consistency, we apply the inverse-logit 
transformation on the sole parameter gamma11_0 (the odds that DIET=1) to calculate the 
probability that DIET=1, but we also could have set up PROC NLP to estimate the probability 
dietp directly. Either method works fine, but if you want to calculate dietp directly, you should be 
sure to include dietp>0 in the BOUNDS statement. We use similar coding for the other 
dichotomous baseline moderator EXER0 (see Appendix 10.B). 

For the continuous baseline moderator VIT0, the code is much simpler. One line of code creates 
the residual 1VIT0 used in the SNMM for VIT16 [see Property (19)]. Again, here we use an 
intercept-only model because there is no history preceding the baseline moderator VIT0: 

dvit0=VIT0-(gamma13_0); /* residual to be used in the SNMM for VIT16 */ 
 

Next, we calculate portions of the log-likelihood corresponding to the post-baseline nuisance 
conditional density functions, the fj’s. Here we show the code for COMPLY4, a week 4 binary 
moderator:  

comply4lin1= gamma21_0 + gamma21_1*DIET + gamma21_2*EXER0 + 
gamma21_3*D1;  /* logit model */ 
comply4p=exp(comply4lin1)/(1+exp(comply4lin1)); 
     /* probability */ 
fcomply4=comply4*comply4p+(1-comply4)*(1-comply4p);    
   /* used in the Bernoulli likelihood */ 
dcomply4=comply4-comply4p;                    
   /* residual to be used in the SNMM for VIT16 */ 

 
The residual dcomply4 is 2COMPLY4 in Property (19). The covariates chosen for the logistic 
regression model for COMPLY4—that is, DIET, EXER0, and D1—were chosen based on initial 
model selection (see Section 10.4.4.1 and Appendix 10.A). Note that the initial model selection 
suggested removing VIT0 from the logistic regression for COMPLY4. Similar code was used for 
EXER4. 

For the continuous moderator VIT4 at week 4, we need only the following programming 
statement to create the residual, 2COMPLY4: 

dvit4=VIT4-(gamma23_0 + gamma23_1*VIT0 + gamma23_2*D1 + 
gamma23_3*VIT0*D1);  

 
Again, here the covariates in the final model were chosen based on initial model selection (see 
Section 10.4.4.1 and Appendix 10.A). We use similar code for the dichotomous or continuous 
moderator variables at week 8.  
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The penultimate step in our programming statements is to calculate the conditional mean (that is, 
the SNMM), and the residuals to be used in the log-likelihood corresponding to the conditional 
distribution of VIT16 given (DIET, EXER8, VIT8, COMP8

snmmVIT16=beta0 + eta14_res14_DIET*ddiet + eta15_res15_EXER0*dexer0  

, D3), fY : 

         + eta16_res16_VIT0*dvit0 
         + beta10_D1*D1  
         + beta14_D1DIET*D1*DIET + beta15_D1EXER0*D1*EXER0 + 
beta16_D1VIT0*D1*VIT0  
         + eta21_res21_COMPLY4*dCOMPLY4 + eta22_res22_EXER4*dEXER4  
         + eta23_res23_VIT4*dVIT4 
         + beta20_D2*D2 + beta21_D2COMPLY4*D2*COMPLY4 + 
beta22_D2EXER4*D2*EXER4  
         + beta23_D2VIT4*D2*VIT4  
         + eta31_res31_COMPLY8*dCOMPLY8 + eta32_res32_EXER8*dEXER8  
         + eta33_res33_VIT8*dVIT8  
         + beta30_D3*D3 + beta31_D3COMPLY8*D3*COMPLY8 + 
beta32_D3EXER8*D3*EXER8  
         + beta33_D3VIT8*D3*VIT8; 
epsilon=VIT16–snmmVIT16; 

 
The object snmmVIT16 is precisely Property (19) (that is, our SNMM of interest). The primary 
parameters of interest—that is, those in the μj’s—are those labeled beta. 

The final step is to program the complete data log-likelihood (see Property [18]). At each of the 
three time points, we have two dichotomous moderators and one continuous moderator. 
Therefore, the complete data log-likelihood is a function of 10 conditional density functions (nine 
for the time-varying moderators, plus one corresponding to the conditional distribution of VIT16 
given the past). As in Section 10.3.3, we assume normal distributions for all of the continuous 
variables:  

loglik =   log(fdiet)         /* [DIET] ~ bernoulli         */ 
+  log(fexer0)        /* [EXER0] ~ bernoulli        */ 
log(sig2_vit0) - (dvit0**2/(2*sig2_vit0**2))    /* [VIT0] ~ normal            */ 
+  log(fcomply4)                /* [COMPLY4 | past]~bernoulli */ 
+  log(fexer4)         /* [EXER4 | past] ~ bernoulli */ 

    log(sig2_vit4) - (dvit4**2/(2*sig2_vit4**2))    /* [VIT4 | past] ~ normal     */ 
           +  log(fcomply8)        /* [COMPLY8 | past]~bernoulli */ 

   +  log(fexer8)        /* [EXER8 | past]~bernoulli   */ 
   -  log(sig2_vit8) - (dvit8**2/(2*sig2_vit8**2)) /* [VIT8 | past]~normal       */ 
   log(sig2) - (epsilon**2/(2*sig2**2))      /* [VIT16 | past]~normal      */ 

; 
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10.4.5  PROC NLP Output, Model Results, and Interpretation 
PROC NLP produces many sections of output based on the options that are specified. The first 
section of output describes how the gradient and Hessian matrix are calculated (that is, based on 
analytic formulas and finite difference approximations). The second section, titled Optimization 
Start, lists all of the parameters to be estimated, the starting values that were used, and the 
constraints placed on the parameters. The third section of the output provides information about 
the optimization procedure, including the type of optimization procedure employed by PROC 
NLP, a summary of the number of parameters being estimated, and the number of subjects (N). 
This section also shows details concerning the number of iterations, the improvement in the log-
likelihood at each iteration (that is, the objective function), and the final value of log-likelihood 
and slope at the solution. It is essential to review these sections first to ensure that the correct 
parameters are being estimated, to check starting values, to ensure that the correct constraints 
were placed on the parameters, and to ensure convergence of the numerical optimization routine.  

The next section of output, titled “Optimization Results,” produces the ML estimates, , and their 
corresponding standard errors, and p-values. PROC NLP automatically produces a column for the 
standard errors whenever the COVARIANCE= option has been set. 

Output 10.2  SAS PROC NLP: Optimization Results 

Optimization Results 
Parameter Estimates 

N Parameter Estimate 
Approx 
Std Err t Value 

Approx 
Pr > |t| 

Gradient 
Objective 
Function 

1 sig2 11.529426 0.757505 15.220273 8.590079E-30 -0.008322 

2 sig2_vit4 15.653134 1.237725 12.646695 8.080688E-24 0.075107 

3 sig2_vit8 11.755608 1.050688 11.188491 2.429932E-20 0.183281 

4 sig2_vit0 18.149850 1.084132 16.741372 3.521951E-33 0.002445 

5 gamma11_0 0.013609 0.182551 0.074547 0.940699 -0.340098 

6 gamma12_0 0.408751 0.186436 2.192447 0.030277 -0.077163 

7 gamma13_0 59.835944 1.657568 36.098645 2.733837E-66 -0.009119 

8 gamma21_0 -0.159239 0.435969 -0.365254 0.715565 0.134506 

9 gamma21_1 0.862473 0.464470 1.856899 0.065778 -0.025547 

10 gamma21_2 -0.842582 0.453436 -1.858214 0.065589 0.528869 

11 gamma21_3 -0.089199 0.039831 -2.239417 0.026971 0.044023 

12 gamma22_0 1.213170 0.343850 3.528196 0.000594 -0.010149 

13 gamma22_1 1.185886 0.548098 2.163638 0.032474 -0.007180 

14 gamma23_0 20.256117 9.185571 2.205210 0.029345 -0.003342 

15 gamma23_1 0.780218 0.146865 5.312483 0.000000505 -0.002393 

16 gamma23_2 -2.210745 0.619396 -3.569195 0.000516 0.041969 

17 gamma23_3 0.034491 0.010694 3.225275 0.001622 -0.153887 
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Optimization Results 
Parameter Estimates 

N Parameter Estimate 
Approx 
Std Err t Value 

Approx 
Pr > |t| 

Gradient 
Objective 
Function 

18 gamma31_0 -2.427822 0.663753 -3.657718 0.000379 0.003286 

19 gamma31_1 2.376449 0.493118 4.819234 0.000004260 -0.001026 

20 gamma31_2 -0.296078 0.088441 -3.347735 0.001089 -0.000436 

21 gamma32_0 0.124178 0.486114 0.255450 0.798813 -0.001161 

22 gamma32_1 1.809607 0.565670 3.199051 0.001764 0.005892 

23 gamma33_0 21.943562 3.944913 5.562496 0.000000164 -0.000270 

24 gamma33_1 0.719654 0.052663 13.665289 3.247824E-26 -0.000962 

25 eta14_res14_DIET -6.151747 5.501784 -1.118137 0.265742 -0.021217 

26 eta15_res15_EXER20 -1.641192 4.546778 -0.360957 0.718766 -0.003707 

27 eta16_res16_VIT0 0.518775 0.162683 3.188863 0.001822 -0.067273 

28 Beta0 65.523505 3.697128 17.722810 2.66664E-35 0.044318 

29 Beta10_D1 -0.597441 0.758160 -0.788014 0.432242 -0.071963 

30 Beta14_D1Diet -0.261892 0.490731 -0.533678 0.594552 0.239752 

31 Beta15_D1exer20 -0.593875 0.406696 -1.460243 0.146837 0.043617 

32 Beta16_D1VIT0 0.012537 0.010124 1.238343 0.218006 0.193041 

33 eta21_res21_COMPL
Y4 

-12.810076 4.621290 -2.771970 0.006461 0.009694 

34 eta22_res22_EXER24 0.454148 5.481000 0.082859 0.934102 -0.147914 

35 eta23_res23_VIT4 0.507970 0.162578 3.124476 0.002234 -0.009587 

36 Beta20_D2 -0.650131 1.979927 -0.328361 0.743211 -0.176000 

37 Beta21_D2comply4 -1.819338 0.711255 -2.557928 0.011775 0.420162 

38 Beta22_D2exer24 -1.222696 0.759832 -1.609166 0.110208 0.026772 

39 Beta23_D2VIT4 0.030631 0.023828 1.285507 0.201090 0.324085 

40 eta31_res31_COMPL
Y8 

-2.525218 3.484324 -0.724737 0.470024 0.284945 

41 eta32_res32_EXER28 -0.519705 3.714897 -0.139898 0.888975 0.042493 

42 eta33_res33_VIT8 0.146175 0.108052 1.352819 0.178657 -0.004925 

43 Beta30_D3 1.596084 0.970481 1.644632 0.102663 0.126292 

44 Beta31_D3comply8 -0.425010 0.360160 -1.180061 0.240310 -0.103302 

45 Beta32_D3exer28 0.017113 0.329711 0.051903 0.958692 0.026872 

46 Beta33_D3VIT8 -0.019246 0.012146 -1.584584 0.115693 -0.374166 
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The ML estimate of 0 is 65.5 (95%CI = [59, 72]). Therefore, the data suggest that in 
the absence of any weight change over the course of 12 weeks (that is, D1=D2=D3=0), the 
(population) mean vitality score at week 16 is estimated at 66 (95%CI = [58.3, 72.8]). This is an 
estimate of the mean vitality score at week 16 had the entire sample experienced no weight 
change over the course of 12 weeks. As expected—since the majority of people in the study lost 
weight— 0 is statistically significantly lower than the observed mean vitality score at week 16 of 
74 (median = 77). 

The estimates j of the causal effects of interest seem to suggest that the impact of weight change 
between baseline and week 4 has a negligible impact on mean vitality scores at week 16, whereas 
COMPLY4 and VIT8 are possibly significant moderators of the impact of D2 and D3 on week 16 
vitality scores, respectively. 

The causal parameter estimates j by themselves, however, are not as useful for making 
inferences as it is to consider particular linear combinations of interest. That is, since we have 
estimated conditional causal effects at each time point, it is more interesting to consider the causal 
effect of increases or decreases in weight change at different levels of the time-varying covariates 
(that is, the putative moderators of interest). For example, consider the characteristics defining the 
most common patient in the data set (the median value for each variable): 

a) exercised throughout the entire study (EXER0=EXER4=EXER8=1), 
b) always adhered to their assigned diet (COMPLY4=COMPLY8=1), 
c) had a baseline vitality score of 60  (VIT0=60), 
d) had a week 4 vitality score of 70  (VIT4=70), and 
e) had a week 8 vitality score of 75  (VIT8=75). 

 
For patients exhibiting these characteristics, we consider the average impact at each time point j (j 
= 1, 2, 3) of a 5-pound negative change in weight (that is, Dj = -5 = 5 pound weight loss) versus 
no change in weight (Dj = 0). The results of our SNMM analysis estimate this impact to be 3.5 
(95%CI = [-0.2, 7.2]) at time j = 1 for patients in the LC group and 2.2 (95%CI = [-1.6, 6.0]) for 
patients in the LF group, 7.61 (95%CI = [3.0, 12.5]) at time j = 2, and 2.2 (95%CI = [-1.6, 6.0]) at 
time j = 3. Because higher values of vitality indicate better quality of life, the direction of the 
effects at each time point is intuitive—that is, weight loss results in higher values of vitality at the 
end of the study. Keeping everything else fixed, the effect of weight loss between weeks 4 and 8 
disappears for patients who do not comply with their assigned diet during the first four weeks of 
study (effect = -1.4 ; 95%CI = [-6.9, 4.2]); therefore, this is evidence that compliance with diet 
moderates the impact of weight loss between weeks 4 and 8 on end-of-study vitality scores. 
Patients who comply with diet (either diet) during the first four weeks of the study see more 
benefits resulting from their weight loss between weeks 4 and 8 in terms of improved quality of 
life at the end of the study. 

To see how we calculated the specified conditional effects described here, observe, for example, 
that the conditional causal effect of weight change between weeks 4 and 8 given prior levels of 
exercise, vitality, and compliance with assigned diet is estimated as 

2(X1, D2; 2) = (-0.650) D2 + (-1.223) D2 EXER4 + (0.031) D2 VIT4 + (-1.819) D2 
COMPLY4. 

 
Therefore, the average effect of 5 pounds of weight loss between weeks 4 and 8 among patients 
who exercise (EXER4=1), adhere to their assigned diet (COMPLY4=1), and have a median 
week-4 vitality score (VIT4=70) is estimated as 
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7.61 = -5 x ( (-0.650) + (-1.223) + (0.031) x 70 + (-1.819) ). 
 

In order to calculate the standard errors (and, thus, the 95% confidence intervals) for this 
estimate, we used the estimated variance-covariance matrix of  and standard formulas for the 
variance of linear combinations. Appendix 10.C shows a simple SAS script written in PROC IML 
that calculates the 95%CI. 

110.5  Discussion 
In this chapter, we have reviewed Robins’ Structural Nested Mean Model for studying the time-
varying causal effect moderation and demonstrated a maximum likelihood implementation using 
SAS PROC NLP with real data. This work was motivated by an interest in the impact of weight 
loss or gain (where weight is measured repeatedly over time) on health-related quality of life. 

This work builds on work by Almirall and colleagues (2009) on the use of the SNMM to examine 
time-varying causal effect moderation. In particular, the conceptualization and use of linear 
models for the nuisance functions presented in Almirall and colleagues (2009) was used in this 
chapter to facilitate an MLE implementation. Further, in Section 10.4.4.1, we briefly described 
the use of the two-stage regression estimator Almirall and colleagues (2009) proposed both to 
obtain starting values for the ML estimator and for initial model selection. The main difference 
between the two-stage estimator and the MLE is that the two-stage estimator does not require 
distributional assumptions (for example, normality); that is, the two-stage estimator is a moments-
based estimator. It remains to be seen how these two estimators compare. 

Having an adequate model selection procedure is important for the successful implementation of 
the ML estimator. We know that fitting an MLE with misspecified models for the nuisance 
functions results in biased estimates of the primary causal parameters of interest. Performing 
initial model selection for the working models (the fj’s) used in the ML procedure based on the 
separate model fits in stage one of the two-stage regression estimator, as we suggest in Section 
10.4.4.1, is intuitive and useful. Indeed, had we not done this initial model selection first, PROC 
NLP would have been required to find the MLE for over 90 parameters using just N = 119 
subjects!  (In contrast, our final log-likelihood was a function of 46 parameters.) It is not clear, 
however, that this is the most optimal strategy for model selection for the SNMM, nor what is the 
impact of our ad hoc model selection procedure on the distribution of our ML estimator. In 
addition, even if our general approach of performing model selection on working models first 
before doing model selection on the SNMM is adopted, it is not clear that ad hoc piecewise model 
selection based on p-value cut offs, which we employed in our empirical example, will ensure 
that we arrive at the true model. In future work, we will explore and compare different model 
selection procedures for the SNMM, including likelihood-based selection procedures such as 
Akaike and Bayes information criterion methods. 

Our illustrative data analysis has a number of limitations. First, it is possible that we do not meet 
the untestable sequential ignorability (no unmeasured confounders) assumption in our analysis. 
That is, there may be other (time-varying) covariates that were not a part of our model that may 
impact both weight loss and HRQOL directly. For example, we do not include the amount or type 
of food consumed between clinic visits. Future studies of the impact of weight loss on HRQOL, 
or any other outcome, should include nutrient intake data (as measured by self-reported food 
diaries, for example). Further, even plausible confounders that we measured in this study (and 
included in the data analysis)—for example, time-varying exercise—could be measured more 
carefully (for example, amount of exercise in minutes since the last clinic visit) in future studies 
in order to further reduce the possibility of time-varying confounding bias. Sensitivity analyses, 
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such as those discussed in Robins (1997, 1999a) will be useful for exploring the consequences of 
selection bias due to violations of the sequential ignorability (no unmeasured confounders) 
assumption. Secondly, an important concern that we do not address in this chapter has to do with 
missing data. The ML method we propose is a complete case estimator. Therefore, patients with 
missing weight values at any time point are excluded from the analysis. Two options for dealing 
with missing data in this context include inverse-probability weighting methods that can handle 
missing covariate data (Robins et al., 1994) or multiple imputation (Schafer, 1997). Third, in this 
chapter we focus solely on an end-of-study quality of life measure. The methods discussed in this 
chapter, however, can be extended to handle a longitudinal outcome as well, as in Robins (1994). 
The longitudinal approach would involve specifying an SNMM for each occasion of the 
longitudinal outcome—that is, for each Yt, say—and estimating the parameters simultaneously. A 
final limitation of the ML method as proposed in this chapter is that we did not allow for residual 
correlation between the conditional models for the vector of Xj’s (and Y). Assuming correct model 
specification, we conjecture that the use of this conditional independence assumption will not 
lead to bias in the estimates of the causal parameters, although it may have consequences in terms 
of inference (that is, variance estimation and therefore p-values). To guard against improper 
inference, therefore, we have suggested the use of so-called robust (or sandwich) standard errors 
via the covariance=1 option in PROC NLP (White, 1980). Future methodological work will 
explore the full impact of the working conditional independence assumption and its consequence 
both in terms of bias and standard error estimation. 

The version of the SNMM shown in Property (6) defines the nuisance function at the first time 
point as  

1(X0) = E( Y(0,0) | X0) - E( Y(0,0) ). 
 

1(X0 0 = E( Y(0,0) ), has the interpretation as 
the population mean outcome supposing that all subjects had d1 = d2 = 0 (averaged over all 
covariate values). 1(X0) = E(Y(0,0) | X0), and to 
define the intercept as 0 = E(Y(0,0) | X0 = 0). With this specification, the intercept can be 
interpreted as the mean outcome among all patients with X0 = 0 supposing that all subjects had d1 
= d2 = 0. Using the alternate specification requires maximizing over fewer parameters as 0, 
indexing the distribution of the baseline variables f0 1(X0) in the 
SNMM. 0 = E(Y(0,0) | X0 = 0) 
may not be meaningful because the value zero may not lie in the range of plausible values for X0. 
Despite this, scientists implementing the likelihood method in the future may wish to use the 
alternate specification. This may be an important consideration when the set of baseline 
covariates is much larger than the corresponding set of time-varying covariates or there is little 

0 = E(Y(0,0)). Importantly, the definition (and therefore interpretation) of the causal 
functions μ1(X0 ,d1) and μ2(X1(d1),d2) remain unchanged with 0 , 

1(X0)). 2(X1(d1)) must remain as defined in Property (6) in order for μ1(X0 ,d1)  to keep 
its interpretation as the conditional causal effect at time 1. 

In the absence of time-varying causal effect moderation, the SNMM identifies marginal time-
varying causal effects, such as those indexing the Marginal Structural Model (Robins, 1997, 
1999a, 1999b; Robins et al., 2000). This is true because the absence of time-varying causal effect 
moderation at time j means that the effect of Dj on the outcome is constant across levels of time-
varying Xj-1. In other words, the causal parameters μj(Xj-1,Dj; j) are independent of Xj-1. In this 
special (testable) case, therefore, the MLE method presented here can be used to estimate 
marginal causal effects. 
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AAppendix 10.A   
SAS code for obtaining starting values for maximizing loglik2 [Property (18)]. Starting values are 
obtained using a two-stage regression estimator. 

This appendix describes how we obtained starting values for the data analysis using PROC NLP, 
using a moments-based, two-stage regression estimator. The two-stage regression estimator is 
described briefly in Section 10.4.4.1 and in more detail elsewhere (Almirall et al., 2009). 

The first step in the two-stage regression analysis is to define models for our nuisance functions, 
fj. In our example data set, we have six nuisance models, three at the 4-week time point 
(COMPLY4, EXER4, and VIT4) and three at the 8-week time point (COMPLY8, EXER8, and 
VIT8). At each time point, we have two dichotomous outcomes (COMPLY and EXER) that we 
will model using logistic regression models and one continuous outcome (VIT) that we will 
model with linear regression. Due to our limited sample size (N = 119), we performed variable 
selection in these models using hierarchical stepwise variable selection. For the nuisance models 
for the second time point (week 4), we fit the main effects (DIET, EXER0, VIT0, and D1) and 
then all interaction variables with D1. For the nuisance models for the third time point (week 8), 
we fit the main effects (DIET, D1, D2, VIT4, EXER4, and COMPLY4) and then all interaction 
variables of the second time point variables with D2.  

Our first step in the hierarchical stepwise variable selection was to examine the interactions; if p-
values for the interactions were > 0.10, they were removed from the model. The second step was 
to fit the models based on interaction selection and then remove main effect variables with p-
values > 0.10. As a note, if an interaction was significant we did not remove the main effect of 
the interaction. Once the final model was determined, we output the predicted probabilities in the 
data set defined by the OUT statement here (out=predCOMPLY4) to create the residuals 
needed for the second stage of the SNMM model. In the following example code, pCOMPLY4 is 
the variable for the predicted probabilities from this model. 

For the 4-week time point for COMPLY4, a dichotomous variable, the following SAS code was 
used: 

proc logistic data=lib1.all_weight_data; 
      model COMPLY4(event='1')=DIET EXER0 VIT0 D1 
                               D1*DIET D1*EXER0 D1*VIT0; 
      output out=predCOMPLY4 pred=pCOMPLY4; 
run; 
 

In this case, none of the interaction terms were kept in the model (all p-values > 0.10) and based 
on the main effects only model, the variables selected for COMPLY4 were DIET, EXER0, and 
DIET. We followed the same steps for EXER4 and VIT4. However, for VIT4 we used PROC 
GLM to fit a linear model using the following SAS code. For continuous variables, we output the 
residuals directly to a file (out=predVIT4) to be used for the second stage of the SNMM 
model. In the following example code, rVIT4 is the variable for the residuals from this model: 

proc GLM data=lib1.all_weight_data; 
      model VIT4=DIET EXER0 VIT0 D1 
                     D1*DIET D1*EXER0 D1*VIT0; 
      output out=predVIT4 r=rVIT4; 
run; 
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For the 8-week time point for COMPLY8, the following SAS code was used: 

proc logistic data=lib1.all_weight_data; 
      model COMPLY8(event='1')=DIET D1 
                               D2 VIT4 EXER4 COMPLY4 
                               D2*EXER4 D2*VIT4 D2*COMPLY4; 
      output out=predCOMPLY8 pred=pCOMPLY8; 
run; 

 
We followed similar steps for EXER8 and VIT8 (except fit the model using PROC GLM). The 
following table shows the variables selected using hierarchical stepwise variable selection: 

Outcome Final Model Variables 
COMPY4 DIET EXER0 D1 
EXER4 EXER0 
VIT4 VIT0 D1 D1*VIT0 
  
COMPLY8 COMPLY4 D2 
EXER8 EXER4 
VIT8 VIT4 

  
Once the final models are set for the nuisance models, we need the parameter estimates from each 
of the models as well as from the second-stage SNMM model to use as starting values for the 
likelihood model (Property [18]) that we will run in PROC NLP. Running the models first as a 
two-stage process is also a good check that everything is set up properly in PROC NLP. As 
shown here, from each of the nuisance models, we will use either the residuals (from PROC 
GLM) or predicted values from PROC LOGISTIC to create residuals to be used in the second-
stage SNMM model. For the second-stage SNMM, we need to create one file that includes the 
residuals created from the logistic models as well as the residuals from the linear regression 
models. 

For each dichotomous nuisance model, the following DATA step should be executed using the 
appropriate file names: 

data predcomply4; 
  set predcomply4; 
  res21_comply4=COMPLY4-pCOMPLY4; 
  keep subject res21_comply4; 
 run; 

 
For each continuous nuisance model, the following DATA step should be executed using the 
appropriate file names: 

data predvit4; 
  set predvit4; 
  res21_comply4=pVIT4; 
  keep subject res21_VIT4; 
 run; 
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Once all the models have been run and the DATA steps have been run for each model, the files 
with the residuals should be merged with the main data set as follows: 

proc sort data=lib1.weight_data; 
by subject; 
 
data lib1.all_weight_data; 
 merge lib1.weight_data predcomply4 predexer4 predvit4 predcomply8 
predexer8 predvit8; 
 by subject; 
run;  

 
Macros can also be written to streamline these separate model fits and data merges. Sample 
macros that do this are available from the second author (Coffman) upon request. 

The last step that we need to perform is to create baseline residual variables for inclusion in the 
second-stage SNMM model. We can do this with intercept only models in either PROC 
LOGISTIC for dichotomous outcomes or PROC GLM for continuous outcomes and follow the 
same steps described previously. Or we can find the means and create residuals in the DATA step 
as shown: 

data temp; 
 set lib1.weight_data; 
run;  
 
/* Get means of baseline variables */ 
proc means data=temp_data mean n print; 
 var DIET EXER0 VIT0; 
 output out=varmeans; 
run; 
 
/* rename mean variables and keep only MEANs */ 
data varmeans; 
 set varmeans (rename=( diet=mean_diet exer0=mean_exer0 
vit0=mean_vit0)); 
 keep mean_diet mean_exer0 mean_vit0; 
 if _STAT_="MEAN"; 
run; 
 
/* Trick for merging data sets, set “dummy” id */ 
data temp; 
 set temp; 
 dummy=1; 
run; 
 
data varmeans; 
 set varmeans; 
 dummy=1; 
run; 
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proc sort data=temp;  by dummy; 
proc sort data=varmeans;  by dummy; 
run; 
 
data lib1.all_weight_data; 
 merge temp varmeans; 
 by dummy; 
  res14_DIET=DIET-mean_diet; 
  res15_EXER0=EXER0-mean_exer0; 
  res16_VIT0=VIT0-mean_vit0; 
  drop dummy mean_diet mean_exer0 mean_vit0; 
run; 

 
Now we are ready to run the second-stage SNMM model to get the starting values for the PROC 
NLP. Because our outcome, VIT16, is continuous, we will run a regression model using PROC 
GLM as follows:  

Title "Second stage of model, &sysdate."; 
proc glm data=lib1.all_weight_data; 
model vit16=res14_DIET res15_EXER0 res16_VIT0  
            D1 D1*DIET D1*EXER0 D1*VIT0 
            res21_COMPLY4 res22_EXER4 res23_VIT4 
            D2 D2*COMPLY4 D2*EXER4 D2*VIT4   
            res31_COMPLY8 res32_EXER8 res33_VIT8 
            D3 D3*COMPLY8 D3*EXER8 D3*VIT8; 
run;   

AAppendix 10.B   
Complete SAS PROC NLP code for the data analysis in Section 10.4; see subsection 10.4.4 for a 
step-by-step explanation of this code. 

The following is the full set of code for PROC NLP for maximizing loglik2 (Property [18]). This 
code includes the use of starting values from the two-stage regression estimator (see Appendix 
10.A): 

*************************************; 
* Use ODS output statements to store ; 
* parameter estimates and covariance ; 
* matrix from PROC NLP in a data set ; 
*************************************; 
ods output "Resulting Parameters"= lib1.NLPestimates; 
ods output "Covariances"=lib1.NLProbustvarcov; 
title "NLP Analysis, data=coffman.all_weight_data, covariance=2 
&sysdate. "; 
 
proc nlp data=Coffman.all_weight_data vardef=n covariance=2 sigsq=1; 
max loglik; 
 
************************************; 
* Starting values for parameters    ; 
*  from 2 stage models              ; 
************************************; 
  PARMS sig2=17.18,sig2_vit4=15.99,sig2_vit8=11.96, sig2_vit0=18.23, 
 
  gamma11_0=  0.0, 
  gamma12_0=    0.405, 
  gamma13_0=    59.87, 
  gamma21_0=  -0.2502 , 
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  gamma21_1=  0.8204 , 
  gamma21_2=  -0.736 , 
  gamma21_3=  -0.0929 , 
  gamma22_0=  1.213 , 
  gamma22_1=  1.1849 , 
  gamma23_0=  20.26176227 , 
  gamma23_1=  0.78232267 , 
  gamma23_2=  -2.20983446 , 
  gamma23_3=  0.03465106 , 
  gamma31_0=  -2.4376 , 
  gamma31_1=  2.3763 , 
  gamma31_2=  -0.2975 , 
  gamma32_0=  0.1178 , 
  gamma32_1=  1.8171 , 
  gamma33_0=  21.94588492 , 
  gamma33_1=  0.7197243 , 
  eta14_res14_DIET= -6.14788684, 
  eta15_res15_EXER20= -1.62651224, 
  eta16_res16_VIT0= 0.55882648, 
  Beta0=   65.44918016 ,  
  Beta10_D1=  -0.65772698 , 
  Beta14_D1Diet=  -0.2536632 , 
  Beta15_D1exer20= -0.53823094 , 
  Beta16_D1VIT0=  0.0129085 , 
  eta21_res21_COMPLY4= -12.87304274 , 
  eta22_res22_EXER24= 0.58517074, 
  eta23_res23_VIT4= 0.4379589 , 
  Beta20_D2=  -0.30852128 , 
  Beta21_D2comply4= -1.71415978 , 
  Beta22_D2exer24= -1.24239297 , 
  Beta23_D2VIT4=  0.02440274, 
  eta31_res31_COMPLY8= -2.75818127, 
  eta32_res32_EXER28= -0.55345255 , 
  eta33_res33_VIT8= 0.11863987 , 
  Beta30_D3=  1.73649321 , 
  Beta31_D3comply8= -0.48168742, 
  Beta32_D3exer28= 0.03547696, 
  Beta33_D3VIT8=  -0.02095646  
  ; 
  bounds sig2 > 1e-12, sig2_vit0 > 1e-12, sig2_vit4 > 1e-12, 
sig2_vit8 > 1e-12; 
 
************************************; 
*  Baseline DIET - Intercept only   ; 
************************************; 
  dietlin1=gamma11_0; 
  dietp=exp(dietlin1)/(1+exp(dietlin1)); 
  fdiet=diet*dietp+(1-diet)*(1-dietp); 
  ddiet=diet-dietp; 
 
************************************; 
*  Baseline EXER20 - Intercept only ; 
************************************; 
  exer20lin1=gamma12_0; 
  exer20p=exp(exer20lin1)/(1+exp(exer20lin1)); 
  fexer20=exer20*exer20p+(1-exer20)*(1-exer20p); 
  dexer20=exer20-exer20p; 
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************************************; 
*  Baseline VIT0 - Intercept only   ; 
************************************; 
  dvit0=VIT0-(gamma13_0); 
 
************; 
*  COMPLY4  ; 
************; 
  comply4lin1=gamma21_0 + gamma21_1*DIET + gamma21_2*EXER20 + 
gamma21_3*D1; 
  comply4p=exp(comply4lin1)/(1+exp(comply4lin1)); 
  fcomply4=comply4*comply4p+(1-comply4)*(1-comply4p); 
  dcomply4=comply4-comply4p; 
 
************; 
*  EXER24   ; 
************; 
  exer24lin1=gamma22_0 + gamma22_1*EXER20; 
  exer24p=exp(exer24lin1)/(1+exp(exer24lin1)); 
  fexer24=exer24*exer24p+(1-exer24)*(1-exer24p); 
  dexer24=exer24-exer24p; 
 
**********; 
*  VIT4   ; 
**********; 
  dvit4=VIT4-(gamma23_0 + gamma23_1*VIT0 + gamma23_2*D1 + 
gamma23_3*VIT0*D1); 
 
*************; 
*  COMPLY8   ; 
*************; 
       comply8lin1=gamma31_0 + gamma31_1*COMPLY4+ gamma31_2*D2; 
  comply8p=exp(comply8lin1)/(1+exp(comply8lin1)); 
  fcomply8=comply8*comply8p+(1-comply8)*(1-comply8p); 
  dcomply8=comply8-comply8p; 
 
************; 
*  EXER28   ; 
************; 
  exer28lin1=gamma32_0 + gamma32_1*EXER24; 
  exer28p=exp(exer28lin1)/(1+exp(exer28lin1)); 
  fexer28=exer28*exer28p+(1-exer28)*(1-exer28p); 
  dexer28=exer28-exer28p; 
 
**********; 
*  VIT8   ; 
**********; 
  dvit8=VIT8-(gamma33_0 + gamma33_1*VIT4); 
 
********************; 
*  Outcome - VIT16  ; 
********************; 
  epsilon= VIT16 -( beta0 + eta14_res14_DIET*ddiet + 
eta15_res15_EXER20*dexer20  
         + eta16_res16_VIT0*dvit0 
         + beta10_D1*D1  
         + beta14_D1DIET*D1*DIET + beta15_D1EXER20*D1*EXER20 + 
beta16_D1VIT0*D1*VIT0  
         + eta21_res21_COMPLY4*dCOMPLY4 + eta22_res22_EXER24*dEXER24  
         + eta23_res23_VIT4*dVIT4 
         + beta20_D2*D2 + beta21_D2COMPLY4*D2*COMPLY4 +  
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beta22_D2EXER24*D2*EXER24  
         + beta23_D2VIT4*D2*VIT4  
         + eta31_res31_COMPLY8*dCOMPLY8 + eta32_res32_EXER28*dEXER28  
         + eta33_res33_VIT8*dVIT8  
         + beta30_D3*D3 + beta31_D3COMPLY8*D3*COMPLY8 + 
beta32_D3EXER28*D3*EXER28  
         + beta33_D3VIT8*D3*VIT8); 
 
**********************; 
*  SNMM - Likelihood  ; 
**********************; 
  loglik =  log(fdiet)+log(fexer20)-log(sig2_vit0)-
(dvit0**2/(2*sig2_vit0**2)) 
        + log(fcomply4) + log(fexer24)- log(sig2_vit4)-
(dvit4**2/(2*sig2_vit4**2))  
        + log(fcomply8)+ +log(fexer28)- log(sig2_vit8)-
(dvit8**2/(2*sig2_vit8**2)) 
        - log(sig2)-(epsilon**2/(2*sig2**2)); 
 
run; 

 

AAppendix 10.C   
Sample PROC IML code used to calculate 95% confidence intervals for linear combinations of 
interest. 

The following code, written in PROC IML, can be used to calculate the 95% confidence intervals 
for different linear combinations of  of interest. The sample code shown here shows how to do 
this for one of the linear combinations described in the results at the end of Section 10.4.5. 
Namely, this code shows how to calculate a 95% confidence interval for the average impact on 
the end-of-study vitality of a 5-pound weight loss between weeks 4 and 8, for patients that 
exercised, adhered to their assigned diet, and have a median week-4 vitality score. 

This code relies on two SAS data sets—one holding the parameter estimates (lib1.NLPestimates) 
and the other holding the variance-covariance matrix (lib1.NLProbustvarcov)—both of which 
were created during the PROC NLP analyses described previously. The code also requires the 

. For example, from the 
output shown in Section 10.4.5, it is easy to see that th 0 is the 28th parameter. 

proc iml; 
 /* define an indexing vector for the beta (causal) estimates */ 
 /* for example, the 28th parameter was the intercept = beta0 */ 
 beta0ind = 28; beta1ind = 29:32; beta2ind = 36:39; beta3ind = 
43:46; 
 betaind = beta0ind || beta1ind || beta2ind || beta3ind; 
 
 /* read in the parameter estimates into a vector called 
'estimates'*/ 
 use lib1.NLPestimates; 
 read all var {estimate} into estimates; 
 
 /* using betaind, index only the betas (the causal parameters)*/ 
 betaestimates = estimates[betaind]; 
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 /* read in variance-covariance matrix into matrix called 'varcov'*/ 
 use lib1.NLProbustvarcov; 
 read all into varcov; 
 
 /* using betaind, index only the betas portion of varcov*/ 
 betavarcov = varcov[betaind,betaind]; 
 
 /* set the linear combinations of interest */ 
 /* here we show the combination for a 5lbs */ 
 /* weight loss between weeks 4 and 8 for   */ 
 /* patients who comply with their assigned   */ 
 /* diet, exercise, and have a median week */ 
 /* 4 vitality score equal to 70.       */ 
 linearcombo1 = { 
  /* set to zero intercept and time 1 betas */ 
  0,0,0,0,0, 
  /* contrasts for beta 2 */ 
  -5,   /* -5 = D2        */ 
  -5,   /* -5*1 = D2*COMPLY4    */ 
  -5,   /* -5*1 = D2*EXER28    */ 
  -350,   /* -5*70 = D2*VIT4         */ 
  /* set to zero intercept and time 3 betas */ 
  0,0,0,0 
  }; 
 
 /* calculate the impact on end-of-study vitality */ 
 effect1 = t(betaestimates) * linearcombo1; 
 /* calculate the standard error for effect1 */ 
 se1 = sqrt( ( t(linearcombo1) * betavarcov ) * linearcombo1 ) ; 
 /* calculate the confidence interval for effect1 */ 
 ci95perct = effect1 + se1*1.96*{-1,1}; 
 
 /* print the results */ 
 print effect1 se1 ci95perct; 
quit; 
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Abstract 
Estimating causal treatment effect in longitudinal, observational data can be complex due to the 
need to control for selection bias in the full history of covariates used in the treatment assignment. 
Having a robust approach to deal with the lack of randomization between treatment groups is 
critical because the history of covariates used in the treatment assignment grows rapidly with the 
length of the observation period.  

We present regression estimators that can compare longitudinal treatments using only the 
longitudinal propensity scores as regressors. These estimators, which assume knowledge of the 
variables used in the treatment assignment, are important for reducing the large dimension of 
covariates for two reasons. First, if the regression models on the longitudinal propensity scores 
are correct, then these estimators share advantages of correctly specified likelihood-based 
estimators, a benefit not shared by estimators based on weights alone. Second, if the models are 
incorrect, the misspecification can be more easily limited through model checking than with 
models based on the full covariates. Thus, the proposed estimators can also be used in place of 
the regression on the full covariates.  

We analyze data from a naturalistic schizophrenia study using Regression Models on 
Longitudinal Propensity Scores (RMLPS). SAS code for performing the analysis is provided, and 
output using data from the schizophrenia study is examined. 

11.1  Introduction 
Our goal is to estimate the effects of longitudinal treatments in observational studies in the 
presence of treatment-assignment confounding using Regression Models on Longitudinal 
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Propensity Scores (RMLPS) (Achy-Brou et al., 2009; Segal et al., 2007). In such studies, there is 
a need to control the growing dimension of history variables that predict the assignment of 
treatments. The longer the observation period, the more acute the problem of dealing with this 
common treatment-assignment confounding issue becomes.    

One method for estimating these effects is through Robins’s G-computation formula (1987). This 
method has rarely been used because it generally needs to adjust for the entire history of the 
longitudinal covariates. This adjustment is subject to model misspecification as the numerous 
models are difficult to check and fix. For this reason, the most widely used methods for 
estimating the effect of sustained longitudinal treatments are derived from the Horvitz-Thompson 
(1952) inverse propensity score weighting approach using marginal structural models (Robins et 
al., 2000). These methods are quite useful for providing generally consistent estimators when the 
propensity scores are correct. However, they can be inefficient because they do not directly use 
the available covariate information except through augmentations of the estimators (Tsiatis, 
2006). The augmentation methods, though, do not compete but rather can be used in combination 
with RMLPS. 

Using RMLPS to estimate causal effects is a generalization of the widely used approach based on 
regression models on the propensity scores introduced by Rosenbaum and Rubin (1983, 1984) for 
single time treatment. To better appreciate the more fundamental role of the propensity score, 
consider the setting where the scores are known and only those scores are kept as summaries of 
the patients’ histories. The optimal statistical methods for using the propensity scores should use 
only the subclassification of patients that these scores define, not the actual values. 

We now provide the essential notation and steps of the RMLPS approach. The times where a 
treatment can change are denoted by t = 1, 2, ...T. At each time, let zt = 1, 2, ...K indicate the 
levels of the treatment. If patient i would have taken some longitudinal treatment of interest,  
z = (z1, z2, ..., zT ), we let Yi(z) = Yi(z1, z2, ..., zT ) be the potential outcome that is observed at the 
evaluation time period (Neyman, 1928; Rubin, 1974, 1978). Note that the treatment regime of 
interest, z, may be different from the treatment regime actually observed for given patients. For a 
particular longitudinal treatment, we are interested in estimating outcome quantities such as 
E{Yi(z)}, which is the expectation we would observe if all patients received a particular 
longitudinal treatment. For the ith patient, let obs

tiX , be the vector of variables observed after the 
patient received a specific treatment at time t t. 
Let the actual treatment received be denoted by Zi,t, and let Zi be the vector of these treatment 
assignments. Let the patient history, Hi,t, be the cumulative information observed before the 
patient received treatment at time t, that is: 

Hi,t = { ( obs
iX 1, , Zi,1), . . .( obs

tiX 1, , Zi,t-1), obs
tiX ,  }. 

Let Yi
obs denote the observed outcome at the end of the last period, which, based on the potential 

outcomes notation, is equal to Yi(Zi). Finally, let the conditional probability for the ith subject at 
time point t to receive treatment k, Zi,t = z, given the history Hi,t, be denoted by: 

ei,t,z = Pr(Zi,t = z |Hi,t), 
 

which is the propensity score. 
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We wish to compare outcomes among such possible longitudinal treatments. Note that this 
comparison is not the same as the comparison between the observed distribution of outcome in 
each longitudinal treatment group versus its observed control (everyone not in that specific 
longitudinal treatment group) or the comparison between observed distributions of outcome in 
each longitudinal treatment group. 

Given that only one treatment assignment is actually made for each patient at each time point, and 
that the treatment assignment, or adherence to original treatment assignment, can change over the 
observation period, this contrast of interest is not directly observable. We need the three usual 
assumptions underpinning any estimation of the causal effects of longitudinal treatment in 
observational studies. The first assumption is that the patients are a random sample drawn from 
the appropriate reference population. The second assumption, already implicit in the notation 
Yi(z), is that the treatment assignment for one patient does not affect the outcome of a different 
patient (stable unit treatment values [SUTVA]) (Rubin, 1978). The third assumption is that all 
variables related to treatment assignment have been measured, in the sense that, conditional on 
the observed variables up to a particular time, the assignment to the treatment at the next time is 
random (sequential ignorability) (Robins, 1987).  

111.2  Estimation Using Regression on Longitudinal  
         Propensity Scores 

Under these three stated assumptions, Achy-Brou and colleagues (2009)  showed that an 
evaluation of E{Y(z)} may be done using the g-computation formula (Robins, 1987) where the 
history of the full covariates is replaced by the history of propensity scores: 

E{Y(z)} =   
zT eT, ...,  z1, e1,

Pr(Yobs | e1,z1, Z1
obs = z1,… eT,zT, ZT

obs = zT) . 

Pr(e1,z1) … Pr(e1,z1, Z1
obs = z1,… eT-1,zT-1, ZT-1

obs = zT-1) 

Thus, given models for 
zT eT, ...,  z1, e1,

Pr(Yobs | e1,z1, Z1
obs = z1,… eT,zT, ZT

obs = zT), Pr(e1,z1), … and 

Pr(e1,z1, Z1
obs = z1,… eT-1,zT-1, ZT-1

obs = zT-1),  we can estimate the causal effects of the longitudinal 
treatments in an observational study. The key advantage of the formula used in Achy-Brou and 
colleagues (2009) over the g-computation formula is that the dimension of the covariates in the 
models is dramatically reduced. This is useful because models for the regressions on the 
propensity scores can be built and checked more easily. Here we illustrate how the estimation 
algorithm works in practice. We also include the steps needed to check and improve the accuracy 
of the models used in the estimation. First, using a greedy stepwise selection algorithm based on 
the Akaike Information Criterion (AIC), we select the best performing transition and outcome 
models among the class of models with various interaction terms. Then, for each treatment, we 
rerun the estimation of the outcome models’ coefficients using only patients who received that 
specific treatment. Using only patients who received the specific treatment is desirable when we 
have a good sample size and we want to minimize any of the side effects associated with 
borrowing strength across different treatment groups. The important point is that the proposed 
approach allows you to easily try different models and to understand what parts of the data carry 
more information.  
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111.3  Example 

11.3.1  Study Description 
Simulated data based on a schizophrenia study (Tunis et al., 2006) utilized to demonstrate a 
marginal structural model analysis in Chapter 9 are also used here to illustrate the RMLPS 
approach. Refer to Chapter 9 or Tunis and colleagues (2006) for details. In brief, we compare the 
effectiveness of two groups of medications (labeled treatments 1 and 2) at the end of the 1-year 
treatment period as assessed by the total score from the Brief Psychiatric Rating Scale (BPRS), a 
measure of schizophrenia symptom severity where lower scores indicate lesser symptom severity. 
The follow-up period was naturalistic, thus patients were allowed to switch or discontinue as in 
usual care.  

11.3.2  Data Analysis 
The analysis follows the 6-step algorithm presented by Segal and colleagues (2007): 

 form a multinomial  
 propensity model  
 classify propensity scores into strata 
 estimate transition probabilities of the longitudinal propensity strata  
 estimate expected outcomes for the longitudinal treatment patterns of interest  
 estimate the average potential outcome over all patients for the longitudinal treatment 

patterns of interest 
 obtain uncertainty estimates using bootstrapping  

 
The analysis data set was structured based on one observation per patient per visit, with all 
potential confounder variables and outcome measures. For simplicity of presentation, our analysis 
focused only on the outcome at the final visit for all patients who continued in the study through 
the final visit. The treatment comparison of interest was between continuous use of treatment 1 
and continuous use of treatment 2. Table 11.1 summarizes the medication switching patterns over 
time during the study. There was more switching from treatment 2 to treatment 1 and few patients 
with the reverse pattern.   

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 11  Regression Models on Longitudinal Propensity Scores   267 
 

Table 11.1 also includes a summary of the outcome variable (change from baseline to endpoint in 
BPRS total score) by treatment pattern. Mean reductions in symptoms were largest for the group 
that started and stayed on treatment 1.  

Table 11.1  Numbers of Patients Following Each Medication Treatment Pattern and  
                    Unadjusted Mean Changes in Outcome Scores (BPRS Total) at the Final Visit 
   Time 3 
Time 1 Time 2 Trt 1 Trt 2 
    
Trt 1 Trt 1 N = 273   

Mean(SD): -13.2 (13.8)  
N = 3 

Mean(SD): -5.4 (15.0) 
 Trt 2 N = 0 N = 6 

Mean(SD): -7.7 (11.4) 
Trt 2 Trt 1 N = 6 

Mean(SD): -6.4 (14.4) 
N = 0 

 Trt 2 N = 10 
Mean(SD): -9.4 (14.2) 

N = 54 
Mean(SD): -11.4 (14.9) 

 

Analysis Steps 1 and 2 
The first step of the analysis involves estimating the propensity scores and classifying propensity 
scores into five strata for each of the three time periods (visits) assessed in this analysis. Program 
11.1 demonstrates the SAS code to perform these steps. PROC LOGISITIC is used to estimate 
the probability of receiving treatment 1. The model includes as covariates a set of a priori selected 
variables—designed to cover demographic variables and the domains of symptom severity, 
functioning, tolerability, and major medical resource utilization. The output data set (Predtrt) 
containing the estimated propensity scores is created for later analysis. In Step 2, the propensity 
scores are ranked by visit, and five strata for each visit are created using quintile cutoff scores. 
This is accomplished using PROC RANK.   

An assessment of the overlap in propensity score distributions and the balance created using the 
propensity score should be conducted at this step. There are several approaches to assessing the 
overlap and the quality of the propensity model, as discussed by Austin (2008). In this example, 
we provide simple evaluations of the distribution of the propensity scores by treatment group for 
visit 7 (because the final visit was the key visit for this analysis) and an assessment of treatment 
imbalance in key covariates before and after propensity score adjustment.     

The propensity score distributions had adequate overlap. Propensity score adjustment generally 
reduced the imbalance in covariate scores between the groups. However, there is no strong 
indication of selection bias in these data prior to adjustment because none of the variables were 
statistically different.  
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Program 11.1  Estimation of Longitudinal Propensity Models 
**********************************************************************; 
*  STEP 1: Estimate the Propensity Models                            *;  
*    PROC LOGISTIC is used to estimate propensity scores and output  *; 
*    to a data set where they are ranked and formed into quintile    *; 
*    subgroups in the next step.  PREDTRT1 is the propensity score   *;  
*    (probability of receiving treatment 1)                          *;  
**********************************************************************; 
 
ODS LISTING CLOSE; 
PROC LOGISTIC DATA = INPDS; 
  CLASS VIS THERAPY GENDER RACE B_HOSP B_EVNT P_HOSP P_EVNT; 
  MODEL TRT = VIS AGEYRS GENDER RACE B_HOSP B_EVNT B_GAF B_BPRS P_EVNT 
              P_HOSP P_BPRS P_GAF; 
  OUTPUT OUT = PREDTRT PRED = PREDTRT1; 
  run; 
ODS LISTING; 
 

Program 11.2  Stratification of Longitudinal Propensity Scores 
 

**********************************************************************; 
*  STEP 2: Categorize propensity scores into 5 strata                *;  
*    PROC RANK is used for form quintile subgroups. BIN_PS is the    *;  
*    variable denoting the subgroup (propensity score bin). At this  *;  
*    step one should assess the propensity score distributions to    *;  
*    confirm sufficient overlap in scores between treatment groups   *;  
*    and check the balance in covariates achieved between treatment  *;  
*    groups before and after adjustment. Simple output is used here  *; 
*    but histograms, boxplots and other graphics could be of value.  *;        
**********************************************************************; 
 
PROC SORT DATA = PREDTRT; 
  BY VIS; RUN; 
 
PROC RANK DATA = PREDTRT GROUPS = 5 OUT = RANKPS; 
  BY VIS; 
  RANKS RNK_PREDTRT1; 
  VAR PREDTRT1 ; 
run; 
 
DATA RANKPS; 
  SET RANKPS; 
  BIN_PS = RNK_PREDTRT1 + 1; 
run; 
 
    * THERE ARE 3 POSTBASELINE VISITS IN THIS ANALYSIS DATA SET *; 
DATA V5 V6 V7; 
  SET RANKPS;                    
  IF VIS = 5 THEN OUTPUT V5; 
  IF VIS = 6 THEN OUTPUT V6; 
  IF VIS = 7 THEN OUTPUT V7; 
run; 
 
    * A BRIEF EVALUATION OF PROPENSITY BALANCE IS HERE *; 
 
PROC SORT DATA = RANKPS; 
  BY VIS TRT; RUN; 
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PROC UNIVARIATE DATA = RANKPS; 
  BY VIS TRT; 
  VAR PREDTRT1; 
  TITLE 'Distribution of propensity scores'; RUN; 
PROC FREQ DATA = RANKPS; 
  TABLES VIS*BIN_PS*TRT; 
  TITLE 'Therapy distribution among bins by visit'; RUN; 

 

Output from Program 11.2 
 
          Distribution of propensity scores 
 
  ---------------------------------- VIS=7 TRT=T_1 ---------------------------------- 
 
                                   The UNIVARIATE Procedure 
                          Variable:  PREDTRT1  (Estimated Probability) 
 
                                            Moments 
 
                N                         324    Sum Weights                324 
                Mean                0.8057059    Sum Observations    261.048713 
                Std Deviation      0.03392898    Variance            0.00115118 
                Skewness           -0.0941572    Kurtosis            0.27851063 
                Uncorrected SS     210.700319    Corrected SS        0.37182968 
                Coeff Variation    4.21108704    Std Error Mean      0.00188494 
 
                                    Quantiles (Definition 5) 
 
                                    Quantile       Estimate 
 
                                    100% Max       0.905350 
                                    99%            0.885617 
                                    95%            0.866251 
                                    90%            0.844593 
                                    75% Q3         0.827277 
                                    50% Median     0.806746 
                                    25% Q1         0.782808 
                                    10%            0.765259 
                                    5%             0.748839 
                                    1%             0.720833 
                                    0% Min         0.708961   
 
  ---------------------------------- VIS=7 TRT=T_2 ---------------------------------- 
 
The UNIVARIATE Procedure 
                          Variable:  PREDTRT1  (Estimated Probability) 
 
                                            Moments 
 
                N                          79    Sum Weights                 79 
                Mean               0.79685171    Sum Observations    62.9512849 
                Std Deviation      0.03829261    Variance            0.00146632 
                Skewness           -0.2814442    Kurtosis            0.13622492 
                Uncorrected SS     50.2772121    Corrected SS        0.11437325 
                Coeff Variation    4.80548728    Std Error Mean      0.00430825 
 
                                    Quantiles (Definition 5) 
 
                                    Quantile       Estimate 
 
                                    100% Max       0.883209 
                                    99%            0.883209 
                                    95%            0.853460 

                                                                                                                                                       (continued) 
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Output  (continued) 
                                    90%            0.844921 
                                    75% Q3         0.825901 
                                    50% Median     0.794077 
                                    25% Q1         0.774749 
                                    10%            0.752936 
                                    5%             0.720296 
                                    1%             0.694857 
                                    0% Min         0.694857 
 
 
Therapy distribution among bins by visit 
                                Controlling for VIS=7 
 
                             BIN_PS 
                                        TRT(TREATMENT PRESCRIBED AT THIS VISIT 
                                            (A_C,_B_,__C,A__,___) /TRT/) 
 
                              Frequency‚ 
                              Percent  ‚ 
                              Row Pct  ‚ 
                              Col Pct  ‚T_1     ‚T_2     ‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚     58 ‚     22 ‚     80 
                                       ‚  14.39 ‚   5.46 ‚  19.85 
                                       ‚  72.50 ‚  27.50 ‚ 
                                       ‚  17.90 ‚  27.85 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     2 ‚     63 ‚     18 ‚     81 
                                       ‚  15.63 ‚   4.47 ‚  20.10 
                                       ‚  77.78 ‚  22.22 ‚ 
                                       ‚  19.44 ‚  22.78 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     3 ‚     69 ‚     12 ‚     81 
                                       ‚  17.12 ‚   2.98 ‚  20.10 
                                       ‚  85.19 ‚   14.81‚ 
                                       ‚  21.30 ‚  15.19 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     4 ˆ     66 ˆ     15 ‚     81 
                                       ˆ  16.38 ˆ   3.72 ‚  20.10 
                                       ˆ  81.48 ˆ  18.52 ‚ 
                                       ˆ  20.37 ˆ  18.99 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     5 ˆ     68 ˆ     12 ‚     80 
                                       ˆ  16.87 ˆ   2.98 ‚  19.85 
                                       ˆ  85.00 ˆ  15.00 ‚ 
                                       ˆ  20.99 ˆ  15.19 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total    ˆ    324 ˆ     79 ‚    403 
                                       ˆ  80.40 ˆ  19.60 ‚ 100.00 
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Table 11.2  Summary of Covariate Balance before and after Propensity Score Strata Adjustment  
                    (Visit 7)   
 Before Subclassification After Subclassification 
Covariate F-Statistic P-value F-Statistic P-value 
     
Age .09 .767 .03 .871 
Baseline GAF .42 .517 .02 .895 
Baseline BPRS .18 .669 .10 .748 
Previous GAF 1.23 .268 .86 .354 
Previous BPRS 2.58 .109 .47 .492 
     
 Chi-Square 

Statistics 
P-value Chi-Square 

Statistic 
P-value 

Previous Event .66 .416 .05 .820 
Previous Hosp .02 .879 .04 .840 

Analysis Step 3 
In Step 3, estimated probabilities of transitioning between the longitudinal propensity score strata 
are computed. PROC LOGISTIC in the macro EST (see Program 11.3) conducts the initial 
calculations for the transition probabilities. A proportional odds logistic model is run, with the 
propensity score bin as the dependent variable (five possible values) and a simple model with the 
previous visit’s treatment and propensity bins as covariates. Data manipulation of the output data 
set is required in order to modify the output cumulative values into the transition values necessary 
for later analysis steps. At the end of this section, we have included data sets with the transition 
probabilities for visit 5 to visit 6 and from visit 6 to visit 7 (TRPR_V6 and TRPR_V7). 

Program 11.3  Estimation of Transition Probabilities  
**********************************************************************; 
*  STEP 3: Estimate transitional probabilities of the longitudinal   *;  
*  propensity score strata. The first part of this section creates   *;  
*  an analysis data set with variables to denote the propensity      *;   
*  score bin and treatment at each visit (data set UPD which is then *;  
*  merged with visitwise analysis data sets). Summary statistics on  *;           
*  the propensity score bins and treatments over time can be easily  *;   
*  summarized using PROC FREQ. The EST macro runs a proportional     *;  
*  odds logistic regression model to assess the transitional         *;  
*  probabilities for each possible combination of propensity bin     *;  
*  over time. The steps following the macro compute the transition   *;  
*  probabilities from the parameter estimates of the logistic model  *;                            
**********************************************************************; 
   
    * Input for macro denotes the visit number *; 
%MACRO PM(VN); 
 
  DATA F1_&VN; 
    SET &VN; 
    BIN_PS_&VN = BIN_PS; 
    TRT_&VN = TRT; 
    KEEP PATSC BIN_PS_&VN TRT_&VN; 
  RUN; 
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Program 11.3  (continued) 
 
%PM(V5); RUN; 
%PM(V6); RUN; 
%PM(V7); RUN; 
 
PROC SORT DATA = F1_V5; BY PATSC; RUN; 
PROC SORT DATA = F1_V6; BY PATSC; RUN; 
PROC SORT DATA = F1_V7; BY PATSC; RUN; 
 
DATA UPD; 
  MERGE F1_V5 F1_V6 F1_V7; 
  BY PATSC; 
                    
PROC FREQ DATA = UPD;   
    TABLES BIN_PS_V5*BIN_PS_V6*BIN_PS_V7; 
    TITLE 'PATTERN OF BINS OVER TIME'; RUN; 
PROC FREQ DATA = UPD;   
    TABLES TRT_V5 TRT_V6 TRT_V7 TRT_V5*TRT_V6*TRT_V7; 
    TITLE 'PATTERN OF TRTS OVER TIME'; RUN; 
                        
PROC SORT DATA = UPD; BY PATSC; RUN; 
PROC SORT DATA = V5; BY PATSC; RUN; 
PROC SORT DATA = V6; BY PATSC; RUN; 
PROC SORT DATA = V7; BY PATSC; RUN; 
 
DATA V5; 
  MERGE V5 UPD; 
  BY PATSC; 
DATA V6; 
  MERGE V6 UPD; 
  BY PATSC; 
DATA V7; 
  MERGE V7 UPD; 
  BY PATSC; 
 
ODS LISTING CLOSE; 
 
 /* Input for macro includes the analysis data set for a specific visit (INDAT), name 
for the output data set containing the parameter estimates (PARM_EST), list of 
variables for the CLASS statement (CLASSVARS), and list of variables in the MODEL 
statement (MODELVARS).  Run macro for the 2nd and 3rd time points to assess 
transitions.            */ 
 
%MACRO EST(INDAT, PARM_EST, CLASSVARS, MODELVARS); 
 
  PROC LOGISTIC DATA = &INDAT OUTEST = &PARM_EST; 
    CLASS &CLASSVARS; 
    MODEL BIN_PS =  &MODELVARS;  
   RUN; 
 
%MEND EST; 
 
%EST(V6, PARM_V6, TRT_V5 BIN_PS_V5, TRT_V5 BIN_PS_V5); RUN; 
%EST(V7, PARM_V7, TRT_V5 BIN_PS_V5 TRT_V6 BIN_PS_V6, TRT_V5 BIN_PS_V5 TRT_V6 
BIN_PS_V6); RUN; 
          
ODS LISTING; 
 
 /* Data trpr_v7 uses the parameter estimates output from the EST macro to compute 
the actual transition probabilities for time period 2 to 3. Arrays are used in order 
to more efficiently calculate the 250 different transition probabilities (5x5x5x2:  5 
propensity bins at each of 3 time points for each of two treatment patterns of 
interest).    */                                     
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Program 11.3  (continued) 
  DATA TRPR_V7; 
    SET PARM_V7; 
    IF _TYPE_ = 'PARMS'; 
 
  * parameters are set to zero automatically in SAS modeling and are 
    specifically set to zero here for clarity.                       *;                            
 
    INTERCEPT_5 = 0;    
    BIN_PS_V55 = - BIN_PS_V51 - BIN_PS_V52 - BIN_PS_V53 - BIN_PS_V54; 
    BIN_PS_V65 = - BIN_PS_V61 - BIN_PS_V62 - BIN_PS_V63 - BIN_PS_V64 ; 
    TRT_V5T_2 = - TRT_V5T_1; 
    TRT_V6T_2 = - TRT_V6T_1; 
 
     X1 = INTERCEPT_1;               
     X2 = INTERCEPT_2; 
     X3 = INTERCEPT_3; 
     X4 = INTERCEPT_4; 
     X5 = INTERCEPT_5; 
   
     Y1= BIN_PS_V51; 
     Y2= BIN_PS_V52; 
     Y3= BIN_PS_V53; 
     Y4= BIN_PS_V54; 
     Y5= BIN_PS_V55; 
 
     Z1= BIN_PS_V61; 
     Z2= BIN_PS_V62; 
     Z3= BIN_PS_V63; 
     Z4= BIN_PS_V64; 
     Z5= BIN_PS_V65; 
   
     W1= TRT_v5T_1; 
     W2= TRT_v5T_2; 
     V1= TRT_v6T_1; 
     V2= TRT_v6T_2; 
  run; 
 
DATA TRPR_V7; 
  SET TRPR_V7; 
   ARRAY X[5] X1 - X5; 
   ARRAY Y[5] Y1 - Y5; 
   ARRAY Z[5] Z1 - Z5; 
   ARRAY W[2] W1 - W2; 
   ARRAY V[2] V1 - V2; 
   ARRAY PRE[5, 5, 5, 2 ];      
  
   DO A = 1 TO 2;            * LOOP FOR 2 TREATMENT GROUPS    *; 
     DO I = 1 TO 5;          * LOOP FOR BINS AT TIME PERIOD 3 *; 
       DO J = 1 TO 5;        * LOOP FOR BINS AT TIME PERIOD 1 *; 
        DO K = 1 TO 5;       * LOOP FOR BINS AT TIME PERIOD 2 *; 
 
  * Computation of probabilities using logistic model. Initial (pre) 
    probabilites are cumulative as they are from proportional odds 
    model - and are adjusted to individual outcome probabilities here*;  
        PRE[I, J, K, A ]= EXP(X[I] + W[A] + V[A] + Y[J] + Z[K]) / (1 + 
                          EXP(X[I] + W[A] + V[A] + Y[J] + Z[K])); 
        TRPR7 = PRE[I, J, K, A ];                       
       
        IF 2 LE I LE 4 THEN DO;    
          TRPR7 = PRE[I, J, K, A ] - (EXP(X[I-1] + W[A] + V[A] + Y[J] +  
                  Z[K]) / (1 + EXP(X[I-1] + W[A] + V[A] + Y[J] + 
                  Z[K]))); 
   END; 
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Program 11.3  (continued) 
        IF I = 5 THEN DO;    
          TRPR7 = 1 - (EXP(X[I-1] + W[A] + V[A] + Y[J] + Z[K]) / (1 +  
                  EXP(X[I-1] + W[A] + V[A] + Y[J] + Z[K]))); 
    END; 
    OUTPUT; 
 
    END;  
        END; 
       END; 
 END;;   
   KEEP A I J K TRPR7; 
           
 
* Repeat the same process for trpr_v6 as for trpr_v7.  Here there are 50 transitional 
probabilities to compute.          *; 
 
  DATA TRPR_V6; 
    SET PARM_V6; 
    IF _TYPE_ = 'PARMS'; 
 
     INTERCEPT_5 = 0;          
     BIN_PS_V55 = - BIN_PS_V51 - BIN_PS_V52 - BIN_PS_V53 - BIN_PS_V54;  
     TRT_V5T_2 = - TRT_V5T_1; 
 
     X1 = INTERCEPT_1;               
     X2 = INTERCEPT_2; 
     X3 = INTERCEPT_3; 
     X4 = INTERCEPT_4; 
     X5 = INTERCEPT_5; 
   
     y1= BIN_PS_V51; 
     y2= BIN_PS_V52; 
     y3= BIN_PS_V53; 
     y4= BIN_PS_V54; 
     y5= BIN_PS_V55; 
 
     z1= TRT_V5T_1; 
     z2= TRT_V5T_2; 
run; 
           
 DATA TRPR_V6; 
   SET TRPR_V6; 
   ARRAY X[5] X1 - X5; 
   ARRAY Y[5] Y1 - Y5; 
   ARRAY Z[2] Z1 - Z2; 
   ARRAY PRE[5, 5, 3 ];     /* it is a three-dimensional array */ 
 
   DO A = 1 TO 2; 
     DO K = 1 TO 5; 
       DO J= 1 TO 5; 
 
         PRE[K, J, A]= EXP(X[K] + Y[J] + Z[A]) / (1 + EXP(X[K] + Y[J] + 
                       Z[A])); 
         TRPR6 = PRE[K, J, A]; 
 
         IF 2 LE k LE 4 THEN DO;  
           TRPR6 = PRE[K, J, A]  -  (EXP(X[K-1] + Y[J] + Z[A]) / (1 + 
                  EXP(X[K-1] + Y[J] + Z[A]))); 
     END; 
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Program 11.3  (continued) 
          IF K = 5 THEN DO;  
            TRPR6 = 1 - (EXP(X[K-1] + Y[J] + Z[A]) / (1 + EXP(X[K-1] +  
                    Y[J] + Z[A]))); 
     END; 
     OUTPUT; 
 
     END;  
      END;  
    END; 
   KEEP A J K TRPR6 SECTION6; RUN; 
 

Analysis Step 4 
In this step, we estimate the expected outcomes for the longitudinal treatment patterns of interest. 
Specifically, we are interested in the expected outcomes for treatment 1 at all time periods and 
treatment 2 at all time points. PROC GENMOD (with the NORMAL distribution for our 
continuous outcome measure) was used to estimate the expected values. The model, with the 
change in outcome measure at endpoint as the dependent measure, included the previous 
treatments and previous propensity score strata as dependent measures. The final result of this 
step is an analysis data set containing the predicted values for each treatment and propensity bin 
combination over time (2*5*5*5 = 250 combinations: two treatment patterns of interest and 125 
propensity bin combinations) —along with the probabilities of those transitions from Step 3. An 
example listing of this data set (ALL) is provided after Program 11.4.  

The listing shows that a patient on treatment 1 at time point 1 in propensity strata 1 had a 56% 
chance of being in strata 1 at time 2. Furthermore, a patient in strata 1 at time 2 had a 69% chance 
of remaining in strata 1 at time 3. The expected outcome of a patient on treatment 1 at each time 
point and in propensity strata 1 at each time point was -8.6.  

Program 11.4  Estimation of Expected Outcomes for each Transition Path 
 

**********************************************************************; 
*  STEP 4: Estimate longitudinal treatment expected outcomes in      *;  
*    groups of interest (AAA and BBB). This code runs a simple model *;  
*    with only the treatment and propensity score bins at each time- *;  
*    point included as covariates and the outcome measure as the     *;  
*    dependent variable. This macro can be used to assess sensitivity*;  
*    via comparisons with other models.  After the macro call, the   *;   
*    parameter estimates are output to a data set to allow for       *;  
*    calculation of the expected outcome for all possible transition *;   
*    paths (all treatment and propensity bin options over time).     *;                 
**********************************************************************; 
     
DATA V7; 
  SET V7; 
  TRT_V5_ = TRT_V5; 
  TRT_V6_ = TRT_V6; 
  TRT_V7_ = TRT_V7; 
 
DATA OUTCV7; 
  SET RANKPS; 
  IF VIS = 7; 
  KEEP PATSC BAVAR AVAR CAVAR; 
 
PROC SORT DATA = V7; BY PATSC; RUN; 
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PROC SORT DATA = OUTCV7; BY PATSC; RUN; 
 
DATA ADAT7; 
  MERGE V7 (IN=A) OUTCV7 (IN=B); 
  BY PATSC; 
  IF A AND B; 
 
          * Summary statistics on analysis data set *; 
PROC MEANS DATA = ADAT7; 
  CLASS TRT_V5_ TRT_V6_ TRT_V7_; 
  VAR CAVAR; 
  TITLE2 'SUMMARY STATS FROM ADAT7'; run; 
 
PROC TABULATE DATA = ADAT7; 
  CLASS TRT_V5_ TRT_V6_ TRT_V7_; 
  VAR BAVAR CAVAR; 
  TABLES (TRT_V5_*TRT_V6_*TRT_V7_)*(N MEAN STD),(BAVAR CAVAR); 
  TITLE2 'SUMMARY STATS FROM ADAT7'; run; 
 
/* Input for macro includes the analysis data set for a specific visit 
(DATA_2), name for the output data set containing the parameter estimates 
(DATA_1), list of variables for the CLASS statement (CLASSVAR2), and list 
of variables in the MODEL statement (MODELVAR2).  */ 
 
 
%MACRO G_ESTS(DATA_2, DATA_1, CLASSVAR2, MODELVAR2); 
 
 ODS OUTPUT ParameterEstimates= &data_1 ; 
 PROC GENMOD DATA = &DATA_2; 
   CLASS &CLASSVAR2; 
   MODEL CAVAR = &MODELVAR2 / DIST = NOR LINK = ID; 
   run; 
 
%MEND G_ESTS; 
 
%g_ests(ADAT7, vis7_OUTCESTS, TRT_V5_ TRT_V6_ TRT_V7_ BIN_PS_V5  
   BIN_PS_V6 BIN_PS_V7, TRT_V5_ TRT_V6_ TRT_V7_ BIN_PS_V5 BIN_PS_V6 
   BIN_PS_V7); 
run;     
        
    * get parameter estimates from model to allow computation *; 
    * of expected values for all transition paths             *; 
  
DATA VIS7_OUTCESTS; 
  SET VIS7_OUTCESTS; 
  KEEP PARAMETER LEVEL1 ESTIMATE; 
 
PROC TRANSPOSE DATA = VIS7_OUTCESTS OUT=TR_OUTCESTS; 
  RUN; 
         
DATA TR_OUTCESTS; 
  SET TR_OUTCESTS; 
 INTERCEPT = COL1; 
    X1 = COL2;  * TRT AT V5 *; 
    X2 = COL3; 
    Y1 = COL4;  * TRT AT V6 *; 
    Y2 = COL5; 
    Z1 = COL6;  * TRT AT V7 *; 
    Z2 = COL7; 
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    B1=COL8; B2=COL9; B3=COL10; B4=COL11; B5=COL12;   * BIN AT V5 *; 
    C1=COL13; C2=COL14; C3=COL15; C4=COL16; C5=COL17; * BIN AT V6 *; 
    L1=COL18; L2=COL19; L3=COL20; L4=COL21; L5=COL22; * BIN AT V7 *; 
run; 
         
 DATA OUTC; 
   SET TR_OUTCESTS; 
   ARRAY X[2] X1 - X2; 
   ARRAY Y[2] Y1 - Y2; 
   ARRAY Z[2] Z1 - Z2; 
   ARRAY B[5] B1 - B5; 
   ARRAY C[5] C1 - C5; 
   ARRAY L[5] L1 - L5; 
   ARRAY PRE[2, 5, 5, 5 ];      
 
   DO A = 1 TO 2; 
  DO J = 1 TO 5; 
    DO K = 1 TO 5; 
   DO I = 1 TO 5; 
    
 PRE[A, J, K, I ]= COL1 + X[A] + Y[A] + Z[A] + B[J] + C[K] + L[i];  
               EOUT = PRE[A, J, K, I ];                       
               OUTPUT; 
 
       END; 
     END;  
      END;  
    END; 
  run; 
 
  
 DATA OUTC; 
   SET OUTC; 
   KEEP A J K I EOUT; 
     run; 
      
PROC SORT DATA = TRPR_V7; BY A J K I; RUN; 
PROC SORT DATA = OUTC; BY A J K I; RUN; 
PROC SORT DATA = TRPR_V6; BY A J K; RUN; 
 
DATA ALL1; 
  MERGE TRPR_V7 OUTC; 
  BY A J K I; 
 
DATA ALL; 
  MERGE ALL1 TRPR_V6; 
  BY A J K; 
  SUM_EO = EOUT*(.2)*TRPR6*TRPR7; 
  IF A = 1 THEN TRTPTTRN = 'AAA'; 
  IF A = 2 THEN TRTPTTRN = 'BBB';  
 
PROC PRINT DATA = ALL; 
  VAR TRTPTTRN J K I TRPR6 TRPR7 EOUT; 
  TITLE 'LISTING OF DATASET ALL (TRANSITION PROBS AND EXPECTED OUTCOMES)'; 
RUN; 
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Output from Program 11.4 
 
                LISTING OF DATASET ALL (TRANSITION PROBS AND EXPECTED OUTCOMES 
 
                Obs    TRTPTTRN    J    K    I     TRPR6      TRPR7       EOUT 
 
                  1      AAA       1    1    1    0.56184    0.68756     -8.5755 
                  2      AAA       1    1    2    0.56184    0.23807    -10.9945 
                  3      AAA       1    1    3    0.56184    0.05502    -13.0868 
                  4      AAA       1    1    4    0.56184    0.01634    -17.8012 
                  5      AAA       1    1    5    0.56184    0.00301    -20.6457 
                  6      AAA       1    2    1    0.28214    0.48647    -11.0129 
                  7      AAA       1    2    2    0.28214    0.35624    -13.4318 
                  8      AAA       1    2    3    0.28214    0.11345    -15.5242 
                  9      AAA       1    2    4    0.28214    0.03687    -20.2385 
                 10      AAA       1    2    5    0.28214    0.00697    -23.0830 
                 11      AAA       1    3    1    0.11399    0.22977    -12.3396 
                 12      AAA       1    3    2    0.11399    0.39809    -14.7585 
                 13      AAA       1    3    3    0.11399    0.24504    -16.8509 
                 14      AAA       1    3    4    0.11399    0.10530    -21.5652 
                 15      AAA       1    3    5    0.11399    0.02180    -24.4097 
              . . . .  
                125      AAA       5    5    5    0.62377    0.75457    -17.1169 
    . . . .  

Analysis Step 5 
This step utilizes the output of Steps 3 and 4 (contained in data set ALL) to estimate the average 
of the potential outcomes for the longitudinal treatment patterns of interest (treatment 1 at all time 
points [denoted AAA] and treatment 2 at all time points [denoted BBB]). This is accomplished 
using simple summations of the appropriate probabilities in data set ALL. The summation 
produces an estimated treatment difference favoring treatment 1 of 2.5 points on the BPRS scale 
(see Output from Program 11.5). 

Program 11.5  Estimation of Outcomes in Treatment Patterns of Interest 
**********************************************************************; 
*  STEP 5: Estimate the average, over all patients, of the potential *;  
*    outcomes for longitudinal treatment groups of interest (AAA vs  *;  
*    BBB).  This code uses the expected values for all patterns      *;  
*    created in step 4 and sums the values across the corresponding  *;  
*    patterns of interest.  The final estimates are then printed.    *;   
**********************************************************************; 
 
PROC SORT DATA = ALL; 
  BY A; RUN; 
 
DATA ALL; 
  SET ALL; 
  IF A = 1 THEN DO; * COUNTERS FOR TREATMENT 1 *; 
    WTEST_AAA + SUM_EO;  
    SUM_TRPR6A + TRPR6; 
    SUM_TRPR7A + TRPR7; 
  END; 
  IF A = 2 THEN DO; * COUNTERS FOR TREATMENT 2 *; 
    WTEST_BBB + SUM_EO;  
    SUM_TRPR6B + TRPR6; 
    SUM_TRPR7B + TRPR7; 
  END; 
  DUM = 1; 
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PROC SORT DATA = ALL; 
  BY DUM; RUN; 
 
DATA ALL; 
  SET ALL; 
  BY DUM; 
  IF LAST.DUM; 
  DIFF = WTEST_AAA - WTEST_BBB; 
  KEEP WTEST_AAA WTEST_BBB DIFF; 
         
PROC PRINT DATA = ALL; 
  TITLE 'FINAL ESTIMATE DATASET';  
  TITLE2 'WTEST_AAA: ESTIMATED RESPONSE FOR LONGITUDINAL TREATMENT PATTERN 
AAA'; 
  TITLE3 'WTEST_BBB: ESTIMATED RESPONSE FOR LONGITUDINAL TREATMENT PATTERN 
BBB'; 
  TITLE4 'DIFF: ESTIMATED DIFFERENCE IN RESPONSE BETWEEN TWO TREATMENT 
PATTERNS'; 
RUN; 

Output from Program 11.5 
                              FINAL ESTIMATE DATASET    
       WTEST_AAA: ESTIMATED RESPONSE FOR LONGITUDINAL TREATMENT PATTERN AAA 
       WTEST_BBB: ESTIMATED RESPONSE FOR LONGITUDINAL TREATMENT PATTERN BBB 
      DIFF: ESTIMATED DIFFERENCE IN RESPONSE BETWEEN TWO TREATMENT PATTERNS 
 
                                WTEST_      WTEST_ 
                        Obs       AAA         BBB        DIFF 
 
                         1     -13.0024    -10.1465    -2.85589 

Analysis Step 6 
In this step, Steps 3 through 5 are repeated using a bootstrap algorithm (5,000 replications used 
here) in order to estimate the variability of our propensity score sub-classification treatment 
difference estimate. The specific code is not shown, but simply creates a loop to repeat the 
process 5,000 times and output the resulting treatment difference estimate. The distribution of 
treatment difference estimates is summarized by PROC UNIVARIATE. Using the percentile 
method, the 95% 2-sided confidence interval was found to be (-6.91, 1.30) with a corresponding 
p-value of 0.185.  

Output from Analysis Step 6 
                 SUMMARY STATS ON BOOTSTRAP DIFFERENCES: AAA - BBB 
 
                              The UNIVARIATE Procedure 
                                  Variable:  DIFF 
 
                                      Moments 
 
          N                        5000    Sum Weights               5000 
          Mean               -2.7978146    Sum Observations    -13989.073 
          Std Deviation      2.09761783    Variance            4.40000058 
          Skewness           0.02795663    Kurtosis            -0.1326878 
          Uncorrected SS     61134.4344    Corrected SS        21995.6029 
          Coeff Variation    -74.973441    Std Error Mean       0.0296648 
 
 

                                                                                                                                                       (continued) 
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            Output from Analysis Step 6  (continued) 
                             Basic Statistical Measures 
 
                         Location                    Variability 
 
                     Mean     -2.79781     Std Deviation            2.09762 
                     Median   -2.79368     Variance                 4.40000 
                     Mode       .          Range                   14.18360 
                                           Interquartile Range      2.87671 
 
 
                                   Tests for Location: Mu0=0 
 
                        Test           -Statistic-    -----p Value------ 
 
                        Student's t    t  -94.3143    Pr > |t|    <.0001 
                        Sign           M     -2028    Pr >= |M|   <.0001 
                        Signed Rank    S  -5878113    Pr >= |S|   <.0001 
 
 
                                    Quantiles (Definition 5) 
 
                                    Quantile        Estimate 
 
                                    100% Max       4.8827501 
                                    99%            1.9440237 
                                    95%            0.6811120 
                                    90%           -0.0688069 
                                    75% Q3        -1.3916694 
                                    50% Median    -2.7936758 
                                    25% Q1        -4.2683819 
                                    10%           -5.4915107 
                                    5%            -6.2668682 
                                    1%            -7.6076745 
                                    0% Min        -9.3008516 
 
                                  Frequency Counts 
                               Percents 
               Value Count  Cell   Cum 
     . . . 

                -6.908590145030     1   0.0   2.5 
      . . . 
                   1.295190177818     1   0.0  97.5 

 

Sensitivity / Model Checks 
As mentioned previously, a key feature of using regression on the longitudinal propensity score is 
that we can more easily check the relative validity of the models.  Here we present SAS code 
(Program 11.6) to graphically depict the predictive accuracy of the outcome model. The code 
produces a scatterplot of the predicted and actual means for each bin and treatment 
combination—with the area of each plotted circle representing the sample size in each 
longitudinal subclass. From the output, there are noted outliers, though all subclasses of 
reasonable sample sizes were well predicted by the model.  

To further assess the validity of the models, we also followed the two approaches presented in 
Section 11.2. First, we assessed model improvement for both the transition and outcome models 
using the AIC criteria. Second, we re-ran the outcome model using only the subset of patients 
who did not switch treatments during the study. The AIC criteria can be assessed by modifying 
the MODEL (transition and outcome) statements in the EST (Program 11.3) and G_ESTS 
(Program 11.4) macros (not shown). For these data, the AIC was slightly improved by the 
inclusion of the treatment interactions (for example, visit 5 by visit 6 and visit 6 by visit 7 
interactions) and the treatment by propensity bin interactions (for example, visit 5 treatment by 
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visit 5 bin). However, the inferences from this model were the same and the model was less 
stable—with a much larger variance from the bootstrap evaluation. Thus, the simple model 
results are retained here. The same SAS code was also used to assess the outcome using the 
subset of patients not switching treatments during the study. This was accomplished by modifying 
the data set entering the analysis macros. Once again, inferences from this approach were similar.  

Program 11.6   Graphical Assessment of Analysis Models 
********************************************************; 
** Graph of observed and expected outcomes to assist  **; 
** in model assessment                                **; 
********************************************************; 
 
PROC MEANS DATA = ADAT7 NOPRINT; 
  CLASS TRT_V5_ TRT_V6_ TRT_V7_ BIN_PS_V5 BIN_PS_V6 BIN_PS_V7; 
  VAR CAVAR; 
  OUTPUT OUT = MEANOUT N = NPT MEAN = AVGVAL; RUN; 
 
DATA OUTC; 
  SET OUTC; 
  BIN_PS_V5 = J; 
  BIN_PS_V6 = K; 
  BIN_PS_V7 = I; 
DATA MEANOUT; 
  SET MEANOUT; 
  IF (TRT_V5_ = 'T_1' AND TRT_V6_ = 'T_1' AND TRT_V7_ ='T_1' AND 
        BIN_PS_V5 NE . AND BIN_PS_V6 NE . AND BIN_PS_V7 NE .) OR 
     (TRT_V5_ = 'T_2' AND TRT_V6_ = 'T_2' AND TRT_V7_ ='T_2' AND  
        BIN_PS_V5 NE . AND BIN_PS_V6 NE . AND BIN_PS_V7 NE .); 
  IF TRT_V5_ = 'T_1' AND TRT_V6_ = 'T_1' AND TRT_V7_ ='T_1’ THEN A = 1; 
  IF TRT_V5_ = 'T_2' AND TRT_V6_ = 'T_2' AND TRT_V7_ ='T_2' THEN A = 2; 
 
PROC SORT DATA = OUTC; BY A BIN_PS_V5 BIN_PS_V6 BIN_PS_V7; RUN; 
PROC SORT DATA = MEANOUT; BY A BIN_PS_V5 BIN_PS_V6 BIN_PS_V7; RUN; 
  
DATA GRPH; 
  MERGE OUTC (IN=X) MEANOUT (IN=Y); 
  BY A BIN_PS_V5 BIN_PS_V6 BIN_PS_V7; 
  IF X AND Y; 
     
TITLE 'Scatterplot of Expected and Actual Outcomes by Bin/Treatment 
Trajectory'; 
 
SYMBOL1 C=RED V=CIRCLE;     
AXIS1 LABEL = (ANGLE=90 "OBSERVED OUTCOME")   ORDER = (-70 TO 20 BY 10); 
AXIS2 LABEL = (ANGLE=0 "EXPECTED OUTCOME")  ORDER = (-70 TO 20 BY 10); 
 
PROC GPLOT DATA=GRPH; 
 BUBBLE AVGVAL*EOUT = NPT / vaxis = axis1 haxis = axis2; 
 PLOT AVGVAL*EOUT = 1 / vaxis = axis1 haxis = axis2; 
RUN; 
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Output from Program 11.6 

 
 

111.4  Summary 
The method presented in this chapter can be viewed first as an extension of the propensity score 
regression adjustment methods to a longitudinal setting. It can also be seen as a robust, yet easier, 
way of applying and extending g-computation-based methods by replacing the full covariate 
history with the longitudinal propensity scores. In the chapter, we gave a quick and practical 
overview of the methodology and presented a detailed illustration of the steps needed to evaluate 
longitudinal treatment using regression models on the propensity scores.  
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Abstract  
Retrospective databases describing health information have become a common source of data for 
investigators to explore a wide range of economic, epidemiologic, safety, and effectiveness 
studies. This chapter describes an abridged checklist containing 10 of the most important points 
to consider when evaluating or designing a retrospective database study. As a quick guide, the 10 
points are described summarily in table form followed by a more detailed discussion of each 
point. This checklist can be viewed as a guide to assess the nuances commonly encountered in 
retrospective observational studies in the health care arena. Some familiarity with general 
research principles is assumed and, in order to adequately assess some questions, relevant 
research training or additional reading will be required.  

12.1  Introduction  
Retrospective databases describing health information have become a common source of data for 
investigators to explore a wide range of economic, epidemiologic, safety, and effectiveness 
studies. An important strength of most retrospective databases is that they allow researchers to 
examine medical care utilization as it occurs in routine clinical care. They often provide large 
study populations and longer observation periods, allowing for examination of specific 
subpopulations. In addition, retrospective databases provide a relatively inexpensive and 
expedient approach for answering the time-sensitive questions posed by decision makers. Two 
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recent studies have suggested that adequately controlled observational studies produce results 
similar to randomized controlled trials (Concato et al., 2000; Benson and Hartz, 2000). Analyses 
derived from retrospective observational sources also present an array of limitations and factors 
that must be considered when conducting an investigation. Because treatment patterns and 
outcome measures are only observed and never randomized, investigators must overcome 
selection bias, or endogeneity, that influences treatment selection and the propensity to have some 
outcome of interest. In addition to the issues of selection bias, researchers using retrospective data 
sources, particularly those derived from paid claims not collected for research purposes, must 
address other factors such as data quality including missing data, HIPAA, timeliness, developing 
appropriate operational definitions, and local coding conventions and practice patterns.  

In 2000, the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 
convened an expert panel to develop good research practice guidelines for retrospective database 
studies. The panel members met and developed several drafts and presented prior versions of the 
checklist to the ISPOR membership at their U.S. and European meetings to solicit feedback 
resulting in a checklist accepted by the ISPOR Board of Directors in 2002. The complete 
checklist has been published (Motheral et al., 2003) and is available on the Internet 
(http://www.ispor.org/workpaper/healthscience/ret_dbTFR0203.asp). In 2008–2009, ISPOR as 
well as the U.S. Food and Drug Administration (FDA) were developing additional guidelines on 
the conduct of observational studies to estimate treatment effects derived from retrospective data 
sources. Interested readers should follow up with these organizations to identify the latest 
guidance. The guidelines that are being developed at the time of this writing will offer readers 
more clarity and detail regarding specific research design and statistical issues common in these 
types of studies.  

The checklist presented in this chapter represents an abridged checklist containing 10 of the most 
important points to consider when evaluating a retrospective database study. The complete 
checklist contains 27 points or questions and should be used when designing a retrospective study 
or when a more thorough and detailed review of a retrospective database study is warranted, such 
as when one is serving as a journal referee.  

Numerous databases are available for use by researchers, particularly within the U.S. Because the 
databases have varying purposes, their content can vary dramatically. Accordingly, the unique 
advantages and disadvantages of a particular database must be considered. In conducting or 
reviewing a database study, it is important to assess whether the database is suitable for 
addressing the research question and whether the investigators have used an appropriate 
methodology in reaching the study conclusions. While the checklist was written in the form of 10 
questions to guide readers and decision-makers as they consider a database study, it can also 
serve as a guide to researchers designing, analyzing, or reporting retrospective studies. This 
checklist is intended to raise general issues, not to offer detailed prescriptive recommendations. 
Some familiarity with general research principles is assumed and, in order to adequately assess 
some questions, relevant research training or additional reading will be required. This is 
particularly true for assessing questions relating to statistics. Other important issues in the use of 
retrospective databases, including patient confidentiality, credibility, and study sponsorship, are 
not addressed in this checklist. Readers should consult with their own professional society’s 
guides and their own institutional guidelines on conflicts of interest, research involving human 
subjects, or other guidelines to inform them on these important issues. Other chapters in this text 
describe the statistical techniques and the SAS programming steps that can be used to implement 
some of the issues covered in this chapter; however, this checklist does not offer specific SAS 
programming steps. 
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12.1.1  How Should the Checklist Be Used? 
This checklist was developed primarily for the commonly used medical claims or encounter-
based databases but could potentially be used to assess retrospective studies that employ other 
types of databases, such as disease registries and national survey data. The checklist is meant to 
serve as a supplement to already available checklists for economic evaluations (Clemens et al., 
1995; Weinstein et al., 1996). Only those issues that are unique to database studies or are 
particularly problematic in database research were included in the checklist. Not every question 
will be applicable to every study, but the checklist should prompt researchers to at least consider 
important factors affecting the quality of the study.  

112.2  Checklist and Discussion 
 

CHECKLIST 
Topic Question 

1. Database 
Relevance 

Has the database content and study population been described in sufficient 
detail to determine the rationale for using the database to answer the 
research question and to assess how the findings can be interpreted in the 
context of other organizations? 

2. Database 
Quality 

Have the reliability and validity of the data been described, including any 
data quality checks and handling of missing data? 

3. Research Plan Has an a priori research plan been developed, including a rationale for 
selecting the particular research design, and have the potential limitations 
of that design been acknowledged?  

4. Sample 
Selection 

Have inclusion and exclusion criteria been used to derive the final sample 
from the initial population, has the rationale for their use been described, 
and has the impact of these criteria on sample representativeness been 
discussed?  

5. Variable 
Definitions 

Has a rationale and/or supporting literature for the selection criteria and 
variable definitions been provided and were sensitivity analyses performed 
for definitions or criteria that are controversial, uncertain, or novel?  

6. Resource 
Valuation 

For studies that examine costs, has a method and rationale for valuing 
resources (costs, charges, payments, fee schedules) been described, and is 
it consistent with the study perspective? 

7. Confounding If the goal of the study is to examine treatment effects, have the authors 
adequately controlled for confounding variables through use of a 
comparison group and i) multivariate statistical techniques or ii) 
stratification of the sample by different levels of the confounding variables 
to compare outcomes? 

8. Statistical 
Analysis 

Have the appropriate statistical techniques been used, taking into account 
the particular nuances of utilization and cost data, such as skewness and 
correlations within and among population subgroups? 
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Topic Question 
9. Practical  

Significance 
Has the practical significance of the findings been explained by discussing 
the statistical versus clinical or economic significance of the results and the 
variance explained/goodness of fit of the statistical models? 

10. Theoretical 
Basis 

Has a theory for the findings been provided and have alternative 
explanations for the observed findings been discussed?  

 
1. Relevance: Has the database content and study population been described in sufficient 

detail to determine the rationale for using the database to answer the research question 
and to assess how the findings can be interpreted in the context of other organizations? 
Each database represents a particular situation in terms of study population, benefit 
coverage, and service organization. To appropriately interpret a study, key attributes 
should be described, including the sociodemographic and health care profile of the 
population, limitations on available services, such as those imposed by socialized 
medicine, plan characteristics, and benefit design (for example, physician reimbursement 
approach, cost-sharing for office visits, drug exclusions, mental health carve outs). For 
example, in an economic evaluation that compares two drugs, it would be important to 
know the formulary status of the drugs as well as any other pharmacy benefit 
characteristics that could affect the use of the drugs, such as step therapy, compliance 
programs, and drug utilization review programs. 

2. Data Quality: Have the reliability and validity of the data been described, including any 
data quality checks and handling of missing data? 
With any research data set, quality assurance checks are necessary to determine the 
reliability and validity of the data, keeping in mind that reliability and validity are not 
static attributes of a database but can vary dramatically depending on the questions asked 
and the analyses performed. Quality checks are particularly important with administrative 
databases from health care payers and providers because the data were originally 
collected for purposes other than research, most often for claims processing and payment. 
This fact creates a number of potential challenges for conducting research. 

First, services may not be captured in the claims database because the particular service is 
not covered by the plan sponsor or because the service is carved out and not captured in 
the data set (for example, mental health). Second, data fields that are not required for 
reimbursement may be particularly unreliable. Similarly, data from providers who are 
paid on a capitated basis often have limited utility because providers may not be required 
to report detailed utilization information. Third, changes in reporting/coding over time or 
differences across study groups can result in unreliable data as well. It is common for 
procedure codes and drug codes, among others, to change over time, and the frequency 
with which particular codes are used can change over time as well, often in response to 
changes in health plan reimbursement policies.  

For all these reasons, investigators should describe the quality assurance checks 
performed and any steps taken to normalize the data or otherwise eliminate data 
suspected to be unreliable or invalid, particularly when there is the potential to bias 
results to favor one study group over another (for example, outliers). The authors should 
describe any relevant changes in reporting/coding that may have occurred over time and 
how such variation affects the study findings. Data quality should be addressed even 
when the data have been pre-processed (for example, grouped into episodes) prior to use 
by the researcher. Examples of important quality checks include missing and out-of-range 
values, consistency of data (for example, patient age), claim duplicates, and comparison 
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of data figures to established norms (for example, rates of asthma diagnosis compared 
with prevalence figures). Some studies cite previous literature in which the database’s 
reliability and validity have been examined.  

3. A Priori Research Plan: Has an a priori research plan been developed, including a 
rationale for selecting the particular research design, and have the potential limitations of 
that design been acknowledged? 
One of the easiest ways to drive results in a certain direction would be to impose post hoc 
changes in the research plan or design. A research plan describing sample inclusion 
criteria, variable definitions, model specifications, and statistical approaches should be 
developed prior to initiating the research and the results based on the a priori plan should 
be described. Naturally, investigators acquire new knowledge through the conduct of a 
study, and it is often important to implement post hoc design changes. The research 
report, however, should clearly describe any post hoc decisions and, when relevant, 
report the results of both the a priori plan and after applying any post hoc decisions.  

Many research designs (for example, pre-post with control group) are available to the 
investigator, each with particular strengths and weaknesses, depending on setting, 
research question, and data. The investigator should provide a clear rationale for the 
selection of the design and describe the salient strengths and weaknesses of the design, 
including how potential biases will be addressed.  

4. Sample Selection: Have inclusion and exclusion criteria been used to derive the final 
sample from the initial population, has the rationale for their use been described, and has 
the impact of these criteria on sample representativeness been discussed?  
The inclusion/exclusion criteria are the minimum rules that are applied to each potential 
subject’s data in an effort to define a study group(s). Regardless of the database used, the 
inclusion/exclusion criteria can dramatically change the composition of the study 
group(s). Has a description been provided of the subject number for the total population, 
sample and after application of each inclusion and exclusion criterion? In other words, is 
it clear who and how many individuals were excluded and why?  

Second, was there a discussion of the impact of study inclusion and exclusion criteria on 
study findings, because the inclusion/exclusion criteria can bias the selection of the 
population and distort the applicability of the study findings? For example, continuous 
eligibility during the study period is a common inclusion criterion for database studies. 
However, in government entitlement programs where eligibility is determined monthly, 
limiting the study population to only those with continuous eligibility would tend to 
include the sickest patients because they would most likely remain in conditions that 
make them eligible for coverage. The extent to which this would affect the applicability 
of study findings depends upon the study question. 

5. Variable Definitions: Has a rationale and/or supporting literature for the selection criteria 
and variable definitions been provided and were sensitivity analyses performed for 
definitions or criteria that are controversial, uncertain, or novel?  
Operational definitions are required to identify cases (subjects) and endpoints 
(outcomes), often using diagnoses codes, medication uses, and/or procedure codes to 
indicate the presence or absence of a disease or treatment. The operational definition(s) 
for all variables should be provided because different definitions can potentially lead to 
different results and interpretations. For example, investigators attempting to identify 
group(s) of persons with a particular disorder (Alzheimer’s disease) should provide a 
rationale and, when possible, cite evidence that a particular set of coding (ICD-9-CM, 
CPT-4, Drug Intervention) criteria is valid. Ideally, this evidence would take the form of 
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validation against a primary source but more often will involve the citation of previous 
research. 

When there is controversial evidence or uncertainty about such definitions, the 
investigator should perform a sensitivity analysis using alternative definitions to examine 
the impact of these different ways of defining events. Sensitivity analysis tests different 
values or combinations of factors that define a critical measure in an effort to determine 
how those differences in definition affect the results and interpretation. Databases allow 
investigators to perform sensitivity analyses in a hierarchical fashion, or caseness, where 
the analysis is conducted using different definitions or levels of certainty (for example, 
definite, probable, and possible cases).  

For economic evaluations, a particularly challenging issue is the identification of disease-
related costs in a claims database. For example, when studying depression, does one 
include only services with a depression diagnosis, those with a depression-related code 
(for example, anxiety), or all services regardless of the accompanying diagnosis code? As 
mentioned earlier, sensitivity analyses of varying operational definitions are important in 
these situations. 

6. Resource Valuation: For studies that examine costs, has a method and rationale for 
valuing resources (costs, charges, payments, fee schedules) been described, and is it 
consistent with the study perspective? 
As with any economic evaluation, reviewers should ensure that the resource costs 
included in the analysis match the responsibilities of the decision-maker whose 
perspective is taken in the research. For example, if the study is from the perspective of 
the insurer, the resource list should include only those resources that will be paid for by 
the insurer, which would exclude member co-pays and noncovered services (for example, 
over-the-counter medications).  

Likewise, the resource should be valued in a manner that is consistent with the 
perspective. For a variety of reasons, the resource price information available within 
retrospective databases may provide an imperfect measure of the actual resource price. 
Typically, claims data provide a number of cost figures, including the submitted charge, 
eligible charge, amount paid, and member co-pay. The perspective of the study 
determines which cost figure to use. Rarely would charge be used as few, if any, actually 
pay this price. When the perspective is the insurer or plan sponsor, one typically expects 
the amount paid to be used to value the resource consumed. However, if trying to 
generalize findings beyond a specific plan, an investigator may use an average discount 
off charge minus an average member co-pay to arrive at an amount paid. This 
standardized amount is then applied to actual utilization. 

That said, reported costs may not always reflect additional discounts, rebates, and other 
negotiated arrangements. These additional price considerations can be particularly 
important for economic evaluations of drug therapies, where rebates can represent a 
significant portion of the drug cost. In addition, prices will vary over time with inflation 
and across geographic areas with differences in the cost of living. In most cases, prices 
should be adjusted to a reference year and place using relevant price indexes. 

7. Confounding: If the goal of the study is to examine treatment effects, have the authors 
adequately controlled for confounding variables through use of a comparison group and 
i) multivariate statistical techniques or ii) stratification of the sample by different levels 
of the confounding variables to compare outcomes? 
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One of the greatest dangers in retrospective database studies is incorrectly attributing an 
effect to a treatment that is actually due, at least partly, to some other variable. If the 
investigation attempts to make inferences about a particular intervention, a design in 
which there is no control group is rarely adequate. Without a control group (persons not 
exposed to an intervention) or comparison group (persons exposed to a different 
intervention), there often exist too many potential biases that could otherwise account for 
an observed treatment effect. Even with a control group, failure to account for the effects 
of all variables that have an important influence on the outcome of interest can lead to 
biased estimates of treatment effects. Two common approaches for addressing this 
problem include using regression modeling techniques and stratifying the sample by 
different levels of the confounding variables, comparing treatments within strata/potential 
confounders (for example, age, gender). Each of these approaches has strengths and 
weaknesses. 

8. Statistical Analysis: Have the appropriate statistical techniques been used, taking into 
account the particular nuances of utilization and cost data, such as skewness and 
correlations within and among population subgroups? 
Statistical methods are based upon a variety of underlying assumptions. Often these stem 
from the distributional characteristics of the data being analyzed. As a result, in any given 
retrospective analysis, some statistical methods will be more appropriate than others. 
Authors should explain the reasons why they chose the statistical methods that were used 
in the analysis. There is rarely, if ever, a statistical estimation approach that is singularly 
the most appropriate. When there is uncertainty in selecting various statistical or 
modeling approaches, sensitivity analyses should ideally be conducted to explore the 
impact the modeling approach has on study findings. There are instances when the 
modeling approach can have profound impacts on the study results, particularly when 
contrasting instrumental variable approaches with traditional regression-based 
approaches (Stukel et al., 2007). 

9. Practical Significance: Has the practical significance of the findings been explained by 
discussing the statistical versus clinical or economic significance of the results and the 
variance explained/goodness of fit of the statistical models? 
In retrospective database studies, the sample sizes are often extremely large, which can 
render potentially unmeaningful differences to be statistically significantly different. 
Furthermore, in studies with relatively small sample sizes, the large variance in cost data 
can render meaningful differences statistically insignificant. Accordingly, it is imperative 
that both the statistical and the clinical or economic relevance of the findings be 
discussed. 

In addition, authors should provide the reader with information about how well the model 
predicts what it is intended to predict. Numerous approaches, such as goodness of fit or 
split samples, can be used. For example, in ordinary least squares regression models, the 
adjusted R-square, which measures the proportion of the variance in the dependent 
variable explained by the model, is a useful measure. Nonlinear models have less 
intuitive goodness-of-fit measures. Models based on micro-level data (for example, 
patient episodes) can be good fits even if the proportion of the variance in the outcome 
variable that they explain is 10% or less. In fact, models based on micro-level data that 
explain more than 50% of the variation in the dependent variable should be viewed with 
suspicion. 
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10. Theoretical Basis: Has a theory for the findings been provided and have alternative 
explanations for the observed findings been discussed?  
Because large sample sizes render many statistically significant findings of questionable 
meaning, it is essential that the investigator provide a theory (economic, clinical, 
behavioral, and so on) that explains the observed findings. The examination of causal 
relationships is a particular challenge with retrospective database studies because subjects 
are not randomized to treatments. Accordingly, the burden is on the author to rule out 
plausible alternative explanations to the findings when examining relationships between 
two variables. 
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Abstract 
The marginal structural models (MSM) method has been introduced in Chapter 9 in a traditional 
two-group comparison setting. In this chapter, the application of MSM is demonstrated using a 
large observational database to assess dose response of a single treatment that’s dynamic over 
time. The endpoint is mortality, which frequently is the focus of analyses performed using such 
databases. 

13.1  Introduction 

13.1.1  Overview 
While clinical trials in a controlled environment provide the basis for regulatory approval, large-
scale observational databases are usually the means for long-term safety assessment. Statistical 
methods are critical in dealing with such databases because the data almost without exception 
suffer from confounding, sometimes even time-dependent confounding. In this chapter the 
marginal structural models (MSMs) approach is illustrated in analyzing safety information using 
such a database. It uses inverse probability of treatment weights to create a pseudo-randomized 
population to facilitate causal inferences. The association between treatments and safety signals is 
less confounded and, under the assumption of no model misspecification, may even have a causal 
interpretation. The approach is demonstrated using a dialysis claims database to study the Epoetin 
alfa dose relationship with mortality. This large-scale database contains additional variables that 
are not often found in smaller databases, and through the MSM analysis, these additional 
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variables enabled us to reduce the impact of confounding and to more precisely estimate the 
hazard ratios associated with treatment dosage. 

We first introduce some background information on the complex and dynamic interactions among 
end-stage renal disease (ESRD), anemia, and dialysis treatment, together with some conventional 
analyses that attempt to assess the dose-mortality relationship. The fact that these analyses suffer 
from apparent confounding makes it clear that more sophisticated causal inference methods 
should be applied. Next, we describe in detail the database used and its structure that facilitates 
the MSM analysis. Following the technical details presented in Chapter 9, we then describe the 
setup of the treatment model, the censoring model, and the structural model that we used to carry 
out the MSM analysis. SAS code and the main SAS output are included. Results are interpreted 
based on these outputs, and some discussions are provided on the caveats in performing analysis 
using MSM. 

13.1.2  Disease, Treatment, and Analysis Background 
Patients who suffer from kidney failure almost always experience anemia as a co-morbid 
condition. This is because erythropoietin, a protein that regulates red blood cell production, is 
produced in the kidney. End-stage renal disease results in decreased production of erythropoietin 
by the kidneys, which then causes low levels of hemoglobin, or anemia. Dialysis treatment helps 
maintain the body’s internal equilibrium of water and minerals, but it does not compensate for the 
lost erythropoietin function. Therefore, an important aspect of dialysis treatment is anemia 
management. Over the years, the standard of care in the dialysis setting has evolved to routinely 
include erythropoiesis-stimulating agents, or ESAs. ESAs are proteins that function as 
endogenous erythropoietin but are manufactured using recombinant DNA technology. The 
clinical benefit of ESAs is to increase the red blood cell level, measured by hemoglobin (Hb, in 
g/dL). An ESA that has been used since the early 1990’s is Epoetin alfa (Epogen, Amgen Inc., 
Thousand Oaks, CA). 

Some analyses based on observational data have attempted to assess the safety outcomes of 
Epoetin alfa. The most noticeable analysis involved association between Epoetin alfa dose and 
mortality using conventional Cox model, with dose as a baseline or time-dependent variable. For 
example, the analysis conducted by Zhang and colleagues (2004) seemed to show a clear trend of 
higher mortality associated with higher dose. This finding was replicated using the same 
statistical method by Bradbury and colleagues (2008) (Figure 13.1). Using a more granular data 
set, Bradbury and colleagues (2008) showed that the hazard ratio (HR) was approximately 1.22 
using dose at baseline, and it dropped to around 1.0 when dose was used as a time-dependent 
variable. 
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Figure 13.1  Conventional Cox Regression Results 
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However, it is well recognized that sicker patients have lower Hb levels and are likely to be 
prescribed higher doses of Epoetin alfa. The sicker patients also are more likely to die. This is a 
classic confounding problem for point treatment cases. Moreover, observed Hb levels affect 
subsequent Epoetin alfa dose prescription, which in turn impacts the following Hb level. In order 
to maintain a certain Hb level, Epoetin alfa doses need to be adjusted periodically. Therefore, it’s 
a typical time-dependent confounding problem. As mentioned in Chapter 9, traditional inferences 
in this situation, including Cox proportional hazard models with time-dependent treatment, do not 
have a causal interpretation. This is because the assumptions required for a causal interpretation 
do not hold due to the presence of confounding. In order to assess the causal relationship between 
Epoetin alfa doses and mortality, more sophisticated statistical methods are called for, and we 
used a marginal structural model as an alternative (Robins et al., 2000; Hernán et al., 2000). 

We have obtained medical records data from one of the dialysis chains. A subset of patient data 
collected by this dialysis chain is available to us under private utilization agreements. These data 
include patient demographics, ESA doses, Hb levels, and co-morbid conditions. Numerous 
analyses have been done using data from dialysis chains to understand treatment effects and 
improve patient care. 

Note that another example demonstrating the MSM application is discussed in Chapter 9. 
However, this chapter is different because the outcome here is survival. We discuss a single 
treatment at different doses instead of two treatment groups, and dose response is our focus rather 
than a comparison between two treatment groups. 

13.2  Data Structure 
Before we dive into the MSM analysis details, let’s first understand the database at hand. This 
dialysis chain provides hemodialysis to more than 100,000 patients in the United States and 
collects information on laboratory parameters, medications, demographic characteristics, dialysis 
care, and clinical outcomes, including hospitalization and death. For this analysis, data were 
available for a random sample of 60,000 hemodialysis patients who were at least 18 years of age 
with no history of peritoneal dialysis and who received hemodialysis for at least 1 month between 
July 2000 and June 2002. We restricted our study population to patients whose first appearance in 
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the database was before January 2001 and who had a 6-month baseline period to allow for patient 
characterization. Patients were followed up for 12 months.  

Most laboratory parameters (for example, albumin, ferritin, transferrin saturation [TSAT]) were 
collected monthly; hemoglobin values were collected more frequently (about two times per 
month) in most facilities. Data were available for Epoetin alfa (EPO) and iron doses (recorded at 
each administration), demographic characteristics (captured when patients began receiving 
dialysis), and dialysis care information, including urea reduction ratio (URR), number of missed 
dialysis visits, and vascular access (VA) information. Hospitalization data were collected on an 
ongoing basis and included admission and discharge dates and diagnoses based on International 
Classification of Disease—9th Revision (ICD-9) codes. Mortality information was routinely 
collected, as were reasons for loss to follow up, which included renal transplantation, facility 
transfer, withdrawal, and modality change. 

We assessed Epoetin alfa dosing at 2-week intervals, to be consistent with the Hb assessment 
frequency in usual care. In each interval, we calculated the cumulative outpatient Epoetin alfa 
dose (sum of all available doses recorded in the dialysis facility). Epoetin alfa dosing information 
is not captured in the inpatient setting and, therefore, was unavailable to us. For the purpose of 
this analysis, we imputed the inpatient portion of the Epoetin alfa treatment using the last dose 
before hospitalization. 

The reason that this database was selected for this analysis, as opposed to other choices (for 
example, the United States Renal Data System [USRDS] data collected through Medicare), is that 
Epoetin alfa dose information is available for every administration, and all assessed Hb values are 
available in the database. In other words, the critical data are much more granular than databases 
used in other analyses; that is, the data include more observations of more variables and, in 
general, provide a more complete view of the patient condition, treatment factors, and variables 
used by doctors in making dosing decisions. This should be an important consideration when 
applying the MSM analysis because the assumption of no unmeasured confounders is a critical 
assumption for causal inferences. 

The actual SAS database used in this analysis has one record per patient-time point. Patient 
characteristics were assessed through a corresponding demographics database (with one record 
per patient) using Program 13.1 to provide a general idea of the patient population. The SAS 
output is quite long and, instead of the SAS output display, the results are summarized in Table 
13.1 as a more concise alternative. Continuous variables are presented as mean (standard 
deviation) and categorical variables as count (frequency). Note that the summaries are presented 
per dose categories (bldosequartile, or baseline dose quartiles, plus the zero dose group), which is 
explained in more detail later. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 13  Dose-Response Safety Analyses Using Large Health Care Databases   299 
 

 

Program 13.1  Patient Characteristics Summary 
*** Compute means for continuous variables; 
proc means data=demog mean; 
  var AGE HEMODIALYRS BMI BLFER BLSAT BLALB BLHGB; 
  by bldosequartile; 
  OUTPUT OUT=mean MEAN=AGE HEMODIALYRS BMI BLFER BLSAT BLALB BLHGB; 
run; 
 
*** Compute standard deviations for continuous variables; 
 
proc means data=demog stddev; 
  var age HEMODIALYRS BMI BLFER BLSAT BLALB BLHGB; 
  by bldosequartile; 
  OUTPUT out=stddev stddev=AGE HEMODIALYRS BMI BLFER BLSAT BLALB 
BLHGB; 
run; 
 
*** Compute count and frequency for categorical variables; 
 
proc freq data=demog; 
  table AGEGROUP/out=a;  
  table ETH/out=b; 
  table SEX/out=c;  
  table REGION/out=d; 
  table BLHYPERTENSN/out=e; 
  table GLE/out=f;  
  by bldosequartile; 
run;  

 
Similar code was run for the overall patient population. 

Table 13.1  Patient Demographics and Baseline Characteristics  
 Dose group 0 Dose group 1 Dose group 2 Dose group 3 Dose group 4 All 

N 304 5544 7904 8336 5703 27791 
Age (years) 54.77 (13.99) 61.01 (15.01) 61.8 (15.08) 60.51 (14.73) 58.13 (14.74) 60.43 (14.74) 
Dialysis Vintage 
(years) 4.95 (4.77) 3.44 (3.81) 2.66 (3.28) 2.49 (3.36) 2.83 (3.6)  2.82 (3.6) 
Baseline BMI (kg/m2) 27.98 (8.07) 26.17 (6.69) 26.37 (6.65) 27.17 (7.15) 28.27 (7.9) 26.98 (7.9) 
Baseline Ferritin 
(ng/ml) 500.8 (322.9) 591.8 (360.7) 527.4 (341.5) 478.7 (343.6) 473.3 (351.8) 514.2 (351.8) 
Baseline TSAT (%) 31.54 (10.44) 32.08 (9.66) 29.12 (9.17) 26.49 (8.88) 24.32 (9.33) 27.97 (9.33) 
Baseline Albumin 
(g/dl) 3.88 (0.32) 3.89 (0.28) 3.83 (0.3) 3.76 (0.33) 3.66 (0.36) 3.79 (0.36) 
Baseline Hb (g/dl) 12.9 (1.31) 12.11 (0.78) 11.89 (0.76) 11.63 (0.88) 11.01 (1.07) 11.69 (1.07) 
Age < 45 years 83 (27.3) 831 (15) 1159 (14.7) 1304 (15.6) 1103 (19.3) 4480 (16.1) 
Age >= 45 to < 65 
years 138 (45.4) 2181 (39.3) 2869 (36.3) 3304 (39.6) 2482 (43.5) 10974 (39.5) 
Age >= 65 years 83 (27.3) 2532 (45.7) 3876 (49) 3728 (44.7) 2118 (37.1)  12337 (44.4) 
Female  83 (27.3) 2252 (40.6) 3835 (48.5) 4197 (50.3) 2908 (51) 13275 (47.8) 
Black 128 (42.1) 2060 (37.2) 3030 (38.3) 3548 (42.6) 2778 (48.7) 11544 (41.5) 
Region=MIDWEST 39 (12.8) 488 (8.8) 758 (9.6) 841 (10.1) 568 (10) 2694 (9.7) 
Region=NORTHEAST 50 (16.4) 927 (16.7) 1277 (16.2) 1450 (17.4) 1111 (19.5) 4815 (17.3) 
Region=SOUTH 184 (60.5) 3226 (58.2) 4847 (61.3) 5265 (63.2) 3595 (63) 17117 (61.6) 
Region=WEST 31 (10.2) 903 (16.3) 1022 (12.9) 780 (9.4) 429 (7.5) 3165 (11.4) 
Hypertension 42 (13.8) 729 (13.1) 1170 (14.8) 1343 (16.1) 997 (17.5) 4281 (15.4) 
Diabetic 116 (38.2) 2630 (47.4) 4087 (51.7) 4446 (53.3) 2875 (50.4) 14154 (50.9) 
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113.3  Treatment Model and Censoring Model Setup 
We estimated the mortality hazard ratio using marginal structural models (MSMs), where the 
inverse probability of treatment weighting (IPTW) was used to adjust for confounding by 
indication. This two-step approach calculates the weights first as the inverse of the predicted 
Epoetin alfa doses using a treatment model and then assesses the HRs using a weighted structural 
model. Specifically, IPTW down-weights patients who receive doses close to what was predicted 
and up-weights patients who receive doses that vary appreciably from what was predicted. This 
weighting creates a pseudo-population in which confounding between factors influencing 
treatment and the actual treatment received is mitigated. Consequently, HRs based on this 
pseudo-population can have a causal interpretation, provided that the weights are modeled 
accurately and other assumptions are met (Robins, 2000). One important assumption is the ETA 
assumption—namely, the probability of observing a specific treatment regimen is >0 and <1. In 
other words, the treatment decision is not a deterministic function of the past. Therefore, each 
treatment decision is not independent and random (otherwise there is no confounding) and yet 
cannot be fixed given the past either. 

We calculated treatment weights, which were related to predicted EPO doses, for each patient in 
2-week intervals using ordinal regression. Our goal was to construct a model that reflects the 
physician decision-making process in deciding what the next Epoetin alfa dose is for a particular 
patient. The model is constructed using the entire patient population, and both statistical and 
clinical considerations are put to work. A simple approach is to recognize the role of observed Hb 
values and the inertia/momentum of previous doses. This results in a “simple” model with Hb and 
dose in the previous four time intervals. Some clinicians argue that they also take into 
consideration a patient’s hospitalization status, iron indices, vascular access, and other co-morbid 
conditions. That led to an “expanded” model, which added days in hospital, number of non-
hospital doses, albumin, ferritin, TSAT, vascular access type, hypertension status, and dialysis 
adequacy in the previous time interval to the simple model. Finally, a “full” model was 
constructed by adding the interaction between Hb and dose to the “expanded” model, recognizing 
the dynamics between the two factors, which makes good clinical sense. 

The calculations are implemented in SAS using PROC GENMOD. The three models are 
implemented similarly, and only the full model is illustrated here. Note that the treatment weights 
are ratios, with the time-dependent confounders included in the denominator only. See Program 
13.2. The numerator and the denominator, both predicted dose quartiles, are calculated separately. 
Weights calculated this way are called stabilized weights, denoted as “sw”. 

Program 13.2  Treatment Weights Calculation 
*** Compute the treatment part of the IPTW weights; 
 
*** Numerator part, including baseline covariates and time-dependent 
intercept;   
 
proc genmod data=infile rorder=formatted order=formatted; 
      class ETH SEX REGION VITDFLAG GLU BLVAC CDAYSINHOSP BLHYPERTENSN 
            BLHXADEQUACY bldosequartile lag1dosequartile lag2dosequartile    
            lag3dosequartile lag4dosequartile 
            lag1HYPERTENSION lag1HXADEQUACY lag1VASCULAR; 
      model dosequartile = ETH SEX REGION VITDFLAG GLU BLVAC 
            CDAYSINHOSP BLHYPERTENSN BLHXADEQUACY AGE BMI HEMODIALYRS     
            NOCHGDOSES NOHLDDOSES PERLESS11 BLHGB BLIRON BLALB BLFER BLSAT   
            BLPTH bldosequartile lag1dosequartile lag2dosequartile   
            lag3dosequartile lag4dosequartile  
            hmthno hmthno1 hmthno2 hmthno3  
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            / dist=multinomial link=clogit; 
      output out=preds pred=pred; 
run; 
 
proc sort data=preds; 
      by patient biweekno dosequartile _order_; 
run; 
 
proc transpose data=preds out=predst(keep=patient theta1 theta2 theta3 
           theta4  biweekno dosequartile) prefix=theta; 
      by patient biweekno dosequartile; 
      id _order_; 
      var pred; 
run; 
 
data model1; 
      set predst; 
      prob1=theta1; 
      prob2=theta2-theta1; 
      prob3=theta3-theta2; 
      prob4=theta4-theta3; 
      prob5=1-theta4; 
      if dosequartile=1 then treat_top=prob1; 
        else if dosequartile=2 then treat_top=prob2; 
        else if dosequartile=3 then treat_top=prob3; 
        else if dosequartile=4 then treat_top=prob4; 
        else if dosequartile=5 then treat_top=prob5; 
    keep patient biweekno dosequartile treat_top; 
run; 
 
*** Denominator part, including baseline covariates, time-dependent 
intercept, and also any time-dependent covariates;   
 
proc genmod data=infile rorder=formatted order=formatted; 
      class ETH SEX REGION VITDFLAG GLU BLVAC CDAYSINHOSP BLHYPERTENSN 
            BLHXADEQUACY bldosequartile lag1dosequartile lag2dosequartile  
            lag3dosequartile lag4dosequartile 
            lag1HYPERTENSION lag1HXADEQUACY lag1VASCULAR; 
      model dosequartile = ETH SEX REGION VITDFLAG GLU BLVAC 
            CDAYSINHOSP BLHYPERTENSN BLHXADEQUACY AGE BMI HEMODIALYRS  
            NOCHGDOSES NOHLDDOSES PERLESS11 BLHGB BLIRON BLALB BLFER BLSAT    
            BLPTH bldosequartile lag1dosequartile lag2dosequartile    
            lag3dosequartile lag4dosequartile  
            lag1hb lag2hb lag3hb lag4hb  
            lag1HYPERTENSION lag1HXADEQUACY lag1VASCULAR lag1NHSPDNUM   
            lag1hospitaldays lag1iron lag1sat lag1alb lag1fer  
            lag1hbdose0 lag1hbdose1 lag1hbdose2 lag1hbdose3 lag1hbdose4      
            hmthno hmthno1 hmthno2 hmthno3  
            / dist=multinomial link=clogit; 
      output out=preds pred=pred; 
run; 
 
proc sort data=preds; 
      by patient biweekno dosequartile _order_; 
run; 
 
proc transpose data=preds out=predst(keep=patient theta1 theta2 theta3 
       theta4  biweekno dosequartile) prefix=theta; 
      by patient biweekno dosequartile; 
      id _order_; 
      var pred; 
run; 
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data model2; 
      set predst; 
      prob1=theta1; 
      prob2=theta2-theta1; 
      prob3=theta3-theta2; 
      prob4=theta4-theta3; 
      prob5=1-theta4; 
      if dosequartile=1 then treat_bottom=prob1; 
        else if dosequartile=2 then treat_bottom=prob2; 
        else if dosequartile=3 then treat_bottom=prob3; 
        else if dosequartile=4 then treat_bottom=prob4; 
        else if dosequartile=5 then treat_bottom=prob5; 
    keep patient biweekno dosequartile treat_top; 
run; 
 
data trtmodels; 
      merge model1 (keep=patient biweekno treat_top) 
          model2 (keep=patient biweekno treat_bottom)  
      by patient biweekno; 
      if nmiss(treat_top, treat_bottom)>0 then treat_sw=1; 
      if nmiss(treat_top, treat_bottom)=0 then 
            treat_sw=treat_top/treat_bottom; 
run; 
 

In a usual MSM implementation, weights at each time point are aggregated by multiplying all the 
weights in the study prior to the particular time point. As can be imagined, the variability 
associated with weights at later time points gets bigger and bigger. These weights are summarized 
and illustrated in Figure 13.2. 

Figure 13.2  MSM Weights 
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In complicated treatment scenarios with a titratable drug, some of the calculated IPTWs could get 
very large due to unusual patient characteristics, unconventional treatment decisions, large 
variability in data assessment, or even data recording errors. Model inadequacy early on may 
cause the inaccurate weights to be multiplied again and again for later time points because 
weights are cumulative. In order to prevent the analysis from being dominated by a handful of 
patients with large weights, in our implementation of MSM the aggregated weights were 
calculated based on only the previous four time intervals, instead of all previous time points. This 
variation has the effect of stabilizing the weights, as shown in Figure 13.3. Note the smaller range 
and the uniformity of the range over the bi-weekly periods. We also truncated the highest weight 
to either the 98th or 99th percentile values (weights of 82 and 471, respectively, in the full 
treatment model case). By excluding relatively few outliers that would otherwise greatly 
influence the model, we were able to improve the performance of the hazard ratio estimates using 
MSM. 

Figure 13.3  Modified MSM Weights 

 

Patient censoring was considered in a similar way to the treatment information, predicted at each 
time point (given the observed past), and incorporated into the weighting. Censoring events 
included loss to follow up for various reasons. Censoring weights are calculated using Program 
13.3, which is similar to Program 13.2. The censoring weights are not summarized here. 
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*** Compute the censoring part of the IPTW weights; 
*** Numerator part, including baseline covariates and time-dependent 
intercept;   
 
proc logistic data=infile; 

class lag1dosequartile lag2dosequartile lag3dosequartile 
lag4dosequartile bldosequartile ETH SEX REGION VITDFLAG GLU BLVAC 
CDAYSINHOSP BLHYPERTENSN BLHXADEQUACY; 
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VITDFLAG GLU BLVAC CDAYSINHOSP BLHYPERTENSN BLHXADEQUACY AGE BMI 
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HEMODIALYRS NOCHGDOSES NOHLDDOSES PERLESS11 BLHGB BLIRON BLALB 
BLFER BLSAT BLPTH hmthno hmthno1 hmthno2 hmthno3;  

   output out=model3 p=censored_top; 
run; 
 
*** Denominator part, including baseline covariates, time-dependent intercept, 
and also any time-dependent covariates;   
 
proc logistic data=infile; 

class ETH SEX REGION VITDFLAG GLU BLVAC CDAYSINHOSP BLHYPERTENSN 
BLHXADEQUACY bldosequartile lag1dosequartile lag2dosequartile 
lag3dosequartile lag4dosequartile 
lag1HYPERTENSION lag1HXADEQUACY lag1VASCULAR; 

model censored = ETH SEX REGION VITDFLAG GLU BLVAC CDAYSINHOSP 
BLHYPERTENSN BLHXADEQUACY AGE BMI HEMODIALYRS NOCHGDOSES 
NOHLDDOSES PERLESS11 BLHGB BLIRON BLALB BLFER BLSAT BLPTH 
bldosequartile lag1dosequartile lag2dosequartile lag3dosequartile 
lag4dosequartile  
lag1hb lag2hb lag3hb lag4hb  
lag1HYPERTENSION lag1HXADEQUACY lag1VASCULAR lag1NHSPDNUM 
lag1hospitaldays lag1iron lag1sat lag1alb lag1fer  
lag1hbdose0 lag1hbdose1 lag1hbdose2 lag1hbdose3 lag1hbdose4 hmthno 
hmthno1 hmthno2 hmthno3;  

   output out=model4 p=censored_bottom; 
run; 
 
data censormodels; 
   merge model3 (keep=patient biweekno censored_top)   
       model4 (keep=patient biweekno censored_bottom) ; 
   by patient biweekno; 
 if nmiss(censored_top, censored_bottom)>0 then censored_sw=1; 

if nmiss(censored_top, censored_bottom)=0 then 
 censored_sw=censored_top/censored_bottom; 

run; 

113.4  Structural Model Implementation 
The structural model is step two in the MSM method implementation. This is where the causal 
inferences are made using weighted observations. In our database, the clinical outcome we are 
assessing is mortality, and survival analysis is needed to estimate its relationship with dose. The 
actual implementation in SAS, however, is through PROC GENMOD because PROC PHREG 
does not handle weighted analyses. The generalized estimating equations (GEE) approach using 
PROC GENMOD is used for hazard ratio point estimates. The confidence intervals associated 
with these point estimates must be derived from bootstrapping instead of directly utilizing 
intervals produced by PROC GENMOD. This is discussed in detail later. 

The GEE model includes dose and baseline covariates to estimate mortality hazard ratios, with 
weighting on the Epoetin alfa doses. Mortality was assessed during a 1-year period following the 
patient’s index date and aggregated into bi-weekly intervals. Epoetin alfa doses were grouped into 
a zero dose category and dose quartiles (1st quartile: –
27000 IU/2 weeks; 3rd quartile: 27000–49000 IU/2 weeks; 4th quartile: > 49000 IU/2 weeks). 
The lowest non-zero dose quartile was used as the reference group in the structural model. The 
exposure variable, Epoetin alfa dose category, was lagged by 8 weeks (four time intervals) to 
allow for the fact that severely ill patients are often hospitalized approximately 4 to 8 weeks prior 
to death, and their in-hospital Epoetin alfa doses, if any, were not available in our database, which 
was collected through the dialysis chain. For patients with missed Epoetin alfa doses or patients 
who did not receive a dose during a dialysis session, a zero dose was recorded. For patients who 
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survived hospitalization, an in-hospital Epoetin alfa dose was imputed using the most recent dose 
prior to hospitalization.  

Program 13.4 implements the structural model using GEE. 

Program 13.4  Analysis Model 
proc genmod data=allmodels descending; 

class patient ETH SEX REGION VITDFLAG GLU BLVAC CDAYSINHOSP 
      BLHYPERTENSN BLHXADEQUACY bldosequartile; 
model die = ETH SEX REGION VITDFLAG GLU BLVAC CDAYSINHOSP 

            BLHYPERTENSN BLHXADEQUACY AGE BMI HEMODIALYRS NOCHGDOSES  
            NOHLDDOSES PERLESS11 BLHGB BLIRON BLALB BLFER BLSAT BLPTH  
            bldosequartile epoq0 epoq2 epoq3 epoq4      
            hmthno hmthno1 hmthno2 hmthno3  

      /link=logit dist=bin; 
scwgt wgt;  
repeated subject=patient/type=ind; 

run; 

Output from Program 13.4 
                           Analysis Of GEE Parameter Estimates 
                            Empirical Standard Error Estimates 
 
                                        Standard   95% Confidence 
       Parameter               Estimate    Error       Limits            Z Pr > |Z| 
 
       Intercept                 0.7441   2.1078  -3.3871   4.8753    0.35   0.7241 
       Eth            0          0.3070   0.0853   0.1398   0.4743    3.60   0.0003 
       Eth            1          0.0000   0.0000   0.0000   0.0000     .      .     
       Sex            0         -0.1429   0.0625  -0.2653  -0.0205   -2.29   0.0221 
       Sex            1          0.0000   0.0000   0.0000   0.0000     .      .     
       region         MIDWEST    0.2399   0.1608  -0.0753   0.5551    1.49   0.1358 
       region         NORTHEST   0.0680   0.1530  -0.2318   0.3678    0.44   0.6564 
       region         SOUTH      0.3213   0.1427   0.0416   0.6011    2.25   0.0244 
       region         WEST       0.0000   0.0000   0.0000   0.0000     .      .     
       vitdflag       0         -0.0684   0.0711  -0.2077   0.0709   -0.96   0.3359 
       vitdflag       1          0.0000   0.0000   0.0000   0.0000     .      .     
       glu            0         -0.3425   0.0686  -0.4769  -0.2080   -4.99   <.0001 
       glu            1          0.0000   0.0000   0.0000   0.0000     .      .     
       blvac          cath       0.1182   0.0738  -0.0264   0.2628    1.60   0.1090 
       blvac          fistula   -0.2181   0.0957  -0.4057  -0.0305   -2.28   0.0227 
       blvac          graft      0.0000   0.0000   0.0000   0.0000     .      .     
       cdaysinhosp    0         -0.4154   0.0933  -0.5982  -0.2326   -4.45   <.0001 
       cdaysinhosp    1         -0.3525   0.1199  -0.5876  -0.1174   -2.94   0.0033 
       cdaysinhosp    2          0.0858   0.1402  -0.1890   0.3606    0.61   0.5405 
       cdaysinhosp    3          0.0000   0.0000   0.0000   0.0000     .      .     
       BLHYPERTENSN   0         -0.0023   0.1156  -0.2289   0.2242   -0.02   0.9838 
       BLHYPERTENSN   1          0.0000   0.0000   0.0000   0.0000     .      .     
       BLHXADEQUACY   0          0.0998   0.0895  -0.0757   0.2753    1.11   0.2650 
       BLHXADEQUACY   1          0.0000   0.0000   0.0000   0.0000     .      .     
       Age                       0.0303   0.0027   0.0249   0.0357   11.02   <.0001 
       bmi                      -0.0294   0.0061  -0.0413  -0.0176   -4.87   <.0001 
       hemodialyrs               0.0374   0.0067   0.0242   0.0506    5.55   <.0001 
       nochgdoses               -0.0110   0.0102  -0.0311   0.0090   -1.08   0.2806 
       nohlddoses                0.0009   0.0135  -0.0255   0.0273    0.07   0.9449 
       perless11                -0.0035   0.0028  -0.0091   0.0020   -1.25   0.2131 
       blhgb                    -0.1621   0.0834  -0.3255   0.0013   -1.94   0.0519 
       bliron                   -0.0007   0.0003  -0.0013  -0.0001   -2.12   0.0337 
       blalb                    -0.9552   0.0907  -1.1330  -0.7775  -10.53   <.0001 

                                                                                                                                                       (continued) 
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Output from Program 13.4 (continued) 
       blfer                     0.0002   0.0001   0.0000   0.0004    2.42   0.0155 
       blsat                    -0.0052   0.0063  -0.0176   0.0071   -0.83   0.4050 
       blpth                     0.0004   0.0001   0.0002   0.0007    3.75   0.0002 
       bldosequartile 0          0.5692   0.5130  -0.4362   1.5746    1.11   0.2671 
       bldosequartile 1         -0.2165   0.1729  -0.5554   0.1225   -1.25   0.2106 
       bldosequartile 2         -0.2756   0.1196  -0.5100  -0.0412   -2.30   0.0212 
       bldosequartile 3         -0.2755   0.0908  -0.4533  -0.0976   -3.03   0.0024 
       bldosequartile 4          0.0000   0.0000   0.0000   0.0000     .      .     
       epoq2                     0.0678   0.0941  -0.1167   0.2522    0.72   0.4714 
       epoq3                     0.1923   0.1087  -0.0208   0.4054    1.77   0.0770 
       epoq4                     0.3292   0.1378   0.0590   0.5994    2.39   0.0169 
       epoq0                     0.4433   0.1920   0.0669   0.8197    2.31   0.0210 
       hmthno                   -0.0924   0.0991  -0.2866   0.1019   -0.93   0.3515 
       hmthno1                   0.5253   0.4379  -0.3330   1.3837    1.20   0.2303 
       hmthno2                  -1.4398   1.1266  -3.6479   0.7682   -1.28   0.2012 
       hmthno3                   1.5701   1.1024  -0.5906   3.7308    1.42   0.1544 

 
Results are summarized in Table 13.2 for easy examination. Note that the Estimate column in the 
Output from Program 13.4 is exponentiated to obtain the point estimate of the hazard ratio in 
Table 13.2. For example, the 0.0678 value for epoq2 is exponentiated to get the HR value of 1.07 
in Table 13.2 for the 2nd EPO dose quartile in the full model. 

Table 13.2  Estimates of Hazard Ratios for Different Models and Different Levels of Weight  
                   Truncation 

Treatment 
Model* 

Weight 
Truncation 
Level 

Maximum 
Weight 

Zero Dose EPO Dose Quartiles 

    1st 2nd 3rd 4th 
Simple 2% 32 1.69    

(1.06, 2.39) 
1 1.09   

(0.92, 1.31) 
1.27   
(1.02, 1.60) 

1.51   
(1.08, 1.89) 

Expanded 2% 28 1.62    
(1.16, 2.09) 

1 1.09   
(0.94, 1.35) 

1.24   
(1.05, 1.56) 

1.49   
(1.22, 1.91) 

Full 2% 82 1.56    
(0.98, 2.02) 

1 1.07   
(0.91, 1.33) 

1.21   
(1.00, 1.53) 

1.39   
(1.08, 1.91) 

Simple 1% 133 1.71    
(1.00, 2.55) 

1 1.01   
(0.83, 1.26) 

1.07   
(0.89, 1.42) 

1.15   
(0.94, 1.68) 

Expanded 1% 117 1.81    
(0.87, 2.51) 

1 1.02   
(0.82, 1.29) 

1.11   
(0.85, 1.41) 

1.21   
(0.90, 1.70) 

Full 1% 471 1.72    
(0.84, 2.59) 

1 0.97   
(0.79, 1.33) 

1.00   
(0.81, 1.45) 

0.98   
(0.76, 1.74) 

 

*Treatment models, as discussed in Section 13.3, include baseline covariates and the following time-dependent  
  covariates: 

Simple = Hb level and EPO dose 2, 4, 6, and 8 weeks prior to exposure 
Expanded = Covariates in the simple model plus the following covariates: Days in Hospital, Number of  

                                   Non-Hospital EPO Dose, Albumin, Ferritin, TSAT, Vascular Access Type, Hypertension, and  
                                   Dialysis Adequacy 2 weeks prior to exposure 

Full = Covariates in the expanded model plus the following covariates: Interaction between Hb level and  
                         EPO dose 2 weeks prior to exposure 
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Hazard ratio estimates use the lowest non-zero Epoetin alfa dose quartile as the reference group. 
The zero dose category consistently showed higher mortality rates than the reference category, as 
evidenced by hazard ratios ranging from 1.56 to 1.81 across the three treatment models and the 
two levels of weight truncation. For dose quartiles 2, 3, and 4, the hazard ratios for every Epoetin 
alfa dose quartile in general decreased toward the null as the treatment model moved from simple 
to expanded to full and as IPTW truncation was less restrictive. The degree of change in the 
hazard ratios tended to increase by dose category, suggesting that control of confounding for 
high-dose subjects would be hindered by an inadequate treatment model or excessive truncation 
of IPTWs. The full model with 1% truncation would suggest increased risk for those in the zero 
dose group and near null hazard ratios for the higher dose categories. 

An important thing to check together with the structural model results is the fit of the treatment 
(and censoring) models. The three treatment models, as predicted, worked progressively well, 
with the full model offering the best treatment prediction due to more closely mimicking clinical 
practice. The most influential variables in predicting subsequent EPO doses were previous EPO 
dose, previous Hb, and the interaction between the two. The other variables (for example, 
vascular access and hospitalization) added a considerable amount of accuracy to the predictions 
and were important to take into consideration. 

Because the confidence intervals (CIs) provided by PROC GENMOD are not adequate for MSM 
estimates, CIs of the hazard ratio estimates were generated using bootstrapping, sampling with 
replacement from all available patients. Each bootstrapped CI was based on 200 samples. See 
Program 13.5. 

Program 13.5  Bootstrap Confidence Intervals 
%macro bootstrap(infile, out); 
 
*** get the number of subjects; 
data infile; 
   set &infile; 
   by pat; 
   if first.pat; 
run; 
 
data filerecs; 
   set infile end=_last_; 
   rec=_n_; 
   if _last_=1 then output filerecs; 
run; 
 
%global filrecs; 
data _null_; 
   set filerecs; 
   call symput("filrecs",put(rec,8.)); 
run; 
 
*** sample with replacement; 
data sample; 
   do i=1 to &filrecs; 
   rec=int((ranuni(-1)*&filrecs)+1); 
   output; 
   drop i; 
   end; 
run; 
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proc sort data=sample; 
by rec; 
run; 
 
proc freq data=sample noprint; 
table rec/out=norecs (keep=rec count); 
run; 
 
*** unique sample; 
data uniquesample; 
   set sample; 
   by rec; 
   if first.rec; 
   selected=1; 
run; 
 
data infile2; 
   set &infile; 
   by pat; 
   retain rec; 
   if _n_=1 then rec=0; 
   if first.pat then rec+1; 
run; 
 
data mysample; 
   merge infile2 (in=one) uniquesample (in=two); 
   by rec; 
   if one and two; 
run; 
 
data mysample; 
   set mysample; 
   pat2=pat; 
run; 
 
*** subjects sampled more than once; 
data extrapats; 
   merge infile2 (in=one) norecs(in=two where=(count>1)); 
   by rec; 
   if one and two; 
run; 
 
proc sort data=extrapats; 
   by pat; 
run; 
 
*** subjects sampled more than twice; 
data extrapats3; 
   set extrapats; 
       retain irec; 
        if _n_=1 then irec=0; 
        exrecs=count-1; 
        do i=1 to exrecs; 
        index=i; 
        irec=irec+1; 
        selected=1; 
        pat2=pat+(0.0001*i); 
        output; 
        end; 
        drop i exrecs; 
run; 
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proc sort data=extrapats3; 
   by pat biweekno; 
run; 
 
data &out; 
   set mysample extrapats3; 
   drop pat; 
run; 
 
proc sort data=&out(rename=(pat2=pat)); 
   by pat biweekno; 
run; 
 
%mend bootstrap; 
 
%bootstrap(studyperioddata, newstudydata); 

 
Note that in Table 13.2 the hazard ratios have very wide confidence intervals, reflecting 
considerable uncertainty in estimating the relative mortality risk with increasing EPO dose. Also 
note that as the quartiles increase, the confidence intervals become wider, pointing to the fact that 
confounding is especially problematic at higher doses. 

The difference between the simple model and the full model was the additional variables 
available in our granular database. These are not typically available in other databases (for 
example, hospital days and hospital EPO use). In our analysis, we tried to examine the impact of 
these additional variables on the MSM analysis by holding all other aspects of the MSM 
implementation constant. As evidenced in Table 13.2, the impact of these additional data resulted 
in better prediction of the EPO doses, which, in turn, generated more accurate weights for the 
MSM. For example, the hazard ratio estimate for the 4th dose quartile was dropped from 1.15 to 
0.98 with the introduction of the additional data in the full model compared with the simple 
model. 

Based on the fact that hazard ratios were progressively moving toward the null using the 
expanded and full models versus the simple model, we hypothesize that data availability or 
granularity may correlate with the amount of residual confounding due to the resulting model 
misspecification. That is, the lack of explanatory variables in the simpler models does not help in 
reducing the confounding problems, but being able to include more variables in expanded models 
does reduce the confounding, which enables us to generate more realistic estimates of the hazard 
ratios. 

It is worth noting that for this particular application, the hazard ratio estimates were for the most 
part similar if the maximum weights were similar after truncation, suggesting the importance of 
controlling for weight outliers due to model misspecification. In other words, controlling the 
maximum weight through weight truncation seems an efficient way to mitigate the risk of model 
misspecification. 

113.5  Discussion 
This chapter presents an example of using MSM to assess safety information, mortality 
specifically, from a large health care database. Health care databases are often huge in size and 
rich in data elements, presenting great advantages over small clinical trials. They are also usually 
collected in a real-world setting, reflecting more actual clinical practice data compared with 
clinical trials. On the other hand, the lack of randomization and tight control make the databases 
susceptible to confounding. Sometimes the confounding is time-dependent and severe enough to 
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render the conventional analysis assessing dose relationship useless. More sophisticated methods 
like marginal structural models, structural nested models, or instrumental variables should be 
considered when dealing with these databases. However, these methods have only been 
introduced to the clinical world in the last couple of decades and have been used only in the last 
few years. Due to their complexity, both in concept and in implementation, they have not been 
widely used. We hope this chapter serves the purpose of making the methods readily available to 
general statisticians who practice in the health care database domain. Like any other statistical 
procedure, assumptions have to be carefully checked before results are accepted. This is 
especially true for MSM because it’s easy to generate unreasonable results unknowingly. It would 
be even worse to make causal claims based on them. 
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Abstract 
Analysis of cost and cost-effectiveness data is of increasing importance among health care 
decision-makers in today’s economic climate. Propensity score bin bootstrapping is a new 
analytical approach that addresses three fundamental challenges of observational cost data 
analysis:  

1. the typical skewness of cost distributions 
2. the need to estimate mean rather than median or other robust measures  
3. the need to adjust for selection bias  

 
In this chapter, an overview of various methodologies for analyzing cost data is presented along 
with SAS code to perform a propensity score bin bootstrapping analysis comparing the mean cost 
and cost-effectiveness of competing interventions.  

14.1  Introduction 

14.1.1  Overview 
As the cost of health care in the United States continues to grow, cost and cost-effectiveness 
analyses have become key factors in medical decision-making. For instance, health care payers 
have great interest in analyses such as comparing the total costs of care from two or more  
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competing treatment regimens. However, the appropriate analysis for comparing cost data 
between groups can be complex because it must address the potential skewness in the data, 
estimate mean costs, and adjust for important baseline treatment group differences. 

Cost data from medical studies are typically skewed because a subset of patients may have very 
high costs due to resource-intensive treatments (such as hospitalizations), while another subset 
may perform very well and utilize few or less costly medical resources. Second, medians or 
trimmed means are commonly used statistical measures of central tendency for describing 
populations with outliers. Unfortunately, these measures are unrealistic and misleading for payers 
responsible for all of the costs incurred by a patient population. Mean costs are more relevant 
here; the population size times the median cost is not representative of the total liability to the 
payer (Ramsey et al., 2005; Doshi et al., 2006). Third, the most realistic (generalizable) cost data 
typically come from naturalistic research. Randomized, clinical trials use protocols with regularly 
scheduled health care provider visits (often more frequent than actual practice), free access to 
many resources, structured dosing, strict entry criteria, and mandated compliance. All of these 
issues clearly limit the generalizability of the clinical trial cost estimates (Grimes and Schulz, 
2002; Revicki and Frank, 1999; Roy-Byrne et al., 2003). On the other hand, naturalistic studies 
lacking randomization to treatment are subject to treatment selection bias on baseline patient 
characteristics that needs to be accounted for in analyses (Rosenbaum and Rubin, 1983). 

Several approaches to the analyses of cost data appear in the published literature (Doshi et al., 
2006):   

 t-tests/ANOVA 
 rank-based nonparametric tests  
 transformation approaches  
 generalized linear models 
 bootstrapping  

 
In this chapter, we review published guidance on analysis and reporting of economic data, briefly 
review commonly used methodology, introduce and discuss a new approach—propensity score 
bin bootstrapping (PSBB)—and demonstrate an analysis of cost data from a schizophrenia trial 
using SAS software. Given the availability of multiple approaches and the fact that the validity of 
each is based on different assumptions, it is critical that researchers understand and evaluate the 
assumptions behind cost analyses, perform appropriate sensitivity analyses, and provide 
transparency in presenting their work. This will allow consumers to fully assess the robustness of 
the findings and appropriately utilize the information in decision-making. 

Last, medical payer decision-makers are often faced with a tradeoff—that is, a new medication 
may have some advantage over a competing medication, but that advantage comes at a higher 
financial cost. Cost-effectiveness analyses, where one estimates the incremental cost necessary to 
gain some unit of benefit (for example, quality-of-life years) by using the more expensive 
treatment options, typically involve the assessment of either an incremental cost-effectiveness 
ratio (ICER) or an incremental net benefit (INB) (Willan and Briggs, 2006). Because the INB 
approach is demonstrated in the following chapter, we will demonstrate the ICER approach here. 

14.1.2  Economic Analysis Guidelines 
Over the past years, many guidelines have been published on the study design, data collection, 
data analysis, and reporting of economic analyses (Bouckaert and Crott, 1997; Ramsey et al., 
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2005; Rutten-van Mölken et al., 1994). Recently, the International Society of 
Pharmacoeconomics and Outcomes Research (ISPOR) commissioned several task forces to 
provide guidance on topics related to economic analyses. For instance, Drummond and colleagues 
(2003) provided a review of 15 previous guidelines for reporting economic analyses. The 
previous guidelines were consistent on topics such as cost/resource measurement, discounting, 
target audience, and perspective of the analyses. However, Drummond and colleagues cited a 
need for additional guidance on multiple topics, including transparency of reporting, extensive 
use of assumptions, and extrapolations. Subsequently, a task force was chartered to create 
updated guidance based on consensus of good practices for the design, conduct, analysis, and 
reporting of economic studies alongside clinical trials (Ramsey et al., 2005). Garrison and 
colleagues (2007) have also recently provided guidance for the use of real-world data for 
coverage and payment decisions. For checklists and more detailed discussion of these issues, 
refer to these references.  

Regarding specific statistical approaches, detailed information is typically not provided in such 
guidance documents. However, Rutten-van Mölken and colleagues (1994) stressed the need to 
perform Duan “smearing” to eliminate downwards bias in mean cost estimates resulting from 
retransforming log cost estimates. The ISPOR guidelines stress the importance of assessing 
uncertainty, performing sensitivity analyses, and addressing missing data (Ramsey et al., 2005). 
In addition, they emphasize the need to assess mean costs—and mention bootstrapping as a 
robust analytical approach. The general issue of the need to assess uncertainty in estimates is a 
common basic theme across all guidance documents. 

14.1.3  Current Methodology Overview 
Despite the existence of such guidelines, a recent survey of analytical methods used for cost 
analyses in the literature revealed a lack of consistent application of quality methods. Doshi and 
colleagues (2006) evaluated statistical methods utilized for economic analyses for 115 
manuscripts reported in the MEDLINE database in 2003. They concluded that the quality of 
statistical methods used in economic evaluations was poor in the majority of studies. For instance, 
over 40% failed to report an estimate of uncertainty in their results, and less than 25% of the 
studies making statistical comparisons utilized nonparametric estimates of mean costs (for 
example, nonparametric bootstrapping). The most commonly used statistical approach for 
comparing costs between groups per Doshi (2006) was the simple t-test. The t-test does assess the 
differences in mean costs and, with the use of ANCOVA, can adjust for linear effects of 
covariates. However, the distribution of costs in the majority of cases is highly skewed and non-
normal. Thus, the validity of the test relies on the central limit theorem and the estimates of the 
means. The test can be adversely affected by outliers. There are no clear guidelines on when the 
sample size is large enough relative to the observed level of skewness for a t-test to be 
appropriate, though one simulation study has suggested 500 per group is sufficient (Lumley et al., 
2002). Thus, while the use of such tests may be appropriate in a given setting, sensitivity analyses 
are clearly warranted. 

Rank tests, such as the Wilcoxon-ranked sum test, are nonparametric and simple to perform using 
SAS (with PROC NPAR1WAY). However, these approaches assess location differences, which, 
in general, are not differences in mean costs unless the unrealistic assumption of symmetry is met 
(in which case the median and mean coincide). Medians and other robust estimators are useful for 
describing the distribution of costs; however, such approaches are not relevant for statistical cost 
comparisons. 
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A common simple approach for comparing group costs is to transform the data to address the 
skewness and normalize the data using a log, square root, or other transformation. Standard, 
normal statistical methods such as t-tests and ANOVA can then be utilized to compare the 
groups. Such an approach is easily implemented using SAS functions (for example, the LOG 
function) and PROC GLM or PROC MIXED. However, a transformation approach can result in 
misleading results unless key assumptions are satisfied. One obvious assumption is that the 
transformation produces normality (or at least relies on the central limit theorem). While perhaps 
less obvious, what is actually more important is that standard test statistics assume that variances 
of the transformed costs for each treatment group are equal. 

To illustrate the basic difficulty, suppose that treatment H with a high acquisition cost is 
compared, on a cost basis, with treatment L with a low acquisition cost. The low cost (left-hand) 
tail of the distribution of total accumulated cost over any fixed period of time will then be 
dominated by patients treated with L. The only way that H could effectively compete on cost with 
L would be for H to reduce, relative to L, the likelihood of high accumulated costs. In other 
words, the high cost (right-hand) tail of the distribution of total accumulated cost would then also 
be dominated by patients treated with L. To be remotely competitive on mean cost, treatment H 
must (greatly) reduce the variability in accumulated costs. Obviously, if a cost analyst fails to 
examine these distributions and perhaps unknowingly assumes that variances are equal, treatment 
H has been unfairly placed at a great disadvantage. 

When variances are not equal, comparison of transformed means, which are functions of both the 
means and the variances on the initial cost scale, can yield badly biased results. This helps explain 
retransformation problems that have been discussed extensively in the literature (Duan, 1983; 
Manning, 1998; Mullahy, 1998; Gianfrancesco et al., 2002). 

Generalized linear models—which can be fitted using PROC GENMOD—are an additional 
approach to assessing cost data. Within PROC GENMOD, one can specify a link function and 
distribution directly, avoiding these retransformation issues. This method obviously requires a 
distributional assumption, but it allows for easy adjustment of covariates. The SAS/STAT User’s 
Guide (1999; Example 29.3) provides example code for an analysis of data assuming a gamma 
distribution using PROC GENMOD that could be applied to cost data. Refer to Lindsey and 
Jones (1998) for details about choosing between various generalized linear models. 

Nonparametric bootstrapping is a technique where an empirical distribution of the test statistic 
(for example, the mean cost difference between groups) is constructed through resampling with 
replacement from the observed data. Though computationally intensive, bootstrapping is an 
attractive alternative for analysis of cost data because it is a nonparametric approach that can 
directly address arithmetic means. Inferences can be drawn from the empirical distribution using 
confidence intervals (CIs) formed by the percentile method, bias corrected method, bias corrected 
and accelerated method, or the percentile–t method (Briggs et al., 1997; DiCiccio and Efron, 
1996). While more detailed arguments are possible (Chernick, 1999), a general recommendation 
is that 5,000 to 10,000 replications be utilized when forming confidence intervals. The validity of 
the bootstrap approach does rely on asymptotic assumptions—because the observed data must 
adequately represent the population distribution. While there is no clear guidance on what sample 
size is sufficient, Chernick provides a general rule of thumb (n>50) and states that sample size 
considerations should not be altered when using bootstrapping compared with other approaches. 
While the bootstrap approach allows for estimation of means without making assumptions about 
the shape of the distribution, by itself it does not allow for adjustment for the confounding 
variables necessary for addressing group differences. However, this shortcoming can be 
addressed by incorporating propensity score stratification, as described in the next section. 
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Combined assessments of both cost and effectiveness typically utilize either an ICER or an INB 
approach. In this chapter, we consider the use of the ICER approach. The ICER is simply the ratio 
of the treatment group difference in cost divided by the treatment group difference in 
effectiveness. Added statistical complexity comes when measures of uncertainty in the ICER 
point estimate are needed to draw inferences. Several different approaches have been utilized, 
including a Taylor Series method, Fieller Theorem method, and bootstrapping (Obenchain et al., 
1997; Polsky et al., 1997; Willan and Briggs, 2006). For consistency, we focus on the bootstrap 
approach for determining degrees of dominance using observed incremental cost-effectiveness 
quadrant confidence levels (Obenchain et al., 2005). When using bootstrapping, one can assess 
uncertainty in the cost difference, the effectiveness difference, and the cost-effectiveness ratio 
simultaneously. For each bootstrap sample, one retains both the cost difference and the 
effectiveness difference from the selected patients—thus retaining any implied correlation 
structure between cost and effectiveness in the actual data. 

114.2  Propensity Score Bin Bootstrapping  
The PSBB approach is a potentially useful tool for cost-related analyses because it addresses 
arithmetic means, adjusts for confounding factors, and does not make distributional assumptions 
(Obenchain, 2003 2006). The first step in a PSBB analysis is to compute the propensity score for 
each patient using logistic regression and then group the propensity scores into five strata of equal 
size determined by estimated propensity score quintiles (Rosenbaum and Rubin, 1984). A 
thorough assessment should then be made to verify that one’s propensity score estimates produce 
balanced covariate distributions between treatments within each stratum and that there is 
sufficient overlap of propensity score estimates between the treatment groups. Because the details 
of assessing the quality of a propensity model are covered in Chapters 2 through 4, they are not 
repeated here. 

Second, within each treatment group, bootstrap resamples of fixed size are drawn within each 
stratum—with the total number of samples equaling the total number of patients. For instance, if 
N = 100 for treatment 1 and N = 200 for treatment 2, then 20 bootstrap samples of treatment 1 
patients are taken from each strata, and 40 bootstrap samples of treatment 2 patients are taken 
from each of the five strata (regardless of the actual number of patients in each strata for each 
treatment group). For analyses comparing costs, the difference in mean total costs between 
treatment groups is computed for each replication, and a large number of replications generates 
the bootstrap distribution of mean cost differences. The percentile method, which identifies the 
2.5% and 97.5% points of the distribution of bootstrap order statistics, is one simple way to 
generate a 95% two-sided confidence interval of the difference in mean costs. Other alternatives 
include the bias corrected and accelerated (BCa) method (Briggs et al., 1997; DiCiccio and Efron, 
1996). 

When assessing cost-effectiveness using PSBB, both the cost measure and the effectiveness 
measure are retained from each patient selected by the resampling, and the ICER is computed for 
each bootstrap sample. A display of the uncertainty of the ICER is then provided as a bivariate 
scatter plot of these differences on the cost-effectiveness plane, as described by Obenchain and 
colleagues (2005).  
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114.3  Example:  Schizophrenia Effectiveness Study 
To illustrate PSBB using SAS, we will analyze simulated cost and effectiveness data based on a 
1-year, randomized, open-label, naturalistic study of patients with schizophrenia or 
schizoaffective disorder who were randomly assigned to initial treatment with one of three 
treatment regimens as reported by Tunis and colleagues (2006). The study was naturalistic in the 
sense that after randomization patients were treated as in a usual treatment setting and allowed to 
switch or stop medications and remain in the study. For simplicity, the analysis here focuses on 
the comparison of total 1-year costs (intent to treat) and cost-effectiveness (with effectiveness 
defined as estimated days in response [Nyhuis et al., 2003]) between two treatment groups 
labeled A and B. There were no significant differences in any baseline measure between 
groups—due to the randomization. However, because most analyses of observational data require 
adjustment for treatment-selection bias, we illustrate this adjustment using the same covariates 
examined by Tunis and colleagues (2006). To illustrate distinctions between alternative 
approaches, we compare the PSBB results to those from the log-transformation and the 
generalized linear modeling approaches. SAS code for these comparisons is not provided because 
it is easily accomplished using PROC GLM, PROC MIXED, or PROC GENMOD with PROC 
PLOT. 

Before running the PSBB analysis, we examined the distribution of costs and we present 
summary statistics for the simulated data (see Program 14.1). The histogram (Output from 
Program 14.1) shows the high level of skewness and the large variability of the cost data. 
Summary statistics reveal that treatment A had a slightly lower mean cost and a slightly higher 
median cost as compared to treatment B. 

Program 14.1  Display of Data and Summary Statistics 
 

**************************************************; 
** key variables from data set                  **; 
**   therapy – randomized treatment group       **; 
**   totcost – total 1-year costs               **; 
**   respdays – estimated responder days(BPRS)  **; 
**   inv – investigational site number          **; 
**   bs_bprsc – baseline bprs level             **; 
**   age – age in years                         **; 
**   inpatst – inpatient status at baseline     **; 
** subsabdx – substance abuse diagnosis         **; 
** psycdur – duration of psychiatric problems   **; 
** hospestmo – duration of hosp in past year    **; 
** insured – insurance status                   **; 
**************************************************; 
 
ods rtf file="D:\Temp\ICER_SumCostEff.rtf"  
        style=minimal; 
 
proc tabulate data = icer;  
  class therapy; 
  var respdays totcost; 
  tables therapy, 
    (totcost='Total Costs' respdays='Response Days (BPRS)')*  
    (N*FORMAT=3. P25 MEDIAN P75 MEAN STD); 
  title 'Summary of costs and effectiveness measures by therapy'; 
  run; 
 
ods rtf close; 
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proc sort data = ICER; 
  by therapy; run; 
 
proc univariate data =ICER noprint; 
  by therapy; 
  var totcost; 
  histogram / lognormal(fill l=b) cfill=yellow midpoints =  
     2500 to 152500 by 5000; 
  title h=2.5 lspace=1 "Test histogram: raw costs – lognormal 
distribution"; 
run; 
 
data icer2; set icer; 
  group=floor(totcost/10000); 
run; 
 
proc sort data=icer2; by therapy group; 
run; 
 
filename MYFILE "D:\Temp\ICER_TOTCOST.gif"; 
 
goptions reset=all device=gif gsfname=MYFILE gsfmode=replace htext=1 
ftext=swiss rotate=landscape; 
 
proc format; 
 value charge 0='<1'; 
 run; 
 
legend1 label=none across=3 value=(height=1.3) cborder=black cblock=gray; 
 
pattern1 v=solid c=black; 
pattern3 v=solid  c=LIBRGR ; 
pattern2 v=L1  c=black; 
 
footnote1  h=1.5 'Total Costs (10 thou. $)'; 
 
title 'Summary of Total Costs by Initial Therapy’;  
AXIS1 LABEL=none value=(H=1.5 C=BLACK); 
AXIS2 LABEL=(H=2 C=BLACK angle=90 "Frequency" J=CENTER) value=(H=1.5 
C=BLACK); 
AXIS3 label=none value=none; 
 
PROC GCHART data=ICER2; 
format group charge.; 
VBAR therapy/patternid=subgroup subgroup=therapy group=group space=0  
             ref=(10 to 120 by 10) gaxis=axis1 raxis=axis2 maxis=axis3 
legend=legend1; 
run; 
quit;      
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Output from Program 14.1   
 

Summary of costs and effectiveness measures by therapy 
 
 

 
Total Costs 

N P25 Median P75 Mean Std 

THERAPY 

223 4841.09 8467.46 22796.24 20863.59 28995.86 A 

B 210 2899.83 7633.27 25269.44 21227.37 30992.32 

 

 
Response Days (BPRS) 

N P25 Median P75 Mean Std 

THERAPY 

218 20.48 97.66 229.70 129.23 117.63 A 

B 200 10.38 96.63 212.06 123.74 118.29 
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Program 14.2 provides the SAS code for the PSBB analysis. After preliminary calculation of the 
summary statistics necessary for later computation of confidence intervals, the first main step in 
the analysis is to compute the propensity score for each patient and form the propensity score 
strata (using quintiles). This is accomplished using the GENMOD and RANK procedures. Only a 
brief assessment of the quality of the propensity model is made here—simply utilizing PROC 
FREQ to confirm adequate numbers of patients per treatment group within each stratum. A lack 
of patients from either treatment group within a stratum is an indication that there is insufficient 
overlap (common support) between the two groups to make reliable comparisons (Rosenbaum 
and Rubin, 1984). Macro PSBB then creates a stratified bootstrap sample of both cost and 
effectiveness measure values. The inputs to the macro are the number of replications desired, the 
cost measure, the effectiveness measure, the input data set, and the treatment indicator variable. 
We used 10,000 bootstrap samples as confidence intervals of interest. The bootstrap distribution 
for each measure, the confidence intervals for each measure using both the percentile and BCa 
approaches, the bootstrap distribution of the ICER, and a graphical display of the variability in 
the ICER are produced. 

From the Output from Program 14.2 (scatter plot), the bootstrap distribution for total cost 
difference is centered near zero and shows the large variability in mean costs. The estimated 
mean treatment difference was $ 173 (treatment A treatment B) and neither the percentile 
method, 95% CI of ( 5777, 5345), nor the bias corrected and accelerated approach, 95% CI of 
( 6190, 4908), suggests a significant difference in mean costs. Similarly, non-significant 
differences were observed in the effectiveness measure (9.1 more days of response on treatment 
A with a 95% CI of 13.4 to +31.3 days). 

Program 14.2  SAS Code for Propensity Score Bin Bootstrapping Analysis 
TITLE 'PSBB ANALYSIS';  
 
PROC PRINTTO LOG='D:\TEMP\PSBBLog.log' NEW; RUN;  
 
** Assign summary statistics utilized in analysis code below **; 
** Values not computed here to focus code on cost analysis steps **;  
 
%let nc1 = 210;  * Sample size for group B with cost data *;  
%let nc2 = 223;  * Sample size for group A with cost data *;  
%let ne1 = 200;  * Sample size for group B with effectiveness data *;  
%let ne2 = 218;  * Sample size for group A with effectiveness data *;  
%let mc1 = 21227;  * Mean of cost variable for group B *;  
%let mc2 = 20864;  * Mean of cost variable for group A *;  
%let me1 = 123.74;  * Mean of effectiveness variable for group B *;  
%let me2 = 129.23;  * Mean of effectiveness variable for group A *;  
 
  ** Compute statistic used later in bootstrap CI calculations **; 
 
data icer; 
  set icer; 
      * Compute score statistic *; 
  if therapy = 'A' then do; 
    mnc1 = (&nc2*&mc2 - totcost) / (&nc2 - 1);   
          * Mean of group without current obs *; 
    mne1 = (&ne2*&me2 - respdays) / (&ne2 - 1);  
          * Mean of group without current obs *;  
    diffc1 = mnc1 - &mc2;    
          * Mean diff between groups without current obs *; 
    diffe1 = mne1 - &me2;    
          * Mean diff between groups without current obs *; 
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    uc = (&mc2 - &mc1 - diffc1);  
    ue = (&me2 - &me1 - diffe1); 
     * Diff between overall and estimate without curren obs *;  
  end; 
 
  if therapy = 'B' then do; 
    mnc1 = (&nc1*&mc1 - totcost) / (&nc1 - 1);   
          * Mean of group without current obs *; 
    mne1 = (&ne1*&me1 - respdays) / (&ne1 - 1);   
          * Mean of group without current obs *;  
    diffc1 = &mc1 - mnc1;    
          * Mean diff between groups without current obs *; 
    diffe1 = &me1 - mne1;    
          * Mean diff between groups without current obs *; 
    uc = (&mc2 - &mc1 - diffc1);  
    ue = (&me2 - &me1 - diffe1); 
     * Diff between overall and estimate without current obs *;  
  end; 
  if therapy = 'A' then ther = 1; 
  if therapy = 'B' then ther = 0; 
run; 
 
/** Compute acceleration constant for later BCa CI calculations **/ 
 
data accel; 
  set icer; 
  dm = 1; 
  uc_cub + uc**3; 
  ue_cub + ue**3; 
  uc_sqr + uc**2; 
  ue_sqr + ue**2; 
  keep patient dm uc ue uc_cub ue_cub uc_sqr ue_sqr; 
run; 
 
proc sort data = accel; by dm; 
run; 
 
data accel2; 
  set accel; 
  by dm; 
  if last.dm; 
  c_aconst = uc_cub / (((uc_sqr**1.5))*6); 
  e_aconst = ue_cub / (((ue_sqr**1.5))*6); 
run; 
 
**Assign the c_aconst and e_aconst to macro variables for BCa calculation 
in macro PSBB **; 
 
data _null_; set accel2; 
 call symput('c_aconst', trim(left(c_aconst))); 
 call symput('e_aconst', trim(left(e_aconst))); 
run; 
 
%put c_aconst=&c_aconst e_aconst=&e_aconst; 
 
/******************************************************************** 
** Compute propensity score strata                                 ** 
********************************************************************/ 
 
option spool; 
ods listing close; 
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proc genmod data = icer; 
  class inv inptatst subsabdx bs_bprsc insured; 
  model therapy = inv bs_bprsc age inptatst subsabdx psycdur hospestmo 
                  insured   / dist = bin link = logit type3 obstats; 
  output out=pred6 pred = prdct; 
  run; 
 
ods listing; 
 
data premab; 
  set pred6; 
  predmo = 1-prdct; 
  predmc = prdct; 
  keep patient predmo predmc therapy ther totcost respdays age  
       gender inptatst subsabdx insured hospestmo psycdur bs_bprsc; 
run; 
 
proc rank data = premab groups = 5 out = rankmab; 
  ranks rnkm_ab; 
  var predmo; 
run; 
 
data rankmab; 
  set rankmab; 
  bin_ps = rnkm_ab + 1; 
run; 
 
proc sort data = rankmab; 
  by therapy;  
run; 
 
proc univariate data = rankmab; 
  by therapy; 
  var predmo; 
  title 'Distribution of propensity scores: oc'; 
run; 
 
proc freq data = rankmab; 
  tables bin_ps*therapy; 
  title 'Therapy distribution among bins';  
run; 
 
proc tabulate data = rankmab; 
  class therapy bin_ps; 
  var respdays totcost; 
  tables bin_ps*therapy,(respdays totcost)*(n*format=3. mean std); 
  title 'Summary of costs/responder days by bin and therapy'; 
run; 
 
/******************************************************************* 
Macro PSBB is for a propensity score bin bootstrap analysis                
 
Inputs: 
 
REP    = Number of bootstrap samples 
AVARC  = Variable for Total Costs  
AVARE  = Variable for Effectiveness (response days calculated for BPRS) 
INDAT  = Data set to be analyzed 
GRPVAR = Variable for therapy group number 
FSEED0 = Starting randomization seed for therapy group 0 
FSEED1 = Starting randomization seed for therapy group 1 
********************************************************************/ 
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%MACRO  
  PSBB(rep=,avarc=,avare=,indat=,grpvar=,fseed0=887583,fseed1=566126); 
 
data temp; set &indat; 
run; 
 
proc freq data=temp noprint; 
 tables &grpvar / out=freqnums; 
 where not(&grpvar=.); 
run; 
 
data _null_; set freqnums; 
 call symput('val'||compress(put(_n_, 4.)), trim(left(&grpvar))); 
 call symput('ssize'||compress(put(_n_, 4.)), trim(left(count))); 
run; 
 
%* Create data sets for each treatment *; 
data trt0 trt1;  
  set temp; 
  if (&grpvar=&val1) then output trt0; 
  else if (&grpvar=&val2) then output trt1; 
  keep &grpvar &avarc &avare bin_ps; 
run; 
   
data bssumm; %* Empty data set to add to later *; 
 if _n_ eq 1 then stop; 
run; 
 
proc sort data=trt0; by &grpvar bin_ps; 
  run; 
 
proc sort data=trt1; by &grpvar bin_ps; 
  run; 
 
%do i=1 %to &rep; 
 %** Generate random bootstrap sample data set for therapy0**; 
      %* Perform bootstrap resampling *; 
  %let btnum=%qsysfunc(round(&ssize1/5,1)); 
 %let rseed=%qsysfunc(round(&i + &fseed0, 1)); 
 
  proc surveyselect data=trt0 method=urs outhits rep=1  
                   n=&btnum. seed=&rseed. noprint out=trt0out; 
    strata &grpvar bin_ps; 
   run; 
 
 %** Generate random bootstrap sample data set for therapy1**; 
 %let btnum=%qsysfunc(round(&ssize2/5,1)); 
 %let rseed=%qsysfunc(round(&i + &fseed1, 1)); 
 
  proc surveyselect data=trt1 method=urs outhits rep=1  
                   n=&btnum. seed=&rseed. noprint out=trt1out; 
    strata &grpvar bin_ps; 
   run; 
 
  data bothgrps; 
 set trt0out trt1out; 
  run; 
 
  %** Compute overall statistics for the sample **; 
  proc means data=bothgrps noprint; 
 class &grpvar; 
 var &avarc &avare; 
 output out = mn mean = out_avgc out_avge; 
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  data mn; set mn end=eof; 
   label &avarc._avg1 = "Average for &AVARC, Group=&VAL1" 
         &avare._avg1 = "Average for &AVARE, Group=&VAL1" 
         &avarc._avg2 = "Average for &AVARC, Group=&VAL2" 
         &avare._avg2 = "Average for &AVARE, Group=&VAL2"; 
   dumm= 1;   
   retain &avarc._avg1 &avare._avg1 &avarc._avg2 &avare._avg2; 
   if &grpvar=0 then do; 
   &avarc._avg1=out_avgc; 
   &avare._avg1=out_avge; 
   end; 
   if &grpvar=1 then do; 
   &avarc._avg2=out_avgc; 
   &avare._avg2=out_avge; 
   end; 
   keep dumm &avarc._avg1 &avare._avg1 &avarc._avg2 &avare._avg2; 
   if eof then output; 
  run; 
 
%** Update data set with statistics from this sample **; 
  data bssumm; 
 set bssumm mn; 
  run; 
 
%**Clean work library**; 
  proc datasets library=work memtype=data nolist; 
 delete trt0out trt01ut bothgrps mn; 
  run; 
  quit; 
 
%end; %* End of %do loop *; 
   
%** Compute differences and test statistics **; 
data bssumm; 
  set bssumm; 
 &avare._diff = &avare._avg2 - &avare._avg1; 
 &avarc._diff = &avarc._avg2 - &avarc._avg1; 
    if &avarc._diff ne . and &avare._diff ne . then do; 
    if &avarc._diff ge 0 and &avare._diff ge 0 then ce_quad = '++'; 
    if &avarc._diff ge 0 and &avare._diff lt 0 then ce_quad = '+-'; 
    if &avarc._diff lt 0 and &avare._diff ge 0 then ce_quad = '-+'; 
    if &avarc._diff lt 0 and &avare._diff lt 0 then ce_quad = '--'; 
    end; 
    if &avarc._diff lt (&mc2 - &mc1) then zzeroctc + 1;  
    if &avare._diff lt (&me2 - &me1) then zzerocte + 1;  
    label &avare._diff="Average for &AVARE Diff: Grp2-Grp1" 
     &avarc._diff="Average for &AVARC Diff: Grp2-Grp1"; 
run; 
 
*Calculate quadrants percentage and assign macro variable for graph **; 
 
ods output OneWayFreqs=quadrt(keep=ce_quad percent); 
 
proc freq data = bssumm; 
  tables ce_quad; 
  title2 "Quadrants distribution for cost effectiveness"; 
  title3 "Variables &avarc and avare"; 
run; 
data _null_; set quadrt; 
 if ce_quad='++' then call symput('pospos', compress(percent)); 
 if ce_quad='+-' then call symput('posneg', compress(percent)); 
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 if ce_quad='-+' then call symput('negpos', compress(percent)); 
 if ce_quad='--' then call symput('negneg', compress(percent)); 
 run; 
 
proc univariate data=bssumm freq noprint; 
 var &avarc._diff &avare._diff; 
 output out=pctls pctlpts=2.5 97.5 pctlpre = &avarc &avare  
             pctlname=_lcl _ucl; 
run; 
 
proc print data=pctls; 
  title2 "Bootstrap Percentile 95% confidence limits for &avarc and  
          &avare";  run; 
 
** Compute BCa confidence intervals **; 
 
data zerodat; 
  set bssumm; 
  by dumm; 
  if last.dumm; 
  keep zzeroctc zzerocte; 
run; 
 
data bcacalc; 
  set zerodat; 
  zzeroc = probit( zzeroctc / &rep );  
  zzeroe = probit( zzerocte / &rep );  
  zzl = probit(.025); 
  zzh = probit(.975); 
  bcaclo = zzeroc + ((zzeroc + zzl) / (1 - &c_aconst.*(zzeroc + zzl))); 
  bcachi = zzeroc + ((zzeroc + zzh) / (1 - &c_aconst.*(zzeroc + zzh))); 
  bcaelo = zzeroe + ((zzeroe + zzl) / (1 - &e_aconst.*(zzeroe + zzl))); 
  bcaehi = zzeroe + ((zzeroe + zzh) / (1 - &e_aconst.*(zzeroe + zzh))); 
 
  bcacl = probnorm(bcaclo); 
  bcach = probnorm(bcachi); 
  bcael = probnorm(bcaelo); 
  bcaeh = probnorm(bcaehi); 
run; 
 
data _null_; set bcacalc; 
  call symput('bcacl', trim(left(bcacl*100))); 
  call symput('bcach', trim(left(bcach*100))); 
  call symput('bcael', trim(left(bcael*100))); 
  call symput('bcaeh', trim(left(bcaeh*100))); 
  run; 
 
%put bcacl=&bcacl bcach=&bcach bcael=&bcael baceh=&bcaeh; 
 
proc univariate data=bssumm freq noprint; 
 var &avarc._diff; 
 output out=pctls2 pctlpts=&bcacl. &bcach. pctlpre = &avarc  
      pctlname=_lcl _ucl; 
run; 
 
proc print data=pctls2; 
 title2 "BCa bootstrap 95% confidence limits for &avarc"; 
run; 
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proc univariate data=bssumm freq noprint; 
 var &avare._diff; 
 output out=pctls3 pctlpts=&bcael. &bcaeh. pctlpre = &avare 
      pctlname=_lcl _ucl; 
run; 
 
proc print data=pctls3; 
 title2 "BCa bootstrap 95% confidence limits for &avare"; 
run; 
 
 
%** Create graph of bootstrap ce **; 
 
axis1 label=(h=1.5 c=black a=90 "Effectiveness Difference: A - B"  
             J=CENTER) value=(h=1.5 c=black) ; 
axis2 label=(h=1.5 c=black "Cost Difference: A - B" J=CENTER) 
      value=(h=1.5 c=black) ; 
 
proc gplot data=bssumm; 
  plot &avare._diff*&avarc._diff = '*'/nolegend haxis=axis2 
                                       vaxis=axis1 
                                       href=0 
                                       vref=0 ; 
%**Add quadrant frequency percentage **; 
  note height=1.75 m=(80pct,80pct) "&pospos.%"; 
  note height=1.75 m=(80pct,30pct) "&posneg.%"; 
  note height=1.75 m=(20pct,30pct) "&negneg.%"; 
  note height=1.75 m=(20pct,80pct) "&negpos.%"; 
 
  title1 h=2.5 lspace=1 "Quadrant distribution for cost effectiveness";  
run;  quit; 
 
%**Clean work library**; 
proc datasets library=work memtype=data nolist; 
 delete temp freqnums trt0 trt1 pctls pctls2 pctls3 zerodat; 
run;  quit; 
 
goptions reset=all; 
 
%MEND PSBB;  /* End of macro psbb */ 
 
 
/* Call the bootstrap macro */ 
 
filename myfile1 "D:\Temp\ICER_TOTCOST_RDBPRS_DIFF2.gif"; 
 
goptions reset=all device=gif gsfname=MYFILE1 gsfmode=replace htext=1 
ftext=swiss rotate=landscape noborder; 
 
%PSBB(rep=10000,avarc=totcost,avare=respdays,indat=rankmab,grpvar=ther); 
 
quit; 
goptions reset=all; 
 
***Draw histogram of mean difference in costs***; 
 
data bssumm; set bssumm; 
 totcost_diff1=totcost_diff/1000;  
     **resize the cost to show in the graph x-axis**; 
run; 
 
filename myfile2 "D:\Temp\ICER_TOTCOST_DIFF2.gif"; 
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goptions reset=all device=gif gsfname=MYFILE2 gsfmode=replace htext=1.25 
ftext='arial/bo' rotate=landscape noborder; 
title ' '; 
footnote ' '; 
pattern1 v=solid c=black; 
footnote1  h=1.5 "Mean Difference in Costs: A - B (thousand $)"; 
 
AXIS1 LABEL=(H=2 C=BLACK angle=90 "Frequency" J=CENTER) value=(H=1.5 
   C=BLACK) order=(0 to 1600 by 200); 
AXIS2 LABEL=(H=2 C=BLACK  J=CENTER ' ') ;  
 
PROC GCHART data=bssumm; 
  VBAR totcost_diff1/ref=(0 to 1600 by 200) midpoints=(-12 to 12 by 1)   
raxis=axis1 maxis=axis2 space=5 width=2; 
run;  quit; 
goptions reset=all; 
 
PROC PRINTTO; RUN; 

 
Output from Program 14.2   
                                  Table of bin_ps by THERAPY 
 
                              bin_ps     THERAPY(THERAPY) 
 
                              Frequency‚ 
                              Percent  ‚ 
                              Row Pct  ‚ 
                              Col Pct  ‚A       ‚B       ‚  Total 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     1 ‚     54 ‚     32 ‚     86 
                                       ‚  12.47 ‚   7.39 ‚  19.86 
                                       ‚  62.79 ‚  37.21 ‚ 
                                       ‚  24.22 ‚  15.24 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     2 ‚     48 ‚     39 ‚     87 
                                       ‚  11.09 ‚   9.01 ‚  20.09 
                                       ‚  55.17 ‚  44.83 ‚ 
                                       ‚  21.52 ‚  18.57 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     3 ‚     41 ‚     46 ‚     87 
                                       ‚   9.47 ‚  10.62 ‚  20.09 
                                       ‚  47.13 ‚  52.87 ‚ 
                                       ‚  18.39 ‚  21.90 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     4 ‚     43 ‚     44 ‚     87 
                                       ‚   9.93 ‚  10.16 ‚  20.09 
                                       ‚  49.43 ‚  50.57 ‚ 
                                       ‚  19.28 ‚  20.95 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                                     5 ‚     37 ‚     49 ‚     86 
                                       ‚   8.55 ‚  11.32 ‚  19.86 
                                       ‚  43.02 ‚  56.98 ‚ 
                                       ‚  16.59 ‚  23.33 ‚ 
                              ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                              Total         223      210      433 
                                          51.50    48.50   100.00 
 

                                                                                                                                                       (continued) 
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Output from Program 14.2  (continued)  
                 Summary of costs/responder days by bin and therapy 
 
„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ† 
‚                      ‚Response Days calculated for ‚                             ‚ 
‚                      ‚            BPRS             ‚          TOTALCOST          ‚ 
‚                      ‡ƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚                      ‚ N ‚    Mean    ‚    Std     ‚ N ‚    Mean    ‚    Std     ‚ 
‡ƒƒƒƒƒƒƒƒƒƒ…ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚bin_ps     ‚THERAPY   ‚   ‚            ‚            ‚   ‚            ‚            ‚ 
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒ‰   ‚            ‚            ‚   ‚            ‚            ‚ 
‚1         ‚A          ‚ 53‚      110.25‚       95.95‚ 54‚    26888.70‚    40157.77‚ 
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚          ‚B          ‚ 31‚      106.45‚      105.16‚ 32‚    20484.75‚    38666.46‚ 
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚2         ‚A          ‚ 47‚      113.29‚      112.52‚ 48‚    12551.58‚    14638.41‚ 
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚          ‚B          ‚ 38‚      113.49‚      115.44‚ 39‚    15421.72‚    21692.73‚ 
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚3         ‚A          ‚ 40‚      125.38‚      122.55‚ 41‚    17913.06‚    22861.74‚ 
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚          ‚B          ‚ 45‚      103.18‚      121.55‚ 46‚    28424.47‚    36420.49‚ 
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚4         ‚A          ‚ 42‚      163.39‚      129.75‚ 43‚    20371.88‚    25649.21‚ 
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚          ‚B          ‚ 42‚      120.86‚      109.20‚ 44‚    22364.51‚    27221.33‚ 
‡ƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚5         ‚A          ‚ 36‚      142.40‚      128.56‚ 37‚    26694.28‚    31476.58‚ 
‚          ‡ƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒ‰ 
‚          ‚B          ‚ 44‚      168.55‚      127.57‚ 49‚    18555.59‚    29170.77‚ 
Šƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒƒƒ 
 
 
            PSBB Estimated Mean Treatment Differences for Cost and Effectiveness 
 
                                       psbb_ 
                                      meandiff_    psbb_meandiff_ 
                               Obs       cost          effect 
 
                                1      -172.904        9.06927 
 
 
    Bootstrap Percentile 95% confidence limits for Cost and Effectiveness Treatment  
    Differences 
 
                         totcost_    totcost_    respdays_    respdays_ 
                     Obs       lcl         ucl         lcl          ucl 
 
                      1     -5777.38     5344.59     -13.4060     31.3172 
 
 

                                                                                                                                                       (continued) 
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Output from Program 14.2  (continued)  
                       BCa bootstrap 95% confidence limits for Cost Difference 
 
                                         totcost_    totcost_ 
                                  Obs       lcl         ucl 
 
                                   1     -6190.15     4908.38 
 
 
                       BCa bootstrap 95% confidence limits for Effectiveness Difference  
 
                                        respdays_    respdays_ 
                                 Obs       lcl          ucl 
 
                                  1      -19.4726     24.1994 
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With a small estimated cost savings and a small effectiveness advantage, the point estimate of 
incremental cost-effectiveness does fall within the dominant region (save $173 with a gain of 9 
days of response; not a tradeoff here). Output from Program 14.2 confirms that, relative to its 
uncertainty, this ICE point estimate is quite near the origin. In fact, the bootstrap distribution of 
ICE uncertainty spans all four quadrants of the cost-effectiveness plane. Note that one has 41.1% 
confidence in dominance (indicating better effectiveness and less cost for treatment A), 37.6% in 
the “A is more costly and more effective” quadrant, and 10% 12% in each of the other two 
quadrants (“A is less costly and less effective” and “A is more costly and less effective”). Thus, 
Obenchain and his colleagues’ (2005) levels of confidence needed to signal some, much, or strict 
dominance are not met in this example. 

While not presented in detail here, sensitivity analyses utilizing other methods demonstrated 
some striking results in regard to treatment comparisons of costs. While the simple t-test (p=.900) 
and generalized linear model (gamma distribution) (p=.880) provided similar results to the PSBB 
analysis, both a log-transformation analysis (p=.007) and a Wilcoxon-ranked sum test (p=.045) 
resulted in statistically significant lower costs for the treatment B group. This is despite the fact 
that the observed mean costs were higher for this group. This is a result of the fact that in this 
situation the log-transformed and ranked tests are not reliable tests for differences in means. The 
median was lower for treatment B—as picked up by the ranked test—and a simple comparison of 
the variances of the log-transformed data (as can be obtained through PROC TTEST) 
demonstrates that the assumptions behind the log-transformed analysis are not valid here. 
Gianfrancesco and colleagues (2002) have discussed the potential for situations such as this, 
especially when comparing costs for treatments from different medication classes. 
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114.4  Discussion 
In this chapter, we have discussed the main issues involved in analyzing cost and cost-
effectiveness comparisons between groups. SAS code for performing a PSBB analysis was 
provided along with a simulated example based on a schizophrenia trial. The PSBB approach is 
an attractive analytical method because it assesses the mean costs, is nonparametric, and adjusts 
for baseline selection bias through the well-accepted approach of propensity score stratification. 
PSBB may not be the best method for all situations—as comparative research on methodology to 
understand under what scenarios various methods perform best is lacking. 

We have not fully addressed all issues involved in either the analysis or the presentation of cost 
data. First, we focused here on the statistical analysis methodology—ignoring issues such as 
study design, collection of resources or costs, assignment of costs to resource data, and cost 
discounting—because these have been widely discussed in the referenced guidelines on economic 
analyses. We also have not discussed the effects of missing or censored cost data. The methods 
illustrated here assume that unbiased cost estimates or imputed values are available or that the 
methods for addressing the missing data can be used within the structure of the propensity score 
bin bootstrap analysis (for example, use a method that adjusts for censoring [such as described in 
Chapter 16] to estimate cost differences within each propensity stratum—instead of a simple 
mean difference within each stratum as presented here). For other references on dealing with 
missing data specific to cost analyses, see Willan and Briggs (2006) or Young (2005). In addition, 
we did not present a full discussion of issues and options surrounding cost-effectiveness 
approaches (see Chapter 15). 

Our objectives here were to use a specific example to illustrate that propensity score bin 
bootstrapping is relatively easy for researchers to implement and to demonstrate the importance 
of understanding the basic assumptions behind statistical methods for analysis of cost data. Given 
the variety of methods available, the different assumptions necessary for the different methods to 
be valid, the fact that different results follow from the same data using different methods, and the 
importance of cost analyses to health care payer decision-makers, what should outcomes 
researchers do? We contend that quality analyses and presentation of cost data must include at 
least the following three components:   

1. a thorough assessment of the reasonableness of all assumptions made and the 
implications if the assumptions are not met;  

2. documented proof that sensitivity analyses were performed; and  
3. transparency in reporting all results.  

 
Studies by Obenchain and Johnstone (1999) and Kereiakes and colleagues (2000) are two good 
examples of quality cost and cost-effectiveness analyses in this sense. 
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Abstract 
Since the early 1990s, motivated by the availability of patient-level cost data in clinical studies 
for comparing patient groups, researchers have made rapid developments in statistical methods 
for cost-effectiveness data. Initial efforts concentrated on inference about the incremental cost-
effectiveness ratio, but due to difficulties associated with ratio statistics, interest has settled more 
recently on incremental net benefit. Regardless of the approach, five parameters need to be 
estimated: the between-treatment arm differences in mean effectiveness and mean cost and the 
corresponding variances and covariance. With these parameter estimates, the analyst can estimate 
the incremental cost-effectiveness ratio and calculate the corresponding confidence limits. Due to 
concerns regarding ratio statistics, the analyst may choose to focus on the incremental net benefit. 
Taking a traditional Frequentist’s approach, the incremental net benefit can be estimated, with the 
uncertainty being characterized by the corresponding confidence limits. Alternatively, taking a 
Bayesian approach, the cost-effectiveness acceptability curve can be used to display the 
magnitude of the between-group contrast and to characterize its uncertainty. A review of these 
methods is given. The particular statistical procedure used for estimating the five parameters 
depends on: 

 whether censoring is present 
 whether covariates are adjusted for 
 whether random effects, such as country, are adjusted for 
 what the assumptions are regarding the distribution for cost 

 
A brief review of the statistical procedures, particular to each combination of these conditions, is 
given, where they exist. An example of a randomized clinical trial is provided. 
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115.1  Introduction 
Since the early 1990s, it has become more common for resource utilization data to be collected in 
clinical studies. The resource data, combined with unit price weights, provide a measure of total 
cost at the patient level, in addition to measures of effectiveness. Having measures of 
effectiveness and cost at the patient level permits the use of conventional methods of statistical 
inference for quantifying the uncertainty due to sampling and measurement error. Numerous 
articles have been published on the statistical analysis of cost-effectiveness data. Initial efforts 
concentrated on providing confidence intervals for the incremental cost-effectiveness ratio 
(ICER), which is the between-treatment difference in mean cost divided by the between-treatment 
difference in mean effectiveness. However, due to concerns regarding ratio statistics, the concept 
of incremental net benefit (INB) has been adopted as an alternative. The INB is the increase in 
effectiveness, expressed in monetary terms, minus the increase in cost. The purpose of this 
chapter is to provide a structured review of commonly proposed methods for a statistical cost-
effectiveness analysis (CEA), with emphasis on the INB. The context used throughout the paper 
is that of a two-arm randomized clinical trial where patients are randomized to treatment (arm T) 
or standard (arm S). However, the methods apply to the comparison of any two groups, subject to 
the concerns one might have regarding bias due to the lack of random group allocation (see 
Section 15.5 for further discussion). 

In a parametric approach, the essential task of a CEA is to jointly model effectiveness and cost to 
estimate five parameters. Two of the parameters are the between-treatment arm differences in 
mean effectiveness, denoted by e , and the between-treatment arm differences in mean cost, 
denoted by c . The other three parameters are the variance of the estimator of e , denoted by

ˆV( )e ; the variance of the estimator of c , denoted by ˆV( )c ; and the covariance of the 

estimators of e  and c , denoted by ˆ ˆC( , )e c , where  indicates the estimator of . 
Effectiveness and cost must be modeled jointly to enable the estimation of the covariance. The 
particular statistical procedure used for estimating the five parameters depends on the following:   

 whether censoring is present  
 whether covariates are adjusted for  
 whether random effects such as country are adjusted for  
 what the assumptions are regarding the distribution for cost  

 
With the estimators of these five parameters, a CEA, based on either the incremental cost-
effectiveness ratio or the incremental net benefit, can be performed. Throughout the rest of this 
chapter, it is assumed that the estimators of e  and c  are normally distributed. This assumption 
relies on the central limit theorem, which holds that the sum of a large number of independent 
random variables will tend to follow a normal distribution.  

In Section 15.2, the methods used to display a CEA, based on the five parameter estimates, are 
illustrated. The statistical procedures used to estimate the parameters, which depend on the issues 
discussed earlier, are reviewed in Section 15.3. An example using data from a randomized 
clinical trial is given in Section 15.4. Section 15.5 discusses the issues specific to observational 
studies. A summary of the chapter follows in Section 15.6. 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 15  Incremental Net Benefit   341 
 

 

115.2  Cost-Effectiveness Analysis 
A general introduction to the cost-effectiveness analysis associated with the comparison of two 
groups is given in this section. Typically, though not necessarily, the measure of effectiveness in 
a CEA is associated with a clinical event experienced by the patient, such as death, relapse, or 
reaching a pre-specified level of symptom relief. The three measures of effectiveness associated 
with an event, death for example, are  

1. whether the patient survived for the duration of interest  
2. the survival time over the duration of interest  
3. the quality-adjusted survival time over the duration of interest  

Correspondingly,       is  

1. the between-treatment difference in the probability of surviving  
2. the between-treatment difference in the mean survival time  
3. the between-treatment difference in the mean quality-adjusted survival time 

 
All means are restricted to the duration of interest and the difference is taken as ,T S  so that 
positive differences favor T. The ICER is defined by ,c e  where the difference for c  is 
taken as .T S  Therefore the ICER is, respectively,  

1. the additional cost of saving a life from using T rather than S  
2. the additional cost of an extra year of life gained from using T rather than S 
3. the additional cost of a quality-adjusted life-year (QALY) from using T rather than S 

 
The ICER can be illustrated on the cost-effectiveness plane, as shown in Figure 15.1, as the slope 
of the line between the origin and the point ,e c .  

In Figures 15.1 through 15.5, we have assumed that the measure of effectiveness is quality-
adjusted survival time and the unit of effectiveness is quality-adjusted life-years (QALYs). Also 
shown in Figure 15.1 is a line, referred to as the threshold, through the origin with the slope equal 
to the threshold willingness-to-pay (WTP) for a unit of effectiveness, denoted as . The 
threshold divides the cost-effectiveness plane into two regions. For points on the plane below and 
to the right of the threshold (shaded), T is considered cost-effective, but for those above and to the 
left, it is not. Because  is positive, points in the SE quadrant, where T is more effective and less 
costly, are always below the threshold and therefore correspond to comparisons for which T is 
cost-effective. On the other hand, points in the NW quadrant, where T is less effective and more 
costly, are always above the threshold and correspond to comparisons for which T is not cost-
effective. It is in the NE and SW quadrants that the concept of threshold WTP allows for a 
tradeoff between effectiveness and cost. In the NE quadrant, the slope of any point below the line 

is less than  (that is, for any point below the threshold c

e
), which implies that c e .  

  

e

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



342   Analysis of Observational Health Care Data Using SAS 
 

NW NE

threshold; slo
pe = 

,e c

SESW

slope c e

($)c

(QALYs)e

Therefore, the increase in value ( e ) is greater than the increase in cost, making T cost-effective. 
In the SW quadrant, the slope of any point below the line is greater than , and because e and c 

are both negative (that is, treatment is less effective and less costly), we have cc

e e
, 

which implies that c e . Therefore, the value lost (| e |) is less than the amount saved 
(| c|), making T cost-effective. In summary, T is cost-effective if, and only if, 

 : if 0; or if 0.c c
e e

e e
A  (1) 

Equation 1 (Hypothesis A) defines the region below the threshold and can be thought of as the 
alternative hypothesis for the null hypothesis H, given by: 

 : if 0; or if 0.c c
e e

e e
H  (2) 

Rejecting H in favor of A would provide evidence to adopt T. These equations are somewhat 
awkward and can be simplified considerably by the introduction of INB. 

Figure 15.1  The Cost-Effectiveness Plane 
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The INB is a function of   and is defined as e cb . b  is the incremental net benefit 
because it is the difference between the incremental value ( e ) and the incremental cost ( c). T is 
cost-effective if, and only if, b  > 0, regardless of the sign of e. To see this, both inequalities 
involving the ICER in Equation 1 can be rearranged to the inequality 0e c . Similarly, 
both inequalities involving the ICER in Equation 2 can be rearranged to the inequality

0e c . Therefore, in terms of INB the null and alternative hypotheses become simplified 
as: 

 : 0 : 0 .H b versus A b  (3) 

The formulations of hypotheses H and A given in Equations 1, 2, and 3 illustrate the close 
relationship between the ICER and the INB. On the cost-effectiveness plane, b  is the vertical 
distance from the point ( e, c) to the threshold, being positive if the point is below the line and 
negative otherwise. Because it has a slope of , the point on the threshold with abscissa equal to 

e is ( e, e ) and so the vertical distance between it and ( e, c) is e  - c (see Figure 15.2). 

Figure 15.2  INB )(b on the Cost-Effectiveness Plane 

 
 

The ICER can be estimated by ˆ ˆ ,c e where ˆ
c  and ˆ

e  are the estimators of c  and e , 

respectively. The estimator ˆ ˆ
c e  is biased, but it is consistent if ˆ

c  and ˆ
e  are unbiased, 

meaning that the bias diminishes as the sample size increases (Chaudary and Stearns, 1996; 
Cochran, 1997). Statistical inference for the ICER has been restricted to calculating its confidence 
interval. Applying Fieller’s theorem [1, 3], the (1 2 )100%  confidence limits are given by 

threshold; slo
pe = 

,e c

,e e

b

($)c

(QALYs)e
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 2 2 2 2
1 1 1 11 2 ( ) 1 ,R z c z a b c z ab c z a  (4) 

Where ˆ ˆ
c eR , 2ˆ ˆ ˆ

e ea V , 2ˆ ˆ ˆ
c cb V , ˆ ˆ ˆ ˆ ˆ,e c e cc C , and 1z  is 

the 100(1 )th  percentile of the standard normal random variable. The set of points on the 
cost-effectiveness plane, whose slopes are between the limits defined in Equation 4, define a 
“bow tie” region on the cost-effectiveness plane (see Figure 15.3), but inference is usually 
restricted to the region of the bow tie that includes the point ˆ ˆ( , )e c . If 

2 2
12 ( ) 0a b c z ab c , then Equation 4 has no solution and neither limit is defined, 

meaning that the data are too close in probability to the origin for an analysis to provide, with 
high confidence, inference regarding the value of the ICER. The ICER has other weaknesses. It 
cannot be interpreted without specifying the sign of either e  or c . Also, the estimator of the 
ICER has an undefined mean and variance. 

Figure 15.3  Bow Tie ICER Confidence Region 

 

These difficulties, plus the fact that the ICER is not properly ordered on the non-tradeoff (SE and 
NW) quadrants of the cost-effectiveness plane, have led analysts to make inferences regarding 
cost-effectiveness with respect to INB as an alternative. As stated previously, T is cost-effective 
if, and only if, b  > 0, and taking a Bayesian approach, the cost-effectiveness acceptability curve 
(CEAC) is a plot of the probability that b  > 0 as a function of . Assuming no prior information,  

  

ˆ ˆ,e c

($)c

(QALYs)e
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the CEAC can be given by ˆ ˆCEAC( ) SE( )b b , where ( )  is the cumulative 

distribution function for the standard normal random variable and ˆ ˆ ˆ
e cb  is the estimator 

of b with standard error ˆSE( ),b  given by 2 ˆˆ ˆ ˆ ˆ ˆ ˆV V 2 C ,e c e c . Estimating 

the CEAC by ˆ ˆSE( )b b  assumes that ˆ
e  and ˆ

c  are normally distributed. This 

assumption relies on the central limit theorem. For a more complete discussion of the Bayesian 
framework in cost-effectiveness, see O’Hagan and Stevens (2001).  

The CEAC has the advantage of capturing both the magnitude and uncertainty of the observed 
cost-effectiveness. It also allows readers to apply the threshold WTP that is most appropriate for 
them. As illustrated in Figure 15.4, the CEAC passes through 0.5 at  equal to the ICER and 
through  and 1 -  at  equal to the ICER Fieller limits defined here. Therefore, the CEAC, 
although based on the INB, provides inference regarding the ICER. For more on CEACs, see 
Fenwick, O’Brien, and Briggs (2004). More direct inference based on INB is provided by plotting 
its estimate and confidence limits as a function of  (see Figure 15.5). Confidence limits for the 
INB are given by 1

ˆ ˆSE( )b z b . The close relationship between b  and the ICER is illustrated 

in Figure 15.5. The plot of b̂  crosses the horizontal axis at the ICER. If ˆ
e  is positive, the lower 

limit for b  crosses the horizontal axis at the upper Fieller limit for the ICER and the upper limit 
for b  at the lower Fieller limit for the ICER. On the other hand, if ˆ

e  is negative, the lower limit 
for b  crosses the horizontal axis at the lower Fieller limit for the ICER and the upper limit for b
at the upper Fieller limit for the ICER. 

Figure 15.4  The Cost-Effectiveness Acceptability Curve
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Figure 15.5  Incremental Net Benefit as a Function of WTP ( ) 

 

The CEAC and the plot of b  and its confidence limits provide a comprehensive summary of the 
cost-effectiveness analysis of comparison of two groups. Both graphs can be determined using 
only the estimators of ˆ ˆ ˆ ˆ, , V , V and C ,e c e c e c . As discussed previously, how 

these estimators are determined depends on the nature and sampling of the data. The estimation 
procedures are reviewed in Section 15.3. The validity of the CEAC and the plots based on INB 
depend on the assumption that the threshold is a straight line through the origin (that is,  is 
invariant to e). For a discussion of the relaxation of this assumption, see O’Brien and colleagues 
(2002) and Willan, O’Brien, and Leyva (2001). 

115.3  Parameter Estimation 
Methods used to estimate the parameters required in a CEA are given in this section. A general 
introduction is given in Section 15.3.1, with more details provided in Section 15.3.2. 
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15.3.1  Introduction to Parameter Estimation  
The methods for parameter estimation depend on  

 whether censoring is present  
 whether covariates are adjusted for 
 whether random effects such as center or country are accounted for 
 what the assumptions are regarding the distribution for cost   

 
Only simple sample statistics are required for non-censored data with no covariates or random 
effects and assuming symmetric cost distributions. However, the methods get more complex as 
fewer of these conditions apply (Willan and Briggs, 2006). The following subsections provide a 
review of some of the approaches taken. Bootstrap methods, which are often used in a CEA, are 
not discussed here because their use is intended for situations where no acceptable closed form 
solution exists [9]. For more on bootstrap methods in cost-effectiveness analysis, see Briggs, 
Wonderling, and Mooney (1997) and Chapter 4 of Willan and Briggs (2006). 

15.3.1.1  Right-Skewing of Cost Data 
Because of right-skewing, which is usually in cost data, use of least squares methods such as 
sample means and variances is often criticized (O’Hagan and Stevens, 2003; Briggs and Gray, 
1998; Thompson and Barber, 2000; Nixon and Thompson, 2004; and Briggs et al., 2005). 
Transformations, such as the logarithm and square root, are sometimes proposed as an alternative. 
However, such transformations provide estimates on a scale not relevant to decision-makers 
(Manning and Mullahy, 2001, and Thompson and Barber, 2000). Additionally, a number of 
investigations into the issue of skewed data, using mostly simulated data, have drawn the 
conclusion that least squares methods provide valid estimates of mean cost and the between-
treatment difference in mean cost. Lumley and colleagues (2002) provide a review of such 
investigations. Nonetheless, the blind application of sample means and variances to cost data with 
extreme outliers could lead to misleading conclusions. Faith in the robustness of least squares 
methodology is no substitute for careful examination of the data using box-plots and histograms. 
Furthermore, although least squares methods may provide consistent estimators of mean cost, the 
estimators may be inefficient in the presence of right-skewing.  

15.3.1.2  Covariate Adjustment 
In randomized clinical trials (RCTs), because covariates tend to be balanced across treatment 
arms, covariate adjustment may not be necessary, although regression models may be used for 
improving precision or examining for subgroup effects with the use of interaction terms. 
However, for observational studies, covariate adjustment is generally considered essential. 

15.3.1.3  Censoring 
In many clinical trials, some patients are not followed for the entire duration of interest. Some 
may be lost to follow up, either because they refuse to attend follow-up clinic visits or because 
they move out of the jurisdiction covered by trial management resources. Also, because of 
staggered entry and long follow-up times, analysis may be performed before all patients are 
followed for the entire duration of interest. When censoring is uninformative (that is, the time to 
death is independent of the time to censoring), life-table methods can be used to provide unbiased 
estimates of the probability of surviving the duration of interest and the mean survival time. 
However, for cost and quality-adjusted survival time, the censoring is informative, even if the 
time to censoring and the time to death are independent, and the use of life-table methods will 
yield biased estimates (Willan et al., 2002). Consequently, more complex methods must be used 
to estimate mean quality-adjusted survival time and mean cost. Throughout this chapter, the terms 
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mean survival time, mean quality-adjusted survival time, and mean cost refer to the mean, 
restricted to the duration of interest. In a cardiology trial, the duration of interest may be 30 days 
or 12 months; however, in a cancer trial, it could be as long as 5 or 10 years. 

15.3.1.4  Random Effects 
Many studies are often conducted in more than one country. The advantages are an increase in 
statistical power, resulting from an increase in sample size, and the perception of greater 
generalizability. However, the analyses of multinational studies often ignore the possibility of a 
treatment by country interaction, in which the treatment effects vary between countries. In the 
presence of an interaction, estimates of treatment effects (that is, between-treatment differences in 
mean cost and effectiveness) that ignore country effects will have inappropriately small variances 
and lead to inflated type I errors. Models that treat country as a fixed effect (Wilke et al., 1998; 
Cook et al., 2003) to account for the interaction have no parameter for the overall treatment effect 
and provide estimates of the country-specific treatment effects that are based solely on the 
individual country’s data. A number of recent publications (see Grieve et al., 2005; Willan et al., 
2005; Manca et al., 2005; Pinto et al., 2005; and Nixon and Thompson, 2005) address this issue 
by proposing hierarchal models that treat country as a random effect. These models have the 
advantage of providing an overall estimate of treatment effect and country-specific estimates that 
use the data from all countries. 

15.3.2  Details of Parameter Estimation  
Let Eji and Cji be the observed measure of effectiveness and cost, respectively, for patient i on 
treatment arm j, where i = 1, 2, . . . nj, j = T, S. Eji is scaled so that larger values correspond to 
better health outcomes. For a binary outcome, Eji is 1 for a success and 0 for a failure. As 
discussed in Section 15.1.4, it is generally recognized that cost data are skewed to the right. In 
Sections 15.3.2.1 to 15.3.2.4, methods that ignore the issue of skewed cost data are reviewed, and 
in Section 15.3.2.5, a review is given for methods that accommodate skewed cost data. 

15.3.2.1  No Censoring, No Random Effects, No Covariates 
If there is no censoring, no random effects, and no covariates, the parameter estimators are simple 
functions of sample statistics, such as mean, variances, and proportions. The estimated difference 
in mean effectiveness and cost are given by 

  1 1ˆ

ST nn

Ti Si
i i

e T S
T S

E E
E E

n n
 and 1 1ˆ

ST nn

Ti Si
i i

c T S
T S

C C
C C

n n
. 

The estimated variance of ˆ
c  is given by 

    

2 2

1 1ˆ ˆV
( 1) ( 1)

ST nn

Ti T Si S
i i

c
T T S S

C C C C

n n n n
 or 

2 2

1 1ˆ ˆV
( 2)

ST nn

Ti T Si S
T S i i

c
T S T S

C C C C
n n
n n n n

 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 15  Incremental Net Benefit   349 
 

 

for homogeneous variance. 

If the measure of effectiveness is continuous, then the estimated variance of ˆ
e  is given by 

    

2 2

1 1ˆ ˆV
( 1) ( 1)

ST nn

Ti T Si S
i i

e
T T S S

E E E E

n n n n
 or 

2 2

1 1ˆ ˆV
( 2)

ST nn

Ti T Si S
T S i i

c
T S T S

E E E E
n n
n n n n

 

for homogeneous variance. 

The estimated covariance between 
ˆ

e  and 
ˆ

c  is given by 

   1 1ˆ ˆ ˆC ,
( 1) ( 1)

ST nn

Ti T Ti T Si S Si S
i i

e c
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e c
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for homogeneous covariance. 

If the measure of effectiveness is binary, then the estimated variance of ˆ
e  is given by 

    
1 1ˆ ˆV T T S S

e
T S

E E E E
n n

, 

and the estimated covariance between ˆ
e  and ˆ

c  is given by 
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15.3.2.2  No Censoring, No Random Effects, with Covariates 
To adjust for covariates when there is no censoring or random effects, Willan, Briggs, and 
Hoch (2004) propose using seemingly unrelated regression equations. Let there be pe covariates 
for effectiveness and pc covariates for costs. The regression model is given by 

 E(y) = X , 

where 
e

y
c

 and e and c are the vectors of length nT + nS of the observed effectiveness and 

costs, respectively. The matrix
Z 0

X
0 W

, where Z is of dimension nT + nS by pe + 2 and 

contains the covariate values for effectiveness. The first column of Z is a dummy indicator for 
treatment group (1 for T and 0 for S) and the second column contains all ones to provide an 
intercept. Similarly, W is of dimension nT + nS by pc + 2 and contains the covariate values for 
costs. The symbol 0  represents a matrix of zeroes with the appropriate dimensions. The vector

 is the vector of parameters, where the first components of  and  are e and c, 

respectively. If the covariates for effectiveness and cost are the same, then the ordinary least 
squares solution provides the best linear unbiased estimators. If one set of covariates is a subset of 
the other, then the ordinary least squares solution provides the best linear unbiased estimators for 
the smaller set. In all other situations, efficiency gains are possible from the generalized least 
squares solution. For estimation details, see Willan, Briggs, and Hoch (2004) and Chapter 6 of 
Willan and Briggs (2006).  

The regression methods given here are most appropriate for continuous measures of 
effectiveness. One approach for covariate adjustment, when the measure of effectiveness is 
binary, is to combine the methods proposed by Thompson, Warn, and Turner (2004) for binary 
regression, which allow for the estimation of risk differences (rather than odds ratios) with those 
of Nixon and Thompson (2005) for jointly modeling effectiveness and cost. The approach 
requires the use of Markov chain Monte Carlo simulation. A more accessible, albeit slightly ad 
hoc, method for binary measures of effectiveness is to use the SAS GENMOD procedure (see 
Section 15.4). 

15.3.2.3  No Censoring, Random Effects, and Covariates 
To account for random country effects in a multinational RCT, two general approaches are 
proposed. The first approach, proposed by Pinto, Willan, and O’Brien (2005) and Willan and 
colleagues (2005), has two stages. In the first stage, each country is treated as a separate trial and 
the appropriate methods are used to estimate the five parameters of interest. The appropriate 
methods may include those that account for censoring or covariates. The country-specific 
estimates are then combined for overall trial estimates using empirical Bayes procedures in what 
is, essentially, a bivariate (effectiveness and cost) meta-analysis. The second approach (Grieve et 
al., 2005; Manca et al., 2005; and Nixon and Thompson, 2005) models effectiveness and cost at 
the patient level, using a hierarchal model to account for the two sources of error (patient and 
country).  

15.3.2.4  Censoring 
If the parameter of interest for effectiveness is the probability of survival or mean survival, then 
life-table methods using the Kaplan-Meier survival curves can be used to estimate e  (Willan et 
al., 2003, 2002). For quality-adjusted survival and costs, the censoring is informative even if the 
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time to censoring and the time to death are independent, and the use of life-table methods will 
yield biased estimates. There are primarily two methods for handling this issue. The first, known 
as the Lin or direct method, is given in Lin and colleagues (1997) and Willan and Lin (2001). The 
other, based on inverse probability weighting, is given in Bang and Tsiatis (2000), Lin (2000), 
Zhao and Tian (2001), and Willan and colleagues (2002). Details for both methods are given in 
Willan and Briggs (2006), Chapter 3. 

For parameter estimation in the presence of covariates, see Lin (2000) and Willan, Lin, and 
Manca (2005). To account for random country effects in a multinational trial with censored data, 
the analysis could be stratified by country, yielding estimates of e and c and the corresponding 
variances and covariances for each country. These estimates can then be combined for overall 
trial estimates using empirical Bayes procedures (Willan et al., 2005; Pinto et al., 2005) as 
discussed in Section 15.3.2.3. 

15.3.3  Accounting for Skewness in Cost Data 
Jointly modeling cost and effectiveness with asymmetrical distributions for cost can be facilitated 
using Markov chain Monte Carlo methods, a complete discussion of which is given in Nixon and 
Thompson (2005). Often a gamma distribution is used to model cost. The gamma distribution 
appears to be sufficiently flexible for fitting cost data in most situations. The models can handle 
adjustment for covariates, interaction terms for subgroup analysis, and random effects for 
country. Again, a more accessible method is facilitated by using PROC GENMOD, as illustrated 
in Section 15.4. 

115.4  Example 
A detailed example is given in this section. The measure of effectiveness is binary and the cost 
data are somewhat skewed. Further, there is a binary covariate, which, for cost, has a statistically 
significant interaction with treatment group. 

15.4.1  The CD Trial 
At the request of the principal investigators, the data for this example have been disguised to 
eliminate any conflict with previous publications. This RCT is referred to as the CD Trial. In the 
CD Trial, 1,356 patients were recruited and randomly allocated between two treatment groups, 
denoted by T and S. There was a single binary baseline covariate, denoted as X, with levels 
labeled 0 and 1. The primary measure of effectiveness was 30-day survival. Health care 
utilization data were collected on all patients and combined with price weights to provide patient-
level cost data. The proportion of patients surviving 30 days and the average cost, broken down 
by treatment group and the covariate, are given in Table 15.1. The overall observed increase in 
30-day survival for those patients receiving T is around 0.05 and is consistent between the levels 
of the covariate. The overall cost saving for those receiving T is around $800. The observed 
difference in mean cost depends on the covariate, being approximately $1,200 for X = 0 and $300 
for X = 1. A histogram of cost, broken down by treatment group, is given in Figure 15.6. The 
width of each pair of rectangles is $2,000, with the last pair representing costs in excess of 
$44,000. A high degree of skewing is evident from this figure. 
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Table 15.1  Proportion Surviving and Average Cost by Treatment Group and  
                    X for the CD Trial 

 
 

Proportion Surviving 30 Days Average Cost (CAD) 

T S T S 

X = 0 0.9345 0.8847 8976.36 10203.31 

X = 1 0.9271 0.8746 8859.37 9137.26 

All Patients 0.9309 0.8802 8919.76 9725.48 

 

Figure 15.6   Histogram of Cost from the CD Trial 
 

 

 

 

 

 

 

 

 

 

 

Estimates of the five parameters, ignoring any influence of the covariate, are given in Table 15.2. 
The estimates in the first column are derived from the formulae given in Section 15.3.2.1 using 
the pooled formulae for the variance and covariance. The estimates in the second column are 
derived from specifically modeling cost using a normal distribution. See Program 15.1 for details. 
As expected, the estimates in this column are almost identical to the estimates in the first. The 
estimates in the third column are derived from modeling cost using a gamma distribution. See 
Program 15.2 for details. Although the estimates of the e  and c  are very similar to those in 

the first two columns, the estimate of variance of ˆV c  is more than 25% smaller, indicating 

that the gamma distribution provides a much better fit of the data. The impact of this increase in 
efficiency is demonstrated in Figures 15.7 and 15.8. Plots of the estimates and confidence limits 
ofb , as a function of , are given in Figure 15.7 for both the normal and gamma model 
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assumptions. The CEACs are given in Figure 15.8. Although the gamma model provides a 
significant decrease in the variance of the estimated difference in mean cost, the confidence limits 
for the INB for the normal and gamma models are essentially equivalent, especially for values of 

 that are appropriate for preventing a death. Some separation can be seen in the plot of the 
CEACs for low values of , but the curves are indistinguishable for larger, more appropriate 
values. 

The following SAS code provides the estimates of the five required parameters, where arm is the 
treatment group indicator (1 for T and 0 for S), effectiveness equals 1 if the patient survived 30 
days and 0 otherwise, and cost is the total cost for each patient. 

Program 15.1  Modeling Cost Using a Normal Distribution 
proc genmod data=yourDataset; 
  model cost = arm / dist=normal link=identity; 
 output out=c predicted=pred_c; 
run; 
 
proc genmod data= yourDataset desc; 
  model effectiveness= arm / dist=bin link=identity; 
 output out=e predicted=pred_e; 
run; 
 
data temp; merge e c; 
 resid_e = effectiveness - pred_e; 
 resid_c = cost - pred_c; 
 keep resid_e resid_c; 
run; 
 
proc corr data=temp; var resid_e resid_c; run; 
 

Output from Program 15.1 
                           Standard       Wald 95%          Chi- 
  Parameter  DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
  Intercept   1  9725.479  210.9007  9312.121  10138.84  2126.50      <.0001 
  arm         1  -805.724  297.8197  -1389.44  -222.008     7.32      0.0068 
 

ˆ
c -805.724; ˆ ˆV c (297.8197)2. 

                           Standard       Wald 95%          Chi- 
  Parameter  DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
  Intercept   1    0.8802    0.0125    0.8557    0.9047  4965.68      <.0001 
  arm         1    0.0507    0.0158    0.0197    0.0817    10.26      0.0014 
 

ˆ
e 0.0507; ˆ ˆV e (0.0158)2. 

Pearson Correlation Coefficients, N = 1356 
 
              resid_e       resid_c 
 
resid_e       1.00000      -0.31306 
 
resid_c      -0.31306       1.00000 
 

ˆ ˆ ˆC ,e c (-0.31306)*(297.8197)*(0.0158). 
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The following SAS code provides the estimates of the five required parameters. The output (not 
shown) has the same structure as the Output from Program 15.1. 

Program 15.2  Modeling Cost Using a Gamma Distribution  
proc genmod data=yourDataset; 
  model cost = arm / dist=gamma link=identity; 
 output out=c predicted=pred_c; 
run; 
 
proc genmod data= yourDataset desc; 
  model effectiveness= arm / dist=bin link=identity; 
 output out=e predicted=pred_e; 
run; 
 
data temp; merge e c; 
 resid_e = effectiveness - pred_e; 
 resid_c = cost - pred_c; 
 keep resid_e resid_c; 
run; 
 
proc corr data=temp; var resid_e resid_c; run; 
 

Table 15.2  Parameter Estimates for the CD Trial 

Parameter Pooled Normal* Gamma* 

ˆ
e  0.0507 0.0507 0.0507 

ˆ
c  -805.72 -805.72 -805.72 

ˆ ˆV e  0.0002506 0.0002496 0.0002496 

ˆ ˆV c  88,828 88,697 65,839 

ˆ ˆ ˆC ,e c  -1.482 -1.473 -1.268 

* distribution used for cost 
 

  

F a r i e s ,  D o u g l a s ,  A n d r e w  C .  L e o n ,  J o s e p  M a r i a  H a r o ,  a n d  R o b e r t  L .  O b e n c h a i n .  A n a l y s i s  o f  O b s e r v a t i o n a l  H e a l t h  C a r e  
D a t a  U s i n g  S A S ® .  C o p y r i g h t  ©  2 0 1 0 ,  S A S  I n s t i t u t e  I n c . ,  C a r y ,  N o r t h  C a r o l i n a ,  U S A .  A L L  R I G H T S  R E S E R V E D .   
F o r  a d d i t i o n a l  S A S  r e s o u r c e s ,  v i s i t  s u p p o r t . s a s . c o m .  



Chapter 15  Incremental Net Benefit   355 
 

 

Figure 15.7  Incremental Net Benefit and Confidence Limits Using the Normal and Gamma  
                     Distributions for the CD Trial 

 

 

 

 

 

 

 

 

 

 

 
Figure 15.8  Cost-Effectiveness Acceptability Curves Using the Normal and Gamma  
                      Distributions for the CD Trial 
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Using a gamma distribution for cost, we examined the effect of the covariate on cost and 30-day 
survival. There was no significant effect (p = 0.5843) of the covariate on 30-day survival, but 
there was a significant overall affect (0.0315) and a marginally significant interaction (0.0630) 
with treatment group for cost. Final models, which include treatment group, X, and the interaction 
for cost and treatment group only for 30-day survival, were used to provide parameter estimates. 
See Program 15.3 for details. The parameter estimates are given in Table 15.3. Because of the 
interaction term between treatment group and X for the cost model, estimates of c  and the 
associated variance and covariance depend on the level of X. The cost saving is much higher for X 
= 0, and consequently treatment will be more cost-effective in that subgroup of patients. The plot 
of incremental net benefit and the CEAC are given in Figures 15.9 and 15.10. The CEAC exceeds 
0.9 for X and it exceeds 0.85 for X n $10,000 
per life saved. This provides strong evidence in support for the cost-effectiveness of T. 

A Microsoft EXCEL file for generating the plots of the CEAC and the INB (with confidence 
intervals) is available at http://www.andywillan.com/downloads. The only inputs required are the 
five parameter estimates, the minimum and maximum values for  and the confidence level. 

The following code shows the final models. The model for effectiveness included arm as the only 
covariate and the model for cost included arm, X, and their interaction. 

Program 15.3  Covariate Adjustment 
proc genmod data=yourData; 
  model cost = arm X arm*X/ dist=gamma link=identity; 
 output out=c predicted=pred_c;  
run; 
 
proc genmod data=yourData desc; 
  model effectiveness = arm / dist=bin link=identity; 
 output out=e predicted=pred_e; 
run; 
 
data temp; merge e c; 
 resid_e = effectiveness - pred_e; 
 resid_c = cost - pred_c; 
 keep resid_e resid_c; 
run; 
 
proc corr data=temp; var resid_e resid_c; run; 
 

Output from Program 15.3 
                            Standard       Wald 95%          Chi- 
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
Intercept      1  10203.31  266.7096  9680.571  10726.05  1463.54      <.0001 
arm            1  -1226.95  360.0549  -1932.65  -521.259    11.61      0.0007 
X              1  -1066.06  375.9776  -1802.96  -329.153     8.04      0.0046 
arm*X          1  949.0657  510.5547  -51.6032  1949.735     3.46      0.0630 
 

For X = 0: ˆ
c -1226.95; ˆ ˆV c (360.0549)2. 
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For X = 0: ˆ ˆ ˆC ,e c (-0.31470)*( 360.0549)*(0.0158). 

                           Standard       Wald 95%          Chi- 
Parameter  DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
Intercept   1    0.8802    0.0125    0.8557    0.9047  4965.68      <.0001 
arm         1    0.0507    0.0158    0.0197    0.0817    10.26      0.0014 
 

ˆ
e 0.0507; ˆ ˆV e (0.0158)2. 

Pearson Correlation Coefficients, N = 1356 
 
              resid_e       resid_c 
 
resid_e       1.00000      -0.31470 
 
resid_c      -0.31470       1.00000 

 
For parameter estimates for X = 1, the values of X can be reversed and the program rerun, 
yielding the following output:  

                            Standard       Wald 95%          Chi- 
Parameter     DF  Estimate     Error   Confidence Limits   Square  Pr > ChiSq 
 
Intercept      1  9137.256  265.0003  8617.865  9656.647  1188.88      <.0001 
arm            1  -277.888  361.9759  -987.348  431.5715     0.59      0.4427 
X              1  1066.056  375.9776  329.1531  1802.958     8.04      0.0046 
arm*X          1  -949.066  510.5547  -1949.73   51.6032     3.46      0.0630 

 
For X = 1: ˆ

c -227.89; ˆ ˆV c (361. 9759)2. 

For X = 1: ˆ ˆ ˆC ,e c (-0.31470)*( 361.9759)*(0.0158). 

Table 15.3  Parameter Estimates by Levels of the Covariate for the CD Trial 

Parameter X = 0 X = 1 

ˆ
e  0.0507 0.0507 

ˆ
c  -1226.95 -277.89 

ˆ ˆV e  0.002496 0.0002496 

ˆ ˆV c  129,640 131,027 

ˆ ˆ ˆC ,e c  -1.790 -1.800 
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Figure 15.9  Incremental Net Benefit by Levels of the Covariate for the CD Trial 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.10  Cost-Effectiveness Acceptability Curves by Levels of the Covariate for the  
                       CD Trial 
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115.5  Observational Studies 
Although many cost-effectiveness analyses are performed on data from randomized clinical trials, 
the methods are also appropriate for the comparison of two groups from observational studies, 
subject to the concerns one might have regarding bias due to the lack of random group allocation. 
Typically, an analysis for comparing two groups based on data from an observational study 
requires adjustment for selection bias. Two general approaches are available: propensity scoring 
and regression analysis. If the data set is sufficiently large, then propensity matching is a possible 
option (see Chapter 3). In this case, the propensity match data could be analyzed as if they came 
from an RCT. Propensity stratification is also an option (see Chapter 2). For propensity stratified 
data, a regression analysis is required, where effectiveness and cost must be regressed on the 
treatment indicator variable plus the dummy indicator variables for the propensity stratification 
(one less than the number of strata). For non-censored data, the analyst can use PROC GENMOD 
to perform the regression, as demonstrated in the example in Section 15.4. The stratification 
variable can be included in the CLASS statement, negating the need to create the dummy 
indicators. For censored data, the regression methods given in Willan, Lin, and Manca (2005) are 
appropriate. For regression analysis without propensity stratification, refer to Willan, Briggs, and 
Hoch (2004) for non-censored data and to Willan, Lin, and Manca (2005) for censored data. 

15.6  Discussion 
Outlined in this chapter is the use of the incremental net benefit for comparing the cost-
effectiveness of two groups. An analyst can, as a function of the threshold WTP, estimate the INB 
and determine its corresponding confidence limits in a Frequentist’s approach or, alternatively, in 
a Bayesian approach plot the cost-effectiveness acceptability curve. The CEAC has the advantage 
that it both displays the magnitude of the estimated between-group contrast and characterizes its 
uncertainty. The INB is preferred to the ICER, which suffers from all the problems associated 
with ratio statistics. Further, the INB ties in directly with Bayesian decision analysis and is used 
in value of information methods (see, for example, Willan and Pinto, 2006, and other sources 
under “References”). As with other cost-effectiveness analyses, inference focused on INB 
requires the estimation of the between-group differences in mean effectiveness and mean cost. In 
addition, the variances and covariance of these estimators are required. The methods used for 
parameter estimation depend on  

 whether censoring is present  
 whether covariates are adjusted for  
 whether random effects such as center or country are accounted for 
 what the assumptions are regarding the distribution for cost  

 
For situations where there is no censoring, covariates, or random effects and the skewing of cost 
data is ignored, only simple statistics are required. SAS PROC GENMOD can be used to 
accommodate covariates and random effects and specify skewed distributions for modeling costs. 
The presence of censoring adds an additional layer of complexity and is covered elsewhere (for 
example, Willan and Briggs, 2006; Willan et al., 2002; Willan et al., 2003; and so forth). 
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Abstract 
Cost assessment and cost-effectiveness analysis serve as an essential part in the economic 
evaluation of medical interventions. In clinical trials and many observational studies, cost data as 
well as survival data are often incomplete due to patients’ loss to follow up or administrative 
termination of the study. There are numerous well-established statistical methodologies and 
software available for analyzing censored survival data. However, standard techniques for 
survival-type data are invalid in analyzing censored cost data, due to the induced informative 
censoring (dependence between censored costs and potential uncensored costs). In this chapter, 
we present some statistical methods that have been proposed for estimating medical cost and cost-
effectiveness analysis with censored data. An example from a clinical trial comparing the 
effectiveness of implantable cardiac defibrillators with conventional therapy for individuals at 
high risk for ventricular arrhythmia is used to illustrate the method. SAS code for performing the 
analysis is provided. The model assumptions are examined and further development is discussed. 

16.1  Introduction 
With the advance of medicine, medical costs have escalated. However, due to limited resources, it 
is of great interest for health care organizations and health policy makers to evaluate medical 
costs associated with different treatment options. In general, the mean cost per patient is of most 
concern to us because the total cost of an intervention can be derived from the mean, not from the 
mode, median, or other quartiles of the cost distribution (Ramsey et al., 2005). 

Cost estimation in observational studies is challenging for many reasons. First of all, cost data are 
highly skewed. However, if a log transformation is used on cost data, the inference on the mean 
of the log transformed cost is transferred back to the geometric mean, not the arithmetic mean of 
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cost as desired. The smearing method (Duan, 1983) has been proposed to handle this type of 
problem. Another challenge is that there can be a lot of missing data for medical costs, due to 
either missing visits or missing information on some types of medical costs (Briggs et al., 2003). 
Naive methods such as omitting missing data, carrying forward the last observation, or replacing 
the missing values with mean measures from observed data are often not satisfactory. Instead, 
multiple imputation (Rubin, 1987) and Bayesian simulation methods (Schafer, 1997; Van Buuren, 
1999) have been advocated for computing missing data. In general, missing data can be classified 
into three categories according to Little and Rubin (1987):  

 missing completely at random (MCAR), where missing mechanisms are independent of 
the variables of our interest  

 missing at random (MAR), where missing is dependent only on observed variables  
 not missing at random (NMAR), where missing depends on unobserved variables  

 
It is usually easier to handle MCAR and MAR cases; when NMAR is true, inference will rely on 
the assumptions about the missing mechanisms, which cannot be verified from available data. 

One type of missing data is caused by censoring, either due to dropout from the study or to 
administrative censoring from the design of the study. This chapter mainly concentrates on this 
problem. Similar to other missing mechanisms, censoring can be classified into three categories 
as well, according to whether  

 censoring is independent of the survival and cost history process (censoring completely at 
random)  

 censoring depends only on observed variables (censoring at random)  
 censoring depends on some unobserved variables  

 
We will show that it is challenging to estimate the mean costs, even for the first scenario of 
censoring, completely at random. Due to the censoring of costs, we cannot estimate the mean cost 
by simply averaging the medical cost of all the subjects. This would underestimate the true cost 
by equating the costs after censoring time to be zero. An average of the cost from only complete 
observations results in an estimator that is biased toward the costs of the patients with shorter 
survival time. Methods based on standard survival techniques, such as the Kaplan-Meier 
estimator (Kaplan and Meier, 1958), also result in biased estimators, even when the assumption 
that censoring is independent of the survival time is valid. This is due to so-called induced 
informative censoring, first noted by Lin and colleagues (1997). As an example, an individual 
with a higher cost accumulation rate tends to incur more medical cost at both censoring time and 
potential uncensored survival time, even when the censoring time is completely independent of 
the failure time.  

Different statistical methods have been proposed for estimating mean cost with censored data 
(Young, 2005). We will focus on estimating the mean costs without using covariate information. 
Further development on incorporating covariate information in cost estimation is discussed in the 
last section of this chapter. Realizing that it is impossible to estimate nonparametrically the 
lifetime cost due to censoring, Huang and Louis (1998) proposed a method to jointly estimate 
survival time and lifetime costs. An alternative approach for handling the censoring issue is to 
limit the medical cost estimation to a certain time, which is determined by the availability of the 
data. Because the focus of an economical study involving cost is often on the marginal 
distribution of the cost, not the cost distribution conditional on a certain survival time, we 
concentrate on the second approach in the remainder of this chapter.  

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



Chapter 16  Cost and Cost-Effectiveness Analysis with Censored Data   365 
 

All methods for using censored data to estimate mean cost within a time limit can be classified 
into two types:  

1. approaches that use only the information on the final cost observed in each individual that 
is complete 

2. approaches that use additional information from a patient’s cost history for both complete 
and censored individuals  
 

In general, the former approaches are simple but inefficient (that is, the estimator has a larger 
variance), while the latter are more complicated but produce asymptotically more efficient 
estimators.  

Lin and colleagues (1997) proposed three different estimators for estimating mean costs using 
either patients’ total cost or cost history. Their methods provide consistent estimates only when 
the censoring times are discrete. Bang and Tsiatis (2000) employed the inverse probability 
weighting scheme and proposed several estimators that belong to a general class of consistent and 
asymptotically normal estimators for estimating mean cost with censored data. Their so-called 
partitioned estimator makes use of the cost accumulation data. Thus, it improves the efficiency of 
the simple weighted estimator, but it requires dividing the health history into subintervals. Later, 
a more convenient and efficient estimator was suggested by Zhao and Tian (2001), which also 
belongs to the general class of estimators of Bang and Tsiatis (2000). In a recent article, Zhao and 
colleagues (2007) established equivalency among the estimators that were introduced by Lin and 
colleagues (1997), Bang and Tsiatis (2000), and Zhao and Tian (2001). For each type of estimator 
(with or without utilizing cost history), the estimators are identical under the condition that 
partition boundaries are chosen at the censoring points.  

Cost estimation is frequently used in cost-effectiveness analysis to compare different treatments 
and evaluate the economic impact of new treatment options. Willan and Lin (2001) and Willan 
and colleagues (2003) illustrate the use of incremental net benefit (INB), which depends upon a 
decision maker’s willingness to . 
Namely, INB=cost -  effect. A major advantage of this measure is that it is more 
mathematically convenient to deal with simple differences, whereas a major disadvantage is that 

 defined. An alternative measure of cost-
effectiveness is the incremental cost-effectiveness ratio (ICER), which is defined as the extra 
costs incurred for saving an additional year of (quality-adjusted) life. The ICER is very useful for 
comparing two treatments when one is more costly but more effective than the other. The ICER 
has long been considered a standard tool among decision makers (Gold et al., 1996). The ICER 
and INB approaches are also discussed in Chapters 14 and 15. 

For the purpose of illustration, our data analysis uses an example from a clinical trial, the 
Multicenter Automatic Defibrillator Implantation Trial (MADIT), which compared the 
effectiveness of implantable cardiac defibrillators vs. conventional therapy in preventing death 
among people who had prior myocardial infarctions (Mushlin et al., 1998). Methods that utilize 
either only the total costs or additional cost history are employed to obtain the cost estimator and 
calculate the incremental cost-effectiveness ratio and its confidence. SAS code is provided 
together with analysis results. 

The outline of this chapter is as follows. Section 16.2 introduces the methodology for estimating 
the mean cost as well as estimating the ICER and its confidence intervals. It is followed by the 
MADIT data analysis using SAS in Section 16.3. In Section 16.4, we examine the model 
assumptions and discuss other approaches available for estimating medical cost and for obtaining 
confidence intervals for cost-effectiveness ratios.  
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16.2  Statistical Methods 

16.2.1  Notation and Assumptions   
We first confine our attention to patients in one arm of the study. For the i th person in the study, 
let iT  denote his overall survival time and iC the censoring time. Censoring is assumed to be 
random and independent of survival time. This assumption is usually satisfied when censoring is 
mainly caused by administrative reasons, such as the limited duration of a clinical trial or survey 
data. In the discussion section, we will comment on the case when this assumption is not valid. 
Due to censoring, iT  and iC are observed only through the follow-up time ),min( iii CTX . Let 
the censoring indicator be . Then 1i  means the i th person’s death is 
observed and 0i means his survival time is censored. Denote Ui(t) as the cost accumulated 
from time 0 (the point when the patient entered the study) to time t . Because of the presence of 
censoring, it is impossible to estimate the cost over the entire health history without making some 
distributional assumptions. Therefore, we consider only cost accumulated up to a prespecified 
time horizon L, where one has a reasonable amount of data available on the time period [0, L]. 
Hence, we will consider = ),min( LTi . But for ease of notation, we will suppress the 
superscript L and continue to use .

Our goal is to estimate the mean of the medical cost )}({ ii TUE  up to a maximum time of L, 

from a set of observed data ],,1},),({,,[ niXttUX iiii . If the cost history is not 
recorded, we see only the final cost )( ii XU for each individual, and those who experience the 
event of interest before being censored have Ui = Ui(Ti) = Ui(Xi).

16.2.2  Estimating Mean Cost   
If every patient is followed up to time L or until his death, then we would have complete costs for 
each patient and the standard statistical method such as the sample mean could be used for 
estimating mean costs. However, in most cases, the cost and the survival time are not completely 
observed for all patients due to censoring. A simple weighted estimator for the mean cost was 
proposed by Bang and Tsiatis (2000), which has the following form: 

                                          
n

i i

ii
WT TK

U
n 1 )(ˆ
1ˆ ,                       (1) 

where )(ˆ
iTK is the Kaplan-Meier estimator for , the survival distribution of 

the censoring variableC  evaluated at time iT . In this simple weighted estimator, censoring is 
taken into account by weighting each uncensored individual with their probability of being 
observed. This inverse probability weighting idea originated with Horvitz and Thompson (1952) 
in sampling survey methods. This estimator is shown by Bang and Tsiatis (2000) to be consistent 
and asymptotically normal. Its variance can be consistently estimated by 
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(2) 

where  

. 

This estimator has been shown by Zhao and colleagues (2007) to be equivalent to the estimator T 
of Lin and colleagues (1997), if the boundaries of the intervals were chosen to be at those 
censoring times. 

The simple weighted estimator utilizes only data with complete observations. Thus it cannot be 
efficient, especially when censoring is heavy. One way to improve it is by capturing information 
from censored observations or from available cost history for both censored and uncensored 
observations. To improve the efficiency of the simple weighted estimator, Bang and Tsiatis 
(2000) proposed the partitioned estimator. It partitions the interval [0, L] into smaller intervals, 
computes the simple weighted estimator for cost incurred in each interval, and then sums over all 
intervals. Later, a more convenient and efficient estimator was suggested by Zhao and Tian 
(2001), which belongs to the general class of estimators of Bang and Tsiatis (2000) for mean cost 
but which does not require partitioning the health history. Pfeifer and Bang (2005) suggested a 
user-friendly formula for this improved estimator, which can be written as: 

                                                     
(3)

 

where  is the average cost at of individuals who are still under 
observation at time  This estimator has been shown by Zhao and colleagues (2007) to be 
equivalent to the partitioned estimator of Bang and Tsiatis (2000) and the Lin and colleagues 
(1997) estimators A and B, when the partition boundaries are chosen to be at those censoring 
times.  

The variance estimator for the improved estimator of mean cost is given by 

 

                                                                                                                                               (4) 
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This improved estimator is not guaranteed to always be more efficient than the simple weighted 
estimator, but under most realistic situations, it will perform better than the simple weighted 
estimator. 

For both estimators, we assume that we can compute a subject’s total cost or accumulated cost at 
a certain time before his censoring or death occurs. When missing cost data are present, an 
appropriate method for handling them must be employed first (Briggs et al., 2003). Wang and 
Zhao (2006) discussed the special situation when censoring for cost happens earlier than 
censoring for survival time for some subjects. 

16.2.3  Estimating the Incremental Cost-Effectiveness Ratio and Its  
            Confidence Interval   
We now consider a two-arm trial and estimate the incremental cost-effectiveness ratio. For 
arm )1,0(kk , denote U

k as the mean cost and T
k as the mean survival time, each limited to a 

window of time [0, L]. The ICER is estimated by 

                                                                  
                                                    (5) 

 
where U

kˆ  and T
kˆ are the estimators for the mean cost and mean survival time for arm 

)1,0(kk , respectively. The mean survival time can be estimated using the area under the 
Kaplan-Meier curve of the survival function over [0, L], which can be shown to be equivalent to 

 . T is truncated at time L. 

There are different approaches available to obtain confidence intervals for the ICER. Chapter 14 
provides an example with the bootstrap method. Here we use Fieller’s Theorem (Fieller, 1954) 
because asymptotically the numerator UUx 01 ˆˆ and the denominator TTy 01 ˆˆ in (5) are 
bivariately normally distributed, which satisfies the requirement for this theorem. Hence, the 
100(1- ) percent confidence limits for the ICER are 

                                               
yy

yyxyxxxy

Szy
SSSyxfSzxy

2
2/

2

2/12
2/ )},,,,({

,   (6) 

where ))(()(),,,,( 2
2/

22
2/

222
2/ yyxxxyyyxyxx SzySzxSzxySSSyxf , xyyyxx SSS ,, are, 

respectively, the variances of x and y and the covariance of x and y , and 2/z is the cutoff point 
with tail area 2/  for the standard normal distribution. Because we assume that the two samples 
are independent, we can obtain the variance of x and y using previous results. Formulae that can 
be used to consistently estimate the covariance between costs and survival times are given in 
Zhao and Tian (2001), so they are not presented here. 
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116.3  Example 

16.3.1  Study Description 
To illustrate the methods discussed here, we use data collected from the Multicenter Automatic 
Defibrillator Implantation Trial (MADIT). MADIT was a randomized, fully sequential clinical 
trial that examined the effectiveness of an implantable cardiac defibrillator (ICD) in prevention of 
sudden death for patients who were at high risk for ventricular arrhythmia (Moss et al., 1996). 
Altogether, 181 patients were enrolled from 36 centers, with 89 patients assigned to the treatment 
group to receive ICDs and 92 assigned to the control group to receive conventional drug therapy. 
The first enrolled patient was followed for 61 months and the last for less than 1 month, with an 
average follow up of 27 months. After completion of the study, Moss and colleagues (1996) 
showed that use of an ICD as prophylactic therapy leads to improved survival compared with 
conventional medical therapy. Because of the high initial cost associated with the ICDs, cost data 
were collected for patients from the United States as part of the study. All medical costs incurred 
during the study were recorded, as described by Mushlin and colleagues (1998).  

The original cost analysis was restricted to a 4-year period and performed using a method similar 
to the one proposed by Lin and colleagues (1997). We reanalyze the data using both the simple 
weight estimator and the improved estimator discussed earlier. Restricted to a 4-year period, the 
data were heavily censored, with a 70% censoring rate in the ICD arm and a 48% censoring rate 
in the conventional therapy arm. The improved estimator allowed us to capture the information 
from censored observations. For the cost-effectiveness analysis, the ICER was also calculated 
using the improved method in estimating the mean cost. As customarily done in cost-
effectiveness analysis, both costs and survival time were discounted at 3% annual rate (Gold et 
al., 1996). 

Although this example comes from a clinical trial, not an observational study, the same 
calculation can be used for a censored observational study as long as the assumption of 
independent censoring is still valid. In the discussion section, we talk about how to handle the 
case when censoring depends on observed variables and how to adjust for baseline imbalance for 
observational studies. 

16.3.2  Data Analysis 
The data for each treatment arm came from two separate files, one containing the survival 
information and the other containing the cost information. The survival data included three 
variables: subject ID, survival time (in days), and survival status (1=death; 0=censored). Because 
many costs, such as hospitalization costs, were accumulated over a certain period of time, they 
were recorded by start time, stop time, and total costs within the period (in dollars). These costs 
were already discounted at a 3% annual rate. The SAS code and output examining the first 10 
observations of the two files from the ICD arm follow. 

Program 16.1  SAS Code for Examining the Survival File 
libname local "C:\Documents and Settings\My Documents\Example"; 
 
proc print data=local.surv1 (obs=10); 
run; 
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Output from Program 16.1  
                            Obs    id    delta    surv 
 
                              1     1      0       167 
                              2     2      0      1582 
                              3     3      0      1792 
                              4     4      0      1303 
                              5     5      0      1204 
                              6     6      0       763 
                              7     7      0       453 
                              8     8      0      1644 
                              9     9      0      1818 
                             10    10      0       804 

 

Program 16.2  SAS Code for Examining the Cost File 
proc print data=local.cost1 (obs=10); 
run; 

 

Output from Program 16.2 
                       Obs    cid    start    stop        cost 
 
                         1     1        1       29      133.12 
                         2     1        1       29       16.44 
                         3     1        1      158      421.75 
                         4     1        1      158       28.94 
                         5     1        1      158       25.28 
                         6     1        1      158       29.80 
                         7     1        1      158        2.79 
                         8     1        5        7    32764.22 
                         9     1       29      158       79.48 
                        10     1       30      120      150.99 

 
SAS/IML software was used in the analysis. Because our formula involves the Kaplan-Meier 
estimator, we need to call the SAS LIFETEST procedure within SAS/IML. SAS Stat Studio (now 
SAS/IML Studio) enables us to perform this task. The following program was run in this 
environment. For each set of survival and cost data, a user-defined value of time limit L, and a 
discount rate r, the program calculates and prints the cost estimator (simple weighted and 
improved), the mean (discounted) the survival time, and their estimated variances and covariance. 

Program 16.3  SAS Code for Performing Cost Analysis 
libname local "C:\Documents and Settings\hongwei\My 
Documents\Home\SASbook\Example"; 
   
/* Read survival data */ 
use local.surv1; 
read  all var {id delta surv};  
/*Subject ID, death indicator, and survival time;*/ 
close local.surv1; 
   
/* Read cost data */ 
use local.cost1; 
read  all var {cid start stop cost};  
/* Subject ID, cost starting date, stop date, cost incurred */ 
show names; 
close local.cost1; 
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/* Define global variables */ 
n=nrow(id); /* number of subjects */ 
nobs=nrow(cid); /* total number of observations for cost data*/ 
L=1461; /* time limit */ 
r=0.03; /* annual discount rate */ 
   
/* Truncate survival time to L, name new variables tsurv and tdelta */ 
run TrunSurv(delta, surv, tdelta, tsurv); 
 
/* Make the largest observation a failure */ 
do i= 1 to n; 
  if (tsurv[i] = L)  then tdelta[i]=1; 
end; 
 
/* Calculate the percentage of data that is censored */ 
percens=CalCensor(tdelta); 
print , "Percent of censoring =" percens; 
 
/* Calculate the Kaplan Meier estimator for K(t)=Pr(C>t), name it kc */ 
run KmCal(tsurv,tdelta,kc); 
   
/* Calculate the Kaplan Meier estimator for S(t)=Pr(C>t), name it s */ 
censor=j(n,1,0); 
do i= 1 to n; 
   censor[i]=1-tdelta[i]; 
end; 
run KmCal(tsurv,censor,s); 
   
/* Calculate the total cost for each subject, which is needed for the 
simple weighted estimator */ 
run CalTCost(cid, start,stop, cost, id, tsurv, tcost); 
   
/* Calculate the mean cost using the simple weighted estimator */ 
mean_sw=CalOurMean(tdelta, kc, tcost); 
print , "Simple weighted estimator for mean cost =" mean_sw; 
   
/* Calculate the standard error of the simple weighted estimator */ 
var_sw=CalOurVar(tsurv, tdelta, s, kc, tcost, mean_sw); 
se_sw=sqrt(var_sw); 
print , "Standard error estimate for the simple weighted estimator =" 
se_sw; 
   
/* Calculate the mean discounted survival time and its standard error*/ 
dsurv=j(n,1,0); 
do i= 1 to n;  
  dsurv[i] = 365.25/r * (1.0-exp(-r*(double)tsurv[i]/365.25)); 
end; 
mean_T = CalOurMean(tdelta, kc, dsurv); 
var_T = CalOurVar(tsurv, tdelta, s, kc, dsurv, mean_T); 
se_T = sqrt(var_T); 
print , "Mean survival time =" mean_T; 
print , "Standard error for the mean survival time =" se_T; 
     
/* Calculate cumulative cost at each censored time, which is needed for the 
improved estimator */ 
run CalCulCost(cid, start, stop, cost, id, tsurv, tdelta, culcost); 
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/* Calculate improved estimator for mean cost and its standard error*/ 
run CalMeanAdd(tsurv, tdelta, kc, s, tcost, culcost, meanadd, varsub); 
mean_imp = mean_sw+meanadd; 
se_imp = sqrt(var_sw-varsub); 
print , "Imporved estimator for mean cost =" mean_imp; 
 
print , "Standard error of the improved estimator =" se_imp; 
/* Calculate the covariance between mean survival time and simple weighted 
cost estimator */ 
cov_sw = CalOurCov(tdelta, tsurv, s, kc, tcost, mean_sw, dsurv, mean_T); 
print , "Covariance between mean survival time and the simple weighted cost 
estimator =" cov_sw; 
  
/* Calculate the covariance between mean survival time and improved cost 
estimator */ 
covsub=CalCovSub(tdelta, tsurv, s, kc, culcost, dsurv); 
cov_imp=cov_sw-covsub; 
print , "Covariance between mean survival time and the improved cost 
estimator =" cov_imp;  
 
/* Subroutine to truncate the survival time to L */                                     
start TrunSurv(delta, surv, tdelta, tsurv) global (L,n);                                
  tsurv=surv;                                                                           
  tdelta=delta;                                                                         
  do i= 1 to n;                                                                         
    if surv[i]>L then do;                                                               
      tsurv[i]=L;                                                                       
      tdelta[i]=1;                                                                      
    end;                                                                                
  end;                                                                                  
finish TrunSurv;      
 
/* Subroutine to calculate the percentage of data that is censored */ 
start CalCensor(tdelta) global (L,n); 
  cens=1-tdelta; 
  percens = sum(cens)/n; 
  return(percens); 
finish CalCensor; 
 
/* Subroutine to calculate the Kaplan Meier estimator for K(t)=Pr(C>t) */ 
start KmCal(surv, delta,kc); 
  create InputDataSet var {surv delta}; 
  append; 
  close InputDataSet; 
     
  submit; 
    proc lifetest data=InputDataSet noprint outsurv=OutputData; 
    time surv*delta(1); 
    run; 
    
    data Out; 
    set OutputData; 
 tpdelta=1-CENSOR_; 
 tpsurv=surv; 
    run; 
  endsubmit;  
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  use Out; 
  read all var {tpsurv tpdelta survival}; 
  run ChangeKmSurv(tpsurv, tpdelta, survival, surv, delta, kc); 
  close Out; 
finish KmCal;   
 
/* Subroutine to carry forward the survival function estimate at the last 
failure time */ 
start ChangeKmSurv(tpsurv, tpdelta, survival, surv, delta, kc) global 
(L,n); 
  minkc=1000; 
  nn=nrow(tpsurv); 
  kc=j(n,1,0); 
 
  do j= 1 to nn; 
    if (survival[j]>=0 & survival[j]<minkc) then do; 
      minkc=survival[j]; 
      maxtime=tpsurv[j]; 
    end; 
  end; 
      
  do i= 1 to n;  
 if (surv[i]>maxtime) then kc[i]=minkc; 
    else do; 
      do j = 1 to nn; 
     if (surv[i]=tpsurv[j]) then kc[i]=survival[j]; 
      end; 
    end; 
  end; 
finish ChangeKmSurv; 
 
/* Subroutine to calculate the total cost */ 
/* This subroutine takes less time to run compared to the routine 
calculating cumulative cost */ 
start CalTCost(cid, start, stop, cost, id, tsurv, tcost) global (n, nobs); 
  tcost=j(n,1,0); 
  do i= 1 to n; 
    do k=1 to nobs; 
      if (cid [k] = id[i] & start [k] <= tsurv[i]) then do; 
         if (stop[k] > tsurv[i]) then 
            tcost[i]=tcost[i]+cost[k]*(tsurv[i]-start[k]+1.0)/(stop[k]-
start[k]+1.0); 
         else tcost[i] = tcost[i] + cost[k]; 
      end; 
    end; 
  end; 
finish CalTCost; 
 
/* Subroutine to calculate the simple weighted estimator for the mean cost 
*/ 
start CalOurMean(tdelta, kc, tcost) global (n); 
  mymean=0.; 
  do i= 1 to n; 
    if (tdelta[i]=1) then mymean = mymean + tcost[i]/kc[i]; 
  end; 
  mymean = mymean/n; 
  return(mymean); 
finish CalOurMean; 
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/* Subroutine to calculate the variance of the simple weighted estimator */ 
start CalOurVar(tsurv, tdelta, s, kc, tcost, mymean)global (n); 
  temp1 = 0.; /* part 1 of equation (2) */ 
  temp2 = 0.; /* part 2 of equation (2) */ 
  do i= 1 to n; 
    if (tdelta[i]=1) then temp1 =temp1 + (tcost[i]-mymean)**2/kc[i]; 
  end; 
  temp1 =temp1/n; 
  
  do j= 1 to n; 
    e=0.; 
    f=0.; 
    if (tdelta[j]=0) then do; 
      do i= 1 to n; 
        if(tdelta[i]=1 & tsurv[i]>=tsurv[j]) then do; 
          e =e + tcost[i]/kc[i]; 
          f = f + (tcost[i])**2/kc[i]; 
        end; 
      end; 
      e = e / (s[j]*n); 
      f = f /(s[j]*n); 
      temp2 = temp2 + (f-e*e)/(kc[j]*kc[j]); 
    end; 
  end; 
  temp2=temp2/n; 
 
  myvar = temp1+temp2; 
  myvar = myvar/n; 
  return(myvar); 
finish CalOurVar; 
 
/* Subroutine to calculate the cumulative cost */ 
/* This routine is needed for calculating the improved estimator */ 
start CalCulCost(cid, start, stop, cost, id, tsurv, tdelta, culcost) global 
(n, nobs); 
  culcost=j(n,n,0); 
  do i= 1 to n; 
    do j= 1 to n; 
      if (tsurv[i]>=tsurv[j] & tdelta[j]=0) then do; 
        do k = 1 to nobs; 
          if (cid [k] = id[i] & start [k] <= tsurv[j]) then do; 
            if (stop[k] > tsurv[j]) then 
              culcost[i,j]=culcost[i,j]+cost[k]*(tsurv[j]-
start[k]+1.0)/(stop[k]-start[k]+1.0); 
            else culcost[i,j] = culcost[i,j] + cost[k]; 
          end; 
        end; 
   end; 
 end; 
  end; 
finish CalCulCost; 
 
/* Subroutine to calculate the additional terms for the improved estimator 
and its variance */ 
start CalMeanAdd(tsurv, tdelta, kc, s, tcost, culcost, meanadd, varsub) 
global (n); 
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/* First calculate Ubar[j] and risk set y[j] at censoring places */ 
  Ubar=j(n,1,0); 
  y=j(n,1,0); 
  do j= 1 to n; 
    if (tdelta[j]=0) then do; 
      do i= 1 to n; 
        if (tsurv[i]>=tsurv[j]) then do; 
          Ubar[j]= Ubar[j]+ culcost[i,j]; 
          y[j] = y[j]+1; 
        end; 
      end; 
      Ubar[j]= Ubar[j]/y[j]; 
    end; 
  end; 
   
  /* Next calculate the additional terms for the improved estimator and its 
variance */ 
  part1=0.; /* Additional term for the improved estimator */ 
  part2=0.; /* Second term in the variance formula for the improved 
estimator, equation (4) */ 
  part3=0.; /* Third term in the variance formula for the improved 
estimator, equation (4) */ 
  do j= 1 to n; 
    if (tdelta[j]=0) then do; 
      part1 = part1+ (tcost[j]-Ubar[j])/kc[j]; 
      
      gu=0.; 
      par2temp=0.; 
      par3temp=0.; 
      do i= 1 to n; 
        if(tdelta[i]=1 & tsurv[i]>=tsurv[j]) then 
        gu = gu + tcost[i]/kc[i]; 
      end; 
      gu = gu/( s[j]*n); 
 
      do i= 1 to n; 
        if(tdelta[i]=1 & tsurv[i]>=tsurv[j]) then 
          par2temp = par2temp+ (tcost[i]-gu)*(culcost[i,j]-Ubar[j])/kc[i]; 
      end; 
      part2 = part2 + par2temp/(y[j]*kc[j]); 
 
      do i= 1 to n; 
        if(tsurv[i]>=tsurv[j])then 
          par3temp = par3temp +(culcost[i,j]-Ubar[j])**2; 
      end; 
      part3 = part3+ par3temp/(y[j]*kc[j]*kc[j]); 
    end; 
  end; 
  part1 = part1/n; 
  meanadd=part1; 
  varsub=(2.0*part2-part3)/(n*n); 
finish CalMeanAdd;    
 
/* Subroutine to calculate the covariance between mean survival time and 
simple weighted cost estimator */ 
start CalOurCov(tdelta, tsurv, s, kc, tcost, mymean, dsurv, tmean) global 
(n); 
  temp1 = 0.; 
  temp2 = 0.; 
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  do i= 1 to n;  
    if (tdelta[i]=1) then temp1 = temp1 + tcost[i]*dsurv[i]/kc[i]; 
  end; 
   
  temp1 = temp1/n; 
  temp1 = temp1 - mymean * tmean; 
  
  do j= 1 to n; 
    gtc=0.; 
    gt=0.; 
    gc=0.; 
    if (tdelta[j]=0) then do; 
      do i= 1 to n; 
        if(tdelta[i]=1 & tsurv[i]>=tsurv[j]) then do; 
          gtc = gtc + tcost[i]*dsurv[i]/kc[i]; 
          gt = gt + dsurv[i]/kc[i]; 
       gc = gc + tcost[i]/kc[i]; 
        end; 
      end; 
      gtc = gtc / (s[j]*n); 
      gt = gt/(s[j]*n); 
      gc = gc/(s[j]*n); 
      temp2 = temp2 +(gtc-gt*gc)/(kc[j]*kc[j]); 
    end; 
  end; 
  temp2 =temp2/n; 
  mycov = temp1+temp2; 
  mycov = mycov/n; 
  return(mycov); 
finish CalOurCov; 
 
/* Subroutine to calculate the additional term for covariance between mean 
survival time and improved cost estimator */ 
start CalCovSub(tdelta, tsurv, s, kc, culcost, dsurv) global (n); 
    
  /* First calculate Ubar[j] and risk set y[j] at censoring places */ 
  Ubar=j(n,1,0); 
  y=j(n,1,0); 
  do j= 1 to n; 
    if (tdelta[j]=0) then do; 
      do i= 1 to n;  
        if (tsurv[i]>=tsurv[j]) then do; 
          Ubar[j] = Ubar[j] + culcost[i,j]; 
          y[j] = y[j] + 1; 
        end; 
      end; 
      Ubar[j] =Ubar[j]/y[j]; 
    end; 
  end; 
 
  /* Next calculate the additional term for the covariance using improved 
cost estimator */ 
  part2=0.; 
  do j= 1 to n; 
    if (tdelta[j]=0) then do; 
      par2temp=0.; 
      gt = 0.; 
      do i= 1 to n; 
        if(tdelta[i]=1 & tsurv[i]>=tsurv[j]) then 
          gt = gt +  dsurv[i]/kc[i]; 
      end; 
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      gt = gt/(s[j]*n); 
 
      do i= 1 to n; 
        if(tdelta[i]=1 & tsurv[i]>=tsurv[j]) then 
          par2temp = par2temp+(culcost[i,j]-Ubar[j])*(dsurv[i]-gt)/kc[i]; 
      end; 
      part2 = part2 + par2temp/(y[j]*kc[j]); 
    end; 
  end; 
  covsub=part2/(n*n); 
  return(covsub); 
finish CalCovSub; 

 

Output from Program 16.3 for the ICD Group 
                         PERCENS 
 
Percent of censoring = 0.6966292 
  
  
                                            MEAN_SW 
 
Simple weighted estimator for mean cost = 110108.86 
 
                                                                SE_SW 
 
Standard error estimate for the simple weighted estimator = 6929.7977 
 
                        MEAN_T 
 
Mean survival time = 1261.4032 
 
                                                 SE_T 
 
Standard error for the mean survival time = 35.996617 
 
                                    MEAN_IMP 
 
Improved estimator for mean cost = 99311.725 
 
                                              SE_IMP 
 
Standard error of the improved estimator =  5481.115 
 
                                                                                  
COV_SW 
 
Covariance between mean survival time and the simple weighted cost estimator = 
24943.547 
 
                                                                          COV_IMP 
 
Covariance between mean survival time and the improved cost estimator = 30485.773 
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Output from Program 16.3 for the Conventional Treatment Group 
                         PERCENS 
 
Percent of censoring = 0.4782609 
  
  
                                            MEAN_SW 
 
Simple weighted estimator for mean cost = 70034.696 
 
                                                                SE_SW 
 
Standard error estimate for the simple weighted estimator = 9267.5059 
 
                        MEAN_T 
 
Mean survival time = 968.77197 
 
                                                 SE_T 
 
Standard error for the mean survival time = 58.370098 
 
                                    MEAN_IMP 
 
Improved estimator for mean cost = 72544.906 
 
                                              SE_IMP 
 
Standard error of the improved estimator = 8529.8308 
 
                                                                                  
COV_SW 
 
Covariance between mean survival time and the simple weighted cost estimator = 
24852.951 
 
                                                                          COV_IMP 
 
Covariance between mean survival time and the improved cost estimator = 29764.298 

 
Program 16.4 calculates the ICER (in $1,000/year saved) and its confidence interval, using the 
improved estimators for the costs. 

Program 16.4  SAS Code for Obtaining Estimate of ICER and Its 95% Confidence Interval 
cost1=72544.91/1000; 
 secost1=8529.83/1000; 
 survt1=968.77/365.25; 
 sesurvt1=58.37/365.25; 
 covcs1=29764.30/1000/365.25; 
 
 cost2=99311.73/1000; 
 secost2=5481.11/1000; 
 survt2=1261.40/365.25; 
 sesurvt2=36.00/365.25; 
 covcs2=30485.77/1000/365.25; 
 
 icer=(cost2-cost1)/(survt2-survt1); 
 run CalCIiCER(cost1,secost1,survt1,sesurvt1,covcs1, 
cost2,secost2,survt2,sesurvt2,covcs2, lowbd,upperbd);  
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 start CalCIiCER(cost1,secost1,survt1,sesurvt1,covcs1, 
cost2,secost2,survt2,sesurvt2,covcs2,lowbd,upperbd); 
   t=1.96; 
   x=cost1-cost2; 
   y=survt1-survt2; 
   sxx=secost1**2+secost2**2; 
   syy=sesurvt1**2+sesurvt2**2; 
   sxy=covcs1+covcs2; 
 
   f=(x*y-t**2*sxy)**2-(x**2-t**2*sxx)*(y**2-t**2*syy); 
   lowbd=(x*y-t**2*sxy-sqrt(f))/(y**2-t**2*syy); 
   upperbd=(x*y-t**2*sxy+sqrt(f))/(y**2-t**2*syy); 
 finish CalCIiCER; 
print , "Incremental cost-effectiveness ratio =" icer; 
print , "Lower 95% confidence limit for icer =" lowbd; 
print , "Upper 95% confidence limit for icer =" upperbd;   

 
Output from Program 16.4    
ICER 
 
Incremental cost-effectiveness ratio =  33.40936 
 
                                          LOWBD 
 
Lower 95% confidence limit for icer = 8.6318453 
 
                                        UPPERBD 
 
Upper 95% confidence limit for icer = 73.552101 

 
When restricted to a 4-year period, the average cost was $99,312 (standard error [s.e.] $5,481) for 
the ICD arm and $72,545 (s.e. $8,530) for the conventional therapy arm. The average survival 
time during the 4-year period was 1,261 (s.e. 36) days for the ICD arm and 969 (s.e. 58) days for 
the conventional therapy arm. The ICER comparing the ICD arm with the conventional arm was 
$33,400 per year of life saved, with a 95% confidence interval of (8.6, 73.6). The estimated ICER 
was less than $50,000 per year of life saved, an often-mentioned threshold under which treatment 
can be considered cost-effective compared to controls (Gold et al., 1996). 

Using the simple weighted estimator, the result for the mean cost for the ICD arm was $110,109 
(s.e. $6,930) and the mean cost for the conventional arm was $70,035 (s.e. $9,268). We can 
clearly see that the simple weighted estimator has a larger standard error, and thus it is less 
efficient than the improved estimator. Using a method that is similar to Lin and colleagues (1997) 
and a bootstrap method for the standard error, Mushlin and colleagues (1998) reported a mean 
cost of $99,310 for the ICD arm and $72,540 for the conventional arm. The estimated ICER is 
$27,000 per year of life saved, with a 95% confidence interval of (0.2, 68.2). These numbers are 
very close to the improved estimator. 

116.4  Discussion 
Throughout this chapter, it is assumed that censoring is random and independent of the survival 
time and cost-accumulating process. This assumption is usually met in well-conducted clinical 
trials where censoring is mainly caused by administrative termination of the study. In 
observational studies, this assumption might not be reasonable. However, if the censoring process 
can be modeled through some known variables, it is still possible to use the inverse-probability 
weighted method. In that case, the survival probability for the censoring variable will not be 
obtained by the non-parametric Kaplan-Meier estimator, but instead it can be estimated by some 
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regression method such as the Cox Proportional Hazards model (Cox, 1972), if the proportional 
hazard assumption is met. Another alternative is an adjusted Kaplan-Meier estimator where one 
uses inverse probability of treatment weighting to adjust for the confounding factors for the 
survival distribution of the censoring (Xie and Liu, 2005). 

The weight obtained from the inverse of the survival probability for the censoring variable can 
turn out to be a very large number when there is considerable censoring near the end of the time 
limit, L. Consequently, it is possible that a few very small probabilities can inflate this estimator. 
Under this sort of situation, one may want to reduce the limit, L; it is difficult to estimate costs 
when there are many censored values near the tail area.  

Cost data are usually right-skewed, with some patients accumulating huge costs, while the 
majority of subjects incur only very little costs. The methods discussed here are fully 
nonparametric, which means that there is no distributional assumption for either cost history or 
survival time. However, we do need to use a reasonably large sample because the nonparametric 
method relies on the large sample theory. 

We have discussed how to use Fieller’s method to obtain the confidence interval of the 
incremental cost-effectiveness ratio. Fieller’s method always provides us with a confidence set 
that has a correct coverage probability, as long as the numerator and the denominator in the ICER 
have a bivariate normal distribution, which was satisfied asymptotically for our method. An 
alternative way is to implement bootstrapping methods (Efron and Tibshirani, 1986, 1993). See 
Chapter 14.  

The methods demonstrated in this chapter are applicable to observational data when one is 
interested in estimating costs for a population of patients or in comparing costs or cost-
effectiveness between groups and one is not interested in causal inferences. That is, use these 
methods when you are simply estimating naturalistic treatment differences without needing to 
adjust for selection bias between groups. Researchers interested in cost comparisons from 
observational data often need to incorporate covariate information due to baseline imbalance 
between treatment groups. The methods described in this section may also be helpful in these 
situations. For instance, if propensity score stratification was used as the method to adjust for 
selection bias, the methods demonstrated here could be applied within each of the propensity 
score strata and then a pooled estimator could be obtained by averaging across strata. If one has a 
propensity score matched population, then the groups are balanced with respect to baseline 
covariates and the methods demonstrated may be applicable.  

Other methodology using regression models with direct covariate adjustment has been proposed 
by researchers that is applicable to comparative observational research. Among them, Lin (2000a) 
considered a proportional mean regression model; Jain and Strawderman (2002) proposed a 
model based on a flexible hazard function of the medical costs; and Lin (2000b) and Willan and 
colleagues (2005) proposed methods that directly model the mean, using the simple weighted 
estimator from inverse probability weighting.  
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Abstract 
Researchers who design, implement, and analyze observational studies must address the potential 
for multiple types of bias. In this chapter, we focus on methods to minimize measurement and 
sponsor bias. Measurement bias occurs when there are differences in the evaluation of patient 
outcomes between the groups being compared. Sponsor bias is a vague concept that includes 
many systematic errors that may arise from the interest of the investigator or the sponsor to 
support a given treatment. The use of easy-to-administer, well-validated assessment scales; the 
inclusion of objective outcome variables; and the combination of information coming from 
diverse sources (investigators, patients, databases) may reduce the likelihood of measurement and 
sponsor bias.  

17.1  Introduction 
Careful design and implementation of observational studies is needed to provide valid results. 
Observational studies by nature are subject to the potential for measurement 
(observer/informational), sponsor (investigator), and selection bias. Selection bias occurs when 
the intervention groups being compared differ in measured or unmeasured baseline 
characteristics, which affects prognosis. It usually originates in the way in which participants are 
selected for the study or assigned to their study groups (Altman et al., 2001). Accounting for 
selection bias in the analysis of observational study data is discussed in detail in Chapters 2 
through 7. In this chapter, we look at addressing bias in observational research—both at the 
design stage and the analysis stage—with a focus on measurement and sponsor biases. 
Measurement, or information bias, occurs when the ascertainment of outcomes or other patient 
characteristics is different in the groups being compared. Sponsor (investigator) bias is a vague 
term that includes a number of aspects the promoter of a study decides during the design, 
implementation, or analysis that may influence the results or conclusion of the study. 
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In randomized clinical trials (RCTs), measurement bias is minimized by blinding the 
observer/investigator to the treatment the patient is receiving and by the regularly scheduled and 
structured data collection—which should be the same for all the groups being compared. 
However, such design features are not always feasible for observational studies. Several other 
strategies, discussed in Section 17.3, can be used to minimize measurement and sponsor bias 
when blind assessment is not possible.   

Before focusing on strategies to minimize sponsor and observer bias, we provide a brief overview 
of key issues in the design of observational studies (see Section 17.2). These discussions are not 
meant to be exhaustive but to raise important issues and provide you with references to more 
detailed discussions. 

117.2  General Design Issues 
In observational studies, we often want to describe the relationship between a factor and some 
outcomes. For simplicity, we will assume for the rest of the chapter that the factor we want to 
analyze is a treatment provided to patients with a given disease. In order to achieve treatment 
evaluation, investigators collect information on the individual or patient characteristics, the 
exposure to the treatment they are analyzing, and the outcomes they are interested in. There are a 
number of critical aspects that need to be taken into account when designing and conducting 
observational studies in order to obtain valid results. This includes considerations regarding how 
to minimize selection bias, measurement bias, sponsor bias, appropriate choice of control groups, 
and temporal relationships. Each of these issues is discussed briefly here. A discussion of 
common observational study— designs such as cohort, case-control, and cross-sectional—is not 
provided. Refer to Szklo and Nieto (2007) and Rosenbaum (2002) for more information. 

First, the temporal relationship between the treatment and the outcome needs to be clear (Suissa, 
2008). Longitudinal designs are needed in order to analyze treatment effects. Longitudinal studies 
are defined here as those studies in which individuals are assessed when they are exposed to a 
treatment or risk factor, and later their response to the treatment or the condition being studied is 
evaluated. Longitudinal studies can be retrospective if available databases can provide 
information on patient exposure to treatment time before outcome evaluation. In studies with 
prospective longitudinal designs, we evaluate patient status at the initiation of the treatment, and 
we analyze the outcomes of that treatment after the patient has been receiving it for some time. 
Thus, changes in patient status can be related to treatment effects. Cross-sectional studies are not 
useful in assessing the effects of treatments on outcomes for two reasons. First, in cross-sectional 
studies, we cannot separate the effects of treatment and the baseline severity of the disease the 
patient is suffering from. Second, cross-sectional studies do not provide information on the 
individuals who have been exposed to the factor or treatment in the past but have discontinued the 
treatment prior to cross-sectional observation. Temporal relationships are one of the Austin 
Bradford-Hill criteria (Hill, 1965) to evaluate causal associations, along with factors such as 
consistency, strength, specificity, dose-response relationship, biological plausibility, and 
coherence.   

Second, changes the patients experience due to the treatment need to be distinguished from the 
natural course of the disorder. For example, if we analyze the effects of the treatment of a self-
limiting disease, we need to separate the natural course to cure from the treatment effects. This 
can be done only if the course of patients receiving the treatment of interest is compared with a 
proper control group. In observational studies, the selection of the comparison or control group 
will obviously be determined by the usual practice with patients with the disease we are 
analyzing. This control group should be formed with patients receiving the most frequently 
prescribed alternative treatment or with patients receiving no treatment, in settings where patients 
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in routine clinical care usually receive no treatment. In this chapter, we refer only to studies that 
compare the course of patients receiving a given treatment (treatment group) with patients 
receiving an alternative treatment or no treatment (control group). 

Third, patients receiving different treatments may have different characteristics. Clinicians tend to 
prescribe treatments believed to be more effective to more severe patients and less invasive or 
better tolerated treatments to patients who have less severe forms of the disorder. Thus, not taking 
into account these differences among patients may provide false results. Treatments prescribed to 
more severe patients who will probably have worse outcomes may appear less effective, although 
they can actually be more effective than treatments that clinicians may usually prescribe to 
patients with less severe forms of the disease.  

This problem, usually referred to as selection bias, is a frequent limitation of observational 
studies. However, it can be addressed in the design and implementation of the study by carefully 
collecting information on all those prognostic factors that may influence the outcome and by 
taking into account in the analysis of the results the possible differences between treatment 
groups. The collection of these patient characteristics, which will allow the evaluation and control 
of selection bias, is one advantage of prospective research as compared to retrospective research, 
such as from health-care claims databases. Causal relationships can only be claimed if all of these 
factors are recorded and there are no unmeasured confounders that may be modifying the results. 
In addition, Rubin (2007) argued that observational studies should be designed to mimic 
randomized trials as much as possible. For instance, where possible, one should finalize any 
primary bias adjustment model (such as a propensity score model) using background information 
before accessing the outcome data. This avoids the potential for choosing an adjustment model 
that provides a desired result and raises the credibility of the study with consumers of the 
information. Several of the chapters in this book present methods on how to control for this 
selection bias in the analysis phase. 

Finally, the information obtained on the patient needs to faithfully assess patient status. If the 
evaluation of the patient is not properly conducted and it is influenced by external factors, patient 
changes during treatment may not reflect real changes. This problem is called measurement, 
information, or observer bias and occurs when the assessments of the outcomes are not valid 
(Porta, 2008). Two types of observer bias may be defined: non-differential and differential (Page 
and Henderson, 2008). In the first case, measurement error occurs similarly and randomly in the 
treatment and comparison groups. For example, this can occur when patient evaluation is 
conducted using suboptimal methods. The most frequent consequence of non-differential 
measurement bias is an increase in measurement error and, thus, a decrease in the ability to detect 
differences between treatment groups when they exist. 

Differential measurement bias occurs when the evaluation of the treatment and control groups is 
not consistent. In this case, differences in the evaluation process between control and treatment 
groups may create artificial differences among them. This may occur in non-blinded assessments 
when prejudices of the investigator may cause a more favorable evaluation of one of the 
treatment groups. Because this can occur when the investigator or promoter of the study has an 
interest in demonstrating the benefits of one treatment over the other, this bias is usually called 
investigator or sponsor bias. However, there are also a number of other systematic errors that can 
be included under the definition of sponsor bias. The rest of the chapter presents the origins and 
effects of this bias and possible ways of assessing, controlling, and eliminating them. 
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117.3  Addressing Measurement and Sponsor Bias 
Treatments are developed and tested by investigators who, obviously, may be interested in 
showing that the treatment they have created is effective. This may also happen when a 
pharmaceutical company that is developing or producing a medication tests its efficacy or 
effectiveness. This desire may also cause investigator or sponsor bias (Harrington and Ohman, 
2007), which can include a number of circumstances when designing or implementing a study 
that may cause the new treatment to appear to have better outcomes than it has. The most typical 
case occurs when the physicians evaluating patients in the treatment group tend to evaluate them 
more favorably than patients in the control group (observer bias). 

In RCTs, observer bias is minimized by blinding the investigators to the treatment the patient is 
receiving. If the investigators who evaluate the patients are blind to the treatment the patient is 
receiving, they cannot rate one differently than the other. Blind assessment is also the first option 
to avoid observer bias in observational studies. Blind assessment can be implemented by having 
an investigator who is not the treating physician and who does not know the treatment the patient 
is receiving evaluate the patient. Although blinding is possible (Pinto-Meza et al., 2008), it has a 
number of practical difficulties that frequently prevent its use in observational studies. 

The most common case in prospective observational studies is that the treating physician or 
another member of the medical team evaluates the patients using standardized methods. In this 
case, proper assessment requires several strategies. First, easy-to-administer, well-validated 
assessment scales are preferred. The investigator brochure or data collection form should include 
a proper description of the scales. Longer questionnaires may be employed. However, in this 
case, the total duration of assessment needs to be considered in order to avoid altering the course 
of treatment. Questionnaires that require in-person training should be avoided because it is 
usually not feasible to conduct training in observational studies that include a large number of 
sites. It is especially important to use care when rating the patient with questionnaires that assess 
the intensity of the symptoms. These questionnaires are based on the subjective appraisal of the 
clinical status of the patient and thus are more subject to being influenced. 

Second, instruments based on the objective patient status (laboratory tests, death) are preferred to 
instruments based on the subjective appraisal of the symptoms. However, symptom rating is the 
most relevant assessment of patient severity in several areas of medicine (for example, 
psychiatry). If that is the case, the evaluation of the patients should include not only the symptom 
evaluation but also other, more objective measures of patient status (for example, patient 
functioning in several areas of life). In any case, the answer categories should be clearly defined 
to minimize interpretation by the evaluator. 

A third strategy to decrease the likelihood of observer bias is to complement the patient 
assessment by the clinician with assessments by other sources. These other sources can be patient 
or administrative data. Self-rating by the patient has a number of advantages. Because 
investigator or sponsor bias originates with an interest in showing that one of the treatments is 
better, this may not be the case for patients. They may be able to provide a more unbiased 
assessment. Self-rating by the patient may be conducted by generic or disorder-specific health-
related quality-of-life instruments or other instruments that self-rate symptoms. However, patient 
self-evaluation does not measure the same constructs as clinician evaluations. Some differences 
may arise due not to biases but to the different constructs or outcome measures being evaluated 
and to the fact that patients acclimate to their symptom severity.  

First, analysis can be repeated using patient self-rating instead of clinician rating. If the results are 
consistent, the conclusions of the study are reinforced. Second, self-rating by the patient may be 
compared with the investigator assessment. This may inform us of the possible presence of 
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investigator bias (Haro et al., 2006). Specifically, differences between the treatment and control 
groups as assessed by the patient may be compared to treatment differences as assessed by the 
investigator. For example, we may compare the percentage of improvement of the treatment 
versus the control group as assessed by the patient in the patients that experience greater 
improvement (or a given percentage of improvement) in the treatment group versus the control 
group. If there is no observer bias, we would expect that the differences between the treatment 
and control groups in the patient assessment are of similar magnitude in the patient who the 
investigator rated as improving similarly. If the differences assessed by the investigator show a 
better outcome than the control group, this could indicate observer bias. In this case, we would 
also assess whether treatment differences are caused by a reduced number of investigators or 
distributed homogeneously among them. Haro and colleagues (2006) present a practical example 
in which changes from baseline to endpoint in Euro-QOL 5D (EQ-5D), a generic quality-of-life 
scale that was rated by patients, were described in patients who showed the same improvement 
with the two treatments being compared. (In this case, the patients who were compared 
experienced a one-point decrease from baseline to endpoint in the Clinical Global Impression 
scale, a clinician-administered scale that evaluated overall severity from 1 to 7.) Because the 
differences in EQ-5D between the groups being compared were similar, the authors point out that 
there was no evidence of observer bias. Finally, in the case that there is some evidence of 
observer bias because patient self-evaluation differs from investigator evaluation, we may 
determine whether these mean differences are attributed to a few investigators, who could be 
driving the observer bias, or are homogeneously distributed among all of them. 

Fourth, as in any type of study, treatment and control groups should be evaluated with the same 
instruments and at similar time intervals. This may be problematic in observational studies 
because the treatment provided to different patients may be different and they can be cited at 
different intervals. The study description must clearly specify the intervals at which the patients 
are to be evaluated, in case regular visits are conducted during the interval, and the way the 
evaluation must be conducted.  

As mentioned previously, investigator or sponsor bias can be present at any stage of study 
development. During the design of the study, patient outcomes should be widely considered in 
order to include as many of the areas in which treatment differences may be present as possible. 
Outcomes should include the clinical and functioning status and also the presence of adverse 
events. Focusing on outcomes that measure the areas where the new treatment is expected to be 
superior to existing alternatives may highlight only part of the treatment differences that favor the 
new treatment. 

117.4  Summary 
Observational studies, by nature, are subject to a number of systematic errors or biases when used 
to assess treatment effects. Careful design and implementation, including the inclusion of a 
control or comparison group, the consideration of the temporal relationship between treatment 
and outcomes, the control of selection bias, and the avoidance of information bias, are necessary 
to produce valid results. Observation bias may be reduced by using objective outcomes, by 
employing simple and valid assessments, and by combining several sources of information.  
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Abstract 
For a number of reasons, observational studies are currently being used to provide evidence to 
support medical decisions. Because these studies do not carry the same level of credibility 
conferred to randomized trials, appropriate attention to statistical issues is paramount. In 
particular, considerations of event rate, sample size, and power frequently occur. This chapter 
provides mechanisms for dealing with these considerations under a variety of scenarios. 
Additionally, the methods presented here are applicable more generally to clinical trials as well.  

18.1  Introduction 
The increasing availability of computerized clinical patient data has stimulated greater interest in 
research on observational data. Individual medical practices and hospitals are now attempting to 
draw inferences on the basis of data gathered on their own patients. Additionally, the proliferation 
of large registry databases that harvest clinical data from hundreds of sites has created 
opportunities to study questions regarding rare diseases and rare events. However, even studies 
using these large databases, when reduced to the appropriate study populations and endpoints, 
encounter issues of sample size and power. 

Observational studies can be designed to address a variety of objectives. If the primary analysis of 
the study is simply to estimate some parameter, then one can use standard sample size 
calculations for requiring a confidence interval of at most a certain width. If the objective 
involves the comparison of cohorts, then in many cases the statistical analysis will involve some 
form of selection bias adjustment due to the non-randomized nature of observational research. 
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Chapters 1 through 11 cover the issues of selection bias adjustment and standard analytical 
methods for comparing cohorts in these settings, including propensity score regression, 
stratification, matching, doubly robust adjustment, instrumental variables, local control, and 
various longitudinal analyses. Regarding the computation of sample sizes in study planning in 
these scenarios, such complex designs and analyses may require custom sample size and power 
estimate calculations through simulations. In some cases, the primary hypothesis may be 
simplified for the purpose of estimating power and sample size, and generalized SAS macros can 
perform the needed calculations. 

In this chapter, we present a series of SAS macros for computing sample sizes for studies with 
various types of outcomes and comparisons (all for comparisons between two groups):  

 t-test (Section 18.2.1) 
 Wilcoxon Rank Sum test (Section 18.2.2) 
 Two-Sample Tests on Binary outcomes (Section 18.3.1) 
 Weighted Mantel-Haenszel test (Section 18.3.2) 
 Log-Rank test for survival data (Section 18.4) 
 Longitudinal Data—Continuous outcomes (Section 18.5.3.3) 
 Longitudinal Data—Binary outcomes (Section 18.5.3.3) 

 
The sample size macro for the Weighted Mantel-Haenszel test (provided in Section 18.3.1) is 
directly applicable for observational studies for which the analysis is based on the commonly 
utilized propensity score stratification approach. This propensity score stratification analysis 
methodology is described in detail in Chapter 2. In brief, propensity score stratification involves 
estimating a propensity score for each study participant, stratifying by this score, estimating the 
difference in outcomes between the two cohorts within each of the strata, and then combining the 
estimated cohort differences over strata. 

Other sections in this chapter present sample size macros based on analysis methods without 
specific selection bias adjustments. However, these can be very useful for observational study 
planning when simple cohort comparisons are planned (for example, such as when causal 
inference is not the objective) or as a very easy-to-use initial calculation when other methods are 
being utilized such as propensity score matching. In this example, one would supplement the 
sample sizes computed in these macros with an estimate of the number of patients excluded from 
the analysis due to a lack of propensity score matched patients in the other cohort. In addition, 
most of the sample size calculation methods in this chapter can be used for randomized clinical 
trials as well. 

118.2  Continuous Variables 
In this section, we consider two two-sample tests for continuous variables: t -test and Wilcoxon 
rank test. 
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18.2.1  Two-Sample t -test 

Suppose that, for group 1,2)(=k , 
knkk XX ,1,...,  are independent and identically distributed (IID) 

normal random variables with mean k  and variance 2 . We want to test 210 =:H  vs. 

21:aH . Let ki
kn

ikk XnX
1=

1=  denote the sample mean for group k , and  

 
2

)()(
=

21

2
22

2

1=

2
11

1

1=2

nn

XXXX
s

i

n

i
i

n

i
p  

 
denote the pooled sample variance. Then, under 0H ,  
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follows the t -distribution with 221 nn  degrees of freedom. Hence, given type I error 
probability , we reject 0H  if /22,121

|>| nntT , where ,t  is the 100 -th percentile of the t -

distribution with  degrees of freedom. 

If 1n  and 2n  are large, then we do not require the normal distribution assumption, and the critical 
value from the t -test, /22,121 nnt , can be approximated by the 100 -th percentile of the 

standard normal distribution, /21z . How large the sample sizes should be for the large 
approximation depends on how close the distribution of the observations for each group is to a 
normal distribution. To improve the normality, we often apply a transform to the raw data, such 
as a log-transformation for positive variables (Carroll and Ruppert, 1988). We derive the sample 
size formula based on the large sample approximation. 

We consider a specific alternative hypothesis |=:| 21aH . Note that )(= 21
1  

denotes a standardized effect size under the alternative hypothesis. Without loss of generality, we 
assume that 21 >  under aH . Then, under aH ,  
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where (0,1)NZ : , nnr kk /= , and 21= nnn . For a given n , the power is calculated as  

 
                                                          ),(=1 21/21 rnrz                                            (1) 
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where )(1=)( zz  and )(=)( zZPz  is the cumulative distribution function of the 
standard normal distribution, (0,1)N . By solving (1) with respect to n , we obtain the required 
total sample size as  

 ,
)(

= 2
21

2
1/21

rr
zz

n  

or kk rnn =  for group k . For one-sided testing, replace /2  with . This sample size is based 
on a large sample approximation to a t-distribution, so that this formula underestimates the 
sample size for small sample sizes. If the final sample size by the formula based on normal 
approximation is smaller than 30, we may consider increasing it by about 10%. 

In summary, the sample size calculation for a two-sample t -test is conducted as follows: 

 In addition to type I error probability  and power 1 , specify 

            (a) ||= 21
1 , standardized effect size 

            (b) =kr  the prevalence of group k  1)=( 21 rr  

 
 Calculate the sample size  

 .
)(

= 2
21

2
1/21

rr
zz

n  

Example 18.1 
Suppose that we want to detect a difference of 0.5  in the population means with two-sided 

0.05=  and power 0.9=1 . Then 1.96=/21z  and 1.282=1z . Assuming an equal 

proportion of two groups in the population (that is, 0.5== 21 rr ), we obtain the required sample 
size 171=n . PROC POWER in SAS/STAT can directly handle this scenario, as shown in the 
following code:  

Program 18.1  SAS Code for Two-Sample t-Test   
proc power; 
     twosamplemeans 
     nfractional 
     meandiff = 0.5              /* mean difference                */ 
     stddev  = 1                 /* sigma                          */ 
     groupweights = (0.5 0.5)    /* r1 r2                          */ 
     sides = 2                   /* 1: one sided 2: 2: two-sided   */ 
     power =0.9                  /* power                          */ 
     alpha =0.05                 /* alpha                          */ 
     ntotal=.;                   /* Sample Size                    */ 
run; 
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Output from Program 18.1 
The POWER Procedure 

Two-sample t Test for Mean Difference 
 

Fixed Scenario Elements 
 

Distribution                Normal 
Method                       Exact 
Number of Sides                  2 
Alpha                         0.05 
Mean Difference                0.5 
Standard Deviation               1 
Group 1 Weight                 0.5 
Group 2 Weight                 0.5 
Nominal Power                  0.9 
Null Difference                  0 

 
Computed Ceiling N Total 

 
Fractional    Actual    Ceiling 
N Total     Power    N Total 

 
170.062568     0.902        171 

 

18.2.2  Wilcoxon Rank Sum Test 
It is known that t -tests are sensitive to outliers. The Wilcoxon rank sum test (WRST) has been 
widely used as a robust test. We assume that for group 1,2)(=k , 

knkk XX ,1,...,  are IID random 

variables from a distribution with cumulative distribution function )(=)( xXPxF kik . For 

21= , we want to test 0=:0H  vs. 0:aH . Mann and Whitney (1947) propose to 

use )>()(= 21
2

1=
1
1=

1
21 ji

n

j

n

i
XXInnW  for testing the hypothesis. The expected value of W  is 

)>( 21 ji XXP , the probability that a randomly chosen measurement from group 1 is greater than 

a randomly chosen measurement from group 2. Thus, the test statistic will be close to 1/2  if 0H  
is true, and closer to 0 or 1 if aH  is true. 

For large )(= 21 nnn , we reject 0H  if the absolute value of  

 
0

0= WT  

 
is larger than /21z , where 1/2=0  and )1)/(12(= 21

2
0 nnn  are the mean and variance of W  

under 0H , respectively. 

Let xFxf /=)(  denote the probability density function of )(xF . The appendix shows that, 
under aH , W  has mean  

 dxxfxFa )()(=  
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and variance  
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where  
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where )>(=)( zZPz . By replacing kn  with knr  in 2

0  and 2
a , and solving with respect to 

n , we obtain the required sample size  
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Although the testing does not require the specification of the distribution function )(xF , a 
sample size calculation does. The alternative hypothesis is specified by two distributions with a 
location shift. The assumption of a location shift model is not required in order to carry out the 
rank sum test, but it is needed if we want to make inferences about medians or means. It is, of 
course, needed in the sample size calculation as presented here. 

While a t-test requires a finite variance of the observations, WRST does not. For example, if F  
has a Cauchy distribution, we can use WRST, but not a t-test. 
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A sample size calculation for WRST assuming normal distributions can be described as follows: 

 In addition to type I error probability  and power 1 , specify 

            (a) )(= 21
1 , standardized effect size 

            (b) =kr  the prevalence of group k  1)=( 21 rr  

 Calculate  

 dxxxa )()(=  

 

 222
1 })()({)()(= dxxxdxxx  

and  

 ,})()({)()(= 222
2 dxxxdxxx  

 
where )(x  and )(x  are the probability density function and the cumulative distribution 
function of (0,1)N , respectively. 

 Calculate the sample size  
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Example 18.2 
Suppose that we want to detect a difference of 0.5  in the population means with two-sided 

0.05=  and power 0.9=1 . Then 1.96=/21z  and 1.282=1z . Assuming an equal 

proportion of two groups in the population (that is, 0.5== 21 rr ), we obtain the required sample 
size 177=n . Note that the two-sample t-test requires a slightly smaller 171=n , but, in case 
there are outliers in the final data, the Wilcoxon rank test may be more powerful.  

Program 18.2  SAS Code for Wilcoxon Rank Sum Test    
%macro  WilcoxonRankSumTest( delta=,    /* Standardized effect size     */ 
                             r1 =  ,    /* prevalence of group 1        */ 
                             r2 =  ,    /* prevalence of group 2        */ 
                             sides=,    /* number of test sides: 1 or 2 */ 
                             alpha=,    /* alpha                        */ 
                             power=     /* power                        */ 
                             ); 
proc iml; 
  start CDFPDFDELTA(t); 
      m=t+&delta; c=cdf('normal',m,0,1); p=pdf('normal',t,0,1); v=c*p; 
return(v); 
  finish; 
  start CDF2PDFDELTA(t); 
      m=t+&delta; c=cdf('normal',m,0,1)**2; p=pdf('normal',t,0,1); v=c*p; 
return(v); 
  finish; 
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  start CDFPDF_DELTA(t); 
      m=t-&delta; c=cdf('normal',m,0,1); p=pdf('normal',t,0,1); v=c*p; 
return(v); 
  finish; 
  start CDF2PDF_DELTA(t); 
      m=t-&delta; c=cdf('normal',m,0,1)**2; p=pdf('normal',t,0,1); v=c*p; 
return(v); 
  finish; 
  start s1(t); 
      m=t+&delta; c=cdf('normal',m,0,1); p=pdf('normal',t,0,1); v=c*p; 
return(v); 
  finish; 
 
  interval = .M || .P; 
  call quad(nu1,"CDFPDFDELTA",   interval); 
  call quad(s1, "CDF2PDFDELTA",  interval); 
  call quad(nu2,"CDFPDF_DELTA",  interval); 
  call quad(s2, "CDF2PDF_DELTA", interval); 
 
  sigma1 = s1-nu1**2; sigma2 = s2-nu2**2; 
  p1=1-&alpha/&sides; z_alpha = probit(p1); 
  p2=&power; z_beta  = probit(p2); 
  n = 
(1/(12*&r1*&r2))*((z_alpha+z_beta*sqrt(12*(&r2*sigma1+&r1*sigma2)))/(nu1-
0.5))**2; 
  delta=&delta;r1 =&r1; r2=&r2;sides =&sides;alpha=&alpha;power=&power; 
  print  'Sample Size'; 
  print 'Wilcoxon Rank Sum Test for Mean Difference'; 
  print delta r1 r2 sides alpha power; 
  print n; 
quit; 
run; 
%mend WilcoxonRankSumTest; 
 
/*---------------------- Run the macro for Example 2. -------------------*/ 
 
%WilcoxonRankSumTest(delta=0.5, r1 = 0.5, r2 = 0.5, sides=2, alpha=0.05, 
power=0.9); 

 
Output from Program 18.2    
                                  Sample Size 
                    Wilcoxon Rank Sum Test for Mean Difference 
 
                delta        r1        r2     sides     alpha     power 
                  0.5       0.5       0.5         2      0.05       0.9 
 
                                         n 
                                     176.41709 

 

118.3  Binary Variables 
In this section, we investigate two-sample tests for binary outcome variables with or without 
stratification. We use a weighted Mantel-Haenszel test for stratified analysis to adjust for 
covariates that are unbalanced between two groups. 
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18.3.1  Two-Sample Test on a Binary Outcome 

Suppose that, for group 1,2)(=k , kX  denotes the number of responders from kn  independent 
subjects. If group k  has a response probability kp , then kX  is a binomial distribution with kn  
independent trials and response probability kp . We want to test 210 =: ppH  vs. 21: ppHa . 
Let kkk nXp /=ˆ  and ))/((=ˆ 2121 nnXXp  denote the sample proportion for group k  and the 
pooled data, respectively. Then, for large 1n  and 2n  (say, 30>, 21 nn ),  

 
)(ˆˆ

ˆˆ
=

1
2

1
1

21

nnqp
ppT  

 
follows the standard normal distribution under 0H , where pq ˆ1=ˆ . Hence, given type I error 

probability , we reject 0H  if /21|>| zT . It is easy to show that 2T  is identical to the chi-
squared test with 1 degree of freedom for a 22  table. 

Let 21, pp  denote the response probability under a specific alternative hypothesis for sample size 
calculation, and 21= pp . Then, for large )(= 21 nnn , p̂  converges to 2211= prprp , 
where nnr kk /= . Under aH ,  

 
)()(

ˆˆ
1

2
1

1
1

2
1

1

21

nnqpnnqp
ppT  

 

 ,= 21

qp
rnrZ  

 
where (0,1)NZ :  and pq 1= . Hence, given n , the power is calculated as  

 
                                                 .0)(=1 21/21 rnrz                                           (2) 
 

By solving (2) with respect to n , we obtain the required total sample size as  

 .
)(

)(
= 2

2121

2
1/21

pprr
qpzz

n  

 
In summary, the sample size calculation for two-sample binomial proportions is conducted as 
follows: 

 In addition to type I error probability  and power 1 , specify 

            (a) =, 21 pp  binomial proportions under aH  

            (b) =kr  the prevalence of group k  1)=( 21 rr  
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 Calculate the sample size  

 ,
)(

)(
= 2

2121

2
1/21

pprr
qpzz

n  

 
where 2211= prprp  and pq 1= . 

Example 18.3 
Suppose that we want to detect a difference of 0.4=1p  and 0.5=2p  with two-sided 0.05=  
and power 0.9=1 . Assuming an equal proportion of two groups in the population (that is, 

0.5== 21 rr ), we obtain the required sample size 1038=n .  

Program 18.3  SAS Code for Two-Sample Binomial Proportions    
proc power; 
     twosamplefreq  test=pchi 
     groupproportions =(0.4 0.5) /* binomial proportions to be detected  */ 
     groupweights = (1 1)        /* (w1, w2):Weight of two groups,(r1,r2)*/ 
     sides = 2                   /* 1: one sided 2: 2: two-sided         */ 
     power =0.9                  /* power                                */ 
     alpha =0.05                 /* alpha                                */ 
     ntotal=.;                   /* sample size                          */ 
    run; 

 
Output from Program 18.3    
The POWER Procedure 
Pearson Chi-square Test for Two Proportions 
 
Fixed Scenario Elements 
 
Distribution                     Asymptotic normal 
Method                        Normal approximation 
Number of Sides                                  2 
Alpha                                         0.05 
Group 1 Proportion                             0.4 
Group 2 Proportion                             0.5 
Group 1 Weight                                   1 
Group 2 Weight                                   1 
Nominal Power                                  0.9 
Null Proportion Difference                       0 
 
Computed N Total 
 
Actual        N 
Power    Total 
 
0.901     1038 

 

18.3.2  Weighted Mantel-Haenszel Test 
In an observational study, patients are not randomly assigned to treatment groups with equal 
probability. Instead, the probability of assignment varies from patient to patient, possibly 
depending on the patient's baseline covariates. This often results in non-comparable treatment 
groups due to imbalance of the baseline covariates and consequently invalidates the standard 
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methods commonly employed in data analysis. To overcome this problem, Rosenbaum and Rubin 
(1983, 1984) developed the propensity score method. 

Suppose that there are J  strata formed by propensity score stratification. Let n  denote the total 
sample size and jn  the sample size in stratum j  ( nn j

J

j
=

1=
). The data on each subject 

comprise the response variable 1=x  for response and 0 for no response and j  and k  for the 
stratum and treatment group, respectively, to which the subject is assigned ( 1,2=;1 kJj ). 
Frequency data in stratum j  can be described as follows:  

    Group    
Response   1   2  Total  
 Yes   11jx    12jx    1jx   
 No   21jx    22jx    2jx   
 Total   1jn    2jn    jn   

 
Let 11= jj xO , jjjj nxnE /= 11 , and  

 .
1)(

= 2
2121

jj

jjjj
j nn

xxnn
V  

 
Then, the weighted Mantel-Haenszel (WMH) test is given by  

 ,
ˆ

)(ˆ
=

2
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1=

jj

J
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jjj

J

j

Vw

EOw
T  

 
where the weights jŵ  converge to a constant jw  as n . The weights are 1=ˆ jw  for the 

original Mantel-Haenszel test and jjjj nxqw /=ˆ=ˆ 2  for the statistic proposed by Gart (1985). 

Let nna jj /=  denote the allocation proportion for stratum j  1)=(
1= j

J

j
a , and jjkjk nnb /=  

denote the allocation proportion for group k  within stratum j  1)=( 21 jj bb . Let jkp  denote 

the response probability for group k  in stratum j  and jkjk pq 1= . Under 

JjppH jj ,1=: 210 , T  is approximately (0,1)N . The optimal weights maximizing the 

power depend on the allocation proportions }1,...,=),,,{( 21 Jjbba jjj  and effect sizes 

),1,...,( 21 Jpp jj  under 1H . 

In order to calculate the power of WMH, we have to derive the asymptotic distribution of 
)(ˆ

1= jjj
J

j
EOw  and the limit of jj

J

j
Vw2

1=
ˆ  under 1H . We assume that the success 

probabilities 1,2)=,,1( jJjp jk  satisfy =)/( 2112 jjjj qpqp  for 1 under 1H . Note that 

Faries, Douglas, Andrew C. Leon, Josep Maria Haro, and Robert L. Obenchain. Analysis of Observational Health Care 
Data Using SAS®. Copyright © 2010, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.  
For additional SAS resources, visit support.sas.com. 



402   Analysis of Observational Health Care Data Using SAS 
 

a constant odds ratio across strata holds if there exists no interaction between the treatment and 
the propensity score when the binary response is regressed on the treatment indicator and the 
propensity score using a logistic regression. The following derivations are based on 1H . It can be 
verified that  

 )ˆˆ(= 21
21

jj
j

jj
jj pp
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Thus, under 1H , )(ˆ
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EOw  is approximately normal with mean n  and variance 2

1n , 

where  
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Also under 1H , we have  
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where  

 ).)((= 2211221121
2

1=

2
0 jjjjjjjjjjjj

J

j
qbqbpbpbbbaw  

 
Hence, the power of WMH is given as  

)||>(|=1 1/21 HzTP  

)>||(= /21
00

1 znZP  

),||(=
1

/21
1

0 nz  
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 where Z  is a standard normal random variable and )>(=)( zZPz . Thus, the sample size 
required for achieving a desired power of 1  can be obtained as  

                                            .
)(

= 2

2
11/210 zz

n                                      (3) 

 
Following Jung, Chow, and Chi (2007), the sample size calculation for the weighted Mantel-
Haenszel test can be carried out as follows: 

1. Specify the input variables 
              - Type I and II error probabilities ),( . 
              - Success probabilities for group 1 111,..., Jpp , and the odds ratio  under 1H .  
                 Note that )/(= 1112 jjjj pqpp . 

              - Incidence rates for the strata, )1,...,=,( Jja j . (Yue  [2007] proposes to use  

                Ja j 1/ .) 

              - Allocation probability for group 1 within each stratum, )1,...,=,( 1 Jjbj .  

 
2. Calculate n  by  

 ,
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2
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n  

             where  

                                     )(= 2121
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                                     )(= 22111221
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2
1 jjjjjjjjj

J

j
qpbqpbbba  

                                     ).)((= 2211221121
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2
0 jjjjjjjjjjj

J

j
qbqbpbpbbba  

Example 18.4 
Suppose that we want to compare the response probabilities between control ( 1)=k  and 
experimental ( 2)=k  groups. We consider partitioning the combined data into 5=J  strata, and 
the allocation proportions are projected as 2,.25,.25)(.15,.15,.=),,,,( 54321 aaaaa  and 

.6,.6)(.4,.4,.5,=),,,,( 5141312111 bbbbb . Also, suppose that the response probabilities for the 
control group are given as .8,.9)(.5,.6,.7,=),,,,( 5141312111 ppppp , and we want to calculate the 
sample size required for a power of 0.8=1  to detect an odds ratio of 2=  using two-sided 

0.05= . For 2= , the success probabilities for the experimental group are given as 
)8889,.947400,.8235,.(.6667,.75=),,,,( 5242322212 ppppp . Under these settings, by (3), we 

need 447=n  for Mantel-Haenszel. 
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Program 18.4  SAS Code for Weighted Mantel-Haenszel Test with Strata    
%macro WMHTestwithStrata (  J = ,  /* number of strata                   */ 
                           inA= ,  /* incidence rates for the strata     */ 
                           inB= ,  /* allocation probability for control group */ 
                           inP1=,  /* success probability for control group */ 
                           phi =,  /* odds ratio under H1                */ 
                           power=, /* power                              */ 
                           alpha=, /* alpha                              */ 
                           sides=   /* 1: one-sided test  2: Two-sided test */ 
                         ); 
 
 proc iml; 
   %let K = 2; /* two groups */ 
   A=&inA; B =&inB;P1=&inP1; 
   P2 =J(&J,1,0);Q1 =J(&J,1,0); Q2 =J(&J,1,0); 
   do j=1 to &J; 
      Q1[j]=1-P1[j]; 
      P2[j]=&phi*P1[j]/(Q1[j]+&phi*P1[j]); 
      Q2[j]=1-P2[j]; 
   end; 
   z_p1=1-&alpha/&sides; z_alpha = probit(z_p1); 
   z_p2=&power;  z_beta  = probit(z_p2); 
   delta = 0; s0_sq= 0; s1_sq= 0; 
 
   do j=1 to &J; 
    delta = delta+A[j]*B[j]*(1-B[j])*(P1[j]-P2[j]); 
    s1_sq= s1_sq+A[j]*B[j]*(1-B[j])*((1-
B[j])*P1[j]*Q1[j]+B[j]*P2[j]*Q2[j]); 
    s0_sq= s0_sq+A[j]*B[j]*(1-B[j])*(B[j]*P1[j]+(1-
B[j])*P2[j])*(B[j]*Q1[j]+(1-B[j])*Q2[j]); 
   end; 
   n = (1/(delta**2))*((sqrt(s0_sq)*z_alpha+sqrt(s1_sq)*z_beta)**2); 
 
   print 'Sample Size Calculation'; 
   print 'Weighted Mantel-Haenszel Test with Strata'; 
   alpha = &alpha; power = &power; phi= &phi; sides = &Sides; 
   print   alpha power phi sides ; 
   print A B P1 P2; 
   print delta s0_sq s1_sq; 
   print n; 
 quit; 
 run; 
%mend WMHTestwithStrata; 
 
/*----------------  Run the macro for Example 18.4. ---------------------*/ 
 
%WMHTestwithStrata( 
   J = 5 ,                                   /* number of strata         */ 
   inA= %str({0.15, 0.15, 0.2, 0.25, 0.25}), /*Incidence Rates for Strata*/ 
   inB= %str({0.4 , 0.4,  0.5, 0.6,  0.6}),  /* Allocation Probability   */ 
   inP1=%str({0.5 , 0.6,  0.7, 0.8,  0.9}),  /* Success Probability      */ 
   phi = 2,                                  /* odds Ratio Under H1      */ 
   power =0.8,                               /* Power                    */ 
   alpha = 0.05,                             /* Alpha                    */ 
   sides = 2                                 /* Two-sided test           */ 
  ); 
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Output from Program 18.4    
                                Sample Size Calculation 
                            Weighted Mantel-Haenszel Test with Strata 
 
                                 alpha     power       phi     sides 
                                  0.05       0.8         2         2 
 
                                     A         B        P1        P2 
                                  0.15       0.4       0.5 0.6666667 
                                  0.15       0.4       0.6      0.75 
                                   0.2       0.5       0.7 0.8235294 
                                  0.25       0.6       0.8 0.8888889 
                                  0.25       0.6       0.9 0.9473684 
 
                                      delta     s0_sq     s1_sq 
                                  -0.025752 0.0381275 0.0367178 
 
                                                n 
                                             446.21501 

 
 

118.4  Two-Sample Log-Rank Test for Survival Data 
Suppose that kn  subjects are accrued to a study from group 1,2)(=k . For subject )1,...,(= kni  
in group 1,2)(=k , let kiT  denote the survival variable (that is, time to an event of interest), with 
marginal cumulative hazard function )(tk . We want to test the null hypothesis,  

 0)(=)(: 210 tallforttH  
 

against the alternative hypothesis,  

 0.)()(: 21 tsomeforttHa  
 

Because a cumulative hazard function uniquely determines the distribution, 0H  implies that 
)1,...,=,( 11 niT i  and )1,...,=,( 22 niT i  have the same distributions. 

Due to loss to follow up or termination of study before all subjects experience events, survival 
times are censored for some subjects. Let kiC  denote the censoring time for the subject i  in 
group k . Then, we observe 1,2}=,),1,{( kniX kkiki , where ),(min= kikiki CTX  and 

)(= kikiki CTI . We assume that kiC  and iT1  are independent within each group. 

The log-rank test (Peto and Peto, 1972) is given by  

 )},(ˆ)(ˆ{
)()(

)()(= 21
21

21
0

tdtd
tYtY

tYtYW  
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where )()(=)(ˆ 1

0
sdNsYt kk

t

k  is the Nelson-Aalen estimator (Nelson, 1969; Aalen, 1978) of 

)(tk , )(=)(
1=

tNtN ki
kn

ik , )(=)( tXItN kikiki , )(=)(
1=

tYtY ki
kn

ik , and 

)(=)( tXItY kiki . For large n  with kk rnn =/  and 1<<0 kr , ˆ/W  is approximately normal 
with mean 0 and variance 1 under 0H , where  

 )},()({
)}()({

)()(=ˆ 21
21

21
0

2 tdNtdN
tYtY

tYtY  

 
Refer to Fleming and Harrington (1991), for example. We reject 0H  if the absolute value of 

ˆ/W  is larger than /21z . 

For sample size and power calculation, we assume a proportional hazards model 
)()/(= 12 tt . The power of the log-rank test depends on the number of events, rather than 

the number of patients. By Rubinstein and colleagues (1981), the number of events 1D  and 2D  in 
the two groups, required for a two-sided  test to detect a hazard ratio of 1)(<  with power 
1 , is given as  

                                                .=)log( 1
2

1
1

2

1/21

DD
zz

                                          (4) 

 
In order to calculate kD , we need to specify the survival distributions under aH  and the common 
censoring distribution. Suppose that the subjects are accrued at a constant rate for a period of A  
and followed for an additional period of B  after the completion of accrual. The total study period 
is BA . Then, assuming no loss to follow up, the censoring distribution is uniform between B  
and BA , as in the following:  

 
.0

)/(1
<1

=)(=)(
otherwise

BAtBifAtB
Btif

tCPtG ki  

 
One of the most popular survival models in sample size calculation is the exponential 
distribution,  

 )(exp=)(=)( ttTPtS kkik  
 

for group k . Then, the probability that a subject in arm k  experiences an event is given as  

 ,)}(exp){1(exp1=)()(=)(=
0

k

kk
kikik A

ABtdGtSCTPd  
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so that we have kkkkk dnrdnD == . By plugging this in (4) and solving with respect to n , we 
obtain  

 .)
log

)(11(= 21/21

2211

zz
drdr

n  

 
We assumed no loss to follow up in calculating kd , but this assumption can be easily loosened by 
assuming a distribution for the time to loss to follow up. 

In summary, a sample size is calculated as follows: 

 In addition to type I error probability  and power 1 , specify 

            (a) =, 21  hazard rates under aH  ( )/= 12  

            (b) =kr  the prevalence of group k  1)=( 21 rr  

            (c) =A  accrual period, =B  additional follow-up period 

 Calculate the probability of an event for a subject in group 1,2)(=k   

 ,)}(exp){1(exp1=
k

kk
k A

ABd  

 Calculate the sample size  

 .)
log

)(11(= 21/21

2211

zz
drdr

n  

Example 18.5 
Suppose that the control group 1)=(k  has a median survival time of 3=1  years, and the 
experimental group will be considered acceptable if it extends the median survival by 50% (that 
is, 4.5=2  years). Under the exponential survival model, the annual hazard rates are 

0.231=1  and 0.154=2  ( 0.667= ). Also, suppose that (0.3,0.7)=),( 21 rr , and patients 
were uniformly accrued for 3=A  years and the final analysis is conducted 2=B  years after the 
completion of accrual. Then, we have 4115)(0.5455,0.=),( 21 dd , 613=n  
( 429=184,= 21 nn ), and (100,177)=),( 21 DD . PROC POWER in SAS/STAT(Program 
18.5.2) also provides sample sizes for the log-rank test based on Lakatos (1988), which, unlike 
our formula, calculates the limit of the variance estimator of the log-rank test under the null 
hypothesis. As demonstrated here, it gives a slightly smaller sample size, 593=n , under the 
design setting. 
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Program 18.5.1  SAS Code for Two-Sample Log-Rank Tests for Survival Data  
%macro SS_TwoSmpleLogRank( 
           Accrual  =,    /* accrual period                           */ 
           Follow   =,    /* additional follow-up period              */ 
           inR      =,    /* group allocation proportion(a1, a2)      */ 
           inLambda =,    /* hazard rates under the alternative       */ 
           alpha    =,    /* alpha                                    */ 
           power    =,    /* power                                    */ 
           sides    =     /* 1: One-sided test  2: Two-sided test     */ 
                        ); 
 proc iml; 
  %let K = 2;   r = &inR; Group = J(&K,1,0); lambda = &inLambda; 
  delta = lambda[2]/lambda[1]; d_prob = J(&K, 1,0); 
  n = J(&K, 1,0); D = J(&K, 1,0); 
  do i=1 to &K; 
    group[i] = i; 
    d_prob[i]=1-(exp(-lambda[i]*&Follow))*(1-exp(-lambda[i]*&Accrual)) 
              /(&Accrual*lambda[i]); 
  end; 
  z_p1=1-&alpha/&sides; z_alpha = probit(z_p1); 
  z_p2=&power; z_beta  = probit(z_p2); 
  Total = 
int((1/(r[1]*d_prob[1])+1/(r[2]*d_prob[2]))*((z_alpha+z_beta)/log(delta))**
2)+1; 
  do i=1 to &K; n[i]= r[i]*Total; D[i]= d_prob[i]*n[i]; end; 
  print ' Sample Size Calculation'; 
  print 'for Two-Sample Log-Rank Test for Survival Data'; 
  Accrual=&Accrual; Follow_Up= &Follow; 
  print 'Accrual Period : ' &Accrual; 
  print ' Follow Up period : ' &Follow; 
  print Group lambda delta r d_prob; 
  print Group n D; 
  print Total; 
  quit; 
 run; 
%mend SS_TwoSmpleLogRank; 
 
/*-------------- Run the macro for Example 18.5.1 -------------------------
---*/ 
 
%SS_TwoSmpleLogRank( 
    Accrual  =3,                   /* accrual period                     */ 
    Follow   =2,                   /* additional follow-up period        */ 
    inR      =%str({0.3, 0.7}),    /* group allocation proportion(r1, r2)*/ 
    inLambda =%str({0.231, 0.154}),/* hazard rates under the alternative */ 
    alpha    =0.05,                /* alpha                              */ 
    power    =0.9,                 /* power                              */ 
    sides    =2                    /* two-sided test                     */ 
        ); 
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Output from Program 18.5.1    
 

                          Sample Size Calculation 
                   for Two-Sample Log-Rank Test for Survival Data 
 
                             Accrual Period :          3 
                           Follow Up period :          2 
 
                      GROUP    LAMBDA     DELTA         R    D_PROB 
                          1     0.231 0.6666667       0.3  0.5455053 
                          2     0.154                 0.7  0.411467 
 
                                GROUP         N         D 
                                    1     183.9 100.31843 
                                    2     429.1 176.56049 
 
                                        TOTAL 
                                         613 

 

Program 18.5.2  SAS Code (PROC POWER) for Example 18.5    
 proc power; 
     twosamplesurvival test=logrank 
     nfractional 
     groupmedsurvtimes = 3 | 4.5 
     accrualtime = 3 
     followuptime = 2 
     groupweights = (0.3,0.7) 
     alpha = 0.05 
     sides=2 
     power = 0.9 
     ntotal = . 
    ; 
 run; 

 

Output from Program 18.5.2    
                              The POWER Procedure 
                         Log-Rank Test for Two Survival Curves 
 
                                Fixed Scenario Elements 
 
           Method                           Lakatos normal approximation 
           Form of Survival Curve 1                          Exponential 
           Form of Survival Curve 2                          Exponential 
           Number of Sides                                             2 
           Accrual Time                                                3 
           Follow-up Time                                              2 
           Alpha                                                    0.05 
           Group 1 Median Survival Time                                3 
           Group 2 Median Survival Time                              4.5 
           Group 1 Weight                                            0.3 
           Group 2 Weight                                            0.7 
           Nominal Power                                             0.9 
           Number of Time Sub-Intervals                               12 
           Group 1 Loss Exponential Hazard                             0 
           Group 2 Loss Exponential Hazard                             0 
 
 
                            Computed Ceiling N Total 
 
                         Fractional    Actual    Ceiling 
                            N Total     Power    N Total 
                         592.792138     0.900        593 
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118.5  Two-Sample Longitudinal Data 
In a longitudinal study, we measure the outcome of research interest repeatedly from each subject 
over a time period. When there are two groups of subjects, one popular primary objective is the 
between-group comparison of change rate in the expected value of a response variable over time. 
Typically, the repeated measurements within each subject are correlated. Because of the 
robustness to possible misspecification of the correlation structure among the repeated 
measurements, the generalized estimating equation (GEE) method has been one of the most 
popular methods to fit the regression models and to test on the change rates (Liang and Zeger, 
1986). In this section, we discuss sample size estimation methods for such testing. We consider 
cases where the response variable is continuous or dichotomous. 

18.5.1  Generalized Estimating Equations 

Suppose that there are kn  subjects in treatment group 1,2)(=k , nnn =21 . Let, for group k , 

ki
kn

ik mN
1=

=  denote the total number of observations and nnr kk /=  the allocation proportion 

1)=( 21 rr . For subject i  ( kni 1,...,= ) in group k , let kijy  denote the outcome variable at 

measurement time kijt  ( kimj 1,...,= ) with )(= kijkij yE  that is expressed as  

 ,=)( kijkkkij tbag  
 

where )(g  is a known link function. In other words, we assume that there exists a link function 
)(g  linearizing the trajectory in response over time. To simplify the discussions, we use the 

identity link =)(g  for continuous outcome variables and the logit link 
)}/(1{log=)(g  for binary outcome variables, but the generalization to the use of other 

links is simple. 

The coefficient kb  represents the change rate per unit time in mean response if y  is continuous 
and the change rate in log-odds if y  is binary. The measurement times may vary subject by 
subject due to missing measurements, patients' visits for measurements at unscheduled times, loss 
to follow up, or other causes. In this chapter, we assume that any missing data is missing 
completely at random (Rubin, 1976). 

The repeated measurements ),1( kikij mjy  within each subject tend to be correlated. 
However, the true correlation structure is usually unknown or of secondary interest. Liang and 
Zeger (1986) proposed a consistent estimator, called the GEE estimator, based on a working 
correlation structure. Using either the identity or logit link, the GEE estimator )ˆ,ˆ( kk ba  based on 
the working independence structure solves 0=),( baUk , where  

 
kij

kijkij
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and )(=),( 1

kijkij btagba . 
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18.5.1.1  Continuous Outcome Variable Case 
In the continuous outcome variable case, we have a closed form solution to 0=),( baUk   
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1=1=

1=1=

)(

)(
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kijkkij
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i
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ytt
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and kkkk tbya ˆ=ˆ , where kij

kim

j
kn

ikk tNt
1=1=

1=  and kij
kim

j
kn

ikk yNy
1=1=

1= . 

By Liang and Zeger (1986), as n , )(0,)ˆ( kkkk vNbbn  in distribution. Here kv  is 
consistently estimated by  
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where kijkkkijkij tbay ˆˆ=ˆ . 

18.5.1.2  Binary Outcome Variable Case 
Let kijkijp =  in the binary outcome variable case. We have to solve the equation using a 
numerical method, such as the Newton-Raphson algorithm: at the l -th iteration,  

 ),ˆ,ˆ()ˆ,ˆ(ˆ
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ˆ 1)(1)(1)(1)(11/2
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kijbta
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e
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1

=)(=),( 1                                       (5) 

 
and ),(1=),( bapbaq kijkij . 

By Liang and Zeger (1986), for large n , T
kkkkk bbaan )ˆ,ˆ(  is asymptotically normal with 

mean 0 and variance kV  that can be consistently estimated by  
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 )ˆ,ˆ(ˆ)ˆ,ˆ(=ˆ 11
kkkkkkkk baAbaAV  

where  

 ,}
1

ˆ{1=ˆ 2

1=1= kij
kij

kim

j

kn

ik
k tn

 

 
)ˆ,ˆ(=ˆ kkkijkijkij bapy  and Tccc =2  for a vector c . Let kv̂  be the (2,2)-component of kV̂ . 

18.5.2  Sample Size Calculation 

Suppose that we want to test the rate of change between two groups (that is, 210 =: bbH ). Based 
on the asymptotic results from the previous section, we can reject 210 =: bbH  in favor of 

211 : bbH  when  

                                                            ,|>
/ˆ/ˆ

ˆˆ
| /21

2211

21 z
nvnv

bb                                               (6) 

 
where /21z  is the /2)100(1  percentile of a standard normal distribution. 

In this section, we derive a sample size formula for the two-sided  test (6) to detect 
0)(>|=:| 121 bbH  with power 1 . When designing a study, we usually schedule fixed 

visit times mtt <<1  for m  repeated measurements from each subject. We often set 0=1t  for 
the baseline measurement time. When the study is conducted, however, the subjects may skip 
some visit times due to various reasons, which results in missing values, or they may not follow 
the visit schedule correctly so that the observed visit times may be variable. Jung and Ahn (2003) 
show through simulations in a continuous outcome variable case that the sample size formula 
based on fixed measurement times is very accurate even when the observed measurement times 
are widely distributed around the scheduled times. 

By simple algebra, we can derive a sample size formula to detect the specified difference 
|=| 12 bb  with power 1 ,  

                                                     ,
)//()(

= 2
2211

2
1/21 rvrvzz

n                                         (7) 

 
where knk vv ˆlim= . The expression of kv  is slightly different between continuous and binary 
outcome variable cases, as shown in the following subsections. 

In order to allow for missing values, let j  denote the proportion of patients with observations at 

jt  and jj  the proportion of patients with observations at both jt  and jt . Also, let 

),(= jkikijjj yycorr . We assume that the missing pattern and correlation structure are common 
in two treatment groups. We discuss specific models for missing pattern and correlation structure 
in Section 18.5.3. 
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18.5.2.1  Continuous Variable Case 
We assume that the continuous outcome variable has a constant variance 2=)( kijyvar  over 
time, which is common between two treatment groups. Jung and Ahn (2003) show that 

vvv == 21  is expressed as  

 ,)(= 4
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s
csv  

where  
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Hence, (7) is simplified to  

                                                     .
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=
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2
1/21
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zzv

n                                                 (8) 

 
Note that we do not have to specify the true values for 1,2}=),,{( kba kk  but only the difference 

|=| 12 bb  in sample size calculation. The sample size is proportional to the variance of 
measurement error 2  and decreases as 1r  approaches 1/2 . 

18.5.2.2  Binary Variable Case 
Let kkkkj tbap =  denote the success probabilities under 1H . Jung and Ahn (2005) show that  
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where  
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and  

 .=

1=

1=

kjkjj
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jkjkjj
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As shown here, the sample size formula under the binary outcome variable case depends on the 
probabilities )1,...,=,( mjpkj  under 1H , so that we need to specify all regression parameters 

1,2}=),,{( kba kk . Let 12= bb  denote the difference in slope between two groups under 

1H . If pilot data exist for the control group (group 1), then we may use the estimates as the 
parameter values, 1a  and 1b . If 0=1t  is the baseline, the intercepts in the two groups are set the 
same (that is, 21 = aa ). By setting 12 = bb , we can specify all regression coefficients under 

1H . 

If no pilot data are available, we may specify the binary probabilities at the baseline, 11p , and at 
the end of follow up, mp1 , for the control group. Then we obtain ),( 11 ba  by  

                                                                  ,)()(=
1

111
1 tt

pgpgb
m

m                                                   (9) 

 
 ).(=)(= 1111111 pgtbpga  
 

And we set 12 = aa  (since 2111 = pp  at the baseline) and 12 = bb . 

18.5.3  Modelling Missing Pattern and Correlation Structure 

Calculation of n  (or kv ) requires projection of the missing probabilities and the true correlation 
structure. 

18.5.3.1  Missing Pattern 
In order to specify jj , we need to estimate the missing pattern. If missing at time jt  is 

independent of missing at time jt  for each patient, then we have jjjj =  and we call this 
type  independent missing. 

In some studies, subjects missing at a measurement time may be missing at all following 
measurement times, as in the labor pain study discussed in Example 18.6. This type of missing is 
called  monotone missing. In this case, we have jjj =  for jj <  ( m1 ). In 
monotone missing cases, one may want to specify the proportion of patients who will contribute 
exactly the first j  observations, say j . Then, noting that 1= jjj  for 11,...,= mj  and 

mm = , we can obtain j  recursively starting from m . Note also that 1=jj
, which 

equals 1 if all patients have measurements at the first measurement time 1t . 
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In summary, we consider two missing patterns as candidates to the true one: (a) independent 
missing, where jjjj = , and (b) monotone missing, where jjj =  for jj <  

( m1 ). 

18.5.3.2  Correlation Structure 
Now, we specify the true correlation structure jj . A reasonable model for 

)(= 1
ijijij btagy  may be  

 ,= ijiij eu  
 

where iu  is a subject-specific error term with variance 2
u  and ije  is a serially correlated within-

subject error term with variance 2
e  and correlation coefficients jj

~ . Assuming that iu  and ije  
are independent, we have  

 .~=),( 22
jjeajiijcov  

 
Often, the variation between subjects ( 2

u ) is much larger than that within subjects ( 2
e ). In this 

case, we have  

 2),( ujiijcov  
 

and an exchangeable correlation structure, =jj  for jj , may be a reasonable 
approximation to the true one. 

On the other hand, if the variation within the subject ( 2
e ) dominates over the variation between 

subjects ( 2
u ), then we will have  

 ,~),( 2
jjejiijcov  

 
so that a serial correlation structure may be a reasonable approximation to the true one. One of the 
most popular serial correlation structures, especially when measurement times are not equidistant, 

is a continuous autocorrelation model with order 1, AR(1), for which 
||

= jtjt

jj . 

We consider two correlation structures as candidate approximations to the true one: (i) 

exchangeable, where =jj , and (ii) AR(1), where 
||

= jtjt

jj . 

18.5.3.3  Examples 
For sample size calculation, the following parameters need to be specified commonly in both 
continuous and discrete outcome variable cases: 

 Type I and II errors  and , respectively. 

 The size of difference to detect, |=| 12 bb . 
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 Allocation proportion for group k , kr . 

 Correlation structure and the associated correlation parameter ,  (that is, (i) =jj  for 

exchangeable or (ii) 
||

= jtjt

jj  for AR(1)). 

 Proportion of patients with an observation at jt , j . 

 Missing pattern: (a) independent missing ( jjjj = ) or (b) monotone missing 

( jjj =  for jj < ). 
 

In addition, we need to specify )(=2
ijvar  in the continuous outcome variable case and the 

regression coefficients 1,2}=),,{( kba kk  under 1H  in the binary outcome variable case. 

We demonstrate our sample size formula with real longitudinal studies. 

Example 18.6  Continuous Outcome Case 
In a study on labor pain (Davis, 1991), 83 women in labor were assigned to either a pain 
medication group (43 women) or a placebo group (40 women). At 30-minute intervals, the self-
reported amount of pain was marked on a 100mm line, where 0 = no pain and 100 = extreme 
pain. The maximum number of measurements for each woman was 6=m , but there were 
numerous missing values at later measurement times with monotone missing pattern. A simple 
approach to such a study objective might be to estimate and compare the slopes of pain scores 
over time in the two treatment groups. In this study, the outcome variable is continuous. Suppose 
that we want to design a new study on labor pain based on the data reported by Davis (1991). As 
in the original study, we assume monotone missing. In this study, the measurement times were 
equispaced, so that we set 1= jt j  ( 1,...,6=j ) for convenience. From the data, we obtained 

815.84=2 . Suppose we want to detect a difference of  in mean pain score between two 
groups at 6t . So, we project 5.71=)/(= 16 tt  in a new study. We consider a balanced 
design (that is, 1/2== 21 rr ). Also, from the data, the proportion of observed measurements are  

 41).,.67,.54,.(1,.90,.78=),,,,,( 654321  
 

From these results, we obtain 2.02=  and 11.42=2s . 

Suppose that we want to detect a difference of 5.71=  with 80% of power 0.84)=( 1z  using 

a two-sided .05=  ( 1.96=/21z ) test. Under an exchangeable correlation structure, we obtain 
.64=  and 3.13=c  from the data, so that we have 

51.84=23.13)/11.4(11.42815.84= 2v . Hence, from (8), the required sample size is 
calculated as  

 50.=1]
5.71

0.84)(1.9651.84[= 2

2

n  

 
where ][x  is the largest integer not exceeding x . 
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Under AR(1), we obtain from the data .80=  and 2.31=c , so that the required sample size for 
detecting 5.71=  with 80% of power using a two-sided .05=  test is given as 83=n . The 
sample size under AR(1) is larger than that under an exchangeable correlation, by about 66%, in 
this example. 

Program 18.6  SAS Code for Two-Group Comparision of Repeated Continuous Measurement    
%macro SS_RepeatedContinuousMeasurement( 
               missingPattern = , /* 1: independent missing 2: monotone missing     */ 
               corrStructure  = , /* 1: compound symetric , 2: AR(1)                */ 
               rho            = , /* associated correlation parameter               */ 
               m              = , /* number of measurement time points              */ 
               sigma_sq       = , /* variance                                       */ 
               inR            = , /* group allocation proportion(r1, r2)            */ 
               inDelta        = , /* proportion of observed measurements            */ 
               alpha          = , /* alpha                                          */ 
               power          = , /* power                                          */ 
               sides          = , /* 1: one-sided test  2: two-sided test           */ 
               print    = 0       /* 0:default 1: detail                            */ 
                               ); 
proc iml; 
  %let K = 2; r = &inR; delta = &inDelta; t = J(&m,1,0); 
  do j=1 to &m; t[j] = j-1; end; 
  %if &inDelta eq %then %do; delta=J(&m,1,0);do j=1 to &m; delta[j]=1-(j-1)/20; end; 
%end; 
  d = sqrt(&sigma_sq)/(t[&m]-t[1]); 
  start g(p); gp = log(p/(1-p)); return (gp); finish g; 
  start prob(a,b,t); p = 1/(1+exp(-a-b*t)); return (p); finish prob; 
  start rho(i,j,r,c); 
    if c=1 then do; /* CS */ if i=j then rho_ij =1;else rho_ij = r; end; 
    else do; /* AR(1) */ dist = abs(i-j); rho_ij = r**dist; end; 
    return (rho_ij); 
  finish rho; 
  tau_num =0;  tau_denum = 0; 
  do j=1 to &m; tau_num = tau_num+delta[j]*t[j]; tau_denum = tau_denum+delta[j]; end; 
  tau= tau_num/tau_denum; s_sq=0; 
  do j=1 to &m; s_sq = s_sq+delta[j]*((t[j]-tau)**2); end; 
  c=0; 
  do i=1 to &m; 
     do j=1 to &m; 
           if i ^= j then do; 
              if &missingPattern = 1 then do; delta_ij = delta[i]*delta[j]; end; 
          else do; if j > i then max_ij=j; else max_ij=i; delta_ij=delta[max_ij]; end; 
          c = c+delta_ij*rho(i,j,&rho,&corrStructure)*(t[i]-tau)*(t[j]-tau); 
                end; 
      end; 
   end; 
   v = &sigma_sq*(s_sq+c)/(s_sq**2); 
   z_p1=1-&alpha/&sides; z_alpha = probit(z_p1); z_p2=&power;  z_beta  = probit(z_p2); 
   n = int((v*(z_alpha+z_beta)**2)/(d**2*r[1]*r[2]))+1; 
   print 'Sample Size Calculation for a Two-Group Comparision'; 
   print ' of Repeated Continous Measurements'; 
   alpha  =&alpha; power=&power; rho=&rho; sides=&sides; 
   sigma_sq=&sigma_sq; 
   print alpha power rho sides; 
   if &missingPattern = 1 then do;print ' Missing Pattern: Independent '; end; 
   else if &missingPattern = 2 then do; print ' Missing Pattern: Monotone '; end; 
   if &corrStructure=1 then do; print ' Correlation Structure : Compound Symetric 
';end; 
   else if &corrStructure = 2 then do; print ' Correlation Structure : AR(1) '; end; 
   %if &print = 1 %then %do; print delta; print tau s_sq c v ; %end; 
   print d sigma_sq; 
   print n; 
   quit; 
run; 
%mend SS_RepeatedContinuousMeasurement; 
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/*--Run the macro for Example 18.6 when Correlation Structure = Compound Symetric --*/ 
 
%SS_RepeatedContinuousMeasurement( 
       missingPattern = 2,              /* monotone missing                      */ 
       corrStructure  = 1,              /* compound symetric                     */ 
       rho            = 0.64,           /* associated correlation parameter      */ 
       m              = 6,              /* number of measurement time points     */ 
       sigma_sq       = 815.84,         /* variance                              */ 
       inR          = %str({0.5, 0.5}), /* group allocation proportion(r1, r2)   */ 
       inDelta      = %str({1, 0.9, 0.78, 0.67, 0.54, 0.41}), 
                                        /* proportion of observed measurements   */ 
       alpha        = 0.05,             /* alpha                                 */ 
       power        = 0.8,              /* power                                 */ 
       sides         = 2,               /* two-sided test                        */ 
       print         = 1 
        ); 
 
/*--- Run the macro for Example 18.6 when Correlation Structure = AR(1) ---------*/ 
 
%SS_RepeatedContinuousMeasurement( 
     missingPattern  = 2,              /*  monotone missing                      */ 
     corrStructure  = 2,               /* AR(1)                                  */ 
     rho             = 0.8,            /*  associated correlation parameter      */ 
     m              = 6,               /* number of measurement time points      */ 
     sigma_sq        = 815.84,         /* variance                               */ 
     inR            = %str({0.5, 0.5}),/* group allocation proportion(r1, r2)    */ 
     inDelta        = %str({1, 0.9, 0.78, 0.67, 0.54, 0.41}), 
                                       /* proportion of observed measurements    */ 
     alpha          = 0.05,            /* alpha                                  */ 
     power          = 0.8,             /* power                                  */ 
     sides           = 2,              /* two-sided test                         */ 
     print = 1 
        ); 

 
Output from Program 18.6   
/*------------------ When Correlation Structure = Compound Symetric --------*/  
 
 
                       Sample Size Calculation for a Two-Group Comparision 
                                of Repeated Continous Measurements 
 
                                  ALPHA     POWER       RHO     SIDES 
                                  0.05       0.8      0.64         2 
 
                                    Missing Pattern: Monotone 
                            Correlation Structure : Compound Symetric 
 
                                   TAU      S_SQ         C         V 
                             2.0186047 11.418512 -3.133345 51.842656 
 
                                               D  SIGMA_SQ 
                                       5.7125826    815.84 
 
                                                N 
                                                50 
 

                                                                                                                                                       (continued) 
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Output from Program 18.6  (continued) 
/*--------------------- When Correlation Structure = AR(1) -----------------*/  
 
                       Sample Size Calculation for a Two-Group Comparision 
                                of Repeated Continous Measurements 
 
                                 ALPHA     POWER       RHO     SIDES 
                                  0.05       0.8       0.8         2 
 
                                    Missing Pattern: Monotone 
                                  Correlation Structure : AR(1) 
 
                                   TAU      S_SQ         C         V 
                             2.0186047 11.418512 2.3055968  85.87567 
 
                                               D  SIGMA_SQ 
                                       5.7125826    815.84 
 
                                                N 
                                                83 

 

Example 18.7  Binary Outcome Case 
The Genetics vs. Environment In Scleroderma Outcome Study (GENISOS) is an observational 
study designed as a collaboration of the University of Texas-Houston Health Science Center with 
the University of Texas Medical Branch at Galveston and the University of Texas-San Antonio 
Health Science Center (Reveille et al., 2001). Scleroderma, or systemic sclerosis, is a multisystem 
disease of unknown etiology characterized by cutaneous and visceral fibrosis, small blood vessel 
damage, and autoimmune features (Medsger, 1997). The study subjects are regularly followed to 
check for the occurrence of pulmonary fibrosis. In this case, the outcome is a binary variable. 

Suppose that we want to develop a study to examine the effect of a new drug in preventing the 
occurrence of pulmonary fibrosis in subjects with scleroderma compared to no intervention. The 
parameter values specified here for sample size calculation are approximated by the estimates 
from the current data set of GENISOS. 

We want to estimate the sample size for the new study using .05=  and .8=1 . As in 
GENISOS, presence or absence of pulmonary fibrosis is assessed at baseline and at months 6, 12, 
18, 24, and 30. Because the measurement times are equidistant, we set 1= jt j  ( 1,...,6=j ) for 
the 6=m  time points. The within-group correlation structure of the repeated measurements 
conforms to AR(1) with the adjacent correlation equal to .8=  (that is, ||.8= jj

jj ). We 
consider assigning an equal number of scleroderma patients in each of two groups (that is, 

1/2== 21 rr ). 

Approximately 75% of scleroderma patients do not have pulmonary fibrosis at the baseline in the 
ongoing GENISOS. We project that the proportion of subjects without pulmonary fibrosis is 75% 
at baseline (that is, .75=1,1p ) and 50% at 30 months (that is, .50=1,6p ) in a placebo group. We 
assume that a new therapy will prevent or delay further occurrence of pulmonary fibrosis. That is, 
the proportion of subjects without pulmonary fibrosis will remain 75% during the 30-month study 
in a new therapy group (in other words, .75== 2,62,1 pp ). From these values and (9), we obtain  

 0.220,=
05
(.75)(.5)=1

ggb  
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and 1.099=(.75)=1 ga . Similarly, we obtain ( 22 ,ba )=(1.099, 0), so that 
0.220=0.220)(0= . By (5), the probabilities of no pulmonary fibrosis at the 6 time points 

are obtained as ),.555,.500,.659,.608(.750,.707  for the placebo group and 
),.750,.750,.750,.750(.750,.750  for the treatment group. 

The proportions of observed measurements are expected to be  

75).,.85,.80,.(1,.95,.90=),,,,,( 654321  

Suppose that we expect independent missing. Then, we obtain jj  from the specified j  values 

using jjjj = . Now we have all the parameter values required, and we obtain 0.305=1v  

and 0.353=2v . Finally, from (7), we obtain  

215.=1]
0.220

0.353/0.5)(0.305/0.50.84)(1.96[= 2

2

n  

If we assume monotone missing ( jjjj = ), we obtain 0.324=1v , , 0.308=2v  and 229=n . 

Program 18.7  SAS Code for Two-Group Comparision of Repeated Binary Measurement    
%macro SS_RepeatedBinaryMeasurement( 
       missingPattern =   , /* 1: independent missing 2: monotone missing       */ 
       corrStructure =    , /* 1: compound symetric , 2: AR(1)                  */ 
       rho           =    , /*  associated correlation parameter                */ 
       m             =    , /* number of measurement time points                */ 
       inP1          =    , /* proportion of subjects for control group         */ 
       inP2          =    , /* proportion of subjects                           */ 
       inR           =    , /* group allocation proportion(r1, r2)              */ 
       inDelta =          , /* proportion of observed measurements              */ 
       alpha   =          , /* alpha                                            */ 
       power   =          , /* power                                            */ 
       sides    =           /* 1: one-sided test  2: two-sided test             */ 
     ); 
  proc iml; 
   start g(p); gp = log(p/(1-p)); return (gp); finish g; 
   start prob(a,b,t); p = 1/(1+exp(-a-b*t)); return (p); finish prob; 
   start rho(i,j,r,c); 
    if c=1 then do; /* CS */ if i=j then rho_ij =1; else rho_ij = r; end; 
    else if c = 2 then do; /* AR(1) */ dist = abs(i-j); rho_ij = r**dist; end; 
    return (rho_ij); 
   finish rho; 
   %let K = 2; 
   P1=&inP1;  P2=&inP2; r =&inR; a=J(&K,1,0);  b=J(&K,1,0); t=J(&m,1,0); 
   tau = J(&K,1,0);  s_sq = J(&K,1,0); v = J(&K,1,0); c_sq = J(&K,1,0); 
   do j=1 to &m;  t[j] = j-1; end; 
   %if &inDelta eq %then %do; 
       delta = J(&m,1,0); 
       do j=1 to &m; delta[j] = 1-(j-1)/20; end; 
   %end; 
   b[1] = (g(P1[&m])-g(P1[1]))/(t[&m]-t[1]); a[1] = g(P1[1])-B[1]*t[1]; 
   b[2] = (g(P2[&m])-g(P2[1]))/(t[&m]-t[1]); a[2] = g(P2[1])-B[1]*t[1]; 
   d = b[2]-b[1]; 
   do j=1 to &m; 
      T[j] = j-1; P1[j]= prob(a[1], b[1], t[j]); P2[j]= prob(a[2], b[2], t[j]); 
   end; 
   tau1_num =0; tau1_denum = 0; tau2_num =0; tau2_denum = 0; 
   do j=1 to &m; 
     tau1_num = tau1_num+delta[j]*P1[j]*(1-P1[j])*t[j]; 
     tau1_denum = tau1_denum+delta[j]*P1[j]*(1-P1[j]); 
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     tau2_num = tau2_num+delta[j]*P2[j]*(1-P2[j])*t[j]; 
     tau2_denum = tau2_denum+delta[j]*P2[j]*(1-P2[j]); 
   end; 
   tau[1]= tau1_num/tau1_denum; tau[2]= tau2_num/tau2_denum; 
   s1=0;s2=0; 
   do j=1 to &m; 
      s1 = s1+delta[j]*P1[j]*(1-P1[j])*((t[j]-tau[1])**2); 
      s2 = s2+delta[j]*P2[j]*(1-P2[j])*((t[j]-tau[2])**2); 
   end; 
   s_sq[1]=s1; s_sq[2]=s2; c1=0; c2=0; c12=0; 
   do i=1 to &m; 
      do j=1 to &m; 
           if i ^= j then do; 
              if &missingPattern = 1 then do; 
             delta_ij = delta[i]*delta[j]; 
              end;else do; 
                 if j > i then max_ij = j; else max_ij = i; delta_ij = delta[max_ij]; 
          end; 
          c1=c1+delta_ij*rho(i,j,&rho,&corrStructure)* 
             sqrt(P1[i]*(1-P1[i])*P1[j]*(1-P1[j]))*((t[i]-tau[1])*(t[j]-tau[1])); 
          c2=c2+delta_ij*rho(i,j,&rho,&corrStructure)* 
             sqrt(P2[i]*(1-P2[i])*P2[j]*(1-P2[j]))*((t[i]-tau[2])*(t[j]-tau[2])); 
         end; 
      end; 
   end; 
   c_sq[1]=c1; c_sq[2]=c2; 
   do k =1 to &K; v[k] = (s_sq[k]+c_sq[k])/(s_sq[k]**2); end; 
   z_p1=1-&alpha/&sides; z_alpha = probit(z_p1); 
   z_p2=&power; z_beta  = probit(z_p2); 
   n = int((z_alpha+z_beta)**2*(v[1]/r[1]+v[2]/r[2])/d**2)+1; 
 
   print 'Sample Size Calculation for a Two-Group Comparision'; 
   print ' of Repeated Binary Measurements'; 
   alpha  =&alpha; power=&power; rho=&rho; sides=&sides; 
   print alpha power rho sides; 
   if &missingPattern = 1 then do; print ' Missing Pattern: Independent '; end; 
   else if &missingPattern = 2 then do;print ' Missing Pattern: Monotone '; end; 
   if &corrStructure = 1 then do; print ' Correlation Structure : Compound Symetric '; 
   end; else if &corrStructure = 2 then do; print ' Correlation Structure : AR(1) '; 
   end; 
   print P1 P2 delta v ; print d; print n; 
   quit; 
run; 
%mend  SS_RepeatedBinaryMeasurement; 
 
/*--------------- Run the macro for Example 18.7 ------------------------------*/ 
 
%SS_RepeatedBinaryMeasurement( 
     missingPattern = 1,          /* 1: independent missing 2: monotone missing     */ 
     corrStructure  = 2,          /* 1: compound symetric , 2: AR(1)                */ 
     rho     = 0.8,               /*  associated correlation parameter              */ 
     m       = 6,                 /* number of measurement time points              */ 
    inP1    = %str({0.75, 0, 0, 0, 0, 0.5}),  
                                  /* proportion of subjects for control group       */ 
    inP2    = %str({0.75, 0.75, 0.75, 0.75, 0.75, 0.75}),   
                                  /* proportion of subjects                         */ 
     inR     = %str({0.5, 0.5}),  /* group allocation proportion(r1, r2)            */ 
     inDelta = ,      /* delta[j] = 1-(j-1)/20, proportion of observed measurements */ 
     alpha   = 0.05,              /* alpha                                          */ 
     power   = 0.8,               /* power                                          */ 
     sides   = 2                  /* 1: one-sided test  2: two-sided test           */ 
     ); 
 
 
%SS_RepeatedBinaryMeasurement( 
    missingPattern = 2,          /*  monotone missing                               */ 
    corrStructure = 2,           /* AR(1)                                           */ 
     rho     = 0.8,                 /* associated correlation parameter             */ 
     m       = 6,                   /* number of measurement time points            */ 
    inP1   = %str({0.75, 0, 0, 0, 0, 0.5}),     
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                                    /* proportion of subjects for control group     */ 
    inP2    = %str({0.75, 0.75, 0.75, 0.75, 0.75, 0.75}),   
                                 /* proportion of subjects                          */ 
     inR     = %str({0.5, 0.5}),    /* group allocation proportion(r1, r2)          */ 
     inDelta = ,      /* delta[j] = 1-(j-1)/20, proportion of observed measurements */ 
     alpha   = 0.05,                /* alpha                                        */ 
     power   = 0.8,                 /* power                                        */ 
     sides   = 2                    /* 1: one-sided test  2: two-sided test         */ 
     ); 
 

Output from Program 18.7 
/*--------------When Missing Pattern Is Independent Missing ----------------*/  
 
                       Sample Size Calculation for a Two-Group Comparision 
                                 of Repeated Binary Measurements 
 
                                 ALPHA     POWER       RHO     SIDES 
                                  0.05       0.8       0.8         2 
 
                                  Missing Pattern: Independent 
                                  Correlation Structure : AR(1) 
 
                                    P1        P2     DELTA         V 
                                  0.75      0.75         1 0.3048798 
                             0.7065921      0.75      0.95 0.3534175 
                             0.6590733      0.75       0.9 
                             0.6081268      0.75      0.85 
                             0.5547107      0.75       0.8 
                                   0.5      0.75      0.75 
 
                                                D 
                                            0.2197225 
 
                                                N 
                                               215 
 
 
/*-------------- When Missing Pattern Is Monotone Missing ------------------*/  
 
                       Sample Size Calculation for a Two-Group Comparision 
                                 of Repeated Binary Measurements 
 
                                 ALPHA     POWER       RHO     SIDES 
                                  0.05       0.8       0.8         2 
 
                                    Missing Pattern: Monotone 
                                  Correlation Structure : AR(1) 
 
                                    P1        P2     DELTA         V 
                                  0.75      0.75         1 0.3236844 
                             0.7065921      0.75      0.95 0.3804059 
                             0.6590733      0.75       0.9 
                             0.6081268      0.75      0.85 
                             0.5547107      0.75       0.8 
                                   0.5      0.75      0.75 
 
                                                D 
                                            0.2197225 
 
                                                N 
                                               229 
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118.6  Discussion 
In designing an observational study, we should choose a statistical testing method that will be 
used when analyzing the final data. For an accurate sample size calculation, the sample size 
formula should be directly derived from the power function of the chosen testing method. 

There are two types of parameters included in sample size formulas: primary and nuisance 
parameters. The primary parameters are those shown in the statistical hypotheses (for example, 
means, binomial proportions, and hazard rates), and the nuisance parameters (for example, 
prevalence rates, accrual period in survival data, correlation coefficients, and missing type and 
probabilities in longitudinal data) are those of no or secondary interest. Because both types of 
parameters determine the final sample size, it is important to specify the parameter values as 
accurately as possible. If a database exists, we usually estimate the values of nuisance parameters 
and the primary parameter value of the control group from the database. Although kr  may be 
chosen by the prevalence of a disease, we may decide to use different allocation proportions from 
the prevalence rates in the natural population depending on the relative cost to accrue subjects in 
two groups. The primary parameter value for the case group is usually chosen based on the 
clinical significance of the associated intervention on the outcome variable, which is measured in 
terms of the difference or ratio of the primary parameter values between the two groups. When 
there is uncertainty in some of these parameters, we may conduct a sensitivity analysis on the 
power to demonstrate that the power would be adequate under a range of scenarios. 

Appendix:  Asymptotic Distribution of Wilcoxon Rank Sum 
Test under aH   

Let kkiki XX =~
. Then 

22211111
~,...,~,~,...,~

nn XXXX  are IID with cumulative density function 

(CDF) )(xF . Noting that  

 ),~>~(1= 21
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1

1=21
ji
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n

i
XXI

nn
W  

 

we have )(ˆ)(ˆ= 12 xFdxFW , where )~(=)(ˆ
1=

1 xXInxF ki
kn

ikk  is the empirical CDF of 

kknk XX ~,...,~
1  that uniformly converges to )(xF  as kn . Let 

)()(=)~>~(= 21 xdFxFXXP jia . For a large n , aW  is expressed as  

 )()()(ˆ)(ˆ
12 xdFxFxFdxF  

 

 ),()()}()(ˆ{)}()(ˆ{)(= 1
21 noxdFxFxFxFxFdxF p  

where )}()(ˆ{)}()(ˆ{=)( 12
1 xFxFdxFxFnop  is negligible for a large n .  
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Because  
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AA 
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assumption of exchangeability   88 

B 
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cluster membership and   187–189 
defined   187 
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defined   12, 55, 187 
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blocking, key roles played   152 
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C 

CA (covariate adjustment) method 
defined   183 
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RCTs and   347, 356 

Cardiac Care Network (CCN)   62–65 
case-control design   9 
CATMOD procedure   225 
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IPW estimation with missing values    

109–110 
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153–154 
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See cost-effectiveness analysis 
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344–346, 355–356 
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cost-effectiveness analysis and   363–382 
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CLASS statement 
DR considerations   102 
INB example   359 
UNIVARIATE procedure   136 

Clinical Global Impression scale   389 
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JMP considerations   168–170 
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PSBB and   323 
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research checklist   289, 292–293 
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cost-effectiveness analysis 
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315–337 
with censored data   363–382 
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COVARIANCE= option, NLP procedure   245, 

248 
covariate adjustment 
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dose-response analyses   297, 380 
propensity score matching and   61, 78–80 
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153–154 

DD 
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DATA step 
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confounding and   7 
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practical considerations   102 
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E 

eCDF (empirical cumulate distribution function)   
174, 177 
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empirical cumulate distribution function (eCDF)   
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end-stage renal disease (ESRD) study   296–310 
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296–297 
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221 
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ICER   368 
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FF 

FDA (Food and Drug Administration)   288 
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GLM procedure 
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H 
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hemodialysis study   296–310 
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