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Preface

This book provides an overview of the current knowledge on the envelope struc-
tures of Gram-positive bacteria, their biosynthesis and assembly, their functions as
well as their role as antibacterial targets and in biotechnology applications. This is a
concise volume containing eleven chapters, from renowned experts in the field,
reviewing recent findings and knowledge on very diverse arguments and at the
same time linked to each other. That is the uniqueness behind a book like this and
the added value towards a search in literature databases.

The cell envelope of these bacteria includes surface proteins, capsular
polysaccharides, peptidoglycan, teichoic acids, and phospholipids. These compo-
nents play key roles in cell viability, virulence and evasion of host defences. Many
virulence factors of pathogenic species reside on the bacterial surface. Surface
proteins have very diverse functions (e.g., adhesion, invasion, signalling, conju-
gation, interaction with the environment and immune-evasion). On the other hand,
polysaccharides often play a mechanical protective role for the bacterium and the
remarkable structural diversity in capsular polysaccharides favours immune eva-
sion. Peptidoglycan is a well-established target for antibiotics and can undergo
modification to decrease susceptibility to the drugs.

Both surface proteins and sugars, being the most exterior components, are also
accessible to antibodies and represent important vaccine targets. Certain proteins
assemble into complexes forming secretion apparatuses, such as the type VII
secretion system, pili (or fimbrae) and flagella. These macromolecular structures
have very diverse functions, which include secretion, conjugation, adhesion, bio-
film formation and motility. Obviously, different species have different envelope
structures and the knowledge on most important species (e.g., Actinomyces spp.,
Bacillus spp., Clostridium spp., Enterococcus spp., Streptococcus spp., and
Staphylococcus spp.) is rapidly increasing.

Given the complexity and breath of the literature behind this argument we
decided to write this book in the attempt to give an overview of the current
knowledge on the envelope structures of Gram-positive bacteria, their biosynthesis,
and functions. Secretion systems, spatial organization of cell wall-anchored proteins
and bioinformatic algorithms for predicting subcellular localization of proteins are

vii



explained in a simple but detailed fashion. Assembly mechanisms of structures such
as pili and sugar polymers are described along with the recently discovered
Type VII secretion system. The latter one has been described in low-GC
Gram-positive bacteria and they can show a very complex organization with up to
five chromosomal-encoded systems (ESX-1 to ESX-5) in mycobacteria to a much
simpler organization in Firmicutes.

Finally, relevant examples of applied science which exploit knowledge on
Gram-positive bacteria are also included. Possible targets for new antimicrobials are
noted. We highlighted the development of the Twin-arginine protein translocation
system (Tat) for the biotechnological secretion of fully folded and
co-factor-containing proteins and its potential use as an anti-microbial drug target.
The use of these bacteria in biotechnology for the production of heterologous
proteins and methodologies for analyzing surface and secreted proteins with a
particular emphasis to vaccine antigen discovery are also discussed.

In conclusion, this book is useful to any researcher, clinician or technician who
is involved with basic or applied science projects on Gram-positive bacteria.

Siena, Italy Fabio Bagnoli
Rino Rappuoli
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Envelope Structures of Gram-Positive
Bacteria

Mithila Rajagopal and Suzanne Walker

Abstract Gram-positive organisms, including the pathogens Staphylococcus aur-
eus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell
envelopes that mediate interactions with the environment and serve as the first line
of defense against toxic molecules. Major components of the cell envelope include
peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids
(TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These
components can undergo modification to promote pathogenesis, decrease suscep-
tibility to antibiotics and host immune defenses, and enhance survival in hostile
environments. This chapter will cover the structure, biosynthesis, and important
functions of major cell envelope components in gram-positive bacteria. Possible
targets for new antimicrobials will be noted.
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WTA Wall teichoic acid
LTA Lipoteichoic acid
CPS Capsular polysaccharides
PIA Polysaccharide intercellular adhesin

Contents

1 Introduction.......................................................................................................................... 2
2 Cell Membrane .................................................................................................................... 3
3 Peptidoglycan....................................................................................................................... 5

3.1 Peptidoglycan Structure .............................................................................................. 6
3.2 Peptidoglycan Biosynthesis ........................................................................................ 7
3.3 Tailoring Modifications of Peptidoglycan.................................................................. 10

4 Teichoic Acids ..................................................................................................................... 12
4.1 Wall Teichoic Acid Structure ..................................................................................... 12
4.2 Wall Teichoic Acid Biosynthesis ............................................................................... 13
4.3 Lipoteichoic Acid Structure ........................................................................................ 14
4.4 Lipoteichoic Acid Synthesis ....................................................................................... 15
4.5 Tailoring Modifications of Teichoic Acids ................................................................ 16
4.6 Roles of Teichoic Acids and Their Tailoring Modifications in Cell Physiology

and Immune Evasion .................................................................................................. 18
5 Capsular Polysaccharides..................................................................................................... 21

5.1 Structural Diversity of CPS ........................................................................................ 21
5.2 CPS, Host Immunity, and Vaccine Development...................................................... 21

6 Exopolysaccharides and Biofilm Formation ....................................................................... 23
7 Antibiotics Targeting the Cell Envelope............................................................................. 23
8 The Quest for Novel Antibiotic Targets ............................................................................. 25
References .................................................................................................................................. 26

1 Introduction

The cell envelope is a complex, dynamic, multilayered structure that serves to
protect bacteria from their unpredictable and often hostile surroundings. The cell
envelopes of most bacteria fall into one of two major groups. Gram-negative bacteria
have an inner, cytoplasmic membrane surrounded by a thin layer of peptidoglycan
(PG) and an outer membrane containing lipopolysaccharide. The outer membrane
functions as a permeability barrier to control the influx and egress of ions, nutrients,
and environmental toxins, and it also contributes to osmoprotection. Gram-positive
bacteria lack a protective outer membrane but the PG layers are many times thicker
than those in gram-negative organisms (Silhavy et al. 2010; Vollmer et al. 2008).
Embedded in the inner membrane and attached to the PG layers are long anionic
polymers called teichoic acids (TAs), which play multiple roles in cell envelope
physiology as well as pathogenesis (Brown et al. 2013; Percy and Gründling 2014;
Schneewind and Missiakas 2014). Membrane-embedded and wall-associated
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proteins serve as environmental sensors, regulate passage of nutrients and ions
across the cytoplasmic membrane, facilitate efflux of toxins and other molecules,
modulate surface adhesion, and participate in enzymatic synthesis, degradation, and
remodeling of the cell envelope during growth and division, and in response to
environmental stress (Buist et al. 2008; Kovacs-Simon et al. 2011; Navarre and
Schneewind 1999; Stock et al. 2000; Zhen et al. 2009). Other important cell
envelope components in gram-positive organisms include capsular polysaccharides
(CPS), which are covalently attached to PG, and extracellular polysaccharides,
which form an amorphous outer layer (Arciola et al. 2015; Yother 2011).

The importance of the cell envelope for bacterial survival makes it a target for
antibiotics, and several classes of clinically used antibiotics inhibit biosynthesis of
PG, resulting in osmotic rupture. Other antibiotics damage the membrane barrier
(Walsh 2003). Because resistance to clinically used antibiotics has become wide-
spread, there is a push to better understand cell envelope biogenesis and regulation,
and to identify new cell envelope targets that can be exploited in the development
of next-generation antibiotics. In this chapter, we will focus on important cell
envelope components of gram-positive pathogens using Staphylococcus aureus as a
focal point, except where other gram-positive pathogens are better studied.
Attention will also be given to the nonpathogenic Bacillus subtilis because its
genetic tractability and other biological characteristics have led to its adoption as
the principal gram-positive model organism.

2 Cell Membrane

Gram-positive organisms are surrounded by bilayer membranes that can vary sub-
stantially in composition but typically include large amounts of phosphatidylglycerol
and cardiolipin. In Bacillus species, phosphatidylethanolamine is abundant as well
(Clejan et al. 1986; Haque and Russell 2004; Minnikin and Abdolraimzadeh 1974).
Many gram-positive species express at least one type of aminoacylated phos-
phatidylglycerol (Epand et al. 2007; Parsons and Rock 2014). For example, in S.
aureus, lysyl-phosphatidylglycerol is found in significant amounts, particularly
during logarithmic growth (Ernst et al. 2009). This phospholipid is synthesized by a
polytopic membrane protein, MprF, which catalyzes the transfer of lysine from
lysyl-tRNA to phosphatidylglycerol on the inner leaflet of the membrane and then
translocates this species to the outer leaflet of themembrane (Ernst et al. 2009;Kristian
et al. 2003). Lysyl-phosphatidylglycerol reduces susceptibility to antimicrobial
peptides produced during host infection (Peschel et al. 2001) and also provides pro-
tection against aminoglycosides, bacitracin, daptomycin, and some β-lactams (Nishi
et al. 2004; Komatsuzawa et al. 2001). Daptomycin-resistant S. aureus clinical iso-
lates frequently contain mutations that increase MprF expression or translocase
activity (Friedman et al. 2006; Julian et al. 2007; Jones et al. 2008; Yang et al. 2009b).
Other species of gram-positive bacteria have MprF homologs that have been impli-
cated in similar functions (Ernst and Peschel 2011). It is thought that the positive
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charges of lysyl-phosphatidylglycerol serve to repel positively charged antibiotics or
antibiotic-metal complexes (Ernst and Peschel 2011; Nishi et al. 2004).

The composition of both the head groups and the fatty acyl chains in membrane
phospholipids can change rapidly in response to environmental conditions, such as
low pH, osmotic stress, or temperature extremes (Zhang and Rock 2008). For
example, branched chain fatty acid content in membranes can vary substantially
depending on growth conditions. Membrane lipid composition affects membrane
viscosity, which modulates membrane permeability and can influence both solute
transport and protein interactions. Membrane lipid homeostasis is thus a crucial
process and interfering with it can compromise viability (de Mendoza 2014; Zhang
and Rock 2008).

In addition to the lipid components, the cell membrane contains the lipid anchor
component of lipoteichoic acid (LTA) and includes numerous transmembrane and
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Fig. 1 The gram-positive cell envelope. The complex gram-positive cell envelope is the first line
of defense for the organism. Here, the S. aureus envelope is shown as an example. Major pathways
involved in the synthesis of the cell envelope include capsule, PG, and TA syntheses. TAs can be
modified by D-alanylation. D-alanylation and lysyl-phosphatidylglycerol synthesis are known
factors for antibiotic resistance. Envelope stress response regulators modulate the organism’s
response to toxic molecules or conditions that perturb the cell envelope. Importers and exporters,
ubiquitously present among bacteria, serve the necessary role of channeling in nutrients and
pumping out the toxic molecules. Finally, surface protein display systems function to tether
proteins to the cell membrane or cell wall, which perform important roles in adhesion and
interaction with the environment
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lipoproteins with functions in cell envelope synthesis, transport of cell envelope
precursors and nutrients, and export of toxic compounds (Fig. 1). Among these,
transmembrane proteins are the sensory components of several two-component
sensing systems that regulate the cell’s response to external stimuli, including cell
density and presence of damaging toxins. For instance, the amount of
lysyl-phosphatidylglycerol in S. aureus is regulated by a complex of proteins that
includes a two-component signaling system, GraRS, and a two-component
ABC-transporter-like system, VraFG. This complex, which senses and responds
to a variety of stimuli, including the presence of antimicrobial peptides, also reg-
ulates D-alanylation of TAs (Falord et al. 2011; Li et al. 2007a, b; Yang et al. 2012).
Modulating the negative charge density of the cell envelope through lysinylation of
phosphatidylglycerol and D-alanylation of TAs decreases susceptibility of S. aureus
to antimicrobial peptides produced during host infection and increases resistance to
cationic antibiotics administered to treat infection (Ernst and Peschel 2011; Brown
et al. 2013; Revilla-Guarinos et al. 2014; Bayer et al. 2013).

3 Peptidoglycan

Gram-positive bacteria are surrounded by many layers of peptidoglycan (PG),
which form a protective shell that is 30–100 nm thick (Silhavy et al. 2010). The PG
layers are covalently modified with carbohydrate polymers including wall teichoic
acids (WTAs) or functionally related anionic glycopolymers as well as CPS.
The PG layers also scaffold numerous proteins, some of which are bound
non-covalently through interactions with PG-binding modules such as LysM
domains (Buist et al. 2008) while others are covalently attached by sortases
(Schneewind and Missiakas 2012). Some wall-associated proteins play important
roles in cell envelope remodeling during growth and division, whereas others
scavenge nutrients and metals from the environment or serve as adhesins that
promote surface binding and colonization (Navarre and Schneewind 1999). PG has
numerous important functions but perhaps the most important is that it stabilizes the
cell membrane, enabling it to withstand high internal osmotic pressures. This
function is critical for cell survival because the turgor pressure pushing against the
cell membrane can reach 20 atmospheres in some gram-positive bacteria (Mitchell
and Moyle 1956; Norris and Sweeney 1993). Since PG is essential for viability and
the biosynthetic pathway is highly conserved in gram-positive and gram-negative
organisms, PG biosynthesis is a target for many clinically used antibiotics,
including β-lactams, which are the most successful class of antibiotics in history,
and vancomycin, which is still widely used to treat serious gram-positive infections,
including methicillin-resistant S. aureus (MRSA) infections.

Envelope Structures of Gram-Positive Bacteria 5



3.1 Peptidoglycan Structure

PG is composed of linear chains of repeating disaccharide units cross-linked via
peptide side chains (Fig. 2). The disaccharide subunit is completely conserved and
consists of N-acetylglucosamine (GlcNAc) coupled through a β-1,4-linkage to N-
acetylmuramic acid (MurNAc) (Schleifer and Kandler 1972). The average chain
length of the glycan strands can vary considerably across species. In S. aureus, the
glycan strands are relatively short, averaging 6–18 disaccharide units (Boneca et al.
2000; Ward 1973) while in B. subtilis, the glycan chains are much longer. Early
measurements of B. subtilis glycan strands indicated an average chain length of 54–
96 disaccharide units, but more recent experiments using atomic force microscopy
to probe size exclusion-purified glycan strands have suggested that glycan chains
can reach 5000 disaccharide units in length (Hayhurst et al. 2008; Ward 1973). The
longer glycan chains found in B. subtilis may be a result of the cylindrical shape,
which results in a substantially greater stress imparted on the cylindrical walls
compared with the poles (Hayhurst et al. 2008).

MurNAc, a sugar unique to bacteria, contains a C3 lactate group. In nascent
(uncross-linked) PG of gram-positive organisms, this group is bonded to the
N-terminus of a linear peptide consisting of five amino acids. The first, L-alanine, is
typically followed by D-isoglutamine, and the terminal dipeptide is D-Ala-D-Ala.
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Fig. 2 PG structure and common variations. PG consists of chains of alternating GlcNAc and
MurNAc residues. The MurNAc residues are functionalized with pentapeptide units which are
cross-linked via the substituents on L-Lys to generate the mature PG. The linear glycan chain is
highly conserved across both gram-positives and gram-negatives. The stem pentapeptide is well
conserved across gram-positives, aside from B. subtilis which contains meso-diaminopimelic acid
instead of L-Lysine at position 3 of the stem pentapeptide. There is considerable variation in the
substituents on the L-Lys across gram-positive species as indicated. PG can be modified by O-
acetylation of MurNAc or N-deacetylation of GlcNAc moieties in response to challenge from
antimicrobials such as lysozyme
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Position 3 of the pentapeptide chain is either L-lysine or meso-diaminopimelic acid
(m-DAP), with the former being found in S. aureus, Streptococcus pneumoniae,
Enterococcus faecalis, and Enterococcus faecium, and the latter being found in B.
subtilis (Schleifer and Kandler 1972). The ε-amino group of L-Lys is typically
coupled to one or more additional amino acids. In S. aureus, for example, L-lysine
is coupled to pentaglycine, although serine can also be incorporated in some strains
(De Jonge et al. 1993; Schleifer and Kandler 1972). S. pneumoniae and E. faecalis
contain dipeptide substituents consisting of L-Ala-L-Ser or L-Ala-L-Ala, respectively
(De Jonge et al. 1996; Schleifer and Kandler 1972; Severin and Tomasz 1996). S.
pneumoniae PG is unusual in that it can be a mixture of either dipeptide-substituted
or un-substituted stem peptides (Garcia-Bustos et al. 1987; Severin and Tomasz
1996). E. faecium contains a D-aspartate substituent (Patti et al. 2008; Vollmer et al.
2008). Canonical glycan strand cross-linking occurs via formation of an amide
bond between the side chain or branching peptide on amino acid 3 of one stem
peptide and the backbone carbonyl of amino acid 4 on another stem peptide, with
the loss of the terminal D-ala (Schleifer and Kandler 1972). Cross-links can also
form to the carbonyl of amino acid 3 in some species of gram-positive organisms
(Lavollay et al. 2008, 2011; Mainardi et al. 2000; Schleifer and Kandler 1972).

3.2 Peptidoglycan Biosynthesis

PG biosynthesis takes place in distinct stages, the first of which involves assembly
of a UDP-MurNAc pentapeptide in the cytoplasm. This stage is followed by
coupling of the phospho-MurNAc pentapeptide to the undecaprenyl phosphate
(Und-P) “carrier lipid” embedded in the membrane to form a lipid-linked
monosaccharide known as Lipid I, which is glycosylated to form the disaccha-
ride Lipid II. Additional amino acids, if any, are appended to the pentapeptide chain
at this point and then Lipid II is translocated across the membrane. In the final stage
of PG biosynthesis, Lipid II is polymerized and the resulting glycan strands are
cross-linked to give mature PG. The lipid carrier released during glycan chain
polymerization is recycled back into the cell to continue synthesis. Most of the
enzymatic steps for the majority of the biosynthetic pathway are well-conserved
across both gram-negative and gram-positive bacteria (Fig. 3).

Assembly of Lipid II:

The first committed step in PG synthesis involves the MurA-catalyzed transfer of
enolpyruvate from phosphoenolpyruvate to the C3 hydroxyl of UDP-GlcNAc
(Marquardt et al. 1992). Some low GC gram-positive organisms, including S. aur-
eus, S. pneumoniae, and B. subtilis, contain two murA alleles, which are differently
regulated (Blake et al. 2009; Du et al. 2000; Kock et al. 2004). The secondary murA
allele may allow for increased flux into the PG biosynthetic pathway in response to
cell wall stress (Blake et al. 2009). MurB reduces the C3 enolate to the lactate,
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resulting in the formation of UDP-MurNAc (Benson et al. 1993). The pentapeptide
chain is then coupled in a stepwise manner, with MurC, MurD, MurE adding L-
alanine, D-glutamic acid, and L-lysine (or m-DAP), respectively. Using D-Ala pro-
duced from L-Ala by D-alanine racemase (Alr), D-Ala-D-Ala ligase (Ddl) makes the
dipeptide, which is then added to the UDP-MurNAc-tripeptide by MurF. Since
peptide bond formation is thermodynamically unfavorable, the ligases use ATP to
activate the amino acids and provide a driving force for coupling (Bouhss et al. 1997;
Patin et al. 2010; Walsh 1989) (Fig. 3).

The next stage of PG synthesis begins with the transfer of phospho-MurNAc
pentapeptide to a lipid carrier in the bacterial membrane, typically Und-P, although
Mycobacterium smegmatis uses decaprenylphosphate (Mahapatra et al. 2005). This
step is catalyzed by MraY (Bouhss et al. 2004; Chung et al. 2013; Pless and
Neuhaus 1973) and produces the first lipid-linked intermediate, Lipid I. Finally,
MurG catalyzes the addition of GlcNAc to give Lipid II (Hu et al. 2003a;
Mengin-Lecreulx et al. 1991). Amidation of the α-carboxylate of iso-glutamic acid
at position 2 of the peptide chain, which is observed in many organisms (Vollmer
et al. 2008), most likely occurs intracellularly after lipid-linked PG precursors are
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formed. The enzymes involved in this modification were recently identified in S.
aureus as MurT and GatD (Figueiredo et al. 2012; Münch et al. 2012).

When a peptide branch is present, the required amino acids are usually added to
the completed Lipid II moiety. One exception is Lactobacillus viridescens where
the first amino acid of the L-Ala-L-Ser bridge is added to the UDP-N-acetylmu-
ramylpentapeptide (Rogers et al. 1980). In S. aureus, the pentaglycine is assembled
by FemX, FemA, and FemB, which sequentially add one, two, and two glycines,
respectively. These enzymes utilize glycyl-tRNA donors (Henze et al. 1993;
Maidhof et al. 1991; Rohrer et al. 1999; Schneider et al. 2004). Serines rather than
glycines are incorporated in a similar manner in other staphylococcal strains
(Thumm and Götz 1997; Tschierske et al. 1997). This incorporation of serine
contributes to resistance to lysostaphin, a glycylglycine endopeptidase (Thumm and
Götz 1997). The corresponding enzymes in E. faecalis and S. pneumoniae have also
been identified (Bouhss et al. 2002; Filipe et al. 2000). It is interesting that the Mur
ligases use ATP-activated amino acids directly, but the enzymes that assemble the
branching peptides use charged tRNAs. When tRNAs were found to be the
aminoacyl donors for PG precursors in the 1960s, it caused some excitement
because tRNAs were previously known only for their involvement in protein
synthesis (Kresge et al. 2007). It is now known that phospholipids as well as PG
precursors are aminoacylated by acyl-tRNAs (see above).

The final step in the cytoplasmic phase of PG synthesis involves the translo-
cation of Lipid II across the membrane. This is accomplished by a flippase called
MurJ, which was identified only recently (Ruiz 2008, 2009; Sham et al. 2014). In B.
subtilis, there is also a secondary Lipid II flippase, Amj, that enables survival when
MurJ (YtgP) is deleted (Meeske et al. 2015). The complete story of the discovery of
the Lipid II flippase has been well-described in the chapter by Lam and coworkers
in this volume.

Glycan polymerization and cross-linking:

Once Lipid II is on the outside of the cell, it is polymerized and cross-linked.
Glycan polymerization is accomplished by peptidoglycan glycosyltransferases
(PGTs; also known as synthetic transglycosylases), while cross-linking is accom-
plished by transpeptidases. These activities are often found as domains in a single
protein, but monofunctional variants of both enzyme classes exist. The nomen-
clature of PG biosynthetic enzymes is somewhat confusing as many are designated
as penicillin-binding proteins, which highlights the fact that they covalently bind β-
lactams (Blumberg and Strominger 1974), but obscures their catalytic function,
which vary. There are two main categories of PBPs—high-molecular mass PBPs
that contain a second domain and low-molecular mass PBPs. The high-molecular
mass PBPs are further divided into Class A and Class B PBPs, with the Class A
PBPs distinguished by the presence of an N-terminal PGT domain and the Class B
PBPs distinguished by the presence of an N-terminal domain of unknown function.
The penicillin-binding domains found in both Class A and Class B PBPs functions
as transpeptidase domains, serving to cross-link glycan strands. The low-molecular
mass PBPs, sometimes called Class C PBPs, typically function as D,D-
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carboxypeptidases, serving to hydrolyze the terminal D-alanine of the stem peptide
(Ghuysen 1991; Sauvage et al. 2008; Waxman and Strominger 1983). Some
organisms including S. aureus contain low-molecular mass PBPs that function as
transpeptidases, rather than carboxypeptidases. Methicillin-sensitive S. aureus
(MSSA) strains contain four PBPs. PBP1 and PBP3 are Class B PBPs (Pinho et al.
2000; Wada and Watanabe 1998), PBP2 is a Class A PBP (Pinho et al. 2001a), and
PBP4 is a low-molecular weight PBP that acts as a transpeptidase to form additional
cross-links in PG (Kozarich and Strominger 1978; Qiao et al. 2014; Wyke et al.
1981). MRSA strains contain an additional PBP, PBP2A, that is highly resistant to
β-lactams. PBP2A serves to cross-link PG when the other PBPs have been inac-
tivated by β-lactams (Hartman and Tomasz 1984; Lim and Strynadka 2002). In
addition to these enzymes, S. aureus also contains two monofunctional transgly-
cosylases, SgtA and MGT (Heaslet et al. 2009; Reed et al. 2011; Terrak and
Nguyen-Distèche 2006). Under optimal laboratory growth conditions, only PBP1
and PBP2 are essential for viability (Pinho et al. 2001b; Reed et al. 2015; Wada and
Watanabe 1998). It is typical for bacteria to contain multiple PBPs and PGTs, with
some essential and others important for survival under stressful conditions. In part,
this redundancy reflects the central importance of PG for viability. Rod-shaped
organisms such as B. subtilis typically have more PBPs than cocci such as S. aureus
(Zapun et al. 2008). In B. subtilis, PG synthesis occurs both at the septum during
cell division and along the cylindrical walls during cell elongation, and there is
considerable evidence that different biosynthetic machines are involved in these
different modes of PG synthesis (Claessen et al. 2008; Daniel et al. 2000; Spratt
1975; Zapun et al. 2008). Deconvoluting the cellular functions of PBPs and other
cell wall biosynthetic enzymes has been a major challenge due to redundancy and
possible interdependency (Reed et al. 2015; Scheffers and Pinho 2005).

Recycling of carrier lipid:

The Und-P carrier lipid is present in limited amounts in bacterial membranes. In
addition to serving as a carrier lipid for PG synthesis, Und-P is a carrier for WTA
precursors as well as CPS precursors. To ensure an ongoing supply of all these cell
wall precursors, the carrier lipid must be rapidly recycled. Hence, once Lipid II has
reacted to form the glycan strands of PG, the undecaprenyl pyrophosphate released
is converted to Und-P by UppP and other phosphatases (Bouhss et al. 2008; El
Ghachi et al. 2004, 2005), and Und-P is flipped back inside the cell by an unknown
mechanism to enable another round of precursor synthesis.

3.3 Tailoring Modifications of Peptidoglycan

Tailoring modifications of PG subunits modulate the properties of the cell envelope
and may protect bacteria from antimicrobial peptides and proteins (Fig. 2). There
are a number of tailoring modifications found in gram-positive bacteria. These
include N-deacetylation, the removal of C2-acetyl groups from GlcNAc and/or
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MurNAc sugars, and O-acetylation of the MurNAc C6 hydroxyl (Davis and Weiser
2011; Moynihan et al. 2014).

N-deacetylation has been shown to protect bacteria from lysozyme, a host
muramidase that can cleave the glycosidic bond between GlcNAc and MurNAc
residues (Ohno et al. 1982). Some gram-positive organisms including S. pneumo-
niae, Bacillus anthracis, B. subtilis, and other Bacillus species are naturally lyso-
zyme resistant and contain a high proportion of N-deacetylated sugars in their cell
wall (Hayashi et al. 1973; Vollmer and Tomasz 2000; Zipperle et al. 1984). In S.
pneumoniae, approximately 80 % of the glucosamine residues and 10 % of the
muramic acid residues are N-deacetylated (Vollmer and Tomasz 2000). This is
comparable to the 88 and 34 %, respectively, observed in B. anthracis (Zipperle
et al. 1984). The enzyme responsible for GlcNAc deacetylation, PgdA, was first
identified in S. pneumoniae (Vollmer and Tomasz 2000). PdaA, a MurNAc
deacetylase (Fukushima et al. 2005), as well as a second MurNAc deacetylase,
PdaC, which also has chitin deacetylase activity (Kobayashi et al. 2012), have been
identified in B. subtilis. The pgdA mutant in S. pneumoniae was shown to have
attenuated virulence (Vollmer and Tomasz 2002) and the pdaA mutant in B. subtilis
is unable to germinate (Fukushima et al. 2002), indicating the possibility of other
roles of N-deacetylation.

O-acetylation of the MurNAc moiety has been observed in several gram-positive
and gram-negative species in variable amounts. In some strains of S. aureus, for
example, 60 % of MurNAc residues are O-acetylated (Clarke and Dupont 1992). O-
acetylation has been shown to be important for lysozyme resistance and the gene
responsible was identified as oatA in S. aureus (Bera et al. 2005). Homologs of
OatA have also been identified in other gram-positive organisms, including S.
pneumoniae (Crisóstomo et al. 2006) and E. faecalis (Hebert et al. 2007).
Interestingly, while most gram-positive organisms use OatA homologs for O-
acetylation, gram-negative organisms use proteins of a different family called Pat.
B. anthracis produces both kinds of acetyltransferases, and the Pat transferases have
been implicated in acetylation of secondary cell wall polysaccharide (Laaberki et al.
2011; Lunderberg et al. 2013). In addition to resistance to lysozyme, O-acetylation
has been shown to play a role in β-lactam resistance in S. pneumoniae and Listeria
monocytogenes (Aubry et al. 2011; Crisóstomo et al. 2006), and in pathogenesis
and immune evasion in S. aureus (Bera et al. 2006; Shimada et al. 2010). O-
acetylation is critical for infection by L. monocytogenes and is reported to decrease
cytokine production during early stages of infection of mice (Aubry et al. 2011).
GlcNAc residues in PG can also be O-acetylated but this is more unusual. In
Lactobacillus plantarum, GlcNAc O-acetylation plays a role in inhibiting L.
plantarum’s major autolysin (Bernard et al. 2011).

In addition to these modifications, PG can be modified at the MurNAc C6
position with different glycopolymers including TAs, teichuronic acids, and CPS.
Proteins are also covalently attached to the pentaglycine branch of stem peptides of
PG by sortases (Schneewind and Missiakas 2012). In S. aureus, sortase-mediated
protein attachment is thought to occur on the outside of the cell before Lipid II is
polymerized (Perry et al. 2002; Ruzin et al. 2002).
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4 Teichoic Acids

The cell envelopes of gram-positive bacteria are rich in teichoic acids (TAs). There
are two major classes of TAs: lipoteichoic acids (LTAs), which are anchored to a
lipid embedded in the cell membrane, and wall teichoic acids (WTAs), which are
covalently attached to PG. LTAs are believed to be present in all gram-positive
bacteria with the exception of some Micrococcus strains (Powell et al. 1975);
WTAs are found in many, including B. subtilis, S. aureus, Staphylococcus epi-
dermidis, S. pneumoniae and enterococcal species. In organisms where canonical
WTAs are not found, other anionic glycopolymers are attached to PG and may play
analogous roles (Neuhaus and Baddiley 2003). Under phosphate-limiting condi-
tions, some B. subtilis strains produce teichuronic acids instead of WTAs.
Teichuronic acids are described in greater detail in the chapter by Lam and
coworkers. It is estimated that WTAs and other polyanionic polymers comprise up
to 60 % of the cell wall mass (Hancock 1997). Along with LTAs, these polymers
play central roles in numerous cellular processes. Some of these functions are
covered in detail below.

4.1 Wall Teichoic Acid Structure

WTAs typically consist of a disaccharide linkage unit that is connected at the
reducing end to PG via a phosphodiester linkage and at the non-reducing end to a
main chain polymer. The structure of the main chain can vary considerably across
species but always contains phosphodiester linkages that impart anionic charges to
the cell wall (Fig. 4). In S. aureus and B. subtilis, WTA main chains are composed
of glycerol-phosphate or ribitol-phosphate repeats. The WTA main chains are
coupled through a disaccharide linkage unit to PG (Armstrong et al. 1960; Brown
et al. 2013; Kojima et al. 1985; Neuhaus and Baddiley 2003).

In S. pneumoniae, the main chain repeat is composed of 2-acetamido-
4-amino-2,4,6-trideoxygalactose, glucose, ribitol phosphate, and two GalNAc moi-
eties, each decorated with phosphorylcholine. The incorporation of phosphoryl-
choline in WTAs is extremely rare and appears to be exclusive to S. pneumoniae
(Denapaite et al. 2012; Fischer et al. 1993). In E. faecalis 12030, the repeating unit
contains D-glucose, D-galactose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2-
deoxy-D-glucose, and ribitol phosphate (Theilacker et al. 2012). InE. faeciumU0317,
the WTA polymer is simpler, consisting of repeating units of two residues of
2-acetamido-2-deoxy-D-galactose and glycerol phosphate (Bychowska et al. 2011).
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4.2 Wall Teichoic Acid Biosynthesis

The biosynthetic pathways for WTA assembly in B. subtilis and S. aureus have
been well established (Brown et al. 2008, 2010; Lazarevic et al. 2002; Mauël et al.
1991) and are covered in the chapter by Lam and coworkers. The assembly begins
in a similar manner to PG assembly. Briefly, phospho-GlcNAC is transferred from
UDP-GlcNAC to the Und-P lipid carrier and then this “starter unit” is further
elaborated by a series of intracellular enzymes to assemble the full polymeric
precursor. While the structures of the main chains made in B. subtilis and S. aureus
are similar, particularly in WTAs from B. subtilis W23 and S. aureus, there are
substantial differences in the biosynthetic pathways that were not evident from
bioinformatic analysis (Brown et al. 2008, 2010; Meredith et al. 2008; Pereira et al.
2008). It is not yet possible to predict the enzymatic functions of putative TA
primases and polymerases accurately. Once the full chain is polymerized inside the
cell, it is flipped by a two-component ABC transporter to the surface of the bacterial
membrane and ligated to the PG. The pathway in S. pneumoniae and other species
has not been as well elucidated and most of the enzymes, apart from those
responsible for choline uptake, have been deduced by bioinformatic analysis and
remain to experimentally validated (Denapaite et al. 2012).

Unlike PG, WTAs are not essential for survival of S. aureus in vitro as the first
two genes in the pathway can be deleted. However, the subsequent genes in the
pathway were identified as essential (Chaudhuri et al. 2009; Kobayashi et al. 2003).
This apparent paradox was resolved by studies showing that the downstream genes
in the WTA pathway can be deleted as long as one of the first two genes has been
disrupted (D’Elia et al. 2006). This finding implied that the essentiality of the
downstream genes was conditional on flux into the pathway, and it was suggested
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that lethality due to a late block in WTA biosynthesis could arise from accumu-
lation of a toxic metabolite or from sequestration of the Und-P carrier lipid in WTA
intermediates, which would lead to inhibition of PG biosynthesis (D’Elia et al.
2009). It was recently shown that inhibiting a late step in WTA biosynthesis results
in rapid depletion of the PG precursor Lipid II, consistent with lethality arising from
inhibition of PG biosynthesis (Qiao et al. 2014). Other cell envelope polymers such
as CPS are synthesized on the Und-P carrier lipid, and the biosynthetic pathways
for some of these also contain a mix of nonessential early genes and conditionally
essential late genes (Xayarath and Yother 2007). Conditional essentiality of the late
genes depends on whether intermediates can be metabolized through an alternative
pathway to release the carrier lipid.

The final step of the WTA pathway involves the ligation of WTAs onto PG. The
LytR-CpsA-Psr protein family was recently shown to be involved in this process
(Kawai et al. 2011; Over et al. 2011; Dengler et al. 2012). B. subtilis, S. aureus, and
S. pneumoniae strains have three LytR-CpsA-Psr homologs. In the case of S.
aureus, one of these homologs has been shown to be involved in the ligation of
CPS to PG (Chan et al. 2014). The other two appear to be involved in the ligation of
WTAs to PG (Chan et al. 2013), but their cellular functions have not been clearly
delineated. No LytR-CpsA-Psr family member has yet been reconstituted in vitro.
More details on the discovery of these proteins are provided in the chapter by Lam
and coworkers.

4.3 Lipoteichoic Acid Structure

In most organisms, LTAs are synthesized by completely different biosynthetic
pathways from WTAs, except in the case of S. pneumoniae where the repeating
units are structurally identical and are thought to be assembled using the same
enzymes (Denapaite et al. 2012; Fischer et al. 1993). The most common LTA
structure comprises a polyglycerol-phosphate chain anchored to a glycolipid in the
membrane. This type of LTA is found in S. aureus, B. subtilis, and L. monocyto-
genes. In other species of gram-positive organisms, LTAs contain additional sugar
moieties connecting the glycolipid anchor to the polyglycerol-phosphate polymer.
The glycolipid anchor is usually diacylglycerol with two glucose moieties
(Glc2DAG), as in S. aureus and B. subtilis, but it can also contain more than two
glucose residues (Clostridium difficile) as well as other sugar moieties such as
galactose (in L. monocytogenes) or GlcNAc (in Clostridium innocuum) (Fischer
1988; Percy and Gründling 2014).
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4.4 Lipoteichoic Acid Synthesis

LTA synthesis begins in the cytoplasm with the assembly of the glycolipid anchor.
In S. aureus and B. subtilis, YpfP (also called UgtP) is responsible for attaching
both glucose units to diacylglycerol (DAG) to give the glycolipid anchor, Glc2DAG
(Jorasch et al. 1998; Kiriukhin et al. 2001), which is then flipped across the
membrane by LtaA (Gründling and Schneewind 2007a). LtaS then builds the
polymer chain by transferring glycerol phosphate from phosphatidylglycerol to
Glc2DAG (Gründling and Schneewind 2007b). Deleting ypfP or ltaA does not
abolish the synthesis of LTA, but results in polymers with altered structure.
Evidently, LTA can be synthesized on DAG, as well as Glc2DAG (Gründling and
Schneewind 2007a). LtaS is a polytopic membrane protein with an extracellular
domain. The crystal structure of the extracellular domain of LtaS (eLtaS) bound to
glycerol phosphate has been reported and suggests a possible covalent mechanism
for LtaS in which an active site threonine reacts with phosphotidylglycerol to form
a covalent glycero-phospho-threonine intermediate. This intermediate is resolved
by reaction with the hydroxyl group of the growing LTA chain (Lu et al. 2009;
Schirner et al. 2009). Some organisms, such as L. monocytogenes, contain a
two-enzyme pathway to make LTA main chains (Webb et al. 2009). One enzyme,
LtaP, functions as a primase to add one unit of glycerol phosphate to the glycolipid
anchor. In the case of L. monocytogenes, this glycolipid anchor is Gal-Glc-DAG.
A polymerase, LtaS, then extends the chain. LtaP is not essential for LTA synthesis;
however, LTAs from a ltaP null mutant are longer than those from the wild-type
strain (Webb et al. 2009), as in a ltaA or ypfP deletion in S. aureus. The mechanistic
basis for length differences between “primed” and “unprimed” glycolipid anchors is
not understood. A recent crystal structure of LtaS from L. monocytogenes reveals a
glycerol-phosphate-binding site that may accommodate part of the growing LTA
chain (Campeotto et al. 2014). While glycerol-phosphate polymerization activity
has not been reconstituted for any LtaS, perhaps because some of the transmem-
brane helices form part of the active site for polymerization, eLtaS from S. aureus
was shown to be sufficient for cleavage of the phosphodiester bond in phos-
phatidylglycerol (Karatsa-Dodgson et al. 2010). The diacylglycerol product
released in the LtaS reaction with phosphatidylglycerol is recycled back into the cell
and the protein responsible for recycling has been identified as diacylglycerol
kinase DgkB (Jerga et al. 2007).

While S. aureus contains only one LtaS and L. monocytogenes has LtaP and
LtaS, B. subtilis has four LtaS homologs (Gründling and Schneewind 2007b;
Schirner et al. 2009). It has been reported that while three of these homologs—
LtaS, YqgS, and YfnI—have LtaS-like activity, one of them, YvgJ, functions as a
primase (Wörmann et al. 2011). Unlike in L. monocytogenes, the B. subtilis primase
is not required for normal LTA synthesis, suggesting that the LtaS enzymes are
capable of initiating synthesis of LTA polymers efficiently. YfnI has been shown to
make LTA polymers that are substantially longer than those produced by LtaS or
YqgS (Wörmann et al. 2011). The observation that yfnI expression is regulated by

Envelope Structures of Gram-Positive Bacteria 15



the alternative sigma factor SigM, which responds to stress conditions (Jervis et al.
2007), suggests that certain stresses call for the production of elongated polymers in
B. subtilis (Wörmann et al. 2011). Phenotypically, ltaS mutants show increased cell
elongation and chain length, reduced cell diameter, cell bending, lysis, and
abnormally thick septa, whereas single deletions of the other three homologs do not
have any obvious defects. The ltaS-yqgS double mutant has sporulation defects; all
other double mutant combinations with ltaS can sporulate. These results implicate
LtaS and YqgS in sporulation. The quadruple mutant is viable, although it has a
more severe phenotype than the single ltaS mutant (Schirner et al. 2009). Deletion
of ltaS in S. aureus has also been accomplished, but viable mutants have sup-
pressors that enable growth through a mechanism that involves increased levels of
cyclic-di-AMP, which may regulate cell membrane functions (Corrigan et al. 2011,
2013). Even with the suppressor, these mutants have severe cell division defects
(Corrigan et al. 2011; Gründling and Schneewind 2007b; Oku et al. 2009). Hence,
LTAs are critical even for in vitro growth of many gram-positive organisms.

4.5 Tailoring Modifications of Teichoic Acids

Both LTAs and WTAs are often modified with D-alanine esters to modulate the
charges of the cell envelope. They can also be modified with sugar moieties. These
tailoring modifications have been implicated in numerous functions in cell physi-
ology and infection.

D-alanylation: The ribitol (in WTA) or glycerol (as in S. aureus LTA) groups in
TAs are frequently decorated with D-alanine moieties, which introduce positive
charges to neutralize the negatively charged phosphates in the polymer backbone.
On ribitol groups, D-alanylation occurs at the C2 position (Neuhaus and Baddiley
2003). D-alanine moieties are added by four proteins, DltABCD, encoded by the dlt
operon (Fig. 5). DltA activates D-alanine as the AMP ester and then transfers it to
the sulfhydryl group on the phosphopantetheinyl arm of the carrier protein DltC
(Heaton and Neuhaus 1992, 1994; Perego et al. 1995; Volkman et al. 2001). DltA is
similar to carrier protein ligases found in non-ribosomal peptide synthetases (Brown
et al. 2013; Percy and Gründling 2014; Yonus et al. 2008). The next steps are not
understood. DltB is a polytopic membrane protein belonging to the mBOAT family
(for membrane-bound O-acetyl transferases), which is ubiquitous in all kingdoms of
life (Hoffman 2000). DltD contains a single membrane spanning helix and an
extracellular domain with predicted esterase/thioesterase activity (Brown et al.
2013; Reichmann et al. 2013). It has been proposed that DltC transfers D-alanine to
Und-P to form an acyl-phosphate intermediate, which is then transferred through
the membrane by DltB to modify LTAs with the assistance of DltD (Perego et al.
1995; Reichmann et al. 2013). There is no evidence for the proposed
acyl-phosphate intermediate and the reaction to form it from the thioester is ther-
modynamically unfavorable, although it may conceivably be coupled to hydrolysis
of the pyrophosphate released during D-alanine activation by DltA. Pulse-chase
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experiments have suggested that D-alanines installed on LTAs are subsequently
transferred to WTAs (Haas et al. 1984; Koch et al. 1985), but the mechanistic
details of the transfer are unclear. In particular, it is not known whether an enzyme
is involved in the process.

Glycosylation: The majority of ribitol phosphate groups in WTAs in S. aureus
are glycosylated with GlcNAc on the ribitol C4 position (Brown et al. 2013).
Similarly, LTAs can also be glycosylated with GlcNAc or α-galactose in B. subtilis
(Percy and Gründling 2014). In S. pneumoniae, LTA can be glycosylated with
GalNAc (Draing et al. 2006). In staphylococci, it has been shown that D-alanylation
and glycosylation compete for the same position on LTAs. Approximately 70 % of
the glycerol phosphates carry D-alanines while 15 % carry GlcNAc moieties
(Schneewind and Missiakas 2014). WTA precursors are glycosylated intracellularly
and the enzymes responsible for glycosylation have been identified in a number of
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resistance to β-lactams. D-alanylation has been shown to play an important role in these functions
as well. Specifically, the absence of D-alanine modifications sensitizes to cationic antimicrobial
peptides, including host defensins. The only known roles for α- and β-GlcNAC modifications are
in phage attachment, and for β-GlcNAcs, in β-lactam resistance. Due to its roles in adhesion,
virulence, and antibiotic resistance, attempts are being made to target TA biosynthesis and
modification pathways. The known compounds targeting these pathways are shown here
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organisms. In B. subtilis 168, TagE attaches α-glucosyl units to the
polyglycerol-phosphate WTA chains (Allison et al. 2011); in B. subtilis W23, TarQ
attaches β-glucosyl units to the polyribitol-phosphate WTA chains (Brown et al.
2012). In S. aureus, TarM attaches α-GlcNAc residues while TarS attaches β-
GlcNAc residues (Shobanifar et al. 2015; Xia et al. 2010; Brown et al. 2012). No
enzymes responsible for LTA glycosylation, which occurs extracellularly, have yet
been identified. It is likely that these enzymes use membrane-anchored sugar
substrates that cannot diffuse away from the cell and therefore do not resemble the
nucleotide-diphosphate sugar transferases that glycosylate WTA precursors inside
the cell.

4.6 Roles of Teichoic Acids and Their Tailoring
Modifications in Cell Physiology and Immune Evasion

Roles in cell division and morphology: TAs perform several crucial functions for
the cell. In B. subtilis, WTAs are required to maintain the rod-shaped morphology
(Boylan et al. 1972; Pollack and Neuhaus 1994; Schirner et al. 2015). In the
quadruple mutant lacking all four LtaS homologs, there are severe cell division and
septation defects that cause filamenting and clumping of cells and the mutant grows
very slowly, indicating that LTAs are required for proper cell division (Schirner
et al. 2009). Disruption of YpfP caused the rod-shaped cells to become bent and
distended, and also disrupted the localization of the cytoskeletal protein MreB,
important for the rod-shape in B. subtilis (Matsuoka et al. 2011). Interestingly, YpfP
has also been implicated in a metabolic sensing role, localizing to the division site
in a nutrient-dependent manner and inhibiting the assembly of FtsZ. It is important
that the number of Z-rings to cell length is maintained at a constant ratio so cells do
not initiate division before reaching the correct cell mass. Thus, YpfP could play a
significant role in cell cycle events (Weart et al. 2007). In S. aureus, both LTAs and
WTAs have been implicated in cell division: mutants defective in either LTA or
WTA biosynthesis have major septal defects, including placing new septa at angles
non-orthogonal to previous septa and forming multiple septa almost simultane-
ously. These mutants are also impaired in separation after division (Campbell et al.
2011; Gründling and Schneewind 2007b; Oku et al. 2009). In S. aureus, LTAs are
more critical to the cell than WTAs in vitro as evidenced by the fact that the ltaS
deletion strain is viable only in the presence of suppressors (Corrigan et al. 2011),
whereas tarO mutants grow fairly well. WTAs, however, become very important
in vivo (Valentino et al. 2014; Wang et al. 2013; Weidenmaier et al. 2005).
Simultaneous disruption of WTAs and LTAs is lethal in both S. aureus and B.
subtilis (Oku et al. 2009; Santa Maria et al. 2014; Schirner et al. 2009). In S. aureus,
cells lacking both polymers are unable to form the essential division ring (Z-ring)
(Santa Maria et al. 2014). Interestingly, in the absence of WTAs, D-alanyl modi-
fications on LTAs become essential. Both WTAs and D-alanylation have been
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implicated in autolysin regulation, and when WTAs and D-alanines are both
missing, cells lyse rapidly. The evidence suggests that LTAs and WTAs have
overlapping but not fully redundant roles in cell division and autolysin regulation
(Santa Maria et al. 2014).

Roles in ligand binding and scaffolding: TAs have been implicated in binding
cations, and this correlates inversely with D-alanylation levels (Archibald et al.
1973; Neuhaus and Baddiley 2003). Cation homeostasis is thus an important
function of TAs that can be regulated through D-alanylation. WTAs also serve as
phage receptors in S. aureus (Brown et al. 2012; Chatterjee 1969; Xia et al. 2010;
Young 1967). Phage binding is mediated by the GlcNAc modifications added on to
WTAs (Brown et al. 2012; Xia et al. 2010). Requirement for glucose in TAs for
phage adsorption has been shown in B. subtilis 168 as well (Young 1967; Allison
et al. 2011). WTAs have also been implicated in other protein scaffolding roles. For
instance, in S. aureus, FmtA, a protein that plays a role in methicillin resistance in
MRSA strains, was shown to bind to WTAs (Qamar and Golemi-Kotra 2012). In S.
pneumoniae, several proteins bind specifically to the choline moieties on TAs.
These proteins, which include the highly studied virulence protein PspA, have been
implicated in numerous functions from adhesion to virulence, and cell wall
hydrolysis (Fischer 2000; Giudicelli and Tomasz 1984; Gosink et al. 2000;
Hakenbeck et al. 2009; Rosenow et al. 1997). In L. monocytogenes, InlB, a protein
that promotes entry into mammalian cells, is shown to interact with LTAs
(Jonquières et al. 1999). The domain necessary for interaction with LTAs in this
protein contains GW modules (conserved modules of *80 amino acids which have
the dipeptide Gly-Trp). These modules have also been identified in Ami, a L.
monocytogenes autolysin and the S. aureus autolysin Atl (Cabanes et al. 2002).
Autolysins are hydrolases that degrade PG and thus play an essential role in cell
division and separation. In S. aureus, WTA plays a role in Atl localization. While
Atl is usually localized to the cross-wall, it is mislocalized across the cell surface in
WTA-deficient strains. Mislocalization of autolysins could be one reason
WTA-deficient mutants are prone to autolysis (Schlag et al. 2010). It has been
suggested that D-alanylation is also involved in autolysin regulation (Peschel et al.
2000). Similarly, PBP4 in S. aureus is also mislocalized when WTAs are absent
(Atilano et al. 2010), indicating a role for WTAs in the localization of PG
biosynthetic machinery.

Roles in antibiotic resistance and virulence: In MRSA, the lack of WTAs dra-
matically reduces the organism’s resistance to β-lactams, indicating that WTAs play
a major role in methicillin resistance of S. aureus (Campbell et al. 2011). The
influence of WTAs on resistance has been traced specifically to the β-GlcNAc
modification on WTAs, which suggests that β-GlcNAcylated WTAs scaffold a
factor required for β-lactam resistance (Brown et al. 2012). In S. aureus,WTAs also
provide resistance to antimicrobial fatty acids on the skin during skin colonization
(Kohler et al. 2009). D-alanylation plays an important role in modulating resistance
to certain antibiotics. It is very important for repelling cationic antimicrobial pep-
tides (CAMPs), a crucial part of host immune response (Collins et al. 2002; Kristian
et al. 2005; Peschel et al. 1999). This has been observed in several gram-positive
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species including S. aureus (Peschel et al. 1999), S. pneumoniae (Kovács et al.
2006), and E. faecalis (Fabretti et al. 2006). An increase in D-alanylation is also
observed in mutants resistant to daptomycin, an antibiotic used to treat MRSA
(Yang et al. 2009a). Antimicrobial resistance due to D-alanylation has been
attributed to its functions in imparting positive charges to the cell surface and its
contributions to changes in the biophysical aspects of the cell envelope (Mishra
et al. 2014; Saar-Dover et al. 2012).

TAs in their D-alanylated form play a major role in biofilm formation, adhesion
to the surface of cells and medical devices, colonization of host tissue, and viru-
lence, likely due to surface charge effects (Brown et al. 2013; Gross et al. 2001; Jett
et al. 1994; Neuhaus and Baddiley 2003; Percy and Gründling 2014). Biofilms,
which consist of viable cells held together by an extracellular matrix of DNA and
proteins from lysed cells as well as extracellular polysaccharides and other poly-
mers, form on surfaces of medical instruments or in hosts, and enable the organism
to evade both natural and synthetic antimicrobials (Hall-Stoodley et al. 2004;
Sutherland 2001; Abee et al. 2011). Thus, adhesion and biofilm formation are key
tools in a pathogen’s arsenal. The role of TAs in adhesion and effective host
colonization has been well established in several gram-positive organisms (Aly
et al. 1980; Baur et al. 2014; Fabretti et al. 2006; Weidenmaier et al. 2004). In S.
aureus, WTA glycosylation has specifically been implicated in adhesion (Winstel
et al. 2015). For all these reasons, TAs are potent virulence factors and mutants
lacking TAs or D-alanylation have highly attenuated virulence (Abachin et al. 2002;
Collins et al. 2002; Fittipaldi et al. 2008; Suzuki et al. 2011a; Weidenmaier et al.
2005; Xu et al. 2015). As mentioned above, several choline-binding proteins in S.
pneumoniae have roles in virulence and mutants made to grow independent of
choline have highly attenuated virulence (Kharat and Tomasz 2006).

LTAs contribute to the immune response generated during infection by
gram-positive bacteria (Ginsburg 2002). Although there was some controversies
concerning whether the immunomodulation arises from LTAs or from lipoproteins
that are often copurified (Hashimoto et al. 2006a, b), evidence suggests that LTAs
likely affect the immune system response on their own as well (Bunk et al. 2010;
Mohamadzadeh et al. 2011; von Aulock et al. 2007). LTAs are reported to stimulate
the production of cytokines (Bhakdi et al. 1991; Draing et al. 2008; Ray et al. 2013)
and those from S. pneumoniae and S. aureus can activate immune cells via toll-like
receptor 2, lipopolysaccharide binding protein and CD14 (Ryu et al. 2009; Schröder
et al. 2003). They also activate the complement system of the immune response
(Fiedel and Jackson 1978; Loos et al. 1986) and can affect other macrophage
parameters, including secretion of tumor necrosis factor α and nitrite (Keller et al.
1992). Antibodies have been identified that are directed toward non-D-alanylated
LTAs in E. faecalis (Theilacker et al. 2006). Due to this ability to modify host
immunity, efforts are ongoing to develop LTA-conjugated vaccines against
gram-positive bacteria (Percy and Gründling 2014). The choline-binding proteins
anchored to TAs in S. pneumoniae could be used as vaccine candidates as well
(Jedrzejas 2001; Rosenow et al. 1997).
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5 Capsular Polysaccharides

Capsular polysaccharides (CPS) are highly variable glycopolymers that are
anchored to PG (Chan et al. 2014; Sorensen et al. 1990; Xayarath and Yother 2007;
Yother 2011). They extend above the cell wall and have been implicated in phage
resistance and immune evasion (O’Riordan and Lee 2004; Roberts 1996). Although
not present in all gram-positive organisms, encapsulation is observed in most highly
pathogenic strains. The synthesis of CPS is covered in the chapter by Lam and
coworkers. Since CPS is best studied in S. pneumoniae, we will focus on the
structural diversity in CPS in S. pneumoniae and their function in immune evasion.

5.1 Structural Diversity of CPS

A phenomenal 93 different serotypes of pneumococcal capsule have been identified
over the years and most of the serotypes can cause infection (Kalin 1998; Yother
2011). Recombinational exchanges at the CPS biosynthetic locus can result in a
large amount of variation in capsular type (Coffey et al. 1998). Disruption and
sequence changes in the genes of the CPS cluster occurring naturally can change the
CPS serotype from one to another (Calix et al. 2014; Calix and Nahm 2010; van
Selm et al. 2003) contributing to the diversity of pneumococcal capsules. These
differences are usually observed in the gene responsible for modifying sugar
moieties in CPS with O-acetyl groups. In fact, in vivo switching from one capsule
type to another has been observed (Venkateswaran et al. 1983). This switch has
been attributed to a change in the number of short tandem TA nucleotide repeats in
the putative O-acetyltransferase gene, which could explain reversible switching
between serotypes that might occur in vivo (van Selm et al. 2003).

CPS is made of long chains of repeating oligomeric units and the repeating units
vary between serotypes. As an example, the repeat unit of S. pneumoniae serotype 2
is made of a backbone with glucose-rhamnose-rhamnose-rhamnose unit and a
glucose-glucuronic acid side chain (Kenne et al. 1975). Recently, serotypes of S.
pneunomiae that have CPS containing two different repeat units have been
described (Oliver et al. 2013a, b). There are multiple different serotypes in S. aureus
as well. Out of the 11 serotypes described for S. aureus, serotypes 5 and 8 are
responsible for the majority of human infections (O’Riordan and Lee 2004).

5.2 CPS, Host Immunity, and Vaccine Development

It has long been known that CPS reduces the ability of bacteriophage to interact
with the cell surface (Wilkinson and Holmes 1979). CPS plays a major role in
virulence of bacterial pathogens and capsule mutants are avirulent. Capsule has
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been shown to facilitate abscess formation by activating T cells in the host immune
system (Tzianabos et al. 2001). The complement system is important in immune
response activation and clearing an infection. Capsule is able to mask the binding of
opsonic C3 fragments to the complement receptor, thus decreasing opsonization
and phagocytosis by leukocytes (Cunnion et al. 2003; Peterson et al. 1978). This
has also been demonstrated in E. faecalis, where capsule masks C3 deposits and
LTAs from detection by the host immune system, thereby decreasing tumor
necrosis factor α production (Thurlow et al. 2009). In Group B Streptococcus, the
terminal sialic acid groups on capsules have been shown to interact with Siglecs on
human leukocytes. They are suggested to mimic the human cell surface glycans,
reducing the activation of innate immune response (Carlin et al. 2007, 2009).

Due to the high immunomodulatory ability of CPS, it has been explored for
vaccine development. It has been known for a long time that immunization with
polyvalent pneumococcal polysaccharide is effective as a vaccine (MacLeod et al.
1945; Shapiro et al. 1991). It was later shown that conjugating the polysaccharides
to a carrier protein resulted in a more effective vaccine (De Velasco et al. 1995).
Today, different variations on pneumococcal vaccines are available, incorporating
up to 23 polysaccharide variants (PPSV23), or conjugate vaccines incorporating 7
(PCV7) or 13 (PCV13) CPS serotypes (Bogaert et al. 2004; Pilishvili and Bennett
2015; Steens et al. 2014). PCV13 is used for immunization of infants <2 years of
age and has recently also been approved for immunizing adults 50 years or older in
series with PPSV23. PPSV23, however, is not effective in infant immunization.
This is because PPSV23 generates immune responses that are T-cell independent
and therefore, poorly supported by the immature immune systems of children
<2 years. In contrast, PCV13 generates immune responses that are mediated by
T-cell-dependent mechanisms effective in infants (Pilishvili and Bennett 2015).
Efforts are being made in improving not only the polysaccharide composition of
vaccines but also the carrier protein used to conjugate the polysaccharide. The
immunogenic properties of the carrier protein could alter the immune response to
the vaccine (Dagan et al. 2010; Pobre et al. 2014). There is a concern that pneu-
mococcal conjugate vaccines select for non-vaccine serotypes. Pelton et al. reported
that immunization with PCV7 during 2000–2003 reduced vaccine serotypes from
22 to 2 % but increased the incidence of non-vaccine serotypes from 7 to 16 %
(Pelton et al. 2004). With over 90 different serotypes of S. pneumoniae, this is an
important concern, and studies are ongoing to resolve this issue (Jefferies et al.
2011; Nurhonen and Auranen 2014).

Capsular conjugate vaccines against serotypes 5 and 8 of S. aureus have also
been explored (Creech et al. 2009; Fattom et al. 2004; Robbins et al. 2004).
However, these vaccines have so far not passed clinical trials (Bagnoli et al. 2012;
Cook et al. 2009), and evidence has emerged that this reduced efficacy could be due
to interference from natural non-opsonic antibodies to PNAG, the S. aureus
exopolysaccharide, present in human serum (Skurnik et al. 2012).
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6 Exopolysaccharides and Biofilm Formation

Apart from these major cell envelope structures, other glycopolymers called
exopolysaccharides are secreted by cells as well. These exopolysaccharides are long
chains that associate with each other to form the biofilm matrix (Sutherland 2001;
Otto 2008; Vlamakis et al. 2013). Polysaccharide intercellular adhesin (PIA) in S.
epidermidis is a well-studied component of biofilms (Mack et al. 1996; Itoh et al.
2005). It is a linear polymer of β-1,6-linked GlcNAc moieties, although some
residues can be N-deacetylated. PIA/PNAG is suggested to be held to the cell
surface by ionic interactions of the positively charged, un-acetylated moieties of the
polymer, so N-deacetylation is important for surface localization of PIA (Vuong
et al. 2004). PIA is synthesized by the icaADBC operon in S. epidermidis, and
homologs have been identified in other species including S. aureus (Gerke et al.
1998; Heilmann et al. 1996; Mack et al. 1996; Rohde et al. 2010). In S. aureus, this
high-molecular mass exopolysaccharide termed PNAG is produced by
biofilm-forming strains. Due to its role in modulating immune responses, vaccines
using conjugated PNAG are also being explored (Maira-Litrán et al. 2012). Its role
in biofilm formation has created interest in the study of the role of each enzyme in
the icaADBC operon and how it is regulated (Arciola et al. 2015; O’Gara 2007).
There are also ica-independent methods for biofilm formation which include roles
by TAs and cell-surface-associated proteins. The mechanism for biofilm formation
in MRSA appears to be ica-independent, whereas it is ica-dependent in the sen-
sitive strains (O’Gara 2007). Biofilm formation is thus a complex and highly reg-
ulated system.

7 Antibiotics Targeting the Cell Envelope

Due to the crucial importance of the cell envelope to cell survival, many antibiotics
that target cell envelope synthesis have been developed over the years (Fig. 3)
(Walsh 2003). There are some antibiotics that target the intracellular steps of PG
synthesis, including fosfomycin, which inhibits MurA, the first committed step of
PG synthesis (Kahan et al. 1974). However, the greatest clinical successes have
been achieved by those antibiotics that target the extracellular steps of cell wall
synthesis. These include the unusual substrate-binding antibiotics, which form
complexes with cell wall precursors instead of the enzymes that process them.
Binding to these precursors prevents their use and results in inhibition of cell wall
synthesis. Vancomycin, a glycopeptide antibiotic used to treat MRSA, belongs to
the substrate-binding class of antibiotics. It binds to the D-Ala-D-Ala motif of the
stem peptide in Lipid II and nascent PG, thereby interfering with both Lipid II
polymerization to form PG strands and with subsequent cross-linking of the strands
(Anderson et al. 1967; Perkins and Nieto 1974; Perkins 1969; Reynolds 1989).
Binding to and sequestering Lipid II has been established as the mechanism of
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action of some other antibiotics including ramoplanin, a cyclic lipoglycodep-
sipeptide antibiotic (Lo et al. 2000; Hu et al. 2003b), nisin and other lantibiotics
(Brötz et al. 2002; Hsu et al. 2004; Oman et al. 2011; Patton and van der Donk
2005), and the recently discovered teixobactin (Ling et al. 2015). All these com-
pounds recognize the pyrophosphate-sugar moiety of Lipid II. Plectasin, a fungal
defensin, also acts by binding to Lipid II (Schneider et al. 2010). Human defensins
have also been shown to interact with Lipid II (Sass et al. 2010; De Leeuw et al.
2010). It is interesting that antimicrobial peptides produced by the host as part of
the innate immune response use Lipid II binding to counteract bacterial threats. The
structural diversity of the compounds that bind Lipid II is truly astonishing and
indicates that this cell wall precursor is an exceptional target.

Development of resistance to compounds which bind to essential substrates is
particularly slow for several reasons. They typically act on the extracellular surface
of the membrane and are not subject to efflux pump-mediated resistance mecha-
nisms. Moreover, because they do not bind to a protein target, a single mutation in
the gene encoding the target cannot confer high-level resistance (Wright 2011). In
the case of vancomycin, intermediate resistance can arise through multiple muta-
tions that modify the envelope, but high-level resistance only arises due to the
modification of the structure of the target substrate (Gardete and Tomasz 2014;
Walsh and Howe 2002; Healy et al. 2000). The modification, which involves
replacing D-Ala-D-Ala with a dipeptide to which vancomycin cannot bind, requires
several enzymes, as well as a two-component sensing system, and the genes
encoding these enzymes are encoded on a cassette that is transferred between
organisms (Arthur and Courvalin 1993; Palmer et al. 2010). Glycopeptide resis-
tance genes originated in a glycopeptide producer as a means of self-immunity, but
now have spread widely, particularly in enterococcal strains (Marshall et al. 1998).
D-Ala-D-Lac, synthesized by the vanA cassette, is the most common replacement for
D-Ala-D-Ala in vancomycin-resistant strains. Vancomycin has a thousand-fold
lower affinity for D-Ala-D-Lac because a crucial hydrogen bond between the drug
and the target can no longer be formed (Arthur and Courvalin 1993; Handwerger
et al. 1992; Bugg et al. 1991). A change from D-Ala-D-Ala to D-Ala-D-Ser in Lipid II
can also cause moderate resistance to vancomycin (Depardieu et al. 2007; Lebreton
et al. 2011). Although high-level vancomycin resistance is common in enterococci
(VRE), it has not yet emerged as a major problem in S. aureus, likely due to
reduced frequency of transfer of the resistance cassette between enterococci and
staphylococci (Palmer et al. 2010; Périchon and Courvalin 2009). The several cases
where vancomycin-resistant S. aureus (VRSA) have been identified have involved
coinfection with VRE (Weigel et al. 2003; Zhu et al. 2008; Sievert et al. 2008;
Chang et al. 2003; Whitener et al. 2004). The barriers that prevent facile transfer of
vanA resistance into S. aureus are not well understood, and there is a concern that
these barriers may be overcome with continued evolution. While there is an interest
in substrate binders as a class, none of the ones that recognizes the sugar
pyrophosphate portion of Lipid II has been developed for clinical use, although
ramoplanin is in clinical trials (Paknikar and Narayana 2012). As with vancomycin,
high-level resistance to ramoplanin does not develop spontaneously. Moderate
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ramoplanin resistance develops after multiple passaging and involves cell envelope
modifications that may impede access to the Lipid II target on the cell surface
(Schimdt et al. 2010). If any Lipid II binders come to be used clinically, resistance
genes from the producing organisms may eventually find their way into relevant
pathogens, like in the case of vancomycin.

β-lactams, a remarkably successful class of antibiotics, are also among the
extracellular PG synthesis inhibitors. β-lactams are proposed structural mimics of D-
Ala-D-Ala and inhibit the transpeptidase activity of PBPs by acylating the active site,
preventing the cross-linking of stem peptides (Yocum et al. 1979, 1980).
Widespread resistance to β-lactams first emerged in the form of β-lactamases, which
degrade β-lactams (Gutkind et al. 2013). Combination antibiotics of β-lactams with
β-lactamase inhibitors are used to treat many β-lactam-resistant infections. One
example is Augmentin, a combination of amoxicillin and clavulanic acid (Drawz
et al. 2014; Reading and Cole 1977; White et al. 2004). While β-lactamases continue
to be a major concern in gram-negative organisms such as Klebsiella pneumoniae
and Pseudomonas aeruginosa (Hong et al. 2015; Pitout et al. 2015), some
gram-positive organisms have acquired a different mechanism of resistance.
Methicillin-resistant S. aureus (MRSA) expresses a penicillin-binding protein
(PBP2A) that has reduced affinity for β-lactams (Hartman and Tomasz 1984; Lim
and Strynadka 2002; Fuda et al. 2004). When native PBPs are inhibited by β-
lactams, PBP2A can continue to cross-link PG. Due to the growing concern about
the spread of MRSA, a significant amount of time has been invested in designing
next-generation β-lactams that can target the resistant PBP, including ceftobiprole
(Davies et al. 2007) and ceftaroline (Moisan et al. 2010). In addition, other classes of
antibiotics have been developed to treat MRSA, including daptomycin, tedizolid,
linezolid, and the glycopeptide analog oritavancin (Hall and Michaels 2015; Holmes
and Howden 2014; Leach et al. 2011; McDaneld et al. 2013; Mitra et al. 2015).

8 The Quest for Novel Antibiotic Targets

Resistance to antibiotics of all classes is a serious concern for the future of human
health, and efforts should be made to identify novel pathways that can be targeted
by new antibiotics or whose inhibition can potentiate the effects of existing
antibiotics in resistant strains. Efforts are ongoing to identify and target the multiple
other steps involved in the PG biosynthetic pathway. For instance, inhibitors of the
Lipid II flippase in S. aureus, DMPI and CDFI, have been identified (Huber et al.
2009). Targeting pathways that contribute to resistance to current antibiotics are
also being explored as a viable option. Apart from the β-lactamases described
above, the potential for targeting such auxiliary proteins and pathways is immense,
particularly in the case of MRSA, where many cellular factors contribute to β-
lactam resistance (Berger-bächi and Rohrer 2002). For instance, changes to the stem
peptide and interpeptide bridge resensitize MRSA to β-lactams (Ludovice et al.
1998; De Jonge et al. 1993; Maidhof et al. 1991; Tschierske et al. 1997). This has
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also been observed in S. pneumoniae (Weber et al. 2000). In S. aureus, inactivation
of one of the PBPs involved in cross-linking of stem peptides, PBP4, is shown to
play a role in resistance to β-lactams (Memmi et al. 2008). This has also been
shown for the inhibition of PG amidation (Figueiredo et al. 2012). Inactivation of
tarO, encoding the first step in WTA biosynthesis, also sensitizes MRSA to β-
lactams (Campbell et al. 2011). Finally, factors affecting methicillin resistance also
include proteins of hitherto unknown functions. FmtA is an example of one such
protein factor (Komatsuzawa et al. 1997). Further understanding of the roles and
identification of compounds that target these auxiliary factors could be useful in
designing effective combination therapies with β-lactams to treat MRSA.

Since TAs and their modifications perform such important functions in cell sur-
vival, virulence, and β-lactam resistance, they are being investigated for their potential
in combination therapies and as anti-virulence targets (Fig. 5). Tunicamycin, a
well-known natural product inhibitor of the first step for WTA synthesis (Hancock
et al. 1976), has been shown to restore β-lactam susceptibility in MRSA (Campbell
et al. 2011). Although tunicamycin is toxic to eukaryotes, potent, non-toxic TarO
inhibitors could have great potential (Farha et al. 2014). In addition, the conditionally
essential nature of theWTA pathway has been exploited in a pathway-specific screen
to identify downstream inhibitors with antibiotic activity (Swoboda et al. 2009).
Targocil and several other downstream inhibitors of theABC transporter (TarGH) that
exports WTA polymers have been reported (Lee et al. 2010; Campbell et al. 2012;
Suzuki et al. 2011b; Wang et al. 2013). An inhibitor of LTA polymerization (com-
pound 1771, [2-oxo-2-(5-phenyl-1,3,4-oxodiazol-2ylamino-ethyl-2-naphtho[2,1-b]
furan-1-ylacetate]) was also described recently (Richter et al. 2013). Finally, due to its
numerous roles in adhesion, virulence, and biofilm formation, the D-alanylation
pathway is a potential candidate for anti-virulence therapy. A compound that inhibits
the first enzyme in the pathway has been reported (May et al. 2005), but has not been
shown to inhibit D-alanylation in cells. Agents that inhibit biofilm formation and
adhesion mediated by other factors are being actively investigated as well (Chen et al.
2013). Inhibitors of TAs and their modifications are yet to make it to the clinic (Silver
2013), although late stage WTA inhibitors have shown some efficacy in combination
with MRSA in animal models (Wang et al. 2013).
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The Canonical and Accessory Sec System
of Gram-positive Bacteria

Irfan Prabudiansyah and Arnold J.M. Driessen

Abstract The Sec system is present in all bacteria and responsible for the
translocation of the majority of proteins across the cytoplasmic membrane. The
system consists of two principal components: the ATPase motor protein, SecA, and
the protein-conducting channel, SecYEG. In addition to this canonical Sec system,
several Gram-positive bacteria also possess a so-called accessory Sec system. This
is a specialized translocation system that is responsible for the export of a subset of
secretory proteins, including virulence factors. The accessory Sec system consists
of a second SecA paralog, termed SecA2, with or without a second SecY paralog,
termed SecY2. In some bacteria, the accessory Sec system is dependent on the
canonical Sec system for functionality, while in other bacteria, they can function
independently. In this review, we provide an overview of the current knowledge of
the canonical and accessory Sec system of Gram-positive bacteria with a focus on
the primary component of the Sec translocase, SecA and SecYEG.
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1 Introduction

Bacteria are favorite model organisms in scientific research to study cellular pro-
cesses that also occur in multicellular organisms. Cells are equipped with mecha-
nisms to transport proteins from the site of synthesis, i.e., the cytoplasm, to the cell
envelope or to the extracellular environment. This process is not only important for
the survival of the cell, but also plays important roles in pathogenesis, and for
instance the interaction with eukaryotic hosts. The major route for protein transport
in bacteria is provided by the general secretion pathway (Sec pathway). The Sec
pathway and its functional components have been extensively studied in the
Gram-negative bacterium, Escherichia coli, and also in Gram-positive bacterium,
Bacillus subtilis (Bieker et al. 1990; Schatz and Beckwith 1990; Van Wely et al.
2001; De Keyzer et al. 2003; Driessen and Nouwen 2008). Protein transport in this
pathway is mediated by the Sec translocase, which in its minimal form consists of a
protein-conducting channel formed by the heterotrimeric membrane protein com-
plex, SecYEG, and the essential ATPase SecA that acts as a molecular motor
(Brundage et al. 1990).

In general, the Sec system of Gram-negative and Gram-positive bacteria is
similar in composition, and main components are highly conserved. In the last
decade, however, studies on the Gram-positive Sec system revealed some inter-
esting differences. Besides the canonical Sec components, a large number of
Gram-positive bacteria possess accessory Sec components that are not found in
Gram-negative bacteria. This concerns a presence of a second SecA paralog, termed
SecA2, either with or without a second SecY paralog, termed SecY2 (Braunstein
et al. 2001; Bensing and Sullam 2002; Lenz and Portnoy 2002). In contrast to the
canonical Sec translocase, which is essential for the translocation of the majority of
secretory proteins, the accessories SecA2 and SecY2, in most cases, appear to be
not essential (Braunstein et al. 2001; Bensing and Sullam 2002; Lenz and Portnoy
2002). They seem to be especially important for the export of a subset of proteins,
which in some bacteria are mostly virulence factors (Lenz et al. 2003; Rigel and
Braunstein 2008; Sullivan et al. 2012). In bacterial species that possess both SecA2
and SecY2, e.g., Streptococcus, the accessory components form a separate
translocation system to export specific substrates independently of the canonical
Sec system (Bensing et al. 2014). Interestingly, in species that possess only SecA2,
e.g., Mycobacteria, SecA2 seems to work together in conjunction with the
canonical SecYEG/SecA1 translocase in the export of multiple substrates (Rigel
et al. 2009; Feltcher and Braunstein 2012; Freudl 2013; Bensing et al. 2014). Here,
we discuss the current knowledge on the canonical and accessory Sec system in
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Gram-positive bacteria. We will mainly focus on the primary component of the
system, the motor protein SecA and the protein membrane channel SecY, and
highlight the potential mechanistic implications.

1.1 Sec Pathway, the Major Route for Protein Secretion

The Sec pathway forms a conserved route for the secretion of housekeeping pro-
teins and for protein secretion in general. Secretory proteins are initially synthesized
at the ribosome as unfolded preproteins with a cleavable N-terminal signal peptide.
The signal peptide is important to distinguish preproteins from cytoplasmic pro-
teins, adds to the unfolding of the associated mature domain, and targets these
proteins to the translocation sites at the membrane (Von Heijne 1990; Dalbey et al.
1997). Targeting is mostly a post-translational event, but some secretory proteins
are targeted co-translationally (Josefsson and Randall 1981).

During post-translational targeting, protein synthesis is first completed at the
ribosome before the preprotein engages with the Sec system at the membrane. The
molecular chaperone stabilizes the preproteins in a translocation-competent state
and directs them to the translocation site. At the membrane, the molecular chap-
erone transfers the preprotein to the SecA motor domain of the Sec translocase. In
the next steps, multiple cycles of ATP binding and hydrolysis by SecA result in the
stepwise translocation of the unfolded preprotein through the SecYEG channel
(Schiebel et al. 1991; Economou and Wickner 1994; Van der Wolk et al. 1997).
Another heterotrimeric membrane protein complex, SecDFyajC, stimulates
translocation and utilizes the proton motive force (PMF) to facilitate this process
(Duong and Wickner 1997; Tsukazaki et al. 2011). Generally, the
post-translocation mechanism is similar in Gram-negative and Gram-positive bac-
teria. One main difference is in the nature of the molecular chaperones. In
Gram-negative bacteria, the chaperone function is carried out by SecB (Lecker et al.
1989) or other general chaperones such as trigger factor, DnaK, or GroEL
(Castanié-Cornet et al. 2014). In Gram-positive bacteria that lack a SecB homolog,
the chaperone CsaA has been implicated in protein translocation (Bron et al. 2000;
Müller et al. 2000). It should be noted that the more general chaperones do not
entail the specific targeting function of SecB.

During co-translational targeting, preproteins remain bound to the ribosome as a
nascent chain and are targeted to the SecYEG channel by signal recognition particle
(SRP) and the signal recognition particle receptor FtsY. SRP and FtsY are both
GTPases, and release of the nascent chain from SRP to the SecYEG channel is
facilitated by heterodimerization of SRP and FtsY and subsequent GTP hydrolysis.
Mostly, nascent membrane proteins utilize the aforementioned targeting route for
co-translational membrane insertion, albeit there is a subset of secretory proteins
that use this pathway as well. However, preprotein translocation is strictly depen-
dent on the ATPase SecA and ATP hydrolysis. After translocation, the signal
peptide is cleaved from the preprotein by signal peptidase, and the protein will fold
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on the trans-side of the membrane into its functional conformation or continue its
passage guided by chaperones to the outer membrane. In Gram-positive bacteria,
some proteins interact with the cell wall, while others pass through the cell wall and
are released into the external environment. A schematic representation of the
general Sec pathway in Gram-positive bacteria is shown in Fig. 1.

1.2 SecA, the Translocation Motor

SecA functions as an ATP-driven molecular motor to facilitate protein translocation
across the SecYEG protein-conducting pore. SecA is a highly conserved bacterial
protein, but also presents in chloroplasts of plant cells, where it is needed for protein

Fig. 1 The Sec pathway of Gram-positive bacteria. a Post-translational targeting: preproteins
synthesized at the ribosome (purple) are captured in an unfolded state by a chaperone protein
(blue) and targeted to SecA (green) that is bound to the SecYEG channel (orange) at the
cytoplasmic membrane (CM). SecA pushes the preprotein through the SecYEG channel in an
ATP-dependent manner. In addition, SecDFyajC (red) uses the PMF to pull preproteins into the
periplasm. After translocation, the signal peptide (SP) is removed by signal peptidase (SPase) and
the mature protein is released. b In co-translational targeting, preproteins are targeted to the
translocation site as a ribosome–nascent chain complex (RNC) by SRP and FtsY (brown) where
protein synthesis will commence involving SecA and ATP
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translocation into the thylakoid. In the cell, SecA exists in a soluble cytosolic form
(Oliver and Beckwith 1982) and membrane-bound forms, i.e., associated with
SecYEG (Lecker et al. 1990) and with phospholipids (Lill et al. 1990; Cabellis et al.
1991; Hendricks and Wickner 1991). SecA is a homodimeric protein. X-ray
crystallographical studies on SecA proteins from different bacteria revealed a dimer
organization either with antiparallel (Hunt et al. 2002; Ding et al. 2003; Sharma
et al. 2003; Zimmer et al. 2006; Papanikolau et al. 2007) or with parallel (Vassylyev
et al. 2006) protomers. The SecA protomer can be divided into several structural
domains (Fig. 2). The DEAD motor domain is part of the central core of SecA and
consists of two subdomains: the nucleotide-binding fold 1 (NBF1) and NBF2, also
called the intramolecular regulator of ATPase activity 2 domain (IRA2). Both NBFs
are homologous to the RecA-like nucleotide-binding folds found in DNA/RNA
helicases (Tanner and Linder 2001). The interface of the NBF1 and NBF2, which
comprise the Walker A and B motifs, is the site for ATP binding and hydrolysis
(Osborne et al. 2004; Robson et al. 2007; Zimmer and Rapoport 2009). In addition
to the NBFs, SecA contains two substrate specificity domains: the
preprotein-binding domain (PBD) or preprotein cross-linking domain (PPXD) and
the C domain. The PPXD has been shown to be involved in binding of preproteins
(Papanikou et al. 2005; Musial-Siwek et al. 2007; Gelis et al. 2007). The C domain
is located at the C terminus of NBF2 and consists of four subdomains: the helical
scaffold domain (HSD) that control the opening and closing of the DEAD motor

Fig. 2 Structure of SecA, the translocation motor. a SecA1 protomer from Mycobacterium
tuberculosis (PDB accession code: 1NKT) and b SecA2 from M. tuberculosis (PDB accession
code: 4UAQ), showing the different subdomains, which are indicated with different color. NBF1
and NBF2, nucleotide-binding folds 1 and 2; PPXD, preprotein cross-linking domain; HSD,
a-helical scaffold domain; HWD, a-helical wing domain; IRA1, the intramolecular region of ATP
hydrolysis 1; and CTL, C-terminal linker domain
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(Hunt et al. 2002; Mori and Ito 2006); the helical wing domain (HWD); the
intramolecular regulator of ATP hydrolysis (IRA1), which acts as an inhibitor of
ATP hydrolysis (Karamanou et al. 1999); and the C-terminal linker domain (CTL),
which contains a zinc finger which is important for the interaction with the secretion
specific chaperone SecB (Fekkes et al. 1997, 1999; Zhou and Xu 2003) and
phospholipids (Breukink et al. 1995).

The oligomeric state of SecA in solution and during protein translocation has
been extensively studied with various methods. SecA exists in solution in a dimer–
monomer equilibrium with a Kd in nanomolar range (Kusters et al. 2011; Wowor
et al. 2011). This suggests that most of SecA must be dimeric in the cell, since the
cellular concentration of SecA has been suggested to be in the micromolar range
(5–8 lM) (Akita et al. 1991; Or et al. 2002). The dimer–monomer equilibrium of
SecA is shifted toward the monomer at high ionic strength and low temperature
(Woodbury et al. 2002; Kusters et al. 2011; Wowor et al. 2011), suggesting that
electrostatic and hydrophobic interactions play a critical role in maintaining the
dimer. SecA dimerization is also influenced by ligands, such as phospholipids,
signal peptides (Benach et al. 2003; Or et al. 2005; Musial-Siwek et al. 2005), and
nucleotides (Bu et al. 2003). The precise functional state of SecA during protein
translocation process is still a matter of debate. A multitude of studies demonstrate
that SecA functions as a dimer during protein translocation (Driessen 1993;
Karamanou et al. 2005; Jilaveanu et al. 2005; De Keyzer et al. 2005; Jilaveanu and
Oliver 2006; Das et al. 2008; Wang et al. 2008; Kusters et al. 2011; Gouridis et al.
2013), although other report suggests that monomeric SecA obtained by extensive
mutagenesis retains some activity with a hyperactive SecY mutant (Or et al. 2005).
Single molecule studies demonstrate that the dimeric SecA binds the SecYEG
translocation pore with high affinity, wherein one of the protomers binds SecYEG
tightly, whereas the other protomer is bound to the SecYEG-bound SecA (Kusters
et al. 2011).

1.3 SecYEG, the Protein-Conducting Channel

The Sec translocon shows a heterotrimeric organization that is highly conserved in
three kingdoms of life (Pohlschröder et al. 1997). In bacteria, it consists of three
integral membrane proteins SecY, SecE, and SecG (Brundage et al. 1990), which
together forms the protein-conducting channel SecYEG complex, that is homologs
to Sec61acb in eukaryotes and SecYEb in archaea. The X-ray crystallography
structure of Methanoccoccus jannaschii SecYEb provided the first high-resolution
insight into the structural organization of the translocation channel (Van Den Berg
et al. 2004) (Fig. 3).

The SecY protein forms the actual channel and consists of ten a-helical trans-
membrane segments (TMSs) that are organized as to sets, i.e., TMSs 1–5 and TMSs
6–10. The N- and C-termini localize to the cytoplasm. The two TM domains are
connected by a periplasmic loop between TMS 5 and TMS 6 forming a clamshell
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structure. The E. coli SecE consists of three TMSs (TMSs 1-3), where the first two
TMSs are connected to the third tilted TMS via the amphipathic helix. Only the
third TMS and the amphipathic helix are essential for the functionality (Schatz et al.
1991; Nishiyama and Mizushima 1992; Murphy and Beckwith 1994). TMS3 and
the amphiphatic helix embrace the SecY clamshell, in which the TMS3 associated
with one half of the clamshell and the amphipathic helix associated with the other
half. These two SecE domains are the major sites of SecY-SecE interactions and are
important for the stability and flexibility of SecY (Lycklama et al. 2012, 2013).
SecE of Gram-positive bacteria consists only one TMS and the amphipathic helix,
which is homologous to the corresponding functional part of the E. coli SecE
(Jeong et al. 1993; Cao and Saier 2003). The Secb protein, which presumably is
homologous to the bacterial SecG, is located peripherally in the structure and shows
limited contact with SecY. SecG is not essential for the functionality in bacteria, but
it increases the efficiency of translocation (Nishiyama and Mizushimal 1993;

Fig. 3 Structure of SecYEG, the protein-conducting channel. a Structure of SecYEb
from Methanoccoccus jannaschii (PDB accession code: 1RH5) viewed from the cytoplasm.
SecY is colored in red, SecE in yellow, and SecG in green. The lateral gate and the plug are
indicated with the arrow line. b SecYEb viewed from the side, in position in the lipid bilayer.
c Secondary structure prediction of SecYEG from Gram-positive bacteria (B. subtilis). The TMSs
are numbered, and the essential amphipathic helix of SecE is labeled with A
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Hanada et al. 1994; Nishiyama and Hanada 1994) and has also been suggested to
associate with SecA (Suzuki et al. 1998; Mori et al. 1998).

The overall structure of SecYEG channel shows an hourglass shape (Van Den
Berg et al. 2004). The central channel is constricted with six isoleucine residues that
form a hydrophobic pore ring that acts as a seal to provide a barrier for water and
ions (Saparov et al. 2007; Gumbart and Schulten 2008). Below the pore ring is a
small helix called the plug domain. The plug domain together with the pore ring
prevents ion flow through the channel in the closed conformation (Gumbart and
Schulten 2008). The structure also contains a lateral gate between TMS 2 and TMS
7 of SecY, which plays an essential role in the lateral insertion of membrane
proteins. The signal sequence of preproteins and nascent TMSs was suggested to
bind this lateral gate (Plath et al. 1998, 2004), and this initial insertion into the
lateral gate is believed to open the channel. The cytoplasmic side of the SecYEG
channel contains several binding sites for the cytoplasmic binding partner, i.e.,
SecA and ribosome (Ménétret et al. 2007; Zimmer et al. 2008; Frauenfeld et al.
2011), and is important for protein translocation. SecYEG also interacts with other
membrane proteins, such as SecDFyajC (Duong and Wickner 1997), and the
membrane protein insertase, YidC (Scotti et al. 2000).

2 The Accessory Sec Translocase

2.1 SecA2, the Specialized SecA Protein

The first SecA2 protein was identified fifteen years ago in Mycobacteria
(Braunstein et al. 2001; Rigel and Braunstein 2008). Nowadays, it clear that SecA2
is present in a large number of Gram-positive bacteria, but absent in Gram-negative
bacteria. Interestingly, these accessory SecA2s are not closely related to each other
phylogenetically (Bensing et al. 2014). The sequence similarity between SecA2 and
their corresponding SecA homolog (SecA1) varies between bacterial species. In
almost all cases, SecA2 proteins are smaller in size, as compared with SecA1s. The
first crystal structure of SecA2 was published recently from Mycobacterium
tuberculosis (Swanson et al. 2016) (Fig. 2). Overall, the structure shows a high
similarity to the M. tuberculosis SecA1 and other orthologs of the SecA family.
Most functional domains are present in the SecA2 structure, including the two
NBFs. Despite the similarities, there are some structural differences in SecA2
compared to SecA1. SecA2 is a smaller protein because of several deletions, mostly
in the C domain. The main structural difference is the absence of HWD domain in
SecA2. The functional significant of the absence of the HWD in SecA2 is unclear,
but possibly this hints at a reduced interaction with SecYEG. In SecA, the HWD is
important for the interaction with SecYEG (Zimmer et al. 2008; Das and Oliver
2011). In the structure of SecA2, also the orientation of the PPXD domain and the
two-helix finger are different from that of SecA1. Additionally, the conserved

52 I. Prabudiansyah and A.J.M. Driessen



tyrosine in the two-helix finger of SecA1, which provides the major contact with the
SecA1 substrate (Erlandson et al. 2008), is missing in SecA2. Overall, these
structural differences may contribute to the special and distinct role of SecA2 in the
protein export.

In general, the accessory SecA2 has a more specific role than the canonical
SecA, as discussed in detail elsewhere (Feltcher and Braunstein 2012; Freudl 2013;
Bensing et al. 2014). In contrast to SecA1, which is essential and involved in
transport of the majority of proteins, SecA2 in most cases is not essential, and has a
specialized function for the export of a subset of proteins. Additionally, SecA2 also
plays an important role in virulence in some bacteria (Lenz et al. 2003; Rigel and
Braunstein 2008; Sullivan et al. 2012). Based on its interacting partner and sub-
strates, it has been proposed that there are two types of SecA2 proteins. The first
type is suggested to associate with the canonical Sec system and transports multiple
type of substrates, and also called the SecA2-only system (Rigel et al. 2009;
Feltcher and Braunstein 2012; Bensing et al. 2014). The second type is suggested to
interact with the accessory SecY2 channel, also called the SecA2/SecY2 system,
and transport a single specific substrate completely independent from the canonical
Sec system, (Bensing et al. 2014). Different types of SecA2-dependent proteins
have been identified, and these appear to be involved in different functions and
cellular locations. Some of these substrates are cell envelope proteins while others
are secreted. Intriguingly, some substrates possess a signal sequence while others
do not. However, the mechanisms by which SecA2 selects the substrates for
transport is essentially unknown, nor is it clear why the substrates are not recog-
nized by the canonical SecA. One hypothesis is that the absence of the HWD in
SecA2 might result in a more solvent-exposed signal peptide binding cleft that
could help SecA2 in the recognition of specific SecA2 substrates, including signal
peptide-less variants (Swanson et al. 2016).

2.2 SecY2, the Accessory Membrane Channel

In addition to SecA2, some Gram-positive bacteria, e.g., Streptococcus, also pos-
sess the accessory SecY2, that is homologous to SecY (Bensing and Sullam 2002;
Bensing et al. 2014). SecY2 is predicted to form an accessory membrane channel
that is responsible for the export of specific proteins, which cannot be exported by
the canonical SecYEG. In general, SecY2 proteins share a low sequence similarity
to SecY (SecY1). However, the predicted membrane topology of SecY2 is identical
to that of SecY (Bensing et al. 2014). The conserved residues in cytoplasmic loop 5
of SecY, that are important for SecA interaction (Van der Sluis et al. 2006) are
absent in SecY2, possibly suggesting a lack of interaction with the canonical SecA1
protein. In Streptococcus and Staphylococcus, SecY2 works together with SecA2 to
export large serine-rich repeat (SRR) glycoproteins to the cell surface (Bensing and
Sullam 2002; Siboo et al. 2008). Therefore, it is suggested that SecY2 directly
associates with SecA2 to form the functional Sec translocase. SecY2 is also
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suggested to associate with some potential accessory secretion proteins (Asps), i.e.,
Asp1-Asp5 (Bensing et al. 2014). Asp4 and Asp5 have been suggested to form the
membrane channel with SecY2, and thus function similar to SecE and SecG,
respectively. However, this Asps are absent in other bacteria that do contain a
SecY2, and thus the exact composition of this accessory Sec translocase has
remained elusive.

3 The Accessory Sec System in Different Type
of Gram-positive Bacteria

Gram-positive bacteria have a less complex cell envelope structure as compared to
Gram-negative bacteria. Most of Gram-positive bacteria comprise only a single
cytoplasmic membrane followed by a cell wall and defined as monoderm species.
However, some Gram-positive bacteria possess an extra membrane, a peptidogly-
can–mycolic acid wall structure, thus are diderm species, e.g., Mycobacteria. These
are included as well in the discussion in this section. The accessory Sec system has
been identified in almost three dozen Gram-positive bacterial species. Some of them
have been well characterized and there are some interesting similarities and dif-
ferences between them. In most cases, the presence of accessory Sec components is
closely associated with functions in intracellular survival and virulence. Below, we
will discuss in detail of the accessory Sec system in different Gram-positive bac-
terial species. We will divide the bacterial species into two groups based on their
accessory Sec type: SecA2-only systems and SecA2/SecY2 systems.

3.1 Bacterial Species with SecA2-Only System

3.1.1 Mycobacterium Species

Mycobacteria possess the Sec transport systems for the translocation of proteins
across the cytoplasmic membrane. All essential Sec components are present in
Mycobacteria, both in pathogenic species, and non-pathogenic species. Interestingly,
all Mycobacteria also possess the accessory SecA2, but they lack a SecY2, and thus,
the system is called the SecA2-only system (Braunstein et al. 2001; Rigel and
Braunstein 2008). Mycobacterial SecA2 proteins share only about 50 % similarity
with their corresponding SecA homolog (SecA1). Structural studies in M. tubercu-
losis show that SecA2 is smaller in size, as compared to SecA1, due to some deletions
in C domain as discussed earlier. Functional studies in M. tuberculosis and
Mycobacterium smegmatis show that SecA1 is essential and likely it functions as the
housekeeping SecA similar to E. coli SecA (Braunstein et al. 2001). In contrast,
SecA2 is non-essential since the deletion mutants could be constructed in several
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Mycobacteria, including M. tuberculosis (Braunstein et al. 2003), M. smegmatis
(Braunstein et al. 2001), and Mycobacterium marinum (Watkins et al. 2012). Cell
fractionation studies in M. smegmatis show that SecA2 is predominantly cytosolic,
while SecA1 is equally distributed between membrane and cytosolic fractions (Rigel
et al. 2009). SecA1 and SecA2 have independent functions in protein export
(Braunstein et al. 2001) and are present in equivalent amounts in M. tuberculosis.The
role of SecA2 appears limited to only a subset of proteins. Similar to SecA1, SecA2
also bears ATPase activity which is required for SecA2-mediated protein export in
both M. tuberculosis (Hou et al. 2008) and M. smegmatis (Rigel et al. 2009). SecA2 is
also important for the virulence of M. tuberculosis (Braunstein et al. 2003; Kurtz et al.
2006) and M. marinum (Watkins et al. 2012).

Mycobacterial SecA2 appears to transport different types of substrates.
Proteomic studies in the non-pathogenic M. smegmatis identified Msmeg1704 and
Msmeg1712 as SecA2-dependent proteins (Gibbons et al. 2007). Both are
sugar-binding proteins and contain a predicted N-terminal lipoprotein sequence. In
M. tuberculosis, two SecA2-dependent proteins were identified: superoxide dis-
mutase A (SodA) and catalase-peroxidase (KatG) (Braunstein et al. 2003). These
two proteins play a role in surviving oxidative stress (Braunstein et al. 2003).
Interestingly, both proteins lack a signal sequence. A proteomic study in M. mar-
inum revealed protein kinase G (PknG) as a SecA2-dependent protein which is
important for virulence (Van der Woude et al. 2014). Similar to SodA and KatG in
M. tuberculosis, PknG also does not possess a signal sequence. Although these
proteins lacking a signal sequence can be translocated via the Sec pathway
(Krehenbrink et al. 2011), it is unclear how SecA2 specifically recognizes these
substrates and how it is targeted to the Sec pathway. Recent studies in M. smeg-
matis suggest that protein export by the Mycobacterial SecA2 is determined by the
preprotein mature domain instead of a signal sequence (Feltcher et al. 2013).
Interestingly, the study also showed that the mature domain of SecA2 substrates can
also be exported by the Twin-arginine translocation (Tat) pathway when fused to a
signal peptide for the Tat pathway. This suggest that SecA2 substrates may have a
tendency to fold prior to export (Feltcher et al. 2013) and that SecA2 facilitates the
targeting and export of such unique substrates.

In Mycobacteria and other organisms with SecA2-only system, SecA2 is sug-
gested to work together with the canonical SecYEG protein. A SecA2-SecYEG
association has been proposed based on a genetic study in M. smegmatis (Ligon
et al. 2013). Additionally, structural conservation of SecA–SecY contact sites in
SecA2 structure is in line with the expected interaction between SecA2 and
SecYEG (Swanson et al. 2016). However, there is no evidence that SecA2 indeed
directly interacts with SecYEG. SecA1 depletion studies in M. smegmatis indicate
that SecA2-dependent proteins also depend on SecA1 (Rigel et al. 2009). Recent
in vitro studies show that the M. tuberculosis SecA2 interacts with itself to form a
homodimer, but that it can also interact with SecA1 to form a heterodimer
(Prabudiansyah et al. 2015). Possibly, SecA2 interacts with the SecA1/YEG
translocase via an interaction with SecA1, explaining why SecA2 substrates also
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require SecA1 for translocation while SecA2 based on cell fractionation studies is
mostly cytosolic.

3.1.2 Listeria Species

Listeria species possess SecA2 but lack SecY2, similar to Mycobacteria (Lenz and
Portnoy 2002). Sequence alignments predict that SecA2 of Listeria harbors all
functional domains found in SecA1, including HWD (Bensing et al. 2014). Listeria
monocytogenes SecA2 is not essential for growth, but involved in virulence and
protective immunity (Lenz and Portnoy 2002; Lenz et al. 2003). SecA2 is needed
for the export of a large number of proteins, and by proteomic studies, at least 17
substrates were identified, some of which carry a signal sequences, while others do
not (Lenz et al. 2003; Archambaud et al. 2006; Renier et al. 2013). Two of
SecA2-dependent proteins that contain a signal sequence have been studied in more
detail. These are p60 (protein of 60 kDa) also called CwhA (Cell wall hydrolase A)
and NamA also called MurA (N-acetylmuramidase A) (Lenz and Portnoy 2002;
Lenz et al. 2003; Carroll et al. 2003). SecA2-dependent proteins without a signal
sequence include a homolog of SodA, MnSOD (manganese superoxide dismutase)
(Lenz et al. 2003; Archambaud et al. 2006), and LAP (Listeria adhesion protein)
(Burkholder et al. 2009). All substrates studied thus far appear to function in
virulence (Lenz et al. 2003; Carroll et al. 2003; Burkholder et al. 2009).

Recent studies in L. monocytogenes revealed that SecA2-dependent protein
secretion requires SecA1 (Halbedel et al. 2014). These data support the hypothesis
mentioned earlier that in bacteria with SecA2-only system, SecA2 works together
with the canonical SecYEG/SecA1 system. Another study shows that the
polar-localized cell division protein DivIVA is required for the translocation of the
SecA2-dependent proteins p60 and NamA, and it was suggested that DivIVA
influences the activity of SecA2 (Halbedel et al. 2012). SecA2 was also identified in
non-pathogenic species such as Listeria innocua, Listeria welshimeri, Listeria
seeligeri, Listeria grayi, and Listeria marthii, but the exact role of SecA2 in those
species is unknown. In Listeria innocua, SecA2 is involved in the translocation of
NamA (Mishra et al. 2011). Another study in a non-pathogenic listeria on LAP
translocation failed to provide evidence that SecA2 promotes bacterial adhesion.
However, the lack of an effect might be due to the low level of expression of LAP
in this organism (Jagadeesan et al. 2010).

3.1.3 Clostridium difficile

Clostridium difficile is the only clostridial species found to possess the SecA2
protein. C. difficile SecA2 is mostly cytosolic, whereas SecA1 localizes to the
membrane (Fagan and Fairweather 2011). In contrast to most of bacterial SecA2
which are not essential, SecA2 of C. difficile is essential for viability (Fagan and
Fairweather 2011). Additionally, the C. difficile SecA2 shows high homology to the
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SecA1 protein (� 80 % similarity). The C. difficile secA2 gene is encoded within a
gene cluster encoding surface layer (S-layer) proteins. These proteins form a
paracrystalline sheets that assembles at the cell surface. Two proteins have been
identified as the major substrates of the C. difficile SecA2 system, the S-layer
protein (SlpA), which is the main component of the S-layer, and a cell wall protein
(CwpV) (Fagan and Fairweather 2011). SlpA and CwpV both contain a signal
sequence. SlpA is essential for viability, suggesting the essential function of SecA2
in C. difficle.

3.1.4 Bacillus Species

The accessory SecA2 protein is present in some Bacillus species such as Bacillus
anthracis, Bacillus cereus, Bacillus thuringiensis, Bacillus smithi, and Bacillus
methanolicus, but absent in Bacillus subtilis. In B. anthracis, SecA2 is encoded
within an S-layer gene cluster, similar to the C. difficle SecA2. However, the B.
anthracis SecA2 is not essential for viability, but important for the translocation of
a surface array protein (Sap) and the extractable antigen 1 (EA1), which are two
major components of the Bacillus S-layer (Nguyen-Mau et al. 2012). Sap is
encoded in the secA2 locus, whereas EA1 is encoded in other genomic region.
Apparently, SecA2 also is specialized for the translocation of S-layer protein in
multiple organisms. B. anthracis also possess the accessory SecY2 protein, but this
protein appears not essential for the translocation of the aforementioned SecA2
substrates; thus, it belongs to the group of SecA2-only system. B. anthracis SecA2
associate with the accessory secretion factors, SlaP and SlaQ (Nguyen-Mau et al.
2012, 2015). These two proteins are encoded immediately downstream of the secA2
gene. Thus, it appears that SecA2 functions together with SlaP and SlaQ to promote
the S-layer assembly in B. anthracis (Nguyen-Mau et al. 2012, 2015). SlaP and
SlaQ are also present in other pathogenic bacillus species, such as B. cereus, and
likely fulfill a similar function.

3.2 Bacterial Species with SecA2/SecY2 System

3.2.1 Streptococcus Species

Streptococcus species possess both the SecA2 and SecY2 proteins that form the
SecA2/SecY2 system. These proteins were originally identified and characterized in
Streptococcus gordonii (Bensing and Sullam 2002) and Streptococcus parasan-
guinis (Chen et al. 2004). The predicted domain organization of Streptococcal
SecA2 is similar to SecA2 of other organisms that lack SecY2. However, the
Streptococcal SecA2 functions independent of the canonical Sec system and likely
forms a separate Sec system with SecY2 (Bensing and Sullam 2002). Cell frac-
tionation studies in Streptococcus parasanguinis show that SecA2 is mostly
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associated with the membrane (Chen et al. 2006), in contrast to other bacterial
SecA2 s which are predominantly cytosolic. SecA2 and SecY2 are not essential for
viability or the translocation of most secretory proteins (Bensing et al. 2014). In
contrast to the multiple type of substrates in the SecA2-only system, Streptococcal
SecA2/SecY2 system exports more specific substrate. The system appear to be
specialized in the transport of SRR glycoproteins (Bensing and Sullam 2002;
Bensing et al. 2014). SRR glycoproteins are a family of adhesins in Gram-positive
bacteria that fulfill an important role in pathogenicity (Zhou and Wu 2009; Lizcano
et al. 2012).

In S. gordonii, SecA2 and SecY2 play an important role in the translocation of
GspB. GspB is a serine-rich glycoprotein that mediates the binding of S. gordonii to
platelets, and is encoded within the secA2/secY2 gene cluster. GspB contains a
relatively long signal sequence (90 amino acids) and a specific domain called the
accessory Sec transport (AST) domain that is essential for targeting to the
SecA2/SecY2 translocase (Bensing and Sullam 2010). The S. gordonii
SecA2/SecY2 system also includes other accessory secretion proteins (Asps) that
are all encoded within the same operon: Asp1 to Asp5. Asp4 and Asp5 show
homology to the canonical SecE and SecG proteins, respectively (Takamatsu et al.
2005). They are predicted to form the translocation channel together with SecY2,
but this remains to be demonstrated. Asp1, Asp2, and Asp3 interact with each other
and are required for the translocation of GspB (Seepersaud et al. 2010). Asp2 and
Asp3 directly interact with GspB via the SRR domain (Yen et al. 2011). Both
proteins also interact with SecA2, which may also be involved in the targeting of
GspB preprotein to the translocation site (Seepersaud et al. 2010; Bensing et al.
2012; Yen et al. 2013). Asp2 is important for the correct glycosylation of GspB
during translocation (Seepersaud et al. 2012). Several cytosolic glycosylation fac-
tors, such as GftA (Gtf1), GftB (Gtf2), Gly, and Nss, are involved in the glyco-
sylation of GspB prior to translocation (Takamatsu et al. 2004a, b; Zhou and Wu
2009). Therefore, one of the key features of this system is that the non-canonical
Sec translocase translocated glycosylated precursor proteins.

In S. parasanguinis, SecA2/SecY2 are important for the translocation of Fap1, a
homolog of GspB (Chen et al. 2004). S. parasanguinis possess also homologs of
Asp1, Asp2, and Asp3, termed glycosylation-associated proteins 1 (Gap1), Gap2,
and Gap3, respectively, but seems to lack the Asp4 and Asp5 proteins. Similar to S.
gordonii Asps, S. parasanguinis Gaps are also encoded in the same operon as
secY2, secA2, and also fap1. Gap1 and Gap3 interact with SecA2 in vitro (Zhou
et al. 2011), and both proteins are suggested to be involved in the complete gly-
cosylation of Fap1 (Zhou and Wu 2009). Based on the combined studies in
S. gordonii and S. parasanguinis, it is suggested that Gap1-3 (Asp1-3) forms a
single functional complex with dual functions: First, it is involved in targeting the
partially glycosylated substrate to the SecA2/SecY2 translocase, and second, it is
needed for the complete glycosylation of the substrate during translocation (Zhou
and Wu 2009; Bensing et al. 2014). In vitro study in S. parasanguinis shows that
SecA2 and Gap3 associate with the canonical SecA1 (Zhou et al. 2011), suggesting
cross talk between the accessory and the canonical Sec system. However, the
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biological function of this association has not been established. In general, pre-
proteins that are exported by the Streptococcal accessory Sec system are glycosy-
lated and cannot be exported by the canonical Sec system (Bensing et al. 2014).
However, glycosylation is not required for protein translocation in the accessory
Sec system, since the unglycosylated substrate can still be secreted by this system
(Bensing et al. 2005). Interestingly, the non-glycosylated versions of GspB and
Fap1 can also be translocated by the canonical Sec system (Bensing et al. 2005;
Chen et al. 2007), suggesting that glycosylation may take part in the targeting of
these substrates to the accessory Sec system.

3.2.2 Staphylococcus Species

The Staphylococcal accessory Sec system consists of both SecA2 and SecY2,
similar to Streptococcus. The two proteins were discovered in Staphylococcus
aureus (Siboo et al. 2008) and found to be present also in some of other staphy-
lococcal species: Staphylococcus epidermidis, Staphylococcus warneri, and
Staphylococcus carnosus. In S. aureus, SecA2 and SecY2 are not essential for
viability, but required for translocation of SraP (serine-rich adhesin for platelets)
(Siboo et al. 2008). However, it is still need to be verified whether SraP is selec-
tively translocated via the SecA2/SecY2 system or not. SraP is a homolog of GspB
of S. gordonii and fulfills a role in binding to human platelets (Siboo et al. 2005).
The accessory Sec locus of S. aureus is similar to that of S. gordonii. It also
contains the genes encode Asp1-Asp3 that all are required for the transport of SraP
(Sibbald et al. 2010). However, S. aureus lacks four proteins present in S. gordonii,
i.e., Gly, Nss, Asp4, and Asp5. Gly and Nss are important for the glycosylation of
GspB in S. gordonii, suggesting that there is a difference in the glycosylation
mechanism between staphylococcus and streptococcus. Asp4 and Asp5 are pre-
dicted to be the part of accessory membrane channel together with SecY2 in S.
gordonii. The absence of Asp4 and Asp5 in S. aureus indicates that the require-
ments for these Asps are specific for some species, i.e., S. gordonii, while other
proteins might function as partner subunits of the S. aureus SecY2. Interestingly,
genetic study suggests that S. aureus SecY2 function together with SecG (Sibbald
et al. 2010). Since S. aureus lacks a second set of secE and secG genes, these
findings suggest that the S. aureus SecY2 might form an alternative translocation
channel with SecE1 and SecG1.

3.3 Other Gram-positive Bacteria

The accessory Sec system is more widespread in Gram-positive bacteria, but mostly
poorly characterized. Among these is Corynebacterium glutamicum that possess the
SecA2-only system. C. glutamicum SecA2 is essential for viability (Caspers and
Freudl 2008), but no specific substrates have been identified thus far. The accessory
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SecA2 and/or SecY2 proteins are also present in some of Gordonia, Pediococcus,
Enterococcus, and Lactobacillus species (Bensing et al. 2014), but not further
characterized.

4 Conclusions

The canonical Sec translocase is omnipresent in bacteria, and similar systems exist
in Gram-negative and positive bacteria. In contrast, accessory Sec components are
found only in Gram-positive bacteria where they fulfill diverse functions in protein
secretion. During the last fifteen years, a better understanding on Gram-positive
bacterial accessory Sec system has been obtained. Since this system also plays an
important role in bacterial virulence, the studies also revealed mechanisms of
pathogenesis, and potentially, the system may function as a possible drug target.
The current model of the Gram-positive accessory Sec system is shown in Fig. 4,
which is based on the combined studies discussed above.

Despite the growing knowledge on the system, several important questions
remain to be answered. One of the main question is how the accessory SecA2
specifies and distinguishes its substrates from the canonical SecA1. Another

Fig. 4 The accessory Sec system of Gram-positive bacteria. a SecA2-only system.
SecA2-dependent proteins are recognized by the accessory SecA2 (red) and are targeted to the
SecYEG channel (orange), either via (1) the housekeeping SecA1 (green) or (2) direct interaction
of SecA2 with SecYEG. The ATPase activity of either SecA2 or SecA1 or both provides the
energy for the translocation of the proteins through the SecYEG pore. b SecA2/SecY2 system.
Partially glycosylated preproteins are targeted to the accessory SecA2 protein (red) by the Asp1-3
(Gap1-3) complex (purple). During the translocation process, the Asp1-3 (Gap1-3) complex
modifies the glycan composition and completes the glycosylation of the preproteins (brown dot).
The ATPase activity of SecA2 provides the energy for the translocation of the fully glycosylated
preprotein through the SecY2 membrane channel (brown). SPase, signal peptidase; CM,
cytoplasmic membrane
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interesting question is whether there is cross talk between the accessory and the
canonical Sec system. Future study may yield new insights on the overall Sec
system in Gram-positive bacteria.
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Twin-Arginine Protein Translocation

Vivianne J. Goosens and Jan Maarten van Dijl

Abstract Twin-arginine protein translocation systems (Tat) translocate fully fol-
ded and co-factor-containing proteins across biological membranes. In this review,
we focus on the Tat pathway of Gram-positive bacteria. The minimal Tat pathway
is composed of two components, namely a TatA and TatC pair, which are often
complemented with additional TatA-like proteins. We provide overviews of our
current understanding of Tat pathway composition and mechanistic aspects related
to Tat-dependent cargo protein translocation. This includes Tat pathway flexibility,
requirements for the correct folding and incorporation of co-factors in cargo pro-
teins and the functions of known cargo proteins. Tat pathways of several
Gram-positive bacteria are discussed in detail, with emphasis on the Tat pathway of
Bacillus subtilis. We discuss both shared and unique features of the different
Gram-positive bacterial Tat pathways. Lastly, we highlight topics for future
research on Tat, including the development of this protein transport pathway for the
biotechnological secretion of high-value proteins and its potential applicability as
an antimicrobial drug target in pathogens.
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1 The Twin-Arginine Protein Translocation Pathway

The movement of substances across biological membranes is essential for the
growth, replication and survival of all living cells. In order to translocate substances
through these phospholipid bilayers a variety of diverse import and export systems
have evolved. One class of compounds that need to be translocated across mem-
branes are proteins. However, transporting proteins over a membrane is not enough
to guarantee their proper function, as proteins require correct folding and often
co-factors for full functionality. Consequently, there is an intimate relationship
between the protein translocation process and protein folding. Protein translocation
pathways ensure that substrates are folded either post-translocationally or
pre-translocationally. In the case of the Sec pathway for protein secretion, the
translocated proteins are folded after translocation (Tjalsma et al. 2000). In contrast,
twin-arginine translocation (Tat) pathways are known specifically for the ability to
move pre-folded and co-factor-containing proteins across membranes.
Translocation of large globular and tightly folded proteins across a membrane is no
small feat as the energy needed and the size of the membrane passage required is far
greater than that needed for translocating a loosely folded polypeptide chain by the
Sec pathway. Exactly how the Tat pathway is able to transport these globular
proteins without breaking the cellular barrier or destroying transmembrane ion
gradients (e.g. the proton-motive force) is perplexing and of great fundamental
scientific interest.

The Tat pathway is evolutionarily conserved in all the kingdoms of life. It is
present in 77 % of bacteria, in archaeal species and in the membranes of thylakoids
in plants and cyanobacteria (Chaddock et al. 1995; Hutcheon and Bolhuis 2003;
Simone et al. 2013). Remnants of the pathway have even been observed in sponges
(Pett and Lavrov 2013a). The focus of this chapter is the Gram-positive bacterial
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Tat pathway, where the folded proteins are moved from the cytoplasm into the
membrane, cell wall or extracellular milieu. Tat systems have been most exten-
sively studied in the Gram-negative bacterium Escherichia coli, but also in the
Gram-positive Bacillus and Corynebacterium species, and in pea thylakoids [re-
viewed in (Palmer and Berks 2012; Goosens et al. 2014b; Patel et al. 2014)].

What has become evident from comparing the various Tat systems is that they
are broadly conserved with a high degree of similarity between proteins and
mechanisms. For this reason, this review builds on and refers to observations made
in Tat systems from other species in addition to Gram-positive bacteria.

2 Tat-Dependent Cargo

The number of Tat-dependent cargo proteins ranges from over 100 in Streptomyces
species, to only a few in B. subtilis and Staphylococcus aureus and none in, for
example, Lactobacillus species (Schaerlaekens et al. 2001, 2004b; Widdick et al.
2006; Joshi et al. 2010; Yamada et al. 2007; Biswas et al. 2009; Goosens et al.
2013; Bolotin et al. 2001; Kleerebezem et al. 2003). These Tat-dependent cargo
proteins include secreted proteins, lipoproteins, cell wall-associated proteins and
proteins that form components of larger extracytoplasmic complexes on the
membrane surface (Widdick et al. 2011; Keller et al. 2012; Monteferrante et al.
2012b; Goosens et al. 2013; Miethke et al. 2013).

Cargo may be destined for the Tat pathway for numerous reasons. Many
Tat-dependent substrates are known to require complex co-factors for activity and
these are incorporated into the protein in the cytoplasm prior to membrane
translocation. Certain other proteins that bind divalent metal ions with affinity
ranges lower down in the Irving Williams series, such as Mn, may use the Tat
pathway to avoid competing ions with higher binding affinities, such as Zn (Tottey
et al. 2008; Monteferrante et al. 2012b). Extremophiles and archaea may need to
fold the proteins prior to secretion due to the harsh external milieus in which they
live (Bolhuis 2002; Rose et al. 2002). Further, some Tat-destined proteins form
multi-protein complexes that are translocated in a hitchhiker or piggyback manner
(Rodrigue et al. 1999; Friedrich et al. 2000; Wu et al. 2000a).

Tat substrates have been implicated in a wide range of cellular functions and in
the case of pathogenic bacteria they have been associated with virulence, antibiotic
resistance and antibacterial compounds (McDonough et al. 2005; De Buck et al.
2008; Weatherspoon-Griffin et al. 2011). Notably, certain industrially relevant
proteins are difficult to produce due to co-factor—or disulphide-bond requirements
and in some organisms, such as E. coli and Corynebacterium glutamicum, the Tat
pathway has been successfully used for export of these types of proteins, including
the alkaline phosphatase PhoA, carbohydrate oxidase, antibody fragments and
human tissue plasminogen activator (DeLisa et al. 2003; Kim et al. 2005; Bruser
2007; Ribnicky et al. 2007; Panahandeh et al. 2008; Maurer et al. 2009; Matos et al.
2013; Scheele et al. 2013). Also, the Tat system of Gram-positive bacteria has been
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used to secrete small enzymes (De Keersmaeker et al. 2006; Kikuchi et al. 2006,
2008; Scheele et al. 2013). However, biotechnological applications have not yet
taken full advantage of the potential of Gram-positive bacterial Tat systems.
Although the ability to secrete complex cargo directly into the fermentation broth is
enticing, production has been hampered by low yields possibly due to yet
unidentified quality control requirements.

In addition to a folded state, Tat cargo proteins also have a unique
‘twin-arginine’ signal peptide signature. In principle, the N-terminal signal peptides
of Tat substrates have a similar tripartite structure as the N-terminal signal peptides
of Sec substrates; they are made up of a polar N-region, a hydrophobic H-region in
the middle and a polar C-region next to the signal peptidase cleavage site (Tjalsma
et al. 2004). However, a distinguishing feature of Tat signal peptides is the presence
of two-arginine residues in the N-terminal region that form part of the consensus
motif SRRxFLK where x is a polar amino acid (Berks et al. 2000; Stanley et al.
2000; Tjalsma et al. 2004). Compared to Sec signal peptides, the Tat signal peptides
also tend to be longer, their N-terminal region is more positively charged (Tjalsma
et al. 2000), and their H-region is slightly less hydrophobic (Cristobal et al. 1999).
While the twin-arginine residues are conserved, mutation studies have shown that
changes in the motif result in a variation of phenotypes, ranging from completely
blocked to slowed down translocation of the cargo (Chaddock et al. 1995; DeLisa
et al. 2002; Mendel et al. 2008).

Several Tat prediction software programs are available, including TatFind and
PRED-TAT (Rose et al. 2002; Bendtsen et al. 2005; Bagos et al. 2010). However,
although the signal peptide region is important for translocation, amino acid
sequence motifs and patterns are not always reliable predictors, especially since Tat
cargo has also been associated with piggyback or hitchhiker mechanisms in
organisms like E. coli. Here, proteins without a signal peptide of their own bind to
the Tat substrate possessing the Tat signal peptide and are exported as a complex by
the machinery (Rodrigue et al. 1999; Wu et al. 2000a). Further, Sec–Tat substrate
overlap has been shown to occur and sequence ambiguity can lead to false-positive
identifications (Tjalsma et al. 2000; Jongbloed et al. 2002; Kouwen et al. 2009;
Keller et al. 2012; Goosens et al. 2013). Therefore, although bioinformatic tools are
invaluable for lead finding, potential Tat substrates need to be confirmed
experimentally.

3 Tat Components and Processes

Genes for the Tat system are observed in 77 % of sequenced microbial genomes.
The respective organisms typically contain a TatA and TatC pair (Fig. 1), which are
often encoded by genes found within a single operon (Wu et al. 2000b; Yen et al.
2002; Simone et al. 2013). Such tatA-tatC operons are occasionally located in the
vicinity of genes for Tat cargo proteins (Jongbloed et al. 2000, 2004; Biswas et al.
2009).
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Fig. 1 Tat components and interactions of Tat complexes with their cargo. Tat protein
translocases are essentially composed of two types of subunits, namely TatA-like proteins and
TatC, which have distinct membrane topologies (upper panel). TatA-like proteins (indicated in
orange and red) have an Nout–Cin topology and consist of two helical domains, one of which spans
the membrane while the other one (amphipathic) is exposed to the cytoplasm. TatC is an integral
membrane protein with six transmembrane domains and an Nin–Cin topology. The translocation
process is believed to involve two major Tat complexes, namely a docking complex (middle panel)
and a translocation complex (lower panel). The docking complex is composed of TatC and a
TatA-like protein (red). In some organisms, such as E. coli, the latter TatA-like protein has a
specialized docking function in which case it is referred to as TatB. Docking of cargo proteins
(green) involves interaction of the twin-arginine signal peptide (purple) with TatC. Once the cargo
protein has docked, a large number of TatA-like proteins (orange) are recruited to the translocation
site, thereby forming the translocation complex
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3.1 TatA, TatA-like and TatC Proteins

TatA and TatA-like proteins are small membrane proteins with an N-out C-in
topology. They have a small N-terminal extracytoplasmic domain, a single trans-
membrane helix and an amphipathic helix that lies on the membrane surface or is
partially embedded in the membrane on the cytoplasmic side (Fig. 1) (Lange et al.
2007; Hu et al. 2010; Walther et al. 2010). In numerous species, tatA genes have
undergone multiple duplication events forming the tatA-like genes, and these are
found in the main tat operon or elsewhere in the genome (Wu et al. 2000b; Yen
et al. 2002). Some TatA-like proteins can simply be duplicate TatA proteins, such
as TatE or TatA2 in Corynebacterium species, Streptomyces coelicolor, Salmonella
enterica and E. coli (Sargent et al. 1999; Ikeda and Nakagawa 2003; Kalinowski
et al. 2003; Nishio et al. 2003; Baglieri et al. 2012). In B. subtilis and C. glu-
tamicum, the expression of the duplicate proteins TatAc and TatE, respectively, has
been shown to assist the activity of the primary TatA protein (Kikuchi et al. 2006;
Goosens et al. 2015). However, in some instances, duplicate TatA-like proteins
(often referred to as TatB) have further undergone sequence divergence and
functional specialization. This seems to have occurred independently numerous
times. TatA-like proteins with divergent functions, such as TatB have been studied
in E. coli, Streptomyces species and in the thylakoids of plant chloroplasts (where
they are referred to as Hcf106). In these organisms, both TatA and TatB are needed
for full translocation activity (Sargent et al. 1999; Mori and Cline 2001;
Schaerlaekens et al. 2001; De Keersmaeker et al. 2005a). Intriguingly, certain TatA
proteins (e.g. the TatA proteins from B. subtilis) are able to functionally replace
both E. coli TatA and TatB in the TatA-B-C system (Barnett et al. 2008). This is
even more remarkable since TatA shares only 20 % sequence similarity with TatB
although the E. coli TatA and TatB are structurally the same (Hicks et al. 2003;
Lange et al. 2007; Hu et al. 2010; Walther et al. 2010). Nevertheless, minor changes
to E. coli TatA allow it to complement for TatB (Blaudeck et al. 2005; Barrett et al.
2007). Therefore, no clear definition exists that allows one to properly differentiate
TatA from TatB, and in many sequence annotations where a second TatA-like
protein has been defined as TatB, this annotation may be erroneous. Importantly,
over 50 % of the Tat-encoding genomes sequenced to date specify only a
TatA-TatC component (Simone et al. 2013). Accordingly, the concept that a core
Tat system composed of a core TatA-TatC pair with various assistant TatA-like
proteins is gaining more support. This view is backed by studies in B. subtilis,
where a third TatA protein (TatAc) was shown to assist TatAy in protein translo-
cation, and in Helicobacter pylori, Campylobacter jejuni, and C. glutamicum where
a second TatA-like protein was shown to be essential only under some conditions of
Tat-dependent protein translocation but not all (Kikuchi et al. 2006; Benoit and
Maier 2014; Liu et al. 2014; Goosens et al. 2015; Oertel et al. 2015). Thus, in many
organisms, it is not necessary to have a TatB as is found in E. coli and thylakoids,
which have TatA, TatB and TatC subunits, each with their own function.
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Unlike TatA, TatC proteins are large integral membrane proteins with six
membrane-spanning domains (Fig. 1). TatC is central to the Tat pathway as is
evident by the multiple protein interactions in which this protein is involved. The
TatC transmembrane regions interact with other TatC proteins (Buchanan et al.
2002; Punginelli et al. 2007), but also with the cargo protein (Behrendt et al. 2004;
Frobel et al. 2012). Both the cargo protein and TatA(-like) proteins (e.g. E. coli
TatB) have been shown to interact with the membrane-embedded region of TatC
and its conserved cytoplasmic loop (Buchanan et al. 2002; McDevitt et al. 2006;
Schreiber et al. 2006; Holzapfel et al. 2007; Strauch and Georgiou 2007; Frobel
et al. 2011; Zoufaly et al. 2012; Ma and Cline 2013; Blümmel et al. 2015).
Although the extracytoplasmic loops do not share high sequence similarity, random
mutagenesis studies showed that the conserved secondary structure is vital (Strauch
and Georgiou 2007; Kneuper et al. 2012). Further, the C-terminal tail of TatC has
been shown to be essential for successful Tat-dependent protein translocation in B.
subtilis (Eijlander et al. 2009b).

3.2 Translocation Process

The mechanism of translocating cargo proteins via the Tat pathway has not been
concretely defined. However, what is currently agreed upon is that there are at least
two Tat complexes and at least three steps to the process (Cline and Mori 2001).
The first step, the formation of a docking complex, is initiated when cargo proteins
interact with a TatC and TatA(-like) complex at the membrane (Fig. 1) (Bolhuis
et al. 2001; Whitaker et al. 2012). In E. coli and thylakoids, this is where the
(TatA-like) TatB proteins perform their specialized functions. The signal peptide of
the cargo protein directly interacts with TatC in the docking complex and is inserted
into the membrane after proofreading (Cline and Mori 2001; Alami et al. 2003;
Papish et al. 2003; Robinson et al. 2011; Frobel et al. 2012). In the second step, the
translocation complex is formed. This occurs once the cargo protein has ‘docked’,
and a large number of TatA proteins are recruited to the translocation site in a
manner that is dependent on the proton-motive force, thereby forming the
translocation complex (Fig. 1) (Mori and Cline 2002; Alami et al. 2003;
Dabney-Smith et al. 2006). The final step is the translocation itself, but how this
occurs is not clear. A recent study by Blümmel et al. (2015) indicates that TatBC
oligomers can assemble into closed intramembrane substrate-binding cavities,
where TatB monomers would form dome-like structures that are surrounded by
TatC monomers. These TatBC complexes would bind the N-termini of TatA pro-
tomers facilitating contacts with TatB and membrane-inserted cargo proteins.

There are two popular translocation models, which are both speculative: the pore
and the membrane-weakening models [reviewed in (Berks 2015; Patel et al. 2014)].
Both models are supported by data and, depending on their interpretation, some
results are used to reinforce either. The pore model was conceived based upon
single particle electron microscopy studies that showed TatA and TatA-like proteins
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self-assemble to form cup-like structures or pores with varying diameters (Gohlke
et al. 2005; Oates et al. 2005; Beck et al. 2013). Consistent with this model, the
E. coli TatA complexes have been shown to form ladders of multiple sizes in native
gels (Gohlke et al. 2005; Oates et al. 2005; Beck et al. 2013) giving rise to the
hypothesis that a pore made up of TatA proteins adapts its diameter to the globular
cargo by varying the amount of TatA components (Fig. 1). The theory goes that
TatA-cargo protein interactions within the cup-like TatA structure allow for
translocation by the folding-in (trap-door mechanism) or twisting (iris mechanism)
of the amphipathic helix of TatA up into the membrane (Berks et al. 2000; Gouffi
et al. 2004; Gohlke et al. 2005; Walther et al. 2013). In contrast, the
membrane-weakening model predicts that the TatA complexes observed by electron
microscopy do not form a pore, but that the aggregates of TatA proteins form
destabilised membrane regions that permit cargo passage (Bruser and Sanders
2003). Data that support this include the length of the TatA transmembrane region,
which is too short to span the lipid bilayer (Rodriguez et al. 2013). Also, the B.
subtilis TatAd complexes observed by single particle electron microscopy were
structurally too small to represent pores that can accommodate a substrate (Beck
et al. 2013). Other evidence not consistent with the pore model is that the large size
variation and laddering effect seen in E. coli TatA complexes have not been con-
vincingly observed for other TatA and TatA-like proteins (Baglieri et al. 2012;
Monteferrante et al. 2012a; Walther et al. 2013). Moreover, NMR studies suggest
that, because the TatA amphipathic helix is not flexible (Walther et al. 2010), the
movement of the amphipathic helix into the membrane would have to be sudden
and, most likely, disruptive. Another piece of evidence that seems to support the
membrane-weakening model is the involvement of the phage shock protein PspA in
Tat-dependent protein transport. For example, PspA has been implicated in the
stabilization of the membrane under stress conditions (Darwin 2005; Vrancken
et al. 2008) and in suppressing proton leakage (Kobayashi et al. 2007). PspA binds
both E. coli TatA (Mehner et al. 2012) and phospholipids (Kobayashi et al. 2007)
forming scaffold-like structures in the membrane (Standar et al. 2008). The possible
involvement of PspA in Tat-dependent protein transport suggests that the translo-
cation event induces stress. Importantly, expression of PspA has been shown to
improve Tat-dependent protein secretion in both S. lividans and E. coli and, hence,
its role in suppressing proton leakage that may occur in the Tat export process may
be conserved in both Gram-positive and Gram-negative bacteria (DeLisa et al.
2004; Vrancken et al. 2007).

4 Cargo protein Processing and Quality Control

A defining feature of Tat is its inability to translocate incorrectly folded proteins.
Although a small amount of flexibility has been described for small synthetic
peptides (Hynds et al. 1998; Richter et al. 2007; Rocco et al. 2012), the system is
known to have strict folding requirements regarding its native substrates. If a

76 V.J. Goosens and J.M. van Dijl



protein is not sufficiently folded or does not have its co-factors inserted, the
translocation is prevented and the protein is degraded (Jack et al. 2004; Kolkman
et al. 2008; Matos et al. 2008). Protein folding, co-factor insertion and quality
control prior to Tat complex interactions are therefore considered important for
cargo translocation. The quality control step has been shown to occur at the docking
complex (Buchanan et al. 2008; Panahandeh et al. 2008; Frobel et al. 2012; Rocco
et al. 2012). Further evidence of quality control prior to docking complex formation
has been clearly described in E. coli, where a number of substrate-specific chap-
erones have been identified (Oresnik et al. 2001; Jack et al. 2004). However,
homologous chaperones have not been characterized in other organisms, and it
remains unclear which factors may be involved in pre-translocational protein
folding and quality control prior to docking-complex interactions in Gram-positive
bacteria. Nonetheless, in B. subtilis the Tat-dependent QcrA protein was shown to
undergo quality control at two subcellular locations, in the cytoplasm and mem-
brane, and on two different pre-QcrA intermediates. While neither of the pre-QcrA
proteins were translocated, pre-QcrA quality control occurred both at the mem-
brane, where the Tat-docking complex is shown to perform proofreading functions,
and in the cytoplasm via an as-yet-unknown mechanism (Goosens et al. 2014a).
Quantitative proteomic studies have implicated the membrane-targeting chaperone
DnaJ and co-factor assembly protein SufS with the Tat pathway in B. subtilis
(Albrecht et al. 2011; Goosens et al. 2013; Castanie-Cornet et al. 2014). However,
functional studies are still required to confirm these links. What has clearly been
shown is a direct interaction between the B. subtilis TatAd protein and the soluble
chemoreceptor HemAT, and between TatAd and the putative pentose transporter
CsbC within the membrane. Not only do HemAT and CsbC individually interact
with TatAd, but they are also essential for the secretion of the TatAd-specific cargo
protein PhoD (Monteferrante et al. 2013). Exactly what the roles of these proteins in
the PhoD quality control and Tat-dependent export pathway are remained unclear.

It has been suggested that the Tat-associated quality control is linked to a pool of
cytoplasmic TatA (Pop et al. 2003; De Keersmaeker et al. 2005a, b; Schreiber et al.
2006; Westermann et al. 2006; De Keersmaeker et al. 2007; Frielingsdorf et al.
2008). In this model, the cytoplasmic TatA of B. subtilis, Streptomyces lividans or
thylakoids interacts with cargo prior to translocation and guides it to the docking
complex in the membrane. Also, overexpressed TatA molecules have been
observed to form distinct tubes in the cytoplasm (Berthelmann et al. 2008).
However, since the cytoplasmic TatA-cargo protein interaction has only been
observed under induced circumstances and the presence of TatA in the cytoplasm
has not been shown consistently under all experimental methodologies, future
studies will need to verify the possible quality control function of cytoplasmic TatA
(Wexler et al. 2000; Barnett et al. 2008; Leake et al. 2008; Barnett et al. 2009;
Ridder et al. 2009).

Other steps in the quality control of Tat-dependent cargo proteins occur during
or shortly after membrane translocation. In particular, these include the removal of
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the twin-arginine signal peptide by signal peptidases, which has been widely
observed (Jongbloed et al. 2004; Luke et al. 2009; Widdick et al. 2011; Goosens
et al. 2013). In addition to signal peptidases, extracytoplasmic proteases have also
been shown to effect the Tat-dependent cargo protein EfeB in B. subtilis. EfeB
directly interacts with and requires the cell wall-bound protease WprA for pro-
cessing (Monteferrante et al. 2013), but is degraded by extracellular proteases in the
growth medium (Krishnappa et al. 2012). EfeB forms part of a membrane-bound
complex with the EfeU and EfeO proteins, and the association with extracellular
proteases is an indication of a possible assembly proofreading mechanism
(Monteferrante et al. 2013).

5 Flexibility of the Tat System Between Different
Organisms

Expression of B. subtilis Tat components in E. coli leads to Tat-dependent export
and functionally replaces the Tat pathway in E. coli (Barnett et al. 2008, 2009;
Monteferrante et al. 2012a; van der Ploeg et al. 2012). Single B. subtilis tatA genes
are able to functionally replace both the E. coli TatA and TatB proteins (Barnett
et al. 2008; Monteferrante et al. 2012a; Beck et al. 2013). However, when similar
interspecies experiments were performed in a B. subtilis background, comple-
mentation was not that simple. Although the Tat systems from Bacillus cereus and
Listeria monocytogenes were functional in B. subtilis, the Tat system from S.
aureus was barely active in B. subtilis (Barnett et al. 2008, 2009; van der Ploeg
et al. 2011a, 2012). These differences suggest that the Tat pathway alone is not
enough to ensure complete translocation and possible chaperone or quality control
mechanisms in E. coli and S. aureus do not match up with those in B. subtilis.

Interspecies variations have also been observed with regard to the export of
cargo proteins. The addition of a Tat signal peptide to a cargo protein has allowed
for heterologous Tat-dependent translocation in many cases, but this does not
always equally prove successful in all genetic backgrounds and with all cargo
(Thiemann et al. 2006; Meissner et al. 2007; Kikuchi et al. 2008; Widdick et al.
2008; Scheele et al. 2013). Environmental salt (i.e. NaCl) conditions also affected
the Tat-dependent export of cargo that was heterologously expressed in B. subtilis
suggesting external conditions and media may affect Tat-dependent secretion (van
der Ploeg et al. 2011a, 2012). However, the environmental salt concentration did
not significantly affect the amount of Tat-dependently translocated QcrA in B.
subtilis (Goosens et al. 2015). The influence of salt on the translocation of other
cargo is therefore not necessarily an intrinsic Tat effect.

78 V.J. Goosens and J.M. van Dijl



6 Monoderm Gram-Positive Bacterial Tat Systems

Bacterial phyla are broadly defined by the physical properties of the outer layer of
their cell structure. In most cases, bacteria are classified by the outcome of so-called
Gram staining. The Gram staining procedure was developed in the late nineteenth
century and works by interaction of the stain with the peptidoglycan of the cell wall.
The stain is either retained by the peptidoglycan, giving cells a purple colour, or
washed out. Accordingly, this gave rise to the common nomenclature of
Gram-positive bacteria where the stain is retained, or Gram-negative bacteria where
the stain is not retained. The Gram-positive bacteria have a single plasma mem-
brane surrounded by a thick outer cell wall composed of peptidoglycan (i.e. a
monoderm cell envelope). In contrast, Gram-negative bacteria have a double
membrane with a peptidoglycan layer in between (i.e. a diderm cell envelope).
Although the Gram-staining-based nomenclature is generally a good indicator of
the physical properties of the outer layer of cells, it can be ambiguous. Some
bacteria stain positive, but do in fact have a diderm cell envelope structure. Such
bacteria include mycobacteria, corynebacteria, rhodococci and nocardiae. The Tat
systems of these diderm Gram-positive bacteria will not be detailed here, as they
have been reviewed previously (Goosens et al. 2014b) and not much new infor-
mation has become available since this review was published.

6.1 Bacillus subtilis

Bacillus subtilis is the major Gram-positive model organism with an extensive array
of genetic tools, including in-depth genomic, transcriptomic and proteomic insights
(Kunst et al. 1997; Tjalsma et al. 2000; Eymann et al. 2004; Wolff et al. 2007;
Buescher et al. 2012; Nicolas et al. 2012). A number of Bacillus species are
biotechnologically relevant. B. subtilis, Bacillus licheniformis and Bacillus amy-
loliquefaciens, for example, have the ability to secrete large titres of proteins,
qualify for the Qualified Presumption of Safety (QPS) status of the European Food
Safety Authority, and many of their products have a Generally Recognized As Safe
(GRAS) status from the US Food and Drug Administration. Furthermore, B. subtilis
becomes naturally competent, thereby allowing for easy genetic modification
(Tjalsma et al. 2000; van Dijl et al. 2002; Graumann 2011).

The B. subtilis Tat system is one of the most extensively studied Tat systems
within the field, because it has unique characteristics in particular relating to gene
duplication. As indicated above, duplication of TatA and TatA-like proteins is a
common feature in most Tat systems. However, the duplication of TatC proteins is
rare except in Bacillus species, where multiple isoforms of TatC have been
observed (Jongbloed et al. 2000; Yen et al. 2002; Simone et al. 2013).

The core progenitor operon in B. subtilis is tatAy-tatCy (Simone et al. 2013).
This operon has been duplicated and, consequently, there is a second separate tat
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operon named tatAd-tatCd. Thus, B. subtilis Tat is specified by two separate
operons, which are expressed at different times and, under normal conditions, do
not share substrate specificity (Jongbloed et al. 2004; Eijlander et al. 2009a; Nicolas
et al. 2012; Goosens et al. 2013). The predominant Tat pathway is TatAy-TatCy
and, although an early bioinformatics analysis has predicted up to 69 potential
Tat-dependent substrates, only three substrates have been confirmed to be strictly
TatAy-TatCy-dependent, namely EfeB, QcrA and YkuE (Tjalsma et al. 2000;
Jongbloed et al. 2002, 2004; Monteferrante et al. 2012b; Goosens et al. 2013). The
genes for the second B. subtilis Tat pathway, TatAd-TatCd, are found next to the
gene for its only known substrate, the phosphate acquisition protein PhoD.
Accordingly, the tatAd-tatCd operon is only expressed under low-phosphate con-
ditions (Eder et al. 1996; Jongbloed et al. 2000, 2004; Nicolas et al. 2012).

Apart from duplicating the whole tatAy-tatCy operon, the Tat system of B.
subtilis has a further tatA duplication, namely tatAc. This third tatA gene is located
elsewhere on the chromosome, and it is expressed constitutively under numerous
conditions (Nicolas et al. 2012). Although it was investigated in several studies, a
physiological role for TatAc has, until recently, remained enigmatic (Tjalsma et al.
2000; Jongbloed et al. 2002, 2004; Eijlander et al. 2009a; Nicolas et al. 2012).
TatAc is unable to form an active translocon when paired with TatC proteins in B.
subtilis (Eijlander et al. 2009a; Goosens et al. 2015). However, when expressed in
E. coli, TatAc formed functional translocases with either E. coli TatBC, B. subtilis
TatCd or B. subtilis TatCy (Monteferrante et al. 2012a; Beck et al. 2013). This
difference illustrates the interpathway flexibility of E. coli and further suggests
potentially different quality control or chaperone activities in the Tat pathways of B.
subtilis and E. coli. Yeast two-hybrid (Y2H) protein–protein interaction studies
have shown that not only does TatAc interact with itself and the B. subtilis TatA
proteins, but it also directly interacts with HemAT (Monteferrante et al. 2013).
HemAT was in turn shown to be essential for the Tat-dependent secretion of PhoD,
which therefore suggested a functional role for TatAc in B. subtilis (Monteferrante
et al. 2013). A functional role for TatAc as a Tat-assistance protein was confirmed
when it was shown to permit the translocation of EfeB in cells with an impaired
TatAy function, despite the fact that TatAc was unable to replace TatAy (Goosens
et al. 2015). It thus seems that TatAc, the third TatA-like protein of B. subtilis,
reflects an intermediate evolutionary step in TatA-TatB specialization. In this
scenario, the presently available data suggest that the defective TatAy protein has a
role that is comparable to that of E. coli TatB, while TatAc has a role similar to that
of E. coli TatA. Altogether, it can be concluded that the core Tat translocon in B.
subtilis is composed of a TatAy-TatCy pair and that the TatAc protein has a
non-essential assistant role in translocation. For example, TatAc could allow for
more efficient cargo-Tat protein–protein interactions, and it might improve the
overall efficiency of the Tat pathway (Goosens et al. 2015).

All confirmed B. subtilis Tat-dependent cargo proteins are known to contain
co-factors, thereby emphasizing their need for the Tat pathway (Schneider and
Schmidt 2005; Monteferrante et al. 2012b; Miethke et al. 2013; Rodriguez et al.
2014). Further, QcrA contains a disulphide bond in addition to its iron-sulphur
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cluster (Iwata et al. 1996; Link et al. 1996; Schmidt and Shaw 2001;
Hunsicker-Wang et al. 2003). Of note, QcrA has been observed to be a
Tat-dependent substrate in a wide-range of organisms (Molik et al. 2001;
Bachmann et al. 2006; De Buck et al. 2007; Goosens et al. 2013; Pett and Lavrov
2013b; Oertel et al. 2015). Both QcrA and EfeB form part of larger extracyto-
plasmic complexes, where the QcrA-B-C proteins form the cytochrome bc1 com-
plex, whereas the EfeU-O-B proteins form an iron uptake system. This organization
of Tat-dependent substrate proteins into larger complexes further suggests that the
Tat pathway assists in protein complex assembly (Yu et al. 1995; Schneider and
Schmidt 2005; Miethke et al. 2013; Sousa et al. 2013). The extracellular protease
WprA also directly affects EfeB and indirectly influences YkuE (Monteferrante
et al. 2013). The action of WprA may thus be associated with this complex
maturation.

Most of the observed phenotypes associated with Tat-deficiencies have been
linked directly to the known substrates, i.e. PhoD is required under phosphate
starvation and EfeB is required under conditions of iron deficiency and low salt
(Jongbloed et al. 2000; van der Ploeg et al. 2011b). However, quantitative pro-
teomic studies revealed that numerous proteins associated with motility and biofilm
formation were decreased in tatAy-tatCy deficient strains, leading to the identifi-
cation of an, as-yet, not-well-understood Tat-associated delayed biofilm formation
phenotype (Goosens et al. 2013). Most studies investigating Tat have used Western
blotting techniques to validate Tat-dependency of substrates. Although this remains
the golden standard and a powerful tool, it does not give an indication of whether
the protein is correctly folded and active. In the B. subtilis studies, the activity of
cargo proteins was determined using the alkaline phosphatase activity of YkuE
(Monteferrante et al. 2012b) and the ferric iron uptake to assess EfeB activity
(Miethke et al. 2013; Goosens et al. 2015). EfeB is a hemoprotein that oxidizes
ferrous iron to ferric iron for uptake via EfeU and EfeO. For this reason, EfeB
stimulates growth under microaerobic conditions where ferrous iron is more
abundant. In addition, EfeB was shown to have an important role in the protection
against cell envelope stress through the elimination of reactive oxygen species that
are generated in the presence of ferrous iron (Miethke et al. 2013).

6.2 Streptomyces

Streptomyces species are found naturally in the soil where they often form mycelia.
These bacteria have become workhorses for industry as they can be used for the
high-level production of various antibiotics and secreted proteins (Anne et al.
2012). The Tat system is a major contributor to overall protein secretion in these
species with numbers of potential substrates ranging between 100 and 189
(Widdick et al. 2006; Joshi et al. 2010; Palmer and Berks 2012). The Tat system in
Streptomyces species is composed of at least three Tat components, where the genes
for a minimal TatA-TatC system are found clustered and the gene for an extra
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TatA-like protein (depending on the species, these are called TatB or TatA2) is
located elsewhere on the chromosome (Schaerlaekens et al. 2001; Palmer and Berks
2012). Crosstalk between the Sec and Tat pathways has been observed in the sense
that Sec-dependent secretion was enhanced by a mutated Tat system or reduced by
an overexpressed Tat system (Schaerlaekens et al. 2004a; De Keersmaeker et al.
2006).

In S. lividans, optimal secretion of the Tat-dependent substrates xylanase C and
tyrosinase occurred when all three Tat components were present. Secretion did still
occur when a single TatA or TatB protein was paired with TatC, albeit at lowered
efficiency. It was therefore concluded that the TatA-like proteins in Streptomyces
were unable to fully functionally replace each other and that each must have a
specialized function (De Keersmaeker et al. 2005a). A very interesting observation
made in S. lividans was that both TatA and TatB proteins were detected in the
cytoplasm under native conditions (De Keersmaeker et al. 2005b), and when
expression was induced these TatA-like proteins apparently interacted with
Tat-dependent cytoplasmic pre-proteins (De Keersmaeker et al. 2005a, 2007).

6.3 Staphylococcus

Not all Staphylococcus species have a Tat pathway. However, this pathway has
been identified in Staphylococcus haemolyticus, Staphylococcus carnosus,
Staphylococcus lugdunensis and S. aureus (Biswas et al. 2009). The staphylococcal
Tat pathway is composed of a single TatA–TatC pair. This Tat pathway has been
investigated for biotechnological applications in S. carnosus and, although shown
to secrete heterologous proteins, it was considered inadequate for the required
applications (Thiemann et al. 2006; Meissner et al. 2007). To date, only one native
Tat-dependent staphylococcal substrate, FepB, has been confirmed, and inactivation
of the Tat system did not show any global changes in protein secretion profiles
(Yamada et al. 2007; Biswas et al. 2009). FepB is an iron-dependent peroxidase
encoded by the fepABC operon, and the corresponding complex is very similar to
the iron-scavenging EfeUOB complexes in E. coli, B. subtilis and L. monocyto-
genes (Biswas et al. 2009; Miethke et al. 2013; Turlin et al. 2013). Interestingly, in
a mouse kidney abscess model, the bacterial load of tat or fepB mutant strains was
shown to be decreased, thereby pointing at a physiologically relevant role of
Tat-dependent export of FepB in staphylococcal disease (Biswas et al. 2009).

6.4 Listeria monocytogenes

Listeria monocytogenes is a saprophytic bacterium that, once it has entered the food
chain, becomes a dangerous food-borne pathogen. The Listeria Tat system is
composed of a TatA–TatC pair (Desvaux and Hebraud 2006; Machado et al. 2013).
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In strains where tat genes were deleted, no significant changes in cell viability or
virulence have been described (Machado et al. 2013; Halbedel et al. 2014).
Bioinformatic analysis predicted two potential Tat-dependent substrates, namely
FepB (Lmo0367) and a FabF-like protein (Lmo2201) (Desvaux and Hebraud
2006). However, when these proteins were tagged and expressed neither was
Tat-dependent (Halbedel et al. 2014). Nonetheless, the FepB signal peptide was
shown to confer Tat-dependent secretion in the S. lividans agarase reporter assay,
and both a tatC and fepB mutant strain displayed decreased overall ferric reductase
activity (Widdick et al. 2008; Tiwari et al. 2015). Hence, there is evidence of a
FepB-Tat association, but none of the currently available data confirms a direct
Tat-dependency. The fepB gene is co-transcribed in an iron-induced fepCAB
operon, which is also Fur-regulated (Ledala et al. 2010; Tiwari et al. 2015).
Although the tat operon is transcribed in the early exponential phase in rich
medium, it is Fur-regulated and highly induced under iron starvation conditions
(Ledala et al. 2010; Machado et al. 2013; Tiwari et al. 2015). Therefore, it is
conceivable that, in order to detect the possible Tat-dependency of FepB, envi-
ronmental conditions with low iron availability may be required, or as in B. subtilis,
other environmental conditions such as low salt (van der Ploeg et al. 2011b;
Goosens et al. 2015). In fact, the Listeria fepCAB operon is highly reminiscent of
the Tat-associated fepABC and efeUOB operons in S. aureus and B. subtilis,
respectively. Accordingly, there appears to be a conservation of the Tat requirement
in these iron-scavenging complexes.

6.5 Streptococcus

The majority of Streptococcus species studied have no identifiable Tat components.
However, genes encoding a TatA and TatC protein have been identified in
Streptococcus sanguinis and Streptococcus thermophilus. Intriguingly, in both S.
sanguinis and S. thermophilus these tat genes are localized in close genomic
proximity to three genes that resemble the efeUOB, fepCAB and fepABC operons of
B. subtilis, Listeria and Staphylococcus, respectively. Further, in both
Streptococcus species, the EfeB-like iron-dependent peroxidase contains a
twin-arginine motif in the signal peptide. In the facultative anaerobe S. ther-
mophilus, EfeB was shown to be translocated by the Tat system, and mutation of
efeB or tatC resulted in decreased growth under aerobic conditions, suggesting that
the respective proteins have a role in protecting the cell against oxidative stress (Xu
et al. 2007; Zhang et al. 2015).
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7 Conclusion

The investigations on the Tat pathways of Gram-positive bacteria, as described in
this review, suggest a general association between the Tat pathway and
iron-scavenging complexes, phosphate acquisition and respiratory complexes.
Intriguingly, phylogenetic analyses of TatC showed that 89 % of species that have
TatC are either facultative aerobes, or facultative or obligate anaerobes, while only
11 % are obligate aerobes (Simone et al. 2013). Thus, the majority of organisms
with a Tat system find themselves in anaerobic environments. Of note, anaerobic
bacteria and anaerobic growth are, over all, relatively poorly characterized. It thus
seems likely that the full potential of the Tat pathway and the spectrum of biological
functions that it fulfils are currently substantially underappreciated. With this in
mind, an important challenge for future Tat-related research could be the explo-
ration of this pathway in the microbiota of the human gut. Here bacteria, many of
which are Firmicutes, need to thrive and survive in a challenging anaerobic envi-
ronment that continuously changes depending on the ingestion of different nutrients
by the host, continuous flow-through and influx of oxygen from the gut epithelium
(Khan et al. 2012). Indeed, sequence analyses have shown that various dominant
gut microbes do contain tat genes, and it would be interesting to explore their
functions and find out whether they are conditionally essential.

The Tat system is known to be essential in only a few bacteria (Palmer and Berks
2012), including Mycobacterium tuberculosis where Tat has been shown to be
important for drug resistance and virulence (Raynaud et al. 2002; McDonough et al.
2005). Yet, gene essentiality is often condition-dependent and this also applies to
some tat genes as exemplified in B. subtilis, where the absence of the tatAy-tatCy
operon leads to severe growth impairment in salt- or iron-depleted environments.
This conditional essentiality implies that Tat is a potentially druggable target in
notoriously drug-resistant pathogens, such as M. tuberculosis.

Today, there are various areas in the Tat field that merit further research, some of
which have been touched upon in the present review. For example, this applies to
the condition-dependent regulation of tat gene expression, including possible roles
of antisense RNAs and small non-coding regulatory RNAs. In this respect, it is
worth mentioning recent studies, showing that the non-coding RNA Mcr7 of M.
tuberculosis modulates TatC expression, thereby serving as an intriguing new Tat
secretion control mechanism (Solans et al. 2014). Other major knowledge gaps
concerning the Tat pathways of Gram-positive bacteria relate to the chaperones that
guide cargo folding and cofactor insertion, quality control of cargo prior to mem-
brane translocation, the actual mechanism of Tat-mediated translocation of cargo
across the membrane, and post-translocational cargo processing and quality control.
Research into these areas will be important, not only to enrich our fundamental
understanding of protein translocation mechanisms, but also to open up the enig-
matic Tat pathway for the biotechnological secretion of high-value proteins, and to
explore the potential of Tat as an antimicrobial drug target.
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Membrane Translocation and Assembly
of Sugar Polymer Precursors

Véronique L. Taylor, Steven M. Huszczynski and Joseph S. Lam

Abstract Bacterial polysaccharides play an essential role in cell viability, viru-
lence, and evasion of host defenses. Although the polysaccharides themselves are
highly diverse, the pathways by which bacteria synthesize these essential polymers
are conserved in both Gram-negative and Gram-positive organisms. By utilizing a
lipid linker, a series of glycosyltransferases and integral membrane proteins act in
concert to synthesize capsular polysaccharide, teichoic acid, and teichuronic acid.
The pathways used to produce these molecules are the Wzx/Wzy-dependent, the
ABC-transporter-dependent, and the synthase-dependent pathways. This chapter
will cover the initiation, synthesis of the various polysaccharides on the cytoplasmic
face of the membrane using nucleotide sugar precursors, and export of the nascent
chain from the cytoplasm to the extracellular milieu. As microbial glycobiology is
an emerging field in Gram-positive bacteria research, parallels will be drawn to the
more widely studied polysaccharide biosynthesis systems in Gram-negative species
in order to provide greater understanding of these biologically significant
molecules.
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TMS Transmembrane segment
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1 Lipid Carrier Involved in Polysaccharide Biosynthesis

The first step in creating cell-wall polysaccharides, such as peptidoglycan (PG) or
capsule (CPS), requires the addition of sugars to a lipid carrier to form a precursor
compound, which facilitates translocation of sugars across the cytoplasmic mem-
brane. The process of relying on a linear chain polyprenyl-phosphate lipid as the
base for translocation of sugar polymers is a highly conserved process across all
biological kingdoms. The most commonly used lipid for sugar translocation in
bacteria is undecaprenyl-phosphate made of 55-carbon chain length (C55-P or
Und-P) (Manat et al. 2014). In brief, the formation of this C55-polyprenyl chain
occurs through the sequential condensation of short lipid chains to the appropriate
length in a cis configuration to a trans-linked precursor with the terminal phosphate
group in the α-position linked in an unsaturated bond (Hartley and Imperiali 2012).
This structure has been shown to be crucial in the translocation of a polar head
group through a highly hydrophobic environment by the interaction with a dedi-
cated flippase protein. Though the exact mechanism and the kinetics of interaction
between Und-P and the flippase are currently unknown, biophysical evidence
demonstrates that the presence of these lipids increases membrane fluidity, thereby
promoting a more dynamic state (Valtersson et al. 1985; Wang et al. 2008). Once
translocated by a protein such as CpsJ of Streptococcus pneumoniae, a putative
capsular flippase, the lipid–phosphate–sugar intermediate is believed to act as a
donor for the assembly of cellular polysaccharide.

2 Lipid II Translocation

PG synthesis is one of the most intensely studied areas of bacterial research
because, with only a few exceptions, it is essential for survival of the bacterial cell.
The conserved mechanisms in this pathway have been, and continue to be, targets
for developing broad-spectrum antibiotics. The building block of PG is lipid II, an
Und-P-linked GlcNAc-MurNAc disaccharide with a pentapeptide side chain that is
synthesized on the inner face of the cytoplasmic membrane. Once lipid II is
transported across the membrane, it is linked to the protective mesh-like network of
PG via penicillin binding proteins (Nikolaidis et al. 2014). Despite the fact that
almost each of the steps in the PG biosynthesis pathway has been thoroughly
characterized, the protein(s) responsible for the transport of lipid II has remained
elusive and the subject of debate; therefore, this action will be the focus of the
chapter. It was first proposed that FtsW, an essential cell-division protein, belonging
to the shape, elongation, division, and sporulation (SEDS) family, was the sought
after flippase (Ghuysen and Hakenbeck 1994; Höltje 1998). Mohammadi et al.
(2011) provided rather convincing evidence from in vitro experiments that FtsW
was the flippase in Escherichia coli. They used a FRET-based assay in which
vancomycin and lipid II were labeled with acceptor and donor FRET pairs,
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tetramethylrhodamine cadaverine (TMR), and 7-nitro-2,1,3-benzoxadiazol-4-yl
(NBD), respectively. Since vancomycin is known to bind to lipid II, this interac-
tion can be monitored by observing the quenching of the NBD signal and con-
comitant increase in TMR signal. Vancomycin, however, cannot cross the
cytoplasmic membrane so it could only bind lipid II that is on the outside of the
cytoplasmic membrane. Using this assay, the authors observed that over-expression
of FtsW in E. coli right-side-out vesicles, or subjecting purified FtsW to be
reconstituted in proteoliposomes, decreased the NBD signal and increased the TMR
signal, proving that lipid II had been flipped (Mohammadi et al. 2011). Although
these data are compelling, a previous study that used bioinformatic approaches has
collected evidence to suggest that a protein belonging to the mouse virulence factor
family (MVF, part of the multidrug/oligosaccharidyl-lipid/polysaccharide [MOP]
exporter superfamily), MviN, herein called MurJ, is the lipid II transporter (Ruiz
2008). Ruiz used a “reductionist approach” by identifying the predicted inner
membrane proteins that are present in E. coli and in two Gram-negative
endosymbiotic bacteria. The author chose endosymbiotic bacteria for compar-
isons because their proteomes are much smaller, yet they should still contain the
machinery for peptidoglycan synthesis. Using this approach, the author identified
six genes of unknown function and then searched the genomes of PG- and
non-PG-producing bacteria. MurJ was the only one that was present in
PG-producing bacteria. Ruiz postulated that since FtsW was present in Mollicute
Eubacterium dolichum DSM 3991, a non-PG producer, it was likely not the lipid II
flippase. However, Mohammadi et al. argued that the presence of FtsW in the
absence of PG does not rule out its role in biosynthesis because proteins involved in
the cell-wall biosynthesis pathway have been discovered in bacteria that lack PG
(Henrichfreise et al. 2009; Mohammadi et al. 2011). Regardless, a line of evidence
consistent of naming MurJ as the flippase is that the murJ gene is essential for
survival (Rudnick et al. 2001; Inoue et al. 2008; Ruiz 2008) as previous attempts to
delete the gene proved unsuccessful. Therefore, using an L-arabinose inducible
promoter within murJ, it was observed that in the absence of added inducer, E. coli
cells accumulated PG nucleotide precursors and lipid I (MurNAc-pentapeptide) in
the cytoplasm (Ruiz 2008). Computational modeling of the MurJ structure revealed
a solvent-exposed cavity and the typical “V”-shaped structure observed in crys-
tallized MOP proteins. This model was validated via two topology methods, based
on PhoA-LacZα reporter fusions and the substituted cysteine accessibility method
(Butler et al. 2013). Further, the authors identified essential positively charged
amino acid residues within the solvent-exposed channel and proposed that these
residues are involved in the binding of lipid II (Butler et al. 2014). One would
anticipate that some of these positive charges might be conserved in other bacteria.
Indeed, the MurJ homolog YtgP from Streptococcus pyogenes was found to contain
3 analogous essential positive residues in its putative channel as well as several
other positive residues that did not align with the MurJ structural model. These
differentially located positive charges may reflect the fact that there are differences
in the Gram-positive pentapeptide of lipid II (Butler et al. 2014). The results pre-
sented for MurJ and YtgP mirror the results of that in the studies of the O-antigen
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flippase in Pseudomonas aeruginosa explained below. It should be noted that, to
date, there is only a handful of crystalized MOP exporter superfamily proteins, and
these all belong to the multidrug and toxin extrusion (MATE) class. Therefore,
MATE proteins as the top structural hit may be biased and not representative of the
true structure of, for instance, a prokaryotic polysaccharide transporter
(PST) protein, which is also found in the MOP exporter superfamily. In the
aforementioned studies, however, the authors have used an experimental approach
to examine the topology of the proteins of interest and have obtained a considerable
amount of data to arrive at the structure predictions. Future structure–function
studies of MOP exporter proteins should exercise the same degree of scrutiny in the
methodology used in order to experimentally validate structure models based on in
silico algorithms.

In a subsequent study, the Ruiz group used an in vivo assay to demonstrate MurJ
flippase activity in E. coli. This assay took advantage of the fact that colicin M
cleaves MurNAc-GlcNAc-pentapeptide diphosphate from undecaprenyl in the
periplasm and that a cysteine variant of MurJ (MurJA29C) could be inactivated by
sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES). E. coli cells carrying this
MurJA29C variant were treated with colicin M in the presence or absence of
MTSES. In the presence of MTSES, lipid II cleavage by colicin M was blocked,
whereas in wild-type cells or untreated MurJA29C cells, lipid II was produced and
made available for processing (Sham et al. 2014).

There was still some doubt that MurJ was the bona fide lipid II flippase because
previous experiments that deleted four MurJ homologs in Bacillus subtilis were not
lethal and did not exhibit any morphological defects. It was suggested that either
MurJ is not the flippase or another protein is able to compensate for its absence (Fay
and Dworkin 2009). In a recent investigation by Meeske et al. (2015), a protein that
has activity for lipid II flipping was identified. In this study, the authors created a B.
subtilis strain containing the deletion of the four previously investigated proteins
and six more MOP exporter superfamily members. Strikingly, this strain grew at a
rate that is comparable to the wild type. Using a synthetic lethal screen, amj
(renamed from ydaH) was identified. Several lines of evidence pointed to Amj as an
alternate flippase: (i) amj could not be deleted in a ΔmurJ background, (ii) amj
could be used to complement a murJ mutation in E. coli, and (iii) Amj or MurJ from
B. subtilis (MurJBs) was able to flip lipid II in the colicin M in vivo assay.
Expression of Amj was upregulated in the absence of MurJ, which led to the
suggestion that Amj represents a “backup” system for lipid II flipping when MurJ
becomes non-functional, in the presence of antibiotics (Meeske et al. 2015).
Interestingly, it has been difficult to identify Amj as a flippase because this protein
does not have any sequence similarity to either the MOP or ABC-transporter
protein families. Amj is predicted to contain 6 transmembrane segments (TMS),
compared to the MOP family of proteins, which usually contain 12–15 TMS, and it
does not have any ATP-binding domains. Meeske et al. (2015) suggested that Amj
oligomerizes to form a channel for lipid II flipping. Interestingly, the primordial
ancestors of MOP superfamily members are predicted to have six TMS. As MOP

Membrane Translocation and Assembly of Sugar Polymer Precursors 99



proteins exhibit strong similarity between the first and the second half of their
sequence, it is postulated that a duplication event had given rise to the proteins with
12 TMS, and subsequent addition of TMS might have allowed the protein to evolve
to a larger size with up to 15 TMS (Hvorup et al. 2003a, b). Whether Amj rep-
resents the primordial protein that gave rise to the MOP superfamily or if this is
sheer coincidence certainly is an intriguing question for future experiments.

Does FtsW still play a role in lipid II flipping? It has been argued that the in vitro
assay of FtsW did not address non-specific transport of lipid II (Butler et al. 2013).
Perhaps, in a system where FtsW is the only candidate protein, it can mediate the
translocation of lipid-linked sugars non-specifically in a way that is analogous to the
flipping of non-native substrates by overexpressing Wzx proteins (see below).
Analysis of the substrate specificity of FtsW flipping has been studied by making
truncations or point mutations in the protein and subjecting it to a FRET-based
in vitro assay (Mohammadi et al. 2014). After deleting 6 of the 10 TMS, the protein
is still functional for lipid II flipping. It is intriguing that after removing almost half
of this large membrane protein, it could still perform its proposed function. It is
somewhat surprising that a protein with only 4 TMS would possess all the nec-
essary structural characteristics to perform the flipping, given that all flippases have
been characterized as large proteins. Nonetheless, it cannot be ruled out that the
protein monomers could oligomerize to form a sufficiently large structure. No
experiments have been performed to assess if these truncations could complement a
temperature-sensitive FtsW protein, presumably because the C-terminal domain is
important for septal localization and protein–protein interactions (Mohammadi et al.
2014). Evidence that these truncated constructs could retain some function in vivo
would certainly substantiate the in vitro results. Alternatively, a detailed structure
model based on computational biology methods or obtaining further experimental
data may help to reconcile why these deletions did not affect the flippase activity of
FtsW. Overall, the current level of understanding that FtsW possesses the activity
for flipping lipid II is important; however, as discussed, more questions have been
raised, and more experiments are warranted to more clearly define the system of
lipid II flipping in Gram-positive bacteria.

In summary, the proteins involved in lipid II flipping remained elusive and a
source of controversy. Thus far, the evidence presented in recent research on MurJ
strongly supports the notion that it is the bona fide flippase in certain species in both
Gram-positive and Gram-negative bacteria. However, backup systems appear to
exist, for example, in B. subtilis when lipid II flipping can occur in the absence of
MurJ. The backup protein Amj, a novel flippase, has very little resemblance to the
MOP exporter superfamily proteins and thus it represents a novel family outside of
or within this superfamily.
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3 Capsular Polysaccharide Biosynthesis

The long-chain exopolysaccharide known as capsular polysaccharide (CPS) is a
common structure that extends beyond the cell wall of Gram-negative and
Gram-positive bacteria. It forms a surface coat to shield the bacteria against innate
host defences and is known to contribute to virulence. In Gram-positive organisms,
CPS can be linked to PG. Biosynthesis of this polymer occurs through two separate
but conserved pathways: Wzx/Wzy-dependent and synthase dependent (Fig. 1)
(Yother 2011). For either of the pathways, capsular biosynthesis is initiated on the
inner face of the cytoplasmic membrane where sugar precursors are synthesized on
a lipid carrier, i.e., Und-P for Wzx/Wzy-dependent and phosphatidylglycerol for the
synthase-dependent one. Once the precursors are formed on the lipid carrier, the
pathways differ by the mode of translocation across the cytoplasmic membrane. In
the Wzx/Wzy pathway, these Und-P-linked precursors are transported to the outer
face of the cytoplasmic membrane by the flippase CpsJ (an equivalent of Wzx, the
O-antigen flippase in Gram-negative bacteria) and polymerized by CpsH (an
equivalent of Wzy, the O-antigen polymerase). Capsule production, chain length,
and attachment to the cell wall are controlled by CpsABCD, which together con-
stitute a phosphoregulatory system (Guidolin et al. 1994; Kolkman et al. 1996;
Morona et al. 1999). The synthase pathway, however, begins with
phosphatidylglycerol-linked precursors, while subsequent steps, including initia-
tion, polymerization, and export, are apparently performed by a single protein CpsS
(synthase).

CPS biosynthesis has been extensively studied in Gram-negative organisms;
however, the importance of capsules as virulence factors has inspired the study of
this cell surface glycan in Gram-positive organisms with the ultimate goal of
developing effective therapeutics (Tarahomjoo 2014). The capsular biosynthesis
clusters have been extensively studied in Staphylococcus aureus, Bacillus spp. and
S. pneumoniae. Differences in sugar constituents, side groups, and the molecular
bonds between the sugar residues distinguish capsules into specific
serotypes/serogroups within a particular species; e.g., S. pneumoniae alone pos-
sesses 93 distinct serotypes (Henrichsen 1995). The genes within the chromosomal
locus of S. pneumoniae CPS is highly diverse, as reflected by the fact that its cluster
ranges from 10 to 30 kb (Bentley et al. 2006). Comparatively, the S. aureus CPS
clusters range only from 14 to 18 kb depending on the serotype (Moreau et al. 1990;
Lin et al. 1994; Sau et al. 1997). The 5′ end of all CPS clusters are highly conserved
beginning with the regulatory genes named cpsABCD, whose position and order are
unchanged. The remainder of the cluster comprises glycosyltransferases and
enzymes for synthesizing nucleotide sugar precursors (Bentley et al. 2006). In S.
pneumoniae, the chromosomal locus of the CPS cluster is flanked by two genes,
dexE and ali.
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3.1 Initiating Glycosyltransferase

The first serotype-specific gene identified in the capsule biosynthesis cluster of S.
pneumoniae was cpsE (Guidolin et al. 1994; Kolkman et al. 1996, 1998; Morona
et al. 1999; Pelosi et al. 2005), while in S. aureus, it was capM (Lin et al. 1994;
Miyafusa et al. 2013). Both genes encode glycosyltransferases responsible for the
reversible addition of a nucleotide-activated sugar to the Und-P lipid carrier
(Kolkman et al. 1996; Cartee et al. 2005a, b). CpsE has been identified in 69 of the
98 serotypes of S. pneumoniae, and it is a 44-kDa protein that initiates capsular
biosynthesis by transferring nucleotide-activated glucose-1-phosphate to Und-P
(Bentley et al. 2006). The CpsE family of proteins possesses a high level of
sequence identity between serotypes (70–90 %) (Kolkman et al. 1996; van Selm
et al. 2002). The mechanism of action and the hydrophobic profile of CpsE proteins
characterize them as members of the highly conserved membrane
polyprenyl-phosphate hexose-1-phosphate transferase (PHPT) family (Valvano
2011). The topology of CpsE is shown to consist of 4 membrane-spanning
domains, a predicted extracellular loop spanning between transmembrane segment
(TMS) IV and V that are near the C-terminal cytoplasmic tail (Xayarath and Yother
2007; Saldías et al. 2008; Furlong et al. 2015). However, thus far, no experimental
data are available in the literature to biochemically verify the orientation of the

b Fig. 1 Biosynthesis and export of Gram-positive polysaccharides utilize three-distinct pathways:
Wzx/Wzy dependent, ABC-transporter dependent, and synthase dependent. The glycosyltrans-
ferase enzymes are color coded to distinguish the various components including the respective
substrates and the transport proteins (CpsJ, TagG, and CpsT, shown in Green).
a Wzx/Wzy-dependent pathway for capsule biosynthesis. The example used is for S. pneumoniae
serotype 2. CpsE (shown in Blue), the initiating glycosyltransferase, adds a Glc residue to the
lipid-carrier undecaprenyl-phosphate (Und-P) allowing the subsequent addition of Rha, Glc, and
GlcA to form the capsule-repeat unit. CpsJ (analogous to Wzx), the flippase protein, transports the
lipid-linked unit to the outer face of the cytoplasmic membrane where it is polymerized to a desired
length by CpsH (shown in Purple, analogous to Wzy), the capsule polymerase.
b ABC-transporter-dependent biosynthesis pathway as seen in teichoic acid biosynthesis in B.
subtilis 168. TagO (shown in Blue) is the initiating glycosyltransferase, which transfers GlcNAc to
Und-P. TagA then transfers a ManNAc residue and allows for the subsequent addition of
glycerol-3-phosphate (glycerol-3-P) residues by TagB and TagF. Once the glycerol-3-P chain
reaches *40 units, it is exported to the outside of the membrane by TagG and TagH, where TagH
hydrolyzes ATP to drive export through the TagG channel. c synthase-dependent biosynthesis in
S. pneumoniae serotype 3. The synthase pathway relies on the action of a single protein CpsS
(shown in Green) to polymerize and export the polysaccharide composed of a glucuronic acid
(GlcA) and glucose (Glc) disaccharide. There are two phases of synthase biosynthesis: (I) The
polysaccharide chain is grown on the inner face of the cytoplasmic membrane with
phosphatidylglycerol as the lipid linker. (II) Once the growing chain reaches 8 repeat units, a
conformational change is proposed to occur to allow for the rapid polymerization of
very-long-chain capsule molecules. Although the pathways vary, a lipid carrier is required for
the initiation and each requires a designated transporter protein able to assist translocation of the
long-chain polysaccharide across the hydrophobic membrane
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extracellular loop, which is presumably involved in chain length regulation through
protein–protein interactions (Xayarath and Yother 2007). Recently, the topology of
WcaJ, the CpsE equivalent in E. coli, was determined experimentally using a
dual-reporter system, whereby 3′ gene truncations are tagged to a reporter whose
function is based on the subcellular localization of the residue, and cysteine
scanning. With this approach, the authors localized the conserved loop to the
cytoplasm; this is in contrast to the previous topology mapping based on in silico
predictions which placed the conserved loop to be exposed on the extracellular face
of the cytoplasmic membrane (Furlong et al. 2015). A truncated version of CpsE,
which only consisted of the C′ terminal domain (residues 260–463) was still able to
perform transfer of an activated sugar to the polyprenyl carrier. This region of CpsE
maps to the cytoplasmic tail, demonstrating that this domain is the only portion
essential for the transfer function (Pelosi et al. 2005).

Investigations into the lipid chain length required for CpsE transferase activity
revealed relaxed specificity (35–105 repeats); however, endogenous lipids were
utilized throughout the in vitro assays for consistency. It was determined that
UDP-Glc is transferred in a cis orientation, meaning that the anomeric configuration
of the sugar is retained, hence, CpsE performs a retaining glycosyltransferase
reaction (Cartee et al. 2005a, b). Although the capsular biosynthesis proteins have
been proposed to work in concert for the synthesis and assembly processes, cur-
rently no biochemical data have been collected to unequivocally show that the
glycosyltransferases interact with one another (Cefalo et al. 2011). In serotypes
where a cpsE gene is not present, the following proteins have been proposed to
perform the initiation, including, WciI, WcjG, or WcjH, as determined by the
position of the genes encoding these within their respective biosynthesis clusters
(i.e., downstream from cpsD), and the strong similarity to the hydropathy profile of
the carboxy terminal region of CpsE (Bentley et al. 2006). Genetic evidence has
been collected on WcjG, and it showed that this protein has the activity to catalyze
the transfer of galactose-1-phosphate which initiates capsular biosynthesis in
Streptococcus oralis (Yang et al. 2009). The ability to regulate capsular biosyn-
thesis is essential to the physiology of the bacterial cell, as mutations that sequester
Und-P and prevent its recycling are generally lethal to both Gram-negative and
Gram-positive organisms (Burrows and Lam 1999; Xayarath and Yother 2007).
Therefore it is logical that mutations which affect protein function, when identified,
would occur at the site of capsule initiation in order to exert an effect on CpsE in
order to avoid committing Und-P to a non-functional pathway. As a case in point,
deletions in genes that are localized downstream of cpsE in S. pneumoniae serotype
2, which include cps2J (wzx) or cps2H (wzy), cause suppression mutations in cpsE.
These mutations localize to the extracellular loop and the cytoplasmic domain of
CpsE. Further investigation determined that the amino acid residues substituted in
the non-functional CpsE mutants were highly conserved among CpsE homologues
from other S. pneumoniae serotypes and other bacterial genera thereby highlighting
the essential nature of these amino acids to CpsE function (James et al. 2013). In
addition, it was determined that the bond between the capsular sugar residues
formed by the enzymatic activity of CpsE was rather labile, one that could be
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hydrolyzed even under mild alkaline conditions (Cartee et al. 2005a, b). This
property can be attributed to a response mechanism that would allow the bacterial
cell to use Und-P reserves for other purposes in times of stress.

3.2 Biosynthesis of S. pneumoniae Serotype 2 Capsule,
Example of Downstream Genes

The capsular biosynthesis cluster of S. pneumoniae serotype 2, regarded as the
model organism of such research, has been subjected to extensive scrutiny through
genetic and biochemical means. The capsular-repeat structure of serotype 2 has
been elucidated and is composed of a tetrasaccharide of glucose → L-
rhamnose → L-rhamnose → L-rhamnose with a glucose → glucuronic acid side
chain off of the terminal rhamnose (Iannelli et al. 1999). A number of genes within
the cluster are highly conserved among the 93 serotypes (Bentley et al. 2006). In the
biosynthesis model, after the initial transfer of glucose-1-phosphate to the lipid
carrier, the second gene from the clusters in at least 27 serotypes encodes CpsT,
which is a β1-4 rhamnosyltransferase that catalyzes the transfer of L-Rha from its
nucleotide-activated precursor dTDP-L-Rha to a D-Glc residue (James and Yother
2012). It should be noted that all glycosyltransferase assays that were described for
this particular CPS biosynthesis pathway have been performed using membrane
fractions of strains expressing CpsT instead of purified protein. The authors opined
that using CpsT in situ in membranes is important for stabilizing the enzymes. The
addition of L-Rha to the growing polymer was determined to be the “committed”
step, i.e., the first irreversible reaction step of the pathway. This notion was sub-
stantiated by the lack of any suppressor mutants within a ΔcpsT background; this is
unlike other genes downstream of cpsT, where such mutations have been isolated.
Another line of evidence in support of CpsT as an initial glycosyltransferase in the
capsule synthesis cascade is that although the majority of the suppressor mutations
detected by Xayarath and Yother (2007) were found within cpsE, a single mutation
was observed in cpsL, the first gene in the cpsLMNO cluster, which encodes the first
enzyme in the multistep pathway conversion of Glc-6-phosphate to
Glc-1-phosphate in the biosynthesis of dTDP-L-Rha; hence a mutation in cpsL
clearly impacts on the function of CpsT by preventing access to the required
substrate (James and Yother 2012). The glucose conversion pathway has been
thoroughly studied in Gram-negative organisms where it is referred to as the Rml
pathway (Rahim et al. 2000). To elongate the polysaccharide, the glycosyltrans-
ferases add sugars in a sequential manner in the order matching the organization of
the genes in the CPS cluster; as such, cpsF encodes the enzyme that adds two L-Rha
residues, and cpsG encodes a glucosyltransferase that adds the next D-Glc residue,
the 4th sugar in the serotype 2 capsule subunit. A glucuronic acid-containing final
product of the capsular biosynthesis has not been identified biochemically, and the
authors of the study proposed that cpsL encodes the last putative
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glycosyltransferase based on sequence similarity to other glycosyltransferases
carrying similar function and the position of this particular gene within the cluster
(James et al. 2013). Gleaning from the knowledge of CPS biosynthesis of S.
pneumonia serotype 2 has helped to shed light on the interplay among many
enzymes associated with synthesis and regulating the level of a certain substrate
within the Gram-positive cell. After the biosynthesis steps in the cytoplasmic side
of the bacterial membrane, the next logical step is the export of the nascent
polysaccharide to the outer face of the membrane based on the activity of CpsJ, the
analogous flippase to Wzx.

3.3 Polysaccharide Transporter Proteins: Wzx and CpsJ

Wzx/Wzy-dependent synthesis of oligosaccharides requires the transport of
Und-P-linked glycans from the inner to outer face of the Gram-positive cytoplasmic
membrane. The candidate enzyme for this action is the “flippase” CpsJ, a Wzx
protein. Wzx proteins are classified as PST, a subgroup under the MOP exporter
superfamily. There is evidence pointing to PST proteins as the evolutionary
founders of this superfamily (Hvorup et al. 2003a, b). In general, Wzx proteins are
predominantly hydrophobic and contain 12–14 TMS. This family of proteins may
be difficult to identify by homology searches due to the immense sequence variation
even between proteins from different serotypes of the same species. The study of
Wzx proteins is further impeded by the difficulties in acquiring knockout mutations
in the gene. It has been observed that wzx mutations are often lethal as Und-P is
essential for various cell processes; hence, when Und-P becomes committed to the
capsule synthesis but cannot be exported and ultimately recycled, it causes dele-
terious effects to the bacterial cell (Yother 2011). Therefore suppressor mutations in
genes upstream of wzx in the biosynthesis cluster have been observed to block
different stages of sugar synthesis (Xayarath and Yother 2007). At present, the
knowledge concerning the structure and function of Wzx proteins in Gram-
positives is lacking.

The recent advance made by He et al. (2010) in solving the crystal structure of
NorM from Vibrio cholerae has greatly accelerated our efforts toward under-
standing the structure and mechanisms of activity of Wzx (and PST proteins in
general). The 3D structure of NorM is the first to be solved for members of the
MATE protein family, which also falls under the MOP exporter superfamily, and is
closely related to PST proteins (He et al. 2010). MATE proteins have been shown
to couple ion (Na+ or H+) binding/influx with drug export (Kuroda and Tsuchiya
2009). The discovery that NorM and Wzx share sequence/structure homology has
prompted the testing of the hypothesis that Wzx uses a similar mechanism as NorM
(Islam et al. 2012a, b). Islam et al. (2012a, b) used the NorM structure as a template
and built a 3D structural model of Wzx from P. aeruginosa (WzxPa). This model
revealed a cationic lumen containing essential amino acid residues, which would
presumably help bind the negatively charged O-unit of P. aeruginosa
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lipopolysaccharide (LPS). In a subsequent report, Islam and colleagues were able to
determine that H+ but not Na+ was the cation used by WzxPa to cause an influx of
ions into the proteoliposomes reconstituted with purified WzxPa (Islam et al. 2013a,
b). Such observations suggested that the protein mediates O-antigen flipping via an
antiport mechanism consistent with the activities reported for members of the
MATE family (He et al. 2010). Determining the structures of other Wzx proteins by
either experimental or computational biology means would be crucial for under-
standing whether substrate-specific channels exist in other proteins (especially those
identified in Gram-positive organisms) and by what mechanisms they might
mediate flipping.

Early studies on the substrate specificity of Wzx proteins suggested that they
only recognize the first sugar of the Und-P-linked glycan resulting in relaxed
specificity (Feldman et al. 1999; Marolda et al. 2004). This seems surprising given
the large sequence variation among Wzx proteins; one would expect to find con-
served residues and motifs between flippases transporting glycans with the same
initiating sugar. Data from more recent studies showed that Wzx proteins are
actually highly specific for the substrate of their cognate system. In many cases, it
appears that modifying the sugar side branches off the main glycan chain can hinder
substrate flipping by Wzx. The system in Erwinia amylovora serves as a good
example. This species decorates its exopolysaccharide (EPS) glycan unit with
pyruvate as a side-branch substituent, yet its genome consists of two putative wzx
genes for the transport of both pyruvylated and glucosylated capsular units (amsL1
and amsL2, respectively) (Wang et al. 2012). Inactivation of amsL1 resulted in a
loss of EPS, suggesting transport was hindered in this strain. Interestingly, this
particular mutant strain could be complemented by the expression of either a
plasmid encoded amsL1 or a gene that adds a terminal Glc, indicating that transport
of the exopolysaccharide glycan unit could be facilitated by another flippase, likely
AmsL2. Similarly, in another bacterial species, Pantoea stewartii, wzx1 and wzx2
appear to encode flippase proteins that facilitate the transport of pyruvylated- and
glucosylated-EPS molecules, respectively, although this strain apparently only
produces the glucosylated form of EPS. In the absence of wzx1, there is no
reduction in EPS production unless the gene for pyruvate capping is also expressed
on a plasmid, presumably leading to a build up of glycan units that cannot be
flipped by Wzx2. When the gene for glucose capping was also mutated in a wzx1-
minus strain and the pyruvate-capping gene was expressed, EPS synthesis was
completely abolished (Wang et al. 2012). Since that report, a study by the Reeves
laboratory further substantiated that Wzx proteins possess a high level of substrate
specificity with regards to LPS biosynthesis. These authors showed that firstly, in
Salmonella enterica serogroups D2 and C2, Wzx is specific for the biosynthesis of
dideoxyhexose side branch (Hong et al. 2012; Liu et al. 2015). Secondly, in a study
on an E. coli O16 strain, chromosomal replacement of wzxO16 with wzx genes from
other E. coli serotypes, Salmonella enterica, or Shigella flexneri resulted in either
severely reduced or undetectable levels of LPS. However, if some of these wzx
genes are introduced via a plasmid and overexpressed, they are able to flip O-units
of either O16 or O111, suggesting that translocation of non-native substrates is

Membrane Translocation and Assembly of Sugar Polymer Precursors 107



possible if a system is saturated with protein (Hong and Reeves 2014). Based on
these observations, it was suggested that previous reports proposing Wzx as having
low specificity was confounded by overexpression. Therefore, it appears that Wzx
proteins are specific for their native substrate but can also flip non-native
polysaccharide subunits when Wzx is overexpressed (Hong and Reeves 2014). In
this case, a higher amount of the flippase protein compensates for the lower levels
of activity toward a non-native substrate. Xayarath and Yother (2007) have
observed that in S. pneumoniae serotype 2, a deletion mutation of cps2k (involved
in side-chain synthesis) did not affect polymerization of long chains of CPS but
could not rule out that Wzx flipping efficiency was affected. Whether Wzx substrate
specificity in this Gram-positive system mirrors what has been observed in
Gram-negatives remains to be seen. As mentioned earlier, very little is known about
Wzx proteins from Gram-positive organisms; hence, one can only surmise how
Wzx proteins would function based on the knowledge derived from studies from
Gram-negative bacteria.

3.4 Lipid-Linked Polymerase Proteins: Wzy and CpsH

CpsH (the Gram-positive equivalent of Wzy) is the putative polymerase in the
Wzx/Wzy-dependent pathway of capsule synthesis in Gram-positive bacteria
(Yother 2011). Thus far, biochemical data on its function is lacking. Hence, it is the
focus of this section to discuss a possible mechanism of action for polymerization in
the better-characterized Gram-negative LPS biosynthesis system in an attempt to
stimulate new experiments and development of potential methodologies that could
be adapted to studying a protein such as CpsH in Gram-positives.

Similar to the case in wzx, characterizing the function of wzy has been difficult
because there is negligible sequence homology between the encoded polymerases,
even among different serotype strains of the same species. Thus far, the approach
used by various laboratories to identify wzy genes is partly based on their location
within a polysaccharide biosynthesis cluster and partly due to their large number of
predicted TMS. Because putative wzy genes described in numerous publications in
the literature are often never characterized, one must be cautious during database
searches and not assume that such a protein possesses the polymerization function
based on gene annotation by bioinformatics means alone (Islam and Lam 2014).

In a recent study, a landmark experiment was performed to reconstitute the
O-polymerization activity of Wzy from E. coli O86 in vitro in the presence of
purified Wzz and the native O-unit. The authors succeeded in producing LPS
polymers, thereby confirming that Wzy is a bona fide O-polymerase (Woodward
et al. 2010). Follow-up studies by the same group provided evidence that Wzy acts
as a distributive enzyme, i.e., the polymerase is capable of extending the O-polymer
through sequential rounds of catalysis and dissociation, as opposed to remaining
bound to the polymer (Zhao et al. 2014). Despite these recent findings, knowledge
of the exact mechanism of the polymerase reaction is lacking. One of the hurdles
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has been the difficulty in identifying which particular domain of the Wzy protein
resides on the outer face of the cytoplasmic membrane. Computer-based topology
predictions often generate models with critical errors when it comes to studying
Wzy proteins; particularly in terms of lacking the precision to localize key amino
acid residues of the protein in the periplasm (Islam et al. 2010; Islam and Lam 2013,
2014). In studies of Wzy of Pseudomonas aeruginosa (WzyPa), the experimentally-
derived topology map revealed the presence of two large periplasmic loops called
PL3 and PL5. Each of these loops contain an RX10G motif (Islam et al. 2010).
Based on site-directed mutagenesis investigations, some of the Arg residues in this
motif were deemed essential for polymerization and in some cases, they could not
be substituted with another positively charged amino acid, Lys, suggesting that
maintaining positive charge alone at these sites is not sufficient (Islam et al. 2011).
Interestingly, other than His, Arg is the next most common amino acid implicated in
sugar binding (Malik and Ahmad 2007; Elumalai et al. 2010; Islam et al. 2011). In
addition, the observation that the predicted pI of PL3 is net-positive while PL5 is
predicted to have a net-negative pI has led to the proposed “catch and release”
model of O-antigen polymerization in Gram-negative bacteria. This model suggests
that PL3 of WzyPa is the grabbing arm that binds the negatively-charge O-units,
while PL5 retains the polymer loosely (due to the net-negative charge but the
presence of the RX10G motif) (Islam et al. 2011). This catch and release mechanism
satisfies the requirements for a distributive mechanism suggested by Wang’s group
who studies WzyEcO86 (Zhao et al. 2014). Exhaustive mutagenesis of wzyPa
revealed a scarcity of critical residues outside of the RX10G motif in the protein,
substantiating its importance (Islam et al. 2013a, b). Comparable results were
obtained from the mutagenesis of wzySf and topology studies of WzySf from
Shigella flexneri serogroup 2a (Nath and Morona 2015).

Although the catch and release mechanism model still requires biochemical
validation, it serves as a platform to stimulate future investigations. For example, a
dual-loop topology is logical since the polymerase has to coordinate the addition of
the glycan unit to the growing polymer. Therefore, looking for this feature in
polymerases for Gram-positive Wzy proteins may provide a starting point for
designing future experiments. The approach used to generate the WzyPa topology
has proven in other cases to closely correlate with the actual structure or the
structure of a closely related protein (Alexeyev and Winkler 1999; Islam et al.
2012a, b).

3.5 The Phosphoregulatory System

In Gram-negative bacteria, Wzc and Wzb constitute a tyrosine kinase phospho-
regulatory system that controls CPS production. Wzc contains an N-terminal
transmembrane activator domain and a C-terminal cytoplasmic domain, which also
contains Walker-A and Walker-B motifs essential for ATP binding and the
autokinase activity of the protein. The C-terminal domain of Wzc is
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dephosphorylated by a separate protein Wzb (Whitfield 2006). Wzc has been shown
to associate with Wza and forms a channel between the inner and outer membrane
that CPS passes through (Nickerson et al. 2014). In Gram-positives, the N- and
C-terminal domains of Wzc are encoded by separate polypeptides, CpsC and CpsD,
respectively, while CpsB, which is unrelated to Wzb, is the phosphatase (Morona
et al. 2000; Yother 2011; Eberhardt et al. 2012). Based on comparison with the
structures of CapAB in Staphylococcus aureus, CpsCD likely forms an octameric
ring structure, which adopts a more open structure with increased phosphorylation
facilitating changes in protein interactions (Olivares-Illana et al. 2008). Evidence
has been provided by several studies that dysregulation of the phosphotyrosine
system would lead to changes in both the level of capsule production and chain
length (Morona et al. 2000; Bender et al. 2003; Morona et al. 2003; Geno et al.
2014).

In S. pneumoniae, capsule production is negatively associated with the phos-
phorylation of CpsD, such that deletion of CpsB or modification of essential tyr-
osine residues in CpsD causes a decrease in total capsule production (Morona et al.
2002). CpsB is a manganese-dependent enzyme, binding three cations that help
stabilize the reaction intermediates, and although the structure of Cps4B from S.
pneumoniae is quite distinct from Wzb of E. coli K30 strain (WzbK30), it is capable
of dephosphorylating WzcK30 (Morona et al. 2002; Hagelueken et al. 2009). CpsB
of Streptococcus, Staphylococcus, and Bacillus subtilis form their own unique
family within the polymerase and histidinol phosphatase superfamily (Aravind and
Koonin 1998). CpsD is capable of autophosphorylation in the presence of ATP and
CpsC. Note that transfer of phosphates from phosphorylated CpsD (CpsD * P) to
unphosphorylated CpsD can occur in the absence of ATP and CpsC. CpsB has been
shown to regulate the phosphorylation of CpsD through its phosphatase activity and
blocking of transphosphorylation by a phosphatase-independent mechanism, pre-
sumably protein–protein interactions (Bender and Yother 2001).

Geno et al. investigated the role of CpsB and its regulation of CPS biosynthesis
in S. pneumoniae by examining the effects of low and high oxygen conditions on
CPS biosynthesis and the level of CpsD phosphorylation in the presence and
absence of CpsB (Geno et al. 2014). They found that under high oxygen conditions,
S. pneumoniae strain D39 produced less CPS, while under low oxygen conditions
more CPS was produced. The authors observed an increase in CpsB activity under
high oxygen conditions, a property apparently innate to CpsB and independent of
activities from other proteins. However, although CpsB activity appeared to cor-
relate with a decreased level of CpsD phosphorylation (i.e., an increased activity
resulted in less CpsD phosphorylation), somehow these two parameters were not
connected to the level of CPS production. Rather, the binding of CpsB to CpsC or
to other proteins was proposed to be a modulator of CPS biosynthesis under these
conditions. This regulation of CPS has a direct implication in the progression of
disease due to the pathogenesis of S. pneumoniae because in the nasopharynx (high
oxygen condition), colonization is dependent on reduced capsule synthesis, whereas
in systemic sites (low oxygen conditions), capsule is necessary for evasion of the
host defences such as phagocytosis and the complement cascade (Geno et al. 2014).
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A study by Toniolo et al. (2015) provides a comprehensive understanding of the
functions of cpsABCD genes in the capsular biosynthesis in Group B Streptococcus
(GBS). These authors constructed clean deletion mutants for each of these genes
and generated site-specific mutation of functionally important residues/domains and
used these to observe their effect on CPS synthesis. Briefly, disruption of individual
cps genes, the cytoplasmic tail domain or the extracellular domain of CpsC, the
extracellular domain of CpsA, or generating a K49A single amino acid change in
CpsD, all resulted in reduced levels of CPS production. CpsA appears to play a role
in attachment to the cell wall and chain length regulation since mutations in this
gene causes an increase in the release of CPS into the medium, and the CPS
molecules are much longer than that of the wild type. However, CpsA is not the
sole determinant of ligation and other proteins may have the capacity to ligate CPS.
The chain length of both peptidoglycan-linked and released CPS was longer in
CpsD mutants, suggesting a dysregulation of chain length in these mutants. CpsC
was found to interact with both CpsA and CpsD via a bacterial two-hybrid assay.
Based on the results described thus far, a model for CPS biosynthesis in GBS was
developed: the phosphorylation state of CpsD translates a signal to the extracellular
domain of CpsC, which regulates attachment of CPS to the cell wall via CpsA. In a
hyper-phosphorylated state, CpsA is allowed to proceed with ligation, whereas in
the hypo-phosphorylated state, CpsA-mediated ligation would be blocked (Toniolo
et al. 2015). This model is consistent with the one proposed for the phosphoreg-
ulatory system in S. pneumoniae (Morona et al. 2006).

3.6 Attachment of Sugar Polymers to the Cell Wall

The exact function of CpsA and its role in capsule expression remains elusive.
CpsA belongs to the so-called LytR-CpsA-Psr (LCP) protein family. LCP proteins
are present in all Gram-positive bacteria except for Mollicutes (which lacks a cell
wall) and absent in most Gram-negatives (Hübscher et al. 2008). The function of
LCP proteins is largely unknown. These proteins seem to be important for tran-
scriptional regulation, cell envelope biogenesis, septum formation and biofilm
formation (Hübscher et al. 2008). As described below, several studies have now
implicated LCP proteins in the attachment of anionic polymers to the cell wall.

CpsA appears to have a regulatory role in capsule biosynthesis, at least in
Group B Streptococcus, because it can bind the promoters upstream of cpsA and
cpsE. In the extracellular domain, CpsA contains a DNA processivity factor
domain, which, due to its location and actual sequence divergence from the family
of DNA-binding sliding clamp proteins, is predicted to be involved in protein–
protein interactions with other CPS biosynthesis proteins (Cieslewicz et al. 2001;
Hanson et al. 2011; Rowe et al. 2015). A second domain, LytR, is the domain found
in the LCP protein family that CpsA belongs to. Although the exact function of
LCP proteins is unknown, some of the members of this family have been implicated
to play a role in cell division, maintaining a proper cell wall, and cell morphology
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(Hübscher et al. 2008). CpsA mutants in GBS lacking the LysR domain exhibit a
phenotype of abnormally long bacterial chains and the cells have reduced capsule
production. CpsA was found to localize to the division septum (Hanson et al. 2011;
Rowe et al. 2015).

There is growing evidence that LCP proteins are involved in attachment of long
polymers to the peptidoglycan. In the teichoic acid biosynthesis system, three of the
proteins involved were found to belong to the LCP family, including TagT, TagU,
and TagV (Kawai et al. 2011). These proteins could not be deleted in concert
without causing lethality and defects in the attachment of teichoic acid to pepti-
doglycan. In the study by Kawai et al., the authors were successful in cocrystal-
lizing the extracellular domain of Cps2A with phosphorylated polyisoprenoid
lipids, revealing a binding site for the lipid-linked polymer. Cps2A and TagT
undergo a phosphotransferase reaction in a magnesium-dependent manner and
TagT and Cps2A exhibit pyrophosphatase activity of lipids during crystal formation
(Kawai et al. 2011; Eberhardt et al. 2012). There is evidence that these proteins
catalyze the removal of long-chain polymers from Und-P and link it to the cell wall.
Further, in S. aureus strain Newman, three LCP proteins (A, B, and C) have been
implicated in the attachment of wall teichoic acid (WTA) and capsule to peptido-
glycan. Knockout mutations of all three genes that encode these proteins abolish
retention of the polysaccharides on the surface. LcpA and LcpB apparently ligate
WTA, while LcpC presumably functions to ligate capsules, but there is functional
overlap between the proteins, such that the TA ligases can partially compensate for
an LcpC mutation and vice versa (Chan et al. 2013, 2014).

3.7 Synthase-Dependent Pathway

The synthase-dependent pathway is utilized in the synthesis of S. pneumoniae
serotype 3 and 37 capsules and in the synthesis of hyaluronic acid (HA), a gly-
cosylaminoglycan, expressed in eukaryotes, S. pyogenes, and other less well
characterized pathogens including S. uberus and Pasteurella multocida (Weigel
2002). In both capsule and HA biosynthesis, the enzyme responsible for the
addition of the sugars also exports the polymer to the outside of the cytoplasmic
membrane (Fig. 1). This system caters to a relatively simpler polysaccharide such as
the one from serotype 3, GlcA(β1→4)Glc, as evidenced by the drastically smaller
gene cluster containing 3 genes, cps3D (encodes UDP-glucose dehydrogenase),
cps3S (encodes synthase), and cps3U (encodes glucose-1 phosphate uridyltrans-
ferase) (Bentley et al. 2006). The conserved genes at the 5′ end of the capsule
cluster: cpsABCP are present but inactive. The tyrosine kinase cpsD was renamed
cpsP within this serotype (Bentley et al. 2006). The protein coded by cpsS, the
synthase, is a processive β-glycosyltransferase part of the GT-2 family with a
conserved 4 TMS region and a cytoplasmic domain. The latter domain, as observed
in other membrane bound glycosyltransferases, is the region responsible for the
transferase function (Campbell et al. 1998; Bentley et al. 2006). The lipid carrier for
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the synthase-dependent pathway in S. pneumoniae is phosphatidylglycerol, the
most common lipid in the cytoplasmic membrane of the bacterium (Trombe et al.
1979); this is unlike the highly regulated Und-P. The abundance of phosphatidyl-
glycerol lipid helps to explain the lack of lethal phenotypes when any of the three
biosynthesis genes are interrupted (Dillard et al. 1995). Isolation of the lipid linker
determined that initiation of the polymer begins with the addition of UDP-Glc to the
lipid followed by UDP-glucuronic acid (UDP-GlcA) (Cartee et al. 2005a, b).
Utilizing radio-labeled substrate and membranes containing the synthase protein
became a standard for investigations concerning polymer length and substrate
preference. Following initiation, UDP-GlcA and UDP-Glc are added sequentially to
create an oligosaccharide of *8 repeats (Cartee et al. 2001; Forsee et al. 2006).
Once the key length is achieved, the oligosaccharide precursor becomes more
tightly bound to the synthase resulting in a change from casual to processive
synthesis, as evidenced by the inability to isolate intermediate polymer lengths by
gel filtration chromatography (Forsee et al. 2006; Ventura et al. 2006). Glucose is
present in abundance in the cytosol, therefore the chain length regulation and total
amount of type 3 capsule synthesized is tightly bound to the cellular availability of
UDP-GlcA (Forsee et al. 2006; Ventura et al. 2006; Forsee et al. 2009). This
statement is supported by in vivo evidence that mutations which disrupt the active
site of CpsD would inhibit or abrogate function and result in the bacteria synthe-
sizing drastically shorter capsule repeats (Ventura et al. 2006). In addition, over-
expression of a homologous cspU in E. coli K5, resulted in overall reduced levels of
capsule but no change to the modality (Roman et al. 2003). Biochemical investi-
gations into the synthase kinetics demonstrate that both sugars interact with the
same binding site within CpsS as both UDP-Glc and UDP-GlcA possess similar
binding and inhibition values; however, the binding of UDP-GlcA increases the
affinity for UDP-Glc and alternatively the binding of UDP-Glc decreases affinity of
UDP-GlcA demonstrating a processive process (Forsee et al. 2006). The evidence
provided for the shift from oligosaccharide to polysaccharide suggests that the
synthase may go through a conformational change, allowing faster and more
controlled transfer of sugar subunits to the growing chain. The current model is that
the lipid linker originates on the inner face of the cytoplasmic membrane and the
initiating sugars are added until the octasaccharide is generated. The lipid linker is
then flipped to face the outside and the polysaccharide can be synthesized freely
into the cytoplasm (Cartee et al. 2005a, b; Forsee et al. 2006). However, thus far, no
biochemical evidence has been obtained which would demonstrate the presence of
the growing saccharide chain on the outside of the cytoplasmic membrane.
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4 Teichoic Acid Biosynthesis

4.1 Wall Teichoic Acid Linkage Unit Initiation

In addition to capsule, another cell surface polymer that is essential for cell viability
is teichoic acid (TA). The central role of TA is to assist in cell division and provides
temporal and spatial regulation of PG stabilizing proteins such as penicillin binding
protein 4 (Atilano et al. 2010). These polymers can be covalently linked to the cell
wall: wall teichoic acid (WTA), or to cellular lipids: lipoteichoic acid (LTA). LTAs
are differentiated into types based on the complexity of the polymer. There are
currently five types of LTA isolated from different organisms. Unlike capsule, both
WTA and LTA are often synthesized by an ABC-transporter-dependent pathway;
however, the Type IV LTA is flipped to the periplasm by TacF, a member of the
MATE protein family (Fig. 2). The basic structure of wall teichoic acid (WTA) is
highly conserved among organisms and consists of a disaccharide, N-acetylman-
nosamine (β1→4) N-acetylglucosamine 1-phosphate, which acts as a base to
allow for polymerization of either glycerol-3-Phosphate (glycerol-3-P) or

Fig. 2 Variations in mechanisms used by Gram-positive bacteria to transport lipid-linked sugars
across the cytoplasmic membrane. Left panel, the polysaccharide transporter (PST) and mouse
virulence factor (MVF) family proteins may possess a similar structure and H+/Na+ antiport
mechanism that are consistent with features of multidrug and toxin extrusion (MATE) proteins.
Middle panel, ATP-binding cassette (ABC) transporters contain transmembrane domains and
nucleotide-binding domains that hydrolyzes ATP to provide energy for transport. Right panel, Amj
is the sole member of a novel family of proteins that has been recently discovered
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ribitol-5-Phosphate (ribitol-5-P), that are anchored to either the PG or the cyto-
plasmic membrane. The synthesis pathways for both forms of phosphorylated
metabolites are highly conserved, although they differ in nomenclature: tag (for
glycerol-3-P) and tar (ribitol-5-P). The model organism for studying WTA
biosynthesis has been Bacillus subtilis 168a due to its simultaneous expression of
two TA phenotypes (Shibaev et al. 1973; Mauël et al. 1989). The genes coding for
WTA biosynthesis enzymes are separated into clusters tagABC and tagDEF,
wherein it was determined that tagABC possessed hydrophobic residues, likely
involved in transfer and export; whereas tagDEF code for soluble proteins, which
the authors predicted to be associated with the glycerol-3-P precursor synthesis
(Mauël et al. 1991). Investigation of the WTA biosynthesis locus is still at an early
phase due in part to the intrinsic difficulty in producing high yield and high level of
purity of the membrane proteins involved in this system, and in part to the need to
synthesize the precise substrates linked to Und-P. Prior investigations into the
synthesis of WTA began in 1989 (Honeyman and Stewart 1989) and spanned until
1995 (Lazarevic et al. 1995), by which time some of the genes have been identified
and characterized at the biochemical level, while other genes have been annotated
with putative functions by virtue of their localization within the cluster and by their
similarities with other proteins of known function in GenBank databases. It was not
until 2002, that a report on the characterization of the initiating enzyme, tagO, was
published (Soldo et al. 2002). An ORF located downstream of the teichurionic acid
cluster was identified to encode a 385-residue protein with 11 putative TMS,
showing similarity to the E. coli Rfe, a UDP-N-acetylglucosamine:
undecaprenyl-P N-acetylglucosaminyl 1-P transferase. Intriguingly, the topology of
TagO that was presented at the time did not show the presence of a large soluble
domain, which would be akin to transferase function. Both Rfe of E. coli and cpsE
of B. subtilis share common characteristics, including having membrane domains
and catalyzing a reaction that is reversible. This enzyme is apparently conserved
across organisms; hence, by using a combination of molecular and biochemical
approaches, the role of tagO in both teichoic and teichurionic acid biosynthesis was
determined. As both teichoic and teichuronic acid biosynthesis requires Und-P, the
highly regulated lipid linker, only conditional knockout mutants of tagO were made
as disruption of constitutive genes would result in observed cell death. In studies
that utilized the conditional knockout, a reduced amount of radiolabeled WTA was
observed (Soldo et al. 2002). Coincidentally, the target of the antibiotic tunicamycin
is undecaprenyl-PP-GlcNAc, the expected product of the reaction catalyzed by
TagO. Cells grown in the presence of tunicamycin display a similar phenotype to
the tagO mutants (Hancock et al. 1976; Lunderberg et al. 2015).

As in capsule biosynthesis, the second gene in the cluster tagA (tarA) encodes
the enzyme that catalyzes the committed step within the TA biosynthesis pathway,
i.e., the transfer of ManNAc from UDP-ManNAC to form a ManNAc-(β1 → 4)-
GlcNAc disaccharide (Zhang et al. 2006). TagA is a soluble protein; therefore,
researchers suggested that it would not recognize Und-P, and enzymatic assays
developed for these proteins were done using more soluble lipids (Ginsberg et al.
2006). The WTA linkage unit is primed for polymerization by the action of TagB
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(TarB), the third gene within the cluster associated with the three-part process for
the biosynthesis of either glycerol-3-P or ribitol-5-P. The function of TagB, a
glycerol phosphotransferase, was determined biochemically to be the primase of
WTA biosynthesis by transferring a single glycerol-3-P unit to the distal ManNAc
residue (Bhavsar et al. 2007). This addition prepares for the sequential downstream
polymerization of glycerol-3-P and ribitol-5-P by TagF and TarF, respectively.
TagB was first identified due to its similarity to TagF (Mauël et al. 1991), which
recognizes the same substrate, and both proteins possess conserved His residues
that are essential for function. At present, the mechanism associated with the His
residue is unknown (Schertzer et al. 2005). TagB contains an N-terminal amphi-
pathic helix, whose role is localization of TagB to the inner face of the CM in order
to bring the protein into the vicinity of the other members of the biosynthesis
machinery; and as such, TA biosynthesis is proposed to occur in a complex
(Bhavsar et al. 2007). Biochemical assays involving TagB in the absence of
detergents determined that the helix is solely involved in structural localization, and
not the actual enzymatic reaction (Ginsberg et al. 2006; Bhavsar et al. 2007).

4.2 Glycerol-3-P Versus Ribitol-5-P Biosynthesis

Following the addition of a single glycerol-3-P to the lipid linker by TagB, the two
pathways of WTA biosynthesis diverge at the point of long-chain polymerization
by the protein TagF (TarF). Data from biochemical assays showed that TagF adds
glycerol-3-P to up to 40–60 repeat units on the lipid linker of B. subtilis and TarF
adds a single glycerol-3-P onto the lipid carrier in S. aureus (Brown et al. 2008;
Pereira et al. 2008; Sewell et al. 2009). In accordance with the proteins described
earlier in the TA pathway, TagF is intimately attached to the membrane through a
two-helix domain near the N-terminal. Results from biochemical assays using the
product of TagO, TagA, and TagB with a lipid tail, showed that purified TagF adds
glycerol-3-P units in a non-processive manner (Sewell et al. 2009). As with TagB,
TagF possesses two critical His residues (Schertzer et al. 2005). The crystal
structure of TagF from Staphylococcus epidermidis positioned these His residues
on either side of the substrate binding pocket where His584 binds the CDP-glycerol,
whereas His444 is the active-site base (Lovering et al. 2010). In the ribitol-5-P
biosynthesis in S. aureus, TarF acts as an additional primer by adding a single
glycerol-3-P to the lipid intermediate in the cytoplasm. Reconstitution of the TarA,
B, F, and L characterized by stepwise enzymatic assays on synthetic lipids deter-
mined that TarL is the ribitol-5-P polymerase which apparently is capable of
transferring *40 repeat units to the lipid anchor (Brown et al. 2008). Alternatively
in B. subtilis W23, an additional gene from the cluster, tarK, codes for a ribitol-5-P
primer, which is crucial for allowing the S. aureus TarL to act to polymerize
ribitol-5-P units (Brown et al. 2008, 2010).
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4.3 TagGH/TarGH is the ABC Transporter in Teichoic Acid
Biosynthesis

TagGH and TarGH are the two-component ABC transporter systems used by
Gram-positive bacteria for the export of poly(glycerol-3-P) or poly(ribitol-5-P)
WTA from the cytosol to the cell surface, respectively. TagG or TarG of either
system constitutes the transmembrane transporter domains, while TagH or TarH
represents the ATP-binding domain, which provides the energy for translocation of
TA molecules (Brown et al. 2008). To date, little is known about the mechanisms of
these transporters. It was suggested that these ABC transporters are able to transport
TA with somewhat relaxed specificity and the evidence obtained thus far supports
this (Kolkman et al. 1996). For instance, B. subtilis contains poly-glycerol phos-
phate WTA and its cognate ABC transporter is the TagGH system, while S. aureus
contains a poly-ribitol phosphate WTA and its transporter is the TarGH system. The
tarGH genes from S. aureus can be used to cross-complement a tagGH-deletion
mutation of B. subtilis, suggesting that the Und-P lipid carrier and/or the linkage
unit is recognized by these transporters, rather than the glycerol or ribitol moieties
(Schirner et al. 2011). Recognition of the Und-P-linked moieties suggests the
mechanism of transport involves flipping of the lipid-linked polymers, rather than
adopting a simultaneous polymerization and transport process (Schirner et al. 2011;
Brown et al. 2013).

4.4 Teichoic Acid Biosynthesis in S. pneumoniae and Type
IV Lipoteichoic Acid Biosynthesis

Unlike WTA, lipoteichoic acid (LTA) is anchored to the membrane by the lipid
moiety of the molecule (Fischer 1990). In S. pneumoniae, WTA and Type IV LTA
share the same polymer structure and are proposed to be synthesized via the same
pathway (Fischer and Tomasz 1985; Denapaite et al. 2012). This is an unusual
system because most other bacteria synthesize WTA and LTA via different path-
ways. Further, S. pneumoniae LTA contains a complex repeat unit, whereas most
other LTA structures are polymers of glycerol-3-P or ribitol-5-P (Denapaite et al.
2012). Current knowledge from the literature proposes that the polymer is made up
of repeating units of a pseudopentasaccharide (2-acetamido-4-amino-2,4,
6-trideoxy-D-galactose, Glc, ribitol-5-P, and two residues of GlcNAc) that are dec-
orated with phosphocholine on the terminal GlcNAc residues (Gisch et al. 2013).
The model for this pathway is highly speculative because most of the enzyme
functions have been inferred based on homology alignment with other proteins and
have not been confirmed biochemically (Denapaite and Hakenbeck 2012). It has
been proposed that the pseudopentasaccharide is built on Und-P, followed by the
addition of phosphocholine and polymerization on the cytoplasmic face of the
membrane. This is followed by the translocation of the polymer via TacF, the
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proposed flippase for this system (Denapaite and Hakenbeck 2012). S. pneumoniae
strictly requires exogenous choline for growth in order to add it to the TA chains, and
mutations that block the addition of choline can be lethal (Tomasz 1967). In studies
whereby S. pneumoniae cells were subjected to ethanolamine (a substitute for
choline) depletion, several mutants were isolated that no longer required choline for
growth and had acquired mutations in the tacF gene (Damjanovic et al. 2007;
González et al. 2008). This has led to the proposal that these mutations might have
changed the substrate specificity from being highly specific to becoming more
relaxed. Under normal conditions, this high substrate specificity would ensure that
only choline-containing TAs were incorporated. Interestingly, TacF belongs to the
same PST family as Wzx proteins; therefore, these data are consistent with the
current view that flippases are highly specific for their cognate substrate (Hvorup
et al. 2003a, b; Damjanovic et al. 2007). Unfortunately, even less is known about the
transport of lipid-linked sugars in the LTA synthesis pathways of other organisms. In
S. aureus, LtaA is proposed to flip the lipid anchor (Glc2-DAG) across the mem-
brane so that LtaS can polymerize the GroP chains. LtaA belongs to the major
facilitator superfamily. In L. monocytogenes, LafC is a predicted large membrane
protein which acts downstream of glycolipid synthesis. However, the current evi-
dence is not consistent with the role of flipping the glycolipid anchor (Webb et al.
2009; Reichmann and Gründling 2011). The protein(s) in B. subtillis, S. agalactiae,
and E. faecalis involved in the transport of the glycolipid across the membrane are
unidentified (Reichmann and Gründling 2011).

5 Teichuronic Acid Biosynthesis

The alternative cell-wall-linked polysaccharide teichuronic acid (TUA) is formed
constitutively in B. subtilis strain W23 and conditionally in strain 168 specifically
during times of phosphate starvation. In order to maintain cell viability in
phosphate-limiting environments, the cellular levels of TA, which is highly phos-
phorylated, are decreased and synthesis of TUA is activated. (Ellwood and Tempest
1969). TUA is an anionic polymer comprised of negatively charged polysaccha-
rides, which varies from species to species. The B. subtilis 168 structure is
[GalNAc-GlcA]n and that of Micrococcus luteus is [→4)β-D-ManNAcAp-(1→6)D-
Glc-α-(1→]n, where n is the number of disaccharide repeats (Hase and Matsushima
1972). Notice the distinct lack of phosphate groups in comparison with the TA
structure. However, the charge of the polymer remains the same, indicating that an
overall anionic charge is essential for cell-wall stability (Grant 1979). Although
intense studies aiming at elucidating the chemical structure of this polymer began in
the 1970s, the synthesis pathway had not been investigated until 1999. A 9.3-kb
cluster consisting of 8 genes, tuaA-H, was found to be essential for TUA biosyn-
thesis (Soldo et al. 1999). As mentioned above, tagO is responsible for producing
Und-PP-N-acetylglucosamine, the first component of the polymer (Johnson et al.
1984). Currently very little is known about the enzymes responsible for TUA
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synthesis. However, molecular manipulations and sequence similarities have
painted a picture of the potential role for each of these enzymes within the
biosynthesis pathway. The committed step of TUA biosynthesis is proposed to be
the reaction catalyzed by an enzyme encoded by tuaA, which displays high levels of
similarity to other glycosyltransferases that catalyze the linkage between a glycosyl
group and undecaprenyl (Soldo et al. 1999). Clearly, more work is warranted for
identifying the sugar transferred by TuaA and determining whether this is the
committing step of TUA biosynthesis. The regulation of the tua cluster occurs
through the PhoP-PhoR regulon (Hulett 1996), a two-component regulation system
wherein PhoP is the response regulator (Seki et al. 1987) and PhoR is the histidine
kinase (Seki et al. 1988). High levels of the TagF-generated TA intermediates
suppress phosphorylation of PhoR. The function of TagF requires a large pool of
cytoplasmic phosphate as it polymerizes a chain of *40 glycerol-3-P units. Under
conditions where phosphate is limiting, TagF would be unable to produce such long
chains, thereby releasing PhoP to be activated. This concept is logical as any
previous steps would not be significantly hampered by low phosphate levels
(Botella et al. 2014). Once PhoR is activated, it phosphorylates PhoP into
PhoP*P. The downstream effect is the decrease of TA synthesis by PhoP*P
binding to the tagA and tagD operons (Qi and Hulett 1998) while also upregulating
transcription of the tua operon as tua possesses a PhoP*P promoter site (Liu nd
Hulett 1998). The TA and TUA biosynthesis pathways appear to utilize similar
precursors where TA uses TagD (CDP-glycerol) and TUA relies on the product of
TuaD and UDP-glucuronate. Cell-free extracts of a wild type and ΔtuaD mutant
were subjected to a UDP-glucose-6-dehydrogenase assay, wherein oxidation of
UDP-Glc resulted in the formation of UDP-GlcA (Pagni et al. 1999). However, so
far this is the only protein in the TUA biosynthesis pathway that has been char-
acterized biochemically. Hence, the knowledge of TUA biosynthesis is clearly
lacking. The remainder of the genes in the TUA biosynthesis cluster have not been
investigated at the molecular or biochemical level; however, based on the sequence
similarity to amino sequences uploaded to the GenBank databases, the resulting
biosynthesis pathway is predicted to be as follows: TuaC, TuaG, and TuaH show
sequence homology to glycosyltransferases from various Gram-negative organisms
associated with the metabolic steps of forming lipid-linked precursors (Soldo et al.
1999). The genes associated with the export of TUA have been proposed to be
TuaB, TuaE, and TuaF. The membrane topology of each protein was predicted
using in silico methods, the results showed each containing multiple TMS, and as
such they can be classified as integral membrane proteins. The authors proposed
these proteins to be analogous to those found in the Wzx/Wzy-dependent pathways,
as each of the proteins display sequence similarity to Wzx (TuaB), Wzy (TuaE),
and Wzz(TuaF), respectively (Soldo et al. 1999). However, there is insufficient
molecular and biochemical characterization of these genes to determine whether
TUA biosynthesis follows the Wzx/Wzy-dependent pathway.

In M. luteus, solubilized membranes have been used to demonstrate enzyme
activities that catalyze the transfer of a single UDP-GlcNAc onto Und-P and the
subsequent addition of UDP-glucose and UDP-ManNAcA to form the anionic
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disaccharide (Traxler et al. 1982; Hildebrandt and Anderson 1990). The enzyme
responsible for both catalytic reactions was purified from solubilized membranes
and observed to run at *440 kDa on Native PAGE. In subsequent SDS-PAGE
experiments, this apparent multimeric protein was resolved into two proteins with
apparent molecular masses of 54 and 52.5 kDa, respectively. However, the
monomeric form of the proteins did not display any activity associated with the
synthesis of a long-chain disaccharide. A model has been proposed that the M.
luteus teichuronic acid is produced by a synthase pathway wherein four glucosyl-
transferase and four ManNAcA transferase subunits make an alternating octameric
structure which simultaneously polymerizes and exports the polysaccharide (Deng
et al. 2010). It is important to point out that this is a highly speculative model that is
not substantiated by experimental data. For instance, the authors apparently have
purified the complex, but had not made further attempts to identify the proteins
within the complex. Recently, the whole-genome sequencing of a M. luteus strain
has been attained (Accession number: AMYK00000000.2). This should provide
future groups with ample information to decipher the genetic components for the
TUA biosynthesis pathway in this species (Ghosh et al. 2013).

6 Conclusion

In conclusion, polysaccharides of Gram-positive organisms are synthesized through
three separate pathways: Wzx/Wzy-dependent, ABC-transporter-dependent, and
synthase-dependent pathways. Although conservation of these pathways is
observed between Gram-negative and Gram-positive organisms, there is much to be
learned about the key components of each of the pathways in the Gram-positive
species. More specifically, one must overcome the obvious challenges including the
expression and purification of integral membrane proteins, and the development of
biochemical and biophysical methods to characterize the function of this particular
group of proteins that are presumably involved in the assembly and transport of the
polysaccharides across the Gram-positive cell envelope. Obtaining high yield and
high purity of proteins is prerequisite for attempting high-resolution structural
studies. The importance of these polysaccharides in virulence and cell viability
makes them legitimate targets for novel antimicrobial screens; hence, these
challenges/hurdles are worth pursuing.
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Predicting Subcellular Localization
of Proteins by Bioinformatic Algorithms

Henrik Nielsen

Abstract When predicting the subcellular localization of proteins from their amino
acid sequences, there are basically three approaches: signal-based, global
property-based, and homology-based. Each of these has its advantages and draw-
backs, and it is important when comparing methods to know which approach was
used. Various statistical and machine learning algorithms are used with all three
approaches, and various measures and standards are employed when reporting the
performances of the developed methods. This chapter presents a number of avail-
able methods for prediction of sorting signals and subcellular localization, but
rather than providing a checklist of which predictors to use, it aims to function as a
guide for critical assessment of prediction methods.
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1 Introduction

Prediction of subcellular localization (SCL) of proteins in both eukaryotic and
prokaryotic cells has a long history in bioinformatics. The first attempts at pre-
dicting the best known sorting signals, the transmembrane α-helix (TMH) and the
secretory signal peptide (SP), from the amino acid sequence were published long
before bioinformatics was even established as a field (Kyte and Doolittle 1982; von
Heijne 1983). Since then, a plethora of methods for predicting sorting signals and
SCL has been published, and it can be a daunting task to select the most relevant
and reliable methods for analyzing a set of sequences.

Of course, the development of algorithms and the growth in available training
data has led to an increase in the predictive performance of the available methods.
A decade ago, some of the authors of the PSORTb method for predicting SCL in
bacteria (Gardy et al. 2005) even concluded that “on average, recent high-precision
computational methods such as PSORTb now have a lower error rate than labo-
ratory methods” (Rey et al. 2005). This conclusion should be taken with a grain of
salt; firstly, it applies only to high-throughput laboratory methods; secondly, it
should be remembered that computational methods will never be better than the
data used to train them. Nevertheless, Rey et al. had a point regarding the exper-
imental sources of error which can easily render a high-throughput experiment less
reliable than a well-trained computational method.

It can be difficult, however, to decide what to believe when the authors of every
computational method tend to describe their performance as being superior to all
others. There are different ways of defining the problem, different ways of mea-
suring the performance, and different prerequisites used for prediction. The aim of
this chapter is not to provide a definite answer to which method is best for which
problem—such a checklist would quickly become outdated—but instead to install
in the reader a toolbox for critically evaluating bioinformatics algorithms. This will
involve a number of examples of computational methods selected for their rele-

130 H. Nielsen



vance for Gram-positive bacteria. In general, prediction methods are only men-
tioned if they either provide publicly available Web servers or have strong historical
relevance.

2 Three Approaches to Prediction

It is crucial to understand that there are basically three different approaches to
predict protein SCL from the amino acid sequence. The first approach is recognition
of the actual sorting signals, e.g., SPs, TMHs, or LPXTG-like motifs for cell wall
attachment. The above-mentioned early methods for TMH and SP recognition
(Kyte and Doolittle 1982; von Heijne 1983) were examples of this. A number of
more recent examples is given in Sects. 5, 7, and 8.

The second approach is prediction based on global properties of the proteins,
e.g., their amino acid composition. This approach was first used to discriminate
between intracellular and extracellular proteins in both prokaryotic end eukaryotic
proteins (Nakashima and Nishikawa 1994). It has been shown that the main part of
the differences in amino acid composition between intracellular and extracellular
proteins resides in the surface-exposed amino acids, which makes sense since the
surfaces should be adapted to the varying physicochemical environments of the
different SCLs (Andrade et al. 1998). This analysis was done for eukaryotic pro-
teins only, but it would be fair to assume that the observation holds true also for
bacterial proteins.

Two early SCL prediction methods which used only the amino acid composition
were NNPSL (Reinhardt and Hubbard 1998), and SubLoc1 (Hua and Sun 2001),
based on artificial neural networks (ANN) and support vector machines (SVM),
respectively (see Sect. 3). They were limited in their applicability, because their
dataset did not include any membrane proteins, and they did not distinguish
between Gram-positive and Gram-negative bacteria.

Using only the amino acid composition for prediction of course throws away all
sequence information, including possible signatures of actual sorting signals. One
way to retain some of this information while still keeping a fixed number of
parameters is to count the occurrences of amino acid pairs, either adjacent or
separated by a small distance. Nakashima and Nishikawa (1994) thus found that
including composition of amino acid pairs with a separation distance of up to five
positions improved predictive performance.

The third approach is prediction by sequence homology. When trying to predict
functional aspects of an unknown protein, the standard procedure is to do a BLAST
search (Altschul et al. 1997) and then infer such aspects from the functional
annotations of the found homologues. Therefore, the intuitive expectation is that
such a procedure will also work for SCL—in other words, that a protein tends to

1http://www.bioinfo.tsinghua.edu.cn/SubLoc/.
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stay in the same compartment in the course of evolution. Indeed, a significant part
of the “subcellular location” annotations of Swiss-Prot (the manually annotated part
of UniProt (The UniProt Consortium 2015)) are found with “sequence similarity”
as the evidence (several times as many as the corresponding annotations with
experimental evidence).

However, it is not trivial to determine how similar a pair of proteins has to be in
order to perform an inference about SCL. Nair and Rost (2002a), working with
eukaryotic proteins only, concluded that more than 70 % identical residues in a
pairwise BLAST search are needed to correctly infer SCL for 90 % of the query
proteins. On the other hand, the authors of the CELLO method for both eukaryotes
and bacteria (Yu et al. 2006) found that SCL prediction by a simple BLAST search
was better than a machine learning method above a pairwise identity cutoff as low
as 30 %.

The simplest possible homology-based prediction is the direct transfer of
annotation from the best BLAST hit, i.e., the query protein is used to search a
database of proteins with experimentally known SCLs, and then the SCL of the best
hit is assigned to the query. However, more advanced approaches to
homology-based prediction are also possible, using indirect means to infer SCL
from the annotation of homologues which do not necessarily have experimentally
known SCLs. This annotation could be derived from keywords or functional
descriptions (Nair and Rost 2002b; Lu et al. 2004), or titles and/or abstracts of the
literature references (Shatkay et al. 2007; Briesemeister et al. 2009).

In this context, it should be mentioned that many signal-based and global
property-based methods use a BLAST search to build a profile of related sequences
in order to enhance the prediction. This does not make these methods
homology-based, since they do not use the annotations of the found hits.

In addition to the three approaches described here, it is of course possible to
construct hybrids of them. Most of the multi-category methods described in Sect. 9
are of the hybrid type.

When comparing methods based on one of the three approaches, it is important
to realize that each has its strengths and weaknesses. Homology-based methods, or
hybrid methods containing homology-based components, often present the best
measured performances, but the performance depends critically on the source of the
query protein. Organisms that have been subject to intense research will naturally
tend to have more high-quality annotations, so proteins from those and their close
relatives will find more close homologues with richer annotations from which to
make predictions, while predictions for less well-studied organisms will suffer from
lack of annotations of close homologues. This is typically not taken into consid-
eration when reporting the predictive performances of such methods. Signal-based
and global property–based methods should be expected to be less sensitive to the
source of the query protein, unless the signals in the training data are very organism
specific.

There are two advantages to using global property- or homology-based methods.
First, they can be used also for those compartments where the actual sorting signals
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are not known, or are too poorly characterized to support a prediction method.
Second, they may work for sequences that are fragments from which the actual
sorting signal may be missing, or for amino acid sequences derived from genomic
sequence where the start codon of the protein has not been correctly predicted, thus
obscuring any N-terminal sorting signals. On the downside, global property- or
homology-based methods do not provide the same degree of insight into the
information processing in the cell, since they ignore which parts of the sequence are
actually important for sorting. Another drawback is that such methods will not be
able to distinguish between very closely related proteins that differ in the presence
or absence of a sorting signal, and they will not be able to predict the effects of
small mutations that destroy or create a sorting signal.

3 Algorithms for Prediction

A rich variety of computational algorithms have been used in the prediction of SCL
from amino acid sequence. Common to all of them is that they take a number of
sequence-derived inputs and produce an output which can be the presence or
absence of a sorting signal (for signal-based predictors), or an assignment of the
protein into one of a number of possible SCL classes (for multi-category predictors).
For Gram-positive bacteria, the number of SCL classes is most often defined as four
(cytoplasm, membrane, cell wall, and extracellular). It may be discussed whether it
makes sense to define a periplasmic compartment in Gram positives; if it does, it is
not a rich source of proteins: Presently, UniProt carries only two examples of
Gram-positive proteins located in the periplasm with experimental evidence.

Some algorithms (e.g., sequence alignment and Hidden Markov Models
(HMM)) are naturally designed to work with sequences, while others (e.g., ANNs
and SVMs) take only a fixed number of input values. When working with the latter
category, one can either input the sequence as a series of overlapping windows of
fixed length (typical for signal-based predictors), or extract a fixed number of
features from the sequence (typical for global property-based predictors).

Numerical prediction algorithms can roughly be divided into two groups: sta-
tistical and machine learning, although it can sometimes be a matter of definition
where to draw the distinction. Both classes of methods have a number of free
parameters that must be estimated from the data, but while the parameters in
statistical methods can be calculated directly, machine learning methods depend on
an iterative optimization process where parameters are gradually changed until the
classification error has reached a minimum.

The simplest sequence pattern recognition method is the consensus sequence,
e.g., “LPXTG” for cell wall localization. It is easy to check whether such a pattern
is present in a sequence, but it is also a very crude method, because it defines
absolute requirements for certain amino acids at certain positions and only provides
“yes” or “no” answers. The pattern “LPXTG,” for example, ignores the fact that the
last amino acid in the motif may sometimes be “N” instead of “G.” This could be
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accommodated by the use of degenerate positions where one out of a set of amino
acids is allowed, turning the pattern into what is known as a regular expression. For
example, “LPXTG” could be relaxed to “LPXT[GN],” but that expression would
not be able to distinguish the typical “G” from the atypical “N.” Furthermore, the
pattern ignores the fact that not all amino acids are equally probable in the position
marked “X.”

An alternative to the consensus sequence or regular expression is the position-
weight matrix (PWM) (Stormo et al. 1982), a statistical window-based method
which is very useful for characterizing and predicting short sequence motifs. The
procedure when constructing a PWM is to start with a set of examples of the motif
of interest—the training set—and count the occurrences of all amino acids at each
position. The counts are used for estimating the probability of each amino acid at
each position, and this probability is divided by the background probability of that
amino acid in proteins in general, and the weight is then calculated as the logarithm
of the ratio of the probabilities (it is therefore also known as a log-odds score). The
score for a new sequence window can then be calculated by looking up the weights
for each amino acid in each position in the window and adding them up. In this
way, the weight matrix can give a quantitative answer to how well a sequence
window fits the pattern.

A graphical counterpart to the PWM is the sequence logo (Schneider and
Stephens 1990), where each position is summarized by a stack of letters. The height
of each stack is equivalent to the information content—a measure of the conser-
vation—of that position, while the height of each letter is proportional to the
probability of the corresponding amino acid at that position. Examples of sequence
logos are shown in Sects. 5 and 8.

A straightforward extension of the PWM is the sequence profile, which allows
for insertions and deletions in the sequence and therefore can model motifs of
variable length. It is possible to formulate a profile in probabilistic terms—then it
becomes an HMM (Krogh et al. 1994). An HMM is basically a generative model
where each state can emit an amino acid following a certain probability distribution,
and the transitions between the states are also governed by probabilities. A profile
HMM contains a number of match states corresponding to the typical length of the
domain or motif to be modeled, plus insert states that can emit extra amino acids
and delete states that do not emit any amino acids but serve to skip one or more
match states. A graphical depiction of a profile HMM is reported in Fig. 1.

An HMM is a machine learning algorithm, since the emission and transition
probabilities are found by an iterative optimization process (expectation maxi-
mization) from a set of training data. After training, new sequences can be evaluated
in terms of the probability that the sequence was generated by the model (a process
known as decoding the HMM).

HMMs are part of a broader class of computational models called graphical
models. Other examples relevant to biological sequence analysis are Bayesian
networks (Yu et al. 2010b) and conditional random fields (Chang et al. 2015).
Bayesian networks generally specify dependencies between variables in a directed
acyclic graph. The simplest possible Bayesian network is the Naïve Bayes
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classifier, which assumes that all the input variables are independent. It can have
surprisingly good performance also in cases where the assumption of independence
is known to be violated (Rish 2001), and it is sometimes preferred over more
advanced machine learning methods because it offers the opportunity to explain
exactly which input variables were important for each prediction (Szafron et al.
2004; Briesemeister et al. 2010).

Several publicly available databases specialize in creating and storing profiles for
protein families or domains. Among these are PROSITE2 (Sigrist et al. 2013),
which contains both regular expression patterns and PWM-like profiles, and Pfam3

(Finn et al. 2014) and TIGRFAMs4 (Haft et al. 2013), which are both databases of
profile HMMs. InterPro5 (Mitchell et al. 2015) is a special case, since it does not
create its own profiles, but collect profiles from a number of contributing databases,
including PROSITE, Pfam, and TIGRFAMs. Most profiles in these databases are
evolutionarily related families and/or domains, but there are also instances of
functional motifs that are similar due to common selection pressure rather than
common descent. Among these are a few protein sorting motifs, which can be used
as prediction tools—examples is given in Sects. 5 and 8.

To predict the presence of a PROSITE motif in your own sequences, use the
ScanProsite service6 (de Castro et al. 2006), choose “Option 3,” and then enter your

Fig. 1 Schematic drawing of a profile HMM. The model can generate an amino acid sequence by
starting in the begin state (marked “B”) and, following the arrows, concluding in the end state
(marked “E”). A match state (marked “M”) or an insert state (marked “I”) emits an amino acid
according to a probability distribution, while a delete state (marked “D”) does not emit anything
but functions as an option for skipping the corresponding match state. If only the match states are
used, the generated sequence will be four amino acids long; it can become longer by using the
insert states or shorter by using the delete states

2http://prosite.expasy.org/prosite.html.
3http://pfam.xfam.org/.
4http://www.jcvi.org/cgi-bin/tigrfams/index.cgi.
5http://www.ebi.ac.uk/interpro/.
6http://prosite.expasy.org/scanprosite/.
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sequences and the identifier of the PROSITE entry you wish to scan for. Pfam does
not offer the ability to search new sequences against a specific profile; you can only
scan against the entire database using the “search” function.7 TIGRFAMs does not
have its own search function, but in the hmmscan tool8 which is part of the
HMMERWeb server (Finn et al. 2015), you can select TIGRFAMs as (one of) your
database(s). Alternatively, you can use InterProScan (Jones et al. 2014) which
offers both Pfam and TIGRFAMs among its member databases. The Web server9

only allows submission of one sequence at a time, but you can download the
software and databases to your own computer.

It should be emphasized that not all HMMs are profile HMMs—any grammar
that can be described as a diagram of connected states can be modeled as an HMM.
For example, a cyclic HMM can describe a repeating pattern, and a branched HMM
can describe a choice between alternative patterns.

Another machine learning algorithm which is widely used in biological sequence
analysis—and which can also be described in terms of graphical models—is the
ANN (Hertz et al. 1991). ANNs are inspired by the way networks of biological
neurons are connected; the input patterns are presented to one or more layers of
artificial “neurons” that compute a weighted sum of their inputs and apply a non-
linear function to the sum. When used on biological sequences, ANNs typically,
just like PWMs, treat the sequence as a series of overlapping windows, calculating a
score for each window from a number of position-specific weights, but unlike
PWMs, the calculation of the score can be nonlinear, allowing correlations between
positions to influence the prediction. An example of a correlation could be that a
motif needs to contain a proline in one out of two positions, but not both. This is
known as an XOR (exclusive or) situation, and if it is depicted in two dimensions
(with the occurrence of proline at the two positions along the two axes), it is not
possible to separate the positive examples from the negative by a straight line.
Therefore, the problem is said not to be linearly separable, and it is not possible to
solve it by a PWM or a profile HMM. However, an ANN with at least one hidden
layer or a branched HMM could be able to do it.

Finally, SVMs are also frequently encountered in biological sequence analysis
(Schölkopf and Smola 1998). Like ANNs, they treat each input pattern as a set of
numbers which can be represented as a point in space, and an SVM model attempts
to map the points so that the examples of the separate categories are divided by a
clear gap that is as wide as possible. New examples are then mapped into that same
space and predicted to belong to a category based on which side of the gap they fall
on. Often, the mapping procedure (implemented through the so-called kernel
function) is nonlinear and adds many more dimensions than the input patterns
originally had, thereby increasing the chance that the problem is linearly separable

7http://pfam.xfam.org/search.
8http://www.ebi.ac.uk/Tools/hmmer/search/hmmscan/.
9http://www.ebi.ac.uk/interpro/search/sequence-search.
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in the ensuing high-dimensional space. In this way, the SVM can also solve
XOR-type problems. However, SVMs are traditionally rarely used with the
window-based approach, but more often with global features.

4 Performance of Prediction Methods

After having trained a statistical or machine learning method, it is crucial to test its
predictive performance on another dataset. This is a very important point: It is not
enough that a trained method can reproduce its input examples exactly—in fact, it is
not even interesting, since a database can do the same. What is interesting is
whether a model can generalize from the examples in the training set and produce
useful output for sequences it has not “seen” before.

There is often a certain degree of trade-off between training set and test set
performance. If a model reproduces its training examples in too much detail, it uses
its parameters to fit not only the common pattern in the data, but also the individual
noise in each data point. When this happens, the performance on the test set goes
down, and the model is said to be overfitted—colloquially speaking, it cannot see
the forest for the trees.

Avoiding overfitting can be tricky; it may involve limiting the number of free
parameters in the model, adding some regularizing terms to the parameters, or—
especially in the case of ANNs—stopping the training early. In some cases, this is
done using the test set performance as a criterion for choosing the optimal number
of free parameters or the best point to stop the training, but in fact this is cheating,
since the test set in such a procedure has been part of the training process. Instead,
three datasets should be used: a training set, a validation set for optimizing the
model architecture and training process, and a true test set (also known as evalu-
ation set) for measuring the performance.

Instead of using a fixed part of the data as test set, performance evaluation is
often done by cross-validation, where the dataset is divided into a number of folds,
and each fold is in turn used as a test set, while the others are used as the training
set. The final performance is then calculated as an average of the test set perfor-
mances. The number of folds can vary; most often, five- or ten-fold cross-validation
is used, but some authors prefer N-fold cross-validation, where N is the number of
data points—in other words, just one example at a time is held out, while the
training is performed on all other examples. This is also known as leave-one-out
cross-validation or jackknife test.

The necessity for splitting the data into training and test is not special for
bioinformatics; it applies to all prediction tasks. However, bioinformatics has an
added complication: Sequences are related by descent. If there are sequences in the
test set that are closely related to sequences in the training set, the measured
performance is arguably not a true test performance. This can be taken into account
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by reducing homology in the dataset before splitting it into folds (homology
reduction) or by ensuring that no too closely related pair of sequences end up in
different folds (homology partitioning). Two widely used algorithms for homology
reduction were published early in the history of bioinformatics (Hobohm et al.
1992).

There are diverging views concerning exactly how closely related two sequences
should be allowed to be in order to be separated into different folds. Some authors
arbitrarily set a rather high cutoff, e.g., 80 or 90 % identity in a pairwise alignment
(Reinhardt and Hubbard 1998; Höglund et al. 2006). One approach to a
non-arbitrary definition is to identify a cutoff above which the problem could be
better solved by alignment than by machine learning (Sander and Schneider 1991;
Nielsen et al. 1996). Another approach is to use a cutoff in alignment score above
which there is statistical significance of homology (Nielsen and Wernersson 2006).
These approaches tend to result in much lower cutoff values, typically corre-
sponding to ≈25 % in long alignments (Sander and Schneider 1991). When com-
paring reported performances of different methods, it is important to take into
account which type of homology reduction or partitioning was used (if any).

However, it is debatable whether homology reduction or partitioning makes
sense when constructing homology-based methods. The whole point of such
methods is to use the annotations of homologues, the closer the better, and by
reducing homology in the dataset, one would be reducing away the very data that
the method needs. Still, it is sometimes done, e.g., in the PLoc/mPLoc/iLoc servers
(see Sect. 9), where a cutoff of 25 % identity has been used.

When reporting performances of prediction methods, a variety of measures may
be used, potentially confusing the untrained reader. The conceptually simplest
performance measure, the fraction or percentage of correct answers (also known as
accuracy), can be misleading if the classes are not the same size. As an example,
consider a method for predicting cell wall-binding proteins and a dataset which has
99 negative examples (non-cell wall-binding proteins) for each positive example. If
the method consistently answers “non-cell wall binding,” it will be correct 99 % of
the time, even though the “prediction” is completely non-informative. Instead, a
number of alternative measures are often used. When discriminating between two
classes, the most important performance measures can be defined in terms of the
numbers of true positives (TP), true negatives (TN), false positives (type I errors or
overpredictions, FP), and false negatives (type II errors or misses, FN):

• Sensitivity (also known as recall or true positive rate—how many of the positive
examples are found?):

– Sn ¼ TP
TPþFN
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• Specificity (also known as true negative rate—how many of the negative
examples are found?):

– Sp ¼ TN
TNþ FP

• Precision (also known as positive predictive value—how many of the positive
predictions are true?):

– Pr ¼ TP
TPþ FP

• Matthews correlation coefficient—a measure which takes values between −1
and 1, where 1 is a perfect prediction, 0 is a random guess or non-informative
prediction, and −1 is a prediction that is consistently wrong:

– MCC ¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþFPð Þ TNþFNð Þ
p

It should be mentioned that the term “specificity” is not unequivocal; it has also
been used to denote what is here referred to as precision (e.g., in Gardy et al. 2003).

Whenever a prediction method gives a quantitative output, there is a trade-off
between sensitivity and specificity, controlled by the threshold (also known as
cutoff) above which a prediction is considered positive. Lowering the threshold
reduces the number of false negatives, thereby increasing the sensitivity, but it also
increases the number of false positives, thereby reducing the specificity (and the
precision). It is possible to plot the sensitivity as a function of the false positive rate
(1 minus specificity) for varying threshold values—such a plot is known as a
receiver operating characteristic (ROC) curve (see Fig. 3). The area under the ROC
curve (usually referred to as AUC or AROC) can be used as a
threshold-independent performance measure; it will be 1 for a perfect prediction,
0.5 for random guesses, and 0 for a consistently wrong prediction.

When predicting more than two classes—e.g., a number of SCLs—the maximal
information about the prediction is provided by the so-called confusion matrix: A
table showing, for each observed class, how many examples were predicted to
belong to each class. This can be used to see not only how well each class was
predicted, but also which classes were particularly difficult to distinguish. From the
confusion matrix, sensitivity, specificity, precision, and MCC can be calculated for
each class. There are also measures that summarize a whole confusion matrix in one
number, such as the Gorodkin correlation coefficient, which is a generalization of
the MCC to more than two classes, or the normalized mutual information coefficient
(Baldi et al. 2000; Gorodkin 2004). In practice, these are rarely calculated, and the
percentage of correct answers is often used instead, despite the shortcomings of this
measure.
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5 Recognition of Signal Peptides

The secretory SP is among the earliest prediction targets for bioinformatic algo-
rithms. The oldest SP prediction methods used a simple PWM for the SP cleavage
site, first with a reduced alphabet (von Heijne 1983) and later with weights for all
amino acids (von Heijne 1986). Another very early SP prediction method used two
simple sequence-derived features, peak hydrophobicity and length of the uncharged
region, to discriminate SPs, but did not predict the cleavage site (McGeoch 1985).

SPs are present in all domains of life, but it was early discovered that there are
differences between broadly defined systematic groups (von Heijne and Abrahmsén
1989). SPs of Gram-positive bacteria are longer than those of Gram-negative
bacteria, which in turn are longer than those of eukaryotes. A sequence logo of SPs
from Gram-positive bacteria is shown in Fig. 2.

In 1997, the SP predictor SignalP10 was among the first to use ANNs for sorting
signal prediction (Nielsen et al. 1997). Later, in versions 2 and 3, an HMM was
added to the method (Nielsen and Krogh 1998; Bendtsen et al. 2004), while version
4 is again purely ANN-based (Petersen et al. 2011). SignalP is among the most
cited prediction servers in bioinformatics, and it has performed favorably in com-
parative studies (Menne et al. 2000; Klee and Ellis 2005; Choo et al. 2009),
including one specific to Gram-positive bacteria (Zhang et al. 2009). The latter
study, however, concluded that a consensus of five methods performed better than
any of the individual methods. The included methods besides SignalP were the
PWM-based PrediSi11 (Hiller et al. 2004), the HMM-based Phobius12 (Käll et al.
2004), SOSUIsignal13 which is based on amino acid propensities in regions (Gomi
et al. 2004), and the unpublished SIG-Pred.

Another SP prediction method worth mentioning is Signal-BLAST14 (Frank and
Sippl 2008) which, quite unusually for a sorting signal prediction method, is
homology-based. It uses BLAST (Altschul et al. 1997) with some customized
settings to search a reference set of SPs and non-SPs and returns the class of the best
hit as its prediction.

The performance of SP prediction in Gram-positive bacteria is fairly high, with
SignalP 4.0 reporting an MCC of 0.85 in distinguishing between SPs and non-SPs
and a cleavage site precision of 83 %. Interestingly, the cleavage site precision is
higher for Gram positives than for the other two organism groups (Gram negatives
and eukaryotes). Note that these performances are cross-validation performances on
a strictly homology-reduced dataset, so they reflect the performance you would
expect if you submitted sequences that were completely unrelated to any in the
SignalP 4.0 dataset. The performance measured by applying the finished method

10http://www.cbs.dtu.dk/services/SignalP/.
11http://www.predisi.de/.
12http://phobius.sbc.su.se/.
13http://harrier.nagahama-i-bio.ac.jp/sosui/sosuisignal/sosuisignal_submit.html.
14http://sigpep.services.came.sbg.ac.at/signalblast.html.
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(where the outputs of the different dataset partitions are averaged) to the whole
dataset is considerably higher, with an MCC of 0.96. Note that SignalP 4.0 in spite
of a higher MCC has a lower sensitivity than SignalP 3.0; the cutoff had simply
been placed at a higher value in order to maximize the MCC. In the slightly
modified SignalP 4.1, there is an option to select a cutoff that reproduces the
sensitivity of SignalP 3.0. Of course, this comes at a price of a higher false positive
rate, but it is still lower than that of SignalP 3.0, as can be seen from the ROC
curves in Fig. 3.

It should be stressed that the presence of an SP does not necessarily mean that
the protein is extracellular or cell wall associated; there may be downstream TMHs
keeping the protein integrated in the membrane. It has been reported that cleavable
SPs are rarely found in bacterial cytoplasmic membrane proteins (Broome-Smith
et al. 1994), but a quick search in UniProt (The UniProt Consortium 2015) reveals
that they are not that rare after all, so a prediction of SPs should always be com-
bined with a search for TMHs (see Sect. 7) before drawing conclusions about the
SCL.

SignalP and the other SP predictors mentioned so far only predict classical SPs,
translocated by the Sec system and cleaved by type I signal peptidases. For
lipoproteins cleaved by lipoprotein signal peptidase, there are other prediction
methods. LipoP15 (Juncker et al. 2003) is an HMM-based method (although an
ANN was also trained during the development of the method). Even though LipoP
has been trained on sequences from Gram-negative bacteria only, both the original
paper and a later study (Rahman et al. 2008) report that it has a good performance
on sequences from Gram-positive bacteria also. Other methods include the
ANN-based SPEPlip16 (Fariselli et al. 2003), which has separate options for

Fig. 2 Sequence logo of signal peptides from Gram-positive bacteria, aligned after their cleavage
site (between positions −1 and 0). The height of each stack of letters corresponds to the
information (conservation) at that position, while the height of each individual letter is proportional
to the fraction of that amino acid at that position. The visible features are the cleavage site
specifying residues in −3 and −1 (strong preference for alanine), the hydrophobic region that
approximately stretches from −21 to −8, and a preference for the positively charged lysine in the
N-terminal region. Picture made with WebLogo (Crooks et al. 2004)

15http://www.cbs.dtu.dk/services/LipoP/.
16http://gpcr.biocomp.unibo.it/cgi/predictors/spep/pred_spepcgi.cgi.
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Gram-negative and Gram-positive bacteria, and the HMM-based PRED-LIPO17

(Bagos et al. 2008), which is specific to Gram-positive bacteria. In addition to these
methods, there is also a profile in PROSITE (Sigrist et al. 2013) dedicated to
lipoproteins from both Gram-negative and Gram-positive bacteria, named
PROKAR_LIPOPROTEIN.18 A sequence logo of lipoprotein SPs aligned to this
model is shown in Fig. 4.

Rahman et al. (2008) benchmarked seven methods for prediction of lipoprotein
SPs in Gram-positive bacteria using a specially selected negative set, where every
sequence contained a cysteine that could “fool” the predictors. They found LipoP to
be the best, but recommended a consensus approach including the PROSITE profile
and a regular expression especially tailored for Gram-positive lipoproteins.

It should be noted that LipoP, SPEPlip, and PRED-LIPO are all able to predict
classical SPs as well, differentiating between the two types of SP. Additionally,
LipoP differentiates between SPs and N-terminal transmembrane helices (TMHs).

For SPs translocated by the twin-arginine protein translocation (Tat) pathway,
there are also a few dedicated prediction methods available. In addition to the
twin-arginine motif in the N-terminal region that gave them their name, they also
differ from Sec SPs by being on average longer and less hydrophobic (Cristóbal
et al. 1999). However, the difference in hydrophobicity may not be significant in

Fig. 3 ROC curve showing performance of SignalP versions 3 and 4 as sensitivity versus false
positive rate. “No TM” means performance when the negative set did not contain transmembrane
segments; “all data” means that sequences with transmembrane segments were included in the
negative data. Observe that although SignalP 4 by default has a lower sensitivity than SignalP 3,
this is only a question of cutoff; the curves for SignalP 4 are consistently closer to the upper left
corner, showing that SignalP 4 is a better method. Note that the sensitivity and false positive rate
values depicted here are not cross-validation performances, but measured by applying the finished
method to the whole dataset

17http://bioinformatics.biol.uoa.gr/PRED-LIPO/.
18http://prosite.expasy.org/PS51257 and http://prosite.expasy.org/PDOC00013.

142 H. Nielsen

http://bioinformatics.biol.uoa.gr/PRED-LIPO/
http://prosite.expasy.org/PS51257
http://prosite.expasy.org/PDOC00013


Gram-positive bacteria (Tjalsma et al. 2000). The available servers are TatFind19

(Rose et al. 2002), which is based on a regular expression combined with a set of
simple rules concerning hydrophobicity and charge, TatP20 (Bendtsen et al. 2005b),
which is based on a regular expression combined with two ANNs, and the newer
HMM-based PRED-TAT21 (Bagos et al. 2010). In addition, there are three motifs
available in the family and domain databases: the PROSITE profile TAT,22 the
Pfam profile TAT_signal,23 and the TIGRFAMs profile TAT_signal_seq.24 A logo
of sequences aligned to the PROSITE profile is shown in Fig. 5. Note that all these
methods make no distinction between Gram-positive and Gram-negative bacteria—
if the Tat SPs indeed differ between the two bacterial groups, there should be room
for improvement of the prediction.

Yet another type of SP is the pseudopilin SP, which directs proteins of pilin-like
structures to be secreted via the Com or FPE pathway (Tjalsma et al. 2004; Desvaux
et al. 2009). Like the classical SPs, it has a hydrophobic region, but cleavage takes
place N-terminally to this region, at a site with the consensus sequence “KGF”
(with cleavage between G and F). I am not aware of any predictor that covers this
motif.

6 Prediction of Non-classical Secretion

Non-classical secretion has been defined as secretion without an N-terminal,
cleaved SP (Bendtsen et al. 2005a). In Gram-negative bacteria, this happens to
proteins belonging to secretion systems of type I, III, IV, and VI (Binnewies et al.

Fig. 4 Sequence logo of lipoprotein signal peptides from both Gram-positive and Gram-negative
bacteria, aligned to the PROSITE profile PS51257/PROKAR_LIPOPROTEIN. Lipid attachment
occurs at the completely conserved cysteine in position 35. Note that individual sequences may be
shorter or longer than 35 amino acids; in the logo, they have been stretched or shortened to fit the
model. Picture from PROSITE (Sigrist et al. 2013) made with WebLogo (Crooks et al. 2004)

19http://signalfind.org/tatfind.html.
20http://www.cbs.dtu.dk/services/TatP/.
21http://www.compgen.org/tools/PRED-TAT/.
22http://prosite.expasy.org/PS51318 and http://prosite.expasy.org/PDOC51318.
23http://pfam.xfam.org/family/PF10518.
24http://www.jcvi.org/cgi-bin/tigrfams/HmmReportPage.cgi?acc=TIGR01409.
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2005; Desvaux et al. 2009). For Gram-positive bacteria, the phenomenon appears to
be less important, but there are some examples of proteins exported via, e.g., the
Wss, holin, and SecA2 pathways (Bendtsen et al. 2005a; Desvaux et al. 2009).

In addition, some pheromones and bacteriocins (antimicrobial peptides) are
exported via an ABC transporter (Tjalsma et al. 2004). This phenomenon does not
match the above definition of non-classical secretion, since it does depend on a
cleaved N-terminal signal, but since this signal has no hydrophobic region and thus
bears no resemblance to the SPs described in the previous section, it cannot be
predicted by any of the SP prediction methods; so from a prediction viewpoint, it
falls into the category of non-classical secretion.

Since non-classical secretion occurs by a variety of mechanisms, and very few
examples are known for each mechanism, there are no signal-based predictors
available. It is also difficult to train a global property-based method because of the
scarcity of experimentally known data. The prediction method SecretomeP
(Bendtsen et al. 2005a) took a different approach, based on the idea that secreted
proteins must be expected to share certain features independent of the pathway used
to secrete them: The positive training dataset simply consisted of classically
secreted proteins with the SP removed. A large number of structural and functional
features calculated from the amino acid sequence were then tested for their pre-
dictive power for SCL, and the most promising features were used to train an ANN.
For Gram-positive bacteria, three simple features—amino acid composition, thre-
onine content, and overall hydrophobicity—and three predicted features—trans-
membrane helices, secondary structure, and disorder—were selected. These
features led to a sensitivity of 89 % (on the truncated examples) and a specificity of
95 %. Among a hand-curated dataset of 14 SP-less Gram-positive proteins with a
known extracellular function, 10 were predicted to be non-classically secreted by
SecretomeP.

The competing method SecretP (Yu et al. 2010a), which is also based on feature
selection, just using SVMs instead of ANNs, used another, more problematic
approach to the problem of dataset generation: The positive training set consisted of
proteins that were annotated to be secreted but had no annotated SP in UniProt (The
UniProt Consortium 2015). The problematic aspect of this is that a lack of anno-
tated SP may simply reflect an incomplete annotation rather than a real absence of

Fig. 5 Sequence logo of Tat signal peptides from both Gram-positive and Gram-negative bacteria,
aligned to the PROSITE profile PS51318/TAT. Picture from PROSITE (Sigrist et al. 2013) made
with WebLogo (Crooks et al. 2004)
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SP. This suspicion is confirmed by the fact that SignalP was found to predict 11 out
of 13 supposedly non-classically secreted proteins.

7 Prediction of Transmembrane Topology

Like SPs, prediction of transmembrane α-helices (TMHs) has a long history in
bioinformatics. Initially, the basis for the prediction was simply a plot of the
hydrophobicity, averaged in a sliding window over the sequence (Kyte and
Doolittle 1982; Klein et al. 1985). A slightly more advanced approach was repre-
sented by TOP-PRED (von Heijne 1992), which combined hydrophobicity analysis
with counting the number of positively charged residues in each loop in order to
choose the topological model which best conformed to the “positive-inside rule”
(von Heijne and Gavel 1988).

Later, machine learning methods have been used to predict membrane protein
topology, i.e., which parts of the sequence are inside, transmembrane, and outside.
In particular, the HMM technology has been popular in this area, because it pro-
vides the ability to model the “grammar” of the problem: If a TMH follows an
inside loop, it must be followed by an outside loop, and vice versa. This is typically
modeled by a cyclic HMM, having submodels for helices, inside loops, and outside
loops. The best known HMM for TMH prediction is TMHMM25 (Krogh et al.
2001), but also HMMTOP26 (Tusnády and Simon 2001) has found a wide usage.
A comparative analysis in 2001 found TMHMM to be the best performing TMH
predictor (Möller et al. 2001). Newer surveys covering more recently published
predictors unfortunately do not provide quantitative performance comparisons
(Elofsson and von Heijne 2007; Punta et al. 2007; Tusnády and Simon 2010).

Since hydrophobicity is a feature of both SPs and TMHs, these two are easily
confused by prediction methods. TMHMM often falsely predicts an SP as a TMH,
and versions 1–3 of SignalP would often predict a TMH close to the N-terminus as
an SP. Newer topology prediction methods such as the HMM-based Phobius27

(Käll et al. 2004), Philius28 which is based on dynamic Bayesian networks
(Reynolds et al. 2008), the ANN-based MEMSAT3 (Jones 2007), the SVM-based
MEMSAT-SVM29 (Nugent and Jones 2009), and the ANN + HMM-based
SPOCTOPUS30 (Viklund et al. 2008) deal with this problem by modeling both

25http://www.cbs.dtu.dk/services/TMHMM/.
26http://www.enzim.hu/hmmtop/.
27http://phobius.sbc.su.se/.
28http://www.yeastrc.org/philius/.
29Available through the PSIPRED Protein Sequence Analysis Workbench, http://bioinf.cs.ucl.ac.
uk/psipred/.
30http://octopus.cbr.su.se/.
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these signals. However, the paper about version 4 of SignalP (Petersen et al. 2011)
reports a better discrimination between SPs and TMHs than all these methods, and
it is worth noting that the performance difference is larger for bacterial sequences
than for eukaryotic sequences. This probably reflects the fact that the SP models in
Phobius, Philius, MEMSAT, and SPOCTOPUS are not divided into organism
types, which causes the results to be biased toward the organism group with most
data (eukaryotes).

Another confounding factor is the fact that multi-spanning membrane proteins
sometimes have so-called reentrant loops—segments of the sequence that dip into
the membrane but do not span it, leaving the membrane on the same side from
which they entered. Reentrant loops are not very frequent; only five examples from
Gram-positive bacteria are currently reported in UniProt. OCTOPUS (Viklund and
Elofsson 2008) and SPOCTOPUS make an attempt at predicting reentrant loops.

The use of profiles of homologous sequences generated by BLAST or
PSI-BLAST (see Sects. 2 and 3) in the training and prediction of TMH recognition
methods has been shown to enhance predictive performance by approximately
10 % units (Viklund and Elofsson 2004). Methods that use profiles include
PRODIV-TMHMM (Viklund and Elofsson 2004), PolyPhobius (Käll et al. 2005),
MEMSAT3, MEMSAT-SVM, OCTOPUS, and SPOCTOPUS.

An interesting alternative method is SCAMPI31 (Bernsel et al. 2008) which does
not use machine learning nor statistics on a training set to calculate its parameters,
instead they are based on a series of experiments where all 20 possible amino acids
have been inserted at various positions into a model TMH (Hessa et al. 2007).
These experiments have been used to calculate an apparent free energy contribu-
tion, ΔGapp, which is used as an analogue to a hydrophobicity scale. The overall
ΔGapp for each sequence window is calculated and used as input to an HMM-like
model with only two free parameters to be estimated from the training data.
SCAMPI reported a performance comparable to the best machine learning methods.

As is the case for SP prediction, consensus methods for TMH prediction have
been shown to perform better than any of the constituent methods. The server
TOPCONS32 (Bernsel et al. 2009; Tsirigos et al. 2015) offers a consensus pre-
diction of both TMHs and SPs based on OCTOPUS, SPOCTOPUS, PolyPhobius,
Philius, and SCAMPI. TOPCONS reports 83 % correctly predicted topologies on a
benchmark set. The downside of TOPCONS is the running time, increased by the
fact that four of the five predictors are based on profiles which first have to be
constructed from a database search. An alternative consensus server, only based on
methods that do not require profiles, is TOPCONS-single33 (Hennerdal and
Elofsson 2011), which does approximately six percentage units worse than
TOPCONS, but 70 times faster.

31http://scampi.cbr.su.se/.
32http://topcons.cbr.su.se/ or http://topcons.net/.
33http://single.topcons.net/.
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8 Prediction of Cell Wall-Binding Motifs

There are two ways proteins can be associated with the Gram-positive cell wall: by
covalent attachment and non-covalent binding. The first group is characterized by a
special sortase-cleaved motif with the consensus sequence “LPXTG” followed by
what looks like a reversed SP: a stretch of hydrophobic amino acids followed by a
region with positively charged residues. There are two available methods for pre-
diction of this signal: the HMM-based CW-PRED server34 (Litou et al. 2008;
Fimereli et al. 2012) and the PROSITE profile GRAM_POS_ANCHORING.35 A
sequence logo of LPXTG-signals aligned to the PROSITE profile is shown in
Fig. 6. CW-PRED seems to be less restrictive than the PROSITE profile; while the
latter has an absolute requirement for the proline in the second position, CW-PRED
can also detect the variant “LAXTG.”

One type of non-covalent binding is described by the approximately 20 aa long
PROSITE profile CW36 and the corresponding Pfam profile CW_binding_1.37 It
occurs mainly in two bacterial Gram-positive protein families: choline-binding
proteins and glucosyltransferases (Janeček et al. 2000; López and García 2004).
The motif occurs as a repeat, typically many times per protein. The PROSITE
profile appears to be more sensitive, with typically more hits per sequence reported
in UniProt, than the Pfam profile. In the glucosyltransferases, most of the CW
motifs occur in glucan-binding domains (Shah et al. 2004), and TIGRFAMs has an
approximately 60 aa long profile associated with glucan binding, glucan_65_rpt,38

which roughly corresponds to three tandem copies of the CW motif. The
TIGRFAMs page states that the 30 aa motif reported by Shah et al. (2004) corre-
sponds to half of glucan_65_rpt or one and a half copies of CW_binding_1. The
fact that a cell wall-binding motif forms part of a glucan-binding motif diminishes
its value for predicting cell wall localization somewhat, since glucan is not part of
the peptidoglycan cell wall, and glucan-binding proteins therefore should be clas-
sified as secreted.

Enzymes involved in bacterial cell wall degradation often have a peptidoglycan
binding domain of approximately 60 aa (Krogh et al. 1998), which is totally
unrelated to the repeats mentioned above. A Pfam profile, PG_binding_1,39 is
available. Another example with a Pfam profile is the WxL domain40 (Brinster et al.
2007).

34http://bioinformatics.biol.uoa.gr/CW-PRED/.
35http://prosite.expasy.org/PS50847 and http://prosite.expasy.org/PDOC00373.
36http://prosite.expasy.org/PS51170 and http://prosite.expasy.org/PDOC51170.
37http://pfam.xfam.org/family/PF01473.
38http://www.jcvi.org/cgi-bin/tigrfams/HmmReportPage.cgi?acc=TIGR04035.
39http://pfam.xfam.org/family/PF01471.
40http://pfam.xfam.org/family/PF13731.
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9 Multi-category Predictors

The first software to attempt a classification of proteins into multiple SCLs was
PSORT (Nakai and Kanehisa 1991). It was basically a signal-based method,
incorporating the previously mentioned early methods for prediction of SPs
(McGeoch 1985; von Heijne 1986) and TMHs (Klein et al. 1985), but it also used
amino acid composition, especially for discriminating outer membrane proteins in
Gram-negative bacteria.

For bacteria, PSORT I has been superseded by PSORTb41 (Gardy et al. 2003,
2005; Yu et al. 2010b), which is now in version 3. Version 1 was for Gram-negative
bacteria only, but in version 2, Gram-positive bacteria were included. Version 3
additionally offers predictions for Archaea and the “problematic” bacteria, which
either stain Gram positive although they have an outer membrane (such as genus
Deinococcus) or stain Gram negative although they have no outer membrane
(phylum Tenericutes).

PSORTb is a hybrid method, incorporating both signal-based, global
property-based, and homology-based predictions. The signal-based component
comprises recognition of SPs and TMHs and a database of motifs (regular
expressions) derived from PROSITE, which are found to be exclusive to specific
SCLs. The global properties component is SVM-based; in version 1, its input
consisted of amino acid composition only, but in versions 2 and 3, a collection of
overrepresented subsequences is used. The homology-based component is a simple
BLAST with direct annotation transfer. Finally, a Bayesian network is used to
integrate the outputs from the components and arrive at a final prediction.

The final prediction, however, may be “unknown.” PSORTb values precision
over recall, so it prefers to deliver no prediction rather than a prediction with weak
evidence. It may also arrive at two SCLs, signifying that the protein is predicted to
function in both compartments, or belong to the interface between the compart-
ments (e.g., cell membrane/cell wall).

The SCLs predicted by PSORTb 3 extend beyond the standard four categories
for Gram-positive bacteria; there are new subcategory SCLs such as “Fimbrial,”

Fig. 6 Sequence logo of cell wall-attached proteins from Gram-positive bacteria, aligned to the
PROSITE profile PS50847/GRAM_POS_ANCHORING. Cleavage occurs between positions 4
and 5. Picture from PROSITE (Sigrist et al. 2013) made with WebLogo (Crooks et al. 2004)

41http://www.psort.org/psortb/.
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“Flagellar,” and “Spore.” The reported precision of PSORTb 3 on Gram-positive
bacteria (the main categories) is 98 %, with a recall of 93 %. This is tested by
five-fold cross-validation with a dataset that was homology reduced, but only down
to 80 % identity.

Another predictor that owes its high performance to homology is the SCL
predictor built into the prediction workbench Proteome Analyst42 (Lu et al. 2004;
Szafron et al. 2004). It uses a combination of direct and indirect annotation transfer
by retrieving up to three hits from the Swiss-Prot part of UniProt by BLAST and
then parsing the “subcellular location” field, the keywords, and the cross-referenced
InterPro entries. The retrieved words are then processed by a Naïve Bayes classifier.
Other machine learning methods (ANN and SVM) were also tried, and although
they could enhance the performance by a few percent, the authors decided to stick
with Naïve Bayes in order to be able to provide explanations for the individual
predictions. The PSORTb 3 paper (Yu et al. 2010b) reports that PSORTb 3.0 and
Proteome Analyst 3.0 have comparable precisions, but make complementary pre-
dictions, so that a combined analysis with both methods has the highest coverage
overall.

Kuo-Chen Chou’s group has published a long series of predictors for protein
SCL (see, e.g., Chou and Shen 2010). They prefer to publish one Web site per
organism group instead of providing one Web site with an option for selecting
organism group, and furthermore, they tend to change the name for each new
version instead of adding a version number. For Gram-positive bacteria, the rele-
vant predictors are named Gpos-PLoc43 (Shen and Chou 2007), Gpos-mPLoc44

(Shen and Chou 2009), and iLoc-Gpos45 (Wu et al. 2012). The PLoc/mPLoc/iLoc
servers are hybrid methods, mostly relying on indirect homology annotation
through the Gene Ontology (GO) terms of database hits. GO (Ashburner et al.
2000) is an ordered system (a directed acyclic graph) of controlled terms, which
describe the biological process, molecular function, and cellular component of
proteins. GO terms are extracted from all database hits with a pairwise identity
above a certain cutoff, and then, a k-nearest neighbor classifier is applied to the
high-dimensional vectors of occurrences of GO terms. If no hits are found, or if the
found hits have no GO annotation, a profile-based global property approach is used.
The nature of this approach varies between PLoc, mPLoc, and iLoc. However, the
corresponding papers contain no information about how often the global property
approach is needed, and the performance of this approach has never been reported
separately. The overall accuracy, measured by jackknife (leave-one-out
cross-validation), is reported to be 83 % for Gpos-PLoc, 82 % for Gpos-mPLoc,
and 93 % for iLoc-Gpos, respectively.

42http://pa.wishartlab.com/pa/pa/ Note: the website requires login, but registration is free.
43http://www.csbio.sjtu.edu.cn/bioinf/Gpos/.
44http://www.csbio.sjtu.edu.cn/bioinf/Gpos-multi/.
45http://www.jci-bioinfo.cn/iLoc-Gpos.
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The new feature of the mPLoc and iLoc servers relative to the PLoc servers is
the ability to predict multiple SCLs, i.e., predict whether a protein can exist in more
than one cellular compartment. This can be of importance in eukaryotes, where
many proteins, for example, may shuttle between the cytoplasm and the nucleus,
but it is clearly of minor importance in Gram-positive bacteria. In the dataset for
Gpos-mPLoc and iLoc-Gpos, there were only 4 such examples out of 519 proteins.

Another hybrid approach is LocTree346 (Goldberg et al. 2014), which has two
components: a PSI-BLAST (Altschul et al. 1997) homology search with direct
transfer of SCL annotation and a global property approach corresponding to
LocTree2 (Goldberg et al. 2012). If no homology hits are found with an E value
better than a specified cutoff, the LocTree2 method is applied. It consists of a
decision tree of SVMs trained with a “profile kernel,” basically using the occur-
rence of short substrings in profiles made by PSI-BLAST searches as input. When
delivering a prediction, LocTree3 reports whether the evidence is based on
homology or on LocTree2. For bacteria, LocTree2 has a reported performance
(overall accuracy) of 86 %, and LocTree3 has 90 %. Interestingly, in the LocTree3
paper, the measured accuracy for PSORTb 3.0 is only 57 %. This huge difference to
PSORTb’s own reported performance may reflect different views on the exactly
correct way to parse UniProt’s SCL annotations.

LocTree2/3 claims to be able to predict SCLs for all domains of life, but it seems
less well suited for Gram-positive bacteria, since it offers no opportunity to choose
between Gram positives and Gram negatives. Thus, it may predict categories such
as periplasm and outer membrane for Gram-positive bacteria, while it totally fails to
predict cell wall.

The methods described so far in this section have all been wholly or partly
homology-based. However, there is also the global property-based CELLO47 (Yu
et al. 2006), an SVM-based predictor for both eukaryotes, Gram-negative bacteria,
and Gram-positive bacteria. The SVMs are organized in a two-level system, where
the first level contains a number of SVMs trained on various sequence encodings,
and the second layer is a “jury SVM,” which decides on the prediction based on the
outputs of the first-layer SVMs. The sequences are encoded by total amino acid
composition, dipeptide composition, and amino acid composition (in some cases
with a reduced alphabet) in a number of partitions of each sequence. The perfor-
mance for Gram-positive bacteria is unfortunately not reported in the paper, but for
Gram-negative bacteria, it is 95 % overall accuracy without homology reduction
and 83 % with homology reduction (30 % identity).

Another predictor with special interest in relation to Gram-positive bacteria is
TBpred,48 which is specific to the genus Mycobacterium (Rashid et al. 2007).
TBpred is a hybrid between a global property-based approach using SVMs and a

46https://rostlab.org/services/loctree3/.
47http://cello.life.nctu.edu.tw/.
48http://www.imtech.res.in/raghava/tbpred/.

150 H. Nielsen

https://rostlab.org/services/loctree3/
http://cello.life.nctu.edu.tw/
http://www.imtech.res.in/raghava/tbpred/


signal-based approach using PWMs. The authors state that an organism-specific
method performs better than general methods for that organism, but the references
they cite for this claim concern human proteins, and unfortunately, they do not
show that this is indeed the case by training on a broader class of Gram-positive
bacteria for comparison.

Finally, the pipeline LocateP (Zhou et al. 2008) should be mentioned as an
example of a signal-based multi-category predictor, even though it does not allow
submission of new sequences (instead, a database of LocateP predictions on 427
known genomes of Gram-positive bacteria is available online49). LocateP is based
on SignalP, PrediSi, TMHMM, Phobius, and TatFind combined with a set of
custom-made profile HMMs in a decision tree. LocateP uses an extended ontology
of SCLs, counting N-terminally anchored, C-terminally anchored, lipid-anchored,
and multi-spanning membrane proteins as separate classes. However, it does not
predict cell wall attachment. The authors report a slightly lower accuracy than
CELLO when testing on Swiss-Prot data, but a higher accuracy than both CELLO
and PSORTb 2 when testing on data from a series of proteomic studies.

10 Discussion

As is apparent from this chapter, the many possible ways of approaching the SCL
prediction problem have resulted in a large number of available prediction servers.
Comparing their performances can be complicated, and all their authors tend to
claim superior performance for their particular method. Add to this that the usability
is sometimes limited (some Web servers allow only one or a few sequences in each
submission), that response times vary a lot, and that there are almost as many
different output formats as there are servers, and you get a rather frustrating situ-
ation. Even the definitions of SCLs may vary from server to server—as an example,
a peripheral membrane protein may be defined as belonging to the membrane, or to
the compartment it protrudes into (inside/outside).

This situation is clearly not ideal for the user, who might prefer a “one-stop
shop” to go to for all sequence-based prediction needs, an equivalent of UniProt or
InterPro. But this kind of confusion is probably inevitable in a field that is evolving
so fast. Scientific competition is basically beneficial, and competing groups should
certainly not be discouraged from publishing their predictors independently. That
being said, prediction servers ought to follow certain standards concerning
usability, definitions, and formats.

Personally, I must admit to having added to the complexity through my
involvement in the servers SignalP, LipoP, and TatP (see Sect. 5). In hindsight, we
should not have published LipoP and TatP as separate servers, but as functionalities

49http://www.cmbi.ru.nl/locatep-db/.
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within the SignalP server. Hopefully, the next version of SignalP will be able to
predict all these types of SPs in one user interface.

The multi-category prediction methods report quite impressive performances,
and as described in Sect. 1, the error rates for prediction may now be lower than the
error rates for high-throughput experiments. However, it is important to keep in
mind that these performances are achieved by analyzing the annotations of
homologues found by sequence similarity searches. I see three problems with this.
First, predictions for novel organisms and metagenomics samples with few known
homologues will necessarily be harder than for the organisms the training and test
sets were built from, so coverage and precision for such organisms will be con-
siderably lower than the reported performances. Second, the annotations used for
prediction are themselves error-prone and not necessarily derived from experi-
ments. In particular, when relying on keywords and GO terms, there is a real danger
of circular reasoning, where annotations based on predictions are used as a basis for
new predictions, which then may enter the databases as annotations. Third,
homology-based predictions do not reflect a real biological knowledge about the
protein sorting process in the way a successful signal-based predictor does.

But there are quite successful signal-based predictors available for SPs, TMHs,
and some of the cell wall-binding motifs. A combination of such predictors into a
homology-independent multi-category prediction method is an important task
waiting to be done. LocateP (see previous section) is an attempt in this direction,
but is not implemented as a prediction server.

As machine learning algorithms continue to evolve, new classes of algorithms
should also be expected to be applied to prediction of SCL. In fields such as image
processing and speech recognition, novel types of ANNs—deep and recurrent
neural networks—have been extensively used in recent years (Krizhevsky et al.
2012; Dahl et al. 2012), and they are beginning to be employed also in bioinfor-
matics, e.g., for predicting protein secondary structure (Magnan and Baldi 2014) or
alternative splicing (Xiong et al. 2015). The advantage of recurrent neural networks
is that they are naturally designed to handle sequential data, so the sequence is not
chopped up into apparently unrelated windows, and they can potentially learn
long-range correlations. A first attempt at using a recurrent neural network in SCL
prediction has been published recently (Sønderby et al. 2015), so far, only for
eukaryotic data, but the results seem promising. Coupled with a so-called convo-
lutional layer—basically a series of PWMs of varying width though which the input
sequences were presented—the network was able to learn from the data where in
each sequence to focus its attention. Performance was much better than other
methods working only on sequence and on the same level as advanced
homology-based methods. This technology represents a new kind of compromise
between signal-based and global property-based methods, since it is apparently able
to find sorting signals in sequences even though it has only been given the
sequences and their SCL categories during training. It will be very interesting to see
where this and other novel technologies will take SCL prediction in the coming
years.
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Anchoring of LPXTG-Like Proteins
to the Gram-Positive Cell Wall Envelope

Sara D. Siegel, Melissa E. Reardon and Hung Ton-That

Abstract In Gram-positive bacteria, protein precursors with a signal peptide and a
cell wall sorting signal (CWSS)—which begins with an LPXTG motif, followed by
a hydrophobic domain and a tail of positively charged residues—are targeted to the
cell envelope by a transpeptidase enzyme call sortase. Evolution and selective
pressure gave rise to six classes of sortase, i.e., SrtA-F. Only class C sortases are
capable of polymerizing substrates harboring the pilin motif and CWSS into protein
polymers known as pili or fimbriae, whereas the others perform cell wall anchoring
functions. Regardless of the products generated from these sortases, the basic
principle of sortase-catalyzed transpeptidation is the same. It begins with the
cleavage of the LPXTG motif, followed by the cross-linking of this cleaved product
at the threonine residue to a nucleophile, i.e., an active amino group of the pepti-
doglycan stem peptide or the lysine residue of the pilin motif. This chapter will
summarize the efforts to identify and characterize sortases and their associated
pathways with emphasis on the cell wall anchoring function.
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1 Introduction

More than 42 years ago, Sjöquist et al. (1972) might have provided the first
physical evidence of cell wall anchoring of surface proteins in Gram-positive
bacteria. By treating Staphylococcus aureus with lysostaphin, a cell wall hydrolase
that cleaves the pentaglycine cross-bridge of staphylococcal peptidoglycan, they
observed that protein A was released from the bacterium. Two decades later,
Schneewind et al. (1992) reported that protein A is anchored to the bacterial cell
wall via a cell wall sorting signal (CWSS) located at its C-terminus. Comprised of
an LPXTG motif, a hydrophobic domain, and a positively charged tail, this CWSS
is a common feature of cell wall-anchored surface proteins in Gram-positive bac-
teria (Schneewind et al. 1993). Because the LPXTG motif was found to be cleaved
between threonine (T) and glycine (G), a processing pathway of cell wall-anchored
proteins was postulated (Navarre and Schneewind 1994). A search for a possible
proteolytic enzyme by the Schneewind laboratory led to the discovery of sortase
SrtA, the transpeptidase that catalyzes cell wall anchoring of protein A (Mazmanian
et al. 1999). To date, SrtA homologs have been identified in nearly all
Gram-positive bacteria, with many coding multiple sortase proteins. Classification
—based on primary sequences, substrate association, and degrees of homology—
has divided sortase homologs into 6 classes, i.e., class A, B, C, D, E, and F
(Comfort and Clubb 2004; Dramsi et al. 2005; Spirig et al. 2011). The class A
sortases, with S. aureus SrtA as the founding member, are thought to perform a
“housekeeping function” by anchoring a large number of LPXTG-harboring sub-
strates to the cell wall (Ton-That et al. 2004). In contrast, surface proteins with a
NPQTN motif are anchored to the bacterial peptidoglycan by class B sortases
(Mazmanian et al. 2002). Class C sortases, which constitute the largest groups,
function as polymerase enzymes that link monomeric LPXTG-containing pilin
subunits into pilus polymers, as first reported in Corynebacterium diphtheriae
(Ton-That and Schneewind 2003). This chapter will mainly focus on the mecha-
nism of sortase-catalyzed cell wall anchoring of LPXTG-containing proteins, in
addition to a brief discussion on other processes mediated by different classes of
sortase enzymes.
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2 The Cell Wall Sorting Signal

The first description of the LPXTG motif was reported by Schneewind et al. (1990),
when they characterized T6, a trypsin-resistant surface protein of Streptococcus
pyogenes. A sequence alignment of the C-terminal region of T6, protein A, and
some other Gram-positive proteins revealed a conservation of the LPXTG motif,
which is followed by a long stretch of hydrophobic and positively charged residues.
Together, the three elements constitute the C-terminal CWSS, which was termed a
few years later in a seminal report using protein A as a model substrate
(Schneewind et al. 1992). Removal of any element of this tripartite signal caused
protein A to be secreted into the extracellular milieu, whereas deletion of the
LPXTG motif led to mislocalization of protein A; the protein was found in all
subcellular compartments. When the signal peptide and the CWSS of protein A
were fused to PhoA, a periplasmic alkaline phosphatase enzyme of Escherichia
coli, the fusion protein was “sorted” to the staphylococcal cell wall in the same
manner as that of protein A. To exclude the possibility that the signal peptide might
influence cell wall anchoring, the CWSS of protein A was then fused to the
staphylococcus enterotoxin B (SEB). Although SEB is normally secreted, the SEB
fusion protein (SEB-Spa490-524) was found to be exclusively associated within the
cell wall compartment (Schneewind et al. 1993). Furthermore, while the LPXTG
motif was later shown to be the site for sortase cleavage and cell wall attachment
(see below), the charged tail appears to be a retention signal to keep protein A
within the secretory pathway, and its spacing from the LPXTG motif determined by
the hydrophobic domain is also a contributing factor (Schneewind et al. 1993).

Interestingly, the fusion protein experiments above suggested that the CWSS
contains an essential element conferring sortase specificity; within a CWSS, the
conserved LPXTG motif is seemingly obvious for sortase specificity. In fact, all S.
aureus surface proteins predicted to be SrtA substrates contain the canonical
LPXTG motif (Mazmanian et al. 2001), but substrates for SrtB (class B sortase)
harbor the NPQTN motif (Mazmanian et al. 2002). However, it remains unclear
whether the rest of the CWSS sequence would contribute to sortase specificity.

3 Sortase SrtA and the Cell Wall Anchoring Pathway

3.1 Identification of S. aureus SrtA

Analyses of the proteolytic cleavage of the LPXTG motif led to the initial deduction
that a transpeptidase enzyme was responsible for the processing and anchoring of
surface proteins containing a CWSS (Navarre and Schneewind 1994). To identify
this factor, Mazmanian et al. constructed a library of chemically mutagenized
temperature-sensitive S. aureus mutants expressing the SEB fusion protein

Anchoring of LPXTG-Like Proteins to the Gram-Positive … 161



mentioned above. The library was used to screen for clones that are defective in cell
wall anchoring of this reporter protein and found one that was mapped to a gene
termed srtA (surface protein sorting A) (Mazmanian et al. 1999). An insertion
mutant of srtA was generated, and the srtA mutant failed to display protein A on the
bacterial surface. Significantly, this mutant was also attenuated in a mouse model of
infection (Mazmanian et al. 2000). The fact that a mutant of srtA was obtained by
allelic exchange refutes the initial conjecture of srtA essentiality in S. aureus with
the intent usage of the temperature-sensitive mutants.

3.2 Transpeptidase Activities of S. aureus SrtA

S. aureus SrtA was cloned in and purified from E. coli; this recombinant protein
displayed transpeptidase activities by cleaving a quencher away from a fluorescent
peptide Dabcyl-QALPETGEE-Edans between T and G and linking the carboxyl
group of cleaved threonine to the amino group of triglycines (Ton-That et al. 1999,
2000). This is consistent with the cell wall-linked structure of the SEB-Spa fusion
protein isolated from S. aureus after lysostaphin treatment (Ton-That et al. 1997).
The transpeptidase activity of SrtA requires the conserved residues Cys184 and
His120 (Ton-That et al. 2002) and is enhanced by the addition of calcium ions
(Ilangovan et al. 2001). Furthermore, Arg197, part of the enzyme’s structural triad,
was shown to aid optimal catalysis by SrtA, possibly by facilitating formation of the
Cys184 thiolate during transpeptidation reactions (Marraffini et al. 2004).
Mechanistically, the Cys184 thiolate of the sortase enzyme initiates a nucleophilic
attack of the carbonyl carbon of the substrate threonine residue, shifting electrons to
the oxygen and creating an oxyanion at this position, and a sortase–substrate
thioester intermediate. The active site arginine has been proposed to stabilize this
tetrahedral intermediate by forming an oxyanion hole, which was shown for to exist
in the S. aureus SrtB structure (Frankel et al. 2007; Jacobitz et al. 2014).

The three-dimensional structure of sortase was first solved with S. aureus SrtA
by nuclear magnetic resonance (NMR) and revealed that the enzyme forms a
b-barrel structure comprised of eight b-strands and two peripheral a-helices
(Ilangovan et al. 2001). The b6-b7 strands form a highly flexible b-loop structure
and a calcium coordination site. The catalytic residues His120, Cys184, and Arg197
lie within the hydrophobic groove of the b-loop (Ilangovan et al. 2001; Bentley
et al. 2008). It was proposed that the binding of a calcium ion to sortase stabilizes
the active site b-loop structure, hence increasing sortase activity (Ilangovan et al.
2001; Naik et al. 2006). It was shown that an LPXTG substrate peptide binds to the
hydrophobic groove and interacts with the reactive site (Suree et al. 2009; Zong
et al. 2004). However, these two studies differed in the conformation of the bound
substrate. Further evidence that this b-loop also plays a critical role in specificity
was shown by mutagenesis (Piotukh et al. 2011; Bentley et al. 2007). Using a
directed evolution approach to identify sortase A molecules that have an altered
specificity, the residues involving expanded specificity were mapped to changes in
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the b6-b7 loop (Piotukh et al. 2011). As previously mentioned, S. aureus SrtB
recognizes the NPQTN motif, and its structure determined by X-ray crystallography
also displays the similar b-barrel conformation (Zong et al. 2004; Zhang et al.
2004). Consistent with the findings above, it was shown that swapping the b6-b7
loop from SrtB into SrtA, the hybrid SrtA was able to recognize the NPQTG
substrate, but unable to catalyze transpeptidation reactions (Bentley et al. 2007).

3.3 The Cell Wall Anchoring Pathway Mediated by Sortase
SrtA

In the current model (Schneewind and Missiakas 2014; Reardon-Robinson et al.
2015a, b) (see Fig. 1), it was proposed that protein precursors destined for the sortase
machine are transported across the cytoplasmic membrane by the Sec apparatus in
unfolded states. In high GC-content Gram-positive bacteria or actinobacteria, such
as C. diphtheriae and Actinomyces oris, posttranslocational folding of these pre-
cursors is catalyzed by a membrane-bound thiol–disulfide oxidoreductase named
MdbA (Reardon-Robinson et al. 2015a, b; Reardon-Robinson and Ton-That 2016).
The folded precursors are embedded into the membrane via the hydrophobic domain
of their CWSS. There, sortase cleaves the LPXTG motif of a substrate between T
and G, forming an acyl–enzyme intermediate with the substrate via a thioester bond.
Subsequently, the amino group of the stem peptide within a Lipid II precursor

Fig. 1 Cell wall anchoring of surface proteins catalyzed by sortase SrtA. The pathway is modeled
with S. aureus SrtA (see text for details). It begins with the transport of unfolded protein precursors
with a signal peptide and the cell wall sorting signal (CWSS), after their synthesis in the cytoplasm,
by the SecA-mediated translocation, followed by cleavage of the signal peptide by a signal
peptidase (LepB) (Step 1). After folding (Step 2) by uncharacterized factors and insertion into the
membrane (Step 3), the precursors are cleaved by SrtA, forming an acyl–enzyme intermediate (AI),
which is then resolved by a nucleophilic attack by Lipid II via the amino group of pentaglycine
(G5), resulting in the intermediate P3. This product is incorporated into the cell wall peptidoglycan
(Step 4)
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resolves this intermediate (AI), hence linking the cleaved substrate via the carboxyl
group of Thr to the Lipid II molecule (P3). As the bacterial cell wall is built from
Lipid II molecules, surface proteins are subsequently anchored to the cell envelope.
This model has been supported by several lines of evidence. (1) Treatment of S.
aureus cells with sodium azide, an inhibitor of SecA, resulted in accumulation of
protein precursors (Ton-That and Schneewind 1999). (2) In C. diphtheriae and A.
oris, genetic disruption of mdbA led to secretion of degraded surface proteins,
concomitant of abrogation of their surface assembly. (3) As mentioned above, cell
wall anchoring of reporter proteins was shown to require sortase as demonstrated by
in vitro and in vivo studies. (4) Treatment of S. aureus cells with sortase inhibitors
also prevents cell wall anchoring (Ton-That and Schneewind 1999; Zhang et al.
2014). (5) Evidence of Lipid II as a sortase substrate comes from [32P]-labeling
experiments, whereby a [32P]-labeled cell wall-anchored molecules were shown to
bind to nisin, an inhibitor forming a complex with Lipid II (Perry et al. 2002). This
finding was also supported by in vitro studies that showed sortase-catalyzed
transpeptidation reactions that link the cleaved product of a LPXTG substrate
peptide to pentaglycine or Lipid II molecules (Ton-That et al. 2000; Ruzin et al.
2002) (Fig. 1).

While many major steps of the above pathway are inarguably supported by
experimental data, the presence of AI and P3 species in vivo has not been isolated.
It is conceivable that their formation in the cell is so transient that the currently
employed experimental conditions failed to detect them. The usage of fluorescent
LPXTG substrates recently made available (Hansenova Manaskova et al. 2014) in
combination with inhibitors, which potentially decelerate sortase-catalyzed
transpeptidation reactions, and [32P]-labeling may facilitate isolation of these
intermediates.

3.4 Modulation of Cell Wall Anchoring and Extracellular
Release of LPXTG-Containing Proteins

It has been observed in Gram-positive bacteria that cell wall-anchored proteins
including pili are released into the extracellular milieu during bacterial growth,
presumably as by-products of cell wall turnover (Ton-That and Schneewind 2003;
Gaspar and Ton-That 2006; Mishra et al. 2007; Becker et al. 2014). This argument
may be valid, because the covalent linkage of surface proteins to the peptidoglycan
is irreversible. However, Becker and colleagues showed that the immunomodula-
tory protein A of S. aureus is actively released, peaked at early logarithmic growth
(Becker et al. 2014). It was then shown that LytM, a glycyl-glycine endopeptidase,
is involved in this release by cleaving the penta-glycine cross-bridges, the attach-
ment site of protein A to the staphylococcal peptidoglycan. In addition, LytN, a cell
wall hydrolase, contributes to protein A release by cleaving amino sugars (Becker
et al. 2014). Given that LytM is regulated by the two-component system WalKR
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(Dubrac et al. 2007), it is likely that the LytM-mediated cleavage of protein A is
regulated. Since protein A is a key factor for S. aureus immune evasion, it is
proposed that protein A is released early during infection to help the pathogen elude
the host immune responses when bacterial numbers are low (Becker et al. 2014).

Remarkably, a similar proteolytic cleavage of a cell wall-anchored protein has
been observed in Clostridium difficile. This Gram-positive spore-forming bacterium
expresses a cell wall-anchored adhesin named CD2831. Expression of CD2831 is
under the control of a c-diGMP-dependent type II riboswitch (Peltier et al. 2015); it
was shown that CD2831 is proteolytically cleaved at the C-terminus by the zinc
metalloprotease ZmpI in cells with low levels of c-diGMP, hence released extra-
cellularly. Intriguingly, transcription of CD2831 is upregulated at high levels of
c-diGMP, while transcription of zmpI is repressed (Soutourina et al. 2013).
Considering that high levels of c-diGMP are typically associated with biofilm
formation, hence sessile, whereas low levels of c-diGMP promote motility
(Sondermann et al. 2012; Hengge 2009; Romling et al. 2013), Peltier and col-
leagues propose that ZmpI-mediated release of cell wall-anchored proteins may be
involved in or promote transitioning from a sessile to a mobile state or vice versa
(Peltier et al. 2015). Thus, Gram-positive bacteria might have solved an “irre-
versible” issue of covalent linkages produced by sortase-mediated transpeptidation.

4 Essentiality of Sortase SrtA in Cell Wall Anchoring
of Surface Proteins in Actinomyces oris

Actinomyces oris is an oral biofilm-forming actinobacterium that possesses two
class C sortases SrtC1 and SrtC2 and a class A sortase, i.e., SrtA. While the former
are involved in pilus assembly (Mishra et al. 2007; Wu et al. 2011), the latter is
predicted to catalyze cell wall anchoring of pilus polymers and fourteen
LPXTG-containing surface proteins (Reardon-Robinson et al. 2014). In contrast to
srtA in other Gram-positive bacteria studied to date, A. oris srtA is an essential gene.
To investigate its role in cell wall anchoring of surface proteins, Wu and colleagues
made several failed attempts to generate a srtA deletion mutant. Essentiality of A.
oris srtA was demonstrated by a conditional gene deletion method, whereby
chromosomal srtA can be removed when SrtA is ectopically provided under the
control of a tetR-inducible promoter (Wu et al. 2014). When grown in the absence
of inducers for SrtA expression, the srtA mutant ceased to grow. Strikingly, srtA
depleted cells exhibited aberrant cell morphology with multiple septa and expan-
sion of the cell envelope. Interestingly, envelope expansion was only observed at
one end of the cells.

Using transposon mutagenesis, Wu and coworkers found five sets of mutants
that suppress the lethal phenotypes of srtA deletion (Wu et al. 2014). The first set of
suppressors was mapped to genes coding for a LytR-CpsA-Psr (LCP)-like protein
and a LPXTG-containing protein named GspA. It has been proposed that LCP

Anchoring of LPXTG-Like Proteins to the Gram-Positive … 165



attaches glycan strands to a membrane-bound form of GspA, which is then
anchored to the cell wall by sortase SrtA. In the absence of SrtA, the glycosylated
GspA polymers accumulated in the membrane, which was proposed to be toxic.
This could be possibly due to membrane jamming of the SecA-dependent transport
system that causes cell stress, growth arrest, and ultimately cell death (Wu et al.
2014). This conjecture is supported by the fact that A. oris cells expressing a GspA
mutant devoid of the CWSS are able to survive without srtA. It still remains unclear
how other suppressor mutants are involved in this lethality; many of the targeted
genes encode transporters and ATPases. Perhaps, they may be required for transport
of glycan precursors that are substrates for LCP-catalyzed glycosylation of GspA.
Without glycan strands, a stalled membrane-bound form of GspA may not so be
detrimental.

The unexpected finding that A. oris srtA is essential in A. oris provided a
convenient cell-based assay to identify inhibitors that can penetrate the
Gram-positive cell envelope and inactivate sortase activities, hence bacterial viru-
lence. This class of inhibitors—anti-virulence inhibitors—may not impose a
selective pressure on other Gram-positive pathogens like inhibitors targeting
essential genes or pathway.

5 Cell Wall Anchoring of Iron-Regulated
Surface-Determinant (Isd) Proteins Catalyzed
by Sortase SrtB

Many Gram-positive Firmicutes, including S. aureus, Bacillus anthracis, Listeria
monocytogenes, and S. pyogenes, harbor the srtB gene, which encodes a class B
sortase enzyme (Spirig et al. 2011; Mandlik et al. 2008). Except for S. pyogenes,
SrtB is assigned to iron acquisition that was first reported with the Isd system in S.
aureus (Isd for iron-regulated surface determinants) (Mazmanian et al. 2003). In S.
aureus, srtB is part of an eight-gene cluster consisting of isdA-G and srtB, while
isdH and isdI are located elsewhere in the chromosome (Mazmanian et al. 2003;
Skaar et al. 2004). The gene products of this cluster and the other two constitute the
major heme utilization system in S. aureus, which is comprised of a
hemoglobin/haptoglobin and heme-scrounging platform (IsdH, IsdB, and IsdA), a
heme transport apparatus (IsdC and IsdDEF), and a heme-degrading machine (IsdG
and IsdI) (Hammer and Skaar 2011). IsdA, IsdB, and IsdH are cell wall-anchored
proteins containing the conserved LPXTG motif that is recognized by SrtA,
whereas IsdC with the NQPTN motif is the only known cell wall-anchored sub-
strate of SrtB (Mazmanian et al. 2003). Intriguingly, these proteins have distinct
topologies in the cell envelope; unlike IsdA, IsdB, or IsdH, IsdC appears to be
buried within the bacterial peptidoglycan (Marraffini and Schneewind 2005), sup-
porting the model that IsdC is part of a relay system that transfers heme from IsdA,
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IsdB, and IsdH to the membrane-bound lipoprotein IsdE (Hammer and Skaar
2011). Similar to S. aureus, isdC is the first gene of the 8-gene isd cluster in B.
anthracis (Skaar et al. 2006). It was shown that IsdC and its cognate sortase SrtB
are required for heme–iron scavenging (Maresso et al. 2006).

6 Cell Wall Anchoring of Pilus Polymers
by Non-polymerizing Sortase Enzymes

Many Gram-positive bacteria, including C. diphtheriae, A. oris, B. cereus, ente-
rococci, several streptococcal species, lactococci and lactobacilli, produce cova-
lently linked protein polymers known as pili or fimbriae that are assembled by class
C sortase enzymes (Ton-That and Schneewind 2003; Mishra et al. 2007; Budzik
et al. 2007; Nallapareddy et al. 2006; Lauer et al. 2005; Dramsi et al. 2006; Abbot
et al. 2007; Manetti et al. 2007; Falker et al. 2008; Hilleringmann et al. 2008;
Meyrand et al. 2013; Rintahaka et al. 2014). The mechanism of sortase-catalyzed
pilus assembly was first described with the prototype SpaA pili in C. diphtheriae
(Ton-That and Schneewind 2003). The SpaA pilus, expressed from the gene cluster
spaA–srtA–spaB–spaC, is comprised of the pilus shaft SpaA, the tip pilin SpaC,
and the pilus base SpaB. Like protein A of S. aureus, each Spa pilin harbors a
CWSS, in addition to a signal peptide sequence targeted by SecA-mediated
translocation. Additionally, SpaA contains a pilin motif with the conserved lysine
residue essential for pilin cross-linking (Ton-That and Schneewind 2003; Ton-That
et al. 2004). Like most of Gram-positive pilus systems studied to date, polymer-
ization of the SpaA pilus requires a class C sortase, initially termed SrtA expressed
by the same gene cluster (Ton-That and Schneewind 2003). The CWSS and the
pilin motif appear to be the only two elements critical for pilus polymerization.
A fusion protein of staphylococcus enterotoxin B (SEB), N-terminally fused to the
SpaA fragment, which encompasses the signal peptide sequence and the pilin motif,
and C-terminally linked to the SpaA CWSS, can be polymerized by sortase SrtA
(Ton-That et al. 2004). Reminiscent of sortase-catalyzed transpeptidation that links
surface proteins to the cell wall, pilus polymerization catalyzed by corynebacterial
SrtA occurs in two steps; first is the cleavage of the SpaA LPXTG motif by SrtA,
leading to the formation of an acyl–enzyme intermediate. A nucleophilic attack by
the amino group of the pilin motif lysine residue from an incoming SpaA pilin
subunit resolves this intermediate, resulting in extension of pilus polymers
(Ton-That and Schneewind 2004). Pilus polymerization is switched to cell wall
anchoring when the pilus base SpaB is incorporated (Mandlik et al. 2008).

The notion that SpaA pili are covalently linked to the bacterial peptidoglycan
came from the experiment that utilized mutanolysin, a cell wall hydrolase that
cleaves the N-acetyl-muramyl-(1 ! 4)-N-acetylglucosamine linkage of the cell
wall polysaccharides. Treatment of corynebacterial cells with mutanolysin released
pilus polymers from the cell envelope, and these isolated polymers were resistant to
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hot SDS (Ton-That and Schneewind 2003). To biochemically address this issue,
Budzik and colleagues isolated cell wall-linked BcpA pili, which are comprised of
the pilus shaft BcpA and the tip pilin BcpB (Budzik et al. 2009), after muralytic
digestion of the B. cereus cell wall with mutanolysin and purification of the released
pili by affinity chromatography. Using mass spectrometry analysis, they demon-
strated that the BcpA pilus is covalently linked to the side chain amino group of
diaminopimelic acid within the peptidoglycan stem peptide (Budzik et al. 2008).

Unlike the B. cereus BcpA pilus, in which the last BcpA pilus shaft is linked to
the peptidoglycan (see above) (Budzik et al. 2008), the C. diphtheriae SpaA pilus
harbors the pilus base SpaB that is covalently attached to the cell wall (Mandlik et al.
2008). The linkage joining the last SpaA subunit and SpaB is formed between the
threonine residue of the SpaA LPETG motif and the lysine residue K139 near the
C-terminus of SpaB (Mandlik et al. 2008). In turn, SpaB is linked to the peptido-
glycan by the housekeeping sortase SrtF (Mandlik et al. 2008; Swaminathan et al.
2007), a class E sortase (Spirig et al. 2011). The biphasic mode of pilus assembly,
i.e., the cooperation between a class C sortase and a non-polymerizing sortase for
pilus polymerization and cell wall anchoring of pilus polymers (Mandlik et al. 2008),
appears to a universal feature in the assembly process of many Gram-positive pili
(Budzik et al. 2007; Nobbs et al. 2008; Nielsen et al. 2013; Sillanpaa et al. 2013).

Based on recent findings of posttranslocational folding of unfolded pilin pre-
cursors transported by the Sec apparatus (Reardon-Robinson et al. 2015a, b;
Reardon-Robinson and Ton-That 2016), a revised biphasic model of
sortase-catalyzed pilus polymerization and cell wall anchoring is proposed with the

Fig. 2 Pilus biogenesis in Corynebacterium diphtheriae. The pathway is modeled with the
SpaABC-type pilus with SpaA forming the shaft, SpaC at the tip, and SpaB at the base. Pilus
assembly begins with the SecA-mediated transport of unfolded Spa prepilins (Step 1). The thiol–
disulfide oxidoreductase MdbA catalyzes oxidative protein folding (Step 2), leading to insertion of
the precursors (Step 3). The pilin-specific sortase SrtA catalyzes pilus polymerization, linking pilin
subunits via lysine-mediated transpeptidation reactions (Step 4). Pilus polymerization is terminated
when SpaB enters the pilus base, which is in turn anchored to the cell wall by the housekeeping
sortase SrtF (Step 5). It is proposed that another oxidoreductase termed MdbB is required for
reoxidation of MdbA. Dashed arrows indicate multi-steps; adapted from Reardon-Robinson et al.
(2015a, b; Reardon-Robinson and Ton-That 2016; Mandlik et al. 2008)
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C. diphtheriae SpaA pilus as an example (Fig. 2). Accordingly, after their synthesis
in the cytoplasm, pilin precursors with a CWSS are transported across the cyto-
plasmic membrane by SecA-mediated translocation in an unfolded state (Step 1).
The membrane-bound oxidoreductase MdbA catalyzes oxidative folding of the
precursors emerging from the Sec translocon (Step 2). The folded precursors,
embedded in the membrane (Step 3), are subject to sortase-mediated polymerization
(Step 4). Pilus polymerization is terminated when SpaB enters the pilus base, and
the resulting pilus polymers are then attached to the cell wall via Lipid II by the
housekeeping sortase SrtF, a class E sortase (Step 5). Of note, the oxidative protein
folding pathway that is coupled with protein translocation and pilus assembly
appears to be conserved in actinobacteria (Reardon-Robinson and Ton-That 2016).
However, it is not clear that a similar pathway would be found for pilus assembly
and cell wall anchoring in the Gram-positive Firmicutes, given the cysteine
exclusion of exported proteins in these organisms (Daniels et al. 2010).

7 Perspectives

The basic principle of sortase-catalyzed transpeptidation is the cleavage of the
LPXTG motif, followed by the cross-linking of the cleaved product at the threonine
residue to a nucleophile (e.g., the amino group of the peptidoglycan stem peptide or
the pilin motif lysine residue). The products of sortase-catalyzed transpeptidation
reactions in vivo can be in the forms of monomers (e.g., protein A) or polymers
(e.g., pili). Regardless, the final products are ultimately anchored to the peptido-
glycan. Thus, it is abundantly clear that sortase-catalyzed cell wall anchoring of
surface proteins is a conserved feature of cell envelope assembly in Gram-positive
bacteria. Since many Gram-positive cell wall-anchored proteins are virulence fac-
tors (Navarre and Schneewind 1999), inhibition of sortase activity would render the
pathogenic potential of bacterial pathogens. Consistent with the important role of
sortase in surface assembly of virulence factors, genetic disruption of sortase
in vivo results in attenuation of bacterial virulence (Mazmanian et al. 2000;
Garandeau et al. 2002; Paterson and Mitchell 2006; Kemp et al. 2007; Guiton et al.
2010). Efforts have been made to find sortase inhibitors that can be developed as an
anti-infective therapy (Maresso and Schneewind 2008; Cascioferro et al. 2015).
Notably, using a virtual screening approach, Zhang et al. identified thiadiazole
derivatives that inhibit sortase activity in vitro and in vivo. Administration of mice
with a lead compound prior to S. aureus infection improved the animal survival in a
bacteremia model (Zhang et al. 2014). More recently, it was shown that a natural
compound named chlorogenic acid (CHA) exhibits inhibitory sortase activity
in vitro and can prevent mice from infection in a S. aureus-induced renal abscess
model (Wang et al. 2015). None of the sortase inhibitors identified to date, how-
ever, have been shown to be effective to treat infection. Furthermore, it is unclear
these inhibitors could have a broad range of sortase inhibition, i.e., capable of
inhibiting different classes of sortase enyzmes.
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Apart from sortase inhibition studies, the last several years have seen a shift in
focus on sortase-related research. Sortase-mediated ligation or sortagging has
become a great application of sortase-catalyzed transpeptidation that allows protein
ligation, labeling, and modification (Tsukiji and Nagamune 2009; Popp et al. 2007;
Schmohl and Schwarzer 2014). Sortase even finds its way to a therapeutic and
imaging system for B cell lymphoma (Fang et al. 2016). Sortase-like mechanisms
now have been reported in Gram-negative bacteria (Gorasia et al. 2015; Craig et al.
2011). On the other hand, many aspects of sortase-mediated mechanisms in
Gram-positive bacteria have not been well understood, for example, sortase speci-
ficity and pilus hijacking of surface proteins. It is more than often that multiple
sortases are expressed by one organism. In some bacteria, sortase-encoding genes
are located in different locations in the chromosome; in others, they reside on the
same gene clusters (Mandlik et al. 2008). In the case of C. diphtheriae SpaD pili,
either SrtB or SrtC, class C sortases, is capable of polymerizing the pilus shaft pilin
SpaD, but only SrtB is specific for incorporating SpaE into the pilus base (Gaspar
and Ton-That 2006). Interestingly, corynebacterial sortase SrtD is able to polymerize
the fimbrillin FimA of A. oris when this fimbrillin is expressed in C. diphtheriae
(Ton-That et al. 2004). What determines sortase specificity is not well understood;
perhaps, molecular mimicry is one possibility. In A. oris, CafA, a predicted cell
wall-anchored protein not genetically linked to the type 2 fimbriae, is found at the tip
of the FimA fimbrial structures, which also contain the canonical tip fimbrillin FimB.
It has been postulated that the similarity of the CafA CWSS with that of FimB allows
its recognition by SrtC2, a class C sortase (Reardon-Robinson et al. 2014).

Clearly, the LPXTG motif is not the only determinant of sortase specificity, since
the C. diphtheriae SpaE CWSS contains the LALTG motif, predicted to be a
substrate of class E sortase (Spirig et al. 2011), whereas the CWSS of SpaA and
SpaD is similar, i.e., LPLTG and LPMTG, respectively (Gaspar and Ton-That
2006). However, C. diphtheriae SrtA is only able to recognize SpaA (Ton-That and
Schneewind 2003). It is possible that the close proximity of substrates and their
cognate sortase enzymes in the assembly center may impose some specificity.
Nonetheless, what brings them there together is another intriguing question.
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Spatial Organization of Cell
Wall-Anchored Proteins at the Surface
of Gram-Positive Bacteria

Shaynoor Dramsi and Hélène Bierne

Abstract Bacterial surface proteins constitute an amazing repertoire of molecules
with important functions such as adherence, invasion, signalling and interaction
with the host immune system or environment. In Gram-positive bacteria, many
surface proteins of the “LPxTG” family are anchored to the peptidoglycan (PG) by
an enzyme named sortase. While this anchoring mechanism has been clearly
deciphered, less is known about the spatial organization of cell wall-anchored
proteins in the bacterial envelope. Here, we review the question of the precise
spatial and temporal positioning of LPxTG proteins in subcellular domains in
spherical and ellipsoid bacteria (Staphylococcus aureus, Streptococcus pyogenes,
Streptococcus agalactiae and Enterococcus faecalis) and in the rod-shaped bac-
terium Listeria monocytogenes. Deposition at specific sites of the cell wall is a
dynamic process tightly connected to cell division, secretion, cell morphogenesis
and levels of gene expression. Studying spatial occupancy of these cell
wall-anchored proteins not only provides information on PG dynamics in responses
to environmental changes, but also suggests that pathogenic bacteria control the
distribution of virulence factors at specific sites of the surface, including pole, septa
or lateral sites, during the infectious process.
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1 Introduction

Gram-positive bacteria of the Firmicute phylum are responsible for the most
common infections in humans [e.g. staphylococci, streptococci and enterococci
(Willems et al. 2011)]. They also constitute a major component of the gut micro-
biota [e.g. clostridiales, lactobacilli and ruminococci (Jandhyala et al. 2015)],
whose imbalance can be deleterious to health. These bacteria produce a wide
repertoire of surface proteins that play key roles in the interaction with their host,
such as adhesion to eukaryotic cells, binding to extracellular matrix, mucus or
plasma proteins, transport of nutrients and evasion from the host innate immune
defences. Surface proteins are thus long-standing targets for the development of
antibacterial therapeutics.

Knowing the precise location of bacterial proteins is often critical to understand
their function. The distinct subcellular distribution of proteins in Firmicutes has
greatly benefited from pioneering studies that revealed the role of MreB (Jones et al.
2001) and FtsZ (Bi and Lutkenhaus 1991; Lowe and Amos 1998), the bacterial
counterparts of eukaryotic actin and tubulin. These bacterial cytoskeletal elements
determine PG sidewall or septal synthesis, which is required for cell elongation or
division, respectively. Following initial discoveries made by immunoelectron and
immunofluorescence microscopy on fixed cells, a major breakthrough came from
the use of green fluorescent protein (GFP) as a fluorescent reporter that could retain
the subcellular localization of the protein fused to it, opening the way to a dynamic
view of protein localization in living bacteria (Phillips 2001). The development of
new fluorescence proteins and the advance of single molecule and super-resolution
imaging techniques over the last decade (Chiu and Leake 2011; Gahlmann and
Moerner 2014) also radically changed the knowledge of bacterial cell organization
that was for a long time limited due to the small size of bacteria. The asymmetric
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distribution of ActA, the actin polymerization factor of Listeria monocytogenes, is
one of the first and most striking evidence of the importance of precise subcellular
distribution of a surface protein for its function (Smith et al. 1995; Rafelski and
Theriot 2006). However, in Gram-positive bacteria, the fluorescence of GFP seems
to be lost after its translocation outside of the plasma membrane (Yu and Gotz
2012), and a dynamic vision of proteins at the cell surface remains a challenge.

Themajority of surface proteins are secreted via the general Sec secretory pathway
and can be classified in five different categories according to their means of associ-
ation with the cell surface: (i) membrane-spanning proteins; (ii) lipoproteins; (iii) cell
wall-anchored proteins (CWA), which are covalently linked to the PG by sortases
(detailed below); (iv) non-covalently associated proteins through interaction with cell
wall components (e.g. PG, lipoteichoic and/or teichoic acids, other glycopolymers);
and (v) non-conventional (“moonlighting”) surface proteins present at the surface by
unknown mechanisms. Several protein motifs constituting cell wall targeting
domains have been characterized: the LysM motif, first identified as 44 amino acid
repeats in Bacillus subtilis ϕ29 lysozyme, is found in many cell wall hydrolases
responsible for bacterial cell separation. It was shown that the LysM domains bind to
the PG disaccharide β-N-acetylmuramic acid (1 → 4)-β-N-acetylglucosamine but
not to the PG decorated with teichoic acid (Frankel and Schneewind 2012). TheWxL
motif first identified in E. faecalis surface protein also binds to PG (Brinster et al.
2007); the SLH domain present in the S-layer proteins of Bacillus anthracis interacts
with pyruvylated cell wall polysaccharide (Mesnage et al. 2000); the CBD domain
first described in Streptococcus pneumoniae interacts with the choline residues
decorating both lipoteichoic and teichoic acids, whereas the GW modules of
L. monocytogenes Internalin B and Ami autolysin bind to lipoteichoic acids (Braun
et al. 1997; Jonquieres et al. 1999; Bierne and Cossart 2007).

Sortase substrates (i.e. CWA proteins) of Gram-positive bacteria, such as LPxTG
proteins of Staphylococcus, Streptococcus, Enterococcus, Listeria and other
Firmicutes, constitute an amazing repertoire of colonizing factors, toxins, proteases
and enzymes that enable these opportunistic pathogens to mount successful
infections (Navarre and Schneewind 1999; Lindahl et al. 2005; Bierne and Cossart
2007; Hendrickx et al. 2009; Nobbs et al. 2009; Speziale et al. 2009). Following the
pioneering work of Schneewind and co-workers showing that LPxTG proteins are
attached to the PG by an enzyme called “sortase”, the mode of action of sortases has
been intensively studied and a plethora of sortase genes has been identified in
almost all Gram-positive bacteria, with often more than one sortase per genome
(Comfort and Clubb 2004; Dramsi et al. 2005). Sortases are now classified into six
classes named A–F: the housekeeping sortase A (SrtA), which anchors a wide range
of LPxTG proteins, sortase B (SrtB) recognizes NP(Q/K)TN-like motifs in proteins
involved in iron uptake systems, sortase C dedicated to pilus assembly and other
less characterized sortases D, E and F (Comfort and Clubb 2004; Dramsi et al.
2005; Spirig et al. 2011; Bradshaw et al. 2015). The prototypical sortase A (SrtA) of
Staphylococcus aureus is a membrane-bound transpeptidase, which recognizes a
conserved carboxylic sorting motif referred as LPxTG motif where x represents any
amino acid, and cleaves between the threonyl and the glycyl residues of this motif,
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and links the carboxyl group of the threonine to the PG precursor lipid II (Perry
et al. 2002). The protein–lipid II-linked product is then incorporated into the mature
PG via the penicillin-binding proteins (PBPs) constituting the cell wall biosynthesis
machinery. Thus, surface protein precursors are first processed by the secretory
pathway via N-terminal signal peptides, then scanned by SrtA for a C-terminal
sorting signal tagged with an LPxTG motif and finally anchored to the nascent PG
(Marraffini et al. 2006; Schneewind and Missiakas 2012). This sequence of events
summarized in Fig. 1 supports the idea that the final localization of CWA proteins
in the cell wall depends on protein synthesis and secretion, cell wall biosynthetic
and turnover activities, as well as sortase-mediated anchoring.

Fig. 1 Anchoring of LPxTG proteins by SrtA at the surface of Gram-positive bacteria. Following
transcription and translation, polypeptide precursors bearing a N-terminal signal peptide (SP, dark
grey) and a C-terminal sorting signal [in light grey LPxTG motif, hydrophobic domain and
positively charged tail (boxed +)] are secreted across the membrane through the Sec pathway.
Following cleavage of the signal peptide, the exported protein is transiently retained in the
membrane and then processed by the membrane-bound transpeptidase sortase SrtA, which
recognizes the LPxTG sequence and cleaves its substrate between the threonine and glycine
residues of the motif. An acyl-enzyme intermediate is formed between the active site cysteine of
SrtA and the carboxyl group of threonine. The enzyme then recognizes lipid II as the second
substrate. Subsequent formation of a peptide bond between the carbonyl of the threonine and the
free amino group of the cross-bridge peptide (CB) results in covalent attachment of the protein to
lipid II. The surface protein is next incorporated into the mature PG via the cell wall synthesis
machinery (i.e. a multi-protein complex containing penicillin-binding proteins and other PG
assembly factors, coupled to the cytoskeletal proteins). It then follows expansion and reshaping of
the PG during cell growth and division, upon the action of hydrolytic enzymes (autolysins). MN,
N-acetylmuramic acid; GN, N-acetylglucosamine; DAA (D-amino acid residue). Secretion and cell
wall synthesis machineries might be associated with lipid domains [adapted from Bierne and
Dramsi (2012), Schneewind and Missiakas (2012)]
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The PG is the main constituent of the bacterial cell wall. It is a large polymer
consisting of linear chains of two glycans (N-acetylglucosamine and N-acet-
ylmuramic acid), which are further reticulated by linear and branched peptide links.
Indeed, each molecule of N-acetylmuramic acid is attached to a specific short amino
acid chain (Fig. 1). The other constituents of the cell wall in Gram-positive bacteria
are extracellular polysaccharides, such as capsule and/or group-specific carbohy-
drate, teichoic acids and/or lipoteichoic acids. The bacterial surface is constantly
remodelled during cell growth to achieve a particular shape and is subjected to deep
changes upon switches between different physiological states, such as transition
between actively dividing, biofilm-like or quiescent states. The distribution of
sortase substrates, whose anchoring process is linked to PG metabolism, thus
depends on specific characteristics of PG architecture and dynamics, which is
different in spherical and rod-shaped bacteria.

Here, we will update our previous contribution on the dynamics of subcellular
localization of cell wall-anchored proteins within the three-dimensional bacterial
envelope (Bierne and Dramsi 2012). Our goal is not to be exhaustive but rather to
focus on a few examples that are illustrative of general principles of protein
localization in spherical, ovococcal and rod-shaped Firmicutes. These examples
were chosen from our own model bacteria or from closely related organisms.

2 Localization of CWA Proteins in Gram-Positive Cocci:
The Staphylococcal and Streptococcal Paradigms

2.1 Influence of Signal Peptides

A priori, there are several possible ways that protein localization could be specified.
Each protein could be localized through a unique set of interactions with other
localized proteins. This mechanism also known as “diffusion and capture” is
observed for the assembly of multi-proteins complexes, e.g. division proteins
associated with the FtsZ ring at the cell division plane forming the “divisome”.
Alternatively, localized proteins may contain sequences or structural information
that directs them to particular sites via general sorting pathways, e.g. nuclear
localization in eukaryotic cells by recognition of nuclear localization signal (NLS).
One simple mechanism to direct protein localization in bacteria is through peptide
signal sequences. The N-terminal signal sequences target proteins to the Sec or Tat
(twin-arginine translocation) pathway for secretion or membrane insertion.

In 2006, an additional localization cue was discovered in the signal peptides of
two proteins in Streptococcus pyogenes (Carlsson et al. 2006). In this pioneer study,
Carlsson et al. demonstrated that the signal peptide sequence of M protein, which
contains an YSIRK-G/S motif (SP+YSIRK), directs the protein to the equatorial
division site, while the signal peptide of protein F (PrtF, also known as SfbI)
lacking this motif (SP−YSIRK) directs PrtF to the old pole. These findings were
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confirmed by an independent study, which also provided a dynamic 3D view of
these proteins during bacterial cell cycle (Raz and Fischetti 2008). The SP+YSIRK M
protein was rapidly detected at the septum, simultaneously at the mother and
daughter septa, whereas the SP−YSIRK SfbI protein accumulated gradually on
peripheral PG resulting in a polar distribution (Fig. 2). Localization of these two
proteins (M and SfbI) was not altered in a SrtA mutant, suggesting that signal
sequences direct localized secretion before anchoring to the cell wall (Raz et al.
2012). In contrast, alteration of PG synthesis using methicillin, a beta-lactam
antibiotic inhibiting PG cross-linking, resulted in the significant reduction of the
amount of M protein on the bacterial surface, but not of Sfbl. Thus, PG synthesis
initiated at the septum during bacterial division is logically connected to the
anchoring of M protein at the septum and may also control their
expression/stability. It is important to note that the majority of proteins carrying the
YSIRK sequence in their signal peptide are highly expressed proteins.

The YSIRK signal peptide localization rule was generalized in S. aureus
(DeDent et al. 2008). Five SP+YSIRK CWA proteins (protein A, ClfA, SdrC, SdrD
and FnbpB) were shown to localize in a ring-like manner close to the equatorial
division sites, whereas four SP−YSIRK proteins (SasA, SasD, SasF and SasK) were
found at discrete loci on the bacterial envelope that do not overlap with the division
site. It is worth noting that mutations of the conserved YSIRK motif did not change
protein localization indicating that the YSIRK per se is not the septum localization
signal (DeDent et al. 2008). In an independent study, generation of a mCherry
reporter system was developed in S. aureus to investigate the spatial distribution of
surface proteins in live bacteria; Yu and Gotz (2012) showed that in contrast to GFP
variants (e.g. GFM-mut3; super-folder GFP), mCherry can be secreted and
anchored to staphylococcal cell wall while maintaining stable fluorescence. To our
knowledge, this tool constitutes the first fluorescent probe for localizing CWA
proteins in living bacteria (Yu and Gotz 2012). This study demonstrated that the
signal peptides SP+YSIRK and SP−YSIRK are necessary and sufficient to drive the
localization of CWA proteins either to the septum or pole, respectively (Yu and
Gotz 2012).

As shown for protein M, treatment with sublethal concentrations of penicillin, a
beta-lactam antibiotic, shifts the localization of the non-YSIRK mCherry hybrids
from the peripheral cell wall to the division site. This shift is probably due to the
increased amounts of lipid II precursors at the septum in these conditions. However,
a reduction in the rate of protein synthesis and bacterial division may also con-
tribute to this shift. From the results gathered in S. pyogenes and S. aureus, it
appears that highly expressed proteins, such as M protein of S. pyogenes or protein
A of S. aureus, are incorporated at the most active cell wall synthesis site (the
septum), whereas lowly expressed proteins, for example PrtF of S. pyogenes, are
incorporated elsewhere because of lack of free lipid II available at the septum.

The YSIRK signal peptide rule has also been investigated in Streptococcus
agalactiae, a close relative of S. pyogenes. Localization of the secreted protein Bsp,
whose signal peptide contains a canonical YSIRKG/S motif, has been studied by
immunofluorescence (Brega et al. 2013). As predicted by the model, Bsp localized
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Fig. 2 A model representation of the spatial distribution of CWA proteins with SP+YSIRK or
SP−YSIRK motifs at the surface of S. pyogenes (adapted from Carlsson et al. 2006; Raz and
Fischetti 2008 and Bierne and Dramsi 2012). The surface of a bacterium is shown on the top.
Spatial organization of daughter cells after successive division cycles is squared. 2-D longitudinal
cross sections through the centre of the bacterium are shown in the bottom following protease
removal of pre-existing surface proteins. SP+YSIRK M protein (in red) rapidly localizes as a ring in
the septal wall, while SP−YSIRK SfbI (in green) localizes as patches in the polar regions. Active
secretion and anchoring of the M protein (indicated by yellow triangles) are coupled to
peptidoglycan synthesis at the septum. As daughter septum assembly starts before the mother
septum is completely closed, anchoring of M protein occurs simultaneously at both mother and
daughter septa. After two cell divisions, M protein covers areas of the surface with newly
synthesized peptidoglycan. In contrast, as SfbI is preferentially anchored to peripheral
peptidoglycan, it accumulates at sites of older peptidoglycan, particularly at poles (secretion and
anchoring of SfbI are indicated by blue triangles)
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at the septum. However, replacing the signal peptide of Bsp with four other signal
peptides, containing or not the YSIRK motif, did not altered the localization of Bsp
at the equatorial ring. Cell wall-anchored proteins displayed polar, punctate or
uniform distribution on the surface of S. agalactiae. These results indicate that the
YSIRK rule does not apply to all Gram-positive cocci (Brega et al. 2013).

The molecular bases, underlying the differential targeting of SP+YSIRK/SP−YSIRK
proteins, remain largely unknown. As mentioned before, most proteins carrying the
YSIRK sequence in their signal peptide are highly expressed proteins. Interestingly,
it was observed that the cellular amounts of SP+YSIRK mCherry hybrids are higher
than those without the YSIRK motif, suggesting that signal peptides might affect
expression at a transcriptional or post-transcriptional level. In addition, mutations of
the YSIRK sequence significantly reduced the rate of signal peptide processing of
protein A of S. aureus (Bae and Schneewind 2003). Thus, one cannot rule out the
possibility that the differential targeting is due to different expression levels rather
than to the intrinsic properties of signal peptides. In S. aureus, three genes (spdA,
spdB, spdC) encoding transmembrane proteins with abortive infectivity
(ABI) domains, elements first described in lactococci for their role in phage
exclusion, were shown to be involved in the transcription of genes encoding
YSIRK-containing proteins. Despite the reduced amount of protein A in these spd
mutants, the spatial distribution of protein A was not significantly altered (Frankel
et al. 2010). Finally, recent studies indicate biased codon usage within the signal
peptide of E. coli proteins with a high frequency of non-optimal codons, which
allow efficient folding and export (Zalucki et al. 2009). It is thus highly likely that a
difference in the codon usage between YSIRK-containing signal peptides and
non-YSIRK signal peptides may explain a better coupling between translation and
secretion, resulting in higher surface levels of YSIRK-containing proteins.

2.2 Influence of Secretion, Sorting and Cell Wall Synthesis
Machineries

Since LPxTG proteins are exported through the general Sec secretory pathway and
anchored to the PG precursor lipid II by the sortase A, the distribution of secretion,
sorting and cell wall synthesis machineries is likely to play an important role in the
final localization of CWA proteins. So far, a clear rule for the localization of these
different components in cocci does not emerge. A pioneer study in S. pyogenes
reported that secretion of proteins occurs at a single microdomain in the membrane,
through a macromolecular structure termed the ExPortal, enriched in anionic lipids
that cluster Sec translocons and accessory factors (Rosch and Caparon 2004). More
recently, the same group demonstrated that the integrity of the ExPortal is depen-
dent on the cell wall biogenesis in S. pyogenes (Vega et al. 2013). However, two
other independent studies challenged the ExPortal view and showed that SecA is
randomly distributed in the membrane of S. pyogenes using either immunoelectron
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microscopy (Carlsson et al. 2006) or deconvolution immunofluorescence micro-
scopy (Raz and Fischetti 2008).

In S. pneumoniae, SecA and SecY proteins were found both at the septum and
periphery but not at a focal domain (Tsui et al. 2011). Regarding the subcellular
distribution of the housekeeping sortase, SrtA was distributed in an apparently
random punctate pattern over the surface of cells without any preferential distri-
bution to the septum or pole (Tsui et al. 2011). SrtA molecules of S. pyogenes were
detected at the division septa and, to a lesser extent, at the poles where sortase foci
tend to be smaller and less frequent than the septal ones (Raz and Fischetti 2008). In
contrast, in S. agalactiae, both SecA and SrtA were shown to be colocalized at the
septum (Brega et al. 2013). Similarly, SrtA has been shown to colocalize with SecA
in Enterococcus faecalis (Kline et al. 2009) and Streptococcus mutans (Hu et al.
2008) at discrete foci using immunoelectron microscopy. More recently,
immunofluorescence analyses indicate that SrtA and SecA are localized at nascent
septal sites in E. faecalis but do not always colocalize through the bacterial cell
cycle (Kandaswamy et al. 2013).

Direct time-lapse visualization of secretion machineries (secretons) and sortases
is still limited by the constraints of conventional optical microscopy, which could
explain the differences in the aforementioned studies. These technical issues also
impair a detailed analysis of the incorporation of SrtA substrate–lipid II-linked
products into the PG by the cell wall biosynthesis machinery, a multi-protein
complex containing synthases (PBPs) and hydrolases (autolysins), coupled to
cytoskeletal proteins (den Blaauwen et al. 2008; Typas et al. 2012; Wang et al.
2012). It has been proposed that in cocci and ovococci, the new cell wall is
synthesized only at mid-cell, also referred to as the “equator” by opposition to the
perpendicular or “meridian” pole, leading to spherical or ovoid shapes (Zapun et al.
2008; Perez-Nunez et al. 2011; Jiang et al. 2015). Ellipsoid-shaped bacteria, like
streptococci, rely on the activity of two finely coordinated PG machineries, which
are dedicated either to cell elongation or division (Massidda et al. 2013; Philippe
et al. 2014). In contrast, spherical bacteria, like staphylococci, were thought to
possess a unique septal PG synthesis system, generating new PG synthesis only at
the septum and promoting cell division in orthogonal planes. However, the appli-
cation of novel techniques to visualize S. aureus division cycle including
super-resolution microscopy techniques and fluorescent D-alanine derivatives for
labelling nascent PG recently challenged this dogma (Gautam et al. 2015; Zhou
et al. 2015; Monteiro et al. 2015). These new studies indicate that staphylococci
synthesize a peripheral PG before cell division (Fig. 3), and among the four
staphylococcal PBPs, PBP4 was identified as being critical player for this process.
According to this new model, S. aureus cells do not divide in equal planes.
Although daughter cells appear spherical and perfectly similar, the bacterial surface
is made of about ¾ of the old PG and ¼ of new PG (Zhou et al. 2015; Monteiro
et al. 2015).

Of note, the class B sortase (SrtB) is thought to use non-cross-linked, mature PG
as a substrate for IsdC attachment and this internal localization contributes to the
function of IsdC as haem transfer from the cell wall to the Isd membrane transporter
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(Mazmanian et al. 2003). It would be interesting to investigate whether SrtA can
use a different substrate than lipid II, including mature PG, to anchor its substrates
at non-growing regions of the PG. Another important question to be solved con-
cerns the “active” or “passive” localization of sortase A at poles.

We cannot close this section without mentioning the sortase-assembled polymers
called pili, discovered a decade ago in most streptococci and enterococci (Telford
et al. 2006). These long surface appendages have been involved in adherence,
biofilm formation, modulation of the immune responses and virulence (Danne and
Dramsi 2012). Pili are generally composed of two or three different LPXTG pro-
teins, which are covalently assembled into a pilus fibre by one to three sortase C
enzymes (Kang and Baker 2012). In S. pneumoniae, a discrete non-homogenous
distribution of pilus subunits was observed near the division site (Reis et al. 2010).
In E. faecalis, the sortase C enzyme responsible for Ebp pilus assembly co-localized
with SecA and SrtA (Kline et al. 2009). Similarly, in S. agalactiae, pili are found at
mother and daughter division sites and following cell separation at poles where they
accumulate due to their high stability (SD, unpublished data). Collectively, these
data argue for the existence of a multi-protein complex responsible for the secretion

Fig. 3 Models of cell wall growth patterns in Gram-positive (Firmicutes) bacteria. Here are
depicted simplified models for cell wall assembly and localization of PG factories in spherical
cocci (e.g S. aureus), ellipsoid-shaped ovococci (e.g S. pyogenes) and rod-shaped bacteria (e.g
L. monocytogenes). Light and dark grey lines show regions where new PG material is inserted, at
peripheral or septal sites, respectively, and associated PG synthesis machineries are represented by
ovals. Ovococci (ellipsoid) use two machineries localized at the mid-cell to synthesize the
peripheral and septal wall, respectively. In S. aureus (spherical), new data suggest the existence of
a peripheral machinery in addition to the primary septal machinery. Rod-shaped bacteria first have
an elongation stage characterized by insertion of PG in the form of helices along the sidewall of the
cell cylinder (1) and then synthesize septal wall to form two young poles (2). For simplicity, the
diagram does not represent the dynamic localization of PG factories in time and space during cell
division [Adapted from Bierne and Dramsi (2012)]
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and anchoring of sortase substrates. Interestingly, human cationic β-defensins were
shown to interact with E. faecalis at septal sites and disrupt sites of localized
secretion and sorting (Kandaswamy et al. 2013).

3 Dynamics of CWA Protein Localization
in the Rod-Shaped Bacterium Listeria monocytogenes

3.1 The “Cylinder” Challenge

The subcellular distribution of surface proteins cannot be dissociated from bacterial
morphogenesis (Fig. 3). To elongate with a constant diameter, several rod-like
bacterial species, including the Gram-positive B. subtilis and Gram-negative
Escherichia coli, use lateral sidewall PG synthesis to elongate the bacterial body
prior to septal wall synthesis (Zapun et al. 2008; Margolin 2009; Jiang et al. 2015).
In the past ten years, many reports have investigated this mechanism (Amir and van
Teeffelen 2014), and even if differences exist, in line with the issue of building a flat
(E. coli) or a thick (B. subtilis) cell wall, a common scenario can be defined. The
biosynthesis of the sidewall PG in these organisms is achieved by the dispersed
incorporation of PG precursors at discrete sites of the cylindrical bacterial body.
This depends on an elongation multi-protein complex, named “elongase”, con-
taining synthases (PBPs) and hydrolases (autolysins) coupled to actin-like MreB
proteins (den Blaauwen et al. 2008; Typas et al. 2012; Wang et al. 2012).
Visualization of MreB by TIRF microscopy revealed that in Gram-positive
(Dominguez-Escobar et al. 2011; Garner et al. 2011; Olshausen et al. 2013;
Reimold et al. 2013) as in Gram-negative bacteria (van Teeffelen et al. 2011), MreB
rotates in a processive manner along tracks organized as rings, perpendicular to the
long axis of the cells. MreB filaments are proposed to act as a platform for
PG-assembling factories and/or to control the direction and speeds of these facto-
ries, enabling insertion of new PG strands in helicoidal bands. Studies performed in
E. coli suggested that MreB trajectories are indeed slightly helical (van Teeffelen
et al. 2011). This model of a helical orientation of the PG meshwork caused by the
orientation of MreB filaments was further supported by combining microscopy and
optical trapping to follow fluorescent beads at the bacterial surface (Wang et al.
2012). The curvature and twist of the MreB filaments, but also the curved surface of
the cylindrical cell envelope, might cause this orientation. The architecture of the
mature PG in B. subtilis analysed by electron cryotomography and surface atomic
force microscopy (AFM) experiments also suggests the existence of a higher-order
three-dimensional helicoidal structure (Hayhurst et al. 2008; Andre et al. 2010;
Beeby et al. 2013). In this context, CWA proteins could be nice tools to further
explore the PG dynamics in Gram-positive bacteria.
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3.2 Helix-Like Localization Patterns of CWA Proteins
in Listeria monocytogenes

With an exceptional high number of surface proteins, the rod-shaped pathogen L.
monocytogenes constitutes a good model to study CWA proteins (Bierne and
Cossart 2007). We identified its sortase A and sortase B more than ten years ago
(Bierne et al. 2002; Bierne et al. 2004). In silico genome analysis, microscopy and
biochemical analyses further revealed about forty SrtA substrates and two SrtB
substrates (Calvo et al. 2005; Pucciarelli et al. 2005; Bierne and Cossart 2007). The
L. monocytogenes LPxTG protein family encompasses many proteins involved in
the pathogenic process, such as internalins InlA, InlH, InlJ and InlK (Gaillard et al.
1991; Sabet et al. 2008; Personnic et al. 2010; Dortet et al. 2012), the virulence
protein VIP (Cabanes et al. 2005), the adhesin LapB (Reis et al. 2010) and the
mucin-binding protein LmiA (Mariscotti et al. 2014). The haem-binding proteins
Hbp1 (formely Lmo2186) and Hbp2 (formely Lmo2185 or SvpA) are the SrtB
substrates, which are involved in iron metabolism (Bierne and Cossart 2002;
Klebba et al. 2012). By using 3D imaging, we studied spatial organization of a set
of these CWA proteins, namely InlA, InlH, InlJ and Hbp2/SvpA. We found that at
steady-state expression levels, all of them were arranged along non-overlapping
helices in the sidewall (Bruck et al. 2011) (Fig. 4a). Such distribution is in
agreement with the helicoidal architecture of the PG in the related species B.
subtilis. Based on these observations, we propose that listerial LPxTG proteins may
be sequentially incorporated in a same PG helical band and/or incorporated in
different bands (Fig. 4b).

The listerial LPxTG proteins decorate the cylindrical sidewall as helices in close
proximity of the nascent cell wall synthesis sites labelled with fluorescent van-
comycin (Van-FL) (Bruck et al. 2011). This organization is compatible with the
helical cell wall incorporation model described in B. subtilis (Daniel and Errington
2003; Tiyanont et al. 2006). Since LPxTG proteins are proposed to be anchored to
the cell wall precursor lipid II, prior to being incorporated into the mature PG (Perry
et al. 2002), one can expect a spatial proximity of the secretion, sortase and PG
factories, as discussed above for cocci. Remarkably, Sec translocons exhibit
helix-like patterns in B. subtilis and E. coli (Campo et al. 2004; Shiomi et al. 2006),
but there are no data on their mobility in the bacterial membrane. Of interest, two
putative sortases (YhcS and YwpE) and their substrates (YhcR and YfkN) have
been identified by in silico analyses in B. subtilis and a recent study confirmed
YhcS and YhcR as sortase and a sortase substrate, respectively (Liew et al. 2012).
In agreement with the model in Listeria, microscopy assessment of a GFP–sortase
fusion indicated that the B. subtilis sortase localized in helical arcs or tracks (Liew
et al. 2012). Application of TIRF microscopy to Sec and sortase–GFP fusions in
both species would be extremely meaningful to get a more dynamic view of the
coupling between secretion and sorting.
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Fig. 4 Helical distribution of sortase substrates at the surface of L. monocytogenes during the
exponential growth phase (A–B) Immunofluorescence micrographs of L. monocytogenes grown at
mid-log phase in standard BHI medium. a Helix-like patterns of the sortase B substrate
Hbp2/SvpA in the sidewall. The staining of the bacterial surface with Hbp2 antibodies highlights
helical patterns, as illustrated in the diagram (from Bruck et al. 2011). b Bacteria were labelled
with InlA and InlH antibodies and DAPI to label the nucleoid. The septum (asterisk) and poles
(arrow) are also indicated. Z-stacks of deconvoluted images were merged. InlA (red dots) and
InlH (green dots) have mostly non-overlapping distribution. c Models of CWA protein anchoring
in exponentially growing L. monocytogenes. Two model LPxTG proteins (represented as dotted
red and green lines) are distributed as helix-like patterns at the bacterial surface. CWA proteins
may be secreted and anchored at different sites and arranged as distinct helices (left) or sequentially
secreted and anchored at a same site and part of the same helix (right). A 2-D longitudinal cross
section through the centre of the bacterium is shown below. After secretion and sortase-mediated
anchoring to the PG (indicated by yellow triangles), CWA proteins follow the helical expansion of
the murein sacculus orchestrated by the PG elongation complex in association with MreB
cytoskeletal filaments [Adapted from Bierne and Dramsi (2012)]
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3.3 Shifts to Polar Localization of L. monocytogenes CWA
Proteins in Response to Environmental Changes

PG is also synthesized at the cell division site, creating the septal wall required for
the formation of new poles. As for elongation, a specialized multi-component
machinery known as the divisome, containing PG synthases and hydrolases coupled
to the tubulin-like protein FtsZ, is involved in this complex and essential process
(den Blaauwen et al. 2008; Typas et al. 2012). As previously shown in B. subtilis
(Tiyanont et al. 2006), the PG precursors of L. monocytogenes, labelled with
Van-FL, markedly stained the septal wall but were also detected as dots on the old
poles (Bruck et al. 2011). This observation supports the idea that PG synthesis may
continue for some period at the youngest poles following cell division (Mobley
et al. 1984). With such a distribution of lipid II, one would expect sortase substrates
to localize to septal and polar cell walls, in addition to sidewall in Listeria and other
rod-shaped bacteria. However, these sites seem to be used only in specific condi-
tions, in response to environmental changes and/or altered division rates, enabling
fluidity in the distribution of surface proteins in time and space.

Genome-wide transcriptomic studies (Camejo et al. 2009; Toledo-Arana et al.
2009) have shown that CWA protein-encoding genes are differentially expressed
upon transition from life in the environment to colonization of host. High-resolution
mass spectrometry applied to purified cell walls confirmed that the repertoire of
CWA proteins in L. monocytogenes evolves qualitatively and quantitatively in the
envelope, with the different phase of growth, in different media (nutrient-rich to
minimal medium), and with the entry of the bacterium into the cytosol of infected
epithelial cells (Pucciarelli et al. 2005; Garcia-del Portillo et al. 2011). As discussed
above for cocci, it seems that variations in expression levels also affect spatial
organization of CWA proteins of L. monocytogenes. In particular, there is a striking
enrichment of SrtA substrates, InlA and InlJ, at both poles of exponentially growing
bacteria, in response to specific switches in gene expression. InlA localization to the
poles was proposed to involve passive helical cell wall growth (Rafelski and
Theriot 2006), but our data rather support an active process of secretion and
anchoring at the pole, when a critical protein concentration is achieved (Bruck et al.
2011), as depicted in the model Fig. 5a. Thus, under high expression levels induced
by the transcription regulator PrfA, helical anchoring of InlA might be saturated
allowing polar positions to become utilized. Reaching a critical protein concen-
tration would trigger accumulation of LPxTG proteins at the septum and, following
cell division, further secretion and anchoring by SrtA to lipid II at newly formed
pole. As the synthesis of PG continues at the pole for a while, proteins progres-
sively accumulate at the ageing pole until it becomes metabolically inert. In a
similar way, the E. coli enzyme MurG localizes at the poles when synthesized at
high levels (Michaelis and Gitai 2010).

Another switch in localization patterns is observed with σB-dependent LPxTG
proteins, as exemplified with InlA and InlH. When bacteria enter into the stationary
phase or are submitted to oxidative stress in exponential phase, these proteins
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shuttle from the sidewall to septal wall (Bruck et al. 2011). Anchoring to the septal
PG precursors enables these proteins to be rapidly exposed at the surface of cells
exposed to a sudden stress, when cell elongation is impaired (Fig. 5a, b).
Conversely, heat shock, which disrupts septum formation and induces cell elon-
gation, prevents σB-dependent LPxTG proteins to be localized at the mid-cell.
These dynamic changes suggest interconnected regulatory circuits that coordinate
cell wall dynamics, cell wall anchoring and σB-dependent stress responses.

What determines the relocalization of CWA proteins to the septal region is
unknown. There is so far no data supporting a role for spatial information encoded
in the signal peptides in Listeria or other rod-shaped bacteria, as described for cocci
above. Polar localization information may be carried by messenger RNAs
(Blaylock et al. 2008; Nevo-Dinur et al. 2011). Alternatively, σB, InlA, InlH and/or
SrtA may shuttle from one place to another by interacting with components of
elongasome or divisome complexes, or with factors that sense membrane curvature
and play role in the secretion at septal regions, such as the membrane protein DivIV
(Halbedel et al. 2012). σB-dependent PG proteins may also be more resistant to
proteolysis at the poles. These are important issues that need to be addressed in
future studies.

The subcellular localization of the SrtB substrate, Hbp2/SvpA, whose produc-
tion is repressed by Fur and induced by iron limitation, contrasts with that of
classical LPxTG proteins such as InlA (Bruck et al. 2011). When HpB2 expression
is activated, it localizes to the old pole, in addition to the sidewall, with a complete
exclusion from the septal region (Bruck et al. 2011). SrtB has been proposed to
anchor its substrate directly to the mature PG, suggesting that SrtA and SrtB
substrates localize to distinct sites of the bacterial surface (Marraffini and
Schneewind 2005). Consistent with this hypothesis, InlA and Hbp2 are deposited to
distinct sites of the surface (Bruck et al. 2011) (Fig. 5a, c). This differential dis-
tribution of surface proteins displaying unrelated functions may favour the sepa-
ration of functional activities: InlA-dependent entry into epithelial cells versus
Hpb2-mediated iron transport pathway (Klebba et al. 2012).

3.4 Importance of Other Domains Than the C-terminal
Sortase-Anchoring Motif

Listerial CWA proteins have a modular architecture with distinct domains (or
regions) upstream of the C-terminal sorting signal, such as leucine-rich repeats
(LRR), PKD repeats, mucin-binding (MucBP), BIG-3 and collagen-binding
domains. Some of these domains are involved in interaction with host factors,
the best example being the N-terminal LRR domain found in CWA proteins of the
internalin family (Bierne et al. 2007). The LRR domain of InlA, the paradigm of
this family, binds to the mammalian adhesion molecule E-cadherin (Ecad)
(Mengaud et al. 1996). InlA–Ecad interactions are sufficient for bacterial uptake
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into epithelial cells, a key step for the crossing of intestinal, placental and blood–
brain barriers by L. monocytogenes (Bonazzi et al. 2009; Disson and Lecuit 2013).
It is worth mentioning that while the eukaryotic signalling cascades promoting
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entry are now quite well known, there is no data addressing the role of the topo-
logical organization of InlA molecules at the bacterial surface in the
receptor-guided mechanism of phagocytic cup assembly.

Recent studies on Lmo0171, another member of the internal family, open the
possibility that some LPXTG proteins can interact directly with PG assembly
and/or turnover machineries. Indeed, disruption of the lmo0171 gene results in
notable changes in the bacterial cell morphology, with asymmetry in cell wall
growth and curvature of the bacterial body. This shape defect coincides with a
decrease in the ability of bacteria to invade human epithelial cells (Stachowiak et al.
2015). How Lmo0171 is involved in the regulation and/or stabilization of the cell
wall structure is unknown.

4 Importance of Sortase Substrates Localization
in the Infectious Process

The covalent anchoring of LPXTG virulence factors to the PG appears to play a key
role in their pathogenic properties. This has been demonstrated for InlA, for which
truncation of the cell wall sorting motif abolishes the entry of L. monocytogenes

JFig. 5 Changes from helical to polar distribution of L. monocytogenes CWA proteins in response
to environmental changes. a Models of spatial and temporal localization of CWA virulence
proteins in the rod-shape bacterium L. monocytogenes. (i) During the exponential phase, CWA
proteins localize as helices in the cylindrical part of the cell (rectangles represent helical foci). In
response to environmental changes and increased expression levels, they may reach a critical
concentration that saturates helical positions (vertical arrows). Following activation of its regulator
PrfA, the SrtA substrate InlA (in red) accumulates in the septal region (horizontal arrows) and is
anchored to the new pole wall (P2) only after cell division is achieved. At the next cell division,
InlA is anchored to the younger pole P3, while still incorporated at P2 until this pole becomes
inert, leading to distribution of InlA at the two poles. When overexpressed under iron-limited
conditions, the Fur-regulated SrtB substrate Hbp2 does not accumulate at the mid-cell but instead
is anchored to the mature PG at the old pole (P1). Hbp2 accumulates at P1 and starts to be
anchored at P2 at the second generation, while remaining excluded from the newly synthesized PG
at P3, leading to an asymmetric distribution at the surface. (ii) σB-dependent CWA proteins, such
as InlA or InlH, are actively produced in response to stress. Upon entry into the stationary phase
and inhibition of cell elongation, InlA and InlH become anchored to the septal cell wall precursors
before cell division is achieved, thus decorate the septal wall and are fastly exposed at the newly
formed pole (P2). b–c Immunofluorescence micrographs illustrating the relocalization of CWA
proteins at the surface of L. monocytogenes (adapted from Bierne and Dramsi 2012). b InlH and
InlA relocalize to overlapping sites at septa and poles of L. monocytogenes (strain EGDe) entering
into the stationary phase. An immunofluorescence micrograph of a Listeria labelled with InlA and
InlH antibodies and DAPI (blue, in the overlay) is shown. InlA colocalizes with InlH at the septum
(asterisk) and pole (arrow). c When induced for expression, InlA and Hbp2 relocalize to distinct
sites at poles. Bacteria grown with charcoal (to activate InlA expression) and dipyridyl (to activate
Hbp2 expression) were labelled with InlA and Hbp2 antibodies and DAPI. Arrows and
arrowheads point to non-overlapping InlA and Hbp2 signals at poles and asterisk marks the
septum [From Bruck et al. (2011)]
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into human intestinal cells (Lebrun et al. 1996; Jonquieres et al. 1998). In addition,
replacement of the C-terminal sorting motif of InlA with the transmembrane
domain of ActA results in decreased surface accessibility of InlA and consequently
decreased invasiveness (Lebrun et al. 1996). Similarly, it was previously shown
deletion of the LPETGE sequence of protein A, a major S. aureus virulence protein,
abolished its cell wall anchoring and thus its immunoglobulin binding function
(Stachowiak et al. 2015). Finally, proteomic studies have highlighted an important
remodelling of the L. monocytogenes cell wall inside eukaryotic cells changing the
repertoire of surface proteins. For example, high amounts of internalins InlA and
InlB have been detected, suggesting that these proteins may interact not only with
host cell surface receptors, but also with other host intracellular molecules
(Garcia-del Portillo et al. 2011).

If surface display is critical, do spiral, ring-like, focal or polar organizations have
any consequence on the interaction of PG-bound proteins with the host molecules?
As discussed above, information is lacking on this subject. Yet, such repartitions
might potentiate interaction with host ligands and compartmentalize specific
functions. For example, spatial exclusion of listerial InlA and Hbp2 likely favours
separation of unrelated functions such as entry into eukaryotic cells and iron
transport, respectively. Conversely, spatial proximity should increase physical
interactions required for common functions, as exemplified by staphylococcal haem
iron transport components IsdA and IsdB (Pishchany et al. 2009). A recent study
showed that IsdP, a novel iron-regulated autolysin, remodels the cell wall to
facilitate surface localization of IsdC, another srtB substrate acting with IsdA and
IsdB. In Staphylococcus lugdunensis, IsdP inactivation alters IsdC surface display,
which in turn leads to a defect in haemoglobin utilization (Farrand et al. 2015). To
our knowledge, this is the first study demonstrating the role of a specialized
autolysin in the remodelling of the cell wall for the correct surface display of a cell
wall-anchored protein, which in turn is key for protein function.

5 Conclusions

The toolbox for bacterial cell biology has expanded considerably within recent
years (for a review, (Yao and Carballido-Lopez 2014)) with the development of
optimized fluorescent proteins for Gram-positive bacteria. In addition, recent
advances in super-resolution microscopy techniques applied to prokaryotic cells
have provided insights into the process of bacterial wall elongation and division
(Fleurie et al. 2014; Zhou et al. 2015). Fluorescent probes based on D-Ala, a key
component of the stem peptide of PG (Fig. 1), are tools that will certainly provide
many novel information of the cell wall dynamics in complex bacterial commu-
nities. For instance, such probes recently revealed the diversity of PG assembly in
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the hundreds of bacteria found in a salivary sample (Kuru et al. 2015). Importantly,
not all bacteria divide in a binary fission mode described for E. coli, B. subtilis or
S. aureus. For example, Corynebacterium glutamicum, a Gram-positive bacterium
belonging to the group of Actinobacteria, grows bipolar and divides from the tip
(or poles). How cell wall-anchored proteins are organized in these bacteria may
reveal novel connections between cell division and protein localization. The
composition and/or structure of the PG can be heterogeneous along the bacterial
surface and may constitute an important localization clue: indeed, it was recently
shown that MapZ, which binds to PG, has the dual role of marking the cell division
site and positioning the FtsZ ring in S. pneumoniae (Fleurie et al. 2014). It is
proposed that MapZ recognizes a PG structure specific to mid-cell such as the
equatorial mark, which is reminiscent of the “piecrust” structure previously reported
in S. pneumoniae, E. faecalis and S. aureus (Tomasz et al. 1964; Higgins and
Shockman 1970; Wheeler et al. 2011).

Another important concern is the experimental conditions in which CWA and
PG dynamics are analysed. So far, most of the studies have been performed on
model bacteria growing in standard broth medium. However, the bacterial surface
profoundly changes in different physiological states, and one can predict that
protein secretion and anchoring machineries would be deeply influenced by envi-
ronmental and developmental conditions. A recent study showed that in B. subtilis
the cytoskeletal protein MreB is affected by the development of competence during
stationary phase. The competence regulator ComK activates the expression of mreB
and MreB is targeted to the pole, where it colocalizes with the late competence
protein ComGA. It is proposed that ComGA sequesters MreB to prevent cell
elongation and escape from competence (Mirouze et al. 2015). This adaptation to
competence might prove to be true for other physiological processes and is likely to
affect the spatio-temporal organization of cell wall proteins. More generally, it will
be important to examine the dynamics of surface proteins during biofilm devel-
opment or bacterial interaction with the host environment, as well as in complex
ecosystems harbouring thousand of different bacteria.

Many questions remain unsolved on the underlying mechanism driving protein
subcellular localization at the bacterial surface. Protein targeting via specific mRNA
localization may exist as shown in E. coli (Govindarajan et al. 2012). We anticipate
that the fluidity of the cell surface proteins within the cell wall is tightly controlled
and this has functional implications to the pathogenic or symbiotic property of
prokaryotes. How bacterial replication, transcription and translation processes are
organized and coordinated to quickly adapt to environmental signals or develop-
mental changes in the prokaryotic cell represents the biggest challenge for the
future.
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Pilus Assembly in Gram-Positive Bacteria

Werner Pansegrau and Fabio Bagnoli

Abstract Pili of Gram-positive bacteria are unique structures on the bacterial
surface, assembled from covalently linked polypeptide subunits. Pilus assembly
proceeds by transpeptidation reactions catalyzed by sortases, followed by covalent
anchoring of the filament in the peptidoglycan layer. Another distinctive property is
the presence of intramolecular isopeptide bonds, conferring extraordinary chemical
and mechanical stability to these elongated structures. Besides their function in cell
adhesion and biofilm formation, this section discusses possible application of pilus
constituents as vaccine components against Gram-positive pathogens.
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1 Introduction

Pili are bacterial surface organelles implied in a variety of important processes
regarding host–pathogen interactions, such as cell adhesion, colonization and bio-
film formation, but also transformation and motility (Thanassi et al. 2012). It is
therefore surprising that, although pili in Gram-positive bacteria had been observed
for many years (Kumazawa and Yanagawa 1972; Yanagawa and Otsuki 1970;
Yanagawa et al. 1968), their rigorous characterization by molecular biology and
biochemistry has started only relatively recently with the dissection of the pili found
on the surface of corynebacteria (Ton-That and Schneewind 2004; Ton-That et al.
2004; Ton-That and Schneewind 2003) and streptococci (Barocchi et al. 2006;
Lauer et al. 2005; Bagnoli et al. 2008; Kang et al. 2007; Mora et al. 2005).
Following these seminal studies, pili have been described in a great variety of
pathogenic, but also in commensal and probiotic Gram-positive bacteria.

The surface of Gram-positive bacteria is characterized by the presence of a thick
peptidoglycan layer, while an outer membrane, characteristic for the Gram nega-
tives, is absent. It is obvious therefore that the pilus architecture in Gram-positive
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bacteria must be fundamentally different from that of pili in Gram-negative species.
Indeed, typical single pili found in Gram-positive bacteria are much thinner, ca. 2–
3 nm, (Kang et al. 2007) than any known type of pilus in Gram negatives. Another
exclusive property is their formation from covalently linked subunits, a process that
is catalyzed by sortases transpeptidase enzymes, that not only assemble the pilus
filament but also mediate the reaction that leads to anchoring the pilus base
covalently in the peptidoglycan.

With the ongoing analysis of these surface structures, a wealth of structural
information on Gram-positive pilus components has become available recently
(Kang and Baker 2012), revealing another surprising feature: the presence of
autocatalytically formed intramolecular isopeptide bonds (Kang et al. 2007, 2009).
While in pili from Gram-negative bacteria stabilizing disulfide bonds are wide-
spread, Gram-positive bacteria are lacking machinery that could catalyze the for-
mation of disulfide bonds on the cell surface (Dutton et al. 2008; Heras et al. 2009).
Thus, it is tempting to speculate that isopeptide formation in Gram-positive pili has
evolved as an alternative means to introduce stabilizing cross-links (Kang and
Baker 2011). Another unusual finding in pili of Gram positives consists in the
recent discovery of thioester bonds, forming a covalent linkage between pilus tip
adhesins and host proteins (Pointon et al. 2010; Linke-Winnebeck et al. 2014)
demonstrating the presence of an uninterrupted chain of covalent interactions
between the bacterial cell wall and host cell surface proteins.

This review will also discuss the use of pilus components in vaccines against
Gram-positive pathogens. Since pili extend from the bacterial surface, evolved to
interact with the environment and traversing even the bacterial capsule, they are
often the major proteinaceous antigens of a given pathogen that is visible to the
immune system. Therefore, pilus components are highly immunogenic, a property
that makes them promising candidates for use in vaccines.

2 Pili Are Encoded by Distinct Genetic Islands

In virtually all Gram-positive bacteria in which pili have been described, the genetic
information necessary for their formation is specified by distinct genetic elements,
designated as pilus islands. Pilus islands encode at least one sortase enzyme and the
genes expressing the precursors for the pilus backbone and minor (“ancillary”) pilus
components (Fig. 1). Although not present in all pilus islands, genes specifying
signal peptidase-like polypeptides (SipA) have been found, and in these systems,
they are required for pilus formation (Zähner and Scott 2008).

In some cases, regulatory gene products have been identified, suggesting that
pilus expression might be transcriptionally regulated (Kreikemeyer et al. 2011). In
the case of Streptococcus pneumoniae strains harboring pilus island 1 (PI-1),
bistability in pilus expression has been demonstrated by the finding that in vitro
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stable bacterial populations can be isolated by colony selection in which either a
high (H) or low (L) proportion of individual bacterial cells is expressing pili or not
(Pancotto et al. 2013; De Angelis et al. 2011). Expression of PI-1 pili is linked to
the positive regulator RlrA, the expression of which seems to be sufficient to switch
pilus biogenesis from an “off” to an “on” state (De Angelis et al. 2011) with the
biphasic expression pattern resulting from RlrA controlling its own expression via a
positive feedback loop (Hava et al. 2003). Infecting mice with either H, L, or
unselected (medium, M) populations shows that pilus-1 is preferentially expressed
at early colonization stages, consistent with its role in adhesion, while at later stages
the expression is partially switched off, probably to avoid exposure of pilus antigens
to the host immune system (Pancotto et al. 2013).

Similar characteristics of pilus expression were found in Streptococcus gal-
lolyticus where pilus expression depends on a phase variation mechanism involving
addition/deletion of GCAGA repeats that modifies the length of an upstream leader
peptide. Synthesis of longer leader peptides potentiates the transcription of the pil1
genes through ribosome-induced destabilization of a premature stem-loop tran-
scription terminator (Danne et al. 2014).
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Fig. 1 Operon structure of selected pilus islands. Gene products are colored according to their
functions: red pilus tip (AP1); green pilus shaft/backbone (BP); magenta pilus base (AP2); blue
sortase; orange signal peptidase-like protein; yellow transcriptional regulator. A black arrowhead
indicates the direction of transcription. Boxes that represent genes in which stop and start codons of
adjacent reading frame overlap are depicted in a raised position. The region of the putative pitA
pseudogene located downstream of a stop codon interrupting the pitA reading frame (Bagnoli et al.
2008) is shown as a hatched bar
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3 Sortases Assemble Pili of Gram-Positive Bacteria

3.1 Classes of Sortases and Their Substrates

Based on sequence similarity, sortases have been classified in six main classes
designated with the letters A–F (Spirig et al. 2011).

In most Gram-positive species, class A sortases function as the housekeeping
sortases, catalyzing the covalent linkage of a variety of surface proteins to the
surface peptidoglycan layer (for recent reviews, see (Bradshaw et al. 2015; Spirig
et al. 2011). Class B sortases are mostly associated with anchoring gene products
implied in iron uptake such as hemoproteins (Mazmanian et al. 2003), but in some
cases, e.g., Streptococcus pyogenes, they have been also found to catalyze pilus
assembly (Kang et al. 2011). Class C sortases are the typical pilus-related sortases
specified by pilus islands and required for initiation and elongation in pilus
assembly to form extended filaments. Class D sortases have been found in bacilli,
but so far, only the one of Bacillus anthracis (Ba-SrtC) has been characterized to
some extent (Marraffini and Schneewind 2006, 2007), where it seems to be implied
in sporulation under certain conditions (Marraffini and Schneewind 2006). Class E
sortases in some species, such as Corynebacterium diphtheriae, act as house-
keeping sortases (Ton-That and Schneewind 2003). Interestingly, the presence of
class A and E sortases seems to be mutually exclusive, suggesting that they are
indeed functional homologues (Comfort and Clubb 2004). Finally, the class F
sortases are found in a wide variety of Actinomyces species; however, their role is
largely unknown (Spirig et al. 2011).

Proteins that are substrates for sortases in general are exported in a
Sec-dependent manner across the cellular membrane, remaining anchored to the
latter by a C-terminal hydrophobic sequence patch (Schneewind and Missiakas
2014). A pentapeptide sorting motif, adjacent to the C-terminus and specific for a
certain sortase class, is recognized by its cognate sortase, likewise linked to the
cellular membrane by a hydrophobic anchor. The sortase cleaves the pentapeptide
motif at a certain position and then catalyzes the linkage of a nucleophile to the new
C-terminus of the substrate protein. Both the sorting motif and the nucleophile are
specific to the sortase implied in the reaction (Fig. 2; Table 1).

3.2 Transpeptidation Mechanism

The catalytic site of sortases consists of a cleft large enough to accommodate a
protein substrate with the appropriate LPXTG pentapeptide sorting signal and
exposing the catalytic residues constituted by a triad of a cysteine, a histidine, and
an arginine residues (Marraffini et al. 2006). The cleavage reaction proceeds via
nucleophilic attack by the SH group of the active site cysteine in the conserved
catalytic TLXTC motif on a specific peptide bond in the LPXTG pentapeptide
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motif, usually after the threonine. This results in the formation of an acyl (thioester)
intermediate with the N-terminal portion of the substrate protein and a C-terminal
cleavage product, a peptide with a free N-terminus (Fig. 2).

The mechanism of this reaction has been subject to intense debate (Frankel et al.
2005; Ton-That et al. 2002), favoring a reverse protonation model (Frankel et al.
2007) where the LPXTG substrate binds to active sortase in which the cysteine and
histidine are reverse protonated; only a minor fraction of total sortase population is
present in this configuration. The nucleophilic cysteine thiolate attacks the carbonyl
of the scissile Thr–Gly bond to result in the formation of a short-lived tetrahedral
oxyanion intermediate, which is stabilized by interaction with the positively charged
side chain of the arginine. Protonation of the leaving group facilitates collapse of the
intermediate and formation of the acyl-enzyme (Fig. 2; Frankel et al. 2007).

The thioester intermediate that is formed by this mechanism is resolved by a
consecutive nucleophilic substitution reaction with the sortase determining the
specificity of the nucleophile: either by an N-terminal amino acid in the peptide
moiety of a lipid II molecule (class A), meso-2,6-diaminopimelic acid (mDap) in a
peptidoglycan cross-bridge (class A, D and E Sortases), a lysine residue in a
peptidoglycan cross-bridge (class B sortases), or a lysine residue that is part of the
“YPKN” motif of a pilin precursor (class C sortases and certain class B sortases,
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Fig. 2 Reverse protonation model of the sortase cleavage step (Frankel et al. 2007)

Table 1 Sortase classes and their specific sorting motifs and nucleophiles

Sortase
class

Pentapeptide
motifa

Nucleophile Function

A LPXT-G Lipid II (Ala, Gly,), Peptidoglycan
cross-bridges (m-Dap)

Housekeeping sortase, pilus
anchoring

B N(P/A)(Q/K)
(T/S)-(N/S)

Peptidoglycan cross-bridges (Lys),
Pilin (Lys)

Iron deprivation response,
pilus polymerization

C (Y/I/L)(P/A)
XT-G

YPKN pilin motif (Lys) Pilus polymerization and
anchoring

D LPNT-A Peptidoglycan cross-bridges
(m-Dap)

Sporulation, anchoring of
endospore envelop proteins

E LAXT-G Peptidoglycan cross-bridges
(m-Dap)

Housekeeping in some high
G + C bacteria

aThe sortase cleavage site is indicated by a dash (-)
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(Ton-That and Schneewind 2004; Kang et al. 2011)). The nucleophilic substitution
completes the transpeptidation reaction, resulting in anchoring of substrate mole-
cules to peptidoglycan (class A, B and D and E sortases, eventually after incor-
poration of the attached lipid II into the peptidoglycan) or in incorporation of a pilin
precursor into a growing pilus filament (class C and some class B sortases).

A particular characteristic of the class C sortases is the presence of an N-terminal
extension not present in the housekeeping sortases (Neiers et al. 2009; Manzano
et al. 2009). This region forms a highly flexible loop that acts as a pseudosubstrate
and blocks access to the active site (Cozzi et al. 2012). This so-called lid apparently
is implied in the regulation of activity and substrate specificity of the class C
sortases. Mutagenesis of the Streptococcus agalactiae PI-2a sortase SrtC-1
demonstrates that abrogating a particular interaction between a tyrosine residue
in the lid and the active site cysteine results in a mutant enzyme that, other than the
wild-type enzyme, efficiently polymerizes recombinant BP-2a backbone pilin
(GBS59) in vitro (Cozzi et al. 2013). However, while the C-terminal IPQTG sorting
motif in BP-2a is essential for the polymerization reaction to occur, the presence of
the lysine residue that should provide the nucleophilic ε-amino group to resolve the
acyl intermediate is not, suggesting that either the unmutated lid or other unknown
factors provide additional specificity determinants allowing only the lysine of the
YPKN motif to act as nucleophile in the reaction (Cozzi et al. 2013). In line with
these observations, (Khare et al. 2011) presented the crystal structure of a SrtC-1
apo-enzyme dimer in which the lid was shown to be displaced by a loop from a
neighboring SrtC-1 molecule containing an LPXTG-like sequence, thus mimicking
a substrate intruding into the active site. A part of the displaced lid and the
C-terminal hinge that connects the lid to the rest of the molecule in this structure
forms a five-turn α-helix that is arranged in a way that it allows access to the active
site (Khare et al. 2011).

4 Pili Are Composed of Subunits Linked
by Intermolecular Isopeptide Bonds

4.1 Pilus Assembly

Following Sec-dependent transport of pilus precursors across the cell membrane,
the pilus building blocks remain attached to the membrane via a C-terminal
hydrophobic region acting as a membrane anchor (Fig. 3; Schneewind and
Missiakas 2014). According to the accepted model, assembly of pili starts when a C
class sortase, likewise anchored in the membrane, recognizes and cleaves the
specific sortase motif near the C-terminus of a pilus tip precursor. As detailed
before, the initial cleavage reaction results in the formation of thioester intermediate
between precursor and sortase that is resolved through nucleophilic attack by the ε-
amino group of a specific lysine residue of a backbone precursor–sortase inter-
mediate. Usually, this lysine is a part of the conserved “YPKN” motif (Ton-That
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and Schneewind 2004). The result is a covalent intermolecular isopeptide linkage
between pilus tip and the first backbone unit. The latter reaction repeats several
times forming the extended pilus filament by adding more and more pilus backbone
units (Fig. 3).

How pilus polymerization terminates is species-dependent: In some species such
as Bacillus cereus, the housekeeping sortase SrtA is able to recognize and form
intermediates with backbone precursors, albeit with lower frequency, so that after
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incorporation of a certain number of backbone units, a backbone intermediate
formed with the housekeeping sortase may be incorporated into the growing pilus
(Budzik et al. 2008). This intermediate can only be resolved by nucleophilic attack
of the N-terminal glycine of the peptide side chain of a lipid II molecule, so that
incorporation of a SrtA-backbone intermediate into the growing pilus acts as a
switch, terminating pilus elongation. The lipid II with the attached pilus is then
incorporated into the peptidoglycan layer covalently anchoring the pilus base
(Budzik et al. 2008).

In many other species, such as C. diphtheriae (Swaminathan et al. 2007), S.
agalactiae (Necchi et al. 2011), or S. pneumoniae (Shaik et al. 2014), pilus poly-
merization terminates when a dedicated precursor (pilus base/anchor), which is only
be recognized by the housekeeping sortase, is cleaved and incorporated at the base
of the growing pilus via a specific lysine–isopeptide linkage. Since the house-
keeping sortase determines the nature of the nucleophile, this intermediate can only
be resolved by lipid II, followed by incorporation into the peptidoglycan and
anchoring the pilus (Fig. 3).

5 Intramolecular Isopeptide Bonds Stabilize Pili

In their natural environment, the components that form pilus structures may be
exposed to very harsh conditions, such as, extreme pH, chaotropes, or proteases,
usually resulting in unfolding or degradation of proteins. Moreover, as mediators of
bacterial adhesion, pili might also be exposed to extensive mechanical stress by
shear forces. To deal with these challenges, pilus components from Gram-negative
bacterial species have evolved strategies to withstand, including cross-linking of the
polypeptide chain by disulfide bridges (Piatek et al. 2010), presentation of extre-
mely hydrophobic surfaces (Li et al. 2012), and protection of the protein termini by
cyclization (Kalkum et al. 2002). Pili of Gram-positive bacteria have developed an
alternative strategy, consisting in the formation of intramolecular isopeptide bonds.

5.1 CnaA and B Domains Are Central Elements of Pilus
Components

Adhesins in Gram-positive bacteria comprise a class of surface-anchored mul-
tidomain proteins, known as MSCRAMMs (microbial surface components recog-
nizing adhesive matrix molecules) (Patti et al. 1994), the prototype of which is the
collagen-binding adhesin Cna of Staphylococcus aureus. Cna contains a series of
IgG-like domains classified as types CnaA (DEv-IgG) and CnaB (IgG-rev)
(Deivanayagam et al. 2002; Vengadesan et al. 2011). While the function of CnaA
consists in binding of collagen, CnaB-type domains are supposed to form a stalk
exposing the CnaA domains at the bacterial surface.
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Interestingly, CnaB-like domains were also recognized as the basic modular
element in the components that form the polymeric pilus assemblies of
Gram-positive bacteria (Kang et al. 2007). A common structural characteristic of
CnaB domains is the presence of autocatalytically formed isopeptide bonds.
Virtually all pilus proteins in fact harbor one or more CnaB domains with the
majority bearing intramolecular isopeptide bonds formed between the ε-amino
group of a lysine and the carbonyl of a glutamic/aspartic acid, or the amide group of
an asparagine residue.

A canonical arrangement of amino acid side chains has been identified, implied
in forming the intramolecular isopeptide linkages (Fig. 4; Kang and Baker 2011).
Isopeptide bond formation involves an essential glutamate (or aspartate) residue
that by structural analysis has been found to form hydrogen bonds to the isopeptide
C = O and NH groups. A plausible mechanism for isopeptide bond formation was
first suggested for the bacteriophage capsid protein HK97 (Helgstrand et al. 2003).
It consists in polarization of the C = O bond of the Asp/Asn side chain by the
protonated glutamate/aspartate, inducing positive charge on Cγ. A subsequent
nucleophilic attack on Cγ by the unprotonated Lys ε-amino group results in for-
mation of the isopeptide bond (Fig. 4; Kang et al. 2007).

The catalytic residues are situated in a conserved hydrophobic pocket, and the
isopeptide bonds are positioned in most CnaB domains in such a way that they are
tying together the first and last β strand, located just before the interdomain con-
nections. In this way, the rest of the domain structure is isolated from external
mechanical stress, explaining the extreme resistance of pilus fibers against
mechanical unfolding (Alegre-Cebollada et al. 2010).

6 Ancillary Proteins and Pilus Specialization—Examples
for Pilus Composition and Architecture in Various
Species

6.1 Corynebacterium diphtheriae

C. diphtheriae was one of the first Gram-positive organisms in which pili were
extensively characterized and its pili assembly systems have become a paradigm.
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Genome sequencing revealed the presence of three pilus islands in C. diphtheriae
NCTC13129, encoding the SpaA, SpaD, and SpaH pilus types, named after the
gene products representing the respective backbone proteins (Ton-That and
Schneewind 2003). Each pilus island encodes two ancillary proteins (pilus tip/pilus
base) and at least one sortase (Fig. 1).

While most of the work that lead to dissection of the pilus assembly mechanism
in Corynebacterium has been done using the SpaA pilus as a model system, it was
demonstrated that assembly of morphological distinct SpaD pili occurs autono-
mously and dependent on its cognate sortases, SrtB and C (Gaspar and Ton-That
2006). The prototype pilus contains the backbone pilin SpaA which is forming the
shaft, the tip pilin SpaC, and another ancillary pilin, SpaB. SpaB functions as the
base protein, demonstrated by the finding that cells lacking SpaB, although forming
pilus fibers, mostly shed pili into the medium, a phenotype also observed when cells
lack the housekeeping sortase SrtF (Mandlik et al. 2008).

The structure of the backbone pilin SpaA has been solved (Kang et al. 2009),
showing that the protein consists of three tandem IgG-like domains, two of which,
the N-terminal D1 and the C-terminal D3 domains, with the CnaB-type fold, while
the middle D2 domain is of the CnaA-type. The D2 and D3 domains are stabilized by
intramolecular isopeptide bonds, absent from the D1 domain. Remarkably, the D3
domain of SpaA contains also a stabilizing disulfide bond (Kang et al. 2009). SpaD
and SpaA share several stabilizing features, including the isopeptide bonds in
domains D2 and D3 and the disulfide bond in D3. SpaD has an additional isopeptide
bond in its D1 domain, while in SpaA, the residues corresponding to the isopeptide
bond-forming Lys, Asn, and Asp residues of SpaD are replaced by Ala, His, and
Gln, and consequently, in SpaA no D1 isopeptide bond exists (Kang et al. 2014).

6.2 Bacillus cereus

B. cereus encodes one of the simpler pilus systems, consisting of a C class sortase,
SrtD, required for pilus polymerization, the pilus backbone BcpA, and the pilus tip
protein BcpB (Budzik et al. 2007) (Fig. 1). The IPNTG sorting motif of BcpB is
recognized exclusively by the C class sortase SrtD, the latter accepting only the ε-
amino group of the lysine residue of the YPKN motif of BcpA as a nucleophile,
thus ensuring incorporation of at least one BcpA unit into the growing pilus
(Budzik et al. 2009a). The LPVTG sorting motif of BcpA on the other hand is also
accepted by the housekeeping sortase SrtA, which, upon cleavage, terminates pilus
polymerization and anchors the respective subunit to a peptide cross-bridge of the
peptidoglycan (Budzik et al. 2008). Recognition of the BcpA pilus subunits by
either sortase appears to be stochastic; thus, pilus length is regulated by the local
abundances of housekeeping and pilus-related sortases. The involvement of SrtA in
both anchoring and determining the average length of pili is demonstrated by the
finding that SrtA mutants produce unusually elongated pili that are released into the
surrounding medium (Budzik et al. 2007).
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The major pilin, BcpA, consist of three CnaB-like domains, CNA1, CNA2, and
CNA3, and a jelly-roll domain, XNA, each of which, when part of the assembled
pilus, contain one lysine–asparagine isopeptide bond (Budzik et al. 2009b).
Interestingly, the isopeptide bond of the N-terminal CNA1 domain is absent in
recombinant BcpA protein, apparently forming only when the precursor becomes
part of the pilus structure (Budzik et al. 2009b). It has been speculated that the close
vicinity of the Lys162, which is part of the BcpA YPKN motif and forms the
intermolecular amide bond with the adjacent pilin, and Asn163, implied in the
intramolecular isopeptide bond in CNA1, necessitates that the intramolecular amide
bond is formed only in the assembled pilus. This would permit Lys162 to exert its
nucleophilic attack on the sortase thioester intermediate, a step that requires major
flexibility in this region (Kang et al. 2014). A similar situation was found in S.
pneumoniae RrgB where the isopeptide of the D1 domain forms only in the
assembled pilus or when the protein is arranged in a fiber-like crystal structure (see
below) (El Mortaji et al. 2012a).

6.3 Streptococcus pneumoniae

6.3.1 Pilus Islet-1

The more common type of pili in S. pneumoniae, also designated as rlrA pili, is
encoded by a 14-kb region called pilus islet-1 (PI-1) (Barocchi et al. 2006; LeMieux
et al. 2006) and present in ca. 30 % of a global collection of clinical isolates of S.
pneumoniae (Moschioni et al. 2008). The associated pilus operon encodes seven
gene products: the positive transcriptional regulator RlrA, three sortases, designated
as SrtC-1, SrtC-2, and SrtC-3, the pilus backbone protein RrgB, the pilus tip RrgA,
and the pilus base RrgC (LeMieux et al. 2006; Hilleringmann et al. 2008), Fig. 1.

Understanding the significance of the presence of multiple sortases is still
fragmentary. While SrtC-1 seems to be catalytically most active, elimination of
single sortases does not result in a defective phenotype, indicating overlapping
specificities (LeMieux et al. 2008; Fälker et al. 2008). Coexpressing the pilus
components with single sortases in Escherichia coli (El Mortaji et al. 2012b)
suggests that SrtC-1 indeed is most active in polymerizing the backbone RrgB
protein, while SrtC-2 apparently is implied in association with RrgA to RrgB and
multimerization of RrgA. Finally, SrtC-3 appears to catalyze the occasional inte-
gration of RrgA into the pilus shaft and the association between RrgB and the base
protein RrgC (El Mortaji et al. 2012b). One should keep in mind, however, that
these results were obtained in a heterologous system that may not mimic the high
specificities of sortase activities in S. pneumoniae. In fact, neither RrgA multi-
merization nor incorporation of RrgA in the pilus shaft was actually demonstrated
in pili isolated from S. pneumoniae (Hilleringmann et al. 2009).
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The pilus backbone protein RrgB consists of four CnaB-like domains, two of
which are arranged in a side by side rather than in an end-to-end arrangement
resulting from the fact that D3 appears to be inserted into a loop of D2 (El Mortaji
et al. 2012a; Spraggon et al. 2010). Interestingly, RrgB molecules crystallize in a
fiber-like arrangement, in which the IPQTG sorting motif of a given RrgB molecule
appears to be docked to the D1 domain of an adjacent RrgB. This crystal structure
revealed the presence of an isopeptide in the RrgB D1 domain, while an analogous
amide bond was not detected in the isolated D1 domain (Gentile et al. 2011; El
Mortaji et al. 2012a). This result is in line with observations showing that the
intramolecular isopeptide bond of the backbone domain that presents the lysine
residue implied in the intermolecular isopeptide bond forms only in the context of
the assembled fiber, even if, as in the crystal, the association is non-covalent.
Similar observations were made in B. cereus BcpA, where an isopeptide bond was
detected in the assembled pilus but not in the recombinant protein (see above)
(Budzik et al. 2009b).

The ancillary tip protein RrgA mediates adherence to respiratory epithelia and
extracellular matrix components such as fibronectin, collagen I, and laminin
(Nelson et al. 2007; Hilleringmann et al. 2008). More recent findings show that
RrgA interacts also with factors of the innate immune system such as Toll-like
receptor (TLR) 2 (Basset et al. 2013) and complement receptor (CR) 3 (Orrskog
et al. 2012). The RrgA protein consists of four domains, D1–D4, linked by flexible
linker regions that, similarly as in RrgB, are not arranged in an end-to-end
arrangement but apparently have evolved by insertion of the D3 domain into a loop
of the D2 domain, however leaving the overall structure of D2 intact. The structure
is even more complicate since D2/D3 itself is inserted into a loop of D1, so that
only the C-terminal D4 domain is uninterrupted. Isopeptide bonds stabilize D2 and
D4. The D3 domain contains a MIDAS motif and a region resembling the A3
domain of human von Willebrand factor (vWFA) (Izoré et al. 2010), a molecule
that interacts with collagens I and III (Bienkowska et al. 1997; Cruz et al. 1995).

Electron microscopy studies could show for the first time that PI-1 pili have a
defined directionality, with the majority of pili exposing one copy of RrgA at the tip
and one of RrgC at the pilus base (Hilleringmann et al. 2009). Moreover, direct
immune electron microscopic analysis of isolated pili demonstrated the presence of
not more than one copy of RrgA per pilus (Hilleringmann et al. 2009). Indeed,
RrgC functions as anchor protein, tethering the pilus structure to the peptidoglycan
layer (Shaik et al. 2014). The sorting motif of RrgC, VPDTG, is cleaved by the
housekeeping sortase linking the protein to the peptide bridge of lipid II (Shaik
et al. 2014). Structural analysis of RrgC shows the presence of three CnaB-like
domains with reverse IgG fold, designated D1–D3. Isopeptide bonds stabilize D2
and D3, while D1 shows an exposed lysine residue that is part of an IYPK-like
motif. In the assembled pilus, this residue is probably linked to the C-terminus of an
adjacent RrgB backbone subunit (Shaik et al. 2014).
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6.3.2 Pilus Islet-2

Pilus islet-2 is present in 16 % of strains of the above-mentioned global collection
of clinical isolates. It is 6575 bp in length and encodes the sortases SrtG1, a
pseudogene encoding an incomplete sortase (srtG2), and a signal peptidase-like
SipA protein (Bagnoli et al. 2008) (Fig. 1). There seems to be only a pilus backbone
protein, PitB. A putative ancillary protein could be specified by another pseudo-
gene, pitA; however, the reading frame of pitA appears to be interrupted by a stop
codon. Although the possibility of alternative translation cannot be excluded, a
corresponding gene product was not detected and mutants in pitA do not show any
detectable phenotype (Bagnoli et al. 2008). As in S. pyogenes, pilus assembly is
dependent on the presence of an active sortase, here SrtG1, and the signal
peptidase-like protein SipA (Bagnoli et al. 2008).

The sortase SrtG1 is somewhat particular: Although showing extended similarity
to C class sortases, it contains three insertions otherwise present only in B class
sortases. The reading frame of the srtG2 pseudogene terminates just upstream of the
position where in SrtG1, a B class sortase insertion is located. Moreover, the
putative sorting signal present near the C-terminus of PitB, VTPTG, is different
from any known consensus sequence. For this reason, a separate class, G, was
proposed for these enzymes (Bagnoli et al. 2008).

The piliation phenotype associated with PI-2 differs considerably from that of
PI-1: Whereas in the latter huge numbers of pili are present on the surface of
expressing cells, PI-2-type pili usually are present as a single filament that extends
further from the cell surface than PI-1 pili (Bagnoli et al. 2008). Despite the
apparent absence of a tip protein, usually fulfilling the adhesin function, PI-2 pili
have been demonstrated to mediate adhesion of S. pneumoniae to various respi-
ratory cell lines, suggesting that the PitB backbone protein has also adhesin func-
tion (Bagnoli et al. 2008).

6.4 Streptococcus agalactiae

Three related pilus islands (PI-1, PI-2a, and Pi-2b) have been identified in circu-
lating S. agalactiae (GBS) strains (Rosini et al. 2006; Dramsi et al. 2006). All GBS
isolates contain at least one pilus island, with PI-2a and PI-2b mutually exclusive
since they are located at the same chromosomal position. Each pilus island encodes
three pilus components, a backbone protein designated BP, and two ancillary
proteins, designated AP1 and AP2. In addition, each PI specifies two C class
sortases required for pilus assembly. All three pilus islands show a similar gene
organization (Fig. 1). The pilus proteins of PI-1 and PI-2b differ by very few amino
acids, while PI-2a is more variable with seven alleles described for both the BP and
the AP1 presenting sequence identities between 48–98 % for BP and 87–98 % for
AP2 (Rosini and Margarit 2015).
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The structures of backbone proteins of representatives of PI-1, PI-2a, and PI-2b
have been partially determined, showing that they are composed of classical
IgG-like folds, with BP-1 composed of three (Vengadesan et al. 2011), BP-2a of
four (Nuccitelli et al. 2011), and BP-2b (Cozzi et al. 2015) of three independently
folded domains. All three structures were obtained only after removal of the
N-terminal D1 domain; BP-1 consists of three IgG-like domains, with D2 of the
Dev-IgG/CnaA-type and D3 of the IgG-rev/CnaB-type fold. Molecular modeling
using the C. diphtheriae SpaA structure as a template suggests that the D1 domain
protrudes from the pilus shaft, probably contributing to the rigidity of the pilus fiber
(Vengadesan et al. 2011). The 3D structure of BP-2a resembles that of S. pneu-
moniae RrgB, with an organization into four independently folded IgG-like
domains (one CnaA and three CnaB domains). Analogous to S. pneumoniae RrgB,
the third (D3) domain is positioned as a lateral insertion into the CnaA-type D2
domain (Nuccitelli et al. 2011).The spatial arrangement of D2 and D4 domains
overlaps the structural architecture of D2 and D3 domains of BP-2b or BP-1,
confirming that the overall fold of the core of these proteins is very well conserved.

Gbs104 is the pilus tip protein encoded by PI-1(AP1-1). Its structure is very
similar to that of S. pneumoniae RrgA, constituted by four independently folded
domains (N1-4), with N1 and N4 belonging to the CnaB-type, while N2 is a
CnaA-type domain (Krishnan et al. 2013). As in RrgA, the domain structure is
nonlinear with N3 inserted into N2 and N2/N3 inserted into the N-terminal N1
domain. The N3 domain, as in RrgA, is a vWFA-like domain containing a metal
ion-dependent adhesion site (MIDAS). The C-terminal 7 helix and the MIDAS of
vWFA-like domains (also known as I domains in integrins) can adopt two con-
formations: a closed low-affinity state and an open high-affinity state (Zhang et al.
2009; Luo et al. 2004; Krishnan et al. 2013). After mutating Thr564 and Lys571 to
Cys residues in the isolated GBS104 N3 domain, the MIDAS motif was shown to
be locked in the open conformation, resulting in considerably higher affinity to
fibronectin as compared to the corresponding wild-type construct (Krishnan et al.
2013). Likewise, for the corresponding PI-2a tip protein AP1-2a, an essential role of
the vWFA domain for adhesion but not for biofilm formation was demonstrated
(Konto-Ghiorghi et al. 2009).

AP2 is the pilus base protein found close to the bacterial surface. The essential
role of the GBS housekeeping sortase SrtA in anchoring the GBS PI-2a pilus was
shown by specific cleavage of quenched fluorescent peptides containing either the
pentapeptide motifs of BP-2a, AP1-2a, or AP2-2a (Necchi et al. 2011). Only the
AP2-2a-related peptide was cleaved by GBS SrtA, as demonstrated by an increase
of fluorescence intensity. The same exclusive specificity was observed during
incubation of recombinant AP2-2a protein with GBS SrtA, resulting in the for-
mation of transpeptidation and cleavage products, whereas AP1-2a and BP-2a
under the same conditions remained inert (Necchi et al. 2011). The structure of PI-1
AP2-1 (GBS52) revealed the presence of two CnaB/IgG-rev folds, N1 and N2, and
a YPKN-like motif near the region that links the two domains possibly providing
the lysine residue forming the intermolecular isopeptide bond that links AP2-1 to
the pilus shaft (Vengadesan et al. 2011).
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6.5 Streptococcus pyogenes

More than 70 years ago, Rebecca Lancefield and coworkers (Lancefield 1940)
described a method to classify hemolytic group A streptococci into serotypes, based
on the serological properties of two antigen classes: the M and the T antigens.
While the M proteins had been studied extensively (Smeesters et al. 2010), until
recently much less was known about the nature of the trypsin-resistant T antigens of
which 21 serotypes have been identified. With the first description of pili in GAS, it
became clear that the different T antigens correspond to different pilus types that are
encoded by the fibronectin-binding collagen-binding T antigen (FCT) regions of the
S. pyogenes chromosome (Falugi et al. 2008; Mora et al. 2005). So far, nine
different FCT regions have been identified, encoding 15 different variants of pilus
backbone proteins and accounting for 17 of the 21 Lancefield T serotypes (Falugi
et al. 2008).

The backbone protein of GAS strain M1 (Spy128, Fig. 1) was characterized
extensively and has become one of the paradigms in pilus structure and assembly
(Kang et al. 2007). Spy128 consists of two IgG-like domains each of which con-
tains an intramolecular isopeptide bond. Crystal packing of the protein resembles
apparently the arrangement of the monomers in the pilus fiber, placing an invariant
lysine residue near the C-terminus of an adjacent monomer (Kang et al. 2007).
Interestingly, this lysine residue is not part of a canonic YPKN motif found in other
pilins, and the sortase involved in the assembly of the pilus fiber is a B-type sortase
(Kang et al. 2011). Spy128 became one of the first proteins in which the thermo-
dynamic (Kang and Baker 2009) and mechanic properties (Alegre-Cebollada et al.
2010) of pilus backbone proteins were studied, showing the extraordinary resistance
of pilus subunits stabilized by isopeptide bonds.

Several FCA regions, i.e., types 2, 3, and 4, encode signal peptidase-like pro-
teins. For the T3 pilus, it was demonstrated that the corresponding SipA2 protein is
essential for T3 pilin polymerization and linkage of the Cpa tip protein (Zähner and
Scott 2008). Although the protein sequence of SipA2 shows clear similarity to
signal peptidases, in T3 pilus assembly, SipA2 apparently functions more like a
chaperone, interacting with pilus components but lacking catalytic residues required
for protease function (Zähner and Scott 2008).

Spy125/Cpa and Spy130 are the ancillary components of the S. pyogenes M1
pilus with Spy125/Cpa functioning as the tip adhesin (AP1) (Abbot et al. 2007;
Smith et al. 2010) and Spy130 as the base protein (AP2) recognized by the
housekeeping sortase and linked to the peptidoglycan (Smith et al. 2010). The
structures of both proteins have been characterized (Linke et al. 2010; Solovyova
et al. 2010). The crystal structure of a three-domain C-terminal fragment of the AP1
protein Cpa from the T1/M1 strain SF370 unexpectedly revealed a thioester bond
joining the side chains of a cysteine residue (Cys426) and a glutamine residue
(Gln575) in its CpaT domain (Pointon et al. 2010). The thioester bond was found in
a solvent-accessible groove on the protein surface. While not contributing to the
stability of Cpa (Walden et al. 2014; Pointon et al. 2010), the occurrence of a
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thioester bond in a pilus tip protein known to function as an adhesin (Quigley et al.
2009; Smith et al. 2010) is intriguing.

Cys–Gln thioester bonds are present in the human complement proteins C3 and
C4 (Law and Dodds 1997), and proteolytic activation of C3 and C4 results in a
conformational rearrangement exposing these thioester bonds. Nucleophilic moi-
eties such as amino or hydroxyl groups present in proteins and bacterial cell wall
components may attack the exposed thioester, leading to the formation of a covalent
linkage between the glutamine residue and the attacking amine or hydroxyl group
(Law and Dodds 1997).

The thioester group in Cpa apparently reacts in an analogous way since it was
shown that Cpa forms a covalent complex with the polyamine spermidine
(Linke-Winnebeck et al. 2014). Spermidine most probably is not the natural
receptor for Cpa; however, as a small and abundant molecule, it may preferentially
reach the partially exposed thioester group. It is likely that binding of Cpa to its
actual receptor molecule results in a conformational change allowing close contact
between a nucleophile on the receptor surface and the thioester group. Cpa consists
of four domains: the CnaB domains, CnaB1 and CnaB2, and the CpaN and CpaT
domains which show extended sequence homology among each other, including
the thioester motif. It has been demonstrated that also CpaN does indeed contain a
thioester bond so that the Cpa present in most S. pyogenes strains has two reactive
thioester bonds, hence representing two-headed adhesins (Linke-Winnebeck et al.
2014). The thioester sequence motif is conserved in equivalent positions in all AP1
proteins of S. pyogenes FCT types 2, 3, and 4; moreover, it has been identified in a
variety of surface-exposed proteins from various Gram-positive species, suggesting
that thioester-mediated covalent adhesion is actually a widespread mechanism
(Linke-Winnebeck et al. 2014).

6.6 Lactobacillus rhamnosus

Lactobacillus rhamnosus GG is a well-known Gram-positive probiotic strain,
whose health-benefiting properties correlate with prolonged residence in the gas-
trointestinal tract, a property probably caused by adherence to the intestinal mucosa
(Reunanen et al. 2012). Two pilus gene clusters (spaCBA and spaFED; Fig. 1) were
identified in the genome of L. rhamnosus, each of which contained the predicted
genes for three pilin subunits and a single sortase (Kankainen et al. 2009). While
SpaCBA pili were demonstrated to be present on the surface of L. rhamnosus, the
significance of the SpaFED pilus island is less clear (Reunanen et al. 2012).
Expression of SpaFED pili in wild-type L. rhamnosus has not been demonstrated
yet, however putting the operon under transcriptional control of a nisin-inducible
promoter and expressing it in Lactococcus lactis resulted in assembly of SpaFED
pili on the L. lactis surface (Rintahaka et al. 2014). This result demonstrates that the
spaFED pilus island has the potential for independent expression of a second pilus
type in L. rhamnosus, although the conditions that could lead to its expression have
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yet to be defined. Heterologous expression of the SpaFED pilus, however, allowed
for a comparison of its effects host cellular responses, showing that SpaFED pili, in
contrast to SpaCBA pili (von Ossowski et al. 2013) exert a dampening effect on
immunogenic-related reactions (Rintahaka et al. 2014).

The intestinal mucus-binding capacity of L. rhamnosus has been attributed to the
presence of the SpaCBA pilus and in particular to one of the pilin subunits, SpaC
(von Ossowski et al. 2010). In fact, also SpaC displays similarity with von
Willebrand lectin-binding domains (Kankainen et al. 2009). As a major exception
to the canonical Gram-positive pilus model, the position of the SpaC subunit is not
restricted to the pilus tip. Instead, SpaC can be found all along the pilus fiber and,
furthermore, has a 1:2 ratio in molecular numbers with the backbone protein SpaA
(Reunanen et al. 2012). Using single-molecule atomic force microscopy to unravel
the binding mechanism of the pili confirmed that SpaC is a multifunctional adhesin
with broad specificity (Tripathi et al. 2013). SpaC mediates homophilic transin-
teractions engaged in bacterial aggregation and specifically binds mucin and col-
lagen, two major extracellular components of host epithelial layers. Homophilic and
heterophilic interactions display similar binding strengths and dissociation rates
(Tripathi et al. 2013). Performing pulling experiments on living bacteria, the
authors demonstrated that SpaCBA pili exhibit two unique mechanical responses,
the zipper-like adhesion, involving multiple SpaC molecules distributed along the
pilus length, and a nanospring property, enabling the pili to resist high forces
(Tripathi et al. 2013).

7 Pilus Proteins Are Promising Vaccine Components

The polypeptides that form pilus structures on the surface of pathogens are con-
sidered as very promising candidates for vaccine components. Being elongated
structures, pili are well exposed to the host immune system and as their role usually
consist in mediating attachment, thus promoting host cell adhesion or biolayer
formation, inhibition of these functions by specific antibodies should result in
disruption of processes important for the virulence of a respective pathogen. Thus,
protectivity of pilus-specific antibodies would not only rely on antigen binding
followed by opsonization but also on direct disruption of bacterial virulence
functions and blocking infection already in the colonization phase (Soriani and
Telford 2010).

Finally, in most human pathogens, genes encoding pilus components are suffi-
ciently conserved, so that including only one or a few components in a vaccine
would cover a broad variety of strains of a given pathogen. In some cases, not all
strains of a given pathogen are piliated (e.g., S. pneumoniae, see below); in these
cases, successful vaccination would require additional component to cover the
non-piliated variants. The following paragraphs, together with Table 2, will provide
some examples of pilus components used in experimental vaccines or in vaccines
currently in clinical studies.
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7.1 Streptococcus agalactiae

S. agalactiae (Group B Streptococcus: GBS) is a widespread microorganism that
colonizes 15–35 % of healthy women (Schuchat 1998), but it can also cause
overwhelming neonatal infections as a result of direct transmission of the bacteria
from colonized pregnant women to their babies. The risk of neonatal infection is
inversely proportional to the maternal amount of specific antibodies to the capsular
polysaccharide, which are transferred from the mothers to the babies through the
placenta (Lin et al. 2004). GBS vaccines are expected to induce not only protective
antibodies that can be transplacentally transferred to the fetus but also mucosal
antibodies preventing colonization of the mothers, thus further contributing to
neonate protection.

A first attempt to create a universal vaccine against GBS consisted in screening a
panel of GBS isolates of diverse serotype for protective antigens (Maione et al.
2005). Four proteins were identified that elicited protective responses when the
offspring of immunized female mice was challenged with the same panel of strains.
In combination, these four antigens turned out to be broadly protective against a
wide variety of GBS strains (Maione et al. 2005). It turned out that two of the best
protective antigens were the pilus backbone protein BP-1 and the tip ancillary
protein AP-1 encoded by PI-1 (Lauer et al. 2005).

Based on the observation that the best protective antigens in GBS are pilus
components, another approach consisted in combining pilus components from the
three PIs that are found in circulating strains of GBS (Margarit et al. 2009).
All GBS isolates bear at least one of the three pilus islands mentioned before. While
gene products of homologous PI are well conserved, there is much less sequence
similarity between functional homologs from different PIs. Therefore, a combina-
tion of components from the three PIs that would cover virtually every circulating
GBS strain was conceived by combining those gene products that showed the
lowest variability among alleles in different strains. Indeed, the backbone proteins
of PI-1 and PI-2b combined with the tip ancillary protein 1 of PI-2a turned out to be
a highly protective combination, eliciting significant protection against all tested
strains (Margarit et al. 2009).

A third attempt involved the creation of a broadly protective antigen based on
the GBS BP-2a protein and, for the first time, applied a structural vaccinology
approach (Nuccitelli et al. 2011). Following structural analysis of one of the six
main variants of BP-2a (BP-2a-515), single domains of BP-2a-515 were expressed
in E. coli and tested for their protectivity in the maternal mouse immunization/
neonatal pup challenge model. As a result, the D3 domain turned out to be the most
important for protection. In the next step, a fusion protein containing a head-to-tail
arrangement of the D3 domains of the six main variants of BP-2a, in which the
domains were linked by pentapeptide spacers, was constructed and expressed in
E. coli (Nuccitelli et al. 2011). The resulting fusion protein, designated 6xD3,
elicited broad protection against neonatal challenge with a panel of GBS strains
expressing different BP-2a allelic variants (Nuccitelli et al. 2011).
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7.2 Streptococcus pneumoniae

S. pneumoniae, is a frequent colonizer of the human upper respiratory tract. On the
other hand, this commensal pathogen can cause serious diseases such as pneumonia
and meningitis and is known to be the most important vaccine-preventable cause of
death in children under 5, affecting up to 1 million children each year. Pneumococci
are characterized by the great variety of capsule types, making the generation of a
polysaccharide-based vaccine a costly and difficult undertaking. Current vaccines
against S. pneumoniae are 13 (PCV13 or Prevnar 13®) or even 23-valent (PPSV23
or Pneumovax 23®), so a protein-based vaccine with high coverage is highly
desirable (Barocchi et al. 2007). Following the discovery of pilus island 1 in
pneumococci (Barocchi et al. 2006; LeMieux et al. 2006), the respective pilus
components were tested for their ability to elicit protective antibodies (Gianfaldoni
et al. 2007). Using a mouse model of infection, the authors could demonstrate that
intraperitoneal immunization with the three subunits, RrgA, RrgB, and RrgC, alone
or in combination conferred active and passive protection against strains expressing
PI-1 (Gianfaldoni et al. 2007). In order to broaden the coverage after the discovery
that three main clades of PI-1 with considerable sequence diversion exist in S.
pneumoniae (Moschioni et al. 2008), a fusion protein, consisting of a tandem
arrangement of the backbone proteins encoded by the three alleles, was constructed
and tested in animal models (Harfouche et al. 2012). RrgB231, as the fusion protein
was called, elicited antibodies against proteins from all three clades and protected
mice against challenge with pneumococcal strains expressing PI-1. RrgB321
antisera mediated complement-dependent opsonophagocytosis of piliated strains at
levels comparable to those achieved with the PCV7 glycoconjugate vaccine
(Harfouche et al. 2012). Interestingly, protective immunity was observed even with
S. pneumoniae that were low pilus-expressing populations as mentioned in Sect. 2
(Moschioni et al. 2012). Since only 30 % of circulating clinical S. pneumoniae
strains contain PI-1 (Moschioni et al. 2008), RrgB321 was conceptualized as a
component to be used in combination with other antigens that would cover the
non-piliated strains.

7.3 Enterococcus faecalis

Catheter-associated urinary tract infections (CAUTIs) are the most common cause
of hospital-acquired infections. A frequent cause for these infections are entero-
cocci, which are especially difficult to control in the hospital environment due to
their intrinsic resistance to antibiotics along with tolerance to heat and aseptic
solutions. Furthermore, the advent of multidrug-resistant enterococci withstanding
treatment with all commonly used antibiotics, including vancomycin (Arias and
Murray 2008), requires new prophylactic strategies that could most notably include
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vaccination. Animal models of CAUTI have shown that endocarditis- and
biofilm-associated pili (Ebp) are contributing both to biofilm formation and disease
(Nallapareddy et al. 2006).

Ebp pili are typical members of the three component Gram-positive pilus family
with the major shaft protein EbpC and two ancillary proteins, EbpA and EbpB,
which represent pilus tip and base proteins, respectively (Sillanpää et al. 2013).
Finally, a C class sortase, SrtC, is implicated in pilus assembly, while the house-
keeping sortase SrtA is required for covalently attaching the mature pilus fiber to
the enterococcus peptidoglycan layer (Nielsen et al. 2013; Sillanpää et al. 2013). Of
particular interest is the EbpA protein, a fibrinogen-binding protein that, similarly to
the S. pneumoniae RrgA and GBS AP1 tip proteins, contains a van Willebrand
factor A (vWA) domain with a MIDAS motif (Nielsen et al. 2012). The
fibrinogen-binding property of EbpA plays a pivotal role in CAUTIs since fib-
rinogen is deposited on the catheter surface as part of the host inflammatory
response, allowing piliated enterococci to colonize the urinary tract (Flores-Mireles
et al. 2014). In addition, fibrinogen is used by E. faecalis for growth and thus
further promotes biofilm formation on the catheter. Immunizing mice either with
the full-length EbpA or with the N-terminal domain of EbpA, containing the
fibrinogen-binding domain with the vWA motif and the MIDAS, inhibited biofilm
formation in vivo and protected the mice against CAUTI (Flores-Mireles et al.
2014). In contrast, immunizing with the C-terminal part of EbpA or with the other
pilus components had no significant protective effect. Analyses in vitro demon-
strated that protection was associated with a serum antibody response that blocked
EbpA binding to fibrinogen and the formation of a fibrinogen-dependent biofilm on
catheters (Flores-Mireles et al. 2014).

7.4 Streptococcus pyogenes

The human-specific Gram-positive pathogen S. pyogenes (Group A streptococcus,
GAS) causes a great variety of human diseases, such as pharyngitis, impetigo,
invasive disease, necrotizing fasciitis, and autoimmune sequels, and therefore, the
availability of a vaccine would be of great benefit. Following the discovery that the
S. pyogenes (GAS) Lancefield T antigens in fact correspond to pilus backbone
proteins, Mora et al. (2005) confirmed that a combination of three recombinant pilus
proteins, Cpa, Spy128, and Spy130 originating from the M1 strain SF370, protected
mice against nasal infection with a mouse-adapted M1 strain (Mora et al. 2005).
Under conditions where ca. 90 % of unimmunized mice were killed, more than 70 %
of the immunized mice survived, a result comparable to that obtained by immu-
nization with M protein-based vaccines (Mora et al. 2005). However, while there are
more than 100 serotypes of M protein, the number of T types is considerably lower,
ca. 20, so that with a pilus-based GAS vaccine, broader coverage may be achieved
combining fewer antigens in a vaccine. Considering that adhesion to human pha-
ryngeal cells in S. pyogenes is mediated by pili, while in pilus-negative mutants,
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aggregation, biofilm formation, and adhesion are severely impaired (Manetti et al.
2007), a vaccine that elicited a specific immune response against GAS pili is
expected to interrupt GAS infections already in the colonization phase.

7.5 Lactococcus lactis

L. lactis is a nonpathogenic organism, employing pili for mucosal attachment and
biofilm formation (Oxaran et al. 2012; Meyrand et al. 2013; Le et al. 2013). Several
attempts have been undertaken to use L. lactis to expose heterologous pili on its
surface. One promising approach consists in expressing complete pilus islands in L.
lactis. This approach was exploited for GBS (Buccato et al. 2006) and GAS
(Manetti et al. 2007) showing that in this way, the pili were indeed assembled on
the L. lactis surface and among the most immunogenic and broadly recognized
antigens.

Another way to expose antigens on the L. lactis surface is based on a principle
for which the term UPTOP (unhindered presentation on tips of pili) was coined
(Quigley et al. 2010). It is based on the creation of hybrid pilus tip proteins con-
taining portions of pilus components originating in pathogenic bacteria, but
retaining the potential to be incorporated into the pilus (Quigley et al. 2010).

Both approaches may provide an inexpensive and stable alternative to current
mechanisms of immunization for many serious human pathogens.

8 Conclusions

Pili of Gram-positive bacteria are fascinating and unique macromolecular structures
implied in host-bacterium and interbacterial interactions. While the basic
transpeptidation reactions leading to their assembly by specialized sortase enzymes
are known, details of the process are still missing. For example, what are the in vivo
events leading to opening of the lid that covers the active site in C class sortases, so
that pilus polymerization can proceed? Abundant structural information has con-
tributed a lot to understanding the function of pilus components. In particular, the
tip proteins reveal some unexpected features, such as thioester groups promoting
covalent adhesion and the van Willebrand factor domains, both until recently only
known as functional elements of eukaryotic proteins.

Another highly interesting field opened with the discovery of intramolecular
isopeptide bonds. While their important role in hardening pilus filaments against
chemical and mechanical stress seems obvious, again many details remain to be
elucidated. Where and when do they form? It seems unlikely that Sec-dependent
protein transport could accomplish secretion of fully formed CnaA or CnaB
domains, so it remains to be understood what keeps isopeptide bonds from forming
prematurely in the cytoplasm.
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Further open questions concern the regulation of pilus assembly. Is pilus for-
mation regulated in response to external stimuli and if yes: What are these stimuli
and how does pilus formation result in a benefit for the bacteria when responding to
a certain signal? Other poorly understand aspects of regulation concern spatial
distribution of pili on the cell surface (density, polar or equatorial preference, foci or
equal distribution) and the dynamics of pilus formation.

Apart from the scientific interest, pilus components have important applications
as vaccine components as shown by the successful formulation of backbone and tip
proteins of GBS in vaccines currently undergoing clinical trials. Another hall mark
in vaccine development is the recent application of structural vaccinology in the
construction of a hybrid fusion protein that assembles the most protective epitopes
from major GBS variants in a chain of independently folded domains originating
from different pilus backbone variants and providing a broad protective response.
Such an approach could have an extremely wide range of applicability in vaccine
development, whenever numerous variants of an infectious agent exist. Finally, the
pilus assembly machinery itself may be employed as an inexpensive delivery
system by exposing vaccine antigens on the surface of nonpathogenic bacteria such
as L. lactis.
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Type VII Secretion Systems
in Gram-Positive Bacteria

Daria Bottai, Matthias I. Gröschel and Roland Brosch

Abstract Bacterial secretion systems are sophisticated molecular machines that
fulfil a wide range of important functions, which reach from export/secretion of
essential proteins or virulence factors to the implication in conjugation processes. In
contrast to the widely distributed Sec and Twin Arginine Translocation
(TAT) systems, the recently identified ESX/type VII systems show a more
restricted distribution and are typical for mycobacteria and other high-GC
Actinobacteria. Similarly, type VII-like secretion systems have been described in
low-GC Gram-positive bacteria belonging to the phylum Firmicutes. While the
most complex organization of type VII secretion systems currently known is found
in slow-growing mycobacteria, which harbour up to 5 chromosomal-encoded
systems (ESX-1 to ESX-5), much simpler organization is reported for type VII-like
systems in Firmicutes. In this chapter, we describe common and divergent features
of type VII- and type VII-like secretion pathways and also comment on their
biological key roles, many of which are related to species-/genus-specific host–
pathogen interactions and/or virulence mechanisms.
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1 Introduction

Bacteria have evolved a multitude of secretion pathways for the export of a wide
range of substrates (Costa et al. 2015), some of which may also help the bacteria to
shape and/or adapt to an intracellular environment (Stanley and Cox 2013; Majlessi
et al. 2015). The effector molecules transported by the secretion systems often play
crucial roles in different physiologic processes, in horizontal gene transfer and/or in
host–pathogen interactions (adhesion, pathogenicity and survival). In addition to
the widely distributed Sec and Twin Arginine Translocation (TAT) systems, which
are responsible for substrate translocation across the cytoplasmic membrane, both in
Gram-positive and Gram-negative bacteria, other less broadly conserved secretion
systems fulfil more specialized functions. These latter systems include the different
specialized secretion systems of Gram-negative bacteria, known as type I, type II,
type III, type IV, type V and type VI secretion pathways, which are responsible for
secretion of substrates across the typical cell envelop of Gram-negative bacteria that
is constituted by a plasma membrane and an outer membrane (Costa et al. 2015). In
contrast, few specialized secretion systems are known in Gram-positive bacteria.
One exception constitute the so-called type VII secretion systems, which have been
first described in Mycobacteria, where they serve as specialized secretion
machineries devoted to the export of peculiar subsets of protein substrates across
the complex and highly hydrophobic mycobacterial cell envelope (Mahairas et al.
1996; Pym et al. 2002; Abdallah et al. 2007; Brodin et al. 2004b). However, type
VII-like systems have also been identified by in silico analyses in other closely
related high-C+G bacterial species (Actinobacteria), as well as in more distantly
related Gram-positive bacteria belonging to the low-C+G group (Firmicutes) of
Gram-positive bacteria (Gey Van Pittius et al. 2001; Pallen 2002; Houben et al.
2014).

In this book chapter, we focus on type VII secretion systems in Actinobacteria
and also describe the type VII-like secretion systems in other Gram-positive
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bacteria, with focus on the most relevant features of the Ess system of
Staphylococcus aureus and the Yuk/Yue system of Bacillus subtilis, for which a
functional secretion activity has recently been demonstrated.

2 The Discovery of Type VII Secretion Systems

The first type VII substrate to be identified was the 6-kDa early-secreted antigenic
target ESAT-6 (EsxA) of Mycobacterium tuberculosis. This small protein, which is
lacking a classical N-terminal signal sequence, is present in large amounts in
short-term culture filtrate of M. tuberculosis and was shown to act as an immun-
odominant T-cell antigen (Sorensen et al. 1995). During comparative and functional
genomic analyses, it was found that certain attenuated strains (e.g. Mycobacterium
bovis BCG or Mycobacterium microti) lacked the gene esxA encoding ESAT-6, as
well as the genomic region up- and downstream of esxA (Mahairas et al. 1996; Pym
et al. 2002; Brodin et al. 2002), suggesting a key role of this region in mycobac-
terial virulence, which was later confirmed by complementation (Pym et al. 2002,
2003; Brodin et al. 2004a) and gene knockout studies (Lewis et al. 2003; Stanley
et al. 2003; Hsu et al. 2003). These studies also provided evidence of an ESAT-6
specialized secretion system, independently referred to as ESAT-6 system (ESX-1)
(Brodin et al. 2004b), Snm system (Converse and Cox 2005; MacGurn et al. 2005;
Stanley et al. 2003), or type VII secretion system (Abdallah et al. 2007; Bitter et al.
2009a, b). This classification is in line with the diderm structure of the mycobac-
terial cell envelope (Zuber et al. 2008; Hoffmann et al. 2008), which in addition to
the cytosolic inner membrane includes an outer membrane (the mycomembrane). It
was speculated that the mycomembrane might be functionally equivalent to the
classical Gram-negative outer membrane despite a different chemical composition
(Hoffmann et al. 2008).

In M. tuberculosis, ESAT-6 (EsxA) and its protein partner CFP-10 (10-kDa
culture filtrate protein, EsxB) are representative members of the large Esx protein
family that is constituted of 23 small (size of *100 amino acids (aa)), highly
immunogenic secreted proteins, sharing a conserved Trp-Xaa-Gly (WXG) motif
and a characteristic hairpin structure with the WXG domain at the helix-turn-helix
bend (Pallen 2002; Cole et al. 1998; Gey Van Pittius et al. 2001). Genes encoding
for Esx family members usually lie in tandem pairs and, in five cases, are flanked by
blocks of conserved gene clusters coding for components of the ESX secretory
apparatus responsible for secretion of the corresponding ESAT-6-like proteins
(Cole et al. 1998; Tekaia et al. 1999; Gey Van Pittius et al. 2001). Bioinformatic
analyses identified genes encoding ESAT-6-like proteins both in the genomes of
other Actinobacteria (Nocardia, Corynebacteriae, Streptomyces) (Gey Van Pittius
et al. 2001) and in a number of bacterial species belonging to the phylum
Firmicutes (Pallen 2002). Although the homology in the primary sequence is low
relative to ESAT-6 from M. tuberculosis, certain features allow to classify these
proteins into the WXG-100 superfamily (Pallen 2002). Bacteria with WXG proteins
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Fig. 1 a Genetic organization of type VII system genetic loci in Mycobacterium tuberculosis
(Mtb) showing ESX-1 and ESX-4 clusters in comparison with type VII-like loci in Streptomyces
coelicolor, Staphylococcus aureus and Bacillus subtilis. b Working model of the type VII- and
type VII-like secretion machineries of M. tuberculosis (ESX-1) and S. aureus (ESS), respectively.
Note that the colours of the represented proteins refer to the same colour code as used in panel A
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also often harbour ATP-binding proteins belonging to the FtsK/SpoIIIE family,
whose encoding genes are encoded next to those encoding WXG-100 proteins
(Fig. 1) (Bitter et al. 2009a). FtsK/SpoIIIE ATPases are involved in translocation of
macromolecules (proteins and DNA) across a membrane-bound channel in a wide
range of cellular processes, including protein secretion, DNA conjugation, cell
division and sporulation (Iyer et al. 2004). In the Gram-negative type IV secretion
pathway, for example, FtsK/SpoIIIE family proteins play a key role in substrate
recognition and ATP-mediated protein transport (Christie 2001). Consistently, they
have been supposed to be involved in generating energy for translocation of WXG
proteins/ESX substrates (Pallen 2002). Functionally active type VII-like secretion
systems have been described in Streptomyces (Fyans et al. 2013; Akpe San Roman
et al. 2010), Staphylococcus aureus (Burts et al. 2005), Streptococcus agalactiae
(Shukla et al. 2010), Listeria monocytogenes (Way and Wilson 2005), B. subtilis
(Baptista et al. 2013; Huppert et al. 2014) and Bacillus anthracis (Garufi et al.
2008).

3 Gene Clusters Encoding Type VII Secretion Systems

Typical features of the gene clusters encoding type VII secretion machineries both
in Actinobacteria and Firmicutes are the presence of one or two genes encoding
WXG-100 proteins, and a gene encoding an FtsK/SpoIIIE ATPase family member
(Fig. 1) (Bitter et al. 2009a, b; Pallen 2002). Apart from these conserved genes,
each locus includes a variable number of genus-specific genes encoding for
structural or accessory system-specific components, essential for type VII- or type
VII-like secretion in mycobacteria or other Gram-positive bacterial species,
respectively. These differences in gene content may result in varying complexity
and functionality of the corresponding secretion machineries and may account for
their different roles in various biological processes and/or adaptation to specific
host/environments.

3.1 The Mycobacterial ESX Loci

The M. tuberculosis genome harbours five highly conserved ESX gene clusters
encoding type VII secretion systems, designated ESX-1 to ESX-5 (Tekaia et al.
1999; Gey Van Pittius et al. 2001). Phylogenetically, the ESX-4 locus is considered
the most ancestral ESX cluster in mycobacteria, showing a relatively small number
of genes and a simple gene organization relative to the other ESX clusters (Fig. 1)
(Gey Van Pittius et al. 2001; Gey van Pittius et al. 2006). ESX-4 also displays
similarity to the ESX-related loci identified in the genome of a wide range of
Actinobacteria (Gey Van Pittius et al. 2001; Gey van Pittius et al. 2006). It was
hypothesized that other ESX clusters might have evolved from ESX-4 through gene
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duplication/diversification events and insertions of additional genes. Conversely,
ESX-5 is considered the most recent ESX locus, whose evolution correlates with
the differentiation of slow-growing mycobacterial species. ESX-5 orthologous loci
are exclusively conserved in the genomes of mycobacterial species belonging to the
slow-growing group including several human pathogens (M. tuberculosis,
Mycobacterium leprae and Mycobacterium ulcerans) or the fish pathogen
Mycobacterium marinum. In contrast, ESX-5-like loci are not present in the gen-
omes of phylogenetically more distant, fast-growing mycobacterial species, which
are mainly constituted by saprophytic mycobacteria.

Although the gene content may vary in different ESX loci (in terms of genes
encoding chaperones, ATPases, transcription factors and substrates), a set of genes
is highly conserved in all ESX clusters. Each ESX locus consists of the following:
(i) a pair of esx genes, coding for WXG-100 proteins (ESAT-6 and CFP-10 in the
case of ESX-1 system/locus, the paradigm of ESX loci); (ii) ecc (esx conserved
components) genes, which encode proteins with one or more transmembrane
domain(s) and ATP-binding proteins, representing core components of the secretion
machinery responsible for the ATP-dependent translocation of ESX substrates;
(iii) a mycP gene, coding for mycobacteria-specific membrane-anchored proteins
belonging to the subtilisin-like serine protease family; iv) pe and ppe genes, which
encode for two large classes of mycobacteria-specific proteins, named after their
conserved proline–glutamic acid (PE) or proline–proline–glutamic acid
(PPE) motifs at their N-termini, respectively (Bitter et al. 2009a; Tekaia et al. 1999;
Cole et al. 1998). The ESX-associated pe and ppe genes are included in all ESX loci
with the exception of ESX-4 and might represent the most ancestral pe and ppe
genes of mycobacteria from which other members of these large gene families seem
to have evolved by duplication and diversification (Gey van Pittius et al. 2006).
Interestingly, selected pe and or ppe gene family members carrying characteristic
GC-rich repetitive sequences (Cole et al. 1998) have also been acquired by hori-
zontal gene transfer. This is the case of the pe_pgrs33 (rv1818) gene that is present
in all members of the M. tuberculosis complex but is missing from the supposed
ancestral gene pool of tubercle bacilli, represented by the different Mycobacterium
canettii strains (Supply et al. 2013; Boritsch et al. 2014). In addition to ecc genes,
ESX loci may also contain genes encoding for ESX secretion-associated proteins
(Esp) (Fortune et al. 2005; Bitter et al. 2009a). Several esp gene products are
secreted via the type VII pathway and/or are involved in modulation of the ESX
activity. In other cases, Esp proteins may act as chaperones in assisting the secretion
of ESX substrates (as detailed below). Some Esp proteins, e.g. EspB or EspI, are
part of the core ESX-1 cluster (Chen et al. 2013; Zhang et al. 2014) whereas others,
such as EspA, EspC, EspD or EspR, exert fundamental roles in the regulation and
secretion of ESX-1 proteins, but are not encoded in the core region (MacGurn et al.
2005; Frigui et al. 2008; Blasco et al. 2012; Pang et al. 2013; Majlessi et al. 2015).
This is particularly relevant for the espACD locus which in contrast to the core
ESX-1 region is exclusively present in the genomes of pathogenic mycobacteria,
such as of M. tuberculosis, M. marinum or M. leprae. It is noteworthy that in these
different mycobacterial species, the espACD region is located in non-syntenic
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genomic sections (Simeone et al. 2012), which are reminiscent of genomic islands
and suggest an independent acquisition of the espACD region in the different
mycobacterial species (Majlessi et al. 2015). Future work will have to elucidate
how these espACD loci have been interconnected with the ESX-1 secretion activity
in the concerned mycobacterial species.

A new type VII locus has recently been identified in the conjugative pRAW
plasmid isolated from M. marinum (Ummels et al. 2014). This locus, which was
referred to as ESX-P1, harbours genes highly homologous to the
genome-associated ESX-5 cluster, although the gene order and the gene content
closely resembles to the ESX-2 locus. The ESX-P1 locus differs from all known
ESX loci for the presence at the 5’ terminus of two genes coding for members of the
NLP60 family of peptidoglycan-associated glycosides hydrolases, which might be
predictive of a novel and different function for ESX-P1. In addition to ESX-P1, the
pRAW plasmid also contains genes homologous to type IV secretion system
components and proteins with predicted relaxase activity. The ESX-P1-harbouring
plasmid seems to be efficiently transferred among various slow-growing
mycobacterial species and can also be transferred into M. tuberculosis under cer-
tain experimental conditions (Ummels et al. 2014). The conjugative process linked
to the pRAW plasmid requires both, type VII and type IV secretion machinery
components, with the ESXP-1-encoded EccCP1 and VirB4 homologs being
involved in the gene transfer process. The implication of a secretion system in
conjugal gene transfer is reminiscent of some biological properties of type IV
secretion systems in Gram-negative bacteria. For mycobacteria, conjugative gene
transfer has also been reported. Apart from the aforementioned implication of the
pRAW plasmid in conjugation within the group of selected slow-growing
mycobacteria, conjugative processes have been demonstrated for M. smegmatis.
In this fast-growing mycobacterial model organism, an involvement of the ESX-1
type VII secretion machinery in distributive conjugal transfer has been described
that results in genome-wide mosaicism (Flint et al. 2004; Gray et al. 2013). ESX-1
seems to play a dual role in the process: while ESX-1 components are negative
regulators of DNA transfer in donor cells (Flint et al. 2004), the ESX-1 activity is
required for DNA acquisition in recipient cells (Coros et al. 2008; Gray et al. 2013).
Future studies will show whether distributive conjugal transfer may also play a role
in the evolution of other (myco)bacterial species.

3.2 Type VII-Like Gene Clusters in Actinobacteria
and Firmicutes

Apart from M. tuberculosis and other mycobacterial species, type VII-like secretion
systems are found in the genomes of other mycolic acid-containing genera (my-
colata), such as Nocardia or Corynebacterium, as well as in Streptomyces species
(Gey Van Pittius et al. 2001). The genomic loci encoding type VII-like secretion
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systems in mycolata show the highest degree of homology with the ESX-4 system
of M. tuberculosis. In the more closely related Corynebacterium diphteriae, an
ESX-4-encoding gene cluster is located in a genomic region that shares a syntenic
gene organization with M. tuberculosis, which suggests that ESX-4 like type VII
systems might have played an important role in the evolution of selected branches
of Actinobacteria. The genes in this region are predicted to be functional, as no
deletions, frameshifts or stop codons were detected (Gey Van Pittius et al. 2001).
The genome of the more distantly related Streptomyces coelicolor harbours an ESX
locus including four out of six orthologous genes conserved in the M. tuberculosis
ESX-4 cluster (eccB4, eccC4, eccD4 and mycP4), and other species-specific genes
(Fig. 1) (Gey Van Pittius et al. 2001).

However, the simplest gene organization compared to the mycobacterial ESX
loci was found in gene clusters encoding type VII-like secretion systems in
Firmicutes. The Ess locus of S. aureus consists of 11 type VII system–associated
genes (Burts et al. 2005; Anderson et al. 2013), which include esxA, esxB and essC
genes encoding WXG-100 proteins (the S. aureus EsxA and EsxB variants) and a
membrane-anchored FtsK/SpoIIIE-like ATPase (EssC) (Fig. 1). The Ess locus also
contains essA, essB and essD genes coding for membrane-embedded proteins
required for secretion of Ess substrates, as well as esaC/esxC and esaD/esxD genes,
which encode small proteins that were recently identified as specific Ess substrates
of staphylococci (Burts et al. 2008; Anderson et al. 2011, 2013, Chen et al. 2012).
Finally, among the genes at this locus esaB encodes a negative regulator of Ess
secretion activity (Burts et al. 2008).

WXG-100-encoding genes have also been identified in different species of the
genus Bacillus, both in the non-pathogenic species B. subtilis and in the virulent
species Bacillus cereus, Bacillus thuringiensis and B. anthracis (Baptista et al.
2013; Huppert et al. 2014). The genome of B. subtilis harbours two genes encoding
WXG-100 proteins, yukE and yfiA, situated in distant genomic regions. YukE is the
first gene of a cluster consisting of five annotated genes (yukEABCD), which is
conserved in the genomes of B. cereus, B. thuringiensis, but not in B. anthracis
(Baptista et al. 2013; Huppert et al. 2014). For some Bacillus strains, the split
yukA/B gene encodes for a predicted FtsK/SpoIIIE ATPase, homologous to EccCa1
and EccCb1 from M. tuberculosis or EssC from S. aureus. The yukC and yukD
genes encode two additional structural proteins, thought to be required for YukE
secretion (Baptista et al. 2013; Huppert et al. 2014). Also, the yueB/C cluster, lying
adjacent to the yuk locus in the genome of B. subtilis, has recently been demon-
strated to encode components of the secretion apparatus involved in YukE secretion
(Huppert et al. 2014). Both YueB and YueC are homologous to Ess proteins of S.
aureus and are conserved in putative type VII-like secretion systems of other
species within the Firmicutes, such as Streptococcus agalactiae or L. monocyto-
genes (Huppert et al. 2014).

Inspection of the genome of B. anthracis identified six genes encoding for WXG
proteins. One of them, the Ba-esxB (BAS2036), shows similarity with the
mycobacterial esxB and staphylococcal esxA and lies in a gene cluster immediately
downstream the Ba-essC gene (BAS2035), encoding an FtsK/SpoIIIE-like ATPase
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(Garufi et al. 2008). Four other WXG encoding genes, namely Ba-esxL, Ba-esxQ,
Ba-esxV and Ba-esxW, are located elsewhere on the B. anthracis chromosome,
whereas the fifth gene, Ba-esxP, is encoded on the virulence plasmid pOX1. All
these five genes encode for proteins harbouring a large C-terminal domain that is
not found in mycobacterial and staphylococcal Esx proteins and appears to be a
specific signature of the B. cereus group (Garufi et al. 2008).

4 Type VII Secretion Machineries

Because of their relatively recent discovery, almost no structural data on type VII
secretion machineries are available (Rosenberg et al. 2015; Korotkova et al. 2014,
2015; van der Woude et al. 2013). However, in silico predictions and homology
studies, in combination with comparative secretome analyses from different type
VII mutant strains suggest that each type VII secretion apparatus secretes multiple
substrates and constitutes a complex, multi-protein machinery, consisting of several
components (structural and accessory factors). Mycobacterial ESX/type VII
secretion machineries are the most extensively characterized, although some data on
the composition and regulation of type VII-like secretion machineries in Firmicutes
became recently available.

4.1 Mycobacterial ESX Secretion Machineries:
The Paradigm of Type VII Secretion Systems

Most of the current knowledge on ESX secretion machineries comes from the
characterization of ESX-1, ESX-3 and ESX-5 systems from M. marinum, M.
tuberculosis or M. smegmatis (van der Woude et al. 2013).

The different ESX secretion machines are predicted to contain an
inner-membrane-bound protein complex, thought to drive ATP-dependent translo-
cation of ESX substrates across the cytoplasmic membrane in association with a yet
un-identified outer-membrane-embedded channel, which seem to manage substrate
export across the mycomembrane to the extracellular environment (see below).
Structural components of the membrane-anchored apparatus are three
transmembrane-domain-containing proteins (EccB, EccD, EccE), a membrane-
anchored ATP-binding protein (EccC) and a cytosolic ATP-binding protein
belonging to the AAA+ATPase family (EccA). Based on mass spectrometry analyses
and the evaluation of the apparent molecular weight of the ESX-5 complex from M.
marinum, each ESX membrane complex seems to be composed of 6 copies of EccB,
EccC and EccD components and three copies of EccE (Houben et al. 2012b). EccB,
EccC and EccD proteins have been demonstrated to be required for secretion of the
corresponding ESX substrates in all ESX systems characterized so far (ESX-1, ESX-3
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and ESX-5) (Siegrist et al. 2014; Di Luca et al. 2012; Brodin et al. 2006; MacGurn
et al. 2005; Guinn et al. 2004; Hsu et al. 2003). Among these components, EccD is a
highly hydrophobic protein, containing 11 predicted transmembrane domains. This
protein is predicted to build the channel for transport of substrates across the cyto-
plasmic membrane (Bitter et al. 2009a). EccC proteins are thus key components of the
ESX core complex and are encoded either by a single gene, or, as in the case for
ESX-1, by two adjacent genes (eccCa1 and eccCb1), whose products are predicted to
form a single functional unit (Cole et al. 1998; Bitter et al. 2009a). EccC proteins have
functional ATP-binding domains, which are homologous to the FtsK/SpoIIIE family
of ATPases. In contrast to the FtsK/SpoIIIE ATPases characterized so far, which
contain only one ATPase domain, the ESX-encoded EccC component has a unique
multi-domain structure consisting of three functionally distinct FtsK/SpoIIIE-like
ATP-binding domains, supposed to play distinct roles in substrate translocation and
complex formation (Ramsdell et al. 2015; van derWoude et al. 2013).While the most
N-terminally situated ATPase domain seems to be involved in ATP hydrolysis, the
second and third ATPase/nucleotide binding domains seem to be required for the
assembly of a functional ESX secretion machinery (Ramsdell et al. 2015). The
ESX-1-encoded EccC component interacts with the ESX-1 substrates EsxB, via the
last seven C-terminal residues of EsxB (Stanley et al. 2003; Champion et al. 2006).
This C-terminal short domain represents a signal sequence that is linked to secretion
via ESX-1 (Champion et al. 2006). The involvement of an ATPase in the contact
between ESX substrates and their corresponding secretion apparatus resembles type
IV secretion systems, where a FtsK/SpoIIIE ATPase recognizes an unstructured
C-terminal sequence and hence directs substrates across the cytoplasmicmembrane. It
has recently been observed that the binding of EsxB via its signal sequence at the
C-terminal domain to EccC1 induces the activation of EccC1 by stimulating its
multimerization, thus resulting in increased ATPase activity (Rosenberg et al. 2015).
These findings suggest a model in which ESX substrates (e.g. EsxB) might modulate
the coordinated release of substrates from the bacterium (Rosenberg et al. 2015).
Apart from the FtsK/SpoIIIE ATPase, ESX secretion machineries also include a
cytosolic ATP-binding protein (EccA) belonging to the AAA+ family (ATPase
associated with various cellular activities). Proteins belonging to this family play a
role in various cellular processes: assembly and disassembly of protein complexes,
protein degradation and signal transduction. Although some EccA protein family
members have been demonstrated to be involved in ESX activity (EccA1 and EccA5

are implicated ESX-1 and ESX-5 secretion, respectively, while the ESX-3-encoded
EccA3 is required for viability of M. tuberculosis) (Siegrist et al. 2014; Bottai et al.
2012; Brodin et al. 2006), the specific function of AAA+ ATPases in ESX-mediated
secretion remains unknown. Structural data on the ESX-1-encoded EccA1 revealed
that the C-terminal part of EccA1 contains an oligomerization domain, which might
induce the formation of a hexamer. It was also proposed that EsxA1 possesses ATPase
activity, possibly regulated by the N-terminal part of the protein (Wagner et al. 2013).
The finding that EccA1 interacts with EspC and EspF1 in two-hybrid studies in vitro
(Champion et al. 2009) suggests that these proteins might be involved in the
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assembly/disassembly of secreted substrate molecules, or alternatively, secreted
substrates and their chaperones.

In addition to the ESX secretion components mentioned above, ESX activity
also involves mycosins (MycP1–MycP5). These proteins correspond to specific
subtilisin-like serine proteases (Brown et al. 2000; Dave et al. 2002) and are pre-
dicted to be anchored in the cytoplasmic membrane via the C-terminal trans-
membrane domain, with the active site exposed to the extracytoplasmic space
(Sonnhammer et al. 1998; Gardy et al. 2005). This protein topology suggests a role
for these proteins in proteolytic digestion of ESX substrates. To date, proteolytic
activity has been demonstrated for MycP1, the ESX-1 associated mycosin. MycP1
was shown to digest EspB at its C-terminal domain, thereby modulating ESX-1
activity (Ohol et al. 2010). More recently, the ESX-3-encoded mycosin MycP3 has
been demonstrated to be involved in stabilization or/and optimal secretion of the
EsxG–EsxH complex in M. smegmatis (see below) (Siegrist et al. 2014).

The actual way of how ESX substrates are transported across the mycobacterial
outer membrane to the extracellular environment remains unknown. In
Gram-negative bacteria, protein secretion may occur by a “one-step” mechanism, in
which a protein channel spanning both the inner and the outer membrane mediates
the substrate translocation across the diderm cell envelope (type I, type III and type
VI secretion pathways). Alternatively, this transport can also occur by a “two-step”
mechanism, in which the Sec or TAT machineries are responsible for substrate
transport across the cytoplasmic membrane, and a different, more specialized
secretion apparatus is involved in subsequent substrate translocation across the
outer membrane (type II and type IV secretion pathways). In mycobacteria, the
absence of a Sec or TAT signal sequence in ESX substrates and the presence of
transmembrane domains in all ESX core components suggest that type VII protein
transport across—at least the inner membrane—occurs by the ESX systems. It has
been speculated that some of the Ecc-membrane-bound components, such as EccE
or EccC, might span across the mycomembrane (Houben et al. 2012b), favouring a
one-step secretion mechanisms of ESX substrates. However, as detailed structural
data of the type VII apparatus are missing, it is also possible that proteins with yet
undefined roles might mediate the ESX protein translocation to the extracellular
environment.

4.2 ESX Substrates

In addition to the above-described Esx/WXG-100 proteins representing the first
known substrates of mycobacterial ESX/type VII secretion systems, PE/PPE pro-
tein family members and a number of Esp proteins are also transported by ESX
machineries.

Although Esx, PE/PPE and Esp proteins display very low similarity in their
primary amino acid sequence, all these classes of ESX substrates share several
typical features: (a) the ability to be secreted as heterodimers (for Esx and PE/PPE
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proteins); (b) the codependent secretion where deletion/absence of one substrate
affects the secretion of the cognate ESX substrate; (c) the presence of a C-terminal
signal domain responsible for protein targeting to the type VII secretion pathway.
The resolved structure of the ESAT-6-CFP-10 heterodimer, representative of the
Esx protein complexes, revealed the presence of two helices on each Esx protein
connected by a turn formed by the WXG motif. In this complex, the two proteins
are in antiparallel orientation and have flexible N- and C-terminal tails (Renshaw
et al. 2005). A similar structure has been reported for the PE25-PPE41 heterodimer,
representative of the PE/PPE protein complexes: the domains of the proteins that
are responsible for interaction form a four-helix bundle in an antiparallel fashion,
and a WXG motif is located in the turn between the two helices of the PPE protein
(Strong et al. 2006). Both, EsxB and PE25 proteins in the ESAT-6-CFP-10 and
PE25-PPE41 heterodimers, respectively, have an identical C-terminal short motif,
which is crucial for secretion (Champion et al. 2006; Renshaw et al. 2005; Strong
et al. 2006). Although ESX substrates lack a classical N-terminal signal sequence,
they share a conserved C-terminal secretion domain which interacts with a con-
served ESX structural component (e.g. the short C-terminal domain of CFP-10 is
recognized by the FtsK/SpoIIIE ATPase EccC), thus targeting the substrate and its
protein partner to the corresponding secretion machinery. More recently, a con-
served C-terminal YxxxD/E motif was identified as the general sequence required
for targeting proteins to type VII secretion pathway (Daleke et al. 2012). This
YxxxD/E domain seems also to be located adjacent to the helix-turn-helix motif of
several PE proteins and EspB (Daleke et al. 2012). Moreover, an additional
hydrophobic residue located seven positions downstream the YxxxD/E motif (the Y
subdomain) was proposed to be involved in ESX substrate recognition (Poulsen
et al. 2014). However, the signal sequences that specifically target each ESX
substrate to the corresponding ESX secretion apparatus are still unknown. In this
respect, it has been hypothesized that selected EspG proteins (e.g. the M. marinum
ESX-1- and ESX-5-encoded EspG) might act as chaperons in directing type VII
substrates to the corresponding ESX machineries (see below).

Apart from Esx and PE/PPE proteins, several ESX-1-related Esp proteins such
as EspA, EspC, EspE, EspF, EspJ, EspK, EspB have been proposed as ESX-1
substrates (Champion et al. 2009; McLaughlin et al. 2007; Sani et al. 2010;
Carlsson et al. 2009). Several of these Esp proteins carry the C-terminal YxxxD/E
motif, conserved in type VII substrates or substrate complexes (Daleke et al. 2012).
Secretion of some Esp proteins (e.g. EspA and EspC) or Esp protein activity (e.g.
EspB, EspD) impact on ESAT-6 secretion and in turn, on mycobacterial virulence.
The mutually codependent secretion of EspA and EspC with ESAT-6 and CFP-10
represents a key element of the regulation of the ESX-1 activity (see below).
Differently, EspB secretion via ESX-1 requires neither EspA/EspC/EspD expres-
sion nor ESAT-6/CFP-10 secretion (Chen et al. 2013). However, the proteolytic
digestion of EspB by MycP1 modulates the amount of proteins secreted by ESX-1.
EspB is able to bind bioactive host phospholipids such as phosphatidic acid and
phosphatidylserine, thus interfering with eukaryotic cell signalling (Chen et al.
2013). This feature reveals an additional, ESAT-6-independent impact of EspB on
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mycobacterial virulence. Recent data on the resolved crystal structure of EspB
demonstrated that the protein can adopt a PE/PPE-like fold and oligomerize to form
a barrel-shaped structure with heptameric symmetry, thus suggesting the possibility
that EspB might be part of a structural subunit of a cell-wall-associated complex
(Solomonson et al. 2015; Korotkova et al. 2015).

Other ESX-1-associated Esp proteins (e.g. EspD) do not seem to be ESX-1
substrates, but are involved in modulation of the ESX-1 activity as they seem to
influence EspA and EspC stabilization and secretion (Chen et al. 2013). Moreover,
a species-specific impact on ESX-1 secretion has been reported for some Esp
proteins (EspF and EspG1) (Bottai et al. 2011; Gao et al. 2004; Converse and Cox
2005), suggesting that the function of similar proteins in related bacterial species
might have changed during evolution due to adaptation processes. EspF and EspG1

have been reported to be implicated in ESAT-6 and CFP-10 secretion in M.
smegmatis and M. marinum, whereas they are dispensable for secretion,
post-transcriptional modification, and immunogenicity of ESAT-6 in M. tubercu-
losis. However, both, EspF and EspG1, are required for full virulence of M.
tuberculosis (Bottai et al. 2011). Although the function of EspG1 is still unknown,
the impact of the protein on virulence ofM. tuberculosis might be related to specific
interactions with other ESX components, such as PE/PPE proteins (Teutschbein
et al. 2009). Deletion of espG1 from M. tuberculosis results indeed in lower
amounts of PPE68 in cell lysates, suggesting a possible role for EspG1 in folding or
stability of PPE68 (Bottai et al. 2011), in accordance with the proposed chaperone
activity of EspG-like proteins encoded by other ESX systems (Ekiert and Cox
2014; Korotkova et al. 2014).

EspI is an ESX-1-associated protein for which a putative function as negative
regulator of ESX-1 activity has been postulated. Although dispensable for
ESX-1-mediated secretion and full virulence of M. tuberculosis, EspI seems to be
involved in the shutdown of ESX-1 secretion activity in case of ATP depletion
(Zhang et al. 2014).

4.3 Regulation of ESX Secretion in Mycobacteria

Because of the relatively recent discovery of type VII systems, the regulation of
ESX activity is a rather unexplored field of research on mycobacterial type VII
secretion. As opposed to type III and type IV secretion in Gram-negative bacteria,
where substrate secretion occurs after host–cell contact, ESX/type VII secretion
occurs also in in vitro growing mycobacteria. This feature suggests that
mycobacterial ESX secretion systems might play more general roles in the physi-
ology of the bacteria, whereby their implication in virulence could have evolved as
an adaptation to the hostile intracellular environment. Recent experimental data
provide evidence that ESX-mediated secretion and/or ESX gene cluster expression
is controlled by different global transcriptional regulators. These include the puta-
tive transcriptional repressors Lrs2 and CRP (Rickman et al. 2005; Gordon et al.
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2010) and the activators PhoP and EspR (Frigui et al. 2008; Blasco et al. 2012),
which regulate ESX-1 secretion; the iron-dependent regulator IdeR (Rodriguez
et al. 2002) and the zinc uptake regulator Zur (Maciag et al. 2007), which control
the expression of the ESX-3 gene cluster; the global transcriptional regulator
WhiB5 and the alternative sigma factor SigM which regulate genes at ESX-2 and
ESX-4 loci (Casonato et al. 2012; Raman et al. 2006; Agarwal et al. 2007).

The regulation of ESX-1-mediated secretion of ESAT-6 and CFP-10 mainly
involves the espACD locus due to the codependent secretion of these proteins with
EspA and EspC. According to the currently proposed model, PhoP/R, a major
two-component regulatory system of M. tuberculosis (Walters et al. 2006), influ-
ences the expression of the nucleoid-associated protein/regulator EspR (Blasco
et al. 2012; Raghavan et al. 2008), which controls the espACD operon (Blasco et al.
2012; Hunt et al. 2012). The link between a functional PhoP protein and ESAT-6
secretion was first demonstrated in M. tuberculosis H37Ra (Frigui et al. 2008), the
paradigm attenuated M. tuberculosis strain, which carries a point mutation in its
phoP gene that interferes with the DNA binding capacities of PhoP (Wang et al.
2007). Complementation of H37Ra with a wild-type copy of the phoP locus
restored ESAT-6 secretion and partially increased the virulence of the recombinant
H37Ra::phoP strain (Frigui et al. 2008). Moreover, a second two-component signal
transduction system named MprA/B (for mycobacterial persistence regulator) was
also found to modulate ESX-1 functions via regulation of the espACD locus (Pang
et al. 2013). Interestingly, regulation of the espACD locus by two-component
regulators may also be bypassed, as observed in a lineage of tubercle bacilli that
have the region of difference 8 (RD8) deleted, leading to ESAT-6 secretion despite
PhoP/R mutations (Gonzalo-Asensio et al. 2014). The RD8 deletion is located just
upstream of the espACD operon in Mycobacterium africanum lineage 6 strains, as
well as in animal-adapted members of the M. tuberculosis complex, such as M.
microti or M. bovis (Boritsch et al. 2014).

However, apart from regulation of ESAT-6 secretion via EspA/C expression,
regulation of ESX-1 genes may also occur directly at the ESX-1 locus by WhiB6, a
member of large WhiB protein regulatory family (Solans et al. 2014). A point
mutation in the putative whiB6 promoter region present in the reference strain M.
tuberculosis H37Rv determines the formation of a stem-loop structure in the
binding region of the regulator PhoP, resulting in lower expression of ESAT-6 in
M. tuberculosis H37Rv relative to M. tuberculosis clinical isolates and other ref-
erence strains (e.g. CDC1551) (Solans et al. 2014).

4.4 Type VII-like Secretion Machineries
in Non-mycobacterial Species

The Ess secretion system of S. aureus is one of the best-characterized type VII
secretion systems in Firmicutes. It consists of four structural components (EssA,
EssB, EssC and EssD), all required for transport of Ess substrates across the
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staphylococcal cell envelope and two accessory proteins (EsaA and EsaB) (Burts
et al. 2005, 2008, Anderson et al. 2013, 2011, Chen et al. 2012, Kneuper et al.
2014). Among the Ess core components, EssC is a membrane-bound FtsK/SpoIIIE
ATPase, which represents a hallmark for type VII secretion machineries. Moreover,
the locus also encodes phylum-specific EssA, EssB and EssD, which are
membrane-anchored proteins that are not conserved in the mycobacterial ESX
systems (Fig. 1) (Burts et al. 2005, 2008, Anderson et al. 2011, 2013). The Ess
secretion machineries also include EsaB, a small cytosolic protein, for which a role
in regulation of the expression and production of a specific subset of Ess substrates
(e.g. EsxC/EsaC, see below) has been demonstrated (Burts et al. 2008, Kneuper
et al. 2014). Secretome analysis of a panel of S. aureus Ess mutant strains in two
different genetic backgrounds (S. aureus USA300 and S. aureus Newman clinical
isolates) identified four Ess substrates: the canonical SaEsxA and SaEsxB (Burts
et al. 2005), as well as the non-canonical type VII substrates SaEsxC and SaEsxD
(Anderson et al. 2011, 2013). S. aureus EsxA and EsxB share some features with
the M. tuberculosis ESAT-6-CFP-10, including the presence of a WXG motif
(located in the middle of a 100-aa-long protein) and the codependent secretion
(genetic deletion of SaEsxA or SaEsxB impairs the secretion of the related WXG
protein). However, unlike ESAT-6 and CFP-10 from M. tuberculosis, SaEsxA and
SaEsxB from S. aureus do not seem to interact (Anderson et al. 2013). Instead,
SaEsxA dimerizes with itself or associates with SaEsxC, while SaEsxB interacts
with SaEsxD (Anderson et al. 2013). The recently resolved crystal structure of the
EsxA-EsxA homodimer reveals that each EsxA subunit folds into an elongated
cylinder of two helices bent by a hairpin, carrying the WXG motif
(Sundaramoorthy et al. 2008), in a structure that is reminiscent of the M. tuber-
culosis ESAT-6-CFP-10 or EsxG-EsxH heterodimers secreted by ESX-1 and
ESX-3 systems, respectively.

In contrast to SaEsxA and SaEsxB, staphylococcal EsxC and EsxD do not share
obvious sequence features with WXG proteins, nor with other reported ESX sub-
strates, such as PE/PPE or Esp protein family members (Anderson et al. 2013).
However, SaEsxD contains a C-terminal YxxxD/E motif (Anderson et al. 2013)
identical to that involved in targeting substrates to the type VII secretion pathways
in mycobacteria. It was found that SaEsxD can play a role in the interplay among
Ess substrates and Ess core components. Deletion of the entire SaEsxD, as well as
deletion of its C-terminal domain, abolished the production of SaEsxB and affects
the secretion of SaEsxA and SaEsxB. These effects on Ess secretion seem to be
related to a direct effect of the absence of SaEsxD on EssD stability (Anderson et al.
2013). This suggests a model in which SaEsxD might contribute to the stability of
EssD via the last 6 amino acids at the C-terminal domain, thus influencing the
secretion of other Ess substrates. Recently, some data on regulation of Ess activity
became available: similarly to the mycobacterial ESX loci, whose expression is
under the control of different global transcriptional regulators, the Ess locus is
negatively regulated by the response regulator SaeR (Anderson et al. 2013). SaeR is
the transcriptional regulator of the two-component regulation system SaeR/SaeS,
which modulates the secretion of a plethora of virulence factors in S. aureus
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(Giraudo et al. 1997; Cheung et al. 2004; Novick 2003). Transposon insertion in
SaeR or SaeS results in an increased production of both Ess core components
(EssD) and Ess-dependent substrates (SaEsxA and SaEsxB) (Anderson et al. 2013).
The SaeR-/SaeS-dependent Ess expression might account for the increased Ess
secretion activity observed in the S. aureus USA300 strain relative to that observed
for the Newman strain (Anderson et al. 2013), where SaEsxA and SaEsxB are
produced and secreted at low levels, and SaEsxC is produced only after SaEsxB
deletion (Burts et al. 2005, 2008). A point mutation in the SaeS encoding gene in
the Newman strain results indeed in a constitutively active variant of the signalling
kinase SaeS (Adhikari and Novick 2008).

The simplest protein composition was predicted for the Yuk/Yue type VII-like
system in B. subtilis. In addition to the FtsK/SpoIIIE-like ATPase YukA/B, other
components of the secretion machinery are the ubiquitin-like YukC and YukD
proteins, and the membrane-bound YueB/YueC proteins, homologous to the Ess
components in S. aureus and conserved in type VII-like secretion systems of other
Firmicutes (Streptococcus agalactiae and L. monocytogenes) (Baptista et al. 2013;
Huppert et al. 2014). Interestingly, YueB is a membrane receptor essential for
phage infection (Huppert et al. 2014). The WXG-100 protein member YukE is the
only type VII-like substrate identified so far (Huppert et al. 2014). YukE accu-
mulates in stationary growth phase culture supernatants as homodimer (Sysoeva
et al. 2014), whose predicted structure consists in a putative helix-loop-helix fold,
with the WXG domain lying in the loop and the two helices in an antiparallel
configuration (Huppert et al. 2014). Mutagenesis studies combined with
cross-linking experiments revealed that the C-terminal residues of YukE are
important for secretion, thus providing further evidence for a general mode of
recognition of type VII-like and ESX substrates in Firmicutes and Actinobacteria,
respectively (Sysoeva et al. 2014). However, the tryptophan and glycine residues of
the WXG motif of YukE seem also to be required for an efficient translocation of
the protein homodimer towards the outside of the cell (Sysoeva et al. 2014). Based
on structural data, YukE homodimers contain two sites composed by the C terminus
and the WXG turn, but only one intact bipartite site seems to be required for protein
export. These features suggest that substrate secretion via the type VII-like pathway
in B. subtilis requires a composite, bipartite signal formed by two folded YukE
polypeptides (Sysoeva et al. 2014).

Yuk/Yue expression in B. subtilis is regulated by the two-component system
DegU–DegS (Ogura et al. 2001; Mader et al. 2002; Kobayashi 2007), which
controls several post-exponential processes (genetic competence, biofilm formation
and cell motility) (Murray et al. 2009; Hsueh et al. 2011; Lopez and Kolter 2010).
Stable production of YukE requires high levels of phosphorylated transcriptional
regulator DegU (Baptista et al. 2013), whose levels increase in cells upon transition
to the stationary growth phase. This could explain the reason why no Ess activity
could be demonstrated in the B. subtilis strain 168, which is impaired in
DegU-P-dependent processes (Baptista et al. 2013).
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5 Type VII Secretion Systems in Bacterial Virulence
and Pathogenicity

The biological function of several type VII-secreted substrates and effector mole-
cules is still unknown. Likewise, it remains unclear whether type VII secretion
machineries might share conserved functions. It is well established that mycobac-
terial ESX secretion systems (ESX-1, ESX-3 and ESX-5) are virulence determi-
nants in M. tuberculosis and other pathogenic mycobacteria (ESX-1 and ESX-5), or
play crucial roles in essential metabolic pathways (ESX-3) (Bottai et al. 2015;
Bottai et al. 2014; Majlessi et al. 2015). Similarly, type VII-like secretion systems
have a strong impact on bacterial virulence and pathogenicity in S. aureus (Korea
et al. 2014; Burts et al. 2005) and B. anthracis (Garufi et al. 2008). However, some
other bacterial pathogens are known, whose type VII-like secretion systems do not
seem to impact on virulence, as this is, for example, the case for L. monocytogenes
(Way and Wilson 2005). Likewise, type VII-like secretion is also not required for
the virulence of the plant pathogen Streptomyces scabies (Fyans et al. 2013), or of
S. coelicolor, where the type VII system plays a role in modulation of sporulation
and development (Akpe San Roman et al. 2010).

5.1 The Mycobacterial ESX-1, ESX-3 and ESX-5 Secretion
Systems

The ESX-1 system impacts on the ability of M. tuberculosis and other pathogenic
mycobacteria to establish infection due to its role as modulator of the mycobacterial
trafficking in phagocytic host cells (macrophages and dendritic cells). Several
cellular events have been reported to be related to the activity of a functional ESX-1
system: inhibition of phagosomal maturation and acidification, cytosolic access,
autophagy, host cell-death, and modulation of the inflammatory response.
ESX-1-proficient mycobacterial species M. tuberculosis, M. leprae and
M marinum, as well as recombinant BCG::ESX-1 variants were shown to access the
host cytosol of infected phagocytic cells, while strains with an interrupted ESX-1
system remained enclosed in the phagovacuole (Stamm et al. 2003; van der Wel
et al. 2007; Simeone et al. 2012; Houben et al. 2012a; Simeone et al. 2015).
Translocation into the cytosol plays a key role not only in cultured phagocytic cells,
but was also demonstrated for a murine infection model (Simeone et al. 2015). Such
ESX-1-mediated access to the cytosolic compartment seems to be related to the
ability of ESAT-6 and potential, other ESX-1-secreted effector molecules to interact
with biomembranes under specific conditions and induce membrane lysis (de Jonge
et al. 2007; De Leon et al. 2012). The finding that recombinant ESX-1 strains
expressing mutated variants of ESAT-6 are unable to induce phagosomal rupture
despite secretion of the protein further supports a role for ESAT-6 in this process
(Simeone et al. 2012; Houben et al. 2012a). The ability to lyse vacuolar
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membranes, thereby allowing pathogenic mycobacteria and/or bacterial compo-
nents to gain access to the cytosolic compartment of the host cell, might account for
several features which characterize the pathogenic potential of M. tuberculosis and
other ESX-1-proficient mycobacterial species: cell-to-cell spread (Guinn et al.
2004; Hsu et al. 2003), autophagy induction and/or impairment (Watson et al. 2012;
Romagnoli et al. 2012), and access of mycobacterial proteins to the class
I-processing machinery contained in the proteasome, with impact on NLRP3
inflammasome activation (Mishra et al. 2010; Wong and Jacobs 2011; Dorhoi et al.
2012), type I interferon (type I-IFN) responses (Stanley et al. 2007) and induction
of increased CD8+ T-cell responses (Ryan et al. 2009). Recent studies demon-
strated a role of cytosolic M. tuberculosis DNA in the induction of the synthesis of
type I-IFN, via the induction of the cGAMP signalling cascade, both in human and
murine macrophages (Wassermann et al. 2015; Watson et al. 2015; Collins et al.
2015). This DNA-dependent induction was suggested to be linked to
ESX-1-mediated access of the pathogen to the host cytosol (Majlessi and Brosch
2015).

In addition to ESX-1, ESX-5 is a key virulence determinant of pathogenic
mycobacteria, due to its role as specialized secretion system devoted to the export
of PE and PPE proteins. Apart from EsxM (the ESAT-6 homolog encoded at the
ESX-5 locus), a number of PE/PPE proteins have been identified as ESX-5 sub-
strates, both in M. tuberculosis and in M. marinum. At first, the representative
PE/PPE proteins PE25-PPE41 (Abdallah et al. 2006, 2009; Bottai et al. 2012) were
found to be ESX-5 substrates, similar to LipY (Daleke et al. 2011), which repre-
sents a mycobacterial lipase that is involved in degradation of long chain triacyl-
glycerols during late phases of infection (Deb et al. 2006). Other putative ESX-5
substrates are the members of PE-PGRS and PPE-MPTR subfamilies (Abdallah
et al. 2009; Houben et al. 2012b). These phylogenetically most recent subclasses of
the PE and PPE proteins seem to have emerged from ancestral PE and PPE proteins
encoded at the ESX-5 locus (Gey van Pittius et al. 2006).

Although the biological function of most of the PE/PPE proteins remains
unknown, some of them have been suggested to play a role in mycobacterial
virulence. They are involved in mycobacterial growth in macrophages, efficiency of
phagocytosis, inhibition of phagosome maturation, and virulence in the mouse
infection model (Ramakrishnan et al. 2000; Brennan et al. 2001; Sampson et al.
2001; Li et al. 2005; Goldstone et al. 2009; Brodin et al. 2010; Dong et al. 2012;
Iantomasi et al. 2012; Bottai et al. 2012). PE/PPE proteins have high immunogenic
potential and represent a rich source of B- and T-cell epitopes (Copin et al. 2014).
Their polymorphic nature, in combination with their predicted localization at the
mycobacterial surface (Sampson et al. 2001; Banu et al. 2002; Cascioferro et al.
2007; Song et al. 2008; Chaturvedi et al. 2010) and the large variability in
expression at different stages of the infection (Voskuil et al. 2004) suggested a role
for PE/PPE proteins as a source of antigenic variation (Delogu and Brennan 2001;
Bottai and Brosch 2009; Cole et al. 1998). However, it was recently reported that
the T-cell epitopes were located within the conserved N-terminal parts of the
PE/PPE proteins and not in the variable PGRS and MPTR sections of the proteins,
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which questions the previous hypothesis (Copin et al. 2014) and suggests that the
variable parts might have different, possibly structural, roles for the mycobacteria.
Indeed, when ESX-5-associated PE and PPE proteins were investigated, which
harbour mainly the conserved N-terminal part of PE/PPE proteins, strong, specific
T-cell responses were recorded (Sayes et al. 2012). The responses were directed
against the ESX-5-associated PE/PPE proteins (PPE25, PE18, PPE26, PPE27,
PE19), but also against a number of non-ESX-5-encoded homologs (Sayes et al.
2012). These responses were completely abolished in mutant strains where the
ESX-5 secretion system was non-functional (Sayes et al. 2012). These findings
further confirm a role for ESX-5 in the release of PE and PPE proteins from the
bacterial cell during infection and emphasize the impact of ESX-5 as key modulator
of the adaptive antimycobacterial host immune response against PE/PPE proteins.

A functionally active ESX-5 system is essential for full virulence of pathogenic
mycobacteria. In M. tuberculosis, ESX-5 inactivation via disruption of single
components of the ESX-5 secretion machineries (e.g. the predicted transmembrane
channel EccD5) caused strong attenuation of the corresponding mutant, which was
neither able to replicate in murine macrophages nor in severely combined
immunodeficient (SCID) mice (Bottai et al. 2012). Furthermore, an intact ESX-5
system is required for in vitro growth of several mycobacterial species (M. tuber-
culosis, BCG and M. marinum) (Di Luca et al. 2012; Ates et al. 2015). Deletion of
large portions of the M. tuberculosis ESX-5 locus (e.g. the eccB5-eccC5 operon that
encodes key building blocks of the ESX-5-membrane-bound protein complex)
results in the loss of viability of tubercle bacilli (Di Luca et al. 2012). Moreover, a
putative role for certain duplicated regions of the ESX-5 locus was recently sug-
gested, whereby knockout mutants of the so-called ESX-5a region, comprising esxI,
esxJ, ppe15 and pe8, of M. marinum and/or M. tuberculosis showed differences in
secretion of selected PE/PPE proteins and some other proteins that were not
members of these protein families (Shah et al. 2015). The impact of ESX-5 on M.
tuberculosis viability and virulence seems to be related to its role in transport of
PE/PPE proteins as well as its involvement in maintaining the cell envelope sta-
bility and functionality. ESX-5 disruption results in extensive damage of the
mycobacterial cell envelope, as revealed by increased sensitivity of ESX-5 mutants
to detergents and hydrophilic antibiotics to which mycobacteria are naturally
resistant (Bottai et al. 2012). The detrimental effect of ESX-5 disruption on cell
envelope functionality and mycobacterial viability can be restored by increasing the
permeability of the mycomembrane, by altering its lipid composition or by intro-
ducing the heterologous outer-membrane-associated mycobacterial porin MspA
(Ates et al. 2015). The existence of a functional link between ESX-mediated
secretion and cell-wall biogenesis is supported by results of ChIP-on-chip analyses,
which demonstrated that genes at the ESX-2 and ESX-5 loci, as well as a number of
genes encoding enzymes involved in cell-wall biosynthesis were regulated by EspR
(Blasco et al. 2012).

Some data are now available on the functional role of ESX-3. The finding that
the expression of the ESX-3 locus is regulated by the iron-dependent transcriptional
repressor IdeR (Rodriguez et al. 2002) and the zinc uptake repressor Zur (Maciag
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et al. 2007) and is up-regulated in iron/zinc limiting conditions provides evidence
for the implication of this secretion system in homeostasis of ferric and zinc metal
ions (Siegrist et al. 2009, 2014, Serafini et al. 2009). Consistent with its involve-
ment in fundamental metabolic pathways, ESX-3 is highly conserved in the genome
of all mycobacterial species. In M. tuberculosis, where the uptake of ferric ions
exclusively occurs via the mycobactin-mediated siderophore pathway, ESX-3 is
essential for viability (Serafini et al. 2009). In contrast, in M. smegmatis, where the
iron uptake also occurs by the alternate exochelin pathway, ESX-3 is not essential
for in vitro growth (Siegrist et al. 2014). Selective inactivation of different M.
smegmatis ESX-3 genes (eccC3, eccD3 and espG3) confirmed the implication of the
ESX-3 secretion system in mycobactine-mediated iron acquisition. EsxG and EsxH
form a characteristic heterodimer resembling the ESAT-6-CFP-10 complex (Ilghari
et al. 2011), whose secretion is enhanced in iron-limiting conditions (Siegrist et al.
2014). NMR spectroscopy of theM. tuberculosis EsxG–EsxH complex revealed the
presence of a specific Zn2+ binding site in EsxH (Ilghari et al. 2011). The Zn2+

binding site is specific for EsxH proteins of mycobacterial species belonging to the
M. tuberculosis complex, and it is not conserved in EsxH paralogs from other
mycobacterial species (M. smegmatis, M. marinum and M. ulcerans), nor in other
Esx proteins. Although the functional role of this site is still unknown, the Zn2+

binding site might regulate the stability of the EsxG–EsxH complex, its interactions
with other protein partners, or might be implicated in zinc uptake.

Apart from the functional role in iron uptake, a role of ESX-3 in virulence of
mycobacteria has been recently reported. The EsxG–EsxH complex was found as
being involved in inhibition of phagosome maturation. This process involves the
disruption of the host endosomal sorting complex required for transport (ESCRT)
responsible to the delivery of M. tuberculosis-loaded phagosomes to the lysosomes
(Mehra et al. 2013).

5.2 Ess Secretion System in Virulence of S. Aureus

Several observations indicate that Ess plays an important role in virulence of S.
aureus. SaEsxA and SaEsxB are required for S. aureus replication in organs and
tissues of infected mice (Burts et al. 2005). Moreover, Ess secretion activity is also
required for the establishment of staphylococcal abscesses wherein the pathogen
can persist and evade the host immune response (Burts et al. 2005, 2008; Anderson
et al. 2011). Inactivation of the Ess pathway by the disruption of key components of
the Ess secretion machinery (EssC) as well as the deletion of esxA and esxB causes
a significant reduction in the ability of S. aureus to establish kidney or liver
abscesses in a murine model of staphylococcal blood-borne dissemination and
abscess formation (Burts et al. 2005, 2008; Anderson et al. 2011). Other Ess
substrates, such as the staphylococcal-specific EsaC protein, although being dis-
pensable for the establishment of acute infections, were required for the formation
of persistent infection in animal models (Burts et al. 2008). Moreover, the Ess
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secretion system has recently been demonstrated to be required for nasal colo-
nization and virulence in a murine lung pneumonia model, using two different S.
aureus strains (RN6390 and COL) for infection (Kneuper et al. 2014). More
insights on the cellular mechanisms responsible for the impact of EsxA in virulence
of S. aureus have recently been provided (Korea et al. 2014). Although S. aureus is
primarily an extracellular pathogen, whose presence in intracellular environment
during in vivo infections remains unclear, S. aureus was recently reported to be able
to invade and replicate in several non-phagocytic cells (Garzoni and Kelley 2009;
Clement et al. 2005; Sachse et al. 2010). It has also been proposed that a transient
intracellular lifestyle might potentially provide protection against exposure to
antibiotics and the host immune response and might represent a favourable envi-
ronment for the formation of resistant variants (Tuchscherr et al. 2011; Fraunholz
and Sinha 2012). SaEsxA is able to interfere with the host cell apoptotic pathways
in human epithelial cells, thus affecting bacterial survival and mediating the release
of S. aureus from the host cells (Korea et al. 2014).

5.3 The ESAT-like Secretion System in Virulence
of Bacillus Anthracis

B. anthracis encodes six WXG proteins, referred to as EsxB, EsxL, EsxP, EsxQ,
EsxV and EsxW. EsxB and EsxW are secreted into the extracellular environment
during growth in liquid medium, although the secretion process seems to not
require the BaEssC ATPase (Garufi et al. 2008). In contrast, no expression was
found for other Esx-like proteins under laboratory growth conditions (Garufi et al.
2008). To date, the impact of ESX-like secreted substrates in virulence of B.
anthracis is still unknown. However, the finding that specific humoral immune
responses against EsxB-, EsxP- and EsxW-like proteins are detectable in B.
anthracis-infected guinea pigs suggests that the type VII-like secretion pathway is
activated during B. anthracis in vivo infections.

6 Concluding Comments

Taken together, the different aspects of type VII- and type VII-like secretion in
Gram-positive bacteria, reviewed in this book chapter, emphasize the actuality of this
topic for bacterial physiology and host–pathogen interaction. Despite considerable
advances in understanding the mechanisms and functions of the different type VII-
and type VII-like systems in high- and low-C + G-content Gram-positive bacteria,
namely Actinobacteria and Firmicutes, many questions remain to be answered
(Schneewind and Missiakas 2012). These challenges for future work have relevance
for pathogenicity research (Le Chevalier et al. 2014; Majlessi and Brosch 2015),
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novel treatment strategies (Rybniker et al. 2014; Christophe et al. 2009), or vaccine
design (Bottai et al. 2015; Pym et al. 2003) and shall thus receive the continued
attention of a broad spectrum of fundamental and applied research.
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Protein Secretion in Gram-Positive
Bacteria: From Multiple Pathways
to Biotechnology

Jozef Anné, Anastassios Economou and Kristel Bernaerts

Abstract A number of Gram-positive bacteria are important players in industry as
producers of a diverse array of economically interesting metabolites and proteins.
As discussed in this overview, several Gram-positive bacteria are valuable hosts for
the production of heterologous proteins. In contrast to Gram-negative bacteria,
proteins secreted by Gram-positive bacteria are released into the culture medium
where conditions for correct folding are more appropriate, thus facilitating the
isolation and purification of active proteins. Although seven different protein
secretion pathways have been identified in Gram-positive bacteria, the majority of
heterologous proteins are produced via the general secretion or Sec pathway. Not all
proteins are equally well secreted, because heterologous protein production often
faces bottlenecks including hampered secretion, susceptibility to proteases, secre-
tion stress, and metabolic burden. These bottlenecks are associated with reduced
yields leading to non-marketable products. In this chapter, besides a general
overview of the different protein secretion pathways, possible hurdles that may
hinder efficient protein secretion are described and attempts to improve yield are
discussed including modification of components of the Sec pathway. Attention is
also paid to omics-based approaches that may offer a more rational approach to
optimize production of heterologous proteins.
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Abbreviations

FEA Flagella export apparatus
GFP Green fluorescent protein
GRAS Generally recognized as safe
LAB Lactic acid bacteria
mTNFα Mouse tumor necrosis factor α
PMF Proton motive force
PSPa Phage shock protein A
Sec pathway General secretory pathway
SPase I Signal peptidase type I
T4SS Type 4 secretion system
T7SS Type VII secretion system
Tat Twin-arginine translocation
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1 Introduction

Biotechnology involves the use of living organisms and their products for the
benefit of mankind in different areas. The biotechnological manufacturing of
products of biomedical interest such as antibiotics, vaccines, antibodies, and other
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biopharmaceuticals are termed red biotechnology. On the other hand, the produc-
tion of industrial enzymes for the sustainable processing and production of
chemicals, materials, and fuels is classified as white biotechnology, while green
biotechnology serves agriculture and involves, for example, the development of
pest-resistant plants and the control of food and feed. Recently, blue biotechnology
gained interest, whereby marine organisms and their products are used for the
making of valuable compounds including drugs and bioenergy. Molecules of
interest can be synthetized by the original producing organism, but in many cases
they are heterologously produced. This means that the necessary genes derived
from other organisms are cloned into the host cell of choice with the intention to
express the molecules encoded by the cloned DNA so that the host produces the
molecules that it normally does not make. The global biotechnology market size is
estimated to have a value of more than US$398 billion in 2015 and a growth
expectation at a compound annual growth rate of 12.3 %. To be profitable in this
vast market, not only the value of the molecules produced counts, but the
cost-effectiveness and environmental-friendliness of the production process are at
least as important. The main challenge therefore is to have the most effective
production process for lowering the cost of the final product to obtain a commer-
cially viable process. Optimization of microbes in production processes has been
done over the past decades using, for example, random mutagenesis and selection,
identification of metabolic reactions whose activities should be modified to achieve
the desired cellular objective, genome-scale modeling of metabolism, and by fer-
mentation optimization. More recently, these approaches are enhanced by synthetic
biology tools.

To produce heterologous molecules, a variety of different expression systems
has been described, each with its own advantages and disadvantages. The most
popular host is Escherichia coli, as proven by the fact that nearly half of the
approved recombinant biopharmaceuticals are synthesized using this host. Reasons
why E. coli is so popular in recombinant protein production and as a workhorse in
the laboratories of academia and the biopharma industry are obvious: its genetics
are far better understood than those of other microorganisms; there are many
genetic tools available, and proteins, if expressed, can be obtained in high pro-
duction yields. As other bacteria, E. coli grows quickly on cheap media to high cell
density. A drawback, however, is that E. coli are Gram-negative bacteria inherently
having an outer membrane bilayer (OM) composed of lipopolysaccharides (LPS).
The OM acts as an effective permeability barrier hindering secreted proteins from
being released into the extracellular medium. LPS contains the endotoxin lipid A,
that if released in the blood can cause septic shock, a systemic inflammatory
response syndrome. When overexpressed in E. coli, many proteins become mis-
folded and accumulate in the cytoplasm as inclusion bodies. To become active,
these inclusion bodies need to be solubilized, and proteins refolded into bioactive
molecules, an often cumbersome process, with poor recovery and accounting for
the major cost in the production process of recombinant proteins. Therefore, new
solubilization techniques have been proposed, as well as genetic approaches to
make E. coli a better host, for example, engineering E. coli strains that possess an
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oxidative cytoplasmic environment that favors disulfide bond formation, overex-
pression of different chaperones or combinations thereof, the fusion of appropriate
tags to the N- or C-terminus of the overexpressed protein, secretion in the medium
using the alpha-hemolysin secretion system. These improvements can be helpful,
but are not used at an industrial scale, and depending on the proteins to be obtained
other host cells derived from Gram-positive bacteria might be a better option.

An important asset is that Gram-positive bacteria are monoderm with a cell
envelop that surrounds the cytoplasmic membrane with a thick peptidoglycan layer
and associated teichoic acids. This structure protects the cell from mechanical or
osmolytic lysis and is an anchor place for proteins, glycopolymers, and cations.
Notwithstanding its complex structure, the cell envelop of Gram-positive bacteria is
permeable to proteins as it does not contain an outer membrane. Consequently,
secreted proteins will be released into the culture medium, where they can obtain
their native conformation simplifying downstream processing. This is an advantage
for the industrial production of heterologous proteins.

In this review, a survey will be presented about the protein secretion pathways in
Gram-positive bacteria together with possible applications for specific species.
Complementary to the beneficial properties of heterologous expression in
Gram-positive bacteria, strategies for enhancing heterologous protein production
are developed to acquire commercially acceptable production and yield. This
review will further give a brief compilation of approaches tackling the bottlenecks
at the level of expression up to metabolic fluxes.

2 Protein Secretion Pathways in Gram-Positive Bacteria

Protein secretion is a vital process for all organisms, since about 35 % of all
proteins made in a cell are either membrane-embedded or secreted (Orfanoudaki
and Economou 2014). To do so bacteria have different secretion pathways at their
disposal. Whereas at least 7 diverse secretion systems (type I–VII) have been
identified for Gram-negative bacteria, 6 protein translocation systems were reported
for Gram-positive bacteria [for an overview, see Forster and Marquis (2012)] as
explained below for Gram-positive bacteria. Only two of them are used for
biotechnology purposes (Fig. 1).

2.1 General Secretion (Sec) System

The most important protein secretion pathway is the general secretion (Sec) system,
which directs proteins to the cytoplasmic membrane for their insertion into or
translocation across the membrane. Proteins destined for secretion are in general
synthesized as preproteins with an N-terminally extended sequence, named the signal
peptide. The primary sequences of signal peptides are not homologous, although they
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do have 3 common structural features: a net positively charged N-terminus, a
hydrophobic core region (H-region), and a polar C-terminal end containing the signal
peptidase recognition site. In bacteria, the signal peptide is between 20 and 30
residues long, but can contain even more than 50 amino acids residues depending on
the species and the protein to be secreted. The role of the signal peptide is to guide the
protein to the secretion channel following binding to soluble targeting factors. The
involvement of chaperones to target newly synthesized proteins to the translocation

Fig. 1 Overview of protein secretion pathways of Gram-positive bacteria and their possible use in
biotechnology
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pathways, either co- or posttranslationally, is best studied for E. coli, as summarized
hereafter. The chaperones trigger factor (Tf), DnaK/DnaJ/GrpE (DnaKJE) and
GroEL do not only play a major role in the folding of newly synthesized cytosolic
proteins, but are also important for posttranslational protein targeting (Grady et al.
2012; Castanie-Cornet et al. 2014). Besides Tf, DnaKJE and GroEL, of prime
importance for secretion in proteobacteria, is SecB, which keeps proteins in an
unfolded secretion-competent state and delivers them to the Sec translocon SecYEG
via its interaction with SecA, the dimeric ATPase subunit of bacterial protein
translocase (Karamanou et al. 1999). The peripherally associated motor protein SecA
drives then the protein translocation step by repeated cycles of ATP-binding and
hydrolysis resulting in SecA membrane insertion/deinsertion and stepwise exporta-
tion of the preprotein through the channel (Chatzi et al. 2013). Additional energy
promoting translocation, when the preprotein is detached from SecA, comes from the
proton motive force [PMF; (Schiebel et al. 1991)]. During or following translocation,
the signal peptide is cleaved off by the membrane-embedded signal peptidase I or II
(the latter specializing on secreted lipoprotein signal peptides) at the signal peptidase
recognition site located in its C-terminal end. This recognition site is often a
canonical A-X-A motif, but other residues are permitted as well. It was recently
shown by computational analyses of *1500 genomes that numerous major evolu-
tionary clades have replaced the canonical signal peptide sequence with novel motifs
(Payne et al. 2012).

Besides the Sec pathway, there is also the signal recognition pathway (SRP) for
cotranslational secretion that in bacteria mainly deals with membrane protein
insertion and to a lesser extent with protein secretion. SRP binds to particularly
hydrophobic N-terminal signal sequences or hydrophobic transmembrane segments
as they emerge from the ribosome. The SRP/RNC (ribosome nascent chain)
complex interacts with the membrane-bound SRP Receptor (SR) and the delivery of
the RNC to the translocation channel SecYEG in the membrane finally leads to the
dissociation of the SRP/SR complex, whereupon the preprotein is driven across the
translocation channel with the help of continuing translation and/or SecA.

It is generally assumed that the secretion of proteins in Gram-positive bacteria
follows similar steps as they occur in E. coli since genes involved in the Sec-
dependent protein secretion pathway are identified in the genome of Gram-positive
bacteria. Nonetheless SecB is absent from the genomes of Gram-positive bacteria,
although some SecB-like genes are present. For example, SecB-like protein (Rv1957)
is present in theMycobacterium tuberculosis genome where it specifically controls a
stress-responsive toxin–antitoxin system. Experiments suggest that Rv1957 could
play a role in protein export of M. tuberculosis (Sala et al. 2014), but its role is
completely different from that of SecB in Gram-negative bacteria. In Bacillus subtilis,
the SecB chaperone function has been attributed to CsaA (Shapova and Paetzel 2007).
How Sec-dependent secretory proteins are kept in a Sec-secretion-competent way,
and which chaperones are involved is not clear yet.
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2.2 Twin-Arginine Transport Pathway (Tat)

A special characteristic of the Tat pathway is that proteins are transported across the
cytoplasmic membrane in a folded state, and the energy for translocation comes
from the proton motive force (PMF). Many Tat substrates receive cofactors and fold
prior to translocation. Based on genome sequence analysis of prokaryotes, the Tat
pathway is present in nearly 80 % of all bacteria, also in Archaea (Simone et al.
2013). Results indicate that the Tat pathway is utilized to highly varying extents. It
operates in parallel with the Sec pathway. Signal peptides that target proteins to the
Tat pathway resemble Sec signal peptides, but with a conserved S/T-R-R-x-FLK
consensus motif at the end of the N-region, where the twin-arginines are invariant
and normally essential for efficient export by the Tat pathway (Stanley et al. 2000).
However, the Tat-specific signal sequence with two arginine residues may not be an
absolute prerequisite for the Tat pathway (Watanabe et al. 2009). The Tat
translocon comprises two kinds of small membrane proteins: TatC, a highly
hydrophobic protein with 6 predicted transmembrane helices, and with its N- and
C-termini at the cytoplasmic face of the membrane. The Tat translocon contains
also one or two members of the TatA protein family, named TatA and TatB,
sequence-related proteins with a common structure, each predicted to comprise a
membrane-spanning α-helix at the N-terminus, immediately followed by an
amphipathic helix located at the cytoplasmic side of the membrane and a C-terminal
region of variable length. TatB and TatC form an oligomeric, multivalent receptor
complex that binds Tat substrates, while multiple protomers of TatA assemble at
substrate-bound TatBC receptors to facilitate substrate transport (Cleon et al. 2015).
Minimal Tat systems contain only one type of TatA and one type of TatC. When
the signal peptide of a Tat-dependent protein is recognized, it will be bound by a
multi-subunit TatBC complex located in the membrane and Tat secretion is initi-
ated. This binding event triggers the PMF-dependent recruitment and oligomer-
ization of TatA protomers from a pool in the membrane to form the active
TatABC-containing translocation site (Berks 2015). Possible cross talk between the
Tat- and Sec-dependent protein secretion pathways has been reported (Goosens
et al. 2014). This assumed interaction, however, needs to be further investigated.

In actinomycetes including Streptomyces lividans and other streptomycetes,
Mycobacterium (McDonough et al. 2005) and Corynebacterium (Oertel et al. 2015),
TatA, TatB, and TatC are the components for this pathway, similarly to
Gram-negative bacteria. Of the Tat components in Streptomyces, TatC is essential
whereas TatA and TatB are individually dispensable and are, next to the
membrane-embedded localization, also found as active soluble complexes in the
cytoplasm (De Keersmaeker et al. 2007). In contrast to the majority of
Tat-containing organisms in which the Sec pathway is the major route for protein
transport, the Tat pathway seems to be an important protein secretion route in
Streptomyces. It is estimated that nearly 20 % of proteins of the extracellular pro-
teome is secreted via the Tat pathway (Widdick et al. 2006). Using enhanced green
fluorescent protein (eGFP) and mCherry fusions of the proteins of the Tat
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machinery, Willemse et al. (2012) tried to determine their subcellular localization in
Streptomyces coelicolor throughout the complex life cycle of this organism. They
showed that TatA, TatB, and TatC dynamically co-localize in the vegetative hyphae,
with a strong preference for apical sites in growing hyphae. For Corynebacterium,
secretion is mainly studied in Corynebacterium glutamicum (Kikuchi et al. 2006).
A functional C. glutamicum Tat system requires TatA and TatC, while the TatB
protein seems to be dispensable, but it is important for maximal efficiency, and it was
also found to be essential for the secretion of a heterologous Tat-dependent model
protein into the C. glutamicum culture supernatant (Oertel et al. 2015). It was further
shown that TatB (in combination with TatA and TatC) is strictly required for
unimpaired aerobic growth (Oertel et al. 2015).

Both M. tuberculosis and Mycobacterium smegmatis have a functional Tat
pathway. As for other actinomycetes, the Tat translocon consists of TatA, TatB, and
TatC (McDonough et al. 2005). In M. tuberculosis, the Tat pathway is essential for
growth (Saint-Joanis et al. 2006) as concluded from the inability to obtain viable
deletion mutants. This contrasts with M. smegmatis for which viable Tat mutants
could be obtained, although these mutants showed growth defects. In addition,
increased sensitivity to β-lactam antibiotics was also noticed, this as a consequence
of reduced export of β-lactamase BlaS, a protein with a predicted Tat signal peptide
(Saint-Joanis et al. 2006).

For staphylococci, only some species contain a functional Tat system, including
Staphylococcus carnosus (Meissner et al. 2007), Staphylococcus haemolyticus
(Yamada et al. 2007), and Staphylococcus aureus (Biswas et al. 2009). The Tat
system is composed of TatA and TatC and was proven to translocate iron-dependent
peroxide FepB in S. aureus (Biswas et al. 2009). B. subtilis secretion system has
been studied extensively (Goosens et al. 2014). Genes for two TatC (TatCd and
TatCy) and three TatA components (TatAd, TatAy, and TatAc) have been identified
in the B. subtilis genome. The core Tat complex consists of TatA and TatC, namely
TatAy–TatCy, of which the latter is constitutively expressed and exports more
substrates, including the Dyp-type peroxidase EfeB (YwbN), the Rieske iron-sulfur
protein QcrA, and the alkaline phosphatase YkuE, while TatAdCd is only expressed
under phosphate limitation (Pop et al. 2002). A third TatA-like protein TatAc can be
combined as TatAcCd and TatAcCy. It is supposed to be an intermediate evolu-
tionary step in TatA–TatB specialization (Goosens et al. 2015).

2.3 Type IV Secretion Systems (T4SSs)

T4SSs transport a diverse array of substrates from DNA to nucleoprotein complexes
and effector proteins. They are multi-subunit, membrane-spanning translocation
systems found in Gram-positive as well as Gram-negative bacteria and in some
archaea (Chandran Darbari and Waksman 2015). They have evolved from a
self-transmissible, single-stranded DNA conjugation system with VirB4-like
AAA + ATPase to systems with an enormous diversity in their overall structure
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and the types of substrates secreted. T4SSs can be divided into 3 groups (Bhatty et al.
2013): (1) a conjugation system to deliver ssDNA and one or more proteins across
the membrane to the bacterial or eukaryotic target cell whereby direct cell contact is
required; (2) the effector translocation system by a contact-dependent mechanism to
deliver proteins to the cytosol of eukaryotic target cells, and (3) a release/uptake
system to export/import molecules from/to the extracellular milieu. As a conse-
quence, T4SSs are involved in a variety of functions including type 4 pilus forma-
tion, toxin and other protein secretion, gene transfer, and biofilm formation. Secreted
substrates are involved in pathogenesis and adaptation to the cellular host envi-
ronment. T4SSs translocate also proteins that form pilin-like structures (Chen and
Dubnau 2004). A typical characteristic of these proteins is the presence of a spe-
cialized leader peptide that is cleaved off by a cognate membrane-bound type 4
prepilin peptidase during the process of secretion. Only T4SS conjugation systems
are known in Gram-positive bacteria and Archaea to date.

2.4 Type VII Secretion System (T7SS)

Recent studies have uncovered a T7SS or early secretory antigen 6-KDa
(ESX) secretion system. Originally, it was detected via an in silico analysis of
the M. tuberculosis virulence effectors ESAT-6 (early-secreted antigenic target,
6 kDa) and the associated 10-kDa culture filtrate protein (CFP-10, EsxB) encoded
by the esxA and esxB genes, respectively. They were known to be secreted despite
the lack of a recognizable secretion signal (Tekaia et al. 1999). Esx proteins are
characterized by their small size (*100 residues) and a WXG motif in the middle
of the protein that forms a hairpin bend (Pallen 2002). Therefore, an alternative
name was proposed for T7SS, the WXG100 secretion system (Wss) (Sutcliffe
2011), because distant homologues of ESAT-6/CFP-10 identified in Gram-positive
bacteria all share a central WXG motif. T7SSs are widespread in actinomycetes and
Gram-positive bacteria and affect a range of bacterial processes including sporu-
lation, conjugation, and cell wall stability (Sysoeva et al. 2014). The T7SS is a
complex system with many components and substrates, at least in mycobacteria. M.
tuberculosis has five T7S systems, designated ESX-1 through ESX-5 (Stoop et al.
2012), which show similarity in gene content and gene order. Of these T7S systems,
3 are important for survival in the host, namely ESX-3, responsible for the uptake of
iron and zinc, and ESX-5, responsible for the secretion of immunomodulatory
effector proteins, and ESX-1 is most crucial for virulence. First detected in M.
tuberculosis (Stanley et al. 2003), it was shown afterward also to be present in the
non-pathogenic species M. smegmatis (Converse and Cox 2005) and the fish
pathogen Mycobacterium marinum (Abdallah et al. 2009). On the other hand,
ESX-1 is absent in Mycobacterium bovis BCG, the attenuated vaccine strain.
PE/PPE is also secreted by the T7SS. The PE/PPE protein family, which has a
conserved signature motif proline–glutamate and proline–proline–glutamate resi-
dues near the start of their encoded proteins, affects mycobacterial interactions with
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the innate immune system, specifically inhibiting macrophage function (Ahmed
et al. 2015). ESX-1 and ESX-5 have been implicated in major roles in the secretion
of PE/PPE proteins (Abdallah et al. 2009). ESX secretion seems to be crucial for
establishing and maintaining the infection for M. tuberculosis. A PSI-BLAST
search on sequences retrieved from the NCBI or the ViruloGenome databases
further evidenced the presence of ESAT-6 homologues in a number of low-GC
Gram-positive bacteria, and also in several actinobacteria other than
Mycobacterium (Pallen 2002), including all sequenced Streptomyces genomes such
as S. coelicolor, S. lividans, and S. scabies. The biological importance of this
pathway for streptomycetes is, so far, less well-known and begins only just to be
revealed. For S. scabies no role in virulence for any of the T7SS components in any
of the plant infection models tested could be detected, but it was demonstrated that
components encoded by the T7SS gene cluster are required for the normal growth
and development of S. scabies (Fyans et al. 2013). By mutagenesis analysis, it was
shown that also proteins encoded by the esxBA operon and belonging to the
WXG-100 superfamily play a role in morphogenesis in S. coelicolor (San Roman
et al. 2010). In the sequenced genomes of other Gram-positive bacteria including B.
subtilis, Bacillus anthracis, Clostridium acetobutylicum, Listeria monocytogenes,
and S. aureus, ESAT-6 homologues were also discovered (Pallen 2002) and con-
firmed experimentally, for example, for S. aureus (Burts et al. 2005), B. subtilis
(Sysoeva et al. 2014), B. anthracis (Fan et al. 2015).

2.5 Flagella Export Apparatus (FEA)

This specific protein export apparatus serves to secrete proteins that form the flagella
hook, filament, and cap (Erhardt et al. 2010). Flagellar T3SS are present both in
Gram-positive and Gram-negative bacteria, and it has been proposed that the type III
secretion required for pathogenesis evolved from flagellar-specific T3SS (Hueck
1998). To transport proteins that form the flagella hook, filament, and cap to the distal
growing end, the FEA utilizes ATP and PMF as the energy source (Paul et al. 2008).
The flagellar export apparatus is thought to be the ancestor of all T3SS functions in
the export of several components of the flagellum across the cytoplasmic membrane
into the channel of the flagellum for assembly. Not much is known, however, about
the FEA for Gram-positive bacteria. One report mentions that in B. subtilis FlgM is
secreted by the flagellar export apparatus, consistent with the model of morpho-
genetic coupling proposed in Salmonella enterica (Calvo and Kearns 2015).

2.6 Holins

Originally holins were used to describe a group of phage-encoded pore forming
membrane proteins that control access of phage-encoded endolysins to the
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peptidoglycan layer. During the phage lytic cycle, holins insert into the bacterial
cell membrane to translocate phage-encoded cell wall hydrolases (Wang et al.
2000). Holins may also be important for a variety of other functions in
Gram-positive phage-free bacteria (Saier and Reddy 2015) such as (i) spore mor-
phogenesis and germination in B. subtilis (Real et al. 2005); (ii) biofilm formation
and DNA release for S. aureus (Fischer et al. 2014) (iii) programmed cell death and
acetate metabolism in S. aureus (Ahn et al. 2012); and (iv) biofilm formation and
oxidative stress adaptation in Streptococcus mutans (Westbye et al. 2013).
A number of practical applications have been described for the holin/lysin systems,
for example, aiming to control bacterial or viral infections (Yan et al. 2013; Shi
et al. 2012) or to deliver drugs, nucleic acids, and proteins to animal cells (Kuo
et al. 2009).

2.7 Non-classically Secreted Proteins

Extracellular proteomic studies revealed that a number of proteins are found in the
extracellular medium without any secretion signal (Tjalsma et al. 2004). As their
secretion route is not known, they are indicated as “non-classically secreted pro-
teins” (Wang et al. 2016). Although there is a debate if these proteins in the
extracellular medium are not a consequence of cell lysis, evidence was given by
Yang et al. (2011), who experimentally showed that the B. subtilis carboxylesterase
Est55, and several other cytoplasmic proteins are secreted through a process in
which the protein domain structure plays a contributing role. Furthermore, using
enolase to which the heterologous protein GFP was fused it was shown that the
intact long N-terminus including the hydrophobic helix domain is required to serve
as a non-cleavable signal for the secretion of enolase (Yang et al. 2014). Moreover,
signals of “non-classically secreted proteins” could be more generally used for the
secretion of heterologous proteins (Chen et al. 2016).

Despite the presence in Gram-positive bacteria of a variety of different export
systems, the industrial production of (heterologous) proteins has relied primarily on
the Sec-dependent pathway and to a far lesser extent the Tat pathway. Below an
overview is given for using these systems in a number of different Gram-positive
host cells.

3 Gram-Positive Bacteria as Hosts for Heterologous
Protein Production

Gram-positive bacteria are considered interesting hosts for the production of
heterologous proteins. An important advantage they have is that secreted proteins are
released into the culture medium in which the conditions are favorable for the correct
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folding of heterologous proteins. This contrasts to the reducing environment of the
cytoplasm, in which secretory proteins that undergo oxidative folding, cannot fold. In
addition, secreted proteins have the advantage that the mature protein has no
methionine extension, but the authentic N-terminal amino acid sequence because of
the cleavage by the signal peptidase. Therefore, several Gram-positive bacteria have
been evaluated as hosts for the secretory production of heterologous proteins. Reasons
why specific species have been tested are, for example, their industrial importance (or
that of their relatives) and known fermentation technology, their proven secretion
capacity, the absence of pathogenicity and toxicity and available tools for genetic
manipulation. In Table 1, a number of possible advantages/disadvantages are com-
pared for Gram-positive bacteria versus Gram-negative bacteria (E. coli).

3.1 Streptomyces

Streptomycetes belong to the phylum Actinobacteria, filamentous or rod-shaped
bacteria, of which the filamentous forms tend to produce branching filaments. These
Gram-positive soil bacteria are widespread in nature, they have a high guanine and
cytosine content in their DNA (70–73 % GC) and a remarkably large genome size
of up to 11.9 Mbps (S. bingchenggensis BCW-1; Accession ID: CP002047) (Wang
et al. 2010) and with gene clusters from just a few to more than 30 pathways for the
biosynthesis of a diverse range of secondary metabolites (Nett et al. 2009). Various
Actinomycetales species are the richest source of natural products, they account for
about 45 % of all microbial bioactive secondary metabolites with about 80 % of the
7600 compounds being produced by streptomycetes (Berdy 2005). Many of these
secondary metabolites are of industrial and pharmaceutical value, including clini-
cally important antibiotics for human and veterinary medicine or applied in agri-
culture, anticancer, and immunosuppressive agents, other pharmacologically active
compounds, antiparasitic agents, and herbicides. Streptomycetes also play an
important role in nature. Thanks to the large variety of enzymes they produce, such
as cellulases and chitinases, they help to break down decaying vegetation as such
playing an important role in the C- and N-cycle and replenishing the soil with
nutrients. Typical for streptomycetes is their complex life cycle: Under suitable
growth conditions, exospores germinate and subsequently develop into hyphae,
which frequently become branched forming the vegetative mycelia that subse-
quently differentiate to aerial mycelia. Finally, aerial mycelia become divided into
long chains of prespore compartments, which eventually mature to thick-walled
exospores. In this phase of the life cycle, a large array of secondary metabolites is
produced (van Wezel and McDowall 2011).

Strains of the class Actinobacteria include some of the most common soil, fresh-
water, and marine life. Other Actinobacteria inhabit plants and animals, including
some pathogens such as M. tuberculosis, several strains of Corynebacterium,
Nocardia, Rhodococcus spp., and a few Streptomyces species (Goodfellow 2012).
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Table 1 Strengths and weaknesses of Gram-positive host cells compared to E. coli for
heterologous protein production

Gram-positive bacteria Gram-negative bacteria (E. coli)

Strengths

Growth and
physiology

Fast unicellular growth for a number
of strains (e.g., Bacillus,
Lactobacilli, Corynebacterium),
facilitating easy fermentation
standardization

Fast growth, unicellular facilitating
easy fermentation standardization

Many different expression hosts
available

Media Cheap, no complex production
media

Cheap, no complex production
media

Genetic tools DNA sequences of most important
strains are available

Extensive knowledge on genetics

Many genetic tools available, hereby
facilitating easy cloning and
recombination

Large variety of promoters (strong
and regulated)

Yield Very high expression levels; high
biomass yield in fed-batch
fermentation

Safety GRAS status (Lactobacilli, B.
subtilis, C. glutamicum, S. lividans)

Product quality
and downstream
processing

Correct preprotein processing during
secretion creating a native mature
protein

Extracellular secretion allows easy
downstream processing and product
recovery

Extracellular secretion in the
medium promotes correct folding

Extracellular secretion minimizes
contamination from host protein

Hosts with different GC content

Extensive knowledge of industrial
processes for several hosts

Weaknesses

Growth and
physiology

Outer membrane with
lipopolysaccharides requiring careful
downstream processing

Streptomyces: slower growth,
mycelium morphology and clump
formation for Streptomyces making
fermentation more challenging

Genetic tools Limited number of genetic tools

Less variety of promoters
(continued)
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Over the last 20 years, some of these high-GC Gram-positive bacteria have been
studied extensively as an alternative expression system [reviewed in Anné et al.
(2014)]. Streptomyces is extremely well suited for the expression of DNA from
other actinomycetes and genomes of high-GC content. Furthermore, due to its high
innate secretion capacity, Streptomyces can be a better system than E. coli for the
production of many extracellular proteins. The host of choice for secretory protein
production of heterologous proteins using Streptomyces is S. lividans. The main
reasons are its limited restriction–modification system as such avoiding the
requirement to use non-methylated DNA for transformation or conjugation, and its
low endogenous protease activity, when compared to many other streptomycetes
(Butler et al. 1996). Based on whole-genome sequence analysis of S. lividans TK24
(Ruckert et al. 2015) and RNAseq analysis, S. lividans transcribes only a limited
number of genes encoding proteases under standard growth conditions in minimal
media. Only one-third of the genes encoding secreted proteases are transcribed at
medium to high level (Tobias Busche and Jörn Kalinowski, personal communi-
cation). In case of cytoplasmic or membrane-bound proteases, 75 % of the
encoding genes are transcribed at medium to high level.

A wide variety of host–vector systems have been developed, many of which are
based on plasmid pIJ101, such as pIJ702 and pIJ486 (Kieser et al. 2000), but in
addition, a large array of new vectors has been developed including replicative
plasmid vectors, integrative plasmid and phage vectors, and special vectors for
integrating DNA into the Streptomyces chromosome [for an overview see Rebets
et al. (2016)]. As protoplast transformation with Streptomyces is time-consuming,
conjugative plasmids are most often used for cloning purposes.

A number of heterologous prokaryotic and eukaryotic proteins have been suc-
cessfully produced to economically interesting yields. For example, the L-Lysine
α-oxidase (LysOX) gene from Trichoderma viride, a homodimeric 112-kDa
flavoenzyme LysOX, was cloned and heterologously expressed in S. lividans TK24

Table 1 (continued)

Gram-positive bacteria Gram-negative bacteria (E. coli)

Product quality
and downstream
processing

Product degradation likely for
several Bacillus strains due to an
excess of proteases

N-terminal methionine of
non-secreted proteins; extracellular
protein secretion not easily achieved

Proteins are not secreted and
inclusion bodies can be formed

Inclusion bodies make downstream
processing more expensive and
environmentally unfriendly

Minimal posttranslational
modification of proteins

Minimal posttranslational
modification of proteins

Multi-domain eukaryotic proteins
expressed are difficult to express as
functional proteins

Multi-domain eukaryotic proteins
expressed are difficult to express as
functional proteins
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with an enzyme activity up to 9.8 U/mL. Cel6A-(His)6 was secreted in S. lividans
supernatant after 84 h of cultivation amounted to 5.56 U/mL. The maximum
expression level of Cel6A-(His)6 in S. lividans supernatant reached up to 173 mg/L
after 84 h of cultivation (Li et al. 2013). Using the promoter and signal sequence of
subtilisin inhibitor of S. venezuelae CBS762.70 (Van Mellaert et al. 1998) yields of
up to 300 mg/mL biologically active mouse TNFα could be obtained and mono-
meric red fluorescent protein yielded up to 500 mg/mL. In some cases, proteins
which could hardly or not be produced in B. subtilis or E. coli such as e.g.,
xyloglucanase from Jonesia sp. (Sianidis et al. 2006) and CelA from Rhodothermus
marinus (Halldórsdóttir et al. 1998) were successfully produced as secreted proteins
with S. lividans. Mycobacterium Ag85A produced in S. lividans used in combi-
nation with rCFP-10, rESAT-6, rAPA, rPstS-1 obtained via E. coli heterologous
production in an ELISA multi-antigen was shown to be an efficient, complementary
tool for the diagnosis of active pulmonary tuberculosis (Ayala et al. 2015). In other
cases, however, only low yields could be obtained, a phenomenon also experienced
with other expression systems. For the examples mentioned above, the
Sec-dependent secretion pathway was used. For a more complete overview of
heterologous proteins secreted using recombinant S. lividans, see Anné et al.
(2012). After the detection of the Tat-dependent pathway in bacteria, one was
convinced that the latter pathway could be a solution for the production of
heterologous proteins not or hardly produced via the Sec pathway. However, so far
this hope has not been materialized. This does not mean, of course, that the Tat
pathway cannot be used for the production of heterologous proteins, but it still has
to be investigated at a larger scale. Surprisingly, Sec-dependent translocation in tat
deletions mutants and especially in ΔtatB mutants showed an increase
(Schaerlaekens et al. 2004). No real explanation for this phenomenon could be
given up to now.

3.2 Corynebacterium

Other Gram-positive bacteria with high-GC content are corynebacteria. Some
species such as C. diphtheria are important pathogens, while the majority are not
pathogenic and some are industrially very important as major producers of amino
acids including glutamic acid, lysine, threonine and valine (Mitsuhashi 2014),
nucleotides, and vitamins. In particular, C. glutamicum is of major industrial
importance. Corynebacteria are also able to produce large amounts of extracellular
proteins despite their diderm-mycolate cell wall. C. glutamicum has several
attractive features, making it a potentially interesting host for the production of
heterologous proteins at an industrial scale: it secretes few endogenous proteins,
and no proteases in the culture filtrate are detected, although a proteome analysis
revealed the presence of more than 40 proteins in the culture supernatant (Hermann
et al. 2001). As a consequence, C. glutamicum has been shown to be a valuable host
for the production of heterologous proteins including functionally active human
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epidermal growth factor (Date et al. 2006), thus demonstrating its potential for
industrial-scale production of human proteins. Expressed proteins can be secreted
through the Sec or the Tat pathway. For example, isomaltodextranase (IMD) of
Arthrobacter globiformis and Streptomyces mobaraensis pro-transglutaminase
(MTG) was produced via the C. glutamicum Tat pathway and yields could reach
approximately 100 mg/L in flask cultures. This achievement implies a great
potential for the industrial-scale production of proteins that are not efficiently
secreted via other systems (Kikuchi et al. 2006).

3.3 Bacillus

Bacillus species are aerobic, endospore-forming, rod-shaped cells that are ubiqui-
tously present in nature. Various Bacillus species including B. subtilis, Bacillus
licheniformis, and Bacillus amyloliquefaciens can produce various enzymes
including proteases, amylases, and lipases in amounts up to 25 g/L. These proteins
are used in different industrial and household applications such as in the cleaning,
paper, textile, food, and feed industry and also for bioremediation. Because of the
efficient protein secretion of these bacilli, their secretion process is intensively
investigated, in particular for B. subtilis which for this purpose is considered the
model organism among Gram-positive bacteria. More insight in the fundamentals
of the secretion process is meaningful to develop strains with superior secretion
capacity. Whereas improvement of protein secretion was in general quite successful
for homologous proteins, production of heterologous proteins was more cumber-
some. The most important reasons therefore are a combination of the properties of
the secretion pathway, the bacterial cell envelope, and the presence of a number of
membrane-bound, cell-wall-bound, and secreted proteases (Westers et al. 2008).
For example, the quality control proteases, WprA, HtrA, and HtrB, and feeding
proteases, NprB, AprE, Epr, Bpr, NprE, Mpr, and VprA, quickly degrade
slow-folding, or wrongly folded proteins (Pohl and Harwood 2010). Nevertheless,
some heterologous prokaryotic and eukaryotic proteins could be well expressed, as
quantities ranging from less than 10 µg up to more than 200 mg/L could be
obtained [for an overview, see Schumann (2007), Kang et al. (2014)] Other reports
mention the overproduction of α-amylase from B. licheniformis in a recombinant B.
subtilis strain (Chen et al. 2015a); and the accumulation of biologically active hIL-3
in the growth medium in amounts of up to 100 mg/L (Westers et al. 2006).

3.4 Lactobacilli

Lactic acid bacteria (LAB) are a phylogenetically diverse group of Gram-positive,
aerotolerant, non-spore-forming rods or cocci with a low-GC genome. They fer-
ment carbohydrates with lactic acid as the major end-product. They are commonly
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used to ferment food and as probiotics. Lactobacilli are part of the normal flora of
humans and animals. The reason why strains of LAB, mainly lactococci and lac-
tobacilli, are chosen as cell factories are plentiful: (1) many species are generally
recognized as safe (GRAS) organisms because they are traditionally used in food
products; Lactobacillus infections occur very rarely; if so, they are opportunistic
infections, especially in immunocompromised individuals (Schlegel et al. 1998);
(2) genetic tools for manipulation of LAB are well-developed; (3) strains of
Lactococcus lactis secrete relatively few proteins and express very few
membrane-bound or secreted proteases. In such strains, HtrA is the only protease
that has been characterized on the extracellular surface (Poquet et al. 2000). (4) A
variety of constitutive and inducible vector systems have been developed including
the well-known 2-component NIsin-Controlled gene Expression system (NICE).
This system derives from the auto-induced expression of nisin, an antibacterial
polycyclic peptide produced by some strains of L. lactis (Kuipers et al. 1998).
When nisin binds to the receptor NisK, a membrane-associated protein kinase, NisR
becomes phosphorylated. The activated NisR then induces the nisin promoter
(Mierau and Kleerebezem 2005). Small amounts of nisin are sufficient to activate
the promoter. The NICE system is widely used for the expression of heterologous
proteins in L. lactis (Mierau and Kleerebezem 2005).

Several proteins could be efficiently secreted using L. lactis and Lactobacillus
plantarum as hosts as illustrated hereafter with a few examples. S. aureus nuclease
NucA was secreted in amounts of more than 200 mg/L culture medium (Tremillon
et al. 2010; Karlskas et al. 2014); the C-terminal region of staphylococcal HtrA
transmembrane proteins could efficiently be produced and secreted in L. lactis as
correctly folded proteins (Samazan et al. 2015); L. lactis was shown to be a suitable
host to express a variety of structurally different glycoside hydrolases of LAB in
their native, multi-meric form (Schwab et al. 2010); B. subtilis oxalate decar-
boxylase (Anbazhagan et al. 2013); Thermobifida fusca cellulases and xylanases to
convert biomass to biofuels using Lactobacillus plantarum as a host (Morais et al.
2013); recombinant L. lactis was able to secrete biologically active human
interferon-γ inducible protein-10 (Villatoro-Hernandez et al. 2008). Chitosanase
(CsnA) and a β-mannanase (ManB) from B. licheniformis and B. subtilis, respec-
tively, were efficiently produced in L. plantarum (Sak-Ubol et al. 2016). More
examples can be found in an overview given by Le Loir et al. (2005). For the
expression and secretion of the heterologous proteins, mentioned in these examples,
different plasmids (inducible), promoters, and signal peptides have been used.

An additionally interesting aspect of recombinant lactococci is that they can be
used as live vectors for the delivery of antigenic or therapeutic proteins to mucosal
surfaces in the framework of the treatment of allergic, infectious, and gastroin-
testinal diseases. This use has the potential to elicit antigen-specific secretory
immunoglobin A responses at mucosal surfaces (Pontes et al. 2011;
Bermudez-Humaran et al. 2011). L. lactis engineered to secrete bioactive molecules
such as Interleukin-10 (IL-10), an anti-inflammatory cytokine, was shown to be
beneficial in the treatment of inflammatory bowel disease (IBD). L. lactis producing
IL-10 markedly reduced the pathology of colitis in several mouse models. Another
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strain expressing a Fab against TNF-α was also effective in the treatment of IBD
(Vandenbroucke et al. 2010). A truncated version of the A2 antigen from
Leishmania donovani expressed in L. lactis as cell wall anchored protein effectively
gave induced high levels of antigen-specific serum antibodies (Yam et al. 2011).
Subcutaneous immunization with live L. lactis expressing the LACK antigen
anchored to the cell wall and L. lactis secreting IL-12 significantly delayed footpad
swelling in Leishmania major infected BALB/c mice (Hugentobler et al. 2012). For
a more extensive overview of protection studies with LAB vaccines, see among
others in Wells and Mercenier (2008).

In addition, lactobacilli can be used for the delivery of DNA at the mucosal
membrane. To improve the delivery, so-called invasive L. lactis strains were
developed. These recombinant strains expressed S. aureus fibronectin-binding
protein A or internalin A of Listeria monocytogenes (de Azevedo et al. 2015) or a
mutated form thereof (Pontes et al. 2014) to increase the invasiveness of the strain
and subsequent DNA delivery. Several examples showed the feasibility of this
approach to elicit an immune response using DNA vaccination with L. lactis as a
vector.

3.5 Clostridium and Bifidobacterium

These genera have in common that they are both anaerobic and Gram-positive.
Clostridia are rod-shaped, endospore-forming bacteria with a low-GC content.
Clostridium is mainly known for its pathogens like Clostridium tetani, Clostridium
botulinum, and Clostridium perfringens, which secrete potent toxins leading to the
life-threatening diseases tetanus, botulinum, and gangrene, respectively.
Clostridium difficile is mainly a nosocomial pathogen and the causative agent of
antibiotic-associated pseudomembranous enterocolitis. From the biotechnology
point of view, C. acetobutylicum is an important producer of butanol and acetone.
Pasteur was the first to report the fermentation process of butanol already in 1861
(Jones and Woods 1986). Stimulated by the First World War, the acetone and
butanol fermentation gradually became a most important industrial fermentation
processes until the 1950s. Then, the interest for the fermentative production of
butanol and acetone wasted away because of cheap crude oil prices as raw material
for their chemical synthesis. However, the acetone and butanol fermentation
recently regained importance in the framework of renewable resources for biobu-
tanol production. For this reason, several individual cellulosomal components and
mini-cellulosomes from C. thermocellum and Clostridium cellulolyticum have been
cloned and expressed in C. acetobutylicum and their gene products such as Cel5A,
Cel8C, and Cel9M were successfully secreted into the medium. On the other hand,
other cellulosomal component proteins such as Cel48F, Cel9G, and Cel9E could
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not be recombinantly obtained (Mingardon et al. 2011). The development of
allele-coupled exchange (ACE) (Heap et al. 2012) for Clostridium allowed the
generation of stable and iterative integrations within a relatively short period of
time. As such three genes of C. thermocellum-derived cellulosome components
inserted into the genome of C. acetobutylicum could be efficiently expressed, with
subsequent secretion and complex formation (Kovacs et al. 2013).

Clostridium spp. came also in the focus of research for a totally different
application, notably in the framework of anticancer therapy. As anaerobic bacteria
survive and multiply only under anaerobic conditions, after intravenous adminis-
tration they selectively colonize, if present, in the hypoxic/necrotic areas of solid
tumor tissue, a consequence of inconsistent and insufficient blood flow within
regions of the tumor. When administered to a tumor-bearing body, the
hypoxic/necrotic zones in solid tumors are ideal niches for the growth of anaerobic
bacteria, as other tissues in a body are well oxygenized. This selectivity is
repeatedly demonstrated with experimental animals (Umer et al. 2012; Roberts
et al. 2014). Strains tested during these experiments belong to the following species:
C. acetobutylicum, C. sporogenes, an attenuated C. novyi-NT or C. beijrinckii and
more recently also C. ghonii (Wei 2013). When multiplying in these tumor tissues,
they destroy (part of) the tumor by the hydrolytic enzymes they produce. Besides,
by combinatorial treatment antitumor activity can be increased by using recombi-
nant strains in which genes for prodrug converting enzymes are cloned. Examples
of such genes are nitroreductase that converts the CB1954 prodrug to an active
antitumor drug (Theys et al. 2006; Heap et al. 2014) or cytosine deaminase (CDase)
which converts 5-fluorocytosine to the cytotoxic drug 5-fluorouracil. Using
appropriate signal peptides, CDase can be secreted in sufficient amounts to be of
biological relevance as is also the case for cloned TNF-α or IL-10, cytokines with
an antitumoral but also with an immune stimulating activity to combat the tumors
[for an overview see Umer et al. (2012)].

Bifidobacteria are non-spore-forming, non-motile, often branched rod-shaped
bacteria with a % GC value of circa 60. They are ubiquitously found in the intestines,
and because they have a probiotic function they are often used in yogurt. Engineered
Bifidobacterium adolescentis expressing endostatin (specifically inhibiting the
proliferation of vessel endothelial cells stimulated by basic fibroblast growth factor,
and hence also inhibiting tumor growth), when intravenously administered to
tumor-bearing mice were found only in the tumor. They inhibited angiogenesis and
tumor growth (Li et al. 2003). It must be mentioned that in this case endostatin was
not secreted into the medium, but was expressed intracellularly. The above-
mentioned results show the potential of using (recombinant) anaerobic bacteria as
tumor-specific vectors to transport anticancer genes/proteins to tumor tissues.
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4 Bottlenecks in Protein Secretion and Possible
Remediation

To be economically interesting, recombinant strains should produce sufficient
amounts of the protein of interest. However, in many cases concentrations are low
or too low. Various reasons could be at the root of the problem (see Table 2). As a
consequence, several approaches can be followed in an attempt to increase the
yield: from strain engineering at several levels up to fermentation optimization and
this using either rather empirical approaches up to more sophisticated ones,
applying state-of-the-art technologies (Fig. 2). In the following paragraphs, several
examples will be used to illustrate these possibilities.

4.1 Modulation of Components of the Protein Secretion
Pathway

It is evident that the promoter is of utmost importance for high expression levels.
Looking into the literature, a wide variety of promoters are available for different
bacteria, either constitutive or inducible. Sources of promoters vary from native to

Fig. 2 Schematic overview of possible strategies for increased protein production
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synthetic promoter libraries. Promoter strength can be compared using reporter
proteins such as β-glucuronidase (GusA) (Siegl et al. 2013), mCherry (Heiss et al.
2016) and others. To have a recent overview of different promoters used for
Streptomycetes, we refer to Rebets et al. (2016).

The availability of strong promoters does not guarantee that the protein will be
produced at sufficient levels, because bottlenecks are mainly at the secretion level
and more downstream. Therefore, several approaches have been attempted related
to the protein secretion pathway itself (Fig. 1).

4.1.1 Signal Peptide Adaptation

It is not clear what determines the sequence of an “efficient” signal peptide;
therefore, several approaches are being investigated including single amino acid
replacements in the N-terminal region of the signal peptide (Lammertyn and Anné
1998) or testing large Sec-type signal peptide libraries (Mathiesen et al. 2009;
Degering et al. 2010). Considerable differences exist between different signal
peptides but also for different mature proteins for the same set of signal peptides
and this independently of the host tested. Amino acid extension by which the amino

Table 2 Potential bottlenecks for the secretory production of recombinant proteins by
Gram-positive bacteria and possible solutions

Bottleneck Possible solutions

Unsatisfactory
expression

Change promoter

Change host strain

Change expression vector

Translation Optimize Ribosome Binding Site

Use codon-optimized genes

Secretion Modify signal peptide

Use Tat instead of Sec secretion (or vice versa)

Overexpress chaperones/foldases

Overexpress signal peptidase(s)

Overexpress Sec or Tat components

Mutate or make hybrid SecA

Use fusion proteins

Incorrect folding Overexpress foldases and chaperones

Breakdown of protein
of interest

Delete protease(s)

Metabolic burden Identify problem via—omics analysis

Bypass or solve problem by strain modification (overexpression or
deletion of target gene)

Reduce genome

Yield Optimize fermentation

Change carbon source and/or medium
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acids in the neighborhood of the signal peptidase cleavage site are conserved could
also be helpful (Sevillano et al. 2016).

4.1.2 Signal Peptidase Overexpression

As explained above, several proteins constitute the protein secretion pathway with
proteins different for the Sec- and Tat-dependent pathway. What they have in
common is the signal peptidase type I, an enzyme needed to release the signal
peptide from the mature protein upon translocation. Most Gram-negative bacteria
have only 1 chromosomally encoded signal peptidase I, but some have more. For
example, Pseudomonas aeruginosa has two (LepB and PA1303), each with a
different role in virulence and physiology (Waite et al. 2012). On the other hand,
with the exception of i.a. Streptococcus pneumoniae, M. tuberculosis, and S.
aureus, many Gram-positive bacteria have more than 1 SPase I with a maximum for
B. subtilis which contains 5 chromosomally encoded SPase I genes (sip); namely
sipT, sipS, sipU, sipV, and sipW. In addition, various B. subtilis strains contain in
addition 2 plasmid encoded (sipP) SPase I genes (van Roosmalen et al. 2004). SipS
and SipT are key to preprotein processing, while SipU, SipV, and SipW appear to
play minor roles in protein secretion (Tjalsma et al. 1998). Overexpression of signal
peptidases resulted in an increased level of secretion (Pummi et al. 2002). Similarly,
in Bacillus megaterium MS941, co-overexpression of its unique signal peptidase
SipM increased the heterologously expressed Leuconostoc mesenteroides dex-
transucrase (Malten et al. 2005).

S. lividans has 4 chromosomally encoded SPases I (SipW, SipX, SipY, and
SipZ) (Parro et al. 1999). None of the individual SPases I was found to be essential
for cell viability, indicating they have an overlapping substrate specificity.
Nevertheless, SipY was shown to be the major SPase as the secretome of a
SipY-deficient strain is severely affected (Palacin et al. 2002) on growth as well as
on morphology (Gullón et al. 2012). Moreover, in particular cases the SipY mutant
was shown to have some interesting advantages compared to the wild-type S.
lividans for the overproduction of extracellular agarose probably as a consequence
of the diminished extracellular proteolytic activity (Gabarró et al. 2016).
Alternatively, co-overexpression of all 4 sip genes led to the highest increase in
total preprotein processing capacity of the cell, and also to a higher amount of
extracellular human CC16. It can thus be concluded that for S. lividans both
overexpression and inactivation of individual Sip proteins can be advantageous for
yield improvement of secretory proteins (Geukens 2002).

4.1.3 Overexpression of Chaperones and Foldases

When heterologous proteins are expressed, they ought to obtain their correct con-
formation, both for activity and stability, as incorrectly folded proteins are more
prone to proteases and aggregation. Correct conformation is obtained with the help
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of chaperones. Folding facilitators are, for example, the DnaK chaperone (DnaK,
DnaJ, and the nucleotide-exchange factor GrpE) and GroEL/ES (mainly studied in
E. coli) which assist the folding of newly synthesized proteins and prevent protein
aggregation. Following secretion, peptidyl-prolyl cis/trans isomerases (PPIases) and
disulfide bond formation proteins (Dsb) are needed for formation and rearrange-
ment of disulfide bonds. Six Dsb (A-G) have been identified in E. coli. In
Gram-positive bacteria, this folding process is hardly investigated except for
Bacillus. The main components responsible for secretory protein folding and
quality control in B. subtilis are summarized in Sarvas et al. (2004). The lipoprotein
PrsA, a putative peptidyl-prolyl cis/trans isomerase, plays a major role in protein
secretion by helping the posttranslocational extracellular folding of several secreted
proteins. The presence of the extracytoplasmic enzymes thiol-disulfide oxidore-
ductases (TDOR) in B. subtilis were identified based on data searches. They were
named BdbA (YolI), BdbB (YolK), BdbC (YvgU), and BdbD (YvgV) (Kouwen
and van Dijl 2009). It was shown that BdbB and BdbC are involved in the folding
of tested proteins including PhoA and A13i-Bla (Bolhuis et al. 1999).
Overexpression of chaperones is considered an attractive approach to increase yield
of heterologous proteins (Mogk et al. 2002). Overexpression of prsA in Bacillus, for
example, increased the secretion of α-amylases, recombinant protective antigen,
and a protease (Williams et al. 2003; Vitikainen et al. 2005; Chen et al. 2015b).
Overexpression of the B. subtilis TDOR genes, however, did not improve the
folding of the secreted heterologous proteins as investigated with PhoA. On the
other hand, overexpression of the DsbA from S. aureus or the S. carnosus DsbA
allowed the secretion of active PhoA at elevated levels (Kouwen and van Dijl
2009). Folding modulators in other Gram-positive bacteria and their impact on
heterologous protein production have not yet been investigated. Based on homol-
ogy searches in the genome of the S. lividans TK24, chaperones and peptidyl-prolyl
cis/trans isomerases have been identified (Tobias Busche and Jörn Kalinowski,
personal communication), but their effect on (heterologous) protein secretion has
still to be investigated.

4.1.4 Sec Components

The Sec translocase consists of the integral membrane complex SecYEG, the
ATPase SecA, and two additional membrane proteins that promote the release of
the mature peptide across the cytoplasmic membrane (SecD and SecF). In E. coli,
SecD and SecF are two separate membrane proteins, whereas in B. subtilis they are
present as one polypeptide, named SecDF (Bolhuis et al. 1998). It is required to
maintain a high capacity for secretion. It is not essential, but its deletion results in
low-temperature sensitivity, aberrant cell division, and impaired protein secretion.
The secDF deletion mutant exhibits a reduced level of secreted proteins (Vorös
et al. 2014). Few attempts have been made to modulate specific Sec proteins to
improve protein secretion. One example is the co-expression in B. subtilis of the
E. coli SecB and a hybrid SecA of B. subtilis in which the 32 C-terminal amino
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acids end was replaced by the corresponding SecA fragment of E. coli (Diao et al.
2012). This artificial protein targeting pathway led to a significant increase in the
secretion of 2 model proteins tested, mutant maltose binding protein (MalE11) and
alkaline phosphatase (PhoA), which B. subtilis could hardly export using the native
secretion pathway. Kakeshita et al. (2010) deleted 61 amino acids of the C-terminus
of SecA, a region, known to bind SecB in E. coli. In Gram-positive bacteria;
however, SecB is absent, and the C-terminal region is not essential for protein
secretion nor for growth. Moreover, the 61 amino acid deletion dramatically
increased the extracellular production of the heterologous proteins alkaliphilic
Bacillus sp. thermostable alkaline cellulase (Egl-237) and human interferon a
(hIFN-a2b) in B. subtilis. Differential expression of SecA demonstrates that various
precursors may exhibit major differences in their dependency on the amount of
functional SecA in the cell (Leloup et al. 1999). In some cases, therefore, SecA
overexpression or mutation might be beneficial for improved protein secretion as
shown for cutinase in B. subtilis (Brockmeier 2006).

4.1.5 Tat Translocon Overexpression

The Tat pathway represents an alternative pathway for the production of secreted
recombinant proteins, in particular for proteins prefolded in the cytoplasm.
Notwithstanding this particular property, this pathway is so far not much explored
for the industrial production of (heterologous) proteins. Several reasons account for
this: Protein yield of Tat-exported proteins is in general substantially lower than of
Sec-secreted proteins, and much of the synthesized proteins is retained in the
cytoplasm (DeLisa et al. 2004). This might be a consequence of the fact that the
export machinery becomes easily saturated not only by overexpressed target pro-
teins, but even for native Tat-exported proteins (Barrett et al. 2003). The saturation
of the export machinery can partially be relieved by co-expression of proteins of the
Tat translocon. The stoichiometry of the TatABC components seems, however,
critical for export function. For example, in E. coli overexpression of tatB resulted
in complete loss of Tat transport, overexpression of tatA has a less severe but
nonetheless significant effect on translocation (Sargent et al. 1999), while high
expression of tatC can relieve saturation of the Tat pathway (DeLisa et al. 2004).
Therefore, most attempts to relieve the saturation problem of the Tat translocon
have been done by the coordinated overexpression of TatABC. This can certainly
have a positive effect on the secretion of Tat-dependent proteins as illustrated for
different organisms both Gram-positive and Gram-negative bacteria. When TatABC
were overproduced in S. lividans, a fivefold increased xylanase C secretion was
noticed. Surprisingly, the overproduction of TatABC in S. lividans caused a strong
reduction in the secretion of the monitored Sec-dependent substrates (De
Keersmaeker et al. 2006), suggesting a possible cross talk between the Tat- and
Sec-dependent protein secretion pathway. Also for C. glutamicum overexpression
of Tat components dramatically increased the secretion of Chryseobacterium pro-
teolyticum pro-protein glutaminase (pro-PG) and Streptomyces mobaraensis
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pro-transglutaminase (pro-TG). The amounts of secreted pro-PG were more than
threefold higher when TatC or TatAC was overexpressed, and there was a further
threefold increase when TatABC were overexpressed (Kikuchi et al. 2009). More
recently, Albiniak et al. (2013) investigated the ability of an E. coli tat null mutant
containing B. subtilis TatAdCd system to export the Tat-dependent model protein
GFP. These cells do indeed export GFP to the periplasm with high efficiency;
moreover, the protein was subsequently released into the extracellular medium
during batch fermentation. The latter property was a consequence of the fact that the
E. coli tat null mutant strain has impaired outer membrane integrity (Ize et al.
2003). Such an example shows that within Gram-positive bacteria, similar
approaches can be tested to optimize secretion yield of (heterologous) proteins and
to broaden the spectrum of proteins that can be produced by Gram-positive bacteria.

Tat-dependent secretion could be further increased if the phage shock protein
(PspA) was overexpressed as shown for S. lividans (Vrancken et al. 2007), which
was also true for the Gram-negative E. coli (DeLisa et al. 2004). The beneficial
effect of PspA overproduction could be a consequence of its effector role in the
maintenance of the integrity of the cytoplasmic membrane and proton motive force
(Darwin 2005), the latter providing the energy in Tat-dependent protein
translocation.

4.2 Omics Approaches for Enhanced Protein Secretion

Thanks to the new and fast techniques of DNA sequencing for genome analysis and
RNAseq for transcriptome analysis, the availability of new methods for proteome
analyses and the massive amounts of data and intelligent bioinformatics tools, it has
now become more easy to have an insight at the systems-level burden caused by the
overproduction of proteins, by the presence of plasmids and the biosynthesis and
secretion of heterologous proteins. Stepping closer to the observed phenotype,
metabolites and metabolic fluxes matter most and can be investigated using
metabolomics and fluxomics techniques. Omics approaches are new drivers for
rational engineering of host strains for improved fitness and increased productivity.
Despite the availability of these new resources and their potentialities, so far not
much research has been done in this field.

4.2.1 Transcriptomics and Proteomics

One of the first studies in which transcriptomics and proteomics studies were
combined to understand the physiological and metabolic changes that occurred in
high cell density cultivation (in order to obtain higher yield) was done with E. coli
(Yoon et al. 2003). A recent study with B. licheniformis investigated the early
responses to physical stress and nutrient starvation using integrated transcriptomics
and proteomics (Voigt et al. 2014). With this approach, they were able to identify

Protein Secretion in Gram-Positive Bacteria … 291



general and specific marker proteins for different stress and starvation conditions
including high protein secretion. Such markers might be interesting to follow the
production process, and when needed to adapt it accordingly.

Because of its improved Tat-dependent protein secretion, the transcriptional
profile of the S. lividans pspA mutant (see Sect. 4.1.5) was compared with the
wild-type strain to see whether genes were differentially expressed in the pspA
mutant. A number of genes were shown to be up- or downregulated in the mutant
strain using a microarray screen containing all genes of S. lividans (Anné et al.
2014). Sixty-seven genes were twofold or more upregulated in the pspA mutant,
while 117 genes were down-regulated. Among the genes encoding proteins for
which a function is known or predicted, there are several which are linked to stress
regulation (cold shock proteins, sigma factors), while others are involved in
metabolic processes such as energy production and conversion and general meta-
bolism. Among others, an increased expression of sco6996 in the pspA mutant was
identified. The corresponding protein SCO6996 shows some homology to the RNA
polymerase sigma factor RpoE and experiments in Salmonella Typhimurium pre-
viously showed that RpoE can (at least partially) compensate for the lack of PspA
(Becker et al. 2005). Loss of either pspA or rpoE leads to a depolarization of the
membrane potential, indicating that both can affect the PMF. Moreover, PspA
overproduction could partially compensate for the loss of RpoE in a Salmonella
Typhimurium ΔrpoE strain. Furthermore, Gordon et al. (2008) recently showed that
overexpression of one particular sigma factor (SigU) in S. coelicolor could lead to a
significant alteration in the secretome. The SigU-overproducing strain secreted a
much greater quantity and diversity of proteins than the wild-type strain, revealing
that modification of the sigma factor expression in S. lividans might also affect
protein secretion. Overexpression of sco6996 led to an increased secretion of the
tested proteins (XylC, eGFP) through the Tat pathway. This increase was far less
pronounced than in the case of PspA overexpression, but still yielded a 20 %
increase in final protein yield, which is still highly interesting. In another study,
transcriptomics expression profiles of S. lividans TK24 strains producing the
heterologous proteins human/mouse tumor necrosis factor alpha (hTNFα/mTNFα),
monomeric red fluorescent protein, and xyloglucanase were compared to the cor-
responding control strain containing the empty vector only. Based on these anal-
yses, a number of genes showed a significant twofold change in the recombinant
strains overproducing the heterologous proteins. One gene, encoding a phospho-
enolpyruvate carboxykinase (PEP carboxykinase) involved in the tricarboxylic acid
(TCA) cycle and gluconeogenesis, was selected for further investigation.
Overexpression of this gene in S. lividans TK24 hTNFα and xyloglucanase C
production strains increased almost twofold the yield of recombinant hTNFα (Lule
et al. 2012) and XylC in comparison with the initial production strains. Overall,
these results show that a transcriptomics-based approach represents a useful tool for
a rational optimization of heterologous protein secretion in S. lividans.
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4.2.2 Metabolomics and Fluxomics

Metabolomics refers to the comprehensive analysis of small molecules produced by
cellular metabolism. Metabolites inside as well as outside the cell (referred to as the
endo- and exometabolome) can help to understand phenotypic behavior of
recombinant strains, can be used for metabolic flux estimation, and can assist in
strain development when combined with other omics data. Analysis is mostly done
with mass spectrometry (MS) preceded by chromatographic separation, for which
the technique of choice depends on the depth of analysis, the targeted metabolites,
and the type of application [e.g., Garcia-Ochoa and Gomez (2009)]. Metabolomics,
however, does not reach the same high resolution as RNAseq- or MS-based pro-
teome analysis [e.g., Goodacre et al. (2004)]. From the vast pool of small mole-
cules, some hundreds of metabolites can be detected in untargeted analysis but less
than a hundred metabolites can usually be identified and quantified in a targeted
metabolome analysis. When analyzing for intracellular metabolites, rapid quench-
ing is required (e.g., in cold methanol, in liquid nitrogen) since their metabolite
levels can quickly change (e.g., order of seconds in the central carbon metabolism)
upon sampling. Quenched cells are then separated from the culture broth (e.g.,
centrifugation), and metabolites are extracted from the cell pellet (e.g.,
freeze-thawing cycles, ethanol boiling). Final derivatization follows when using
GC-MS analysis. All stages need to be carefully evaluated and optimized to avoid
leakage during quenching, to ensure complete extraction of metabolites, and to
minimize loss of metabolites. Protocols can be found in literature but require val-
idation prior to their application. Some examples of exo- and endometabolome
analysis for Gram-positive hosts for heterologous protein expression are given in
the next paragraph.

D’Huys et al. (2011) performed a comprehensive exometabolome profiling of
wild-type, empty plasmid-containing and mTNFα-producing S. lividans.Metabolite
profiles revealed that glutamate and aspartate are two important growth-determining
amino acids. Cometabolization with glucose results in a high growth rate, although
this fast biomass accumulation did not coincide with the highest mTNFα to biomass
yield. Overflow of alanine and organic acids was typical for the fast growth phase
and pointed out the imbalance in carbon and nitrogen metabolism. After depletion
of aspartate and glutamate, growth slows down and mTNFα yield increases.
Entering the stationary growth phase after glucose depletion, a diauxic shift toward
consumption of overflow metabolites can be observed and mTNFα yield was
maximal. Fed-batch processing is proposed as a strategy for tackling overflow
metabolism. Based on the protocol for endometabolome analysis developed in
Kassama et al. (2010), Muhamadali et al. (2015) performed a complementary
endometabolome analysis which confirmed the intracellular metabolic shifts and
observed organic acids and sugar overflow inside mTNFα-producing S. lividans.

A first example of using metabolome profiling for debottlenecking heterologous
protein production is described in Korneli et al. (2012). Green fluorescent protein
(GFP) production by B. megaterium was investigated. Large-scale bioreactor
conditions are mimicked in small-scale bioreactors by intermitted feeding of
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substrate, hereby inducing periods of feast and famine and resulting in a reduced
process performance and product yield. Detailed time course of intracellular
metabolites uncovered limitations in particular amino acids which could be resolved
by supplementation of these amino acids during fermentation.

To fully understand the nature of metabolic bottlenecks and associated meta-
bolome profiles, however, one needs to investigate metabolic fluxes in metabolic
reaction networks. Fluxomics refers here to any technique applicable for this
metabolic flux analysis. A genome-wide analysis of metabolic fluxes uses
constrained-based metabolic modeling approaches [e.g., Lewis et al. (2012) and
cited references therein], in which flux balance analysis (FBA) forms a central
methodology. This FBA method is based on measured exchange rates of substrates
and products, a genome-scale stoichiometric network model, steady-state assump-
tion for intracellular metabolites, reaction flux constraints, and the optimization of a
cellular objective function such as biomass growth or redox potential. This tech-
nique is tractable because of its genome-wide scope and commonly used for testing
metabolic capacity of strains and for development of in silico strain engineering
programs [e.g., Kim and Reed (2010), Schellenberger et al. (2011) and Wiechert
(2001)]. However, exact knowledge of parallel reactions, bidirectional reactions,
cycles, and flux split ratios requires 13C-based metabolic flux analysis [e.g.,
Wiechert (2001); Zamboni et al. (2009)]. 13C-based fluxomics is particularly suited
for accurate flux calculations in the central carbon metabolism. Fluxes are estimated
from intracellular mass isotopomer distributions in free intracellular metabolites or
proteinogenic amino acids observed after feeding a 13C-labeled carbon source.
13C-labeling distributions will be determined by the actual reaction rates. Published
flux maps are usually snapshots taken during a specific growth phase adopting a
pseudo steady-state condition, but transient profiles of metabolic fluxes can also be
modeled using dynamic FBA [e.g., Hjersted and Henson (2009)] or in stationary
13C-based flux analysis [e.g., Wiechert and Nöh (2013)].

Genome-scale FBA was applied by D’Huys et al. (2012) to get understanding in
the metabolome profiles and growth of S. lividans in a complex medium. In contrast
to the maximum biomass formation capacity predicted from the complex medium,
S. lividans shows suboptimal growth illustrating that rich media do not necessarily
support maximum biomass growth. Overflow metabolism could not be predicted
but needed to be imposed by constraints. Uptake of amino acids clearly contributed
to biomass growth by augmenting the pool of available amino acids and by
increasing the fluxes in the tricarboxylic (TCA) cycle. Genome-scale analysis of
metabolic fluxes during human growth hormone production with B subtilis also
showed metabolic shifts during batch fermentation on a minimal medium as well as
shifts in the number of reactions that carried fluxes (Özdamar et al. 2010).
A 13C-based fluxomics was performed by Umakoshi et al. (2011) on batch cultures
of C. glutamicum secreting heterologous transglutaminase (TGase). An increased
flux through the pentose phosphate pathway for NADPH generation and also an
increased flux through the TCA cycle augmenting the NADH/NAD and ATP/ADP
ratios could be observed. This inspired the authors to increase the NADH/NAD
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ratio by promoting lactate production. Elevation of the pH from 6.2 to 7.0 gave a
small yet notably 1.4-fold increase in product yield.

Fluxomics can also form the foundation for rational strain engineering, i.e., for
the identification of interesting gene knockouts redirecting fluxes and leading to
higher yields of the desired product. Advantage of fluxomics-based strain design is
that the interconnected nature of the cellular metabolic reactions is taken into
account. In the broader context of LAB-based vaccine production (Oddone et al.
2009), for example, applied dynamic genome-scale FBA to identify targets for
enhanced heterologous protein production in L. lactis. Green fluorescent protein
(GFP) expression (as a model protein) could be increased with 15 % by imple-
menting predicted gene targets.

A recent trend to increase production performance of microbial host cells is
genome reduction where large segments of the genomic DNA are removed with the
intension of removing metabolic ballast and increasing resources of product for-
mation. Genome reduction efforts often focus on production of secondary
metabolites [e.g., Gomez-Escribano and Bibb (2011)], but their application to
heterologous protein production has also been reported by Toya et al. (2014) and
Lieder et al. (2015). The genome-reduced Pseudomonas putida strain created
exhibits a 40 % increased GFP production (Lieder et al. 2015). Toya et al. (2014)
transformed a genome-reduced B. subtilis (Morimoto et al. 2008) to produce
heterologous cellulase and investigated fluxes in the central carbon metabolism
using 13C fluxomics. A 1.7-fold increase in specific cellulase production rate as
compared to the parental strain with empty plasmid was attained and flux maps
reflects higher pentose phosphate pathway flux and thus NADPH generation, which
seems to be a general requirement for enhanced recombinant protein production.

5 Fermentation

Development of a recombinant protein production process starts under laboratory
conditions in small volume shake flasks. Many screening experiments for strain
selection, testing of vectors, promoters and signal peptidases, and medium opti-
mization are required. Laboratory-scale bioreactor experiments are performed for
defining optimal culture conditions such as pH, dissolved oxygen, stirrer speed, and
process operation (mostly batch or fed-batch). Screening can be greatly speed up by
using high-throughput microbioreactor platforms. A first proof of principle for
filamentous bacteria is reported for S. coelicolor by Sohoni et al. (2012). Rohe et al.
(2012) developed a milliliter bioreactor screening platform and validated this setup
for heterologous protein secretion of Fusarium solani pisi cutinase by C. glutam-
icum. Multiple cultures are run in parallel in a microtiter plate cultivation system
(Biolector®) in which each well is stirred and dissolved oxygen, pH and biomass
are monitored online. A liquid-handling robot enables swift media preparation,
online dosing (e.g., for optimization of inducer concentration and time) and sam-
pling. Auxiliary devices can be added for sample handling and online assaying
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(Unthan et al. 2015). Scalability for C. glutamicum was proven excellent to 1-L
bioreactors and even up to 20-L bioreactors. This advanced automated platform of
Rohe et al. (2012) proved also be applicable for Streptomyces, a species with a
more complex growth physiology including clump formation (J. Koepff and M.
Oldiges, Forschungszentrum Jülich GmbH, personal communication).

Yield of secreted heterologous proteins and productivity are affected by the
medium constitution, growth phase and fermentation time. Optimization of the
medium composition can be done randomly but a more rational approach is guided
by design of experiments techniques [e.g., Mandenius and Brundin (2008)].
A satisfactory recombinant protein production typically requires nutrient-rich media
containing amino acids. Pozidis et al. (2001), for example, illustrate fermentation
upscaling and medium selection for murine tumor necrosis factors alfa (mTNF-α)
production with S. lividans TK24 and tested different amino acid rich media. Final
biomass and heterologous protein concentration show no consistency and protein
yields are better in a less efficient growth medium, even with the use of a consti-
tutive promotor. D’Huys et al. (2011) further demonstrated that the yield of
mTNF-α increases after glutamate and aspartate depletion from the nutrient-rich
medium and when the biomass growth rate slows down. Secreted protein yield
becomes highest in the stationary phase but the fermentation must be stopped when
degradation by extracellular protease activity is observed. Although complex media
are commonly used in Streptomyces cultivations, cells do not exploit their nutri-
tional resources optimally toward biomass formation and by-product formation is
usually observed (D’Huys et al. 2012). Media can also be defined and identification
of the most essential amino acids can be a tedious job. Nowruzi et al. (2008), for
example, screened for the impact of different amino acids and defined mixtures of
them on the heterologous expression of recombinant human interleukin 3 (rHuIL-3)
in S. lividans 66.

Batch and fed-batch cultivation are both industrially relevant modi operandi in
heterologous protein production. Batch operation is simple and flexible, but con-
trolled substrate addition in fed-batch fermentations enables metabolic control and
high density growth by avoiding by-product formation related to overflow meta-
bolism. Minimization of acetate overflow by restricting the specific biomass growth
rate is a common practice in E. coli recombinant protein production [e.g., Eiteman
and Altman (2006)]. After reaching the high cell density at the end of the substrate
feeding phase, heterologous protein expression is started by inducer addition.
Heterologous protein production by Gram-positive bacteria can also be favored by
fed-batch operation, although the fed-batch control strategy depends on the
expressed protein, the promotor used and other factors. No standardized approaches
as those established for E. coli seem to exist. A good illustration of the diversity and
complexity in fed-batch operation strategies is given in Oztürk et al. (2016).
Fed-batch processes for homologous and heterologous expression by Bacillus are
reviewed and associated fed-batch operation strategies are derived. No consensus
fed-batch operation strategy could be found and feeding strategies largely depended
on promoter choice.
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From a practical and financial point of view, microorganisms growing as single
cells are more favorable for easy fermentation. A filamentous growth morphology
increases the power input requirements in aerated bioreactors, increases cooling
requirements and results into clump formation which introduces diffusion limita-
tions and biomass heterogeneity. Not all cells in pellets and clumps of Streptomyces
are biologically active and metabolically equal (Manteca et al. 2008; Rioseras et al.
2014). Large and dense clump formation can be partially counteracted by addition
of hydrophilic polymers like polyethylene glycol [e.g., Kieser et al. (2000)]. Clump
formation, mycelial differentiation and programmed cell death have been linked to
the production of antibiotics and are important factors for secondary metabolite
production by Streptomyces [Rioseras et al. (2014) and cited references therein].
Studies linking heterologous protein secretion and cellular morphology are limited,
but van Wezel and coworkers found that overexpression of ssgA in Streptomyces
leads to more fragmented growth without substantial clump formation and increases
heterologous protein yields in S. lividans 1326 (van Wezel et al. 2006; Sevillano
et al. 2016). Morphology engineering could be a strategy for enhanced protein
secretion.

Upscaling from laboratory-scale to industrial-scale bioreactors generally reduces
the final product yields due to spatial gradients, oxygen transfer limitations, shear
stress, medium differences, etc. Guidelines for upscaling of bioreactor processes are
described in many handbooks on bioreactor process engineering or fermentation
technology [e.g., Doran (2013) and McNeil (2008)]. Many empirical relations have
been established to estimate important parameters like oxygen transfer coefficients
in large-scale fermenters, but upscaling generally remains a trial and error process
based on some generally accepted rules of thumbs [e.g., Garcia-Ochoa and Gomez
(2009)]. Keeping a constant dissolved oxygen concentration for aerobic processes
with non-filamentous organisms or keeping a constant impeller tip speed for fila-
mentous organisms are good starting points for upscaling. Oxygen supply to the
production biomass is of key importance, and spatial differences are common in
large bioreactors. Oscillations in oxygen availability can lead to temporary meta-
bolic shifts, by-product formation, and eventually multi-substrate growth. Kass
et al. (2014) characterize these effects for C. glutamicum and strain robustness can
be guaranteed when temporary gradients are limited to the scale of a few minutes.
Metabolic robustness toward spatial gradients in large bioreactors is a desired
property of a robust production strain, but effects on heterologous protein secretion
are not yet characterized.

6 Conclusion

Bacteria are fast-growing organisms able to be replicate in cheap culture media.
This property makes them potentially attractive cell factories in biotechnological
processes such as for the production of heterologous proteins. For well-known
reasons, E. coli remains the host of choice but cannot meet all expectations as not
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all proteins are equally well produced in this Gram-negative host. Therefore, several
Gram-positive bacteria are being explored and used as alternative bacterial hosts for
the production of heterologous proteins. An important motivation therefore is that
Gram-positive bacteria secrete proteins in the extracellular medium allowing correct
folding, a problem encountered with E. coli in which case proteins often are pre-
cipitated in inclusion bodies impeding the purification process of the proteins to
correctly folded active compounds.

The use of Gram-positive bacteria for heterologous proteins in secreted form
shows mixed successes. While some proteins are produced in industrially viable
amounts as secreted proteins, others give only small or disappointingly low yields.
The new techniques that in recent years became available, including
next-generation sequencing (NGS), RNA-seq, proteomics, metabolomics, and
fluxomics combined with more advanced bioinformatics, and the improved
understanding of the protein secretion pathways help to understand the cellular
background that underlies production yield. Using this understanding allows
rational strain engineering, possibly in combination with synthetic biology tools,
and will undoubtedly broaden the applicability of Gram-positive bacteria for effi-
cient use in protein secretion biotechnology.
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Surface and Exoproteomes
of Gram-Positive Pathogens for Vaccine
Discovery

Massimiliano Biagini, Fabio Bagnoli and Nathalie Norais

Abstract Reverse vaccinology has been very successful in the discovery of vac-
cine candidates against many pathogenic bacteria by integrating genome and pro-
teome mining. This great achievement was facilitated by the complementarity of the
in silico prediction of antigens and the empirical data on protein localization,
expression, and immunogenicity obtained through different techniques based on
electrophoresis, immunoblotting and mass spectrometry. An iterative process
between information provided by DNA sequence analysis and proteomic data has
been established leading to precise antigen identification. In this review, we report
how the identification of surface and exoproteomes of Gram-positive pathogens
have contributed to the selection of vaccine candidates. Moreover, we show how
quantitative mass spectrometry is now paving the way for identifying protective
antigens that play key roles during infection and represent the most promising
vaccine targets.
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1 Introduction

The licensing of the Bexsero® vaccine (CHMP, EMA2013; Vesikari et al. 2013),
almost twenty years after the publication of the first bacterial genome (Fleischmann
et al. 1995) probably represents one of the major achievements of what the genomic
era applied to microbiology has brought to the medical field. The sequencing of the
Neisseria meningitidis serogroup B genome (Tettelin et al. 2000) and the following
in silico screening for the cellular localization prediction of encoded proteins
allowed the identification of the three protective surface-exposed antigens (Giuliani
et al. 2006; Pizza et al. 2000) that were finally included in the Bexsero® vaccine.
This revolutionary approach for the identification of new vaccine candidates was
referred as reverse vaccinology (Rappuoli 2001). While bioinformatic tools seem to
have been extensively applied for vaccine discovery, proteomic studies leading to
the identification of new vaccine candidates seem to remain marginal. A research on
PubMed (http://www.ncbi.nlm.nih.gov/pubmed) with the key words “bacteria and
proteomics” and “bacteria, proteomics and vaccine” gives the impression that less
than 10% of the proteomic studies carried out on bacteria were dedicated to vaccine
discovery and development (Fig. 1a). This observation does not reflect the real
contribution of proteomics to vaccine discovery. From the first application of the
reverse vaccinology, genomics and proteomics have driven the vaccine research in
a very tight synergy, with each science “boosted” from the progresses of the other
one. In one hand, proteomics depends on genomics to build protein sequence
databases from DNA sequence analysis. On the other hand, while the sequencing of
bacterial genomes has become routine, resulting in the availability of an incredible
amount of sequence information, the correct annotation of protein coding regions
remains challenging. Shotgun proteomics contributed to supplement genomic data
by adding a new level of information for the interpretation of genomic sequences,
such as the identification of protein regions that are absent from or incorrectly
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represented in current gene annotations or wrongly annotated in term of translation
initiation sites from annotated ORFs. In the first period of the genomics-proteomics
interplay, proteomics was also fundamental to assign cellular compartment of
proteins and trained the algorithms for protein localization prediction. From this
back and forth, the number of vaccine candidates selected by reverse vaccinology
was considerably reduced and significant examples which have allowed the iden-
tification of vaccine candidates against pathogenic Gram-positive bacteria have
been reported, such as for Streptococcus agalactiae (Maione et al. 2005),
Streptococcus pneumoniae (Argondizzo et al. 2015; Donati et al. 2010; Wizemann
et al. 2001), Streptococcus pyogenes (Mora et al. 2005; Rodriguez-Ortega et al.
2006), Clostridium difficile (Lawley et al. 2009; Stabler et al. 2006, 2009),
Staphylococcus aureus (Bagnoli et al. 2015). While nowadays the algorithms for
the predictions are more reliable, the main interrogation became how to assess the
level of antigen expression especially in model of infection. The development of
targeted proteomic tools, allowing the quantification in very complex matrices of
hundreds of peptides (or proteins) selected from the genomic analysis, is paving the
way to rapidly identify potentially highly expressed antigens which represent
promising vaccine candidates in clinical trials. In this review, we report how the
surface and the exoproteomes of Gram-positive pathogens through proteomics, and
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in particular of the most studied human pathogen S. aureus (Fig. 1b), have con-
tributed to vaccine discovery and what are the perspectives for the future.

2 The Secretome and Associated Bioinformatic Tools

The term “secretome” has been defined by Tjalsma et al. (2000) from the bioin-
formatic analysis of the Bacillus subtilis genome as the proteins predicted to belong
to the secretory machinery and their “substrates”. These substrates are proteins that
present a cleavable amino-terminal signal peptide that drives the protein export. In
Gram-positive bacteria, they are: (i) the proteins exported to the extracellular
environment, (ii) those proteins, substrates of sortases, that share a determinant at
their carboxyl termini for covalent attachment to the cell wall and (iii) the
lipoproteins (Lpps), which remain anchored to the membrane through the attach-
ment of a lipid moiety at their N-terminal after the removal of the amino-terminal
signal peptide. Their empirical identification requires proteomic analysis of bacte-
rial culture supernatant, cell wall, and Lpps-enriched fractions. Moreover, their
accessibility on the bacteria surface could also be monitored by proteomic analysis.
These analyses have generated a broad terminology which is often misused leading
to a quite high confusion in the literature. Several authors proposed a harmonization
of the terminology and definitions (Armengaud et al. 2012; Chagnot et al. 2013;
Desvaux et al. 2009). In this review, we adopted the nomenclature that we
schematized in Fig. 2. Briefly, we distinguished the surface proteome, which
includes proteins accessible on the bacterial surface from the exoproteome, which
includes proteins identified in the growth culture supernatant independently of their
localization prediction.

The first step of a genomic analysis aimed at predicting secreted proteins consists
in a screening carried out on DNA segments or contigs using databases and
computer programs for defining open reading frames (ORFs). Then, the predicted
ORFs are screened with dedicated algorithms to identify specific features to assign a
cellular localization to the encoded putative proteins (Mora et al. 2003). The most
popular software programs for cellular localization prediction are publically
available and have been recently reviewed (Armengaud et al. 2012; Romine 2011).
Software programs, such as SignalP (Petersen et al. 2011), are designed to identify
possible peptide signals at the N-termini of proteins or transmembrane helices,
stretches of particular amino acid composition, secondary structures, and disordered
regions necessary for nonclassical secretion methods (Armengaud et al. 2012).
PSORTb is the most commonly used software to predict localization of a protein in
prokaryotes (Yu et al. 2010). It combines six analytical modules and takes into
consideration sequence homology with proteins, integrating experimental datasets,
and knowledge about secretion pathways (Yu et al. 2010). It assigns four local-
ization predictions for Gram-positive bacterial proteins (cytoplasm, cytoplasmic
membrane, cell wall and extracellular). Furthermore LocateP distinguishes seven
subcellular localizations of proteins within Gram-positive bacteria: intracellular,
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multi-transmembrane, N-terminally membrane anchored, C-terminally membrane
anchored, lipid anchored, LPxTG-type cell wall anchored, and secreted/released
proteins (Zhou et al. 2008). With the need of more and more accurate predictions,
meta-analytical approaches have been recently proposed by merging the results of
different algorithms and proposing a meta-scoring for the consensus prediction
(Magnus et al. 2012; Sato et al. 2011). However, there is a body of experimental
evidences that several typical cytoplasmic proteins could appear on the bacterial
surface or extracellular medium and have a role in pathogenesis, such as adhesion,
plasma protein binding, and modulation of host immune response (Henderson and
Martin 2013). Some of them have been already shown to be highly immunogenic
and protective in several animal models of disease (Alves et al. 2015; Feng et al.
2009). Software programs such as SecretomeP (Bendtsen et al. 2005) or
VirulentPred (Garg and Gupta 2008) predict non-classical secreted virulence fac-
tors. The recent Protectome, a localization-unbiased clustering approach based on
functional domain homology, has also been proposed for the identification of new
vaccine candidates (Altindis et al. 2015).

Secretome

Proteome

     Cytoplasmic Proteins         Lipoproteins        Cell wall Proteins         Membrane Proteins

Extracellular proteins              Secretion Machinery

Fig. 2 Schematic representation of the terminology used in this review for predictive a and
empirical proteins localizations b for Gram-positive bacteria
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3 Analysis of Surface and Exoproteomes Through
the Main Proteomic Tools

The most recent and advanced proteomic analysis of a Gram-positive pathogen
allowed covering about the 80% of the predicted ORFs in a single study (Karlsson
et al. 2012). For long time, only a small percentage of the predicted proteins could
be empirically identified. Improvement of mass spectrometers was a motor to
deepen proteome analysis to a level that was thought impossible to reach at the
beginning of the proteomic era. The evolution of proteomics as well as some major
milestones in method development and the outcome that derived from these tech-
nological achievements was reported in Fig. 3. The three main strategies employed
(bi-dimensional electrophoresis (2DE) coupled to mass spectrometry, shotgun
proteomics, and targeted proteomics) and their contribution to the analysis of
Gram-positive surface proteome and exoproteome are discussed below.

3.1 Bi-dimensional Electrophoresis and MALDI-TOF Mass
Spectrometry

Proteomics has emerged from the combination of three technical innovations
(Rabilloud et al. 2010): 2DE for the separation of complex protein samples

Shotgun Proteomics 2D Electrophoresis / MS Targeted Proteomics 

4 6 75

8

1 32

1990       2000                                    2010 

Fig. 3 Key milestones of the application of the mass spectrometry for vaccine discovery of
Gram-positive bacteria. The list of the achievements reported is not exhaustive. 1 Proteome
analysis of extracellular proteins through 2DE (Hirose et al. 2000). 2 Serological proteome
analysis (SERPA) (Vytvytska et al. 2002). 3 Bacterial surface shaving (Rodriguez-Ortega et al.
2006). 4 Biotinylation of surface-exposed proteins (Becher et al. 2009). 5 Investigation of
pathogen responses to the host cell environment by host cell-bacteria co-cultivation (Schmidt et al.
2010). 6 Proteome-wide selected reaction monitoring assays (Karlsson et al. 2012). 7 In vivo
proteomic analysis (Diep et al. 2014). 8 Targeted analysis of data-independent acquisition MS data
(Rost et al. 2014)
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(Gorg et al. 1988a, b; O’Farrell 1975), the introduction of mass spectrometry-based
methods (in particular MALDI-TOF MS) for protein identification through peptide
mass fingerprinting (Henzel et al. 1993; James et al. 1993; Pappin et al. 1993; Yates
et al. 1993), and the creation of databases and software programs that allowed the
interpretation of the mass spectra by peptide mass fingerprint for protein identifi-
cations (Clauser et al. 1999; Eng et al. 1994; Perkins et al. 1999). The exoproteome
of B. subtilis was the first to be studied through this method (Hirose et al. 2000).
Soon after, analyses of the exoproteome of Streptococcus species (Lei et al. 2000)
and S. aureus have been reported (Ziebandt et al. 2001). Although this method is
not anymore the strategy of choice, it presents the advantage to provide a global
visualization of the whole protein content of a cellular compartment. Ziebandt et al.
(2010) have performed a comprehensive survey of the composition and variability
of the S. aureus exoproteome of 25 clinical isolates revealing that only 7 out of the
63 identified exoproteins were produced by all isolates. Combined with comple-
mentary approaches, such as multilocus sequence typing and prophage profiling by
multiplex sequencing, it was deduced that the observed variations were caused not
only by genome plasticity, but also by an unprecedented variation in secretory
protein production due to differences in transcriptional and posttranscriptional
regulation (Ziebandt et al. 2010). The different secretion pattern implies that
genomic studies on antigen conservation need to be complemented by the analyses
of antigen expression in order ensure the selection of vaccine candidates able to
induce a broad cross protection. Kush and Engelmann, by combining this infor-
mation with their own results and other published data, reported that a “pan”
exoproteome of 68 S. aureus clinical isolates comprises a core of 26 proteins
constitutively released while 40 proteins are variably released (Kusch and
Engelmann 2014; Wolf et al. 2011; Ziebandt et al. 2010).

Another approach, known as “serological proteome analysis” (SERPA), couples
the 2DE analysis with immunoblotting and presents the advantage to “easily”
monitor the immune response of infected subjects allowing the identification of
antigens produced by the pathogens during the infection and presented to the host
immune system (Couto et al. 2016; Hendrickson et al. 2000; Klade 2002; Klade
et al. 2001). One of the first attempts was performed on S. aureus and led to the
identification of 15 proteins including known and novel vaccine candidates
(Vytvytska et al. 2002). A recent study analyzed the presence of immunogenic
proteins in S. aureus strains isolated from patients presenting bacteraemia, skin, and
soft tissue infections (SSTI), or from healthy carriers. Immunogenic proteins were
identified using the corresponding patient sera. The study revealed that 12 proteins
with cytoplasmic features were found to be consistently present in more than 50%
of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed
any of these proteins (Liew et al. 2015).

The “first-generation” of proteomic strategies designed to identify surface proteins
relied on biochemical fractionation and/or enrichment of cell wall proteins and/or
Lpps. Common approaches to isolate cell wall proteins are based on their extraction by
different cell wall lysis procedures that include enzymatic methods, heat treatment in
presence of strong detergents (e.g., sodium dodecylsulfate) or use of LiCl
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(Nandakumar et al. 2005). The main drawback of these protocols is the high level of
contamination with proteins from other cellular compartments. Enrichment protocols
for Lpps include their extraction from the membrane using Tween detergents.
However, these procedures lead to low recovery of material not suitable for 2DE
analysis (Thompson et al. 2010). The emergency of gel-free methods has contributed
to the development of new methodologies that did not requested fractionations steps
and offered a more accurate determination of the topology of Gram-positive proteins.

3.2 Shotgun Proteomics

After its introduction, liquid chromatography tandem mass spectrometry
(LC-MS/MS)-based proteomics quickly became the method of choice for
large-scale protein identification and quantification (Aebersold and Mann 2003,
2016). The approach, also called “Shotgun Proteomics”, has been and is still an
extremely powerful tool for discovery-based proteomics. It allowed the advent of
two new strategies to study the surface proteome of Gram-positive bacteria, initially
referred with new terminologies: “surfome” (mainly related to Streptococcus genus)
(Doro et al. 2009; Olaya-Abril et al. 2013, 2014a; Rodriguez-Ortega et al. 2006),
“surfacome” (mainly related to S. aureus) (Dreisbach et al. 2010), or “surfaceome”
(Dalla Vecchia et al. 2014; Dreisbach et al. 2010). The term “surface proteome” is
now preferred since it stresses that the analysis refers to the protein content and not
to all the components of the bacterial cell surface (Chagnot et al. 2013). The first
approach consists in the treatment of live, intact Gram-positive bacterial cells with
proteases (generally trypsin or proteinase K) so that surface-exposed proteins are
“shaved” and the released peptides are analyzed by LC-MS/MS for protein iden-
tification (Rodriguez-Ortega et al. 2006). This approach is particularly informative
for investigating the native topology of proteins present on the bacterial surface,
providing important insights on surface-exposed domains (Doro et al. 2009;
Rodriguez-Ortega et al. 2006). The second method, which relays on biotinylation
approaches with subsequent enrichment of labeled proteins, was mainly applied to
dissect the staphylococcal surface proteome (Becher et al. 2009; Foulston et al.
2014; Moche et al. 2015). Quantitative strategy combining 14N–15N metabolic
labeling, biotinylation, and mass spectrometry has also been reported (Hempel et al.
2010). Biotinylation reagents are usually membrane impermeable but can easily
penetrate the peptidoglycan and can also label proteins that are buried within the
cell wall. To avoid unspecific biotin labeling or trypsin digestion of
non-surface-associated proteins, autolysis has to be prevented. The percentage of
the cytoplasmic proteins identified from these studies is quite variable from labo-
ratory to laboratory, probably reflecting both different sample preparation
methodologies and sensitivity of the mass spectrometry instruments used. In
shaving experiments, several conditions have been tested to counteract the osmotic
stress due to membrane and cell wall impairment, such as the addition of sucrose or
arabinose in the digestion buffer (Dreisbach et al. 2010). These sugars had no
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stabilizing effect to reduce the lysis of pneumococci since autolysis mediated by
autolysin is a natural process in this bacterial species. In this case, cytoplasmic
protein contamination was significantly reduced when pneumococci were incubated
in a phosphate buffer supplemented with choline (Pribyl et al. 2014), which is
known to cause the release from the pneumococcal surface of choline binding
protein family including autolysin (Briese and Hakenbeck 1985).

Otto et al. (2014) noted that up to date shotgun proteomic analysis of S. aureus
allowed to confirm the expression of more than 90% of predicted Lpps and cell wall
proteins as well as 80% of the other signal peptide containing proteins. As high-
lighted by the authors, from the first analysis performed in 2009, the increase of
identification was about 10% for Lpps and cell wall proteins and more than 40% for
other signal peptide containing proteins (Otto et al. 2014). Gel-free proteomic
approach has been helpful for the development of prediction software and allowed
proteomics to supplement genomic data for the interpretation of not annotated
sequences. Referred as proteogenomics, one of the main approaches consists in
identifying peptides in biological samples by searching the six-frame translations of
the genome sequence, as opposed to database matching strategy usually used for
protein sequence identification. This enables identification of protein regions that
are absent from or incorrectly represented in current gene annotations, and thus
allows improvement of the gene annotations. The identification of a novel Bacillus
cereus exoprotein named EntD, involved in the regulation of a high number of
proteins either in cellular proteome and the exoproteome could be cited as a very
recent example of the proteogenomic contribution (Omer et al. 2015). In this per-
spective, N-terminomics is a specific proteogenomic approach that confidently
predicts the N-terminus sequence of mature proteins (Armengaud 2009, 2010).
Incorrect predictions of protein subcellular location are often due to the wrong
initial methionine assignment in amino acid sequence of the protein. Surprisingly,
from a recent large N-terminome study of the Gram-negative bacterium
Deinococcus deserti, the 18% of the genes were wrongly annotated in terms of
translation initiation sites from annotated ORFs (Baudet et al. 2010). Comparative
proteogenomics is a complementary discipline that compares proteomic dataset
from several related bacterial species and exploits the homology between their
proteins to improve genome annotations. Combined with a quantitative approach
Malmstrom et al. (2015) were able to identify several proteins differentially
expressed between invasive and noninvasive S. pyogenes clinical isolates.

Up to date, proteomic studies on Gram-positive bacteria have almost exclusively
been performed in vitro. In vivo proteomics represents a step forward for the
elucidation of host-pathogen interactions and for the identification of those antigens
highly expressed during bacterial infection, leading to the successfully selection of
new vaccine candidates. With the attempt to identify those proteins, culture con-
ditions mimicking stresses and challenges that the pathogens may encounter during
infection have been tested. They included iron or metal deprivation (Stentzel et al.
2014), temperature variations (Alreshidi et al. 2015; Sanchez et al. 2010), osmotic
or pH shocks (Karlsson et al. 2012), presence of serum (Johansson et al. 2005;
Lange et al. 2008; Malmstrom et al. 2012; Sjoholm et al. 2014) or nutrient
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starvation (Liebeke et al. 2011; Liu et al. 2014; Michalik et al. 2009, 2012),
exposure to antibiotics (Diep et al. 2014; Fischer et al. 2011; Hessling et al. 2013),
and cultivation in biofilm or planktonic status (Atshan et al. 2015). The most
comprehensive survey of in vitro growth conditions explored the staphylococcal
proteome variations testing nine different infection-related stresses and starvation
stimuli (H2O2, diamide, paraquat, nitrogen monoxide, fermentative metabolism,
nitrate respiration, heat shock, puromycin, mupirocin) (Fuchs et al. 2013). These
studies avoided the limitations imposed by the minute amounts of bacterial sample
that can be obtained from in vivo models, as well as the interference caused by host
materials like proteins and/or nucleic acids (Bumann 2010).

A step forward was the innovative work that Schmidt and Völker developed to
assess the proteome of bacteria internalized in eukaryotic cells, contributing to a
better understanding of S. aureus interactions with host tissues. This procedure
employs three essential steps: (i) metabolic pulse-chase labeling and infection
assay; (ii) isolation of bacteria by fluorescence-assisted cell sorting; (iii) mass
spectrometry-based proteome analysis (Schmidt and Volker 2011). The approach
has been successively applied in three proteomic analyses of S. aureus co-cultivated
with two different human alveolar epithelial cell lines (Pfortner et al. 2014;
Surmann et al. 2014, 2015) and a macrophage cell line (Miller et al. 2011). Of
interest, proteins identified from total extract of bacteria recovered from cell cul-
tures included almost all the antigens that have been recently proposed as vaccine
candidates against S. aureus (Bagnoli et al. 2015; Hawkins et al. 2012) (Table 1).
These are three Lpps, the ferric hydroxamate-binding Lpp FhuD2 which is involved
in iron uptake in early stages of invasive S. aureus infection (Mariotti et al. 2013;
Mishra et al. 2012; Sebulsky and Heinrichs 2001), the conserved staphylococcal
antigen 1A (Csa1A) which belongs to a family of proteins encoded in at least four
distinct loci sharing from 54 to 91% sequence identity and immunological cross
reactive (Schluepen et al. 2013), and the manganese transporter C (MntC)
(Anderson et al. 2012). FhuD2, MntC and at least one of the Csa1A paralogs were
identified in almost all experiments of co-cultivation of S. aureus with host cells.
The other four selected antigens are the extracellular proteins a-hemolysin (Hla),
Ess extracellular A (EsxA), and Ess extracellular B (EsxB) (Bagnoli et al. 2015)
and the cell wall protein clumping factor A (ClfA) (Hawkins et al. 2012). Hla is one
of the most studied staphylococcal toxins and has been recognized to be involved in
the first stages of invasive and skin infections in animal models (Bubeck
Wardenburg and Schneewind 2008; Kennedy et al. 2010). EsxA and EsxB are
associated with abscess formation and may contribute to the persistence and dif-
fusion of the staphylococcus in the infected host (Burts et al. 2005; Korea et al.
2014). These antigens, predicted to be released and empirically identified from
growth cultures, were found tightly associated to bacteria recovered from infected
host cells (Table 1). Moreover to the best of our knowledge EsxB, that has been
identified from human S9 bronchial epithelial cells infected with S. aureus (Pfortner
et al. 2014), has never been reported in any other proteomic studies. The ClfA cell
wall protein, a highly conserved fibrinogen (Fg)-binding protein and virulence
factor that contributes to host tissue adhesion (Hawkins et al. 2012), was also

318 M. Biagini et al.



T
ab

le
1

S.
au

re
us

va
cc
in
e
ca
nd

id
at
es

id
en
tifi

ed
in

ba
ct
er
ia

re
co
ve
re
d
fr
om

co
-c
ul
tiv

at
io
n
w
ith

ho
st
ce
lls

or
fr
om

ba
ct
er
ia

gr
ow

n
in

cu
ltu

re
m
ed
ia

H
os
t
ce
ll-
ba
ct
er
ia

co
-c
ul
tiv

at
io
n

C
ul
tu
re

m
ed
ia

gr
ow

th

20
10

Sc
hm

id
t
F

et
al
.

20
11

M
ill
er

M
et

al
.

20
14

Pf
ör
tn
er

H
et

al
.

20
14

Su
rm

an
n
K

et
al
.

20
15

Su
rm

an
n
K

et
al
.

20
11

M
ill
er

M
et

al
.

20
13

L
iu

X
et

al
.

20
14

Pf
ör
tn
er

H
et

al
.

A
nt
ig
en

G
en
e
ID

H
um

an
S9

br
on
ch
ia
l

ep
ith

el
ia
l

ce
lls

H
um

an
m
ac
ro
ha
ge

(T
H
B
-1
)

H
um

an
S9

br
on
ch
ai
l

ep
ith

el
ia
l

ce
lls

H
um

an
al
ve
ol
ar

ep
ith

el
ia
l
ce
lls

A
54

9
an
d
S9

ki
dn

ey
ce
ll
lin

e
H
E
K
29

3

H
um

an
al
ve
ol
ar

ep
ith

el
ia
l
ce
lls

A
54

9
an
d
S9

ki
dn

ey
ce
ll
lin

e
H
E
K
29

3

T
SB

M
H

un
til

m
id
-e
xp

ph
as
e
an
d

tr
ea
te
d
w
ith

e
or

w
/o

ox
ac
ill
in

pM
E
M

un
til

m
id
-e
xp

ph
as
e

Fh
uD

2
SA

O
U
H
SC

_0
25
54

•
•

•
•

•
•

•

C
sa
1A

a
SA

O
U
H
SC

_0
00
52

•
•

•
•

•

M
nt
C

SA
O
U
H
SC

_0
06
34

•
•

•
•

•
•

H
la

SA
O
U
H
SC

_0
11
21

•
•

E
sx
A

SA
O
U
H
SC

_0
02
57

•
•

•
•

•
•

•

E
sx
B

SA
O
U
H
SC

_0
02
65

•

C
flA

SA
O
U
H
SC

_0
08
12

•
•

•
•

a C
sa
1A

or
on

e
of

its
pa
ra
lo
gs

Surface and Exoproteomes of Gram-Positive Pathogens … 319



identified from the total extracts of bacteria recovered from co-cultivation with host
cells while it seems challenging to be identified from total extracts of bacteria
grown in culture media (Table 1). Therefore, these observations suggest that pro-
teomic studies conducted using bacteria recovered from infected tissues or cells can
provide valuable information for vaccine candidate identifications.

Although they are very informative, in vitro studies might not truly represent the
conditions encountered by the pathogen during infections. Thanks to the introduction
of the latest generation of mass spectrometers, a new chapter of bacterial proteomics
has been opened. The instruments can now overcome some of the limitations due to
the low number of bacterial cells recovered from infected cell lines or organs and the
high noise due to host proteins. Diep et al. (2014) reported the first characterization of
the S. aureus proteome derived directly from infected mice. The experimental
approach designed by the authors consisted in achieving sufficient enrichment of
bacteria over a vast excess of kidney debris by bacterial cell sorting through
S. aureus-specific antibodies and by enriching the sample of surface-associated
proteins through the treatment of recovered bacteria with lysostaphin. Mass spec-
trometry analysis identified 342 S. aureus proteins, among which 57 were predicted
to contain signal sequences for secretion. The authors noticed that while proteins
involved in host cell adhesion made up 20–30% of the surface proteome in vitro, they
only represented about 1% of the surface proteome identified in bacteria recovered
from infected kidneys and that the majority of the in vivo-expressed surface proteins
were Lpps involved in nutrient acquisition (Diep et al. 2014).

In spite of these great achievements, there is still a portion of the proteome that
can be only revealed by immunoassays such as Western blot or by specific
enrichment steps (Schluepen et al. 2013), and the identification of low abundance
peptides remains a challenge. To reach this “unseen” proteome, Muntel et al.
employed exclusion lists during MS in combination with optimized MS parameter
to quantify more than 990 S. aureus proteins without labeling techniques (Muntel
et al. 2012). Until now, most of the shotgun proteomic analyses were performed
using the traditional data-dependent acquisition (DDA), for which only peptides
with the strongest signal in a full-scan mass spectrum are selected for fragmenta-
tion, producing tandem mass spectra (MS/MS) that can be matched to spectra
available in databases. Alternatively to the DDA, in data-independent acquisition
(DIA), all peptides that can give a MS signal are analyzed. Although the DIA
strategy has been known to the mass spectrometry community for more than a
decade, the development of adequate software allowed its application to complex
biological systems to deepen the breath of proteome providing many novel insights
into many aspects of biology (Distler et al. 2014; Rost et al. 2014).

3.3 Targeted Proteomics

The development of selected reaction monitoring (SRM)-MS analysis (also called
multiple reaction monitoring, MRM) has become a viable complement to shotgun
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proteomics analysis. SRM is a targeted MS technology where preselected pairs of
peptide precursor and derived fragment ion masses, also known as transitions, are
explicitly monitored over time in a triple quadrupole MS instrument. SRM repre-
sents an attractive option for studying bacterial proteomes given that the dynamic
range of their protein amount is estimated to be 4–5 orders of magnitude
(Malmstrom et al. 2009), which is smaller than the linear dynamic range of SRM
(Stahl-Zeng et al. 2007). The execution of SRM experiments is dependent on a
priori knowledge regarding which peptides and transitions to target. This knowl-
edge is typically obtained by creating deep proteome maps using multidimensional
peptide fractionation strategies followed by LC–MS/MS analysis. From such pro-
teome maps, proteotypic peptides (PTP’s) uniquely identifying proteins of interest,
and presenting strong MS signal are selected and suitable transitions are optimized
(Kuster et al. 2005). The transitions are subsequently used by the mass spectrometer
to isolate peptide ions in the first quadrupole, fragment them in the second quad-
rupole and select the fragment ions in the third one, providing a high-degree of
selectivity and sensitivity for the detection of the targeted peptides. Many software
programs for such complex analysis have been developed and are publically
available (MacLean et al. 2010; Reiter et al. 2011). Synthetic peptides containing
heavy stable isotope amino acid residues can be spiked in the analyzed samples as
standards and the comparison of labeled with unlabeled peak area provides precise
quantification of the endogenous analyte (Picotti and Aebersold 2012). The limited
availability of SRM assays or spectral libraries is still a bottleneck for carrying out
targeted analyses since their creations are time consuming and expensive. In a
joined effort the teams led by Aebersold and Malmström provided to the scientific
community a SRM spectral library targeting 1332 proteins of S. pyogenes out of
1905 ORFs by mapping more than 20,027 peptides (Karlsson et al. 2012; Rost et al.
2014). Using the spectral library to study proteomic changes that occur upon
exposure of S. pyogenes up to 10% human plasma, the authors identified and
quantified 927 proteins out of 1322 targeted proteins. Out of these, 767 proteins
were quantified by more than one peptide per protein (Rost et al. 2014). A spectral
library to address S. aureus proteome has recently been made accessible by com-
bining 144 high precision proteomic data sets, 19,109 peptides from 2088 proteins
of the S. aureus strain HG001 (accounting for 72% of the predicted ORFs) were
identified by Depke et al. (2015). Although these data represent a considerable
coverage of the ORFs of the two pathogens, a significant proportion of the predicted
proteins were not identified. Specific peptides for these proteins unidentified from a
shotgun proteomic approach could be predicted from the genomic sequence and
their behavior in the mass spectrometer tested with a synthetic version of the
peptides. A powerful alternative consists in expressing as recombinant proteins
those proteins in order to identify specific peptides that can be added to the spectral
library. This newest implementation give the hope to identify and quantify
Gram-positive proteins in highly complex host-pathogen systems.
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4 Proteins Identified on the Surface Proteome
and Exoproteome of Gram-Positive Bacteria

4.1 Cell Wall Proteins

The cell wall peptidoglycan of Gram-positive bacteria functions as a surface
organelle for the assembly of proteins that interact with the environment. The cell
wall proteins have been mainly identified through surface proteomics and in par-
ticular by surface digestion. Hempel et al. (2011) reported in a comparative study
that, from the surface of S. aureus, only two sortase substrate proteins were iden-
tified through the biotinylation approach, and 15 from the bacterial surface diges-
tion, representing then 80% of the predicted sortase substrate proteins. Similar
percentages were identified using the shaving approach with S. pyogenes
(Rodriguez-Ortega et al. 2006; Severin et al. 2007), although very structured pro-
teins such as the pilus subunits, which are stabilized by internal isopeptide bonds
(Kang et al. 2007), were particularly resistant to proteolytic digestion under non
denaturing conditions (Walden et al. 2014) and were underrepresented with this
approach. The accessibility of the cell wall proteins varies between different bac-
terial species. In spite of several attempts of our group, the surface digestion of
C. difficile failed, probably due to the presence of the crystalline bacterial cell
surface layer proteins (S-layers), which represents the outermost cell envelope in
these bacteria (Biagini M., unpublished data). Nevertheless, cell wall proteins
represented the major fraction of the proteins identified in the culture supernatant of
this Gram-positive bacterium (Cafardi et al. 2013). The mechanism by which cell
wall anchored proteins are released in the culture medium is still unclear. An
ultracentrifugation of the growth medium reveals that the identified cell wall pro-
teins are not released as macrostructures leading to the hypothesis that they might
be shaved or released from the bacterium (Cafardi et al. 2013), in agreement with
the identification of a novel secreted metalloprotease (CD2830) that cleaves specific
proline-containing sequences in C. difficile cell surface proteins (Cafardi et al. 2013;
Hensbergen et al. 2014). Streptococcal surface proteins are also released from the
bacterial surface through the action of a cysteine protease that cleaves and releases
biologically active fragments of surface proteins in post-exponential phases of
growth (Loughman and Caparon 2006; Rasmussen and Bjorck 2002). Nevertheless,
some proteins have multiple release mechanisms. For example, staphylococcal
protein A (SpA), a cell wall envelope anchored protein was shown to be released
from the bacterial surface with the murein tetrapeptide-tetraglycyl-linked to its
C-terminal threonyl residue (Becker et al. 2014), or with an unprocessed sorting
signal (O’Halloran et al. 2015).
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4.2 Lipoproteins

Lpps represent approximately 2–3% of the encoded bacterial proteome. They play a
variety of biological functions, some important for cell physiology and others
essential for virulence, such as adhesion, colonization, and persistence. Lpps have
been described as virulence factors because they play critical roles in membrane
stabilization, nutrient uptake, antibiotic resistance, bacterial adhesion to host cells,
protein maturation and secretion and many of them have still unknown functions
(Kovacs-Simon et al. 2011). After the translation in the cytoplasm, the prepro-
lipoprotein precursor translocates across the membrane via the Sec-pathway by the
recognition of the specific N-terminal signal peptide. Then in Gram-positive bac-
teria Lpps are processed by two key enzymes: the prolipoprotein diacylglyceryl
transferase (Lgt) and the Lpp signal peptidase (Lsp). The Lgt enzyme recognizes a
so-called lipobox motif in the C-terminal region of the signal peptide of a premature
Lpp and transfers a diacylglyceryl moiety to the cysteine residue of the lipobox.
Subsequently, the Lsp enzyme cleaves the signal peptide resulting in a mature Lpp
(Hussain et al. 1982; Pfortner et al. 2014). Nevertheless, recent reports have sug-
gested that Gram-positives lack the Gram-negative homologous apolipoprotein
N-acyltransferase (Lnt) gene responsible for N-acylation (Kurokawa et al. 2009;
Vidal-Ingigliardi et al. 2007). Despite that it seems that the Lpp N-terminal of some
Gram-positive bacteria can also be modified with an acetyl group (Asanuma et al.
2011; Tawaratsumida et al. 2009). Chemical phase partitioning of membrane
components with the detergent Triton X-114 allowed the isolation of Gram-positive
Lpps (Cockayne et al. 1998). Seven S. aureus native Lpps were isolated and then
structurally characterized using this protocol of extraction, but it required the
impressive volume of 10 liters of bacterial cell culture to obtain 4 mg of Lpp
fraction (Tawaratsumida et al. 2009). Interestingly, we have recently reported that
the treatment of streptococci with sublethal concentration of penicillin allowed the
release in the extracellular medium of membrane vesicles constituted almost
exclusively of Lpps (Biagini et al. 2015) enabling a fast enrichment tool for
characterization of Gram-positive native Lpps. Another interesting approach for
Lpps study is the bacterial surface biotinylation, in which surface-exposed proteins
were covalently labeled with biotin-conjugated sulfo-N-hydroxy-sulfosuccinimide
ester cross-linker, a membrane impermeable reagent that preferentially reacts with
the e-amino group of lysine residues of surface-associated proteins. This approach
was already applied in Gram-negative bacteria for the isolation of Lpps (Cullen
et al. 2003) and has been successfully applied to S. aureus (Hempel et al. 2010).
The power of this approach in the identification of Lpps has been further confirmed
in a comparative study, where different approaches have been evaluated with dif-
ferent S. aureus subcellular fractions (Hempel et al. 2011). An optimized biotiny-
lation approach and a highly specific shaving approach were applied to study the
pneumococcal surface proteome, and preventing autolysis of pneumococci during
incubation, nearly the 95% of the predicted Lpps were identified (Pribyl et al.
2014).
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4.3 Proteins Released in the Extracellular Milieu

Most of the virulence factors are found in the extracellular milieu, independently
from the way they reach out the bacterial cell. Many adhesins, that are covalently or
non-covalently bound to the cell surface and mediate bacterial adhesion to a variety
of host molecules (Foster et al. 2014), are often detected in the extracellular milieu
due to cleavage exerted by bacterial proteases (Hensbergen et al. 2014). However
the major components (not necessarily in terms of abundance) are toxins that are
represented by several protein families and classified according to their different
function or effect on the host (Otto 2014; Vandenesch et al. 2012): generally they
are grouped in membrane-damaging factors, or molecules that interfere with host
receptor functionality, degrade host molecules, and interfere with host immune
defence mechanisms (Otto 2014). Among exotoxins, the staphylococcal super-
antigens represent a peculiar class of molecules able to activate in a nonconven-
tional way the T-cell immune response and they are associated with food poisoning
and toxic shock syndromes (Xu and McCormick 2012). Exfoliative toxins well
represent the last class of toxins, acting as serine proteases in the degradation of the
skin (in particular hydrolysing desmoglein and causing the Ritter’s disease, also
known as staphylococcal scalded skin syndrome) (Bukowski et al. 2010). Other
small proteins and peptides have been identified to be released by Gram-positive
bacteria as virulence factors and they are represented by Panton-Valentine leuko-
cidins (LukS and LukF) (Shallcross et al. 2013) and phenol-soluble modulins (Li
et al. 2014; Peschel and Otto 2013), recently proven to be effective vaccines in
animal models of infection (Brown et al. 2009; Karauzum et al. 2013; van den Berg
et al. 2015). Noteworthy other small peptides with multiple roles as virulence
factors, such as lantibiotics (Alkhatib et al. 2012; Dischinger et al. 2014) and
circular bacteriocins (Gabrielsen et al. 2014) have also been identified in the
S. aureus proteome.

4.4 Cytoplasmic Predicted Proteins

The proteomic analysis of cell surface and/or medium revealed the presence of
cytoplasmic proteins which do not carry pre-sequence for secretion and/or with
function associated to the cytoplasm. The number of cytoplasmic proteins identified
from these compartments is often proportional to the extent of bacterial lysis in the
culture (Rice and Bayles 2008). The protective immunity observed with cytoplas-
mic proteins such as the GAPDH, a key glycolytic enzyme (Perez-Casal and Potter
2016), or the recognition of cytoplasmic proteins by sera obtained from infected
subjected (Zysk et al. 2000), indicate that they are exposed to the immune system
through presentation on the bacterial surface or by bacterial lysis occurring during
the infection. Although a non-classical protein secretion pathway (e.g., SecA2) has
been described as responsible for secretion of some proteins lacking the N-term
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signal peptide (Bendtsen et al. 2005), it is not excluded that other molecular
machineries are responsible for the translocation of cytoplasmic proteins. It remains
extremely challenging to evaluate what is the part of potential translocation and
lysis. Interestingly some of the predicted cytoplasmic proteins identified on the
surface of bacteria have been demonstrated to function as adhesins and their pro-
tective function after active immunization was proved (Alves et al. 2015; Elhaik
Goldman et al. 2016). For this reason, these proteins, which are also involved in
energetic metabolism or genetic apparatus (enolase, phosphoglycerate kinase,
DNA-directed RNA polymerase b), were described also as “moonlighting” to
reinforce their double and diverse roles on the surface and in the cytoplasm
(Henderson and Martin 2011, 2013; Kainulainen and Korhonen 2014).

4.5 Membrane Vesicles in Gram-Positive Bacteria

The release from live cells of nano-sized membrane vesicles into the extracellular
environment is a common phenomenon observed in all the three domains of life:
Bacteria, Archaea, and Eukarya (Kim et al. 2015). In Gram-negative bacteria, they
were first observed by electron microscopy in E. coli since the 1960s (Knox et al.
1966) and then generally termed as outer membrane vesicles (OMV). A plethora of
functions have been associated to OMV, ranging from genetic transformation,
virulence factor release, decoy from antimicrobial attack and protection from cel-
lular stress as well as biofilm formation (Manning and Kuehn 2013). Nevertheless
the experimental evidence of the release of membrane vesicles (MV) in
Gram-positive bacteria was found five decades later, with two studies performed on
S. aureus (Lee et al. 2009) and Bacillus anthracis (Rivera et al. 2010). In S. aureus
MV more than 90 proteins were identified by proteomic studies, including
surface-associated and extracellular virulent proteins such as L-lactamase, coagu-
lase, hemolysin, IgG-binding protein Sbi, and N-acetylmuramoyl-l-alanine amidase
(Lee et al. 2009). Intriguing functional roles of MV in bacteria—bacteria and
bacteria—host interactions have been suggested, in particular the association of
S. aureus MV with the development of atopic dermatitis (Hong et al. 2011, 2014).
S. aureus MV displayed a cytotoxic effect on various host cells and caused cell
death by delivering bacterial virulent factors to host cells in a cholesterol-dependent
manner (Gurung et al. 2011; Thay et al. 2013). Rivera and colleagues demonstrated
that B. anthracis also produces MV with “cargo” activity acting as a means to
release biologically active toxins including lethal factor, edema toxin, and anthro-
lysin (Rivera et al. 2010). Notably mice immunized with MV survived significantly
longer than controls after B. anthracis challenge (Rivera et al. 2010). After these
first studies MV release was discovered in other Gram-positive species such as
B. subtilis (Brown et al. 2014), Clostridium perfringens (Jiang et al. 2014), Listeria
monocytogenes (Lee et al. 2013), Streptococcus mutans (Liao et al. 2014),
S. pneumoniae (Olaya-Abril et al. 2014b) and Streptococcus suis (Haas and Grenier
2015), Streptomices coelicolor (Schrempf et al. 2011), Streptomices lividans
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(Schrempf and Merling 2015). Lipoprotein-rich Membrane Vesicles (LMV) from
streptococcal species have been reported very recently (Biagini et al. 2015).
Proteomic analysis of LMV revealed that they are almost exclusively constituted of
Lpps. In addition, the very low abundance of proteins with multiple transmembrane
domains and the presence of proteins associated to ExPortal led to the hypothesis
that the LMVs are not representative of the bacteria membrane and may derive from
micro-domains involved in the protein maturation and lipoprotein secretion (Biagini
et al. 2015).

5 Conclusions

Several preclinical and clinical studies conducted with protein subunit-antigens
from Gram-positive bacteria have evidenced that the identification of protective
antigens remains a challenging task (Bagnoli et al. 2012). Poor understanding of
mechanisms of immune evasion and adaptation of Gram-positive bacteria to dif-
ferent host niches is delaying vaccine discovery. It is likely that pathogens express
and secrete proteins of unknown function that contribute to those processes sup-
porting the concept that the successful development of efficacious vaccines may
also depend on the identification of virulence factors expressed in the surface
proteome and/or exoproteome in conditions mimicking host-pathogen interactions.
The identification of those vaccine candidates requires to: (i) identify all ORFs of a
pathogen; (ii) assign cellular localization to the encoded proteins and predict vac-
cine candidates; (iii) assess the level of expression of the selected antigens in animal
models of infection or in models mimicking infection conditions. In this process,
genomics and proteomics have driven the vaccine research in a very tight synergy
and this was facilitated by the simultaneous development of tools as well as new
techniques and experimental approaches. Until recently, proteomics complements
genomics by validating the identification of the ORFs, and the assignment of cel-
lular compartments of the antigens encoded by these ORFs allowing the develop-
ment and release of predictive software programs of higher reliability. We are now
assisting to a new phase of this synergy where the main contribution of proteomics
is the quantification of predicted antigens in model of infection to prioritize vaccine
candidates with high potential to be effective in clinical trials.
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