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Preface 

It is true that there exist many books dedicated to linear algebra and some
what fewer to multilinear algebra, written in several languages, and perhaps 
one can think that no more books are needed. However, it is also true that in 
algebra many new results are continuously appearing, different points of view 
can be used to see the mathematical objects and their associated structures, 
and different orientations can be selected to present the material, and all of 
them deserve publication. 

Under the leadership of Juan Ramon Ruiz-Tolosa, Professor of multilin
ear algebra, and the collaboration of Enrique Castillo, Professor of applied 
mathematics, both teaching at an engineering school in Santander, a tensor 
textbook has been born, written from a practical point of view and free from 
the esoteric language typical of treatises written by algebraists, who are not 
interested in descending to numerical details. The balance between follow
ing this line and keeping the rigor of classical theoretical treatises has been 
maintained throughout this book. 

The book assumes a certain knowledge of linear algebra, and is intended as 
a textbook for graduate and postgraduate students and also as a consultation 
book. It is addressed to mathematicians, physicists, engineers, and applied 
scientists with a practical orientation who are looking for powerful tensor 
tools to solve their problems. 

The book covers an existing chasm between the classic theory of tensors 
and the possibility of solving tensor problems with a computer. In fact, the 
computational algebra is formulated in matrix form to facilitate its implemen
tation on computers. 

The book includes 197 examples and end-of-chapter exercises, which makes 
it specially suitable as a textbook for tensor courses. This material combines 
classic matrix techniques together with novel methods and in many cases the 
questions and problems are solved using different methods. They confirm the 
applied orientation of the book. 

A computer package, written in Mathematica, accompanies this book, 
available on: http://personales.unican.es/castie/tensors. In it, most of the 
novel methods developed in the book have been implemented. We note that 
existing general computer software packages (Mathematica, Mathlab, etc.) for 
tensors are very poor, up to the point that some problems cannot be dealt 

http://personales.unican.es/castie/tensors
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with using computers because of the lack of computer programs to perform 
these operations. 

The main contributions of the book are: 

1. The book employs a new technique that permits one to extend (stretch) 
the tensors, as one-column matrices, solve on these matrices the desired 
problems, and recover the initial format of the tensor (condensation). This 
technique, applied in all chapters, is described and used to solve matrix 
equations in Chapter 1. 

2. An important criterion is established in Chapter 2 for all the components 
of a tensor to have a given ordering, by the definition of a unique canonical 
tensor basis. This permits the mentioned technique to be applied. 

3. In Chapter 3, factors are illustrated that have led to an important con
fusion in tensor books due to inadequate notation of tensors or tensor 
operations. 

4. In addition to dealing with the classical topics of tensor books, new tensor 
concepts are introduced, such as the rotation of tensors, the transposer 
tensor, the eigentensors, and the permutation tensor structure, in Chapter 
5. 

5. A very detailed study of generalized Kronecker deltas is presented in Chap
ter 8. 

6. Chapter 10 is devoted to mixed exterior algebras, analyzing the problem 
of change-of-basis and the exterior product of this kind of tensors. 

7. In Chapter 11 the rules for the "Euclidean contraction" are given in detail. 
This chapter ends by introducing the geometric concepts to tensors. 

8. The orientation and polar tensors in Euclidean spaces are dealt with in 
Chapter 12. 

9. In Chapter 13 the Gram matrices G(r) are established to connect exterior 
tensors. 

10. Chapter 14 is devoted to Euclidean tensors in E^(R) , affine geometric 
tensors (homographies), and some important tensors in physics and me
chanics, such as the stress and strain tensors, the elastic tensor and the 
inertial moment tensor. It is shown how tensors allow one to solve very 
interesting practical problems. 

In summary, the book is not a standard book on tensors because of its 
orientation, the many novel contributions included in it, the careful notation 
and the stretching-condensing techniques used for most of the transformations 
used in the book. We hope that our readers enjoy reading this book, discover 
a new world, and acquire stimulating ideas for their applications and new 
contributions and research. 

The authors want to thank an anonimous French referee for the careful 
reading of the initial manuscript, and to Jeffrey Boys for the copyediting of 
the final manuscript. 

Santander, Juan Ramon Rmz-Tolosa 
September 30, 2004 Enrique Castillo 
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Part I 

Basic Tensor Algebra 



Tensor Spaces 

1.1 Introduction 

In this chapter we give some concepts that are required in the remaining chap
ters of the book. This includes the concepts of reciprocal coordinate frames, 
contravariant and covariant coordinates of a vector, some formulas for changes 
of basis, etc. 

We also introduce different types of matrix products, such as the ordinary, 
the tensor or the Schur products, together with their main properties, that 
will be used extensively to operate and simplify long expressions throughout 
this book. 

Since we extend and condense tensors very frequently, i.e., we represent 
tensors as vectors to take full advantage of vector theory and tools, and then 
we recover their initial tensor representation, we present the corresponding 
extension and condensation operators that permit moving from one of these 
representations to the other, and vice versa. 

These operators are used initially to solve some important matrix equa
tions that are introduced, together with some interesting applications. 

Finally, the chapter ends with a section devoted to special tensors that are 
used to solve important physical problems. 

1.2 Dual or reciprocal coordinate frames in affine 
Euclidean spaces 

Let £"^(11) be an n-dimensional affine linear space over the field IR equipped 
with an inner connection (inner or dot product), < •, • >, and let {e^} be 
a basis of E'"'(IR). The vector V with components {x^} in the initial basis 

- • ^ 

{Sa}: i.e., the vector V = ^ x^e^ will be represented in the following by the 

symbolic matrix expression 
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2 

V = \\ea\\X = [eie2' 
X 

(1.1) 

In this book vector matrices will always be represented as row matrices, de
noted by II • II, and component matrices always as column matrices, denoted 
by [•]. So, when referring to columns of vectors or rows of components, we 
must use the corresponding transpose matrices. 

To every pair of vectors, {F, W}^ the connection assigns a real number (a 
scalar), given by the matrix relation 

<V,W> =X'GY, (1.2) 

where X and Y are the column matrices with the coordinates of vectors V 
and W, respectively, and G is the Gram matrix of the connection, which is 
given by 

Gn==[9aß]^[<eo^.eß>]; gaß eU; G = G\\G\ ^ 0. (1.3) 

As is well known, if a new basis is selected, all the mathematical objects 
associated with the linear space change representation. 

So, if 
| |ez | | l ,n = \\ea\\l,nCn,n (1-4) 

is the matrix representation of the change-of-basis, and the subindices refer 
to the matrix dimensions (row and columns, respectively), a vector V can be 
written as 

V=\\ea\\Xn,l 

and also as 
V = \\ii\\Xn,i, 

where the initial Xn,i and new Xn,i components are related by 

Xn,l = CXn,l. (1.5) 

It is obvious that any change-of-basis can be performed with the only 
constraint of having an associated C non-singular matrix (|C| 7̂  0). 

However, there exists a very special change-of-basis that is associated with 
the matrix G 

C~G-\ (1.6) 

for which the resulting new basis will not be denoted by {e^}, but with the 
special notation {e*^^}, and it will be called the reciprocal or dual basis of 
{ea}' 

The vector y = Jleajl-X with components {x^} in the initial basis now has 
the components {XQ,}, that is 
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V r _ > * 1 _ , * 2 

e e 

Xi 

X2 

Hence, taking into account (1.6), expression (1.5) leads to 

X = G-^X* 4^ X* - GX 

and from (1.4) we get 

||e II = ||eQ;||G <^ [e e •••e J = [6162 •• • en]G-

(1.7) 

(1.^ 

Equation (1.7) gives the relation between the contravariant coordinates^ 
X, of vector V in the initial frame and the covariant coordinates, X*, of the 
same vector F , when it is referred to a new frame that is the reciprocal or 
dual of the initial frame. In short, in a punctual affine space we make use of 
two frames simultaneously: 

1. The (O —{e*Q;}) initial or primary (contravariant coordinates). 
2. The (O — {e*^}) reciprocal (covariant coordinates) (in spheric three-

dimensional geometry it is the po/ar trihedron of the given one). 

Following the exposition, assume that the coordinates of two vectors V 
and W are given and that their dot product is sought after. 

1. If the two vectors are given in contravariant coordinates, we use the ex
pression (1.2): 

<V,W> = X^GY. 

2. If T? is given in contravariant coordinates (column matrix X) and W is 
given in covariant coordinates (column matrix y*), and at this time the 
heterogeneous connection is not known, expression (1.7) can be obtained 
by writing W in contravariant coordinates, Y = G~"^F* and using expres
sion (1.2): 

<V^W> = X*G(G-^F*) = X V * = X V y * (1.9) 

The surprising result is that with data vectors in contra-covariant coordi
nates the heterogeneous connection matrix is the identity matrix / , and 
the result can be obtained by a direct product of the data coordinates. 
From this result, one can begin to understand that the simultaneous use 
of data in contra and cova forms can greatly facilitate tensor operations. 

3. If y is given in covariant coordinates (X*) and W in contravariant coor
dinates (matrix y ) , proceeding in a similar way with vector V, and using 
(1.7), one gets 
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< V,W>={G-^X*YGY = {X*)\G-'^YGY = {X*YG-'^GY = {X*flY, 
(1.10) 

where once more we observe tha t cova-contravariant da t a imply a unit 
connection matr ix / . 

4. Finally, if one has cova-covariant data, tha t is, V{X*) and 1^(1^*), the 
result will be 

<V,W> - X^GY - ( G - i X * ) * G ( G - ^ y * ) 
= {XyG-^GG-^Y'' = (X*)*G-^y*, 

(1.11) 

which discovers tha t for a reciprocal frame, the Gram matrix is G* = G "̂ , 
t ha t is, 

< y , H> > = (X*)*G-^y* . (1.12) 

Example 1.1 (Change of basis). The Gram matrices associated with linear 
spaces equipped with inner products (Euclidean, pre-Euclidean, etc.) when 
changing bases, transform in a "congruent" way, i.e.: G = C^GC. The proof 
is as follows. 

Proof: By definition we have 

G = en = 

ei 
62 

• e i 62 en = 

ei • ei ei • 62 
62 • e 1 e2 • 62 

en •ei Sn* 62 

e_i • ejn 
62 •en 

(1.13) 
If the scalar ê  • Cj is denoted by p«j, we have G = [9ij]'> and since gij = 
Ci • Sj — Cj • Ci — Qji we get G — G^. 

If in the linear space we consider the change-of-basis ||e^|| = | |e4||C, then 
we have 

G • \\en |e-||C)*.(||e,||C)=C*(i|e, • e,: \)C 

and using (1.13), we finally get G = C^GC, which is the desired result. 

Next, an example is given to clarify the above material. 

D 

Example 1.2 (Linear operator and scalar product). Assume tha t in the affine 
linear space E'^(]R) referred to the basis {ca}^ a given linear operator (of 
associated matrix T given in the cited basis) transforms the vectors in the 
affine linear space into vectors of the same space. In this situation, one per
forms a change-of-basis in E'^CSl) (with given associated matr ix C). We are 
interested in finding the matr ix M associated with the linear operator, such 
tha t taking vectors in contravariant coordinates of the initial basis returns the 
transformed vectors in "covariant coordinates" of the new basis. 

We have the following well-known relations: 
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1. In the initial frame of reference, when changing bases, the Gram matrix 
(see the change-of-basis for the bilinear forms) satisfies 

G = C^GC. (1.14) 

2. It is known that the linear operator operates in ^ ^ ( H ) as 

Y = TX. (1.15) 

3. According to (1.5) the change-of-basis for vectors leads to 

and entering with (1.7) for the vector W in the new basis gives 

iXY = GY ^^^""^'="' ^'-^'^ {C^GC)Y ^^^""^^="' ^'-^'^ {C^GC){C-'Y) = 
^,^^because^of(1.15)^,^^^^^^ 

(1.17) 
Thus, we get (F)* = MX with M = C^GT, which is the sought after result. 
D 

Finally, we examine in some detail how the axes scales of the reference 
frame {e**} are the "dual" or "reciprocal" of the given reference frame {e^}. 

Equation (1.8): 

[e e • • -e J = [eie2 •• - en\G 

declares that the director vector associated with the main direction OX^ (in 
the dual reference frame (O — X^, X 2 , . . . , X^)) is 

r ^ = g^'e, + g^'e2 + • • • + g''e, + • • • + p^^e,, (1.18) 

where [g'^^] = G -^ is the inverse of G and symmetric, and then 

I G I ' 9'' = TTTT, (1-19) 

where G*-̂  is the adjoint of ^ ĵ in G. 
The modulus of the vector e"*̂  is 

V" < e *% e *̂  > = v ^ = 1/ T7^' (̂ -̂ O) 

which gives the scales of each main direction OX^, in the reciprocal system, 
which are the reciprocal of the scales of the fundamental system (contravari-
ant) when G is diagonal. 

Since < e**% Cj > = 0; Vf 7̂  j , all e*^ has a direction that is orthogonal to 
all remaining vectors ej {j ^ i). All this recalls the properties of the "polar 
trihedron" of a given trihedron in spheric geometry. 
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Remark 1.1. If the reference frame is orthogonalized but not orthonormalized, 
that is, if 

Iffn 0 . . . 0 
0 922... 0 

G 

0 0 • • • f f„ 

expression (1.20) becomes 

^ 1 

G\ \ \G\ v ^ -
(1.21) 

D 

1.3 Different types of matrix products 

1.3.1 Definitions 

In this section the most important matrix products are defined. 

Definition 1.1 (Inner, ordinary or scalar matrix product). Consider 
the following matrices: 

where the matrix subindices and the values within brackets refer to their di
mensions and the corresponding elements, respectively. 

We say that the matrix P is the inner, ordinary or scalar product of ma
trices A and B, and it is denoted by Am B, iff (if and only if) 

a=h 

P = AmB =^Pij = '^aiabaj] z == 1, 2 , . . . , m; j = l ,2, . . . , n . 

Definition 1.2 (External product of matrices). Consider the following 
matrices: 

^m,h = L^ÜJ' ^m,h = \Pij\') 

and the scalar X e K. We say that the matrix P is the external product of the 
scalar X and the matrix A, and is denoted by Xo A, iff 

P = X o A =^ Pij = Xüij. 

Definition 1.3 (Kronecker, direct or tensor product of matrices). 
Consider the following matrices: 

^m,n — [<^a/3j5 •'-^P,Q — L 7̂<5j? ^mp,nq — \Pii 



1.3 Different types of matrix products 

We say that the matrix P is the Kronecker, direct or tensor product of matrices 
A and B and it is denoted by A ^ B, iff 

P = A^B^Pij = aaßb^s = a[_i^j+i,[_i:^j+iöi_Li^jpj_L2^jg, (1.22) 

where z = 1,2,. . . , mp, ; j = 1,2,.. . , nq, [x\ is the integer part of x, with an 
order fixed by convention and represented by means of ''submatrices'\' 

P — Ä >B p,q-

ail o B I (2i2 o B \ 

a2io B \ 022^ B \ 

... I ... I . 

ami o B I am2 oB \ 

where each partition has p rows and q columns. 

— + 
.. I 

+ 
•• I 
— + 

ain o B 

a2n ^ B 

d'm.n O B 

It is interesting to know what the row i and column j are, where the 
factor üaßbrys appears in the tensor product Am,n ^ ^p,q^ i-̂ -5 what is the 
corresponding element pij. Its row and column are given by 

i = {a-l)p^ 7; j = {ß- l)q + 6. 

Similarly, the reverse transformation, according to (1.22) is 

i-1 

P 
+ 1; ß 

i - i + 1; j = i-
P 

P\ J-

(1.23) 

1 

(1.24) 
Some authors call this product the total product of matrices, which causes 

confusion with the total product of linear spaces. 

Definition 1.4 (Hadamard or Schur product of matrices). Consider 
the following matrices: 

We say that the matrix P is the Hadamard or Schur product of matrices A 
and B, and it is denoted by AUB, iff 

^m,n — -^m.n^-t^m^n ^ Pij — (^ij^ij'i ^ — I5 -̂ 5 • • • 5 ^^5 J — 1, ^, . . . , ?2. 
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1.3.2 Proper t i es concerning general matr ices 

The properties of the sum + and the ordinary product • of matrices, which 

are perfectly developed in the linear algebra of matrices, are not developed 
here. Conversely, the most important properties of other products are given. 

The most important properties of these products for general matrices are: 

1. A<^{B ^C) =^ {A^B)<S)C (associativity of (g)). 
(A^{B-^C)=A^B-^A^C (right distributivity of (g))-

• \{A-i-B)^C = A^C^B^C (left distributivity of (g)). 
3. (A (g) By = A* (g) B* (be aware of the order invariance). 
4. {A (g) By = A* (g) 5*, where X* - (X*) (complex fields). 
5. Relation between scalar and tensor products. Let Am,ni ^P^Q^ ^n,r and Fq^s 

be four data matrices. Then, we have 

{A^ B) • {C 0 F) = {A* C) ^ {B • F). 

In fact, we have 
'^m,n W •^p,g — -^mp^nq 

^n,r ^ -^9,5 ^^ ^nq,rs-) 

SO that the scalar product P • Q is possible: 

V-̂ 7Ti,n ^ •^P,Q) * \^n,r '<y •'^q,s) ^^ ^mp^nq • ^nq,rs 

In addition, we have 

A- • 0 = Arm^ri • ^n,r ^^ ^m.r 

and 

— J^mp,rs' 

B • F = Bp^q • Fq^s = Qp,s 

and then 
(A • C) (g) (P • F) = P ^ , , 0 Q ; , , = Rmp,rs. 

where these formulas aim only to justify the dimensions of the data ma
trices. 

6. Generalization of the relations between scalar and tensor products: 

(Ai(g)Pi)«(A2(g)P2)*- • -{Ak^Bk) = {Ai*A2- • '•Ak)^{BimB2*- -—Bk). 

This is how one moves from several tensor products to a single one. This 
is possible only when the dimensions of the corresponding matrices allow 
the inner product. 

7. There is another way of generalizing Property 5, which follows. 
Consider now the product 

P = (Al 0 P i (g) Ci) • (A2 (g) P2 (g) ^2). 
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Assuming ttiat the matrix dimensions allow the products, and using Prop
erties 1 and 5, one gets 

P=[{Ai (8) ^ i ) (8) CiK(A2 0 B2) (8) C2] = [(Al (8) Bi)m{A2 0 B2)](8)(Ci.C2) 

and using again Property 5 to the bracket on the second member, we have 

P = [(Al • A2) 0 (5i • ^2)] 0 (Ci . C2) 

and using Property 1, the result is 

P = (Al • A2) (8) {Bi • ^2) 0 (Ci • C2). 

In summary, the following relation holds: 

(Al (8) Bi (8) Ci) • (A2 (8) ^2 (S) C2) = (Al • A2) (8) (Bi • B2) (8) (Ci • C2), 

which after generalization leads to 

(Ai(8)A2(8)- • •(8)Afc)»(5i(8)^2(8)- • -(8)5^) = (Ai#5i)(8)(A2*B2)g)- • ^0{Ak^Bk). 

8. If we denote by A^ the product A • A • • • • • A and by Â ^̂  the product 
A0A0--'(S)A, with /c G IN, we have 

A ^ , n , B n , , ^ ( A . 5 ) [ ^ ^ = A t ^ U B W . 

We remind the reader that {A*B)^ ^ A^ • B^, unless A and B commute. 
9. 

rank (A 0 5 ) = (rank A) (rank B) 

= (rank 5 ) (rank A) 

= rank {B 0 A). (1.25) 

1.3.3 Properties concerning square matrices 

Next we consider only square matrices, that is, of the form Am,m and Bp^p. 
The most important properties of these matrices are: 

1. (A (8) Ip) • {Im 0B) = {Im 0 B) • (A (8) /p) = A (8) 5 . 
2. det(A (8) B) = (detA)^(detB)^ = (det^)^(c^etA)^ = det{B 0 A). 
3. trace {A^ B) = (trace A)(trace JB) = (trace 5)(trace A) = trace {B 0 A). 
4. (A (8) JB)""-̂  = A~^ <S> B~^^ where one must be aware of the order, and A 

and B must be regular matrices. 
5. Remembering the meaning of the notation A^ and Â ^̂  introduced in 

Property 8 above. Property 6 of that section for square matrices becomes 

(A(8)5)^ = A^(8)B^. 
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1.3.4 P r o p e r t i e s c o n c e r n i n g e igenvalues a n d e i g e n v e c t o r s 

Let {Xi\i — 1 ,2 , . . . , m } and {[ii\i = 1 ,2 , . . . ,p} be the sets of eigenvalues of 
^m,m^ and Bp^p^ respectively. If Vi (column matrix) is an eigenvector of Am^ 
of eigenvalue Â  and Wj (column matrix) is an eigenvector of Bp^ of eigenvalue 
/iy, tha t is, if Am * Vi = Xi ovi and Bp • Wj = /JLJ O WJ^ then we have: 

1. The set of eigenvalues of the matrix A^ B is the set 

{Xi(ij\i =: 1,2, . . . , m ; j = 1,2, . . . , _p} . (1.26) 

2. The set of eigenvalues of the matrix Z = {A^ Ip) -\- {Im ^ B) is the set 

{Xi + ßj\i = 1, 2 , . . . , m; j = 1 ,2 , . . . , p } . (1.27) 

Remark 1.2. The matr ix A can be replaced by the matr ix A^ and the 
matrix B by the matr ix B^. D 

3. The set of eigenvectors of the matr ix A<^ B is the set 

{vi®Wj\i = 1,2,...,m-, j = 1,2,...,p}. 

Proof. 

{A(S)B)*{vi0Wj) = {A9Vi)0{B»Wj) = {XiOVi)^{/ijOWj) = {Xifj,j)o{vi0Wj), 

which shows tha t Vi 0 Wj are the eigenvectors oi A^ B. 

Example 1.3 (Eigenvalues). Consider the tridiagonal symmetric matr ix 

A-r} 

of order n, which is also called finite difference matrix of order n, and let I^ 
be the unit matrix. The matr ix 

L-n?^n'^ = {An^n ^ ^n) + {^n ^ -A.n.n) 

is called the Laplace discrete bidimensional matrix. 
Since the eigenvalues of matr ix An,n are 

2 -
- 1 

0-

0 
0 

-1 
2 -

-1 

0 
0 

0 
-1 

2 -

0 
0 

0-
0-

-1 • 

0-
0 • 

• 0 
• 0 
• 0 

• - 1 
• 0 -

0 
0 
0 

2 -
-1 

0 
0 
0 

-1 
2 

4sin^ i = 1 ,2 , . . . , n 
. 2 ( n 4 - l ) , 

and in this case A = B = A^^n^ according to the Proper ty 2 above, the set of 
eigenvalues of L^2 ,̂ 2 is 

{Ae,} ^ 4 sm 
TTl 

2(n + l ) 
+ sin 

TTJ 

2 ( n 4 - l ) 
; ij = 1 , 2 , . . . , n 

D 
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1.3.5 Properties concerning the Schur product 

Some important properties of the Schur product are: 

1. Associativity, 
{AnB)nC = An{BnC), 

2. Commutativity, 
ABB = BDA. 

3. For matrices Am^n = l^ij]^ the matrix 

1 1 ••• 1 

1 1 ••• 1 
-'•^m.n — ; with riij = 1; i = 1, 2 , . . . , m; j = 1,2,. . . , n 

is the "unit" element of the Schur product " • " . 
4. For matrices Amn = [<^ij](^^ij 7̂  0)̂  there exists an "inverse matrix" for 

the product • (Abelian group), Wa^j E K. 
5. Distributivity of • with respect to +, 

AB{B -{-C) = ADB + ADC 

{A + B)nC = ADC ^ BDC. 

6. Schur product transpose, 

{ADBY = A^UBK 

7. Other properties. 

[AUBY =A*DB*; A* = ( i^) . 

1.3.6 Extension and condensation of matrices 

Next, we consider {Am,n} the linear space ii""^^"'(+, o), from the point of view 
of a manifold. 

We shall refer vectors in this space to its "canonical basis" B = {^^j}, 
which consists of the simplest matrices of K'^^'^^ that is, 

B — {{Eij)mn} = {^11,-£^12, • • • , ^ l n , - ^ 2 l 5 ^ 2 2 , ' ' * -^Emn}^ 

where {Eij)mn = [^aß] and 

krvR = 
1 if a = i and ß — j 

""̂  \ 0 otherwise. 

When choosing the basis ß, matrix Am,n is expressed as a linear manifold 
spanned by B. If a "matrix form" is adopted to notate the linear manifold, 
we get 
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[Eii\R 121 • • \Ei. \En 

r ^ i i 
012 

« In 

021 

022 

Ö2r7 

dml 

La„ 

— I l-̂ Ü' I l^mn^l') 

where all the elements of matr ix A ^ ^ appear "stacked" in a column matr ix X 
according to the ordering criteria imposed by the given basis S, and the matr ix 
product must be understood in symbolic form and as products of blocks. When 
one desires a given matr ix Ara,n in this form, the English language texts write: 

"obtained by stacking the elements of the rows of Am^n iii sequence." 

However, we want to note tha t it is not necessary to express this result in 
words; one can use the universal language of linear algebra. 

E x t e n s i o n of a m a t r i x 

Given a matr ix Tm,n^ a-nd calling a = m-n (not a prime number) the dimen
sion of the linear space Tm,n{K^) of matrices, we define by "extension" the 
mapping 

E : K '^^^ -^ K"", 

such tha t Vr^ ,n £ K'^'''^ : E{Tm,n) -= T^,i with T^,! £ K"", t ha t is, the 
"stacked" view is replaced by "stack and extend the given matrix and write 
it in column form". 

The "stacked" column matr ix T^^i^ associated with matr ix Tm,n can be 
obtained by 

{Ta,lY "1 1 Jl,m2 [Dm^ • {Im ® Trr. (1.28) 

= 1 if where the diagonal matr ix D^2 is such tha t da E {0,1} with da 
i = 1 + (m + l ) ( a — 1); â  = 1 ,2 , . . . , m. 

If ß^2 = {^11, £^12,. . . , Eij^..., Emm} is the canonical basis of matrices 
-j^mxm ^ ^ have tha t the matr ix Dm"^ in block form is 
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I n n I 
— + 
£^22 I 

— + + 
Q \ n \ 

+ 
n 

E„ 

(1.29) 

that is, we have an alternative way of obtaining the matrix D^2,^2 to be used 
in the formula for the stacked X matrix. 

However, we shall use even simpler expressions. 
If ß ^ = {^i}i<i<m is the canonical basis of matrices in IR"^^" ,̂ we have 

the following: 

(1.30) 

Extension formula: 

{T,,i)' = [E\ \E\ \ ••• 

because 

[1 1 . . . l]^^rn^.Dm^ = [E\ \El I . . . 

where we have denoted by Ji^rn"^ the matrix [E\ \E2 
and then 

^m]l,m2 

^ m J l , m 2 ' 

(1.31) 

Condensation of a matrix 

Similarly, given a "stacked" matrix, TQ-̂ I we can be interested in its "conden
sation" , that is, recover its original format Tm,n as a matrix. 

Since we know that cr = m • n, we define as "condensation" the mapping 

such that VT^,i E K"" : C(r^,i) = Tm,n with Tm,n € K'^x^. 

Condensation formula: 

-^m,n — V m^-^(T,; 

sizes : {m^m?n) {m?n^n) 

( 

\ 

-Ei-

E2 

-Em. 

\ 

®In 

J 

{lm®Tll)*{jl^.®In) 

(1.32) 
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Example I.4 (Extension of a matrix). Consider the matrix 

A: 3,4 

where m = 3 and n = 4, then 

a n ai2 ai3 ai4 
Ö21 Ö22 Ö23 <̂ 24 

031 0,32 a s s ^34 

)A 3,4 

-^3,4 

•^3,4 

^3,4 

1 
+ 
1 
+ 
1 

^3,4 

^3 ,4 

^3 ,4 

1 
+ 
1 
+ 
1 

^3,4 

•^3,4 

^3 ,4 9,12 

Next, we obtain the diagonal matrix Dr^2^^2 ~ Dg^g. In this case we have 

a 1 2 3 
1 5 9 

and then 

A,9 • (/3 ^ -As,4) = 

' 1 0 0 
0 0 0 
0 0 0 

Ü 

Q 

Ü 

0 0 0 
0 1 0 
0 0 0 

n 

Q 

Ü 

0 0 0 
0 0 0 
0 0 1 

(/3 ® -As,4) 

a n 
0 
0 

a i2 «13 
0 0 
0 0 

Q 

014 
0 
0 

0 
ß21 
0 

Q 

0 0 
Ö22 Ö23 
0 0 

0 
024 
0 

i 
Q 

Q 

0 0 0 0 
0 0 0 0 

«31 ÖL32 Ö33 «34 9,12 

Thus, in summary: 

X * = [1 1 . . . l]l ,9»(-C>9,9 • ( ^ 3 ^ ^ 3 , 4 ) ) ^ [ 0 1 1 ^ 1 2 . . . ß l 4 Ö 2 1 . - . 033034]-

D 
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1.3.7 Some important matrix equations 

In this section, after introducing some concepts, we state and solve some 
important matrix equations, i.e., some equations where the unknowns are 
matrices. 

There are a long list of references on Matrix equations (see some of them 
in the references) •'̂  

We call a transposition matrix of order n, every matrix resulting from 
exchanging any two rows of the unit matrix In, and leaving the remaining 
rows unchanged. The transposition matrices are always regular (|P| y^ 0, 
symmetric (P = P*), involutive (P = P~^) and orthogonal {P~-^ = P*). 

We call a permutation matrix the scalar or tensor product of several 
"transposition matrices" (in the second case they can be of different order 
V-̂  ^^ Pn,7n ^ p2 ,n j* 

Next, we solve the following equations. 

Matrix tensor product commuters equation 

Consider the equation 

P (8) A = Pi • (A (8) P ) • P2, (1.33) 

where Pi G {permutations of Imp} and P2 G {permutations of 7^^} are the 
unknown matrices. 

Note that in general A (g) P 7̂  P (g) A, where [A <S) B]^ ^ . i.e., the tensor 
product is not commutative. Thus, since direct reversal of the tensor product 
is not permitted, Equation (1.33) allows us to find two correction matrices 
Pi and P2 for reversing the tensor product; these will be called "transposer 
matrices" due to reasons to be explained in Chapter 5, on tensor morphisms. 

We shall give two different expressions for the solution matrices Pi and 
P2. 

The first solution is as follows. The permutation matrices Pi and P2 (or
thogonal matrices P{~'^ = P^'^P^^ = Pi) that solve Equation (1.33), for the 
products Am,n ^ Bp^q and Bp^q (g) Am,n are as follows: 

Pl(m,p) = Pmp,mp = [Plij]^ 

where 

l i f i = ( l + [ ^ J ) + [ ( j - l ) - p 
Plij ~- , 

0 otherwise 

where [xj is the integer part of x, and 

• 7 - 1 
p m . . 

; z,j = l , . . . , m p , 
(1.34) 

^ Ruiz-Tolosa and Castillo [48] have generalized these equations to tensor equations. 



18 

where 
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l i f j = 1 + 
P2ij 

I 0 otherwise 

which shows that 

P2{n,q) =Pnq,nq = [P2ij 

i - l 
i,j = 1, ,nq, 

(1.35) 

(1.36) 

Remark 1.3. It is interesting to check that the matrices Pi and P2 do not 
depend on the elements of A and B in (1.33), but only on their dimensions.D 
D 

Example 1.5 (Commuting the tensor product). Consider the particular case 
A3,3 and ^3,3 (m = n ^ p = q = ^), with ^3,3 = [aij]; B = [bij]. 

Applying the indicated formulas, one obtains Pi = P, 
Pij = 0, with the exception of 

mp,mp 
Pg 9 w i t h 

row 
column 

1 4 7 2 5 8 3 6 9 
1 2 3 4 5 6 7 8 9 

that is, in the positions 

(i, j) = (1,1), (4,2), (7,3), (2,4), (5,5), (8,6), (3,7), (6,8), (9,9), 

which take a value of 1, and P2 
exception of 

^nq,nq ^ ^9,9 w i t h Pij = 0, w i t h t h e 

row 
column 

1 2 3 4 5 6 7 8 9 
1 4 7 2 5 8 3 6 9 

that leads to a value of 1 in positions 

(i, j ) = (1,1), (2,4), (3,7), (4,2), (5,5), (6,8), (7,3), (8,6), (9,9). 

As one can see, the results are identical, and then P = Pi = P2, where P 
is symmetric, involutive and orthogonal; thus, we get 

^11 ^12 ^13 

^21 ^22 ^23 

^31 ^32 ^33 

/ 
= p . 

V 

(8) 
o i l 

ß21 

_ß31 

a i l 012 013 

a 2 1 a 2 2 Ö23 

_a3i c ̂ 32 Ö33_ 

012 Ö13 

Ö22 023 

Ö32 ß 3 3 _ 

0 
^ l l Ö12 

^21 ^22 

_bsi b 32 

^13 

^23 

^33 _ 

>p (1.37) 

with 
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p. 

1 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
0 
0 

0 
1 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
1 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
1 
0 

0 
0 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
1 

D 

For the case with p = m^q — n^ that is, matrices Amn and Bmn that have 
the same number of rows and columns, we have Pi = P^ and since they are 
orthogonal, the matrices B ® A and A^B are "similar inside the orthogonal 
group" 

P-^ • {A(^ B) • P = P^ • {A(^ B) • P = B ^ A. 

As a final result of the analysis of the matrices Pi and P2, that appear in 
Formula (1.33), we shall propose a second and simple general expression of 
such matrices. 

Let Bi = {Ell, ^12, • • • 5 ^ij^ • • •, Emp} be the canonical basis, with m x p 
matrices, of the II"^^^ matrix linear space. 

Let B2 — {E[i^E[2^ • • •, E^ki^ • • •' ^nq} b^ t^^ canonical basis with n x q 
matrices, in the R""^^ matrix linear space. 

Matrices Pi and P2 will be represented by blocks: 

^1 — -^mpjUip 

Ell 

E12 

_Eip 

E21 

E22 

E2p 

Eml 

Em2 

•^mp _ 

(1.38) 

Pn 

^ 2 1 

^ 2 , 

K2 

^nq_ 

(1.39) 

Special attention must be given to the "block ordering" inside matrices Pi and 
P2; it is not the canonical order but the transpose. As an example, all these 
results will be applied to the previous application related to Formula (1.33). 

Example 1.6 (Commuting the tensor product). Consider again the matrices 
^3^3 and ^3^3 in Example 1.5. The matrices Pi and P2 that solve our appli
cation (m = n = p = g = 3) now have a direct construction: 
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Pi = Pa = P 

^ll 

-^12 

-^13 

-£̂ 21 

^22 

^23 

-£̂ 31 

^32 

^33 

1 
0 
0 

0 
0 
0 

0 
0 
0 

00 
00 
00 

10 
00 
00 

Ol 
00 
00 

000 
100 
000 

000 
010 
000 

000 
001 
000 

00 0 
000 
100 

000 
000 
010 

000 
000 
001 

(1.40) 

which evidently coincides with the P in Example 1.5, which was obtained 
after using complicated subindex relationships. D 

Linear equation in a single matrix variable (case 1) 

Consider the matrix equation 

(1.41) 

in which the unknown is the matrix Xn^rn-
To solve this equation, we proceed to write it in an equivalent form, using 

the "tensor product" 

[An^n ^ Im,m + In,n ® ^m.m] • ^ n m , l = Cnm,l <> M •X = C (1 .42) 

with 

and 

5 ^ 1 2 5 • • • 1 ^lrri'! ^ 2 1 ) ^ 2 2 5 • • • 5 '^2Tn5 ^nl 5 • • • 5 ^nm\ 

C = [ c i i , C i 2 , . . . , C i ^ , C 2 l , C 2 2 , • • • , C 2 m 5 C ^ l , - • • 5 C^m] = (^n ^ C^n,m) * ^l^n^^ 

where we have used (1.31). 
Now we present equation (1.42) as a matrix equation, in the usual form. 
The solution x (and then X) is unique if \Mmn,mn\ ¥" 0? ̂ ^^^ is a: = M~•^^c. 

Then, a unique solution exists if 

Mrr An,n ' ^ I m ^ I n ^ B , 
t 

is non-singular. 
Once X is obtained, we must use (1.32) to obtain the condensed matrix 

sought after, Xn,m-

Example 1.7 (Equivalent matrices). Given the two matrices 

2 4 - 4 \ / 2 1 1̂  
A= [ 3 0 4 and B=llO 2 | , 

2 - 1 3 / \ l l - l 
(1.43) 

file:///ll-l
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obtain the most general matrix C such that AC — CB. 
If a matrix C exists such that AC = CB^ then we have 

AC-CB = ß, 

which is of the form (1.41); thus, after stretching the matrix C, we get (see 
Equation (1.42)): 

M • c = (^ (g) Js - I3 (g) 5*) • c =: 

/ - 2 0 0 
^ 0-2 0 

0 0 -2 

3 0 0 
0 3 0 
0 0 3 

2 0 0 
, 0 2 0 
\ 0 0 2 

4 0 0 
0 4 0 
0 0 4 

0 0 0 
0 0 0 
0 0 0 

- 1 0 0 
0 - 1 0 
0 0 - 1 

- 4 0 0\ 
0 -4 0^ 
0 0 -4 

4 0 0 
0 4 0 
0 0 4 

3 0 0 
0 3 0, 
0 0 3 / 

/ C l l \ 
' C12 ^ 

Cl3 

C2I 
C22 
C23 

C3I 

\ C 3 3 / 

/ 2 1 1 
' 10 1 

1 2 - 1 

00 0 
00 0 
00 0 

00 0 
00 0 
00 0 

^ \ 
00 
00 0 
00 0 

00 0 
00 0 
00 0 

/ C l l \ 
' C12 \ 

Cl3 

C21 
C22 
C23 

C31 

\ C 3 3 / 

Q, 

00 0 1 0 0 0 1 2 1 1 
00 0 00 0 10 1 , 

\ 0 0 0 I 0 0 0 I 1 2 - 1 / 
(1.44) 

where Cij are the elements of matrix C and the block representation has been 
used for illustrating the relation of the new matrix to matrices A and B. 

Whence 

/ - 4 - 1 - 1 
- 1 - 2 - 1 
- 1 - 2 - 1 

3 0 0 
0 3 0 
0 0 3 

2 0 0 
0 2 0 

\ 0 0 2 

4 0 0 
0 4 0 
0 0 4 

- 2 - 1 - 1 
- 1 0 - 1 
- 1 - 2 1 

- 1 0 0 
0 - 1 0 
0 0 - 1 

- 4 0 0\ 
0 - 4 0 ^ 
0 0 - 4 

4 0 0 
0 4 0 
0 0 4 

1 - 1 - 1 
- 1 3 - 1 i 
- 1 - 2 4 / 

/ C l l \ 
' C12 ^ 

C l 3 

C2I 
C22 
C23 

C3I 
\ C32 
\ C 3 3 

Q. (1.45) 

The orthogonal set to the linear subspace spanned by the rows of the 
square matrix (1.45), that is, the solution of (1.45), is the linear subspace 
spanned by the set of vectors 

{(4,8,8,17,7,7, 9,0,0)^ (1, -1 ,1 ,1 ,1 ,0 ,0 ,1 ,0)S (7,5, -13,5,1,10,0,0, 9)*}. 
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This implies that the most general matrix C that satisfies equation AC ~ CB 
IS 

/ 4pi + p2 + 7p3 8pi - p2 + 5p3 8Pi + P2 - 13P3 \ 

C 

V 

(1.46) 

) 

17p i+p2 + 5p3 7 p i + p 2 + P3 7pi4-10p3 

9pi P2 9P3, 

where pi,P2 and p3 are arbitrary real constants. Its determinant is 

\C\ = (9p3 - P2)(90p? - 9pip2 -PI- 9pip3 - 9p2P3 - 18pi), 

and thus, the most general change-of-basis matrix that transforms matrix A 
into matrix 5 , by the similarity transformation, C~^AC = ß , is that given 
by (1.46) subject to 

(9p3 - P2)(90p? - 9pip2 - pi - 9pip3 - 9p2P3 - 18pi) ^ 0. 

• 

Linear equation in a single matrix variable (case 2) 

Similarly, if the equation is 

the corresponding usual equation is 

[Am,n ^ BlJ • Xnp.l == C^g,l- (1-48) 

Again, once x is obtained, we must use (1.32) to obtain the condensed 
matrix sought after, Xn^p-

Linear equation in two matrix variables 

Consider the matrix equation 

where the unknown matrices are Xp^q and Ym^r-
To solve this equation we proceed to write it stretched in an equivalent 

form, using the "tensor product": 

with 

{Am,p ^ Iq) • ^pQ,l + [Im ^ -ög,r) • Vmr,! = Cmg,l 

X = [Xii , a:i2, . . . , Xiq, 2:21, 2:22, ••• , X2q, • • . , ^ 

(1.50) 
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y = [yii'> y i2 , • • •, xir, ^21,^22, • • • , y^r, • 

and 

C = [ c i i , C i 2 , . . . , C i g , C 2 l , C 2 2 , 

Finally, Equat ion (1.50) can be writ ten as 

5 ^2q 5 • • • 5 ^rj 

(A^,p(g)Jg | (J^(g)(5*) 
Q ' , ' ^ ; 

*^pg,l 

ymr,l 

Cmq,li (1.51) 

which is the same equation (1.49) but wri t ten in the usual form. Then, the 
solution (a:, y) can be obtained by solving a linear system of equations. 

Example 1.8 (Equivalent matrices). Given the two matrices 

A and B (1.52) 

obtain the most general matrices X and Y such tha t AX + YB — Q. 
Since this expression is of the form (1-49), after stretching matrices X and 

y , one gets (see Equation (1.51)): 

/ - 2 0 0 
0 - 2 0 
0 0 - 2 

3 0 0 
0 3 0 
0 0 3 

2 0 0 
0 2 0 

\ 0 0 2 

4 0 0 
0 4 0 
0 0 4 

0 0 0 
0 0 0 
0 0 0 

- 1 0 0 
0 - 1 0 
0 0 - 1 

- 4 0 01 
0 - 4 0 
0 0-4 1 
4 0 01 
0 4 0 
0 0 4 

_ 
3 0 01 0 3 0 
0 0 31 

1 2 1 
1 0 
1 2 

h 
1 0 0 

0 0 
0 0 

h 
1 0 0 

0 0 
1 0 0 

0 0 
0 0 
0 0 

- - + -
2 1 
1 0 
1 2 

- - + -
0 0 
0 0 
0 0 

00\ 
00 
00 

00 
00 
00 

21 
10 
1 2 / 

2:21 
^22 
^23 
2^31 
2^32 
^33 

yii 
yi2 
y2i 
y22 

I ysi 
\ y32 / 

i7, 

and solving the resulting homogeneous system and condensing X and Y one 
finally gets 

X = 
-pS - 2p4 - 4p7 -P4 - 4p6 - 2 p 3 - P4 - 4/95 

Pi + 2p2 - 2/93 - 4p4 + P7 P2- 2p4 + P6 2/9i + /92 " 4/93 - 2p4 + Pö 
3p7 3/96 3P5 

y = 
-4^2 + 6/94 

3/94 
P2 

D 

where /9i, p2r • • • 5 P? ^ire arbitrary real constants. 
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Example 1.9 (One application to probability). Assume that E^^n is the variance-
covariance matrix of the n-dimensional random variable X, then, the variance-
covariance matrix of the n-dimensional random variable Y^^i = Cn,nXn,i is 
^n,n = Cn,n^n,n{C^^)n,n' If We look for En,n = ^n, i t mUSt b e 

In order to obtain all change-of-basis matrices C leading to this result, we 
initially solve the equation 

which is of the form (1.49) and then it can be written as 

— ^Cnn^. (1.53) 
ynn,l ) 

from which matrices X and Y can be obtained. Next, it suffices to impose the 
condition 

Y={{-Xf)-\ (1.54) 

As an example, consider the matrix 

/ 3 1 - 1 \ 
E* =\ 1 4 0 

V-1 0 2) 

then, we get 

( -P7 -f Ps + 3p9 4p8 + P9 2p7 - /99 \ / p9 p8 P7^ 

-P4 + P5 -+- 3/96 4p5 + P6 2p4 - P6 ; ^ = P6 p5 pA 
-p\ + P2 + 3p3 4p2 + P3 2pi - P3 / \ P3 P2 Pi 

where the p^ are arbitrary real numbers that must satisfy (1.54). D 

Linear equation in several matrix variables 

Finally we mention that Equations (1.41) and (1.49) can be immediately gen
eralized to 

I J 

2_^ (^Vm,p i • \Xi)y^^q + Z^jV^dJ'm.Tj • (-^j)rj,g = Cm,q (1 .55) 

leading to the following system of linear equations, which generalizes (1.51): 
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( ( ^ l ) m , p i ®Iq,q • • • ly-^I)m,pi ^ J-q,q\J-m,m 

/ ( ^ l ) p i g , l \ 

\^l)pjq,l 

(2/ l )mri , l 

\{yj)mrj,l/ 

^mq,l- (1.56) 

The Schur-tensor product equation 

Consider the following matrix equation, which allows us to replace a tensor 
product by a Schur product: 

^771,n^-^m,n — ^m,m^ * \^m,n ^ •^m,n) • ^'n?.ni (1.57) 

where P and Q, the unknowns, are never square matrices. Note that this is a 
direct relationship among the "three matrix products". 

Solution matrices Qm,m? sind Pn'^^n ^re, respectively, given by 

Qm,m^ = [%•]; Qij ^ {0,1} with Qi \ O o t h 
i{m + 1) — m 

otherwise 

and 

T̂  r 1 rr̂  -1̂  ',^ f 1 if f = 7(n H- 1) — n 
P„^„ = [ft.]; ft,- e {0,1} with p, , = | ^ otherwise. 

Nevertheless, and following the previous criterion of having a faster for
mulation for matrices Qm,m? and Pn'^^n in Formula (1.57) we propose the 
following block alternative: 

Q. \E-11 E-22 E, m,m J 5 (1.58) 

where ^„2 = {Eij} is the canonical basis of the matrix Hnear space R™'™, 
and 

-E'„ 

P, n^,n 

E', 22 

(1.59) 

E'nu 

where B'^2 = {^ij} is the canonical basis of the matrix linear space R'̂  

file:///Ooth
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Remark 1.4- It is interesting to check that the matrices Q and P do not depend 
on the elements of A and B in (1.57), but only on their dimensions. D 

We end this section by mentioning another interesting relationship. The 
matrix D^2^ which appeared in the matrix "stacking" process, Formula (1.29), 
is also D^2 = Q ^ ^ 2 ^ Qm,m^ (be aware of the matrix composition law 0 , 
tensor product of the matrix blocks). 

Example 1.10 (Replacing a tensor product by Schur product). Returning to 
the case ^3^3 and ^3,3 of a previous example, we have 

^ 3 , 3 ^ ^ 3 , 3 = 03 ,9 • (^3,3 ̂  ^3,3) • -^9,3, 

where Q = P^ or P = Q^ and 

Q = 
1 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 

which can be checked easily, using the previous formulas. D 

As a consequence of (1.57), a relation between dot and tensor products 
can be obtained for the particular case p = m^q — n. In fact, we know that 

and applying the commutative Property 2 to the left-hand member and equal
ing the right-hand members, we get 

1.4 Special tensors 

In this section we study the case of special tensors defined in the usual Eu
clidean space with an orientation to the treatment of physical problems and 
its main branches, mechanics, hydraulics, etc. 

In the following we assume that our Euclidean space £^^(]R), whether or 
not an affine space, has been orthonormalized, that is, the basic vectors {ê }̂ 
satisfy the constraint 

ê  • Cj = 6ij (Kronecker delta), 

and then, the corresponding Gram matrix associated with the dot product is 
Gs = I3. 

Only at the very end will these tensors be established for "oblique" ref
erence frames, non-orthonormalized and with arbitrary G3, that will satisfy 
only the following conditions: 
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1. Gs = Gl 
2. 3Co \Co\y^O such that C^GSCQ = h-

Next, the following matrix representation for vectors is used: 

w ^ ||e*^||[/, {/= | |ej | |F and tt; = ||e^||W^ 

and the following product will be particularized to this case: 

1. Dot product of vectors: 

l . ,2 „ ,3 i umv = <_u^v>=z U^y =z [u^u^u' = u^v-^ +u^v^ -Vu^v'^, 

meaning the scalar value Ü9V = \u\\v\ cosÖ, which proves that '[[•v = V9U. 
2. Cross product of vectors: 

Ü A V = 
ei 62 63 

U^ V? U^ 
^1 ^2 ^3 

meanmg 
u Av -L u and u Av J- v 
\u Av\ — \u\\v\ sinö 
Dextrorsum sense. 

In addition we have v Au — —uAv. 
3. Scalar triple product: 

Ü^ {v A w) 
y} v? V? 
yl y2 yS 

W W W^ 

which is denoted by [u, v^ w], and which mean the volume of the paral
lelepiped with concurrent edges ti, v^ w. 
In addition we have 

U9 {v Aw) = V • {w Au) = w • {Ü Av). 

4. Vector triple product: 

ÜA {v Aw) V w 
{!• V Ü9W 

= (Ä • w)v — (ifc • v)w^ 

which is called the "back cab rule". 
5. The "cosines law" (for plane triangles): Let w = ü-\-v^ then we have (see 

Figure 1.1) 

[wl"^ = w •w = [u-\-v) • {u-^ v) =u9Ü-\-V9v-\-2u9V^ 

7t|2 _ L-?|2 I | - r |2 
\w u\ -\-\v\ + 2|ir||'?| cos(7r — a) = |w| -i-\v\ — 2|'iI||'iT| cosa. 

file://-/-/v/
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u 
Fig. 1.1. Illustration of the cosines law for plane triangles. 

6. Vector product of four vectors: 

{ÜAV)A{WAZ) = 

7. Scalar product of four vectors: 

{Ü Av) • {w Az) = 

w z 
{Ü Av) •w {Ü Av) • z 

— {{Ü Av) • z) w—{{Ü Av) • w) z. 

U9 W U9 Z 

V • W V • Z 

8. Cosines law (for spherical triangles): 
Applying the previous property to the case 

It̂ l = 1̂1 — |£| = 1 
w = u^ 

the following vector relation is obtained: 

{Ü Av) • {Ü Az) = {v • z) — {Ü* v) {u • z)^ 

which interpreted on the spherical triangle in Figure 1.2, allows us to write 

'U»i7=cos/?; ' ^ • F = c o s 7 ; ?T»z = cosa 

{Ü Av) • {w A z) — (sin/?) (sin 7) cos A, 

where A is the dihedron associated with the faces (it, v) and (it, z) of the 
trihedron with vertex O, which taken to the vector relation, leads to . 

sin ß sin 7 cos A — cos a — cos ß cos 7, 

which relates the three face angles of the trihedron to one of the dihedron 
(the one with edge it). 

Finally, we dedicate some lines to the case of a non-orthonormalized ref
erence frame {e^}, i.e., (G3 7^/3). In this case: 
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Fig . 1.2. Illustration of the cosines law for spherical triangles. 

1. Dot product of vectors: 

911 912 912, 
921 922 923 
9si 9S2 9s3 

where the da ta are in contravariant coordinates. 
2. Cross product of vectors: 

u A V 
ei 62 es 
ul u\ ul 
vX v% vt 

where y\G\ is the volume of the oblique solid with edges [ei, 62, 63], the 
da ta tensor is given in covariant coordinates and returns vector z in con
travariant coordinates. The covariant coordinates tha t appear in the z 
expression, as is very well known, can be obtained from 

U* = GU: y* - GV. 

The expression 
\G\ 

sm T = 
911922933 

is called the "trihedron sine". 
An alternative, when the da ta are in contravariant coordinates, bu t the 
output is in covariant coordinates, is to use the formula 

Ü /\ V 

e^i 

u^ 
v^ 

^ 2 

u^ 
v^ 

g*3 

U3 

v^ 
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3. Scalar triple product: 

^v^w] = Ü9 {v Aw) — v | G | 
v}- u^ u^ 

w w w 

which is a scalar, with data in contravariant coordinates. The following 
expression is also valid: 

[u, v^w] = U9 {v Aw) = 
U2 Us 

W^. I ^̂ 1 ^2 ^3 

which is the same scalar but with data in covariant coordinates. 

1.5 Exercises 

1.1. In the affine Euclidean vector space E'^(JR) with reference to a basis 
{e'o;}, the Gram connection matrix is given and is denoted by G. 

In that space, we consider a quadratic form 0 that is represented in matrix 
form as 

0(y) = X^FX, 

where F is regular and symmetric. 
Assuming that in this space a change-of-basis is performed with associated 

matrix C, we look for the new matrix F associated with (;/), but referred to 
the dual basis {?"*} of the new basis 

(j){V) = {XyFX\ 

1.2. Check whether or not the Properties 6 and 8 of Section 1.3.2, which refer 
to matrices A„ 5 - ^ n , < 

{A^B)^ = A^^B^ and {A • B)^^^ = A^^^ • B^^\ 

are extensible to negative exponents. 

1.3. Given the following matrices: 

^2,3 
1 0 - 1 
2 1 3 

a n d Bp^q = ^4 ,2 

2 1 
3 - 1 
0 4 
5 2 

1. Determine by direct methods the matrices Qi and Q2 defined by 

Qi=A(^B; Q2 = B^A. 
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2. Determine matrices Pi and P2 such that Q2 — Pi • Qi • P25 applying 
Formulas (1.38) and (1.39). 

3. Solve the previous questions using the computer. 

1.4. As a particular application of the extension-condensation procedure: 

1. Extend the matrix 

^ 3 , 4 = 

2 3 5 1 
4 3 2 - 1 

- 1 2 1 3 

using the "extension rule". 
2. Condense the matrix 

Til [2 4 -1 3 3 2 5 2 1 1 - 1 31 

using the "condensation rule" and format ^4,3. 
3. Solve the previous questions using the computer. 

1.5. Given the matrices 

1 0 - 1 
2 1 3 

and Br) B' 2,3 
- 1 2 5 
3 0 4 

1. Determine the matrix (̂ 2,3 = ^2,3052,35 which is the Schur product of 
the given matrices. 

2. Build, using Formulas (1.58) and (1.59), the matrices Qm,m? = Q2,4 and 
Pri^^n = -^9,3 SUCh t h a t 

^ 2 , 3 ° - ß 2 , 3 = 0 2 , 4 • (-^2,3 ^ ^2 ,3 ) • ^9 ,3 -

3. Solve the previous questions using the computer. 



Introduction to Tensors 

2.1 Introduction 

This chapter introduces the tensor concept and the corresponding axiomatic 
properties and places special emphasis on the ordering criteria for the canon
ical basis, which will play an important role throughout the book to avoid a 
lot of the confusion that exists in many published books. 

To facilitate the comprehension of the new concept we deal first with the 
triple tensor product linear space referred only to primal bases, and later we 
generalize the concept for k vectors and the case of simultaneous primal and 
dual bases. 

Next, the important Einstein convention for repeated indices is introduced 
and the axiomatic properties of tensors discussed. 

The chapter ends with an illustrative example from physics. 

2.2 The triple tensor product linear space 

Consider three given linear spaces, which will be denoted by Ü"^{K)^V'^{K) 
and W^{K)^ where m, n and p are their respective dimensions and i^(+, •) is 
the field of associated scalars, by definition the same for all given spaces. 

Assume that each of these spaces is referred to their respective bases, which 
will be denoted by {e^}, {cj} and {ffk}, respectively, in order to emphasize their 
different nature. 

We know that 

\u ei 62 ; WeU'^iK) (2.1) 
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my- [e i 62 

^ = l l^/cl l^ = [^1 m 

„ 1 1 

Vi;GF^(ir ) 

^ p j 

2 

^t;^ 

(2.2) 

; \/w e W ' ' ( Ü : ) , (2.3) 

where 
r y l 

c/ = F = ; W^ = 

w 

and u^,v^^w^ E i^. 
Note the upper position of the indices, which refer to contravariant coor

dinates. 

Definition 2.1 (tensor product). The "tensor product" of the three given 
linear spaces, is a new linear space that will be denoted by V^'^V'^^W^{K), 
and its vectors will be called "tensors", built with the following criteria: 

1. The tensor product of all possible terms of the form 

(u'Si) ^{v^ej)^{w^r]k);i = 1,2,... ,m; j = 1, 2 , . . . ,n; Ä: = 1,2, . . . , p 

are constructed and, by multiplying the scalars u^^v^ and w^ as elements 
of K, one writes the tensor product as a function of the basic vectors in 
the form 

{u^ei) (g) {v^ej) (g) {w'^ffk) = u^v^w'^e, )e,- )^ /c . (2.4) 

2. Next, one proceeds to "sum" them for all possible combinations of indices 
i^j and k using the symbol "-{-" for the sum of the new linear space. In 
summary, a new set of vectors t G If^ 0 V^ 0 U^{K) appears with the 
expression 

t E 
1 < i < m 
l<j<n 
l<k<p 

U^V^W^ßi 0 Cj ^fjk E 
1 < i <m 
l<j<n 
l<k<p 

f^^TT.jk. (2.5) 

where f^^^ = u^v^w^ and iTijk = Ci <S) ej ^ rfk, assigning to each different 
product TTijk the role of a basic vector, creating the basis {^Tijk}, where 

We note that the sum + must be interpreted as 
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u^-v ,,ü'^ [u'^'' + v'^^)ei (8) tj (8) f]k E 
1 < z < m 
1 < j < n 
l<k<p 

and the product for a scalar as 

Xou= ^ (A • u''^^)ei (8) ej 0 ffk. 

1 <i < m 
l<j<n 
l<k<p 

As a consequence of assuming that the vectors {TT^^A;} are linearly inde
pendent, i.e., a basis of the new linear space, we have 

a = dim[U'^ 0 y ^ (8) W^{K)] =m-n-p. (2.6) 

8. Finally, it is very important that the different products 

{Si (8)?j (8)??fc;i = l , 2 , . . . , m ; j = l , 2 , . . . , n ; k = 1,2, . . . , _ p } , 

the basic vectors of If^ (8) V^ 0 W^, be ''ordered'^ by means of an agreed 

upon criteria, for the mentioned basis to be unique. 
We use the following criterion: 
The vector Ci^Cj (8)% ^^ ihis ordering will be ahead of vector Ci^ (8)e î ^rjki 
iff at least one of the following conditions holds: 

a) i <ii. 
b) Fori = ii, j <ji. 
c) For i = ii and j = ji, k <k\. 

This rule implies the order (from left to right and from top to bottom): 

e i (8) ei (8) 171 e i (8) ei (8) r]2 

e*i (8) 62 (8 rfi e i (8) e2 (8) 772 

e i (8) en (8)?7i ^1 ^ ^n 

62 (8) e i (8) rf 1 e2 (8) ei ' 

62 (8) 6̂ 2 (8) 771 62 ^ ?2 ' 

62 

6m 

^m 

^^n (8)771 

(8) ei (8) 771 

(8) e*2 (8) rfi 

62 

6m 

6m 

)772 

'7^2 

)7f2 

1771 6r, 

) e i (8) 772 

' €"2 0 7̂ 2 

' 4 (8) rf2 

61 

61 

(8) e i (8) 77p 

(8) ?2 (8) 77p 

61 (8) e*n ^ T/P 

62 (8) ei (8) %, 

62 (8) ?2 ^ Tfp 

6 2 ' ' ^ p 

6 m 

^m 

^m 

(8)61 (8)77p 

(8) 6*2 (8) Tfp 

0 4 (8)rfp. 
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Remark 2.1 (Very important). The reader could think that other simpler 
vector symbols., could be adopted for the basic vectors of the linear space 
V^ (8) V^ (g) W^, for example, {ßh] h = 1, 2 , . . . , a} , and numbering with 
t^, the corresponding component; so that t^^^ ei (g) ei (8) fji would be t-^/^i, 
t^^'^ ei (g) ei (g) f]2 would be t^/32, and t^'^^ Sm^'^n^ % would be t̂ /3cr, that is, 
by means of t = f^ßi. If this is done, the linear space V^ (g) ̂ ^ (g ̂ "^{K) would 
appear with the classic notation of any other linear space, in which changes of 
basis could be performed, and working with homomorphisms or assigning an 
inner connection (dot product), etc. could be possible, as is done in algebras. 
However, if this is adopted, a reader of this book, with the exception of this 
chapter, would not comprehend why the vectors t e If^ g) V^ (g) W^{K) are 
called tensors. In other words, the adopted notation, which is not casual, will 
later be of decisive importance. G 

It is interesting to know the existing relation between the position n that 
occupies a component in the ordered set of all of them, and the indices 
fi, Z2,... , i/c of the given component. 

The direct problem is: assuming that the indices ^1,^2, • • • ^̂ /c of a given 
component and the ranges r i , r 2 , . . . , r/c of each index are known, determine 
n, the position that occupies such component in the ordered set. 

The solution to this problem is 

n = ik + rk{{ik-i - 1) + rk-i{{ik-2 - 1) H ( h r2((ii - !)))))• 

The tensor ranges are precisely the dimensions ni, n2,. •., n/̂  of each linear 
space factor. 

The reverse problem consists of assuming that the position n (position 
of a given component) and the ranges r i , r 2 , . . . , r/̂  of all indices are known, 
determine the indices ^i, ̂ 2, • • •, '̂ fc of the given component. 

The indices i i , ^2, • • •, /̂c can be obtained by means of the following algo
rithm: 

1. q = n — 1. 
2. Repeat with j from k to 2, by —1: ij = mod[^, rj] + 1; q — quotient[g, r^], 

where quotient[g,r] and mod[g,r] are the quotient and the rest, respec
tively, when dividing ^ by r. 

3. ii = q-\rl. 

2.3 Einstein's summation convention 

From now on, in expressions such as iT = ^ w*e*i, in which common indices 

appear in different positions with a summation symbol to be developed by 
giving the index i its full range from 1 to m, the summation symbol and the 
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corresponding range J2 ^̂ ^̂  be suppressed, since the sum can be "assumed" 
2 = 1 

by the superindices and subindices with the same letter and their positions, 
and its range by the dimension of the linear space {ei G U'^{K)). 

Similarly, the expression 
y ^f^Zj (2.7) 

if the ranges are i = 1, 2 , . . . , ^ and j = 1, 2 , . . . , /i, is in fact 

v̂  = f ^ • zi + f ^ • Z2 + h f^ • Zh', {operations + and • of K). (2.8) 

The repeated indices in superindex and subindex positions, must be inter
preted with Einstein's criterion, and are called "dummy indices" because if 
we change its name 

v' = f "zc., (2.9) 

the expression (2.8) remains unchanged. 
The non-repeated indices {in the same term of the equality) are called 

"free indices". For example, in the given expression (2.7), i is the free index 
and j is the dummy index. 

Based on this convention, in the following the relation (2.5) will be written 
as 

f = u'v^w^ei (8) Cj (S>f]k= f^^ifijk, (2.10) 

where i = 1, 2 , . . . , ?7i; j = 1, 2 , . . . , n; /c = 1, 2 , . . . ,p are dummy indices. 

2.4 Tensor analytical representation 

We follow the exposition with another confusing situation. Since the set U"^ 0 
V^ (g) W'^{K) has been given the structure of a linear space over K^ it has an 
associated sum (-f) and an external product (o) for its vectors, and then we 
can consider a tensor as 

a = Aot+ /io?+ J^o^ 

ei (g) ej (g) fjk 

= a''^''ei^ej^f)k, (2.11) 

which is different from the vector ul^vlwj^ei ^ Cj ^ffk^ i.e., there are no vectors 
uiSi £ U'^{K),v{ e V'^{K) and w^ G W^{K) from which tensor product a 
arises. 

According to the Einstein convention, a will be denoted by 

a = a^^^ei (g e} (g rf/c. 

The conclusion is that in the linear space U"^^V^f^W^{K)^ which has vectors 
that are all tensors, there exist some of them that are tensor products of the 
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vectors of the "factor" linear spaces (some authors call these decomposable 
tensors) and there exist other vectors that do not come from tensor products 
(non-decomposable tensors), but from linear combinations of them. 

For all of them the following analytical expression holds: 

t = f^^ei0ej^fik; \/t e U"^ 0 V" ^ W^(K). (2.12) 

2.5 Tensor product axiomatic properties 

Next, some of the axiomatic properties of tensors that have been used in the 
above paragraphs are declared. 

If the composition laws for the linear spaces are denoted by 

{C/™(if);(+',o')}; {F"( i f ) ; (+" ,o")}; {W''{Ky,{+"',o"')}, 

we have: 

1. Associativity of (g): Si w G U'^{K), v e F^(i^) and w G WP{K) 

z = u<S)V^w={ü<^v)^w —ü0{v^w), (2.13) 

that is, the triple product can be directly calculated or in steps, first u^v 
and then this by ttJ, or calculate first H^w and next the product Ü^{v^w). 
The result is always the unique vector z. 

2. Distributivity of <S> with respect to any of the sums + ' ,+ ' ' ' ,+ ' '^ 

{Ui ^' Ü2) ^V0W = Ui^V^W -\-U2 ^V^W 

u^ {vi -j-^' V2) ^w = u^vi<S>w -^ü^V2^w (2.14) 

Ü^ V ^ (Wi +"' W2) — U <S) V ^ Wi -{- U^V (S) W2' 

3. Associativity of ^ with respect to any of the external products: o', o''', o'''^ 

{X o^ Ü) ^ V (S> w = Xo [ü<^v^w) 

Ü<S> {iJi^'^ v) (^w = ßo {u®v<^w) (2.15) 

ü^v ® {v o '̂' üJ) = z/ o (u^v^w). 

For example 

(A o' Ü) ^ {11 o'^ v) (S) w = Ü <S> ((A/i) o'' v) ^w — (A/i) o (u^v^w), 

4. Axiom of the linear space "tensor product" basis: We assume that the set 
ß ^ {ci ^ Cj (S> ffk} includes each of the vectors in the canonical basis 
of the linear space If^ 0 V^ (g) VF^(i^), which by convention are given 
the indicated notation, in this axiom (see Definition 2.1 point 2). The 
dimension of ß is a: 
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a = dim[U'^ (8) F ^ (8) W^iK)] = m - n - p. 

Similarly, point 3 of Definition 2.1 indicates the way in which the tensor 
bases vector subindices must be ordered. 
If this criterion is accepted and the subindices of each vector in the tensor 
basis are consecutively read, as if they were quantities^ the set of those 
quantities must appear strictly ordered with respect to the natural order, 
if the basis is correctly established. This criterion was already used for 
matrices when we read them by rows. 

Example 2.1 (Tensor product). Given the "tensor product" linear space by its 
notation 

1. Obtain the dimension a of the linear space, that is, the number of linearly 
independent vectors that must belong to a given basis. 

2. Notate a generic vector (tensor) of the canonical basis B. 
3. Write in a sequential order the subindices associated with the canonical 

basis vectors. 
4. Sort these subindices in the usual matrix form for the components of 

tensors of third order (r = 3). 

Solution: 

1. The required dimension iscr = 3 x 2 x 4 = 
2. A generic vector of the canonical basis is 

24. 

ß = {ei^ej®f]k}] l < i < 3 ; l < j < 2 ; 1 < fc < 4. 

3. The required subindices are 

1 111 2 112 3 113 4 114 5 121 6 122 7 123 8 124 
9 211 10 212 11 213 12 214 13 221 14 222 15 223 16 224 
17 311 18 312 19 313 20 314 21 321 22 322 23 323 24 324 

Note that, when the indices are read "as quantities" the set is ordered. 
4. The required representation in matrix form is a block column matrix: 

ß^ 

111 
121 

112 
122 

113 
123 

114 
124 

211 212 213 214 
221 222 223 224 

311 312 313 314 
321 322 323 324 

where i is the number of the row that occupies the block, j is the row in 
each block, and k is the column in each of the blocks. 

D 
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2.6 Generalization 

At this point, it is convenient to point out that if at the beginning of this chap
ter some of the selected factor linear spaces were given with respect to their 
dual basis instead of the fundamental or initial basis, for example, V^{K)^ i.e. 

\^J\\V* ^[^^ e r**=l 7*f=:2 n ; v€vr{K), 

this would cause changes in the notation and the relations (2.2), (2.4),(2.5), 
(2.10), etc. For example, the last would appear as 

t = u'v*w>^ei®ti ®nk=C.':nZl (2.16) 

and the "analytical expression" of the tensor, relation (2.12), would be^ 

t = ti°1Si®t^^ffk; \/teU"'®V^"®W'{K). (2.17) 

The development of the rest of the theory would be exactly the same with 
the exception of the notation. 

Finally, consider r linear spaces: 

{Ffn i^ ) ; (+ ' ,o ' )} , {F2"^(ir);(+",o")}, . . . , {C^( i r ) ; (+ ' ,o ' - )} , 

the vectors of which are arbitrary, but have associated the same field of scalars 
i^(+,o). 

We shall denote by V^"^ (g) V^^ (g) • • • (g) V7"(i^) a new linear space, with 
sum "+" and external product "o", called the "tensor product" of the given 
spaces, the vectors tof which are called tensors, and are referred to a basis ß 
of the given space, which is denoted by 

ß = {eii, ^ e;̂ ^ 0 • • • (g) C_7 ' ^ en J , (2.18) 

with the ranges: 1 < ii < ni;l < 12 < n2;. • - ^l < ir ^ '^r and the previously 
established order. 

The dimension of this linear space is 

h=r 

a = dim[V['' ^V^^ ^-'-^ V;^^{K)] = Y[ UH- (2.19) 

Any tensor in this space will be named a "tensor of order r" and will usually 
be presented by its "analytical expression" or "tensor expression", according 
to Einstein's convention: 

'^ Note that we use here for the first time the semaphoric notation for tensor com
ponents, that will be explained in detail in Chapter 3, Section 3.3. 
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t = ^lVl • • •.;./: ^^^^ ® e l - ® • •. ® etlT^ ® en. , (2.20) 

where all scalars t^l^ ° *̂  _ . o '^'^ ^ K are data. 

It is convenient to get used to a correct reading of Formula (2.20): "het
erogeneous tensor of order r, contra-cova-contra cova-contravariant". 

We end this section by giving a general matrix expression for the tensor 
product of vectors. 

Consider r vectors vi G Vl^^{K)] I < i < r, each belonging to one of 
the linear space factors of the tensor space V{^^ 0 V^^ (8) • • • (8) V^'^{K), with 
dimension a given by Formula (2.19), assuming each linear space V[^^ to be 
referred to its basis {ei^}; we know that 

[ en ei2 
x^ 

l^riii 

where the set of column matrices { X ^ Xn2 ''' ^Ur- } ^^^ the data vectors 
for which the tensor product is sought after. We propose as a matrix formula 
for calculating the product, the expression 

X^=Xn,^Xn,®"'0 Xn^, (2.21) 

where Xg- is the column matrix associated with the "stretching" of the tensor 
product components of the data vectors, and cr = ni • n2 • . . . • n^. 

2.7 Illustrative examples 

This section includes some examples to clarify the concepts introduced so far. 

Example 2.2 (Physical relationships). In physics, mainly in classical mechan
ics, the punctual gravitational mass is studied. To this end, we denote by 
L(]R), T(]R) and M(IR) the unidimensional linear spaces, all of them het
erogeneous, corresponding to the physical magnitudes space, time and mass 
(we accept negative virtual masses), respectively. These are the fundamen
tal linear spaces, by convention. The corresponding bases are the vectors cm 
(centimeter), sec (second) and g (mass gram). 

The dual linear spaces, reciprocal to the fundamental spaces, are L*(]R), 
T*(R) and M^(Il) and their respective bases are cm~" ,̂ sec~-^ and g~-^. 

The following tensor spaces will be called velocity V^ acceleration A, and 
force F: 

V = L® T*(]R); A = L^T^^ T*(Il); F = M^L^T^^ T^R). 

In this example we solve the following problems: 
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1. Relate the bases of L{Jl) and L:^{Wi). 
2. Find the bases of the tensor linear spaces F, A and F. 
3. If in the fundamental linear spaces L{1R)^ T(I l ) and M(]R) we take as new 

basic vectors m (meter), h (hour) and kg (mass kilogram), respectively, 
give the change-of-basis equations for the vectors v G V(]R), t E T(]R) 
a n d / G F ( R ) . 

4. Solve questions 2 and 3 for the following tensor spaces (we assume that 
the reader knows elemental mechanics): 

a) Pressure. 
b) Moment of inertia. 
c) Power. 

5. Another more complex physical example of a sum of force tensor spaces is 
the called "Lorentz force". Consider a punctual particle with an electrical 
charge of q = 6 coulombs, that moves in the tridimensional space by a 
conducting filament in the form of a helix F with constant velocity v = 2 
m/sec (ascendent), and assume that in the medium an electrical field 
acts with intensity E = Si newton/coulomb, and also a magnetic field of 
intensity B — bk tesla. We wish to determine the tensor / and its modulus 
I/I when the particle is at the point H ^ (3,4,2:0). 
We have the following data: the vector equation of the "Lorentz force", 

f ^q{E-{-V ^B) 

and the F helix equations 

x^ ^y^ = 25 

z = arcsin (I)-
(2.22) 

(2.23) 

Solution: Table 2.1 gives the fundamental linear spaces and the corre
sponding bases. 

Table 2.1. The fundamental linear spaces and the corresponding bases for Example 
2.2. 

Space 

L(R) 

T (R) 

M ( R ) 

Q(Il) 

Basis B 

{ei = 'cm} 

{TI = sec} 

{ e l ^ p } 

{fji = U.E.E.] 

Vector 

i= iei 

t = tri 

rh — mei 

q = Qrii 

Dimension 

?2l == 1 

n2 = 1 

ns = 1 

n4 = 1 

Dual 

L*(R) 

T*(R) 

M*(R) 

Q*(R) 

Reciprocal basis 

{el = 'cfn~'^} 

{e*^ = sec-^} 

{-'^9-'} 

{if' - U.E.E. } 

Name 

space 

time 

gravitational 
mass 

electric 
mass 
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1. From e-e^^ — X => 'cm • e*"-̂  = 1 =^ e*"-̂  = = = 'cffT^ where the 
cm 

dot refers to the dot product. 
2. The basis of the velocity tensor space 1 (̂11) is 

By = {e\ (g) f*i} = [cm (g) sec~'^}. 

The basis of the acceleration tensor space A(]R) is 

BA — {ei (8) T*"*̂  (8) T*"̂ } = {cm (g) sec~^ 0 sec""^} ~ {cm (g) sec~^}. 

Note that {cm (g 5ec~^} is just a new name for {cm (g) sec~^ (g sec~-^} and 
cannot be interpreted literally, i.e., as a basic vector of a tensor product 
linear space of two linear spaces. 
The basis of the force tensor space F(lEl) is 

Bp = {tx (g) ei (g f*̂  (g) f*^} = {p (g cm (g sec~^ 0 sec~^} 

= {p g) cm (g 5ec~^} = {<i^n}. 

The same comment applies here for the literal interpretation of [g (g cm g) 
5ec~^} and {dyn\. 

3. From the international system (SI) of physical units, we know that the 
basis changes to be considered are: 

a) In L(R): Im = lO^cm. 
b) In T(R) : Ih = GO ŝec. 
c) In M(IR): 1kg = lO^g. 

The expression in T(]R) induces in the reciprocal space T*(IR) the change 
Ih-^ = eo^sec"^ = GQ-^sec-^ 
Then, the new bases associated with the tensor spaces are 

a) In y(IR): By — {e*i(gr } = {m(g)/i~-^}; the relationship is m.^h~-^ = 
lO^cm (g 60~'^sec~^ = ^cm (g sec~^. 

b) In A{B.)\ ß ^ = {ei (g f g) f } ^ {m (g /i~^ (g /i~-^}; the relationship 
is m (g /i~^ = m(S> h~^ (g) /i"-^ = lO^cm (g) 60~^5ec~-^ (g 60~^5ec~-^ = 

"̂  xcm g) 5ec~^. 129600^ 

c) In F ( R ) : Si? = {ei0ei(g)f (g)T } = {/c^(g)m(g/i~^}; the relationship 

is Ä:^g)m(g/i ^ = 10^^r5(gl0^cm(g)(g^5ec -̂ ) = Y^^(g)cm(gsec 2 

1296 ^y^' 
4. From the corresponding physical concepts, the tensor spaces are: 

/ force \ 
Pressure P(]R) = - ^ = M (g L (g T^ (g) T,, g) L* (g L*(IR). 

\surf ace J 

Moment of inertia / ( R ) = M ^L^ L(]R). 

Power VF(]R) = {force g) velocity) = M (g L (g T^ (g T* (g) L* (g T^(R). 
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The bases of these tensor spaces in the CGS system become: 
Initial basis of the pressure tensor space: 

ßp = {ei (g) ei (g) r*^ (g) r*^ (g) e"^ (g) e"^} 

^ {̂  (g) cm. (g) sec~^ (g) 5ec~"̂  (g) cm""^ (g) cm"-^} 

= {dyn (g) cm.~^} = {6ar}. 

Initial basis of the moment of inertia tensor space: 

ßi = {ei (g) 6*1 (g) ei} = {g ® cm^}. 

Initial basis of the power tensor space: 

ßw = {̂ 1 0 ei (g) r*^ (g) f*̂  (g) 61 (g) f*^} 

= {p (g) cm (g) S6C~~ g) c?n (g) sec"^} = {{dyn (g) C?TI) (g) sec"'^} 

= {er^ (g) sec~-^}. 

The change-of-basis relations in the fundamental linear spaces have been 
already mentioned in question 3. 
The new basis of the pressure tensor space is 

/op = {?! (g)ei (g)f (g)f (g)e (g)e } = {kg®m<S)h ^ 0 m ^} 

with the following equivalence: 

/ I \ ^ / 1 ^^ 
kg^m^h ^ ®m ^ = 1000^010"^cm0 —Trsec M 0 cm 

\60^ / V100 

g 0 cm 0 56C~^ 0 cm.~'^ 
1296000 

1 7 - 2 1 . 
a y n 0 c m = -^nnmnn^^^-1296000 ^ 1296000 

The new basis of the moment of inertia tensor space is 

ßi = {6*1 0 6*1 0 e*i} = {kg 0 m^} 

and the equivalence is 

kg^m^ = lO^p 0 (lO^cm) ^ lO'̂ p 0 cm^. 

The new basis of the power tensor space is 

ßw = {e*i 0 6*1 0 f 0 r 0 6*1 0 T } = {% 0 m 0 / i" 0 m 0 /i~ } 

with the following equivalence 

/ ;̂  x3 
kg®m^ ®h ^ = lOOÔ - 0 (lO^cm)^ 0 —^sec~^ 

\60^ 
10 J - 1 10 - 1 
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5. In this question the ordinary punctual geometric affine space (n — 3) is 
the support space of the tensors, in this case "vectors". 
First, the coordinate of point H will be determined: 
Since ZQ — arcsin ( | ) , from the curve F we obtain i7 (3,4, arcsin | ) . 
Next, we establish the velocity vector v at H: 
Differentiating F we get 

TTi = xdx + ydy — 0 

. dy 
712 — dz — V^-W' 

(2.24) 

(2.25) 

which implies 
dx dy dz 

-vV^bTy^ x^25 + y2 x ' 

that is, the direction vectors of the tangent at H are 

- 4 ^ 2 5 + 42,3\/25H-42,3 

and then, those of the unit tangent vector at H become 

-4v /4 l "3A/41 3 

VTÖ34' vTÖ34' VTÖÜ 

and since the velocity vector has the previous direction and modulus 
2m/sec, we have 

VH = X f - 8 V ^ ? + 6 \ / 4 l J + Gfc) . 

Thus, the vector F A B at iJ is 

1 
iy ^B)H 

VTÖ34 

i j k 
-8 \ / 41 6A/41 6 

0 0 5 

10V41 

VTÖ34 
(3?+4j) . 

The requested tensor, applying the "Lorentz force", is the vector 

10\/4l 
/ = 6 

with modulus: 

i/i 

A/1034 
{3i + 4j) 

_ 180V41\-:. 240 V41^ 
V1Ö34 VTÖ34 

\ 

'^ I S O V i l V /240V4l ' \ ^ 
48 -\ , + —, newtons. 

^ vTosiy \̂  v :̂o34y 

D 
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2.8 Exercises 

2.1 . Given the vectors A, v and w in the following linear spaces: 

w = 2ei + 362 - 4e3 G U^{Il) 

w = fii- 2ff2 + Trfs G ]^^(IR). 

1. Let _p*be the vector "tensor product" of the given vectors 

Give the vector p, completely developed, expressing it in the basis asso
ciated with the linear space "tensor product" by means of the adequate 
ordering criterion. 

2. Consider the component ^000^2 0 es 0 rfs the indices of which are given. 

Obtain by a direct method the value of the component p^^^-

3. Obtain the position n that this component occupies in the natural ordering 
of the vector p, checking that it is in agreement with the answer to question 
1. 

4. Reciprocally, obtain by a direct method the indices and the value of the 
component that occupies position n' = 27, checking that it is in agreement 
with the answer to question 1. 

5. Solve the previous questions using the computer. 

2.2. A particle of mass m, electric charge q and velocity v is thrown orthogo
nally to a uniform magnetic field of intensity B. Then, the particle describes 
a circular trajectory of radius r in the plane TT of the throw, orthogonal to the 
field. 

Assuming equilibrium between the centripetal and the Lorentz force (due 
to B): 

1. Determine B and establish the notation of the tensor space -B, as a prod
uct of the fundamental linear spaces X(Il), ^"(11), M(]Fl), Q(]R) and their 
duals i:*(]R),T*(R),M*(IR),Q4R). 

2. Perform the expression L(centimeter), T(second), M(mass gram), Q(mass 
U.E.E. electrostatic unit of charge), 5(gauss) to I/(meter), T(second), 
M(mass kilogram), Q(coulomb), ß(tesla). 

2.3. Consider a certain electric line going from East to West on the earth. 
Assuming that the current intensity is J = 20 amperes, obtain the force per 
unit length (newtons/meter) to which the filament of the line is subjected by 
the action of the earth's magnetic field {B ^ 1 gauss). 

We assume that the "Lorentz force" is / = qV A B and that 1 tesla =1 
weber/m^ = 10^ gauss. 



Homogeneous Tensors 

3.1 Introduction 

This chapter introduces the homogeneous tensors and the semaphoric notation 
used in the book, which is justified to avoid important errors when operating 
with tensors. We suggest that the reader makes an effort to understand the 
reasons leading to this special notation. 

It also defines the tensor product of tensors as a particular case of that for 
vectors through the stretched representation of tensors. 

Next, the tensor product known as Einstein's contraction of tensor prod
ucts together with the matrix representation of tensors is introduced, and the 
latter is discussed in more detail for tensors of first and second order. 

3.2 The concept of homogeneous tensors 

Once we know what tensors are, by now simple vectors belonging to the tensor 
product linear space V{^^ ^V^^^- • -^V^"" {K), with a general expression given 
in (2.20), we consider the case where the "factor spaces" are a unique linear 
space V^{K)^ sometimes referred to its primal basis {e^} and other times to 
the dual basis {e**}, which are simultaneously being considered. Consequently, 
we have the following expressions, which are characteristic of homogeneous 
tensors: 

<— r times —> 
y ^ (g) FJ" ^ ^"^ ^ • • • ^ KT ^ V'iK), (3.1) 
<— r times —> 

which is the notation used for a homogeneous tensor product space. Its di
mension is 

a = dim l^ViK)] 

and any given tensor can be written as 

n^ (3.2) 
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t = t 
iok 

' e / c ' (3.3) 

Of course, they can be combined linearly, by means of the sum (+) and the 
external product (o), as in any linear space. 

Example 3.1 (Homogeneous tensor). A homogeneous tensor, of third order 
(r = 3), 

7* ,iok - ^ ^ ^3 
' e / c 

of the linear space V^ (8) V^ 0 V^ [K) is usually given as 

lol 
o lo 
lol 
o2o 
lol 
o3o 

lo2 
olo 
lo2 
o2o 
lo2 
o3o 

lo3 
olo 
lo3 
2o 

lo3 
o3 : 11 

2ol 
olo 
2ol 
o2o 
2ol 
o3o 

2o2 
olo 
2o2 
o2o 
2o2 
o3o 

2o3 
olo 
2o3 
o2o 
2o3 
o3o 

3ol 
olo 
3ol 
o2o 
3ol 
o3o 

3o2 
olo 
3o2 
o2o 
3o2 
o3o 

3o3 
olo 
3o3 
o2o 
3o3 
o3o 

- 1 4 0 
2 1 3 
5 6 7 

- 1 
2 
6 

4 0 
1 2 
9 5 

8 7 6 
- 1 2 3 
5 5 9 

(3.4) 

where i^j and k are the matrix, the row and the column, respectively, with 
cr := n^ = 3^ = 27 components. 

In order to check if the criterion for the indices z,j. A: employed by each 
author when given the tensor data "satisfies", or not, the "basic order conven
tion" (axiom 4, Section 2.5), it is interesting to present the tensor completely 
developed as a vector. D 

3.3 General rules about tensor notation 

It is probable that the reader is already aware that in the case of homogeneous 
tensors, the simple knowledge of the notation of the component of a tensor 
(^io) P^i '^ts the knowledge of the notation of the corresponding basic vector 

companion (e** (g) Sj) and reciprocally. 
In the following some rules that must be satisfied by a correct notation 

are indicated. The set of scalars that constitute a tensor is usually denoted 
by an uppercase letter T, A, 5 , . . . , etc. This symbol is equated, by means of 
the "set of" symbol {}, to the corresponding lower case letter, which carries 
to its right semaphoric columns" 

T = {ti: • • • : :} 

with two places per column, which can be occupied by a free or dummy index. 
The number of columns coincides with the order r of the tensor, and in each 
column only one of the two indices can appear, and there cannot be columns 
without an index. 

Depending on the order r simple tensors receive different names: 
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Number of columns (order r) 
0 
1 
2 

Name of tensor 
scalar 
vector 
matrix 

In the "components" each upper index is called a "contravariant index", 
and each lower index is called a "covariant index". 

Given the tensor T, using the notation (in the example t^^-^) one counts 
the number of indices and finds its order r in Example 3.1 r = 3. 

Given all scalars of a tensor T (see Example 3.1), the power of T can 
be found by counting the number of scalars it has, and since it must be 
a = Pot T = n'^ (in our example n^ — 27), we discover the dimension n of 
the linear space factor V^{lEi) and then we can reconstruct: 

1. The notation of the tensor product linear space ( 0 ^^(IR) J to which the 

tensor belongs. 
2. The basic vector associated with the given component, placing the basic 

vectors in an r-tensor product (for r = 3 : e 0 e ^ e) and associating 
them with the same indices as the component, in the reverse position 
(i.e., lower for upper and upper for lower). If the index in the basic vector 
is an upper index, it will carry an asterisk to remind us that the basis of 
the corresponding space V^{1EI) is the dual one; in our example we get 

basic vector of tl°. = Ci <S> e^^ ^e^. 

Remark 3.1. The fact that the simple knowledge of the components of a tensor, 
with their indices, allows us to know its notation as a vector, has given rise 
to the omission of the tensor product linear space to which it belongs, and 
the companion basic vector that follows each component. This motivates the 
use in tensor books of "scalar packages" without any vectors at all, when in 
reality tensors are vectors. 

There is a reason why the component indices are located in a position 
reversed to that of basic vectors; it is simply to satisfy Einstein^s convention^ 
of the sum associated with the linear manifold generated by the basis. D 

Finally, we call to the reader's attention the fact that some authors "stack" 
the indices for typographical reasons or other notation criteria. For example, 
t^^. This is a very dangerous notation, especially if one uses matrix methods 
to operate tensors. 

In this form, one does not know if the tensor t^^ is 

Since the basic vectors corresponding to each notation are different^ problems 
will arise when performing "change-of-basis". 
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To prevent possible stacks of indices, we use the symbol "o", when the 
upper or lower index of the semaphoric column is not occupied, as for example 
. o a o o 

Other authors present Formula (3.3), the tensor or analytic expression of 
a homogeneous tensor as 

in which all contravariant indices appear stacked ahead and then all covariant 
indices also stacked. 

It is true that expressions 

u^'VjW^ei (g) e"^ O 4 = u'w^v^Ci (g) e"^ O 4 

are identical, with respect to the tensor product of vectors, because the field 
is commutative, but the expression 

u'vjW^Ci (8) e"^ 0ek = u'w^v*ei (g) 4 8̂) e"^ 

3 
alters the basis of the space 'S>V'^{K) and the ordering convention that is 

axiomatic. Thus, these "simplifications" will not be used in this book. 

3.4 The tensor product of tensors 

When the concept of "tensor product linear space" of three given linear spaces 
was introduced at the beginning of Chapter 2, and later in the generalization 
of this concept, it was indicated that the nature of vectors in the "factor" 
linear spaces was not relevant, i.e., it is indifferent. 

Now it is the adequate place for assuming that such "factor" spaces are 
linear spaces of tensor products^ guaranteeing that the resulting tensor product 
linear space is another tensor linear space. We shall see this in detail. First, 
we must note that when operating this product, the factor tensors must be 
notated with different indices to impose the axiomatic condition of coming 
from different tensor spaces. 

Consider the heterogeneous tensors of orders r i = 3 and r2 = 2 

. ^o^o = ^i ^ " ' ^ 4 and z = zll a*^ 0 Ä, 

that belong to the different tensor product spaces 

te [/^ 0 KT ^ W^iK) and zeRl® S^'iK). 

The space ([/"^ (g) FJ" ^ W^) ^ i^l ^S''){K) will be called the "tensor product 
of tensors" linear space, a heterogeneous tensor linear space, which by axiom 
arises with the following form: 
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V = v\tl[ e; 0 r^ 0 4 0 5*^ 0 Ä (3.5) 

and is of order r = 5, where each p^°^? = t^°^ • z? can be obtained as a 
• J^ o J o no o j o /lo 

product of scalars, both belonging to K. 
The indices ranges are evidently l < i < m , l < j < n , l < / c < p , 

1 < /i < 5, and 1 < £ < X, and the dimension of the new space already with 
the correct notation, is 

a = dim[U'^ (8) KT ^W^^Rl^ 5^(i^)] =m-n-p-s-x (product in N ) . 

Due to the same reasons previously indicated, in the space U'^ 0 V^ 0 W^ 0 
Rl 0 5^(i^)(+, o) there will exist tensors that are linear combinations of the 
previous ones: 

Although they belong to the "tensor product of tensors" linear space, they 
are not products of tensors, but tensors. 

The order of a tensor in the product space is the sum of the orders of the 
factor tensors: r = ri + r2; in our case r = 3 + 2 = 5. 

Though other textbooks take time to "show" the distributive character of 
the tensor product of tensors, with respect to the sum (-f), and the associative 
character with respect to the product by a scalar (o), we will not insist on 
this, after the view with which the beginning of this section was treated, of 
seeing the tensor product of tensors as a simple tensor product of vectors, and 
knowing that it will share the same axioms and properties. 

Example 3.2 (Linear and quadratic forms). 

1. Obtain the tensor products dcf) (g) dij) and dijj 0 dcj) of the linear differential 
forms 

d(j) = dx^ + bdx'^ + 7dx^ 

dtp = dx^ — dx'^ 

supplying their matrix expressions and their developed analytical expres
sions. 

2. Find the scalar associated with the vector (7ei+3e2+e3)(8)(2ei-f 5e2—2163) 
by means of the quadratic form 

^ = (4e ^ - 6ê ^ - 9?^) (g) (e ^ + 17?^ - 6e^). 

Solution: 

1. First product: 
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) -̂0 = [ dx^ dx^ dx^ ] 

[dx-^ dx^ dx^ 

dx'^ (g) dx^ - dx^ (g) dx'^ + bdx'^ (g) dx^ 

-5dx^ (g) dx^ + 7dx^ 0 cia;̂  - 7dx^ 0 do:^. 

' l " 
5 

_7_ 

"1 
5 
7 

0 [ 1 -

- 1 0" 
- 5 0 
- 7 0 

-1 

0 

0] 
dx^' 
dx^ 
dx^ 

(3.6) 

where the (g) operator appears as a subindex to refer to a quadratic form 
of tensor products. 

Second product: 

diß 0d(t) = [dx^ dx'^ dx^ i 

= \dx^ dx'^ dx^' 
1 5 

-1 - 5 

1 5 7] 

7" 
- 7 

0 ® 

'dx^' 
dx^ 
dx^ 

'dx^' 
dx^ 
dx^ 

= dx^ (8) dx^ + 5dx^ (g) dx"^ + 7dx^ (g) dx^ ~ dx'^ (g) dx-^ 

-bdx'^ (g) dx'^ - 7(ix^ (g) drr^. (3.7) 

We note that they are different tensors, but they belong to the same tensor 
space. 

2. We shall present two different methods for solving this problem: 

(a) Applying to each vector its linear form, and then the product of forms 
(product of scalars), yields 

2 + 85 + 126 = 213; 

Pi®p2 = PiP2 = 1 X 213 = 213. 

(b) Finding the vector t?i (g)y2 in its linear space F 01^(11), and determin
ing the quadratic form in the dual tensor space (in dual bases) y*(g)y*(Il), 
and finally, applying the quadratic form to the vector, yields 

f = Fl (g) y2 = 14ei (g) ei + 35ei (g) e2 - 147ei (g) 63 + 6e2 (g) ei 

+ 1562 (g) 62 - 6362 (g) 63 + 263 (g) 61 + 563 (g) 62 - 216*3 ^ 63 

Pi = [ 7 3 1 ] 
• 4 " 

- 6 
- 9 

= 1; p2 = [2 5 -21] 
" 1" 

17 
- 6 

F = F' (^F''^ =^ Ae^ (g) r ^ + 68e ^ (g) ?^ - 24?^ 0 e ^ - 6?^ (g) r^ 

-102e ^ (g) ?^ + 36?^ (g) e ^ - 9 ? ^ (g) r^-153e*^ (g) 6*^+54^^ (g) e^. 
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Since the two tensor spaces are expressed in dual bases, the connection 
matr ix (the Gram matrix) is G = Isxs — h^ and then 

4 
68 
-24 
- 6 
102 I = 213. 
36 
- 9 
153 

L 54 , 

p = F{V) =F*V =[U35 - 1 4 7 6 15 - 6 3 2 5 - 2 1 ] J 9 

N o t e : There are other possible methods for solving this problem, which 
will be used later in this book. 

D 

Example 3.3 (Tensor product). Obtain the tensor product of t and s^ where 

1. t and s are: 

*2 t = 2ei 

s — — 

' 62 ^ e"^ - 4ei (g) ei (g) e"^ • Seo ' 6 1 

4ei (8) e"^ + 362 (g) 6*"^ 

(3.8) 

(3.9) 

2. Idem, by assuming a commutative tensor algebra. 

So lut ion: Obviously we perform the product directly and we give the ordered 
tensor analytical expression, as follows. 

1. In the first case one gets: 

f(8)5 16ei (g) 61 (g) e"^ (8) 61 (g) e"^ - 12ei 0 ei g) e*"̂  (g 62 (g e 
- * t c l 

I 62 ' ' 61 (g e"^ + 6ei (g 62 (g e"^ > 62 0 e"^ 

-1262 (g 61 g) e"^ g) 61 (g 6*̂ 4̂-962 (g 61 (g 6̂ ^ (g 62 (g 6^^ (3.10) 

2. In the second case one gets: 

t(^s = 16ei (g 61 (g 61 (g 6*"̂  (g 6*"̂  12ei g) 61 g) 62 ' 

- 8 e i (g 61 g) 62 (g 6*"̂  g) e"^ - 12ei (g) ei (g 6*2 

+6e i (g 62 g) 62 g) 6*"̂  (g 6^^+961 (g 62 (g 62 (g 6*"̂  g) 6*"̂ . (3.11) 

le*"^ (ge*"^ 

) 6*"̂  g) e"^ 

D 
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3.5 Einstein's contraction of the tensor product 

When considering the tensor product of two tensors, both vectors of the same 
"tensor product of vectors" linear space, for example If^ (8) V^{K)^ we know 
that the previously proposed axiom forces the change of subindices both in the 
scalar factors and in their bases, i.e., if a^^ e*̂ (8)e*̂ -̂ , 6^° ei0^^ e U'^<S>V^{K)^ 

they must be considered as a^° ê  (g) e*̂ -̂ , 6^^ e/̂  (g) e*^ in order for them to be 
multiplied as tensors. Of course the result will be "external", i.e. 

pifo°e ei ® ̂ ' ® 4 ® e*̂  ^ [ / - ® V:'{K) (3.12) 

where 

Poio^ = ^oi • ô£5 2,A: G { l , 2 , . . . , m } ; j , £ G {1, 2 , . . . , n} . 

In other words, the "tensor product of tensors" is never internal^ even in the 
case of both factors coming from the same linear space. 

We shall apply Einstein^s contraction to certain indices of a mixed homo
geneous tensor (with contravariant and covariant indices), with the purpose 
of obtaining a new scalar system with the tensor character but lower order. 
This operation is known as "tensor contraction". 

Successive or simultaneous contractions over pairs of indices of different 
valency in a mixed homogeneous tensor, lead to another tensor. The proof 
will be given in Chapter 5. 

The use of the contraction operation, not only with indices of different 
valency, but also chosen in different factors, is called a "contracted tensor 
product". In this way we can reduce the tensor order until reaching the initial 
order of the factors^ resulting in an internal product that leads to an inter
nal tensor or linear algebra, with the aim of distinguishing it from general 
multilineal algebras. 

Example 3.4 (Tensor contraction of a tensor). Consider the tensor 

5 

te^V-{K); t = tlilZe,^ej 

We will contract the indices 2 and 4 {j contravariant, with h covariant), to 
get 

uelv-iK)', u = cQ{F)=tlZZe,^e^^^e'\ (3.13) 

where 
zoo ,iao o o , i l o o o , , z 2 o o o _ L f ^ ' ^ ° ° ° /^Q1/1^ 

and the free indices vary ini,fc,>£G{l,2,---,n} (n^ components). D 
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Example 3.5 (Contracted tensor product). Consider the homogeneous tensors: 

^ 2 
5, t G 0 F ^ ( i ^ ) ; or 5 , r G U'^'''^ (two matrices), 

where 
s = s^. ei^e ^; t^t^.Ck^e . 

The tensor product resulting from contracting indices (the j index of the first 
covariant factor, with the k index of the second contravariant factor) is 

tha t is, P G R^^" ' , i.e., it is a matrix, where 

P o ^ ^ ^ o i • ^o€ + ^o2 • ^o^ + ' " + ^on • C 5 ^ , ^ e { l , 2 , • • • , n } . (3.15) 

Note tha t this contraction is no more than the classic matr ix product (the 

inner product) , which converts the linear space p^^ ê  (g)e^^ to which the da ta 

belong, into a linear algebra, the linear algebra of matrices. 
We invite the reader to study the result of contracting the indices i of the 

first factor with the £ of the second factor. D 

Finally, we simply mention the contraction of "pure" tensors (totally con
travariant or totally covariant) and also the contraction of indices of the same 
valency in mixed tensors. 

In this case it is not assured t ha t the resulting system of scalars will be a 
tensor; there are cases in which one obtains a tensor, and others in which it 
is not a tensor. Due to this reason, when one needs to know if the resulting 
system is a tensor, other techniques to be explained later in this book must 
be used. 

T h e o r e m 3.1 ( C o n t r a c t i o n s as h o m o m o r p h i s m s ) . Tensor contractions 
are none other than homomorphisms (linear applications) of a linear space in 
another linear space of smaller dimension. We use the notation: 

p^q [(p-l)^(q- 1)1 
C : (8) ViK)—^-^ ^(8) V ' ^ ( i ^ ) . (3.16) 

D 

Proof Consider the da ta A,// G iT and s, f G F ^ (g) V^ (g) V^ (g) V^iK). We 
shall contract indices 1 and 2 of a linear combination of these tensors (which 
is another tensor of the same space): 
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C Q") {\s + Mt) = C Q") \\siYkl ei ® e*̂ ' ® 6*̂= ® e, 

+MC;:ei®r^Oe*'= 

c[,)[KTki + <Tko]-^®^^®^'^ 

= [̂ Soafeo + Mto„fco]e'=®e^ 

= A c Q ) ( 5 ) + M c Q ( t ) . (3.17) 

The contracted tensor of the linear combination is the linear combination 
of the contracted tensors. Thus, it is an homomorphism of the linear space 
V (g) V^ (8) V7 ® V{K) into the linear space V^ (g) V{K): 

C r J : V (g) V^ 0 KJ" ^ "̂̂  W —> KT ^ ^""(î ). 

3.6 Matrix representation of tensors 

Some authors call scalars tensors of order zero. In this section we deal first 
with vectors, which are tensors of order one, and later with matrices, which 
are tensors of order two. 

3.6.1 First-order tensors 

It is convenient to introduce the reader to the conventions of the matrix 
notation of vectors, spaces with connections, bilinear forms, etc. in such a 
way that their relations to tensor notation, Einstein's convention, etc. be so 
logical and simple that we may move quickly from one formulation to the 
other, at will. 

The basic vector matrices will be presented as row matrices, with "hat" 
or not, depending on whether or not they are a new basis or the initial basis, 
respectively. 

Scalars always will appear as a column matrix, with the same meaning; 
"II II" is the symbol used for row matrices, and upper case letters X, Y, Z are 
symbols for scalar column matrices. The basis of the linear space V'^{K) is 
denoted by 

| |e j - | | = [ e i 62 ••• Sj ••• Cn], 

the new basis 
ll<̂ ill = [ei 62 ••• Cj ••• Cn] 

and the new basis of the dual space V^{K) by 

file:////siYkl
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|e II = [e e 

Examples of vectors are 

V = | |eJ |X ^ [ei 62 ••• e^l 

W = y'ei = | |e;| |y = [ei e2 ••• e^] 

â -̂ ei + x^e2 H h x'^Sn 

= x^Cj (tensor notation). (3.18) 

ly 

(3.19) 

[e^'llZ* = [e*i g*'^ ... g*n-
Z2 

Zie + 226 + ZnS*^ 

ZiB*^ (tensor notation) (3.20) 

W = y'ei=fei = \\ei\\Y = [ly I2 

y^ 
f 

iy" 

(3.21) 

3.6.2 Second-order tensors 

Though there is a wide range of tensor relations where matrices are involved, 
we will pay particular attention to the change-of-basis in linear spaces and to 
its double matrix and tensor notation. 

The classic change-of-basis in a linear space V'^{K) can be notated as 

[ei 62 en\ = [ei 62 

Sh\\C, 1 

•• e„] 

C\y^ 

r lo 
C o l 

2o 
C o l 

n o 

0 

l o 
oz 
2o 

Co2 • 

n o 
0 2 

l o 
o n 
2o 
o n 

n o 
C 

o n 

(3.22) 

(3.23) 

where the semaphoric columns of matrix C have been selected to satisfy the 
matrix notation convention (first index for the row and second index for the 
column) and the symbolic Einstein convention in the expression that follows. 
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Identifying the column p in both members of (3.22), one gets 

^p = ^op^i + ^op^2 H h c^^Cn = c^^eh (tensor notation). 

Thus, the tensor notation of (3.22) is 

where it must he \C\ y^ 0. 
The conclusion is that the change-of-basis notations in V'^{K) correspond 

as 
Coct;, (3.25) 

i.e., a homogeneous second-order (r — 2) tensor contra-covariant, with n? 
components. 

With respect to the change-of-basis of the "representation" of the vector 
y . Formula (3.18), we have 

V = \\eh\\X in the initial basis (3.26) 

V = ||ep||X in the new basis (3.27) 

and substituting (3.22) in the last expression one gets 

V = \\Sh\\CX, 

which is again the expression of V in the initial basis, which requires 

11411^ - II4IICX -^X = CX, (3.28) 

a matrix relation between the initial and new components of the vector, the 
tensor representation of which, on account of (3.25), becomes 

x^ = c':ix" (3.29) 

in which one detects with clarity "a contracted tensor product", where a is 
the dummy index, and h is the free index. 

In order to have a tensor representation for transposed matrices, we ex
change the semaphore columns of the tensor (see expression (3.25)) and get"̂  

C'<>c;t (3.30) 

Next we study the inversion of matrices. Assume that based on the matrix 
relation (3.22) we obtain the initial basis. For the following proof and for the 
sake of simplicity we change the name of the free index p to 

'^ Note that as in the matrix notation we exchange rows and column indices to 
obtain the transpose matrix, in tensor notation, we exchange semaphoric columns. 
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|e / . | |C—.| |e ; , | | = | | 4 | | C - ^ (3.31) 

\^h\ 

lo lo 

2o 2o 

no no 
,7ol 7o2 

7 
l o 
on 
2o 

'on 

and identifying the /i column of the two members of (3.32), we get 

-, lo:? , 2o:? 7o^en = llleq (tensor notation), 

so that the tensor notation of (3.31) becomes 

(3.32) 

(3.33) 

Consequently, the correspondence of matrix and tensor notations is 

C-^ <> JII (provisional). (3.34) 

The notation used for the elements of C~^ must satisfy the definition of inverse 
matrix, so that taking into account the equivalences (3.25) and (3.34), we have 

C-^C = In^ll qo ho 

a contracted tensor product {h dummy), from which we get J^° (Kronecker 
delta), that is the tensor notation of matrix I^-

So, we must have 
ÖO ho 

I oh OÜ 

S T Q O 
(3.35) 

From now on, we use Greek letters, those corresponding to the Roman 
alphabet for the components of the inverse matrix; so that if M[m) is the 
notation for a matrix M, and its components m, its inverse will be denoted 
M~-^(/i), which implies (by convention) that (3.35) is satisfied. 

Due to reasons of convenient tensor notation, we return the index q of 
(3.34) to its initial notation p (since it was altered just with the purpose of 
developing the already presented proof). 

Concluding, the correspondence between matrix and tensor notations is 
given by^ 

C-'oill (3-36) 

SO that for inverting a matrix equation, such as (3.24) it suffices to move to 
the other member the letter c, replace it with 7, and exchange indices: 

^ Note that the Greek letter 7 has been used to denote the inverse of c, the corre
sponding Roman letter, as indicated above. 
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^h = iTh^p. (3.37) 

which is Equation (3.33) with the desired notation. 

In summary, if A < > a*°, we have 

A'<>a]i- A-'oail; {A-^ <> a^ (3.38) 

An important case remains to be analyzed. Consider two linear spaces 
V"^{K) and V^{K) which are "mutually connected" (they are dual), and have 
both the same dimension. We know that to any pair of vectors V G V'^{K) 
and W G V^{K)^ chosen from each of the n-dimensional spaces, corresponds 
a scalar p e K^ denoted by p = < V^W >. We know that if the bases 
of the primal and dual spaces are {e^} and {e}}, respectively, the matrix 

. representation of the connection is 

p= <V,W> = X'GY; G = [9ij]', \G\ ̂  0, (3.39) 

where Qij = < e ,̂ e} > , and G is the Gram connection matrix with respect 
to the given bases (usually data). 

If in a special situation, the linear spaces V^^K) and V^{K) are referred 
to dual bases ({e^^}, {e^-^}), which implies a matrix G = /^^ we perform a 
change-of-basis in the primal space V'^{K)^ that is 

| | 4 | H I | e , | | C , (3.40) 

then the following question would arise: What change-of-basis must be used 
in the secondary or dual space V^{K): 

i|e || = ||e-*^||r (3.41) 

for the new bases {ek} and {e } of the corresponding spaces to remain dual 
bases? 

We know that 

V = mix = | | 4 | | 1 ; W = ||e"^'||y* - ||l*^||y* 

and that matrices X, X and y*, Y* are related by 

X = CX (3.42) 

and 
y* = r y * , (3.43) 

respectively. 
Since the bases of these linear spaces are dual bases before and after the 

bases changes, we must have 
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p = < y , H> > = X*7^y* = X'inY''; Vy, W (3.44) 

and substituting into (3.44) Equations (3.42) and (3.43) one gets 

(cx)*i^(ry*) = x%y*; VT7, Ŵ  

which implies C^InP — I^ or 

r = (C*)-i = (C- ' )*. (3.45) 

Then, if in the primary linear space V"^{K) a change-of-basis (3.24) is per
formed, in the dual space V^{K)^ according to (3.38) and (3.45), the following 
change-of-basis must be done: 

^" = lZ^'—lZ<>{C-'y. (3.46) 

Obtaining the "initial" dual basis from (3.46) we finally have 

e-" = C ^"- (3-47) 

Formulas (3.24), (3.25) and (3.46), together with 

4 = JTH % -^ ill <> C-' (3.48) 

^''=c;ir^^j:<>c' (3.49) 
will be of decisive importance in the following chapters. 

3.7 Exercises 

3.1. Solve the following items: 

1. Answer question 1 of Example 3.3 using Formula (2.21). Determine first 
matrices Xs,! oft and ^4^1 of 5*. 
After obtaining the "extended" components of t (g) s*, the corresponding 
tensor basic vectors must be added to them, using the "ordered basis" 
criterion. 

2. Solve the previous question using the computer. 

3.2. Perform the following contractions: 

1- %Ki^°j^ where i G {1, 2, 3} and j e • 

2- ß^^oi^ofc^o' where z, J, Ä: G {1,2,3}. 
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3. ö°°^oo^^' where i G {1,2, 3} and j E {1,2} (be aware of the indices of the 
first factor). 

3.3. Notate the following expressions with the minimum possible number of 
dummy indices: 

-I / OO 2 7 

1. g.-xx'' 
\ «̂  Z J O O 

Kl^^o^o)^ where i , j ,p,g e {1,2, 3 , . . . , n} . 

2- [(^TjKt^Te + ^TpKl^li)' ^^^^^ '̂-̂ ' ŷ , ^,p, g G {1,2,3,.. . , n}. 

3. Is it licit to propose S^'^^alala^ = öHala^al; z, j , fc G {1, 2, 3 . . . , n}, where 

[5^°] is the Kronecker square matrix I^^ 

3.4. Consider the homogeneous tensors A and B^ A eU^ ^ U^(Si) with basis 
{ 4 (8) e*'̂ } and B eU^^U^ ^ U^(R) with basis {e^^ 0 ê  (8) e^}. 

Their components are represented by the following matrices: 

A = K;] ^ 
2 
7 
3 

5 
- 4 

6 

- 1 -
0 
1 

; B = [b;^j^ 

2 5 
2 1 
3 3 

5 - 1 
2 7 
1 - 2 

3 0 2 
4 - 1 3 
6 5 4 

where 7 is the block row, S is the row of each block and rj is the column of 
each block. 

1. Solve the following examples of the extension operation: 
a) Obtain the "extended" components of tensors A and B (matrices AQ^I 

and B27,i). 
b) Obtain the "extended" components (column matrix P243,i) of tensor 

P = A 0 S, as a tensor product of the extended vectors Ag^i and 
^27,15 using Formula (2.21). 
The components of P243,i will be notated in tensor format (Po^^oo) 
using the axiomatic order. 

c) Let F e U^ ^U^ (S)U^ he the order r = 3 tensor with components 

/o^o ' I'^sulting from the contraction of indices 2 and 4, that is, the 

contracted tensor product A0B: 

aoT) C( J(P)with/„^ 
Q;OO6'?7 

o Ö 7 0 0 ' 

Obtain the "extended" matrix P27,i of tensor F with its components 
in strict order. 
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d) Obtain the matrix representation F = [/o°o]' using the "conden
sation" of ^27,1 until the same format than the one in tensor B is 
obtained. 

e) Let K e [/^(R) be the order r = 1 tensor (a vector), resulting from the 
new contraction of indices 1 and 2 of F , that is, the second contraction 
of indices 1 and 3 of A^ B: 

l]{A^B),wmki=ft::=ptzl:-î  = cQ)(F) = c(J 

f) Obtain the "extended" matrix i^s, of tensor K. 
g) Explain if the following statement is correct: "K is a doubly contracted 

product tensor of A^ 5 " . 
2. Solve the previous questions using the computer. 

3.5. In the Euclidean space E^{1R) referred to dual bases (G = J4), a change-
of-basis with associated matrix 

C 

r i 1 1 1 
1 2 3 4 
1 3 6 10 
1 4 10 20, 

is performed. 
Determine: 

1. a) The new dual basis, as a function of the initial basis. 
b) The new contravariant and covariant coordinates of a vector V with 

initial contravariant coordinates X — 

c) The new Gram connection matrix G. 
2. Solve the previous questions using the computer. 



Change-of-basis in Tensor Spaces 

4.1 Introduction 

This chapter first discusses the tensor criteria that allows us to determine 
when a set of scalars is a tensor. For reasons of simplicity, we deal first with 
third-order tensors and obtain a matrix representation for the change-of-basis 
for tensors in stretched form (column matrix form) that reveals the sought 
after tensor criteria. 

Later the method is generalized to the case of k vectors and extended 
to mixed homogeneous tensors, i.e., expressed in mixed contravariant and 
covariant components. 

Some useful rules to operate tensor expressions in matrix form are given 
for tensors of orders 2, 3 and 4. 

Finally, the chapter ends with the tensors that are invariant to changes of 
basis, that is, isotropic tensors, which include the null tensor and Kronecker's 
delta tensor. 

4.2 Change of basis in a third-order tensor product space 

We have reached the crucial point where the tensor concept must be clearly 
established. Up to now (Chapter 2) the linear space tensor product U"^ (8) 
V^ (8) W^{K) (ignoring how it was generated) has been a simple space, of 
dimension a — m • n-p^ the basis of which has a peculiar notation and order 
{ei (8) e} (8) ^/c}, and the algebraic operations of which (sum, scalar-vector 
product and contracted tensor product of its vectors) are known. 

A change-of-basis in this linear space would be given by means of an arbi
trary square matrix of entities over K, Z^^a- of "order cr", regular |̂ o-,cr| ¥" 0? 
that relate the new basis to the initial; in matrix form: 

\\ei (8)e_̂ - (8)77/cll = Pz ^^j ^rikW^a^o- (4.1) 
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where l < z < m ; 1 < j < n; 1 < k < p. 
However, from now on and by convention (Axiom 5 of the absolute tensor 

character) only the changes of basis coming from the "linear space history" 
are licit^ as is to be proved below. 

We consider only the changes of basis Zo-,o- associated with changes of basis 
in the factor linear spaces with which the tensor product space was built. 

Thus, in the linear space U'^{K) we perform the change 

Matr ix notation: \\ep\\ = \\ei\\Cm] \\^i\\ = ll^pllC'm'^ 

Tensor notation: e^ = c*° e^; 
op 

-* PO /̂  (4.2) 

in the linear space V"'(i^), the change 

Matrix notation: \Rn\ 

Tensor notation: e 

and in the linear space W^{K), the change 

qo ^ 

- 1 

(4.3) 

Matrix notation: ||?7^|| = \\f]k\\Sp; \\f}k\ 
ko 

Tensor notation: fj^ = s^^fjk] "nk = cfok ^r 
(4.4) 

Table 4.1 summarizes the previous changes. 
If f G V^ (g) V"' (g) W^{K) is an arbitrary tensor, according to (2.12), in 

the initial and the new basis it can be writ ten as 

^=Kio^i ^^J '^'nk='t pqr^ 
ooo^P ' ^Vr (4.5) 

Table 4.1. Changes of basis in the factor linear spaces. 

Space U'^jK) 

Matrix notation 

Tensor notation 

Direct 
|ep|| = \\ei\\Crr 

C Ci op * 

Inverse 
\Crr 

-f p o ~Z 

Space ViK) 

Matrix notation 

Tensor notation 

Direct 
\Rn 

— r"^ ^ 

Inverse 

\Rn 
• — n^° 

Kg^j ^J=Poj^^ 

Space W^iK) 

Matrix notation 

Tensor notation 

Direct 

:? ko -^ 

Inverse 

Ifell^llill^p-
'Hk = ^o /c ^ r 

and substi tuting into the first equality of (4.5) Equations (4.2)-(4.4) one gets 
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from which 

* = *ooo7oi Poj,- ĉ ofc ep®eg(S)r]^= tZ^e^ O e, 0 77̂ , 

which leads to 

iZ: = tZllZpl]<l-^ l<i,P<m;l<j,q<n; l<k,r<p, (4.6) 

where i^j^k are the dummy indices, and p^q^r the free indices. This is the 
formula that allows us to find the new tensor component t^^^, once the initial 

components and the change-of-basis matrix C:^^/R~-^ ̂  Sp-^ in the "factor" 
linear spaces are known. 

From a tensor point of view, the licit (of tensor character) change-of-basis 
in the linear space U"^(SiV^^W^(K)^ is given by the expression (4.6); however, 
since we are looking for the matrix Z^j^a- that represents such a change-of-basis, 
we continue the study. 

4.3 Matrix representation of a change-of-basis in tensor 
spaces 

According to (3.28) and (3.29), the relationship between the vector compo
nents and the change-of-basis matrix in a linear space is 

h ho ^Q> 
X = C^ X o a. 

or in matrix form 
X = ex. (4.7) 

If we write the initial components as a function of the new ones from (4.6), 
using the rules in Formulas (3.36) and (3.37) we obtain 

,ijk r p a r zo jo ko r io jo koi ^pqr /A O \ 

t -^ — t c r s = \c r s \ t . (4.8) 
ooo ooo op oq or L op oq or-i ooo v / 

If now we assume that To-,i = [̂ oool ^^^ ^̂ -̂ i ~ Kool ^^^ ̂ ^^ respective 
column matrices of the extended tensor components, in the initial and the 
new bases, respectively, ordered according to the required criterion (axiom 4, 
Chapter 2), imposed by the bases {Si 0 Sj ^ffk} and {ip (8) ê  0 77^}, Formula 
(4.8) appears in matrix form as 

the matrix "construction" of which is that of Formula (4.7). 
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After the corresponding study, one arrives at the conclusion that Z^ is the 
square matrix 

Z^^Cm^Rn^S^, (4.10) 

where the sign "(g)" is the Kronecker product, direct product or tensor product 
of matrices; that is the reason why we keep its "double" meaning. 

In case some readers cannot clearly "see" matrices Z -̂, T -̂̂ i, T̂ r̂ i in Formu
las (4.9) and (4.10), Formula (4.9), T = Zf, will be analyzed in detail for the 
particular case m = 2;n = 3;p = 4, that is, with the change-of-basis matrices 
(^2, Rs and S4, and cr = 2 x 3 x 4 = 24. We will give some details of how (4.9), 
T(ĵ i = Zo-Tcr̂ i, is developed. Once the matrices are operated one gets (4.8): 

cllrllS^ 1 c j ; r j °54 | cJ°rJ°S4 | cJ°rJ°S4 

rt^'^i 
^112 
^113 

t^^^ 

^121 

^122 

,123 

^124 

^131 

^132 

^133 

^134 

|211 

/212 

,213 

^214 

f221 

^222 

f223 

^224 

f231 

^232 

^233 

Coi^oi'S'4 I cllrllS4 I cllrllS4 \ cllrllS4 \ 

- i - i-4 -
Co?'^oi'54 I cllrllS4 I c^°r^3S'4 I cllrllS4 | ••• | cj2r^3'S'4 

i-4 
Oo^oiS4 I cl^rllS, I c^°rJ°S4 | c=°rJ°S4 I 

Co^oiS4 I c^Jr^°S4 I cllrllS, \ cHrHs^ | 

2o l o e 
^02^^03*^4 

I 2 o 2 o o 
I ^02^^03-5^4 

<^IKIS4 I c^?r^?54 1 cllrllS4 \ CIITIIS4 ^2o 3 o e 
'^o2"o3 ' - '4 

£124 

£132 
r l33 

Z24 = (C2 (8)Ä3) 0*54 

With Formulas (4.9) and (4.10) we finish the explanation about the matrix 
representation of the tensor relation (4.8). 

If we look for the matrix expression of the tensor relation (4.6), it suffices 
to obtain To-,i from (4.9) to get 7^,1 = Z~'^Tcr^i, and replacing (4.10) and 
using the Kronecker product properties, we have 

Ta^l = {Cm 0Rn^ ^p)"'T^,l => T ,̂1 = C, ^R- ' S-^T, ( T , l - (4.11) 

Expression (4.11) is the matrix representation of (4.6). Our desire of arriving 
at matrix notation is none other than to build computer programs able to 
perform tensor operations. 

At this point we can clarify the central question, stated at the beginning of 
this chapter, of what are the matrices Z^ associated with changes of basis of 
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an arbitrary linear space V^ (K), of dimension a E N , that allow us to classify 
its vectors as tensors. In reality its quality is in no way arbitrary. The answer 
is that if a is an arbitrary number, vectors in t € V^ (K) can be considered 
as tensors of order r = 1 because any change-of-basis Ẑ - = C -̂, implies the 
relation 

or in matrix form 
^cr,l = C^ • To- 1, 

which reveals the satisfaction of relations (4.6) and (4.11) for r = 1. 
If cr = ni • 77-2 7̂  prime (a decomposable natural number) it is additionally 

possible to notate the basis of V^{K) as {ê  (8)e}} with I < i < rii; I < j <n2 
and perform change-of-basis, the matrices of which satisfy Z -̂ = C ^ 0 C^s, 
with which we can see V^{K) as a linear space of second order tensors, r = 2, 
because we have 

or in matrix form 
T.,i = ( C - > C - ' ) - T . , • , 1 ' 

which proves that the relations (4.6) and (4.11) are satisfied for r = 2. 
If a permits a factor decomposition as (T = ni • n2 • ns, there is another 

possibility of notating the basis of V^{K) as {ê  0 e} 0 ?7/c} with 1 < z < 
^ i ; 1 < i ^ ^2; ^ ^ k < Tis and performing changes of basis the square 
matrices of which satisfy Za- = Cm 0 Cn2 ^ C^s so that we can give V^{K) 
a "third r = 3 order tensor" linear space character, since the following holds: 

Tpqr lijk po qo ro 
0 0 0 0 0 0 ' I Q Z '^oj i^ok 

or 

which are relations (4.6) and (4.11) for the present case. The conclusion is 
that the same linear space V^{K) can be considered as a source of different 
tensors. 

Now we are in a good position to establish the tensor character criterion 
in all its possible extensions. 

4.4 General criteria for tensor character 

Prom this point on, we shall establish a new tensor notation with the aim 
of adapting it to what is common in calculus and tensor analysis textbooks. 
Some examples of it will be given in the second part of the book. 

For the "factor" linear spaces we shall use the notation V[^^{K)^ where 
i^rii e IN, Ir ~ {1,2, . . . , r } is the range of i, and rii is the dimension of 
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V^^{K)^ r the total number of linear space "factors", of arbitrary individual 
nature, but with the same associated scalar field K. 

For the basic vectors (and their components) of the "factor" linear spaces, 
Greek letters {a,/3,7,5, / / , . . .} will be used for the "initial", and Roman letters 
{i, j , Ä:, m , . . . } for the "new", that is 

,iok . a 0 7 Q;-^ j->^ , 

With this convention we avoid the hats in the analytical expressions of 
tensors. 

The tensor product linear space will be notated as 

i = r / ^ \ 
.(8) Vl^'iK); a = diml^Vi] -=ni-n2-ns n^. (4.12) 

The subindices ßi^Si G Im = {1, 2, 3 , . . . ,n^}, will have the respective 
ranges, according to the i value. 

r 
The initial and new bases of ^ V[^^ {K) will be 

B(initial) = {eiß^ (g) 62/52 ® '•'® ^rß^} (4.13) 

B'(new) = {eij, (g) 62̂ 2 ®"'® er>}. (4.14) 

Axiom 4, referring to the ordering of indices, also holds. 
The changes of basis performed in each of the factor linear spaces will be, 

for the basic vectors and components 

^iji = c/^'j^ei/3,; ei/3i = li^ß^eij^] ^ f = c/;_°^ • x^ ;̂ (4.15) 

e. 
ß ^ ° 7^ . ;;* _ ^. J* ° Pi o -, ^ -* j ^ o -* ^ p^ P i o j ^ ^ (A ^f\\ 

iji ~ ^i o ji^ißi'' ^'i'ßi ~ 7 ^ o ßi^^Ji'-i ^i ~ ^^ o j ^ ' ^ ' ( ^ 4 . i 0 j 

e - =r r ^" ° P /:? • P /P - T -̂ ^ ° P* • • r^r- - . ^ ß-r O j , (A ±7) 
^rjr ^r o j^^rßr^ ^rßr — fr Q ß^^rjr-: -^r "~ ^ ^ o > ' V ^ ' - ^ ' / 

r 
Finally, the tensor relations between the two bases B and B^ of ^ V̂ "'̂  (i^), 

once replaced .(4.15)-(4.17) and grouped are: 

Direct relation: 

e i j i (8 )e2J2 ^ ®^rjr. =" ^^^ol^^^oJ2 ' ' ' ̂ r^oj/^ßi ^ % 2 ^ - ••^erß^ (4.18) 

of matrix expression (tensor change-of-basis) 

I |ei_̂ -i (g e'2j2 ̂  ^ Srj^ 11 = I |ei/3^ (g) 62/33 ̂  • • • ^ eV/3̂  11 (Ci (g) C2 0 • • • 0 C^). 
(4.19) 

Inverse relation: 
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Table 4.2. Changes of basis performed in each of the different factor linear spaces 
for the basic vectors and components. 

Direct 
/3i o -^ 

ßi o -, 

->• ß r O -^ 

Inverse 

ei^i =li^^ß/in 

->• 3i ° -^ 

^ißi — li o ßi ̂ '^Öi 

erß^ - Ir'^ß^erj^ 

Components 

1 o J l 

-* ?i o 72 

er/3. = 7 l o 0 i 7 2 o ; • ^rl ß^ ^^h ® 6*2̂2 O • • • ® e^jv (4-20) ei/3i 062/32® <8 

of matr ix expression 

||ei/3i <8>e2/32®- • «SiCr/ĵ ll = ||e*iji (8)e2j2®- • -^eV^^IKCf ^(8)C^"^®- • •®C~-'"). 

(4.21) 
These changes of basis produce on the "components", two relations (direct 

and inverse), known as tensor character criteria. 
r 

Let t £ ^ Vl^^ {K) be a vector of the tensor product linear space tha t , 

expressed with respect to bases B and B', becomes 

t o o o o ei^i 0 62/32 ) Crß^ (with a components), (4.22) 

^'iTo':^iji®^2ö, I Crj^ (with (J components). (4.23) 

The relation between the components to be obtained permits qualifying these 
vectors t as "absolute tensors of order r" . 
Preferential relation in tensor algebra: 

' o o o o 
+ßlß2-ßr-
' o o o o ' o / 3 i 

J2 O 

' ^ 0 / 3 2 7r ;̂X (4.24) 

or preferential relation in tensor algebra that uses matrix representations: 

t /51/Ö2--A 
o o o o o 1 o j i 2 o j 2 t^ 

/3r-0 

^ ^ 3r' 
(4.25) 

A necessary and sufficient condition for the vectors t G ®Vl^^{K) to be 

tensors is tha t they satisfy conditions (4.24) or (4.25). 
We remind the reader t ha t the indices /3i, /?2, • ' ' 5 /^r in (4.24) and j i , • • •, jr 

in (4.25) are "dummy" indices (Einstein's convention) and tha t their ranges 
are 
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ßiJi e In, = {1, 2, •. -,!%,} for z E /^ = {1,2, . . • , r } . (4.26) 

Conversely, indices j i , J2, • * • ^ jr in (4.24) and /?i, ^2, •' * ^ /?r in (4.25) are "free" 
indices, and their ranges, those in (4.26). 

We also remind the reader that the matrix expression of (4.25) is 

Ta,i - [Ci ^ C2 0 • • • ^ a ] • t , , i , (4.27) 

where the symbol (8) is used to represent the Kronecker or direct product of 
matrices. 

Formulas (4.24) or (4.25) constitute the fifth formal axiom, which together 
with the other four axioms established in Section 2.5, Formulas (2.13), (2.14), 
(2.15) and in Definition 2.1, point 3, order axiom of basic vectors, constitute 
the fundamental frame for the formal definition of absolute tensors, also called 
"multilineal applications", "multilineal morphisms", "multilineal operators", 
etc., by other authors who consider these entities as transformations. 

We add that the criterion defended by the authors of this book consists of 
maintaining the concept of a tensor as a vector, because this concept is "more 
primitive" than the concept of transformation in abstract algebra. 

4.5 Extension to homogeneous tensors 

In Section 3.2 we clarified the analytical expression of homogeneous tensors. 
As in this case there exists only one generator linear space V'^{K)^ in 

primary basis {CQ,}, {Si} (initial or new), or the dual space VJ^{K) in the 
corresponding dual bases {e^*^}, {e**"*}, here we have only the changes of basis 
given by Formulas (3.37) and (3.47), that is 

e« = JZ e« or e^^ = c°f e* '̂. (4.28) 

When substituting these expressions into the tensors' analytical expression, 
as was done in Section 4.2, one arrives at the corresponding tensor character 
criteria for homogeneous tensors, which are simple applications of the type 
(4.18) to (4.27). 

Let 
^ r times —^ 
y^ (g) V7 ̂  "̂̂  ^ • • • ^ KT (8) viK) ^ ^ ^ 

be the "homogeneous tensor product" linear space associated with a mixed 
r-order tensor (with contravariant and covariant indices) with dimension 
cr = n^, and ßi^ji G In — {1,2, • • •, n}. The relation between the bases is: 

Direct relation: New basis as a function of the initial basis 

^ c'o^° 7 ; / ^ t , ° • • • Ißljr^'llßß. ® ^'^ 0 e,3 ® • • • ® e-/'^-
(4.30) 
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and the matrix expression of the change-of-basis (4.30) is 

\ej^ (8) e^^^ 0 6̂ -3 (8) • • • (8) e^^ -̂̂  
= \\ep^ (g)e^^2 (8e>3(8)---(8)e^^^-^0eöJ|(C(g)(C'-^)*(g)C(8)---(8)(C-^)*( 

(4.31) 
Inverse relation: Initial basis as a function of the new basis 

(4.32) 

esi ® ^^^ ® 6/33 (g) • • • ® e*^--! (g) eß^ 

= T'O R C° ''^T^^ ; • • • C, ° ' ' r ^ T i ^ : e,-, ® e*̂ '̂  ® e;-3 ® • • • ® e^>-^ 
' O ßl 32 O I O ß3 Jr-1 O I O ßr Jl ^ J3 

and the matrix expression of the change-of-basis (4.30) is 

\\eß^ (8) ^^2 0 e>3 (g) •" • (g) e^^-i 0 e^JI 
= ||ej-, (8)6̂ -̂ '" (8 6̂ 3 8) • • • (8) ê '̂"-̂  (ge^-JKC"^ 0 C* 0 C"^ 0 • • • (8 C* (8 C"^), 

(4.33) 
so that the "tensor character criteria" for a homogeneous tensor becomes 

^h ° i s . . . . ° ^r ^t^^°ß^.. ° ßr h °c°^^^i'°..c.° f^^-'-i^- ° UM) 
O 32 O 3r—lO O /32 O ßr—lO ' O /3i 32 O 'oßs J ^ _ i O ' O /3^ V / 

O /32 O / 3 r - l O 0 J 2 0 J r - 1 O O 3l ' P2 O O J3 ' / 3 ^ - l O O J ^ V / 

We remind the reader that ßi^ji G In = {1,2, • • •, n}. When the number of 
indices is reduced we shall use Roman and Greek letters without subindices. 

The matrix expressions of (4.34) and (4.35) are, respectively 

fcr,i = {C-^ 0 C* (8 C-^ (8 • • • 8) C* (8) C-^) • T^,i (4.36) 

T,,i = {C^ {C-^Y (8 C 0 •. • (8 {C-^Y 0 C) • f , , i . (4.37) 

Before finishing this topic, we call to the reader's attention on the "formal 
rules" that all tensor change-of-basis equations must satisfy. 

Any homogeneous tensor change-of-basis equation of type (4.34) must sat
isfy: 

Rule 1. The general tensor component with the indices in the new basis 
(free indices) will appear on the left hand side, and the general tensor 
component with the indices iri the initial basis (dummy indices) will ap
pear on the right-hand side, and always as the first factor. 

Rule 2. The change-of-basis terms will appear on the right-hand, as second, 
third, etc., in the same order as the corresponding free indices on the left 
hand side. 

Rule 3. The free indices columns, in each change-of-basis term, will appear 
ahead of the dummy indices columns. 
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Rule 4. The tensor component dummy indices on the right-hand will ap
pear in the reverse position (position of Einstein's convention) to the one 
corresponding in each change-of-basis factor. 

These rules are given for the reader to satisfy them. 

4.6 Matrix operation rules for tensor expressions 

We study in some detail the matrix processes and their tensor correspondences 
for certain tensors, in the following order: 

1. Second-order tensors (matrices). 
2. Third-order tensors. 
3. Fourth-order tensors. 

We understand that they require some attention because they are the most 
frequently used tensors. 

4.6.1 Second-order tensors (matrices) 

Among all the linear spaces treated in algebra books, the chapter dedicated to 
homomorphisms, of an initial or primary linear space {V'^{K)) into another 
final or secondary linear space {W'^{K)) and the problems generated in them 
by the changes of basis {Cm in the primary and F^ in the secondary), deserves 
special attention. 

We conclude that if Tnm is the matrix associated with the homomorphism 
before the change, which belongs to the linear space T'^^'^{K) of matrices, 
Tnm also suffers a change (Zi) and the new matrix associated with the homo
morphism Tnm^ is related to the initial one by the expression 

In the particular case of endomorphisms (F"'(i^) = W'^{K)) the square ma
trices associated with the endomorphism (linear operator) are related by 

fn = C~^TC, (4.39) 

an expression that raises all the theory about eigenvalues and eigenvectors. 
Another unavoidable chapter of algebra textbooks is that of dual linear 

spaces with a connection matrix G that, for different linear spaces changes of 
basis, transforms by the relation 

Gn = r'GnC. (4.40) 

If the linear spaces are coincident (autodual), we enter into the Euclidean 
spaces with 
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Gn = C^GC- with (G = G*) (4.41) 

or into the Hermitian spaces with 

Hn = C'HnC', with {H = H'; C" = (G*)), (4.42) 

with applications to bilinear and quadratic forms, etc. 
In order to generalize formulas (4.38) to (4.42), etc. we will say that in 

algebra, there exist square matrices T^^ Gnt Hn^... of order n, that represent 
abstract entities, such that when changing basis in its proper linear space, it 
will be done with an "algorithm" of the type 

f = PTQ; | P | ^ 0 ; |Q| ^ 0. (4.43) 

We will prove that when a matrix T changes basis, according to model 
(4.43), it is behaving as a "tensor", that is, all possible changes of the model 
"have tensor character". 

Next, for the sake of exposition simplicity, we show the tensor character 
of Formula (4.43) for n = 2. 

Consider matrices P = 
a b 
c d 

and Q — 
g h 

where \P\ ^^ 0, |Q| ^ 0. 

We use (4.43) for finding the image matrices of the canonical basis matrices 

E 11 
1 0 
0 0 

E 12 
0 1 
0 0 ; ^: 21 

0 0 
1 0 

E' 22 
0 0 
0 1 

E 11 P 
' l 0" 
0 0_ Q^ 

a b 
c d 

"l 0" 
0 0_ g h_ = 

ae 
ce 

< > 

' ae' 
af 
ce 

Lc/J 
similarly 

Ex2 = P 

E21 = P 

E22 = p 

0 1" 
0 0_ 

0 0" 
1 0_ 

Q^ 

Q^ 

a b 
c d 

a b 
c d 

"0 1" 
0 0_ 

"0 0' 
1 0_ 

'e f 
_g h_ 

_g h_ 

= 

= 

ag ah 
eg ch 

'he bf 
de df 

<> 

<> 

ag 
ah 
eg 

ich. 

be-
bf 
de 

Idf. 

"0 o' 
0 1_ Q^ 

a b 
c d 

"0 0' 
0 1_ 

'e f 
g h_ = 

bg bh 
dg dh 

<> 

[bgl 
bh 
dg 

.dh. 
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Because of the linear space theory we know they are the columns of the change-
of-basis matrix Z^'^ in T'^{K). Thus, we have 

7-1 

ae ag he bg 
af ah bf hh 
ce eg de dg 
cf eh df dh 

a b \ _ \ e g 
f h 

a 

c e 9 

b 

d 

e g' 

e 9 
J _̂ 

P®Q\ 

which leads to 
Z4 = ( P ^ Q * ) - ^ = P - ^ 0 ( Q - ^ ) * , 

(4.44) 

(4.45) 

and then Equation (4.43), the model for (4.38) to (4.41), etc, can be translated 
by stacking matrices T^ and T^ (generalized to order n) "in columns", T^^i 
and Tcr,i, respectively and using the equation 

f, , i = Z - i r , , i ; Z - 1 - P 0 Q * ; Z, = P-^^{Q-^)K (4.46) 

However, according to Formula (4.10), expression (4.46) is a change-of-basis 
matrix of tensor construction, which is exactly what we wanted to show. 

In summary, in linear algebras, the matrices associated with homomor-
phisms, linear operators, bilinear forms, quadratic forms, dot products, Her-
mitian products, etc. when changing bases behave as second-order tensors. 
Thus, as a general conclusion, in algebra are all tensors. 

If we extend (4.43) to four consecutive changes of basis, we have 

r = ( P 2 . F i ) T ( Q i . 0 2 

and using Formula (4.46) we get 

T<,,i = Z - i . r , , i = [(P2 . Pi) ® (Qi . Q2)*] • T,,u 

and due to Property 5 of the Kronecker product (8) (Chapter 1) we obtain 

z-^ = {P2^PiMQi^Q2Y = (P2*Pi)0(Q 

Generalizing (4.47) and (4.48), we get 

. r = ( P ^ . . . v P 2 * P i ) r ( Q i . Q 2 

which is equivalent to 

(4.47) 

i.Q\) ^ Z-^ = (P20Q*2)*(Pi0Ql). 
(4.48) 

^Qh). (4.49) 

Po-,1 = ^ a ^o-,l 

with 
Z-^ = {Pn ® Q D • • • • • (-P2 ® Q\) • (Pi ® Q\). 

Formulas (4.49) and (4.50) end our comments on Equation (4.43). 

(4.50) 
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Finally, a normal mode of operating change-of-basis homogeneous tensor 
expressions by means of matrices is the following. 

Let C = [c^°] and D = [d^°] be the change-of-basis matrices, in the 
"factor" spaces, and consider the tensor expression 

O O O O O ^ O J V / 

We prepare the expression in such way that the indices to be contracted have 
their columns in consecutive order, without modifying the tensor indices: 

oo o z o o j o ' V / 

where it can be noted that it has been necessary to alter the index columns 

matrix form as 
of the matrix [d^^]. Thus, by means of (4.52), Equation (4.51) transforms to 

T = CTD^ (4.53) 

and, if we write it with the ordering in Formula (4.43), we get 

f = C-^T{D-y. 

Formulas (4.46) can be applied, that is, if we work in the linear space 
T"' (K) = T^{K)^ the matrix operation becomes 

and operating one gets 

f , , i = Z- iT , , i ; Z„=C®D, (4.54) 

which is consistent with the general theory (Formula (4.11)), confirming the 
correctness of the matrix interpretation of the tensor expression (4.51) with 
the help of the matrix expression (4.53). 

4.6.2 Third-order tensors 

Consider the homogeneous tensor, given by the change-of-basis tensor expres
sion 

.lok ^ . a o ^ i o oß ko .^r.^ 
OJO O ßo ' OCX j O I OJ \ ' J 

with 

Let 

1. (i, a) be the row indices of a matrix of submatrices, 
2. (j,/?) be the row indices of a submatrix, 
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3. (/c, 7) be the column indices of a submatrix. 

In this way, the submatrices can be operated either in the data tensor (t^^^) 

or in the new output tensor {tl°-). 

We contract first the row and column indices of the submatrices of (4.55): 

,iok i o 

t . = 7 
O J O ' OCK 

jo o/5o ' 7 0 / ' o a v o j o / ' (4.56) 

where in matrix form, observing the change of columns of matrices [c^°] and 

[7o^], the result is 

K°':] = c'iT"Kc-y o j o J 

rpl -I / 

nnn 

(submatrices). 

Next, we operate the rest in matrix form: 

,iok i o ifOLok 
ojo ' oa o j o (4.57) 

taking into account that in (4.57), the dummy index is a row index of a matrix 
of submatrices 

r = [O = c-i0 
rp2 

n^n 

(4.58) 

where the product "0" indicates that we proceed to multiply the row elements 
of C~^^ by blocks of the block column matrix, and add them, as a sort of 
extension of the classic product of matrices. We proceed exactly the same as 
if the first matrix were made of blocks and the second of elements. In fact we 
extend its use when both factors are made of blocks, using the classic product 
of matrices for the block among them. 

4.6.3 Four th-order tensors 

Consider the tensor with expression 

,ijlo ,aßXo io jo io 
'^ooom o o o fi loa 'oß 'oA 

ß 
mo' 

Let 

1. (z, a) be the row indices of a matrix of submatrices, 
2. (J, ß) be the column indices of a matrix of submatrices, 
3. {ij A) be the row indices of a submatrix, 

(4.59) 
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4. (TTI, /X) be the column indices of a submatrix. 

Following the previous process, we contract first the submatrix indices (A and 

o o o m L/oA-IL o o o / x J L oTnJ 

and in matrix form 

t"lli°ra = C-\T"0]C=[T<^^]' (4.60) 

next, we contract the row and column matrix of block indices (a,/?): 

T=[tZi°J = bZ\Q[T''']'Q[lZ\ (4-61) 

that is 
f = C"^ 0 [T^^]' 0 (C-^)^ (4.62) 

where the special product 0 , previously defined, appears playing again the 
same role. 

The reader can consult the exercises proposed in this book to improve the 
understanding of these concepts. 

To end this section, we point out with emphasis, a property of the Kro-
necker product for square matrices {An^Bm)^ the Property 6, relations (1.38) 
and (1.39) which will be used with some frequency in the treatment of tensors, 
up to a point that seems to arise from tensor relations, for example (4.43) and 
(4.46) and (4.53) and (4.54) of the present chapter, and which deserves to be 
cited with a proper name; we propose the name property of "condensation of 
products • and 0" . 

We cite this property from the matrix point of view: 
"The following matrix equations are equivalent": 

An • X^ri^rn • ^ m ~ ^n,m O [An 0 -O^J • X = C, 

where x and c are column-matrices, "stretched" from Xn,m and Cn,m^ respec
tively. 

Now, we see the problem from the tensor point of view, with another 
construction. Consider the linear spaces V'^{K)^W'^{K) and V^{K)^ where 
a — n ' m^ and let K'^^'^ be the linear space of matrices n x m over K. Let 
Pn->Q\n ^^^ ^o- = (P 0 Q*)""^ be change-of-basis square matrices, in their 
respective linear spaces. 

According to the property of "condensation of matrix products" the fol
lowing relations correspond univocally: 

Tn,m = P • r , , m • 0 ^ f^^ = {P 0 Q') • T , , l , (4.63) 

where T^,i,T^,i e ViK) and Tn^m^fn^m ^ K'^'''^ are matrices, with the 
same scalars as the vectors Tcr,i,To-,i but condensed and ordered, according 
to the usual matrix disposition. 
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4.7 Change-of-basis invariant tensors: Isotropic tensors 

It is convenient to make a comment on certain homogeneous tensors with 
a special behavior. When performing a change-of-basis in the linear space 
y"'(]R), this produces in the associated linear spaces of tensor powers a change 
in their tensor components. However, there exist some tensors the components 
of which do not change, even though their basis is changed. Their components 
take always the same values; thus, when given the tensor data it is not neces
sary to mention with respect to which basis {ca} in V^CR) they are defined, 
information that is needed for the standard tensors. These tensors are known 
as isotropic tensors. 

4.8 Main isotropic tensors 

In this section we mention the most important isotropic tensors. 

4.8.1 The null tensor 

As is well known, any tensor space, also called "tensor power", is above all 
a linear space, with sum of tensors and exterior product (scalar-tensor) es
tablished over the same field K as the factor space V'^{K); as such there 
exists a neutral tensor for the sum, the null tensor, which will be denoted by 
Ö, or Ü; if the order and valency of the tensor space are those of the ten
sor with components: t^l'^'^',',^1 ° ° ."̂  ° , the null tensor is i7, with components 
cj*^^^ ""̂ ^ o o ••• o _ ^ Q j^ r 2eroes and has the property that its tensor 
product for any other tensor in the tensor space is the null tensor of the 
tensor product space, that is. A® Q — i7^ 

4.8.2 Zero-order tensor (scalar invariant) 

A zero-order tensor is a tensor such that its unique component is any of the 
scalars in the field K over which the factor linear spaces V'^{K) are defined. 

Obviously, when performing changes of basis in V'^{K)^ the components 
of this tensor are invariant. 

4.8.3 Kronecker 's delta 

To start with and due to reasons that a posteriori will become clear, we define 
this tensor as a system of scalars of second order over V'^{K) as 

5{aß) = < ^.r ~^ n 0̂5 /̂  ^ ^n = {1,2, • • •, n}; {0,1} E A" the neutral elements. 
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and also as a matrix [(5(a/?)] = In (unit matrix). 
When examining the tensor character of the system, we arrive at the fol

lowing conclusions: 

1. S{ij) ^ ^(^/5)7oa7oö (̂ ^ ^̂  ^^^ ^ contravariant tensor). 

2. S{ij) ^ 5{aß)c°^^c°.^ (it is not a covariant tensor). 

3. S{ij) = 5(a/3)7^°c°f -> (5̂ ° = Kß^ll^'jt (i^ ^̂  a contra-covariant tensor). 

4. 6{ij) = ^(o^^)c°^7^^ -^ 5°^ = ^af^IoTo^ (it is a cova-contravariant ten
sor). 

In conclusion, the Kronecker delta is a tensor that presents the anomaly 
of being simultaneously a contra-covariant and a cova-contravariant tensor, so 
that as a vector it permits the following formulations: 

D = d = S'llca 0 e"^ - ei (g) e"^ + e2 (8) r ^ + • • • + en (8) e"'̂  

D = d = (5°fr^ (g e> = e"^ g) ei + r ^ g) e2 + • • • e"^ (g e^. 

A matrix justification of the statements in 1, 2, 3 and 4 are the following: 

1- [5{aß)^:y:ß] = bzmaßWi^:\ = c-^uc-^r ^in = [sm-
2. {5{aß)c°y/j = [c°:][5(a/3)][cf °] = C*7„(C*)* ^ J„ = [5{ij)]. 

3. [5{aß)j:y/j = b::][S{aß)][c^^;] = C-'ln{Cy =In = [5{i3)]. 

4. [5{aß)cZlil] = [cTMo^ß)]bt] = C'In{C-'f = J„ = [5{ij)]. 

Example 4-^ (Some questions about the tensor product). We propose the fol
lowing questions: 

1. What condition must two vectors V and Ŵ  G R"' satisfy for their tensor 
product to satisfy the condition V ^W = W ^V? 

2. Let t = tiici (g ej be an arbitrary tensor of V g) 1^^(11). What is the 

necessary and sufficient condition for the existence of two vectors V and 
W € y ^ ( R ) such that V^W = tJoTn = 2? 

3. Idem but for n — 3. 
4. Let ? = t*°e^ (g ê  be a mixed tensor of R"' x R^ ( I l ) . Can we say that 

the determinant D(t^°) has tensor character? How is it transformed? 

Solution: 

1. We show that V^W = W0V is equivalent to W" = AT?. 
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Necessary: 

We know that V ^W = x'^y^Ci (g) e} and W ^V = y'^x^ei (g) e*j, so that 
V <S>W = W ^V imphes x^y^ = y'^x\ which is equivalent to 

x^ x^ 

then it is true that V ^W = W ^V if they are parallel. 

Sufficient: 

If W" - Ay we have 

V^W :=V^XV = X{V -(g) V) (4.64) 

W0V = XV^V = X{V^ F) , (4.65) 

that is.V^W = W ^V. 

2. Necessary: 

Let V =^ x^ei -^ x'^e2 and W = y-^ei + y'^e2 from which 

V ^W = x^y-^ei (g) ei 4- x^y'^ei (g) e 2 + x^y^e2 0 ê  + x^y^e2 0 62 

Since in addition we have 

f = ^00^1 ^ ^1 + ^00^1 ^ ^2 + t^^e2 (g) e i + t f ^62 (g) e2, 

we must also have: 

J.11 1 1 ^12 1 2 ^21 2 1 4.22 2 2 

0̂0 = ̂  ̂  ' too = ̂  y '^ Ko = ̂  y '^ Ko = ̂  y '^ 
and eliminating X''̂ ,y"'̂ ,a:̂  and y^, we obtain 

1 1 . ^ 2 2 _ ^ l ^ , 1 ^ 2 „ 2 , 1 1 12 
0 0 0 0 

1 ^ ^ - 0 0 0 0 0 0 0 0 

,12 ,21 _ ^1^,2^2,,1 
0 0 0 0 

y.21 ,22 = 0. 

Then, the necessary condition for tensor t to be a tensor product of vectors 
is that "the associated matrix of scalars be of rank = 1". 

Sufficient: 

Assume that the rank of the matrix of t is one, i.e. t ^ Q: 
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rank 

11 
oo 
21 
oo 

t 11 
oo 

12 
oo 

22 

1 

Ä 

which implies 

^= tl% ^ ' 6 1 • tllei (g) 62 + Xtlle2 (g) 61 -f Xtlle2 ' ' 62 

(^oo^i + ^^00^2) (^ ei + (t^fei + At^^e2) (g) 62 

(ei +Ae2) (̂ ooe"̂ i) + (e i+Ae2)0( t^ '^6-2) 

= ( 6 i + A 6 2 ) 0 ( t ^ ^ 6 i + A t ^ ' f e 2 ) . (4.66) 

Then we have t 
3. Necessary: 

X^Y. 

Let 

V = x'ei; W = x^ej,l<iJ <3 =^ 
V 0W = x^y^ei ^Sj 

0 0 *• 

The identification V 0W = t^ leads to 

x-^y-^ 
1 9 x^y^ 

^ly3 

0 0 

0 0 

0 0 

(x'^y^ 

I x'^y'^ 

[x'^y^ 

0 0 

0 0 

,23 
— ^ 0 0 

\-'y'=tll 
x'y' = C 

yy' = C 
t ha t tensorialy speaking is a system of n? equations x'^y^ = t^^, in our case 

of n^ = 9 equations, with x-^^x^^x^^y^^y'^^y^^ six unknowns, so t ha t there 
must be some compatibility conditions for it to hold. 
We proceed to develop a gradual elimination technique of the unknowns, 
as follows: 

, 1 1 , 2 2 X ^ ^ ^ 
0 0 0 0 ^ ^ 

,1^ ,1^2^,2 

, 1 2 , 2 1 ^ ^ ^ ^ 
0 0 0 0 ^ ^ 

,1, ,2^2, ,1 
1 1 2 2 _ 1 2 2 1 
0 0 0 0 0 0 0 0 0 - ^ — T 

11 
0 0 

21 

12 
0 0 

22" 

and also 

, 2 2 , 1 3 2 2 1 3 
^00^00 = ^^y'x'y'' 

0 0 0 0 ^ '^ 

22 13 _ 23 12 
0 0 0 0 0 0 0 0 

A2 

,22 

13 
0 0 
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which leads to 
11 
oo 

2T 

In a similar way we establish 

11 
0 0 

12 
0 0 

¥2 

13 
0 0 

23"' 

0 0 

' 733' 
0 0 0 0 

which leads to 

rank 

0 0 

0 0 

L ^ o o 

12 
0 0 

22 
0 0 

32 
0 0 

Sufficient: 

Let rank 

0 0 0 0 0 0 

21 22 23 
0 0 0 0 0 0 

31 32 33 
0 0 0 0 0 0 

= 1, with t = tJ^Ci 
' 0 0 *• 

) e} ^ i?, 1 < i, j < 3 . 

There exists ß\ß^,ß^ ... .ß"" e K; Vi, j , k, we have 

f^3 t 
i k 

ß^ ß^ 

+3^ j-jk 

ßi ß' 
0 0 

~k 

j-jn 

ß'^ 

a*; for a given i 

a^; for a given j 

etc. 
Then, the following relation holds: t*^ = a'^ßi. This allows us to write the 
matrix expression: 

t = [ei 62 63] 

= [ e i 62 63 J 

[ei 62 es\ 

11 
0 0 

21 
0 0 

31 
0 0 

12 
0 0 

22 
0 0 

32 
0 0 

ei 

62 

es 

a^ß' a^ß^ 
a^ß^ a^ß^ 

al /33" 
a2/?3 

a^ß^ 

6*1 

62 

. ^ 3 . 

a" 
^[/3l /?2 /?3 

ei 
62 

es 
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a 
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[ßl P2 ßs] 

85 

ei 
62 

63 

[a^ei + a^e2 + a^es] ® [ß^ei + /3^e2 + ß^es] =V^W, 

which proves the sufficiency. 
4. We know that t satisfies the relation 

03 

ao^ io oß^ 
a j o ' 

and taking determinants and considering Formula (4.36), we get 

DiCj) = D{t:;)D{jll)D{c°/j = D{t:;)\C-'\ • |C*| 

= Dit:;)\C-'\ . \C\ = D{Cß) (real scalar). 

So that 

is an absolute tensor of order zero (invariant), which does not get trans
formed by a change-of-basis since it is invariant. 

D 

Example 4.2 (Change of basis). In a linear space ^^^(II) consider the initial 
and new bases (ßi, B'^) related as 

e i = 2 e i - 62 

62 = 3 e i + 62. (4.67) 

In another linear space 1^2 (̂R), their respective bases {B2^B2) are given by 

Ci =r Ci - 2C2 

C2 == Ci + 4C3 

C3 = 62 - 63. (4.68) 

Let teV^® yii^) be the tensor 

T = 2ei 0 61 — 6*1 (g) 63 — 3e*2 (8) 62. 

1. Obtain the tensor components, in the new basis associated with the "ten
sor product" linear space V^' (g) 1/2 (̂11). 

2. Express the tensor t in its new canonical basis. 
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Solut ion: 

1. First matrix process (direct process): 
The dimension of the tensor space is a 
components are 

2 x 3 = 6, and the tensor 

Te 6,1 

r* 1 

i l3 
^21 

^22 

_^23 

r 2] 
0 

- 1 
0 

- 3 
. 0 . 

The direct changes of basis are 

and 

Ci = c^° 4 in Vf ( R ) 

Ĝ f; c> in VHH) 

and the tensor relation of the change-of-basis is 

f^ _ -f^oiß ^^° ^^° (̂ĝ  totally contravariant tensor) 

and the matr ix information for the changes of basis is 

2 3 

(4.69) 

I ei 62 I \ei e 2 | | C = | | e i 62 

Ci C2 C3 11 = 11 ci C2 C3 \D 

Whence C - ^ = | 

the theory) 

for ^1^(11) 

0] 
ici C2 C3II I - ^ V } for^2^(^)-I 0 4 - 1 J 

and the matr ix expression of (4.69) is (see 

- 1 

- 1 1 

1 1 
-2 0 
0 4 

T 6 , i - ( C - ^ 0 i ^ - ^ ) * T 6 , i = -
1 - 3 
1 2 

1 1 
-2 0 
0 4 

1 
5 

1 
5 

1-

1-

" 1 1 
- 2 0 

0 4 
" 1 1 

- 2 0 
0 4 

[ - 1 1 0 
- 2 0 1 

0 4 - 1 
1 1 0 

- 2 0 1 
. 0 4 - 1 

0 
1 

- 1 
0 
1 

- 1 

- 3 
6 
0 
2 

- 4 
0 

(-3)-

2-

0 
1 

0 4 - 1 

1 1 
-2 0 

1 1 
-2 0 
0 4 

r 21 
0 

- 1 
0 

- 3 
OJ 

r 21 
0 

- 1 
0 

-3 
L 0 

3 
6 
0 
2 
4 
0 

- 3 01 
0 - 3 

-12 3 
2 0 
0 2 
8 - 2 . 

• 

- 2-1 
0 

- 1 
0 

- 3 
. 0 . 

(4.70) 



4.8 Main isotropic tensors 87 

which implies 

T, 
1 
5 

- 11-
- 5 
37 
- 4 
- 5 

. - 2 3 . 

• 11/5 -
- 1 

37/5 
- 4 / 5 
- 1 

_ - 2 3 / 5 . 

6,1 

that is 

-^ 1 1 ^ -^ 7t ^ S7^ •:t ^7t 7t -;t 7t 2 3 ^ -^ , , ^ , , 
t = —ei(g)Ci-ei(g)C2 + — e i 0 C 3 - - 6 2 O c i - 6 2 (8)C2-—62(8)03. (4.71) 

0 0 0 0 

2. Second matrix process (classic matrix m^ethod): 
We start again from the relation (4.69), and as its entities are scalars of 
the field K^ they can be sorted as desired. The indices of the tensor (t^^) 
must not be modified. 
First we pass the matrix 7^° ahead, for the dummy indices a to appear 
in the contraction position (of the matrix product, because both are ma
trices). Then, we have 

^00 "" V loa ^ooJ " o / 3 ' (4.72) 

and since the indicators ß are not "consecutive" (they are separated by 

the "semaphoric column" j ) , the matrix [S^Z] is transposed, resulting in 

0 0 OQ; 0 0 /5o' ^ ^' I ci<y "" •^ 
(4.73) 

where a = {1,2}, ß = {1,2,3} and the matrix [t^^] is precisely matrix 
TQ^I after condensation: 

[tfo] 
2 0 - 1 
0 - 3 0 

so that (4.73) permits the operation of (4.69) in matrix form by means of 
its double contraction, as 

T = C-'T{D ̂- l ^ t 1 
5 

1 
5 

"1 - 3 
1 2 

" 11 -I 
- 4 -I 

2 
0 -

37" 
- 2 3 

0 - 1 
3 0 

= 

1 - 2 0 
1 0 4 
0 1 - 1 

11/5 - 1 37/5 
- 4 / 5 - 1 -23 /5 

which is Tg,! after condensation. 
The answer is identical to that in (4.71), since the f^^ G T coincide. 

D 
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Example 4-3 (Index contraction). In the Hnear space R^ we consider the 
change-of-basis given by the new vectors ei(—1,0, —1), 62(1,1,0) and 63(0,0,3). 

In the homogeneous tensor space R^(g)R^(8)R^ consider the tensor t with 
components 

~ ro/3oJ — 

- , l o l 
^ o l o 
, l o l 
^o2o 

o3o 

, 2 o l 
^ o l o 
, 2 o l 
^o2o 
. 2 o l 
^o3o 

. 3 o l 
^ o l o 
, 3 o l 
^o2o 
, 3 o l 

_ ^o3o 

, l o 2 
^ o l o 
, l o 2 
^o2o 

o3o 

,2o2 
^ o l o 
, 2 o 2 
^o2o 
, 2o2 
^o3o 

,3o2 
^ o l o 
, 3o2 
^o2o 
, 3 o 2 
^o3o 

, l o 3 
^ o l o 
, l o 3 
^o2o 
, l o 3 
^o3o 

, 2 o 3 
^ o l o 
, 2 o 3 
^o2o 
, 2 o 3 
'^o3o 

, 3 o 3 
^ o l o 
, 3 o 3 
^o2o 
, 3 o 3 
^o3o 

1 
2 

- 1 

2 
0 
2 

0 
5 
0 

0 
3 
2 

- 1 
0 
0 

0 
1 
0 

- 1 
0 
0 

1 
0 
1 

1 
2 
0 

where a refers to block row, ß to row, and 7 to column of each block. 

,iok 
1. Find the new components t^. of the tensor in its new canonical basis. 
2. Contract the indices (/3,7) before the change. 
3. Contract the indices (j^k) after the change. 
4. Is the contracted tensor the same? (Call it 5, if it is unique.) 

Solution: 

1. The change-of-basis matrix is C = 

matrices 

r - 1 1 0 ] 
0 1 0 

- 1 0 3 

c 
-1 0 - 1 
1 1 0 
0 0 3 

and C~^ 

, and from it we obtain the 

- 1 1 0 
0 1 0 

-1 /3 1/3 1/3 

which will be used later. From Formula (4.34), we obtain the change-of-
basis tensor relation for this homogeneous tensor (of a — 3^ — 27): 

iok aoj i o ß ko 
7 O j O O ßo I OOL 3 O ' O 

(4.74) 

First matrix process (direct process): 
The matrix interpretation of (4.74), according to Formula (4.36), is 

t27,i = {c-^ ^ c* (8) c-^) • r27,i = z . T̂  27,1- (4.75) 
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We start by fixing Z = (C"^ ® C*) ® C " \ that is 

89 

(-1) 

Z=\ (0) 

-1/3) 

or equivalently 

1 0 
1 1 
0 0 

1 0 
1 1 
0 0 

1 0 
1 1 
0 0 

-1 
0 
3 

-1 
0 
3 

-1 
0 
3 

(1) 

(1) 

(1/3) 

1 0 -1] 
1 1 0 
0 0 3 

(0) 

1 0 -ll 
1 1 0 
0 0 3 

(0) 

1 0 -ll 
1 1 0 
0 0 3 

(1/3) 

-1 0 
11 
0 0 

-1 0 
11 
0 0 

-1 0 
1 1 
0 0 

-1 
0 
3 

-1 
0 
3 

-1 
0 
3 

z = 

3 3 

0 0 

which leads to the matrix 

1 
-1 
0 
0 
0 
0 
1 

! 

0 
-1 
0 -
0 
0 
0 
0 
1 

1 
0 
-3 
0 
0 
0 
1 
3 
n 

-1 0 
1 1 
0 0 

-1 0 
1 1 
0 0 

- ! ? • 

-1 
0 
3 

-1 
0 
3 
1 
3 
n 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

- ! ? • 

0 
0 
0 
0 
0 
0 
1 
3 
n 

0 0 0 0 1 

-1 1 0 
0 1 0 
i l l 
3 3 3 J 

.c-1 

-1 
0 
1 
3 

1 -
0-
1 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 
3 

-1 
-1 
1 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

00 
00 

io 
0 1 -
00-
1 1 
3 3 

00 
00 
00 

00 
00 
00 

00 
00 
00 

00 
00 
00 

0 
0 
0 

-1 
-1 
1 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0-
0 
0-

0 
0 
1 
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

-1 
0 
1 
3 

0 
0 
0 

3-
0-
1 -

0 
0 
0 

0 
0 
0 

0 
0 
0 

1 
1 
1 
3 

0 
0 
0 

-3 
-3 
-1 -

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 

1 
0 

i 1 i_ 
3 1 3 

0 
0 
0 

0 
0 
-1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

-1 
0 
1 
3 

0 
0 
0 

1 
0 

i-
-1 
0 

-i 
0 
0 
0 

-1 
-1 
1 
3 

1 
1 
1 
3 

0 
0 
0 

-1 
-1 
i 
3 

1 
1 
i 
3 

0 
0 
0 

0 
0 
1 

~ 3 

0-
0 
1 
3 

0 
0 
0 

0 
0 
1 
3 

0-
0 
1 
3 

0 
0 
0 

0 0 0 
000 
0 0 0 

-110 
0 10 
1 1 1 

" 3 3 3 

0 0 0-
000 
000-

000 
000 
000 

-110 
0 10 
1 1 1 

" 3 3 3 

000-
000 
00 0-

1 -
0-
1 
3 

0 
0 
0 

-3 
0 

-1 

1 -
0 -
1 
3 

0 
0 
0 

-3 
0 

-1 

-1 
-1 
1 

" 3 

0 
0 
0 

3 
3 
1 

-1 
-1 
1 

" 3 

0 
0 
0 

3 
3 
1 

0 
0 
1 

" 3 

0 
0 
0 

0 
0 
1 

0 
0 
1 

' 3 

0 
0 
0 

0 
0 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

00 0 
00 0 
00 0 

00 0 
00 0 
0 0 0 

0 0 0 
00 0 
00 0 

00 0 
00 0 
00 0 

000 
00 0 
0 0 0 

0 0 0 
0 0 0 
000 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0-
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 0 
0 0 

0 0-
.1 i_ 

0 - * 
0 0 
0 - i 

0 0 
0 0 

• i 0 

i 01 
I 0 1 
i i I 
0 0 I 
0 0 I 
0 0 

0 0 0 0 | -
0 0 0 0 0-

4 0 0 0 h-

4 4 0-3 3 - i i 0 
3 3 0 0 4 0 0 

i - i i i 0 

i 0| 
I 01 
I _ l I 
9 9 I 

0 0 I -
0 0 I 
0 0 I -

1 1 
3 3 

0 000 |-i 
0 000 o-| 
1 000 4-1-

0 
0 
1 

? t 
0 - | | 0 0 0 0 
0 o | 0 0 0 0 
i _ i i i 0 0 0 
O Q Q O ^ ^ ^ 

0 0 
0 0 
0 0 

0 0 0 
0 0 0 
0 0 0 

0 1-
0 0-
0 4 -

-1 0 
-1 0 
i _ i j 
3 3 I 

0 0 
0 0 
0 0 

0 0 0 - 1 
0 0 0 0 
0 0 0-4 

1 0 
1 0 

0 0 
0 0 
0 0 

0 0 0 0 - 1 1 0 
0 0 0 0 0 1 0 
0 0 0 0-4 4 4J 

(4.76) 
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Returning to (4.75), and taking into account (4.76), we get 

T'27 -

~ , l o l " 

, l o 2 

t^f 0 3 0 

, 2 o l 
' ' o l o 

, 2 o 2 
^ o l o 

, 2 o 3 
^ o S o 

t^°^ 
0 1 0 

, 3 o 2 
^ o l o 

, 3 o 3 
° 3 o 

1- rr -I 

-= z« 

r 1 1 
0 

- 1 2 
3 
0 

— 1 
2 
0 

2 
- 1 
1 
0 
0 
0 
2 
0 
1 

0 
0 
1 
5 
1 2 
0 
0 
0 

( 3 
4 /3 
—3 
- 4 

- 6 
_ 4 

5 
1 
1 

- 3 
- 1 

- 2 / 3 
- 6 
0 

- 1 

7 /3 

1/3 
- 7 / 3 

-l4̂  
- 2 

_ - 4 / 3 _ 

which after condensing T27,i into three matrices of 3^ elements, leads to 
the block matrix 

r.ioki 
L^ojoJ 

7 
- 3 

-15 

5 
- 3 
- 6 

7/3 
7/3 
- 5 

3 
- 4 
- 6 

1 
- 1 

0 

1 
- 1 
- 2 

4/3 
- 1 / 3 

- 4 

1 
- 2 / 3 

- 1 

1/3 
-2 /9 
- 4 / 3 

which contains the new tensor components. 

Second matrix process (classic matrix method): 

(4.77) 

We start by conveniently ordering and associating the factors appearing 
in the tensor Equation (4.74) to get the matrix ordering required by the 
method. Prom Equation (4.74) we get 

t 
'.ok 

' o a ^ o/3o JO ' 0 7 / 

and then we operate first the associated factors, preparing them first, for 
the dummy indices to be contracted to appear consecutively (we have al
ready used this technique in the previous problem): 
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DJO o /3 o j c 
oß , Q ; 0 7 

c t 'y 
J O o /3 o ' 7 0 

and operating them as matrices we get 

& = c%;i]{c - i \ t 
r - 1 0 - 1 1 

11 0 
00 3 

r lo- r 
23 0 

- 1 2 0 

" - 1 0 - i " 

. 00 1. 
= 0 3-1 

9 6 3. 

\tlTo]=cnti;:Kc- l ^ i -
r - 1 0 - 1 1 

11 0 
L 00 3j 

[2-111 
0 00 

L2 OlJ 

" - 1 0 - ^ " 
11 1 

. 00 i_ 
= 

5 1 1' 
- 3 - 1 - 2 / 3 
-6 0 - 1 

[Ct] = cYo;:Kc-

It remains to operate in matrix form the expression 

r -10-11 
11 0 
00 3 

[0011 
512 
000 

• - 1 0 - ^ " 

I 00 IJ 
= 

0 0-V 
-4-1-1 
0 0 D 

,iok Io ,aok 

: T t . . 
Ioa 0 7 0 

aoki To this end, we multiply matrix [7*°] = C -̂  by the block matrix [t^^^ 

by means of the product "0" defined in Formula (4.58): 

T = K 
ioki 

(-1) 

(0) 

-I) 

-2 - 2 
0 3 
9 6 

-2 - 2 - i 
0 3 - 1 
9 6 3 

5 1 11 
3 - 1 - 2 / 3 
6 0 - I j 

+ (0) 

(1) 

+ (i) 

5 1 1 
-3 - 1 - 2 / 3 
-6 0 - 1 

(0) 

5 1 11 
3 - 1 - 2 / 3 
6 0 - I J 

+ (i) 

0 0 - i 

-4 -1 - I 
0 0 Ö 

0 0 - i 

-4 -1 - I 
0 0 Ö 
0 0 - i 

-4 - 1 - i 
0 0 Ö 

aoki Once the previously obtained matrices [t^^^] have been replaced, after 
o j o J 

operating one gets the block matrix already obtained in (4.77). 
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2. Next we contract indices (/3,7) before the change. 

We write the contraction of (/?, 7) in tensor t^^ßl = 

in matrix form 

S = [5"] = [C 

trace \t 

^ I t = 5^, so that 

(^)i] = [Co] = [Co + Co+C!] ß 
10711 
o/3oJ 

trace [if °^] 

.trace [i^°^] 

3. Next, we contract indices (j, k) after the change 

1 + 3 + 0" 
2 + 0 + 1 
0 + 1 + 0 

= 
• 4 " 

3 
1 

s'] = [C 

trace [t 
J 

l o / c i i 
ojo 

ti - [̂ :. r o i o 
,io2 , z o 3 i 
f + f , 

trace ft̂ ^ l̂ 
L O J OJ 

I trace \t^^.] 
L L o 7 oJ 

7-
5 

7/3-

4 
1 
4/3_ 

= 
" - 1 " 

3 
0 

4. Since tensor 5 is a vector (first-order tensor), and it is expressed in different 
bases we cannot say anything, based on the fact that its components are 
different. 
Next, we check if they are related by the change-of-basis in R^. We know 
that the change-of-basis in ]R^, acts on the vector components as (see 
(3.28)): 

x = cx. 
Since in our case we have 

CS = 
1 1 Q-
0 1 0 
1 0 3 

• - 1 " 

3 
0 

IZZ 

-4-
3 
1 

= 5, 

we are looking at a single tensor S, expressed in two different bases (as it 
corresponds to every tensor contraction). 

D 

Example 4-4 ß^idex contractions). Consider the homogeneous product tensor 
space, of fourth order (r = 4), of the factor linear space y^(IR), V^ ^V'^ ^ 
V^ (8) Kt?(]R) and in it a tensor t, the components of which with respect to the 
canonical basis {ca^ ep <^ ex0 e^^} are: 
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O O O/Lt-I 

2 - 3 
0 1 

6 0 
-5 3 

0 1" 
7 - 4 

4 1 
0 - 8 

where a is the row of the submatrices matrix, ß is the column of the subma-
trices matrix, A is the row of each submatrix, and /i is the column of each 
submatrix. 

1. Write the tensor t as a sum of 2^~^ tensor products of basic vectors, over 
"matrices" as scalars. 

2. Find the new components of tensor t, assuming tha t the linear space y^(IR) 
on which it is defined, experiments a change-of-basis given by 

ei = 2ei + 3e2 

62 = ei + 2 e 2 . 

3. Contract the last two indices of the tensor before and after the change, 
showing tha t the resulting contracted tensor is the same. 

4. Solve question 2 but for the following tensor (it does not satisfy the ordering 
axiom 4 given in Chapter 2): 

rpf r . a p A O l 

2 - 3 
0 1 

6 0 
-5 3 

0 1" 
7 - 4 

4 1 
0 - 8 

where a is the row of each submatrix, ß is the column of each submatrix, 
A is the submatr ix row, and ß is the submatr ix column. 

Solut ion: 

1. When developing the tensor expression of tensor t, in the canonical basis 

of y 2 (^ y 2 ^ y 2 (8) V;^(Il), we get 

r = 4; n = 2; cr = 2^ = 16; a ' = 2^~^ = 2^ = 4 summands. 

t = t 
l l l o 

e i (8) e i ) e i (g) e*"̂  • l l l o 

^ooo2 ei > e i (8) e i ' 

+t 
112o 

ei 0 ei ' 62 (8) e*"̂  + t 
2 2 2 o 

62 (8) 62 0 62 ' 

+t 
2 2 2 o 
o o o 2 62 (8) 62 (8) 62 < 

and associating the summands (the last two common basic vectors), we 
have 
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121o-^ 
o o o l ^ l ' 

r,112o-* 
^ 0 0 0 1 ^ 1 

r,112o-. 
L^ooo2^1 

ei 62 J 

e i 62 

-. , ,121o-^ 
' ^ 1 + ^ 0 0 0 2 ^ 1 

-̂  , ,122o-* 
' ^ 1 + ^ 0 0 0 1 ^ 1 

-* , ,122o-. 
' ^ 1 + ^ 0 0 0 2 ^ 1 

^ , ,211o-, ^ 
'62 + t^^^l62(8) 

- -^ , ,211o^ 
' ^ 2 + ^ ^ 0 0 2 ^ 2 

-* , ,212o-^ 
' ^ 2 + ^ 0 0 0 1 ^ 2 

-. . ,212o-* 
) 6 2 + t ^ , , 2 ^ 2 

-̂  1 ,22l0—» —> 1 _* -*i;l 

^1+^0001^2(8)62] (8)61 (g) 6 

^^1+^0002^2 (8)62] (8)61 (8)6*"̂  

(8) 61 +t^ool^2 ̂  62] (8) 62 (8) 6*"̂  

(8) 61+t 2^2 ̂  62] (8) 62 (8) 6*"̂  

[2 0] 
.6 4 

i[-5 0_ 

61 

^2. ) 
Tei 
L^2_ 

61 

62 ' 

+ [ 6 1 62] 

61 62 

- 3 1 

1 -
3 ". 

61 

61 

62 
6 2 ' 

that briefly and symbolically can be written as 

t = X^ei 

where 

16*^ 

x' = 

2 --X^ei 

- 3 
0 

•X^e2 

X' 

• X^e2 

X^ 
- 4 

are the components with respect to the basis 6*̂  ® e*''. This practice is very 
dubious because it omits information on the tensor. 
The data tensor components, in the canonical basis are the data scalars 
directly read with the criterion imposed by the axiomatic ordering of the 
basis 

T i 16,1 

0001 

,lllo 
^ooo2 
,1120 
oool 
,112o 
•^0002 

oool 
,121o 
^ooo2 
,122o 
oool 
-122o 
^ooo2 
,211o : 
^oool 
,2110 
^ooo2 
,212o 
oool 
,212o 
^ooo2 
,221o 
oool 
,2210 
'^0002 

,222o 
oool 
,222o 

.^ooo2J 
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From (4.34), the tensor expression to be considered is 

j_i i i o ,aßXo io 70 lo on 
t =^6 'Y T 'T C 

000m 000/ i loa. 'oß I o\ mo 

95 

(4.78) 

and the data matrices are 

C [CoJ = 
2 1 
3 2 

2 - 1 
- 3 2 

C* L moJ 
2 3 
1 2 ; c^-' = [7::] = 

First matrix process (direct process): 

The matrix interpretation of (4.78), according to Formula (4.36), is 

^16,1 = Kit:,] = ( C - i ® C-' ® C - i ® C*) . Ti6,i, (4.79) 

where 

C - 1 

C" 

. c - i = 

) C * -

2 - 1 
-3 2 

2 - 1 
-3 2 

2 3 
1 2 

4 - 2 - 2 1 
- 6 4 3 - 2 
- 6 3 4 - 2 

9 - 6 - 6 4 

4 6 - 2 - 3 
2 4 - 1 - 2 

- 6 - 9 4 6 
- 3 - 6 2 4 

The change-of-basis matrix Z ^ in the tensor space is 

7-1 (C-^(g)C-^)(g)(C-^0C') 

4 
6 
6 
9 

-2 
4 
3 

-6 

-2 
3 
4 

-6 

11 
-2 
-2 
4j 

w 

4 6 - 2 - 3 
2 4 - 1 - 2 

- 6 - 9 4 6 
- 3 - 6 2 4 

that is 

^ - 1 
ZJ — 

r 16 24 -8-12 
8 16 -4 -8 

-24-36 16 24 
-12-24 8 16 

-24-36 12 18 
-12-24 6 12 
36 54-24-36 
18 36-12-24 

-24-36 12 18 
-12-24 6 12 
36 54-24-36 
18 36-12-24 

36 54-18-27 
18 36 -9-18 

-54-81 36 54 
.-27-54 18 36 

-8-12 
-4 -8 
12 18 
6 12 

16 24 
8 16 

-24-36 
-12-24 

12 18 
6 12 

-18-27 
-9-18 

-24-36 
-12-24 
36 54-
18 36-

4 6 
2 4 

-8-12 
-4 -8 

-8-12 
-4 -8 
16 24 
8 16 

-6 -9 
-3 -6 
12 18 
6 12 

12 18 
6 12 

-24-36 
-12-24 

-8-12 
-4 -8 
12 18 
6 12 

12 18 
6 12 

-18-27 
-9-18 

16 24 
8 16 

-24-36 
-12-24 

-24-36 
-12-24 
36 54-
18 36-

4 6 
2 4 

-8-12 
-4 -8 

-6 -9 
-3 -6 
12 18 
6 12 

-8-12 
-4 -8 
16 24 
8 16 

12 18 
6 12 

-24-36 
-12-24 

4 6-2 -3-
2 4-1 -2 

-6-9 4 6 
-3-6 2 4 

-8-12 4 6 
-4-8 2 4 
12 18-8-12 
6 12-4 -8 

-8-12 4 6 
-4-8 2 4 
12 18-8-12 
6 12-4 -8 

16 24-8-12 
8 16-4 -8 

-24-36 16 24 
-12-24 8 16. 
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Then, relation (4.79) leads to 

Ti 16,1 

" 2" 
-3 
0 
1 

0 
1 
7 

-4 

6 
0 

-5 
3 

4 
1 
0 

-8 

z= 

" -64" 
-44 
89 
62 

77 
57 

-98 
-76 
— 
98 
63 

-131 
-84 

-107 
-74 
123 
88 

which, transformed to the data tensor format, becomes 

f=[t .ijiOl 
ooom-l 

- 6 4 - 4 4 
89 62 

98 63 
-131-84 

77 57" 
- 9 8 - 7 6 

-107-74 
123 88 

(4.80) 

Second matrix process (classic matrix method): 

Starting from the Formula (4.78), we contract the indices A and //. First 
we operate the parenthesis 

f ^ i ^ o ^ i^ ^30 f.aßXo io ofi. ^-Lfcxß io jo 
000m ^oca loß V 0 0 0 / i 'oA m o / 'oa 'oß' 

Next, we prepare it to be operated by means of matrix products 

t 
aßXo io o fjL 
000 / j , ' oA mo 

io ,aßXo jj. o aßi Ol -InaßXoi . 0 ap^o ^o U^P^o. ^ ^ - i r a p A o . ^ 
'oA o o o fj, om I oooTn-J L ooo/i,J 

, 1 1 ^ 01 r 1 1 . 0 . ^ _ l r l l A O . ^ _ 
i- ooorTi-l L oooytx-l 

L ooom-l L ooo/i,J 

, 2 1 ^ 0 l r , 2 l A o i 
L ooom-J L ooo/i,-! 

2 - 1 
-3 2 

2 - 1 
-3 2 

2 - 3 
0 1 

"0 r 
7 - 4 

6 0' 
-5 3 

'2 1" 
3 2 

'2 l" 
3 2 

13 
21 

4 
5 -

25 
38 

-10 
16 

5" 
-8 

11" 
-16 
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^ 2 2 £ o i - l r , 2 2 A o i 2-1' 
-3 2 

"4 l" 
0 -8 

'2 1" 
3 2 = L^ooomJ - ^ L^ooo/xJ^ 

and we prepare the contraction of the submatrix indices (a, ß) 

•^ — L̂  ooJ ' ^ o Q — ^ o o loa ioß~~ loa^oo ' ßo' 

The last expression, interpreted in matrix terms, becomes 

46 28 
81 -50 

T' = [t':i\ = c-'Q 

f 1 

V 

r 2 -11 
-3 2 

0 

r-13 -10 
21 16 

25 11 
L-38 -16 

"-13 -10 
21 16 

25 11 
_-38 -16 

4 
-5 

46 
-81 

4 
-5 

46 
-81 -

5 
-8 

28 
-51 

5 
-8 

28 
-50 

0 ( C -\\t 

0 
2 - 3 

-1 2 

2 

(-3) 

- 1 3 -10 
21 16 
-13 -10 
21 16 + 2 

25 11 
- 3 8 -16 

25 11 
38 -16 

2 

(-3) 

4 5 
-5 - 8 

4 5 
- 5 - 8 

0 
2 - 3 

-1 2 

+2 

46 28 
-81 -50 

46 28 
- 8 1 -50 

that is, 

T' 

- 5 1 - 3 1 
80 48 

89 52 
-139 -80 

- 5 1 - 3 1 
80 48 
89 52 

-139 -80 

-38 - 1 8 
71 34 

80 41 
-147 -76 

0 

-38 - 1 8 
71 34 
80 4 

-147 -76 

-64 -44 I 77 57 
89 62 I - 9 8 -76 

98 63 I - 1 0 7 - 7 4 
-131 - 8 4 I 123 88 

2 - 3 
-1 2 

(-3) 

(-3) 

- 5 1 - 3 1 
80 48 
89 52 

-139 -80 

-f2 

+2 

38 -181 
71 34 J 
80 41 
147 -76 

" 

which coincides with the T obtained by the direct method. 

3. We perform the contraction C ( \^ ~ '^^^ oe ^^ iiidices (A, /i), to obtain 
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2 + 1 0 - 4 
6 + 3 4 - 8 

3 - 4 
9 - 4 

where the last matrix is the matrix of all traces, and in the new basis we 
have 

/^Jl = 
-64 + 62 
9 8 - 8 4 

7 7 - 7 6 
-107 + 88 

- 2 1 
14 -19 

where the last matrix is also the matrix of all traces, but the new traces. 
7OQ, the matrix interpretation must be Since u'^ = u^^ llllil - ll" u^^ • loa 'oß 

c-^[u''^]{c-^Y 2 - 1 
-3 2 

3 - 4 
9 - 4 

2 - 3 
-1 2 

-3 - 4 
9 4 

2 - 3 
-1 2 

- 2 1 
14 -19 

which is the one obtained by direct contraction. 
4. Since this tensor is not given in the canonical basis of the tensor space, 

we proceed to position the tensor components in the order forced by the 
cited canonical basis and we assign the values corresponding to the results 
in point 4. 
Once we know the tensor by its components in the canonical basis of the 
tensor space, we proceed exactly as we did in the first question. 
After finishing the process, we recover the format imposed by point 4. 

Components (in canonical order) 
, l l l o , l l l o , 112o , 1 1 2 o 
o o o l o o o 2 o o o l ooo2 

2 0 6 4 
,211o , 2 1 1 o , 212o , 2 1 2 o 
o o o l o o o 2 o o o l ooo2 

0 7 - 5 0 

,121o ,121o ,122o ,122o 
o o o l ooo2 o o o l o o o 2 

- 3 1 0 1 
,221o ,221o ,222o , 222o 
o o o l ooo2 o o o l ooo2 

1 - 4 3 - 8 

Thus, we have the following tensor, defined with respect to the canonical 
basis: 

K 
CK/JAO-I 

o o o /x-J 

• 2 0 
6 4 

0 7 
- 5 0 

- 3 
0 

1-
3-

1 
1 

-4 
-8 

(4.81) 

where a is the row of the block matrix, ß is the column of the block matrix, 
A is the submatrix row, and /x is the submatrix column. We observe that 
it coincides with the submatrices X^ of question 1. 

First matrix process (direct process): 
Since we already have Z""-̂ , we also have 
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^ 1 6 , 1 — ^ • ^ 1 6 , 1 — ^ 
-1 

2 
0 
6 
4 

-3 
1 
0 
1 

0 
7 

-5 
0 

1 
-4 
3 

-8 

"-152" 
-99 
274 
173 

220 
145 

-393 
-250 

281 
182 

-491 
-309 

-410 
-268 
708 
448 

• = 

and in the new canonical basis 

L OOOTTlJ 

-152 - 9 9 
274 173 

281 182 
-491-309 

220 145" 
-393-250 

-410-268 
708 448 

It only remains to recover the ordering imposed by the statement in point 4. 
x / l o . 

We take the t' . in each submatrix, and build the matrix 
o 1 ' 

Next, all the t' Z in each submatrix, and we obtain 

so on with t'^^ and t'^25 ^^ obtain 

Hence, we get 

274 
-491 

-393 
708 and 

-152 220 
281 -410 

-99 145 
182 -268 

173 -

, and 

-250 
-309 448 

L o o o m J 

-152 220 
281 -410 

-99 145 
182 -268 

274 -393 1 173 -250 
-491 708 I -309 448 

where i is the submatrix row, j is the submatrix column, £ is the row of 
the block matrix, and m is the column of the block matrix. 

Second matrix procedure (classic matrix method) 

Proceeding as in the first question, we have: 
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Third and fourth contraction, over the data in 4) 

L ooom-l L ooo/i,J 

A2io l n l 2 A o n 

ooom-1 1- ooo/xJ 

2 - 1 
- 3 2 

2 - 1 
- 3 2 

[*oof:] = G-M^oo::]c ̂  - l n 2 1 A o - , 

j .22£ OT ^ - 1 U 2 2 A O I 
L ooom-l I- ooo/i,-! 

2 
- 3 

2 
- 3 

2 0 
6 4 

2 1 
3 2 

• - 3 l 1 
0 1 

0 7 ' 
- 5 0 

' 1 - 4 " 
3 - 8 

"2 l" 
3 2 

"2 l " 
3 2 

"2 l" 
3 2 

16 
36 

- 9 
15 

- 1 0 ] 
22 

-4] 
7 J 

52 33 
-83 - 5 2 

-2 - 1 
~6 - 5 

The first contraction is 

2 - 1 
~3 2 0 

-16 -10 
36 22 

52 33 
-83 -52 

- 9 - 4 
15 7 

- 2 - 1 
- 6 - 5 

that is 

- 3 2 
72 

48 
108 

- 2 0 
44 

30 1 
- 6 6 J 

+ 

+ 

-52 
83 
104 
-166 

- 3 3 " 
52 
66 " 

-10^ 4 

"-18 -8" 
30 14 

' 2 7 12 • 
- 4 5 - 2 1 

-r 

-h 

"2 l" 
6 5 

' - 4 - 2 " 
12 - 10 _ 

and we get 
- 8 4 - 5 3 
155 96 

152 96 
-274 -170 

The second contraction is 

-16 - 7 
36 19 

23 10 
-57 -31 

K oom-i 

-84 
155 

-53 
96 

152 
-274 

96 
-170 

16 
36 

23 
57 

- 7 ] 
19 

10 
- 3 1 J 

0 r 2 
- 1 

- 3 1 
2 

that is 

whic h 

r -168 -1061 
310 192 

'' 304 192 '' 
-548 -340 

leads to 

r 16 7" 
- 3 6 - 1 9 

^-23 -10^ 
57 31 [ 

r 252 1591 , r - 3 2 - 1 4 ' 
-465 -288 J "̂  L 72 38 

-456 -2881 , r 46 20' 
822 510 J + [-114 -62 

-152 - 9 9 
274 173 

281 182 
-491 -309 

220 145 
-393 -250 

-410 -268 
708 448 
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which coincides with the T' obtained by the direct method. 
Finally, we reorder it to the desired format, as was done in (a). 

Example 4-5 (Permutation of indices). In the tensor space R^ ( 

consider a tensor t with components t^Z^l given by 

) R ' )R^ we 

CK 07-1 

o/3oJ "~ 

r 1 
2 

- 1 

2-
0 
2 

0 
5 

0-
3 
2 

-1 
1 
0 

0 
1 

-1 
0 
0 

1 
0 
1 

1 
2 

1 0 0 

If a tensor is of third order, for it to be directly read, it is necessary to refer 
the tensor space to its canonical basis, which implies the following assignment 
of indices: the first index will always be the row indicator of a column matrix 
of submatrices, the second index will be the row indicator of each submatrix, 
the third index will be the column indicator of each submatrix. This quality 
is absolute, that is, inalterable for the tensor as data. 

1. Given the numerical components that correspond to the cited indices, indi
cate the matrix notation associated with all semaphoric column permuta
tions of the given tensor (use letters tt, ^, to, f, 5, for each of the resulting 
tensors). 

2. Certain authors, in performing their tensor expression operations, use the 
trick previously mentioned, with the advantage of being able to solve 
them with matrix products. Assuming that the considered permutations 
are t^V^ and u^^Z^ give the notation of the respective linear spaces to 
which they belong, together with all vectors in the respective canonical 
basis in order. 

3. Are t and Ü the same tensor? Justify why the cited authors think that these 

permutations do not alter their data tensor, when they operate them. 

Solution: 

1. The required notation is 

,0:07^ jao^ 
^ o / 3 o ' ' ^ o o ^ ' 

07«^ 0:70^ 
^ / 3 o o ' ^ o o / 3 ' 

70Q; 0 0 : 7 

where 
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U 70:0-1 

-̂ oo/jJ 

w ̂  K:;] 

^OOL^l 

r 1 2 -
2 0 
05 

03 
-11 
0 1 

-10 
1 0 
1 2 

r 1 2-
03 

-10 

20 
-1 1 
10 

05 
0 1 
1 2 

1 0-
2-1 
0 0 

2 3 
0 1 
5 1 

-1 2 
2 0 
1 0 

-1 
2 
1 

2 
0 
0 

0 
1 
0 

-1 
2 
0 

2 
0 
1 

1 
0 
0 

-1 
1 
1 

0 
0 
2 

0 
1 
0 

y ^ /3ooJ 

Ä = [ ^ : ; : ] = 

r 1 
0-

- 1 

2 
3 
0 

- 1 
2 
0 

201 
- 1 0 

1 1 

0 5 
1 1 
0 2 

2 1 
0 0 
1 0 

1 
2 

- 1 

0-
3 
2 

- 1 
0 
0 

2 0 
0 5 
2 1 

- 1 0 
1 1 
0 0 

1 1 
0 2 
1 0 

Some of the tensors T, U^ V, W^ R and S are called isomers, and will we 
analyzed in Chapter 5. 

) R ^ , such tha t its basis of 27 vectors is 2. Consider the tensor t G I I >]Rf 

ßi = {ei 8) 6*" 

61 

• 61,61 I 

•63,61' 

, 6 2 

>62,6i 

'61,61 
*3 

'6 (K)e3,ei 

16*"̂  8)6*2,61 

'63,63 ^ , e - i 

)e"2 

) 6 
)e i , 

• 61,61 (8 

'63,62 (8 

•, 63 (8 6 

6*^2 8)62, 

8)61, 

For the case of tensor i rGR^(8)IEl^(8)I l? , its basis of 27 vectors is 

P2 

ei 

) 61 I 

) 62 < 

• e*'\ei< >6i 

'63 ' 

' 6*^ ,̂61 I 

' e ' \ e i I 

•, 6*2 8) 6 3 

I 61 ' 

'63 ' 
-*)c2 - • )6 ,61 

) 62 ' 

)e3 ' 

' e " ^ 6 3 ' )6i 

S) 6 ", 61 

^ e " ^ e 2 

, • • •, e 3 (̂  

9 62 ( 

^61 ( 

63 (̂  ^}. 

3. Evidently t y^ u^ due to the previously established reasons. However, it is 
t rue tha t a problem stated in a given linear space can be solved in another 
linear space by means of a certain isomorphism; however, the resulting 
solutions in the second space must be placed in the first linear space, by 
the inverse isomorphism. Tha t is, the found tensor after performing index 
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permutations and contractions, is not the sought after tensor, but the 
corresponding one. If the order of a tensor is greater than 4, one needs to 
state the morphism in matrix form, since otherwise it can be impossible 
to retrace the steps. 

D 

Example 4.6 (Changes of basis of tensor and non tensor nature). In the lin
ear space of matrices, two independent changes of basis are performed with 
associated matrices 

Ci 
1 
2 

" 8 
16 

- 3 
- 6 

24 
64 

- 9 
-24 

- 2 
- 4 

1 
2 

- 6 
-16 

3 
8 

and C2 

1 - 1 - 1 - 1 
1 2 - 1 - 1 
1 2 3 - 1 
1 2 3 4 

Determine whether or not some of them has second-order tensor character. 

Solution: 

We start with the first case (matrix Ci): 
We know that if cr = 2 x 2 = 4, the relation (4.45) establishes 

Assuming that 

P-

we must have Ci = 

-^~~\ 

^ 4 = {P^Q 

2 

'a ß~ 
7 S 

Z4: 

" 8 
16 

- 3 -
- 6 -

24 - 2 
64 - 4 
-9 1 
24 2 

l\t iQ-') 

and (Q -i\t 

- 6 " 
16 
3 
8 

_ 1 
^ 2 

'a ß' 
7 S 

(8) 
6 Tj 

P A 

a 

7 

e 

6 

_P 

V 
A 

V 
A_ 

ß 

5 

e 

e 
_P 

V 
X_ 

and taking the last block B22 (of elements prime "among them"), we must 
have 

which requires S = 1 and 

into account the previous result, we have 

6 ' e rj~ 

.P ^_ 

e T}' 

.P ^ . 

_ '1 3" 
2 8_ 

"1 3" 
2 8_ 

r 
. Taking block Bn^ and taking 
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^ a = S and e rj 

P A 

8 24 
16 64 

6 T] 

P A 

1 3 
2 8 

Wi th block Bi2 we get /3 e 7] 
_p A 

^21 gives the parameter 7 = —3 
Hence 

- 2 - 6 
- 4 - 1 6 

/? = — 2, and finally, block 

P - ' = x 
a ß 
7 (5 

from which we obtain 

P 
1 2 
3 8 

8 - 2 
-3 1 

and Q = 

i \ t and (Q~^) 
1 3 
2 8 

8 - 2 
- 3 1 

Then, Z^^ = P (^ QK But , we check tha t P • Q 
1 0 
0 1 

, whence P = Q - n - i 

and then Z^"^ = Q~^ (g) Q*, and Cf"^ = Q"-^ (8) Q*, which proves tha t Ci is a 
change-of-basis of tensor nature . 

Because of the condensation formula we know tha t 

T4,i = {Q~^ ^ Q') • r4,i o f - Q-^TQ, 

t ha t finally discovers t ha t the change-of-basis Ci corresponds to a similar ma
trix in IR^' '^ 

Next we deal with the second case (matrix C2): 

Since the "matrix equivalence" (T = PTQ) keeps the rank of matrices 
T and T (because P and Q are regular), and the equivalent equation is, by 
condensation, Tcr,i = {P ^ Q^) • T'o-̂ i, we will give a new solution to this 
problem. 

We choose a matr ix H G R^^^; H == 

the basis by means of the matr ix C2 

with rank 2, and we change 

Ha,i = C'2i?o-,i 

4 
- 2 

2 

1 
1 
1 
1 

- 1 
2 
2 
2 

- 1 
- 1 

3 
3 

- 1 " 
- 1 
- 1 

4 

~x' 
y 
^ 

.f. 

and solving the system of equations we obtain H^^^i 

~x~ 
y 
z 

J. 
= 

" 1" 
- 2 

1 
- 2 

and 

after condensation: H 
1 - 2 
1 - 2 
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Since the rank oi H is 1, different from the rank of iJ, which is 2, the 
matrix C2 does not maintain the rank of all matrices after a change-of-basis. 
Then C2 is not a change-of-basis for second-order tensors, and if we proceed as 
in the first case, some incompatibilities would appear during the identification 
process. 

D 

Example 4- "^ (Changes of basis of non-tensor nature). In the linear space of 
square matrices of order 3 over the real numbers, R ^ , a change-of-basis is 
performed of the associated matrix 

C -

2 0 0 0 
0 3 0 0 
0 0 1 0 
0 0 0 2 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

- 1 0 0 
0 1 0 
0 0 2 
0 0 0 
0 0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

- 1 0 
0 1 

We want to know if such change is of tensor nature for matrices of R 3x3 

Solution: we solve the problem by means of two different techniques. 

First resolution method: 

We choose in R^^^, the singular matrix (|X| = 0): 

X = 
3 2 3 
0 1 3 
2 1 1 

and then we perform a change-of-basis. 
Inverting C and knowing that Xa,i = C~-^Xa-^i we have 

^ 9 , 1 = 

1/2 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1/3 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 

1/2 
0 
0 
0 
0 
0 

0 
0 
0 
0 

- 1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
0 

1/2 
0 
0 

0 
0 
0 
0 
0 
0 
0 

- 1 
0 

0-
0 
0 
0 
0 
0 
0 
0 
1_ 

-3 -
2 
3 
0 
1 
3 
2 
1 

_1_ 

= 

-3/2 
2/3 

3 
0 

- 1 
3 
1 

- 1 
. 1 

and condensing Xg,!, we have 
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X 
3/2 2/3 3 

0 - 1 3 
1 - 1 1 

Since we want to know if two regular matrices P and Q exist, such that 
C = p-^ ^ {Q-^)\ that is, X^,i = P'^ (g) (Q-^)*X, which implies X^A = 
{P0Q'^)~'^X(j,i, the problem consists (due to the condensation properties) of 
knowing if P and Q satisfy X — PXQ^ that is, if X and X are "equivalent 
matrices". They are not, because the rank oi X is 2, and the rank oi X is 3, 
with determinants 0 and 8, respectively. Consequently, C is not a change-of-
basis of a tensor nature. 

Second resolution method: 

We want to know if 
C = P - 1 {Q-n\ (4.82) 

where P and Q are of order 3 and regular. 
If 

""pii Pi2 Pis 

P"-^ = \ P21 P22 P23 

PSl P32 P33 

then 

P -1 
iQ-'Y^ 

PiiiQ-'Y Pi2{Q-^r PisiQ-y 
P2l{Q-'y P22{Q-y P2S{Q-'Y 
Pzi{Q-'y Pz2{Q-'Y PZ3{Q-'r 

and identifying with matrix C we must have 

"2 
0 
0 

0 
3 
0 

0" 
0 
1 

= Pii{Q-r; 
"2 

0 
0 

0 0 ' 
- 1 0 

0 1 
= P22{Q - l ^ * . 

• 2 

0 
0 

0 0" 
- 1 0 

0 1 
-l\t = P3S{Q-') 

(4.83) 
and obtaining {Q ^)* from the first equation in (4.83) and substituting it into 
the second yields 

(Q-'Y = 
1 

pii 

" 2 0 0 " 
0 3 1 
0 0 1 

=> 
"2 

0 
0 

0 0" 
- 1 0 

0 1 
_ P22 

~ Pii 

"2 0 0" 
0 3 0 
0 0 1 

Since no rational number satisfies 2 = ^^ • 2 and — 1 = ^ ^ • 3, identification 
Pii Pii ' 

(4.82) is impossible. Thus, C is not of tensor nature. D 

4.9 Exercises 

4 .1 . Consider the absolute tensor space L/̂  (g) V^ (g) VF^(R). 
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In the first linear space [/^(H) we perform the change-of-basis 

e = 2e*i - 62 + 63; 62 = ei + öes; 63 = ei -h 2e2 + Ses. 

In the second space V'^{1R) a change-of-basis is performed such that it satisfies 
the relations 

ei = 2ei - 62; e*2 = -3ei + 2e2. 

In the third space VF^(]R) we perform the change-of-basis given by the matrix 
expression 

[^1 . ^2] = [^i ^2] L 2 

A tensor T in the initial basis of the tensor space is given by 

r = 2ei (g) ?! (g) 771 - 562 (g 62 (g ?7l + 763 (g 61 g) ^1 + 663 (g 6*2 (g) 772-

1. Find the new tensor components in tensor notation, using the general 
expression for a change-of-basis (Formula (4.6)). 

2. Find the extended matrix T^ of the tensor and determine the new compo
nents To-5 using the corresponding matrix Z -̂ according to Formula (4.11) 
(direct method). 

3. Condense T -̂, determining T by means of its matrix representation, as a 
tensor of order r = 3. 

4. Solve the previous questions using the computer. 

4.2. In the linear space V^ g) V^ g) F^(R) a tensor T, is given by its matrix 
representation 

A change-of-basis is performed in the linear space y^(]R) given by 

ei = 6Q 

- 1 0 
0 3 
1 2 -

3 5 
0 1 
2 2 -

1 1 
0 0 
2 0 

X X J . A V - ' C A I X 

1 1 
0 0 

- 1 0 

0-
2 

- 1 

1 
0 

- 2 

4 
1 
1_ 

spa 

0 
3 

- 1 

1. Calculate T, using the classical methods in Formula (4.56). 
2. Given the components of the tensor Z = C{^) (T) obtained by contracting 

the indices 1 and 2 of T, 
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3. Perform the change-of-basis on the tensor T, giving T^^ extended in the 
new basis. 

4. Give T, by condensation of the previous tensor. 
5. Give the new components of tensor Z, contracting before the change-of-

basis. 
6. Give the new components of tensor Z, contracting after the change-of-

basis. 
7. Solve all the previous questions but the first, using the computer. 

4.3. Consider the homogeneous tensor T eV^ ^V^ ®V^ ® V^{BS) of fourth 
order, the components of which in the basis {e^a} associated with V^(]R) are 

ao ooJ 

1 
1 

-2 

5 
1 
1 

2 
1 
0 

0 
2 
1 

0 
2 

- 3 

0 
0 
1 

1 
3 
0 

1 
0 
1 

- 1 
2 
0 

1 
- 1 

1 

- 2 
1 
1 

3 
1 
0 

2 
0 
0 

- 1 
0 
3 

- 1 
5 
6 

- 1 
0 
1 

5 
1 
1 

0 
2 
1 

3 
0 
1 

4 
1 
1 

1 
4 
1 

0 2 
- 1 1 

0 1 

0 2 
1 1 
1 1 

- 1 2 
2 2 
0 1 

where a is the block row, ß is the block column, 7 is the row of each block 
and 5 is the column of each block. 

Consider the second-order tensor U G V^ (8) F^(R) , the components of 
which in the basis {e^} of F^(IR) are 

r mn-\ 
-2 0 
1 1 
1 0 

where [ l i 4 4 ] = [ ^i 63 63 ' 
1 1 0 
1 0 1 
0 1 1 

1. a) Calculate the components of the tensor T in the new basis using the 
classical methods given in Formula (4.62). Give the matrix represen

tation of HV^]. 

b) Solve the previous question by the direct method, determining T^ and 
proceeding to its condensation. 

c) Determine the tensor U in the initial basis, by the direct method, 

giving its matrix representation [u^^^-

d) Give tensors A, B and D, resulting from the contractions A = C(^) (T), 
B - C{l){T) and D = C{^J{T) in the initial basis. 

e) Give tensors A, B and D resulting from the previous contractions but 
o n f . 

2. Solve the previous questions using the computer. 
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4.4. Consider a second-order homogeneous tensor T G V'^®V^{Bu)^ the matrix 
representation of which, in the basis {e^} de y^ (R) is 

'oß\ 

2 2 0 
2 2 0 
0 0 1 

1. Give the matrix representation of T, in each of the new bases and permu
tations of {ec^}. 

2. Determine a new basis {e^} of F^(R) , such that in it, the matrix repre

sentation of T be a diagonal matrix of increasing scalars: t^^ < ^^2 — ^o3-



Homogeneous Tensor Algebra: Tensor 
Homomorphisms 

5.1 Introduction 

The chapter starts by presenting the main theorem on tensor contraction, 
which ensures that a contraction of a tensor product when applied to indices 
of different valency leads to a tensor. 

It continues by presenting the contracted tensor products as homomor
phisms and applies them to different tensor products as particular cases. Some 
tensor criteria motivated by the contraction are also discussed, including the 
well-known quotient law criterion. 

Next, a detailed study of the matrix representation of the permutation 
tensors and some simple and double contracted homomorphisms is performed. 

The chapter ends with a novel theory of eigentensors and generalized mul
tilinear mappings. 

5.2 Main theorem on tensor contraction 

Though in Section 3.5 the contraction of tensor products has already been 
mentioned, and in Theorem 3.1 any contraction of mixed tensors has been 
examined from the homomorphism point of view, that is, of linear mappings 
of a primary linear space (tensor space) into another secondary linear space, 
one can have doubts about whether or not the resulting "range" space would 
be a simple linear space, or would also be a tensor space. 

Fortunately, this doubt is positively resolved, because the "homomorphic" 
image of a tensor space is another tensor space. 

Remark: the word "homomorphic" always has the sense of a mixed tensor 
"contracted from two indices of different valency". 

Next, we prove this property with the required emphasis, and later it will 
be enunciated as a theorem. 
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Consider a mixed homogeneous tensor f G ( 0 V^ 1 (8) ( ̂  V^ I (K) of 

order r = 5, 

^= ifoir/c 0 e> 0 eV 0 e"^ 0 e"^ (5.1) 

and denote by 5(a, 7, fi) the "system of scalars" resulting from the contraction 
of indices 2 and 4 of different valency (ß and A): 

sia,l,ß)=C:;;. (5.2) 

In detail, we have 

/ \ ,0 :1700 . ,0 :2700 , , , a n 7 o o /r- o \ 

5 ( a , 7 , / i ) = t -, + t o + - - ' + t . (5.3) 
V'-̂ ^ / 5 Â y o o o l / x ' ooo2/ i , ' o o o n / i , ^ / 

The system 5(a,7, / i ) is called a system of scalars because one cannot antic
ipate if it is a tensor. The power of the set 5(a, 7,/i) is n^, because we have 
three free indices. 

Next, we perform a change-of-basis in the ( ^V^ 1 (8) ( ^KT ) (^) tensor 

space. Since its vectors are homogeneous tensors, we have 

.ijkoo ^ .aßjooio jo kooXo fj, . ^ .x 

oooim o o o A/x ' 0 0 ' 0/5 ' 0 7 io mo' V ' / 

The indices {j^£) are contracted. Preparing Expression (5.4) and calling 
the set of scalars in the left-hand side s{i^k^m), we get 

.ijkoo ^ , 0 / ? 7 0 0 ZO /CO/ j o oAx O / i / g gx 
oooim o o o Au ' 0 0 '̂  07V /^o^ £0/ mo V / :>Xfi loa ' 07V I oß 

7 0 0 i o ko/ xo 
^oooXfj, loa '07V I o ß^xo^^mc 

(• 1 \ , 0 / 3 7 0 0 io ko ( xo o\\ o a (r n\ 
"̂ V , u,i/i/y o o o A u ' o o ' 0 7 V / o ß xo/ mo \^ ^ / 

The expression (7o^c°^) is the "product" of matrices C ^ QC^ but executed 
by ^^multiplying row by row^^ (not by column, due to the position of x); but 
this is the same as C~-^ - C = In- So, that 

xo O A rO A /~, ^\ 
7o/?C^o=^/3o' (5-7) 

and replacing (5.7) into (5.6) we obtain 

b{t,f^,rn) — K^oooXfi^ßonoaio-y^mo^ 

where the product in parentheses is the contraction of (/?, A) 

s{i, k, m) = C!oÖM^oo7o7Co (5-S) 

and, on account of (5.2), the previous expression can be written as 
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s{i, k, m) = 5(a, 7, ßhlllt^^c^o^ (5.9) 

which declares that the system of scalars 5(a, 7, /x) satisfies the tensor criteria, 
that is, it is a tensor. Whence 

/ \ 0 : 7 0 

5(a ,7 , / i ) = 5 ^ ^ ^ . 

This proof can be repeated over other two indices with different valency. 
We leave this for the reader to do. 

If, by error, we were to choose two indices with the same valency, when 
reaching Expression (5.6) products of the type (7OO7OA) ^^ (^xo^^o) would 
appear that are not the Kronecker delta, making the proof invalid. We un
derstand that this expression can be generalized to tensors of order superior 
to r = 5, and proceed to state the "tensor contraction" general theorem. 

Theorem 5.1 (Fundamental theorem of tensor contraction). The con
traction with respect to indices of different valency in mixed tensors of order 
r, is a sufficient condition for obtaining another homogeneous tensor of order 
( r - 2 ) . D 

5.3 The contracted tensor product and tensor 
homomorphisms 

In Section 3.4 we have dealt with tensor product of tensors, and in Section 3.5 
the contracted tensor product concept was defined. Since in that definition the 
conditions of "tensor contraction" are satisfied. Theorem 3.1 guarantees that 
the contracted tensor products can be considered as simple homomorphisms 
(Formula (3.16)), that transform tensors from a tensor space into tensors of 
another space by the action of a contracted tensor homomorphism. 

This point of view will be exploited at the end of this chapter, more pre
cisely, on tensors of simple order, and it will be executed using the matrix 
expression 

T /̂ = Hr,r-2^^r • T^; with a = n''; a' = n"''^. (5.10) 

Nevertheless, before ending, we want to point out the analytical representation 
of the contracted tensor product, in the classic mode. 

Given the tensors ? = t^f V^ 0 e}? (g) e^^ and v = v^e^^ (g) e^^, we look 

for the contracted tensor product tensor p = C(^) (t (g) iT), with p = p^V^eß (g) 

e^^ (g e"^. 
This can be done in two different forms: 

1. We obtain the tensor product tensor 
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- * JT^X-X - * Q ; / 3 O O O - * X-X - * ,^^ -*i='Y ,r-x -*^X .c-x -^Ll 

with the condition 
aßooo ,aßo oo 
o ojXfi 0 0 7 A/Lt 

and then we contract 

p • = c Q « ; = ^ . ^ f ; ; ; e > ® e - ^ ® e * ^ 

where we also have 
Oßooo CKyöooo r o A 

(5.11) 

(5.12) 

(5.13) 

where (5° is the Kronecker tensor. 
ao 

2. The second form is used by certain authors, who prefer a direct execu
tion of the product and the contraction simultaneously^ based on matrix 
representations: 

Evidently, (5.14) is the result of replacing (5.12) into (5.13), because (5°^ = 

(5 °̂ is symmetric, and then, both methods lead to the same result. 

Example 5.1 (Matrix associated with an operator). Consider two linear spaces 
V'^{K) and W''^{K). In the first space we consider a linear operator Ti with as
sociated matrix An in the basis {ei} of the given space. Similarly, another lin
ear operator T2, with associated matrix Bp, transforms the vectors of W^{K) 
in the basis {e}}. We look for the matrix associated with the operator T 
defined to transform vectors in the tensor space V <S) W{K)^ in such way that 

T{V ^W)= Ti{V) (8) T2{W). 

Will An 0 Bp be the T operator matrix? That is, will "the tensor product 
homomorphism" be the homomorphisms' tensor product? 

Solution: For a homomorphism to be correctly defined we need to know 
the image vectors of all basic vectors that will constitute the columns of the 
operator associated matrix. 

The basis of our tensor space is /5 = {ê  (8) e*^}, with i = 1, 2 , . . . , n and 
i = l , 2 , . . . , p . 

The sought after matrix T is a square matrix of n x p rows and columns, 
because in the basis there exist n x p vectors the images of which are to be 
studied. 

Applying the formula proposed in the statement to an arbitrary basic 
vector, we have 
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T{e^0ej)=Ti{ei)0T2{ej) 

( 

[ei 62 

[ei 62 

ei 62 

a2i 

( 

ei ^2 
^2j 

Opj 

\ 

^ ü Ö2j ^PJ. 

ö l i ^ l j ölz&2j 
a2ihij a2ib2j 

diihjei (8) 61 + 01262^61 (g) 62 H h a/ii 

Ci2ibpj 

ei 

62 

L 6p J 

\ 

a^ nz ^pj 

ibkjeh (8) 4 

öo7 J / 

62 

+ " dfii^pj^n ^ 6p 

w i t h / i = 1 ,2 , . . . ,n ; /c = 1, 2 , . . . , p . 
Assigning now values to the indices ( i , i ) , according to the axiomatic or

dering criterion for the basis ß = {e^ (8) e^} and placing the image vectors in 
consecutive columns, the matr ix T^xp is obtained, which is the solution to the 
problem, and the columns of which correspond to 

T ( e i 0 e i ) r (e i (8 )e2) 

0^11^11 011^12 

T . 

021^11 021^: 12 

T(4 0 4) 

Q'2hbik 

T{en (8) Cp) 

O'ln^lp 

a2nb I p 

cihihi Cihih2 dhhb Ik dhnb ip 

dnlhl CLnlb 12 dnhblk Gjnn^ nn^lp 

a square mat r ix of order n x p. 
Assigning particular values to n and p (for example n = 2;p 

immediately detect the following block construction: 

A^B. 

3) we 

aiiB • 

CihiB ' 

ÜnlB ' 

• ciihB ' 

' CLhhB ' 

' Clnh-B ' 

• ainB' 

• CihnB 

^nn^ -
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The conclusion is that the proposed theorem in our statement: "the tensor 
product homomorphism (T) is the tensor product of the given homomor
phisms (Ti (g) T2)" is correct. D 

Example 5.2 (Change of basis). In the geometric affine ordinary space J E ^ ( R ) 

we consider two bases: the initial basis of the unit classic vectors of a rectan
gular system XOY (on the OX axis and on the OY axis), and the new basis 
of the unit vectors on the OX axis and on the bisectrix of the XOY quadrant. 

The new unit basic vectors 11511 referred to the initial basic vectors ||e"rvll, 

are 

ei = e i ; 62 
2 2 

Determine the new components as a function of the initial ones in the 
following cases: 

1. For a tensor of first order, i.e. the vector v^. 

2. For a mixed tensor of second order, i.e. the matrix t^^. 

3. For a mixed tensor of third order, t^Vl^ 

4. Solve the second question using the homomorphism (contracted product) 
OL , a o 6 

^ o o t/ o 

Solution: 

The change-of-basis can be written in matrix form as 

|ez|| = | |4 | |C^-^ [̂ 1 4 ] = = [ e i 62] 
V2 
2 

x/2 

and then 

C = 
1 v5 
^ 2 

^ 2 
; C-^ = 

1 - 1 
0 %/2 ; c' 

1 0 
\ /2 \ /2 

L 2 2 

1. The tensor analytical equation of the vector is t»̂  = '^oToI' ^^^ ^^ matrix 
form 

K] = [7oa]bc 

1 - 1 
0 \/2 

= c-^ 

V — V 

(5.15) 

2. The tensor analytical equation of the vector is t^° = ^o^^oa^^o (classic 
matrix method), and in matrix form 

O i r . a O - i r ßo-i 

K;]-hZ]K;K;] 
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that is, 

r2o J:2O 

_ ^ o l ^ o 2 . 

= c - i Ol o 2 

,2o 2o 
. ^ o l '^o2_ 

\itll-C) ' 
[ ^Cl 

(C*)* 
1 - 1 
0 V2 

' - O l 

2o 

l o 
o2 
2o 

Ol ^o2 

V2 
2 

^^ 
2 

3. The tensor analytical equation of the vector (direct method) is 

i o f c ^ a o 7 i o 0/3 fco ^ ^ ^ r ^ 2 3 = 8 . 
o j o o / 5 o ' o a j o ' o 7 ' 

and its "extended" matrix expression 

f , , l = Z- l r , , , ! ^ fs,! = (C-1 ® C* ® C-^) . T8,i 

c - 1 'C*®C - 1 h - i l 
0 N/2_ (K) 

r 1 
x/2 

. 2 

0 • 
^/2 
2 _ 

(^ 
["l - l l 

0 V2_ 

t 8 , l 

- r i o i -
^ o l o 
r i o 2 
^ o l o 
r i o i 
^o2o 
r i o 2 
^o2o 
r 2 o i 
^ o l o 

^ o l o 
r 2 o i 
^o2o 
r2o2 

_ o 2 o _ 

z- ' T g 1 

1 
0 
v/2 
2 

0 
0 
0 
0 
0 

- 1 
v/2 

2 
1 
0 
0 
0 
0 

0 
0 

2 

0 
0 
0 
0 
0 

0 
0 
^/2 
2 

1 
0 
0 
0 
0 

- 1 
0 

2 

0 
V2 
0 
1 
0 

1 
-v/2 

2 
- 1 

-^ /2 
2 

- 1 
^/2 

0 
0 

2 
0 
0 
0 
1 
0 

2 
- 1 
0 
0 

- 1 
V2 

• 

- , l o l -
^ o l o 
, l o 2 
^ o l o 
, l o l 
'^o2o 
, l o 2 
^o2o 
, 2 o l 
'^olo 

,2o2 
^ o l o 
, 2 o l 
^o2o 
, 2o2 

_ o 2 o _ 

that is, 

file:///itll-C
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r i o i _ l o i , l o 2 
^ o l o 

, 2 o l 2 o 2 

+ C 
£lo2 _ ^ lo2 _ /2f2o 

V ^ x ^ l o l 
*^o2o it , l o 2 , l o l l o 2 

o l o ^ o l o + ^ o 2 o ^o2o '̂  
, 2 o l , 2 o 2 , 2 o l ^ 2 O 2 N 

o l o ^ ^ ^ o l o ^ o 2 o ^ ' ^ o 2 o > ' 

r l o 2 _ , l o 2 . , l o 2 _ , 2o2 
^o2o ~" ^ o l o "^ ^o2o ^ o l o 

, 2 o 2 
^o2o 

r 2 o l 2 o 2 Ki: = ^Cl - ^C 
r2o2 _ r ) ,2o2 

r 2 o l 
^o2o 

, 2 o l , 2 o 2 2 o l , 2 o 2 
*^olo * o l o ^ ^o2o ^o2o 

e? = v^Cf+^^*r' o l o ' ' o 2 o -

4. The given tensor homomorphism can be interpreted in matrix form 
In the initial basis {ca}'-

as 

y^ ti: t'° 
,2o 

L ^ o l 

o2 

,2o 

^o2 

(5.16) 

and in the new basis {e^^}: 

rio rio-| 
^ o l ^o2 
r2o 

L^oi 
r2o 
^ o 2 j 

x2 
(5.17) 

Applying the relation (5.15) to matrices X and F , we have 

and 

f̂  

y 

c-

= c- y^ 

and substi tut ing (5.18) and (5.19) into (5.17), we get 

(5.18) 

(5.19) 

c-
O l 

^2o 

o l 

£lo-
o2 

X2o 
^ o 2 . 

c - i 
x2 
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and subst i tut ing into the left-hand side of (5.16) the result is 

c-
l o 
o l 
2o 
o l 

X2o 
L ^ o l 

c-

and for this to be valid for any matr ix X , we must have 

C - 1 

l o 
o l 
2o 
o l 

or 

t 

t 

l o l 

ii: t'° '^ol 
r2o 

o2 
r2o 
^o2 

c-

^ o l ^o2 
•2o 

t 
2o c-

' ' o l ' ' o 2 j 

and operating we finally get 

tl^. t'° ^ o l 
,2o 

o2 
,2o 
^o2 

£lo 
^ o l 
-2o 
^ o l 

rio xioi 
^-^1 ^o2 ^ o l 
r2o 
^ o l 

r2o 
' ' o 2 j 

r rAo 

1 - 1 
0 V2 

ti? t'° 

, 2 o x 

'^ol 
,2o 
^ o l 

, l o 

o2 
,2o 
^o2 

c 

1 \ /2 
^ 2 

^ 2 

2ox 
V^ol ^olJ 2 Lv^ol ^ o l 

^ ^ < 1 ( ^ o l + O 

^02)] 

D 

5.4 Tensor product applications 

In this section, some important tensor products applications are discussed. 

5.4.1 C o m m o n s imply c o n t r a c t e d t e n s o r p r o d u c t s 

First, we mention the contracted tensor product of first-order tensors. 

Consider the tensors x = x^a e ViK), y = yfe^^ G V:^{K); their 

contracted tensor product is 

a p = C( ^]{x^y)=C{^\ (x^y^e^ ® e"^) - x%0 = x^yi+x^y2 + • • • +x^yr . 

(5.20) 
which is the classic dot product for geometric vectors or the classic inner 
product for first-order matrices. 

Second, we mention the contracted tensor product of second-order tensors, 
known as the "interior product" or "classic product" of matrices. 

Consider the tensors a — ci^Zea 0 e^^ and h — ö^^Sy (8) ^^- Let c be their 

contracted tensor product of indices 2 and 3: 
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where 
OiO CX.O rOo /r 01 \ 

which is the analytical tensor expression of the classic matrix product, of both 
matrices, as tensors. 

Remark 5.1. In reality, the discovery of this idea occurred in the reverse order; 
first, Kronecker established the interior and tensor products of matrices, and 
then, under the name of Einstein's contraction, this concept was extended to 
tensors. D 

5.4.2 Multiply contracted tensor products 

It is obvious that when contracting a tensor product of tensors of certain 
orders, the resulting tensor can be a mixed tensor, with indices not only of 
different valency but coming from different factors; we can then continue 
contracting more indices, following the same criteria as the first time. 

If we do this, we will obtain another tensor and we could practice con
tractions successively when the following two conditions are satisfied: (a) the 
indices must be of different valency, and (b) of different factor-tensor. 

Evidently, this concept can be extended to products of three or more ten
sors^ satisfying the associative law by operating the tensors two by two, and 
satisfying the index conditions. 

On the other hand, the result of the contractions can be a zero-order 
tensor, that is, a scalar, which obviously is invariant under changes of basis. 
This is the reason why zero-order tensors are called "invariants". 

5.4.3 Scalar and inner tensor products 

Certain authors use the term "scalar product of tensors" for the totally con
tracted product of two tensors A and ß , which allow it, and denote it by 
Am B = k. The result is a zero-order tensor (a scalar). In this way, but based 
on a third fundamental tensor, we will later establish the tensor spaces with 
a interior connection. 

It is also convenient to mention that, as a consequence of the concept 
of contracted tensor product, when selecting a tensor space of mixed tensors 
which contravariant and covariant indices coincide (p = ^), the tensor product 
of two arbitrary tensors of this space can be contracted p times, leading to a 
contracted tensor product, that is, another tensor of the same space. 

In such cases, some authors talk about a "tensor space with an interior 
product". For example, for p = g = 2, we would have 

{tT^"lm{tT^'', = (t'T^'". 
V / o o ' y ö ^ / 0 0 7 Ö ^ / 0 0 7 0 
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leading to the interior product of tensors concept, and the concept of associ
ated linear algebras. 

Next, some illustrative examples of contractions will be given. 

Example 5.3 (Multiple contractions). Consider the tensors 

f = t° °^e"" (8) r ^ (8) £y; f = x^ex and Ü = u^^le^ O e"^ 

and the tensor P — t® x <^Ü with components 

oo7A/i .o J . 0 0 7 A ßo 
Paßooou ~ ^aßo ' ^o ' ^ov' 

We want to perform the following multiple contractions: 

1. Double: 

Pi=C[ 

P2=C{ 

P3=C{ 

M ' 

ß. 

1' 

7^ 

J (t*(g) f ® U) 

) (f® x®u) 

I (f(8)x (g) w), 

(5.22) 

(5.23) 

(5.24) 

which lead to 

-» 7 0 /OO'Y Ö (^o 

Pi -* Po,. = ^e^o^o^L 
-* o/i, ,006 6 ßo 

P2 -^ Pß, = tßßlxXo^ 
-* o A , 0 0 6 X 6 0 

P3^Pßo=teß>o^o^-

(5.25) 

(5.26) 

(5.27) 

2. Triple: 

A = c{l 

* - < : ; 

/5 
A 

^ J (f (g) x^u) 

^ \ (t^x^u), 

which lead to the scalars 
,00 w 6 <b 0 

P4^=ie4>o^oKw 

P5 = 
, 0 0 w (f) 6 0 

o^o^ow' 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

D 
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5.5 Criteria for tensor character based on contraction 

In Section 4.5 the tensor criteria for homogeneous tensors were established 
with respect to changes of basis in tensor spaces. However, next we will es
tablish other tensor criteria based on tensor contraction. 

We present them as theorems, and in the proof of the third we will examine 
in detail its necessarity and sufficiency. 

T h e o r e m 5.2 (First e l e m e n t a l cr i ter ion for t ensor character ) . The 
necessary and sufficient condition for a system of scalars s ( a i , a2, • • •, a^) of 
order r (the aj are indices) to be a pure homogeneous tensor, of order r, 
totally contravariant, is that the expression ^'totally r-contracted product": 

i G / , = { l , 2 , . . . , r } ; a,- G / , = {1, 2 , . . . , n} (5.32) 

be a escalar^ that is, be invariant with respect to changes of basis in V^{K). 
D 

T h e o r e m 5.3 ( S e c o n d e l e m e n t a l cr i ter ion for t ensor character ) . The 
necessary and sufficient condition for a system of scalars s{ai^a2^..., a^) of 
order r to be a pure homogeneous tensor, of order r, totally covariant, is that 
the expression ''totally r-contracted product": 

5(a i , a s , . . . , ar)x''' • x^^ . . . x""-; Vf = x^^"4, G V'iK), 

j G l , - { l , 2 , . . . , r } ; a,- G ^ - { 1 , 2 , . . . , n } (5.33) 

be a escalar. that is, be invariant with respect to changes of basis in V'^{K). 
D 

T h e o r e m 5.4 (Genera l cr i ter ion for h o m o g e n e o u s t ensor character ) . 
The necessary and sufficient condition for a system of scalars 5(0^1, «2, • • •, o^r) 
of order r to be a mixed homogeneous tensor, of order r, p-contravariant and 
q-covariant (p -h q = r), is that the expression ''totally r-contracted product": 

yx = x^^e^^^ eV:^iK); j G / ^ = {1, 2 , . . . , p } ; a,-G 7 , 
Wx = x'^^ea, eV^{K) A:G/^ = { p 4 - l , p + 2 , . . . , p + g}; at e In 

(5.34) 
be a escalar^ that is, be invariant with respect to changes of basis in V'^{K) 
and the corresponding changes of basis "in dual bases" in V^{K). D 

Proof 
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Necessari ty: 

Let t = f^^^Ca ®eß® e^^ be a mixed tensor of third order (r = 3), p = 2 
times contravariant and q= 1 covariant, with p-^q — 2-^1 — Z = r. 

Consider the vectors x — xxe^^.y — yf_ie^^ and z = z^e^^ where x, y G 
V^{K) and z G y ^ ( i ^ ) . 

If we execute the r-contracted tensor product: 

P = c ( t ' {t^x^y^z) (5.35) 

we get 
'P ~ ^otw ' ̂ 0 ' Vcf) ' z^ = scalar (zero-order tensor), (5.36) 

which proves that if t is a tensor, the theorem holds. 

Sufficiency: 

Consider now a system of scalars such that 

p = s{a,ß,-f)'Xo,'yß- z^ (5.37) 

for any pair of vectors x = Xo,e^^^ y = yp^^ G V^{K) and for all z = z^e^ G 
V'^{K) where p is a given scalar. 

We perform a change-of-basis in the linear space F"'(i^), and in the dual 
space V^ {K) in which we choose the dual reciprocal basis of the one selected 
in ViK). 

Since p is a fixed scalar, the relation (5.37) is also satisfied in the new 
basis, that is, the p remains invariant for any new vector: 

p = s{iJ,kyxi-yj'Z^- \/x = Xie'\y = yje'^ G T ^ W and Vz-z^e/o G ViK). 
(5.38) 

Using the change-of-basis relations (3.46) and (3.24): 

4 = clle^ in V^{K) 

we get the expressions that directly relate the vector components, in the initial 
and new bases: 

o i ^ o J 

for vectors of V^ {K), and 
^7 _ c'^^fc 

for the vector of y^( i^) . 
Transposing these equalities one gets 
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and replacing (5.39) and (5.37) we obtain 

p = s{a,ß,-i){xall){yj-ill){z^cll), 

which is operated as 

p = (X, • y, • z'^)isia,ß,jhiy^;cll). (5.40) 

Equating the constant p in (5.38) and (5.40), we get 

p={xi' yj . z^)s{ij, k) - {xi • Vj • z^) (^s{a,ß,-r)jlljl''^cll 

and since the previous relation must hold for all Xi, yj, z^, it must be 

s{ij,k) = s{a,ß,j)-flljllcll, (5.41) 

which shows that the system of scalars 5(a,^, 7) satisfies the general tensor 
character criterion. Formula (4.34), so that the system of scalars must be 
notated as 

5(a, A 7) = ^of 7 or ^(^' i ' ^) =Kil^ 

which proves its tensor character. Obviously, the necessity and the sufficiency 
have been proved only for r = 3, but we have preferred this simple case, 
which clearly reveals the process followed, to the general case with the generic 
r, which hides the demonstration process under the confused complexity of 
subindices. 

We close this part, dedicated to tensor product contraction, simple or 
multiple, of homogeneous tensors, by pointing out that its treatment can be 
considered in the wider frame of absolute tensors, that is, of heterogeneous 
tensors established on diverse factor linear spaces, studied in Chapters 2 and 
3, and in Chapter 4, where the absolute tensor character criteria for them 
were established, Formulas (4.24), (4.25), (4.34) and (4.35). 

However, the most frequent use of contraction occurs in the homogeneous 
tensor algebra, which justifies the decision made in this chapter. 

5.6 The contracted tensor product in the reverse sense: 
The quotient law 

Theorem 5.5 (Quotient law). Consider the system of scalars S{ai^..., a^) 
of order r. A sufficient condition for such a system to be considered a homo
geneous tensor is that its p-contracted tensor product by a generic (arbitrary) 
homogeneous tensor b of order r^, called a ''test tensor", lead to another tensor 
of order {r -^r^ ~ 2p). D 
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Proof. We state the proof for a concrete case. 
Let 5(a,/?, 7, ̂ ) be the data system of scalars, of order r = 4, and let 

b = b^^'^ex 0e^^ ^e*^ be the "test" tensor, of order r ' = 3. As a consequence 

of their doubly contracted {p = 2) product we arrive at the set of scalars h^°§° 

which is a known tensor, of order r + r ' — 2p = 4 + 3 — 2 x 2 = 3. 
Since h is a tensor, due to the tensor criteria we have 

h odm 
-lOiOO 4 o 0(5 o a 

OÖ/J, ' o a do mo 

In addition we have 

a relation stated in the initial basis of V^ (K), and also 

h -C n ) (K^'i'^'^)^^fmn) 

(5.42) 

(5.43) 

(5.44) 

stated in the final basis of V'^{K). 
Executing the contraction indicated in (5.43) and (5.44) and using the 

Kronecker deltas, we get the relations 

r / ? o r o i ^ 7 A o o T QiOO / n r\ rDO rOUiAO O (5.45) 

(5.46) 

and since 6 is a tensor (the "test" tensor), we state its tensor character criterion 
in the form (4.35), leading to 

7 Aoo 7 •£ o o Ao o m o n 
oßu omn oi ^(j, o ' i / o 

and replacing (5.47) into (5.45), we get 

ßoroi/iioo Ao o m o n 
TCKOO / n r \ r P o C-OZ/T ^ o o AO o m o n 

(5.47) 

(5.48) 

Finally, substituting (5.46) and (5.48) into the left- and right-hand sides 
of (5.42), respectively, we get 

/ • • 7 7 \ r ? O r O n 7 - ^ 0 0 r / n r\ rß O rO Uii O O Xo Om O Tl] 2 0 0(5 O U 

K ^ ' J ' ^ ' ^ ) ^ o A o ^ o m n = [ ^ ( ^ ' A 7 , ^ ) ^ o A ^ o ^ o m n C o ^ 7 ^ o 7 7 . o J ^oa^'do^mo^ 

and conveniently grouping the factors we obtain 

7 O r - o n 

-'fco omn f'K^^Pil^^noay^oX^oiJyifjio^moA^joIuoJ^^do 
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and executing the indicated contractions: 

s{ij,k,d)5i^6j^^ s(a ,A7,^)7^°(cf°)- l . (7°>°^ , £ o o 

Finally, passing everything to the left-hand side and taking common factors, 
the result is 

s{i, j , /c, ö?)(5^°5°^ - 5(a, /?, 7, (^)7oaS£7°X 
o ßo on OÖ 

7 
6̂  ° ° = 0. 

omn 
(5.49) 

Since the "test" tensor b y^ Ü {it is not the null tensor), their components 

b ° ° 7̂  0, which forces the null factor to be the bracketed term in (5.49) 

5(i,i, k, d)5l^5^^ = s{a, ß,7, (^)7oc.<£7^o<o- (5.50) 

Next, we isolate the factor s{i^j^k^d) on the left-hand side of (5.50). To 

this end, we multiply both members by the Kronecker delta ^^°, inverse of 

^J°. 

or 

s{iJ,k,d){6l''.Sl''^)Sl''^ = s{a,ß,j,ö)j^^^^^ 

s{i, J, k, d){l)Sl''^ = s(a, ß, 7, ^)7oa(^^f^fp^^ o^do 

contracting the grouped product, and multiplying both members by J°^, the 

inverse of J^^, we get 

r o A; 

r-o k con\ 

or 
sii,j,k,d){i)=s(a,/3,7,^)7::c:f(7:;5:^)c°„ ^o oß/ no ß^o k\ ^oS 

)CK^€oWc 

and contracting the grouped product, we finally get 

s{i, j , k, d) = 5(a, ^, 7, ^)7o>;f 7o^c°f. (5.51) 

This last expression indicates that the set of scalars 5(a, /?, 7,5) is a tensor, 
since it satisfies a concrete tensor criterion. In addition, it shows us its whole 
nature. In reality it is 

5(a,^,7,Ä) 0 : 0 7 0 
^ o / 3 o ( 5 - (5.52) 

The theorem that has been proved is called the "quotient law", a disputed 
title, that some impute to a simple conception of this relation among tensors, 
such as 

If X . Ti = T2 -^ X = ^ -> X = T2 • Tf \ which is certainly simple, and 
at least justifies its name. 
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This theorem, which is frequently used in solving tensor analysis theoreti
cal problems and also in practical exercises, to detect whether or not a system 
of scalars is a tensor, has severe limitations that it is convenient to point out. 

On one hand, one must be lucky when choosing the test tensor because, if 
after an unfortunate selection, the contraction does not lead to a tensor, no 
conclusion can be drawn, because of the sufficient character of the theorem. 
So, another test tensor must be selected and so on. 

On the other hand, frequently, after the contraction is performed with the 
selected "test" tensor, we have great difficulties in proving that the result is 
another tensor, arriving at a new problem that can be even more complex 
than the initial one. 

Consequently, the most frequent applications of the "quotient law" are 
those in which the contracted product is an invariant, which it is well known 
to be a zero-order tensor. 

5.7 Matrix representation of permutation 
homomorphisms 

We say that a tensor is the "permutation tensor of a given tensor" if it has 
the same associated scalars as the given tensor, but in different positions; one 
possibility of building a permutation tensor of a given tensor is to create with 
a different name a tensor with at least a changed index but with the same 
scalars: 

w , a o 7 o _ a' o 7' o 

where {a\ /S^ 7^ S^) is one of the possible permutations of (a, /3,7, S). 
Consider the linear space K^^a — n'", i.e., the linear space of matri

ces Tcr,i G ÜT ,̂ "extensions" of the homogeneous tensors of a generic type 
^Z'a^Z' "'Z^ defined over the "factor" linear space ViK). We will study the 
permutation homomorphisms P : K^ —> iT^, the associated square matrix of 
which, Pn-r, is a permutation of the unit matrix /^^ and which transforms by 
means of the following matrix equation: 

P n ^ * T , , i = ^ ; i - (5.53) 

These transformations maintain the tensor dimension cr, together with its 
scalars, though obviously they change them in position. We will study two 
different types of homomorphisms P. 

5.7.1 Permutation matrix tensor product types in K"^ 

Consider the tensor 

T . ^ 0 0 

abed 
e f g h 

m n p q 
r s t u 
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and the tensor 

r 
j6 

d c b a 
q p n m 
h g f e 
u t s r 

which obviously is a permutation of T, where cr = 4^ = 16. 
We build the corresponding matrix extensions of T and T' {T^^i = Ti6,i 

and we observe that the permutation matrix that relates and r ; i 
both is 

where 

^ 1 6 , 1 ^ 

P = Pii 

rpf 
^16 ,1 

rp/ P-Ti 16,l5 

T i 16,1 

0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 0 

n Q 

Q 

Q 

Q 

Q 

0 0 0 1 
0 0 10 
0 10 0 
10 0 0 

0 0 0 1 
0 0 10 
0 10 0 
10 0 0 

Q 

Q Q 

Q 

Q 

0 0 0 1 
0 0 10 
0 10 0 
10 0 0 

An analysis of P discovers that in this case 

P = 
1 0 0 01 
0 0 10 
0 10 0 
0 0 0 1 

(8) 

ro 0 0 1 
0 0 10 
0 10 0 
10 0 0 

i.e., the permutation matrix is the tensor product of two permutation matrices 
that operate in the linear space K^ ^ which reveals that some P have this type 
of construction. 
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5.7.2 Linear span of precedent types 

In Example 4.5 of Chapter 4, we considered the five permutation tensors 
U^ y, W, R and 5 of a given tensor T — [t^^^] of third order (r = 3, n = 
3 and G = rf — 27). We will examine what type of construction has the 
permutation homomorphism matrix that applies P{X) - [̂ oöol ~^ Noo^l' ^^^^ 
is, t/27,1 =" ^(1) • ^27,1- The solution matrices in this case are (see Example 
4.5) 

T: 27,1 ^ 2 7 , 1 — where ß = {E^} 
1 
0 
0 

0 
1 
0 

0 
0 
1 

We have that 

P(i) = P27 = Ei^l3^h^El+E2^l3^Is^E^2 + E3^l3^l3^El, (5.54) 

that is, a matrix written as a linear combination of tensor products. 
With respect to the permutation tensor V: 

a 07-1 ^(2): K; 
070 ; ] 

that is, 
V27, l = ^ ( 2 ) • ^ 2 7 , 1 -

The solution matrices are in this case, the T27,i matrix previously cited, and 
matrices 
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V27, l 

P(2)^B. 27 E{i )h®h®Ei-VEl^h®h®E2-\-El®h^h®E:i. (5.55) 

The permutation matrix P(2) is of the type P(i), that is, a linear combination 
of tensor products, and P(2) is P}^y 

For the permutation tensor W: 

that is 
^ 2 7 , 1 = P{3) • ^ 2 7 , 1 

the solution is given by the matrices 

1 
2 

- 1 
0 
3 
2 

- 1 
0 
0 

2 
0 
2 

_ 1 

W 2 7 , l = 1 
0 
1 
0 
1 
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•P(3) = ^3 ^ [^1 (8) /s (8) ^1 H- -̂ 2 (8) Is 0 E^ + Es (8) /s 8) El] , 

also a linear combination of tensor products. P(3) is symmetric. 

Next, we analyze the permutation tensor R: 

7 0 CK-I 

% ) •• K;:] 

that is, 

the solution of which is 

11 
2 
0 
2 
0 
5 

-1 
2 
1 

0 
-1 
0 
3 
1 
1 
2 
0 
0 

-^27,1 P(4)-Ts 27 ,1 , 

P27 = 

- 1 
1 
1 
0 
0 
2 
0 
1 
OJ 

ß = basis of R'^ = {£^1, ̂ 2 , ^3} 

^(4) = E (̂^ '^j) )h^{E\^Ej), 

also a sum of tensor products. P(4) is symmetric. 

We arrive at the last permutation S of Example 4.5, i.e., 

-P(5) : [i 
0:07-1 
o/5oJ 

00 :71 
^ /5ooJ 

that is, 

with solution matrices 

^27,1 P(5)«rs 2 7 , 1 , 

131 

(5.56) 

1 
0 
0 

0 
1 
0 

0 
0 
1 

(5.57) 
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527,1 = 

1-
0 

- 1 
2 

- 1 
1 
0 
0 
1 

2 
3 
0 
0 
1 
0 
5 
1 
2 

- 1 
2 
0 
2 
0 
1 
1 
0 
0-

with 

P(5) = [El ̂ Is^El^E2^l3^El + Es^Is ^Elj^Is = Pl^y (5.58) 

We end the section dedicated to permutation homomorphisms by citing the 
model of this type of matrices which will be called "transposer" since it oper
ates over second-order homogeneous tensors, the square matrices Ö-Q o' ^o^' ^ao 

or (i°^, with r = 2;n = n;cr=:n^, transposing them. 

Whence 
aß\ iJ(a::) = <: ; i f ( Q = ^ • ^ / 3 o ' etc. 

is the matrix called a "transposition matrix" in Section 1.3.7, Formula (1.38). 
Here we present a generalization, in its usual mode of permutation homomor-
phism: 

where T^^\ is the extension matrix that is to be transposed. 
The permutation "transposer" is the block matrix: 

E 11 E' 21 E. n\ 

E 12 E< 22 

+ 
4-

4-

+ 
E In E^ 2n 

^ n 2 

Er,. 

(5.59) 

where B — {£^«j} is the canonical basis of the tensor space K'^^'^ of square 
matrices of order n (noting the block ordering inside P^s) 

The reader can test its effect using it in the exercises. 
With respect to the permutation type "transposer", responds to the ex

pression 
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Y^ Eii ^Eii+ y {Eij 0 Eji + Eji (g) Eij). (5.60) 
^<j;i,i€{l,2,"-,n} 

1 
0 
1 

2 0 
- 1 0 

1 1 

2 0 5 1 
3 1 1 
0 0 2 

- 1 2 1 
2 0 0 
0 1 0 

Example 5.4 (Permutation homomorphisms). Consider the linear space T^'^(]R) 

as a tensor product ofIR^(8)IR*^(8)IR^. Let T € r be a tensor of components 

, 0 0 7 

where a is the row, ß is the column, and 7 is the matrix. 
Let ei(—1,0,—1), 62(1,1,0), 63(0,0,3) be a change of the canonical basis 

of I I that produces the corresponding change-of-basis of tensor nature in r. 
Determine the new components of tensor T, using the permutation homo

morphisms, to execute the change-of-basis on the tensor ordered according to 
the axiom. 

Solution: It is evident that the assigning of subindices in the statement does 
not correspond to the axiomatic order for the canonical basis of ]R^(8)K*^(8)IR ,̂ 
which requires (see the theory and Example 2.1, question 4) that the matrix 
index (7) must be the first and the column index (ß) must be the last. So, 
before executing the change-of-basis, we must find the fundamental tensor 
(^Ooo^' which, subject to adequate permutation, provides the given data. 

Tensor (t^)^^^ is the one that must be subject to the change-of-basis, given 
by the theory, and obviously the permutation must be undone in order to find 

i ok 
ojo' the sought after tensor t 

Let T271, be the stretched version of (^Ooo^' ^^^ ^27,1, the stretched 

version of t^^^ (data). 
The permutation relation between them is 

^ ( 2 ) • ^ 2 7 , 1 = ^ 2 7 , 1 , 

where P(2) (Formula (5.55)) is 

P(2) = El^Ig^Ei^El^lQ^E2-\-El0l9(^Es 

[1 0 0](g)/9(8) 
1 
0 
0 

+ [0 1 0](g)l9O 
0 
1 
0 

+ [0 0 1]®79: 

Then, P(2) becomes 
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P(2) = 

100 
000 
000 
010 
000 
000 
001 
000 
000 

Q Q 

000 
100 
000 
000 
010 
000 
000 
001 
000 

n 

— + — + — + — + 

Q 

Q 

100 
000 
000 
010 
000 
000 
001 
000 
000 

Ü 

Q 

100 
000 
000 
010 
000 
000 
0 0 1 
000 
000 

Q 

n 

000 
100 
000 
000 
010 
000 
000 
0 0 1 
00 0 

Q 

Ü 

000 
000 
100 
000 
000 
010 
000 
000 
0 0 1 

Q n 

+ — + — + — 

o 

000 
100 
000 
000 
010 
000 
000 
001 
000 

Q 

n 

000 
000 
100 
000 
000 
010 
000 
000 
0 0 1 

Q 

Q 

000 
000 
100 
000 
000 
010 
000 
000 
001 

Since P(2) is orthogonal, P/ - 1 
(2) 

pt 
^ ( 2 ) ' 

p - 1 _ 

1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 

Q 

Q 

0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 

Q 

Q 

0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 

n 

Q 

Q 

1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 

Q 

Q 

0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 

Q 

n 

0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 

Q 

Q 

n 

1 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 

n 

Q 

0 1 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 

Q 

Q 

0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 1 
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Returning to the initial permutation relations, we get 

^27,1 = P(2) ' ^27,1 = P, (2) 

r ^1 
2 
0 
0 

- 1 
0 

- 1 
1 
1 

2 
0 
5 
3 
1 
1 
0 
0 
2 

- 1 
2 
1 
2 
0 
0 
0 
1 

_ 0_ 

z = 

r ^1 
0 

- 1 
2 
3 
0 

- 1 
2 
0 

2 
- 1 

1 
0 
1 
0 
2 
0 
1 

0 
0 
1 
5 
1 
2 
1 
0 

_ 0 . 

Since T27 ̂  is the stretched version of the fundamental tensor (t^^^^, ac

cording to the Formula (4.36) the corresponding is T27 1, the stretched version 
\kio 

of (^0oo7' ^'^^^ expression 

%^^ = Z-^ . T 7̂ 1; with Z-^ = C- )C - 1 >ĉ  
In our case is 

nr 
r - 1 1 0 

0 1 0 
- 1 0 3 

c-
- 1 
0 
1/3 

1 
1 

1/3 

0 
0 

1/3 _ 
; C' = 

r - i 0 - 1 
1 1 0 

L 0 0 3 

Then, the matrix associated with the indicated change-of-basis is 

z-^ = {c-^®c-^)®c' = 

1 
0 

1/3-

0 
0 
0 

1/3-
0-

1/9-

- 1 
- 1 

- 1 / 3 -

0 
0 
0 

-1/3 
-1/3 
- 1 / 9 -

0 
0 

-1/3 

0 
0 
0 

0 
0 

-1/9 

- 1 1 0 
0 1 0 

- 1 / 3 1/3 1/3 

- 1 1 0 
0 1 0 

- 1 / 3 1 / 3 1/3 

- 1 / 3 1 / 3 0 
0 1/3 0 

- 1 / 9 1 / 9 1/9 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

- 1 / 3 1 / 3 
0 1/3 

- 1 / 9 1/9] 

0 
0 
0 

0 
0 
0 

0 
0 

/9 

i C * 
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- l o 
l l 
0 0 
0 0 
0 0 
0 0 
^ 0 -
? 1 

hi 

-1 
0 -
3 
0 
0 -
0 
1 
3 
0 -1 

1 0 1 
- 1 - 1 0 

0 0 - 3 
1 0 1 

- 1 - 1 0 
0 0 - 3 
i 0 -̂  

- I -? 0-h b- i 

f2 

0 
0 
0 
0 
0 
0 
1 

5 
1' 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 i 

-k 0 
h-1 

1 0 1 - 1 0 - 1 
- 1 - 1 0 1 1 0 

0 0 - 3 0 0 3 
0 0 0 - 1 0 - 1 
0 0 0 1 1 0 
0 0 0 0 0 3 
i 0 i _ i 0 - i -

-I-? 0 U 0 
h h-1 hh 1 

1 0 1 - 1 0 - 1 
- 1 - 1 0 1 1 0 

0 0 - 3 0 0 3 
0 0 0 - 1 0 - 1 
0 0 0 1 1 0 
0 0 0 0 0 3 
i 0 i - i 0 - i -

- i - 1 0 i i 0 
h h-1 hh 1 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

_ i 0 -
? 1 

hi 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

1 ? -
11 

0 
0 
0 
0 
0 
0 
1 

' 3 
0 1 

0 
0 
0 
0 
0 
0 
1 

" 3 
0 
1 

Ü 

Q 

- 4 0-

00 
00 
00 

• ! ? -
9 9 

00 

i 
3 
0-1 
0 
0-
0 
1 
9 
0-
i 
3 

1 

5 
h 1 

1 

? 
9 
0 

0 
1 

h-0 
1 

1-0 
1 
9 
0-

1 
3 
0 - 1 
1 
3 
0 - 1 
1 
9 
0-1 
3 

0 
0 
0 
0 
0 
0 
1 

? 
9 0 

0 
n 
0 
0 
0 
0 
0 
1 

' 9 
0 -

0 
0 
0 
0 
0 
0 
1 
9 
0 i 

" 3 

1 

? 
h 
0 
0 
0 
1 

? 
9 0 

0 
1 

h-
0 
0 
0 
0 
1 
9 
0-

I 
3 
0 - 1 
0-
0 
0 
1 
9 
0 1 

" 3 

i?-
u 

1 ? -
9 9 0 0 

1 
3 
0 1 
i 
3 
0 1 
1 

" 9 
0 i 
3 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

1 ? -
9 9 0 0 

0 
0 
0 
0 
0 
0 

_ 1 

0 
i 
3 

1 

h 
0 
0 
0 
1 

? 
9 0 

0 
1 

h-
0 
0 
0 
0 
1 

" Q 

0 -

1 
3 
0 - 1 
0 -
0 
0 
1 
9 
0 1 

• 3 

1 ? -
u -!?-
M 

1 ? -
9 9 0 0 

i 
"3 

0 1 
i 
3 
0 1 
1 
9 
0 i 
3 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

9 9 
0 0 

0 
n 
0 
0 
0 
0 
1 
9 
0 i 
3 -

ff 
^27 ,1 

7-1 

r 11 
u - 1 

1 2 
1 ^ 
! 0 

- 1 
2 
0 

2 
- 1 

1 
1 0 

1 
0 
2 
0 

: 1 

0 
0 
1 
5 
1 
2 
i 
0 
0 

= 

r 5 1 
- 4 - 6 
2 

- 4 
0 

1/3 
—1 
- 1 

3 
0 

- 3 
0 
1 
0 
0 

2/3 
0 

- 1 / 3 
2/3 
- 1 

- 5 / 3 
2/3 
b, 

- 2 / 3 
4/9 

0 J 
Once the change-of-basis has been performed, we must return to the data 

permutation: 
^ ( 2 ) • ^ 2 7 , 1 "= ^ 2 7 , 1 

yielding 
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5 • 
3 

0 
2/3 
- 6 
- 3 
- 1 

2 
0 

- 5 / 3 
- 4 

' 2/3 
0 
0 
2 

- 2 / 3 

2/3 
4/9 

0 
0 

which after its condensation leads to 

,iok 
ojo ~~ 

5 3 - 1 / 3 I 2 0 - 5 / 3 I 1/3 0 - 2 / 3 
-4 0 2/3 I - 4 1 2/3 I - 1 2/3 4/9 
- 6 - 3 - 1 1 0 0 2 1 - 1 0 0 

where i is the row index, j is the column index, and k is the matrix index. D 

5.7.3 The isomers of a tensor 

We give the name "isomers" to certain tensors that come from permutations 
of a given tensor; they are the isomeric tensors of such a tensor. 

For pure tensors (totally contravariant or covariant) the permutation of 
a partial number (or all) of its indices, strictly between them, leads to an 
isomer. 

In other words, not all permutation tensors coming from a pure tensor 
are isomers of such a tensor, since some of them do not come from alter
ing the indices. If the tensor is a mixed tensor, they are the tensors coming 
from permuting partially or totally: (a) only the contravariant indices among 
them, without altering the covariant indices, and (b) only the covariant indices 
among them, without altering the contravariant indices. 

In Example 4.5, which was examined in Section 5.7.2, the tensor R = 

[^0^0] ^̂  ^^ isomer of tensor T = [t^'^^J. Similarly, the tensor U = N000] ^̂  

an isomer of tensor W = [w^],°ß]-
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Example 5.5 (Rotation tensor). Consider a given pure tensor (totally con

travariant or covariant) of order r: t^^Z^"^- We define as the "rotation ten-
/ o o oo••• o 

sor" of the given tensor any of its isomers that do not maintain indices in the 
same positions as the initial one. 

We will denote such a tensor (̂ ^ ooo'..o)^^^^ where k E Z]k ^^ 0;\k\ < r is 
the "rotation index". 

By extension, we define as the rotation tensor of a given mixed tensor all 
those isomers that do not maintain dummy indices of the same valency^ in 
the same positions. 

These rotation tensors carry the notation {t^ß^TcZ)^^'''^^ ^"-^^ 
two 

index-parameters A:,fc', where k^k^ € Z\k^k' ^ 0; |fc| < p\\k'\ < q with 
p -\- q = r, where p and q are the contravariant and covariant orders of the 
given tensor, respectively. 

1. Determine the rotation tensor associated with a tensor of order (r = 2) 
over the linear space 1/^(IR), and do the same over the linear space V^{H). 

2. Determine the rotation tensors associated with a tensor of order (r = 3) 
over the linear space y^(]R), and do the same over the linear space V^{H). 

3. Determine the rotation tensors associated with a tensor of order (r = 4) 
over the linear space V'^(R). 

Solution: 

1. Case r = 2, n = 2. Let t = t 
aß"" 

, ^ / 3 ^ ( Q ß ( l ) ^ i O o . 

"transposed" matrix of the given matrix. 
bi di 

) ^ ^ . 

, which is known as the 

Case r = 2, n = 3. In this case we have 

a = 
ai bi ci 
di ei / i 
9i hi H 

Kir'' = 
.ci / i 

which also is the transposed matrix of the given matrix. 

91 a\ d\ 
hi ei hi 

t° Z°e*^^e*^<S)e^^- Since there are two rotations 
Q:p7 

2. Caser = 3,n==2. Lett 

ßja and jaß we have i*^̂ ^̂ ]̂ "̂̂ ^ and [tl^°pl]^^'^\ or, if one prefers the 

notation [^°'̂ °]^^^^ and [ia°ßl]^^~'^\ the "first rotation" and its opposite. 
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Let [t aßji 

-aibi-
cidi 

-C2d2J 

be the da ta tensor, with a the row submatr ix in

dex, ß the row index of each submatr ix, and 7 the column index of each 
submatr ix (axiomatic order). 
The correspondences.in bo th rotat ions are 

Initial 
, 0 0 0 

, 0 0 0 

^112 
, 0 0 0 

^121 
, 0 0 0 

^122 
, 0 0 0 

^211 
, 0 0 0 

^212 
, 0 0 0 

^221 

First rotation 
Transformed 

, 0 0 0 

, 0 0 0 

^121 
, 0 0 0 

^211 
, 0 0 0 

^221 
, 0 0 0 

^112 
, 0 0 0 

^122 
, 0 0 0 

^212 

Second rotation 
Transformed 

, 0 0 0 

^7a/3 
, 0 0 0 

^211 
, 0 0 0 

^112 
, 0 0 0 

^212 
, 0 0 0 

^121 
, 0 0 0 

^221 
, 0 0 0 

^122 

and then 

n o o o . i ^ ( l ) 

ai a2 
h &2 

Cl C2 

di d2 

and 

n o o o ^ Ä ( 2 ) 
L at 

' ai 

a2 

61 
_b2 

Cl " 
C2 

d2_ 

yißji 

which are the "transposed" (beware of the word) tensors of tensors (r 

Case r = 3, n = 3. Let 
a i bi Cl 
di ei / i 
gihiii 

^aß-r^ 

02 ^2 C2 
d2 62 /2 
^2 ^2^2 

03 ^3 C3 
ds es fs 

igshsis, 

be the da ta tensor. In this case we have 
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a n d 

3. C a s e r 

w h e r e 

• a i a 2 a 3 ' 
6i 62 63 
Cl C2 C3 

\d1d2ds 

a;/37-l \ J! X £ 
Ji h Is 

9i 92 93 
hih2h3 
M h is. 

'aidigi 
a2d2 92 
asd3 9s 

03 es ri3 

Cl A ii 
C2 / 2 ^2 

4, n = 2. T h e d a t a t e n s o r is t = ^ ° ^ ° ^ e * -5*^7 

[t aß^Si 

'aibi 
cidi 

dsbs 
.csds 

02^2" 
C2d2 

C4(i4_ 

I n t h i s case aßjS h a s t h e t h r e e r o t a t i o n s : ßjSa^ ^5aß a n d öaß^. T h e n , 

for t h e r o t a t i o n i ? ( l ) , s ince ^^ '5°^ - ^ ^«^^^^ w e h a v e 

r.O 0 0 0 | ß ( l ) __ 

'^a/375-' 

a i a s 
bibs 

02 04 
.62^4 

C1C3 

dic?3 

C2C4 
C?2C^4. 

Fo r t h e r o t a t i o n Ä ( 2 ) , s ince t^'^^^ - ^ C ^ I ^ ' "^^ h a v e 

r.O 0 00-1^(2) 
L^a/376J 

a i a 2 
«3 04 

C1C2 
.C3C4 

6162' 
63 Ö4 

did2 
dsd^ 

a n d , finally, for t h e r o t a t i o n i ? (3 ) , s ince t ^ ^ ° ^ 

fa iC] 
l a^c s 

r , O O OO"! 

i'^aß'yöi 

, 0 0 0 0 1 ^ • 

^öa/37' ^ ^ o b t a i n 

" a i c i 
02 C2 

bidi 
b2d2 

ascs' 
a4C4 

bsds 
b4d4_ 

file:///d1d2ds
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5.8 Matrices associated with simply contraction 
homomorphisms 

We give the name "simply contraction homomorphism" to a homomorphism 
that operates according to the equation 

T ; , = i 7 . T . i (5.61) 

and that apply the mixed tensor (because the contraction is assumed to be of 
indices of different valency), into another tensor of smaller dimension a' < a^ 
by a tensor contraction of two indices. 

We will construct the matrices R for the usual cases, that is, for tensors 
of orders 2, 3, 4 and 5. 

5.8.1 Mixed tensors of second order (r = 2): Matrices. 

This is the case of T = [t°f] or T = [t^°], with r = 2;a = n^;?! = 

dimy^(i^);o- ' = nO = 0. 
Thus, the result of the contraction is a scalar, which is called the "matrix 

trace". 
Assuming that {-Ê }̂ is the canonical basis of the matrices of order n, the 

fundamental equation (5.61) is in this case 

p = i J l ,^2(a , /? ) . r , , i = ( [ l l • • • l ] l , n * [ ^ l l 1^22 

= {E\\E\\---\El\.T^X^p^K'X,^p, 
Enn\) *T^,1 

(5.62) 

The notation of H declares its number of rows and columns, together with 
the indices to be contracted. 

B = {Ei} is the canonical basis of the linear space V'^{K): 

B 

f 

< 

\ 

" 1 " 
0 

_0_ 

"0" 
1 

_0. 

"0" 
0 

_1_ 

\ 

> 

>. 

5.8.2 Mixed tensors of third order (r = 3) 

These are tensors of the type T = t "°° ; T = t ^ °^ • • •, etc. with dim V{K) = 
- r . 3 .^ / 

n. 
There are three possible models: 

Modell. T = ei^ oiT = eil 
o o 'y o p o 

r ; , = « " = i j „ , „ 3 ( / 3 , 7 ) . r , , i = ( j „ ® ( [ i i - - - i ] i , „ . [ £ n | £ ; 2 2 | - - - | - B „ „ ] ) ) . T , , i . 
(5.63) 
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Model 2.T = eilorT = t°ll 
O p O CX.O O 

r ; ,=i ;T = iJ„,„3(a,/3).T,.i = ( ( [ l l - - - l ] i , „ . [ ^n |£ ;22 | - - - |Kn] )®/n) - r<x , i -
(5.64) 

Models. T = e/° orT = eiZ 
O O'J CK O O 

= [ / „ ® ( [ l l - - - l ] l , „ . E l l ) I I „ ® ( [ l l - - - l ] l , „ 

•E22)\...\In<S>{[ll---l]l,n»Enn)]»T,,l- (5-65) 

Formulas (5.63) to (5.65) can be written in a simpler form: 

u'' = i7,,,3(/?,7) . T , , ! = {ln^[Ei\EU'"\ Ei]).T,^r [bM) 

^^ = iy,, ,3(a,/3)*T,,i = \[E{ I ^11 ••• I E ^ ] 0 In) «T, ,! (5.67) 

z^ - iJ^,^3(a,7) . r , , ! = [In 0£^f| /n 0^11 ••• |/n 0 ^ ^ ] • T^,i.(5.68) 

5.8.3 Mixed tensors of fourth order (r — 4) 

These are tensors of the type 

r , 0 : 0 7 5 nn lOiß'yo . r 4 f r—2 4—2 2 

üonircLCLion: i 

Model 1. T = ^o^oo' "^^^ fundamental equation (5.61) in this case is 

Z, = if„2,„4(a,/?) . r , , i = {[El I S* I ••• I £;4] ® J„®/„) .T, , i (5.69) 

Model2.T = tf^;l 

T;, = if„2,„4(a,7).r^,i = ([/„ (8. £;* I j„ ® £;* I • • • I 7„ ® E^] ® /„) . r , , i . 
(5.70) 

Mode/ 5. T = t"f ^° 
o o oo 

r ; , =il„2,„4(a, (J)»T<,,i = [J„ ® /„ (8) £;f I J„ (g) /„ ® £:| | • • • I /„ (8) J„ (g) £^^]»T<,,i. 
(5.71) 

Modell T = tf^;l 

Z, = ff„2,„4(/?,7).T,.i = (J„® [£;* I S* I ••• I E^] ®/„ ) ) .T , , i . (5.72) 

O O OO 

Z, = iJ„2,„4(/3,5).T^,i = (J„ ® [7„ (8. £;* I J„ ® £;* I • • • I J„ ® -B^])-r,,i. 
(5.73) 

Z, = iJ„2,„4(7,5) . Zi = (/„ ® J„ ® [£* I ̂ 2 I • • • I -£̂ n ]) • r . ,1 - (5.74) 

T /̂ 2 must be given in "condensed" form (as a square matrix). 

o / 3 o o ' o o o ^ ' 

Possibilities for the contraction: (2) = 6 models. 
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5.8.4 Mixed tensors of fifth order (r = 5) 

We present rules for the sequence of formation of matrices representing con
tractions in tensors of order 5 (r = 5) associated with linear spaces R"" of 
basis 

{Ei] ^ { 

( 

V 

" 1 " 
0 
0 

_0_ 

"O" 
1 
0 

_0. 

• 0 " 

0 
0 

_1_ 

\ 

/ 

> . 

We notate the morphism matrix using power indices and parentheses that 
declare the indices to be contracted. 

Contractions of two indices, resulting tensors of order r = 3. 
Tensor dimensions of the "stretched" tensors T^^\ and T^f-. a = n^] a' = 

There exist (2) = ^ = 10 models. Operation: T^, ^ = iJ^/,^ • T^,i 

Model 1. evAl 

i J , , , , = iy,3,,5(a,/3) ^[E{\E\\---\Ei]®Ir,® In® In-

Model 2. e/^iii 
o o-yoo 

H^>^^ = H^s^n^ (a, 7) = [/„ (8) £* I J„ (g) £;| | • • • 11„ (g) £;* ] (g) J„ (g) In-

Model 3. ellZ 
0 0 0 0 0 

= [In®In®E{\In®In®El\---\In®In®K]® In-

Model 4. tf^lt: 
~ o o o o e 

= [In (® In ® In ® E{\In ® In ® In ® Ell" -{In ® In ® In ® K] -

Model 5. e^lil 
o o-yoo 

Ha',a = ffn3,„5 (/3, ^)=In®[El\El\---\Ei\®In® In-

Model 6. elZl 
0 0 0 0 0 

Ha',a = HnS,„B (ß, (5) = /„ (g [/„ (g> Sf | /„ ® £̂ 1 | • • • | J„ (g) E* ] O J„. 
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Model 7. ei''^° 
o o o o e 

= In ^ [In ^ In ^ El\In ^ In ^ m - • -lln ^ In ^ K] ' 

Model 8. e/ZZ 
o o o oo 

Model 9. i"f^f 

o o o o e 

H^,^^ = Hn3,n^ ( 7 , €)=In®In®[ln®E{\In®El\---\In® E^] . 

Model 10. eili^ 
o o OO e 

i J ^ / , ^ = Hns^n^ {5, e) = In® In® In® [E\\E^2\- "\ E^] • 

T'^, -^ must be given in "condensed" form (as a column-matrix of subma-
trices). 

5.9 Matrices associated with doubly contracted 
homomorphisms 

5.9.1 Mixed tensors of fourth order (r = 4) 

We look for the tensor resulting from a homogeneous mixed tensor that accepts 
a double contraction, that is, has at least two contravariant indices and other 
two covariant indices; a = n^]a' = inP =^ 1. The resulting tensor after the 
double contraction always is a scalar. 

The possibilities for the contraction are: (2) = 6 models. Let p e K. 

Model 1. Hi^n^{a,ß\j^ 5) means that we contract first indices (a,ß) and then, 
indices (7, S): 

p = iJi,„4(a,/3|7,5) • T^,i = {[El\El | • •• |£;^] ® [£;* IE* | • • • |£;^]) • T,,^. 
(5.75) 

Model 2. Hi^n*{a,j\ß,5). 

p = Fi,„4(a,7|/3,5).r<,,i 

= [El®El\El(g>Ei\.--\El®Ei\---\Ei<E>Ei\Ei®Ei\---\Ei^Ei]>T,,i. 

(5.76) 
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Models. iJi,^4(a,5|/?,7). 

= [[E{\El[^-\Ei]^E{\[E\\E\[^-\Ei]®E\[^ 

(5.77) 

Model 4. i7i^^4(/3,7|a,(5) 

p = iJi,,4(/3,7|a,5) . T , , ! = iJi,,4(a,5|/?,7) . T , , ! . (5.78) 

Model 5. Hi^ri^{ß,5\a,^) 

p = i7i,,4{ß, 5|a, 7) • r , , i - iJi,,4(a,7I/3, (5) • r , , i . (5.79) 

Modele. Hi^ri^{-f,5\a,ß) 

p = H^^n.(7,5\a,ß) • T,,i = i7i,,4(a, /3|7,5) • r , , i - (5-80) 

As a mapping of the simple contraction formulas (5.72) and those of ex
tension and condensation (1.30) and (1.32), respectively, we propose that 
reader establish the direct relation between the classic product of matrices 
{A • B) where A = V^^V\ and B — [6^^]) and its tensor product (A (g) S) , 
simplifying the resulting expression. 

We remind the reader that the classic product of matrices {A • B) is a 
contracted tensor product. 

5.9.2 Mixed tensors of fifth order (r = 5) 

The contraction of four indices leads to tensors of order (r = 1), that is, 
vectors. The dimensions of the "extended" tensors T̂ -̂ i and T^' are a = n^ 
and a' = n. 

There exist (2) x (2) = ^^ x 3 = 30 models of double contraction. 

Model 1. eilZ 
o po 00 

Ha',a = Hn^n^{a,ß\-^,5) = iJ„_„3 ( 7 , (̂ ) • i l„3 ,„6 ( a , / ? ) 

= {[E{\Ei\---\Ei]®Ir:)*{[E\\Ei\---\Ei]®In®In®In). 

Model 2. e°li° 

Ha',a = Hn,n^{a,ß\j,e) = F„,„3(7,e) •if„3,„5(a,/3) 

= {[ln®El\Ir,(^Ei\---\Ir,®El]),{[El\El\---\Ei]®In®In® In) • 

Model 3. e°ll° 
o poo e 

Ha',a = Hn,n^{a,ß\6,e) = Hn,n^{5,e) • Hn3,„^{a,ß) 

= (/„ ® [ ̂ f I £* I • • • IE* ] ) . ([£;* I £;* I • • • I £;^ ] ® j„ ® /„ ® j „ ) . 
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In a similar form the remaining models can be obtained. 

Example 5.6 (Tensor contraction). Contract all indices of the tensor 

t= (2ei - 3e2) O (5ei + es) 0 (4e*=̂  + e^ )̂ (g) (e^^ - 2e''^). 

Solution: We solve the problem using four different methods. 

First method: 

We decide to execute the contractions of each pair of contravariant factors 
with the corresponding covariant factors. There exist two possibilities: 

1. We contract factor 1 with factor 3 and factor 2 with factor 4. The con
nection Gram matrix is /2, because they are in dual bases: 

p - [ 2 -3]J2 [5 l]/2 
1 

- 2 
( 8 - 3 ) X ( 5 - 2 ) - 5 x 3 - 1 5 . 

2. We contract factor 1 with factor 4 and factor 2 with factor 3. 

P = [ 2 -3] l2 

Second method: 

' [5 1]72 (2 + 6) X (20 + 1) = 8 x 2 1 = 168. 

We decide to associate the contravariant indices between them, and also 
the covariant indices between them; then, we execute the contraction, to ob
tain the unique result: 

r= 

= 

=z 

Mei 62] 
2 

- 3 

0 M e ^ ^ e^2] 

{[^1 62] 

n e i 62] 

(8) i 

"4" 
1 

2" 
^ - 3 

[ei ( ?2] 
"5l 
Ij 

^([^^ e"2] 

(^[5 1] 

" 1 0 2" 
-15 - 3 

e i 

. ^ 2 _ 

) ' ) 

r 1 
[-2 )i 

"joAe^i ê 2] 

"j^Ae^i e"2] "4 
1 

"4l 
IJ 

- 8 
- 2 

0 [ 1 

^ 2 

-2] 

) 

e*2 

= Mei(8)ei ei (g) e2 62(8)61 62(8)62] 

10" 
2 

-15 
- 3 

>e^2] 
1 

- 2 
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The Gram matr ix G between both dual tensor spaces is G = 14^ because 
they are in dual bases: 

p=[10 2 - 1 5 -3 ]74 1 
- 2 

40 - 16 - 15 + 6 = 15. 

Third method: 

We decide to execute the contraction using its definition. To this end, we 
need to know the tensor, with the axiomatic ordering of its components. 

Executing the last tensor product indicated in the previous method, we 
obtain 

t= [?i(8)ei 61^62 e2(8)e\ 62(8)62] 

= ei (8) ei ei (g) 62 62 0 ei 62 0 62 

10 
2 

-15 
- 3 

[ 4 - 8 1 2 ] 

40 - 8 0 10 - 2 0 ' 
8 - 1 6 2 - 4 

-60 120 - 1 5 30 
-12 24 - 3 6 

e*i 
e*i 
e*2 
e*2 

-^ 

e* 

e* 

.e* 

^e*^' 
®e*2 
®e*^ 
(8)e*2_ 

i ® e * i 
i(8>e*2 

2(8)6*1 
2(8)6*2 

This matr ix expression leads to the desired fourth-order tensor T = [^"0 ^]-

We develop it by rows, in order to get the axiomatic ordering: 

t = (ei (8)61) (8(406*' 806^^ (8 e'^ + lOe*' »1=1 r)rv-*)=2 ,o^ ;7**=2 

-*,1 16e"^ 2e^ + ( e i (8 62) 8) (86*^̂  (8 6 

+(62 8) ei) 8) ( - 6 0 r ^ (8 6*"̂  + 120^^ 8) e'^ - 1 5 ^ ^ (8 

+(62 ( 8 e 2 ) 8 ) ( - 1 2 e ' ^ 8)6^^ + 246*'^ 8) e"^ - 3 6 ^ ^ ( 8 6 

4e" 

e - ) 
2\ 

306^2 

66^ 

Since the first two factors refer to row and column of each submatr ix (first 
and second tensor indices), we finally get the tensor matr ix expression, with 
the correct ordering 

K 075J 

40 -80 
10 -20 

-60 120 
- 1 5 30 

8 -16 
2 - 4 

- 1 2 24 
- 3 6 

where a is the row of submatrices, ß the column of submatrices, 7 the row of 
each submatrix, and S the column of each submatrix. 

Next, we star t with the contractions. There exist two possibilities: 

1. We first contract a with 7, and then ß with 6: 

Kl] = c L 0076-1 
r .ö^ooi . lyöOO , 2 ^ 0 0 

o o 16 ^ o o 2 6 



148 5 Homogeneous Tensor Algebra: Tensor Homomorphisms 

\ r ßoi [-.looo-i . r , 2öoo i / . l l o o . , 1 2 o o \ . / , 2 1 o o •22oo\ 
ß j L'^O^J ~" r o o l d "+• L^oo26>J ~~ V^oo l l "^ ^ o o l 2 / + V^oo21 "^ ^oo22^ 

p = 40 - 16 - 15 + 6 = 46 - 31 = 15. 

2. We first contract a with 5, and then ß with 7: 

r jooi _ r>( ^ \ r,a/3oo-] _ r,ö/3ooi _ , l / 5oo ,2/3oo 
1^07] "~ ' " I ^ J L^oo7<5J ~ L^oo7öJ ~ ^ 0 0 7 1 "^ ^ 0 0 7 2 

/ r>lP\\ ß'^l r ^oi n l ^ o o i i rj.2öoo-| / . l l o o . , 1 2 o o \ , / , 2 1 o o . , 2 2 o o \ 
P ^ ^ I ^ ^ J I ^ ' O T J =" [^oö] = [^ooöl] + [^ooö2] = ( ^ o o l l + ^ o o 2 l ) + ( ^ o o l 2 + ^ o o 2 2 ) 

p' = 40 + 2 + 120 + 6 - 168. 

Fourth method: 

We use the direct homomorphism on the components Ter (a = 2 x 2 x 2 x 2 = 
16), that is, the tensor components in a "column matrix". 

There are two models to be considered: 

1. The homomorphism model (2) of double contraction, Formula (5.76): 

p = HiMa,j\ß,5).Tie^ = [El^El\El^El\El^El\Ei^El\].Ti^^^ 

= [[1 o ] 0 [ i o]|[i o](^[o i]|[o i ] 0 [ i o]|[o i ] 0 [ o i]]*ri6,i 

[ 1 0 0 0 0 1 0 0 | 0 0 1 0 0 0 0 1]» 

40 
-80 

10 
-20 

8 
-16 

2 
- 4 

-60 
120 

-15 
30 

-12 
24 
- 3 

6 

= 40 - 16 - 15 + 6 = 15. 

2. The homomorphism model (3), Formula (5.77): 

p' = ifi,i6(a,5|/3,7) •Ti6,i = [[El\El]0El\[El\El]^Ei].Tie^^ 

= [[1 0 0 i](8)[i o] |[ i 0 0 i ] ^ [ o i ] ]»r i6 , i 
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40 
- 8 0 

10 
- 2 0 

1 0 0 0 0 0 1 0 | 0 1 0 0 0 0 0 11# 

- 1 6 
2 

- 4 
- 6 0 
120 

- 1 5 
30 

- 1 2 
24 

- 3 
6 

40 + 2 + 120 + 6 = 168. 

Example 5.7 (Contractions). Consider the tensor t = vi^V2^f^f defined 
over H ^ , where the factor vectors are 

'?! = 61 + 62; iT2 = 2 e i - e 2 ; ^ = 26^^ ^'; f 3? 

1. Obta in the totally developed analytical expression of the tensor expressed 
in its corresponding tensor basis. 

2. Execute all possible simple contractions, indicating which of the obtained 
systems of scalars have tensor character. 

3. Express the resulting tensors in the previous question, as a function of the 
vectors vi,V2,Pj^. 

Solut ion: 

1. We develop the tensor product 

= (2ei (8) ei - ei 0 62 4- 2e2 0 e 1 - e2 (g) 62) (g) {de"^ ^ e"^ ^ 3?"^ (g) e"^ 

12ei (g) 61 (g) e"^ (g) e"^ + 6ei (g) ei (g) e*"̂  (g) e*"̂  - 6ei (g) 62 (g) e*"̂  (K) e' e"^ (g) e"^ + 6ei 0 6 1 0 6^^ ^ 

-3ei (g) 62 (g) e"^ (g) e"^ + 12e2 (g) ei (g) e"^ (g) e*"̂  662 (g) 61 (g) 6*"̂  (g) e"^ 

—662 (g) 62 (g) e*""*-

and in matr ix form 

. 6^1 • 362 (g) 62 (g) 6*"̂  (g) 6*"̂  

o o'y^J 

"12 0 
6 0 

12 0 
- 6 0 

- 6 0 • 
- 3 0 

- 6 0 
- 3 0 _ 
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where a is the matrix row indicator, ß is the matrix column indicator, 7 
the row indicator of each submatrix, and 5 the column indicator of each 
submatrix, that is, according to the basis axiomatic ordering. 

2. Contraction is an operation that can be applied to any system of scalars of 
r indices and rf components, with n^r > 2. The result is another system 
of scalars of order (r —2) and n'^"'^ components, so that the cited operation 
is defined for such sets independently of whether they are or not tensors. 
According to this, we separate those contractions over tensor indices of the 
same valency that do not guarantee a resulting tensor from contractions 
executed over indices of different valency, in which case it is guaranteed 
that the contracted system is a tensor. 
The contractions of tensor t, with no tensor character^ are (be aware of 
the special notation used for these type of non-tensor contractions) 

C{a,ß) -C(7 , (^) - , that is 

2200-1 r 00-1 ^ / /QNTj-CKpOOl r . l l O O . iZZOO-] 

ni 

^ 2 

''21 

"̂ 22 

^ooll 
,22oo _ -, 0 

,lloo 
^ool2 • ^0012 = 0 + 0 = 0 

tll°° + tll°° = 6-3 = 3 
oo21 oo21 

tllZ + tll°° = 0 + 0 = 0 ^^0022 

O O-i 

^11 
,lloo ,lloo 
^ooll "T ̂ oo22 

oo22 

12 + 0 = 12 

=4> \a 

aßoo 
o o l l 

600 ,12oo , _,12oo r> I f\ n 

12 = * o o 2 1 + * o o 2 2 = - 6 + 0 = - 6 

C = *oon+ioo22 = 12 + 0 = 12 
21 ooll' 0022 

^22 
,22oo ,22oo 
•^ooll + ̂ oo22 -6 + 0: 

75J 

aßooi 
oo22 i 

6 0 
3 0 

^ K;] = 
12 
12 

The contractions with a tensor nature of tensor t are 

-C a C a C ß' •e ß' 

We execute them using two different procedures: 
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1. Direct procedure, according to the contraction definition: 

[cf^]=c(^^)[cf;^] = [C^]+[*of2^] 

^2o 

^2o 
^o2 

t i ' : ?+*" ' : : = 12+6 = 15 ' ' o o l l "^0021 

, 21oo 
^0019+^0099 = 0 + 0 = 0 ool2 oo22 

, 1 2 o o 
^ o o l l • t 

= tll7. + t ^^0012 

22oo 
o o 2 1 

22oo 
oo22 

= - 6 - 3 = - 9 

= 0 + 0 = 0 

18 0 
- 9 0 

[^I-CQIO- [ 0 + 1̂ 2] 
j l o , l l o o 21oo 

TIO , 1 1 O O , , 2 1 o o n I r\ n 

ö̂ ô = ^^^oi + ^̂ ooo = 6 + 0 = 6 
o2 o o z l oo 22 

72o _ 12oo , 2 2 o o 
' ^ o l ~ ^ o o l l + "^0012 - 6 + 0 = - 6 

j 2 o 
^o2 t 

12oo , 2 2 o o 

o o 2 1 ^ ^oo22 

caoi 

-3 + 0 = - 3 

P \ r,Q:/3oo-] J.Q:1OOI r . a l o c 

«/ o l 

/ o 2 

/.2o 

, l l o o , 12oo 
^ o o l l + ^ o o 2 1 1 2 - 3 

tj^'^o+ti^r^^ 0+0 = 0 ' '0012 o o 2 2 

, 2 1 o o , 2 2 o o 
^ o o l l + ^ o o 2 1 1 2 - 3 = 9 

/ o 2 = ^0012 + ^ f o 9 2 = 0 + 0 = 0 «' o2 0012 0022 

[rf O7J 

r ,a2oo-] 

12 6 
- 6 - 3 

\fZ\ = 
9 0 
9 0 

[• CKO-i X-, / P \ r-CKyoOO-i r .a loo i ,Q:2oo-j 
^oo72i 
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lo , l l o o . ,12oo 1 o 1 n i o ^ 
5 o l = * o o l l + * o o l 2 = 12 + 0 = 12 

l o , 1 1 O o , , 1 2 o o n ^ r\ n 

ffo2 = *oo211+*oo22 = 6 + 0 = 6 

2o ,21oo . ,22oo ^ c\ 1 r\ i o 
5 o l = * o o l l + * o o l 2 = 12 + 0 = 12 

2o ,21oo , ,22oo n \ r\ n 
^02 = ^ 0 0 2 1 + ^ 0 0 2 2 = 6 + 0 = 0 ^ 

> ^ [^07] = 
"12 
12 

6" 
6_ 

2. Procedure based on the use of the simple contraction homomorphisms 
and of order r = 4. C(^) -^ Model (2), Formula (5.70): 

Ti = i:r4,i6(a,7) •Ti6,i - ([/2 0 ^ J | l 2 ^ ^ 2 ] ^^2) •Ti6,i 

1 0 
0 1 .1 0] 

1 0 
0 1 

[0 1] 1 0 
0 1 

• Ti 16,1 

1 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 1 

1 0 
0 1 

' T i 16,1 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

-12 + 6 -
0 + 0 

- 6 - 3 
_ 0 + 0 . 

- 1 8 -
0 

- 9 
. 0 . 

and after condensation the result is 

K 
,/5oi 18 0 

- 9 0 

C(^) -^ Model (3), Formula (5.71): 

T'l = i:^4,i6(a, 5) • Ti6,i - \h ^h^ E\\l2 ^h® El] • Ti6,i 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

[1 0] 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

[0 1] • T i 16,1 
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l O O O O O O O O I O O O O O O 
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
O O O O I O O O O O O O O I O O 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

- 12 + 0 • 
8 + 0 

- 6 + 0 
- - 3 + 0. 

- 1 2 -
6 

- 6 
_ - 3 . 

and after condensation we get 

CO 

[d •ßo. 
07J 

12 6 
- 6 - 3 

Model (4), Formula (5.72): 

T f = i^4,i6(/3,7) • ^16,1 = [h 0 [E{\El] 0 h] • ri6,i 

1 0 
0 1 

[ 1 0 0 1] 1 0 
0 1 

1 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 1 

^T^ 16,1 

1 0 
0 1 ^16,1 

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

- 1 2 - 3 -
0 + 0 
1 2 - 3 

. 0 + 0 . 

"9-
0 
9 

. 0 . 

and after condensation we get 

[fZ\ = 

C(^) -^ Model (5), Formula (5.73): 
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T ^ = H^Mß^ S) • Ti6,i - {h ^ [h ^ E{\h ^ El]) . Ti6,i 

1 0 
0 1 

1 0 
0 1 

1 0 
0 1 

[1 0] 1 0 
0 1 [0 i : 

1 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 1 

•T, 

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

16,1 

12 
0 
6 
0 

- 6 
0 

- 3 
0 

12 
0 
6 
0 

- 6 
0 

- 3 
0 

r 12 + 01 
6 + 0 

12 + 0 
6 + 0 

-12-
6 
12 

_ 6 _ 

and condensing yields 

' o 7J 

12 6 
12 6 

' T i 16,1 

3. We will express each of the tensors previously obtained in a developed 
analytical form, and later we will try to factorize each of them, as a 
function of the factors ?7i, -02, / S , / 4 . Then 

/ 3o - , 
I e*^ - Qeo = 18ei 09 e — »62 

and according to the statement data: 

( 2 e i - 6*2) (8) (9e*^) 

d = df °e> (g) e*^ = 12ei (g) e*̂  + 6ei ® e*^ - 6e2 O e'^ -

= (12ei - 662) <8) e*̂  + (6ei - Ses) ® e*^ 

= 2(2ei - 62) (g) 3e*^ + (2ei - 6*2) O Se^^ 

= (2ei - 62) ® 3(2e*i + t^) 

= 3(2ei-e2)<8)(2e*H + e*2) 

= 3(0-2 <S> P) 

f = fZ^a®S^' 

- 362 ® 6*^ 
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= 9ei (8) e"^ + 9e2 O e"^ 

= 3(ei + 62) 0 3e"^ - 3(^i 0 /^) 

r '^ = 12ei (g) ê  V 6ei (g) e 

12(ei + 62) (8) e'^ + 6(ei + 62) (g) e^^ 

6(ei + 62) 0 (2^^ + r ^ ) = 6(^1 0 /^ 

9 = 9o^^c 2 + 1262 g) e^^ + 662 ' 

D 

Example 5.8 (Contracted tensor product). Consider the two tensors a and b 
given by their components with respect to the canonical basis of the linear 
space H^: 

aßi 
1 3 0 
0 0 - 1 
2 - 2 1 

[b' 7 o e i 
o ^oJ 

1 
2 
0 

1 
0 
3 

0 
5 
3 

- 1 
3 
4 

0 
2 
1 

3 
1 

- 1 

1 
0 
5 

1 
1 

- 1 

- 2 
0 
2 

1. Obtain all possible contracted tensor products with both tensors. 
2. Determine the type of homomorphism that directly relates two of the 

contracted products with the other two. 

Solution: 

1. A tensor product tensor is 

.aßjoe _ aß 
o o o5o 00 oSo 

There are two possible tensor contractions: C(^) ~C(^) , because contrac
tions C(^) and C(|) correspond to indices of the same factor. 

L / 7 e i _ r>(^\\fOißiroei _ neß-foe, _ rOß^joei 
["'oooJ — *"1 ^ I r o o o ^ o J ~ r o o o ö o J ~" L"OO ^OÖOJ-

If [«of]* = [4% for 7 = 1, we get 

ßle-, r ße-l r j , l ° e i 
< o o ] = K o ] • PoeoJ = 

for 7 

,^2ei _ rße-, 

1 0 2" 
3 0 - 2 
0 - 1 1 

"1 - 1 1" 
2 3 0 
0 4 5 

— 

[b: 2oei 
oöoJ 

1 0 2" 
3 0 - 2 
0 - 1 1 

" 1 0 r 
0 2 1 
3 1 - 1 

— 

1 7 11 
3 - 1 1 - 7 

-2 1 5 

7 2 - 1 
-3 - 2 5 
3 - 1 - 2 
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and for 7 = 3: 

/?3ei \^ßO-\ TLSoe 

KZ] = KD • Kel] -
1 0 2 
3 0 - 2 
0 - 1 1 

0 3 - 2 
5 1 0 
3 - 1 2 

6 1 2 
- 6 11 -10 
- 2 - 2 2 

So that letting /3 = 1, and assigning to e the values 1,2,3 in the above 
three matrices we arrive at 

L^ooo] = 

"1 7 
7 2 
6 1 

11" 
- 1 

2 

Similarly, for /? = 2 and e taking values 1,2,3, we get 

27ei 
3 - 1 1 - 7 

- 3 - 2 5 
- 6 11 -10 

Finally, for /? = 3 and values 1,2,3 we obtain 

- 2 1 5 
3 - 1 - 2 

- 2 - 2 2 

Then, the first contracted product is 

ßle^ 

• 1 7 11" 
7 2 - 1 
6 1 2 

3-11 - 7 
- 3 - 2 5 
- 6 11-10 

- 2 1 5 
3 - 1 - 2 

- 2 - 2 2 

and the second is 

For 7 = 1, we get 

cQ[t:f: (5oJ 
,o ;6 '7oe i _ r a ö L T O C ] 

^ o o o Ö o J "~ L" 'oo ' ^ o ö o J -

a l en , , , aO r l o e i 
l ^ ^ooo i = i « o o - O o ö o J 

1 3 0" 
0 0 - 1 
2 - 2 1 

• 
"1 - 1 1" 
2 3 0 
0 4 5 

= 

for 7 - 2 : 

Q;2ei r aO 7 2 o e i 
1 3 0" 
0 0 - 1 
2 - 2 1 

• 
"1 0 1" 
0 2 1 
3 1 - 1 

= 

7 8 1 
0 - 4 - 5 

-2 - 4 7 

1 6 4 
-3 - 1 1 
5 - 3 - 1 
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and for 7 = 3: 

r aSe-i r aO 73oei 
booJ = [ao6-^oeJ 

1 
0 
2 

3 
0 

- 2 

0" 
- 1 

1 
• 

0 
5 
3 

3 - 2 " 
1 0 

- 1 2 
— 

15 6 - 2 
- 3 1 - 2 
- 7 3 - 2 

Doing exactly the same as in the previous case, ß = 1,2,3, and e succes
sively equal to 1, 2,3 in each jump of /?, we obtain the second contracted 
product 

7 8 1-
1 6 4 

15 6 - 2 

0 - 4 - 5 
- 3 ~1 1 
- 3 1 - 2 

- 2 - 4 7 
5 - 3 - 1 

- 7 3 - 2 

Another tensor product is PQ^^Q ^ ^ : : : ) a 
aß 

There are two possible tensor contractions (of contracted product): C(^) 
C(^). Thus, we have 

For 7 = 1, taking into account that [b^l^^] = [̂ oöol*' ^^^ result is 

\w 
l e / 3 i 

«!f] = o oJ 

" 1 2 0" 
- 1 3 4 

1 0 5 
• 

1 3 0 
0 0 - 1 
2 - 2 1 

1 3 - 2 
7 - 1 1 1 

11 - 7 5 

For 7 = 2, we get 

2eß 
IW^ Jß 2eoi 

] = KZ • <:] = iKi;] • K 
'I 0 3" 
0 2 1 
1 1 - 1 

• 
1 3 0 
0 0 - 1 
2 - 2 1 

7 - 3 3 
2 - 2 - 1 

-1 5 - 2 

and for 7 = 3, is 

N o o o ] = [ ^ o ö o ' ^ o o ] = [^ooö] 

0 5 
3 1 
2 0 

3" 
- 1 

2 
• 

"1 
0 
2 

3 
0 

- 2 

0 
- 1 

1 

6 - 6 - 2 
1 11 - 2 
2 -10 2 
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So that the present contraction becomes 

\w 
7e/3i 

1 
7 

11 

7 
2 

- 1 

6 
1 
2 

3 
-11 
- 7 

- 3 
- 2 

5 

- 6 
11 

-10 

- 2 
1 
5 

3 
- 1 
- 2 

- 2 
- 2 

2 

Finally, the following contraction remains to be calculated: 

S 
o o o J 

i 5 : : : i = c ( : ][p o ^ o o o J ~~ L-^^oÖoooJ ~" i^oQo " ' o oJ 

This time we will transpose the matrices associated with both factors, in 
order to be able to execute them in matrix form. 
For 7 == 1, we obtain 

KT^ = [Ö, 
l o e aö-i 
oBo ' ^ o o J 

r l e o - j 
[^e^^l • l^^^l = 

7 0 - 2 
8 - 4 - 4 
1 - 5 7 

For 7 -= 2: 

and for 7 = 3: 

^ o o ] 

r 2eQ:i r L 2 o e CKÖT r72eo-i r Qof\ 

1 - 3 5 
6 - 1 - 3 
4 1 - 1 

" 1 2 0 ' 
- 1 3 4 

1 0 5 
• 

1 0 2 
3 0 - 2 
0 - 1 1 

1 0 
0 2 
1 1 

3 ' 
1 

- 1 
• 

"1 
3 
0 

0 
0 

- 1 

2 
- 2 

1 

r SecKi r i , 3 o e OLQ-\ r rSeo- i r Oof\ 
[ ^ o o o J ^ P o ö o - ö o o ] = [ ^ o o ö ] - K o ] 

15 - 3 - 7 
6 1 3 

- 2 - 2 - 2 

0 5 
3 1 
2 0 

3" 
- 1 

2 
• 

' 1 
3 
0 

0 
0 

- 1 

2 
- 2 

1 

which yields the contracted tensor 
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c,7ea;i _ 

7 0 - 2 
8 - 4 - 4 
1 - 5 7 

1 - 3 5 
6 - 1 - 3 
4 1 - 1 

15 - 3 - 7 
6 1 3 

- 2 - 2 - 2 

2. A careful examination of the tensor \w^^ ] reveals that it is a certain 
L O O OJ 

permutation of [t̂ foo] and, since all dummy indices change position, it is 
a rotation. Compared with the Example 5.5 of rotation tensors, we finally 
establish that [w^'f] = [uiV]^^^\ 

L O O OJ L o O O J 

Similarly, we establish that [5^^^] = [v^'~lV\^^^^•> ^^ interesting relation, 
which enables us to avoid half of the operations in the previous question. 

D 

5.10 Eigentensors 

Given an arbitrary tensor, T, we examine what possible tensors exist of a given 
order, r, that in a contracted tensor product with the given tensor, become a 
tensor that is A times {\ £ K) the initial tensor, that is, the following tensor 
equation is satisfied, with T and r = 3: 

a (n;:x:)=Ax° 0(p O 

ow' 1 ^ ; v- 0/370 

Fi rs t case: 

Data tensor: A = [a"'^], of second order, over n — dimV'^{K) = 2. 

Test tensor r = 1: vector X = [x^] 

According to (5.81), we must have 

e 

(5.81) 

ß [Ä^x] = [a:;-s:;-x:] 
QO t 

A^X = \X 

and the relation (5.82) leads to the classic relation 

[A-\I]mX = Q, 

(5.82) 

(5.83) 

which is solved in algebras with the eigenvalues and eigenvectors associated 
with matrix A, for the eigenvalues Ai and A2 of the characteristic polynomial. 
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We do not insist on this, since we assume tha t it is well known by the 
reader. Let Ai and A2 be the matrices of eigenvectors associated with the 
eigenvalues Ai and A2 (assuming they coexist in K); we assume from now on 
tha t they are known. 

The solutions in this first case are 

Xi — A\ arbitrary eigenvector of the matr ix A, associated with Ai. 

X2 = A2 arbitrary eigenvector of the matr ix A, associated with A2. 

S e c o n d case: 

(5.84) 

Data tensor: A — [GQ'^], of second order, over n — dim V^(i^) = 2. 

Test tensor r = 2: matr ix X — b ^ r l = A-

According to (5.81), the first t e rm must be 

Let P — [Po^o^] — A^X\ There are several possible contractions: 

First possible contraction 

[?:a=c p.cll 
Equation (5.85) is stated by "extension": 

(7̂ / = iJ^2^^4(^ ,7)P^, l 

a 0 7 0 
Poßoö 

(5.85) 

(5.86) 

with the help of the homomorphism (5.72). 
The details are 

A = 2o 

"'ol 

l o 

2o 
^02 J 

X X y 
z t 

P = A(g)X 

P 

l o l o 
« o l ^ ö^ol^ 

l o 
^ o l ^ 

l o , 
^ o l ^ 

2o 2o 
^oV^ « o l ^ 

2o 2 o , 
« 0 1 ^ 

which in our case is n 
(5.72) leads to 

+ 

2; a = n^ = 2^ 

l o l o 

l o l o , 
a^ryt 

o 2 
2o 2o 

a^^x a^^y 
2o 

16; (j' 

2o, 
^02^ 

n" 4, and then, 

r2^[El\El 

"1 0" 
0 1 (8) 

]^I2 = 

" 1 0 ( 
0 1 ( 

'1 0" 
0 1 

) 0 
) 0 

0 [ 1 0 0 

0 0 1 O' 
0 0 0 1 _ 

1 ] 0 
"l O' 
0 1 
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1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 
1 0 0 0 0 0 1 

and (5.86) gives 

QA = ^ 4 , 1 6 ( / 3 , 7 ) » ^ 1 6 = 

lo , lo 
^ 0 1 ^ + ^ 0 2 ^ 

lo , l o , 
« o l ^ + ^o2^ 

2o 2o 

2o , 2o, 
^ o l ^ + ^o2^ 

and once condensed, we identify with the right-hand of (5.81): 

l O I l O i O , ± 0 , 

«oia^ + « o 2 ^ « 0 1 ^ + 002* 
2o , 2o 2o , 2o, 

« o l ^ + ' i c 2 ^ ß o i y + ßo2* 

= A X y 
z t 

and passing all terms to the left-hand side leads to the matrix system: 

[A - XI] • 

[A-XI] 

the solutions of which are the eigenvalues and eigenvectors of the classic, which 
has been solved in the first case. 

Thus, the solution matrices, built by blocks are the following: 

• 

• 

X 

z 
y 
t 

— 
"0" 
0 

'o' 
0 

^ i = [^ I IM^I ] automatrix associated with Ai 

X2 — [A2\jyA2] automatrix associated with A2 

Second possible contraction 

V/i, ueK. 

W=c 
r a 0 7 0 n 
L-^^o^o<5J 

which once stretched leads to the new q^': 

Qa' = H4^l6{a,S) ' Per-

With the help of the homomorphism (5.71) we obtain 

(5.87) 

(5.88) 

(5.89) 

i^4,i6(a,*) = [h^Ellh^El 
• 1 0 0 0 
0 1 0 0 
0 0 1 0 

.0 0 0 1, 

|1 01 

1 0 0 0 
0 1 0 0 
0 0 1 0 

LO 0 0 1 

[0 1] 
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1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1, 

and (5.89) gives 

QA = H4^i6{a,6)Pi6 

l o , 2o 

l o , 2 o , 

l o 

l o 
« o 2 ^ -

^ol^ 
2o 

^ o 2 ^ 
2 o , 

• ^ o 2 ^ 

which once condensed and according to (5.88) leads to [q°^^'^' ^ßo\' 

Kl\ 
l o I 2o l o , 2 o , 

« o l ^ + ^ o l ^ Ö^ol^ + '^ol^ 
2o l o 2 o , 

< 2 ^ + ^o2^ < 2 ^ + <2^ 

According to (5.81) matrix [g'̂ ]̂ must be equal to AX = A[x^^], which requires 
transposing one of them, then 

KlY XX: 

l o , 2o l o , 2o 

l o I 2 o , l o , 2 o , 
ö^ol^ + ^ o l ^ « o 2 ^ + « o 2 ^ 

A X y 
z t 

and passing all terms to the left-hand side, and adequately sorting the equa
tions, yields the matrix system 

[A' - XI] 

[A' - XI] 

the solutions of which are the same eigenvalues Ai and A2 as in possibility (a), 
but the eigenvectors A[ and A2 are those corresponding to matrix A^. So, 

• 

• 

X 

y. 
z 
t 

— 

— 

'o" 
0 

"o" 
0 

A'l-^ [x y] = Al eigenvector of Ai 

11A'-^ -^\z t] = [iA!l eigenvector of Ai 

and similarly A!^ and 1/̂ 2 for A = A2. 
Finally, we give the following matrices, built by blocks as left solutions: 
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^ i 

A'/ 

X2 = 

which satisfy 

Third case: 

Alt 
•»•2 

vA'^ 

automatrix associated with Ai 

automatrix associated with A2 

V V/i, 1/ G K, (5.90) 

Xi • A = AiXi and X2 • A = A2X2. 

Finally, we will study the autotensor of order r = 3. 

Data tensor: A = [Ö^^], of second order, over n. 

Test tensor r = 3: (tensor of order 3). Among several possible choices, we 

select the tensor X — \x 706-1 
o<5oJ' 

X is a contra-cova-contravariant tensor. The possible contraction tensor 
products are: 

M = C 

N = C 

Q = C 

P = C 

P = C 

P = C 

[^oöo^o] ~ I^^isoo]' cova-contra-contravariant 

bo!öo^o] ~ [^ooöl' contra-contra-covavariant 

[pTßTöl] = bo^o]' contra-cova-contravariant 

So, the only valid option is the third one. Since the dimensions of the tensors 
to be contracted and contracted are, respectively, for n = 2 : <T = 2^ X 22 = 32 
and a' = a/2^ = 32/4 = 8, the following tensor equations must be satisfied 

Q = C{ /, ]P = C •J ) [A O X] = AX. (5.91) 

We start from 
a b 
c d 

9 hi 

A 'oß\ 

l o l o 
O l Ol 

2o 2o 
O l o2 J 

Having performed the contraction, the fundamental relation (5.91) can be 
stated as 
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Q 

r lo i 

l o l 
<?o2o 

2 o l 
9 o l o 

2 o l 
9 o 2 o 

l o 2 
« o l o 

l o 2 
? o 2 o 

2o2 
9 o l o 

2o2 
9 o 2 o 

lo lo I07 I lo p 

•«o2^ 0^01^ + ^ 0 2 / 
lo . lo lo 7 I I07 

^01^+^02^ «01^ + ^02'^ 

2o 2o 
^ 0 2 ^ 

2o7 
«01^-

2o /. 

^o2 
2o , 2o 2o 7 , 207 

« 0 1 ^ + ^ 0 2 ^ 0^01^ + ^ 0 2 ^ 

= A 

va Ö1 
c d 

ef 
Ig hi 

(5.92) 

passing all terms to the left-hand side, and grouping adequately the equations, 
we obtain the systems 

[A-\I] 

[A-XI] 

that can be summarized as 

[A-AI ] 

• 

• 

a 

e 

c 

19] 

— 

— 

fol 
[uj 
Fol 
[uj 

[A-XI] 

[A-XI] 

• 

• 

\b' 
J_ 

\d' 
h_ 

["ol 
_0_ 

roi 
0_ 

b e d 
f 9 h 

= a 2,4. 

Their interpretation is evident: the matrix solution appears as a permu
tation of X, and the columns of such a matrix, must be eigenvectors of the 
eigenvalue Ai for Xi , or, for the solution X2, eigenvectors of the eigenvalue 
A2. 

Built by blocks they are 

X i 

X 2 - ;V/i,z/, . . .p,/x' ,i/ ' , . . .p' G K. 

(5.93) 

The reader has now enough tools and experience to solve again the problem 
using the direct homomorphism model 5 in Section 5.8.4, on P(j. that is, the 
tensor components of A (g) X in a column matrix. Then, it can be checked 
that the resulting matrix Q -̂' = ^o-',(j • Pa is the stretched expression of the 
matrix Q in (5.92). Then, the solution, that must be (5.93), can be obtained. 
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5.11 Generalized multilinear mappings 

We analyze here the mapping of a linear space absolute direct product 
r \ 
X Vl^"- {K) into an arbitrary hnear space W'^{K). 

As is well known, we call this an "absolute total" linear space or "total 
product" linear space, which is denoted by 

' r 
V:^^ X V^^ X V^^{K) or j X ¥["' \ {K) (5.94) 

to a linear space, the vectors of which are r-tuples of vectors chosen one per 
each factor linear space and in order: 

r 
{vi,V2,---,Vr)e\ X Vr I (K); Vi € Vl^'iK) (5.95) 

and its dimension n = rii -\- n2 -\- • • - -\- rir-
Next, we establish two formal axioms that must be satisfied by the gener

alized multilineal mappings: 

(r 
1. F is a mapping that associates with each r-tuple of vectors in x V̂ "'* | (ÜT), 

a vector we W^iK): 

F: i X Vl"' I {K) -> W^{K) (5.96) 

for all r-tuple it is 

F{vi,V2,:..,Vr) = weW^{K). (5.97) 

2. This mapping is multilinear: 

F{vi,V2, . . . ,Vy^ + V'l, . . . ,Vr) = F{vi,V2,...,Vh,...,Vr) 

+F(^ i ,^2 , . . . , t4 ' . - - - ,^ r ) (5.98) 

F{vi,V2,...,Xvh,...,Vr) = XF{vi,V2,'-',^h,'--,Vr); l<h<r. 
(5.99) 
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Based on these axioms, we will establish how data are presented and what 
the operative formulas are for practical use. First, we select bases for the 
intervening linear spaces, and thus, to the vectors of components: 

vi = eß^x^^l with ^ i G F i ^ n ^ ) and 1 < A < rii 

v^^Cß^x^^l with V2eV^\K) and 1 </Js < ^2 

" ' ' " ' " *" "* (5.100) 
Vi = eß,x^^l with VieVl^'^K) and 1 < A < ^z 

^r = ^ßr^ ol ^^'^^ ^r ^ V^'^{K) and 1 < /3r < ^r, 

where Vx^*° is data. 

When introducing these data in (5.97), on account of (5.98) and (5.99), 
we obtain 

w = F{vi,V2, ...,Vr) = x^^l ' x^^l x^^lF{eß,, e;32,..., e^^J. (5.101) 

This expression with contracted dummy indices has a total oi a — rii • n2 -
• • • ' rij. summands, which correspond with the possibilities of the r-tuples 
( e / 3 , , e } 3 2 , . . . , e } 3 j . 

Assume now that the a basic mappings: 

F(e>,,e}3, , . . . ,e>J=^(/3i , /32, . . . , /3r); w{ßuß2.-• ^ .ßr) eW^{K) 
(5.102) 

are given (again data). 
We also assume that vectors t?(/3i,/?2, • • • ,/3r) are data of the following 

form. 
If the basis of the linear space W'^{K) is {ek}Ti expressing the vector 

^ ( Ä , /52,... ^ ßr) as a vector covariant tensor: 
-*//O o n \ l o o - ' - o - » , 2 o O ' - - o - * . 

W{ßuß2, .•.,ßr)= W ' o A Ä - ^ . ^ l + " ' o / 3 i / 3 2 - / 3 / 2 + • " • 

where the vector coefficients are mounted with the corresponding covariant 
tensors, the m covariant tensors are the data that characterize the mapping 
F(e/3i,e}32,...,e>J = w{ßi,ß2, •.. ,ßr)- (In reality w{ßi,ß2,... ,ßr) is a vec
tor covariant tensor built with vectors of W'^{K), instead of scalars of ÜT; 
the reader can see this by executing the sum indicated in (5.103) by separate 
summands, and then grouping them into a single entity. 

Assuming that F is delivered as indicated, in (5.103), and entering it in 
(5.101) we obtain the image of the stated multilinear mapping, by means of 
the final calculation formula: 
->• ßio ß2 0 ßr° f l o o - ' - o - * . 2 o o - - - o - ^ . , m o o ••• o -* \ 

(5.104) 
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which is built with m contracted products of the contravariant components of 
the data vectors by the covariant components of the multilinear mapping F. 

One perfectly detects that in Formula (5.104) the notation used has a free 

index in the interior of the coefficients (the index h of w^n ^ "'o ) but it is 
useful for the calculation; it is the "vector" index of the basis {eh} of W'^{K). 

If in Formula (5.104) we take as fixed, for example, the vectors ('̂ 2)05 ("̂ 3)05 
• • • 5 (^r)o5 leaving as dummy the iTi, since they are constant during all the 
multilinear mappings F all (a: J'^)o;2 < h < r the multilinear mapping de
generates into a homomorphism Hi that applies Hi : V-[^^{K) -^ W'^{K); 
similarly, if we fix as constant other vectors Vh with the exception of a given 
vector. This is the way most authors define multilinear mappings, which in 
the authors present opinion is correct, but not useful from a practical point 
of view, because none of them arrives at a concrete expression, like the one in 
(5.104). 

5.11.1 Theorems of similitude with tensor mappings 

Theorem 5.6 (Similitude). There exists a univocal correspondence between 
the a r-tuples {ep^^ep^^..., Sß^); 1 ^ ßi ^ ni]i £ Ir that appear in Formula 
(5.101) and the a basic tensor products, of the basis B' = {Sß^ ^Cß^^.. -^ep^} 

of the tensor space V^' ^V^^-"^ V^-{K) = ( 0 F f M {K) 

( e / 3 i , % r " , e / 3 j ^ e / 3 i ®^ß2 ^''-^^ßr- (5.105) 

D 

It should be surprising for any reader the evidence of the above theorem's 
final expression. Next, we give a second theorem that is based on the one 
above. 

Theorem 5.7 (Similitude). There exists a unique multilinear mapping: 
r 

F' : ( ^Vl"' ) {K)-^W^{K), 

such that 

F\vi^V2^'-'^Vr)=F{vi,V2,...,Vr) = w; wGW^iK); WieV^'iK). 
(5.106) 

D 

So that the problem of solving images by means of the multilinear mapping 
r 

F : [ xV^' \ (K) -^ W^{K) can be solved indistinctly, with the tensor 
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multilinear morphism F' : i 01^"'^ J [K) -^ ^"^{K)^ by simply changing the 

notation with the help of Formula (5.105). 
Finally, we consider two tensor spaces: the tensor space 

A = [Vf ̂  ®V^^®'"® V^-{K)] 0 [V^' ^V^^®'-'® C - ( i ^ ) ]* 

and the tensor space B, the set of all (tensor) multilinear endomorphisms that 
operate inside the tensor space V^"^ (g) V^^ (g) • • • (g) V^''{K): 

Theorem 5.8 (Similitude). There exists a unique isomorphism # 

''vr]{K)J^vr]{K) 
' (5.107) 

such that with each tensor {vi ^ V2 'S) • - - ^ Vr) S {ui S U2 S> • • • S UrY £ A it 
associates a tensor multilinear endomorphism 

that transforms the multivectors w = wi S> W2 S • - • S Wr E I S VJ"'* (K) J into 

the following form: 

T{w) = [iwi (g) W;2 (g • • • (8) vSr) • {ui (S>U2 S • -- S UrT] (^1 (g ^2 (g • • • g) Vr)-

(5.108) 
D 

Theorems 5.7 and 5.8 will be proved by means of concrete models in the 
proposed examples, so that the interested reader will be able to obtain the 
general proofs. 

5.11.2 Tensor mapping types 

If we reconstruct Formula (5.101) adapted for generalized tensor mapping or 
as a mapping of the correspondence (5.105): 

(5.109) 
and we do the same with (5.102) and (5.103): 

F{eß, ® e>, (8) • • • (g) e > J = w{ßi,ß2, • • •,ßr), (5.110) 

the development of the tensor mapping is performed using the same expression 
(5.104) but with these changes. 
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It is obvious that in (5.104) the tensor coefficients w^^ Q [[[ß with 1 < 
h < m^ can be in some cases symmetric^ or anti-symmetric for the covariant 
subindices leading to the existence of tensor mappings F -symmetric and 
F -anti-symmetric. 

The tensor F-anti-symmetric mappings will be studied in later chapters. 
It must be clarified, however, that the tensor mapping type F is completely 

independent of the tensor type over which it is applied, in other words, for 
example it is not necessary to transform symmetric tensors with symmetric 
mappings. 

5.11.3 Direct n-dimensional tensor endomorphisms 

We study here the particular case of tensor mappings. Consider the tensor 
r 

space ^ V^(K) = V7̂  (g) ¥2^ (8) • • • (8) V^(K) tensor product of r n-dimensional 

linear spaces of dimension a = n^ ̂  over the same field K. We assume that in 
each of the linear spaces V-^{K) acts an endomorphism of associated square 
matrix Hi of order n, which transforms the vectors Vi G Vl^{K) in Hi{vi) = 
Wi € Vl'iK). 

We look for the heterogeneous tensor endomorphism iJ^-, which applies the 
r 

prototype multivector vi<S)V2'^ - - • ^Vr ^ ^ V^^{K) on the image multivector 
r 

wi(S>W2'S>--- (S)Wr e ^ V l ' i K ) , that is, 

Ha{v) = W <^ H(j{vi 0 V2 ^ ' ' ' ^ ^r) = '^1 '^ '^2 ^ ' • ' ^ '^r- (5 .111) 

We solve the problem in a direct form until we find iJ^r. Later, the result 
will be related with the formulas in Section 5.11. 

If we notate in tensor form the individual endomorphisms, if Vi — X(̂ ) o^ai 

and Wi = y{i)^^ßj with ai^^ßj G In] i->j ^ Ir-i the result is 

2 / w ! ^ = % ) ' o . > « ? - (5-112) 

Replacing in ti; = ttJi (g) 1̂ 2 0 • • • (8 ttJr the expression of each vector, we 
arrive at 

^ = iViiU^ßi) ^ (^(2)1'%) (8 • • • (8) ivirueß^) 

= {y{iUy{2U ''' y{ru) e/3, 0 e^. 0 • • • ^ e>. (5.113) 

and replacing (5.112) we get 

e/3i 0 % (8)---(8)e}3,, (5.114) 

w 
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which after operating and grouping yields 

eß^^Cß^^S) •-' 0 eß^. (5.115) 

If we write 

^ o a i o « 2 - o ar. - ^(1) o a i^ (2 ) o «2 " ' ' V ) o a . ' (5.116) 

Expression (5.115) becomes 

( CKl Q!2 0^r\ f-Lßl ° ß2 O ••• ßr O \ 

^(1) o ^(2) o • • • ^( r ) o ) [K a^o a,- o a J 
^/5i ^ % 0 • • • 0 6/3^. (5 .117) 

Since ^(j)^^ are the vector data Vj and ^(j) o J. are the endomorphism data 
inside each VJ^{K)^ Formula (5.117) solves the problem stated in this section. 

In matrix form, expression (5.116) is solved in the matrix 

H^ = Hi0H20'-'0Hr. (5.118) 

If the column matrix 14-, i is an extension of the components of ^i (8) '̂ 2 ^ 
• • • (8) 'or, and the column matrix VKa,i is an extension of the components of 
wi 0 W2 0 •' • 0 Wr^ then, expression (5.117) leads to the endomorphism (in 
matrix form) 

W^,i = H^»V,^i. (5.119) 

If we consider 
m = ri^-.ek = Cß^ <S> Cß^ 0 • • - 0 Cß^, 

with 1 < k < m and finally h\^ ̂  ^ ° " ^^ ̂  =w^a^"'^, the tensor equation 

(5.117) represents a variant of Formula (5.104). 
One can easily conclude that Formulas (5.104) and (5.119) can be applied 

r 
to tensors in 0VI^{K) not coming from tensor products, as it was indicated 

in Formula (5.109) and will be in the following formulas. 

Example 5.9 (Proof of Theorem 5.7). In this example we prove the tensor 
similitude Theorem 5.7 for the homogeneous case with the help of tensor and 
matrix tools. 

Consider the homogeneous linear space "totahproduct" (initial space): 

r 
X (y^)(i^) I = y ^ X F " X T/̂  • •. X V'iK) 
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of dimension {r • n). Let the r-tuple {vi^V2r " ^v^) be one of its vectors, 
where Wi G V'^{K)^ and consider the final linear space W'^{K). The vectors 
Vi — x^J^Cai are given by its components (^^'°)-

Consider a multilinear mapping F that applies the initial space on the 
final space by means of the following report, the coefficients / of which are 
data tensors: 

^ r 
F: \ X (F^)(i^) I -^ W^iK) 

F{vi,V2,...,Vr)=f^^^ O ••• O CKi O Q;2 O 
r^/3' (5.120) 

where {cß} is the basis of the linear space W'^{K)^ with ai £ In'A < ß < rn. 
Developing the sum associated with index ß in (5.120) to obtain its matrix 

expression, we get 

F{vi,V2,...,Vr) = fl^^ ° 
Q-l O CK2 O 

a2---ar^ o 1 ^ o 2 • 

+/ 
2 o o • 

ocKi a;2 • 

l o o 

+ . 

= e i e 2 • 

/
loo--- o /»lo 

o l l - . - l / o l 

loo---o 

1---2 

/
2oo--- o /.200---0 

o l l - . - l / o i l - . - 2 

l o lo 

l o lo 

/
m00---0 nTTlOO--' 

o l l - . - l / o i l - . . 
l o 

• ^ o r 
2o • • ^ r . 

no no 
^ o l ^ o 2 ' 

• ' X ^ 

pm o o •-- o 
^ X 

O CKl 0:2 ••• Ctr 

pl 0 0 •-• 0 

•̂  OCKl 0;2 •••CKr 

/ . 2 0 0 .-• 0 

•̂  OCKi Q!2 •••CKT-

/.?TT, 0 0 --• 0 

•^ 0 CKl 01.2 ' " CX-r 

ai 
0 

0 

1 ^ 
Q!2 

0 

0 arO -

2 or 

^ 1 0 0 -•- 0 ~ 

«̂  o n n - - - n 
/.2o 0 -.- 0 

•̂  onn-'-n 

pmo 0 --- 0 

•̂  0 nn---n _ 

(5.121) 

the symbolic matrix expression of which, with declaration of the sizes of the 
matrices appearing (with a = n'^) is 

F{V1,V2, • • • , i v ) = [?L?2 • • • ^ni]Hm,a 
aio 0:20 

^ o 1 ^ o 2 ' cr,l 
(5.122) 

which is the matrix expression of the multilinear mapping F. 
Next, we will discover a multilinear tensor morphism F ^ Remembering 

that 
' ' " ^ V r ^ x Z ^ ' ' , x ' ^ ^ l " - x ' ^ ' ^ y a , ^ e a o ^ ' - - ^ e a ^ , t ' l 0$) t'2 ' 

and applying Theorems 5.6 and 5.7 we choose the following equality: 

F'{ea^ (8)6^2 (8) •••(8)60:J = F(ec, ,ea2,--- ,ea ,) 

and then 
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2 '^ Q r Q-i ^ CK2 •ea , ) 

— -^ V^CKi 5 ̂ a;27 * * • 5 ̂ CKr/V*^ o 1*^ o 2 ' * ' ' ^ o / " v ^ - l ^ O J 

If now we apply (5.122) to the vectors (e*a ,̂ e^s, • • . , e^^) in matr ix form we 
get 

(5.124) 
where {Ea^} is the matr ix canonical basis of V'^{K). 

The matr ix 

• [Ei0Ei<^-'-(^Ei\-'-\E, ^ E 
a\ "^y -^0:2 

•'-^EaJ...\En0En^-

represents the operator F ' , and then the final expression for Formula (5.123) 

Fn]cT,a 
(5.125) 

IS 

F'iv,(E>V2(^--'® vr) = [e, ,62,..., en]H'^^, \x"^' Ixl' ° • • • x " ; l . (5.126) 
L J (7,1 

Developing Equation (5.125) one gets 

which proves our theorem. 
D 

Example 5.10 (Confirmation of Theorem. 5.7). We wish to prove the simili
tude Theorem 5.7 by means of the following model. Consider two linear spaces 
U'^{K) and V'^{K) referred to their bases {eai}T ^"^^ {^0:2}?? respectively, 
and the two vectors 

u ( r c \ a ; 2 , . . . , :c™) e C/"(i^) and % \ 2 /2 , . . . , y") e F " ( i r ) . 

Consider also another linear space W'^^'^{K) referred to a basis {e^ir^"^ ' 
and a bilinear mapping: 

which transforms the vector duples of the "direct product" space If^ x V"^{K)^ 
into vectors of W'^^'^{K) by means of 

w = F{u,v) = [x''x'---x'^] 

Wii 

^t;2i 

Wml 

W12 ' 

W22 • 

'^m2 • 

• • ^ I n " 

•• W2n 

'^mn -

(5.127) 
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where each of the vectors Waß in this matrix comes from W'^^'^{K) and can 
be written as 

-̂  l o o - ^ , 2 o o ^ , mxnoo-'^'"o'aß^rnxn; I < a < m; l < / 3 < n . 
(5.128) 

1. Give a matrix expression of the image vector w. 
2. Prove the existence of the mapping F\u^ v) in Theorem 5.7. 
3. Answer questions 1 and 2 for the particular case 

m = 2] n - - 3 ; ^1(2,-1); iT(3,2,1); 

w îi = 2e*2-3e*3; tfJi2 = 0; tiJis = 5eL + 2e*2 - 64 + e*6; 

^21 == eL + e*6; tt;22 = e*2 - e^\ W2S = el + e*2 - ?3 - 4̂ + ?6. 

Solution: 

1. Expression (5.127) can be written in tensor form as 

w = F{ü,v) ^x'lvlwcß, (5.129) 

and developing the sums associated with the dummy indices a and /?, and 
writing them as a matrix product and, as required, representing the vector 
matrices as row matrices, we finally get 

W = F{Ü, V) = [wiiWi2 • ' ' Win'W2lW22 ' ' ' t?2n ' ' ' WmlWm2 ' 'Wr^ 

1 1 
QC/ O 

1 2 
o^ o 

1 n 
o^ o 
2 1 
o<^ o 
2 2 
o^ o 

2 n 
o^ o 

m 1 

m 2 

m n 

which is the answer to the first question. 
2. Substituting vectors tiJcK̂  in Formula (5.128) into the last expression and 

grouping in matrix form yields 
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w = F{ü^v) 

[eie2---e^ 

w 

w 

loo 
o i l 
2oo 
o i l 

W 

W 

ol2 
2oo 
o l2 

mxnoo mxnoo 
12 

l o o 

2 o o 

mxno o 
«^ o aß-

l o o 
• W 

omn 2 o o 
• W 

omn 
mxn o o 

o mn 

1 1 
o^ o 
1 2 
o^ o 

1 n 
o<^ o 
2 1 
o^ o 
2 2 
o^ o 

2 n 
o^ o 

m 1 
O '^ O 

m 2 
O '^ O 

(5.130) 

Note that Expression (5.130) is the matrix expression of a multihnear 
mapping F\ü (S> v) by means of the central data matrix^ which "stacks" 
tensor F'. 
Consequently F{u^v) — F'{ü<^v) = w, which is Theorem 5.7, answering 
the second question. 

3. Next, we illustrate this numerically. 

m ' n = 2 X 3 = 6; u = [ei 62] 

where ü G [/^(R) and v G V^(R). 

Let z =^ u <S) V = [ [ei 62 ] 

sion we get 

1 ^ 2 ^ 3J 

[e 1 6 3 6 3 ] by exten-

z = ([ei 62] (g)[e ; e'2 e^ ] ) 
r ^ 1 * 

2 
- i j 0 

"3" 

2 
1 
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= [ e 1 (g) e* 1 e 1 (g) e* 2 e\ (g) e 3 62 ^e[ e 2 0 e 2 6̂2 0 e" 3 ] • 

The vector z = u^ve U'^ ^V^(R) will be useful later. 
Using Formula (5.127), we obtain 

6 
4 
2 

- 3 
- 2 
- 1 

w = F{Ü,v) = [2 - 1 ] 

- [ 2 - 1 ] 

26*2 - 3e*3 0 5^1 + 26*2 - ?4 + ?6 

61 +6*6 62 — ?5 61 + 62 — 63 ~ ?4 + ?6 

0 0 5 
1 0 1 ^1 

[2 -11 

[2 -11 

- 3 0 0 
0 0 - 1 

0 0 0" 
0 - 1 0 

[2 -11 

el+ [2 

e"̂5 + [2 

= 6ei + 13?2 - 17?3 - ?4 + 2e*5 - 2ee; 

w=^ \ei €2 ••' CQ 

2 0 2 
0 1 i j 

3 

2 
1 

^2 

-1 ] 
0 0 - 1 
0 0 - 1 

'- -" 

•1] 
0 0 1 
1 0 1 

• 6 -

13 
- 1 7 
- 1 
2 

r ) 

" 3 " 

2 
1 

' 3 

2 
1 

ee 

5 

€4 

which answers the first question. Next, we build the central matrix of the 
multilinear mapping F\ the structure of which has been given in Formula 
(5.130), Thus, we arrange the data vector components Waß as columns, 
and then, we apply the mentioned formula 

w = F\z) =F'{u^v) 

[ei 62 ^ej 

0 
2 
-3 
0 
0 
0 

0 
0 
0 
0 
0 
0 

5 
2 
0 

- 1 
0 
1 

1 
0 
0 
0 
0 
1 

0 
1 
0 
0 

- 1 
0 

1 -
1 

- 1 
- 1 
0 
1 . 

# 

- 6 -
4 
2 

- 3 
- 2 

. - 1 . 
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e i ' ^1 6 1 0 e2 e i (g) 63 62 (K) 61 62 (8) 62 62 ' el] 

r 6 
13 

- 1 7 
- 1 
2 

L - 2 

(5.131) 

which gives the answer to the second question. 
As one can see the result is the same as the one obtained in the first 
question, which is in agreement with the tensor similitude Theorem 5.7. 

D 

Example 5.11 (Proof of Theorem 5.8). Consider the linear spaces V'^{K) and 
its dual V^{K) referred to the reciprocal bases {ep} and {e**"̂ }. 

Consider also the linear space of all linear operators T that transform 
vectors inside V'^{K), that is, 

T : ViK) -^ ViK); T e Cl^iK), V^(i^)], 

where C refers to linear operators and V^ (K), V^ (K) to the endomorphism 
initial and final linear spaces, respectively. 

Let {eaß} be the canonical basis of C[V''{K),V''{K)], 

^Otß 

r 0 

0 

_ 0 

0 • 

0 • 

0 • 

• 0 • 

• 1 ' 

• 0 • 

• 0 

• 0 

• 0 

with a one in the position associated with row a and column ß and zero 
otherwise; there exist n^ basic vectors. 

Consider two data vectors 

,1?* eV^{K) a n d ^ - lle^l .veV'iK). 

If we build in matrix form the vector v^iT'e V^ (8) V^ (K) and make the 
matrix of order n x 77, of the product equal to ^{v^ {?*), we apply the tensor 
space V (g) V^{K) in the space C[V''{K),V'^{K)]. Show that the endomor
phism transforms the vectors as stated in the tensor similitude Theorem 5.8. 

Solution: We calculate the vector v ( 
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V 09 u [eie2 • 

[6162 • 

re-ie-2. 

/ V 
/ 

v 

r 11 

2 

n 

• 

6 1 6 2 - •en] 

1 
[ 

r 1 o 

2 o 

n o 

1 o 
" o « 2 

2 o 
" o « 2 

n o 
o 2 

<1J 

1 c 

2 c 

\ * 

^ 2 

\ 

J 0 

i*2 

. e * " . 

where the 0 operator appears as a subindex to refer to a quadratic form of 
tensor products. 

Following the stated conditions, we have 

^{i 

1 o 1 o 
0 1 O Z 

2 o 2 o 
o 1 o z 

n o n o 
o 1 o 2 

1 c 

2 c 

V U 

(5.132) 

which gives the endomorphism matrix. Next, following Theorem 5.8 we ex
amine how the vectors w G F"'(if) (since in this example there exists only-
one space as primary and dual factors) are transformed. 

We call the matrix in (5.132) T^̂ ^̂ * ? and transforming a vector w G V'^{K) 
with the operator T we get 

T^®u* (w;) 

1 o 1 o 

2 o 2 o 
o 2 

1 c 

2 c 

n c 
V U 

r 11 

2 

n 
T o . 

o n \ 1 
n o / o 

/ o 1 , o 2 , 

(^l.^o + ^2^o + • • 
/ o l . o 2 , I o n \ 2 

/ o l . o 2 . , o n \ n 
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1" 

/ o 1 , o 2 
n o / 

V^ 

r 1 n 

2 

n 

= ( ü ; . t r ) ° \. (5.133) 

n 

L^oJ 

The tensor conclusion of (5.133) is that 

T^^ü*{w) = {w^u*)v. (5.134) 

From (5.132) to (5.133) we conclude that the equality 

has the property (5.134) and then. Theorem 5.8 has been proved with the 
present model. 

The isomorphism character is detected if we apply (5.132) to the vectors 

£ and e^^ of matrices 

row J», respectively: 

with the 1 in row z, and , with the 1 in the 

0 
0 

0 

0 

0 • 
0 • 

0 • 

0 • 

• 0 • 
• 0 • 

• 1 • 

• 0 • 

• 0 -
• 0 

• 0 

• 0 . 

^{Ci (8)6*"-̂ ) 

Thus, it is shown that this multilinear endomorphism associates the basis of 
V (8) VJ'iK) with the basis of JC[V{K), V{K)], and then, in this particular 
case it is an isomorphism. 

D 

Example 5.12 (Total and tensor products). Consider the total product homo
geneous linear space 
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X W'^ I (R) = ¥{"' X V^' X V^^iH) 

of dimension n = 3no = 9, and let the tuple {vi^V2^ vs) be one of its vectors, 
where Vk ^ V^{H). The bases for each factor linear space will be denoted by 
{ei{k)}; 1 < i, /c < 3, and thus, we have 

Vk ^ wmut; Xk = x^{k) 
x^{k) 

, Wx\k) eU. 

The basis of the total product linear space X V^ I (R) will be notated 

B = {ei{l) e2(l) e3(l),ei(2) 62(2) 63(2),ei(3) 62(3) 63(3)} 

and therefore, the matrix representation of the 3-tuple {vi^V2^vs) results 

(^1,^2,^3) = ll^ll^, 

where X is the block column matrix 

X X2 
Xs 

Three morphisms ^^fik^ apply each space factor V^(Il) into a linear space 
VF^(R) of dimension m = 4 and basis {£^}i. 

The matrix representation of a vector w £ W^{H) is w = ||^^||^- As
suming that the associated matrix representation, relative to such bases, of 
morphisms f{k) are the data matrix H4^s{k): the morphism matrix represen
tations become 

Yk = H4,s{k) . Xt; l<k<3. 

Finally, let us build an homomorphism / that applies the initial total 
product linear space into the final space W^CSi): 

/ : xV^ ( R ) ^ T ^ - ( ] a ) ; f{vi^V2,vs) = w 

which matrix representation is: 

y ~ Hm,n • X] 

where Hm,n = [H{1) H{2) H(3)] is built with H4^s{k) matrices as blocks. 
Assuming now that the data matrices are: 
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i f ( i ) 

5 3 4" 
1 5 3 
2 4 3 
4 2 3 

; H{2)=^ 

[ 8 - 7 4 
4 5 - 2 

- 4 2 0 
2 3 6 

H{3) = 

9 0 6 
- 6 - 3 9 

7 2 - 4 
10 - 1 11 

1. Give the representation of morphism / specifying the components of each 
matrix. 

2. If 
{vi, V2, vs) = (2ei + 3e2 - es, 5e2 - 2e3, ei - e2 + 34 ) (5.135) 

find the image vector w = f{vi^V2->v^)' 

3. In X V'/? (H), consider the multivector relation 

(2ei,2e2 - 563,263) = (61,262,63) + ( e i , -563 ,63 ) . 

Using this relation, examine if / is a multilinear transformation for the 
addition of the total product linear space. 

4. Find a basis of the null space relative to morphism / , verifying that the 
dimension of the resulting basis is coherent with the dimension of the 
range space. 

5. Based on the knowledge we already have on / , build a multilinear mapping 

w^{n). 

To get it, one must answer the following questions: 
(a) Determine matrix Mn,a where a = ng = 3^ = 27; the matrix 

columns X of Mn^o- are the matrix representations of the a 3-tuples 
(e>i(l),e>2(2),e^3'(3)),VÄ,l < ft < 3, in the B basis. 

(b) Set condition 

F(e^,,e^,,e^3) = /(6>,(l),e}3,(2),e^3(3)),Vft,l<ft < 3 , 

through the matrix relation: 

Give the matrix Hm,a associated with the multilinear application F. 
(c) Determine matrix X^^^i as the representation of multivector {vi ,V2^V2,) 

given in (5.135), but now with the appropriate components as shown 
in formula (5.122). 

6. Determine the image vector in' = F{vi^V2-)^2>)'> ^^ accordance with matrix 
equation F ^ ^ = Hm,a • ^a,i-

7. Determine if w' = 3w. 
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So lu t ion: 

1. The matr ix representation of morphism / is: 

\y'^ 
y' 
y' 
nA 

ly J 

5 3 4 8 - 7 4 9 0 6 
1 5 3 4 5 - 2 - 6 - 3 9 
2 4 3 - 4 2 0 7 2 - 4 
4 2 3 2 3 6 10 - 1 11 

Vx\l)l 
x\l) 
X3(l) 

x\2) 
x^{2) 
x3(2) 
x\Z) 
x2(3) 

Vx^{Z)\ 

2. Since 

ry^i 
y' 
y' 

ly'\ 

r 21 
3 

- 1 
0 
5 

- 2 
1 

- 1 
3 

= 

- - 1 -
67 
16 

. 58_ 

5 3 4 8 - 7 4 9 0 6 
1 5 3 4 5 - 2 - 6 - 3 9 
2 4 3 - 4 2 0 7 2 - 4 
4 2 3 2 3 6 10 - 1 11 

we have 
^ = f{vi,V2, Vs) = -Si + 675*2 + 16^3 + 585*4. 

3. Since / is a morphism, we have 

/ (2e i , 2e2 -563 ,263 ) = / ( ( e i , 2 e 2 , 63) + ( e i , - 5 e 3 , 63)) 

= / ( e i , 262, 63) 4 - / ( 6 1 , - 5 6 3 , 63) 

If / were a multilinear mapping, it should be 

/ ( 2 e i , 262 - 5 6 3 , 263) = / ( 2 e i , 262, 263) 4 - / (261 , -563 ,263) 

so, / is not a multilinear mapping. 
4. A basis of the null space is 

BN — 

- 1 
- 1 
2 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 

- 2 
13 
3 

-176 
-82 

0 
405 
302 
0 
0 

848 
0 

-766 
196 
0 

207 
46 
0 

212 
0 
0 

-768 
442 

0 
- 1 

-118 
424 

0 
0 
0 
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As matrix H{2) has rank 4, this is the rank of matrix ^4,9. Thus, we have 

dim(null space)+dim(range space) = 5+4 = 9 = dim(total product space). 

5. (a) The matrix representations of (ei(l), ei(2), ei(3)), (ei(l), ei(2), 62(8)) 
in the B basis are: 

- 1 -
0 
0 
1 
0 
0 
1 
0 

. 0 . 

5 

" 1 " 
0 
0 
1 
0 
0 
0 
1 

.0_ 

so that following this we get matrix M^y. 

~ 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 

M9,27 = l o o o i i i o o o o o o i i i o o o o o o i i i o o o 
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 

(b) The relation H{F)m,a = Hm,n • -^n^a^ that in this case is 

H{F)4^27 — -^4,9 • -^9,27 

becomes 

22 13 19 7 - 2 4 18 9 15 2011 17 5 - 4 2 16 7132112 18 6 - 3 3 17 8 14 
- 1 2 14 0 3 1 5 - 7 - 4 8 3 6 18 4 7 19-3012 1 4 16 2 5 1 7 - 5 - 2 10 
5 0 - 6 1 1 6 0 9 4 - 2 7 2 - 4 1 3 8 2 11 6 0 6 1 - 5 1 2 7 1 10 5 - 1 
16 5 17 17 6 18 20 9 21 14 3 15 15 4 16 18 71915 4 16 16 5 17 19 8 20 

(c) Applying formula (2.21) one gets 



^27,1 = X i (8) X2 (g) Xs = 

6. The matr ix representation of F is: 

^ 4 , 1 — ^ 4 , 2 7 • ^ 2 7 , 1 
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2 
3 

- 1 
0 

0 
5 

- 2 
(8) 

1 
- 1 
3 

- 5 7 
762 
153 
663 J 

and then 

7. It is clear t ha t 

w -5761 + 762^2 + 15363 + 66364. 

w' = 3 ( - 1 9 r i + 25462 + 5163 + 22I64) 

7̂  3 ( - 6 i + 6762 + I663 + 5864.) 

= 3w 

0 \ 0^ 
0 

10 
- 1 0 

30 
- 4 

4 
- 1 2 

0 
0 
0 

15 
- 1 5 

45 
- 6 

6 
- 1 8 

0 
0 
0 

- 5 
5 

- 1 5 
2 

\ i / 

D 

5.12 Exercises 

5 . 1 . In the tensor space (8)i?J, we consider the totally covariant homogeneous 

tensor T, given by its matr ix representation: 
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r , O O O 01 

• a i 

Cl 

-
^3 

.C3 

hi 
di 
-

bs 
ds 

1 
+ 
1 
1 

02 

C2 

-
0 4 

C4 

62 
d2 
-
64 
(̂ 4 

Obtain the "permutation" matrices Pi, P2 and P3 associated with the three 
rotation isomers (1),(2),(3) mentioned in Example 5.5, point 3, that transform 
the tensor T^ 1 into its "extended" isomers. 

5.2. Consider the homogeneous tensors P, Q and D (the last is the Kronecker 
delta), all of them associated with the linear space F"'(IR). Determine if the 
tensors A, P , C, contracted products of the data tensors, are their isomers: 

aoJ^ßjo^ Q;O^7/3A O/X' ^ ao ao ßo jo 

5.3. Two tensors T of order ri = 2 and U of order r2 = 3 are defined over 
a certain linear space F^(]R) referred to a certain basis {ca}- Their matrix 
representations are 

aßi 
L o o 

2 3 
- 2 - 1 

1 0 
(a row , /3 column) 

^oAoJ 

"0 
1 
0 

0 
3 
2 

1 
5 
0 

2 1 0 
1 0 - 1 

-1 1 4 

0 1 3 
1 - 1 4 
6 1 0 

where 7 is the row block, A is the column of each block and /i is the block 
column, (beware of the matrix block disposition of this tensor). 

1. Determine, as contractions of the tensors Qi = T <S)U and Q2 = U <S)T 
(of order r = 5), the contracted products that follow: 

^' Co<7o'^ B: tfulZ', F: ulZt'f: G : uHXl 
0 0 otfO' 0 0 ot/O' otfO 0 0 ' ouo 0 0 

Note: the matrix representations of tensors A^B^F^G must have the same 
ordering criterion as the one given in the statement for tensors of order 
r - 3 . 

2. Since the tensor U does not satisfy the correct axiomatic ordering in its 
matrix representation, give the matrix P of the permutation that trans
forms Ua,i in the isomer t/^ ^ the condensation of which leads to tensor 
[/' with the correct ordering. 

3. Examine if P is an orthogonal matrix. 
4. Give A' ^B'^F'^G' ^ the correct contracted products, with the usual matrix 

representation. 
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5. Give the matrices HA'^HB^^HP'^HQ' corresponding to the contraction 
homomorphisms executed in the previous question, over the "extended" 
tensors. 

6. If we recover the isomers from tensors A\B\F' ^G' by means of matrix 
P~^ (inverse permutation), do we get the results of question 1?. Check 
this result. 

7. We perform a change-of-basis, in the linear space y^(IR) of matrix 

C 
1 0 0 
1 2 0 
1 2 3 

Give the new tensors T and Ü that would present this statement. 
8. Solve for T and Ü, questions 1 to 6. 

5.4. Consider the tensor T G V^ (8) y / ( I l ) , with matrix representation 

Kl] = 

Give two right-autotensors A and B, contracted (T 0 A) == \A and con
tracted [T ®B) — ßB^ where A is of order (r = 2) symmetric and B of order 
(r = 3). 

7 
4 

- 4 

4 
7 

- 4 

- 1 
- 1 

4 

5.5. Consider the linear space F^(]R) referred to the basis {CQ,}. We take a 
-. -. ^ 3 

particular vector (Fi, F2, V3) G x y^ (R) belonging to the total product linear 

space, the matrix of which associated with the basis {e^} is [Xi X2 -^3 ] = 
1 4 2-

- 1 1 5 
2 3 1 

A multilinear transformation F : x V^{1R) W^CR) that applies the 

total product linear space in W^(Il), is given by (5.104): 

F{{VuV2,V3)] = WeW\K), 

which results from the total contraction of the four covariant tensors of order 
(r = 3) that appear as vector components of 

^''oiy^^h = ( a - l ) 6 l + (a- /?+2)e2 + ( /5-7-3)?3 + (7+4)e4; 1 < a,/3,7 < 3, 

3 
^VsG 0V^(R). with the vector Fi 0 V2 

Give the image vector W of the multilinear mapping. 
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1 
1 
0 

1 
- 2 

1 

0" 
0 

- 1 
; i^2 = 

• 2 

1 
1 

- 2 
1 
3 

3-
1 

- 1 
; H^-

"1 1 
1 2 
1 2 

1 
2 

- 2 

5.6. In the linear space F^(Il) referred to a certain basis {e*«̂ }, we consider 
three linear operators with associated matrices: 

i^i 

1. Obtain the eigenvalues of i7 i , i J2 ,^3 in increasing order. They will be 
notated as (Ai,A2,A3), (/ii,/i2,/X3) and (z î, î 2,î 3), for iJi , H2 and H2, 
respectively. 

2. Obtain the eigenvectors (Xi,X2,X3)iy. associated with each operator, 
giving their components in columns. 

3. If Wi = i^i(V^), l < z < 3 are the images of the vectors: 

Vi = lie; ; y2 = \\ea\ 
3 

- 1 
2 

; V3 = i|e,,| 

determine the multivector Vi 

3 ^ 
Wi^W2 0W3e ^V^OR). 

Vz^Vs ^ ^V^(R) and the multivector 

4. Obtain the matrix H^ associated with the direct endomorphism that 
transforms iJ^(Fi (8) ^2 ^ ^3) = Wi^W2<S) W^. 

5. Determine the eigenvalues of Ha-
6. Determine the eigenvectors of Ha^ (remember Section 1.3.4). 
7. Solve questions 4, 5 and 6 using the computer and assuming that the 

solutions of 1, 2 and 3 are known. 



Part II 

Special Tensors 



6 

Symmetrie Homogeneous Tensors: Tensor 
Algebras 

6.1 Introduction 

This chapter is devoted to symmetric homogeneous tensors that are initially 
defined. 

Because of their symmetry, the number of data components required for 
their definition can be substantially reduced, from the concept of strict com
ponents (a minimum set of data), which is explained and a formula given for 
determining this number. 

The problem of generating symmetric tensors from a given tensor, and the 
tensor nature of symmetry are also discussed. 

Next, the symmetrization operator is extended to the case of mixed ten
sors, and a new interior symmetric product for exclusive use of interior sym
metric tensor algebras is introduced. 

The chapter ends with some illustrative examples that clarify the estab
lished concepts. 

6.2 Symmetric systems of scalar components 

Though the concept of systems of scalars has already been used in Formu
las (5.2), (5.32), (5.33), etc., we fix here their fundamental conditions. Let 
5(^1 , « 2 , . . . , ar) be a system of scalar components s (a i , » 2 , . . . , a^.), of order 
r, defined over a certain linear space V'^{K); we say that such a system is 
symmetric with respect to two indices ( i , i ) , if it satisfies 

= 5 ( a i , a2 , . . . , a j - , . . . , a ^ , . . . ,ar); p e K; a/, G J^ = {1, 2 , . . . , n } c Â , 

that is, all given components share the same value p. 



190 6 Symmetric Homogeneous Tensors: Tensor Algebras 

6.2.1 Symmetric systems with respect to an index subset 

The previous concept can be extended to k indices (/c < r), of the total set /^ 
of indices. Let 

h = { i , j , . . . , ^ } C /^ = { l , 2 , . . . , f , . . . , j , . . . , r } (6.1) 

if the following equalities hold: 

p = s ( a i , a 2 , . . . , a ; i , . . . , a j , . . . , a / c , . . . , a ^ ) 

= s{ai, ^ 2 , . . . , a;_^-,..., a^,. . . , Qfc, • •., Q̂ r) 

= 5 (a i , a2 , . . . ,a /c , - . . ,o^i,... ,ö^z,- ••,Q^r), (6.2) 

where all k\ permutations of the subset Ik of selected indices are considered, 
we say that the system of components is symmetric with respect to the index 
subset Ik-

6.2.2 Symmetric systems. Total symmetry 

If Ik = Ir, we say that the system is totally symmetric, and better, simply 
that it is symmetric. 

Next, we propose a particular example for (n = 4, r = 3), grouping all 
components of the system 5(a, /?, 7) with the same scalar value p £ K^ and 
ordering them according to the axiomatic ordering criteria. Since the number 
of components is cr = n'̂  = 4^ = 64, we obtain 

. ( 1 

. ( 1 

. ( 1 

. ( 1 

. ( 1 

. ( 1 

. ( 1 

. ( 1 

S{1 

S{1 

5(2 

5(2 

1 

1 

1 

1 

2 

2 

2 

3 

3 

4 

2 

2 

1) 
2)=s{l 

3)=s{l 

4)=s{l 

2) = 5 ( 2 

3)=sil 

= 5(2 

4) = s{l 

= 5(2 

3 ) = 5 ( 3 

4 ) = s ( l 

= s{3 

4 ) = 5(4 

2) 
3 ) = 5 ( 2 

2 

3 

4 

1 

3 

3 

4 

4 

1 

4 

4 

1 

3 

l) = s{2 

l) = s{3 

1) = 5(4 

2 ) = 5(2 

2 ) = 5(2 

l) = s{3 

2) = 5(2 

l ) = s(4 

3) = s(3 

3 ) - s ( 3 

l ) = s(4 

4 ) - 5 ( 4 

2 ) = 5(3 

1 

1 

1 

2 

1 

1 

1 

.1 

3 

1 

1 

4 

2 

1) 

1) 

1) 

1) 

3) 
2) = 

4) 
2) = 

1) 

4) 

3) = 

1) 

2) 

= 5(3 

= s(4 

= 5(4 

2 1) 

2 1) 

3 1) 
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s{4 3 2] 

5(2 2 4)=s{2 

5(2 3 4 ) = 5 ( 2 

= 5 (3 

5(2 4 4 ) = 5 ( 4 

5(3 3 2) = 5 ( 3 

5 (3 3 3) 

5 (3 3 4 ) = 5 ( 3 

5(3 4 4 ) = 5 ( 4 

5(4 4 4 ) . 

4 2 ) = 5(4 

4 3 ) = 5(3 

4 2 ) = 5(4 

2 4 ) = 5(4 

2 3 ) = 5(3 

4 3 ) = 5(4 

3 4 ) = 5(4 

2 

2 

2 

4 

3 

3 

4 

2) 

4 ) 

3) 

2 ) 

2 ) 

3 ) 

3 ) 

Its total number is: 

With three equal indices s{a, a, a) : Â i = (^) = 4 x 1 = 4. 

With two equal indices 5(a,/3, a): N2 = [(^"^3"^) - (t) - (3)] | = 12x3 = 
36. 
With different indices s{a,ß,j): 7V3 = (^)f| = 4 x 6 = 24. 

Total: 4 + 36 + 24 = 64 = cr. 

6.3 Strict components of a symmetric system 

Definition 6.1 (Strict components of a symmetric system). We define 
this as the maximal set of different value components, ordered according to the 
axiomatic ordering, that can have an arbitrary symmetric system of scalars 
(with partial or total symmetry). 

In the example in Section 6.2.2 the strict components are the first column 
of the given table (one can notice that the rest of columns do not have a total 
ordering character). 

6.3.1 Number of strict comiponents of a symmetric system with 
respect to an index subset 

Consider the system ^ ( a i , » 2 , . . . , a ^ , . . . , a ^ , . . . , Qfc,..., a^) defined with re
spect to a linear space V'^{K) and let k be the number of indices of the subset 
^k = {hji • • • 5 ^} the components of which are symmetric. 

The number of valid realizations for the non-symmetric (r — k) indices is 
given by the following number of variations with repetitions: 

VRn^r-k = rf-^. (6.3) 

The number of strict realizations for the symmetric k indices is given by the 
combinations with repetition: 



192 6 Symmetrie Homogeneous Tensors: Tensor Algebras 

CRn,k=i ^ y (6.4) 

Thus, the total number of realizations for the strict components is 

n + k - l \ ^_^ 
CRnM'VRn^r-k={ \ W'^- (6.5) 

Obviously, the total number of components is, as usual, the dimension of the 
tensor space, i.e., a =^ rf. 

6.3.2 Number of strict components of a symmetric system 

To find this number and since now the r indices of the system present sym
metry, we let /c = r in Formula (6.5). 

Thus, the number of strict components of the system of scalars with total 
symmetry of indices is 

Ci?„,,= f'' + '""^V (6.6) 

Number of symmetric components associated with each strict 
component of a symmetric system 

If the strict component has a repeated indices, ß repeated indices, 7 repeated 
indices, . . . , (5 repeated indices, that is, its pattern is 

5(a, a , . . . , a, /3,/?, . . . , / 3 ,7 ,7 , . . . , 7 , . . . , (5,5,..., J), 

the resulting number is the permutations with repetition 

where a + ̂  + 7 + \- ö = r. 
Finally, we want to point out that in a symmetric system of scalars 

S{ai^ a;2,.. . , cxr) of order r, over a linear space V'^{K)^ the number c of strict 
components with 0 different indices (1 < Ö < r), is 

Thus, in the example in Section 6.2.2 the number "c" of strict components of 
0 = 2 different indices is the cardinality of the set 

{ s ( l 1 2 ) , s ( l 1 3 ) , s ( l 1 4 ) , s ( 1 2 2 ) , . . . , s ( 3 3 4 ) , s ( 3 4 4 ) } . 

Applying Formula (6.8), we have 

Remark 6.1. Expression (6.8) comes from the expansion formula of the com
binations with repetition, CRm,n- Q 
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6.4 Tensors with symmetries: Tensors with branched 
symmetry, symmetric tensors 

The symmetry criteria previously established for systems of scalar components 
are directly applicable to homogeneous tensors, with the following limitations, 
to be justified later: 

1. Tensors with symmetry with respect to the subset Ik of indices (2 < A: < 
r), must present the subset Ik among the p contravariant indices or among 
the q covariant indices (p + Q = r); that is, all indices belonging to Ik must 
be of the same valency. Some authors define these tensors as "tensors with 
branched symmetry". 
This is a sufficient condition for the symmetry with respect to the indices 
of Ik to remain invariant under changes of basis of tensor nature, but it is 
not necessary^ as we shall see when the Kronecker delta tensor system is 
presented; this can present stable symmetries between indices of different 
valency (a very particular case). 

2. By definition, symmetric tensors (with respect to all their indices), are 
pure tensors, that is, totally contravariant or totally covariant. Some books 
even give them a special notation. 

Consider a homogeneous tensor of order r totally contravariant, notated 

t^Q^^W.^J] if it is symmetric, it can be expressed as 

:(:^"„=:;:";) with a i < «2 < • • • < c.., (6.10) 

which is precisely the adopted notation for its strict components. 

Similarly, the notation t(^ ^ '".a ) ^^ ^^^^ ^̂ ^ ^^^ covariant symmetric 
tensor. 

The number of strict components, number of components associated with 
6 different indices, etc., can be obtained with the general formulas established 
for the systems of scalars. 

Finally, we point out that some authors extend the total symmetry to 
mixed tensors, in which case it is assumed that the symmetry of the p con
travariant indices and the symmetry of the q covariant indices are independent. 
Then, the expression for the strict components becomes 

^{aia2---ap) o o ••• o / ^ ^ ^ N 

o o ••• o {ap^iap+2---Oip+q) ^ ' ^ 

with 

So, for the case of a mixed tensor over the linear space R^ of order r = 4, 
contra-contra-cova-covariant, {p = q = 2) symmetric the strict components 
would be 

t 
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(11) o o 
^o o (11) 

,(11) o o ,lloo 
^o o (12) ~ ^oo21 

(11) o o 
^o o (22) 

,(12) o o _ ,21oo 
^o o (11) "~ ̂ ooll 

,(12) o o _ ,12oo _ ,21oo __ ,21oo 
'̂ o o (12) ~~ ̂ oo21 "~ ̂ ool2 ~" ̂ oo21 

,(12) o o __ ,21oo 
^o o (22) ~~ ̂ oo22 

,(22) o o 
'̂ o o (11) 

,(22) o o _ ,22oo 
^o o (12) "~ ̂ oo21 

t 
(22) o o 
o o (22) 

with a total number of a — n'^ = 2^ = 16 components, of which 9 would be 
strict. 

It is convenient in this section, in which we consider mixed tensors^ to 
clarify the number of strict components when the branching is mixed, that 
is, it involves not only one part of the p contravariant indices {ki^ of the p 
indices, are symmetric), but also at the same time one part of the covariant 
indices (/c2, of the q indices, are symmetric). 

In such a case we have 

2 < ki <p] 2 < k2 < q; p-^ q — r (order of the mixed tensor). 

The number of strict components is 

or 
^n + /ci - 1\ / n + /C2 - l\r-{k,+k,)^ 

If the mixed tensor is symmetric, then ki = p and k2 = q. Thus, the 
number of strict components is 

n + p — 1 \ fn-^q-1 

P J \ Q 

which is the formula used in the mixed example that has been given [n = p • 
q = 2). 

6.4.1 Generation of symmetric tensors 

We discuss two different ways of generating symmetric tensors. 
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By means of decomposable symm^etric tensors 

We remind the reader of the beginning of Section 2.2 where we have given 
the bases for the tensor product of vectors concept. To center our objective, 
we assume that we are in the homogeneous tensor space V^ ^ V^ O V'^{K) 
of order r = 3, and that we choose three arbitrary vectors ü^v^w^ € ^"^{K) 
the tensor product of which satisfies Formulas (2.4) and (2.5), which for the 
homogeneous case are 

ü®v®w = tlilei®ej^ek, with tUl = x'y^z^; MÜ.v.w.eV^K). (6.12) 

As is well known, the linear combinations of these "decomposable" tensors 
generate all other tensors (not decomposable) of the tensor space. 

If we restrict ourselves now to vectors u, iT, t?, G V'^{K) such that 

w^X = Y r r z^] x^ = y^ ~ z^; 
(6.13) 

the result is that the set of decomposable tensors, generated by -? G V'^{K)^ 
that is, the new condition (6.12) with this constraint leads to 

V ^V i 
» ii ik-

I V = ^ o o o ^ ^ ^ ^ i ^ ^fc ^ ^ ^ ^ 
ijk _ 
ooo = rcVx^; WeV'iK), (6.14) 

generating a tensor subspace Sm{v) C V^ (g) V^ (8) V^^K) of symmetric ten
sors^ as can be observed in a particular case (n = 3,r = 3), when building 
the matrix representation of their components, that leads to the following 
decomposable tensor: 

L OOOJ 

111 
OOO 

121 
ooo 
131 
ooo 

211 
ooo 
221 
ooo 
231 
ooo 

311 
ooo 
321 
ooo 
331 
ooo 

112 
ooo 
122 
ooo 
132 
ooo 

212 
ooo 
222 
ooo 
232 
ooo 

312 
ooo 
322 
ooo 
332 
ooo 

113 
ooo 
123 
ooo 
133 
ooo 

213 
ooo 
223 
ooo 
233 
ooo 

313 
ooo 
323 
ooo 
333 
ooo 

{x^ {x^)^x^ {x^fx^ 
(rr^)^x^ x^{x^)'^ x^x'^x^ 
{x-^)'^x^ x-^x^x^ x-^(x^)^ 

(x^)^x^ x^x'^x^ x^{x^)'^ 
x^x^x^ {x'^)^x^ x'^ix^Y 
x\x^f x^{x^f {x^f 

with i the index of the block row, j the index of each submatrix row, and k 
the index of each submatrix column. 

Before continuing, we point out that the rank of each submatrix is one, 
which declares that, in fact, it is a decomposable tensor, generated by the 
tensor product of a single vector. 
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When observing the value of the different components, they can be classi
fied as 

(112) _ 121 _ 2 1 1 _ / ™ 1 N 2 2 
^ o o o "~ ^ooo ~ ^ooo — K-^ ) ^ 

( 1 1 3 ) ^ 1 3 1 ^ 3 1 1 ^ . 1 . 2 ^ 3 
o o o ooo ooo V / "̂  

(122) _ 212 _ 2 2 1 _ ^ 1 / 2 x 2 
^ o o o "~ ^ooo ~ ^ooo — -^ K-^ ) 

(122) _ 212 _ 2 2 1 _ ^ 1 / 2 x 2 
^ o o o "~ ^ooo ~ ^ooo — -^ K-^ ) 

y-(123) _ , 1 3 2 _ , 213 _ , 2 3 1 _ , 3 1 2 _ , 3 2 1 _ 1 2 3 

( 1 3 3 ) ^ 3 1 3 ^ 3 3 1 ^ 1 . 3 ) 2 
o o o ooo ooo '^ \'^ J 

, (223) _ , 232 _ , 322 _ / „ 2 N 2 3 
^ o o o ~ " ^ o o o ~ ^ o o o ~ V ' ^ / -^ 

, (233) _ , 3 2 3 _ , 332 _ ^ 2 / 3 x 2 
^ o o o "" ^ooo ~ ^ooo — -^ K-^ ) 

tTo'I = i-r-

This table is a declaration of symmetric tensor of a = n/' = 3^ = 27 
components, with (̂ "̂ ~̂"̂ ) = (̂ ^3"" )̂ — (3) — 10 strict components. 

Then, we have perfectly established a procedure for generating symmetric 
tensor subspaces 

Sm{v) c i^v^YM) c {(^v^YiK), 

that belong to a tensor space, by each one of the chosen vectors v G V'^{K), 
The sum subspace of the subspace generated by several vectors v^ u, w^ etc. 
or the linear combination of them, leads to other symm,etric tensor subspaces 
that cannot be generated by decomposable tensors. 

By means of isomer tensors 

Assume that an arbitrary pure tensor t{n^r) is given, t^^^^''[^^ and that we 

decide to associate it with another tensor Ü{n^r) using the rules: 

1. We choose a determined set of indices Ik (of the same valency) of the given 
tensor. 

2. We notate the new tensor ^(n, r) by placing the selected indices in paren
theses: 

0 0 o ... o ' 

This notation will be the one used for the strict components of the new 
tensor Ü{n^r). 
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3. Considering all permutations (kl) of the indices in //e, we determine all the 
corresponding isomer tensors of t. 

4. Once they have been found, we build the strict components of u{n^ r) by 
means of the formula 

o o o ••• o 

,Q; ia2CK3-"CKr-lCKr _j_ # « 1 Q!2 Q;4 CKs "•CKr _|_ _ _j_ ,aia2CXr-l •'•CXsCtr 
0 0 0 - - - 0 o ' o O O O - - - o ' ' " ' O O 0 - - - 0 0 , (6.15) 

1 

where the right-hand factor includes all the k\ isomers as summands. 

The tensor ü{n^r) with these strict components is a symmetric tensor 
with respect to the set of indices 1/̂ . Some authors present this from the point 
of view of an "isomerization" endomorphism iJ, that directly transforms the 
tensor t{n^r) into the tensor u{n^r). 

We give some illustrative examples: 

1. Consider the data tensor ^^"^; Ik = Ir = [o^^ ß] (all). 
The symmetric tensor associated by this technique is the tensor with com
ponents 

/ O O O -«- [ • 0 0 | ^ O O - i 

2. Consider the data tensor W'^^Zr.l^- An associated symmetric tensor with 
O O O O O O ^ 

respect to the indices Ik = [ßjS] is the tensor with strict components 

aißjö)eX 
O O O O O O 

1 
3! 

aß'jöeX I aßö'yeX , a^ßöeX , a'jößeX , aSßjeX , aö'jßeX 
W -\-W -{-W -\-W -\-W -]-W 

O O O O O O O O O O O O O O O O O O ' O O O O O O ' O O O O O O ' O O O O O O 

Evidently, if the "isomerization" technique were to be applied (by error) 
to a symmetric data tensor, one would obtain as the associate the initial data 
tensor. 

In the next chapter we will see how an analogous technique, but with 
anti-symmetric tensors, leads to the exterior tensor algebras. 

6.4.2 Intrinsic character of tensor symmetry: Fundamental 
theorem of tensors with symmetry 

The obvious question a reader can ask himself at this point is if all tensors with 
symmetry with respect to certain components, maintain it when performing 
licit changes of basis, that is, of a tensor nature. 

The answer to this question is formulated in the following theorem: 

Theorem 6.1 (Intrinsic character of symmetry). The symmetry of k 
indices (2<k<por2<k<q^p + q = r)of the same valency in the 
components of a homogeneous tensor has intrinsic character. The symmetry in 
the components of two or more indices of different valency in a homogeneous 
tensor has no intrinsic character in the general case. D 
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Proof. 

Sufficiency: Consider the case of indices of the same valency. Consider the 

homogeneous tensor t^^^^° of fifth order (r = 5), defined over the linear 

space V'^{K)^ which satisfies the property 

tf.Z; = <::Z-yc., e h = [a,P] and j e h, (6.16) 

that is, it is symmetric with respect to the two first contravariant indices. 
Consider the change-of-basis in F"'(i^), ||ei|| = ||e*a||[c^°], which produces 

the change of tensor basis in the space {^V'^)^{^V^)'^{K); we indicate its 
action over the two components, in the new and the initial bases 

.ijkoo _ ,cxß-iOO io jo ko oX o ß (f\^7\ 
^oooim ^oooXfjL'oa'oß lojio^mo ^^--^'J 

.jikoo ^ ßa-foo jo io ko oX Gfx .^^^. 
oooim o o oX/j, I oß I OCX ''oy to mo' V " / 

Taking into account (6.16), and the commutativity of the scalars 7^° with 

JIZ in the field K^ it is evident that the two right-hand members of (6.17) 

and (6.18) are equal, and then 

KilZ = tiltZ-^ VM- e h and Vi, 6 h = [ij]. (6.19) 

Similar conclusions can be established by the reader for any other pair of 
a /370 o 
O O oA/Lt' 

contravariant or covariant indices of the analyzed tensor t^ ?°, by following 

a similar process. 
The analyzed model can be used for any generalization of the fundamental 

hypothesis. 

Necessari ty: Consider the case of indices of different valency. Consider the 

homogeneous tensor t^fo^^ of fifth order (r = 5), defined over the linear 

space V'^{K)^ that satisfies the property 

C:Z = C o Z ; : ; ;Vai e h = [/?, A] and j e h. (6.20) 

When performing the previous change-of-basis in V'^{K), the linear space 
{^V"^)^{^V^)'^(K) suffers the corresponding tensor change, where the new 
components of those in (6.20), are related to the initial ones by 

.ijkoo ^ aß^oo io jo ko oX o ß (̂ 6 2 1 ) 
oooim oooXfj, 'OCX. 'oß ' 0 7 io mo V ' / 

,iikoo ^ aX^oo io £0 ko oß o ^1 fR 2 2 1 
000 jm o ooß fj, I oa I oX I o'y jo rn o ' V ̂  • / 
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which proves that TQ'^C^O T̂  ^OA^JO' ^^ ^^^ ^^ appreciated in a simple numer
ical counterexample. 

Let n = r = 3 and 

= C = 
1 1 0" 
0 1 0 
1 0 3_ 

' LTOQ. 

[cTo] = c' = 

= c - i 

" - 1 0 
1 1 
0 0 

— 

- 1 
0 
3 

- 1 1 0 
0 1 0 

-1/3 1/3 1/3 

If we choose j = 2,£ = 3,ß = 1,X = 2, then we have 

liy.t = 7oi( of C-i)c°f ( of C*) = 0 • 0 = 0 

£o oß 3o o l 1 /o 1 1 /o 

TOASO == "̂ 02̂ 20 = 1/3 • 1 = 1/3, 
1 . 1 . T 2o o2 / 3o o l 

which implies j^^c^^ + 702^20-Dl^Sc 

If we choose j = l^i • 

l o o2 

32^2c 

= 2,/?: 

0 - 1 : 

: 3, A = 2, then we have 

0; illcll = i-{-i) = -1 , 

J ^1 l o o2 / 2o o3 

andthen7^3C2^7^7^2^^^. 
Then, we conclude that in general tH^.l^ ^ ^!^^° ° , that is, the tensor in 

the new basis does not keep the symmetry. 
However, if the data tensor were to have a great number of components 

01/5700 
t' o o oX/j, — 0, these could in some case absorb the indicated inequalities, and 
maintain the symmetries of indices of different covariance, because of its nul
lity, that is, due to qualities of the concrete tensor that are special or proper 
(Kronecker delta, for example). 

Example 6.1 (Strict components). 

1. Consider the symmetric covariant tensor T\ = i^^a^se ̂ ^^^ ^^^ linear space 
V^^(IR). 

a) Determine the number of components (iVi). 
b) Determine the maximum number of strict components (A 2̂)-

2. Consider the mixed tensor T2 = t^l^^/Z^^l. with q = 5 covariant indices 
"^ a.p'yo e o o o o ^ 

and p = 4 contravariant indices, over the linear space F"'(Il), which is 
partially symmetric with respect to the covariant indices {ß5) and with 
respect to the contravariant indices {-Kar). 

a) Obtain the number of components (A^s). 
b) Obtain the maximum number of strict components (A^4). 
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Solution: 

1. Consider the tensor Ti = t ° ^ ° ^ ° . 

a) Since the order is r = 5, the number of components is Ni = a = n'^ = 

b) The number of strict components is N2 = cr' = CRn,r ~ ("''*̂ ~̂'̂ )v 
2. Consider the mixed tensor To = ^°°°°°^^^'^^ 

•^ (xfj'yd e o o o o 

a) The order of the tensor is r = p + g = 4 + 5 = 9, and then Ns = cr" = 
VRn,r =rf — n^. 

b) We consider the following possibilities for the different indices: 
i. The possibilities for index a are CRn,i = Cn,i = Q) = n. 

ii. The possibilities for indices {ß5) are CRn,2 = ("""̂ s"̂ ) == C^V) = 
n(n+l) 

2 

iii. The possibilities for index 7 are CRn^i = Cn,i — (^) '=^ n. 
iv. The possibilities for index e are CRn^i = C^,! = (^) = n. 
V. The possibilities for indices (Trar) are Ci?n,3 = ("""̂ s"̂ ) = ("'s )̂ = 

n(n+l)(n+2) 
6 

vi. The possibilities for index p are CRn,i = Cn,i — (^) = ^̂  
Thus, the number of strict components for this case is 

n(n + l) n(n + l)(n + 2) 1 ^, .9, 
Â 4 = n • ̂ — ^ • n • n • -^ ^ ^ • n = —n^(n + \f{n + 2). 

D 

Example 6.2 (Total and strict components). 

1. Given the symmetric contravariant tensor s^J^ of order r = 3, over the 

linear space F^(]R), n = 3, do the following: 
a) Give the number of components, total and strict, using different Ro

man letters for the last ones. 
b) Represent by a matrix the general aspect of these tensors. 

2. Given a symmetric contravariant tensor 5^^^^ of order r = 4, over the 

linear space y^(IR), n = 2: 

a) Give the number of components, total and strict, using different Ro
man letters for the last ones. 

b) Represent by a matrix the general aspect of these tensors. 
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Solution: 

1. Consider the tensor sZ Z-
o o o 

a) The total number of components is a = VRn^', = 72̂  = 3 ^ = 27. 

Similarly, the number of strict components is a' — CRn,r = {^~^l ^) = 

(^^3~^) ~ (3) ~ -̂ '̂ ^^^ their values are 

(111) 
^ 0 0 0 - ^ 

.(112) 121 211 
S 

0 0 0 

,(113) 
0 0 0 

,(122) 
0 0 0 

,(123) 
0 0 0 

,(133) 
0 0 0 

.(222) 
0 0 0 

.(223) 
0 0 0 

= 

= 

= 

= 

= 

= 

0 0 0 

212 _ 
000 

132 
5 = 
000 

313 
5 = 
000 

9 
232 

S = 000 

311 
000 

221 
000 

213 
000 

331 
S 
000 

322 
000 

= d 

231 312 321 
S = s = S = e 

0 0 0 0 0 0 0 0 0 

.(233) 3 2 3 3 3 2 

,(333) 
J-

b) Thus, its most general aspect is 

[s o o oJ 

a 
b 
c 

b 
d 
e 

c 
e 
f 

b 
d 
e 

d 
9 
h 

e 
h 
i 

c 
e 
f 

e 
h 
i 

f 
i 
J 

2. Consider the tensor s^^Zr.-0 0 0 0 

a) The total number of components is a = VRn,r = n^ = 2^ = 16, 
and the number of strict components is a^ = CRn^r = i^^lT^) = 

(^) = 5 , and their values are ^2+4-l>^ 

(1111) 
0 0 0 0 

(1112) _ 1121 
0 0 0 0 0 0 0 0 

1 2 1 1 2 1 1 1 7 
S — S = b 
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(1122) 1212 2112 2121 1221 2211 
5 — S ^=S = 5 = S = 5 — r 
o oo o oooo oooo oooo oooo oooo 

.(1222) 
'oooo 

.(2222) 

2122 2212 2221 
oooo oooo oooo oooo 

e. 

b) Thus, its most general aspect is 

aß'jSi 

D 

Example 6.3 (Symmetric and anti-symmetric tensors). Let i°°? be the com

ponents of a tensor that belongs to the tensor space (^KT) ( ^ ) 

At°°^ holds for some values of the scalar 1. Show that if the equality t.^ 

A € H , such values are fixed. Obtain these values. 
2. Show that the equality proposed in the previous question is intrinsic. 
3. What can we say for the particular case t°° = At°°? 

Solution: 

1. If we apply the property successively, by permuting the indices in a circle, 
r , o o o A , o o o 1 , . 

from t . , . = At. .; we obtain jk jk 

t 
_ A , 0 0 0 _ X / A . O O O N _ A 2 I . O O O 

kij - ^^jki - ^y^^ijk) - ^ ^ijk^ 

and permuting again, the result is 

""^ J ki ^ ij ky I jk 
, ooo 
Hjk 

Since i^ = R , the only solution is A = 1, because the other two A = 
l27r/3 = 3 Ĵ̂ d A = l47r/3 = P•> bcloug to the field of the complex numbers. 

2. The intrinsic character can be immediately shown. If we start from 

t Xt' ßja aßj 

and take into account Formulas (4.35), we get 

,ooo o I 0 j ok^ ,ooo o j ok o i 
aßj ijk I OLO I ßo ' 7 0 ' ß^a, jki ' ßo ' 7 0 ' c t o ' 

and replacing (6.24) into (6.23), yields 

,000 o j ok o i -».ooo o i o j ok 
jki I ßo ' 7 0 I oio ijk I OLO ' ßo ' 7 0 ' 

(6.23) 

(6.24) 

and since IR is commutative, the result ist°^° = At°°^, which is Equation 

(6.23) in the new basis, which proves the tensor character of the property. 
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3. In the given particular case, we similarly arrive at Â  = 1, with roots 
Al = 1 and A2 = —1, which implies t°° = t°° or t°° = "^H^ ^^^^ is? only 
two classes of tensors satisfying it exist: (a) symmetric tensors, and (b) 
anti-symmetric tensors. 

D 

Example 6.4 (Different classes of systems). Let T be a tensor belonging to the 

tensor space V^{<S'V'^y^V^(K)^ with components t^^^^^^, that is symmetric 

with respect to the set of indices (Mp). 
Classify the following systems of scalars as tensors: 

1. Contracted tensor of T with respect to the indices (z, j ) . 
2. Contracted tensor of T with respect to the indices (p, q). 
3. Contracted tensor of T with respect to the indices (-^,p). 
4. Doubly contracted tensor of T with respect to the indices (i,p) and (j, q). 
5. Doubly contracted tensor of T with respect to the indices (i, q) and (j, k). 

Solution: 

1. The contracted tensor of T with respect to the indices (i, j ) is 

iooooqi I ooogr-i 

which is a symmetric tensor with respect to the contravariant indices. 
2. The contracted tensor of T with respect to the indices (p, q) is 

cQiT) = KitTe] = K 

which is a symmetric tensor with respect to the set (ki). 
3. The contracted tensor of T with respect to the indices {i^p) is 

which is a system of scalar components. 
4. The doubly contracted tensor of T with respect to the indices (i,p) and 

« ^ i ^ /'rr\ f,0(f)ki60i r ki] 

which is a symmetric contravariant tensor. 
5. The doubly contracted tensor of T with respect to the indices (z,g) and 

(j, k) is 

C{z^q\j^k){T) = [tlttlro] = '2[i.P]^ 

which is a symmetric system of scalar components. 

D 
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6.4.3 Symmetrie tensor spaces and subspaces. Strict components 
associated with subspaces 

Consider as a tensor space of reference the tensor space of homogeneous ten
sors of order r totally contravariant over the linear space V'^{K), notated: 
{^V'^y{K). Obviously inside it there exist tensor subspaces, and some of 
them of /c-symmetric (partial or totally symmetric) tensors. 

In particular, we denote by {^V'^Yg{K) the subspace sum of all symmet
ric tensor subspaces. We point out that such subspace is not only a vector 
subspace but a tensor subspace. 

For the sake of simplicity, we examine this only for r = 2. 
Let u^v e {^V'^)'^{K) be two symmetric tensors: 

^ = K% ^ ^/5; with w^f = wf ̂  and ull = ^of7oa7o^ (6-25) 

-̂  aß-* ,^ ->• •,-, aß ßa j ij aß io jo /^ c\n\ 

V = v^^^ea^ep; with^^^ = ;̂̂ ^ and v^'^ = ^^o7oa7o/3 (6-26) 

1. The sum subspace contains the vectors of the form 

-* ->•,-). f aß I aß\-* ,_, -̂  aß-* ,^ -* 

and since 
aß ocß \ Oiß ßcx. , ßa ßa / r -o^N 
0 0 0 0 0 0 0 0 0 0 0 0 ^ / 

and 

ij ij , ij { Oiß , aß\ io 70 aß io jo / ^ c^a\ 

w -^ = u + V = (u -\- V n j\> = w j T a (6.28) 
00 00 ' 00 V 0 0 ' 0 0 / loa 'oß 0 0 loa 'oß V / 

the result is that the subspace Sm{w) — Sm{u-\- v) C {^V'^)'^{K). 
2. If iT 6 (OV^^)^ and X e K: 

-̂  \ -̂  X aß-* ^ -* aß-^ ^ -* aß \ aß A ßa ßa 

(6.29) 
and 

zz=Ki - i^<lhz<;=<liZiii (6-30) 
so that the set {<^V'^)1{K) has the structure not only of linear space, but 
of tensor subspace contained in (0]/"')^(iir). 

The generalization to {^V^Y^^K) C {®V'^Y{K) is immediate. 
It is convenient to study here certain limitations that come from executing 

algebraic operations with symmetric tensors, together with others that come 
from using them with other tensor. 

1. The first limitation refers to the fact that some authors consider the set of 
strict components associated with a symmetric tensor as components of 
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a vector associated with the symmetric tensor, endowing to such compo
nents with the corresponding "basic vectors", with the added constraint 
of having repeated and only increasing indices. 
Then, if in particular we refer to the symmetric tensor 

the basis of which B = {ca 'S) ep (S> e^} has 64 basic vectors, in agreement 
with its dimension cr = n'" = 4^ = 64, the "associated" corresponding 
vector is 

^0 = u\ ^ ; 'ea (8) e/3 (g) e^ 

formed with the strict components of the previous tensor, with dimension 

ßo = {ei (8) e*i (g) e i , e*i (g) 6*1 (g) e*2,..., 64 (g) 64 (g) 64} 

contains only 20 basic vectors, of the 64 basic vectors t ha t form the tensor 
basis. 
The apparent conclusion is tha t such authors consider as important vec
tors of the type Ho arising from each tensor of the symmetric tensor 
subspaces in ((g)^^)^, which lead to the set S{ÜO^VQ,WO,. ..) which is a 
distinguished subspace of the subspace {<S)V'^)l^ to which they even en
dow a "product" to build commutative algebras tha t are isomorphic to 
those of polynomials. Certain authors have covered this subject at length. 
However, we want to point out tha t though it is t rue t ha t the set of "asso
ciated" vectors S{ÜQ^ {TQ, too, . . . ) is a linear space^ in the tensor subspace of 
symmetric tensors {S{ÜQ) C ( ^ " ' ) S ) , of dimension CTQ = CRn,r = ("'"^^"'^), 
it is not a tensor subspace, precisely because the ordering without repe
tition of their basic tensor products goes against Axiom 4 of Section 2.5, 
which forces the number of components of a (pure homogeneous) tensor-
vector to be n'^, a quanti ty tha t is never equal to (^'^l.~'^). 
Since the vectors of the subspace 5('So, VQ^WQ^. ..) are not tensors^ there is 
no interest in studying them in the present book, though we understand 
their detailed development in other books under other different points of 
view. 

2. The second limitation refers to the use of symmetric tensors as test tensors 
in the quotient law, to find if a da ta system of scalar components is a 
tensor. This is a common practice in many books of tensor analysis. 
Assume tha t one desires to analyze the possible tensor nature of a given 
system 5(a , /3) of order r = 2, over a linear space V'^{K)^ applying the 
quotient law. 

Since we suspect tha t S{a^ß) could be a pure covariant tensor, we must 

choose an arbitrary contravariant test tensor t = t^^ea 0 eß for the con

tracted tensor of both to be an invariant, t ha t is, if the initial and the 

new bases of V'^{K) are {ea} and {e^} we must have 
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i-'^O ,aß io jo .cj _ ,Lx^ . w ,w _ ^ ,ut^ _ ,ij ao ßo 
oo o o Ioa I oß o o o o o z o j ' 

.aß (6.31) 

with s{i^j)f^ = IQ G K and s{aß)t^^ = IQ G K^ and taking into account 
(6.31), transposing the order the result is 

oCK oß.ij o a o/3x ,zj 
s{i,j)f^ = s{a,ß)c:y.Xi ^ {s{i,j) - s{a,ß)c°y.:)f^ = 0 (6.32) 

and since the f^ are in general non-null, it must be s{i^j) = s{a^ ß)^\^^ o'> 

and because of the tensor relation (4.34), we finally get 

oo o o o a oß 
S • . = S ^C . C . . 

IJ aß to JO 
3.33) 

However, if we use as test tensor a symmetric tensor, which adds the 
symmetry conditions (it is not fully arbitrary), we have 

tii = tit and i"f = if". 
OO OO o o o o 

(6.34) 

Grouping Equations (6.32), by strict components, on account of (6.. 
yields 

[s{i. j) + s{j, i)] - [s{a, ß) + .(/3, a)]cZcf\ t^ = 0. (6.35) 

Since the tl^ are not null, they would require again 

s{ij) + s{j,i) = [s(a,/?) + 5(^,a)]c°^c°f, (6.36) 

which would prove the tensor nature of the system [s{i^j) + s{j^i)] but 
not the tensor nature of the first summand s{i^j) isolatedly. 

6.5 Symmetric tensors under the tensor algebra 
perspective 

As will be shown, a simple counterexample forces us to accept that the sym
metric tensor algebra of symmetric tensors, does not exist, that is, the tensor 
product t i (8) 2̂ of two symmetric tensors, is not in general another symmetric 
tensor. We give the following counterexample. 

Consider two tensors of order r = 2 and n = 3, both contravariant and 
symmetric: 

Ö1 

Xi 

yi 

Xi 

hi 

Zl 

yi 
Zl 

Cl 

and [6̂  J = 
Ö2 X2 2/2 

X2 h Z2 

2/2 Z2 C2 
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Since Va^^ = a^^ and Vö^^ = 6^^ we will represent the components of the 

tensor of order r = 4 and n = 3 in matr ix form as 

Li^OO OOJ 
^J1 [b 

fc^l (6.37) 

the tensor product of the given tensors. 
The mat r ix P is represented by nine blocks: 

p r ijkii 
L/^OOOOJ 

aia2 

aiX2 

0 1 ^ 2 

Xia2 

xiy2 

2/102 

2/1^2 

yiy2 

aiX2 aiy2 

aib2 aiZ2 

aiZ2 01C2 

2:ia;2 xiy2 

Xib2 XiZ2 

X1Z2 X1C2 

yiX2 yiy2 

y i h yiZ2 

yiZ2 yiC2 

xia2 

xiy2 

hCi2 
biX2 

hy2 

zia2 

ZIX2 

ziy2 

^ 1 ^ 2 Xiy2 

X162 XIZ2 
XIZ2 XIC2 

biX2 

bib2 

blZ2 

ZIX2 

Zlb2 

Z1Z2 

hy2 
blZ2 

blC2 

ziy2 
Z\Z2 
Z1C2 

yici2 

y i ^ 2 

yiy2 

zia2 

ZIX2 

ziy2 

cia2 

C1X2 

ciy2 

yioc2 yiy2 

yib2 yiZ2 

yiZ2 yiC2 

^ 1 ^ 2 Ziy2 

Zlb2 Z1Z2 

Z1Z2 ZxC2 

C1X2 ciy2 

C162 CIZ2 
C1Z2 C1C2 

(6.38) 
where (axiomatic ordering) i is t he index of the row block, j is the index of 
the column block, k is the row of each submatrix, and i is the column of each 
submatrix. 

Next, we see some of the tensor strict components and their permutat ions. 

If the tensor were symmetric, we should have p {ijki) 
0 0 0 0 

kj ii 
but for 

i = l , j = 2,k = 3,£ = 3 the result is pHH = X1C2 7̂  p^H = Ziy2, tha t 

is, the equality does not hold. Similarly, for i = 3 , j — 2^k — 1,^ = 2 we 

^12:2, tha t is, the equality does not hold, and u 3212 
have p 

^ 0 0 0 0 

/ 1232 

^3 ^3^ which for i = 2; J 3 1 1 i 2 2 3 3 7 / 3 2 3 2 
l e a d s t o P^^^^ — b\C2 J^ Pr.rsr.rs -^0000 X z, / -i^oooo ^ 1 ^ 2 , - ^ 0 0 0 0 ' 

which also fails to hold, etc. 
Consequently, P is a symmetric matr ix, but is not a symmetric tensor of 

order 4. 

Example 6.5 (Kronecker tensor product). Consider the symmetric matrices 

A2 ^3^ 1 3 
3 4 

and B2 [b'l] as two contravariant 

tensors, of order r = 2, over the linear space ]R^(n = 2). 
We wish to determine: 

1. The matr ix direct tensor product or the Kronecker tensor product , C4 = 
A 0 -B, of both matrices. 

2. Considering the matrices A and B as matr ix representations of the corre
sponding tensors 

a = e*i (g) ei + 3ei (g) 62 + 3e2 0 e 1 + 4e2 (8) 62 (6.39) 

6 = 2e*i (g) ei — ê i (g) 62 — 62 (g) e\ + 5e2 ^ 62, (6.40) 

determine the representation matr ix of the tensor product of bo th tensors. 

http://Pr.rsr.rs
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3. Prepare a warning comment with respect to the operators "(8)". 

Solution: 

1. The matrix direct tensor product or the Kronecker tensor product of both 
matrices is 

2 - 1 6 - 3 ' 

C4 = ^ 2 (g) ^ 2 = 
-1 5 - 3 15 
6 - 3 8 - 4 

-3 15 - 4 20 

which obviously, is a symmetric matrix (it is a symmetric tensor of order 
r = 2 over the linear space H^). 

2. Since the tensor product of the tensors a and b is 

> Ck 0 ei; con p, 
i ik£ i i iki 

00 0 0 ' 

the matrix representation of the tensor p can be written as 

p = [p^ 
ijkii 
ooooJ 

1 1 1 1 1112 
-^0000 -^oooo 

1 1 2 1 1122 
-^0000 -^0000 

2111 2112 
•^0000 -^0000 

2121 2122 
-^0000 -^0000 

2 
1 

6 
3 

- 1 
5 
- + 

- 3 
15 

6 
- 3 

— 
8 

- 4 

- 3 
15 
— 

- 4 
20 

1212 
-^0000 

1211 
•^0000 

1221 1222 
-^0000 -^0000 

2211 2212 
0000 -'̂ 0000 

2221 2222 
0000 -^0000 

which is a tensor of order r = 4, n = 2, i.e., over H^. 
However, according to what was established in Example 6.2, question 2(a), 
the matrix P has not the properties of a symmetric tensor of order r = 4, 
because for example 

1 2 1 1 ^ / 1112 . _^ 1211 / 1112 
•^0000 / -'̂ oooo ^0000 ' -£̂ 0000 

1122 
0000 

1212 

r / 1212 o _. 1122 / 1212 
I - ^ 0 0 0 0 ^0000 / -^oooo 

- 3 7^P, 2 2 1 1 
= 8=^ 

1212 / 2 2 1 1 
0 0 0 0 / - ^ o o o o * 

Thus, p 25 not a symmetric tensor (it is a tensor of order r = 4, over 
n = 2, non-symmetric). 
We immediately conclude that the tensor product of symmetric tensors is 
not in general symmetric. 
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3. The major warning of this exercise is that the tensor product or the Kro-
necker product of symmetric matrices is a symmetric matrix, while the 
tensor product of symmetric matrices that represent symmetric tensors 
is not a symmetric tensor, though we use the same symbol "(g)" and op
erating procedure (the matrices in the previous paragraphs 1 and 2 are 
identical) for both products. In other words, the operator "(g)" of matrices 
has not the same properties as the operator "(8)" for tensors. 

D 

Example 6.6 (Tensor products). 

1. Show that the Kronecker tensor product of two square matrices, both 
symmetric is a symmetric matrix. 

2. Show that the Kronecker tensor product of two anti-symmetric matrices 
is a symmetric matrix. 

3. Show that the contracted tensor product, of two symmetric matrices (clas
sic product of matrices) is not in general a symmetric matrix. In which 
cases is it symmetric? 

Solution: 

1. Consider the equalities 

An=Ai- B^ = Bl. (6.41) 

Multiplying them in order and using the Kronecker product we obtain 

An ® Bm -= A\^^ Bl^ := {An O Bmf =^ An ® Bm is Symmetric. (6.42) 

2. Consider the equalities 

A„ = -A^ ; Bm = -Bl. (6.43) 

Multiplying them in order and using the Kronecker product we obtain 

An 0 B ^ = (-A^) ^ {-Bl^) = {An (8) BmY -^ An ^ Bm is Symmetric. 
(6.44) 

3. First we have 

PlVa-C i][A^B]=.C i][ali^bZ] = lail0bZ]=A^.B„ 

and since An — A^n ̂ ^^ Bn = Bl^^ the properties of the classic product of 
matrices lead to 

Am B ^ A^ • B^ = {B • Af ^ {A^ Bf ^ A* B ^ {A^ B)\ (6.45) 

unless the product A* B commutes. IfBmA^AmB then, returning to 
(6.45) we obtain 

Am B = A^ • B^ = {B • AY = {Am B)\ 

which proves the symmetry oi Am B. 

D 
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6.5.1 Symmetrized tensor associated with an arbitrary pure tensor 

In Section 6.4.1 we have already developed a technique that allows us to asso
ciate with an arbitrary pure tensor, another tensor which is symmetric with 
respect to a set Ik of its indices. Here we consider only one associated tensor 
that corresponds to Ik = /r, that is, to selecting all r! isomers corresponding 
to the set Ir = {ai, « 2 , . . . , o r̂} of all tensor indices. 

The resulting symmetric tensor will be called a "symmetrized" form of the 
given tensor. To illustrate, we give a detailed example. 

Let T = t^^^^.'.^J be the given tensor over the linear space V'^{K)^ and 
consider the r! permutations of its indices, which generate the corresponding 
isomers of the given tensor. 

We denote by S{T)^^''^^'"''^'^ the "symmetrized" tensor of the given tensor 
T the components of which are established using the formula 

n/rp\aia2---ar -̂  ' 
^ U J o o ... o - ~] 

,OC\OL2---OCr I ,0L2 0Ll---CXr , , 0 ;3 CKl • • • CKr , _ ^ ^ , , CKr « r - 1 • '" Oil 

o o .•• o ""^ o o •.• o ' o o ••• o ' "*" o o . . . o 
r! L 

(6.46) 
the summands of which are all the r! isomer tensors. 

This is a symmetric tensor, defined over the same tensor space {ßV'^Y{K). 

6.5.2 Extension of the symmetrized tensor associated w îth a 
mixed tensor 

If the data tensor is mixed, it is possible to associate with it a symmetrized 
tensor by establishing all isomers that result from considering all permutations 
of its p contravariant indices, independently of the corresponding permutations 
of its q covariant indices. If the data tensor is T = i^'^^'^"'^p ° ^ """̂  , of order 

^ o o ... o ßiß2---ßq^ 

r — p-i- q, the number of isomers will be plql, and the symmetrized tensor 

q/'rp\aia2---Oip O O .•• O -̂  

'^y-^ Jo o ... o ßiß2-ßq~piqi 
,_ai---ap o ... o ,cK2"-CKp o ••. o ,j.otp-"Oii o .•• o 
^ o ... o ßi-ßq^^ o ... o ßi-ßq'^ ^^ o ... o /3g- /3 i 

(6.47) 
where the right-hand sum extends to all p\q\ isomer tensors. 

In order to determine the number of strict components of the symmetrized 
tensor, we proceed with an ordered criterion, in this mixed case, separating 
the permutations corresponding to different valencies. 

For example consider the tensor t^^°^ of order r = 4 with p = 2 and 

^ = 2, over a V'^(IR). Then, the strict components of the symmetrized tensor 
will be sorted as 

[11] [11] 

[11] [12] = 1121 

[11] [22] 

[12] [11] = 2111 
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[12] [12] = 1221 = 2112 = 2121 

[12] [22] = 2122 

[22] [11] 

[22] [12] = 2221 

[22] [22], 

showing that, we have nine strict components of the cr = n'̂  = 2^ = 16 total 
components. 

Example 6.7 (Symmetrized tensors). 

1. Obtain the symmetrized tensor of the tensor T given in Example 4.5, as
suming it is totally contravariant, using the general formula. 

2. Obtain the symmetrized tensor of the mixed tensor A: 

r .a /3oo i 
L^oo7(5J 

1 2 
- 3 4 

5 - 3 
- 1 4 

- 2 1 • 
0 6 

- 2 - 5 
- 1 3 

Solution: 

1. From Exercise 4.5 we extract the following numerical data of tensor T and 
its isomers: 

.aß^i _ 

o o oJ V = [t 

R = KO 

1 0 - 1 1 
2 3 0 
1 2 0 
2 - 1 1 
0 1 0 
2 0 1 
0 0 1 
5 1 2 
1 0 OJ 
- 1 2 0-

0 - 1 0 
- 1 1 1 

2 0 5 
3 1 1 
0 0 2 

- 1 2 1 
2 0 0 

. 0 1 0 . 
1 2 Ol 
2 0 5 

- 1 2 1 
0 - 1 0 
3 1 1 
2 0 0 

- 1 1 1 
0 0 2 
0 1 0 . 

; ^ = [Cf] = ' L O O O-l 

;Ŵ  = [Cf] = \ ' L O O O J 

; 5 = [ifoI] = ' L O O OJ 

r 1 2 - 1 1 
2 0 2 
0 5 1 
0 3 2 

- 1 1 0 
0 1 0 

- 1 0 0 
1 0 1 

. 1 2 OJ 
r 1 2 - 1 1 

0 3 2 
- 1 0 0 

2 0 2 
- 1 1 0 

1 0 1 
0 5 1 
0 1 0 

_ 1 2 OJ 
- 1 0 - 1 

2 - 1 1 
0 0 1 
2 3 0 
0 1 0 
5 1 2 

- 1 2 0 
2 0 1 
1 0 0 
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The symmetrized tensor is 

S{T) = -[T -hU ^V ^W + R^ S] 

6 8 - 4 
8 4 10 

- 4 10 4 
8 4 10 
4 6 2 

10 2 6 
- 4 10 4 
10 2 6 
4 6 0 

2. We have four isomers: 

aßooi 
1 

- 3 
5 

- 1 

2 - 2 1 
4 0 6 

-3 - 2 - 5 
4 - 1 3 

a' 
/3aoo-] 
o o7<5J 

a 
aßooi 

1 - 3 - 2 0 
2 4 1 6 
5 - 1 - 2 - 1 

-3 4 - 5 3 
o o 57J 

1 2 5 - 3 
- 3 4 - 1 4 
- 2 1 - 2 - 5 

0 6 - 1 3 

1 - 3 5 - 1 
2 4 - 3 4 

- 2 0 - 2 - 1 
1 6 - 5 3 

Then, S{A) is 

Ot/^OO-j 

o 075-I = 5(^) - 7 

4 - 2 6 - 3 
-2 16 - 3 20 
6 - 3 - 8 -12 

-3 20 -12 12 

Q;;ÖOOI 

- 2 
5 
2 
5 
1 
3 
2 
3 
0 

D 

Remark 6.2. The resulting symmetric tensor [5^^ ]̂ (ioe5 not satisfy the sym
metric conditions required in Example 6.2, question 2(a). However, we must 
not panic, because such conditions are for a totally contravariant tensor 
5" 1, and our tensor is a mixed tensor. 

o o o oJ ' 
D 

6.6 Symmetric tensor algebras: The ®s product 

Once the concept of "symmetrization" of an arbitrary homogeneous tensor has 
been established, it is possible to define a new tensor product for exclusive use 
with symmetric tensors, the product of which is another symmetric tensor, 
and since the sum of two symmetric tensors is another symmetric tensor, this 
will supply a good foundation for an interior symmetric tensor algebra, that 
is, an algebra structure for symmetric tensors. 

This new product will be called a "symmetric tensor product" and will be 
denoted by "(g)^". 

Let A and B be two symmetric homogeneous tensors of orders r^ and 
r^, respectively, both over the linear space V'^{K). If P = ^ 0 5 , of order 
T ~ Va^-T})^ the new product is defined by the following formula 
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A^s B = S[P] = S{A (8) B) (symmetrized tensor of A^B). (6.48) 

For the sake of illustration, we give one example of the new product. 
Let a^b E y^ 0 V'^{K) be two contravariant symmetric tensors, and let 

a = rf = 2'^ = Ahe the dimension of the tensor space to which they belong. 
Their matrix representations are: 

aßi 

A=K:] 

B 

= 

ai 

. ^ 1 

01 

.^1 

bi 

^ 1 . 

bi 

^ 1 . 
1 

®s 

B = [bii\ 

a2 62 
02 C2 _ 

= 

-s 

Ö2 ^2] 
_ &2 C2 J 

:<f]^[& 

ra + r^ = 2 + 2 = 4. 

ooJ 5[p 
o o o o-l 

= s 

1 

4! 

aia2 
«1^2 

6ia2 
6162 

« 1 ^ 2 

a i C 2 

61 a2 6162 
6162 61C2 

— + 
6162 
&1C2 

cia2 
C162 

C162 
C1C2 

- ^ o o o o - ^ o o o o -£^0000 ' -t^oooo 

' \ ^ o o 00 

'^a.ßö 
0 0 0 0 

' V-^o 0 0 0 

ßadj I ß'yaö . ßjöa 

- P -\- p -\- P 
- ^ 0 0 0 0 ' -f̂  o o o o ' - ^ 0 0 0 0 

0 0 0 0 

^aSß 0 
0 0 0 0 

F 

- P -\- P 
- ^ 0 0 0 0 -f^oooo 
ßS^Oi I ßSa^ 

Po 

+p ^ßaS 
-P 

J ßöa ^Sßa I ^öaß 
- P + P 

• ^ 0 0 0 0 ' ^ 0 0 0 0 

- P -\- p ' -\- p 
- ^ 0 0 0 0 ' - ^ o o o o -£^0000 

Sjßa 
1 

0 0 0 o '^ - ^ o o 0 0 / 

aia2 
aib2+feiQ2 I Qi&2+fc'ia2 4bib2+aiC2+cia2 

2 1 2 6 
0162+^1 a2 4 b i b 2 + a i C 2 + c i a 2 I 4bi62 +0.102+ci02 hiC2+c\h2 

2 6 1 6 2 

0-1^2+^10-2 4 6 i b 2 + a i C 2 + c i a 2 
2 6 

4bib2+aiC2+cia2 b\C2+c\b2 
6 2 

4bib2+QiC2+cia2 
6 

blC2+Cib2 
2 

blC2+Clb2 

2 

C1C2 

It can be easily proved tha t the symmetric tensor product has the following 
properties: 

1. It is commutative: 
A^s B = B ̂ sA. (6.49) 

2. It is associative: 

{A (^sB)^sC^A 05 {B 05 C). (6.50) 

3. It is distributive with respect to the tensor sum"+": 

{A^B)^sC = A^sC + B^sC. (6.51) 

A ̂ s {B ̂  C) = A 0s B + A ^s C. (6.52) 

4. Due to the previously given properties, it is obvious tha t the symmet
ric tensor product, together with the sum, endow the set of symmetric 
homogeneous tensors with the character of a symmetric tensor algebra. 
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6.7 Illustrative examples 

Example 6.8 (The rotation tensor and the symmetry). A known homogeneous 
contravariant tensor T, of third order is related to another tensor VF, by the 
expression 

,ijk iik , ijk 

t = W -{- W . 
ooo ooo ' ooo 

It is also known that W is a contravariant tensor of third order and symmetric 
with respect to the last two indices. 

1. Prove that the data tensor T is symmetric with respect to the first two 
indices. 

2. Prove that the rotation tensor of the given tensor T shares the same 
symmetry. 

3. Determine the generic component "u;̂ ^̂  of the tensor VF as a function of 
the components of T and of its isomers. 

Solution: 

1. Exchanging i and j in the given expression, we have 

,i jk i ik , ijk /r»ro\ 

t -^ = W -^ W (6.53) 
ooo ooo ' ooo \\J.^^J 

t'' = W -^ W {5.54) 
ooo ooo ' ooo V / 

and subtracting (6.53) from (6.54) gives 

^iik _ 
o o o 

-t'^^ = 0 
o o o 

=> 3ik__ 

o o o 

^ ijk 

o o o 

2. Consider the isomer tensors of the given tensor, coming from the circular 
permutations of its indices (rotation tensors): 

Rotation(l). (the index i passes to j || the index j passes to /c || the index 
k passes to i) 

Rotation(2). (the index i passes to fc || the index j passes to z || the index 
k passes to j) 

Thus, from tj^^ — w^l^ + ^ooo ^^ obtain the rotation isomer(l): 

t^^' =w^'' ^w'^\ (6.55) 
o o o o o o ' o o o \\J'^^J 

Exchanging j and k in Expression (6.55) gives 

t':it= will + win (6-56) 
O O O O O O O O O ' V / 
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and subtracting (6.55) from (6.56) we get 

o o o o o o o o o o o o ' 

Similarly, rotation(2) is 

,kij ikj . kij /^ r ' -7\ 
OOO O O O O O O V / 

Exchanging k and i in Expression (6.57)gives 

,ikj k i i , ikj m rc\ 

t^/^ = W^/^ + W^/^, (6.58) 

o o o O O O O O O ' \ / 

and subtracting (6.57) from (6.58) we obtain 

f^kj _ ,kij _ n. f̂ -̂̂  = f̂ -̂̂  

o o o o o o OOO o o o ' 

3. Considering the rotations: 
liik j i k . ijk /r r:n\ 

t -^ = W -\- W (6.59) 
ooo ooo ' ooo V / 
j k i ^ kji j ^ j k i /ggQX 

ooo ooo ' ooo \ / 
,kij ikj , kij /^ -o-, \ 

t̂ :̂ = w^/^ + w^/^ (6.61) 
o o o o o o o o o V / 

executing the operation (6.59) -|- (6.61) — (6.60) and on account of the 
symmetry of the last two indices of tensor VF, we have 

.ijk i j k i . j k i i / jki , ijk\ / kij . j k i \ . / ijk . kij\ r\ ijk 

t —t +t = (w -i-w ) — [w +tf; )-\-{w -^w ) = 2w , 
o o o o o o ' o o o V o o o ' o o o / V o o o ' o o o / ' V o o o ' o o o / o o o ' 

from which 
ijk _ ]^nijk _ . j k i . . k i j i 
o o o o L o o o OOO "*" oooJ " 

Example 6.9 (Products of symmetric contraction). Let A and B be two given 
homogeneous tensors, both over the linear space V'^{K). Show that the con
stant d £ K^ resulting from the contracted tensor product 

IJ O O 

can also be obtained by using a certain symmetric tensor c = ĉ ê**"* 0 ê -̂ ^ as 

I J O O 

D 
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Solution: We know that any covariant homogeneous tensor of second order 
can be written as the sum of a symmetric tensor and an anti-symmetric tensor 
(matrices theory). Thus, in our case we can write 

oo . oo oo o o ' 

a. . -\- a .. a. . — a .. 
d = alXK = I . + \ ' ' I &>o 

Z J O O I O O J O O 

oo , oo 

O O ' O \ ZJ O O Jl O OJ 

but, because of the commutativity of the product in the field K, we have 

OO o o 

O O ' Q \ Z 7 0 0 n I O O I i n o o r\ \ / o l o o ' o \ z j o o J l o Ol ZJ o o o 

and then, d = c°°6^6^, where c°° = l l ^ H "*" ^H) ^̂  ^ symmetric tensor (the 
symmetrized tensor of A). 

Example 6,10 (Strict components of a symmetric mixed tensor). Consider the 

symmetric mixed tensor, with components t^^^ over a linear space ^"^{K). 

Calculate the number of strict components. 

Solution: For the symmetry to have tensor character it must be that of the 
covariant indices. From the formulation in Section 6.4, we have 

p = 1; Ä:i = 0; g = 2; ^̂2 = 2; r = _p + g = 3; 

n^k^-l\(n^k2-l\^,_^k,+k,) 
ki J \ k2 

n^0-l\[n^-2-l\ 3-(o+2) _ /^^ + 1"\ _n^{n-\-l) 
0 J \ 2 J \ 2 2 

Example 6.11 (Main tensors associated with a given tensor). Consider the ho
mogeneous contravariant tensor t, of second order, over a linear space y^(i^) , 
the components of which are 

L ooJ 

1 3 - 2 
0 1 3 

- 1 0 2 

1. Give the components tr^^ of the tensor rotation of the given tensor. 
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2. Give the tensor components tsU of the symmetrized tensor of the given 
tensor. 

3. Give a null trace tensor toU associated with the given tensor, by subtract
ing a "scalar" tensor. 

4. Give a null trace tensor tgoU associated with the symmetrized tensor, tsU-

Solution: 

1. The components of the rotation tensor are: 

t. 
'i'j 

K J^] 

2. The tensor components of the symmetrized tensor of the given tensor are: 

*J i _ J * i _ 

1 0 - 1 " 
3 1 0 

- 2 3 2 . 

zed tensor of the g 

1 3/2 
3/2 1 
-3 /2 3/2 

- 3 / 2 
3/2 
2 

3. The components of the null trace tensor associated with the given tensor 
by subtracting a "scalar" tensor are: 

[ 0 = [C]- «Jl 
-Y I [̂ oo 

1 3 - 2 
0 1 3 

- 1 0 2 

1 + 1 ri 0 Ol 
0 1 0 
0 0 1 

— 
-1/3 3 - 2 
0 - 1 / 3 3 

~1 0 2/3 

4. The components of the null trace tensor associated with the symmetrized 
tensor are: 

* j i \t '^ 
r s o c 

ts 
L ooJ 

1 3/2 - 3 / 2 
3/2 1 3/2 

- 3 / 2 3/2 2 

4 

~ 3 

"1 0 0" 
0 1 0 
0 0 1 

=z 

- 1 / 3 3/2 - 3 / 2 
3/2 - 1 / 3 3/2 

- 3 / 2 3/2 2/3 

D 

Example 6.12 (Symmetric total contractions). Let A and B be two homoge
neous tensor homomorphisms, of second order, covariant and symmetric^ that 
transform homogeneous contravariant tensors of first order (vectors), all of 
them defined over a linear space V'^{K)^ and such that they satisfy the tensor 
equations 

(a 
*J fe6°;K = o; yi,j&in 

^3 
7 / 7 0 0 \ I 

IjJ C 
0; yij ein, 

(6.62) 

(6.63) 

where k,k' eK; ^^k^-k' ^^\ Ü,v e ViK); Ü ^ v. 
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1. Show that all the following tensor total contractions are null: 

oo i j lOo i j ^ 
z j o o z j ; o o 

2. Give the value of the constant A:, as a function of the components of tensors 
A^ B and u. 

3. Idem, of the constant k\ as a function of the components of the tensors 
A^ B and v. 

4. Prove that in reality k and k' are different eigenvalues and non-null, func
tions only of A and B. 

Solution: 

1. Executing the contracted tensor products of Equation (6.62) by the tensor 
v^ and of Equation (6.63) by the tensor u^ we have 

« ° - f c 6 ° p u X = 0; V i , i G / „ (6.64) 

K ° - fc'6°°K< = 0; Vi,je7„ (6.65) 

and exchanging indices z, j in (6.65) and subtracting (6.65) from (6.64) 
we have 

( a n - A:^^ - a°° + i^'6°°)u V = 0. 

Remembering that because of the symmetry a°° = a°° and 6°° = 6°° we 
can write 

( f c ' - f c )6 ° °«X=0 ^ fc:>yo = 0, (6.66) 

and finally, substituting (6.66) into (6.64), we have a°%o^o = 0. Whence 

Z J O O Z J O O 

2. From Equation (6.62), giving values to j we get the system of n equations 

oo i o o l o o 2 o o n 
^ 7 z l o 11 o 21 o n l o 

7 = 1 —^ A: = r = :; r 
•̂  , o o z , o o l , , o o 2 , , , o o n 

z1 o 11 o 21 o n l o 

oo z oo 1 , oo 2 , , o o n 
o 7 z2 o 12 o 22 o n 2 o 

, o o z , o o l . o o 2 , , , o o n 
z2 o 12 o 22 o n 2 o ^D.D/ j 

o o z o o l o o 2 o o n 
a . n a^ u + a „ u -\ ha n 

^ z n o I n o 2 n o nn o 

J = n —^ k = 
, o o z , o o l . o o 2 , , , o o n 
b. u 0^ u + 0 ^ It H ho u 

z n o I n o 2 n o nn o 
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the solution of which is 

O O Z 0 0 2 O O Z 

^ l o z 2 o m o 
k=-^^-^ = ^^^ = --- = -^^^. (6.68) 

T O O Z T O O Z T O O Z ^ ^ 

z l o z 2 o m o 

3. Operating Equation (6.63) in a similar way, we obtain the solution 

o o z o o z o o z 

/fc' = ^ i - ^ = - ^ ^ = ... = ^ ^ . (6.69) 
T O O Z T O O Z T O O Z 

z 1 o z2 o in o 

4. The system (6.67) can be notated as 

(«11 - K i ) ^ o + («21 - ^^2i)^o + • • • + « 1 - ^KD^Z = 0 

/ OO 7 7 0 0 \ 1 I / OO 7 7 0 0 \ 2 , I / OO 7 T O O X n /-> 

(«12 - ^^12)^0 + («22 - ^Ö22)"o + • • • + ( a „ 2 - ^^^«2)^0 = 0 
(6.70) 

a 
r O O \ 1 , / 0 0 1 l.OO\ 2 

n - ^ ^ l n ) ^ o + («2n " ^^2n )^o + ' " ' + i^nn " ^ ^ n n ) ^ o = 0 ' 

a homogeneous system of n equations, the compatibility of which requires 
a null determinant of the coefficient matrix: 

\A^-kB^\ = ^ -^ \A-kB\=0, 

which, if matrices A or B are regular, leads to 

1 
\A-^\\A -kB\r=0 -^ \I^ - kA-^B\ ^In-A-^B 

or 
\A - kB\\B-^\ = 0 -^ \AB-^ - kln\ = 0, 

where both are characteristic polynomials, showing that k is an eigenvalue. 
If A and B were singular tensors, we should analyze the system (6.70) by 
removing the redundant equations. 
Obviously with k\ starting from equation (6.63), one arrives at exactly 
the same conclusions. 
Also the k' are eigenvalues (with k ^ k^) of the same characteristic poly
nomials. 

D 

Example 6.13 (Matrix algorithms do not keep tensor symmetry). Let A and 
B be the contravariant and symmetric homogeneous tensors, of order r — 2 
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^^Kl] ooJ 

Obtain the matrix S 
resulting tensor. 

ai 
Xi 

yi 

s = 

Xi 

bi 

zi 

A^ 

yi 
Zl 

Cl 

)B 

\ci2x2y2 

and B = [bH] = \ X2 62 ^2 
I y2 Z2 C2 

- B <S) A and make some comments about the 

Solution: Based on the following determinants: 

(1) = 

(5) = 

(9) = 

(13) = 

we have 

a i a2 

Xi X2 

ai 

Cl 

Xi 

Zl 

0 2 

C2 

X2 

Z2 

y\ yi 
Zl Z2 

S = A^B-B®A • 

; (2)^ 

; (6) 

; (10) = 

; (14) 

ai a2 

yi y2 

0 1 

Zl 

a2 

Z2 

hi 

Cl 

Xi 

Cl 

h2 

C2 

^ 2 

C2 

Xi X2 

yi y2 

yi y2 
Cl C2 

0 (1) (2) 

(1) (4) (3) 
(2) (3) (5) 

-(1) 0 (7) 
0 (8) (9) 

(7) (9) (10) 

; (3)^ 

; (7) = 

; ( i i ) 

; ( i5 ) 

-(1) 0 (7) 
0 (8) (9) 

(7) (9) (10) 

bi 

Zl 

Cl 

62 

Z2 

C2 

- (4) - (8) -(11) 
- (8) 0 (12) 
-(11) (12) (6) 

( 4 ) : 

(8) = 

(12) 

ai a2 

61 62 

Xi X2 

hi 62 

hi 62 

Zl Z2 

"(2) - (7) 0 
- (7) (11) (13) 

0 (13) (14) 

- (3) - (9) -(13) 
-(9) -(12) 0 

-(13) 0 (15) 

-(5) - (10)- (14) 
-(10) - (6) -(15) 
- (14)- (15) 0 

- ( 2 ) - ( 7 ) 0 I - (3) - (9) -(13)1 
- (7) (11) (13)1 - (9) -(12) 0 

0 (13) (14) I-(13) 0 (15) 

The required comment could be: 5 is a symmetric matrix and a second-order 
symmetric tensor. However, it is not a contravariant symmetric fourth-order 
tensor, which is what it should be, as the difference of two contravariant 
fourth-order tensors. 

D 

6.8 Exercises 

6.1. Consider a tensor ofp = 3 contravariant indices, q = 2 covariant indices 
and covariance (1 — 2 — 1 — 1 — 2), built over a linear space of dimension n = 4, 
that is symmetric with respect to all the contravariant indices. 

file:///ci2x2y2
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1. Obtain the total number of components (Ni). 
2. Obtain the maximum number of strict components (A 2̂)-
3. Obtain the number of strict components with repeated contravariant index 

(Nz). 
4. Obtain the number of strict components for which the contravariant in

dices have two repeated indices (A^4). 
5. Obtain the number of strict components with all contravariant coordinates 

indices being different (A^s). 
6. Obtain the number of components with repeated covariant indices (A^e)-

6.2. Consider a symmetric contravariant tensor t^^^ of order (r = 3), over 

the linear space R (dimension n = 4). 

1. Obtain the number of total components (iVi) and the number of strict 
components {N2). 

2. Give values to the strict components in axiomatic order by means of the 
Roman letter in order, so that they correspond to: 

abcdefghijklmnopqrstu. 

3. Execute a matrix representation of the general pattern of this model of 
tensors, with the given values. 

6.3. Determine if the following tensor list over the linear space F"'(IEl), 
presents total or partial symmetries, specifying in the second case with re
spect to which indices: 

1. t 
Q;/3OO 

o o 'y5 

, o / 3 o _ 

a 7 
5 ß 

2.tZ; = a + ß + j-aß-f. 

"^O O O 2,.tZ'iZ = aß-^. 

o ßo5o 
o o 06X 
aß'yoo 

4 . t^o';:'^ = (y- • opo o o 

b.t 

•/3 + 7 + (5 + A- /37 . 

= a/37(l + (5A). 
6. Obtain the number of strict components of each of the above tensors. 

6.4. In the linear space V^ (8) V^ 0 V^(Il) a tensor T is given by its usual 
matrix representation 

o o oi 

1 0 
0 3 
1 2 

3 5 
0 1 
2 2 

1 1 
0 0 
2 0 

0 
2 

- 1 

1 
0 

- 2 

4 
1 
1 
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1. Using the permutation tensors, P(i),P(2),P(3),-P(4) and P(5) established 
in Section 5.7.2, extract the isomer tensors of T in the clasic matrix rep
resentation using the notation [/, V, W, R and S. 

2. Obtain the Symmetrized tensor associated with tensor T, which will be 
denoted by S{T). 

3. Execute the triple contraction of all indices in S{T)^ obtaining the invari
ant k. 

4. A change-of-basis is performed in the linear space 1/̂ (̂11) of associated 
[1 0 11 

matrix C = 0 1 1 . Obtain the symmetrized tensor S{T) giving its 
[1 1 oj 

matrix representation. 
5. We repeat the triple contraction over S{T), to obtain k. 
6. Is /c = ^? If it remains invariant, would it be a "particular tensor" con

traction of 5 ( r ) ? 
7. Answer questions 2 and 4 using the computer for the symmetrization. 

6.5. 1. We wish to know the number of different strict components of a tensor 
T of order (r = 3) totally contravariant and symmetric, built over F^(IEl). 

2. It is known that when executing over this tensor all possible contractions, 
C(a/3), C(a7) and C{ßj)^ one always obtains the null system of scalars 
i?. According to this, how many of the strict components of T are really 
independent? 

r 

3. Extend the previous question to the general case: T G ^^"'(11) symmet

ric, and such that all simple contractions lead to i7. 
6.6. Let A^B E V^^V^(JR) be two symmetric contravariant tensors of second 
order (r = 2), the matrix representation of which is 

0 
4 
2 

4 
9 
7 

2 
7 
12 

and [b' aß. 
o o-l 

- 1 2 0 
2 3 1 
0 1 4 

1. Obtain the matrix representation of its "interior symmetric" tensor prod
uct P = A 0s B. 

2. Find the tensors T = A Os (A • P) and i[7 = P Os (A • P) . 
3. Find the tensor W = (A -F P) (g)̂  (A • P) . 
4. Check the distributivity of the operator "(8)s" with respect to "+", know

ing that W = T^U. 

6.7. Consider a tensor T e V^ 0 V^ (S> V^CR.) defined over a linear space 
y^(]R) referred to the basis {e^}^ the matrix representation of which is 



r . a o o n 

1 - 1 
- 1 - 4 

4 0 

- 1 - 4 
- 4 2 

0 - 2 

4 0 
0 - 2 
2 - 3 

41 
0 
3 
0 

- 2 
- 3 

3 
- 3 

5 
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where a is the block row, ß is the row of each block, and 7 is the column of 
each block. 

Let {e^} be a basis of 1^ (̂11) related to the initial one by the change-of-
basis matrix: 

''O 1 1" 
C=\l 1 1 

1 1 0_ 

1. Study the possible "partial" symmetries of the components of T in the 
initial basis. 

2. Are there tensor symmetries, i.e., intrinsic, among those analyzed in the 
previous question? 

3. Is T a totally symmetric tensor? 
4. Perform the change-of-basis and give a matrix representation of T in the 

new basis: K°^] . 
5. Answer again questions 1, 2 and 3. 



Anti-symmetric Homogeneous Tensors, Tensor 
and Inner Product Algebras 

7.1 Introduction 

This chapter is devoted to anti-symmetric homogeneous tensors that are ini
tially defined. 

Because of their anti-symmetry, the number of data components required 
for their definition can be substantially reduced, arising from the concept of 
strict components (a minimum set of data), which is explained and a formula 
given for determining this number. 

The problem of generating anti-symmetric tensors from a given tensor, 
and the tensor nature of anti-symmetry are also discussed. 

Next, the anti-symmetrization operator is extended to the case of mixed 
tensors, and a new interior anti-symmetric product for exclusive use of interior 
anti-symmetric tensor algebras is introduced. 

The chapter ends with some illustrative examples that clarify the estab
lished concepts. 

7.2 Anti-symmetric systems of scalar components 

Definition 7.1 (Anti-symmetric systems of scalar components). Con
sider a system of scalar components ^ ( a i , ce2,. • •, cxr) of order r, defined with 
respect to a certain linear space V'^{K) in a certain basis. We say that such 
a system is anti-symmetric with respect to the indices (i^j), if the following 
holds: 

s{o^i,a2,...,a„...,aj,...,a^) = p \ .^ ^ j ^ . ^ , ^ J„ = {1 ,2 , . . . ,n}c]N 

(7.1) 
that is, the values p of the cited components are of opposing sign. 
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7.2.1 Anti-symmetric systems w îth respect to an index subset 

The above concept can be extended to k indices (2 < Ä: < r), of the total set 
Ir of indices. Let 

4 = {z, j , . . . , Ä:} C /r = {1 ,2 , . . . , i , . . . , j , . . . , r} G In (7.2) 

be the set of indices that satisfy Definition 7.1. We emphasize now two con
cepts that will be very important throughout this chapter. 

The first refers to the consequences of Definition 7.1 if the set Ik, that is, 
the index set in the definition, were to have some repeated index. If the index 
i were to appear repeated in Ik, this would mean that Definition 7.1 should 
satisfy 

5 ( a i , a 2 , . . . , a ^ , . . . , a ^ , . . . , a ^ ) = p 
5 ( a i , a 2 , . . . , a i , . . . , a i , . . . , a r ) = -p ^ 

when exchanging them, and because of the identity of the left-hand members, 
we will have p = —p, and since p E K (field of characteristic ^ 2), this implies 
p = 0, and 

5(^1,^2,- •• ,Ö;Z, ••• ,<^i,- •• ,<^r) = 0. (7.3) 

Consequently, in this type of tensor we only study the components set with 
anti-symmetric indices that are different, because one knows that otherwise, 
the component is null. 

The second important concept motivated by Definition 7.1 is the concept 
of "evenness of a permutation", of a subset of different natural numbers. 

Definition 7.2 (Permutation). Consider a collection of certain 
natural numbers, assumed sorted in the natural ordering. An alteration of the 
given ordering, results in a new grouping that is called a '^permutation'^ of the 
initial one. 

Definition 7.3 (Transposition). If we exchange two elements of the initial 
set, keeping all the remaining elements in their initial positions, the permuta
tion receives the special name of "transposition'^ 

For example, in Formula (7.1), the second collection is a transposition of 
the first one. 

If several elements of the initial collection are altered, the resulting per
mutation has T transpositions. The total number r of transpositions that are 
associated with each permutation, can be counted as indicated in the following 
example. 

Example 7.1 (Transpositions). Consider the initial collection PQ — {2,3,5,6, 7, 
8} and the permutation P=={8,3,7,5,2,6}. We wish to find the correspond
ing value of r. 

Comparing P with PQ^ we modify P as follows: 
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1. We proceed with a transposition of element 8 with element 2, to position 
element 2 in the first position, since this is its position in PQ, and we start 
counting the number of transpositions to be executed {r — 1). We are in 
permutation Pi = {2,3, 7, 5,8,6}. 

2. Now we proceed with the following place; since in Pi element 3 is in its 
place (remember PQ), we move to the third place, and proceed to exchange 
element 7 with element 5, and we already have (r = 2) transpositions. We 
are in the permutation P2 = {2, 3, 5, 7, 8, 6}. 

3. Element 6 is not yet in the fourth place, so that we exchange element 7 
with element 6; and we have (r = 3) transpositions. We are in permutation 
P3 = {2,3,5,6,8,7}. 

4. Finally, we exchange elements 8 and 7, and have (r = 4) transpositions. 
We are in permutation P4 = {2, 3,5,6, 7,8} = PQ. 

Since we have arrived at PQ in an organized way (that was our aim), we 
say that P is the "product of r = 4 transpositions" of the collection PQ. 

Next, we assign the permutation P a sign, according to the formula: 

P —> r(number of transpositions with respect to PQ) -^ sign = (—1)̂  (7.4) 

Obviously, the collection PQ, as the main permutation, also has a sign: 
(-1)0 = + 1 . 

If the sign of (—1)'̂  is +, we say that the permutation P is of class even. 
If the sign of (—1)^ is —, we say that the permutation P is of class odd. 

We point out again that, obviously, have classified only the permutations 
of different anti-symmetric indices. 

Returning to Relation (7.2), and summarizing all the previous work, we 
propose the following: 

• If h G Ik and the component has that index repeated we have 

5 (a i , a2 , - . . , a / i , . . . , a / i , . . . ,a r ) = 0. (7.5) 

• If the analyzed components have no repeated indices h G Ik^ then their k\ 
components take the value 

s ( a i , a2 , . . . , a / c , . . . , a j - , . . . , a^ , . . . ,a r ) = {-^VP^ (7.6) 

that is: 
-fp if the permutation of Ik is even (r = even) 
—p if the permutation of Ik is odd (r = odd) 

The result is that k\/2 components take the value p and the other k\/2 
take the value —p, which completes the k\ analyzed components (the reader 
must be aware that the indices ah can vary with h ^ J/c). 

D 
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7.2.2 A n t i - s y m m e t r i c s y s t e m s . Total a n t i - s y m m e t r y 

li Ik = /r7 we say tha t the system is totally anti-symmetric, and better , simply 
an anti-symmetric system of scalars. 

We give now a particular example of the last system (n = 4, r = 3), 
grouping the system (a, /3,7) by components with the same scalar p G K in 
nine classes, according to the axiomatic ordering. The number of components 
is a = n'^ — 4^ = 64, tha t are grouped as: 

Class 1 : 5 ( 1 1 1 ; 

Class 2 : s( 1 2 3 
Class 3 : s( 1 3 2 
Class 4 : 5 ( 1 2 4 
Class 5 : 5(1 4 2 

5(1 3 4 
5 ( 1 4 3 
5 ( 2 3 4 

Class 6 
Class 7 
Class 8 : 
Class 9 : 5 ( 2 4 3 

= 5(1 1 2 ) = 5 ( 1 2 1) - ••• = 5(1 2 2) 
= . - . = . . . 5 ( 2 2 2 ) = 5 ( 4 4 4 ) = 0. 
= 5(2 3 1) = 5 ( 3 1 2) = p i . 
= 5(2 1 3 ) = 5 ( 3 2 1) = - p i . 
= 5 ( 2 4 1 ) = 5 ( 4 1 2) = p2. 
= 5(2 1 4 ) = 5 ( 4 2 1) = -p2. 
= 5(3 4 1) = 5 ( 4 1 3 ) = p3. 
= 5(3 1 4 ) = 5 ( 4 3 1) = - p 3 . 
:= 5(3 4 2) = 5 ( 4 2 3) = p4. 
= 5 ( 3 2 4 ) = 5 ( 4 3 2 ) = -p4. 

The total number of components is: 

• Of repeated indices (null): VRn,'^ 

64 - fl = 40. 
K. n' - {n—r)\ 

= 4 3 -
(4-3)! 

Of different indices: Vnr = 1— 

64 = a. 

= 24. -r)\ ~ (4-3)! 

Total: 40 + 24 : 
An evident conclusion is tha t there cannot be anti-symmetric systems of 

scalars with r > n^ because this would force all components to have repeated 
indices, and then all components would be null. 

7.3 Strict components of an anti-symmetric system and 
with respect to an index subset 

Def in i t ion 7.4 (Str ict c o m p o n e n t s of a n a n t i - s y m m e t r i c s y s t e m ) . In 
the systems with anti-symmetry (partial or total), we will define strict compo
nents to be the maximum number of non-null components of different absolute 
value (we ignore the sign) that can be present in the system, sorted according 
to the axiomatic criteria. 

In the example examined in Section 7.2.2 the strict components are: 

{5(1 2 3 ) , 5(1 2 4 ) , 5(1 3 4 ) , 5(2 3 4 ) } . 

This concept is different from the number of different components (as some 
books propose), which in our case would be nine, and not four, tha t is, the 
set 

{0 ,p i , - p i , p2, - P 2 , P3, - p 3 , P4, -PA}' 
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7.3.1 Number of strict components of an anti-symmetric system 
with respect to an index subset 

Next, we discuss the number of strict components of an anti-symmetric system 
with respect to an index subset. 

Consider the system S{ai^ 0^2,..., ctz,. . . , o^j, . . . , CK/C, . . . , ar) defined with 
respect to the linear space V'^{K) and let k be the number of indices of the 
subset Ik = {̂ , i , . . . , A:} the components of which are anti-symmetric. 

The number of valid realizations for the non anti-symmetric (r — k) indices 
is the following number of variations with repetition: 

VR^,r-k = rf-''. (7.7) 

The number of strict realizations for the k anti-symmetric indices is the num
ber of combinations 

C„,fc=Q, (7.8) 

thus, the total number of possibilities for the strict components is 

Cn,k' VRn,r-k = (l)^"~^' C^-9) 

Obviously, the total number of components is, as always, the dimension of the 
tensor space: a = n'^. 

Finally, the maximum number of different values is 

d = 2(f\n^-^ + l, (7.10) 

which is double (7.9) due to the reverse sign, plus one (the zero value). In the 
example of Section 7.2.2, it is the number of classes (n = 4,r = k — 3). 

7.3.2 Number of strict components of an anti-symmetric system 

Obviously, it is enough to let A: = r in Formula (7.9), because now the r indices 
of the system present anti-symmetry. 

The number of strict components of the system of scalars with total anti
symmetry of indices is 

a,.= f"Y (7.11) 

Number of anti-symmetric components associated w îth each strict 
component in an anti-symmetric system 

Evidently, this number is the number of permutations of the r different indices 
of the strict component. Thus, we have 
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P^ - rl (7.12) 

components associated with each strict component; half with sign + (the even 
permutations) and the other half with sign — (the odd permutations). 

The maximum number of non-null components in an anti-symmetric sys
tem is 

Cn,r • Pr - i'') ' rl = . " ' , • r ! = - ^ ^ = V^.r, (7.13) 
\rj [n ~ rjlrl [n — ry. 

i.e., the variations of n elements taken "r in r". Then, the number of null 
components is 

VRn,r - Vn,r = n' ~ J ^ - (7.14) 
{n — r)l 

7.4 Tensors with anti-symmetries: Tensors with 
branched anti-symmetry; anti-symmetric tensors 

The previously established anti-symmetry criteria for systems of scalar com
ponents are directly applicable to homogeneous tensors, with the following 
limitations, to be justified later: 

1. Tensors with anti-symmetry with respect to the subset of indices Ik (2 < 
k < r) must present the subset Ik inside the set of the p contravariant 
indices or inside the set of the q covariant indices (p + <? = r), that is, 
all indices in Ik must be of the same valency. Some authors define these 
tensors as "tensors with branched anti-symmetry". 
This is a sufficient condition for the anti-symmetry with respect to the 
indices of Ik to remain invariant under changes of basis of tensor nature, 
but it is not necessary^ as we shall see for certain particular tensor sys
tems, that can present stable anti-symmetries between indices of different 
valency. 

2. By definition, anti-symmetric tensors (with respect to all their indices), 
are pure tensors, that is, totally contravariant or totally covariant. Some 
books even give them a special notation. Certain authors call these tensors 
"multivectors", "r-vectors", "polivectors", etc. 

Consider a homogeneous tensor of order r that is totally contravariant, 

notated t^^^^.W^Q • If it is anti-symmetric, it can be expressed as 

t^TT.y:^ with a i < «2 < • • • < a „ (7.15) 

which is precisely the adopted notation for its strict components. 
Similarly, we use the notation t(^° ° [[° ) for the covariant anti-symmetric 

tensor. 
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The number of strict components can be obtained with the general formu
las established for the systems of scalars. 

We recall here the formulas applicable to pure tensors (totally contravari
ant or covariant) of order r, with k anti-symmetric indices (2 < A: < r), over 
V'^{K). The number of strict components is 

and the maximum number of different values is 

^^V''-'= + l. (7.17) 

If the pure tensor is anti-symmetric, then k = r^ and the number of strict 
components is 

and the maximum number of different values is 

d = 2('^^+l. (7.19) 

Finally, we point out that some authors extend the total anti-symmetry 
to mixed tensors; in such cases it is assumed that the anti-symmetry of the 
p contravariant indices and the anti-symmetry of the q covariant indices are 
independent Then, the expression for the strict components becomes 

^ ( a i a 2 - a p ) o o ... o , ^ 2 0 ) 
o o ••• o {ap+iap+2'"Ctp+q) ^ ^ 

with a i < a2 < • • • < a^; a^+i < ap^2 < • • • < ctp+g; p + q = r. 
So, for the case of a mixed tensor over the linear space H of order r = 4, 

contra-contra-cova-covariant {p = q = 2) anti-symmetric the strict compo
nents would be 

,(12) o o _ ,21oo _ ^ ,12oo _ ,21oo _ _ 
^o o (12) ~" ̂ oo21 ~" ̂ ' ^oo21 •" '^ool2 "" ^' 

,(12) o o 
^o o (13) 

,(12) o o 
^o o (23) 

,(13) o o 
^o o (12) 

,(13) o o 
^o o (13) 

v(13) o o 
^o o (23) 

.(23) o o 
^o o (12) 

,(23) o o 
^o o (13) 

,21oo 
"~ ̂ oo31 

,21oo 
~ ^oo32 

,31oo 
~ ^oo21 

,31oo 
"~ ̂ oo31 

,31oo 
~ ^oo32 

,32oo 
~" ̂ oo21 

,32oo 
~ ^oo31 

= b; 

= c; 

= d; 

= e; 

= /; 

= 5; 

= h; 

,12oo 
'^ooSl 

,12oo 
^oo32 

,13oo 
^oo21 

,13oo 
^oo31 

,13oo 
^oo32 ~ 

,23oo 
^oo21 

,23oo 
^oo31 

,21oo 
~ ^ool3 ~ 

,21oo 
~ '^oo23 ~ 

,31oo 
~ ^ool2 ~ 

,31oo 
~ ^ool3 ~ 

,31oo 
~ ^oo23 ~ " 

,32oo 

,32oo 
~ ^^0013 ~ 

-6; 

-c; 

-d; 

-e; 

-/; 

-g; 

-h; 

,32oo ,(23) o o _ ,32oo _ .̂  ,23oo _ ,3 _ _ 
^o o (23) ~ ^oo32 ~ '̂' ^oo32 ~ ^^0023 ~ ^̂  
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with a total of cr = n'" = 3^ = 81 components, of which 9 are strict, those in 
the first column of the table. The maximum number of components that are 
different from zero is 4 x 9 = 36. 

It is convenient in this section, in which we consider mixed tensors^ to 
clarify the number of strict components when the branching is mixed, that is, 
it involves not only one part of the p contravariant indices (fci, of the p indices, 
are anti-symmetric), but also at the same time to one part of the covariant 
indices (^2, of the q indices, are anti-symmetric). 

In such a case we have 

2 < ki < p; 2 < k2 < q; p-\- q = r (order of the mixed tensor) 

and the number of strict components is 

or 

y-^i . - U9-^2. (7 21) 
kij \k2 

n\ in 

kj ' U2 
^r-(fci+/c2) 

If the mixed tensor is anti-symmetric, then ki = p and k2 = q; thus, the 
number of strict components becomes 

(7.22) 

which is the formula used in the mixed example (n == 3,p = ^ = 2), in the 
first answer. The maximum number of components different from zero is 

c = a'.p\.ql=(^^.(^''^p\q\, (7.23) 

which is the formula used in the mixed example, in its second answer. 

7.4.1 Generation of anti-Symmetrie tensors 

By combining decomposable anti-symmetric tensors 

We remind the reader again of the beginning of Section 2.2 where we have 
given the bases for the tensor product of vectors concept. To center our objec
tive, we assume that we are in the homogeneous tensor space V^ <^V"^ (^V^ (K) 
of order r — 3, and that we choose three arbitrary vectors and in this order 
Ü^v^w^ £ V'^{K) and that we consider the algebraic sum of all tensor prod
ucts that can be executed with them as factors, endowing to each product 
the sign (-f- or —) depending on the factor (—1)'̂ , where r is the number of 
transpositions of the permutation of factors Ü<S>v^w that are being considered. 
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From this criterion, the following tensor, a linear combination of the com
posed tensors, arises: 

6 

1 

which operating, leads to 

-^w<S)V^ü-i-Ü(S)W(^v). (7.24) 

Taking into account that 

ü — xV^; V = y^ej] w — z Sk] with {u ^ v ^ w) 

and based on Formula (6.12), we have 

Ü^v(^w = ail%^ej^ek, withaill = x'y^z^; \/u,v,w e V^^K). (7.25) 

Substituting (7.25) for each summand into (7.24), we get 

/.O'fc; tl'^o^i^^j^ek = [{x'y^z''-}-x^y''z'+x''y'z^}-{x^y'z^+^^ 

which for n = r = 3 requires (after identification) 

.ijk 
^z yZ 

x^ y^ 
x^ y^ 

z' 
z^ 
^k 

; Vz,j,A:€ {1,2,3}. (7.26) 

Formula (7.26) totally declares how the components, created by the estab
lished definition of the new tensor, are. The first thing to be observed is that 
if two or more indices of the set {i, j , k} are repeated, we must have t^^ = 0, 
because the matrix has identical rows. Thus, the non-null components are 
those generated by indices i "^ j y^ k. 

The first triplet of distinct indices is {1,2,3}, leading to the component 

,(123) 
x^ y 
x^ y^ 
^3 yS 

\U V W\ A. (7.27) 

The permutations {2,3,1}, {3,1,2}, {3, 2,1}, etc. lead to the alteration of the 
rows of Z\, and as a consequence, the sign will change or not, but the absolute 
value will be the same. The conclusion is that 



234 7 Anti-symmetric Homogeneous Tensors, Tensor and Inner Product Algebras 

^loo ~ ^ ^^ ^^^ ^^ more indices are repeated. 
,(123) _ ,231 

o o o 
.213 

ooo 
,321 

-t 
312 

ooo 
132 t =t = t 

ooo ooo ooo 

---A. 

(7.28) 

The previous classification clearly declares an anti-symmetric homogeneous 
contravariant tensor of a — n^ = 3^ = 27 components, with a^ = (^) = (^) ~ 
1 strict component (of value A). 

The maximum number of non-null components, Formula (7.13), is 

^n,r — 
(n-

3! 

0! 

such that half of them are of value +Z\, and the other half —A. Then, n'^ 
Vr = 21 — % = 21 components are null. n,r — "̂  {n-r)\ 

We generate a set of anti-symmetric tensors per each triplet of selected 
vectors (u, tT, w)^ such as can be observed in the particular case being analyzed. 
The matrix representation of the studied tensor is 

oooJ 

ooo 

,121 
ooo 

,131 
ooo 

,211 
ooo 

,221 
ooo 

,231 
ooo 

,311 
ooo 

,321 
ooo 

,331 
ooo 

,112 
ooo 

,122 
ooo 

,132 
ooo 

,212 
ooo 

,222 
ooo 

,232 
ooo 

,312 
ooo 

,322 
ooo 

,332 
ooo 

,113 
ooo 

,123 
ooo 

,133 
ooo 

,213 
ooo 

,223 
ooo 

,233 
ooo 

,313 
ooo 

,323 
ooo 

,333 
ooo 

0 
0 
0 
0 
0 
A 
0 
A 
0 

0 
0 

-A 
0 
0 
0 

A 
0 
0 

0 
A 
0 

-A 
0 
0 
0 
0 
0 

with Zi = I [/ V W\ 

(7.29) 
which is the pattern associated with an anti-symmetric contravariant tensor 
{n = r = 3). 

We have perfectly established a procedure for generating anti-symmetric 
tensors in a tensor space {^V'^)'^{K). For each r-tuple {u,-y, itJ, • • •, z}^. C 
V^{K);u ^ V ^ w ^ ••• y^ z of selected vectors, they generate an anti
symmetric decomposable tensor. 

The sum of several tensors generated by some different vector r-tuples, or 
the linear combination of them, leads to an anti-symmetric tensor subspace, 
5/1, that is not generated only by decomposable tensors: 

This subspace is contained in or coincides with the tensor space {0V'^)'^{K) 
of all anti-symmetric tensors of order r, which are contained in the tensor space 

^^)^(i^) of order r. 
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The generalization to the case of selecting from {u, "u, t ? , . . . , z}r C V'^{K), 
r-vectors for generating an anti-symmetric tensor in ((8)V^)5^(i^), must take 
into account that if r < n, Formula (7.26) will be extended, because it is 
applied to as many determinants of order r, as possible choices of different 
r-tuples of indices {0̂ 1,0̂ 25 , o^r} can be obtained from In = {1,2, • • •, n}, 
with the condition a i 7̂  Q;2 ^ • • • 7̂  Q̂ r-. Note that this formula is only for 
non-null components. 

Thus, we arrive at a total of V̂ ^̂  variations, and therefore at the anti
symmetric components: 

.CKi a2-'-Oir-

' o 1 

O 1 

^ o 2 

o 2 

o 2 

CKl O 

o r 

o r 
(7.30) 

where Ar is the minor of the data matrix [Xi X2 • • • Xr] containing the 
rows { a i , a 2 , . . . ^otr}. 

Since this requires a great amount of computational time, usually we get 
only the strict components t^^^^^'W^^\ i.e., selecting only the (^) combinations 
{ai , a 2 , . . . , Qr} with a i < 0̂ 2 < • • • < «r for the minor Ar and next, we 
obtain t^^^^[',[^^ = =t̂  o^̂ "̂'"̂ o ^^^^ ^^^ ^^S^ corresponding to the associated 
permutation. 

By means of signed isomer tensors 

Assume that an arbitrary tensor t{n^r)^ for example the pure contravariant 
tensor ^"i^s'-ar- ĝ mven and that we decide to associate it with another 

o o ••• o ' ^ 

tensor t?(n, r) with the following criterion: 

1. A given set of indices Ik (of the same valency) from the set of the r tensor 
dummy indices is chosen. 

2. We notate the new tensor 2̂(r̂ , r) (that is, the associated tensor) by placing 
the selected dummy indices in parentheses: 

This notation is that of the strict components of the new tensor u{n^r). 
Considering all permutations {k\) of the dummy indices of 7/̂ , we determine 
all the corresponding isomer tensors of tensor t. 
Once they are found, we build the strict components of 'S(n, r) by means 
of the formula 

aia2i^—Ik 1 
A;! 

'':T: = iiX^-mT:'' -permutation of i},-^)--ar- (7.31) 
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where the right-hand factor includes all the kl isomers with their corre
sponding sign as summands. The sign of each summand is the one corre
sponding to the number r of transpositions of the permutation of Ik (that 
each summand carries). 

The tensor ^(n, r) with the indicated strict components is an anti-symmetric 
tensor with respect to the set of indices Ik- Some authors present this from the 
point of view of an "anti-symmetrization" endomorphism iJ, which directly 
transforms the given tensor t(n, r) into the associated anti-symmetric tensor 
u{n^r). 

Next, some illustrative examples are given. 

1. Consider the data tensor g^Z; Ik = Ir — [o^iß] (all indices). 
The anti-symmetric tensor associated by means of this technique is the 
tensor with components given by Formula (7.31): 

2. Given the data tensor ^ o ooooo' ^^ anti-symmetric associated tensor with 

respect to the indices I^ = [/3,7, <̂ ], is the following tensor with strict 

components ^o olo'̂ oo S^'^^^ by Formula (7.31): 

aißj6)eX ^ _ 
o o o o o o o| 

-'- 1/ -,\0 aßjöeX I / -,\2 a^SßeX . / ^ \2 aöß^eX 
\ ) O O O O O O ' V / O O O O O O ' V / O O O O O O 

' \ / O O O O O O ' V / O O O O O O ' V -^) O O O O O O 

which, when operated gives the following anti-symmetric tensor with re
spect to /fc 

a{ß-i5)eX ^ 1 
O O O O O O 6 

aß'ySeX , ajSßeX , aSßjeX\ 
O O O O O O ' O O O O O O ' O O O O O O / / T 0 0 ^ 

— iw -j-w -^ w ) . 
\ O O O O O O ' O O O O O O O O O O O O / 

Obviously, if the anti-symmetrization technique were applied (by error) to 
an anti-symmetric data tensor, the result would be that the associated tensor 
is again the same data tensor. 

Though not indicated, we have already entered in the exterior algebras in 
detail. 

7.4.2 Intrinsic character of tensor anti-symmetry: Fundamental 
theorem of tensors with anti-symmetry 

The obvious question a reader can ask himself is if any tensor with anti
symmetry with respect to certain components, maintains it when performing 
licit changes of basis, that is, of a tensor nature. 

The answer to this question is formulated in the following theorem: 
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Theorem 7.1 (Intrinsic character of anti-symmetry). The anti-sym
metry of k indices (2 < k < p or2<k<q^p-\-q = r)of the same valency 
in the components of a homogeneous tensor has intrinsic character. The anti
symmetry in the components of two or more indices of different valency in a 
homogeneous tensor has no intrinsic character in the general case. O 

Proof 

Sufficiency: Consider the case of indices of the same valency. Consider 

the homogeneous tensor t^^2°^° of fifth order (r = 5), defined over the linear 

space V'^{K)^ which satisfies the property: 

C:Z = <llZ-^ Va, e h = [a, /?] and j e h, (7.34) 

where a i = ce, a2 = /?, ĉ s = 7 , 0:4 = A, a^ — //, and a\ ^ a2-
Consider the change-of-basis in V'^{K)^ ||e^|| = ||ea||[c^°], which produces 

the change of tensor basis in the space {<^V'^Y{^V^Y{K)\ we indicate its 
action over the two components that appear in (7.34): 

.jikoo ^.ßajoojoiokooXofx (7 35) 
oooim o o o\ß I oß I oct ^ o^ io mo \ ' J 

.ijkoo ^ ^aßioo io jo ko oX o n f7 36) 
ooolm o o o Xß I oa ' oß I o'y to mo' V ' / 

Taking into account (7.34), and the commutativity of the scalars 7^° with 

7^'^ in the field K, it is evident that the two right-hand members of (7.35) 

and (7.36) are equal, and then 

If Vi ^ i, tillZ = -tZlVm-^ Vd, e h = [U1; ^h G h. (7.37) 

Following a similar process, analogous conclusions can be established by 
the reader for any other pair of contravariant or covariant indices of the ana
lyzed tensor t^zZX^-
«̂  0 0 oXfji 

The analyzed model can be used for any generalization of the fundamental 
hypothesis to a larger set of indices of Ik • 

Necessarity: Consider the case of indices of different valency. Consider 

the homogeneous tensor t^^^^° of fifth order (r = 5), defined over the linear 

space F"'(ir), which satisfies the property 

d l l = -ColZ-^ ; Va, &h = [/3, A],/3 ^ A, and j € h. (7.38) 

When performing the change-of-basis in V'^{K) mentioned in the suffi
ciency proof, the linear space {^V^)^[^V^Y{K) suffers the corresponding 
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tensor change, where the new components replacing those in (7.38) are re
lated to the initial ones by 

llko o 
^ ooojm t t 

aXjoo io to ko oß o/x 
o o o ß jji I oa ' oX I o-y jo mo 

,i jko o ,a/3700 io jo ko oA o/J, 
o o oXjj, I oa ' oß I oj io TTio' 

(7.39) 

(7.40) 

proving that 7o^c°^ 7̂  To^^^o' ^^ ^^^ ^^ appreciated in a simple numerical 
counterexample. 

Let n = r = 3 and 

C 
- 1 1 0 -

0 1 0 
- 1 0 3 . 

' L^oa. 

C* = 

-c-^=\ 

" - 1 0 - 1 
1 1 0 
0 0 3 

• - 1 1 0 
0 1 0 

. - 1 / 3 1/3 1/3 

5 

if we choose j = 2, £ = 3, /5 = 1, and A = 2, then we have 

7f ^c-o = 7o°2(of C-'Klioi C*) = 1/3 • 1 = 1/3 

7 0 0 A 2 o o 2 n n. r\ 

£ 0 0/3 

ioß^io = y 

which implies TOA^O ^ ^o/3^€ 
If we choose j = 1^£ = 2^ß = 3 and A = 2, the result is 

io oß 2o o3 1 / -1 \ 1 

j o o A l o o 2 n i n 
To^C^o = 7 0 3 ^ 2 0 = 0 - 1 = ^ 0 ' 

so that again we have 7^Ic°f / 7o^c°^. 
/oA^jo 

We conclude that in general t^ 

oß'-io 

iko o 
7 ^ - i 

ijko o , that is, the tensor in the 
ooojm ' oooim' 

new basis does not keep the anti-symmetry of indices of different valency, that 
existed in the initial basis. 

However, if the data tensor were to have a great number of null compo
nents, t^\ZX^,, — 0, these could in some cases absorb the indicated inequalities, 
and maintain the anti-symmetries of indices of different valency, because of 
its nullity, that is, due to qualities that are special or proper to the concrete 
tensor. 

Example 7.2 (Strict components). 

1. Consider the anti-symmetric covariant tensor Ti = ^°«°^°, over the linear 

space y ^ ( R ) . 
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a) Determine the number of components (A^i). 
b) Determine the number of strict components (-/V2). 
c) Determine the maximum number of strict components that are differ

ent (A^3). 
d) Determine the maximum number of non-null components (A^4). 
e) Determine the minimum number of null components (N^). 

2. Consider the mixed tensor To — ^°°°°°'^^^'^ ^i th 0 = 5 covariant indices 
^ cep ' yoeoooo" ^ 

and p = 4 contravariant indices, over the linear space ^"^(IR), which is 
partially anti-symmetric, with respect to the covariant indices /c2 = [/?, 6] 
and contravariant indices ki = [ir^a^r]. 

a) Determine the number of components {Ni). 
b) Determine the number of strict components (iV2). 
c) Determine the maximum number of strict components that are differ

ent (TVs). 
d) Determine the maximum number of non-null components (A^4). 
e) Determine the minimum number of null components (A^s). 

Solution: 

1. a) Since the order is r = 5, the number of components is Ni — a = n'^ = 
n^ (we assume n > 5). 

b) Using Formula (7.18), we have 

. n\ fn\ n(n — l)(n — 2)(n — 3)(n — 4) 
iVo = — — ^rj \5j 5! 

c) Using Formula (7.19), we have 

^ - < : ) - - < ; ) - • 

d) Based on Formula (7.13), we can write 

n! n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) ( n - 5 ) ! 
{n — r)\ (n —5)! 

= n{n - l)(n - 2)(n - 3)(n - 4). 

e) Because of (7.14) we have 

r? ' 
Ar5(null) = Ni~N^ = rf-- —- = n ^ - n ( n - l ) ( n - 2 ) ( n - 3 ) ( n - 4 ) . 

[n — r)\ 

2. Consider the mixed tensor T2 = t°^°^°^^^I. 
^ Oifj^0 e o o o o 

a) Since the order of this tensor i s r = p 4 - Q = 4 + 5 = 9, the result is 
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b) We use Formula (7.21): 

"'=(:) (r>'"'""=0 0"'"""' ̂  Ä"'(-)>-)' 
c) We use an extension of the previous formula 

iV3 = 2 Q . 2 Q ) r x 9 - 5 + l = ^ n ^ n - l f ( n - 2 ) + l. 

d) We use a formula that is an extension of (7.13) to mixed indices 

l^A-VnM Vn.k.n - {n-h)\{n-k2)\ 

( n - 3 ) ! ( n - 2 ) ! 

e) Obviously, we have 

N3 = Ni-N4 = n^ ~ n\n - lf{n - 2) 

= n^[n^ - {n^ - 4n^ + 5n - 2)] = n^[4n^ - 5n + 2)]. 

Example 7.3 (Total components and strict components). 

D 

1. Consider the anti-symmetric contravariant tensor H^^^ of order r = 3, 

over the linear space F^(]R), n = 3. 
a) Obtain the number of total and strict components, using different 

Roman letters for the non-null components. 
b) Give the matrix representation of these tensors. 

2. Given a contravariant anti-symmetric tensor H^^^^ of order r = 4, over 

the linear space V^(IR), n = 5, give the number of total and strict com
ponents, using different Roman letters for the non-null components. 

Solution: 

1. Consider the tensor H^^^. 
o o o 

a) The total number of components is a = VRn^r = n'^ = 3^ = 27. 
Similarly, the number of strict components is a^ — (^) = (3) = 1 , and 
the values of the non-null components are 

T ( 1 2 3 ) T 2 3 1 7 3 1 2 ^ 2 1 3 . 3 2 1 . 1 3 2 

ti^ ^ — n = a = a: a —a = ri = —a. 
o o o o o o o o o ' o o o ooo o o o 
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b) Then, its most general pattern is 

\H aßj-i 

0 
0 
0 
0 
0 
a 
0 
a 
0 

0 
0 

—a 
0 
0 
0 
a 
0 
0 

0 
a 
0 

—a 
0 
0 
0 
0 
0 

2. Consider the tensor H^'lr.-
o o o o 

a) The total number of components is cr = VRn^r = n^ = 5^ = 625, the 
number of strict components is a' — (^) = (^) = (^) = 5 , and the 
values of the non-null components (a total of 120) are 

h (1234) 

1243 

(1235) 
o oo o 

1253 

h (1245) _ 

h 

1254 

(1345) 

h 

1354 

(2345) _ 

1342 
oooo 

3241 
oooo 

1324 
oooo 

3214 
oooo 

1352 
oooo 

3251 
oooo 

1325 
oooo 

3215 
oooo 

1452 
oooo 

4251 
oooo 

1425 
oooo 

4215 
oooo 

1453 
oooo 

4351 
oooo 

1435 
oooo 

4315 
oooo 

2453 

1423 
oooo 

3412 
oooo 

1432 
oooo 

3421 
oooo 

1523 
oooo 

3512 
oooo 

1532 
oooo 

3521 
oooo 

1524 
oooo 

4512 
oooo 

1542 
oooo 

4521 
oooo 

1534 
oooo 

4513 
oooo 

1543 
oooo 

4531 
oooo 

2534 

2143 
oooo 

4132 
oooo 

2134 
oooo 

4123 
oooo 

2153 
oooo 

5132 
oooo 

2135 
oooo 

5123 
oooo 

2154 
oooo 

5142 
oooo 

2145 
oooo 

5124 
oooo 

3154 
oooo 

5143 
oooo 

3145 . 
oooo 

5134 
oooo 

3254 

2314 
oooo 

4213 
oooo 

2341 
oooo 

4231 
oooo 

2315 
oooo 

5213 
oooo 

2351 
oooo 

5231 
oooo 

2415 
oooo 

5214 
oooo 

2451 
oooo 

5241 
oooo 

3415 
oooo 

5314 
oooo 

3451 
oooo 

5341 
oooo 

3425 

2431 
oooo 

4321 
oooo 

2413 
oooo 

4312 
oooo 

2531 
oooo 

5321 
oooo 

2513 
oooo 

5312 
oooo 

2541 
oooo 

5421 
oooo 

2514 
oooo 

5412 
oooo 

3541 
oooo 

5431 
oooo 

3514 
oooo 

5413 
oooo 

3542 

h 3124 

= /l 

-/l 

3142 
"oooo 

a 

3125 
"oooo 

= 6 

= h 

= h 

= h 

3152 
DOOO 

h 

4125 
oooo 

. 4152 
oooo 

-C 

- 4135 
oooo 

i 

4153 
oooo 

-d 

4235 
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7,4352 7 4 5 2 3 7 5 2 4 3 7 0 3 2 4 7,5432 

= a = a —a = a = a = e 
oooo oooo oooo oooo oooo 

7 2354 _ 7 2435 ___ 7 2543 _ 7 3245 _ 7 3452 _ 7 3524 __ 7 4253 
oooo oooo oooo oooo oooo oooo oooo 

7,4325 74532 7,5234 7,5342 7,5423 
= a = fi = ft — fi = n = — e . 

oooo oooo oooo oooo oooo 

D 
Example 7.4 (Anti-symmetric system). A system of scalars of second order, 
defined over the linear space V'^{K) is given, such that its components satisfy 
the condition 

bs{a,ß)-^cs{ß,a) =0, Va,/3, 
where b and c are different and constant scalars. 

Ignoring the tensor nature of the proposed system 5(a,/3) what intrinsic 
property has this system? 

Solution: Four different cases for the scalars b and c are to be considered: 

1. 6 = 0 and c 7̂  0. Then, cs{ß, a) = 0-^ s{ß, a) - 0 -> S{a, ß) = Q 
2. 6 7̂  0 and c = 0. Then, bs{a, /3) = 0 -^ 5(a, ö̂) = 0 ^ s\a, ß) ~ Q. 
3. & = —c 7̂  0 (since they are different). Using the assumption and the 

fundamental condition we get —C5(a,/?) + cs{ß^a) = 0 —̂  c(s(/?,a) — 
5(a,/3)) — 0, which requires a symmetric system^ s{ß^a) = s{a^ß) —> 
symmetric system. 

4. 6 7̂  —c (6 7̂  0 and c 7̂  0). We start from the relation 

bs{a,ß)-i-cs{ß,a) = 0; (7.41) 

and changing the index notation we obtain 

bs{ß,a)-^cs{a,ß) = 0, (7.42) 

and adding (7.41) and (7.42) we get 

(6 + c)5(a,;ö) + (6 + c)s{ß, a) - 0 ^ (6 + c){s{a,ß) + s(/3, a)) = 0, 

which requires (since 6-f c 7̂  0): 5(/3, a) = —5(ce,/5), that is, s{a,ß) is an 
anti-symmetric system. 

D 

Example 7.5 (Different classes of systems). Let T be a tensor belonging to the 

tensor space V^{<S)V'^)^ 0 V^{K), with components t°l^^'^° anti-symmetric 

with respect to a set of indices [A:,£,p]. 
Classify the following systems of scalars as tensors: 

1. Contracted tensor of T with respect to the indices ( i , i ) . 
2. Contracted tensor of T with respect to the indices (p^q). 
3. Contracted tensor of T with respect to the indices {£,p). 
4. Doubly contracted tensor of T with respect to the indices (f,p) and {j^q). 
5. Doubly contracted tensor of T with respect to the indices (z, q) and (j, k). 
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Solution: 

1. The contracted tensor of T with respect to the indices {i,j) is 

cl^i)iT) = [tZtZ] = l^ oooqi' 

which is an anti-symmetric tensor with respect to its contravariant indices. 
2. The contracted tensor of T with respect to the indices (p, q) is 

c(^^iT) = [t:itTe] = [v:iti] 

which is an anti-symmetric tensor with respect to the set {k£). 

3. The contracted tensor of T with respect to the indices (i^p) is 

C{£,p){T) = [tZ':lZ]=s^[i,j,k,q], 

which is a system of scalar components. 
4. The doubly contracted tensor of T with respect to the indices (i,p) and 

c{'^\i)iT) = [t;ttt Ocf>k£eo. ^ r kii 
oooo(i)J L o o J ' 

which is an anti-symmetric contravariant tensor of order 2. 
5. The doubly contracted tensor of T with respect to the indices (i,g) and 

(j, k) is 

which is an anti-symmetric system of scalar components. 

D 

7.4.3 Anti-symmetric tensor spaces and subspaces. Vector 
subspaces associated with strict components 

Consider the tensor space of homogeneous tensors of order r totally contravari
ant, over the linear space V'^{K)^ notated: {0V'^Y{K)^ as the tensor space 
of reference. Obviously inside it tensor subspaces exist, and some of them are 
Ä:-anti-symmetric (partial or totally anti-symmetric) tensors. 

In particular, we denote by {0V"^)'^{K) the subspace sum of all anti
symmetric tensor subspaces. We point out that such a subspace is not only a 
linear subspace but a tensor subspace. 

For the sake of simplicity, we examine this only for r = 2. 
Let u^v E {^V'^)1{K) be two anti-symmetric tensors: 

^ = ^of ^^ ^ ^ß'^ with wf ̂  = -w^f and ull = <fToa^o^ (7-43) 

-* aß-^ ,^ -* .,1 ßa aß j ij aß io jo r^-? A A\ 

^ = v^^e«®e^; with w^^ = - u ^ ^ and u^^ = t;„^7^^7^„ (7.44) 
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1. The sum subspace contains the vectors of the form: 

w = u-^v = (w^; + v^^JCa ^eß = w^lea 0 eß 

and since 

ßa ßa I ßa aß , / ocß\ / aß , Q;/3\ ßa /̂ 7 ^ r \ 
o o o o o o o o \ o o / V o o o o / o o ^ / 

and 

Woo = "oo + ^oo = ( « o o + « o o ) 7 o a 7 o / 3 = " ' ooToaTo/ J , (7-46) 

the result is that the subspace Sh{w) = Sh{u + v) C {®V'^)\{K). 
2. If u e (®y")^ and A e if: 

£ = AÄ= A<fe„®e> = < f e „ ® e ^ with z^^ = Xu^l = -Xuf^ = - < f 

(7.47) 
and 

<f=Ki=(Kthiy.;=^tiiiii;, (7.48) 
so that the set {0V'^)f^{K) has the structure not only of a linear space, 
but of a tensor subspace contained in {^V'^)'^{K). 

The generalization to {^Vy^^K) C {^V^YiK) is immediate. 
It is convenient to study here a certain convention that comes from per

forming algebraic operations inside the set of anti-symmetric tensors. Such 
a convention refers to the fact that diverse authors consider the set of strict 
components associated with an anti-symmetric tensor as the components of 
a vector associated with the anti-symmetric tensor, endowing to such compo
nents of the corresponding basic vectors created ad hoc special notation with 
the added constraint of having exclusively non-repeated and only increasing 
indices. 

With the aim of clarifying the convention, in particular we refer to the 
anti-symmetric tensor 

^ = <tya ^ep^e^e {^V^)UK). (7.49) 

The basis B = {e^ 0 Cß 0 e^} of the tensor space ((8)y^)|(ür), has 64 
basic vectors, in agreement with its dimension a = n'̂  = 4^ == 64, and the 
associated corresponding vector is {in principle) 

formed with the strict components of the previous tensor, with dimension 

<̂o = (^) = (3) — 4 and its basis would be 

SQ = {^1 ^ e*2 (8) 63, e*i 0 62 (8) 64, e 1 (g) e3 (g) 64,62 (8) 63 (g) 64}. 
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The development of the anti-symmetric tensor given in (7.49), sorted by 
strict components is 

u = +1^0 0 o [(ei 0 62 (8) es + 62 0 es (g) ei -f es (g) ei (g) 62) 

- ( e i 0 es 0 62 + 62 (g) ei (g) es + es (g) 62 (8) ei)] 

+'̂ 0̂ 0 o [(̂ 1 g) e2 (g) 64 + 62 (g) 64 (g ei + 64 (g 61 (g) 62) 

-(ei (g) 64 g) 62 + 62 (g 61 (g 64 + 64 g) 62 (g e'l)] 

-^u^olo [(^1 8) e*s g) 64 + es (g e4 (g) ei + 64 (g ei (g 63) 

- (e ' l (g) 64 (g es + es (g 61 (g) 64 + 64 (g es (g ei)] 

-^U^olo [(^2 (g) ê s (g) 64 + e*s 0 6*4 (g 62 + 64 (g) 6*2 g) 63) 

- ( 6 2 (g) 64 (g 63 + 63 (g) 62 (g 64 + 64 g) es g) 6*2)]. (7.50) 

To each of the "vector" brackets accompanying the strict components corre
sponds a vector, which is notated as 

61 A 6*2 A 63 = [ei (g 62 (g 63 H 63 (g) 62 (g e\] 

61 A 62 A 64 = [ei (g e2 (g 64 H — 64 g) 62 (g ei] 

e\ A ês A 64 = [?! (g 63 (g 6*4 -h • • • — 6*4 (g 6*3 (g e*i] 

62 A 63 A 64 = [62 (g es g) 64 H 64 (g 63 g) 62]. (7.51) 

The sign criterion from the interior of each bracket comes evidently from the 
sign criterion (—1)'^, used for the indices of the anti-symmetric tensors. 

Consequently, the vector UQ associated with tensor ü is 

UQ = u^^^^^^Ca A 6/5 A 6^ with a < /? < 7. (7.52) 

The basis of the linear space just created, which holds vector UQ, is 

ßo = {^1 A 6*2 A 63, 61 A 6*2 A 6*4, 6*1 A 63 A 64, 6*2 A 6*3 A 6*4} (7.53) 

of dimension CTQ = (^) = (3) = 4. 
The vector UQ once developed can be wri t ten as 

^0 = Wooo^i^^2A63+^x^^^6iAe2Ae4+t/^^oeiA6sA64+u^^^62Ae3Ae4. (7.54) 

As can be seen, the indices of the strict components are the subindices of its 
basic vector. 

It is sufficient to know the strict components of an anti-symmetric tensor 
A, to "build" the associated vector UQ and reciprocally. In fact UQ = ü if we 
subst i tute Formulas (7.51) in UQ. 

This justifies the notat ion 

y^ A V^ A V^iK) = {AV^fiK) (7.55) 
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for the linear space of basis BQ . 
As will be seen in Chapter 9, we have entered the subject of exterior 

algebras. Before ending this section, it is convenient to insist with emphasis, 
t ha t UQ is not a tensor, in spite of the "provocative" notation of Formula 
(7.54), and tha t the linear space (AV^)^(i^) is not a tensor space of the 
already established tensor spaces. 

The dimension of the exterior linear space CTQ = (^) can never be equal to 
a — VRn,r — "^^ -> which is the typical dimension of a tensor space, because 
the condition a\ < 0L2 < OL^, < -- - < otr ^^ (7.52) forbids the typical constraint 
of anti-symmetric tensors a i ẑ̂  «2 7̂  <̂ 3 7̂  • • • 7̂  QJr-

However, though they are not tensors, following most authors, they will 
be dealt with in depth in Chapter 9, because of their very important conse
quences. 

We end here our explanation, initiated with Formula (7.49), the convention 
tha t univocally relates each anti-symmetric tensor in {^V^y^J^K) to a vector 
of the "exterior linear space" (AF^)'"(i^), which is the notation received by 
the proper anti-symmetric tensor space [^V'^)\{K')^ when in it we adopt a 
special basis of type BQ , and then its dimension is modified (initially a = n^ 
and finally ^^ = ( ; ! ) ) . 

7.5 Anti-symmetric tensors from the tensor algebra 
perspective 

As will be shown, a simple counterexample forces us to accept tha t the anti
symmetric tensor algebra of anti-symmetric tensors does not exist, t ha t is, the 
tensor product t i 0 2̂ of two anti-symmetric tensors, is not in general another 
anti-symmetric tensor. 

We give the following counterexample. 
Consider two tensors of order r = 2 and n = 3, both contravariant: 

^3^ 
0 

-Xi 

yi 

Xi 
0 

-yi 
Zl 
0 

with xi ' yi ' zi ^ 0; 

0 
-X2 

y2 

0C2 
0 

-Z2 

-y2 

Z2 
0 

with X2'y2' Z2^ 0, 

tha t are anti-symmetric, because Va^^ = —a^! and V6 ^ = —^^^-
^ ' 0 0 0 0 0 0 0 0 

Next, we represent in matr ix form the components of the tensor of order 
r = 4 and n = 3: 

3 0 o J Li^ooc 
fc^i 

[Co]®[C], (7.56) 

which is the tensor product of the given tensors. 
The matr ix P is represented by nine blocks: 
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ijkii 
oooo. 

0 
0 
0 

0 
X1X2 

0 
-2:2^1 
yiy2 

0 0 
0 0 
0 0 

-X1X2 xiy2 
0 -2:12:2 

X1Z2 0 

X2yi -yiy2 
0 yiZ2 

-yiZ2 0 

0 
-x ia :2 
xiy2 

0 
0 
0 

0 
X2Z1 

-y2Zi 

X1X2 
0 

-X1Z2 

0 
0 
0 

- ^ 2 ^ 1 
0 

^1-2:2 

-2 :1^2 
X1Z2 

0 

0 
0 
0 

y2Zi 
-Z1Z2 

0 

0 
X2yi 

-yiy2 

0 
-X2Z1 
y2Zi 

0 
0 
0 

-X2yi yiy2 
0 -2/12:2 

^1^2 0 

X2Z1 -y2Zi 
0 2:12:2 

-2:1^2 0 

0 0 
0 0 
0 0 

(7.57) 
Since n = 3 and r = 4, tha t is, n < r , in the component p'^J^^^ there will 

always he a repeated index, so tha t , if P were an anti-symmetric tensor then 

[Ploof] = ^ ' ^^^t is, all its components would be null, i.e., pWH = p\lll = 
3122 _ 3212 

-^0000 ^ 0 0 0 0 

3333 
' -^0000 0. 

1212 
: 2:1X2 7^ However, in the obtained matr ix P this is not t rue, because p ^ 

O5 Poooo = ^1^2 7̂  0; PIUI = Xiy2 7̂  0; etc. 

Thus, P is a symmetric matrix, but it is not the mat r ix representation of 
a contravariant anti-symmetric tensor of order r = 4, over a V^{K). 

Example 7.6 (The Kronecker tensor product). Consider the anti-symmetric 

matrices A2 = [a «:?] 0 2 
-2 0 and P2 ^ [6of] = 

0 3 
-3 0 

travariant tensors, of order r = 2, over the linear space 

, as two con-

2). 

1. Determine the matr ix direct tensor product or the Kronecker tensor prod
uct, C4 = A (g) P , of both matrices. 

2. Considering the matrices A and B as matr ix representations of the corre
sponding tensors: 

a — 2ei 

h = 3ei 

I 62 — 2e*2 ' 

' 62 — 3e2 ' 

)ei 

)e i , 

(7.58) 

(7.59) 

determine the representation matr ix of the tensor product of both tensors. 
3. Prepare a warning comment with respect to the operators "(8)". 

S o l u t i o n : 

1. The matrix direct tensor product or the Kronecker tensor product of both 
matrices is 

CA A^B 

0 0 6 
0 - 6 0 

-6 0 0 
0 0 0 

which obviously, is a symmetric matr ix (it is a symmetric tensor of order 
r = 2 over the linear space R ^ ) . 
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2. The tensor product of the tensors a and h is 

> e/e (g) ei; con p^ o o o o oo o o ' 

Thus, the matrix representation of the tensor p becomes 

ijkii 
p=[PH::] 

1111 
•^oooo 
1121 

^oooo 

2111 
oooo 
2121 
oooo 

1112 
-^oooo 
1122 

^oooo 

2112 
-^oooo 
2122 

1211 
oooo 
1221 

oo Poo 

-f 
2211 
oooo 
2221 

1212 
-^oooo 
1222 

•^oooo 

2212 
-^oooo 
2222 

0 0 I 0 6 
0 0 I -6 0 
_ _ _|_ 

0-6 I 0 0 
6 0 1 0 0 

which is a tensor of order r = 4, n = 2, i.e., over II^. 
However, the matrix P does not satisfy the properties of an anti-symmetric 
tensor of order r = 4 and n = 2, because since r > n all its components 
have repeated indices (as one detects in the matrix of the P components) 
and then, all its components would be null, a condition that is not satisfied 
by P . ^ 
Then, p is not an anti-symmetric tensor of order r = 4 and n = 2 (it is a 
tensor of order r = 4 and n = 2 but not anti-symmetric). 
We immediately conclude that the tensor product of anti-symmetric ten
sors is not in general anti-symmetric. 

3. The major warning of this exercise leads to an analogous conclusion to that 
of Example 6.5: while the tensor product or Kronecker product of anti
symmetric matrices is a symmetric matrix, the tensor product of matrices 
that represent anti-symmetric tensors is not a tensor (neither symmetric 
nor anti-symmetric), though the same symbol "(g)" and operating proce
dure (matrices in paragraphs 1 and 2 of the solution are identical for the 
mentioned products) be utilized. In simple words, the operation "(g)" for 
matrices has not the same properties as the operation "(g)" for tensors. 

D 

Example 7.7 (Contracted product). Show that the contracted tensor product 
of two anti-symmetric matrices (classic product of matrices) is not in general 
a symmetric matrix. In which case is it? 

Let An — — A^ and 5 ^ = — B^ be two anti-symmetric matrices. Since 

A„ . S„ = {-A\) . {-B\) = A\.Bl = {Bn • A„)* ^ {An . Bnf (7.60) 



7.5 Anti-symmetric tensors from the tensor algebra perspective 249 

the matrix\A^ • B^ is not symmetric. 
However, if An^Bn = Bn^An the inequality of (7.60) becomes an equality: 

An» Bn = {Bn • AnY = {A^ • Bnf =^ An • Bn is Symmetric, 

so that, if they commute, the product of two anti-symmetric matrices is sym
metric. D 

7.5.1 Anti-symmetrized tensor associated with an arbitrary pure 
tensor 

In Section 7.4.1 we have already developed a technique that allows us to 
associate with an arbitrary pure tensor, another tensor that is anti-symmetric 
with respect to a subset Ik of its indices. More precisely. Formula (7.31) was 
stipulated to build them. 

Here we consider only the associated tensor that corresponds to I^ = Ir-, 
that is, the one corresponding to selecting all r\ isomers that correspond to the 
set Ir — {c^i, ̂ 2, •••, o r̂} of all the tensor indices with the sign corresponding 
to the factor (—1)'̂ . 

The resulting anti-symmetric tensor will be called an "anti-symmetrized" 
form of the given tensor. 

To illustrate, we give a detailed example. Let T = f'^'^l",',^^ be the siven 
tensor over the linear space V'"'(i^), and consider all the r! permutations of 
its indices, which generate the corresponding isomers of the given tensor. 

We denote by iJ(T)"i'^2,-,c^r the "anti-symmetrized" tensor of T, which 
is an anti-symmetric tensor, defined over the same tensor space (^®V'^Y[K)^ 
and the components of which can be obtained using the formula 

^\T-) O O ... O = ;:j [ ( - 1 ) ^ O O ... O + ( - 1 ) ^ O O ... O 

+(-i)"^C?:::? + • • • + (-iPC'7':::"'] • (̂ -ei) 

The summands are all the h — rX isomer tensors. 

7.5.2 Extension of the anti-symmetrized tensor concept associated 
w îth a mixed tensor 

If the data tensor is mixed, it is possible to associate it with an anti-
symmetrized tensor by establishing all isomers that result from consider
ing all permutations of its p contravariant indices, independently of the 
corresponding permutations of its q covariant indices. If the data tensor is 
^ — '^'^o^o'.'.'.^o 3 ß "''"6 ' ^^ order r = p + ^, the number of isomers will be p\q\, 
and if we denote by TI = pi + qi the number of transpositions of the first 
isomer, T2 — P2 + q2 the number of transpositions of the second isomer, etc., 
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'^u — Pu-^ Qu the number of transpositions of the last isomer {u = pig!), the 
anti-symmetrized tensor is 

H{T) o o • 
•ap o o 

• o ß^ß2 

1 
p\q\ i-ipt 

TlJ-O^l- ° _L f_-\\'r2fCt2-"ap o ••• 

+... + (-i)-n^;:::^j ai o 
'ßi 

(7.62) 

where the right-hand sum extends to all pig! isomer tensors. 
In order to determine the number of strict components of the anti-

symmetrized tensor, we use Formula (7.22) and for the non-null components, 
Formula (7.23). 

For example, consider the tensor t^f °^ with p = 2 and g = 2, of order 

r = p + g = 4 over the linear space ^^(IR), that is, n = 2, and a total of a = 
n^ — 2^ — IQ components. The anti-symmetrized tensor of the given tensor 
will have N ^ Q (^) = (^) © = 1 strict component and N = ( ^ (^plg! = 

2) (2)212! = 4 non-null components, so that 

Tj^rp\Oißoo __ I r / . Q / g o o 

and its matrix representation is 

.ßOiOO .ßac _,aßoo\ 
0 0 Ö 7 v 0 0 7 6 o o ( 5 7 ^ J ' 

where a • 

H{T) {[12] [12] = [21] [21] = a; [12] [21] = [21] [12] = - a } 

[H{T)\ 

< ,12oo ,21oo ,12oo , 
4 i^ool2 "^ ̂ oo21 ~ ^oo21 "" ̂  

a/goo-j 
o o76-I 

"0 
0 
0 
a 

0 
0 

—a 
0 

0 a 
-a 0 

0 0 
0 0 

2100 
0012 

Example 7.8 (Anti-symmetrized tensors). 

1. Obtain the anti-symmetrized tensor of tensor T given in Example 4.5, 
assuming that it is totally contravariant, using the general formula (7.61). 

2. Obtain the anti-symmetrized tensor of the mixed tensor 

Solution: 

A~ lAOißoo. _ 
L^oo7(5J ~ 

" 1 2 
- 3 4 

5 - 3 
_- l 4 

- 2 1 
0 6 

- 2 - 5 
- 1 3 

1. From Exercise 4.5 we extract the numerical data of the tensor T and of 
its isomers 
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a/37] rp _ r i a p 7 

1 0 
2 3 

-1 2 
2 - 1 

1 
0 
0 
1 
0 
1 
1 
2 

0 0 

V •• 
J-ßlOLl 

1 1 
0 5 

R 
,jßai 

0 0 
5 1 
1 

• 1 

0 
- 1 

2 
3 
0 

- 1 
2 
0 

1 2 0 
2 0 5 

- 1 2 1 
0 - 1 0 
3 1 1 

' L o o oJ 

0 0 
1 0 

0 0 
1 1 
0 2 
1 0 

;W = [Cf] 

0 1 

s-[tt 

1 2 
0 3 

-1 0 
2 0 

-1 1 
1 0 
0 5 
0 1 
1 2 

o oJ 

-1 
2 
1 
2 
0 
0 
0 
1 
0 

- l l 
2 
0 
2 
0 
1 
1 
0 
0 

; (7.63) 

; (T.64) 

0 - 1 1 
1 1 

1 
2 
0 0 1 

3 
1 
1 
2 
0 
0 0 

(7.65) 

The anti-symmetrized tensor is 

H{T) = ^[(T^U^V)-{W^R+S)] = i 

0 0 0 
0 0 - 6 
0 6 0 
0 0 6 
0 0 0 

-6 0 0 
0 - 6 0 
6 0 0 
0 0 0 

0 0 0 
0 0 - 1 
0 1 0 
0 0 1 
0 0 0 

- 1 0 0 
0 - 1 0 
1 0 0 
0 0 0 

2. There are four isomers 

a 
CK/OOO-i 

37öJ 

1 
- 3 

5 

2 
4 

-3 
-1 4 - 1 3 

a' 
ßaooi 
o o'ySi 

1 2 5 - 3 
-3 4 - 1 4 
-2 1 - 2 - 5 
0 6 - 1 3 

Q;/3OO-] 

o o 67-I 

so that 

1 - 3 - 2 0 
2 4 1 6 
5 - 1 - 2 - 1 

-3 4 - 5 3 
a 

ßaooi 
o Ö7J 

1 - 3 5 - 1 
2 4 - 3 4 

-2 0 - 2 - 1 
1 6 - 5 3 

H{A) 
1 

2!2! o 0 7 0 o o <! 
ßaoo 

[ a _ , . . - f - a . ^ ^ ^ j - ( a ^ ^ ^ ^ a 
a/3oo>^ 
o o ^7^ 
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K:Z\=H{A) 
1 
4 

"0 0 
0 0 

0 - 3 
_3 0 

0 3" 
- 3 0 

0 0 
0 0_ 

0 
0 
0 -
3 

. 4 

0 
0 -
3 
4 
0 

0 
3 
4 
0 
0 

7.6 Anti-symmetric tensor algebras: The ®H product 

Once the concept of "anti-symetrization" of an arbitrary homogeneous tensor 
has been established, it is possible to define a new tensor product for exclu
sive use with anti-symmetric tensors, the product of which is another anti
symmetric tensor, and since the sum of two anti-symmetric tensors is another 
anti-symmetric tensor, establish a good foundation for an anti-symmetric ten
sor algebra, tha t is, for anti-symmetric tensors. 

This new product will receive the name "anti-symmetric tensor product" 
and will be notated "(8)jf". 

Let A and B be two anti-symmetric homogeneous tensors, of orders r^ 
and r^, respectively, both over the linear space V^^K)] li P — A^B^of order 
r — Ta ̂  Th^we define the "anti-symmetric tensor product" by means of the 
following formula: 

A^H B =:- H[P] = H{A (g) B) (anti-symmetrized tensor of A^B). (7.66) 

Next, we give an example of the new product. 
Let a, 6 G F ^ 0 y ^ {K) be two anti-symmetric contravariant tensors, and 

let a 2^ = 4 be the dimension of the tensor space to which they 
belong. The matrix representation of our da ta is 

A-- aßi _ 0 hl 
-hl 0 ; B = [hl 

7^1 0 62 

-62 0 
- r^ = 2 + 2 = 4. 

A^HB = 

= H 

1 

4! 

hl 
0 

0 
0 

0 
hih2 

0 

-62 

0 
0 

-hih2 
0 

62 
0 

I 0 hih2 
1 -6162 0 

\ 

aß^5 aßSj a'yßö , a^5ß 
1 — V — V -^ V 
0000 -'̂  o o o o -î  o o o o -^ o o o o 

7^1-
ooJ. =H[K:]®K:]] = H[PZVO\ o o o oi 

a(57/3 aSßj 
^oooo "'"-^oooo 

-p -\- P -h P — P -\- P — P 
^ O O O O - i ^ O O O O - i ^ O O O O - f ^ O O O O ' - i ^ O O O O - ^ O O O O 

/ lO^ßS _^aSß 
'^l-^oooo -^oooo 

jßaS ^ßöOL , yößa ^Saß 
- P -\- P — P 
-^oooo ' ^oooo -^oooo 
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-v + p 4-ü —V -\-p 
- ^ O O O O - ^ O O O O ' - t ^ O O O O - ^ O O O O - ^ O O O O 

Ü. 

Ö^Oiß 
-£^00 o o 

" 0 0 
0 0 

0 0 
. 0 0 

0 O ' 
0 0 

0 0 
0 0_ 

The obtained result was predictable; an anti-symmetric tensor [Pooo ]̂ of order 
r — A and n = 2, has r > n^ and then all components of P have repeated 
indices, which implies that all [PH^J must be null. 

It can be easily proved that the anti-symmetric tensor product has the 
following properties: 

1. It is commutative: 
A^HB = B^H A. (7.67) 

2. It is associative: 

(7.68) 

(7.69) 

(7.70) 

4. Based on the above properties, it is obvious that the anti-symmetric ten
sor product, together with the sum, endow the set of homogeneous anti
symmetric tensors with the character of an anti-symmetric tensor algebra. 

{A (^HB)^HC = A ^H {B ^H C). 

3. It is distributive for the sum "+" of tensors: 

{A-\-B)^HC = A^HC-i-B(^HC. 

A^H {B -^ C) = A^H B -^ A®H C. 

7.7 Illustrative examples 

Example 7.9 (The rotation tensor and the anti-symmetry). Consider a homo
geneous contravariant tensor T, of third order, that is related to another tensor 
VK, by means of the expression 

j_i ik i j k , j ik 
0 0 0 0 0 0 0 0 0 

It is also known that the unknown tensor W is of third order, contravariant 
and anti-symmetric with respect to the last two indices. 

1. Show that the tensor T is anti-symmetric with respect to the first two 
indices. 

2. Show that the rotation tensors of the given tensor T also satisfy the same 
anti-symmetry. 

3. Determine the generic component w'^J^^ of the tensor VF as a function of 
the components of T and its isomers. 
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Solution: 

1. Exchanging i and j in the given expression we have 

,ijk j ik i jk /^^-\ 

t -^ = w — w (7.71) 
O O O O O O O O O V / 

t-^ — w — w (7.72) 
O O O O O O O O O \ / 

and adding them gives 

ijik , ,ijk r\ J. 7 ^ ̂  j . ^ J k 
O O O ' O O O O O O O O O 

2. Consider the isomer tensors of the given tensor, resulting from the circular 
permutations of its indices (rotation tensors; see Example 5.5): 
Rotation 1 (the index i passes to j 11 the index j passes to /c 11 the index 
k passes to i) 
Rotation 2 (the index i passes to /c 11 the index j passes to i 11 the index 
k passes to j ) . 

Then 
,ijk j i k ijk /— ^ < ^ N 

t -^ = w — w (7.73) 

O O O O O O O O O V / 

and we obtain the rotation isomer 1: 

,jki kji j k i (^- ^ .\ 

t-^ — w — w . (7.74) 
O O O O O O O O O V / 

Exchanging j and k in Expression (7.74), the result is 
,kji j k i kji / - ^ , ^ \ 

t -^ — W — W (7.75) 
O O O O O O O O O V / 

and adding (7.74) and (7.75) we get 

,jki . k j i _ r . ,kji _ _ , j k i /^? 7 ß \ 
'^ooo " ^ ^ooo ~ ^ ^ooo ~" '^ooo' V ' - ' ^y 

Similarly, rotation 2 is 

, k i i ikj kij / ^ ^ ^ N 

t -^=11) — W . (7.77) 
O O O O O O O O O V / 

Exchanging k and i in Expression (7.77), we obtain 

t'^' =w^'' -w'^' (7.78) 
O O O O O O O O O \ ' • ' ^ / 

and adding (7.77) and (7.78) we get 

4-kij j_.ikj _ r. .ikj _ _ . k i j /^? 7Q\ 
^ooo " ^ ^ooo ~ '^ ~^ ^ooo ~ ^ooo- V ' - ' ^y 
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3. Considering the rotations 

lijk j i k ijk rn or\\ 
o o o o o o o o o \ / 

j _ T K l AC 7 Z 7 / C Z /f-70-i\ 
*ooo = " ' o o o - " ' o o o ( 7 - 8 1 ) 

(7.82) i k i i i k i kij 

t -^ — w — W 
o o o o o o o o o 

because of the anti-symmetry of the last two indices of VF, they can be 
written 

,1 i k jki ijk fi-7on\ 

t -^ = —w — w (7.83) 
o o o o o o o o o V / 

— i r s r s ^ — W A r . ^ ' ^ r s r s (7.84) 

OOO O O O O O O V / 

j-kij ijk , kji /^7 o r r \ 

t — —W -\-W (7.85) 
o o o OOO ' OOO V / 

and adding (7.83), (7.84), and (7.85) we get 

j-ijk .jki . ,kij / j k i ijk\ . / kji . j k i \ 

t —t + t = i—W — W ) + (—W + W ) 
o o o OOO ' OOO V o o o o o o / ' \ o o o ' o o o / 

\ OOO o o o / 
ijk^ 
o o o ' 

and finally 
ijk ^ 

W = — 
o o o o 

,jki _ ,ijk _ ,kij 
o o o o o o o o o 

D 

Example 7.10 (Contracted products of tensors with partial and reverse sym
metries). 

1. Consider a homogeneous contravariant symmetric tensor A of second order 
(r = 2), and another homogeneous covariant anti-symmetric tensor B of 
second order (r = 2), both over the linear space V'^{K), obtain the doubly 

contracted product tensor 0^0^°^ of both tensors. 

2. Let A be a contravariant tensor of third order (r == 3), symmetric with 
respect to the first two indices, and B a covariant tensor of third order 
(r = 3) anti-symmetric with respect to the first two indices, both over the 
linear space V'^{K). Obtain the doubly contracted tensor product C of 
both tensors 

io aß i7o o o 
C • = a 0 ß •. 

o j 0 0 0 aßJ 

Solution: 

1. Since it is a totally contracted product of homogeneous tensors of second 
order, the resulting tensor is a tensor of zero order (a scalar invariant). 
Whence 

aßioo ^ T^ 
(^r.r.^r.R = C'. C G K. 

o o aß ' 
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Since a and ß are dummy indices with the same range, they are exchange
able, that is 

Ci^rfi^ a — Oü^rßa^ = C, (7.86) 
o o cx.p o o j5oi ' ^ ' 

and since A is symmetric (a^^ = a*^) and B is anti-symmetric (6°° = 

- 6 ° p , from (7.86), we get 

ßa-ioo aß/ T O O N ocßioo 

c = a\'^b^ —a^i—b ^) — —a^ o^r, = —c. 
o o ßa o o V a p / o o otß 

Thus, c=^ —c ^ c = 0 (because K ^2). 
2. If in the relation 

Cr.0 = Ci^\lb^^. (7.87) 
o J o o o Q:p_7 ^ ^ 

we exchange the dummy indices a and /3, we get 

io ßaiiooo />-7 ao\ 
C^, = dr^r^rfia •' (7.88) 

o J o o o pen J ^ ' 

In addition, from the symmetry of A and the anti-symmetry of 5 , we have 

af: :=a:f: (7.89) 

& ; : ; = - ^ : ; ; - (7.90) 

The product, term by term, of (7.89) and (7.90) gives 

and substituting (7.87) and (7.88) into (7.91), we finally obtain 

io io . 0 * 0 ^ i^ r\ 

This result is different from the previous result, because now we have 
n^ — v? zeroes, which implies C = Qn-

D 

Example 7.11 (Strict components of an anti-symmetric mixed tensor). Con

sider the anti-symmetric mixed tensor with components t°°^ over the linear 

space {V'^{K). Calculate the number of strict components. 

Solution: Since the anti-symmetry has a tensor nature, it must be of the 
covariant indices. From Formula (7.21), we have 

p = l; A:i = 0; q = 2; A:2 = 2; r = p + q =-1-^2 = 3 

n \ / n \ ^ , _ ( , ^ + , , ) ^ / n nN 3_(o+.)^ n 

D 
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Example 7.12 (Main tensors associated with the given tensor). Consider the 
tensor t in Example 6.11 and assume that we know the solutions of such a 
example. 

1. Give the components of the anti-symmetrized tensor t^H of the given 
tensor. 

2. Give the components of the anti-symmetrized tensor thrll of the rotation 
tensor of the given tensor. 

3. Decompose t as the sum of a symmetric and an anti-symmetric tensor. 

Solution: 

1. The components of the anti-symmetrized tensor thU are 

f t j _+3^] 

r^ooJ "" 2' °° °°^ 

0 3/2 - 1 / 2 
- 3 / 2 0 3/2 

1/2 - 3 / 2 0 

2. The components of the anti-symmetrized tensor thr^i of the rotation ten

sor of t are: 

ith '^] - -\t '^ - t -^i = -\t^' -t'^] 

3. In this case we have 

0 - 3 / 2 1/2 
3/2 0 - 3 / 2 

[ - 1 / 2 3/2 0 

t = tsllei^ej^thliei' 

= [ei 62 63 J 

+ [ 6 l 62 63 J 

1 3/2 - 3 / 2 1 ei 
3/2 1 3/2 62 

-3/2 3/2 2j I ê  

0 3/2 - 1 / 2 
- 3 / 2 0 3/2 

1/2 - 3 / 2 0 

61 

62 

63 

= (ei (g) 61 -h 62 (8) 62 + 263 (8) 63 + 3/2ei (8) 62 + 3/262 0 ei - 3/2ei (g) 63 

-3/263 0 61 -I- 3/262 (g) 63 + 3/26*3 (g) 62) + (3/2ei (g 62 - 3/262 (g) 61 

- l / 2 e i (g) 63 + 1/263 g) 61 + 3/262 g) 63 - 3/263 (g 62) 

= 61 g) 61 -I- 62 (g) 62 -I- 263 g) 63 + 3ei g) 62 - 2ei (g 63 - 63 g) 6*1 + 362 8) 63, 

which is the data tensor t. This shows that a second-order tensor is the 
sum of its symmetrized tensor and its anti-symmetrized tensor. 

D 

Example 7.13 (Analysis of tensor anti-symmetries). Study the possible anti
symmetric nature of each of the homogeneous tensors defined over a linear 
space V'^{K), the components of which in a given basis appear as: 
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2.t°;i^{i-j){j-k){k-i). 

Solution: 

1. When letting i = j = I, fc = 2 and £ = 3, the result is t^H = 1 - 1 + 2 - 3 -

Since the studied component has repeated indices, and is not null, the 
tensor is not anti-symmetric. 

2. If two indices are identical (i = j^j = k^k = i) the component is null. 
Next, we study the permutations of different indices 

,ooo ,ooo^ , o o o ,ooo^ , ooo ,ooo^ 
jik z j / c ' ikj ijk'^ kji ijk"^ 

t°z = {j-k){k-i)ii-j) = ii-j){j-k){k-i)=t°°i 

tlTj = ik- iKi-m -k) = {i-j){j - k){k -i)= t°;i 

which shows it is a third-order covariant anti-symmetric tensor. 
3. In this case we have 

which shows it is a second-order contravariant symmetric tensor, though 
since tH = 0, it is of null trace; it is not anti-symmetric. 

4. In this case we have 

^TiloL = ü' - ^)^^^ = -(^ - jW"^ = -^Tjltm' 

If i = 7, then t°°? ° = 0 • kim = 0. It is thus a fifth-order mixed tensor, 
i i kom 

anti-symmetric with respect to its first two indices. 

n 

Example 7.14 (Intrinsic character of symmetry and anti-symmetry). In a lin
ear space y^(IR) two bases {6*̂ } and {e^} are considered, which are related 
by ^ . . : , _ . -̂  _ 

61 = 61-6*2; 62 = 6 2 - 6 3 ; 63 = 63. 

Consider two homogeneous tensors a e V^^V^(R) and be V^^V^^V^CR) 
the components of which in the tensor bases associated with {ê Q,}, are 



7.7 Illustrative examples 259 

r ^ß^ 
0 0 1 
0 - 1 0 
1 0 1 

and KVo] 

0 
0 
0 

- 1 
0 
1 
1 

- 1 
- 1 

1 
0 

- 1 
0 
0 
0 
0 

- 2 
0 

- 1 
1 
1 
0 
2 
0 
0 
0 
0 

1. Obtain the components of tensors a and b in the new bases associated 
with the basis {ei}. 

2. Analyze the possible tensor symmetries or anti-symmetries of a and b. 
3. Obtain the contracted tensor product p, with respect to the last index of 

a and the second index of 6, in the initial basis. 
4. Give p in the new basis, by a direct calculation of the contraction. 
5. Idem, but executing the change-of-basis. 
6. Has p* some symmetry or anti-symmetry? 

Solution: The change-of-basis relations are 

ei = \C: C 
1 
1 
0 

0 0" 
1 0 

- 1 1 ; c-^ = 
"1 0 0" 
1 1 0 
1 1 1 ; c' = 

"1 - 1 0 
0 1 - 1 
0 0 1 

1. Change of basis of tensor a: we directly apply Formula (4.36), that is, we 
use the direct method. Since cr = n'̂  = 3^ = 9, we have 

' 1 0 Ol 
1 1 0 
1 1 1 

(8) 
1 0 0 
1 1 0 
1 1 1 

\ 

/ 
L J L J / 

r oi 
0 
1 
0 

- 1 
0 
1 
0 
1 

= 

r O l 
0 
1 
0 

- 1 
0 
1 
0 
2 

and condensing A^^i we obtain 

A - [aZ] = 
0 0 1 
0 - 1 0 
1 0 2 

Change of basis of tensor b: we apply again Formula (4.36). Since a — 
n'̂  = 3^ = 27, we have 

Ba^ = ^27,1 = {C-^ ^ C 0 C - ^ ) • ^27,1 
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"1 00" 
1 1 0 
1 1 1 

(8) 
1 - 1 0" 
0 1 - 1 
0 0 1 

0 
" 1 0 0 " 
1 10 
1 1 1 

r Ol 
1 

- 1 
0 
0 
1 
0 

- 1 
1 

- 1 
0 
0 
0 
0 
2 
1 
0 
0 

1 
0 
0 

- 1 
- 2 

0 
- 1 

0 
0 

= 

r 01 
1 

- 1 
0 
1 
1 
0 

- 1 
0 

- 1 
0 

- 4 
- 1 

0 
2 
1 
0 
1 

1 
4 
0 

- 1 
- 2 

0 
0 

- 1 
0 

and condensing ^27,1 we get 

B^K'o] 

0 1 - 1 
0 1 1 
0 - 1 0 

- 1 0 - 4 
- 1 0 2 

1 0 1 
1 4 0 

- 1 - 2 0 
0 - 1 0 

2. Analysis of tensor a in the initial basis: 

12 21 n 13 31 1 23 32 ^ 
OO OO ' O O O O ' O O O O 

Analysis of a in the final basis: 

^12 ^21 r\ - 1 3 ^31 
OO OO " OO OO ; a^^ — a^^ — 0 

• O O O O 

a/3 ßot 

Evidently a is a contravariant symmetric tensor. 
Analysis of tensor 6, in the initial basis: 

h lol olo 
,2o2 ,3o3 lo2 7 ^ 0 Z L'JO'J ^ 7 ± 0 

^oio = ^oio = 0; 6^, 
T2O1 

^olo 

7I03 73ol 
^olo = -^olo 

1 i,2o3 L 3 O 2 p, 
-1: 0̂ . = —0^. = 0. 

' olo olo 
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Analysis of b in the final basis: 

so that 

o l o 
f 2 o 2 r 3 o 3 n L I O S 

o l o o l o 
r 2 o l 
^ o l o 

M o 3 _ _ i : 3 o l _ _ ^ . 7^2o3 
^ o l o ~ ^ o l o "~ -•-' ^ o l o 

7 Q ! 0 7 7 T O CX 

^ o / 3 o - - ^ / 3 o ; SI 7 ^ a 

r3o2 
• ^ o l o 

^o/3c 

= 1. 

-4. 

0, 

that is, the 6 is a mixed anti-symmetric tensor with respect to its con-
travariant indices tensor. 

3. The contraction (^) of the tensor product (ÖQ o ̂  ^oeo) l^^ds to 

\p 
CK (571 ,(5 071 r Lxu -jL 
o o o J L 0 0 o6^oJ = [a 

al 7«5o7 
00 o l o « 0 0 - ^ 2 0 

Q:3 7 < 5 O 7 I 
• ^ o o ' ^ o 3 o ] - (7.92) 

For a = 1 (first block of the tensor P matrix, called Pi), since (5 = {1, 2, 3} 
(blocks 1,2,3 of tensor B) and 7 = 1 (first column of each block of B and 
of P) , Expression (7.92) leads to 

b: I6I1 ll7(5ol , 12760I , 137(5ol 
00 olo ' 00 o2o ' 00 o3o 

11 12 1 3 i 

r 7 ( 5 o l 
^ o l o 

Sol 
o2o 
5ol 
o3o 

= [0 0 11 
0 
0 
0 

- 1 
0 
1 

1 
- 1 
- 1 

[0 1 - 1 ] , 

that is the first column of block Pi . 
For a = 1, 5 = {1,2, 3} and 7 = 2, Expression (7.92) gives 

b, 162-\ 11 12 

[0 0 1] 

^olo 
7 ^ 0 2 

^o2o 
.602 

L^o3oJ 

1 3 i 

1 0 0 
0 0 - 2 

- 1 0 0 
= [ -1 0 01 

which is the second column of block Pi . 
For a = l, ^ = {1,2, 3} and 7 = 3, Expression (7.92) gives 

Ö = [o 0 1] 
- 1 0 0 
1 2 0 
1 0 0 

= [1 0 0], 
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which is the third column of block P i 
So, in summary 

0 - 1 1 
Pi= ' 0 0 

0 0 

For a = 2 (second block of the matr ix of tensor P , called P2); S = {1, 2, 3} 
and 7 = 1, Expression (7.92) gives 

\P: 
2<51i 2 1 T 6 O 1 

0 0 0 l o 
2 2 T ^ O 1 , 237(5ol 
0 0 o 2 o 0 0 0 0 0 = a^ 

21 

-1 0] 
-1 1 
0 - 1 
1 - 1 

22 

[0 0 1], 

2 3 i 

^o lo 
7 ( 5 0 l 

^ o 2 o 

7<5ol 

^ o 3 o 

which is the first column of block P2, and 

r 2S2i 
booJ = a . 

21 2 2 23 1 

r,So2-] 

7602 

^020 

7S02 

L^o3oJ 

[0 - 1 0] 

= [0 0 2] , 

which is the second column of block P2, and 

1 0 
0 0 
1 0 

0 
- 2 

0 

boo!] = [o - 1 0] 
- 1 0 0 
1 2 0 
1 0 0 

= [ - 1 - 2 01 

which is the third column of block P2. 
Thus, in summary 

ro 0 - 1 
P2 = 0 0 - 2 

[ 1 2 0 

Finally, we calculate the third block (P3): 

3 5 1 
\p ] = 

r 3 1 32 3 3 1 , < 5 o l 

1 0 11 
0 - 1 1 
0 0 - 1 
0 1 - 1 

= [0 0 0] 
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r 3(52i 
L-^oooJ 

r 3(53i 

O l ] 

1 0 1] 

1 0 0" 
0 0 - 2 

- 1 0 0 

[ - 1 0 Ol 
1 2 0 

L 1 0 Oj 

= [0 0 0] 

fO 0 Ol 

and then 
0 0 0 
0 0 0 
0 0 0 

i^, 

so that finally, the matrix representation of the contracted tensor, in the 
initial basis is 

0 - 1 1 
1 0 0 

- 1 0 0 
, 0 0 - 1 

P = [p^^^] = 0 0 - 2 
Lî oooJ I 1 2 0 

0 0 0 
0 0 0 
0 0 0 

4. As the statement requires, we proceed again to execute the contraction, 
but using the matrices A and B associated with tensors a and 6, in the 
new basis. 

• ^ooo 

^162 

• ^ooo 

^261 

^262 
•^ooo 

^263 
-^ooo 

-3(52 

[ 0 0 1 ] 

= [ 0 0 n 

;0 0 1 

0 - 1 
0 - 1 
0 1 

1 0 
1 0 

- 1 0 

1" 
- 1 

0 

4" 
- 2 
- 1 

= [0 

= [ 0 - 1 0 ] 

= [ 0 - 1 0 ] 

= [ 1 0 2 ] 

= [1 0 21 

1] 

1 0 ] 

- 1 - 4 0^ 
1 2 0 
0 1 0^ 

"0 - 1 ' 
0 - 1 - • 
0 1 ( 

L" 
L 
D 

- 1 0 

r - 1 -
1 

L ^ 
0 - 1 
0 - 1 
0 1 

1 0 
1 0 

- 1 0 

- 4 0 
2 0 
1 0 

1] 
- 1 
oj 
4 ] 

- 2 
- 1 

= [ 0 1 0 ] 

= [ - 1 0 - 1 ] 

[0 10]; ^ A = 

. [ O i l ] 

. [ - 1 0 2 ] 

= [-1 -2 0]; ^ A 

[ O i l ] 

: - 1 0 2] 

"0 
1 
0 

- 1 0" 
0 1 

- 1 0 

0 - 1 - 1 
1 0 - 2 
1 2 0 
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^363 = [ 1 0 2 1 
[_ U U U J 

In conclusion: 

" - 1 
1 
0 

P 

- 4 0" 
2 0 
1 0 

= [ - 1 -

r ijki 
L-^OOoJ 

ro 
1 
0 
0 
1 
1 
0 
1 1 

-2 0] =^ 

- 1 Ol 
0 1 

- 1 0 
- 1 - 1 

0 - 2 
2 0 

- 1 - 1 
0 - 2 
2 0 

P3 = 
"0 
1 
1 

- 1 
0 
2 

- 1 
- 2 

0 

5. We change the basis of the contracted tensor P , in the same form as we 
did with the data tensors, to solve the proposed question, which aims to 
show the correctness of the answers to the previous questions. 
Since tensor P is of order r = 3 and totally contravariant, we apply 
Formula (4.36) with a = n'̂  = 3^ = 27, and get 

Pc.,1 - ^27,1 = iC-'0C-'^C-')*P27,l 
"100" 
1 1 0 
1 1 1 

0 
"100" 
1 1 0 
1 1 1 

0 
"100' 
n o 
1 1 1 

- 0-
- 1 

1 
1 
0 
0 

- 1 
0 
0 

0 
0 

- 1 
0 
0 

- 2 
1 
2 
0 

0 
0 
0 
0 
0 
0 
0 
0 

_ 0. 

= r 

r °1 
- 1 

0 
1 
0 
1 
0 

- 1 
0 

0 
- 1 
- 1 

1 
0 

- 2 
1 
2 
0 

0 
- 1 
- 1 

1 
0 

- 2 
1 
2 

_ 0_ 

Condensing P27,i we again obtain 

ijki 
p^[p:i:] = 

0 - 1 0 
1 0 1 
0 - 1 0 
0 - 1 - 1 
1 0 - 2 
1 2 0 
0 - 1 - 1 
1 0 - 2 
1 2 0 
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which confirms the correction of the answers to the previous questions. 
It becomes clear that in the initial basis and in the new basis, p is a 
homogeneous contravariant and anti-symmetric with respect to the last 
two indices tensor of third order: 

Pr.r.rs = ^ ^ U d P ^ ' = " P ^ ^ ' U Ö ^ ^ 7 . 
• ^ o o o -^ o o o -'̂  o o o / ' 

7.8 Exercises 

7.1. Assuming that in a homogeneous mixed anti-symmetric tensor, defined 
over a linear space F^(]R) and its dual, the following strict component has 
the value 

, ( l 0 2 0 0 3 0 4 ) ^ jry 
^ ( o l o 3 4 o 5 o ) = « ; ^ ^ ^ • 

1. How many components are sure to have the same absolute value? 
2. How many components are null? 

3. Give the value of the component ^o5o4io3o-

7.2. 1. Give the general matrix representation of a homogeneous anti-sym
metric tensor T E ((8)T^ )̂̂  (R) , the strict components of which in increas
ing order are a, 6, c, d, e, / . 

2. The same question for a tensor T E {^V^)^ (^)^ ^̂ le strict components 
of which in increasing order are a^b^c^ d. 

7.3. 1. Let Pi G {'^V'^)^ (R) and Qi be a homogeneous anti-symmetric 
tensor and Qi £ {<S)V^)g (R) be a homogeneous symmetric tensor. If the 
totally contracted product of both tensor is executed, determine the tensor 

Z = C' "" 
7 

P \ aß oo 6(j) oo 

2. Let P2 ^ i^V^) (R) be a homogeneous, and symmetric with respect to 
its first two indices tensor, and Q2 G ((8)KT) (R) be a homogeneous and 
anti-symmetric with respect to its first two indices tensor. 
Consider the tensor U product of the two tensors contracted with respect 
to its first two indices 

7 0 ^ /Ofl ß\ cxß'y 000 6(f>j 0 0 0 

Determine tensor U. 
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7.4. Consider the tensor T G 
is 

(IR), the matrix representation of which 

OLßl-\ _ 
o o oJ 

r 1 
2 

2 
_ 5 

- 1 
3 

1 
3 

1. Give the representation of the anti-symmetrized tensor H{T)^ associated 
with tensor T. 

2. Execute in the linear space y^(]R) a change-of-basis of associated matrix 
1 21 

, and give the matrix representation of tensor T in 

the new basis T =\t ijki 

3. Find the matrix representation of the anti-symmetrized tensor H{f)^ as
sociated with T, in the new basis. 

4. Check the previous result, directly changing the basis of the tensor H{T). 
5. Answer questions 1 and 3 using the computer. 

7.5. Consider the tensor A e V^ <S)V^ ^ V^QR) by means of its matrix rep
resentation in the basis {e^} of y^(]R) 

0 1 - 2 
-1 0 - 3 
2 3 0 

0/37] 
0 4 1 

- 4 0 - 3 
- 1 3 0 

0 2 5 
- 2 0 0 
- 5 0 0 

where a is the block row, ß is the row of each block, and 7 is the column of 
each block. 

Consider also a change-of-basis in V^(Sl) given by the expression 

ei = 
0 1 1 
1 1 1 
1 1 0 

1. Study the possible partial anti-symmetries of the components of A in the 
initial basis. 

2. If any of the anti-symmetries is of a tensor nature, execute the change-
of-basis and obtain the matrix representation of the tensor A in the new 
basis i = [ a ° f \ 

I z o oJ 

3. Check the intrinsic anti-symmetric character discovered in the previous 
question. 
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4. If S G F 2 ( R ) the vector [6̂ ] 

tensor 

P = C 
a 

determines the contracted product 

A^B. 

5. Determine if the tensor P is anti-symmetric. 

7.6. The following general matrix representations are given: 

1. Of a symmetric tensor Ti G (^V^)^ (R) . 

2. Of an anti-symmetric tensor T2 G ((8)T^ )̂̂  (R) . 

Obtain: 

1. H{Ti)^ the anti-symmetrized tensor of tensor Ti. 
2. 5'(T2), the symmetrized tensor of tensor T2. 
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Pseudotensors; Modular, Relative or Weighted 
Tensors 

8.1 Introduction 

First of all, we recognize that the need to create mathematical models that 
are more and more complex, and capable of giving mathematical support to 
the new theories in physics in its diverse branches (solid mechanics, elastic
ity, plasticity, mechanics of deformable media, mechanics of fluids, quantum 
mechanics, relativity, etc.) has forced us to extend the concept of absolute 
tensors with new contributions. This is the aim of this chapter. 

More precisely, in this chapter we will extend the concept of homogeneous 
tensors to other systems of scalar components, of "close" formal characteris
tics, in such way that the cited absolute homogeneous tensors be integrated 
into the "new ones" called modular tensors, relative tensors, and also pseu
dotensors, as a specific part of special relevance, such as the e-systems of 
Levi-Civita, the generalized Kronecker deltas and polar tensors. 

The modular tensors are established in the same form as the absolute 
tensors, over real finite-dimensional linear spaces y ^ ( R ) . 

The term "pseudotensors" (from the Greek, false tensors), reminds us that 
they are not tensors, under the classic conception of a tensor that has been 
considered up to now. The terms "modular tensors" and "relative tensors", 
to be defined below, refer to the concept of "relative modulus" of their two 
bases in a linear space F"'(Il) . 

8.2 Previous concepts of modular tensor establishment 

8.2.1 Relative modulus of a change-of-basis 

Consider the linear space F"'(]R) referred to a basis {e*Q,},a € /n- If we take 
as a new basis {e*^}, we know that the tensor relation between the two bases 
is 

-^ ao -* 
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and in matrix form 
l|e.|| = l|ea||[c:°], (8.1) 

where C = [c^°] is the change-of-basis matrix, with |C| 7̂  0 G R . 

The determinant |C| is called the relative modulus of the basis {ei} with 
respect to the basis {ca}-

This concept also appears in the dual changes of basis. From Section 3.6.2, 
the result is 

e** = 7::e-*" where [7::] = T* and F ^ C'= [YJ; (8.2) 

where, obviously, 

which shows that \C\ and \r\ always have the same sign. 

8.2.2 Oriented vector space 

We say that two bases {e*,̂ } and {e^} have the same orientation if the relative 
modulus is positive, that is, if \C\ > 0. This property is an equivalence relation, 
thus all new bases remain classified with respect to the initial one directly or 
inversely^ depending on whether or not they have the same orientation as the 
initial one. 

If in a linear space, we consider only changes of basis with \C\ > 0, we say 
that the linear space F"'(]R) is oriented and if tensors are constructed on it, 
by power of the tensor product, we say that they are "oriented tensors". 

8.2.3 Weight tensor 

An exponent w that appears in the general expression of a change-of-basis of 
a modular tensor will be called a weight tensor. It is a parameter that belongs 
to the set of relative integers 

w GZ; Z = { . . . - 3, - 2 , - 1 , 0,1,2, 3 , . . . } , 

which will be mentioned after establishing the axiomatic properties for these 
tensors. 

8.3 Axiomatic properties for the modular tensor concept 

1. Consider a linear space V^C^El) referred to a basis {ea} and its dual linear 
space V^{M) referred to the reciprocal basis of {e^^}. Over them we build 
another linear space, called a modular tensor space. 
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2. The modular tensor system is notated: 

F ^ (g) y ^ (g) Fj^ (8) KT ^ ^^" ^ ^^" ^ • • • ^ KT ^ V'^OR)]^. 
<— r factors —> 

Its field of scalars is also R , and the elements of these tensor system are 
notated 

tfoTsl.-Zo^- ® e> ® e*^ ® e*̂  ® ee ® • • • ® e^^ 0 e, 

appearing as a linear combination of a basis, built as a tensor power 
of the basic vectors of ^" ' (R) and yj^(R), according to the axiomatic 
criteria proposed in Section 2.5. Among the r dummy indices of the scalar 
components and those of each basic vector of the tensor space, the Einstein 
convention holds. 

3. In this tensor system only changes of basis that respond to the following 
formulation are licit: 

ijooe-or ^ | r ' | ^y+ '^ /5°°e" -°^^^°^J0^07 o<5 eo... OTT ro /g N̂ 
ookdo---po I I o o-y^o •••TTO 'OCK 'oß ko do 'oe--- po 'op ' \ ' / 

where C is the matrix of a change-of-basis ||e* |̂| = Hê ĉ HC executed in the 
linear space F"'(R) and |C| is its relative modulus. 

Remark 8.1 (Important note). From now on, and following most authors, we 
will formulate these tensors with all contravariant indices (p) in sequence, 
and all covariant indices {q) in sequence, and after the contravariant indices 
when both indices exist. According to this criterion, the relation (8.3) can be 
written as 

o o ••• o jiJ2---jq ~ ^ I o o ••• o ßiß2---ßq' o ai' o a2'' ' o ap ji o J2 o ' ' ' jq o 

(8.4) 
but it is only for the sake of simplicity of notation, and not because the 
alteration of the ordering of indices be licit. D 

8.4 Modular tensor characteristics 

We use the term modular tensor characteristics (m.t.c.) to refer to the expres
sion (order (r), species, weight (w)) of a modular tensor. 

The order is the number of indices, the species is the ordered list of the 
valencies of each index in the component: cova-cova-contra-cova-...- contravari
ant, and the weight is the relative integer that is assigned to the tensor because 
of its particular properties. 

With the same criterion as that in Section 8.3, some authors notate the 
modular tensor spaces in abbreviated form (0y" ' )^ (R) or ((8)1/"')^(R) or 
((g)y'^)g+^(R), but their modular tensor characteristics must be added in 
order to know exactly the position of their indices. 
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8.4.1 Equality of modular tensors 

Two modular tensors are equal if: 

1. They are associated with the same linear space V'"'(1R). 
2. They have the same modular tensor characteristics (m.t.c). 
3. They have identical components with respect to the same basis. 

8.4.2 Classification and special denominations 

Depending on the weight and order, modular tensors use a different terminol
ogy: 

• If w = 0 we have the absolute or proper homogeneous tensors. 
• If w ^ 0 we have the modular tensors or pseudotensors. 
• If w = 1 and r — n the tensor is called the "tensor density" of order 

n = p^ q. 
• If tt; = — 1 and r = n the tensor is called the "tensor capacity" of order 

n = p^q. 
• If w ^ 0 and r = 0 the tensor is called the "pseudo-scalar of relative 

invariant". 
• If It; = 1 and r = 0 the tensor is called the "scalar density or comodular 

scalar". 
• If w = —1 and r = 0 the tensor is called the "scalar capacity or con-

tramodular scalar". 

Evidently, the product of a comodular scalar by a contramodular scalar is 
an intrinsic scalar or invariant. 

This terminology is commonly used by such authors as [13] and [23]. 

8.5 Remarks on modular tensor operations: 
Consequences 

8.5.1 Tensor addition 

The sum of two modular tensors, defined over a F"'(R) and of identical mod
ular tensor characteristics, is another modular tensor of identical m.t .c, the 
components of which relative to a basis, are the sum of the corresponding 
components of the tensor summands, in the same basis. 

To prove it, we will prove only the satisfaction of the third axiom. Formula 
(8.4) for the tensor sum, assuming that axioms 1 and 2 hold. 

1. Let A^B e i^V^)^ ^V^{lR)\w be two tensors of the given modular tensor 

space; let S = A-{-B he its sum tensor. Consider the components: 5^^° = 

0 0 7 ' 0 0 7 
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Since A and B are modular. Formula (8.4) must hold for both: 

^ook \^\ ^oojloa'oß^ko 

oo/c I I oo^ioa'oß ko 

and adding them we get 

"oo /c ^ ^oo/c — I'-^l V" 'oo7 ^ ^ 0 0 7 / loa'oß^ko^ 

that is 
ijo ^ | r 7 | ^ c " ^ ° ^ ^ ° V c ° ^ 
00k ' I 0 0 7 ' o a 'oß ko' 

In fact, we get 

S = A + B; 5 e ( ® y " ) 2 ( K " ) ( R ) | « „ (8.5) 

which proves that the sum is an internal law of composition. 

2. Note that if A,B,D G {®V^)^ ® K"(R)U, since a ^ f ; , 6 ^ f ; , < f ; e 
lR,Va,/3,7, holds and R being a field, we have 

, aßo ^aßo. ^aßo ^ aßo ,^aßo ^aßo. 
V 007 ' 007/ ' 007 007 ' V 007 ' 007/ 

and then 
{A^B) + D^A-h{B + D), (8.6) 

which implies the associativity of the modular law (+). 
3. 3f2 e {^Vy (g) V:'(R)\^, that is, a zero modular tensor exists. 

Since '^CL^^'1 € R , there exists a system of zeroes in R , 0^^° G R , such 
that 

Ö;/3O Qaßo _ Qa/5o n ^ ^ ° = a^^°' 
0 0 7 " ^ 0 0 7 0 0 7 ' 0 0 7 0 0 7 ' 

whence 
A + i 7 - r 2 H - A = A (8.7) 

proving that the modular law (+) has a zero element. 
4. 

VA € ( ^ y - ) " 0 K"( i^ )U,3( -A) € ( 0 F ^ ) ' 0 K^(R)U; 

this is the consequence of the fact that in R , Va^^° corresponds to a 

(—a^^°) G R , because R is a field. Thus, 

Va,ß,-y: Ooo^ + (-«007) = 0„^^, 

which leads to 
A + {-A) = i-A) +A=n, (8.8) 

which proves that the modular law (+) is "cancelative". 
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5. \/A,B e ((g)"\/̂ )2 (g) V7(]R)|^, since in R the result is that: 

w o aßo lOißo lOißo . CK/So 

then we get 
A-\-B = B^A, (8.9) 

which proves that the modular law (+) is Abelian or commutative. 
Consequently, ((8)F^)^ (g)KT(R)k, because of (8.5), (8.6), (8.7), (8.8) and 
(8.9), is an Abelian group for the modular sum. 

8.5.2 Mult ipl icat ion by a scalar 

The product of a modular tensor defined over a V^^B.) by a scalar of IR is 
another modular tensor of identical m.t .c, the relative components of which 
with respect to a basis are the real products of the scalar by the corresponding 
component of the tensor factor. 

We will show only the satisfaction of the third axiom, Formula (8.4) for 
the tensor product, assuming that axioms 1 and 2 are satisfied. 

If A G ((g)V^)2 (g) V^{Wi)\^ and A G IR, let Q = \A be the tensor product. 
Let the components be 

Oißo -. ocßo 
^ 0 0 7 0 0 7 ' 

Since A is modular, it is alii — |C|^a'^^°7*°7-^^c?75 and since all scalars 
' 0 0 / c I I 0 0 7 ' O Q ; ' o p / C O ' 

belong to R , multiplying both sides by A, we get 

^«oofc = l^ l ( ^«007^0^70/3^^0 

or 

^oofe I I ^oo^ioaioßko' 

Thus, we obtain 
XA G {^V'f (g) 1C(3R)U (8-10) 

and a new "external product" is created. 
Without further demonstrations we advance that V-A, B and VA, /i, we have: 

Distributivity property of the external product with respect to the sum of ten
sors: 

X{A-i-B)=XA^XB. (8.11) 

Distributivity property of the sum of scalars with respect to the external prod
uct: 

(A +/i)A = AA + M^- (8.12) 

Associative property of the external product and the real product: 

X{fiA) - (A-/i)A (8.13) 
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Unitary character of the external product: 

l'A = A, (8.14) 

that is, the scalar 1 € R , unit element of the real product is also the "unit" 
element of the external product. Thus, the Abelian group ( 0 ^ ^ ) ^ 0 T4(]R)|tt; 
after (8.10), (8.11), (8.12), (8.13) and (8.14) is a linear space of modular 
tensors, that is, a modular tensor space. 

8.5.3 Tensor product 

The pending question is if the tensor product of modular tensors is also mod
ular. We will try with two modular tensors A G {<S>V'^) 0 K ( R ) U i and 
B G y - 0 F - ( i R ) U , . 

That is, now each tensor can have different m.t.c, though they must be 
defined over the same F"'(IEl). 

In summary, they could be A 6 (^"')^\ with ri = pi +(7i and B G {V'^)'!^^ 
with r2 =P2 + <?2-

The weight of the product will be Wp — wi -{-W2 and the order r^ — ri +r2-
The species would be the direct sum of the species espp — espi © esp2. 

Let A and B be the data tensors. Then we have 

^ook \^\ ^oojloa'oß^ko 

o m I I o/x / o A m o 

Let P = A^ B^ then multiplying them in R , the components are 

^ookom I ' ^ 0 0 7 ofjbJ ' oa. 'oß ko 'oX mo' 

If we call p^'f ° ° = a^f ° • b°, the result is 

ijoio ^ \r;\'Wi+W2^0ißo Xo i o j o o-f eo o ß 
^ookom I I - ^ 0 0 7 0 / / , loa 'oß ko 1 oX mo 

and we obtain 

A® Be (OF")" 0 K" 0 F " ^ Vr(IR)U,+^,, (8.15) 

which shows that it is another modular tensor. 
Since the tensor product is distributive with respect to the sum, we have 

arrived at a modular tensor algebra. 
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8.5.4 Tensor contract ion 

As could be expected, the system resulting from the contraction with respect 
to two indices of the same valency has no modular tensor nature. Next, we 
analyze the case of indices of different valency, over a mixed modular tensor. 

Let A e {Vy^'^^^- Because of Formula (8.4), we have 

Let B = C{^)A and also B = C(^)A, then 

^oi=C^j^J%U^ = a^^^^. (8.18) 

Letting j = A: = 2: in (8.16) and using (8.18) we get 

rio izoo \/^\'^ aß00 io zo 07 oA 
'^ol — ^oozi ~ 1^1 ^oojX^oa^oß^zo^io 

~ I'^l ^oojXioa\^ozioß)^io 

\/^\w ocßoo i o c-'yo oX 
~ 1^1 ^oojX'^oa^oß^io 

l/-^iit;/r07 aßoo\ io oX 
= 1^1 (<^/3>oo7A)7oaCfo 

I /^\W Oido O i O oX 

and because of (8.17), we finally obtain 

K: = ICrKHyet. (8.19) 

Thus, the contracted tensor, is another modular tensor with the same weight 
that the given tensor, order (r — 2) and species (p — 1) + (g — 1), in perfect 
analogy with the absolute homogeneous tensors. 

It is evident that the multiple modular contraction is also modular. 

8.5.5 Contracted tensor products 

As is well known, the contracted tensor product is defined in exactly the same 
form as for absolute homogeneous tensors. The operation consists of multi
plying in tensor form two modular tensors (then, the weight of the product 
would be the sum of the weights of the factors: Wp — Wa + w^) and then 
executing a contraction of indices of different valency and tensor factor that 
maintains the weight. Thus, the contracted tensor product will have weight 
^p = Wa-\-wi,^ order r^ = r^ ^r^ — 2, and species the ordered sequence coming 
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from the tensor product with the exception of the contracted indices, which 
obviously disappear. 

Next, we analyze a model to check the modular tensor nature. Consider 
the tensors 

Tensor A : a^;, = ICraf^yZjilcll (8.20) 

Tensor B : 6 f ; = | C r 6 ^ ; 7 f K ^ (8-21) 

The contracted tensor product tensor is Pc = C( ) P == C()A^B in the 

initial basis, and also Pc = C(^)P = C(^) A 0 P in the new basis. 
Whence 

i i o i joz o i jo rzo 
T) r = T) 1= Q, ' 0 
^^oom J^oozom ooz o m ' 

and using (8.20) and (8.21) and letting k = i = z^ the result is 

^ C o o m "~ Vl^l ^oo^loa'oß^zoJ\\^\ ^ofiloX^moJ 

— I'-^l V" 'oo7^o/x / / o a / o ^ v S o / o A / ^ m o 

_ | ( 7 | ^ I + ^ 2 / ^ « / 5 O T A O X ^o J O , o z 07X o/x 

— 1̂ 1 V"'oo7̂ 0M>'7oa /o^WAoSo>'̂ mo 

= |C|^i+^2(^«^o^Ao^yo yo.^07>^ OM 
I I \ 0 0 7 o/i,/ loa I oß\ Xo^rno 

_ \n\wi+W2(^Oißopo,Xo. to jo o 11 
— \^\ y^ooj^oX^ofinoaloß^mo 

_ \ri\wi+W2(^o^ßoi0ox io jo o ß 
— \^\ y^ooe^oßnooTloß^mo 

= \cr^'"^PcT,<y:ßC:- (8-22) 

The modular tensor character is kept after contracted tensor products. 

8.5.6 The quotient law. New criteria for modular tensor character 

As indicated in Section 5.6, the aim of the quotient law is to determine the 
tensor nature of a certain system of scalars and discover its species. 

We will use two theoretical models to show that the quotient law can be 
extended to determine the modular tensor character of a given system. 

Model 1. We have a system of scalars of order r = 3, S{aßj) defined over a 
linear space y^(IR) and we decide to apply to it a "test" modular tensor A, 
the components of which satisfy 

< = ICra^Y.l (8.23) 

The contracted product S{aßj)'a^ leads to the tensor P , the components 
of which satisfy the relation 
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bTk = \cr%y/AZ- (8-24) 

We wish to determine the tensor nature of the system S{aß'y) using the 
quotient law. 

We start from 
S{aß^)a': = b;; (8.25) 

in the initial basis and also 

S{ijk)al=b;i (8.26) 

in the new basis. 
We can obtain a^ from expression (8.23). First, we pass the scalar ICI^'' 

to the left-hand side and write the matrix 7^° in front of the component a^ 
and get 

next, we pass the matrix 7°* to the left-hand side 

i C | - " " ' < X = a:. (8.27) 

Now we substitute (8.27) into (8.25) and get 

| C | - » 5 ( a / 3 7 ) c : X = 6 ; ; (8.28) 

and then we substitute (8.28) into (8.24), and the result is substituted into 
(8.26), to obtain 

siijk)ai = \cr{\cr--s{aßj)c°yiy/A: 
and operating and grouping in the left-hand side, we obtain 

S{ijk)ai - | C | — « 5 ( a / 3 7 ) c : : c ° f c ° > : = 0 

{Siijk) - | C | — " 5 ( a / J 7 ) c : : c ; f c ° : ) a : = 0, 

which implies 
S{ijk) = \Cr-^'^S{aßj)c°y/Al 

The last equation shows two facts: 

First: s{aßj) = 5°^° is a covariant tensor of order 3. 

Second: S{aßj) is a modular tensor of weight Wh — Wa-
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Thus, finally we get 

i jk I I aß'j i o jo ko' 

Model 2. Consider a system of scalars of order r = 2, defined over a linear 
space F" ' (R). The test tensor is the modular tensor A of zero weight, that is, 
the absolute tensor: 

<^o=<ii:yo;- (8-29) 
The contracted product ^ is a modular tensor of zero order and weight tt; 7̂  0, 
that is, a pseudoscalar. Thus, we have 

5(a /3) -0 :^ = 6 (8.30) 

S{ij)^a:^^ = y (8.31) 

h' = ICrö. (8.32) 

Expression (8.29) can be written as 

i j o i o j aß 

and also, passing matrices 7 to the left-hand side 

oa oß i i aß / o o o \ 

c- ̂ c^a/^ = a^\l. (8.33) 
z o J O 0 0 0 0 V / 

So that substituting (8.33) into (8.30), the result is 

S{aß)c°y/Xi = b. (8.34) 

Substituting (8.34) and (8.31) into (8.32), we have 

siij)aii = \crs{aß)c:y/y^i 

and taking common factors we obtain 

iS{ij)-\CrSiaß)c°y/jaii=0, 

which requires 

s{ij) = \crsiaßy,y/^, (s.ss) 
showing that S{aß) is a modular covariant tensor, 5^"^ of weight w. Then, 

expression (8.35) can be written as 
rfOO | / ^ | I Ü Q O O OQ! oß 

^ij - \^\ ^aß^io^jo-

This proves the validity of the quotient law for modular tensors and its validity 
for establishing modular tensor criteria for systems of scalars. 
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8.6 Modular symmetry and anti-sym^metry 

We simply establish the existence of tensors that are symmetric or anti
symmetric with respect to a subset Ik of their indices. We insist that in the 
case of mixed tensors, the subset Ik — Ik' U Ik" must be formed by sub
sets Ik' C {contravariant indices}, Ik" C {covariant indices}, considered sep
arately, that is, the symmetry or the anti-symmetry are always contemplated 
over indices of the same valency. 

Example 8.1 (Calculus of the modular characteristics). Let [t'^V\ be a mixed 
tensor of R"" X K ^ 

1. Can we say that the determinant | t°^ | has a tensor nature? Give its mod
ular characteristics. 

2. Idem for [t°o]. 

3. Idem for [t^f]. 

Solution: 

1. We know that the homogeneous mixed tensors of order r = 2 change basis 
according to the tensor relation 

, ^o ,ao io oß 

t . = t al C . . 
O J O /^ / OCK J O 

If we take determinants on both sides, on account of the Binet-Cauchy 
theorem for determinants, the result is 

ao io oß\ | , Q ; 0 | | ^0|l oß\ 

-Kl\\c-'\\c'\ = \trß\\c\-^\c\ = \t CX.O I 

oß\ 

which remains invariant, so that we have an absolute homogeneous tensor 
of order r = 0, with modular tensor characteristic (m.t.c.) 

{or der ̂  species^ weight) = (0, —, 0). 

2. Similarly 
, oo , o o OQ: oß 
t . . — t aC C . 

2J aß to JO 

and taking determinants we get 

which proves that it is a modular tensor of order r = 0, and weight 2, also 
called a "pseudoscalar" of weight 2, and with m.t.c. (0, —,2). 
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3. Finally, we have 
fij ^+ocß io jo 

o o o o ' OQ; I Oß 

and following the same process we obtain 

ICol = \Cß\KlHl\ = Kl\\cr'\c\-' = \cntfj, 
which proves it is a modular tensor of order r = 0, and weight —2, also 
called a "pseudoscalar" of weight —2, and with m.t.c. (0, —, —2). 

D 

Example 8.2 (Modular quotient law). Consider a covariant tensor A = [a^°] of 

order r = 2, built over the linear space ^" ' (R) in a certain basis. We denote 

by A{aß) the adjoint of the element a^ß in the determinant l^^^l and we 

know that |a?°| G H and |a?°| ^ 0. 

1. We wish to analyze the possible tensor nature of the system of scalars: 

^ ' ^ I O O I 

2. Solve the same problem, but assuming that A is a contra-contravariant 
tensor of order r = 2, and that \a^^\ ^ 0. 

Solution: We set |a^°| = 1̂ 41, so that Iß^^l""^ = l^l""^- From the theory 
of determinants, we know that the inverse matrix can be defined as 

[biaß)r = 
\A\ 

= [a:T'=A-\ (8.36) 

SO that pre-multiplying by the matrix [ß^^], we obtain 

K;maß)r = Kiwai;]-' = A-A-' = J„. 

This matrix expression, notated in tensor form is 

< : 6 ( a / 3 ) = ^ ; f . (8.37) 

If we now choose a contravariant tensor, of order r = 1, T == t̂ e*^ G 

F"'(]El), as the test tensor to apply the quotient law, the contracted 

product with the data tensor a°° is the covariant tensor, of first order 

5 = 5 V ^ G V^{n). In effect 

file:///cntfj
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tlal° = s°- V r = i^e l e F" ( ]R) . 
o -yoi ex.' o / V / 

(8.38) 

If we now execute the contracted product of tensor S by the system of 
scalars b{aß)^ using (8.38), we get: 

tla;ibiaß)=slbiaß) 

and applying (8.37) to the previous relation, we obtain 

t:s:''^=slb{aß)^slb{aß)=C .39) 

Equation (8.39) shows, by the quotient law, t ha t the system b{aß) is a 
totally contravariant homogeneous tensor of order r = 2. Then, we have 

Ko^ß) = Kl = ^ - ^.40) 

We complete this example with another thought. If we remove denomina
tors in (8.40), we get 

A{aß) = |A|6:f. (8.41) 

We have seen in Example 8.1 tha t \A\ = | a ^ ° | is a modular tensor of 

order r = 0 and weight 2, which reveals tha t the system of adjoints or 

cofactors of the determinant | a ^ ° | = \A\^ according to (8.41), is the tensor 

product of the tensor analyzed in (8.40) and determinant \A\. Whence the 
set A{aß) of the adjoints resulting from such product is a modular tensor 
of order r = 2 and weight 2. 

3. Since the process is similar to the process presented, though start ing from 
t 

[b{a^ ]t - Ajocß) 

\a 1̂ 
aß , we invite the reader to solve and com

plete it, with the meaning of the adjoint or cofactors of a contravariant 
tensor of order r = 2. 

D 

Example 8.3 (Pseudoscalars). Let A and B be two homogeneous tensors, of 
order r = 2, both covariant and referred to a certain basis in the linear space 
yj^(IR), and let A E R . Consider the system of scalar components associated 
with the determinant: 

We wish to study its possible tensor nature. 

S o l u t i o n : Due to the tensor na ture of the entities A and 5 , we have for the 

other basis of KT (K.): 
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^J 

* j 

o o oa oß 

7o o oa oß 
^aß^io^jo' 

Multiplying the second relation by A and adding, we obtain 

OO , \ 7 OO 

a,. + Ao-. 
/ OO , \ 7 0 0 \ OOt oß 

^ OLD Oib^ to no 

and taking determinants, we get 

OO , A 7 OO 

a,. + AO,, 
O O , A 7 O O 

aß aß 
oa 0°" 

JO 

and, since k°ol ~ 1̂ *1 ~ 1^1' ^^^ previous relation leads to 

OO , A 7 OO 
a . . + Ao. . 

^J ^3 
Ici- o o 

^aß ' 
r O O 

^aß\ 

which reveals tha t the entity 5 •• is a modular tensor of order 0 
O O , ^ 7 O O 

aß Oiß\ 

and weight 2, or bet ter a relative invariant of weight 2, or a pseudoscalar of 
weight 2. 

D 

Remark 8.2. We observe tha t the case ao . A 7 CKO 

a^^ + Ao and the case aß Xb aß 
""oß ̂  ^'""oß 

lead to an absolute tensor of zero order or to an absolute invariant, and to a 
modular tensor of order 0 and weight —2, respectively. 

D 

Example 8.4 (Modular tensor nature of determinants and their cofactors). Let 
T be a modular tensor, of order r = 2 and weight p = w{w G Z)^ referred 
to a certain basis of the linear space F'^(IR). We wish to study the modular 
tensor nature of the system |T| , determinant of T, in the following cases: 

1. The totally covariant tensor T = [ t°^]. 

2. The contra-covariant tensor T = [t^^] 

3. The cova-contravariant tensor T = [^^ol 
aßi 

4. The totally contravariant tensor T = [t^^]. 

5. The system of scalars: 
s{aß) = T{aß), 

the components of which are the adjoint s or cof actors of the determinant 
|T| , for the four subcases indicated in 1, 2, 3 and 4. In all of them we 
assume tha t \T\ ^ 0 . 



284 8 Pseudotensors; Modular, Relative or Weighted Tensors 

Solution: 

1. Since it is a tensor with modular characteristics {order^ species^ weight) = 
{2,cova-covariant^w)^ we have 

tTj - \CrCß<y/o- (8-42) 
Taking into account that the scalar |C|^ appears in each row (column) 

of the matrix [t°^], and that |c°^| = \C°^\ = \C^\ = \C\ when taking 

determinants on both sides of (8.42), one gets 

1*:;! =1 \crt:; \ i<:iic°fi = \cr-K;\-\c\-\c\ = cr+'-\c;\. (8.43) 

In this case \T\ is a modular tensor of order 0 (pseudo-scalar) and weight 
{nw-^2). 

2. Now it is a tensor with modular characteristics (order^ species^ weight) = 
{2^contra-covariant^w)^ thus we have 

t:; = icrCßiiy/o (8-44) 
and considering the comments made in 1, taking determinants of (8.44), 
we get 

1̂ :°! = \crK;\\cnc\ = \crK;\^ (8.45) 
which proves that in this case \T\ is a modular tensor of order 0 and weight 
(nw). 

3. Now the modular characteristics are (2, cova-contravariant^ w)^ that is,we 
can write 

iZ = \Crtll'^Z<; (8-46) 
and taking determinants we obtain 

iCol = \CrKi\\C\\C\-^ = \Cr\tlll (8.47) 

which shows that in the present case \T\ is a modular tensor of order 0 
and weight (nw). 

4. In this question the modular characteristics are (2, contra-contravariant^ 
w)^ so that the tensor change-of-basis is 

tii = icrtfxiii; (8-48) 
and taking determinants and operating yields 

Ki\ = \cr • Kt\ • \c\-' • \c\-' = \cr-' • \tfj, (8.49) 

which shows that this time T is a modular tensor of order 0 and weight 
{nw-2). 

file:///Cr/tlll
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5. We solve only two cases, and leave the reader to solve the rest but guessing 
the results in advance. 

Case 2: The data tensor is of characteristics {2^ contra-covariant^w). 
From the definition of inverse matrix, in tensor notation, we have 

^ Ä . i " ° = 5^° (8.50) 
| , A o | 0 7 0 7 V / 

and contracting the data tensor with another homogeneous contravariant 
tensor A = [a^] G ^ ( R ) , we get 

* : > o = ^ o > (8-51) 

with b^ of weight (w)^ and then, contracting the two sides of (8.50) with 
tensor A we have 

DypO!.) CKO 7 r/So 7 

- I ^ - ^07^0 =^07^0 . 

which implies 

'^^""k = at (8.52) I , A o I 
I oß\ 

Sjßa) Interpreting (8.52) as a quotient law, the entity —^^^ becomes a mod-

ular tensor of order r = 2, contra-covariant, of weight {—w). Its tensor 
character equation is 

jo ßo 

' ° ' \C\-'"'-^lilcZ (8.53) 
I OTnl I ofj, 

and if one takes into account the relation (8.45) 

\Cj = \cr\<l\^ 
substituting it into the left-hand side of (8.53) yields 

1 1 I o/i,l I o/i,l 

which after simplifying and renaming the indices, finally leads to 

<] = i c | ( « - i ) - s : ; 7 : : c ; f , (8.54) 
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which proves that in this case the system S of the adjoints or cofactors of 
the determinant \T\ = | t^°| h 

covariant, of weight (n — l)w. 

the determinant \T\ = | t^°| is a modular tensor of order r = 2, contra-

Case 4' The data tensor is of characteristics (2, contra-contravariant^ w). 
Before examining this part, it is convenient to read the solution to Exam
ple 8.2, which can save much explanation. 
We start from the definition of an inverse matrix, to formulate the first 
matrix expression 

— | j n — F o o J = ^ n , (8.55) 

the tensor expression of which is 

^K:]=S;1. (8.56) 

If we execute the contracted tensor product of tensor T by a first-order 
covariant tensor A — [a°] ,^ E FJ^(R), we get 

C > ; = K^ (8-57) 

where 6" is a modular contravariant tensor of first-order and weight {w). 

Multiplying (8.56) by a° and contracting yields 

oypCX.) Q,^ o r°7 ° 

and taking into account (8.57) the result is 

~^^o = ^ß- (8-58) 

Since in relation (8.58) \T\ ^ 0, it is valid to interpret it as a modular 
quotient law, in which a modular co-covariant tensor of order r = 2 and 
of weight {—w) is contracted with another modular contravariant tensor 
of first order and weight (it;), to give a homogeneous covariant tensor of 
first order. 
Then, representing \T\ — l^^^l, we have the tensor character equation just 

discovered, as the first factor of the left-hand side of (8.58), i.e., 

oo o o 

r o o l F o o l 

However, in the first part of this example, point 4, we have seen that 
Formula (8.49) suggests 
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so that we replace it into (8.59) to get 

287 

ich -2 | f^M| 
ICI 

/5Q; oß oa 
C C 

and operating and sorting we arrive at 

oo \c\ (n- l ) t ( ; -2 oo oa 0/3 (8.60) 

which reveals that the system S of the adjoints or cofactors of the deter

minant \T\ — \t^^\ is a modular tensor of order r = 2, totally covariant 

and of weight ((n — l)w — 2). 

D 

Example 8.5 (Tensor character of subsets of tensor components). Consider a 
tensor with modular characteristics (3, contra-cova-contravariant^ 3) referred 
to the linear space R^ in its canonical basis. 

The matrix representation of its components is 

r,a;0 7i _ 

r 1 
0 

- 1 

2 
0 
3 

1 
1 
1 

- 1 
2 
1 

0 
0 
0 

0 
- 1 

0 

1 
0 
3 

- 1 
1 
1 

0 
1 
2 

where a is the row block index (there are three blocks), ß is the row index in 
each block, and 7 is the column index in each block. 

If we choose a new basis in R , with vectors 

li(0,1,0); 12(1,0,-1); 4 ( 1 , 0 , - 2 ) , 

1. Obtain the components of the modular tensor T in the new basis. 
2. Determine the system of scalars S defined by the expression 

' 'o/Jo-

3. Idem in the new basis 
5(j, k) - t, lo/c 

4. Examine the tensor nature of the system S. 
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5. Idem for the system P defined by 

6. Idem for the system Q defined by 

q{a) t 
ao ß 

Solution: The matrices that will appear in the solution process are 

C - 1 hZ] = 

|[<:]; c^ 

0 1 0 " 
2 0 1 

- 1 0 - 1 

CXOi 

; C'^ 

0 1 
1 0 
0 - 1 

r ocK-i 

1 
0 

-2_ 
5 

"0 1 
1 0 
1 0 

\c\-

0 " 
- 1 
- 2 

= 1 ^ 0 

; \cf 1. 

1. Note that a = n'" = 3^ = 27. 

Using the "extension" formula (1.30) we have (T27)*: 

[ 1 - 1 1 0 2 0 - 1 1 3 | 2 0 - 1 0 0 1 3 0 1 | 1 0 0 1 - 1 1 1 0 2 ] . 

and according to Formula (4.36), we can write 

T^r)^ - {T27Y • [C-^ ^C^ C-^Y = {T27y • [{C-y 0 C 0 {C-y] 

= {T27Y ^ 

= [ 0 1 - 1 0 - 4 3 0 - 1 1 7 1 3 3 - 2 - 4 2 2 - 6 - 4 - 9 I - 1 - 3 2 2 0 - 2 3 5 - 7 ] . 

In addition, taking into account that it is a modular tensor, we have 

"0 2 - 1 " 
1 0 0 
0 1 - 1 

0 
0 1 r 
1 0 0 
0 - 1 - 2 

(8) 
"0 2 - 1 " 
1 0 0 
0 1 - 1 

Tit 
27 

rpt 
-^27 

[ 0 1 - 1 0 - 4 3 0 - 1 1 7 1 3 3 - 2 - 4 2 2 - 6 - 4 - 9 1 - 1 - 3 2 2 0 - 2 3 5 - 7 ] 

and using the "condensation" formula (1.32), we obtain the matrix repre
sentation of the tensor T, in the new basis 

r 0 1 - 1 
0 - 4 3 
0 - 1 1 7 
3 3 - 2 

- 4 2 2 
- 6 - 4 9 
- 1 - 3 2 

2 0 - 2 
3 5 - 7 

f =[t ioki 
ojoJ 
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2. Consider now the system S. Since [t^°ß1] is the first block of the tensor T 

we have 
" 1 - 1 1 

0 2 0 
-1 1 3 

61) 

, l o / c i 3. Similarly, since [t^°^] is the first block of r , we get 

S^[sij,k)] 
0 1 - 1 
0 - 4 3 
0 - 1 1 7 

(8.62) 

4. Considering the tensor nature of T, and developing its dummy index a 
according to the Einstein convention yields 

i ok 
-ojo t 

iß^aoj^^i o^oß ko 
^ j o ' 0 7 

and letting f = 1, we get 

,lofc | ^ | 3 . 1 o 7 l o 0/3 /CO | f7 |3 /CO o ^ , 2 0 7 l o . , 8 0 7 l o 
^ o / 3 o 7 o 2 ' ^ o / 3 o 7 o 3 

and taking into account (8.61) and (8.62), we finally obtain 

oß /col '|3 oß ko , 2 0 7 l o . , 3 0 7 l o 
5 ( i , ^ ) = 7 o l p i ^ ( A 7 ) S - o 7 o 7 j + 1 ^ 1 S - o 7 o 7 [ % . / 3 o / o 2 ' - ^ 0 / 5 0 / 0 3 ] 

(8.63) 
Expression (8.63) has two properties that prevent the system S from hav
ing a tensor character: 

a) The factor 7^° is a variable real number dependent on the change-of-

basis C performed in ^"'(IR). 
b) The second summand will not be null in general, unless one precisely 

selects a tensor such that t^^^ ~ ^oßo ~ ^' ^^^^ ^̂ ' having blocks (2) 

and (3) null. 
In summary, S does not have a tensor character. 

5. We examine the system P: 
a) 

r i - 1 1 
p = [i"°^] = 2 0 - 1 

loloJ h 0 0 

B.64) 

b) 

p ^ K i o ] 
0 1 - 1 
3 3 - 2 

-1 - 3 2 
B.65) 
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c) To analyze its tensor nature, we follow a process similar to the one in 
question 4. Developing the dummy index /?, the result is 

, i o k I/^I3J.CK07 io oß ko 
t . — \U\t o 7 C- 7 o j o I I o p o I ooi _7 o ' 0 7 

I I o l o ' O Q ; j o ' 0 7 ' i I O Z O ' O Q ; J O I O^ ' I I o S o ' o o ; j o ' 0 7 

which letting j = 1, yields 

iok -13,0:07 io ol ko i o ko f-- | ^ | ö , ao7 zo oiyco 1/713^^° ^ ,aoj o2 I ,Q;07 O3 

^o2o^lo ' ^oSo^lo 

and taking into account (8.64) and (8.65), we finally get 

p{i,k) o l 
icpp(a,7)7::7t ; + i c i ^ : : 7 ^ ; 

ao7 02 . ,Q;07 o3l 
^o3o^loJ • 

(8.66) 
The discussion is the same as Expression (8.63), and the result is the 
same, i.e., the system P does not have a tensor character, 

6. Next, we discuss the system Q. 
a) 

Q = b(«)] = [C;f ] = 

r , i o / 3 

,2o/3 
' '0/30 

^3oß 
L''o^o J 

1 + 2 + 3 
2 + 0 + 1 

l + ( - l ) + 2 I2J [q^\ 

b) 

Q=te(^)i = K : : ] 

~ , l o c c " 
occo 

,20a:; 
oa:o 

,3occ 
_ 0 x 0 _ 

= 
0 - 4 + 7 • 
3 + 2 + 9 

- 1 + 0 - 7 
= 

• 3 -

14 
- 8 

= 
\q'] e e 

c) We check if 

Since |C|^ = 1, we have 

QI = icrq^r 
I O 

oa' (8.67) 

e 
e 

bzm=c-
\q'] 

q^ 
q' 

0 1 
2 0 
1 0 

0" 
1 

- 1 

"6" 
3 
2 

= 
• 3 " 

14 
- 8 

which evidently coincides with that of (b), showing that, as could be 
expected from a contraction [t^'^f], the result has a tensor character. 
Consequently, Q as indicated by (8.67) is a modular contravariant 
tensor of order r = 1 and unknown weight; Section 8.5.4 solves the 
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question for all tensor contractions and states that the weight isw = 3^ 

i.e., the same of t^°^; so (8.67) must be rewritten as 

D 

8.7 Main modular tensors 

8.7.1 e systems, permutation systems or Levi-Civita tensor 
systems 

By means of these three different names we refer to a system of scalar com
ponents defined over a linear space y"'(]R), that in any basis satisfies the 
following formal properties for their components: 

1. e(a;i, 0^2,..., a^-,..., a^) = 0, if two or more indices are repeated. 
2. e(ai, 0^2,..., a^, . . . , an) = 1, if the index permutation is even. 
3. e(ai, 0^2,..., Q j , . . . , an) = —1, if the index permutation is odd. 

Each index aj takes values in the set In = {1, 2, • • • ,n — l ,n} with total 
independence, that guarantee a total of VRn,n = '^^ possibilities, that is, a 
system with n'̂  components. 

A total of n\ components will not be null (since it must have different ele
ments of Jyx), and from them, due to the equivalence relation in the definition, 
it will be Y with value 1 and ^ with value —1. 

The proposed definition was established by Ricci, though Professor Levi-
Civita popularized it in his publications. A set of important properties that 
we list has been obtained from the bibliography: 

1. For each value of n and each linear space y^(]R), that is, for each dimen
sion and each field (it could be extended to another linear spaces V'^{K))^ 
there exists a system e. 

2. The e systems are systems of n'^ scalar components, with totally anti
symmetric character. 

3. They are isotropic systems. 
4. If we make the determinant of order n a "less primitive" (deducted) entity, 

which is the reverse of what has happened historically, we obtain the 
relation 

i>ii iCKOi l o 2 o n o / \ 

\A\ = \a^ß\ = a o a r " o « 2 a^^j{ai,a2,...,an) 

= e{ai,a2,---,an)al°^-al°^ al°^ (8.68) 

and also 
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\ A\ | 0 / 3 i o l o 2 o n / \ 

= e ( a i , a2 , . . . , a n ) a j j • a^°J a j ^ ^ . (8.69) 

The justification comes obviously from the definition of the determinant. 
5. Returning to the paragraph "from the existing bibliography", the authors 

of the present book propose another property that allows these entities to 
be used in determinants by means of a simple function. Remembering the 
properties of the function y = sgn{x) (function "sign of x'\ over the real 
numbers), we have 

n—ln—j 

e(ai ,a2,"-,ö^n) = J J Y[ sgn[ai^j - aj], (8.70) 

which satisfies the conditions of the definition with e 7̂  0, and which it is 
very convenient for its computer implementation. 

Modular tensor character of e systems 

As has been established in Formulas (8.1) and (8.2), we know that 

C = K%C' = [cTJ and C-^ = [^J. Applying Formula (8.68) to 

the determinant \C~'^\ = 17*°|, we have 

l<̂  1 = l7oal = <^("l'"2,•••,a7^)7oalToa2•••'>'oa„• 

Multiplying both members by e(ii, ^2 , . . . , i„) and talcing into account that 
| C - i | = | q - i , yields 

e(ii, «2, . . . , i„) |C| ^ = e(ai, a 2 , . . . , a„) e(ii, 22, . . . , in)l\l^l\l^ • • • 7 ,1 o 2 o _ n o 
' O Q ; ^ 

If we take into account that when i\ — 1,22 = 2,---,fn = n it is 
e(zi, ^2 , . . . , Zn) = 1 and passing \C\ to the right-hand, we can write 

e(ii, 22, . . . , in) = |C'|e(ai, « 2 , . . . , ô n) I o ai ' o a2 ' o an 

Since the right-hand side is the expression of the change-of-basis of a 
modular tensor of weight 1, order n, totally contravariant species, isotropic 
and anti-symmetric, the result is 

O O ••• O I I O O ••• O / O CKl ' O Q:2 ' O CXri' ^ ' ' 

Now, we develop another determinant according to the formula corre
sponding to fixed rows 
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C t\ I ocKi / \ o a i oo;2 c 

, I = Ic^J = e ( a i a 2 - - - a „ ) c j ^c^^ •••c^ n o 

Multiplying both members by e(zi, 22,. • •, in) ^^^ taking into account that 
|C*| = |(7p = |C|, weget 

e(ii, 22,...,in)\C\ = e[aia2 . . . ô n) [e(ii,22, • • •,'i^n)c]^^cl'̂ o ''' ^n'^ol • 

If we take into account that when ii = 1,̂ 2 = 2 , . . . , i ^ = n it is 
e(zi, 22,. •. 5 ^n) = 1 and passing \C\~-^ to the right-hand side, we can write 

e(zi , i2, . . . , 2n) = 1̂ 1 e(ai, ^2, • • •, Q̂ n) 
O CKl O 0:2 O a-n 

C • C • • • • C 
Zl O Z2 O 2TI O 

Since the right-hand side is the expression of the change-of-basis of a 
modular tensor of weight —1, order n, totally covariant species, isotropic 
and anti-symmetric, we have 

e ° ° - ° =\C\-h'' ""• ° c ° ^ V ° " ^ . . - c ° ^ - . (8.72) 
^l^2^••^n ' ' aia2-"CXn i i o Z2 o z^ o v / 

As a conclusion, we can say that the systems e are modular tensors, simul
taneously contravariant of weight 1, and covariant of weight —1, depending 
on how the user wants to use them. They have a unique strict component 

(12-- -n) oo--- o ^ 
^ 00.--o = ^ (12- - -n ) ~ -̂ • 

They are also called the Levi-Civita tensor density (the tensor ^^^^Q[[[^Q) and 

the Levi-Civita tensor capacity (the tensor e j ^ ...a )-
It cannot be forgotten that the permutation systems or Levi-Civita tensor 

systems are entities of a tensor linear space, and thus its complete notation 
as such modular anti-symmetric tensors is, respectively 

8.7.2 Generalized Kronecker deltas: Definition 

We give the name "generalized Kronecker delta of order r (< n)" or simply 
"delta of order r" to a system of scalar components of order 2r, associated 
with or built over the linear space ^" ' (R) , with n'^'^ components, for any basis 
of y"'(IR), that satisfy the following formal properties: 

1. SV'V''..^'" = 0 if (a) the set of the r contravariant indices is different than 
the set of the r covariant indices, or (b) the set of the r contravariant 
indices is the same as the set of the r covariant indices, with repeated 
indices appearing in the mentioned sets. 

£- = 

£ = 

cxia2--- 0 an^ ^ ^ ^ _ 

0 0 ... 0 0 ^ 0 . 1 ^ g^a2 (g) 
aia2 0 •••an ^ ^ 

^ ^ a n 

• • ( 8 ) 6 ^ ' ' 
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2. öV'Z^'Z'^ = 1 if the set of the r contravariant indices is identical to the 
set of the r covariant indices, without repeated indices in the mentioned 
sets, and if their permutations are of the same parity. 

3. öV'Z^'"^'^ — —1 if the set of the r contravariant indices is identical to the 
P l P2 • • • Pr-

set of the r covariant indices, without repeated indices in the mentioned 
sets, if their permutations are of different parity, and r > 2. 

The deltas satisfy other properties such as: 

1. There exist deltas for each value of n, and for each value of r (r < n). 
There even exists the possibility of modifying the field of the linear space 
(V^iK)). 

2. As a consequence, the generalized Kronecker deltas of order r, are systems 
of n?'^ components with anti-symmetric character with respect to the set 
of contravariant indices and with respect to the set of covariant indices. 

3. The Kronecker deltas are isotropic systems. 
4. The classic Kronecker delta [S^°ß]^ a tensor of order 2, is the generalized 

Kronecker delta of order r = 1. 

Deltas of order r=n: relations with e systems 

We have the following relations: 

P l P o • • • / 3 r 7 O O • • • O P l P o • • • P - n ^ ^ 

2. 
ga,a2-ar. ^^aia2-ar. (8 .74) 

1 2 ••• n o o . . . o V / 

3. 
r 1 2 ••• n o o •-. o /Q ^r-x 

Prom these relations, the following consequences can be obtained. 
In Section 8.7.1 we have proven the modular tensor character of the e 

systems and in 8.5.3 we have established that the tensor product of modular 
tensors is another modular tensor. 

Consequently, Formula (8.73) establishes that the generalized delta of or
der r = n is a modular n-contravariant and n-covariant tensor of order 2n and 
zero weight, that is, it is a homogeneous mixed tensor and with anti-symmetry 
for each set of indices, which should be correctly notated as a tensor, i.e., for 
(8.73), we have 

^ßlß2-ß-n ~ ^ 0 O :• O ß^ß2-ßr,~^ O Q . . - O ^ ^ ßl ß2 ' - ßr. "^ ^ O O - . - O '^ßiß2-ßr. 

and for (8.74) and (8.75) 
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r a i » 2 •••CKn, _ _ rCKl CK2 • • • C K n O O - - - O Q ; i Q ! 2 - - - 0 ; „ 

1 2 ••• n o o ••• o 12---n o o ••• o 

o o 

^ßlß2-ßr. ^ ^ O O . . . o / 3 i / 3 2 - / 3 n ~ ^/^l /32 - / 3 n * 

However, it is common to present them with stacked indices, so, we will use 
this convention from now on. 

Based on relations (8.70) and (8.73) the following property can be justified: 

^T^$IJ: = e(ai, « 2 , . . . , a„)e(/3i, /32,. • •,/3„), (8.76) 

which strictly satisfies the formal conditions of the definition of a Kronecker 
delta, for (5^0. 

Deltas of order r=n: Tensor character 

Though we have already justified that the Kronecker deltas of order r = n 
are homogeneous mixed tensors, we present the proof in an analytical form. 

We start from the fact that the change-of-basis in V"'(R) produces, be
cause of (8.71), a change of modular tensor basis of the system e: 

O O • • • O I I O O • • • O ' O CKl ' O Q ; 2 O CK^ ' 

and because of (8.72): 

O O ••• O _ l ^ l - l O 0 . - - 0 O ^ i 0 ^ 2 ^ O /5n 

^jlJ2-jn ~ 1^1 ^ßlß2-ßr.^3l O ̂ 2 O "'^jr^ O ' 

Multiplying term by term, taking into account the property (8.73) and with 
| C | - | C | - \ - l , weget 

^^l^2•••^r^ _ TOiia2-oc^ ii o 12 o . . r̂̂  o o/3i o/^s _ o /3^ ^ « 7 7 ^ 

^hh-jn ~ ^ßiß2-ßr. /^oai /OQ;2 '^O a ^ S ' i o J2 o '-j^ o ' V^-' W 

which shows the homogeneous mixed tensor character of the Kronecker deltas 
of order r = n. 

Having proved the mixed tensor character of the generalized Kronecker 
deltas, we insist again that they are entities of a tensor linear space, thus 
its complete notation as such mixed homogeneous tensors, considering the 
notation 

r a i CK2 ••• CKr rCX.\Oi2 "'Oir O O ••• O 

^ ßlß2-ßr' = ^ O O . . . O ß^ß2-ßr 

IS 

^r = QZ--7/^^ ^ 6̂ 2 ̂  • • • ^ e^.^^' 0 ?^^ 0 • • • ^ e"^^ 

where a^, /3j € In] OL\ ̂  a2 ^^/^ - -- ̂  OLT and ß\ ̂  ß2 i^ • " i^ ßr with a total of 
rf ' rf — v?'^ components. 

In the particular case r — n^ the generalized Kronecker delta becomes the 
tensor product of the Levi-Civita tensors: 
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according to the relation (8.73) and those established in the final part of 
Section 5. 

Deltas of order r < n 

Expressions as a function of the deltas of order n 

1. Deltas of order inferior to n are obtained from the delta of order n, 

{SV'Z^[[[^'^) by contracting indices of different valency, as shown below: 

We contract the last two indices of SV-Z^"'Z'^'~^^'^, which guarantees the 

resulting tensor to be a mixed homogeneous tensor of order (n — 1): 

^ n \ r - a i 0:2 •••CKn—l CKn rCKi Q;2 '" • CKri—1 ^ 

^\ß^J^ßlß2-ßr.-lßn, " " ^ßlß2^••ßr^-10-n 

_ raia2---Oin-il I raia2--'an-i2 . I raia2---an-in 

~ ^ßl ß2 -ßn-1 1 " ^ ^ / 3 l /32 - / J n - l 2 "I ^ ^ / ? ! /32 - ßr.-l n ' 

(8.78) 

an expression with n summands in which each summand will be null if 

{a ; i , a2 , . . . a^ - i} = {/3i,^2, • • •/3n-i} 

without repeated indices. 
There exist n summands and (n — 1) indices that must be different (for 

the calculated components of the first member ^^^^'^'.['.^'^~^Q"" to be non-null) 

and the indices vary from 1 to n. 
There can exist only one summand for which the index On = ci E 

{ai ,a2 , - • • ,Q^n-i}- Whence 

P l P 2 " - P n - i a P l P 2 - " P n - l ^ ^ 

and from (8.78) and (8.79) we conclude 

''ßlß2-ßr. Contracting again the last two indices of different valency in ^^^^^'"^•>^ i 

yields 

raia2---an-20n-l _ raia2-'-an-2^ I caia2-'-Oin-22 I I raia2-"a-n-2n / o o-i \ 
^ßl ß2 -ßr.-2 Or^-l ~ ^ ßl ß2 - ^ . - 2 1 " ^ ^ ßl ß2 •••ßr.-2 2 "^ ^ ^ / ? ! /32 • • • / 3 . - 2 n V ^ - Ö i ; 
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and since there exist n summands and (n — 2) indices that must be different, 
now there can exist only two summands in which the index 9n-i = a^b E 
{ai,a2,-..,0^72-1}. Thus 

^ßlß2-ßr.-2a - ^ßlß2-ßr.-2b " ^ßlß2-ßr.-2' ^^'^^^ 

From (8.81) and (8.82) we obtain 

raia2---CXn-2an-l r) rOJl « 2 ' " aTx-2 

^ßlß2-ßr^-2 0Cr,-l ~ ^ ^ / ? ! yÖ2 - / 3 n - 2 

and substituting it into (8.80), we get 

ßl ß2---ßn-2(^n-lOin P l / 3 2 " - P n - 2 P l P 2 - " P r z - 2 ^ ^ 

The relations (8.80) and (8.83) perfectly declare the generation law: 

1. the second member coefficient is the factorial of the number Ä: of contrac
tions, 

2. the order of the second member tensor is {n — k)^ and 
3. the number of contracted indices in the left-hand side is the number of 

contractions. 

From all this, one concludes that after (n — r) contractions one has arrived 
at the relation 

which, substituted in the previous formulation leads to the final relation 

ßl ß2--- ßrCXr+l-"Oin-lOin ^ ' P l P 2 " - P r ' ^ ^ 

that is, 
^Oi\Oi2---(y-r -*- c0L\0i2'--0ir<y.r^\---CiLn-\O-n (Si 9i9,\ 

^ßiß2-ßr- ~ ( ^ _ ^ ) r / 3 i / 3 2 - / 3 . a , + i - a ^ _ i a ^ ' V^-öO; 

a formula that answers the question. 
Before finishing this part, we examine some interesting consequences of 

Formula (8.86). 
If /c is a natural number such that 1 < r < k < n and we let r ~ /c in 

(8.86), we get 

rOLiOL2---OCrCX.rJ^l---OCk _ _ _ J _ _ _ _ rOil 0 2 • • • »fc «fc + l ' •• « n / o o y \ 
^ ßlß2-ß.ßr+l-ßk ~ (ri_]Afßlß2-ßkOLk + l-OCr.' [Ö.Ö ( ) 

If we continue with the contractions in (8.87) from index k up to index r -h 1, 
we obtain 

rCKi Q!2 •••CKr ö;r-+l •••CKfc ^ rOil 0^2'•' O^r O^r+1 ' " <^n-l CX-n 

ßl ß2'-- ßrOir-^l-'-OLk / ' ^ _ j ^ ' ) ! ßl ß2 " ' ßr Oi^+l "• Oiri-1 CXn 
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and obtaining the last delta and substituting it into (8.86), we finally get 

(8.88) 

an expression that relates the delta of order r with another delta of order k 
greater than r but smaller than n, which is more general than (8.86). 

If in (8.86) we let r = 1, the classic Kronecker delta appears as a function 
of the generalized Kronecker delta of order n 

51' = raia20L3 •••Oin 

ßl (n—l)\ ßl<^2<^3---Otn' ^ 

2. The contracted deltas. If in (8.89) we contract all indices, we get 

^.89) 

and developing the first index, we obtain 

si+si+.-.+s: 
( n - l ) 

_ raiQ!2---an 
! aia2---an' 

^.90) 

Adding the deltas on the left-hand side, removing denominators and writing 
them in reverse order the result is 

i ! ^.91) ^a,a2-a: = (1 + 1 + 1 + ' ' * + 1 ) ( ^ - 1)1 = n • ( n - 1)1 = Ul. 

Finally, if we contract the indices on the left-hand member of (8.86), we get 

ai CX2 ••• OLr 

-*- rcx.i<y.2-

{n-r)\ " i"2-
^.92) 

and considering (8.91), (8.92) becomes 

r Q ; i Oi2 •••CKr 

CKi CX2 •••Ctr {n — r)! ' 
.93) 

Generalized Kronecker delta of order r as a function of the 
classical Kronecker deltas 

We start this topic by defining the system of determinants, zlr, of order r, 
that are functions of the classic Kronecker deltas: 

rCKi o C-Q;I O r-CKi o 
0 o /3i Ö o ^ 2 • • • Ö o ß , 

A,= 
rCK2 O ra2 O c-Oi2 O 

^ o ^ 1 ^ o /32 • * • ^ o /3^ 

^ O ^ 1 ^ O ^ 2 " • ^ O / ? , 

o^h.ßh ^ ^ = { l , - " , ^ } ; helr = { l , - - - , r } , 

B.94) 
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which can also be written by means of another determinant, D^, of order n, 
as 

\Ar I Q \ 
Ar=^Dn = \— + — L ( 8 . 9 5 ) 

I ^^ I ^n—r I 

where In~r is the unitary matrix of order (n — r). 
Next, we replace each one of the elements of the blocks I^-r and Q in D^, 

by selected classic Kronecker deltas, the values of which (1 and 0) coincide 
with the corresponding blocks 

Ar=^Dn 

rOix O r-Oii O 

^ 0 /3i ^ o /32 
c-a.2 o ra2 o 

^ O ^ 1 ^ 0 /32 ' 

rar O X^r O 
^ O ß^ ^ 0 / 3 2 

ra^+i o ra^+1 o 
^ O ß^ ^ O ß2 ' 
rQ:r+2 O rQ;r + 2 O 

^ o ^1 0 o /32 • 

r a n o r a ^ o 
^ o /3i ^ 0 /52 • 

rCKi o j rCKi o rc>;i ° A^^ ° 
^ o /3 , 1 ^ o /3,+i Ö o /3,+2 • " ^ o /3n 
cCt2 o 1 rö:2 o r-Oi2 o X*̂ ^ ° 

^ o /3 , M o /3,+i ^ o /3,+2 * " ^ o /3n 

^ o ^ , 1 ^ o /3,+ i ^ o ßr+2 ' " ^ o ß^ 

^ O ßr. \ 

' ^ o ßr \ 

' '' 1 ^n—r 

.96) 
where a^+i, a;^+2, • • •, ô n, /^r+i, /3r+2,..., /3n ^ ^ = {1, 2 , . . . , n}, and repre
sent indices that satisfy 

<^r+l,Ö^r+2,- •• ,<^n ^ { Q ; 1 , < ^ 2 , - •• , <^r}; / ^ r+ l , iör+2, • • -, ßn ^ { Ä , / 3 2 , - • . , / 3 r } -

Finally, taking into account that the determinant 

^ n -
ra;r-+2 o 
^ O ßr+1 

o ^ . . 

^ o /5.+2 

rQ!r-+2 O 
^ O /3,+2 

r. O /3r-4 

^ o ß^ 

S:Oir+2 O 

^ o /3n 

o /3n 

when developed by the Laplace method by all fixed columns, takes as its 
value the number of permutations of its rows (a^+i, ^̂ -+25 • • • 5 Q̂ n) by \In-r\-, 
the result is 

An-r = {n- T)\ \In-r\ = {n - r)!. (8.97) 

Note that the determinant An-r is such that for all permutations of its 
rows {ar+i,ö^r+2, • • • ^oin}: it takcs the value one (|/^_r|), so that using the 
Laplace formula, we get a sum of {n — r)\ ones. 

As a logical consequence, replacing r = 0 in (8.97), we obtain An = n\. 
Relation (8.97) can be written as 

l-'n—r| — 
Ji-ri 

(n 
.98) 

file:///In-r/-
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and substituting the determinant | /n-r | of Formula (8.98) into the correspond
ing block of (8.96), we get 

Dn 
{n — r)\ 

rCKl O rCXl O 

j-a2 o r-a2 o 

^ O ^ 1 ^ O /?2 

<5"r;,<5"; 1 o 

car+2 O rar+2 O 
^ O / 3 i ^ O /32 

rar, O .ar, O 
^ o /3i ^ o /32 

^ai o 

^ O ßr. 

ca2 o 

^ O ßr 

^" O ßr-

^ O ß^ 

^ O ßr 

O ßr 

rOL\ O r-a.1 O 

^ O / ? , + ! ^ O ßr+2 

ra2 O c:CX.2 O 

O ßr+1 O /3r+2 

rar O 

^ O /3r+2 

c -a r+1 O rCKr + l O 
^ O / 3 , + i ^ O /3 ,+ 2 
r a r + 2 O rQ^r+2 O 

O / 3 r + l O ßr+2 

r a i o 

rQ;2 o 

^ o / 3 , 

rCKr+l O 
^ o /?„ 
r a ; r + 2 o 
' o ^ „ 

o /3n 

^.99) 
in which the correlation of row and column indices is totally in accordance 
with its order. 

Next, using the Laplace formula we develop the determinant Dn of (8.99) 
fixing its columns and expressing its development as a function of the com
ponents of the Levi-Civita e system. Formulas (8.73), (8.74) and (8.75). This 
leads to 

Dn 
(n- • r ! 

Ci CI 
0 1 o 2 

0 1 o 2 

O l 0 2 

o n 

o n 
o o ••• o o 

ßlß2---ßrOLr+iar+2---Oin 

•^ aia2 ••• arar+1 ar+2'" ctn o o ••• o o o ••• o 
fj^—f\\ O O ••• O O O ••• O • ßiß2---ßrar + iar+2---Oin 

raia2--'arar+i •••Oin 
( ' ^ _ ^ M ßl ß2---ßrOir+l---Oin' ^ 

If we now take into account Formulas (8.86) and (8.95), we obtain 

.100) 

^ r J^n ^ßiß2--ßr (8.101) 

and finally, remembering (8.94), we conclude that 

r -a i CK2 • •ar 

•ßr ~ 

rai 0 

ra2 0 

^ o / 3 i 

. a , 0 

^ o / 3 i 

c a i 0 ^ 

^ 0 /32 

r a 2 0 

^ 0 / 3 2 

^ o / 3 2 • 

^ o / 3 r 

rar 0 

\ah,ßh &In = {1,2, . . . , n } ; 
\ / i e l ^ = { l , 2 , . . . , r } , 

which answers the question. 
.102) 
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Use of generalized Kronecker deltas in the anti-symmetric tensors 

The components of an anti-symmetric tensor of order r, with r < n^ estab
lished over the linear space ^" ' (R) , can be directly notated, as a function of 
the strict components, by a simple formulation: If the tensor is contravariant 

^ a , a 2 - a . _ .a^a2-ar Aß^ß2-ßr) .g^^Qgx 
0 0 - - - 0 {ßl ß2 ••• ßr) 0 0 - - 0 V / 

and if it is covariant 

t ° ° "•• ° = 5^^"^""'^^^hn R '"R V (8-104) 
a-i_a2---otr- a^a^-'-oir {ßiß2---ßr) ^ ^ 

8.7.3 Dual or polar tensors: Definition 

Dual or polar tensors are modular tensors the are associated only with given 
homogeneous anti-symmetric tensors. 

Consider the given covariant tensor Bß ß '.[[ß of order q where q < n^ be
cause otherwise, since it is totally anti-symmetric, would have all components 
null. We give the name "adjoint tensor" or "polar tensor" of the given tensor 
to the contravariant tensor: 

r^ßq + lßq + 2---ßn _ ^ ^ßl ß2 ' - ßn JD O O--- O r«1^P;^ 

^ o o ... o - ^ ^ o o ... o^ /3i^2- /3 , ' (.ö.iUÖj 

an expression that in reality is a contracted tensor product in its first q indices, 
of the Levi-Civita contravariant tensor of order n and the given tensor. 

Similarly, if the given tensor is A^^^^"[^^^ its "adjoint" or "polar" tensor 
is the covariant tensor 

^ o o ... o _ l ^ o o... o ^ a i a 2 - a p _ .g-^^gx 

Tensor character of polar systems 

In the previous definitions we have advanced, a priori, that the defined systems 
of scalars are tensors. In fact, in the covariant case, the explanation following 
Formula (8.105) is a proof of the tensor nature of the defined entity. 

However, we will show how these "polar" entities change basis, to clearly 
manifest their tensor character. 

If we perform a change-of-basis in y" ' (R) of matrix C, the polar con
travariant tensor changes as 

p.jq + ljq + 2-jn _ \n\Jjßq + lßq+2-ßri jg + l O ?Q + 2 O _ jr,0 fS 1 07') 

which shows it is a "tensor density of order (n — Q')", i.e., a modular tensor 
type. 



302 8 Pseudotensors; Modular, Relative or Weighted Tensors 

With respect to the polar covariant tensor, we have 

^p+l'^P+2•^•^n ' ' ap+iap-i-2---otn *p+i o '^p+2 o *n o ^ ^ 

In this case it is a "tensor capacity of order {n—py\ another type of modular 
tensor. 

Example 8.6 (Contraction of e systems). Remembering the two representa

tions of the e systems, ^^^^^'/..^^^ and e j ^ "'^^^ respectively, we wish to obtain 

the totally contracted product of such modular tensors: 

OtlOL'2---Oin O O ••• O 

o o ••• o CKi (y.2 •••Oin' 

Solution: After interpreting Formula (8.73), we obtain 

rCKi 0:2 •••o:«, a i Q;2 •••CKn -̂x o o ••• o (y.\Oi2"'Cx-n o o -•• o 

where the last product is that of the real numbers. 
Contracting all indices cxh with the corresponding /3/i, we obtain 

raia2---CXn OLlOL2"-Oin O O ••• O 

C)iXOi2"-OLri O O ••• O a.i(y.2---OCn 

and taking into account Formula (8.91), the result is 

aia2---OLn o o ••• o _ | 

O O ••• O CKi CK2 ••• CX-n ' ' 

which is an absolute tensor of zero order (a scalar invariant). D 

Example 8.7 (Tensors with simultaneous different species). Consider a con-

travariant tensor A = [<̂ oo] ^^ order r = 2, defined over the linear space 

y^ (R) , in the tensor basis associated with the basis {ca} of ¥"^(11), and we 

assume that l^l = \a^^\ > 0. We wish to analyze the possible tensor nature 

of the system S of scalar components defined by 

s{aßj) = ^ ^ ^ . (8.109) 

O O I 

Solution: Since A is the tensor of the given characteristics, according to the 
relation (4.34), we have 

im A t̂ £0 mo 

which in matrix form and taking determinants, becomes 

%':\\CnC\-' ^ J\ai^\ = JlaftWCr. (S.nO) 
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1. On the other hand, we can consider that e{aßj) = e^^^, so that from a 

tensor point of view, according to (8.39) it is 

Dividing term by term the (8.111) and (8.110), we have 

1^1 ooo io j o ko o o o 
I OCX. < oß ' C 

5ol \l\^Oo\ 

and operating and taking into account expression (8.109), we get 

s{ijk) = |C |2s(a /37)7: :7f ;7o; (8-112) 

which declares that the given system is a modular contravariant tensor of 
third order (r = 3), and weight w = 2. 

2. If we wish we can also consider that e{aß^) = e°'^° which from a tensor 

point of view, according to (8.40), leads to 

<;i = \c\-K;;<y/A:- («-ns) 
Dividing term by term the (8.113) and (8.110), we have 

ooo o o o 
ijk _ \C\ aß^ oa oß 07 

and operating and taking into account expression (8.109), we get 

s{ijk) = s{aßj)ciy/^cll (8.114) 

which declares that the given system also (simultaneously) is a homoge
neous covariant tensor of third order (r = 3). 

D 

Example 8.8 (Partial contractions of e systems). Consider the e system, de
fined over a linear space 1/^(]R). We wish to analyze the tensor nature of 
the system the components of which are defined by the doubly contracted 
expression 

e{a'y\) • e{ß'^X). 

Solution: For the contracted product to have a tensor nature we consider 
only two possibilities. 
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1. The first factor is a modular contravariant tensor and the second is a 
modular covariant tensor. Multiplying (8.71) and (8.72) adapted to this 
case, we get 

iki ^ o o o f\/-i\ cx'jX io ko io\ -.. A^-yi — i o o o o/3 o u ov 
OOO ^^ j mn U I o o o ' oa ' 0 7 'oXl ^-^"^ 11 -̂̂ 1 ß ßi^ jo ko £0 

and contracting we obtain 

o o i / \ 0 0 0 i o oß tcorrtc-on 0 0 0 oc^Af KO o/i,w to ov\ 0 0 0 
D^fco^^o ^jmn ~ ^ooo\io-^^ko)\ioX^to) ^ßiiv^^ 

ot^XrO pi, rov 0 0 0 io oß 
0 0 0 7 0 Ao ßjJiV 'OCX. jo' 

Operating the Kronecker deltas leads to 

o a JO 

iki _ 
0 0 0 ? '" ^ 

00 / OL^X o o o \ io oß / o 1-1 r \ 

k i - ( , ^ o o o - ^ / 3 7 A J 7 o a S o ' ^ ^ - ^ ^ ^ ) 

which declares that the proposed system is a homogeneous contra-covariant 
tensor of order r — 2. 

2. Since the first factor is a modular covariant tensor and the second is a 
modular contravariant tensor, by a similar process we obtain 

ooo jkt / ooo ß^X 
i k i ooo I Oi^X o o o ) C.lil^ (8-116) 

which shows that the proposed system also (simultaneously) is a homoge
neous cova-contravariant tensor of order (r = 2). 

Example 8.9 (Total contractions of e systems). Let c^^ be the elements of a 

square regular matrix of change-of-basis in y^(]R). Obtain the scalar resulting 
from the multiple contraction 

o o o i j k o a oß 0 7 
6 €. C C C 

aßj 000 io jo ko 
I o ni 
' m o I 

^.117) 

Solution: Taking into account (8.72), for a modular tensor of third order, 
we get 

ooo -•- o o o oa oß O'Y 
6 = 6 C C C 

'i'jk I o n i 0^/57 i° Jo ko 

and substituting it into (8.117) we obtain 

1 i i k t -*- o o o o a o / ? o ' 7 i ink ooo 

e e a c c Cj \ = e - e • .,. 
ooo I , o ni CKP7 *o JO ko I ooo ijk 
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Taking into account the Example 8.6, and that the linear space is y^ (R) 
(n = 3), we get 

p = 3! = 6; homogeneous tensor of order zero (scalar invariant). 

Example 8.10 (Tensor products of e systems). Consider a system of scalars 5, 

with components s{ijkimn) = e^^^ • e^^°, where the e systems are defined 

over the linear space y^(]R). 

1. Give all different values of the components of 5. 
2. Discuss the tensor nature of the system S. 

Solution: 

1. According to Formula (8.73), we know that 

ijk o o o rz j ' /c 
ooo imn £mn 

and then, because of the generalized deltas of order r = 3 properties, the 
possible values are: 

a) If it has repeated indices in contravariant or covariant positions, as in 

s(122123) = sill = 0 or 5(123111) = SlU = 0, the value is zero. 
b) If the contravariant indices have a permutation with parity identical to 

that for the covariant indices (non-repeated indices), as in s(213213) = 

^213 = 1 01" 5(123312) = ^3^2 — I5 ^^^ value is one. 
c) If the non-repeated indices in each valency, have permutations of dif

ferent parity, as in 5(213123) = ö-^^s — ~^ or 5(312213) = (̂ 213 — ~^^ 
the value is minus one. 

2. Since the tensor character of the generalized deltas has been established 
in Formula (8.77), the system s{ijMmn) = Klo^imn ^^ classified as a 
tricontra-tricovariant isotropic homogeneous tensor of sixth order [r = 6) 
with a = n'^ = 3^ = 729 components. 

• 

Example 8.11 (Relation between the e systems and the alternated multilinear 
forms). Consider the linear space "total product" (xy" '(I l))^, defined over 
the linear space y"'(]R), the vectors of which are vector triplets of V^CR), so 
that it is not a "tensor product". 

Consider also a trilinear mapping: 

F : F^ (R) X V'^(R) x F^( I l ) -^ B 

that applies the mentioned "total space" in the field of real numbers. They 
are called "trilinear forms". 
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Assuming that the hnear space ^"'(11) is referred to the basis {e^} and 
given three vectors V^W^Z G y^(]R) by its matrix representations in the 
given basis 

V=\\ea\\X; W = \Y: Z = 

1. Obtain the general expression of this mapping, as a function of the con-
travariant components of the triplet vectors. 

2. Show that the coefficients of the previous expressions are in reality the 
components of a tensor F , the nature of which is to be determined. 

3. Show how a change-of-basis ||e«|| = He'allC in ^"-(11), changes the tensor 
F (the trilinear form). 

4. Assuming that n = 3 and that the form be anti-symmetric for each pair 
of vectors, study the final expression of the function in question 1. 

Solution: 

1. By definition, the form associates with each vector triplet a given scalar 
/? G H . By convention, we shall distinguish with a special notation the 
scalars that are images of three basic vectors, as 

F{ea,ep,e^) = fiy- / ° ^ ° G R; Va,/?,7 G In { 1 , 2 , . . . , n } . (8.118) 

As is well known 

X 

are data, and in tensor notation V 
since F is trilinear, we have 

r^'i 
x^ 

. x " . 

; Y = 

[y'l 
y' 

-2/"-

; z = 
[z^l 

z^ 

_^n _ 

•^ r^ ^n w 
/ 3 - ^ z^e^^ and 

^ \rr'^nß ^^ p = F ( y , W, Z) = F « e , , y^e>, zle^) = F(e„, Sß, e^)x1y1z 

and taking into account (8.118), we get 

p = F{V,Wj) = fli;x'lylzl a , /? ,7E/ . . (8.119) 

The Einstein convention holds in expression (8.119), that is, a,/3,7 are 
dummy contraction indices. 
The form F is given by the collection of the n^ coefficients / ° ^ ° , which 
are data, assuming that the dual linear space is its reciprocal basis. 

2. The simple fact of giving adequate notation to the intervening enti
ties, allows us to discover that Equation (8.119) is no more than a to
tal contraction (since the resulting tensor p is a scalar invariant) of 
the tensor product of a covariant homogeneous tensor of third order 

F = r 
^ OL 

^^ ^ by three contravariant coordinate tensors of 

first order (vectors) (â ê* ,̂ yfe}^, z^Sy). 
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Remark 8.3. It is very important that the reader understands how simply 
the tensor algebra includes all types of homomorphisms of spaces into 
another, linear or "multilinear", together with the world of "forms" of 
linear spaces of all kinds in its field, with the simple use of the tensor 
product concept and contractions (total or partial). 
One can still find many authors of tensor books who use the terms "map
pings", "quotient-space", "forms", etc. continuously in his/her explana
tions with the help of "functional diagrams", endowing the chapters with 
a complexity that is not easy to understand for the uninitiated, when in 
reality all can be expressed by means of contravariant (vectors)-covariant 
(forms) contractions of the tensor (products or not) indices using the pow
erful Einstein-Kronecker convention. D 

3. It is known that the vectors change basis by means of the tensor expres
sions 

i a. i o ^ j ß J '^. k 'J ko 

and the trilinear form changes by means of the tensor expression 

Next, we see that the trilinear forms are tensors. If we execute its tensor 
product, we get 

and if we proceed to its contraction, we obtain 

. 0 0 0 (ßOi l \ / . o j m\ (xok p\ _ . 0 o o ( oa i o\ X ( o ß j o \ a (r''^^^°)z'' 
J ijk y^io-^oj ymoy o ) [^po^oj —Jaß-r\^ioloXj^oy^jolofijyoy-koIo-K)^o 

and operating we finally get 

J ijk-^oyo^o — J a/57 v'^oA'^oy [^ofj,yoj [^OTT^OJ -> 

that is, 
/.ooo i j k / . ooo a ß 7 

which shows that the form is always F{V,W^Z) — p, ignoring the refer
ence systems (bases) and the "entities representations". 
In other words, the "trilinear forms" have tensor character. 

4. As in this case n = 3, there is no more than a strict basic component, 
different from zero, that is i^(ei, 62, 63). 
Thus, because of Formula (8.104), for r = 3 and [oti^a2^o-z) = (123), the 
result is 

a/37 = ^ (^« ' ^ß^ ^7) = ^aß^F{ei,e2, es) = F(ei , es, e3)e^^^, 
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with a,ß,j e Is = {1,2,3} and ^(61,62,63) G R . 
As a consequence, we obtain 

The last factor is the development of the determinant \XYZ\. Then, we 
have 

p = F{V, W, Z) = |XyZ |F(e i , 62,63), 

D 

Example 8.12 (Contractions of Kronecker deltas of order r). In the mathe
matical developments of some physical theories, contracted expressions of the 
generalized Kronecker deltas of order k {k < n), built over the linear space 
y^(]R) are used. For the case /c = 5, we wish to know the tensor expressions 
of the contractions in this Kronecker delta of: 

1. Its five indices, as a function of the generalized delta of order 0. 
2. Its four last indices, as a function of the generalized delta of order 1. 
3. Its three last indices, as a function of the generalized delta of order 2. 
4. Its two last indices, as a function of the generalized delta of order 3. 
5. Its last index, as a function of the generalized delta of order 4. 

Solution: Starting from Formula (8.88), for r < /c < n, we have 

[n 1^)' ^aia2---o^r'OCr+i---Oik 

{n-r)\ ^ 1 ^ 2 

1. Letting r = 0 and /c = 5, we obtain 

• ßrOtr+l •••Oik' 
1121) 

1 
( n - 5 ) ! 
[^ _ Q\ | OtiOL2a3 0i4.OLz 

2. Letting r = 1 and /c = 5, we obtain 

n\ 

( n - 5 ) ! 
rCKi « 2 CK3 CK4 CKS 

( n - 1 ) ! 

3. Letting r = 2 and A: = 5, we obtain 

]^ ßlOt2 0t3 0iAOtZ /3 i a 2 CK3 0:4 CK5 

rCKi a ! 2 a ; 3 Q ; 4 Q ; 5 _ 

a : i Q ! 2 0 ! 3 a : 4 a 5 ~ (^_^\\' 

n - l ) ! , 

ra ! ia2 
^/Öi/32 

[71 ö j . -Q,^ Q,2 0;3 a 4 a 5 

( n — 2 ) ! /^i/^2 ö;3 ĉ 4 0:5 

4. Letting r = 3 and ^ = 5, we obtain 

r O l i 0:2 CK3 Q;4Q;5 

/ 3 i ß2 OiS Ot-A Otz 

( n - 5 ) ! 
( -0 :1020 :30 :405 ( - 0 1 0 2 0 3 0 4 0 5 /3liÖ2/53 ( n - 3 ) ! I /3i/32/Ö3 0:4 0:5 /5l ^2 /53 04 05 

n • 5) I " A 

2)! 
r / 3 i / 3 2 -5)! 

^ ^ j - (-010203 
I^/3i/32yÖ3-5)! 
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5. Letting r = A and /c = 5, we obtain 

( n - 5 ) ! [U 4 j . Q , ^ Q , 2 0,30,4 

' ßlß2ß3ßA f^_^\r ßlß2ß3ß A OC5 ~" "" ßlß2ß3ß40i^ (^^ ^ ^y/ßl ß2 ßs ß^' 

D 

Example 8.13 (Systems of determinants with Kronecker deltas). Consider two 
systems of scalar components, Si and 52, built over a certain y^( I l ) : 

5i(a/?7) 

lo 
oa 
2o 
OQ; 

3o 
OQ: 

r-1 O 

r2o 

<-3o 

r-l 0 

07 

^ 2 0 
07 

^ 3 0 
07 

and 52(0 /̂37) = 
K\ 
C 
€1 

rao 

"o2 

0 2 

0 c) 

o3 

^11 
0 0 

where 6^°o are the components of the classic Kronecker delta tensor, over 
y3(R) . 

We wish to determine the tensor nature of the systems Si and ^2. 

Solution: Study of the system Si. Developing the determinant si{aßj) by 
the "column" elements, and endowing the products with a sign by means of 
an e system, we have 

and contracting, we get 

which shows that the determinants of S are an expression of the generalized 
Kronecker delta of order 3, a modular covariant tensor of weight —1. 

Study of the system 52- Proceeding in a similar form, i.e., developing by 
the row elements, we get 

S2iaßj)S''°.ö^'.SZleii 
^\ r^ I / 01 07 o / c o o 

k 
0 0 

and contracting, we obtain 

52(^^7) = e 
caß^ 
0 0 0 ' 

which shows that the determinants of ^2, are an expression of the generalized 
Kronecker delta of order 3, a modular contravariant tensor of weight 1. D 

Example 8.I4 (Contractions of generalized Kronecker deltas with e systems). 
Assuming that the tensors are built over ^" ' (R) , prove the formula 

rCKl 0:2 •••CKr O O ••• O O O ••• O 

^ßlß2--ßr'^aia2-Ctr.ßr+lßr-+2-ßr. ^ßlß2-ßr^ (8.122) 

Solution: Ignoring repeated ß indices, for which the equality is trivial, be
cause it is null on both sides, we have: 
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1. The indices /3i, /32, • • •, ßr^ßr+i^ - • - ißn sire all different and fixed, that is, 
a fixed permutation of /^ = {1 ,2 , . . . , n}. 

2. The indices ai,a25 • • • 5<̂ r satisfy the set equality {a-i^a2^- -. ,Oir} = 

{ßi,ß2->'' • -ißr}^ because otherwise, the ^^^^^""^"^ would be null, which 

would make impossible (8.122). 
This second constraint guarantees that there exist only r! possible permu
tations for the set {ai , 0̂ 25 • • •, < r̂} of delta superindices, and then, since 
(8.122) is a contraction of dummy indices {ai, 0̂ 2, • • • 5 06r}\ the develop
ment of the left-hand side of (8.122) will have r! summands; in r!/2 of 
them, the generalized delta will take the value +1 , and in the other half, 
the value —1, due to the parity of the index permutations. All this leads 
to 

^ßlß2•••ßr^ala2•••ar^ßr+lßr+2••'ßr^ ~ '2 ^^ ^ ^ ßl ß2 - ßr ßr+1 ßr-+2 - ' ßr. 

' • / ^ s / O O ••• 

D 

"^2*^ ^ H ^ßlß2-ßr^ßr-+lßr- + 2-ß. 

'^'^ßlß2-ßr.' 

8.8 Exercises 

8.1. Solve the following questions: 

1. Consider the two tensors U^W E {^V^) (R), Discuss the tensor nature 
of the system of scalars represented by the determinant of its secular 
equation, where A G H is 

0 0 > 0 0 

aß aß 

2. The same question, but with U,W e {^Vf (H). 

8.2. Solve the following questions: 

1. As a consequence of the results obtained in Example 8.4 (point 5), we 
propose the following. Let U{1) be a system of scalars the components of 
which are defined and notated as 

u{l){aß) = Adjoint of t° °, 

where T — t^^e^"^ (g) e*̂ ^ is a data tensor. Similarly, let 1/(2) be another 
system of scalars with components 

u{2){aß) = Adjoint of u{l){aß). 

and so on. 
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a) Discuss the nature of the system U{k)^ A; € IN. 
b) Discuss the nature of the determinant system \u{k){aß)\. 

2. Exactly the same questions, but starting from the data tensor T — t^^Ca^ 

8.3. Consider two tensors built over the linear space y^(I l ) in the basis {6^}: 

(a) The homogeneous tensor U € (0^^) (R), of matrix representation 

'<1] = - O O-l 

"1 0 
1 2 
2 2 

- 1 " 
1 
3 

and 
(b) the modular tensor W eV^ ®V^ <^ V^{B.) of weight w = 2 and matrix 

representation 
1 - 1 2 
2 6 0 
1 1 3 

O Xßl 
'J \ 
70 oJ 

1 1 - 1 
0 5 2 
2 3 1 

1 - 1 4 
2 3 5 
6 1 4. 

Obtain the matrix representation of the tensor P , the contracted (with 
respect to their first indices), product of U and the tensor W in the basis 
{ea}, i.e., 

IP' 
/3A/X1 
o o oJ c {U0W). 

2. Study the tensor nature of the system P. 
3. We perform a change-of-basis {Si} in V^(Il) that diagonalizes the tensor 

U. Give the matrix U — [w^̂ ] with the characteristic values in increasing 
order, and give also the matrix C of change-of-basis that leads to this 
objective. 

4. Give the new representation of the tensor P in the basis {e^}. 

8.4. We represent with the notation eiptß^) and £{Xfiu) the components of 
the Levi-Civita system e, to avoid indicating its contravariant or covariant 
species. 

1. Study the system Si = C(7, A) {e{aßj) <S> £{Xßu)) a contracted product of 
the indices 7 and A, in all possible cases. 

2. Express, as a function of the Kronecker deltas, all cases in which the 
system Si is of a tensor nature. 
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3. Study the system ^2 — C {ß, fi\^^iy) {e{aßj) ^ e{Xßiy)) a doubly con
tracted product, expressing the tensor cases also by means of the Kro-
necker deltas. 

8.5. Consider the tensor T G V^ ^ V^ <S) V^(R,) built over the linear space 
V'^(IR) referred to the basis {e^}, represented by the matrix 

°/^7l _ 
Q: o oJ 

r 0 - 2 41 
2 0 - 6 

- 4 6 0 

0 - 6 4 
6 0 - 2 

- 4 2 0 

0 - 4 2 
4 0 - 6 

- 2 6 0 

where a is the block row, ß is the row of each block, and 7 is the column of 
each block. 

1. Obtain all contractions of T: 

ß A = C\ '^]T- B C r ) r ; L = C{ßn)T, 

discussing its possible tensor nature. 
2. We define the system of scalars P and Q by contraction of the tensors A 

and B with the Levi-Civita system e 

p{Xfi) = alelll; g(A/i) - 6^e^°° Xfj,' 

Study the tensor nature of the system Q. 
3. a) Obtain the components of P. 

b) Obtain the components of Q. 
4. Study the symmetry or anti-symmetry of P and Q. 



Part III 

Exterior Algebras 
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Exterior Algebras: 
Totally Anti-symmetric Homogeneous Tensor 
Algebras 

9.1 Introduction and Definitions 

In this chapter the exterior product of vectors is introduced; first, the cases 
of two and three vectors, and then the general case with all its properties. 

Due to the intrinsic anti-symmetry of this product, the problem of strict 
components is also analyzed. 

Next, the axiomatic system of exterior algebras and the problem of the 
non-associativity of the exterior product of vectors and the need for a new 
associative exterior product is discussed. 

Finally, dual exterior algebras over V^{K) spaces and other problems are 
studied. 

To perceive as familiar and justified the formulas and the axioms to be 
introduced in creating these algebras, it is convenient for the reader to reread 
Sections 7.4.1 and 7.4.3, before commencing this chapter. 

First we insist that the algebraic frame in which the algebras are to be 
inserted is a homogeneous tensor space of order r contravariant and anti
symmetric, ((8)F"')5^(i^), built over linear space V'^{K). We shall create a new 
composition law to be called the "exterior product of vectors", that will be 
defined as a function of a linear combination of decomposable tensors in the 
given tensor space. Having established the intrinsic definition we shall pass to 
its representation in terms of some subsets of basic vectors of the tensor space 
grouped by strict components. Finally, we shall define a special basis for the 
generated subspace. 

9.1.1 Exterior product of two vectors 

Definition 9.1 (Exterior product). Given two vectors u^v £ V'^{K), we 
give the name "exterior product" of the vectors, notated u Av, to the tensor 
in{V''^V'')h{K): 

uAv = ü^v — v^Ü. (9.1) 
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We immediately see tha t 

üAü = Ü<S)'u — u^ü = 0 

and 

vAÜ—v<S)U~u'S)V = —{Ü'^v — v^ü) = —Ü A v^ (9.2) 

which proves its intrinsic anti-symmetric nature, because of its definition. 
If the linear space V'^{K) is referred to a certain basis {e^}^ then, the 

tensor space ((8)F^)^(i^) is referred to its basis {e^ 0 Sß} where a^ ß E In = 
{1, 2 , . . . , n } , then, for the tensor u Av, we have 

UAV = (uya) A {vt^ß) 

= « 4 ) 0 (^f e^) - {v%) (8) « e ^ , ) 

= u^vlCoc 0 6/3 - v'^u^ep (8) ea 

= ^o^ f (^c (8 6/5 - 6/3 (g) Ca) 

^uy%Aeß; a^ß, (9.3) 

because 6a A 6)3 = eĉ  (g) e^ — e/3 0 ec .̂ 
Expression (9.3) reveals the relation 

( n ^ 4 ) A (vf 6/3) = uy^^ea A 6/3, a 7̂  /?, (9.4) 

which is the bilinear character of the operator "A", i.e., linear for the sum 
and the scalar-vector product of the space V'^{K)^ to the left and the right 
of the operator "A". 

Expression (9.4) can be grouped into two summands and be wri t ten as 

Ü A V = u'^v^Sa A Cß + u^v'^eß A Ca] a.ßeln; a<ß 

and if we take into account tha t in addition CQ, ACQ, — 0, from the property 
(9.2), the result is 

ÄAi ; = ( ^ ^ v f - w f v ^ ) e c Ae/3; a,ßeln\ a<ß 

or 
I uZ V 

ÜAv=^ Sa A Cß] a,ße.In and a < ß. (9.5) 

The number of determinant-components of (9.5) is tha t of the number of 
possibilities of choosing from n indices, two by two and without repetit ion or 
permutat ions, tha t is, there exist (2) strict components of the possible n^. 
Some authors call üAv d. "bivector" or "2-vector". 
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Definition 9.2 (Exterior product of three vectors). Given three vectors 
u^v^w e V'^{K), we give the name '^exterior product^^ of the vectors, notated 
Ü Av Aw, to the tensor of {^V^)l^{K) 

uAvAw — ü®v^iS-^v^w®Ü-{-w®Ü®v — v®u®w — w (9-6) 

It is easy to verify the intrinsic anti-symmetry of Expression (9.6), following 
an analogous exposition to that in Formula (9.2): Ü Av Aw — v Aw AÜ — 
w AÜ Av = —V Au Aw^ etc. 

If the linear space V'^{K) is referred to a basis {ca} then, as before we 
can establish that 

üAvAw = (u'^ea) A {v^^eß) A {wlcj) 

a ß J = u^v^^wl (ca O 60 (g) Sy + 6/5 (g) Sy (g) êQ, + Sy (8) e^ 

— ep <Si Ca <S> e^ — Sy (g) 6/5 (g) eoK — êQ, (g) e"̂  (g) ep) 

= uy^^wle^ A e^ A ey, a , /3,7 € 7^; a 7̂  /? 7̂  7. 

The expression 

{u'^Ca) A {v^Cß) A {w^e^) =- uy^^w^Sc, A e/5 A Sy 

(9.7) 

(9.^ 

declares the "trilinear" character of this mapping, of the "total" linear space 
(xy^)2(i^) in the tensor space {^V^f^iK). 

Grouping the summands of (9.8) into partial sums in such a way that for 
all of them a < /? < 7, it is possible to conclude that they can be grouped as 

Ü Av Aw = u^^w^e^ A e^ A e^-^-u^'^w^ep A Sy A ea^u^v^w^ej A e^ Acß 

+'^f^o^o^/? A e^ A e:y+w^?;fw;^£y A e/3 A e^ + n^^^tüfe« A Sy A e^ 

with a, yS, 7 G In and a < /? < 7. 
Because of the anti-symmetry of the exterior product, the previous expres

sion can be written as 

u A v A w w' -f- uvlw^ + u'vw^' — wvw' — u'vw^ — uv'w\l 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

f a ß 
\ o o 

eo^ Aeß A e*̂  

with a, ^, 7 G In and a < /? < 7, and also as 

) 
(9.9) 

u A V A w 

u^ v^ w ̂  

u^ v^ w \^ Sa Aeß Ae^, a < ß <j. (9.10) 
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The number of determinant-components of (9.10) evidently coincides with 
the existing (^) possibilities of formulating the row indices, extracted from 
the set In three by three. 

We proceed to change the notation of Formula (9.6), in such way that it 
permits a later easy generalization of the intrinsic expression. 

Setting u = Vi, v = V2 and t? = Ü3, the new (9.6) can be written in terms 
of the Kronecker deltas, as 

Similarly, we have 

e/3i Ae/32 A6^3 == ^^ß^ ^2^3/«I ^ ĉ.2 ̂ 6^3; ai.ß^ e In, i e h; /3i < /32 < ßs, 
(9.12) 

where the term in parentheses (/?i/?2/S3) means "increasing order". It is a very 
interesting relation, that expresses the exterior bases, in terms of subsets of 
the tensor anti-symmetric basis of {^V'^)f^{K)^ as was proposed in the final 
part of Section 9.1. 

If we substitute (9.12) into (9.10) the exterior product will appear with 
the new notation as 

-? 1 A 'Ö2 A -03 

X ßi o ^ßl ° 

X 

X 

X 

X 

X 

o 1 
./52 0 

o 1 

o 1 

o 1 
./32 0 

o 1 

ßso o 1 

^ o 2 

•̂  o 2 

o 2 

ßio 

o 2 

•̂  o 2 

•̂  o 2 

X 

X 

/3io 
^ o 3 

•̂  o 3 

•̂  o 3 

^ o 3 
.yÖ2 0 

o 3 

•̂  o 3 

^ßi A 6/32 A ( 

X 
r Q!iO;20!3 

^{ßiß2ßr hfoii ^a2 e„3; ßi <ß2<ßz 

(9.13) 

that is, expressed as a contravariant anti-symmetric "decomposable" (ten
sor product of vectors) tensor of third order. Some authors call this exterior 
product a "trivector" or "3-vector". 

9.1.3 Strict components of exterior vectors. Multivectors 

As it can be seen in Formula (9.5), the exterior product wA-u can be expressed 
by means of (2) components in an exterior basis Cĉ  A e/3, in which a < /3, and 
also by means of (9.12), that is, 

u /\v ß ß 
{ca ®eß-eß (8)60;), 
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with n^ components, of which {n? — 2\Q) = n) are null, in which we have 
only the constraint a 7̂  /?, as in any contravariant anti-symmetric tensor of 
order r = 2. 

Analogously, in Formula (9.10), the exterior product Ü Av Aw can be 
expressed by means of (3) components with the constraint a < /? < 7, and 
also in (9.13) with n^ components, of which 

n 3 - 3 ! , 3 n(3n - 2) 

are null, in which the constraint is only ai ^ a2 y^ as. 
When the exterior product is expressed in the first form (9.5) and (9.10), 

we say that its components are "strict" and when it is expressed in the second 
mode, as an anti-symmetric tensor (9.3) and (9.7), we say that its components 
are "normal" or "ordinary". 

9.2 Exterior product of r vectors: Decomposable 
multivectors 

Generalizing (9.11) we adopt the following definition. 

Definition 9.3 (Exterior product of r vectors). We define the exterior 
product ofr vectors, notatedviAv2A- • -Aiv, with Vi G V'^{K), by the intrinsic 
expression 

vi AV2 A--' Avr = S'^^'^^][\'^^Va^ O ^^2 ^ ' ' ' ^ ^cxrl 1 < 2 < • • • < r; 

ai e In; i e Ir', cxxi^a^i^ -" ^ otr (9.14) 

Remark 9.1. It is possible that the reader will be surprised by the explicit 
appearance in (9.14) of the conditions 1 < 2 < • • • < r, which can ap
pear as superfluous, because it is evident. However, we want to emphasize 
its importance. If, for example, in a certain case the vectors were to be 
{̂ 305'̂ 175'̂ 435'̂ 12}7 Expression (9.14) would force them to be written on the 
left-hand side in the following ordered way: 

^12 A vn A T̂so A U43 = ^12 173043' ^̂ *̂ 

From it one can proceed to calculate the product in the desired order. D 

Formula (9.14) says that the exterior product iJi A'?2 A• • • Ai^ is the sum of 
the tensor products of all permutations of the r vectors, where each product 
has the sign + or — depending on the corresponding permutation being of 
even or odd, with respect to the fundamental permutation. 

Evidently, if the linear space V'^{K) is referred to a basis {ê Q.}, we can 
generalize (9.12) giving the multivector Sß^ A ep^ A • • • A ep^ expressed in the 
basis of the anti-symmetric tensor space {<^V'^)'^{K): 
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a,a2-a. ^ - ^ - - ^ • (9.15) e/3i A 6/52 A • • • A ^ßr hßlßl-ßrf'^^ •^OLI ^Otr 5 

Oiußö e ^n; i,3 ^Ir\ a i ^ a 2 ^ '" ^a-r', ßl < ß2 < '-' < ßr-

As a consequence of (9.4) and (9.8) the multilinear character of the ex
terior product has been established, so that if we assume that the vectors 
^i5 ^ 5 • • • 7 V̂  in terms of their components are 

Y ^ ^Oil^ . -rf _ «2 - . . . . . y _ Ü^r-

the multilinearity of the product leads to 

Vi A ^2 A • • • A K = (x"„^°e„J A (a;"„^°ec.J A • • • A ( x ^ ^ - . J 

= ( ^ ? i ^ ? 2 • • • < ' ' r )ea i A e„, A • • • A e«,. (9.16) 

If in the diverse permutations of the set of indices {ai, 0^2,..., « r} , we denote 
by {/3i,/325 ßr} that having such indices totally ordered, that is 

{a i , a2 , . . . , a , . } = {^i,/32,... ,/3^}; ßi < ß2 < - • • < ßr, 

because of the anti-symmetry of the exterior product, shown in (9.2) and (9.6), 
we have 

e^, A e^2 A • • • A 4 . = 5^i\iV'--t^^ß^ A ê ^ A • • • A e>,, (9.17) 

which, substituted into (9.16), leads to 

V,^v,^...^Vr = {5^t\t-t^<'>T2• ••<^:)«A Ae^, A• • • Ae,. . 
(9.18) 

The first factor of the right-hand side is, by definition, the development by 
fixed columns of the determinant 

Aj- — |-^rl ^ r 2 * * * -^rr| — 

^/3io Ö10 

_ ^{ßlß2"-ßr-) OilO a20 
•••Oir. -^ O 1 - ^ O 2 • 

= 5^ 

^ o 1 • •̂  ^ o 
o 2 

^!^2 
o 2 

ßrO 
o 2 

o r 
./32 0 

JrO 

(9.19) 

If the column matrices X i , X 2 , . . . ,X^ E î "'̂ ^^ represent the data of the 
vectors 14, T̂ 2, • • •, K-, the column matrices Xri^Xr2-, • • •, X^r ^ iT'̂ ^̂ ^ rep
resent submatrices, respectively, of the data matrices, precisely of the rows 
ßi^ß2^... ,ßr (remember their ordered character). Thus, from the data ma
trices Xi we can extract exactly (^) different determinants Ar-

After these clarifications, we sulDstitute (9.19) into (9.18) and finally get 
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Vl^V2^^" ^Vr = \Xrl Xr2 ' ' • Xrr | e}^, A e^^ A • • • A Cß^. (9 .20) 

Formula (9.20) can be interpreted as follows: it is a sum of (^) summands; 
each of them carries a real coefficient (resulting from the value of Ar) and 
the corresponding (^) exterior products of the basic vectors of F^(IR), taken 
from r in r and totally ordered. 

When selecting other vectors W î, W2, • • •, W^ G V'^{K)^ and executing 
their exterior product Wi A W2 A • • • A Wr we obtain other coefficients for the 
same (^) exterior products of the set 

This leads us to think, for the first time, that we could sum linear com
binations of several exterior products that would produce the appearance of 
terms with the set BQ = {ep^ Ae/32 A • • • Aep^} of (^) "common basic" vectors, 

and coefficients notated ^ ^ ^ Q that are not developments of determinants 
Ar. Choosing a generic adequate notation for these exterior vectors, finally 
we have 

T = t^?? : ; :T^e«i A e«, A • • • A e«,, (9.21) 

where the parentheses mean "strictly ordered", that is, a i < a2 < • • • < <̂ r-
At this point a linear space is created, that we suspect will be of a tensor 

nature, of dimension a^ = (^), and basis the entities of the set BQ — {êQ,̂  A 
6̂ 2 A - - - A e ^ J . 

This suspicion is due to the fact that its creation has followed exactly 
the same steps as those followed in Chapter 1 for the tensor product 0 , to 
give rise to the absolute tensors: first the creation of "products of vectors" 
(decomposable tensors) and then its linear combination. 

Returning to the term in parentheses of Formula (9.21), and remembering 

Section 9.1.3, it is evident that t^^^^^!" '̂̂  are the strict components of T. 

Finally, we will express the exterior multivector (r-vector) T^ = l̂ i A V̂  A 
• • • A K, as a tensor in ((g)V"')J^(i^) the tensor space of the contravariant 
anti-symmetric tensors of order r, that is, expressed by means of the basis 
ßi = {^ai ^ ^a2 (8) • • • 0 Sa^} of tensor products. To this end, we substitute 
Formula (9.15) into (9.20) and get 

W" = T?! A ^2 A • • • A K 

= \Xri Xr2 ••• X,^|(Ä(^;^^^:::^;)e;,i^e;. ^ • • • ^ 4 . ) (9.22) 

with ai.ßj e In] ij^lr] ai^ a2 y^ •'• ^ ar-

9.2.1 Properties of exterior products of order r: Decomposable 
multivectors or exterior vectors 

Property 1. The exterior product over V'^{K) is distributive with respect to 
the sum of vectors of V'^{K). 
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= Fl A ^2 A •.. A y^ A • • • A K + Fl A T?2 A • • • A 14'' A • • • A K; V/i € Ir^ 

Property 2. The exterior product over V'^{K) is associative with respect to 
the external product of V^ (K). 

Fl A ̂ 2 A . • • A {XVh) A-"AVr 

= Fl A (AF2) A • • • A F/, A • • • A K = A ( F I A F2 A • • • A F/, A •.. A K ) ; 

VXGK. 

Property 3. The exterior product over V'^{K) is p-linear or multilinear on 
the left and right of "A": 

Fl A F2 A • • • A {XVI, + ßVl^) A • • • A F^ = A ( F I A F2 A • • • A F ;̂ A •. • A F-) 

+ / i f F i A F 2 A - - . A F ; ; ' A - - - A K ) ; VA,//G i^; W^VH eV'iK)', Vh e Ir. 

Property 4- The exterior product over V'^{K) is anti-commutative or anti
symmetric: 

Fl A F2 A • • • A Ffc A • • • A T4 A • • • A F,. 

= - F l A F2 A . . . A Vl A . • • A F/e A • • • A K; VF^, F/, G F" (K) . 

For two vectors, some authors express it as 

F A l F + I F A F = 0. 

Property 5. The exterior product of vectors over V'^{K) if it has repeated 
indices is the null tensor. In effect, when applying Property 4 we get 

W = ViAV2A'--AZA'-'AZA-'-AVr = -W=^2W=^0=^W = 0, 

Property 6. If some factor-vector of the exterior product is a linear combina
tion of the rest, the exterior product is the null tensor (0): 

Fl A F2 A • • • A ( AFi + /iF2 + • • • + pVh\ A--- AVHA-" AVr 

= A ( F I A F2 A • • • A Fl A • • • A 14 A • •. A K ) ) 

+ /x (̂ Fi A F2 A • • • A F2 A • • • A T4 A • • • A K ) ) 

+ p (̂ Fi A F2 A • •. A 14 A 14 A • • • A K ) ) = AO + /xO + • • • -f pO = Ö. 

Property 7. If a set of vectors is linearly dependent (linked system), its exte
rior product is the null tensor. This sufficient condition is a simple corol
lary of Property 6. 
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Property 8. If a set of vectors is linearly independent (free system), its exte
rior product cannot be the null tensor. 

Proof. By reduction to the absurd: If Fi, ^2? • • •, K are linearly indepen
dent and we had Vi AVZ A • • • AVr = 0, according to Formula (9.22), 
0 = J2P^ai ^ ^(xi 0 • • • 0 ea^5 with some p ^ 0, which would indicate 
that the hasis of the linear space ((8)F"')]^(ür) would have some linearly 
dependent vectors, which is absurd, because it would be not a basis. 

This proves the necessarity and the sufficiency of Property 7. 
Property 9. If the basis of V^iK) is {e^^ — {ei, 62 , . . . , e^;,..., e*^}, then, the 

basis of the linear subspace generated by the vectors T, Formula (9.21), 
i.e. linear combinations of r-vectors, is the set 

So == {eci Aec2/^ ••• AeQ,^}; ai ̂  In] a i < 0̂ 2 < • • • < a;̂ , (9.23) 

a total of (^) r-vectors, formulated by the exterior products of the basic 
vectors of V^ (K), taken "r in r", and with their subindices strictly ordered 
in each of the r-tuples. 

9.2.2 Exterior algebras over V'^{K) spaces: Terminology 

The set of the exterior products of order r receive other diverse names ac
cording to different authors: multivectors of order r, r-vectors, decomposable 
exterior vectors, etc. 

The linear combination of them, as we have seen in the Formula (9.21), 
leads to a set of vectors, referred to the basis BQ^ Formula (9.23), that are 
not exterior products of order r, because their coefficients do not respond to 
the formulation (9.20), and that will be notated with the typical notation 
of tensors. Formula (9.21). The generated linear subspace will be notated by 
means of the mnemonic expression 

/\^'^\K) = {AVYiK) ^V^AVA-'-AV^iK); r < n, (9.24) 

where the last term has r factors, / \ is the upper case Greek letter and it must 
be read as: "Exterior Linear Space of order r, over the linear space V'^{Ky\ 

This subspace, of dimension (^) is situated as indicated in the following 
relation: 

/\^'\K) C {^V^)l{K) c (®F")'-(î ). (9.25) 

That is, the exterior space is a tensor linear space of anti-symmetric con-
travariant tensors of order r, that belong to the general tensor space of all 
homogeneous contravariant tensors of order r. 

The dimension (^) (and not n'^ as it corresponds to the anti-symmetric 
tensors), is due to the fact that the new adopted basis, So, Formula (9.23), 
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has (^) components, containing exterior products of the basic vectors, strictly 
ordered. 

An arbitrary vector t G /y^^ (K) has the representation given by the For
mula (9.21) of strict components 

and it is usually called an "exterior vector". 
Thus, the exterior vectors of /\^\K) are sometimes exterior products and 

sometimes not. 
We have not yet reached the exterior algebras, because it is necessary to 

treat the exterior product of exterior vectors, to establish them. 
If one wants to see /y'^^K)^ from the point of view of anti-symmetric 

tensors, one has only to develop each one of the exterior basic vectors, in 
terms of the tensor product "(8)". To this end, we substitute Formula (9.15) 
into (9.21), with the adequate notation 

= t^Tr.";^ {S^t[t'-tf>^^ ® e., ® . • • ® eX) (9.26) 

with ai^Xj G In; i^j E Ir^ Ai 7̂  A2 7̂  • • • 7̂  A ,̂ and now t appears as 
an anti-symmetric tensor given by its components. In summary, after totally 
developing (9.26) we obtain (J?)r! non-null components with alternate signs 
(+, —) due to the Kronecker delta. 

9.2.3 Exter ior algebras of order r = 0 and r = l 

In order to examine and supply coherence to all cases of exterior algebras that 
can arise for all possible values of r, we will comment on the cases r = 1 and 
r = 0. We understand that for r == 1, "formally" 

/\^'^ = V^{K), (9.27) 

of dimension a = (^^^ = n^ = n. 
For r = 0, we have 

A (0) 

A ^ ^ ' (9-28) 
of dimension a = (Q) = n^ = 1. Only in these two cases do the exterior linear 
space and the anti-symmetric tensor space dimensions coincide. 

9.3 Axiomatic properties of tensor operations in exterior 
algebras 

9.3.1 Addition and multiplication by an scalar 

We directly give the axiom and its formal properties. 
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Definition 9.4 (Sum of exterior vectors). Given two exterior vectors 

C/ = < ^ ? ; : t ' e „ , A e „ , A - - - A e ; o o ••• o 

we define the vector sum of both vectors to the vector 

W = T + U = w^l'Z'.Z^^^c, A 4 . A • • • A e„, e K^^^)^ 

where 
(aia2--a-r) _ ,{aiOi2-'Oir-) , (aia2---ar-) ^ r^ 

"̂  o o ... o ~ ^ o o ..• o "^ "- o o ... o t ^ • 

This sum is associative, unitary, cancelative and Abelian, arising from the 
Abelian group of the exterior vectors. 

Definition 9.5 (External product of scalar-exterior vectors). For any 

exterior vector T G /y^^ (K) and for all X £ K, we define the exterior product 
of X by T, as the vector: 

5 = AT = xt^T::r:^^o., A e«, A • • • A e«, 
= s^T:T:^e.. A e„, A • • • A e„, G /\1\K), 

where \-t^Tr.":^ = S^T:T:^ ^K. 
This exterior product is distributive with respect to the sum of scalars, 

distributive with respect to the sum of exterior vectors, associative, i.e., 
X{fiT) — (A • /x)T, and unitary, i.e., IT = T, and 1 G K is the unit of the 
scalar product of the field. 

In summary, we have created the exterior linear space of the exterior vec
tors. 

9.3.2 Generalized exterior tensor product: Exterior product of 
exterior vectors 

The topic we deal with now is certainly delicate. The main reason that forces 
us to be cautious is the fact that exterior vectors come from linear combina
tions of exterior products of vectors, thus, they are anti-symmetric tensors. 
As we already know (Section 7.5) since the product of anti-symmetric tensors 
is not an anti-symmetric tensor, it cannot be an exterior vector; so that we 
do not try to multiply two exterior vectors by means of the exterior product 
"A". 

Even worse, we will demonstrate the non-associativity of the exterior prod
uct of two exterior vectors. Even though fortune would have permitted us to 
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establish an exterior product composition law of exterior vectors, at taining the 
anti-symmetry of the product by some "axiomatic additional arrangement", 
the effort would be in vain, because to build a ring and arrive at an algebra, 
we need the associativity and the distributivity of the established product . 

We star t the proof of the non-associativity. 

Consider two exterior vectors T,U E /y^\K) tha t in addition are bivec-
tors; each one of them has order r i = r2 = 2 and they are built over the linear 
space V^{K). 

We consider T = ei A 62 and U — 63 A 64, and assuming tha t "A" is 
associative, we examine their exterior product 

V" = T A [/ = (ei A 62) A (es A 64). (9.29) 

Calculating this product by two different methods we arrive at a contra
diction. 

To develop the product by the first method, we use Formula (9.1), which 
establishes the exterior product of two vectors: 

y = T A [/ = T (g) t/ - [/ (g) r = (ei A 62) (g) (es A 64) - (es A 64) (8) (ei A 62); 

applying again (9.1) in the parentheses, we get for V\ 

V = [ei (8)62 - 6 2 (g)ei] (8) [es (8)64 - 64(8)63] - [es (8)64 - 6 4 (8)63] (8) [ei (8)62 — 62 (8)ei]; 
(9.30) 

which leads to 

V = ei <S) e2<S) es<S> 64 — ei^ 62^ e4(S) es — 62 ® ei(S) es^ 64 

+e2 0 ei (8) Si (8) ê s — ê s 0 6*4 (8) e*i (8) e*2 + es (8) 64 (8) e*2 (8) e*i 

+64 0 es (8) ei (8) 62 — 64 (8) es (8) 62 (8) e î. (9.31) 

The resulting tensor V has 8 non-null components and 

V e {^V^)\K), (9.32) 

Now, we develop Expression (9.29) by a second method 

y = T A [7 = (ei A 62) A (es A 64) = e 1 A e2 A 63 A 64. (9.33) 

Developing the exterior product of (9.33) by means of the general formula 
(9.22), we have 

F = e*i A 6*2 A 63 A 64 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

rCKi Q ; 2 0 ; 3 Q ; 4 - > 

^ 1 2 3 4 ^öi (9.34) 

and executing the generalized Kronecker delta we get a linear combination 
of the 4! = 24 basic vectors of the anti-symmetric tensor space ((8)V^)^i^), 
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which all appear with coefficients one and alternate signs (12 positive and 12 
negative): 

V = ei(S) e2^es(S>e4 — 62 0 ei^es^ 64-}- e2<S> es^ ei (S> 64 

4- • • • + e4 (8) 63 (̂  62 (8) ei; V e (oV^)^ (K). (9.35) 

Tensor V in Formula (9.35) belongs to the same linear space as the tensor V 
obtained in Formula (9.31), but has 24 non-null components, i.e., apart from 
the 8 components referred to in (9.31) it has another additional 16 non-null 
components. Consequently, to assure that they equal has no sense. 

From this contradiction we can conclude that the assumption^ the associa
tivity of "A", is infeasible. 

The summary of all that we have said in this section, is that we must 
abandon any attempt to use the operator "A" to build the exterior product 
of exterior vectors. 

This forces us to adopt the following scheme: 

1. Create an exterior product, the notation of which will be the new symbol^ 
"/\" (in upper case), in order not to confuse the symbols "A" of the exte
rior vectors and of the exterior products of vectors, with the intention of 
endowing the set of exterior vectors of any order with a product. 

2. This product will be useful to: 
a) multiply exterior vectors of different exterior spaces: T G fy^\K) and 

U £ /\1^\K) with p,q<n, that is, 

T/\U = V; Ve/\^^^'\K), p-{-q<n', (9.36) 

b) multiply exterior vectors of the same exterior space: T^U £ /y^^{K)^ 
r < n^ that is, 

Tf\y = V; Vef\^^''\ 2r<n. (9.37) 

3. Evidently, this exterior product of exterior vectors, when applied to case 
(b), will be associative, distributive with respect to the sum of exterior 
vectors and associative with respect to the product by a scalar. In this 
way, /\l^^ (K) will become an exterior algebra. 
The reader must remember that when in Sections 3.4 and 3.5 the tensor 
product of tensors was established, the factor-tensors were notated with 
indices of different notation, axiomatically forcing them to proceed from 
different tensor spaces. 
To establish the product "/\" of exterior vectors, we proceed in an anal
ogous mode with as many exterior factor-vectors as necessary. Normally, 
the exterior factor vectors are given by their strict components, but with
out prepared notation, as 
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a) 

(p), 

ai, aj E In; ijGlp] ai < a2 < • • • < ap 

U = u^T::ye^^ A e„, A • • • A e«, G /\^^\K)-

ai,aj G J„; i , j G Ig-, ai < a2 < • • • < a,; (9.38) 

b) 

M, 
y = i ( - - : r ; ^ e „ , A e„, A • •. A e„^ G A „ W ; 

U = u^T:T:^^a, A e„, A • • • A e„. G A^ '^ i f ) . (9-39) 

If necessary, the second factor, the U in Formulas (9.36) and (9.37), is 
changed in its index notation, to prepare it for executing the product as: 
a) 

U = u^i'^::;i^'>eß, A e^, A • • • A e>,; (9.40) 

b) 

U = u^i't'.'Veß. A e^, A • • • A 60^. (9.41) 

4. Next, we choose collections of indices {71,72, • • •, 7p+g} ^ In for the basic 
vectors of the type {e^^ Ae^^A- - • Ae^^^^); 71 < 72 < • • • < 7p+g with which 
the exterior vector product V G / \ ^ ^̂  (K) is to be obtained. Obviously, 
we must choose ( ? ) collections of the given type, that is, the dimension 

of F G A^^^''\K). Next, we define the coefficients of V in the already 
prepared basis 

So = {̂ 71 A e^, A • • • A eV^+,} (9.42) 

or, in other words, we define the strict components of V. Remember from 
(9.36), t h a t p + g < n. 

a) The exterior product /\ of exterior vectors valid for Formulas (9.36) 
and (9.38) is defined as 

V = T/\U = v^'':Z:''^:'-^e^, A e,, A • • • A e V , 

^ Ao^icx2-"ap) . {ßiß2-"ßq) 
o o ••• o o o ••• o 

• ^(i^.:::::)?;;T:::\S ^-^^ ^e,, A... Ae,,,„ 0.43) 
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where 

{ai, « 2 , . . . , ap, /?!, /32,... , /5g} = {71,72, • •., 7P+<?}; 

71 < 72 < • • • < 7p+<? 

and 

(ai < a2 < • • • < cxp) and {ßi < p2 < " • < ßq) ^ cxi 7^ ßj-

Therefore, when using (9.43) we choose in the ordered set 

{71,72,.--,7^+9} . 

combinations of p indices for the {ai} and the remaining combination 
(that not chosen) for the {ßj}; we determine the sign of the generalized 
Kronecker delta with them, and we assign it to the scalar resulting 
from the product t^^^"^"'^-^ • u^ß^^^-ß,)^ 

^ o o ••• o o o ••• o 

We shall obtain a total of ( "; ) strict components, with (^+^) alge
braic summands each. 

b) Now, the exterior product / \ for Formulas (9.37) and (9.39) is defined 
as 

V = Tf\U = v^r^yi^^^y^ A e,, A • • • A e ^ 

_ ^{aia2---ar') ^ ^{ßiß2---ßr) 
o o ••• o 0 0 

•SiZZ^-Zuß:^-!:] ^-r^ A e,, A . . . A e ^ , (9.44) 

where {ai, 0̂ 2, • • •, ö^r,Ä,/?2, • • • ,/3r} = {7i,72, • • • ,72r} and (ai < 
a2<...<ar)^{ßl<ß2< •••< ßr)-

The number of strict components is (^ ) , with (̂ ^̂ ) summands each. 
To use (9.44) we proceed in an analogous form to that for (9.43). 

Since we began this section with an examination of a product of exterior 
vectors in expression (9.29), we end by applying (9.44) to finally determine 
it. The data are T,U e /\f\K), where 

with 

{*(-) = 1; if (a,, a,) ^ (1,2) -. t^H^ = t^lt^ = t^fj = t^J = t^J = 0} 

and 
U = u'-^:i^^e0,Aeß, 

with 
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r (34) -1 . r / /Q p \ / fo Ä\ (12) (13) (14) ( 23 ) (24) ^^ 

V = T/\U ^ {ei Ae2)/\{es Ae^) 

= ^ ^ o ^ ^^oo^' ^(i23l)(^l A 62 A 63 A 64) + (Ö+ 0 + 0 + 0 + 0) 

= 6*1 A 62 A 63 A 64. 

The number of strict components is (^) = (^) = 1 of (^^^) ~ (2) ~ ^ 
summands, all null but one. 
The conclusion of this model of exterior product, the discussion of which 
has originated the extension, already finished, of this section is that in 
the space /y^ ( ^ ) , the stated product of exterior vectors leads to the 
following expression, which is to be discussed: 

A A (^) 

(ei A e2)/\(e3 A 64) = ei A 62 A 63 A 64 G / \ ^ , (9.45) 

which together with the previous discussion, clearly declares the non-
associativity of the symbol "A" of the exterior product, because the central 
symbol of the left-hand side is another symbol. 
In addition, it allows us to consider the exterior product as a "new" ex
terior composition law. 
This criticism is addressed to many authors who employ all symbols "A" 
identical in size, leading to a lack of understanding of why a new exterior 
product is "created", when the proper "A" we already have is valid, since 
it is associative (the reader should imagine the criticized Formula (9.45) 
with all symbols of the same size). 

The exterior product defined in this way has the following desired formal 
intrinsic properties: 

it is associative: 

( r / \ [ / ) / \ 5 = T/\{U/\S) = T/\U/\S; 

it is distributive: 

P/\{T + U)/\S = P/\T/\S -f P/\U/\S 

it is associative with respect to the external product: 

{XT)/\U = T/\{XU) = A(T/\f/) 

leading to the exterior tensor algebra, /y^\K). The tensor nature of the 
exterior vectors manifests when they are expressed as anti-symmetric tensors, 
that is, when they are notated with the tensor basis of ((8)V"')]^(ii"), which is 
the same as that of {®V''Y{K). 
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9.3.3 Anti-commutativity of the exterior product / \ 

If we consider the generalized Kronecker delta ^wi72-"7p7p+i-"7p+gj ^^^ ^^ 

exchange two covariant indices (covariant indices, because the contravariant 
indices are "strictly ordered"), each performed transposition changes its sign. 
To place the index ßi in the first position, we must use p transpositions 
until we reach the ordering ßiaia2- -- cxpß2 • • • /3g; if we do the same with the 
ß2 to place it in the second place, we need another p transpositions with 
each a^, so that when we reach the ordering ßiß20Lia2 • • • otpßz " - ßq we have 
performed p-\-p transpositions; so, we have a total of 2p transpositions. If we 
continue with this criterion, when all indices ßj are ahead of the indices a^, i.e., 
/9i/Ö2, • • • ßqOiia2 " • ap we will have performed a total of p • q transpositions. 
This justifies the formula: 

r(7i72-"7p7p+i"-7p+g) _ / - t \p-qr(7i 72 ••• 7p 7p+l •••7P+Q) fQ Af,') 
^ ^i/32-/?g ai ••' ap - V -L; ^{aia2-ap) (/3i - ß^ ) ' y^'^"^) 

Once this has been established and remembering Formula (9.43), we have 

U/\T = u^^'^r^o^i^'^oT"":^ ' ^\Tß''l^l^"'''^lH 7̂x A S,, A • • • A eL,^^ 
/ \ O O ••• O O O ••• O ( p i P 2 * - - P q CX.\ ••• Oip ) / I / 2 / P + Q 

= ( _ l ) P - g i ( " i " 2 - - - « . ) (/3i&---/3,)^(7i72--- 7p 7p+i---7p+,)g A e l , A • • • A e^,+„ 
^ / O O ••• O O O ••• O (CKi Q;2 •••CKpj ( p i ••• Pq ) U /2 IP+Q 

= {-lf^Tl\U, (9.47) 

a property that is called "anti-commutativity" of the exterior product of ex
terior vectors. 

In the particular case of two exterior vectors coming from the same 
/y^\K)^ Formulas (9.37) and (9.39), the anti-commutativity is stated by 

U/\T=^{-1Y'T/\U (9.48) 

so that the exterior algebras /\]^^ (K) of r "even" are Abelian. 

9.4 Dual exterior algebras over VJ^(K) spaces 

Some authors use the notation 

when they refer to the homogeneous anti-symmetric covariant tensors of order 
r built over the linear space K(1R) dual of y"'(]R) and assume it is referred 
to a certain basis {e**"*̂ }̂. 

The reason for this notation is that the vectors of the dual linear spaces are 
called "forms", a word that starts with an "f" so that the vectors of the linear 
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space V^{K) are the "linear forms" and obviously, the vectors of {'^V^)'^{K) 
are "the multilinear forms" of order r built over the linear space of the linear 
forms V^{K). In mathematics, "form" is a mapping of the linear space in its 
field of scalars, i.e., f{v) = p;pe K. 

This notation is also used in strict components, typical of anti-symmetric 
forms: 

F = f(^,::Z)^%\2---7r^''®^''®- • -^^'^-^ «i < «2 < • • • < a,; «, e 7„. 

In this way we arrive at the exterior forms: 

W e /\1\K), W = / („%V:::^)e*- A e - - A •. • A e « - . 

To end the exposition, we want to emphasize only that in this book we do 

not make any distinction in notation in the tensors, no matter they are (t^^) 

contravariant or ( t ° p covariant. The reason is that the reader, when looking 
the totally covariant species of the tensor, can call it personally a "form", if 
he desires. What is important in books is not what each reader reads, but 
what is written and how. 

9.4.1 Exterior product of r linear forms over VJ^{K) 

Definition 9.6 (Exterior product of r linear forms over VJ^{K)). We 
define this product as 

y ; A F2* A • • • A v; = 5\'%'T;v:^ (̂  F ^ ® •. • 0 v^; 

l < 2 < - - - < r ; ai e In'-, i e Ir\ ai^ aj. {9.4Q) 

We repeat the comment in Section 9.2, about data vectors with proper 
subindices different from the proposed ones, so that we remember the "sense" 
of the condition 1 < 2 < • • • < r. As is well known, the right-hand side of 
(9.49) is a homogeneous covariant and anti-symmetric tensor of order r. 

We apply this product to subsets of r basic vectors of V^{K)^ to create 
the future exterior basis of /y^l (K) by means of the expression 

e"^^ A e"^^ A . • • A e"^- = S^t\tl'''-tl^^''' (g) e^"^ ^ • • • (g) e""^; a „ ßj £ In] 

ijeir; aij^aj; ßi < p2 < " - < ßr-

With the n basic vectors of V^{K) we can construct (^) products of the 
proposed type in the first term of (9.50), that is, the number of basic exterior 
vectors for the exterior linear space /\;^^{K) that is to be created. Thus, its 
dimension will be (^). 

If we wish to express the exterior product of the r vectors of the first 
member of (9.49) in terms of the basis of the exterior space to be created 
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ly^\K)^ and if we assume that the data vectors V^ are given by their respec
tive column-matrices X*, we proceed in an analogous form as that employed 
in Section 9.2 and arrive at 

v^ ̂ v^ ^^^^^v; =^\x;^ x;^ ••• x;j^^r^^ Ae"̂ ^ A---Ae"̂ '̂  (9.50) 

with the constraints in (9.20) and the following clarification. 
We start from the matrix 

[XI XI ••• X r in.r 

built with the data, and extract the indicated minors in Formula (9.50) se
lecting the rows by numerical combinations of the n, taken of r in r, that 
is, taking the rows (/?i/?2 ''' ßr) that indicate the indices e*̂ ^̂  in the proper 
formula (remember that ßi < ß2 < - • • < ßr)-

If what we want is to express the mentioned product as an anti-symmetric 
tensor belonging to {(SiV^)'^{K)^ following the process indicated in Section 
9.2, we arrive at 

w"" = yi*AF2*A-.-Av;* = I x;^ x*^ • • • x;^ |̂ ^f;f'̂ :::f;;^e"^^0r"^(g)-• •or^'^ 
(9.51) 

with ai.ßj e In^ 

9.4.2 Axiomatic tensor operations in dual exterior Algebras 
/\^^(K). Dual exterior tensor product 

We have nothing to add to what has been already established in the exterior 
contravariant algebras /\̂ ^^ (K). The dual exterior products are combined by 
linear combinations to generate dual exterior vectors that are not products, 
notated 

(9.52) 
We formulate axiomatically the sum of dual exterior vectors and the external 
product of scalars by exterior dual vectors, which constitutes the linear space 
/Y^J{K). Finally, we establish the exterior product of exterior dual vectors, 
in which we use again the symbol "/\". 

Pf \ Q ( 7 1 7 2 - " T p + g ) 

, o o ••• o , o o ••• o 

g{aia2-a^) {ßi ß2 - ß, ) ^^1 /\ ^^2 ^ , , , ^ g^l^+^ rg^^^\ 
(71 72--- 7p 7 p + i 7 p + 2 " - 7 p + q ) ' ^ ^ 

where {ai,a;2,...,ap,/3i,/32,-..,/3Q} = {71,72,... ,7p+g} and (ai < 0̂ 2 < 
••• <ap)7^(/3i <ß2< '•'<ßq)-
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2. 

T - Tr/\Ur = t, ° ° ••• ° .e"^' A e"'̂ ^ A • •. A e"^^-
' / \ ( 7 l 7 2 " ' 7 2 r ) 

, o o ••• o o o -•• o 

- '^(aia2-ar) ""(/3i/32-/30 
• ^ l " ' ? " ' " ^ ^ ^ ' ' ' / ' ••• ^" I g*̂ ^ A e*̂ ^ A • • • A e*^^^ (9.54) 

(,71 72 ••• 7p 7 r -+ l7 r+2-"72r ) ' ^ ^ 

where {a;i,012, •.. ,ar-,Ä,/32,. . . ,/3^} = {71,72,... ,7r} and (ai < 0̂ 2 < 

The associative character, the distributive character with respect to the 
sum and the associative character with respect to the external product of the 
new product "/\" lead to the exterior dual algebra fy^l{K). 

The anti-commutativity of the exterior dual vectors is analogous to the 
one already defined in Section 9.3.3. 

9.4.3 Observation about bases of primary and dual exterior spaces 

Since up to this moment we have developed two parallel theories in an implicit 
form, due to the notation, a comparative comment is necessary. 

In principle, we have notated the linear space of the exterior covariant 
vectors (the forms) by means of /y^j{K). With this notation, we pretend to 
say that /y^^ (K) is really the dual linear space in reciprocal or dual bases of 
A^^\K), the notation of which should be [An^^)]*-

On the other hand, if we see the exterior forms as homogeneous anti
symmetric dual tensors, then /yJ^K) is the linear space {^V^)'^{K)^ which 
is a part of {^V^y{K). From this second point of view, the reader can ask 
himself: is /\y{K) a part of {^V^Y{K)^ dual and in reciprocal basis of 
{^V^YiK), the correct notation of which should be [((g)y^)^(i^)]*? 

In summary, we know that the bases of {(S>V'^Y{K) and of the dual 
((g)Kr)^(Ä') = K^VYiK)]'' are certainly reciprocal. 

However, are the bases of fy^\K) and of /\^j{K) reciprocal or dual?. If 
this were true, then we should have 

(r) 
basis of A (K) = basis of A (^) 

(0. 

If it were false, we should clarify what is the relation between these two bases. 
For the sake of exposition clarity and consideration of uninitiated readers, 

we will define what we understand by "connection" of two dual linear spaces, 
together with the concept of "dual bases" or "reciprocal bases". We employ 
for these bases the second option, in order to avoid the risk of confusion that 
the word "dual" implies, because it is employed by many authors, for both 
dual spaces and dual bases, when these concepts are strictly different. 
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Definition 9.7 (Connection of two linear spaces). Consider the basis 
of a linear space V'^{K), the primal, notated {ea}- Consider the basis of a 
linear space V^{K), the reciprocal of the previous one, notated {e^^}. We 
say that two linear spaces V'^{K) and W'^{K) are "connected^^ if we know all 
contracted products of the vectors of their respective bases: 

e^ • e}3 = Qo^ß-, 9aß ^K; a,ß e In- (9.55) 

The components g^p are usually given as data, and grouped in a matrix of 
order ^"n '\ called 'the ''Gram matrix of the connection^': 

G = Gn = [gaß]- (9.56) 

Definition 9.8 (Connection of primal and dual spaces). We say that 
two linear spaces, the primal and the dual, are "connected'^ when we know their 
Gram matrix G. Other authors say that they are "dual linear spaces'^ though 
the "connection'^ G be not given. When nothing is said, one must understand 
that G = In-

Definition 9.9 (Reciprocal bases). We say that two dual linear spaces are 
referred to in reciprocal bases, with respective notation {ca} and {e^^} when 
the connection matrix G is In, that is, 

G = [ 0 = [ea«e-*^] = Ö = ^ n - (9.57) 

When two linear spaces, that are dual, are in "reciprocal" bases, the basis 
of the dual space has a reserved and specific notation {e*"^}, for the reader to 
know that the matrix G is precisely In-

However, this convention is not in general respected and it is common to 
notate a basis of the dual space as {e*^} though the connection G be not 
In^ provoking the corresponding confusion. As most of the authors violate 
this convention, the authors of this book have also violated it in some of the 
previous chapters, while being aware of it. 

Next, we extend and clarify the "dual" concept to the tensor spaces 
{^VyiK) and {^V^Y{K) that have already been introduced. 

We have 

(e^, (8) eV, 0 • • • 0 eVJ • (e"^^ 0 ê ^̂  0 • • • 0 e"^^ = 5° f, (9.58) 

where A = {71,72,... ,7r} is the set of the ordered subindices of the first 
factor and B = {771,772,... ,?7r} is the set of the ordered subindices of the 
second factor. 

If the indices are separated with bars in the sets A and B to facilitate their 
comparison, we have 

1. A = B4^{ji\-f2\"-hr}^{Vi\V2\'"\rjr}<^7i=Vi; i € / ^ = ^ ( ^ ° f = 1. 

2. A^B^3j,^r],<=^ {71172I -.. |7r} ^ {^^2! • • • M => ^ i f = 0. 
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That is, (5^^ behaves as a classic Kronecker delta, i.e., it takes only values 1 
or 0. 

To clarify this, we give one example. Let n = 6; r = 4. 

(A = {71I72I73I74} = {3|6|5|4} , , . o 
" \ ß ^ {m\m\m\m} ^ {6|3|5|4} ^ ^ ^ ^ 

\B~{rii\ri2\m\V4} = {5\2\3\i} ^ ^o 

{A = {71I72I73I74} ^ {4|6|2|5} ^ 4 = R ^ r o B _ , 
" \ S = {rtx\m\riz\m} ^ {4|6|2|5} =^ ^ - ^ ^ ^^o - -̂

Contracting the factor tensors in (9.58) yields the product 

71 o 72 o 7r- o Ao 

Thus, the given bases of the linear space {^V^Y^K) and the linear space 
{^V^Y{K) are reciprocal, and then we have dual linear spaces, in reciprocal 
bases. For this reason. Expression (9.58) has been formulated to be used in 
practice. 

Next, we study the exterior spaces 1\:^\K) and /y^l{K)^ to determine if 
their respective bases are reciprocal. 

Starting from Formula (9.15), which we apply with adequate index nota
tion, we have 

eai A 60,2 A • • • A ec,̂  = ^(J^J^^^.-llfn ® e^2 ® " ' ® ^ir-\ (9-59) 

Using now the correlative formula (9.50), the result is 

r^^ A e"^^ A . • • A e"^- = ^̂  J5:: :J;^e"^' (8) r'^^ (8) • • • (̂  e"^^ ft,ry^- G 7^; 

hj^lr\ ViT^Vj'. ßl<ß2<--- <ßr- (9.60) 

First we determine the scalar p e K: 

p - ( 4 i A 6̂ 2 A •.. A 4 J • (^^ ' A e'^^ A • • • A ?^-) (9.61) 

substituting into (9.61) expressions (9.59) and (9.60), we have 

P = \a,a,-a.rii^^'y2^-'-^^^^\ * Î :̂::!-.r̂ e"''' 
r7 i72 - - -7 r ^ r(Ä/32---/?r) 
{aia2---ar') m'n2---'nr 

rr(/3i/32-/?r 

[(SyiOelys^- • -(^e^J • {e""^^ Oe"^' (8) • • • Oe""^ )̂] 

and considering Expression (9.58) leads to 

^ 7 1 7 2 - 7 . , ^ ( / 5 i / 3 2 - / 3 . ) l ^ o B . . 
{aia2---cxr) mV2---Vr j Ao \^ ^ J 
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The factor that precedes 5^^ in (9.62) carries the systems of indices 

(ai , »25 • • • 7 < r̂) sind (/3i, /?2, • •., ßr) both strictly ordered, and satisfying 

{ a i , a i , . . . , a r - } = {7iv7i,--- ,7r}; {/3i,/3i,...,/3r} ̂  {rji,r]i,...,r]r}. 

If {71I72I • • • |7r} ^ {^i|'^2| • • • \Vr}^ then (J^^ is null^ and so they are not 

considered in Formula (9.62). Thus, the systems of useful indices are 

{ 7 l | 7 2 | - - - | 7 r } ^ . { ^ 1 ^ 2 1 ••• |7?r} =^ ( » i , » 2 , • - . , a ^ ) = (/?!,/?2, • • • , /?r)-

(9.63) 

The equality of these sets implies S'^^ = 1 , and then, expression (9.62) 

can be written as 

^ V {(^lO^2---0tr) 7l72-"7r- / ^ ^ 

Considering that \/ji ^ 7-/, there are only r! sets (71,72, • • • ,7r) because they 
are the permutations of the totally ordered set (»i, a2, • • •, ce^). 

The two generalized Kronecker deltas ^ '^i^2"-7r ^^^ (̂Q;ia2---o;r̂ ) have 
0 (Q;iQ;2-"Q;r) 7 l 7 2 " - 7 r 

the same value and sign. 
Then, the contraction ö^^^ 72 •••7r ^ g{aia2---ar-) j ^ ^ ^ ^| g^j^imands of value 

' {aia2---ar) 7i72-"7r 

1, which implies that (9.64) can be written as 

fg^ij2-7r c{a,a2-ar)\ _ , .g g^x 
^ V (ö;iÖ!2-'-Q!r.) 7 l 7 2 - " 7 r / ' ^ ^ 

SO that p = r\ (r! > 2 because we always have at least two indices). 

The consequence is that P 7̂  ^^ o • 

Finally, considering (9.61) and (9.65) we conclude 

p = {ea, A 6^2 A • • • A 4 J • (e"^' A r^^ A • • • A r^^ ) = r!. (9.66) 

As the contracted product of the left-hand side of (9.66) does not satisfy 

(9.58), that is, is different from S^^, the contracted bases in (9.66) are not 

reciprocal. 
In summary: /\;^\K) and /\^j{K) are dual spaces of exterior vectors, but 

their respective bases are not reciprocal: their Gram matrix G is not J^-', but 

G = 

r! 0 ••• 0 
0 r! ••• 0 

0 0 ••- r! 

and a ' - ( ' ' ) . (9.67) 

9.5 The change-of-basis in exterior algebras 

We shall proceed to establish how the components of an exterior vector in the 
linear space /\]^^ (K) change bases or how an exterior form in /\;^j {K) changes 



338 9 Exterior Algebras:Totally Anti-symmetric Homogeneous Tensor Algebras 

its basis, and two strict algebraic relations will appear, that when satisfied over 
a system of scalars 5(0^1, a;2, - • •, ô r) with strict notation ai < a2 < • - - < ar, 
are useful as necessary and sufficient conditions to establish its exterior tensor 
nature and then, that such a system must be notated either as v̂ö:iö̂ 2---o;r-) 

7 J O O • • • O " 

or as t/ ° ° ° \, because it is a system of contravariant or covariant exterior 
vectors. 

It will also be observed that the cited algebraic relations do not have a 
tensor construction, absolute or modular, as was already indicated in Section 
7.4.3 close to Formula (7.55). 

However, it is sufficient to express any exterior vector as a homogeneous 
anti-symmetric tensor and change its basis, for it to declare without any doubt 
its tensor character. Because of this, as it is a priori known that they are ten
sors, many authors call the vectors in /y^^ (K) and /\^^j (K) "exterior tensors". 

9.5.1 Strict tensor relationships for /\^\K) algebras 

It is known that the tensor notation of change-of-basis in V'^{K) is ei = ĉ °e*Q;, 

where C = [c^°] is the change-of-basis matrix, and that C~^ = hla] ^^^ 

According to what has been established, an exterior vector T E /y^^ (K) 
is given depending on whether it is referred to the initial or the new basis, by 
the expressions 

T = t^??: : :T^^«i A e«, A •. • A e^,; ai < a2 < " • < a , (9.68) 

or 
f ( H « 2 - " V ) 

o o ••• o 
T = ^̂  o o ::":^^i A e,, A . . . A e,,; zi < 2̂ < • • • < v , (9.69) 

respectively. Replacing in Expression (9.68) the initial basis by the new one, 

using the tensor equation of the change-of-basis ea = ll^^i: we have 

T = Aaia2--ar-)fii o 
t'T:::.7'ho:A) ^ (^O:A^) A • • • A (7:„>X). 

When we distribute the parentheses and locate the basic vectors in the 
tail, then they are not in strict order: 

j.^^ia,a2^:a)^ i[o i' o . . C o ^ ^ A 6 , . A • • . A 6,/ . (9.70) 

However, as in reality in Formula (9.70) the subindices (i^) have no values 
in strict order, we group the basic terms by strict components, to obtain 
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or 

The parentheses declare the development of a determinant with rows 
(ii, ^2 , . . . , v ) and columns (ai , 0̂ 2, • • •, o r̂) both in strict order. Thus, ex
pression (9.71) can be written as 

(o ; i a2 -
0 0 • 

•OCr) 
• 0 

zi 0 

1 0 ai 

' 0 ai 

7 
' 0 cui 

' 0 0 2 

' 0 « 2 

7 
' 0 » 2 

.. ^ 

.. ^ 

.. ^ 

Zl O 

o ar 
Z2 O 

o a^, Szi A e^2 A AS (9.72) 

that compared with (9.69), permits us to establish 

Aiii2- Aaiot2---cXr 

Zl O Zl O 

' O CKi I O 01.2 

Z2 O Z2 O 

7 7 
' O CKi I O Oi2 

7 7 
' O Oil ' O Q!2 

Zl O 

' O ar 

Z2 O 

o ar (9.73) 

which is the strict tensor relation for changes of bases in exterior algebras 
/Y^\K)^ fulfilling the purpose of this section. The tensor T has a total of 
(^) summands of the indicated type in its Formula (9.72). The determi
nant of (9.72) and (9.73) is the minor with rows (^1,22, • • •, v ) , and columns 
(ai , 0^2,. •., c^r) of the matrix C~-^. 

Obviously, if one wants to express the initial components of T in terms of 
the new components, we initiate the development by substituting the direct 
change-of-basis Si = ^^°^a into Expression (9.69) and it is executed in an 
analogous form, leading to 

,{aia2---ar) _ j . ( i i «2 • • •v) 

o ai 
C. 

Zl O Zl O 

O CK2 O Oil 

c c 
Z2 O Z2 O 

, o ar 
"zi o 
, o ar 
^2 O 

o ar 

(9.74) 

in which the determinant is the minor with columns (ai , Q;25 • • • 5 cer) and rows 
(ii, 22, . . . , ir) of the matrix C*, since this was the meaning of such indices in 
Formula (9.74). 

9.5.2 Strict tensor relationships for /\^^^(]R) algebras 

In an analogous form to that employed to define the exterior algebras /y^^ (i^), 
from the totally contravariant and anti-symmetric tensors, we have established 
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from the totally c 

algebras A!' ' ](if): 

from the totally covariant and anti-symmetric tensors the "forms" exterior 

T = t,° ° ••• ° , e * " ^ A e*"2 A • • • A e r^ar (9.75) 

Ar) where T G /\^^{K) is expressed in the initial basis. If it were expressed in the 
new basis, we would have 

rp , O O ••• O ~^i 

{iii2---ir) 
(9.76) 

A change-of-basis ê  = ĉ ê*a in V'^{K) produces in the dual linear space 

V^{K) the change e*' = T^e*", and obtaining e*" from it, we have 

I o • 
(9.77) 

where C* = [c°"]. 

Substituting (9.77) into (9.75) we obtain 

T = t ° ° ••• ° , ( c ; ";e*'^) A (c° "^e"'^) A • • • A (c° ' ' j e * ' ^ , (9.78) 

which operated in an analogous manner, and taking into account the change 
of ordering of the dummy indices leads to 

T 
{aia2---CX-r)^ ^ l O 22 O Z.̂ - O / y Z i Z 2 - " l r 

(9.79) 
Finally, we have a similar expression to that for the contravariant case, i.e., 

r = t, 
0 0 • 

( a i a 2 -
• 0 

•CKr) 

o a i 
zi 0 

c ° " ' 
^2 0 

0 CKi 

2 l 0 

0 CKl 

^2 0 

0 CKi 

z i 0 

0 Oil 

12 0 

O CKi O Cti 

A r'2 A • • • A r (9.80) 

with ai < a2 <-•'< ar e ii < 12 <•"< ir-
The determinant of Formula (9.80) is the minor of rows (zi, 12^''^ v ) and 

columns (a i ,a2 , • • • ,<^r) of the matrix C*. Comparing (9.80) with (9.76), we 
obtain 

( z i Z 2 - " ^ r - ) 

0 0 • 

( a i Q : 2 -

• 0 

n 0 

12 0 

oa2 , 
zi 0 
OOt2 ^ 

Z2 0 

oa2 

zi 0 

Z2 0 

0 Oir 

ir 0 

(9.81) 

which is the strict tensor relation for changes of bases in exterior dual algebras 
/y^l (K), fulfilling the purpose of this section. Tensor T has a total of (^) 
summands of the indicated type in Formula (9.80). 
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9.6 Complements of contramodular and comodular 
scalars 

In the case r = n^ the exterior algebra An (-^) consists of exterior vectors of 
a unique strict component 

T = r e i A ei A • • • A en = t^^^.'^^^ei A e2 A • • • A e^ (9.82) 

or, if it is written as a contravariant anti-symmetric tensor T G {(S)V'^)'^{K): 

T = t^ll'Tj5^T2".'":^^o., A e , , A • • • A e„„; (9.83) 

^ = ^ o o . . . o ' ^ i ^ ^ n \ OLiTOLj\ IT 3, 

with n\ non-null components, half of them of value ( + T ) and the other half of 
value (—r). 

The change-of-basis in this model of exterior algebra, I\^\K\ the entities 
of which correspond to the expression 

T = f e i A 62 A • Ae^ ^ \ ^ ei A 62 A • • • A e^; r = t^^^ J 

is s tated as follows. 
Because of (9.73), its relation with the initial ( r ) is 

^ r ( 1 2 - - - n ) _ , ( 1 2 - - - n ) 

7 
Z l O 

o a i 

o a i 

i i o i i o 
' o a2 ' o a n > « 2 

Z2 O 

' a2 

' O CKl ' O 0 2 

12 O 

O Q n 

in o 
O Q n 

oo--- o I I 

and in abbreviated form 

T = T. (9.84) 

We observe tha t the expression for the change-of-basis of the unique compo
nent of these exterior totally contravariant vectors is the same as tha t of a 
modular tensor of zero order and weight w; = — 1, called contramodular scalar^'' 
or ^^scalar capacity^''; it is the case of determinants An in contravariant coor
dinates. 

Similarly, in the exterior algebra /y^l [K) model with exterior forms of a 
unique component 

T = re"^ A r ' A • . . A e"^ = t^l'^^l^e"^ A e"^ A • • • A e"^, 

in the new basis they are wri t ten as 

(9.85) 

-^1 - ^ 2 -**n '̂  o o o •"**-'- " ^ ^ ~^'^ 

T = re A e A - - - A e = ^(i2...n)^ ^ ^ A - - - A e , 
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which is related to the initial basis by the relation (9.81), applied to the case 
r = n: 

^ ~ ^ ( 1 2 . . - n ) ~" ^ ( 1 2 . - - n ) 

O Q i 0 Q ; 2 

i\ o ii o 

O ai O Q!2 

o an 
zi o 
o an 
ii o = *(i2::::)i^*i 

and in abbreviated form 
f = |C|r, (9.86) 

which gives the change-of-basis for the totally covariant exterior forms. This 
expression also corresponds to that of a modular tensor of zero order and 
weight It; = 1, called a comodular scalar or scalar density; this is the case of 
determinants An with columns in covariant coordinates. 

9.7 Comparative tables of algebra correspondences 

We establish in this section a comparison between the anti-symmetric tensor 
spaces ((8)y"')^(i^), {(S>V^)'^{K) and the respective exterior algebras /y^^K)^ 

A|[i(i^), which is shown in Table 9.1. 

9.8 Scalar mappings: Exterior contractions 

Let 

^ = ^^"o^?:::t^e"'c..Ae.,A--.Ae, (9.87) 

be an arbitrary exterior vector T G /Y^\K)^ built over the linear space 
y^(i^) . 

Let 
F^f o o • • • o -*)CQ:I 

A e""2 A • • • A r (9.^ 
{aia2---ocr) 

be an arbitrary exterior form, F G /\]^j{K)^ built over V7^(iir), the dual linear 
space that is assumed to be in reciprocal basis of that of V^ (K). 

In both cases it is a i < a2 < • • • < a;̂ ; a^ G 7^. 
We assume that we want to know the scalar resulting from the contracted 

product of both entities. We perform the contraction by using two different 
procedures: 

Procedure (a) (as if they were tensors in dual bases). The scheme to be 
followed is: We proceed to the "extension" of the exterior vector and the form. 
Remembering that the dimension of /\;^\K) and of [An (^)]*^ ^^^ dual of 
the previous linear space, is cr = (^) we have: 
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Table 9.1. Comparative tables of correspondences 

Concept i0V^)liK) Ar(^) 
Algebraic 
s t ruc ture 

Pr imal linear space of dimension a — Linear space of dimension a' = 

Enti t ies 
in it 

I ts tensors are homogeneous tensors 
of order r contravariant and anti-
symmetric over V^^K) 

I ts vectors are called "exterior vectors" and 
are the tensors on the left but wri t ten in 
another basis and by "strict" components 

P roduc t 
of vectors 

The tensor product of vectors (V2 (8) 
Vi ^ -Vi(8) V2); T - Vi 0 Vs 0 • • • 0 
Vr^. Not all T G {®V)l{K) can be 
wri t ten as a product 

The exterior product of vectors (V2 A Vi = 
-Vi A V2)] T == Fl A ^2 A • • • A y^. Not all 

A (r) 
(K) can be wr i t ten as a product 

Basis The basis associated wi th {CQ,} of 
V^^K): {e«j 0 6^2 'S) • • • 0 e^^} a^ G 
In', Z G I r CKl 7^ Q!2 7^ • • • 7^ CKr-

The basis associated with {CQ,} of V"^{K): 
{e«! A ( A ea^} Oii ^ In e ir 
Cti < a2 < • • • < CXr 

Change 
of basis 
relation 

Tensor equat ion for anti-symmetric\ 
total ly contravariant tensors: 

Lil i2 ••• i r 
K- ^ o . . . o ~ 

2 --«r- i l o i2 o _ _ ir- o 
) •• o ' o dj^ I o «2 ' o ctr 

; e In]i,j e Ir] 

V\ i^ ii i^ • • • ^ ir\ 
\ai ^ a2 "f • • • ^ Oir 

Tensor relation for exterior vectors: 
A^l *2 •••*r ) _ 
•̂  r̂  r, . . . o > 

^ ( a i « 2 -

CKi, ij G In 

il < 12 < • 

i-^ O i^ o 
I o CXI ° *^2 

^^2 o ^*2 ° . 
' o ai I o 0:2 

7 c 

• 7 c 

o a^ I o «2 ' 

< ir-; Oil < 0^2 < < ar 

Concept ivniiK) A17W 
Algebraic 
s t ruc ture 

Dual linear space of dimension a = n^ Dual linear space of dimension a' = (^ j 

Ent i t ies 
in it 

Its vectors are homogeneous covariant 
and anti-symmetric tensors of order r 
over V7(K-) 

I ts vectors are called "dual exterior vectors" 
and also "exterior forms" and are the vec
tors on the left but wr i t ten in another basis 
and by "strict" components 

P roduc t 
of vectors 

The tensor product of vectors T = 
V* ^v* ^•••0v; with v; 0 V* 7̂  
- F l * 0^2*-
Not all T G {<^V^)l{K) can be writ
ten as a product 

The dual exterior product of vectors T = 
Vi* A^s* A- • 'AV; wi th ^2* A^i* - -V{AV; 

Not all T G /\^'^\K) can be wr i t ten as 

product 

Basis Basis associated with {CQ,} of V^(K): 
{ ^ « 1 (g, e^«2 0 . . . 0 e"'"'"} ai G 
In] Z G /r-; CKl 7^ CK2 7^ • • • 7^ O r 

Basis associated wi th {e**^} of V^{K): 
{e*" i Ae*"2 A . - . A e * " ' ^ } ; ai £ In] i e Ir] 
ai < a2 < • • • < ar 

Change 
of basis 
relation 

Tensor equat ion for anti-symmetric 
total ly covariant tensors: 
, 0 o ••• o 
i l * 2 •••*r "" 

, 0 o ••• o o CXI o ot2 , , , „o oir 
OiiOi2---cy.r i i o 12 o i^ o 

OCi^ij G In]i,3 G Ir] 

h ^ i2 1^ • • • ^ ir] 

ai ^ a2 ^ • • • i^ ar 

Tensor relation for exterior vectors: 

{ili2---

' ( a i « 2 • 

" ) • 

ai,ij E: In]il < ^2 < 

ai < a2 < • • • < ar 

ir) (a) For T we start from T G /y^ {K) in the basis {e^i Ae*Q,2 A- • • Aê Q,̂  }, Formula 

(9.87), and we arrive at T € W ^ ( i ^ ) , represented as t^^^^^-^-^e ^,1^2-^, 

in the basis of W^{K) (already stretched). 
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(b) For F, we start from F G [/\^^\K)]* in the basis {e^^^ A e^^^ /̂  • • • A 
p ^ aia2---Oir e^^''} and we arrive at F € VF*'^(i^), represented as / / ^ ^ , ,^ x 

(already stretched) in the basis of W*^(i^). 

Since we are in the case of two normal dual spaces W^{K) and ]^*^(iir), 
we assume that they are in reciprocal bases {e'aiQ;2---ar} ^^^ {e* ö:iQ!2"-Q;r j.^ 
so that the connection matrix is G^ = I(j\ thus, we proceed to obtain the 
dot product of their vectors, which will be notated with caution as F{T) (the 
form of the vector) and will be called the ''value of the forrn'\ that is, 

and then 

•p(nn\ _ f o o ••• o AcxiOt2---OLr)Aßiß2---ßr) 
^K-^) — J {Oii0i2--0irr ßlß2-ßr- ^ O O •.- O 

•P(T\ — f ° O ••• O A0Li0L2---0iT) ri T^ (9.89) 

because the Einstein convention holds. 
Before continuing with procedure (b), we discuss if F(T) is intrinsic, that 

is, if it has an invariant tensor nature. 

W e k n o w t h a t F ( r ) = / ° ° "'• ̂ t^ ' ' ' ^ ' ""^^^ with a i < as < • • • < c r̂, is 

a sum of a — (^) main summands, over which the Einstein convention holds. 

Assuming that a change-of-basis in V'^{K)^ of matrix C = [c^°] is performed, 
we will study the value of the form in the new basis, using the formulas (9.73) 
and (9.81) adequately: 

/> O O ••. O 

•̂  ( a i Q!2 ••• Ctr) 

{iii2---ir) 
o o ••• o 

t ißlß2-ßr) 

O CKl 

Z l O 

o ai 
12 O 

O CKl 

C-

'oß^ 

^ oß^ 

O CX.2 

i\ o 

O Oi2 

12 O 

O OL2 
C-

I 0ß2 

f 0ß2 

o ar 

12 O 

. . . J 
il O 

0/5. 

' o ß^ 

^ O ßi ' ^ 0 / 3 2 " ' ^ O ßr 

and grouping, the result is 

{ßlß2-ßr-) 

1 

\ 

OOii OOC2 ^ 

il o il o 

o CKi o a2 
C C 

12 ^ i2 O 

o Oil o a2 

ir o i^ o 

o ar 

il o 

o ar 
' ' C 

%2 O 

o ar 

Zl O Zi O 

")" O ^ 1 7 o /32 ' 

Z2 O Z2 O 

")^ o / 3 i "^ o /32 ' 

V O ir O 

' ^ o / 3 i 7 o ^ 2 • 

Zl O 

" ^ o /3, 

^ Oßr 

ir O 

f ) .•• o caia2---arAßiß2---ßr) 
{aia2---ar) ßiß2---ßr o o ••. o ' 
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that once operated becomes 

•P(rp\ _ r O O -•• O , ( X 1 2 2 - - - V ) _ X O O ••• O , ( Q I Q!2 " • CKr) fQ Qr\\ 

^ \-^ ) ~ J {iii2-ir) o o - . - o ~ -I {oiia2-ar-r o o ... o ' y^.^V) 

which proves the scalar invariant tensor of a zero-order nature over the linear 
space ViK), of the form F{T) value. 

P rocedure (b) Now we execute the direct contraction of the exterior r-form 
F with the r-exterior vector T using expressions (9.87) and (9.88): 

= /(a;;:;.)*^??::;t^ [i^" A i*"̂  A ... A r^). (e„, A e., A ... A e„j; 

and remembering Formulas (9.66) and (9.67), the result is 

FmT = F{T)'r\ (9.91) 

Expression (9.91) provides the title of this section, and shows again that 
/yj^^ (K) and /y^j (Ä"), though they are dual linear spaces, are not in reciprocal 
bases, and due to this reason, the second procedure given the result that 
exactly answers the question in this section, and that is not what it was 
expected to (we expected the same result as in procedure (a)). 

9.9 Exterior vector mappings: Exterior homomorphisms 

We end the present chapter by making a brief exposition of the mappings of 
exterior linear spaces in other linear spaces. 

The exposition will follow a process analogous to that established in the 
final part of Chapter 5, where definitions and properties of the multilinear 
mappings of linear spaces "of direct product" or "total" have been developed, 
together with the correlative tensor ones. There is a singularity; we will restrict 
ourselves to homogeneous linear factor-spaces, in accordance with the concepts 
of the exterior algebra. We remind the reader that in Formulas (5.94) to 
(5.97) we introduced the multilinear mapping F , which applies the linear 
space "direct product" in another given linear space: 

F: ( X T / ^ ) ( K ) - . VF^(ir). 

r 
For any r-tuple, {vi^V2^ • •. ^Vr) € ( x V'^){K) where Wvi £ V^^K), we have 

F{vi,V2, ...,Vr)=we W'^iK). (9.92) 

In addition to the formal properties given in Section 5.11 (the multilinearity 
of F) we establish below two further properties: 
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1. We say that a multilinear mapping F is "symmetric" if it satisfies 

(9.93) 
2. A multilinear mapping F is said to be "alternate" or "anti-symmetric" if 

it satisfies 

(9.94) 

In what follows, we denote by Fg and Fa the multilinear mappings that 
are respectively symmetric or alternate. 

We remind the reader the "similitude" theorems that were treated in Sec
tion 5.11.1 for tensor morphisms. Next, we give "similitude" theorems for 
exterior algebras. 

Theorem 9.1 (Exterior). If Fa is an alternate multilinear mapping that ap

plies { xy^ \ [K) in W'^{K), and operates in the form Fa{vi^V2^... ^Vr) — 

w, there exists a unique multilinear mapping F^ that applies /\^\K) in 
W^iK), where 

F'^(vi AV2A'-'AVr) = Fa{vi,V2,...,Vr)=W. 

D 

As a consequence of this theorem, when one wants to operate an alternate 
multilinear mapping, one can work with a mapping F^ of exterior vectors or 
with a tensor anti-symmetric alternate mapping of order r in totally covariant 
dummy indices. 

In the final part of Section 5.11.2 this circumstance was clearly shown 
when proposing in Formula (5.103) that the tensor coefficients '^oß ß'---ß 
with 1 < /i < m, of the mapping F could be symmetric tensors for the Fg and 
anti-symmetric for the Fa. 

If we consider Formulas (5.102) and (5.103) and we notate with the indi
cated improvement, simultaneously grouping the basis e oi the linear space 
W^{K), we have 

Fa{eß^,eß^,..., eß^) = w{ßi,ß2,... ,/?^) = '^^ßj^'.'.'.ß/h- (9-95) 

Remark 9.2. This formula proves that if {cß} is the basis of V'^{K)^ the alter
nate forces r <n. D 

As the w^o Q [['Q are anti-symmetric for the covariant indices, we only 

consider indices without repetition, and if we denote by (71,72, ••• ,7r) such 
indices strictly ordered, such conditions can we written as 



9.9 Exterior vector mappings: Exterior homomorphisms 347 

{7i ,72 , . . . ,7 r} = {Ä,/32,....,/3r} (9.96) 

with ßi r^ ß2 ^ • •' ^ ßr and 71 < 72 < • • • < 7r from which results 

r ( 7 i 7 2 - - - 7 r ) - , , / i o o 
W 

h o o ••• o 
^ ßlß2--ßr " ^ o ( 7 i 7 2 " - 7 r ) ' (9.97) 

Remembering expression (5.101) for linear spaces that are all homoge
neous, and taking into account (9.95) and (9.97), we have 

W = Fa{vi,V2,. 

Ki-e 
• ^ 0 1 - ^ 0 2 . 

Ar^/32?^ 

- ^ \ ßlO ß20--- ßrO-rp /-^ -^ -^ \ 

• ßro\ h O O ••• O -* 

•^ or) ^ o / 3 i / 3 2 - / 3 / ^ 

•ßrOr{-n-f2-'7r)\h O O - . - O - . 

•-^ o r^ ßiß2-ß. ) ^ o ( 7 i 7 2 - 7 r ) ^ ^ 

'• ^ ßr and 71 < 72 < • • • < 7r. 

(9.98) 

This expression reminds us of Formula (9.19) in which the parentheses can 
be interpreted as the development of a determinant, that is, the minor of the 
rows /3i, /32, • . . , /3r of the matrix [Xi, X 2 , . . . , Xr]^^^ formed by the column-
matrices of the data vectors (t^i, 'Ö2, • • •, "̂ r) in the basis {CQC} of V'^{K). 

Thus, Expression (9.98) can be formulated as 

W^ Fa{vi,V2,...,Vr) = 

o 1 o 2 
^ß^O ^ß20 

o 1 o 2 

/3r. O ßr-O 
^ o 1 ^ o 2 

/5io 
o r 

/52 0 

o r 
^ t ( 7 ° 7 2 : : : 7 . ) ^ " ^ ^ ' ( ^ - ^ ^ ) 

which satisfies the conditions (9.96) and solves the alternate mapping direct 
product of the given data vectors and of the data F^, by means of the knowl
edge of its strict components '^^c ° ° "!! ° y 

The mapping Fa(tTi, '?2, • • •, Vr) in W'^{K)'. 

Fa: f xy-J(K)->T^-(X) 

is usually interpreted (following the line of Theorem 9.1) by means of two 
options: 

Option I: H^\{vi®V2®-"^Vr)-^ W^{K). 

(9.100) 

Option II: Hr,:{vl^V2^"'^Vr)-^ W^^(i^). 

To develop the first option (i^®), we choose from (9.98) the equality 

w =F{v,,v„ ...,vr)=x'ryr2:y':: {^':;j.::2) ̂ ^ i^-m 
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where we only require the conditions ßi G In and r < n. Grouping the mxrf 
terms of the central factor, since the mapping matr ix H^ is 

Ha 

loo • 
" ' o i l . 

2oo-
" ' o i l . 

?noo-
" ^ o l l . 

• o 

•1 
•o 
• 1 

••o 
• • 1 

loo-
" ' o i l . 

2oo. 
" ' o i l . 

Tnoo-
" ' o n . 

• O 

•2 
•o 
•2 

• •o 
••2 

1 o o • 
onn-
2 o o - ' 
onn-

W , 
moo-

(9.102) 

in which there would be [n'" — (^)^-] zeroes. Then, the w in (9.101) can be 
finally represented in matr ix form as 

H^{vi r) = [ei €2 ^•H^ 

l o l o 

l o l o 

- ^ 0 1 - ^ 0 2 

o r 
2 o 

. / 5 rO 

n o n o (TI 
rp rf , , , /y* ^ 

o 1 o 2 
n o n o 

^ o l ^ o 2 *• ' ^ 

- l ) o 

n ' ^ x l 

(9.103) 
Formula (9.103) has in the last matrix-column the components of the mul-

tivector {vi®V2'^- • -^Vr) and transforms it into a vector of W^{K)^ so tha t 
this is the interpretation of the first option and at the same time it offers a 
practical answer to the proposed theorem: 

i^a (^ l , '^2 , . - . ,^r ) = i^a(^l H^{vi Vr) = W. (9.104) 

The second option can be obtained by developing (9.99) in matr ix form. 
If we take into account tha t the number of tensor components of the type 

it;^/° ° " ' ° N, because they are strict in the covariant indices, is (^), they can 

be grouped into the matr ix 

H^ = 

1 0 0 - - - 0 

^ o ( 1 2 - - - r ) 

^ 2 0 0 - - - 0 

^o (12- - - r ) 

m oo---o 
( 1 2 . . . r ) 

i o o ... o 
0(71 72 •••7r) 
2 o o ."• o 
o ( 7 i 7 2 " - 7 r ) 

w 

w ^ w O (7172 •..7r-) w 

o ( ( n - r + l ) . . . ( n - l ) n ) 
2 o ... o o 
o ( ( n — r + l ) " - ( n—l ) n ) 

m o • • • 0 0 
o ( ( n — r + l ) . . . ( n — l ) n ) 

(9.105) 
which is the data matr ix of the exterior morphism F^{vi Av2 A • • - AVr) and 
contains its strict covariant components. 

It is the right moment to re turn to formulate expression (9.99) in matr ix 
form. If for the sake of simplicity we denote by Al each one of the first factor 
determinants in Formula (9.99) we have 
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w = H/\{viAv2A' • -AVr) = [ei 62 em]*HA • 

Al 
Al 

At) 

, (9.106) 

( : ) x i 

which permits us to determine the image vector F^\v\ Av2 A- - • AVr) directly 
in terms of the multivector's strict components, confirming again Theorem 
9.1: 

Fa{Vl,V2,. . . ,Vr) = F'\viAV2A' • • AVr) = H/\{viAV2A' • - AVr) = W. (9 .107) 

It is obvious that, since the two exterior morphisms {H^ and H/\) apply the 
same prototype, the data multivector, to the same image, the w G W'^{K)^ 
they will be related. Motivated by all the above considerations, we start from 
the following matrix relation: 

[H^ [HA < « 
r ( 7 i 7 2 " - 7 r ) - " o o ••• o 
^ O O ••• O •••ßlß2-ßr ( : ) x n -

(9.108) 

with 7i < 72 < • • • < 7r and ßi G In arbitrary. The species of the generalized 
Kronecker delta have been separated (the strict contravariant components 
from the covariant components), for they are to be simultaneously used for 
validating (0,1, —1) and as row and column indicators of its proper matrix. 

Analogously to the similitude Theorem 5.8, given in Section 5.11.1 of ten
sor morphisms, there can be established for the exterior morphisms another 
parallel theorem, that we only state, and that we invite the reader to develop, 
based on the trend indicated for Theorem 9.1 of exterior vectors. 

We denote by A' the exterior linear space: 

A' 
(r) 1 r (r) 

(9.109) 

and by B^ the exterior tensor space of all exterior multilinear endomorphisms 
that operate inside /Y^\K): 

B' = MC 
A i'r) A (r) 

(9.110) 

Theorem 9.2 (Exterior). There exists a unique isomorphism: 

#/, :A'^=±B' 

such that to each exterior tensor V1AV2 A- • - AVr)/\{ui'' AÜ2* A- • • Ati^*) e A^ 
corresponds an exterior multilinear endomorphism; 
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that transforms the exterior multivectors w^ = wi A W2 A - • • A Wr ^ An (^) 
into the form: 

T{w') = [{wi A tt;2 A • • • A Wr) • {ui* A Va" A • • • A u/)] {vi Av2 A- - - AVr). 
(9.111) 

D 

9.9.1 Direct exterior endomorphism 

Having established the exterior Theorems 9.1 and 9.2, we end the explanation 
of the exterior morphisms by solving the particular case of a direct exterior 
endomorphism, associated with a known and given endomorphism: 

H:V''{K)-^V''{K)', WiGV'iK): H{v^) = Wi, (9.112) 

where the data matrix H is square, H^-
We look for an associated exterior operator, denoted by Pa', that operates 

as Pa'{z) = tu, where z,w G /y^\K)^ of dimension a' = (^), and transforms 
z into w in the form 

Pa' {Vl AV2 A-" AVr) =Wl AW2 A- •' A Wr] ^Vi G ^^{K). 

Starting from Vi = a^'^'^e«,, and ?̂̂  = V^ol^ßj^ ̂ ^^^ 

/ o ^ : = / ^ ! ' « > ? ^ (9.113) 

substituting into the exterior products and remembering Formula (9.20) we 
get 

--a2 A • • • A 6c ^1 A -̂ 2 A • • • A ;̂̂  = [x ^ ^x ^^'"X ^ ^j Ca^ Aeo 

= |X^i Xr2 •" Xrr l̂ ê̂ yi Ae:y2 A---ASy^ (9.114) 

with 7i < 72 < • • • < 7r, notated in strict order and in the same line we have 

wJi A ^2 A . • . A ^^ = ( / ; i ^ / 5 i ) A (/o'2^/32) A • • • A ( / ; ; e > ^ ) . 

Substituting the right-hand side of (9.113) into the previous expression, we 
get 

^iA^2A-. '^^r^(h^r.yoi) K ^ > ? 2 ) • • • K ^ . : C : ) % Ae>, A. • .Ae,., 

which operated and grouped in a convenient form leads to 

(9.115) 
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As in Formula (9.115) the subindices ßj that relate the exterior products of 
the basic vectors ep. are yet totally free {ßj e In)^ it is convenient to write 

them in strict order, as it corresponds to any basis of a linear space /\^\K). 

Thus, by means of the corresponding Kronecker delta, we apply the conditions 
of expression (9.96) and get 

1Ü1 A w;2 A • • • A tür 

0 2 O 

2 ' 
/^ r (7 i72- - -7r 

y /3i/32-/3r o OLi o (y.2 • • ^ t a J ^ 7 i / \ ^ 7 2 A- A el 

(9.116) 

To facilitate the development of Formula (9.116) it is convenient to re
place in the scalars the notation of the strict r-tuple (71,72, .•• ,7r) by the 
strict r-tuple (Ai, A2, . . . , A .̂), which represents any of the (^) r-tuples of type 
(71,72,. . . , 7r) elegible in In. 

We use this modification to introduce the factor 1 — '̂ ^ ^ ' 

adequately spread in Formula (9.116). In summary, we have 

r i A i A2---Ar^) r OCia2'--Oir 

CX.\a2"-Ol.r ( A i A 2 ' " A r - ) 

Wi /\W2 / \ ' • ' f\Wj 
• Ar- ) CX-l O Ot2 O 

^ o r) ^ ( A i 
0 2 -

A2- •A,.) 

^ ( 7 i 7 2 - 7 . ) ^ / 3 i o ^ / 3 2 0 

P l P 2 - - - P r O Q!i O a 2 
••h' ^^-1 I \ ^'Yo / \ A e. 

Ir-) 

(9.117) 

where the factor-parentheses represent determinants, or more precisely, minors 
of the matrix 

[Xi X2 ••• Xr]^^^, 

the columns of which are the components of the data vectors ['zTi,iT2, • • • -i^r] 
in the first factor, and minors of the matrix Hn of the data endomorphism, 
which operates in ^"^{K)^ in the case of the second factor. Thus, we get 

ißl /\iD2 f\- " f\Wr 

Al o Al o 

A 2 0 
^ o 1 • 

, A 2 0 

' o 2 

A i o 

o r 
^A2 0 

Xr-O Xr-O 

o 1 o 2 
Ar O 

{hZ Oi2' 

A2-

, 7 2 
•Xr-y^ O Otl^O » 2 

7. o \ 

O OLr J •"Yl T 9 / \ * ' A e^ 

(9.118) 

and introducing the second minor into (9.118) yields 

t? i A 1Ü2 A • 
Aio Aio 

^ o 1 ^ o 2 
A2o A2o 

Xr-O Xr-O 

AWr 

Al o 
• • X 

o r 
A 2 0 

A r o 

o Al o A2 

o Al o A2 

O Ar-

O Ar-

O Al O A2 O Ar-

A e^2 A ' " /^ ^7r 5 
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(9.119) 

which gives the answer to the desired operator P^'. 
In Expression (9.119) the dummy indices (Ai, A2 • • • A^) appear, and take 

contractive values according to the Einstein convention, so tha t in reality the 
coefficient of e^^ /\ e^^ f\ -- • ^ e^^ has (^) summands. Note tha t in the first 
minor, the dummy indices are indicators of row, while in the second they are 
indicators of column. 

Example 9.1 (Associativity of the exterior product). 

1. Show tha t the exterior product of three vectors, over the linear space 
V'^{K)'. V Av2 /\vs^ is not an associative law of composition 

vi A {V2 A vs) ^ (^1 A V2) A '?3 7̂  iJi A 7̂2 A v^. 

2. Show tha t the previous question and its answer are not coherent with the 
exact meaning of "exterior product" . 

Solut ion: 

1. According to Formula (9.1), we have 

^2 A î s = '?2 0 ^3 - '̂ 3 (^ V2 

vi A {v2 A Vs) = vi^ {v2 A Vs) - {v2 A Vs) (8) vi 

and replacing the first into the second, we get 

Vi A {V2 A Vs) = Vl^ {V2 <S)Vs- Vs'S) V2) — {V2 0 ̂ 3 - ̂ 3 (8) V2) ^ Vl 

= Vi ^ V2 0 Vs — Vi <S) Vs ^ V2 — V2 ^ Vs ^ ^1 -^ '^3 ^ V2 ^ ^1-

On the other hand, if we calculate ^1 A ?2 A vs by means of Formula (9.6) 
we obtain 

Vif\V2f\Vs = Vl (S)V2^Vs +V2 <S>Vs0Vl +Vs<S)Vi0V2 — V2<S>Vi ^ Vs 

— Vs (8) i>2 (8) iT 1 — ^Ti (g) ^ 3 (8) ^ 2 

= "? 1 A {V2 A Vs) + [vs 0Vi^V2 —V2^Vi<S>Vs 

4- 2?T2 <S>vs^vi — 2 /̂3 (8) '?2 (8) vi]. 

The conclusion is tha t {Ti A (1/2 A 'Ö3) ^ zTi A iT2 A '^3. 
2. Vl /\V2f\vs must be interpreted as a single exterior law of composition, and 

not as two laws of composition, to which its inadequate notation leads. 
If the notation used for the exterior product of three vectors was, for 
example, /\{vi.,V2^vs)-> then, asking if the given expression is associative 
would have made no sense, because the operator symbol "A" appears only 
once in this expression. 
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D 

Example 9.2 (Change of basis in exterior algebras). Consider the contravari-

ant anti-symmetric tensors of order r == 2 tha t consti tute the tensor space 

[V^®V^]\{^) built over V ^ ( R ) in the basis {e^^}. 

We adopt for the tensor space the exterior basis {ea-^ A ea2}^ with the 

well-known conditions: a i ,üi2 G l3;a^i < 0:2, t ha t is, we assume tha t we are 

in the exterior linear space /Vg ( R ) . 

1. Obtain the expression of this basis of the exterior product or bivector 
A = xAy^ where 

f = 26*1 + 562 - Ses; y = ei - 63. 

2. In y^(]R) a change-of-basis ê  = c^^e^, of matr ix 

C = 
1 2 1 
1 0 3 

- 1 1 2 

is performed and we wish to know the expression of each of the new 
exterior basic vectors ê ^ A Ci^, in terms of the exterior initial basis. 

3. Find the formulas tha t relate the components of an arbi trary exterior 

vector of /\^ ( R ) , in each of the mentioned bases. 
4. Apply the previously found relation to obtain the new components of the 

bivector A. 
5. Obtain the components of the tensor A, relative to the tensor space (V^ 0 

F ^ ) ^ ( R ) in its initial basis. 
6. The same question but in the new basis. 
7. Are the formulas t h a t relate the strict components of the tensor A in the 

two bases of the previous paragraph the same as those indicated in (3)? 

So lu t ion: 

1. We apply the general formula (9.20). 
r 2 1 

The da ta vector mat r ix is [X1X2] = 5 0 | and 
1-3 - 1 

A = X AY • 

2 1 
5 0 

•̂  o 1 -^0 2 

ei A 62 + 

^OL\ ' \ ^Q i2 

O 2 

2 1 
-3 - 1 ei A es 

5 0 
-3 - 1 62 A 63 

and operating we obtain 

A=-X KY • -5ei A 62 + 61 A 63 - 562 A 63. 
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2. The columns of the change-of-basis matrix C are the components of the 
new basic vectors in F^(]R) 

ei = ei + 62 - 63, 62 = 2ei + 63 and 63 = ei + 3e2 + 263. 

We calculate the new basic vectors of /y^ (R) , again using (9.20) and 
obtain 

1 2 1' 
C= I 1 0 3 

-1 1 2 

61 A 62 == ^ Q 61 A 62 + 
1 2 

-1 1 61 A 63 

2 e i A 62 + 3 e i A 63 + 62 A 63 

61 A 63 
1 1 
1 3 

61 A 62 
1 1 

-1 2 61 A 63 + 

1 0 
-1 1 

1 3 
-1 2 

62 A 63 

62 A 63 

= 2 e i A 62 -f 3 e i A 63 + 5e2 A 63 

62 A 63 
2 1 
0 3 

61 A 62 
2 1 
1 2 

61 A 6 3 + 
0 3 
1 2 62 A 63 

6 e i A 62 4- 3 e i A 63 — 3e2 A 63. 

Summarizing, in matrix mode, the change-of-basis inside /\3 (R) is 

\ei ^ej\\ = ||eQ, f\eß\\r 

= [ 61 A 6 2 61 A 63 6 2 A 63 ] 

61 A 62 61 A 63 62 A 63 

- 2 2 6 
3 3 3 
1 5 - 3 

(9.120) 

3. We use two procedures: 

P rocedure (a): As we know the change-of-basis in the space fy^ (H), 
Formula (9.120), we can deal with this question as a linear space. The 
matrix relation between the initial and the new components. Formula 
(1.5) is 

T==rT^T = r-^T: 

f(12) 

f(13) 
^ 0 0 

f(23) 
^ 0 0 

- 2 2 6 
3 3 3 
1 5 - 3 

- 1 
(12) 

0 0 

(13) 
0 0 

(23) 

which, operated gives 

. i l 2 ) 

12 
(-2t (12) 

0 0 3t (13) _ .(23) 
^ 0 0 / 

(9.121) 
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f(13) _ _1 /^ (12) , 9.(23)x 
^ oo — "1̂ 2̂  ° ° "^^^ oo / 

£(23) ^ ^ f f ( 1 2 ) , ,(13) _ A23). 
oo 19 °° °° ° ° 

(9.122) 

(9.123) 

Procedure (b): We will have the opportunity of checking if the calcu
lations performed when answering the previous questions are correct, by 
attacking the problem again by means of the strict tensor relations for
mulated in (9.73) for the change-of-basis. First, we calculate the matrix 

C-' 
1 
12 

3 3 - 6 
5 - 3 2 

-1 3 2 

and from this we take the minors in (9.73): 

f(12) ^ ^ ( 1 2 ) 
oo ° 122 

3 3 
5 - 3 

f(12) = —(-2i^„„^+3t 

+ t 

(13) 
oo 

(13) 1 
oo 122 

^(23)x 
^ oo J 

3 - 6 
5 2 + t 

(23)_ 

122 
3 - 6 

-3 2 

(9.124) 

£(13) ^ , ( 1 2 ) _ i _ 
oo oo 192 

3 3 
-1 3 

f(13). 
122 

,(12) 

12 V 0 0 ' 0 0 / 
(23)x 

£(23) ^ , ( 1 2 ) 1 
00 00 1 9 2 

5 - 3 
-1 3 t 

(13)_L_ 
0 0 ^ 2 2 

3 - 6 
-1 2 

5 2 
- 1 2 

, (23) 

122 

, ^ ( 2 3 ) _ i _ 
^ 00 ;L22 

3 - 6 
3 2 

(9.125) 

-3 2 
3 2 

^ 1 ( ^ ( 1 2 ) +^(13) _ ^(23). 
- j o V o o ' 0 0 0 0 / (9.126) 

and since the results are coincident, we confirm the correction of the pre
vious answers. 

4. We use the Formulas (9.124) to (9.126) with the components of A obtained 
in question 1: 

. (12) 
0 0 

;(13) 

0 0 0 0 0 0 

.(12) 
12 

, (23 ) 

-2 - ( -5 ) + 3 - l - l - ( - 5 ) _ 3 
12 ~ 2 

+ ^Q 00 _ ( - 5 ) + 2 > ( - 5 ) _ _ 5 

~ 4 12 
(12) I (13) _ (23) 

. r 2 3 l ^ 0 0 " ^ ^ 0 0 ^ 0 0 

a^ ' — 
12 

12 

(-5) + l - ( - 5 ) ^ 1 
12 12' 

so that 
,- 3 ^ ^ 5^ ^ \ ^ ^ 

A = - e i A e2 - -e^ A 63 + — 6 2 A 63. 
2 4 12 

(9.127) 
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5. Applying Formula (9.15) to the basic vectors of the exterior algebra 
/\3 (R), in the bivector A, we have 

A = —5ei A 6*2 + ê i A e*3 — 5e*2 A ê s = —5(6*1 (8) 62 — e*2 (8) ei) 

-f ( e i (8) 63 - 63 0 e i ) - 5(6*2 0 63 - 63 (g) 62) 

and sorting we get 

A = —bei 0 6*2 + 6*1 (g) 63 + 56*2 (8) 6*1 ~ 5e*2 (S) 63 — 6*3 (g) e*i + 5e*3 (g) e*2, 

so that the matrix representation of the tensor components becomes 

; anti-symmetric tensor of order r ~ 2. 

6. Now we can apply two different procedures. We will use both options, 
because even though this complicates the example, it is more informative 
to the reader. 
Procedure (a). Since we already have A, Formula (9.127), we apply over 

it again Expression (9.15), which leads to 

< f ] -
" 0 

5 
- 1 

- 5 
0 
5 

1" 
- 5 

0 

A = - e i Ae2 - - e i A 63 
1 

^2^2 A 63 

3 - ^ - ^ - * - > 5 ^ - * ^ - ^ 1 ^ _ ^ _ _ ^ 
= 2 (^1 ^ ^2 - 62 g) 61) - - ( e i g) 63 - 63 (g 61) + — ( 6 2 (g 63 - 63 (g 62) 

and sorting, to 

,- 3 ^ ^ 5^ ^ 3 ^ ^ I - - 5^ ^ 1 ^ -:: 
A == - 6 1 (g 62 - - 6 1 (g 63 - - 6 2 g) 61 + -—62 (g 63 + - 6 3 g) 61 - — 6 3 (g 62 

and representing the tensor components in matrix form, we finally ob
tain 

0 3/2 - 5 / 4 " 
- 3 / 2 0 1/12 
5/4 -1 /12 0 J 

Procedure (b). Now we start from the tensor components in the tensor 
basis as an entity A E (V (g F ) | ( I l ) , and it is subject to a change-of-
basis of tensor nature. We know that a = n'̂  = 3^ = 9, and 

Ki] 

^ij aß io JO (9.128) 

and writing the equation in matrix form, that is, using Formula (4.36), 
we have 

i . , 1 = (C-^ ® C-1) . A,,i 
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3 3 - 6 
5 - 3 2 

-1 3 2 12 

3 3 - 6 
5 - 3 2 

-1 3 2 

0 
- 5 

1 
5 
0 

- 5 
- 1 

5 
0 

1 
12 

" 0" 
18 

-15 
-18 

0 
1 
15 
-1 
0 

" 0 " 
3/2 
-5/4 
-3/2 
0 

1/12 
5/4 

-1/12 
0 

0 
-3/2 
5/4 

3/2 
0 

-1/12 

-5/4 
1/12 
0 

and condensing Ao-̂ i, we obtain the new tensor components 

A = [äZ] 

7. The equality of the strict components of tensor A, calculated in questions 
4 and 5, together with the A in the new basis, questions 6(a) and 6(b), 
suggests that such components (those obtained in general for a exterior 
vector in question 3) could be the same for a tensor change, a suggestion 
that is to be checked. 
We start from the tensor equation (9.128) and we develop it by the classic 
method of matrix products (in accordance with the criterion of solving 
the problems by several procedures). 
Preparing (9.128), for the matrix process and for arbitrary anti-symmetric 
tensors, we have 

oo ' o a o o I ßo'> 

that is, 

Kf] = (c-^) 

12 

.(12) 
^ oo 
,(13) 

f(12) 

, (23) 

.(13) 
^ oo 
, (23) l ^ t 

ic-') 

3 
5 

-1 

3 
-3 
3 

-6" 
2 
2 

0 
_^(12) 

oo 
^(13) 

- ^ oo 

^(12) 
^ oo 

0 
,(23) 
^ oo 

^(13)1 
^ oo 

(23) 

oo 

0 

1 

12 

• 3 

3 
-6 

5 
-3 
2 

-1 
3 
2 
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1 

12 

_2^(12) 3^(13) _ ^(23) 
oo oo oo 

2t 
(12) 3^(13) (23) 

oo ' oo 

^(12) 2t(23) • 
oo ' oo 

(12) (13) _ (23) 
oo ' oo oo 

(12) __o.(23) 
^ oo "̂ ^ oo 

_^(12)_^(13) 

and identifying with the matr ix 

t^J _ 

0 

^ oo 

r ( i2) 

-t (13) 
-t 

(23) 

, (23) 

f(13) 
^ oo 

f(23) 
^ oo 

0 

we obtain 

f (12) 

X(13) 

r(23) 

1 

12 
1 

12 

_2^(12) 3^(13) 
oo oo 

(23 ) \ 
oo J 

(12) (23 ) \ 
oo ' oo y 

1 / i l 2 ) -(13) _ i 2 3 ) \ 
l o V o o ' o o o o y 

In effect they are the same as Formulas (9.124), which proves tha t it is the 
same to execute a change-of-basis over a totally anti-symmetric tensor, as 
it is to execute it over the strict components of its corresponding exterior 
algebra. In summary, the changes of basis executed with the exterior al
gebra technique have a tensor nature^ for the strict components, because 
the same results are obtained if the change-of-basis is performed over the 
anti-symmetric tensor of the respective, linear space tensor product with 
the classic homogeneous equations. 

D 

Example 9.3 (Linked systems). Consider the non-null multivector a i A a2 A 

• • • A ap G \^^\K), where Va^ G V'iK). 

Determine the vectors hj G V'^{K) tha t satisfy the condition 

op A 6p_i A • • • A 62 A 6i — a i A a2 A • • • A a^; i^j £ Ip. 

Solut ion: I t is well known tha t in any exterior algebra /y^^ {K) t he following 
property is satisfied. If a A 6 • • • A c ^ Q then i t i s : r A a A - - - A c = ß tha t 
implies ^ is a linear combination of vectors (a^b^... ^c). 

With the help of this property, we multiply the given expression by the 
arbitrary vector bj G {^1, ^2, • • • 5 ^p}-

bj Abp A bp-i A • • • A 6j A • • • A 62 A 61 = 6j A a i A a2 A • • • A ttp, 

and since the first member has two equal vectors it is null, so tha t bj A a i A 

ä2 A " ' A äp = Q. Thus, when applying the initially cited property, bj is a 

linear combination of the remaining vectors 
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•H-A^X; 3A,-7^0; j G J p (9.129) T* > lo-> , 2o-* 

^j =A^^.ai + A^̂ .a2 

It remains only to determine the scalars A^°. 

Adopting the vectors {a^} as a basis, which is licit because their number 
is p and in addition they are a free system since their multivector is non-null, 
we proceed to the calculation of the exterior product bp A bp-i A • • • A 62 A 61. 
To this end, we first calculate 61 A 62 A • • • A 6p with Formula (9.20), which 
forces the last ordering: 

bi Ab2 A- " Abp 

l o 
o l 
2o 
o l 

l o 
o2 
2o 
o2 

A l o 
op 
20 
op 

.po 
^ o l ^ 0 2 

o2 

A!! 

ai A a2 A • • • A a« 

Next, we proceed to order the indices on the left-hand side. We execute the 
following transpositions: bi is transposed with ö^, &2 is transposed with öp_i, 
63 is transposed with 6p_2, etc. Thus, if p is even there are p/2 transpositions, 
and if it is odd, there are {p — l ) /2 . In addition, as the exterior product is 
alternate, we get 

bp Abp-i A'" Ah Ah = [(-1)^/^ or (-l)(P-i)/2l 61 A 62 A • • • A 6p 

and finally, the relation becomes 

( - l ) P / 2 or ( - l ) ( P - i ) / 2 ' 

ol o2 

ol o2 

ol o2 

^op 
^ 2o 

• ^op 

.po 
' ^op 

aiAa2A- 'Aap -- a\Aa2A' • -Aap, 

(9.130) 
which leads to the following conclusion: 

\ip — even: The vectors 6̂  are chosen according to (9.129). Their scalars A*° 
must satisfy the condition 

( _ l ) p / 2 

-^ol 

A 2o 

^ o l 

>po 

^ o l 

^ 0 2 • 
o2 A 2o 

^ o 2 • 

^ 0 2 • 
o2 

^ o p 

A 2o 

APO 

• ^ o p 

1, 

in agreement with (9.130). 
If p z= odd: With respect to the b^ we choose them in the same form, with 

(9.129). The scalars A^° must satisfy the condition 
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( - 1 ) 
( p - l ) / 2 

A': A'° o l 
. 2o A?? A'° 

o2 
2o 
o2 

y,pO 

^o2 
o2 

^1° 
op 

, 2 o 
= 1, 

in agreement with (9.130). 

D 

Example 9.4 (Bivectors). 

1. Consider the vectors vi = 2ei + 3e2 + 4e4 and V2 = — 63, iTi, •U2 ^ V ^ ( I l ) , 
referred to a basis {e^} . 

We wish to know the bivector vi /\ V2 ^ /y^ i^)• 
2. In a linear space y^(IR) with basis {e^} we consider the vectors v = 

2ei — 6*2 + 2e3 and w — ei — e2 + es. 

a) Obtain the ordinary components of the bivector v Aw. 
b) Obtain the strict components of the bivector v Aw. 

Solut ion: 

1. The da ta vector matr ix is [X1X2] = 

(9.20), we have 

'?Ti A 'z;2 = 

"2 
3 
0 
4 

0" 
0 

- 1 
0 

and applying Formula 

CX-l O Cti O 

^ o 1 ^ o 2 

-^ o 1 - ^ 0 2 

6Q:I A 60-2 

2 0 
3 0 

3 0 
4 0 

ei A 62 + 

62 A 64 

2 0 
0 - 1 

0 - 1 
4 0 

ei A 63 + 

63 A 64 ; 

2 0 
4 0 ei A 64 3 0 

0 - 1 
e2 A 63 

and since the dimension of /\^ ^ ( R ) is a^ = (^) = (2) = ^ this leads to 

iTi A 'Ü2 == - 2 e i A 63 - 3e2 A 63 + 4e3 A 64, 

which is the exterior vector of components (0, —2, 0, —3,0,4) in the basis 

{ei A 62, ei A 63, ei A 6*4, 62 A 63, 62 A 64,63 A 64} of f\ ( R ) . 

2. We solve this problem in two different forms. 

Solution by means of the direct procedure: We proceed to execute the 
exterior product of the two vectors v and w and passing it immediately 
to the tensor product 
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vAw=^v0w — w^v= (2ei — 62 + 263) (g) (e*i — 62 + 63) 

- (ei - 62 + 63) (g) (2ei - 62 + 263) 

:= - 6*1 (g) 62 + 62 (8) 61 + 62 (g) 63 - 63 (g) 62- (9.131) 

In conclusion (—1,1 ,0 ,0 ,1 , -1 ) are the bivector v Aw components in the 
basis 

{ei 0 62,6*2 (g)ei,ei 0es,es (g) 61,6*2 0 6*3, 63 ^ 6 2 } 

of the contravariant and anti-symmetric tensor subspace of order r = 2, 
{V^ (g) F 3 ) | ( I I ) , of dimension r! (;?) = 2 © = 2 - 3 = 6. 

However, the "ordinary components" are defined as a tensor of the tensor 
space {V^ (g) F ^ ) ^ ( R ) of dimension cr = n'̂  = 3^ = 9, referred to its 
ordinary basis {ei (g)ei, ei (g) 62, •' * 5^3 ^ ^ 3 } ^^^ i^ matr ix form, tha t leads 
to 

0 - 1 0 " 
1 0 1 
0 - 1 0 

[t' o oJ 

Solution by means of another procedure: Sorting (9.131) by strict compo

nents^ t ha t coincide with those of the upper triangle above the diagonal 

of the matr ix [t^^], the result is 

V Aw = (—l)(ei (g)e2 - 62 (g) ei) + 0 • (ei (g) 63 - 63 (g) ei) 

+ 1 • (e*2 (g) 6*3 - 63 (g) 6*2) 

= —6*1 A 6*2 + 0e*i A 6*3 + 6*2 A 6*3 

of components (—1,0,1) in the basis of /\^ 0^)-
The previous solution can be executed directly with Formula (9.20), which 
is to be checked. 

In this case, the data vector matrix is [X1X2] and 

V Aw 

Oil 0 

^ 0 1 ^ 

Q!2 0 

^ 0 1 ^ 

2 1 
- 1 - 1 

Oil 0 

0 2 

0i2O 

0 2 

6*1 / 

e a i A 

^e*2^-

°Ci2 

2 1 
2 1 6*1 A 6*3 + 

-1 - 1 
2 1 

62 A 6*3 

V Aw = —6*1 A 6*2 + 0 6*1 A 6*3 + 6*2 A 6*3 

with components (—1,0,1), which confirms the previous processes. 

D 

Example 9.5 (Contramodular exterior algebras An (^)y'- Consider the exte

rior algebra fy^^{Wl) built over the linear space F"'(]R), referred to the basis 
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{ca}- Consider an exterior tensor T^ T e /y^^Jl) the strict component of 
which is a G R; a ^ 0. 

We execute in the linear space V^CR.) a change-of-basis of matrix (7, the 
relative modulus of which is a~-̂  = 1/a. 

1. Obtain the strict component of T in the new basis. 
2. Give the "ordinary components" of T, in both bases. 

Solution: 

1. In Section 8.2.1, on modular tensors, we defined the concept of relative 
modulus as the determinant |(7|, so that \C\ — a~^. 
On the other hand, the relation (9.84) gives the tensor strict relation for 
the change-of-basis in our exterior algebra, that is, 

. _ r ( 1 2 - n ) _ , ( 1 2 . . - n ) | ^ | _ l _ 1 
^ - ^ o o . . . o - ^ o o . . . o l ^ l ~ TC\ 

and since r = 1^^'"'^ = a, the result is f = i^^'"^^ = jhn ''T = -^ • a — 
0 0 - - - 0 ' 0 0 - - - 0 | G | a ^ 

a\ 
2. Formula (8.103) for modular tensors, permits us to establish the compo

nents of a contravariant and anti-symmetric tensor of order r, over V"'(i^), 
in terms of its strict components 

^ O O ... O — ^{ßlß2-ßr) O O . . . O • 

Since in our case r = n, we have 

,Oi\Ot2-"Otn r Oiiot2---otn Al2---n) 

^ o o . . . o ~" ^ ( 1 2 •-• n y 0 0 . . . 0 

or 
, Q ; I Q!2 ••• CKn Q l 0:2 •••CKTJ, , ( 1 2 . . . n ) (XlOL2---0!-n 

o o ... o o o ... o 0 0 . . . o o o ... o ' 

the ordinary components of T in the initial basis, since r = a^ are 

K o... o =^0 o... o^; one In] aiy^aj', 

with a total of n\ strict components (without the zero element). 
The ordinary components of T in the new basis, with T — a^^ are 

^^l^2•••^r^ _ iii2-'-in ^ 2 
o o .. . o o o . . . o 

As is well known, ^^'^^'^'"^•^ = ^^ii2---in ^^^ Levi-Civita tensor is isotropic. 
' o o ... o o o ..- o -̂  

D 
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Example 9.6 (Contramodular and comodular determinants). Consider the lin
ear space V'^{K) referred to a basis {eg}. We give the name "determinant" 
defined over ^/"^{K) to an alternate form that applies the linear space "direct 

or total product" in its proper field. VXQ, E F ^ ( Ä ' ) , where x^ = x^'^Cß^ it is 

Fa{xi,X2,...,Xc,,...,Xn) = \x^^l\= A; A £ K. 

We wish to study the problem of change-of-basis of this tensor: 

1. Facing the problem as a tensor function. 
2. Based on the analysis of the strict component, contramodular or comod

ular of the exterior algebras /y^^ (K) and /y^^ (K). 

Solution: 

1. Consider the initial and new bases of F'^(R), {ep} and{ej}, respectively. 

o z J A vector can be represented as x^ = ^oa^^ ^^^ ^^^^ ^^ ^^ ~ ^i°i^j 
depending on the considered basis. 
Each vector of the determinant (organized in columns) assuming they are 
contravariant vectors, changes as a contravariant tensor of order r = 1, 
according to the relation ^0° = ^f^'^oß- Taking determinants and using 
the Binet-Cauchy property, we get 

If we set b^°l 
1 0 CKi 

Än=A„\C-'l 

\<:\ = \<:\\ii; 

= An and |x^°| = An, t b 

that is, 

An = icrM„, 

An^ the previous relation becomes 

which proves that the determinant of contravariant vectors changes as a 
"tensor capacity", i.e., as a contramodular scalar (see modular tensors). 
Similarly, if we deal with covariant tensors of components (x*,x*) with 

respect to the bases {e^^^e }, the tensor relation is (x*)°^ = (^*)'^o^°o' 
and taking determinants and notating with one asterisk (*) we have 

A* = \C\A*, 

which proves that the determinant of covariant vectors changes as a "ten
sor density", i.e., as a comodular scalar. 
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2. Star t ing from the Formula (9.20), applied to an exterior product of 

Ai'^^(Il), the result is 

Vi /\V2 f\- " /\Vn — 1^1-^2 • • • ̂ n 1̂ 1 A 62 A • • • A 6^, 

a tensor with strict component ^ oo""o = IX1X2 • • • Xn\ = ^n-

Similarly, if we consider the Formula (9.50), applied to an exterior product 

of Ai ' ' j ( i^ ) , the result is 

^ A ^ A • • • A î ; = \X^X; • • 'X^ir^ A e"̂  A •. • A e"'̂  

a tensor with strict component ^n 2'-"n) ~ l ^ i ^ l ' ' ' ^n\ = ^ n -

Applying to the cited components the results of the change-of-basis ana

lyzed in Section 9.6, Formulas (9.84): fUZ"^^ = j^^^oo^^^o^ ^^^ (9.86), 

HlZZ) = I^l^(i2":n)' we respectively get 

and 

A* = |C|zi;, 
which are those previously obtained. 

D 

Example 9.7 (Exterior mappings). Let F be an exterior p-linear mapping 

Fee 

tha t applies a p-exterior vector in the vector w E W^ {K) as 

^Xi e V'^{K),F{xi A X2 A " ' A Xi A " • A Xp) = w; p < n. 

1. Show tha t if Xi = 0, this implies F{xi A X2 A • - • A Xp) — ^w 
2. S h o w t h a t F ( f i A f 2 A - • •A( - f i )A- • -AXp) = - F ( X I A £ 2 A - ••Af^A• • -AXp). 

Note: We wish intrinsic proofs, tha t is, without reference to bases of the linear 
spaces. 

Solut ion: 

1. We know tha t due to the tensor multihnearity of the anti-symmetric ten
sors (exterior vectors are anti-symmetric), the following holds: 

F{xi Ax2 A'" AXi A" ' AXp) = F{xi Ax2 A • • - A {xi-^Ö) A • • • A Xp) 

= F{xi A f 2 A • • • A rr̂  A • • • A Xp) 

-^F{xi A f 2 A - - - A 0 A - - - A Xp). 
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Thus, it can be writ ten tha t in the linear space W'^{K) we have 

w = w -h F{xi A f 2 A - - - A 0 A - - - Afp ) , 

which shows tha t the enti ty of W'^{K), F ( x i Ax2A- • • AOA- • -AXp) behaves 
as if it were the zero Ow But, according the properties of all linear spaces, 
the zero element is unique^ so tha t F{xi A X2 A - - - A 0 A • • - A Xp) — ^w 

2. Starting from the previous question, we have 

Ovi/ ~ F{x\ A f 2 A • • • A 0 A • • • A Xp) 

= F ( f 1 A X2 A • • • A (fi -f ( - f z ) ) A • • • A fp) 

= F(x\ A X2 A- • 'AXi A- • -AXp) + F{xi A X2 A- • -A {—Xi) A- • -AXp), 

thus, in the image linear space W'^{K)^ the previous relation can be 
writ ten as 

Ow = w-^F(xi A f 2 A • • • A {-Xi) A • • • AXp), 

from which we conclude tha t the entity of W'^{K), F{x\ A X2 A -- - A 

{—Xi) A • • • A Xp) behaves as if it were the opposite vector to the vector 

w{Ow = yj -\- {—w)). But , since the opposite vector is unique^ we have: 

F{xi A ^2 A • • • A {—Xi) A • • • A Xp) = —w, 

and then 

F{xi A £2 A • • • A {-Xi) A-" AXp) = -F{xi A X2 A • • • A f̂  A • • • A Xp). 

D 

Example 9.8 (Products of exterior vectors). Consider the exterior tensors: 

T = t^T:^e^, A e „ „ con i^«^",^) = a, + «2, 

and 
S = s^T:^e^, A e , „ con s^l'^"^ = a i - as , 

belonging to the exterior algebra /y^ ( H ) . 

1. Determine the exterior tensor Wi — T/\S. 
2. Determine the exterior tensor W2 = S/\T. 
3. Determine the exterior tensor W3 = T/\T. 
4. Determine the exterior tensor W4 = S/\S. 
5. Check tha t it satisfies the Newton binomial formula, calculating {T-\-S)^. 

Solut ion: We have 

T/\S,S/\T,T/\T,S/\S e /\^yn). 
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1. Applying Formula (9.44) we have 

_ L ( 1 2 ) ( 3 4 ) c ( 1 2 3 4 ) , ( 1 3 ) (24) . ( 1 2 3 4) 
— [̂  oo "̂  oo ^ ( 1 2 ) ( 3 4 ) "T"^ oo "̂  oo ^ ( 1 3 ) ( 2 4 ) 

(14) (23 ) . ( 1 2 3 4 ) (23) ( 1 4 ) . ( 1 2 3 4) 
^ ^ oo ^ oo ^ ( 1 4 ) ( 2 3 ) "T"^ oo "̂  oo ^ ( 2 3 ) ( 1 4 ) 

, ^ ( 2 4 ) ( 1 3 ) . ( 1 2 3 4 ) 
^ ^ oo ^ oo ^ ( 2 4 ) ( 1 3 ) 

(34) ( 1 2 ) . ( 1 2 3 4 
"+"^ oo "̂  oo ^ r 3 4 ) ( 1 2 

) 
(34) (12) 6 i A 62 A 63 A 64 

= [3 • ( - 1 ) • (+1) + 4 . ( - 2 ) . ( - 1 ) + 5 • ( - 1 ) . (+1) + 5 . ( - 3 ) • (+1) 

+ 6 • ( - 2 ) . ( - 1 ) + 7 • ( - 1 ) . (+ l ) ]e i A 62 A 63 A 64 

= ( - l O ) e i A 62 A 63 A 64 

and then 
Wi ^ ( -10 ) 61 A 62 A 63 A 64. 

2. Applying Formula (9.48) we have 

S/\T = {-iy'T/\S = {-lfT/\S = ( - 1 ) ^ T / \ 5 . 

In summary 

W2 = S/\T = T/\S = ( - lO)e i A 62 A 63 A 64 (Abeiian algebra). 

3. The exterior tensor T/\T is 

W. - T A T - r 4 ( 1 2 ) , ( 3 4 ) . ( 1 2 3 4 ) ( 1 3 ) , ( 2 4 ) . ( 1 2 3 4) 
Ws - 1 / \ 1 - \t ^^t ^^ 0^^2) (34) + ^ 0 0 ^ 0 0 ^ ( 1 3 ) ( 2 4 ) 

. ( 1 4 ) . ( 2 3 ) . ( 1 2 3 4 ) 
00 "- 00 ^(14 ) (23 ) 

, ( 23 ) ( 1 4 ) . ( 1 2 3 4 ) 
^ ^ 00 ^ 00 ^ ( 2 3 ) ( 1 4 ) 

^ ( 2 4 ) ^ ( 1 3 ) ^ ( 1 2 3 4) _^ ^ ( 3 4 ) ^ ( 1 2 ) ^ ( 1 2 3 4) 
+t̂  00 "- 00 ' ' (24) (13) ^ '̂  00 "̂  00 ' ' (34) (12) 6*1 A 6*2 A 6*3 A 6*4 

[3 • (7) • (+1) 4- 4 . (6) • ( - 1 ) + 5 • 5 . (+1) + 5 • 5 • (+1) 

+ 6 • 4 • ( - 1 ) + 7 • 3 • (+ l ) ]e i A 62 A 63 A 64 

44ei A 6*2 A 6*3 A 64. 

4. The exterior tensor S/\S is: 

W4 - S/\S 
(12) r 3 4 ) . ( 1 2 3 4 ) , r i 3 ) f 2 4 ) . ( 1 2 3 4) 

^ ' o o ' ' ^ ' o o ' ^ ( 1 2 ) ( 3 4 ) ^ ' o o ' ' ^ ' o o ' ^ ( 1 3 ) ( 2 4 ) 

I . ( 1 4 ) _ ( 2 3 ) . ( 1 2 3 4 ) (23) ( 1 4 ) . ( 1 2 3 4) 
"^^ oo ^ oo ^ ( 1 4 ) ( 2 3 ) "^ '^ oo -̂  oo ^ ( 2 3 ) ( 1 4 ) 

^^ oo ^ oo ^(24)(13) ^ -̂  oo -̂  oo ^(34)(12)J ^1 ^^ ̂ 2 A 63 A 64 

[ ( -1) . ( - 1 ) . (+1) + ( - 2 ) . ( - 2 ) . ( - 1 ) + ( - 3 ) . ( - 1 ) • (+1) 

-f ( - 1 ) • ( - 3 ) • (+1) + ( - 2 ) . ( - 2 ) . ( - 1 ) + ( - 1 ) • ( - 1 ) . (+1)] 

6*1 A 6*2 A 6*3 A 6*4 

0 6*1 A 6*2 A 6*3 A 6*4 = O4. 
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5. The Newton binomial formula for (T + S)^ is 

(T + 5)2 - (T + S)/\{T + 5) = T/\T + Tf\S + S/\T + S/\S 

= T/\T + 2T/\S + 5 / \ 5 = T^ + 2 T / \ 5 + 5^. 

We will prove that our tensors satisfy the Newton binomial formula. 
We have 

(T + 5)2 = T A T + 2T A 5 + 5 A 5 = [Ws + 2Wi + W4] 

= [44 H- 2(-10) + 0]ei A 62 A 63 A 64 = 24ei A 62 A 63 A 64. 

A direct calculation would have given 

(T + 5)2 = (T + 5 ) / \ ( T + 5) 

= [(ai+a2)H- (a;i-a2)]ec,iAec2A[(^3+Q;4) + (0^3-0^4)] 

== (2ai)ea, A Co,^/\{2az)eo,^ A 4 ^ 

=- 4(aie;,, A Ca^)/\{oi3ea3 A ^ 4 ) 

- A T I .q/y(12 34) -, 2^ (12 3 4) . . OA^^ ^ 34) 2 . 1 ^ ( 1 2 3 4) 
— 4t ^1 ->0(i2)(34) ^ -̂  ^^(13)(24) ^ -̂  ^ ^ ( 1 4 ) ( 2 3 ) ^ ^ -^'^(23)(14) 

+ 2 • l^SL') J3) + 3 • 1S[1^^ f j j + ] 61 A 62 A 63 A 6-4 

= 2 4 e i A 62 A 63 A 64, 

which confirms the previous result 

(T + 5)2 = 24ei A 62 A 63 A 64. 

D 

Example 9.9 (Condition for T £ An (^) ^^ ^^ ^^ exterior product). Let 

P — p II Si A ej be an exterior vector of the algebra An (-^)' established 

over the linear space ^"'(IR) in the basis {e*̂ }. 

1. Show that for it to be decomposable, that is, for P to proceed from an 
exterior product P == V̂  A 1^, it is necessary that it satisfies the relation 

P o X o +Poo^oo +P00P00 = 0 (9.132) 

among the non strict components of P. 

2. How many different expressions can represent the proposed condition? 
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Solution: 

1. If P = p̂ ^̂ ê*̂  A Sj = plii^i ^ ^j — ^j ^ ^i) is an exterior vector product 
of the form 

\/i < j we must have 

o ^ o 

o ^ o 

{Ci ^ßj — ßj (8)6^), 

i j o ^ o 

3 3 

^i yi 

and p^ 3^ o ^ o 

O "^ O 

(9.133) 

We examine the conclusions to which the left-hand expression of (9.132) 
leads, if we substitute it in (9.133). We have 

i j k£ ^. ik i j , i £ j k i j 
k 

^o 

e 
^ 0 

k 
Vo 

t 
Vo 

i k 
+Poo 

e 
^o 

j 

K 

e 
Vo 

i 

vi 

, ii 
+Poo 

j 
< 

k 
^o 

j 

vi 
k 

Vo 

ik 
vi 

k 
Vo 

e 
Vo 

Vo 

i 

k 

i 

-i 

i 
Vo 

k 
Vo 

i 
Vo 

e 
Vo 

Xr.yi -
O'^ O 
i k 
O'^ O 

i £ 
O'^ O 

3 * 
o^ o 

k i 
o^ o 

i i 
o<^ o 

< 
k 

vi 
k 

Vo 

Vo 

=z 

* 3 

^r.yi 
o^ o i k 
O'^ O 

i t 
o^ o 

< 
k 

e 

vi 
k 

Vo 
t 

Vo 

-

7 i 

^iyr. 
O^ 0 k i 
O^ 0 

£ i 
o^ o 

< 
k 

e. 

y'. 

k 

Vo 

= 0 — 0 = 0 (because their columns axe proportional). 

Then, iiP = VAW then ^ p ' ^ p " + plYj^ + pUpH = 0. 
' ^ o o-^ o o -̂  o o-^ o o -^ o o-̂  o o 

2. If we exchange the indices i and j in (9.132), and again take into account 
(9.132), we obtain 

j i k£ . jk £i , j £ ik j i k£ , j £ ik . jk £i 
PooPoo+PooPoo+PooPoo =PooPoo+PooPoo+PooPoo 

ij k£ ik £j 
^oo-^oo ^oo^oo 

i£ jk r\ 
• P o o P o o = 0 

and then 
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= V /\W —^ V V -\- V V -{- V V = 0 . 

If we exchange the indices j and k in (9.132), we get 

ik i i 
PooPoo 

i j Ik , i (, kj 
" o o^ o o ^ o o-̂  o o 

ij ik , ik ji , ii kj 
^ o o ^ o o ' -^oo-^oo * -^oo-^oo 

ij ki 
•^oo-^oc 

ik ij i i jk >-> 

-^oo-^oo 

and then 
P f/- A TTV ij ik , ik ji , ii kj r\ 

If we exchange indices i and A: in (9.132), it is also satisfied, which proves 
the intrinsic nature of the relation (9.132) for the exterior vectors of order 
r = 2, which are decomposable. 
The concrete number of different relations is given by the different pos
sibilities of the numerical values that can take the indices ahead {ijk£) 
of the formula, because the order of the rest depend on them. Thus, the 
number of relations to be stated in each case is 

^ n , 4 — 

D 

Example 9.10 (Tensor and exterior algebras). Let 

' 6 x 0 6^, U Xfj,- 1 Cjj, a n d V < V ^ ® e * ^ 

be three homogeneous tensors defined over the linear space V^(R), with com
ponents 

aßo oJ 

• 0 0 
0 0 

- 1 2 
1-3 

1-2 
- 1 3 

0 0 
0 0 

Xlj,-\ 1 2 
- 1 3 A/Li 

where a and ß are the row and the column block, respectively, and A and /i 
are the rows and the columns of each submatrix, respectively. 

1. If we perform a change-of-basis in V^^(IR), defined by 

ei = ei — 62; 62 = —ei + 2e2, 

obtain the components of the tensors T, U and V in the new basis. 
2. Obtain the doubly contracted tensors of T, indicating its nature, assuming 

the initial basis. 
3. Obtain, in the initial basis, the tensors R and 5, defined as 

A/Li ,ooA/i, aß^ 0 0 o o , o o A / i , 
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4. Study the symmetries and anti-symmetries of tensor T. 
5. If a = ö?*'-̂  +2e*^^, obtain the conditions to be satisfied by the components 

of the vector h e V^{H) for a A 6 = s°^ . 

Solution: 

1. As the given change-of-basis equations give the inverse information, it is 
necessary to invert it, to find the direct change-of-basis matrix C. We have 
ai = n'^ = 2"^ = 16, and 

6162 6162 
1 - 1 

-1 2 c-' = 

c = 
1 - 1 

-1 2 
2 1 
1 1 

The change-of-basis tensor equation is 

a* = 
2 1 
1 1 1̂1 

,ooim 
i j o o 

tOoXfj, o a oß io mo 
Oißo o i o j o ' o A ' o / x ' 

which in matrix form becomes 

^ 1 6 , 1 - {C (g) C 
4 2 2 1" 
2 2 1 1 
2 1 2 1 
1 1 1 1 

0 C 

0 

c- •T, 16,1 

1 - 1 - 1 
- 1 2 1 
- 1 1 2 

1 - 2 - 2 

1" 
- 2 
- 2 

4 

\ 

/ 

•Ti 

• 4 - 4 - 4 4 
- 4 8 4 - 8 
- 4 4 8-8 

4 - 8 - 8 1 6 

2-2-2 2 
- 2 4 2-4 
- 2 2 4-4 

2 -4 -4 8 

2 -2 -2 2 
-2 4 2-4 
-2 2 4-4 
2 -4 -4 8 

2 -2 -2 2 
-2 4 2-4 
-2 2 4-4 
2 -4 -4 8 

-+ 

2-
-2 
-2 
2-

1-
- 1 
- 1 

1-

2 - 2 - 2 2 
2 4 2 -4 
2 2 4 - 4 
2 - 4 - 4 8 

1 -1 -1 1 
1 2 1-2 
1 1 2 -2 
1-2-2 4 

1 -1 -1 1 
- 1 2 1-2 
- 1 1 2 - 2 

1-2-2 4 
4 

1 -1 -1 1 
- 1 2 1-2 
- 1 1 2 -2 

1-2-2 4 

2 - 2 - 2 2 
- 2 4 2 - 4 
- 2 2 4 - 4 

2 - 4 - 4 8 
. L — — T 

1-1 -1 1 
- 1 2 1-2 
- 1 1 2 - 2 

1 -2-2 4 

16,1 

1 - 1 - 1 n 
-1 2 1-2 
-1 1 2 -2 
1 -2-2 4 

1 -1 -1 1 
-1 2 1-2 
-1 1 2 -2 
1 -2-2 4 

1 -1 -1 1 
- 1 2 1-2 
- 1 1 2 -2 

1 -2-2 4 

1 -1 -1 1 
- 1 2 1-2 
- 1 1 2 -2 

1 -2 -2 4. 

-2-2 2 
4 2-4 
2 4 -4 
-4-4 8 

-1-1 1 
2 1-2 
1 2 - 2 

-2-2 4 
• 

r 0" 
0 
0 
0 

1 
- 2 
- 1 

3 
— 

- 1 
2 
1 

- 3 

0 
0 
0 
0 

z=z 

r 01 
0 
0 
0 

7 
-12 
- 1 1 

19 
— 

- 7 
12 
11 

-19 

0 
0 
0 
0 

which condensed gives the tensor T in the new basis 
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r.oo-^m-i 
L i j o o i 

" 0 
0 

- 7 
- 1 1 -

0 
0 

12 
-19 

7-
- 1 1 

0 
0 

-12 
19 

0 
0 

We analyze the tensor U. The change-of-basis tensor equation is (cr2 = 2^ = 
4): 

im Xa to mo 
o o o o ' o A ' o / x 

and in matrix form 

1 
- 1 
- 1 

1 

1 
2 
1 
2 

- 1 
1 
2 

- 2 

1" 
- 2 
- 2 

4 

• 

• 1 " 

2 
- 1 

3 

= 

• 3 " 

- 4 
- 7 
11 

which condensed gives the tensor U in the new basis [u^ imi 3 - 4 
- 7 11 

Finally, for the tensor V: Ü ^ ^ = 
4, we get 

V̂ 4,i = (C* (g) C*) • T4,: 

o o o A o 
v^ c^^c^^ in matrix form, with (J2 = 2 

4 2 2 1 
2 2 1 1 
2 1 2 1 
1 1 1 1 

• 
r ^1 - 1 

1 
2 

= 

[ 2 1 
1 
3 
2 

which condensed gives the tensor V in the new basis [v°^ 

2. The possible double contractions of the tensor T are: 
1. 

2 1 
3 2 

M 
A , o o A/x 

a/3o o 

.ooOw __ , o o l l , o o l 2 , , o o 2 1 , o o 2 2 _ ^ / _ 9 \ i 1 i n — 
^Owoo ~ ' ^ l l o o " ^ ^ 1 2 o o ^ ^ 2 1 o o "T- ^22oo — ^ - r V ^ j - t - l i - U — 

2. 

Â  o o A/x 
a;/3o o 

= t ° °'!^ = t?:^i + tT.ll + t::?i + t^o?? = 0 + 2 + (-1) + 0 - 1 . ' ^ l l o o ^"2100 "^1200 "^2200 

In both cases they are invariant scalars (tensors of zero order). 
We check its invariant nature by calculating the same contractions in the 
new basis: 

1. 

M TOO im, 
ijoo 

r o o l l _ . r o o 2 1 
^ l l o o "^ ^^1200 • 

r o o 2 1 
^21oo • 

roo22 
^22oo 0+ (-12) + 11 + 0 = - 1 
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2. 

Â  

t' 

J 
•ooll 
l l o o 

•ooim m 
i I ^ ̂  o o 

^ool2 
•t 

21oo 
roo21 
^12oo 

roo22 
'^22oo 0 + 12 + (-11) + 0 = 1 

with identical results. 
Following the criterion of maximum information, we execute again the con
tractions, but with the help of computer, that is, by means of model 2 of 
double contraction. Formula (5.76), that applied to our case leads to the 
matrix of Example 5.6, fourth method (a), that is, 

0" 
0 
0 
0 

M = [ 1 0 0 0 0 1 0 0 | 0 0 1 0 0 0 0 1 ] » = (-2) + l 

Similarly, for the second contraction. Formula (5.77), which applied to our 
case leads to the matrix of Example 5.6, fourth method (b), that is, 

• 0 
0 
0 
0 

1 
- 2 
- 1 

3 

- 1 
2 
1 

- 3 
0 
0 
0 
0 

A ^ = [ 1 0 0 0 0 0 1 0 | 0 1 0 0 0 0 0 1 ] » ( - 1 ) + 2 = 1 

with the same results. 
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3. We proceed to determine the first contraction tensor 

^ — r o o J ~ Fa /3ooJ^oo — F l l o o J ^ o o ^ r i 2 o o J ^ o o ^ l ^ 2 1 o o j " o o ^ L ^ 2 2 o o J ^ o o ' 

which numerically gives 

R 
0 0 
0 0 •1+ 

1 - 2 
- 1 3 •2+ 

- 1 2 
1 - 3 •(-1) + 

0 0 
0 0 

•3 = 
3 - 6 

- 3 9 

Next, we analyze the second contract ion-tensor 

O O r , O O A/i.-] 

s = isii] = <;[t 
O O r , O O l l ] , O O r , O O l 2 

aßi 

O O r . O O l i - i , O O r . O O i ^ l , O O r , OC 

" l l [*a/3oo] + ^12[*a/3oo] + ^2l[*a/3ooJ 
OO r, O O 2 1 ] OO r , O O 2 2 ] 

• ' ^22ra/3ooJ 

0 l " 
- 1 0 + (-1) 

" 0 - 2 " 
2 0 + 1 

"o - i ' 
1 0 

+ 2 
0 3" 

- 3 0 = 
0 7" 

- 7 0 - 0 

4. T is a mixed tensor of order r = 4, with (p = 2, g = 2), and anti-symmetric 
with respect to the covariant indices. 

0 7" 
5. Since 5 = 5° °e**=̂  (g) e^^ with S 

-7 0 
, and 

aAb = (5e"^ + 2e"^) A (6ie"^ -K 626^^) = 

of associated matrix 
0 

-(562-261) 
we get the desired condition: 

562 - 26i = 7 -^ 

(562 - 26i) 
0 

61 + 1 b: 

h 
62 

e^^Ae"^ 

identifying this with 5, 

D 

Example 9.11 (Decomposition of an exterior tensor). Given a linear space 
V'^{K), we consider the exterior algebra /\^^\K). Let T G An\^) ^^ ^^ ^^-
terior tensor, that is, a homogeneous contravariant and anti-symmetric tensor 
of order r = p^ given by its strict components and such that T y^ Qp. We 
denote by L(^n_p^ the set 

L^n-p) = {f G F"( i r ) |T A:r = % + i ) } , 

where ^(p+i) is the null tensor of the algebra /\^^ (^)-

1. If _p = n — 1, show that Li is a linear subspace of V^i^K) and find their 
Cartesian equation. 
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2. Show that the dimension of L^^-p) satisfies dim L^^-p) ^ P-

3. If T = Vi AVZ A •" AVp ^ i?p, show that the necessary and sufficient 
condition for VT̂  G L(^n_p^ C V'^{K); i G Ip^ is that dim L(^,ri-p) — P-> a-̂ d 
that the vectors X̂ i, I ^ , . . . , V̂  satisfy the equations of L(j^^_py 
This is the fundamental decomposition theorem. 

Solution: 

1. We remind the reader of Properties 6, 7 and 8 of Section 9.2.1, of the 
r-vectors that belong to the different algebras fy^^ {K). 
In particular, we point out that if in the cited exterior algebra we con
sider the multivector Fi A F2 A • • • A K ^ ^r , which requires the system 
(^1,^2, ••• 5^-) in V'^{K) to be free, and it is exteriorly multiplied by 
another vector x G V^ (K), only two options are possible: 
Option (a): The vector system (Fi, ¥2^... ^Vr^x) is free in V'^{K). Then, 

Fl A ̂ 2 A • • • A V; A x ^ ^(r+i) belongs to /\^^'^^\K) (it belongs to 
another exterior algebra). 

Option (b): The vector system {Vi^Vz^" - ^Vr^x) is linked in V'^{K). 

Then x belongs to the linear subspace II C V'^{K) generated by 
the basis of 77 : ßo = {Vi, F2, • ' ' , K}-
Then, Fi A t^ A . . . A F^ A f = Ürl^r ^ An\^)^ ^^^ 

^ is a linear 
combination of So-

These two options are not theorems, but simple corollaries of the men
tioned Properties 5, 6 and 7. 
Next, we prove that the question we will solve is no more that a "sufficient" 
way of looking option (b). 
Consider the vector x = x^ei + 0:̂ 62 H h x^Cn G V'^{K), let r = n — 1, 
and consider also the tensor T G An ~ (^)* 

^==^000... o o^2Ae3 Ae4A-. -Aen 

+^000... o o e i A e 3 A e 4 A . - - A e ^ 

+ • • • + ^^000":^"0^^o^^i A 62 A 63 A • •. A e;-2 A en 
I , ( 1 2 3 - - - ( n - 2 ) ( n - l ) ) - > . -. . ^ . . ^ . ^ 

+^000- o o ^^ei Ae2 Aes A---Aen-2 Ae^_i 

also with n summands. 
If we impose the condition T Ax — i?^, after distributing each summand 
of T with each summand of x to the right of T, from the n^ resulting 
summands, only n are null (because the rest have repeated vectors), that 
is, 

TAx = t^lll:\''Jxl[e2 A 63 A . . . A en] A ei 
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+ t^lltZ^^ll^i A 63 A • • • A e„] A 62 + • • • 

+ *^cco:::^";'^:^^^":'^[ei A 62 A • • • A 6V2 A e-„] A e V i 

+ i^oof:::^":'^^":'^^<[ei A 6-2 A • • • A eV2 A 6 V I ] A e;. 

Imposing a strict order to the basic multivector products, each term takes 
the sign + or — depending on the number of transpositions, and all of 
them the common multivector (ei A 62 A • • • A e* )̂, which is a common 
factor: 

T ^x•• 
n-l.{22>A-n)l , / . x n - 2 , (134- - -n ) 2 

V / 0 0 0 ' - - 0 O \ / X^ 

(_^) l (123...(n-2)„) („-1) (123...(„-2)(n-l)) nl ^^ ; , g ; , . . . ^ g y 
V / ooO"' 0 0 o ooo-" o o o V -*- -^ "^' 

After adding the condition T /\x — Qn^ one of the two factors must be 
zero, but the multivector is the basis of the exterior algebra f\^\K), 
which cannot be zero because we have multiplied free vectors (a basis) of 
V'^{K). Thus, the zero factor is the bracketed factor that operated leads 
to the expression 

T ^ , (123-(n-2)(n- l ) ) n _ , (123-(n-2)n) (n-1) , . . . 
1 ooo--- o o ooo--- 0 0 ' 

+ (-l)"-'i^ooo::^^' + {-^T-'t^lT.Tj^' = 0, (9-134) 

which can be interpreted in the frame of the linear space V'^{K) as the 
Cartesian equation of the (n — 1)-dimensional linear subspace, Li, which 
is directly known as soon as an exterior tensor T G An ~ (^) is given, 
because with the tensor components T, we can build the first member of 
the Cartesian equation of Li. 

2. As in the exterior algebra An ~ \^)^ ^^^ order is p = n — 1 and 
dim Li = n — 1, and the linear subspace Li is the one of maximum 
dimension that can contain V^i^K)^ we have that any other linear sub-
space L(^n_p^ being related to arbitrary tensors T G An (-^) ̂ ^ order p 
will satisfy dim L(^n-p) ̂  dim Li = n — 1 = p^ that is, dim I/(n-p) < P-

3. a) Necessary condition: If T is a product multivector of the free vectors 
{iTi, 'Ö2,..., i/^,..., Vp} and is T A x = i7(p4-i), when replacing x — 
Vi^i E Ip, on the left hand side, because there are repeated vectors, 
we get 

T AVi = {Vi AV2 A - • • A% A • " AVp) AVi = % + i ) , 

which shows that as T A x == ^{p+i) leads to the Cartesian equations 

of L(^^_p-^, then, the vectors Vi of the multivector, satisfy the equation 
Of-^(n-p)-
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In summary, to decompose an exterior tensor in products as a multi-
vector, it is necessary to know a basis of the associated linear subspace, 
of dimension dim L(^^_p^ = p with p < n — 1. 

If p = n, any exterior vector T G /\̂ "'̂  (K) can immediately be written 
as a multivector (n-vector). 

b) Sufficient condition: As the set Li = {x G V'^{K)\T A x = f2n} is a 
linear (n —l)-dimensional subspace and T G An ~ (^)? ^^^ condition 
in (2) holds in the sufficient sense dim L(j^_p>j — dim Li = p = n — 1. 

D 

Example 9.12 (Building multivectors by contraction). Consider the homoge
neous contravariant tensors, A and B built over the linear space y^( I l ) , of 
components 

.^71 

aß^i 
L'̂ o o 

0 
1 
1 
0 

1 
0 
0 

-1 

ri 0 
1 2 
0 1 
00 

0 1 
1 0-
00 
00 

00 
10 
00 
1 0-

00 
00 
0 0 
00 

-1 
0 
0 -
1 

0 01 
0 1 
11 
1 0 

00 
-1 0 
0 0 
00 

00 
00 
0 1 
-1 0 

00 
00 
00 
00 

0 
1 
-1 
0 

5 

where a is the block row index, ß the row index of each block, and 7 the 
column index of each block. 

Consider also the two vectors x, y G V^CJR): 

X = ei — es -\- 2e4 and y = e*i + 62 -f es 4- 64. 

1. Write the tensor A as the sum of the minimum number of tensor products 
of vectors, and if possible of exterior products. 

2. Obtain the ordinary and the strict components of the bivector T = x A 
y, T G A f ( l R ) . 

3. Let H be the tensor H = T (^ A. 
a) Classify the tensor by its partial anti-symmetries. 
b) Examine if H is an exterior tensor. 
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c) Examine if i7 is a multivector. In the affirmative case give three vectors 
vi^V2^V2, € F^(]R) for which exterior product is H. 

4. Consider a system of scalar components 5, defined by 

s{Ki.,u) = Schill 

Answer all the previous questions for this case. 

Solution: 

1. We start by grouping the tensor by opposed terms, because it is an anti
symmetric matrix: 

A = [{ei (8) 62 - 62 0 ei) - (ei 0 63 - 63 (g) ei)] 

+ [(62 0 64 - 64 (g) 62) - (63 (g) 64 - 64 (g) 63)] 

= [ei (g) (62 - 63) - (62 - 63) (g) ei] + [(62 - 63) (g) 64 - 64 (g) (62 - 63)] 

= 61 A (62 - 63) - 64 A (62 - 63) == (ei - 64) A (62 - 63), 

which proves A is a bivector and A ^ /y^^ilR). 

2. The data matrix is [XY] 

" 1 
0 

- 1 
2 

1" 
1 
1 
1 

and 

T = 
o ^ o 

ß ß 

0 1 
-1 1 

6 c A 6/5 = 

6 2 A 63 + 

1 1 
0 1 

0 1 
2 1 

ei A 6*2 + 

62 A 64 + 

1 1 
-1 1 

-1 1 
2 1 

61 Ae3 -

63 A 64 

1 1 
2 1 

6*1 A 64 

= 61 A 62 + 2ei A 63 — 61 A 64 + 62 A 63 — 2e2 A 64 — Ses A 64. 

Thus, its strict components are (1,2,—1,1,—2,—3) and the corresponding 
ordinary components can be represented as an anti-symmetric tensor of 
order r = 2, by means of the matr ix 

a/?1 ^ 
0 oJ 

• 0 

- 1 
- 2 

1 

1 2 
0 1 

- 1 0 
2 3 

- 1 
- 2 
- 3 

0 

' 0 0 0 0 0 0 0 0 

a) hZzZr. is a homogeneous tensor of order r = 4, contravariant and 
/ o o o o •- ^ ' 

partially anti-symmetric with respect to the indices (1,2) and (3,4). 
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b) In order to be an exterior tensor, all its components with repeated 
indices must be null, as a necessary condition. But, for example, the 
component h^^^^ = t^^ • a^^ = 1 • (—1) = —1 7̂  0 is not null. Then, 

the tensor is not an exterior tensor^ i.e., H ^ /y^^(^). 

c) Since iJ ^ /\^ ^(]R), it cannot be a multivector. 
4. a) When Formula (8.103) is used with the strict components of an anti

symmetric tensor, it gives its ordinary components. If we use it over 
an arbitrary tensor, this tensor is "anti-symmetrized" (see Section 
7.5.1). As the expression of system S responds to Formula (8.103), its 
notation must be 

Xp,v __ rXfiu.aßj 
0 0 0 aßJ 0 0 0 ' 

b) 5 is a homogeneous contravariant and totally anti-symmetric tensor 
of order r = 3, and then, it is an exterior vector, i.e., S E /\^ (^)-
Since S is an exterior vector we determine its strict components. The 
dimension of A f (̂̂ Ê ) is cr' = Q -= 4, and 

000 123 000 ' 132 000 ' 231 000 

r(123). 213 .(123). 312 r(123). 321 
"^ ̂  213 ^ooo "^ " 312 ^ooo "^ " 321 ^ooo 

= 1 • 0 + (-1) • 1 + 1 • 0 + (-1) • 0 + 1 • 0 + (-1) • 1 = -2 

(124) _ .(124). 124 c(124). 142 .(124). 241 
* ooo ~ ^ 124 ^ooo •+" ̂  142 ^ooo ̂  ^ 241 ^ooo 

^(124)^214 ^(124)^412 ^(124)^421 
^ ^ 214 ^ooo ̂  ^ 412 ^ooo ̂  " 421 ^ooo 

- 1 . 1 + (-1) . 0 + 1 • 0 + (-1) • 0 + 1 • 0 + (-1) -0 = 1 

J134) _ .(134). 134 .(134). 143 .(134). 341 
^ ooo "" " 134 ^ooo "T" ̂  143 ^ooo "^ " 341 ^ooo 

I ^(134)^314 ^(134)^413 ^(134)^431 
^ ^ 314 '̂ ooo ̂  ^ 413 ^ooo ^ '̂  431 ^ooo 

= 1 • 1 + (-1) • 1 -f-1 • 1 + (-1) • 0 + 1 • 0 + (--1) -0 = 1 

J234) _ .(234). 234 .(234). 243 .(234). 342 
•̂  ooo ~ ^ 234 ^ooo ~^ ^ 243 ^ooo ̂  " 342 ^ooo 

.(234). 324 .(234). 423 .(234). 432 
^ " 324 ^ooo "^ ̂  423 ^ooo "^ " 432 ^ooo 

= 1 • 0 -f (-1) . 0 + 1 • 0 + (-1) •04-1 -0 + (-1) -0 = 0 

5 = (—2)ei A 62 A 63 + e*i A e2 A 64 + ê i A 63 A 64. 

c) As has been established in Example 9.11, the Cartesian equation of 
the linear subspace of F^(I l ) , in which the vectors Vi that are used to 



9.9 Exterior vector mappings: Exterior homomorphisms 379 

build multivectors of order (n— 1) = 4 — 1 = 3, of the exterior algebra 

/y^ (H) are contained, is given by Formula (9.134): 

(123) 4 _ (124) 3 (134) 2 _ (234) 1 ^ 
ooo o ooo o ' ooo o ooo o ' 

which numerically is 

n = (-2)x^ - :r̂  + x^ - Ox̂  = 0, 

that is, 

n 2x^ = 0, 

a linear subspace of y^(IR) of dimension r = (n — 1 ) = 4 — 1 = 3. 
Now, we need to find three vectors 14, ^ , t?3 that, satisfying the Carte
sian equation of the linear subspace 77, are linearly independent. In 
this way, the trivector will not be null. 
Summarizing, we need to find a simple basis of the linear subspace U. 
The most simple vector satisfying 11 is e*i(l, 0,0,0), and then, Vi = ei. 
Another simple vector is (e2 + 63) with components (0,1,1,0), that 
is, V2 = 62 + 63. Finally, the vector (62 — 63 + 64) of components 
(0,1, —1,1) also satisfies U. Thus ^3 = 62 — 63 + 64. 
Next, we check if this system of vectors is free, that is, a basis of the 
linear subspace 11; we have 

rank of 

1 0 0 
0 1 1 
0 1 - 1 
0 0 1 

rank of 
1 0 0 
0 1 1 
0 1 - 1 

3, 

because 
1 0 
0 1 
0 1 

0 
1 

- 1 
= — 2 7̂  0, i.e., they constitute a basis. 

Consequently, we propose as a simple solution (though not unique) 
the multivector 

F l A F2 A 1̂ 3 = e i A (62 + 63) A (62 - 63 + 64) (9.135) 

Next, we proceed to develop the multivector, to check that it is the 
exterior tensor S given in 4(b). 

1 0 0" 
0 1 1 
0 1 - 1 
0 0 1 

(Warning: We must not use the distributive property in the appar
ently simple development of the given expression (9.135), because we 
need first to associate the sign "A", and it is not associative). 

To this end, we use Formula (9.20) over the data matrix 
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Vi A 1̂2 A Fs 
ri 0 01 

0 1 1 
[o 1 - 1 . 

+ 

e 

•1 0 0" 
0 1 - 1 
0 0 1_ 

e 1 A 62 A 63 + 

6i A 63 A 64 + 

"1 0 01 
0 1 1 

_0 0 1. 

I-

ei 

•0 1 1" 
0 1 - 1 
0 0 1 _ 

6*2 A 63 A 64 

= —2ei A 62 A 63 + 61 A 62 A 64 + 61 A 63 A 64. 

Then Fi A F2 A V3 = S, that proves that the given solution is correct. 

D 

Example 9.13 (Number of inversion of the exterior product). Consider a free 
system of p vectors Vi'^{i £ Ip]p < n) oi the linear space V^^K). 

1. Check that the exterior product P e AI^^ (i^): P = F I A F2 A • • • A Fp can 
be written as 

P = lP + lP + ...+lP + ... + p^, (9.136) 

where ^ = (2) — 2 ^^^ ^h ^^ ^^^ ^^^ ^^ ^̂ ^ terms of the form 

^a,a2-a (^ 0 K>. 0 • • • 0 F . 

with the condition that the permutation (ofi, a 2 , . . . , cxp) present strictly 
h and only h inversions, with respect to the "pattern" permutation 
(1 ,2 , . . . ,p ) . 

2. If we denote by (/^) the number of non-null summands of /^, find the 
values of (/^) for h <2. 

3. Idem, but for /i = 3. 
4. Particularize for the case p = 4, and find the values of I^ with h — 

h=N 

{0,1,2, • • •, A^}. Check that the sum of all them is E ^^ = 41. 

Solution: 

1. We check only a particular case. Consider the exterior algebra /\^ (I^)? 
with p = 4;n = 5; cr' = (^) = (^) =b;N = Q = 6. Consider the exterior 
product 

P :::. 14 A ^2 A ^3 A V4. 

The development, according to (9.136) will be 

P = ViAV2AV3AV4 

^ 2 3 4 5 Vcc,®Va,^®Vc,®Vc,^. (9.137) 



9.9 Exterior vector mappings: Exterior homomorphisms 381 

In Table 9.2 the permutat ions of the strict-type sets are classified accord
ing to their number of inversions h (its total number is pW = 4! -5 = 120). 

Table 9.2. Classification of the permutations of the strict-type sets according to 
their number of inversions h. 

•K 
\it 
\it 

2 

•^3 

n 

n 

n 

1234 

+(1234) 

-(1243) 

-(1324) 

-(2134) 

+(1342) 

+(1423) 

+(2143) 

+(2314) 

+(3124) 

-(1432) 

-(2341) 

-(2413) 

-(3142) 

-(3214) 

-(4123) 

+(2431) 

+(3241) 

+(3412) 

+(4132) 

+(4213) 

-(4312) 

-(4231) 

-(3421) 

+(4321) 

1235 

+(1235) 

-(1253) 

-(1325) 

-(2135) 

+(1352) 

+(1523) 

+(2153) 

+(2315) 

+(3125) 

-(1532) 

-(2351) 

-(2513) 

-(3152) 

-(3215) 

-(5123) 

+(2531) 

+(3251) 

+(3512) 

+(5132) 

+(5213) 

-(5312) 

-(5231) 

-(3521) 

+(5321) 

1245 

+(1245) 

-(1254) 

-(1425) 

-(2145) 

+(1452) 

+(1524) 

+(2154) 

+(2415) 

+(4215) 

-(1542) 

-(2451) 

-(2514) 

-(4152) 

-(4215) 

-(5124) 

+(2541) 

+(4251) 

+(4512) 

+(5142) 

+(5214) 

-(5412) 

-(5241) 

-(4521) 

+(5421) 

1345 

+(1345) 

-(1354) 

-(1435) 

-(3145) 

+(1453) 

+(1534) 

+(3154) 

+(3415) 

+(4135) 

-(1543) 

-(3451) 

-(3514) 

-(4153) 

-(4315) 

-(5134) 

+(3541) 

+(4351) 

+(4513) 

+(5143) 

+(5314) 

-(5413) 

-(5341) 

-(4531) 

+(5431) 

2345 

+(2345) 

-(2354) 

-(2435) 

-(3245) 

+(2453) 

+(2534) 

+(3254) 

+(4235) 

+(2345) 

-(2543) 

-(3452) 

-(3524) 

-(4253) 

-(4325) 

-(5234) 

+(3542) 

+(4352) 

+(4523) 

+(5243) 

+(5324) 

-(5423) 

-(5342) 

-(4532) 

+(5432) 

Now, we can build the desired grouping, by simply assigning to the tensor 
products the signs and vector subindices t ha t appear in each box of each of 
the horizontal rows in the table. We build here only IQ^I^^IQ^ and invite 
the reader to do the rest of the work. 

\Vi(S>V2^V3^V4 + Vi^V2^Vs^V3-i-Vi^V2'^V4^V5 
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Il = - V4 (8) F3 (g) F l (8) F2 + ^4 ^ ^2 (8) V3 (8) F l + F3 (8) V4 (8) V̂2 (S) Vi 

+ 1 4 (8) 1̂ 3 (8) 1̂ 1 (8) 1̂ 2 + V5 (8) ^2 0 T/3 (8) 1̂ 1 + 1̂ 3 (8) Vs O ^2 0 V̂ i 

4-^5 0V4(S)Vl^V2-^V5^V2^V4^Vi^V4^V5^V2^Vl 

+14 (8) X̂4 (8) X̂ i (8) ^3 + "̂ 5 (8) V3 (8) F4 (8) T?i + 14 (8) F5 ^ ^3 ^ 

+^5 0 ^4 (8) F2 (8) F3 + V̂5 (8) F3 (8) F4 (8) F2 + V4^ T?5 0 ^3 (8) V2 

^4 (8) F3 (8) F2 (8 V"i + F5 8) 1̂ 3 (8) V2 (8) Vi + V5 0 F4 (8) ^2 0 Vi 

+14 (8) F4 (8) 14 (8) Fl + 14 (8) t 4 (8) ^3 (8) ^2] . 

2. Since V"'(Ä') is of dimension n, if we build the algebras /\^{K) with 

p = 1, it can be confused with the proper linear space V'^{K) and there 

are no permutat ions of indices, because there are no exterior products . 

Considering the algebra /\;^\K) with p = 2, this has dimension (number 

of basic exterior products) (2). But, what we are asked for is how many 

tensor products has Fi A F2 = t?i (8) 1̂2 - "̂ 2 (8) T̂ i -> (/Q ) = 1; (^i) = 1-

The answer is in total iV + 1 = (^) + 1 = 2, and then (P) = (IQ ) + (^1) = 

.(3) 
2\=p\. 

3. In / \ ^ ^ (K) with p = 3, we have the development of Fi A 1̂2 A 14: 

t^i (8) t?2 (8) Vs, with h = 0 inversions: ( JQ) = 1 

Vz^Vi^ Vs and Fi (8) 14 (8) V2 with h = l inversions: (/^) = 2 

Vz^Vs^ Vi and F3 ^ 14 8̂) 14 with h = 2 inversions: ( J | ) = 2 

14 ^ 14 (8) 14, with h = 3 inversions: ( / | ) = 1. 

In total A ^ + l = ( 2 ) + l = 4 summands, thus 

P = (I^) + (/3) + (II) + {ll) = l + 2 + 2 + l = Q = 3\=p\ 

4. In / \ ^ ^ (i^) with p = 4, from the development of 14 A "14 A V3 A14, counting 
in each box of the first column of the table, since it is valid tha t Vn > 4, 
we have 

(Jo^) = l; (A^) = 3; ( J | ) = 5; ( / | ) = 6; ( ^ ) = 5; ( J | ) = 3; ( J | ) = 1, 

a total of Â  + 1 = (2) "^ -̂- ~ '̂  summands, whence 

p = (lo) + (̂ 1) + ill) + (4) + (4) + ill) + (4") + ( '̂) 
= 1 + 3 + 5 + 6 + 5 + 3 + 1 = 24 = 4! = p ! 

D 
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9.10 Exercises 

9.1 . In the hnear space ^ ^ ( R ) referred to the basis {e^} two vectors Vi^Vz 

are represented by the matrix [Xi,X2] 

WuW2hy[Yi,Y2] = 

' -1 
1 

- 2 
- 3 

0" 
5 
0 
5 

and another two vectors 

1 2 
1 - 3 
2 4 
5 5 

1. Obtain the exterior vector P = Vi AV2 totahy developed. 
2. Obtain the exterior vector Q — W\ A W2 totally developed. 

3. Let Z G y^ (R) be a vector of components \X\ x^ Obtain two 

Cartesian equations of the linear subspace, which must be satisfied by 
any pair of vectors Zi and Z2, for their exterior product to be P. 

4. Add an extra condition for Zi A Z2 to be precisely P. 
5. Solve the questions 3 and 4 for any pair of vectors Z3 and Z4 satisfying 

Z3AZ4 = Q. 
6. Choose a set of numeric vectors Zi, Z2, Z3 and Z4 satisfying the above 

conditions, and obtain the exterior vector Zi A Z2 A Z3 A Z4. 

9.2. 1. In the linear space R^ consider the vectors Vi, t?2, V^ of components 
2 0 1-
1 1 0 
1 0 1 
3 1 2 . 

Determine if the two 3-exterior vectors 

and the vectors W\, W2, W3 of components 

1 1 1 
1 1 2 
1 0 1 
1 1 - 2 

P z= 1̂1 A ^2 A V3 and Q = VFi A W2 A W3 

are proportional (P = AQ), without determining them. 
2. If P and Q are not proportional, calculate the two 3-vectors (P + Q) and 

{P-Q)-
3. Calculate the exterior products P f\ W2 and Q /\V2. 
4. Calculate the exterior expression P /\ W\ + Q A ^3-

5. Determine {Vi A F3) A ("^i ^ "^s) • 
6. Is there any reason that justifies the results of question 3? 

9.3. Consider the exterior algebra A2n (-^) built over the linear space F^"'(R) 

referred to the basis {e'c}. The power of a tensor T G A2n (-'̂ ) ^^^^ respect 

to the exterior product of tensors, will be notated (A^) ? whence 
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(A^)° = l; (A^)'=r; {ATy = T/\T; etc. 

1. A 2-vector Z € Aa^^R) is defined by means of its strict components: 

or 
2; = ei A 62 + es A 64 H h e2n-i A e2n 

a) Give the representation of the tensor Z, that is, the matrix Z — 

[^of]2n in the tensor space {^V'^'')^ (R). 

b) Prove that {f\Z)'^ = f{Z)ei A 62 A • • • A e2n-i A e2n indicating what 
is the scalar f{Z) G R . 

2. Consider the tensor T = t^^ Je^Aeß^T e A2n (-^)? ^^^ strict components 
of which are the data in this question. Give {/\T)^ = / (T)ei A 62 A • • • A 
^2n-i A e2n for the cases n = l , n = 2 and n = 3. 

3. The quotients Pf{T) — 4W- are polynomials of variables the strict com
ponents of T, called "Pfafhans". Give the Pfaffians Pf{T) for the cases 
n = 1, n = 2 and n = 3. 

9.4. In the linear space y^ (R) referred to the basis {ca}^ a linear operator 
that transforms the vectors as T{V) — W, is defined by the matrix 

T = 

1 1 1 0 
0 2 1 0 
1 0 0 2 
1 - 1 1 1 

1. Determine the matrix H of the direct exterior endomorphism, associated 
with T: 

A (3) A (3) 

such that VT?!, V2, Vs G V^iM) be H{Vi A ̂ 2 A ̂ 3) = WiAW2A W3. 
2. Check the correct behavior of the operator iJ, using the vectors V\^V2 

r2 0 1" 
1 1 0 
1 0 2 

L3 1 IJ 
vectors, by means of Formula (9.119) of the present chapter. 

3. A change-of-basis is performed in the linear space F^(R) given by the 
matrix 

1 - 1 1 - 1 
0 1 - 1 1 
0 0 1 - 1 
0 0 0 1 

and V3 of components [ X\ X2 Xs ] and its transformed 

C = 

Give the new matrix that represents the linear operator T. 
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4. Answer again questions 1 and 2. 

9.5. Let F{T) = U be a mapping defined in symboHc form as 

A (3) A (2) 

which transforms the tri-exterior vectors of /y^ ^(H) in the bivectors of 

A f ^(H); ViZ, v,w £ y^(]R), of basis {e^}, such that: 

F{u Av Aw) = üAv-i-2vAw-\- 3w A u. 

1. Obtain the matrix associated with the given mapping F. 
2. Obtain the Cartesian equation of the image hnear subspace associated 

with the given mapping. 
3. Examine the kernel hnear subspace. 
4. Obtain the bivector U image of the exterior vector 

T = 6*1 A e*2 A 63 — 2ei A 6*3 A 64 + 36*2 A 6*3 A 64. 
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Mixed Exterior Algebras 

10.1 Introduction 

As has been indicated in Sections 7.4.1 and 7.4.3, and in the initial sections of 
Chapter 9, prompted by the techniques that needed this model, we developed 
the idea of treating the homogeneous anti-symmetric totally contravariant or 
totally covariant tensors from a different perspective using the strict compo
nents of those tensors, giving rise to the exterior algebras primary and dual 
that have already been treated. Nevertheless, though the technique still does 
not require it, the tensor algebra can, following a line parallel to those already 
treated to establish a mixed exterior algebra. Assuming the risk that any new 
endeavour bears, begging the pardon of those authors working in this field, 
who with due rights have conservative positions and remain unadventurous, 
and finally with the benevolence of those who can forgive any errors found, 
this chapter is ready to begin. 

In this chapter the exterior product is extended to include the mixed ex
terior product of p vectors Vi and q vectors V*, analyzing the problem of 
change-of-basis and the exterior product of mixed exterior vectors. 

10.1.1 Mixed anti-symmetric tensor spaces and their strict tensor 
components 

We present in this section a brief memorandum of the diverse circumstances 
that particularize tensors with mixed anti-symmetry. We start with their no
tation, and assume that they are given by their strict components (indices 
between parentheses): 

^(aia2"-ap) o o ... o Q Q ^N 
o o ... o (ap+iap+2---Oip+q) ^ ' ^ 

with p contravariant and q covariant indices. Their anti-symmetry involves 
the totality of the p contravariant indices and simultaneously^ the totality of 
the q covariant indices, but with total independence among them. For the 
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sake of clarity, the already-known conditions for the exterior vectors are here 
repeated, assuming that the tensor is established over V'^{K). They are 

ai < a2 < -'• < ap; a^+i < ap+2 < • • • < cxp+q] OLI,ap^j e In; 

ielp; {p + j)elq\ 2<p<n; 2<q<n\ p + q = r, (10.2) 

where r is the tensor order, which as can be seen, has a minimum of r = 4, 
and a maximum of r = 2n. 

Though in Formula (10.1) we give the data format^ with all indices 
"stacked", that is, all contravariant indices together and then, all covariant 
indices, we will need the real species^ as for example 

/ , Q : I Q ; 2 O CKS O •••ai--- o •••ap--- o \ 
V o o Q p + i o a p + 2 - - - o •••Oip-^j--- o • • • a p + q / ' 

that is, the ordered list of the indices contra- and cova-, to be able to solve cor
rectly all the questions that we will pose. The most commonly used formulas 
are: 

1. The dimension of the mixed anti-symmetric tensor space 

' P . ^ ' (^) 
h i^r ?̂ * 

is cr = n'̂  = (total number of components). 
2. The number of strict components is cr' = (J^) (""). 
3. The maximum number of components different from zero is 

Ni=a'-pl'ql= C^^ (j^^plql (10.3) 

4. The minimum number of null components is NQ = n'^ — (";) {^)plql-
5. The "ordinary" components of the mixed anti-symmetric tensor are re

lated to the strict components by the expression 

,aia2'--ap o o ••• o — x(^^ ^^"'^P) . Ä «p+ i ap+2 •••o^p+q 
o o ••• o a;p_i_iQ;p+2-"ap+g aia2---ap (/3p+i/3p+2 •••/5p+q ) 

Aßiß2-"ßp) o o ..• o f-[nA\ 
^ o o ... o ( / 3 p + i / 3 p + 2 - ^ p + J ' y^^-^) 

where 

{/3î 2 • • • ßp} = {ai<^2 '--Oip} Cln] ßi < p2<-" < ßp] p-hq = r 

{ßp+lßp+2 ' • • ßp+q} = {oip+lO^p-^2 • • ' C^p+q} C In', 

ßp-\-l < ßp+2 < • • < ßp+q-

With respect to the relation between the basic vectors of a mixed exterior 
algebra fy^ {K) and those of the corresponding mixed anti-symmetric tensor 
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space 
P \ f ̂  

[K) we have for the generic case (of stretched 
1 y VI 

species) the expression 

_ ß aia2---cyp ^ g(ßp+i ßp+2-"ßp+q) 
{ßi ß2"-ßp) ap+iap+2-"Oip+q 

4 i 0 e;.2 ^ • • • ^ ^ap (8) e'^'^+i (8) ê ^̂ 'p+̂  0 • • • (g) e'^'p+^, (10.5) 

where the a^ and ô p+j are contraction dummy indices. 
We end this section with an illustrative example of a mixed anti-symmetric 

tensor of order 4 ,p = g = 2, n = 3, given by its strict components, grouping 
its ordinary components in a block matrix and presenting it as an exterior 
vector of the mixed exterior algebra /\^ ' (i^), of species [̂ ô ^]- Its strict 
components are 

ŷ (12) oo _ (12) oo 
^ oo (12) ~ "' ^ oo (13) 

,(13) oo 
^ oo (13) 

b: t 

,(13) oo _ n, .{^ 

(12) oo 

(23) 
(23) oo _ 

(12) - 9 

C t^^^^ °° -d' ^' ^ oo (12) ~" "' 

,(23) oo _ , . 
^ oo (13) ~ '^^ 

(23) oo _ . 
^ oo (23) •" ^' 

and some of its important numerical values are 

:p + g - 2 + 2 = 4; a n 81; a' 9. 

iVi = a'p\q\ = 9 • 2!2! = 36; iVo = 81 - 9 • 2!2! = 45. 

Its mixed anti-symmetric tensor notation is 

Its matrix expression by blocks is 

r.a/^ooi 

L o 07(5-1 

lloo I 

oo7<5 I 

-- + 
21oo I 
0075 i 

+ 
3I00 I oo7<5 

13oo 
007^ 

23oo 
0076 

33oo 
007^ 

0 
0 
0 

0-
a 
h 

0-
d 
e 

0 
0 
0 

-a -
0-
c 

-d-
0-
/ 

0 
0 
0 

-b 
-c 

0 

- e 
- / 

0 

0 
—a 
-b-

0 
0 
0 

0-
9 
h 

a 
0 

-c 

0 
0 
0 

-9-
0 
i 

b 
c 
0 

0 
0 
0 

-h 
—i 

0 

0 
-d 
—e-

0 
-9 
-h 

0 
0 
0 

d e 
0 / 

-/o 
9 h 
0 i 

-i 0 

0 0 
0 0 
0 0 

and its expression as mixed exterior vector G f\^ ' {K) developed only in 
"strict components", is 

T = a ei A 62 A e"^ A e"^ + 6 ei A 62 A e*"̂  A e"^ + c ei A 62 A e*"̂  A e*"̂  

+ d 61 A 63 A 6*"̂  A e"^ + 6 61 A 63 A 6*"̂  A 6*^ + / ei A 63 A e"^ A e 

+ p 62 A 63 A e"^ A 6*"̂  + /i 62 A 63 A e"^ A e"^ + i 62 A 63 A 6*"̂  A 6 

;:̂ 3 

3 
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10.1.2 Mixed exterior product of four vectors 

Following an analogous path to that employed for establishing the exterior 
product of vectors in the exterior algebra fy^\K) and in the algebra /\^^{K)^ 
we define the mixed exterior tetraproduct as follows. 

Let F i , ^ ^ V'^{K) be two arbitrary vectors in the linear space V"'(i^), 
endowed with odd notation, and V *̂' ^* ^ KTC-^) another two arbitrary vec
tors, from the linear space V^{K)^ dual of the previous one, endowed with 
even notation. 

We denote by P^ = [2 ,4,6, . . . , 2n] the set of the first n even numbers, and 
similarly, IMPn = [1,3, 5 , . . .,(2n — 1)] is the set of the first n odd numbers, 
where IMP^ U Pn = hn-

To execute an exterior product of mixed vectors (coming from the primal 
and the dual) we specify first the "species" of the desired product, which 
fixes the notation of the exterior space in which the resulting exterior vector 
product is going to be, where p — q and r = p + q = 2p. There exist x possible 
species, with x = (Z). For example, if p = g = 2, there exist X — (t) ~ ^ 
possible species: 

{ .aßoo ,aoßo ,aooß ,OQ;/3O ,oaoß , O O Q : / ? ^ 

0076' 070^' 0760' 7006' 70^0' 7Ö00J * 

In what follows, we choose the species {t^ °f ^} that corresponds to its product 
exterior linear space. 

For the present case, p = g = 2 , r = p + Q' = 2p = 4, we call mixed exterior 
product of the four vectors of the given species {V^/\V^^V^f\V^) {K), to 
the vector 

f i A y ; A F3 A v: = 5{;\2) • ̂ ^ f : f f ^«^ ® K, ® v^. ® K, (10.6) 

with 

{ßiß^] cIMPn] {ß2ß4} c Pn; {^1^3} = {/?iÄ}; 
ßl < ßs; {^2^4} = {/32/?4}; ß2 < ß4- (10.7) 

To clarify, we apply expression (10.6) and conditions (10.7) to the concrete 
case: 

p = q = n = 2- {/3i/?3} = {l ,3}; {p20i} = {2,4} 

Vi A Vi A 1/3 A V: = (5(i^) • S^f^Vx ® V^ ®%® F / 

+ ^(13) • *^42^^1 ® ^4 ®V3® ^2 

+ ^H) • ^^lf^3 ® Vi ® Fl ® Vi 

+ \ll) • ^^2^3 ® v: 0Vi® v; 
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= Vi® v; ® Vs o VI -Vi® V4* ® F3 ® V2 

-% ® V* (g) t?! 0 VI + ^3 «g» VI ®Vx® V2, 

(10.8) 

which clearly reveals the behavior and laws that vectors linked by the tensor 
product "(g)" obey: 

1. When we transpose indices of the same valency (of the same species) and 
those of the reverse valency (reverse species) do not change, the tensor 
product changes sign. 

2. When both change, the odd indices (contravariant) and also the even 
indices (covariant), the final sign will depend on the parity of the total 
number of transpositions. If the total number of transpositions is even, 
the sign will be "+", and if it is odd, the sign will be "—". 

3. It is not permitted to consider other possible alterations of the set of in
dices (it is axiomatically prohibited); only exchanging the odd indices 
(contravariant) between them or the even indices (covariant) between 
them are licit alterations. 

Probably, the reader at this point of the exposition shares with the authors 
the pedagogical criterion that while we advance in the construction of this new 
algebra, it demands an adequate formal set of axioms. 

Formula (10.6) establishes the intrinsic definition of the mixed 4-vector 
Vi A V2 A Fg A t̂ * as a function of the tensor product of the indicated vectors. 

It is convenient to follow a process parallel to that followed in Chapter 9, 
establishing the calculation formula for the exterior tetraproduct, when the 
bases {e^} of the linear space V'^{K) and {e**"̂ } of the dual space V^{K) 
are known, and then, vectors Vi and V̂* are given by their components, their 
respective matrices Xi and X*, as data of the given vectors in contravariant 
and in covariant coordinates. 

Consider the following data vectors: 

Vi = ||ec,J|Xi = lle^Jlix''^'^]; V3 = Heasll^s = llecslli^^'o's] ^^^ 

Replacing these tensor expressions into the mixed 4-vector, written ac
cording to Formula (10.6) and conditions (10.7) with adequate notation we 
get 

v^ A y ; A 3̂ A v: = (5^ ;̂;̂  • s^n^^ ^ %\ ^ v^s ^ n . 

^ ßiß^ ^ a i o ^ a s o ^ (ß^{^2lA)^ o ß' 
(7173) O ß^^ O ß^) y ß2ßA -^02 O *^a4 

o ßA -, 
«4 o y ^oii 

* Q ; 2 

(10.9) 
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with the conditions 

{7173} C IMPn] {7274} C Pn] { Ä Ä } = {7173}; 71 < 73; 

{ Ä A } = {7274}; 7 2 < 7 4 ; Va, G / n , (10.10) 

where {7173} represents each of the ordered combinations tha t can be gener
ated in the set IMP^ taking the natural odd numbers two by two, tha t is, in 
the set of the contravariant vectors, and {7274} represents each of the ordered 
combinations t ha t can be generated in the set Pn taking the natural even 
numbers two by two, tha t is, in the set of the covariant vectors. The number 
of possible elections is (^) = ("') because p = g, in bo th cases. 

We star t the analysis of expression (10.9) for the different values of " a / ' 
in the particular case p = q = n = 2 with I2 = [1,2]. 

When developing Expression (10.9) for repeated indices { a i a s } or {0^20^4} 
the terms cancel, and only those t ha t appear boldfaced in the following tables 
remain valid: 

a i Ofs 

1 1 

1 1 

1 1 

1 1 

a2 a4 

1 1 

1 2 

2 1 

2 2 

ai as 

1 2 

1 2 

1 2 

1 2 

« 2 0^4 

1 1 

1 2 

2 1 

2 2 

ai as 

2 1 

2 1 

2 1 

2 1 

0^2 0^4 

1 1 

1 2 

2 1 

2 2 

a i Ofs 

2 2 

2 2 

2 2 

2 2 

a;2 « 4 

1 1 

1 2 

2 1 

2 2 

when they are replaced in the adopted numerical example, the result is 

l o I 

Vi A V^ A T̂ 3 A V7 = 

l o 
O l 

2o 
o l 

[ei < 

-e2 

o2 o4 
^ l o ^ l o 

o2 o4 
^ 2 o ^ 2 o 

)r^' 
I 62 ' 

)ei 

> e — ei ( 

) e'^ + 62 ' 

> 62 0 e 

) e i ( g ) r ^ ] ,(10.11) 

which is the expression of the mixed exterior product of our example, as a 

mixed tensor anti-symmetric with respect to the indices [^Q^Q^], given with a 

unique strict component. 
Since the matrices of the da ta vectors of V'^{K) and V^{K) in the example 

are 

[X1X3] = 

o2 o4 
^ l o ^ l o 

o2 o4 
^ 2 o ^ 2 o 

l o l o 
^ ' o l ^ o 3 

2o 2o 
o l o3 

of the primary vectors Vi and V3 and [X1X3] = 

of the dual vectors V̂ * ^^^ ^4 •> we denote by 

A2 = IX1X3I and Al = | X * X | | , (10.12) 
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the respective determinants , the product {A2 • Ä2) of which is the strict com
ponent. 

On the other hand, considering Formula (10.5) applied to our example 
(_p = ^ = n = 2), we obtain the expression 

ei A e*"̂  A 62 A e*" r aias r ( 1 2 ) - . 

= ei -e-^ ' 6 2 

- 6 2 ' )ei 

e — ei 
*2 ^ 

6 2 ' .61(8)6^^ (10.13) 

If we subst i tute (10.12) and (10.13) into (10.11) we obtain the exterior ex
pression of the numerical model exterior product 

Vi A ^2* A ^3 A V^ = 

l o 

2o 

l o 
^ o 3 

2o 
X o3 

o2 

o2 

o4 

o4 
ei A r ' A 62 A 6^^(10.14) 

This model permits us to end the present section with the generalized expres
sions of the 4-exterior vector initially t reated in (10.9). 

Consider the linear space /\^' (K) with p = g = 2, and two vectors Vi^Vs G 

V^{K) which da ta mat r ix in contravariant coordinates (rr^) is 

A = [XiXs]n,2 

l o l o 
X^t X^^ " o l 

2o 

^ o l 

2o 
o3 

" o 3 

(10.15) 

Consider also two vectors V2 ^V^ G VJ^{K) which da ta matr ix in covariant 

coordinates (x°) is 

^ — [^2^4]n,2 = 

o2 
^10 

o2 
2o 

o 2 

o4 
^10 

o4 
2o 

o 4 

(10.16) 

The minors will carry the notat ion A with two upper row indices and two 
lower column indices; they will not carry an asterisk if they are minors of the 
contravariant mat r ix A, and will carry an asterisk if they are minors of the 
covariant matr ix B. 

According to this . Expression (10.9), once contracted becomes 

Vi A Vi A F3 A F4* E 
7 i o 

^ 0 1 
^730 
'^ o 1 

" o 3 

^730 
^ o 3 

8)6^ 

o 2 
720 

o 2 
Ü 
74 o 

o 4 
^720 

o 4 
r aias _ r (72 74) 

( 7 1 7 3 ) a 2 a 4 

7 (10.17) 
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where (7173) and (7274) are the combinations of /„ of order 2, which are a 
total of (2) combinations. This is the 4-exterior vector product, as a mixed 
totally anti-symmetric tensor of the tensor space (F 0 K 0 V" 0 t4)^(i^). 

We also accept, according to the above, the following brief notation: 

V, A Vi AVSAV: = Y: ^[VS] • {^[r:]) \ZZ) • ̂ 'zz' 
1 

ea, 0 e'"" 0 Co,, 0 e"""^ (10.18) 

with the given conditions in expression (10.10) and conditions for the minors 
in the lines following (10.10). 

The number of non-null components is given by (10.3): 

" / \ 1 
/ ^ \ . 

]p-
\pj . 

2 

— 
• / \ 1 

f'^\ , 0 2! 
A2y . 

2 

Finally, it is possible to give the 4-exterior vector product, as an exterior 
vector of the exterior algebra F A K A F A K(Ä'): 

Vr A %* A ^3 A V: = J2 ^[Vi] • [^[T:]) ^J. A e-^^ A e^, A e -̂̂ ^ (10.19) 
1 

The number of strict components is given by (10.3), i.e., a^ = ("") = (2) = 

10.2 Decomposable mixed exterior vectors: mixed 
—* —* 

exterior product of p vectors Vi and q vectors V* 
Once we have established in detail the first mixed exterior product, the 4-
vector mixed exterior product formulated with the expressions and conditions 
(10.6), (10.9), (10.10), (10.15), (10.16), (10.17), (10.18) and (10.19), it is the 
right moment for establishing the general mixed exterior product, the factors 
of which are p vectors Vi G V'^{K) and q vectors V* G V^{K)^ with 2 < 
p, q<n, p = q 01 p^q and the "species" of which are given as data. 

In the product calculation procedures the species is going to play an es
sential role in the establishment of the formulas. First we obtain the data 
matrices. 

The p contravariant vectors are "stacked" in a data-matrix, previous model 
(10.15), the important properties of which are its power and special numbering 
of its columns. 

Consider the species "alternate^' in our models with p < q: 
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[t a i o «3 o •••Q:(2p_i) o ••• o 1 
o a2 o a4--- o a2p---ct2q^ 

The contravariant data-matr ix A is t ha t having in its columns the numeri
cal components of the V ,̂ 1 < i < p, contravariant vectors. The product species 
which is data, is going to decide the numbering of the columns of the matrix 
A, i.e., the columns are numbered with the column index corresponding to 
the place occupied by the contravariant indices in the species. In our model 
they are the odd numbers IMPp = {1, 3, 5 , . . . , 2p — 1}. 

In the matr ix 5 , the components of the q covariant vectors are stacked 
and the numbering of the columns will be tha t corresponding to the places 
occupied by the covariant indices in the product species. In our model they 
are the even numbers Pq = {2 ,4 ,6 , • • •, 2p, • • •, 2q}. Thus, the da t a matrices 
A and B for the present model are 

A: 

l o l o 

2o 

^ o l 

^o3 
2o 
o3 

" o 3 

X 
1 o 
o ( 2 p - l ) 
2 o 

^ o ( 2 p - l ) 

n o 

and B = 

n,p 

o2 

o2 
^2o 

o2 

o4 

o4 
^2o 

o4 

o2q -
^1 o 

o2q 
^2 o 

o2q 

n^a 

(10.20)^ 
with 2 < p, g < n, or with column matr ix notation, as blocks: 

A = [XiXs • • • X(2p-i)] and B = [X2X4 • • • X2q]. 

These expressions generalize those in (10.15) and (10.16). 
Next, from the set I^ we extract the ("") combinations 

(7173 • • • 7(2p-i)); 71 < 73 < • • • < 7(2p-i), 

and also from In we obtain the (^) combinations 

(7274 • • • 72g); 72 < 74 < • • • < 72g, (10.21) 

which will be useful for the later formulation of the rows of the minor A and 
of the generalized Levi-Civita deltas tha t appear with the cited entities. 

From such rows we extract the diverse permutat ions: 

{aiasas •' - a(^2p-i)} = {7173 ••-7(2^-1)} 

{a2a4a6 • • • a2g} = {7274 • • • 72^}- (10.22) 

Once these introductory conditions have been established, we proceed to 
the generalization, first of Expression (10.6): 

Fl A F2* A Fs A y ; A • • • A V(2p-i) A % A V^^^+^^ A • • • A i ? ; 

_ r a iaa- - -Q;(2p_i) Aß2ßA--'ß2q) 
- ^{ßlß3-ß(2p-l))' ^ a20iA-'CX2ci 

T4 . y* 14. ® v: >K Ot{2p-l) Vr 0^2p 
y,* (10.23) 
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with (^)pl X (^)ql summands in its development. 

Next, we generalize Expression (10.17): 

f i A ^2* A f s A F4* A • • • A V^2p-i) A V^p A V^^^^^^ A • • • A Vg*, 

E 
1 

o 1 
73 o 

71 o 
^ o 3 

73 o 
X o 3 

^ 7 ( 2 p - l ) 0 ^ 7 ( 2 p - l ) 0 
o 1 o 3 

71 0 
^ 0 ( 2 p - l ) 

^ 0 ( 2 p - l ) 

y(2p-i) 0 
0 ( 2 p -1) 

0 2 
X 

720 
0 2 

^ 7 4 0 

0 2 

^ 7 2 5 0 

0 4 
S 2 0 

0 4 
S 4 0 

0 4 
X 

72QO 

r a i O ! 3 " - Q ; ( 2 p - l ) r ( 7 2 7 4 - - - 7 2 Q ) 

( 7 1 73 • • • 7 ( 2 p - l ) ) a20i4---a2q 

5e„(,p_,,®e*2p®e*(2p+2)( * 2 g 

o 2<7 
X 

72 o 
o 2g 

^ 7 4 o 

•^72g o 

(10.24) 

giving rise to the {p + (7)-exterior mixed vector as a tensor of the mixed anti
symmetric tensor algebra 

)y K̂ (K) 

of "alternate" species 

, a i o 0:3 o •••Q;(2p_i) o o ••• o 
[ O a!2 O a4--- O Oi2pOi(2p+2)---Ct2q 

We can also generalize expression (10.18), using the previous abbreviated 
notation: 

Vi A ^2* A t?3 A F4* A • • • A F(2p_i) A V2I A T?(*2̂ +2) A • • • A ̂ 2*9 

_ V ^ / \ ( 7 i 7 3 " - 7 ( 2 p - i ) ) / / i ( 7 2 74-- -72q) \ r ö; iö!3"-7(2p-i) r (72 74 •••72g) 
- Z ^ ^ ( 1 3.-(2^-1)) • 1^ (2 4 - 2 0 ; ^ (7 i73- (2p- l ) ) "^ a2 

^ea,2p-^,^^''^^^'''^^^ 

^20i4"' 2g 

*2g 

(10.25) 

under conditions (10.21) and (10.22). 
Finally, we generalize expression (10.19): 

Fl A 1/2* A 1/3 A y / A ••• A V^2p-i) A V2I A V^2p+2) A • • • A ^2 ; 

— V ^ / \ ( 7 l 7 3 " - 7 ( 2 p - l ) ) / /\(72 74-"72q) \ 
- Z ^ ^ ( 1 3 - ( 2 p - l ) ) • l^^(2 4... 2g) ; 

1 
gy, A 6̂ =̂̂  A 673 A r^^ A • • • A e:y(2p_i) A e''^^^ A r'̂ (2p+2) A • • • A e"^^^ 

(10.26) 

with conditions (10.21) and (10.22). 
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10.3 Mixed exterior algebras: Terminology 

The notation we propose is subject to the species of the mixed exterior vectors 
to be contained, and can be guessed after the advanced notation that has been 
used in the previous sections. 

First, we propose a general notation, useful for any presentation of mixed 
exterior algebras. 

The commonly used terminology will be 

^ ' ' ' ' ^ i f ) ^ (Ay"f A (AK")'W 

l^)^(i^*)]"^^^ 
= {V AV, AV, AV A " ' AV AV, AV AVf (K) (10.27) 

with "p" V referring to the primal linear space V^ (K) and "g" 14 referring to 
the dual linear space V^{K) precisely in its concrete place. The upper index 
n braces all instead of bracing each one of them, when p + g = r is a large 
natural number. The last notation is forced^ when in any of the previous "the 
species" has not been mentioned. Normally we shall use any of the notations 
(more frequently the first one), except the last one, which it is too long, giving 
in addition the species by means of one of the following two procedures. 

If the exterior vector is of small order r, we notate its species in tensor 
form as [^o^°6oo] " î̂ ti r = 6, the indices of which p and q are directly seen 
in addition to its place. 

If the order r is large, we use: 1 = as the contravariant index indicator, 
and 2 = as covariant index indicator. 

Thus, the previous exterior vector species has been given with the tensor 
component as guide, is now given as species = [1 — 2 — 2 — 2 — 1 — 1], with 
p ones and q twos, in the foreseen order, a procedure that is simple for the 
computer and for large r. The univocal correspondence between both proce
dures of giving the species, it is evident that avoids the last terminology for 
the notation of mixed exterior algebras. 

For the sake of simplifying the calculation formulas, it is convenient for 
the authors of tensor material to give always^ when presenting the theory, 
a staked tensor formulation, for example, that of Expression (10.1) or the 
first of the terminology. When developing all their theory with this licence, 
the unwarned reader thinks that it is always that way, giving rise to some 
undesired annoyances when the examples are real, numeric and concrete, for 
which the order is essential. 

10.3.1 Exterior basis of a mixed exterior algebra 

As can be seen in previous expressions, such as (10.14), (10.19) and (10.26), 
the exterior basis of a fy^ {K) has a very clear construction. First, the 
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number of basic vectors of the cited mixed exterior algebra is its dimension, 
that is, according to the group of formulas (10.3), 

which refers to a concrete construction, from the set In of the ("') groups of 
combinations notated (7173 • • • 7(2p-i)) with 71 < 73 < • • • < 7(2p-i) that it 
is possible to extract from Î ,̂ and from the other ("") groups of combinations 
notated (7274 • • 'J2q) with 72 < 74 < • • • < 725, that it is also possible to 
extract from In- Such groups are ordered by intercalating each and every one 
of the odd groups 7^, with each and every one of the even groups of indices 
7j, precisely in the order imposed by the species. With the cited groups of 
combinations already totally ordered, the basic set of An'^ i^) ^ i^^ ^^ vectors 
is built, that is, 

BA{p,q) = {e^i Ar^2 A6^3 Ar^^ (8) • • • (8)eĵ ^̂ _,̂  0e"^'^ 0 ê '̂ ĉ +̂̂ ) 0 • • • (g)e"^^^} 
(10.29) 

assuming that the odd {e^.} and the even {e**"̂ }̂ appear in the order assigned 
by the species. 

This is the basis in which a mixed exterior vector must be delivered, com
ing or not from a mixed product of vectors, associated with their correspond
ing mixed strict components, which configure, in essence, any mixed exterior 
tensor. 

10.3.2 Axiomatic tensor operations in the f\^ {K) algebra 

The generation of mixed exterior vectors is again stated exactly equal to the 
case of primal or dual exterior vectors. The sum of several different exterior 
products referred to the same exterior basis originates the appearance of the 
normal entities of a mixed exterior algebra, T E /\n {^) ^^^ given species, 
that do not come from multiplying vectors; they are the proper vectors, that 
is, non-decomposable, of the given algebra. 

Consider a concrete model as the one that is to be selected for specifying 
the axiomatic properties. By means of this formal support, we try to avoid 
the complexity that implies the general formulation. 

Definition 10.1 (Sum of mixed exterior vectors). Given the mixed ex

terior vectors T,U e An^^\^) species = [ 1 - 2 - 2 - 2 - 1 - 1 ] . 

T = i^'o'^J.To'lea^ A r - ^ A e - - A ̂ - A e. , A e . , . 

U = u[Z^:jJ^'Z%. A e^-^ A e - - A e ^ - A e. , A e . „ 

we define as the vector sum of both, the exterior vector 
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W = T + U = w^"' ° ° ° " ' " ' l e„ i A e*"= A e*"^ A e*"* A e„5 A e„, 
( O Q;2Q;3 0:4 O O ) " 1 CKB «6 

where 

( a i 0 0 0 cKsae) _ Äoci 0 0 0 a s ö i e ) , ^.{<^i 0 0 0 a s « e ) ^ 7^ 

( o 0:2 0:30:4 o o ) ( o 0:20:304 o o ) ( o 0:20:304 o o ) 

This sum is associative, unitary, cancelative and Abelian, arising the 
Abelian group of the mixed exterior vectors. 

Definition 10.2 (External product of mixed exterior vectors). For all 

mixed exterior vectors T G /\^ ' ^ {K) and for all X e K, we define the product 
of X and T, for the vector 

5 = AT - Xt^.l'^ ° ° ? ? | e c , , A e"^2 A r^^ A e""^ A e^, A e^ 
( o 0 2 0 3 04 o o ) 01 0:5 a 

= s\l'° ° ° ? ? i e a , A e*"= A e*"= A e*"* A e„, A e«,, 
( O 0 2 0 3 0 4 O O } " 1 UC^ iJCQ-) 

where 
( 0 1 0 0 0 050:6) _ \ y - ( ^ i 0 0 0 0 5 O 6 ) ^ 7>-

( o 02 03 04 0 0 ) ( o 02 03 04 0 0 ) 

The external product is distributive with respect to the sum of scalars, 
distributive with respect to the sum of exterior vectors, associative, i.e., 
X{fiT) = (A/i)T and unitary, i.e., IT = T, and 1 G i^ is the unit of the 
product of scalars in the field K. 

We have created the mixed exterior linear space. 

10.4 Exterior product of mixed exterior vectors 

We proceed to establish the mentioned product by means of the following 
scheme. 

First: We create a mixed exterior product, denoted by "/\" (in upper case), 
in order to avoid the possibility of confusion with the symbol "A" that ap
pears in the mixed exterior products of vectors and in the bases of the mixed 
exterior spaces. 

Second: This product will be useful to: 

Case (a): Multiply mixed exterior vectors of different mixed exterior spaces. 
Consider two mixed exterior tensors T G Ai^''^'^(-^); ^ ^ Ai^''^^^-^) over 
V'^{K) and V^{K)^ respectively, with the conditions pi ,gi < n; ^2,^2 < 
n; ri = pi + gi; r2 = P2 + Q2 and r i , r2 < 2n. Then, we must have 

V = T/\U; V G/\^'''''\K), (10.30) 
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with the conditions 

P = Pi +P2; q = qi+q2; P,q<n] r =p + q<2n, (10.31) 

which last one equality is more strict than r < 4n. 

The cited expressions are necessary but not sufficient for establishing 
the product V = T/\U. Apart from knowing the mixed exterior algebra 
V G /Y^'^\K)^ we need, before calculating F , the species of the linear space 
fy^'^\K)^ with the aim of being able to create the basis of the mentioned 
mixed exterior algebra. If the species is not given, it will be taken as the 
union of the species of the factors. 

Case (b): Multiply mixed exterior vectors, both from the same data mixed 
exterior linear space /\^ (K); we must have 

T/\U = V; F G/y^^'^'^^^iT), 2p,2q<n. (10.32) 

Third: The reader should remember that in the third point of Section 9.3.2 
the notation was changed for tensor [/, second factor of the product; thus: 

Case (a): The tensors T G Ai^' '^'^(^) and U G A^f'^'^C^). respectively 
are: 

O a2Ct4---a2q-^ O o " 1 "(2j>i—3) t ^ (2p i—1) ' 

' ( 2 p 2 - l ) ' 

(10.33) 

( O «1 O . . « ( , ^ , _ 3 ) O " ( 2 P 2 - 1 ) ) ^ « 2 ^ ^ . ^ a 4 ^ . . . / ^ g . 3 A e " " < 2 ^ 2 ) A 4 , , , , , 

with the conditions 

For T : ai.aj e In] i e IMPp^; j G Pg,; 

ai < as < ' •' < a(2pi_i); 0̂ 2 < 0̂ 4 < • • • < a(^2qi)' 

For U : a^, aj e In] i e IMPp^; J ^ Pq2'-> ô i < as < • • • < 0 (̂2^2-1)• 

^ 2 < ^ 4 < • • • < a ( 2 g 2 ) -

(10.34) 

We proceed to change the notation of the indices in the second factor [/, 
as it is indicated in the third point of Section 9.3.2 for the generalized exterior 
product. 

The mixed exterior tensor, which is the data in the second factor, will be 
notated U^ with 

P2 O ^ 4 - - - O P ( 2 Q 2 ) ° ^ ^ 

being the component associated with the basic vector 
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e'^' A eft A 6*̂54 A . . . A ep,^^^, A e '̂̂ c .̂.) A e^j^,^^,,, 

with the same conditions as the a. 

Case (b): The tensors T e Ai^'^^(i^) and U G Ai^'^H^) are: 

*^"o\° °̂ '"n." "(^^-^)"(^^-^))e„, A r " ^ A e*"^ A . . . A e"'^" A e^.^ 3, A e„,, ,,. 
O Q!2 0:4 •••Q;2g O O " 1 ";(2p —3) " (2p—1) 

(^1 o o ... o a(,,_3,Q.(2p-i))- A e*"^ A e""* A • • • A e*"^' A e«,, 3, A 4 „ 1,. 
O a2Q:4---Q;2q O O "=1 " : (2p~3) " ; ( 2 p - l ) 

(10.36) 

and notating 

U = ^^i'ß2--'-ßlf'r''^'r''^^ß. A ̂ ^^ A e-/'^ A- • -A e-Ä, A eft,^_3, A e>,^_,, 

with the conditions 

ßi.ßj ein] i e IMPp] j ePq;ßi<ß3<-'- < ß(2p-l);ß2 <ß4<"' < ß2q-

(10.37) 

Four th : 

Case (a): Next, we choose collections of indices {71,73,. . . , 7(2p-i)} ^ ^n and 
{72,74, • • • 5 72g} ^ In for the basic vectors of the type (e^^ A 6̂ 3 A • • • A e^(^2p-i)) 
and for those of the type {e^^^ A e*^"^ A • • • A e*'̂ ?̂)̂  respectively. Obviously, 
we must choose ^^) collections for the group of contravariant indices and (^) 
collections for the group of covariant indices, corresponding to the dimension 
^ ' = 0 0 of V e Ai^'^^(-^); the mixed exterior space V in which the 
product is defined. 

With respect to the species of the cited exterior space, that is, the position 
order, it must be imposed as additional data. So, we must have the following 
data: 

P=Pi-^P2] <? = 91 + 92; species = { 1 - 1 - 2 - 2 1 - 2 - l}(p+g), 

which permits us to build the basis of /y^'^\K): 

BAip,,) = {Sy, A e,3 A e*̂ ^ A e*^- A •. • A e^^,^_,, A e*^=' A £,(,,_,,} (10.38) 

Case (b): As its algebra is An^' (-^)' remembering that 2p^2q < n, and 
that it has the species {1 — 1 — 2 2---1 — 2 — l}(2p+2g)7 the result is that 

the dimension of An ^' i-^) ^^ ^' ~ (2^) ( D ' ^^^^ ^ '̂ ^^^ number of basic 
vectors and the basis with analogous disposition to that of (10.38), because 
we have chosen an analogous species (but with {2p + 2q) indices). 
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F i f t h : It remains only to define the coefficients of V in the already prepared 
basis. 

C a s e ( a ) : We define the mixed exterior product / \ for the Formula (10.30) 
and (10.33), as 

V = T/\U 

V 
( 7 1 7 3 O O • - •7(2p_3) O 7 ( 2 p - l ) ) 
( o o 72 74-- - o 72g o ) 

e^, A 6̂ 3 A ê ^^ A e*̂ -̂ A • • • A e^^,^_,^ A ê ^̂ ^ A e^^,^_^^ 

_ . ( a i O O . . . O a ( 2 p i - 3 ) ö : ( 2 p i - l ) ) ( O /3i O . . . / 3 ( 2 p 2 - 3 ) O / 3 ( 2 p 2 - l ) ) 
( O 0^20:4 • • •Q!2QI O O ) iß2 O ß4-'- O ß(2q2) ^ 

. ^ ( 7 l 7 3 " - 7 ( 2 p i - l ) 7 ( 2 p i + l ) 7 ( 2 p i + 3 ) - 7 ( 2 p - l ) ) ^g{Oi2a4"-a2qi) iß2 ß4 •••ß2q2) 

( Q : I Q ; 3 - " Q ; ( 2 P I - 1 ) ) (ßl ßs •••ß(2p2-l)) ( 7 2 74 " • 7 2 g i 7 ( 2 q i + 2 ) 7 ( 2 g i + 4 ) " • 72g ) 

e^, A 2,3 A e-^= A e^^^ A • • • A e^^,^_,^ A e*^^' A g,,,^_,, (10.39) 

with the conditions: 

P = Pi+P2; q = qi+q2; 

{ai, a s , • • •, ^ (2p i - i ) , Ä , Ä , • • •, /3(2p2-i)} = {715 7 3 , . • . , 7 (2p- i )} ; 

{a2, 0^4, • • • , ö;2gi, /32, /34, . • • , /52g2 } = {72, 74, • • • , 72g}; 

71 < 73 < • • . < 7(2p-l); 72 < 74 < . . . < 72g; 

( a i < a s < . . . < a(2pi_i)) ^ {ßi < ßs < • • • < ß{2p2-i))'^ 

( a 2 < a 4 < . . . < a 2 g j 7 ^ ( / 3 2 < / 3 4 < . . . < / 3 2 , 2 ) - (10.40) 

When using (10.39), we choose from the ordered set {71,7s , . •. ,7(2p-i)} 
taken from In the combinations of p i indices for the odd {a^} and the com
plementary combination ( that not chosen with p2 indices) is reserved for the 
even {ßj} and we take these selections to the first generalized Kronecker delta, 
which gives it the sign. Next, we proceed in a similar form for the second delta, 
i.e., we choose from the ordered set {72,74, • •. ,72g} also taken from In the 
combinations of qi indices for the even {a^} and the complementary combi
nation (that not chosen with q2 indices) is assigned to the odd {ßj} and these 
selections are taken to the second generalized Kronecker delta, which gives it 
the sign, tha t is multiplied by the previous one and by the scalars t and u. 

Obviously, each and every one of the selections of the first delta must 

be associated with each and every one of the second delta, which leads to 

all scalar summands of the coefficient corresponding to the basic vector of 

Ai^'^^ ( ^ ) t ha t is being calculated. We wih obtain a total of a' = (^) • (^) 

strict components, with ( ^ ) ( ^ ) summands for each component. 

C a s e ( b ) : Finally, we define the mixed exterior product " / \" for Formulas 
(10.32) and (10.36), as 

V = T/\U 
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_ _ ^ (7173 O O •••7(4p_3) O 7C4p-l)) 

( O O 72 74-" O 74g O ) 

e^, A 6^3 A r^= A e*^^ A • • • A e^^,^_,^ A e*^-' A e^^,^.,, (10.41) 

_ Ao^l O O ••• O a(2p-3)Oi(2p-l)) ^ {ßl O O ••• O /3(2p_3)yÖ(2p-l)) 

( O a20iA---OC2q O O ) ' ( O ß2ß4'--ß2q O O ) 

, j ( 7 l 7 3 - - - 7(2p- l ) 7(2p+l)7(2p+3)"-7(4p- l ) ) 

(aiQ;3---a(2p_i)) (/3i ^3 •••/3(2p-i)) 

r(Q;2Q;4"-CK2q) (/Ö2 ß4 •••ß2q) 

(72 7 4 - " 72Q 7(2Q + 2)7(2g+4)---74Q) 

Sy, A 6^3 A r ^ ^ A e"^^ A • •. A e^(,^_3) A e"^^^ A e^^,^,,). 

with the conditions: 

{ a i , a s , . . . , a;(2p_i), A , /Js, • • •, /3(2p-i)} = {71^73, • • •, 7(2p-i), * ' ' , 7(4p-i)}; 

{«2, 0^4, . . . , Q̂ 2g, /?2, /54, . . . , /?2<?} = {72, 74, . • • , 72«?, • • • , 74g}; 

71 < 73 < • • • < 7(4p-l); 72 < 74 < • • • < 74?; 
( a i < ^3 < • • • < a(2p-i)) 7̂  (/3i < /33 < • • • < /5(2p-i)); 

(^2 < ^4 < • • • < a2q) 7̂  (/32 < /?4 < • • • < /52g). (10.42) 

Wi th respect to the way of using Formula (10.42) it becomes clear if we 

consider the sets { 7 1 , 7 3 , . . . , 7(4p-i)} and {72 ,74 , . . • , 7 4 Q } chosen in J,^, over 

which we choose the ( ^ ) combinations and ( ^ ) , respectively, following an 

analogous process to tha t already explained for using the Formula (10.39). 

10.5 Anti-commutativity of the A mixed exterior 
product 

The alternating character of the order of the factors in the product T/\U by 
the U/\T affects the ordering of the indices of the two generalized Kronecker 
deltas in the Formula (10.39). 

Applying to each delta a similar analysis to tha t performed in Section 9.3.3 
with the mentioned delta, leads to: 

C a s e ( a ) : 

(Ji(altered) = {-If^^^ • 5i(not altered) 

(52(altered) = (-1)^1^2 . g^f^^^^ altered) 

Whence, ^1 • (52(altered) = (-1)^1^2+9192)^^ . ̂ 2(not altered), which leads 
to 

U/\T = {-1)(P^P^+^^^^)T/\U. (10.43) 

C a s e ( b ) : 

U/\T = {-1)^P'+^'^T/\U. (10.44) 
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10.6 Change of basis in mixed exterior algebras 

Consider the mixed exterior algebra fy^ {K) built over the linear space 
V'^{K) and its dual V^{K). We execute a change-of-basis in the V'^{K) of 
associated matrix C — [c^^], and in its dual the corresponding change, with 

associated matrix C* = fc°"l, where C~^ = [7^°!. 
In summary, from Sections 9.5.1 and 9.5.2, we can establish that a mixed 

exterior tensor changes components according to the relation and the condi
tions that follow. Assuming p > q^ and the given species, it is 

t ( i l O O ••• O i ( 2 p - 3 ) H 2 p - l ) ) 

( 0 Z 2 Ü " - ^ 2 Q O O ) 

, ( a i 0 0 ••• 0 o;(2p_3) 

( 0 a20!.4---Oi2q 0 

o a 2 
Z2 0 

oa2 
14 0 

0 Oi2 

i2q 0 

o a 4 
Z2 0 

0 Q ; 4 

Z4 0 

0 Q;4 

i2q 0 

Q : ( 2 p - i ) ) 

^ O Ö ; 2 Q 

12 0 

00=29 
Ü 0 

^2q 0 

i l 0 
' 0 a i 

^ ^ 3 0 
/ 0 CKl 

' 0 CKi 

5 

zi 0 
' 0 a s 

^ ^ 3 0 
' 0 0:3 

' 0 

zi o 
' O Q ( 2 p _ l ) 

' o a ( 2 p - l ) 

vH2p-l) 
^ ( 2 p - l ) 

(10.45) 

where the first minor belongs to C~^ and the second to C*. Since p 7̂  (7, a 
possibility exists of the existence of components with repeated components. 
This means that the change only implies indices of a single valency. 

Example 10.1 (Mixed exterior products). Consider the vectors Vi = 2ei — 
2e3; ^2 = ei + 62; V3 = 62 — e^^ which belong to the linear space y^ (R) 

-\-3e ^s. W^ 2e*^ + e^^ in the linear space and the vectors W^ = e^^ — e^ 

We wish to know its mixed exterior product, knowing that the species of 
this product is 

species = [-1 - 1 - 2 - 2 - 1]. 

Solution: The required product is a decomposable tensor 

Pe{VAVAV,AV,AVf (R) 

with 72 = p = 3; Q = 2. 
The data matrix in contravariant coordinates is 

2 1 0 
0 1 1 

-2 0 - 1 
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and in covariant coordinates is 

B 

The Blocks to be used are: 

2 1 0 
0 1 1 
-2 0 -1 

1 2 
-1 1 
3 0 

-4; 

We use Formula (10.26) to get 

n 

1 2 
-1 1 

1 2 
3 0 

405 

--6 

-1 1 
3 0 = -3 

P = Vi A 1̂2 A T̂ i* A W^ A ̂ 3 (10.46) 

ol 

2o 

lo 
OÖ 

2o 
o3 
3o 
o3 

"o5 
2o 

3o 
^o5 

o2 

o2 
2o 

o4 

o4 
2o 

e\ A 62 A e*"-*" A e**'̂  A 6*3 

+ 

lo 
^ 0 1 

2o 
^01 
3o 
^01 

lo 
^01 
2o 
^01 
So 

lo 
o3 
2o 
03 
So 
o3 
lo 
o3 
2o 
o3 
So 
^oS 

lo 
^o5 
2o 
^o5 
So 
^o5 

lo 
^o5 
2o 
^05 
So 
^05 

o2 
^10 

o2 
So 

o2 
2o 
o2 
So 

o4 
^10 
o4 
^So 

o4 
2o 
o4 
^So 

61 A 62 A 6*"̂  A e"̂  A 63 

61 A 62 A e"̂  A e*""* A 63 

and operating numerically, we obtain 

P = ViAV2AW^ A W^ A ^3 = (-4)(3)ei A ei A e"^ A e"^ A 63 

4- ( -4) ( -6)e i A 62 A r ^ A e"^ A 63 + ( -4)( -3)e i A 62 A e^^ A e'^ A 63 

=- - 12ei A 62 A e"^ A e"^ A 63 + 24ei A 62 A e"^ A e"^ A 63 

+ 12ei A 62 A e"^ A 6*"̂  A 63. 

Obviously, P G A^'^H^^) with the given species. D 

Example 10.2 (Exterior product of mixed tensor). Consider the following two 
mixed exterior tensors T G /^g ' ^(R), species = [1 — 2 — 1]: 
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T = 2ei A e*"̂  A 62 + 3ei A e*"̂  A es + 4e2 A e"^ A 63; 

and U e A3^'^^(IR), species - [2 - 1 - 2]: 

U - -2e"^ A es A e"^ - 3 ^ ^ A 62 A e"^ - 4^^ A e 1 A e"^ 

Obtain the exterior product of both tensors, in the order V = T/\U and 
with species = [-1 - 2 - 1 - 2 - 1 - 2]. 

Solution: From the data we get the following information: 

p i = 2 ; gi = 1; P2 = 1; 2̂ = 2; p = p^-^ p2 = 3; q = qi + q2 = 3; n = 3, 

which satisfies the constraints: 

p < n; q<n] r=p + q = 6<2n. 

The notation of the first factor is 

T = * [ ? ; , ? Je«, Ae-"=Ae„3 = tll%Ae''Ae2+tll%^e*'Ae^+tll%Ae^'Ae^, 

where d = 2; tlH = 3; tlH = 4, the rest are tj";„7„^j = 0, and the 
notation of the second factor is 

u = u[;f:;j^^^^Ae,,Ae'^^ 
~ '^io2^ A es A e + W^QS^ A e2 A e + ^203^ A ei A e , 

where u°^2 — ~"2; w^^^ = —3; li^^s = —4, and the rest are U[Q ^^^ I — 0. 
We choose the indices as follows: 

{717375} = {123} C Is and {727470} = {123} C/s-

Since the product P G ̂ 3 ^(R), we extract the dimension 

and taking into account the data species, the basis 

SA(3,3) = {ei A e*2 A 6*3 A e"* A 65 A e*^} 

P = r / \ C / = p[lHZl>fi A e*2 A 63 A 6*̂  A 6*5 A e*« 

with 
( l o 3 o 5 o ) _ a i o a s ^ o ^1 o . ( 1 2 3 )r(a2)(/32/54) 

^ ( o 2 o 4 o 6 ) ~ ^ o «2 o "'/32 o ^4 (CLICKS) ( / 3 i ) ( 1 2 3 ) 

extracted from Formula (10.39). 
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Table 10.1. Possible combinations of indices a^ß and the corresponding products 
of scalar components. 

(aias) (Ä) 

1 2 3 

1 3 2 

2 3 1 

1 2 3 

1 3 2 

2 3 1 

1 2 3 

1 3 2 

2 3 1 

( » 2 

1 

1 

1 

2 

2 

2 

3 

3 

3 

) {ß2ß4) 

2 

2 

2 

1 

1 

1 

1 

1 

1 

3 

3 

3 

3 

3 

3 

2 

2 

2 

, a i o a s o ^ 1 o 
o 0:2 o ß2 ° ß4 

, l o 2 o 3 o r » . . r v /-v 
^ ^ 1 ^ u^^o = 2 x 0 = 0 

0 1 0 2 o 3 , l o 3 o 2 o r\ ^, n r\ 
^rslr. '^O^Q = 0 X 0 = 0 

0 1 0 2 o 3 
* o i N 2 : : = 0 x ( - 4 ) = 0 
, l o 2 o 3 o c\ ^, r\ n 
^ ^ o o l ^ i ^ Q = 0 X 0 = 0 

o 2 o 1 o 3 

i o 2 ! < ! : = 3 x ( - 3 ) = - 9 
, 2 o 3 0 1 0 A v̂  r» n 
^ ^ 0 ^ I t . ^ o = 0 X 0 = 0 

o 2 o l o 3 

C o < o 2 = 0 x ( - 2 ) = 0 
, l o 3 o 2 o r v . . r \ r\ 
ir.'ir. U.^ — 0 X 0 = 0 

060 1 o 2 , 2 o 3 0 10 /< . , rv A 
^oQo i t . ^ o =^ 4 X 0 = 0 

o3o 1o2 

The number of summands that contain the unique component p is 

= 3 x 3 = 9. 

In Table 10.1 the possible combinations of indices a, ß and the correspond
ing products of scalar components are shown. In it one can see that there is 
only one non-null component product, so that only the corresponding Kro-
necker deltas are used to finally calculate the value of p: 

( l o 3 o 5 o ) _ l o 3 o 2 o . ( 1 2 3 ) . ( 2 ) ( 1 3 ) _ (_Q^(_.^(_.^ _ _ Q 
^ ( o 2 o 4 o 6 ) ~ ^ o 2 o " ' l o 3 ^ ( 1 3 ) ( 2 r ( 1 2 3 ) ~ V ^ A ^)\ ^) — ^* 

Whence 
P = - 9e i A e^^ A 63 A e**̂^ A 65 A e"^. 

and according to Formula (10.43), it is 

that proves that Af'^^R) is an Abelian algebra. • 

Example 10.3 (Change of basis in a mixed exterior algebra). In the algebra 

A 3 (R) species = [1 2 — 1], the tensor T in the last example is given: 

T = 2ei A e*"̂  A 62 + 3ei A e*"̂  A 63 + 4e2 A e*''' A 63. 

Give the developed new expression of the tensor, if in the linear space 
y^(IR) over which the algebra has been defined, a change-of-basis of matrix 
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c 
-1 1 
0 1 

-1 0 
is performed. 

. (2 ,1 ) / Solution: The dimension of the exterior space /\3 '̂"^^(]R) is a^ = (2) d) 
3 x 3 = 9, which gives us the number of components to be calculated. 

We shall use minors taken from the matrices 

- - i 
-1 1 1 
-3 3 - 1 
2 2 - 2 

and C* = 
1 2 

-1 0 
1 1 

The stated question responds to Formula (10.45), which is adapted to this 

case as 
,{ii o is) _ Joii o as ) 

{o 12 o) ( O 0!2 O ) 

Zi o 

o a\ 
is o 
o a;i 7 

o as 
is o 22 O 

and In = h-

The possible indices for the new and the initial bases are {a' = 9) 

|(iiZ2i3)|(aia2a3)|112 113 213|122 123 223|132 133 233| 

and the data T tensor components 

olo " o zo ' 000 " 

because the rest are tl^^ ° ^̂ N = 0. 
We develop in numerical form the formula only for the useful data com

ponents to get 

; ( l o 2 ) _ , ( lo2) 
^(olo) - ^(olo) 

1 
42 

X(lo3) _ , ( lo2) 
^(olo) ~ ^(olo) 

1 
42 

t 
(2o3) 

= t 
( lo2) 

(olo) (olo) 

1 
42 

lo lo 1 
7 o l 7 o 2 

2o 2o 
7 o l 7 o 2 

1 o l 
^ l o + t 

( lo3) 
(o2o) 

lo lo 
7 o l T o 3 

2o 2o 
7 o l 7 o 3 

1 o2 
^ lo 

lo lo 
7 o l 7 o 2 

3o 3o 
7 o l 7 o 2 

O l 

^ lo + t 
( lo3) 
(o2o) 

lo lo 
7 o l 7 o 3 

3o 3o 
7 o l 7 o 3 

2o 2o 
7 o l 7 o 2 

3o 3o 
7 o l 7 o 2 

- 3 3 
2 2 

o l 
+ t 

( lo3) 
(o2o) 

-3 - 1 
2 - 2 

2o 2o 
7 o l 7 o 3 

3o 3o 
7 o l 7 o 3 

•2-f 4 

o2 
^lo 

3 
2 

+ t 
( 2 o 3 ) 
( o 3 o ) 

lo lo 
7 o 2 7 o 3 

2o 2o 
7 o 2 7 o 3 

2 
- 1 1 

- 3 3 
• 1 4 - 3 

- 1 1 

- 3 - 1 
• 2 - f 4 

1 1 

3 - 1 
• 3 

( 2 o 3 ) 
^ ( o 3 o ) 

2 
- 1 1 

2 2 
• 1 + 3 

- 1 1 

2 - 2 
• 2 + 4 

1 1 

2 - 2 
• 3 

lo lo 
7 o 2 7 o 3 

3o 3o 
7 o 2 7 o 3 

14 

T 

+ t 

-1 
-2 

( 2 o 3 ) 
( o 3 o ) 

o3 

2o 2o 1 
7 o 2 7 o 3 

3o 3o 
7 o 2 7 o 3 

o3 
^ l o 
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r( lo2) _ , ( lo2) 
^(o2o) ~ (olo) 

r ( lo3) 
^(o2o) 

t 
r(2o3) 

( o 2 o ) 

t 
• ( l o 2 ) 

1 

j _ 

1 

42 

1 
( o 3 o ) 4 2 

t 
r ( io3) 

( o 3 o ) 

t 
• (2o3) 

1 

42 

1 
( o 3 o ) 4 2 

lo lo 
'Tol7o2 

2o 2o 
^ 0 1 ^ ^ 0 2 

- 1 1 
- 3 3 

- 1 1 
2 2 

- 3 3 
2 2 

- 1 1 
- 3 3 

- 1 1 
2 2 

- 3 3 
2 2 

^2o t 
( lo3) 
(o2o) 

lo lo 
7 o l 7 o 3 

2o 2o 
^ ^ 0 1 ^ 0 3 

, ( 2 o 3 ) 
^ ( o 3 o ) 

lo lo 
'To2^o3 

2o 2o 
'To2'^o3 

( - l ) + 3 

( - l ) + 3 

1 + 3 

3 

3 

- 1 1 
- 3 - 1 

- 1 
2 

•0 + 4 

•0 + 4 

1 1 
3 - 1 

1 1 
2 - 2 

-3 - 1 
2 - 2 

1 
- 1 

- 1 1 
2 - 2 

- 3 - 1 
2 - 2 

•0 

1 + 4 

1 + 4 

1 + 4 

3 
2 

1 
-1 

1 
-2 

3 - 1 
2 - 2 

(-1) 

(-1) 

(-1) 

_ 3 
~ 4 

4 

4 

6 

4 

10 

T 

2 

'4 

0. 

Once the components are known, we obtain the following developed ex
pression for T: 

T 
—* —**1 —* —* - ^ 1 —* -* —»*1 —* —* —**2 —* 

6ei A e A 62 — 14ei A e A 63 — 6e2 A e A 63 + 4ei A e A 62 

-^ - * * 2 ->• -* - * * 2 -» --> ->*3 -^ -* - ^ 3 -* 

6ei A e A 63 + 10e2 A e A 63 + 3ei A e A 62 — 2ei A e A 63 

D 

10.7 Exercises 

10.1. In the linear space y^(I l ) referred to a certain basis {ca} three vectors 
^i5 ^2, V3 are given by its matrix representation 

1 1 !• 
1 2 3 
2 3 1 

,3 1 2. 

and in its dual space K^(]R) another three vectors Wi, W"!, WJ are given by 
means of the matrix 

B 

1. Give the mixed exterior product Pi = ViA W^ A V2 of species^ [1 — 2 — 1], 
by its strict components. 
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2. Give the mixed exterior product P2 = W2 /\V^/\WJ of species= [2 — 1 — 2], 
by its strict components. 

3. Give the exterior product of the two mixed tensors Ti = Pi/\P2 of species 
= [ 1 - 2 - 1 - 2 - 1 - 2 ] . 

4. Give the totally developed mixed exterior product T2 = Vi A Wi A V̂  A 
Wi A F3 A 1̂ 3* of species = [1 - 2 - 1 - 2 - 1 - 2]. 

5. Is Ti = T2? 
(1 ,2 ) . . ( 3 ,1 ) / 10.2. Consider two exterior tensor spaces fy^' (^) and /\\' (K) both built 

over a linear space y^(]R) referred to a basis {ca}. 
Let P and Q be two exterior tensors, P G /\^l'^\'R) and Q G /\f'^\'R). 

Tensor P has the non-null strict components: 

^ O 2 O r>. _ O 3 O o l o q o l o 
^ ( lo2 ) ^(3o4) 4; p (lo3) 2; (lo4) • '̂ -?^(2o3) "~ ^ ' 

and tensor Q has the non-null strict components: 

(12o4) I. ^ (13o2 ) _ ^ . (23o4) _ _ 2 . (12o3) _ _ (13o4) _ ^ 
- '̂ y o o2 o ~ ^ ' y o o2 o ~ ^ ' y o o 3 o ~ -•-' ^ o o3 o "~ ^ ' ^ 

(23o4) 5. 

1. Find the totally developed exterior product of the mixed tensor T 

P/\Q,of components t^^^'^^l^ll^ 

2. Over the tensor T we execute the contraction 

U = C T. 
7 . 

Give the tensor U. 
3. In the space y^(lR) a change-of-basis {e*̂ } of associated matrix 

C = 

1 2 3 1 
1 3 3 2 
2 4 3 3 
1 1 1 1 , 

is performed. Give the new strict components of the tensors P.Q^T and 
U. 

10.3. Consider the set of the generalized Kronecker deltas ^"^;a,/3,7,(5 G 

{1, 2, 3,4}, and consider two mixed exterior vectors Di, D2 ^ A4 ' ^ of specie 

^oöo^ ^^^^ respective components: 

aß Di = (a + /3 ) r^ and D2 'ßW. 
aß 
7(5' 

Using the computer, answer the following questions: 

1. Write the tensor Dl = Di /\Di totally developed. 
2. Idemfor i:>| = i:)2A^2. 
3. Idem for tensors A = Di/\D2 and B = D2 f\Di. 
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Euclidean Homogeneous Tensors 

11.1 Introduction 

In this chapter the problem of vertical displacements of indices in Euclidean 
and pseudo-Euclidean tensors is dealt with. In particular, the generated prob
lems related to raising and lowering indices with respect to the symmetry and 
those associated with the "Euclidean contraction" are analyzed. 

In the final part of this chapter, it is shown how geometry enters tensor 
spaces by means of Euclidean tensors, so that it is possible to talk, for example, 
about length, perimeter or angle of a tensor, and if desired, to build a tensor 
geometry. 

11.2 Initial concepts 

In Chapter 3 we have stated the study of homogeneous tensors established over 
a certain primal linear space V'^{K) and its dual space VJ^{K). In Chapter 
4 it was established how a change-of-basis ê  = c°̂ °e*Q; of matrix C = [c Q i o ^ _ r „„„.< : , - /^ r^^"-"] 

o ii 
3 

performed in the primal, produced another change-of-basis in the dual e 

7°^e^^ with the matrix condition [7°^] - ([e^°]*)" , that is, C* = (C*)~\ 

which kept the new bases of both spaces with the reciprocal character that 

they initially showed. 
We dedicate some paragraphs to the concept of connection in linear spaces 

because in the present chapter we will clearly point out the connection be
tween both linear spaces (the so-called primal space V'^{K) and the dual or 
secondary space V^{K)), i.e., present in any tensor process. 

Main background: 

1. Axiomatic Properties. 
We assume here that the reader is familiar with connection in vector 
spaces, linear spaces with a connection and bilinear forms. 
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2. Field i^ = IR. 
From now on, we assume that K = M^ that is, the field of real numbers, 
because if the associated field K were the set of the complex numbers C 
or the set of quaternions iJ, or any other arbitrary field, the axioms of 
the axiomatic system should be modified to adapt it to the field being 
considered: 
(a) The bi-stability axiom of the forms with respect to the external prod

uct: 

< ^ _̂  ^ _, ; VA,/iGiv; vv,w eV [K). 
[ ^(iJ, fiow) = /i • ^{v^ w)) 

(b) The real symmetric axiom of the bilinear form. We have such character 
if V^, w e V^iK) => ^{w, v) = ^{v, w). 

In other words, in this book we only examine "connected tensors" over 
the real numbers; the spaces over which the tensors will be built will be 
denoted by PSE'^in) (primal) and PSE^{1R) (dual). 

3. Existence of a unique linear space PSE'^{liR). Since the spaces being 
connected are n-dimensional and arbitrary^ we assume that from now 
on there exists only one linear space that is connected with itself, and 
that simultaneously is the primal and the dual space, so that we have 
PSE''(R)=PSE^(R). 
In other words, the universal quantifiers V, that initiate the axiomatic 
properties in point 1, should say for this situation: VF, W G PSE'^{1R) is 
^(V^W) = p; p G R , etc., so that we will not return to this fact again 
and we assume that it is already established and known. 

4. Fundamental tensor G of the connection. The Gram matrix. Obviously, 
any reader who knows that our linear space PSE'^{1R) is connected by a 
bilinear form #, can ask himself what are the real numbers p G R that 
are the images of any pair of basic vectors in the basis {Sa} that has been 
chosen in the linear space PSE'^{1R). From now on, we notate "the inner 
connection" as 

<V^W> = p. (11.1) 

In this simple way it will be understood that it is a bilinear form 
^{V, W) = p that strictly satisfies the conditions in points, 1, 2, 3 and 4, 
above. 
Since the n^ real numbers < e^^Cß > , a, /3, G [1, 2, • • •, n], are the numer
ical data of a system of real components that will define a tensor, such 
scalars will carry a specific notation, so that instead of p, we will use 

< e ; , e > > = 5 ^ ; ; V P ° ; G R . (11.2) 

They are delivered as n^ scalars grouped as a square matrix, of order n: 

Gn^K;], (11.3) 
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which is called the "Gram" matrix of the connection. 
The meaning of its terms was clarified in Formula (11.2). 
We will see now how the general scalar p — < V^W > , that corresponds 
to two arbitrary vectors V^W E PSE'^{1R) can be determined. Let V = 

^o^a = IWaWX and W = y^^ep = \\ep\\Y. Since 

is bilinear, we can take the scalars x^y out of the form and since in the 
' o «̂  o 

sums the Einstein convention holds, after using (11.2) in tensor notation 
we get 

<V,W> = xy^<e^,eß>=xyX; (11.4) 

and in matrix form 

<V,W> = x"Xy^^X'GnY. (11.5) 

Expression (11.5) was already obtained in Chapter 1, Formula (1.2), and 
in Formulas (1.3) some conditions were added for G to satisfy the axioms 3 
of symmetry and 4 of regularity. These conditions are G = G^ and |G| 7̂  0 
(regular and symmetric Gram matrix). 
In Formula (1.6) a change-of-basis C = G~^ was proposed that led to 
the reciprocal basis {e^^}, which is the basis adopted in the proper linear 
space, when it wants to be seen as dual (P5E'^(R)). The Gram matrix 
of the connection has in this case the components 

^g.a^^ß^^g»ß^ Vff̂ feR, (11.6) 

so that the same vector V has contravariant coordinates or covariant co
ordinates, depending on the adopted basis (both bases are simultaneous): 

l / = | | e „ | | X = ||e-'' | |X*. 

The relation between both components, contravariant and covariant in 
tensor form is 

and also 

or, in matrix form (and respectively): 

X* = GnX (11.9) 

X = G-^X\ (11.10) 

Formula (11.9) was proved in Section 1.2, Formula (1.7). 
The conclusion is established in Section 1.2, in which we proceeded to 
the calculation of the form < V^W > in the four possible situations, 
depending on the data of V and W, and it was shown that for: 
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(a) Data V and W in contravariant coordinates: 

p= <V,W> = <xyc.,y%> 

= x1< e„, e> > 2/f = ^ : 5 : ; y f = X'GnY. (11.11) 

(b) Data V in contravariant coordinates and W in covariant coordinates: 

= < < e„,e-^ > y ; = ^^^f^; = XH^^Y*. (11.12) 

(c) Data V in covariant coordinates and W in contravariant coordinates: 

p= < f ,T^> = <<e*",yfe}3> 

= x^ < e*", e-ß > yf = x^Xlyl = {X*flnY. (11.13) 

(d) Data y and W in covariant coordinates: 

= < < e*",e*'' > t/; = x°X% = {XyC-'Y*. (11.14) 

It is obvious that 

a oo ß acoß o O r - a o /3 o a.ß o /., ^ ^ |-\ 

Formulas (11.12) and (11.13) imply that isotropy holds: 

< 4 , 6 " ^ > = < e"'',e> > - r f = J^° (Kronecker's deltas), (11.16) 

which declares that the linear space PSE'^{Ii) = PSE'^{'R) is simulta
neously in reciprocal bases, and that both bases are used, one per data 
vector. 

11.3 Tensor character of the inner vector 's connection in 
a PSE'^(JR) space 

As the reader can already have observed, to the n^ scalars g'^Z that constitute 
the Gram matrix G^ we have associated the title of "fundamental tensor of 
the connection", without a justification of its tensor nature. We prove that 
Gn = [9{oiß)] is a tensor. To this end, we copy the Expressions (11.5) and 
(11.11), but with the notation of a system of scalars: p = x^g{aß)y^. 
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Since the product of vectors {x^y^) is a totally contravariant second-order 
tensor, applying the quotient law, and more precisely, by a direct application 
of Theorem 5.3, since p is an invariant scalar, the system g{aß) is a totally 

covariant second-order tensor g{a^ß) = P '̂g-

It is also possible that the data V and T^ be in covariant coordinates, in 
which case to the in? scalars g^^ in the Gram matrix G*, we give the same 
title of "fundamental tensor of the connection". The proof is very similar, 
we copy Formula (11.14) with the proper notation of the systems of scalar 
components: 

p = xlg{aß)yß 

and since {x%jV) is a product of covariant vectors, this product is a second-
order covariant tensor. Applying the quotient law, or directly Theorem 5.2, 
since p is an invariant escalar, the system g{aß) is a totally contravariant 
tensor of second order: 

We remind the reader that in Section 1.2 it was proven that 

G:^[gfj = G-K (11.17) 

Nevertheless, the direct proof can be established as follows. Since the vec
tors are tensors of first-order, taking the contravariant species, the result is 

z Q ; Z O I a i ao 

3 ß jo ^"^ \ ß j ßo 
o o ' o n I o 0 0 7 

On the other hand, the dot product of two vectors in the initial and new bases, 
formulated in tensor form, can be written as 

f/- TTV Q ; / 5 O O i j 00 

V mW = xx^^q^o = xx-'g.. 

and introducing in the first member the initial equalities, we get 
/ i ao\ / i ßo\ 00 i 7 0 0 

{x^c^.jix-'c^'.jg^r, = xx-'a.. 

and simplifying: 
a o ßo 0 0 00 

C .C^ .0 „ = Q . .. 
o I o j - ^ aß ^ IJ 

If we sort the tensor factors, for the "format rules" established for Formulas 
(4.24) and (4.34) to be satisfied, we obtain 

00 0 0 OCX oß 
y ij yocß i o J O ' 

that proves that it is a totally covariant second-order tensor. 
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11.4 Different types of the fundamental connection 
tensor 

In this section we extend some aspects tha t are convenient to clarify. If in 
the linear space PSE^(R.) we execute a change-of-basis of matr ix (7, the 
fundamental tensor changes, in a congruent matr ix process, to another Gram 
matr ix by means of the expression 

G = C'GC. 

The "congruence" Theorem ensures tha t there exists a change-of-basis such 
tha t the new G is a diagonal matrix: 

C*GC = D, 

Ml 
0 

0 
/^2 

0 0 

0 
0 

MnJ 

\D^\y^O, 

The "Sylvester inertia law" goes further; it says tha t a change-of-basis can be 
found such tha t the corresponding Gram matr ix D^, is not only diagonal, bu t 
has values /i = ± 1 : 

ClGC, 

1 
0 

0 
0 
0 

0 

0 • 

1 • 

0 • 
0 • 
0 • 

0 . 

• 0 
' 0 

• 1 
• 0 
• 0 

' 0 

0 
0 

0 
- 1 

0 

0 

0 • 
0 • 

0 • 
0 • 

- 1 • 

0 • 

• 0 
• 0 

• 0 
• 0 
• 0 

• - 1 

ip n 
n -i„ (11.18) 

Sylvester showed tha t the order n, the rank r and the Spanish signature 
a (number of (+1) in the D^ matrix) is an invariant for all matrices G t ha t 
are "congruent". So, it is convenient to notate each matr ix as G{n^r^a). We 
introduce the axiomatic convention tha t states tha t all (+1) must be ahead 
of all (—1) in the diagonal of D ^ , with the aim of every one to "canonize" 
the matr ix G with the same format. The change-of-basis matr ix Cg, which 
according to (11.18) leads to the fundamental tensor of the connection, is 
called the "Sylvestizer matr ix of G" and the matrix 

D^ = Iae{-I(n-a)) 
la ^ 
J / J-71. — n 

(11.19) 

is called t he "Sylvesterian matrix" of G. Once the Sylvesterian matr ix of G 
is known, we can denote by G the expression G{n^r^a) and conversely, if G 
is given by the notation G{n^r^ a) we can build its Sylvesterian matrix. For 
example, if we write for a certain quadratic form G(5, 3,1), the reader will im
mediately think of the following expression, which declares its "Sylvesterian" 
matrix: 
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3Cs, \CS\T^O such that ClGCs 

1 
0 
0 
0 
0 

0 
- 1 

0 
0 
0 

0 0 0 
0 0 0 

- 1 0 0 
0 0 0 
0 0 0 

Case 1. 

The linear spaces with connection fundamental tensor G the Sylversterian 
matrix of which has n = r ^ a (that is, some (—1) in the diagonal) will be 
called pseudo-Euclidean spaces = PSE'^(!R.) (false Euclidean space). For that 
type of connection, we use the notations: 

1. <V^W> = X^GY to the bilinear form of two vectors. 
2. <V^V> = X^GX to the quadratic from of a vector. 

If < y , 1^ > = 0, we say that the vectors V and W are ''conjugate'^ 

Case 2. 

On the other hand, the linear spaces with connection fundamental tensor 
G the Sylvesterian matrix of which has n = r = a (all (+1) in the main 
diagonal), that is, £)^ = Î ,̂ will be called Euclidean spaces = E'^{1R) and will 
have the following exclusive notation: 

1. The bilinear form of two vectors will not be notated < V^W > , but 
y • Ŵ  = X^GY and will be called the "dot product'\ 

2. The quadratic form of a vector will not be notated <V^V>^ but Äf{V) — 
¥•¥ and will be called the "Euclidean norm of F " and as it is essentially 
positive, its square root always exists and is called the "modulus of 1?": 

v\ = JM{V) = \ /y#F. 

If y • PF = 0 we say that the vectors V and W are '^orthogonaU\ and we 
notate this diS V ±W. 
If |T7| = 1 we say that V is a "versor" or "unit vector". 
Its connection fundamental tensor G will be called the "fundamental met
ric tensor'\ It is well known that this fundamental tensor defines the 
cos a = y*|^ , etc., thus, it endows the vectors with "directions" and 
introduces the "metric space" character into the affine punctual spaces, 
reason that explains that many authors call them "metric tensors". 

Case 3. 

Certain authors do not require the regular character \G\ ^ 0 to the con
nection tensor, it can then be G{n^ r, a) with r = a < n. The Sylvesterian 

^ ^ and the quadratic form <V^V> > 0; W. matrix is D.. 
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The linear spaces with such a connection will be called pre-Euclidean 
spaces = PE'^(R)^ and the bilinear form of two vectors will be notated 
< V^W > , and the quadratic form < V^V > in the same form as the 
pseudo-Euclidean spaces. 

It is obvious that any of the mentioned linear spaces, together with their 
duals, can be used as support for establishing homogeneous tensors, multilin
ear algebras, exterior algebras, modular tensors, etc. 

From all of them, we choose only Case 2 to continue in this book, so that 
from this point on all to be developed will be over the linear spaces that 
are strictly Euclidean, £̂ ^̂ (11) and their simultaneous dual £^J^(IR), endowed 
with the connection fundamental tensor, or metric-covariant tensor G = b^^] , 
where G{n^ r, a) must satisfy n = r = a or the analogous condition 

3Cs, \Cs\y^O such that CjGC, = In- (11.20) 

If it is of interest we will also work with the same connection fundamental 
tensor under its metric-contravariant expression G* = [ö'^ol' where G*{n^ r, a) 
must satisfy n =^ r = a^ or 

3c:, {c:fG*c: = in; (11.21) 
where 

c: ^ {ci)-' ^ (C7 )̂̂  
and from Formula (11.17) G* - G ' ^ 

The tensor relations between the components of the metric tensors are 

9oo-9eß=S,ß = 9,ß (11.22) 

9Z-C = C^9:t (11.23) 

It is impossible to try to make a summary of the diverse names used by 
different authors for the connection of linear spaces and even more difficult for 
their concrete meanings, because there are authors who with the same names 
as those proposed here, assume different axiomatic properties, that they do 
not even declare. The reader can imagine the labyrinth that results when 
talking about orthogonal vectors, orthogonal linear subspaces, dot product, 
modulus of a vector, etc., in the line of spaces that are not Euclidean. Another 
occurrence is the use of vectorial tensors (very frequent in books of physics) as 
the vector product, the triple vector product, the mixed vector product, etc. 
presenting always the same invariable formulas, because always by "definition" 
the connection fundamental tensor is that of matrix I^ (in such books there are 
no arbitrary changes of basis). Nevertheless, we advance some commonly used 
names. For spaces PSE'^{1R) of a Sylvesterian matrix with a < r < n which 
are Euclidian spaces (not Euchdean spaces but very similar), non-Euclidean 
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spaces with proper names such as Minkowsky's spaces, pre-Euclidean spaces, 
metric spaces, etc. 

For the spaces E'^{H) of a Sylvesterian matrix with a — r == n Euclidean 
spaces, metric spaces, Cartesian spaces, "properly Euclidean spaces", "dot 
product" spaces, geometric spaces, OGS (ordinary geometric space), etc. 

11.5 Tensor product of vectors in E'^{JR) (or in 
PS'JS^(IR)) 

The existence of a unique Euclidean linear space such that the condition in 
Section 11.2, point 3, is E'"'(IR) = ^ ^ ( R ) , produces the following problem. 
Each vector can be given in contravariant or covariant coordinates. Formulas 
(11.9) and (11.10). 

When two factor-vectors F̂  G ^ ^ ( R ) , 1 < z < p; F / G E^(]R),1 < j < 
g; p -i- q = r are chosen, the product P belonging to the tensor space of the 
conditioned relation (3.1) is 

<— r = {p-\- q) times —> 

P G £;^ (8) ^ : ' (8) £;^ 0 • • • 0 £^r ^ £;^(]R), (11.24) 

which, according to (3.2), has dimension 

(j = dim\(^EA I^EA (R) 

and can be notated as a mixed homogeneous tensor: 

P = y^ (g) y2* 0 ^3 (g) . . . (8) V^_^ (g) Vr 

= « ^ e . J 0 « e - - ^ ) 0 « ^ e . 3 ) 0 • •. 0 « _ , e - - ^ - ) 0 ( x ^ e ^ J 

= {x'^^x^^x'^: . . . X J_^x" ; ) e , , 0 e--^ 0 e,3 ^ • • • ^"^"^ ^ ^a. 

Oi.1 O a s ••• O OLr -* 

O « 2 O • • •Q: , 1 O <^1 C 1 T : ° Te« . ® ^"' ® e„3 ® • • • e-«^- ® e^ - (11.25) 

But, at any time any J K ^ ( R ) can be replaced by J E ^ ( R ) , because they 
are identical (£^^(R) = E'^(R)); this means, for example, that, since P G 

^^" (R) , P can also be given as 
1 

P = Vi 0 1/2 (8) 1̂3 (8) • • • (8) Vr-i (8) K 

= (x^ '̂x '̂̂ 'a:''̂ ^ • -' x'';)ea^ea^ 0 6^3 0 • • • 0 ea,_i 0 Ca^ (11.26) 

^ C ? ? : : " 7 ' t e " ^ , i e " ' , 2 ^ e,3 0 •.. 0 e,^_, 0 e,^, (11.27) 



422 11 Euclidean Homogeneous Tensors 

where P appears as a totally contravariant tensor. 
Another possibility, just to mention some more of all possible cases, is 

given by considering that P G [ ^ ^ ^ j (H): 

-V^ 

-K 
®F2* 

D O 

tl Oi2 

, o o o •-
CKi a.2 CKs •• 

®vi 
o 

CKS 

o 
•CX.r—1 <• 

( g ) - -
o 

OLr — 

O -^ct 

• ® K - 1 ®v; 
,<K"^®e-* 

' ®e*"= Oe*"^ 

^^8)6^ 

®---

• " 3 ^ . . 

(Se*"--

•®e*«-- 1(8)6*" 

- i ^ e * " " , 

-•(11.28) 

(11.29) 

where P appears as a totally covariant tensor. 
There exist a total 2̂^ of different possible ways of expressing P , and evi

dently, all of them identical. We give the following equality of (11.25), (11.27) 
and (11.29): 

p J.OL1 o a s 
O » 2 O 

/ O i l 0 : 2 0 : 3 

0 0 0 

, 0 0 0 

Oil <^2 CK3 

ar-1 o^oii^e ^eoc^^--- ^e ^'^-^ (K) eo 

3 c i (K) 6^2 (K) 6^3 0$ • • • (K) ea,__i ^ ea 

CXr—1 Oir 
e*"i (g) 6**=̂^ (g) e'^^ (g) • • • (8) e' 

etc. 

This equality, which does not hold for the homogeneous tensor product, 
or in the modular tensor product, or in the homogeneous symmetric or anti
symmetric tensor products, declares a relation between the tensor bases that 
is to be studied in the following sections. 

We end this section by indicating to the reader that Expressions (11.25), 
(11.26) and (11.28) can be executed using matrices entering into Formula 
(2.21) adapted to each case. For example, for (11.25) it would be 

X^ - Xi (g X2* (g X3 (g) • • • (g) X;_i 0 Xr, with a = n^ (11.30) 

Another warning to the reader is that the Euclidean tensor spaces 

>£^") ( f s : ) ( R ) , ( | . E " ) ( R ) , ( | ^ r ) ( 3 R ) , e i c . 

have proper tensors, that is non-decomposable tensors, that are not products 
of vectors. 

We continue to remind the reader that the indicated property of P , as 
indicated in the title of this section, is not exclusive to Euclidean spaces 
E^(I l ) but to all pseudo-Euclidean spaces PSE'^CR). 

11.6 Equivalent associated tensors: Vertical 
displacements of indices. Generalization 

Before generalizing the obtained results, we will initiate and present the theo
retical fundamentals for the case of Euclidean tensors of third order^ without 
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loss of conciseness and with simplicity of notation. We observe that all to be 
presented is totally extensible to pseudo-Euclidean tensors. The fact that we 
always move inside the same Euclidean linear space E'^(R) = ^J ' (R) , means 
that a given tensor T of order r = 3 belongs to a unique product tensor space, 
that is, that 

E''^E''^E''{'R) = E''^E^^E''{Il)=E^^E^^E''{'R)= etc. (11.31) 

giving rise to the concept of an ^^ associated tensor^\ 
We first remind the reader about the relations between the primal and 

dual bases: 

e/3 = 9eße = Qß^e "̂  and e '̂  = g^'^^ee = g'l^ee (11.32) 

corresponding to the matrix relations 

\\eß\\ = We-'WG and ||e*''|| = \\ee\\G-\ (11.33) 

The first consequence is the appearance of the covariant and contravariant 
components of any vector v G £'"'(11), given in Formulas (11.7) and (11.8), 
respectively: 

O OO 6 OO 9 / l - t O / f \ 

^ß=9ß0X^ = geßX^ (11.34) 

^f = ö!o^0 = fff o^e- (11-35) 

Thus, following with the tensor T, we propose a well-known relation. Let 

T = i"f ;e« ® e}3 ® e*^ = i^f ^ 4 0 e^ ® e^ (11.36) 

replacing e*'"' = g^^ee from (11.32) into the left-hand side of (11.36), we get 

T = t:t;Sa ® eß ® (gllee) = t^l^gHe. <S> ep ® e, 

and replacing the notation of the dummy index Ö by 7, we have the tensor 
contraction 

which is in the same basis as that of the right-hand of (11.36). This requires 
that 

tlll-tlllgll (11.37) 

which represents the transformation from t^o° to t^Jl-
Similarly, consider another tensor relation 

T = C f ; 4 ® e/3 ® i-T - t : ; ; e „ ® e-^ ® ^ \ (11.38) 
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Substituting in the left-hand side of (11.38) Cß — g^^g^^ taken from (11.32) 
leads to 

T = C°ia ® (gZ^n ® ̂ ^ = Colc}.oe„ ® e - ® e-^aßo o o -
D 7 ^ 

and replacing the notation of the dummy index Ö by /3, we have the tensor 
contraction 

which is in the same basis as that of the right-hand of (11.38). This implies 

,cxoo .at) o oo 
0/37 ""oo-y^eß^ 

(11.39) 

which represents the transformation of t^^° to ^o «°. It is obvious that once the 
process is discovered, one can continue raising or lowering indices, changing 
the T tensor species of order r = 3. From all this, we conclude that similar to 
vectors (tensors of order 1), which present 2^ possibilities of being represented 
(in contra and in covariant coordinates), the remaining tensors T of order r, 
present 2^ possibilities of representation. 

In particular, those of order r — 3 present 2^ = 8 possibilities: 

r.aß'j ,aßo ,aoj >oß'j , 0 0 7 ,o/3o . a o o , 0 0 0 •> 

l ^ o o o ' ^ o o 7 ' ' ^ o ^ o ' ^ a ; o o ' ^aßo^'^aoj^'^ o ß-y^'^aß^^ J ' 

Generalization: all possible representations of a Euclidean (or pseudo-Euclid
ean) tensor T of order r are called "associated tensors". 

There exists a rule for executing the vertical displacements of the indices 
of a mixed tensor, which is proposed in a tabular form: 

IFOI raising 

lowering 

ao • • • O " - A o 

ao •••6-'-Xo 

0 / 3 • • • 0 • • • 0 / i 

an index h 

of a data tensor 

,cx 0 ••• 0 ••• Ao 
0 ß---h--- 0 ß 

(xo •••h--- Xo 
U a 

0 / 3 - - - 0 ••• 0IX 

and it is contracted 

with 

eh 
^ 0 0 

0 0 

9eh 

we replace the index 

h by the dummy index 6 

obtaining 

CKO ••-0••• A 0 
^oß---e---o/j, 

CK 0 ••• 0 - - - A 0 
U 0 

0 /3 • • • 0 • • • 0 / x 
,ao---h---Xo .CKO • • • 0 - " Ao 6h 

0 ß-'- 0 ••• 0 (1 oß---6---ofx^oo 

ao---o '--Xo ao •••O--- Xo 0 0 

^oß...h-oß — ^oß-o---oß9eh 

Some authors call these relations "association formulas". It is obvious that 
we can move several indices at the same time, if desired. 

To check it, we present an illustrative example. 

Let T ,ai o o a^-
o Q!2ö;3 o "̂  

-ai ^ ^^^ ^ e^^^ ^ eĉ 4 be the notation used for a 
Euclidean tensor, for which we wish to know the initial component associated 
with the basis {e^^^ (g) ̂ ^^ (g) ep^ ^eßj. 

Applying the rule proposed in the table, and using the data indices a i and 
as, as dummies, we have 

(a) T = t o ßsoc^ ^Oisßs 
/3i 0:2 o o ^aißi^ 0 0 o Q;2Q!3 o (11.40) 
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or 
(b) T = g;je:^^-:9"f:. HIAI) 

In (b) we note that the metric tensors can appear in the tensor expressions 
as pre- or post-factors of the modified tensor component. 

Nevertheless, it is observable that the results (a) and (b) come from the 
basis e*^^ <S) e^^^ 0 egg ^ e^^^ which even though it has the species of the 
desired basis, does not coincide with it. 

The sought after component is really to a ^ Q , and in order to obtain it we 
propose the following solution (there are other possible solutions depending 
on the decision of which of them are pre- or post-factors): 

f \ y. O O /33/34 _ O O <- O a2.CXl O O a4 asßs^ 0 / 3 4 /-. -i /.rjN 
^^ /5i/32 o o ~ ^ßiaiß2 o ^ o « 2 0 3 o i^ o o^a4 o ^ 1 1 . ^ z ; 

and also because of Formulas (11.22) and (11.23) the result is 

^^ /3lyS2 0 0 — yßiaiyß2 O ^ O ^ 2 ^ 3 Oy O O yOC4 O ' \LL.^O) 

where we perfectly appreciate the action of the metric-cova and metric-contra 
tensors, in the lowering of a i and raising of 0̂ 3 (as ßi and /Ss), and of the 
mixed-metric tensors for changing the name (0̂ 20̂ 4) by {ß^ßA) but not the 
position of indices. 

In fact, the studied illustrative example not only pretends to verify that 
it is possible to move several indices simultaneously, and by means of mixed 
tensors of Formulas (11.22) and (11.23) change their notation, but its real 
intention is to obtain a matrix process for determining the associated tensors 
of a given tensor. 

In effect, we proceed to interpret the problem from its very beginning. 

Consider the Euclidean tensor t^V"^ of order r = A over ^ ^ ( H ) , which is 

given by its matrix representation T — [^o!ö°o]' ^^^ associated tensor of which 

^aöoo ^̂  ^^ ^^ known numerically. 
We know the fundamental metric tensor, in its four representations: 

Gn = [9ll]\ In = [gl^] = bo^]; G-^ = [p^f]. 

Since the index ordering is decisive, we change the tensor notation, using 
numbered dummy indices, in such way that the resulting problem is precisely 
the given illustrative example. 

Data: i - , ; ; - . Question: t;jff:. 

The final formula, (11.43), is going to be conveniently treated to get our 
objective. Let a = n^. Using the symmetry of all metric tensors, we propose 
the formula 

, 0 0 / 3 3 / 3 4 _ 0 0 0 OL2 ßsOtS 3A O ,ai 0 0 0 4 /-, -. ÄA\ 
^1^62 o o yßicxi^ß2 o y o o y o a^ o a20C2, o ' \ ' ) 



426 11 Euclidean Homogeneous Tensors 

Note the index ordering and the expression of the moved indices. 
Denoting by T^ ^ the column matrix "extension" of the block matrix 

[to /̂  o o ] ^^ ^^^ associated tensor and by T̂ - the "extension" of the matrix 

[t^^ ° a ^o] ^^ ^^^ data tensor, we write term by term the Formula (11.44) in 
matrix form, which can be interpreted as 

T ; = ( G n 0 / n 0 G - ^ 0 / n ) * T , . (11.45) 

Once we have obtained T^, we proceed to its condensation, which is indicated 
with the blocks in horizontal positions: 

(KY 

Bii 

first block with 

the first n? entities 

^ 2 1 

(n + l)-th block 

following n^ 

Bnl 

( ( n - l ) n 4 - l ) - t h block 

following n? 

-^12 

second block of the 

following n^ entities 

^ 2 2 

(n + 2)-th block 

following n? 

Bn2 

{{n - l)n + 2)-th block 

following n^ 

Bin 

n-th block 

following n? 

B2n 

(2n)-th block 

following n^ 

^nn 

n^-th block 

last n^ 

with a total of (n^ entities) x (n^ blocks) : a. 
Particularizing Formula (11.45) to another orders r ^ 4, and any selected 

species would be useful as a matrix process for calculating associated tensors 
in each case. 

11.6.1 The quotient space of isomers 

Let ( ^ E'^ j (K) be the unique product space of Euclidean tensors of or

der r. We define the following equivalent relation 71: Two Euclidean tensors 

are related iff they are "associate". Each class of the corresponding quotient 

space ( ^ E'^ | (M,)/7l contains only all Euclidean tensors associated with 

t' o o o o 

With respect to the expression "equivalent associated tensors" proposed 
in the title of this section, we show that the relation ^Hhe tensor T is asso
ciated with tensor U" is an equivalence relation, in the set of homogeneous 
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tensors of order r over £^"'(]R), that is, the set of vectors of the tensor space 

1 
For the sake of simplicity we proceed with r = 2. 

Property I. The relation is reflexive (T is associated with T): 

.aß _ f,a0oo\ wß 

Property IL The relation is symmetric (if T is associated with [/, then U is 
associated with T). Let T be associated with [/, then 

,aß a6 ßw o o ^ 

pre-multiplying by gl^gl^, the result is 

OO OO.Oiß / OO Oi&\f OO ßw\ OO rOOrOW OO^ 

dßadvß'^oo ~ \9 ^a9oo)\9yß9oo)^ew ~ ^ fxo^ u o'^0w''> 

and operating and exchanging sides: 

u°° = q°°q°°t^^ —> [7 is associated with T. 

Property III. The relation is transitive (if T is associated with U, and U is 
associated with F , then T is associated with V). 

If T is associated with U, then t^^ = q^^qZ^^ul^, 
' o o «-̂  o o«̂  o o ytü 

If U is associated with F , then w^^ = dl^xSwli^o^ 
Substituting the second into the first, we get 

,aß aO ßw / OO OO AyLt\ / CXO O O w ßw 0 0 \ Xß 

^oo ~ 9oo9oo\9e\9wßyoo) ~ \9oo90x){9oo9wß)'^oo^ 

that is, t^ = S'^^S V ^ —> t" = q^^q^^v ^, and then T is associated 
' O O o A O / L i O O O O - ^ O A«^ O yU. O O " 

with V. 

The quotient set is the set of the diverse tensors of different order; for 

example of the diverse contravariant linear spaces < ( ^ E'^ J (R) 

11.7 Changing bases in J5^(1R): Euclidean tensor 
character criteria 

Though the strict change-of-basis of a Euclidean tensor is the one that corre
sponds to it as a homogeneous tensor, already given in Chapter 4, the topic to 
be treated in this section is the one motivated by the additional circumstance 
of the existence of associated tensors. 
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In other words, the following problem can arise. Given a Euclidean tensor 
T, of order r and species x, we perform a change-of-basis in £'"'(R) of matrix 
C — [CQ°], and we wish to know the new components of T, knowing that 
the new species is x, that is, the tensor has an initial species x-> ^^d when 
changing basis, we accept that because it is Euclidean, the answer be given 
in the new basis, with another associated tensor of different species x-

We analyze this situation for a tensor of order r = 4. Consider T = 

C^Ao^"" 0 e^^ (g) e^^ (8) e^ of species x=^ { 2 - 2 - 2 - 1 } over the Euclidean 

space ^" ' (H) , in which we perform the change-of-basis ei = c^^^Ca] we wish 

to know T = tl^l^ei 0 e^^ (g) e*̂^ 0 ^"", of species x = {1 - 2 - 2 - 2}. 
Different possibilities of action: 

1. We extract the associated tensor of species x^ ^^^ later, we execute the 
change-of-basis over this tensor. 

2. We execute first the change-of-basis over that of species x, and later we de
termine in the new basis, the associated tensor of species x- The following 
question arises immediately: is the "order of execution" indifferent? 
We show that it is, no matter the process followed with respect to the 
result, though process 1 is more convenient, because we know directly the 
metric tensor G, while in process 2, as we study the associated tensors in 
the new basis, it is necessary to determine the new metric tensor G. 

1. Development of possibility 1: 
The associated tensor (already in the initial basis of E'^{M,)) of the given 
one is 

. C K O O O aO ,OOOW O O / ^ - , Ä^\ 

Kßx^ = 9oohßXo 9^^. (11.46) 

and the change-of-basis of the previous tensor is 

,zooo , a o o o io oß oA 0/2 
ojim oßXß I oa jo £0 mo 

and replacing (11.46) we obtain 

iooo _ ae .ooow oo io oßoX o ß (^^Ä7'\ 
^ojim ~ ^oo ^eßXo ywß'oa^jo^io^mo' l-^-L-^'j 

2. Development of possibility 2: 
We determine the data tensor in the new basis of E'^{1R,) as 

ooo?; _ ooofj, oa 0/3 o A ^ o .^ ^ .^. 
^zjio — ^ocßXo ^zo^jo^iolofi {IL.^O) 

and now we proceed to determine the associated tensor of the given one, 
with the species x = {1 — 2 — 2 — 2}: 

.iooo ^iz,ooov ^o o /-, 1 ^ Q \ 
'^ojim ~ ^oo ^zjlo 9yrn (,11.4y; 
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and substituting (11.48) into (11.49), we have 

,ioo o ^iz ,ooo(i oa oß oX i t o ^ o o /^^ ^^\ 
^ojim ~ doo^'^aßXo ^z o^j o^io^ o ß9 yrn' ( .Ü.OUj 

The calculus of the new metric tensor, in contravariant and covariant 
cooordinates gives the tensor relations taken from (4.34): 

^iz ap I o zo 
i 'oo i ' o o 'OCT 'op 

^o o oo o r o r) 
0 ^=^ Q C C 
^vm '^TT) vo mo'> 

(11.51) 

which, substituted into (11.50), leads to the expression 

,ioo o up io zo.ooon ooi oß oA t j o ^ o o o r or? /., ., rr\\ 

t = 0 ^ 'y b c c c 'y 0 c c (11 DZ) 
oj im ^oo'oa'opaßXo zo jo io ' o p,^ TT] vo mo' \ ' ) 

Since in addition we have 

zo OOL rOOi J VO OT r O T 

7 . c = 0 and 7 • c — 0 
'op zo po " " ^ loß ^vo po^ 

taking them into (11.52) yields 

.iooo ^ /7^^-y^°fA°"f°°°^A°^V°^C°'^0°°C°'^ oj im ^ 00 I oa^ po (xßXo po) jo io^ rr] mo 

_ ap.oooT 00 io oß oX or) .^^ ^oN 
— 900^pßXo9TT) iocx^jo^io^mo-> yil.OÖ) 

which is the final result for possibility 2. 
If we perform a change of notation in its dummy indices, according to the 
corr esp ondence: 

cr—>a p —^ 6 T -^ w rj -^ fi, 

the result is 
, z o o o aO ,ooow 0 0 zo oß oX on 
oj im. " 0 0 6 ßXo ^ w p ' OCX. jo io m o ' 

that is coincident with (11.47), the result of process 1. 

With respect to the tensor criteria of systems of scalar components over 
Euclidean spaces J5'"'(IR), and more precisely in the methods related to the 
quotient law for determining the tensor nature, we must point out the effect 
of the associated tensors. 

As a conclusion, we mention two conditions for a set of 2̂ " scalar com
ponents, referred to £^"'(]R), to be considered as a Euclidean tensor of order 
r. 

1. The 2̂^ systems must be homogeneous tensors of order r and each one of 
them corresponding to the different possible species. To each one of them 
the quotient law would have been applied to determine its tensor nature. 

2. The set of the 2'^ systems must be an equivalence class with respect to the 
association of Euclidean tensors indicated in the previous section. 
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11.8 Symmetry and anti-symmetry in Euclidean tensors 

Euclidean tensors can obviously present in a certain basis {e*̂ } of E'"'(]R), 
partial or total symmetries (with respect to an index set). 

The situation is similar with respect to the anti-symmetry. As they are 
homogeneous tensors, we know that both properties have a tensor nature. 

However, we raise another question, relative to an arbitrary basis. 
Consider a tensor "totally covariant and symmetric". If we consider its 

associated tensors, raising pairs of indices, does this imply that the tensor is 
symmetric with respect to these contravariant indices? 

Following the line of the authors that mention this, we prove that if the 
answer is affirmative, we will obtain a mixed symmetric tensor. 

We remind the reader that only changes of indices of the same species 
between them are considered, because the symmetry of indices of different 
species has no tensor nature. 

In effect, let T G ( ^ J E ^ 1 (R) be a symmetric covariant tensor. 

Let 

t° ° ° ' ° =t° ° ° ° °, \/a,,a.Gln, ij elr^ (11.54) 

If we study 
, O Q;2a!3 O O Oi2ß2 OLsßz.O O O O O 

CKi o o ...ar ^ o o y o o aif. 1 /32 /33 •••CKr 

due to the properties of the fundamental metric tensor, it is 

, o 0:20:3 o o Cisßs a2p2 , 0 0 0 0 0 
Ol o o ...ar •̂  o 0 ^ 0 o aiß2ß3 ...Oir 

and because of the property (11.54) 

o Q;2Q!3 o o 0:3/33 0:2/32 / o o o o o , 0 0 3 0 2 0 0 
o;i o o ...ar ^ o o i ' o o aiß3ß2 •••ctr Oi o o ...ar 

Similarly, if the initial tensor T G ( 'S) E"^ J (II) is contravariant and sym

metric, also the process of "lowering" each pair of indices, will produce the 

symmetry of the lowered indices. 
Thus, as a new corollary we conclude that if a Euclidean tensor presents ini

tial total covariant (contravariant) symmetry, it will present final contravari
ant (covariant) symmetry in the given basis, and then in any other basis. 

However, if the initial data is a mixed tensor^ Euclidean and symmetric, 
the symmetric character does not hold, in general, in its associated tensors. 

The reason is clear. Assume that a mixed tensor of order r==4,p = g = 2, 
is symmetric, then we have 

,o /3oo , /3ooo ,o /3oo ,/3Q;OO 
oo^S 00^6 00(57 006'y' 
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However, when lowering its first two indices, as is well known, the symmetry 
o o o o ^(aß)( s) ^^^"^ î̂ s between the indices (aß) and between the (7J) but we know 

nothing about t°? ^^, because though they would have the indices (/?7), ^00 5 
with vertical symmetry and keep it when lowered, in tensor form this means 
nothing. A counterexample will clarify this situation. 

Consider the mixed symmetric tensor S of order r = 4 and species (1 — 

1 — 2 — 2), over a Euclidean space E'^{Wl) of Gram matrix G2 = 

cr = n'" = 2^ = 16. 
The matrix representation of the components of S is 

1 2 
and 

S = qaßoo 
0 O'jS 

= 

" a 
b 
-
m 

-P 

b 
c 
-
p 
Q 

1 
1 
+ 
1 
1 

m 
P 
-
e 
d 

P 
Q 
-
d 
f 

(11.55) 

where a, 6, c , . . . , e, d, / G IN with a ^ b y^ c ^ - - - y^ d ^ f. 
Whence 

lloo lloo 22oo 
^ooll 

22oo _ j> 

lloo lloo 
"^0012 ~ "^0021 b; 

12oo 
^ooll 

2I00 
^ooll 

12oo _ 2I00 
^^' "^0022 ~ "^0022 

22oo 
^ool2 

22oo 
^oo21 

JU 7, 12oo 12oo 2I00 2I00 

The expression for lowering the two indices (a/?), to arrive at the totally 

covariant associated tensor 5'°^°^, is 

-Y O O O O 

'^ ßlß2ß3ßA 
0 0 O O Q 

^ßl CKl ^ß2 CX2 
CtlOi2 O O 

O O Q!3 Q;4 

0:3 O OC4 O 

^ 0 / 3 3 ^ 0 / 3 4 (11.56) 

obtained as the formulas (11.43) and (11.44). 
We calculate (11.56) using matrices, as in Formula (11.45). 
In our case, the extension Sa of S is (in horizontal): 

(5*1,16) = [a b b c I m p p q \ m p p q \ e d d f 

whence 

•Mi6,l6 [G 

( 

2^G2 

"1 1" 
1 2 

0 i 

(8) 

2<S)l2] 

"1 1" 
1 2 H "1 0" 

0 1 (8) 
"1 o" 
0 1_ 

" 1 1 1 1 " 
12 12 
1 1 2 2 
1 2 2 4 

0 

" 1 0 0 0 " 
0 1 0 0 
0 0 10 
0 0 0 1 
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which implies S = Mi6,i6 • S'le,!^ and operating 

ne 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

2 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

2 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

2 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 

2 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

2 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 

2 0 0 0 
0 2 0 0 
0 0 2 0 
0 0 0 2 

4 0 0 0 
0 4 0 0 
0 0 4 0 
0 0 0 4 

• a 

b 
b 
c 

m 
P 
P 

m 
P 
P 
Q 

e 
d 
d 
f 

a + 2m + e 
6 + 2p + c? 
b + 2p + d 
c + 2g + / 

a -h 3m + 2e 
6 + 3p + 2d 
b + 3p-^2d 
c + 3g + 2 / 

a + 4m + 4e 
b + Ap + M 
b + Ap + Ad 
c + 4g + 4 / 

We observe that condensed, SIQ i is the associated tensor: 

S' = [S 

a + 2m + e 
b-i-2p + d 

a + 3m + 2e 
b-^3p-i-2d 

6 + 2p + d 
c^2q + f 

b^3p-\-2d 
c + 3g 4- 2 / 

a + 3m + 2e 
6 + 3p + 2(i 

a + 4m + 4e 
b-j-Ap-^M 

6 + 3p + 2d 
c + 3g + 2 / 

b + Ap + Ad 
c + Aq^Af 

aß^öi 

(11.57) 
When studying the subindices discussed in our development when the ini

tial data tensor was a mixed tensor, we observed that, for example: s'^^li — 

a + 3m -\- 2e — s 2 1 1 1 ' that is, the "lowered" indices maintain the sym

metry that they showed initially, in agreement with the theory. However, 

when contemplating the indices (ßj)^ the result is s^^^in — ^ + ^ ^ + ^^ T̂  

b ^2p-\- d — <s^Q2)i' ^'^^ then, due to this reason and others, the associated 

tensor S^ = l'^a^^^öl '^^ ^^^ symmetric, thus the symmetry of S has no tensor 
nature. 

It is evident that with respect to the anti-symmetry the same occurs: If a 

tensor T G ( ^E'^ j (H) is anti-symmetric, \/ai^aj e In'-> i^j ^ Ir '^^ 

,Ot2CX.\ CK3 •••CKr- .CKl Q : 2 Q ! 3 "-Oir 

and this implies 
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, 0 0 Oi3---(Xr- , 0 0 a^-'-CXr 

however, the reverse does not satisfy such an implication. We do not insist 
further on the anti-symmetric case, that will be treated in detail later in 
Chapter 13 dedicated to Euclidean exterior algebras. 

11.9 Cartesian tensors 

Given the great importance that in particular tensor applications in solid 
mechanics, mechanics of continuous means, geotechnics, etc., the fact of us
ing exclusively either initial or new orthonormalized bases, for the reference 
Euclidean space E'"'(]R), has, we have decided to give the title of Cartesian 
tensors to the tensors that have such compelling privilege. 

11.9.1 Main properties of Euclidean £^" (̂IR) spaces in orthonormal 
bases 

The following properties hold: 

1. Let {ca} be an orthonormal initial basis of E'^{H). The fundamental 

metric tensor in covariant coordinates, G = [p^'g], satisfies the property 

Saß = ^a*eß = Saß; Vo;, ß G In, 

SO that 
G = Kl] = K°ß] = In (unit matrix). (11.58) 

Similarly, as E'^{Wi) = ^ ^ ( R ) , the fundamental metric tensor in con-
travariant coordinates is 

G* = G- i ^ [gfj = [gi;]-' = / "^ = 7„, (11.59) 

whence 

c;=9fo=K;=Kt (11-60) 

2. The contravariant and the covariant coordinates of any vector V G ^" '(H) 
coincide. 
In effect, let V — X^CQC OY V = x°e**'", then 

^° = Q°°^x^ — ̂ ° ^ ^ ^ — ^ ? ; Va G In- (11.61) 
Oi ^ cx.ß o aß o o ' '«' V / 

3. The orthonormal bases satisfy the property of being autodual or autore-
ciprocal: e^ = S^^^a G In, 

-HMcrv aß-* rOiß-i' -^ 
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thus, if it is orthonormal, i.e., if 

e •eß = eo,meß = ö^ß = d^ß 

then it is also autoreciprocal, i.e., 

e^^ • eß = S^ß] (reciprocal condition). 

4. The changes of basis, of initial orthonormal to final orthonormal bases are 
made by means of change-of-basis orthogonal matrices C (note the change 
in name, it should be "orthonormal matrices C"). 
Let Ci = C^^CQ; and C = [c^°] be the change-of-basis in the space E"^(]R). 

We know that êQ, • eg = ^°'^ and that ê  • ê  = <̂ °° because the bases must 
be orthonormal before and after the change. Whence 

7* 7? r-oo / CKO-̂  \ / /3o-* \ f-^ -^ \ ao Bo r o o OLO ßo o ct e o o ßo 

eA%ej=ö • . — [c •eo,)^{c •eß) = {ea^eß)c .c . — 6 aC .c . — c ö aC . 
^ J ij V oz ct;/ V o j P / V ct pj Q 2, o j aß oi oj zo aß oj 

with the correlative contraction of indices a and ß. 
roo o a eo o /3o 

%2 * o aß o J 

In = C^lnC\ C^*C = In^C^ = C'^, (11.62) 

The tensor expression (̂ °° = ^^o^^^^o^ ^^^ ^^^ matrix interpretation 

which shows its ortogonal nature. 
If desired, one can use a tensor procedure 

5-00 O C K r O O ßo O C K / r C t O ßo\ O CK a C roo ocKroo p o ocK/rcto p o \ oa ao 
ij 20 a p OJ zov o p OJ/ 2o o j " 

which implies 

c=i::^c'=c~\ (11.63) 

11.9.2 Tensor total Euclidean character in orthonormal bases 

The proper Euclidean tensors, which have a tensor nature for any change-of-
basis, be this or not of orthogonal matrix C, and which will be called "total" 
Euclidean nature, evidently can be considered in a restricted way, as Cartesian 
tensors, executing with them exclusively changes of basis of orthogonal matrix, 
in which case they exhibit its tensor nature, though in a certainly outstanding 
way. 

Consider a tensor T E ( ^ E'^ ) ( ^ ) o^ î" the linear Euclidean space 

E'^{'JR) of orthonormal basis {cc^}. We have 

,aß aO ßw.oo ra6 rßw.o o , 0 0 

t — q q tn = 0 0 tn = t ^ 
0 0 ^ 00^ o o 9w 00 00 6w aß 

and 
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, 0 0 ,ao a t ? , 0 0 c-av.oo , 

and also 

The conclusion is that 

o ^ _ 0 0 ö / 3 _ 0 0 ^ 0 / 3 _ 0 0 

Oio aO^oo oiB 0 0 aß 

e^ = t°° = e° = t°^, (11.64) 
o o aß 0 /3 CKo' V / 

i.e., that all associated Euclidean tensors have the same values for the compo
nents of the diverse types of species, which constitutes an extension to tensors 
of property 2 of Section 11.9.1. They also have identical change-of-basis tensor 
relations: 

4.^3 ^+Ocß to JO 
0 0 0 0 loa ' oß 

, 0 0 , 0 0 oa oß 

t . . = t aC C 
IJ aß z o J O 

,i o ,ao i o oß 
t . = t o^ C • 

o j o ß I oa J o 
f 3 ^ .oß oa 30 

io ao i o Ioß' 

(11.65) 

In effect, in agreement with Formulas (11.63) and (11.64), we have, for example 
with (11.65-2), that 

, 0 0 , 0 0 oa oß , 0 . 0 i o jo ,aß i o jo 

i j aß i o jo aß I oa I oß o o > oa' oß'> 

and because of (11.65-1), we get 

, 0 0 ^ .aß io jo ^ ij 

i j o o I oa ' oß 0 0 

and transforming in a similar way (11.65-3) and (11.65-4) we arrive at 

t°° = t ^ ^ ' = t ' ° - t ° ^ (11.66) 

which is (11.64) but in the new basis. 
Since there is only one type of components for all species it is common to 

give always the tensor in contravariant coordinates 

T = tfj^^eß, 

though the space be {E'^ (g) -E^)(Il), for example. 

All that has been mentioned in this section for ( ^ E'^ j (R) can be gen-

r 
eralized evidently for any Cartesian tensor in ( ^ E'^ ) (IR), referred to a Eu

clidean space £^"'(R) of orthonormal basis {e*a}-
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11.9.3 Tensor partial Euclidean character in orthonormal bases 

We intend to distinguish with this name the systems S of scalar components 
s(ai , « 2 , . . . , Qr-), such that they satisfy the change-of-basis partial tensor re
lation 

5( i i , i2 , . . . , v ) = 5(ai, ^ 2 , . . . , a^)c.° ""̂ 'c.̂  ""̂^ • • • cl"^;, (11.67) 

and the additional condition in Formula (11.63): 

%"o = 7 ' i ; . , Va,-, ij G /„; Vj G J,. (11.68) 

That is, they can be notated as partial Cartesian tensors, because they behave 
like that only for orthogonal matrix changes of basis in ^ '^(R) 

o 0 . . . 0 ^ o o ... o o a i o a 2 _ o a , . Q ^ ggx 
ili2---ir Q!lQ:2"-Qir 2l O 22 O V O ' V * / 

where C* = [ c ° ^ ] - C - i . 
These systems of scalars that manifest tensor nature, only if we perform 

changes of basis of matrix C, such that C* = C~^ in £'"'(R), but that do 
not satisfy the condition (11.69) for non-orthogonal matrices C, will be called 
"partial" Euclidean tensors, though as Cartesian tensors they are not different 
from the "total" Euclidean tensors. 

The authors of this book hope the reader will have captured the great 
differences between both, even though there are many authors of physical 
applications who put all of them in the box of "Cartesian tensors" without 
making any more distinctions. 

11.9.4 Rectangular Cartesian tensors 

Rectangular Cartesian tensors are those tensors that are defined over a special 
Euclidean linear space, the OGS, the ordinary geometric space^ that is, the 
basic vectors {ca} constitute n-rectangular polyhedra with the unit directional 
vectors, notated usually with specific letters i, j , k^i^ etc., and obviously G = 

Example 11.1 (Associated Euclidean tensors). Consider a linear space y^(]R) 
connected with a fundamental metric tensor that, in the basis {CQ,} of such a 
space, is represented by the matrix 

G - [Cß] 
1 1 - 1 
1 2 0 

- 1 0 3 

1. Examine if V^(]R) is a pseudo-Euclidean space or a Euclidean space, and 
give it the adequate notation. 
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2. Give the associated tensors of the metric tensor given by its different 
species. 

3. Consider a Euchdean tensor T defined over this space, with components 

t i;: = a + ß-4r 
a) Give T by its contravariant components. 
b) Give T by its covariant components. 
c) Examine the symmetries of T, in all representations of the present 

example. 

Solution: 

1. We extract the Gram-Schmidt numbers of the matrix G: 

No = l; i V i - | ^ i i | - | l | - l ; N2 911 912 
921 922 

1 1 
1 2 

Then, the diagonal of the canonized matrix is gn 

1; 533 = f = 1. 

EL 
No 

1; TVs = |G| = 1. 

= 1; 522 = f = 

and the Sylvesterian matrix: J3 = 
1 0 0 
0 1 0 , with n =^ r = a — 3. 
0 0 i j 

It classifies as a positive definite quadratic form, so that it is a Euclidean 
space with notation ^ ^ ( H ) . 

2. The associated tensors of G = [p^^]? ^r^-
a) The metric tensor in contra-covariant coordinates is 

9oß = 9oo'9eß = ^oß^ [9oß\ = [^oß\ = 

1 0 0 
0 1 0 
0 0 1 

6 - 3 2 
-3 2 - 1 
2 - 1 1 

b) The metric tensor in contravariant coordinates is 

Kl] = Kir' = G-' = 

c) The metric tensor in cova-contravariant coordinates is 

^ OiO '^ CtU «^OO CtO' L .^Q.oJ L C K O 

1 0 0 
0 1 0 
0 0 1 

3. We organize the tensor data t^^^ = a+/3—47 in the matrix representation 
agreed upon in Axiom 4 of Section 2.5, where a = row block index, and 
/3,7 = row and column indices of each block: 
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T = KIZ] 

- 2 
- 1 

0 

- 1 
0 
1 

0 
1 
2 

- 6 
- 5 
- 4 

- 5 
- 4 
- 3 

- 4 
- 3 
- 2 

-10 
- 9 
- 8 

- 9 
.8 

- 7 

- 8 
- 7 
- 6 

a) As is recommended in Formula (10.43) we notate the da ta tensor and 
the associated tensor with numbered dummy indices, and we relate 
them with the same criterion as tha t used in the given formula, to 
obtain in our case 

x/3l/?2;33 
-7 0 0 i' o o 

/ÖS O , O O Q!3 

^ O CK3 OKI Oi2 O ' 
(11.70) 

which can be interpreted in matr ix form, as was done with (10.44): 

r ; = ( G - i ® G - i ® j 3 ) . T , , 

where a = n*" = 3^ = 27, tha t is, 

36 
0 
0 

18 
0-
0 

12 
0 
0 

18 
0 -
0 
9 
0 
0 

- 6 
0 
0 

12 
0 
0 

- 6 
0 
0 
4 
0 
0 

7' 
^ 2 7 . 2 7 

0 
36 

0 
0 

-18 
0 -
0 

12 
0 
0 

-18 
0 -
0 
9 
0 
0 

- 6 
0 
0 

12 
0 
0 

- 6 
0 
0 
4 
0 

0 -
0 

36 
0 
0 

-18 
0 
0 

12 
0 
0 

-18 
0 
0 
9 
0 
0 

- 6 
0 
0 

12 
0 
0 

- 6 
0 
0 
4 

=z 

-18 
0 -
0 

12 
0 
0 

- 6 
0 
0 
9 
0 
0 

- 6 
0 
0 
3 
0 
0 

- 6 
0 
0 
4 
0 
0 

- 2 
0 -
0 

0 
18 

0-
0 

12 
0 
0 

- 6 
0 
0 
9 
0 
0 

- 6 
0 
0 
3 
0 
0 

- 6 
0 
0 
4 
0 
0 

- 2 
0 

6 - 3 2-
3 2 - 1 
2 - 1 1_ 

0 12 0 0 -
0 0 12 0 

-18 0 0 12 
0 - 6 0 0 
0 0 - 6 0 

12 0 0 - 6 
0 6 0 0 -
0 0 6 0 

- 6 0 0 6 
0 - 6 0 0 
0 0 - 6 0 
9 0 0 - 6 
0 3 0 0 -
0 0 3 0 

- 6 0 0 3 
0 - 3 0 0 
0 0 - 3 0 
3 0 0 - 3 
0 4 0 0 -
0 0 4 0 

- 6 0 0 4 
0 - 2 0 0 
0 0 - 2 0 
4 0 0 - 2 
0 2 0 0 -
0 0 2 0 

- 2 0 0 2 

0 

18 ( 
0 - 1 ^ 
0 ( 
9 
0 
0 

-6 ( 
0 -
0 

12 ( 
0 1 
0 ( 

-6 ( 
0 - ( 
0 ( 
4 { 
0 ^ 
0 ( 

-6 ( 
0 - ( 
0 ( 
3 ( 
0 . 
0 ( 

-2 ( 
0 - : 
0 ( 

3 
3 
D-
3 
3 
3 
3 

3 
3 
2 
3 
3 

3 
3 
1 
3 
3 

3 
3 
3 
3 
3 
2 
3 

6 - 3 
- 3 2 

2 - 1 
0 9 0 
0 0 9 

-18 0 0 
0 - 6 0 
0 0 - 6 
9 0 0-
0 3 0 
0 0 3 

- 6 0 0 
0 - 6 0 
0 0 - 6 

12 0 0-
0 4 0 
0 0 4 

- 6 0 0 
0 - 2 0 
0 0 - 2 
4 0 0-
0 3 0 
0 0 3 

- 6 0 0 
0 - 2 0 
0 0 - 2 
3 0 0-
0 1 0 
0 0 1 

- 2 0 0 

2" 
- 1 

1_ 
0 - 6 
0 0-
9 0 
0 3 
0 0 

-6 0 
0 - 3 
0 0-
3 0 
0 4 
0 0 

-6 0 
0 - 2 
0 0-
4 0 
0 2 
0 0 

-2 0 
0 - 2 
0 0-
3 0 
0 1 
0 0 

-2 0 
0 - 1 
0 0-
1 0 

O 
•1 0 0-

0 1 0 
0 0 1 

0 0 12 0 0 - 6 0 
-6 0 0 12 0 0 - 6 
0 - 6 0 0 12 0 0-
0 0 - 6 0 0 4 0 
3 0 0 - 6 0 0 4 
0 3 0 0 - 6 0 0 
0 0 4 0 0 - ' 2 0 

- 3 0 0 4 0 0 - 2 
0 - 3 0 0 4 0 0-
0 0 - 6 0 0 3 0 
4 0 0 - 6 0 0 3 
0 4 0 0 - 6 0 0 
0 0 3 0 0 - 2 0 

- 2 0 0 3 0 0 - 2 
0 - 2 0 0 3 0 0-
0 0 - 2 0 0 L 0 
2 0 0 - 2 0 0 1 
0 2 0 0 - 2 0 0 
0 0 6 0 0 - 3 0 

- 2 0 0 6 0 0 - 3 
0 - 2 0 0 6 0 0-
0 0 - 3 0 0 2 0 
1 0 0 - 3 0 0 2 
0 1 0 0 - 3 0 0 
0 0 2 0 0 - L 0 

- 1 0 0 2 0 0 - 1 
0 - 1 0 0 2 0 0-

0 
0 

-6 
0-
0 
4 
0 
0 

-2 
0-
0 
3 
0 
0 

-2 
0-
0 
1 
0 
0 

-3 
0-
0 
2 
0 
0 

-1 

4 
0 
0 

-2 
0-
0 
2 
0 
0 

-2 
0-
0 
1 
0 
0 

-1 
0-
0 
2 
0 
0 

- 1 
0-
0 
1 
0 
0 

0 
4 
0 
0 

-2 
0-
0 
2 
0 
0 

-2 
0-
0 
1 
0 
0 

-1 
0-
0 
2 
0 
0 

-1 
0-
0 
1 
0 

0 
0 
4 
0 
0 

-2 
0 
0 
2 
0 
0 

-2 
0 
0 
1 
0 
0 

- 1 
0 
0 
2 
0 
0 

- 1 
0 
0 
1> 

For the sake of convenience, we notate T^^\ horizontally: 

TI^ ^ = [ - 2 - 6 - 1 0 - 1 - 5 - 9 0 - 4 - 8 I - 1 - 5 - 9 0 - 4 - 8 1-3-7 I 0 - 4 - 8 1 - 3 - 7 2 - 2 - 6 ] 
(11.71) 

and we calculate T27 ^, by means of the relation T27 ^ = Z27 27 •^27,1-
Notating T27 i horizontally, we get 
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{n,^,f = [A\B] 

where 

A = [-40 -140 -240 18 58 98 - 1 3 - 5 3 - 9 3 18 58 98 - 8 ] 

5 = [-24 -40 6 22 38 - 1 3 - 5 3 - 9 3 6 22 38 - 4 -20 -36] 

which once condensed leads to 

o o oJ 

•-40 

18 
-13 
18 
-8 
6 

-13 
6 

-4 

-140 
58 

-53 
58 

-24 
22 

-53 
22 

-20 

-240 
98 

-93 
98 

-40 
38 

-93 
38 

-36 

b) Proceeding with a similar criterion, we have 

, u u u 
^/3i/32/33 

which in matrix form is 

O OC\ O CX2 

^/3i o 9ß^ o dß^aa^' >3 as Oil CX.2 O 

r;,={h®h^G).T,;_ 
with CT = 27, and in our case 

(11.72) 

"1 0 
0 1 
0 0 

/ 11-
/ 12 
/ -10 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

\ 00 
\ 00 

0' 
0 
1_ 

-1 
0 
3 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

® 

00 
00 
00 
11 
12 

-10 
00 
00 
00 
00 
00 
00 
0 0 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

"1 
0 
0 

0 
0 
0 

-1 
0 
3 
0 
0 
0-
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0' 
1 0 
0 1_ 

00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
1 1 -
12 ( 

-10 . 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 { 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 
00 ( 

0 

D 00 
D 00 
D 00 
D 00 
3 00 
-) 00 
L 00 
3 00 
3 00 
D 11-
D 12 
3-10 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 00 
3 0 3 

1 
1 

-1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
0 
3 
0 
0 
0-
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 -
2 
0 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
0 0 
0 0 
11-
12 

-10 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 

-1 
0 
3 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
0 
3 
0 
0 
0-
0 
0 
0 
0 
0 
0 
0 
0 
0 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
11-
12 

-10 
00 
00 
00 
00 
00 
00 
00 
00 
00 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
0 
3 
0 
0 
0-
0 
0 
0 
0 
0 
0 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
0 0 
11-
12 

-10 
00 
00 
00 
00 
00 
00 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
0 
3 
0 
0 
0-
0 
0 
0 

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
11-
12 

-10 
00 
00 
00 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
0 
3 
0 
0 
0-

00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
11-
12 

-10 

0\ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-1 
0/ 3/ 

We calculate T27 ̂ , using the relation T27 ^ = ^37 27 »^27,1, and using 
horizontal notation for the result, we have 
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{T!^,^,Y = [A\B], 

where 

yl = [2 - 1 4 - 2 8 3 - 1 1 -26 4 - 8 - 2 4 3 - 1 1 -26 4] 

B :- [ -8 - 2 4 5 - 5 - 2 2 4 - 8 -24 5 - 5 -22 6 - 2 -20] 

which once condensed gives 

2 - 1 4 - 2 8 
3 - 1 1 -26 
4 - 8 -24 

^Oiß-i\ 

3 
4 
5 

-11 
- 8 
- 5 

-26 
-24 
-22 

4 - 8 - 2 4 
5 - 5 - 2 2 
6 - 2 - 2 0 

c) Note that the data tensor T satisfies 

i 
0 0 7 

12o 

0 0 7 

, 0 0 7 ^ 

^2 
11] in fact, if 7 - (1,2,3), t\ oo-y 

2o 
- 1 , - 5 , - 9 ) 

*i3o = *3io; in fact, if 7 = (1,2,3), t\ll = (0, - 4 , - 8 , ) 

0 0 7 «̂ 230 - ^32^5 in fact, if 7 = (1, 2,3), ^3°^ = (1, - 3 , - 7 ) . 

Studying the tensor T in its representation [t^^^] from answer 3(a)), 
we get 

,127 f 2 l 7 . 1 2 7 
tl2\ in fact, if 7 = (1,2,3), ^^2 = (18,58,98) 

*o!o = till in fact, if 7 = (1,2,3), Cl = ( -13, - 5 3 , -93) 

Cl = iooZ; in fact, if 7 = (1,2,3), tlH = (6,22,38). 

Finally, examining T = [^°'̂ °] in answer 3(b)), we get 

(3,-11,-26) 

tli; = tli;; in fact, if 7 = (1, 2,3), t^; = (4, - 8 , -24) 

^127 = ^217^ i^ fact, if 7 = (1, 2,3), t°2° 

' '237 
^32°; in fact, if 7 = (1, 2,3), t 0 0 0 

237 (5, -22), 

which finally confirms the "partially symmetric" character with re
spect to the first two indices^ of the Euclidean tensor T, i.e., it presents 
this property not only in the analyzed representations but in all pos
sible representations, and in any basis, because it is a tensor property. 
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D 

Example 11.2 (Associated tensors with a change-of-basis). In a Euclidean 
space ^" ' (H) referred to a basis {ca} the fundamental metric tensor is given 
in contravariant coordinates as 

A Euclidean tensor T of order r = 2 

2 1 
1 1 

o oJ 
1 1 
1 2 

is considered over that space and a change-of-basis of matrix C, to the new 
basis of E 2 ( ] R ) {Si}: 

^3 5 ' 
C - [cH] = 1 2 

is performed. 

1. Write of all possible forms the components of the tensor T in the initial 
basis. 

2. Based on the data, write of all possible forms the components of the tensor 
T in the new basis. 

3. Examine the symmetries of T. 

Remark 11.1. Execute the operations using the classical method for question 
1, and using the direct matrix method for question 2. 

D 

Solution: 

1. The fundamental metric tensor in covariants is: 

a ^ i - l 2 1 
1 1 [9 aß] = [^oo 

The contra-cova components of T are: 

^ / 5 l _ 

/ 3 i O O O , o i l 0 2 

9 o ai9ß2CX2 
ßßi o ,aiOL2 o o , 

o a i o o ^cx.2ß2 ' 

\tZ] = h. 

The cova-contra components of T are: 

" l l ' 
1 2 

1 - l " 
- 1 2 

t 0 l " 
- 1 3 

O /32 ^ßlOti^ O Q ; 2 O O ^ßlCtl O O Q ! 2 O ' 
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l ' 
2 

" l l " 
1 2 

' l O' 
0 1 

"o 
1 

- l " 
3 

The cova-cova components of T are: 

,oo oo oo ,a.\ 02 o o .Oil oc^ o o ^ 

1 — 1 -*- "-^ I I ••- ^ I I J- - J - '* Kl] = 
1 - 1 

-1 2 
1 1 
1 2 

1 
- 1 

1 - 2 
2 5 

2. The change-of-basis matrices to be used are: 

L"-^o zJ I I oc 
.,J°1 3 5 

1 2 

1 - 1 
2 - 5 

- 1 3 

3 5 
1 2 

The new contra-contra components of T are: 

,ii ,aß i o j o r 
oo G O ' OCK I Oß^ 

3 1 
5 2 

2^ - 4 . 

^ - , 1 
2 - 5 

-1 3 

4 -10 -10 25 
-2 6 5 - 1 5 
-2 5 6 - 1 5 
1 - 3 - 3 9 

2 
1 

- 5 ' 
3j 

^ 
• 

" 1 " 
1 
1 
2 

" 1 " 
1 
1 
2 

" 34" 
- 2 1 
- 2 1 

13 

The new contra-cova components of T are: 

34 - 2 1 
21 13 

.io _ ,OLO io Oß^ rpf _ f^-1 ^ ^t\ 

0 
1 

- 1 
3 

t^- 2 
1 

- 5 " 
3 ® 

"3 r 
5 2^ 

\ . 
; • 
/ 

" 0" 
1 

- 1 
3 

6 2 - 1 5 - 5 
10 4 - 2 5 -10 

- 3 - 1 9 3 
- 5 2 15 6 

" 0" 
1 

- 1 
3 

= 

" 2" 
- 1 
- 1 

5 
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f=[t:;]-
2 - 1 

-1 5 

The new cova-contra components of T are: 

to ao lo 'oß^ CJ \ Y^ ^ J 

0 
- 1 

1 
3 

rp/f 3 1 
5 2 

6 - 1 5 2 - 5 
- 3 9 - 1 3 
10 - 2 5 4 -10 

- 5 15 - 2 6 

2 
1 

- 5 ' 
3 ) • 

/ 

" 0" 
- 1 

1 
3 

• 

• 0 " 

- 1 
1 
3 

= 

• 2 " 

- 1 
- 1 

1 

T" = [tZ] = 

The new cova-contra components of T are: 

2 
- 1 

2 j aß lo J o^ \ ^ K^ ^ J 

rpfff "3 l" 
5 2 (g) 

"3 l " 
5 2 ) • 

/ 

" 1" 
- 2 
- 2 

5 

= 

9 3 3 1" 
15 6 5 2 
15 5 6 2 
25 10 10 4 

• 

• 1 " 

- 2 
- 2 

5 

' 2 " 
3 
3 
5 

m = 2 3 
3 5 

3. The reader can easily see that 

which shows the symmetry of T. 

As a practical complement, the reader can invert the order of the questions 
of the present exercise, by first executing the change-of-basis over the tensor 
[t^^] in order to determine [t^^], and later proceed to the calculation of the 

Euclidean associated tensor of tensor [t^^], that is, the [̂ o ]̂, [̂ °o] ^^^ [^Hl' 
and check that the results are coincident with those proposed in this exercise, 
as it demonstrates the theory in Section 11.7. 

D 
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Example 11.3 (Uniqueness of associated tensors). Show that if U^V and W 
are the associated tensors of a given Euclidean contravariant tensor T G 

2 \ 
^E'^ j (R) of second order there is no new associated tensor. 

Solution: Let T — t^J^ßot ^ ^ß be the data contra-contravariant tensor, the 
associated tensors are 

U •• a o ,0.0 oo 3/5 — ^oo^öö (contra-covariant) 

V — v^^ = q^Zt ^ (cova-contravariant) 

TXT OO oo o o ,6w / . , \ 

^ = ^a/5 = ^aö^;sJoo (cova-covariant). 

If we obtain from W another contra-contravariant associated tensor, the 
result is 

rr aß aX ßa o o aX ßa f oo o o ,6w\ 

^ = ^oo = doodoo^xi. = 9oo9oo [9xe9^Joo) 
aX o o \ / ßfj, o o\ ,6w cOiO rß o ,9w .aß 

J o o^ X6 j {J^oo^ßwl o o o6 ow o o o o ' 

which shows that Z = T and that we return to the initial tensor. D 

Example 11.4 (Symmetries through pure associated tensors). In a Euclidean 
space £'^(11) referred to a basis {ea}, the fundamental metric tensor in co-
variant coordinates is represented by the matrix 

G - iCß] -
1 1 1 
1 2 1 
1 1 2 

A certain Euclidean tensor T G (^E^ ^ E^ <S) Ef^ (JR)^ is given by its compo
nents 

6 8 7 
1 0 1 

- 1 - 1 - 3 

.aßo. 
I O O'VJ 

- 1 - 1 - 3 
9 14 13 
5 9 8 

where a is the block row, ß is the row of each block and 7 is the column of 
each block. 

1 0 
7 10 
9 14 

1 
12 
13 

1. Verify that the space E^(R.) is Euclidean. 
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2. Obtain the fundamental metric tensor in contravariant coordinates. 
3. Obtain the "associated" tensor of T in contravariant coordinates. 
4. Obtain the "associated" tensor of T in covariant coordinates. 
5. Obtain the symmetries and anti-symmetries of T. 
6. We execute a change-of-basis in £^^(]R), of matrix 

c = [cTA = 
ri 

0 
0 

- 1 
1 
0 

0] 
- 1 

1 

Give the associated tensor of T in the new basis, in contravariant coordi
nates. 

Solution: 

1. The Gram-Schmidt numbers of the fundamental metric tensor matrix are 

ro = l; A ^ l ; r2 = 1 1 
1 2 

= 1; r^ = \G\ 

and since VT̂  > 0, the space is Euclidean. 

I l l 
1 2 1 
1 1 2 

aßi r o o 

[9a ]-'^G-
\1 1 l l 

12 1 
1 1 2 

—i 

— 
3 

- 1 
- 1 

- 1 
1 
0 

- 1 
0 
1 

3. To obtain the tensor in contravariant coordinates, we raise the index 7. 
We solve the problem by the classic method 

t 
aß J 

t 
Oißo Ö7 

^ 0 0 ' 

d operating, we 

0 0 0 

0 0 0 

V3/?7' 
0 0 0 

= 

= 

^oo6>J 

• 3 ^ 0 ] 
^00 0j 

get 

6I7' 
= 

i^ooj 

07" 
9 00 = 

" 6 8 7 
1 0 1 

- 1 - 1 - 3 

"1 0 1" 
7 10 12 
9 14 13 

" - 1 - 1 3 ' 
9 14 13 
5 9 8 

lence 

\4-Oißl^ _ 
L ^ o o o J "~ 

r 3 
2 
1 

2 
- 1 

0 

] 
( 
c 

L 
) 
I 

1 r 3 - 1 - 1 " 
- 1 1 0 

3 - 1 - 1 " 
- 1 1 0 
- 1 0 1 

= 

= 

r 3 - 1 - 1 ] 
- 1 1 0 

[-1 0 i j 

2 11 
- 1 0 

0 - 2 

- 1 0 
3 5 
5 4 

0 - 2 
5 4 
4 3 

[3 2 1 
2 - 1 0 

[1 0 - 2 

2 - 1 0 " 
- 1 3 5 

0 5 4 

== 
1 0 - 2 " 
0 5 4 

- 2 4 3 
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4. To obtain the tensor in covariant coordinates, from the data tensor, we 
lower the indices a and /S. We solve the problem by the direct method. As 
the ordering is decisive in this method, we change the subindex notation 
to another numbered notation 

, o o o o o o o o CK3 ,a:iQ;2 o 
/31/Ö2/33 ~ dßiai9ß^a2^ß3 o ^ o o a s 

and we apply the Formula (11.45) adapted to our case. We have a — nJ' 
3^ = 27 and T^̂  ^ = (G 0 G (g) h) • Tsr,! with 

where 

and 

{T2,^if = [A\B\C] 

A = [6 8 7 1 0 1 - 1 - 1 3] 

5 = [1 0 1 7 10 12 9 14 13] 

C = [ -1 - 1 - 3 9 14 13 5 9 81 

Zi = G®G®h 
"1 1 1" 
1 2 1 
1 1 2 

(8) 
"1 1 1" 
1 2 1 
1 1 2 

0 
"1 0 0" 
0 1 0 
0 0 1 

1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 

0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 

0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 

1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 

0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 

0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 

1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 

0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 

0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 

1 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
2 
0 
0 
2 
0 
0 
1 
0 
0 
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0 
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0 
0 
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0 
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0 
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0 
0 
2 
0 

0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
2 
0 
0 
2 
0 
0 
4 
0 
0 
1 
0 
0 
1 
0 
0 
2 

1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
2 
0 
0 
2 
0 
0 

0 
1 
0 
0 
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0 
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0 
0 
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0 
2 
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0 
0 
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0 
0 
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0 
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0 
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0 
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1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
2 
0 
0 
2 
0 
0 
4 
0 

0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
1 
0 
0 
1 
0 
0 
2 
0 
0 
2 
0 
0 
2 
0 
0 
4 

resulting in 

where 

^ 2 7 , 1 — ^ 1 • ^ 2 7 , 1 , 



11.9 Cartesian tensors 447 

A = [36 53 49 53 77 75 49 75 67] 

5 = [53 77 75 77 111 113 75 113 106] 

C = [49 75 67 75 113 106 67 106 93], 

which, once condensed, leads to the sought after tensor 

l^aß-r^ ~ 

-36 
53 
49 
53 
77 
75 
49 
75 
.67 

53 
77 
75 
77 
111 
113 
75 
113 
106 

49 
75 
67 
75 
113 
106 
67 
106 
93 

5. Observing the associated tensor in contravariant coordinates, we know 
that the indices that can present or not present symmetries are 

t 
112 a2i 

ooo ' ooo t 
131 t^''-l- t 133 ,313 

OOO ' 

,122 ,212 __ ,221 
ooo ooo 

- 1 ; i l 2 3 ^ 1 3 2 ^ 213 
' ooo ooo 

,231 ,312 ,321 

ooo 

332 

0; 

,223 ,232 ,322 r, ,233 ,323 loo^ A 

ooo ooo ooo ' ooo ooo ooo •* 

which proves that T is a symm^etric tensor. If desired, its symmetry can 
be verified over the covariant associated tensor. 

6. Since we already have the tensor in contravariant coordinates, it suffices 
to execute the change-of-basis, which will be treated by the direct method 

.ijk a / 3 7 ^ o J O /CO. ^ - 1 
o o o loa I oß I 0 7 ' 

1 1 1 
0 1 1 
0 0 1 

^27,1 (C-^0C-^(g)C-^).T27,i 

T2V1 = [3212-1010-2 |2-10-135054|10-2054-243] 

Zo=C- )C- ^c-
"1 1 1" 
0 1 1 
0 0 1 

(8) 
"1 1 1" 
0 1 1 
0 0 1 

(g) 
"1 1 1" 
0 1 1 
0 0 1 
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1 
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1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 

1 
1 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
1 
1 
0 
0 
0 
0 
1 
1 
0 
1 
1 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 

1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 

1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 
1 
1 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

^ 2 7 , 1 = ^ 2 • ^ 2 7 , 1 

= [3630133030141314513030143033161416711314514167573]* 

which, once condensed, leads to 

ijki 

36 
30 
13 

30 
30 
14 

13 
14 
5 

30 
30 
14 

30 
33 
16 

14 
16 
7 

13 
14 
5 

14 
16 
7 

5 
7 
3 

r , 2 J / C 
L O O O 

which shows again the symmetric nature, an invariant quality of the ten
sor. 

D 

Example 11.5 (Associated tensor in different bases). Over the Euclidean space 
£^"'(R), which is referred to two bases, an initial basis {ca} and another final 
basis {e^}, a Euclidean tensor T of order r = 2 is built. 

1. We wish to establish all necessary tensor relations to know each and ev
ery one of the associated tensors of T in the new basis, built from each 
associated tensor in the initial basis. A total of 16 relations. 

2. Prepare the calculus of the second, seventh and the last relations by the 
direct method. 
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Solution: 
Data: Fundamental metric tensor: G — [o^^xß 

Change of basis: C = [c 

1. The desired relations are: 

tV. = t:'.i:H; (data efj 

*oc = fsf 0*00) 7oa7oß (data e°) 0 0 W O O 06 j 'OCX. loß V oßJ 

Ki = {afXeo) llWol (data i°f) 

,ij ( OiQ 3X,oo\ io 7 0 / I , j . o o \ 

0̂0 = Uoo^o^öA ) 7oa7o^ (data t^^) 

• CKO 20 0/3 / I , J .Q ;O\ 

*o/37oaSo (da ta i , ^ ) 
io ( a6 O O , O A \ io oß / -, , J.'^ß\ ,zo / au o o , o A \ l o o p / - , , ,op\ 

hj = [9oo9ßxteo) 7oaSo (^^*^ *"o) 
, i o / Q ; ö , o o \ io oß / I , i O O \ 

*oj= ( 5 o o V J ^ o a S o (datat„^) 

^̂ 0= {CeC)c::ii; (data^^f) 

^ i o - \9ae9oo^oXj ^io^oß y^^^^^oß) 

tli = tllcZli; (data til) 

*io = (ffoo^aej Cio7o/3 (data t^^) 

, 0 0 / 0 0 0 0 , Ö A \ OCX oß / - , , ,Cxß\ 

hj = [9ce9ßxtoo) CioC,o (data i„ J 
, 0 0 

, 0 0 

, 0 0 

y^aO^oßJ ^io^jo 

[yße^aoj ^ z o S ' o 

, 0 0 0 a 0/3 

a p 10 J O 

(data i"°) 

(datat^f) 

(data i°°) 

2. We remind the reader of the need to use numbered indices. 

Second relation: data tensor [t' ao - i 

oß\ 

f^j ^ [ ß e , a o \ ia jß 
0 0 V " o o 06 J ' 0 0 ' 0 0 
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with numbered indices: 

O O I <y O / 5 l ^ O O O ß2 J ' O CKl ' O 0 : 2 ' 

where T^^^i — extension of [t '̂̂ ] and To-,i = extension of [t^^], we have 

the matrix expression: 

T,,i = [C-^ ^ C-^) • {{In ^ G" ' ) • T,,i. 

Next, we proceed to the condensation of 2^,1. 

Seventh relation: data tensor: [t°n 
L CK O J 

,io / aG O O , O A \ io oß 

oJ ~ \^oo9ßX^0oJ ^ooPjo 

with numbered indices: 

.11 o ^ (ri'^^ß^Q ° o ^ o / 5 2 \ ii o oa2 
O Z2 \^^ O O ^ a2 ß2 ßl C> J ' O Cti Z2 O ' 

where T^ ^ = extension of [t°^] and T^i = extension of [t^°], we have 

the matrix expression 

T';I = ( C - ^ ® C * ) . [ ( G - I ® G ) . T ; I ] . 

Next, we proceed to the condensation of T^ ^. 

Last relation: data tensor [t°^] 

,00 , 0 0 oa oß 
t . • = t aC- C 

IJ aß I o JO 

with numbered indices: 

, 0 0 , 0 0 oQi i o a.2 

Zl22 Oil 0:2 ^1 O 22 O ' 

where T̂ *"! " extension of [t°^] and T '̂'̂  = extension of [^°°], we have 
only the change-of-basis 

Next, we proceed to the condensation of T'^^. 

D 
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11.10 Euclidean tensor algebra in I ®E'^\ (IR) or 

pseudo-Euclidean tensor algebra in ®PSE'^ (IR) 

It is obvious that the algebraic operations in the Euclidean tensors are based 
on the homogeneous tensors and in the relations motivated by the presence 
of the associated tensors. So, it suffices to make some brief and punctual 
clarifications. 

In the particular case of pseudo-Euclidean tensor spaces, we must clearly 
indicate that we talk about "pseudo-Euclidean associated tensors". 

11.10.1 Euclidean tensor equality 

According to all of the previous discussion, a Euclidean tensor is perfectly 
defined by its order, and by the numerical components of any of its species, 
relative to a basis. 

So, one can ask, for example, if two given Euclidean tensors 

TeiE^'^E'^® E:^) ( R ) and 5 G ( 0^:^ 

are given by their components [t^^^] relative to the basis {ca} of E'^(Ji) for 

the first, and respectively [5°°^] relative to the basis {e^} of E'^(R) for the 

second, the change-of-basis considered in E'^{1R) being ||e* |̂| = ||eQ,||[c^°], they 
represent the same Euclidean tensor (T = S). 

We proceed to calculate 

,000 ,000 oa oß 07 00,000 oa oß 07^ 

ijk aß J i o JO ko ^0,6 oß'^ i o jo /co' 

and if 
,000 _ 000, w. • 7 r 
^ijk ~ ^ijk^ VZ,J, «:, t in, 

then, one can conclude that they represent the same Euclidean tensor (T = 5). 

11.10.2 Addition and external product of Euclidean 
(pseudo-Euclidean) tensors 

Again, we indicate that the two tensors must have the same order. To sum 
them they must be notated by means of associated of the same species and 
in the same basis. 

For example, the tensors mentioned in Section 11.10.1 can be added. If 
U = T -{- S is the tensor sum, the covariant components of U in the new basis 
{ e j of E^(IR) would be (either if T = 5 or if T 7̂  5): 
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OOO , 0 0 0 , 0 0 0 \ / . • 7 ^ r 

With respect to the external product of a Euclidean tensor by a scalar, it is 

such that XS G I ^ E^ J (R) because the linear character of the homogeneous 

tensor algebra remains. 

11.10.3 Tensor product of Euclidean (pseudo-Euclidean) tensors 

This product can always be executed. The difference with respect to the homo
geneous tensors is that due to the possibility of displacing the indices without 
varying the tensor, the result can be given with a great variety of species. 

More precisely, if T G (®EA ( R ) and S G (®EA ( R ) , then T^S e 

(r + 5) \ 
(8) ^S^J (R). 

With respect to the product species, the result is that the first factor T has 
2̂^ possibilities of associated tensors to be represented. On the other hand, the 
tensor S has 2* possibilities of representation, which makes it possible to give 
the tensor product by means of any of the 2̂ ^̂ "̂ *̂  possibilities of associated 
tensors that have such a product. 

Due to this reason, in theory it is assumed that the data tensors are both 
given in contravariant coordinates, as has been assumed in the present section, 
and that the result, obviously, is subject to the selected option, this or another 
one. 

Next, we introduce a model to fix the concepts. Consider a tensor T G 
(E^ ® E'^ ® E'^) {B.) and another tensor /7 G (^^ (g) E^) (R) given by their 

components [t^^^] and [ti^^], respectively. We wish to know the tensor prod
uct P (8) L̂  in covariant coordinates. 

As is well known, from the theory of homogeneous tensors, we must notate 
the second factor tensor with other indices 

0/370A _ , 0 ^ 7 oA /-.-. ^oN 

and then, we proceed to determine the associated sought after tensor 

0 0 0 0 0 00; 0 0 0 0 06 0 0 O / 3 7 0 A /-| -| l-7A\ 

Pijkdi ~ 9 i o9 j ß9 k-f9 do9 ixPao o Ö o^ U-^- '^J 

where g°^ = 5°,^ and q° — 5^.^ are Kronecker deltas. 
•̂  z o z o ^ do do 

11.10.4 Euclidean (pseudo-Euclidean) tensor contraction 

We start this section by reminding the reader of some of the properties of the 
Kronecker deltas: 
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C = 92911 = 9% (11.75) 
rio ih oo io /., ^ >-rn\ 

Kj=9oo9hj=9oj (11-76) 
and since delta is an isotropic tensor, we have 

S°i = S'° = S°i = 6l°, (11.77) 

properties that will be used when needed. 
Next, we proceed to analyze the contraction of two indices (the first two 

indices) of a tensor T of order r = 3, built over the Euclidean space £^"^(11), 
in four cases of possible positions for the given indices, that is, 

(a)t:°I; (b)CI; {c)tZl; {d)tr.l, 

that correspond to certain associated tensors of T. 

We notate w ,̂ -z;̂ , tt;^ and r^ to the tensors resulting after the contraction, 

respectively, of cases (a), (b), (c) and (d). 

Case (a) 

ul = t^ll Einstein's convention = Sl^tl^'^l, (11.78) 

which, because of (11.75), (11.76) and (11.77), can be notated 

K = dllKTk Einstein's convention = ^°o^ojfc' (11.79) 

which is called a ^^normal contraction^^ by other authors, because the con
tracted indices are of different species. 

From expression (11.79) we establish the following mnemonic rule: "We 
contract the two data tensor indices with the fundamental metric tensor, the 
indices of which present contrary valency." 

Case (b) Since now the indices i, j are of the same species, we lower the 
index j , to proceed later as in case (a). For the sake of clarity we change the 
dummy notation of the first index 

,Aoo oo,X6o 
^ojk ~ djO^ook' 

"fc = ôA \^.3k) = Kx [9jeKok) = [ho9je) [hok) = 9x0hok-

Nutating the last expression with apropriate indices, gives 

< = 9 : ; t i i ; „ (11.80) 

which is called a ^[Euclidean contraction''^ by other authors, warning the reader 
that the contracted indices are of the same species (this contraction is proper 
and exclusive to Euclidean tensors). 
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From expression (11.80) we establish the following mnemonic rule: 
"We contract the two data tensor indices with the fundamental metric 

tensor, the indices of which present contrary valency" {the surprise is that it 
is the same rule). 

Case (c) 

'̂ fc ~^lok (Einstein's convention). 

According to properties (11.75), (11.76) and (11.77) we can also propose 

o r0^j-OJ° r*Oj-° io io.ojo /., ^ o-, \ 
"^k = ^jo^iok = Kj^iok = doj^iok^ (11 -S l ) 

an expression that appears in the so-called normal contraction. 
With respect to the mnemonic rule^ it is again the same: "We contract 

the two data tensor indices with the fundamental metric tensor, the indices 
of which present contrary valency." 

Case (d) Since in this case the indices to be contracted are both covariant, 
we raise the index i to be again in case (a). As before, we change the notation 
of the j index 

,i oo 6 i ,o o o^ 

o r-ßo f ,i oo\ rßo f 61 ,o o o\ /^rM° 6 i \ ,000 f 6 i ro ij\ ,000 6 fi ,00 o 

^k ~~ ^oi yoßkj ~^oi xpoo^Oßk) ~ yoidoo) '^efj,k~ [Soo^ioj ^eßk~9oo'^eßk^ 

and notating with apropriate indices 

k 9oit°;i. (11.82) 

Again the Euclidean contraction appears, even though for our readers, we find 
the usual "practical rule". 

It is obvious that if the contracted indices are not the first two indices, 
the same conclusions are obtained. For example, if we contract the first and 
fourth indices of the Euclidean tensor t^°^o, we obtain the tensor expression 

00 oo.iooi /-, w oo\ 

^jk = 9uKjko' (11-83) 

When performing multiple contractions the same rules hold; if we contract 
indices (1, 4) and (2, 3) of the Euclidean tensor above, the tensor operation 
becomes 

P = 9u9ioKjko'^ P^^- (11-84) 

Since in the Euclidean tensors any pair of indices can be contracted, it is 
a good policy not to refer to the indices by name, but by position^ as was 
indicated in Formula (11.84). 

So we will say: contraction of the first with the fourth (1, 4), the second 
with the third (2, 3), etc. 

Finally we give a theorem that completes this section. 
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Theorem 11.1 (Euclidean tensors). When we contract certain indices in 
given positions, in a Euclidean tensor, the contracted tensor is unique, that 
is, it does not depend on the associated tensor initially chosen to execute the 
contraction. D 

Proof. As a proof of this theorem, we will study the contracted tensors, that 
we have obtained in the first part, in the cases (a), (b), (c) and (d), i.e., 
[w^], [-û ], [it;̂ ] and [r^], because all of them come from contracting the first 
two indices of several associated tensors of T. We remind the reader about 
what was established in Section 11.10.1 with respect the equality of Euclidean 
tensors, and propose: 

Cases (a) and (b): 

o ,9oo r-jo.ioo rjo f oo,i6o\ f r°J oo\ ,16o oo.iOo o 
^k ~ ^o0k ~ ^oi^ojk ~ ^oi \9j0^ook) ~ yiodje) ôofc "~ 9i0^ook ~~ '^k' 

If we compare with Formula (11.80), the conclusion is 

[<] = [<]• (11-85) 

Cases (a) and (c): We have 

o r-jo.ioo x i ° I ^ * o o , o A o \ 
^k ~ ^oi^ojk ~ ^oi \9oo9\j'^aok) 

\ f oor-jo\ id] ,oAo / oo ia\ , o A o rOQ:,oAo ,060 o 
~ [\^><j oij ^ooj ^ao/c "~ \9\i9oo) '^aok """ ^Xo'^aok ~ '^Ook ~ ^k 

and then 
K] = [wl]. (11.86) 

Cases (a) and (d): If we compare with Formula (11.82) we have 

o rjo.ioo s:J^ f 6'i'iOoo\ (ß:3° 6i\ ,000 
'̂ fc ~" ̂ oi'^ojk ~ ^oi \9oo^0jkJ ~ yoidoo) '^Ojk 

"" [yoo^ioj ^Ojk ~ ^oo^ejk ~ ' /c' 

and then 
(11.87) 

The final conclusion of (11.85), (11.86) and (11.87) is that 

[^k\ = i'^kl = i^k\ = F J 

and that all of them are the same tensor, which proves the theorem. 

11.10.5 Contracted tensor product of Euclidean or 
pseudo-Euclidean tensors 

As a consequence of all that has been established in the previous section about 
the Euclidean contraction, it is evident that we can execute the tensor product 

file:///9/i9oo
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of two Euclidean tensors of orders r i and r2, respectively, and then proceed to 
the contraction with the only condition of selecting contraction indices coming 
each one from each factor^ though obviously, it is not necessary for them to 
have different species, because the contractions and vertical displacements of 
indices are permutable operations in them, due to their Euclidean nature. The 
order of the resulting tensor will be (ri + r2 — 2c), where c is the number of 
pairs of contracted indices. 

Some authors call this contracted tensor product of Euclidean tensors the 
"inner product" of tensors, a name that is mentioned here but that is not 
used. 

To end this topic, we present an illustrative model. 
Consider two tensors T and U of orders r i = 3 and r2 = 2, respectively, 

built over the same Euclidean space JK"'(IR), where T and U are given by the 

components [t^^^] and [tt^°], respectively. 
We wish to find the contracted tensor product of the first two indices of 

each factor, and we do not specify the desired species for the resulting tensor. 
Let P = T (8) [7, Pe = C(a, X)P = C(l, 4)P and 

^ < > p Ä - ( c f : ) • ( < : ) • (11-88) 

Since P is Euclidean, to contract the indices (1, 4) we apply the mnemonic 
rule, i.e., since a and A are both covariant indices in the product P , the 
components of the contracted product Pc will be 

Pc^Qo^'oii-Aitz;-, (11.89) 
itz=9:t {ct: • <;) • (H-QO) 

With respect to the matrix execution of the Euclidean contractions. Examples 
11.4 and 11.5 illustrate diverse vertical displacements of indices over tensors, 
executed in matrix form, using the matrix extension T^ of the data tensors. 

If the Euclidean contraction be of indices with different valency, the matrix 
formula proposed in Sections 5.7 and 5.8 that operate with T^^ could be 
directly applied. 

If, on the contrary, they are of the same valency, once the displacement 
of the convenient index has been done, and since the resulting tensor T^ is in 
extended form, the matrix formulas of the mentioned sections can be applied 
over it. 

Nevertheless, we also give alternative formulas of direct use. 
Go represents the matrix of the fundamental metric tensor of ^""(II), 

with the species that corresponds to the desired contraction (G,/n,G~"^), To 
represents the matrix of the data tensor with the corresponding species, "Ü" 
represents the Hadamard product, and {Ei} is the basis of the linear space 
£'"'(R) represented as column matrices. 
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11.10.6 Eucl idean contract ion of tensors of order r = 2 

The matrix T^^i has been detailed in Formula (1.30). 

p = {[E{ \Ei I ••• I £ ; ^ ] . ( / „ ® G o ) ) i , „ . . T , , i = G ^ « ^ M (11-91) 

where 
Gl = [El \El I ••• I £ ;^ ] . ( J„®Go) (11.92) 

or 
p = Gl>[In®In]»n,l- (11-93) 

11.10.7 Euclidean contraction of tensors of order r = 3 

We notate the input tensor in contravariant coordinates, simply as "support 
notation". 

First: For the T tensor indices (1, 2). 
Let 

Gi = [[El \El I ••• I ^^].(J„®Go)]i,„. 

•Gi»[{In'E)In)<S)El].T, 
Gl • [{In® In)® El] »T^ 

.Gi*[{In®In)®Ei]»T,. 

Second: For the T tensor indices (1, 3). 

Gl»[{In®E{)®In]»T,-
Gl • [{In® ED® In] »T, 

lGi»[{In®El^)®In]*T,. 

Third: For the T tensor indices (2, 3). 

n, l 

n , l 

\W,, 

\.Gi.[Ei®{In^In)]^T, n, l 

(11.94) 

(11.95) 

(11.96) 

11.10.8 Eucl idean contract ion of tensors of order r = 4 

We notate the input tensor in contravariant coordinates, simply as ''support 
notation'^. 

First: For the T tensor indices (1, 2). 

[< f ] = [i?i B2 ••• Bn], (11.97) 

where 
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-Gi»[{In®In)®{E\®ED]*T, 
B - \^> [(/„ ® In) ® {E{ ® Ej)] . T, 

i = l ,2 , . 

.Gi*[{In®In)®{El®Ej)]*T^ 

Second: We propose that of indices (2, 4) as the last model 

[<f] = [Cl C, ••• Cn], 

where 

Q 

Gi.[{E\®In)®{El^In)]^T, 

Gi.[{Ei®In)®{El®In)]^T, 

; ^ = i ,2,--

(11.98) 

To end this topic, we emphasize that the given contraction formulas are not 
unique. 

11.10.9 Euclidean contraction of indices by the Hadamard product 

As an example, we will give two models of tensors of third order (r — 3) 
directly contracted from the data matrix TQ, that is, without being extended, 
and using the Hadamard product. 

We start with the contraction of indices (1, 3), which is expressed using 
the Hadamard products as 

[1 1 

[1 1 

l ] i , n - GoD 

I ] M Gnu 

{E\®E\)*To 
{Ei®E{)»TQ 

{Ei®E{).n\ 

{E{®El)»To 
{E\ ® Ei) . To 

{Ei®El).n 

"1 1 Ji,n Gnu 

{El®Ei).To 
iEl®Ei).To 

l{Ei®Ei).To. 

Similarly, we perform the contraction of indices (2, 3), as 

n,l 
(11.99) 
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w. 

[1 1 ••• l]l,n^{Go^[{E{0ln)^To]) 

1 1 . . . l ] l , n » ( G o ü [ ( ^ ^ 0 / n ) * T o ] ) 

1 1 l ] l , n * ( G o ü [ ( £ ; ^ 0 / n ) * T o ] ) 

(11.100) 

n, l 

Example 11.6 (Euclidean tensor algebra. Contractions). In a Euclidean space 
^ ^ ( R ) referred to a basis {e^} the fundamental metric tensor is given in 
contravariant coordinates by the matrix 

aß 
[dZ] = 

2 1 
1 1 

Consider a change-of-basis {e^}, for which the matrix C is 

rl 
2 
2 

Ll 

01 
1 
0 

iJ 

1 
- 1 

A tensor T built over this Euclidean space of order r = 3, has as a matrix 
expression for its components 

^oßjl 

where a is the block row, ß is the row of each block and 7 is the column of 
each block. 

1. Obtain the tensor U contracted with respect to the first and third indices 
(1,3) ofT: 
a) given by its contravariant components, in the initial basis; 
b) given by its covariant components, in the initial basis. 

2. Again the previous question but in the new basis. 
3. Obtain the tensor W contracted with respect to the second and third 

indices (2, 3) of T: 
a) given by its contravariant components, in the initial basis; 
b) given by its covariant components, in the initial basis. 

4. Again the previous question but in the new basis. 
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5. Examine the nature and components of the system of scalar components 

6. Obtain the contravariant components of the tensor P = G~^ (g) T in the 
basis {ca}-

7. Obtain the contracted tensor product with respect to the indices (1, 5) of 
P in the basis {ca}-

Solution: 

1. To present the maximum information, we solve the previous questions by 
several methods. 
According to the definition, we know that 

[£f] ^ G-' 
2 1 
1 1 

and that 

G - lCß] 
-1 
- 1 

oßi 
5 bo J = iCo] = 2̂ 

1 0 
0 1 

Method 1. 

(a) Since the sought after contraction (1, 3) is of indices of different va
lency, it is a "normal contraction", that is, it can be executed as a 
simple homogeneous tensor: 

o 
Uß--

,6oo 

~ ^0/30' [/* = 

o ~ 

« 1 
o 

- ,6oo -

,6oo 

. 0 2 0 . 

" , l o o . , 2oo " 
^ o l l " '" '^012 
, l o o 1̂  , 2oo 

. o21 + ^o22_ 

' l + O' 
_2 + l_ 

"l" 
3_ 

As the resulting tensor must be in contravariant coordinates, we must 
raise the index ß: 

I r r* u = K] = [9:y;] = G-^u-

(b) It was previously established that U* 

Method 2. 
(a) We perform the contraction as a homogeneous tensor, using Formula 

(5.65) of model 3; 

"2 1" 
1 1 

h ' 
[3_ 

' l " 
3 

"5" 
4 

o- = 2^ = 8; a' 
22 " 4 " ^-
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n = [ul]^ {[h® El\h^ El]]) .n 

461 

[1 0] 
1 0 
0 1 

[0 1] 

1 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 1 

u = \< G-^T!y 2 1 
1 1 

(b) It was previously obtained that [/* = T2 = [uV\ -

Method 3. 
(a) The expression £C = must be read "Euclidean contraction". We use 

the "mnemonic rule". 
fC( l ,3) [ t : ; ; ] = [gZWCß^l and obtain Go = [gZ] = h-
We also know that T^ = [ l 0 2 1 | 2 0 1 l ] , and because of Formula 
(11.92), that it is essentially (1.30) applied to Go 7 which leads to 

G', = [E{\El].[h®Go] = [l 0 0 1] 

1 0 0 0 
0 1 0 0 
0 0 1 0 

LO 0 0 1, 

"1 0" 
0 1_ (8) 

"1 0" 
0 1_ 

1 0 0 1]# [ 1 0 0 1 ] . 

As expected, we have obtained the matrix Go- "extended" and in hor
izontal form, and now we can perform the contraction using Formula 
(11.95): 

1,°\ -
W/3J -

'Gl»[l2®E\®l2]*T^' 
Gl*[l2®El®l2]*T,_ 
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1 0 0 !]• 

1 0 0 ! ] • 

1 0 0 1]# 

1 0 0 !]• 

1 0 0 ! ] • 

"l O" 
0 1 

' l 0̂  
0 1 

0 [ 1 0] 8) 

(8)[0 1](8) 

" 1 0 0 0" 
0 0 1 0 

^0 1 
0 0 

0 0" 
0 1_ 

0 

0 

' l 
0 

0" 
1 

0 1 
"1 0" 
0 1 

' l 
0 

0" 
1 

)^T, 

)*T^ 

)^T^ 

) 
•T, 

[ 1 0 0 1]# 

[ 1 0 0 1] 

; i 0 0 1] 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 IJ 

1 
0 
2 
LO 
2 
1 
1 
IJ 

and in contravariant coordinates: 

U ^G~'^W = 2 1 
1 1 

(b) It has already been found that 17* 

2. The change-of-basis, for first-order tensors (vectors), is: 
(a) 

U \]-[u%il]-C-'.U = 

-1 - 2 
1 1 

-13 
9 
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(b) 

[/* [n^\ [u;][c]l]=C'.U^ 

1 - 1 
2 - 1 

3. Method 1. Since the sought after contraction (2,3) is of indices of the 
same valency, we have a Euclidean contraction, and it can be executed 
only as a Euclidean tensor 

[' = £C{2,3)[t:;;] = [g'^:][t:;; 

from which we conclude that Go = [̂ '̂  ]̂ = G ^ = 

W^\w1] = 
r i i 

2 = 

], 

"2 l" 
1 1 , whence 

- 11 y.loo 12 y.loo 21 ^ l o o 22 . l o o " 
^ o o ' ^ o l l ~ ^ ^ o o * ^ o l 2 "^-Ö'oo ' ^ o 2 1 ^ -Ö 'oo ' ^o22 

11 ,2oo 12 ,2oo 21 ,2oo 22 ,2oo 
. ^ o o ' ^ o l l + ^ o o ' ^ o l 2 ^•Ö'oo ' ^ o 2 1 ^-Ö 'oo " ^ o 2 2 _ 

" 2 x 1 + 1 x 0 + 1 x 2 + 1 x 1 " 
2 x 2 + 1 x 0 + 1 x 1 + 1 x 1 

"5" 
_6_ 

To find the tensor \w^] in covariant coordinates, we lower the index w° 
L O J ' OL 

oo e 

1 - 1 
-1 2 

Method 2. Using Formula (11.92), the matrix Go is stretched: 

Gi=^[E\\El].[h®Go\ = [l 0 0 1 
1 0 
0 1 

2 1 
1 1 

- [ 1 0 0 1 ] 

2 1 0 0 
1 1 0 0 
0 0 2 1 
0 0 1 1 

= [ 2 1 1 1 

and next, we apply the Formula (11.96): 

W = [wl] = 
Gl*[E\®{In®In)]*T, 

Gl . [El ® (J„ ® /„)] . T^ 

[2 1 1 ! ] • ([1 0]® 

[2 1 1 i i . n o i i € 

"l 0] 
0 I j 
r i 0 
[0 1 

(8) 
1 Ol 
0 IJ 
Fl 0 
[0 1 ])-Ta 

http://ii.no
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[2 1 1 l]m 

[2 1 1 l l . 

[2 1 1 11 

[2 1 1 11 

W"" = G*W 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1, 

1 
0 
2 
iJ I _ [5 
2-] I [6 
0 
1 
1, 

4. We write the tensors W = [w^] and W* = [IÜ°] in the new basis, using 
the same matrix formulas as those used in question 2. 

w = c-^w 
[ - 1 - 2 " 

1 1 

• 1 - l " 

- 1 2 

"5" 
6 

" - ] 
7 

-

-17] 
1 1 J 

" - 8 " 
- 9 W"" - C*VF* 

5. The nature of the given system of scalars 5(a,/?, 7, 5, e) is obviously that 
of a Euclidean tensor of fifth order (r = 5): 

aByoo 
V s: 
-̂  o o 00 e 

aß ^ 7 0 0 

oöe 

aß.'joo 
i ' o o 0(5e' (11.101) 

because it is the tensor product of two given Euclidean tensors, P ~ 

Its components will be given in matrix form as a column matrix with two 
blocks of four matrices: and their elements will be notated calculating the 
products of real numbers given by the free indices formula (11.101): 
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r a / 3 7 0 0 1 

r 2 
4 

1 
2 

1 
2 

+ 

1 0 
2 1 

2 0 
1 1 

We obtain a total of a = n^ = 2^ = 32 components. 
6. Replacing the notation of dummy indices by numbered indices: we raise 

the last two indices 

P 
ßlß2ß3ß4ß5 
0 0 0 0 0 

ßl O 02 O 83 O 04^4 ß5 0i5 Oil a2 0^3 O O 
^ O Q ! i ^ O 0:2 O CKs^ O O - ' O O ^ O O O ^ 4 CKs ' 

which in matrix interpretation leads to the formula 

K f : f : ] = (̂ 2 ® /2 ® J2 ® G- i ® G - i ) . p . , 

where 

pt 

and 

2 0 4 2 | 4 0 2 2 | 1 0 2 1 | 2 0 1 1 | 1 0 2 1 | 2 0 1 1 | 1 0 2 1 | 2 0 1 1 

^ ; = [P 
aß-~i5 e-\ 
o o oooJ 

' 1 o' 
0 1 ® 

' 1 o' 
0 1 ® 

"1 0" 
0 1 

\ / 

> ( 

"2 l" 
1 1 (8) 

'2 1" 
1 1 Pa 

/rl 0 0 0 0 0 0 01 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 

VLo 0 0 0 0 0 0 i j 

4 2 2 1 
2 2 1 1 
2 1 2 1 
1 1 1 1 

• P , = Zo • P . 

•y!\t 
{P^y = [1810148|2212148|9574|11674|9574|11674|9574|11674] 
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^ 2 = 

4 2 2 
2 2 1 
2 1 2 
1 1 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
4 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
2 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
2 
1 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
4 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
2 
1 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
1 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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1 
2 
1 
0 
0 
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0 
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0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4 
2 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
1 
2 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4 
2 
2 
1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
2 
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0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
0 
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0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
4 
2 
2 
1 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
2 2 1 
2 1 1 
1 2 1 
1 1 1 

and after condensing we obtain the contravariant components of P 

•18 10 I 22 12-
14 8 I 14 8 

[P o o oooJ 

9 
7 
-
9 
7 
-
9 
7 

5 
4 
-
5 
4 
-
5 
4 

1 
+ 
1 
1 
+ 
1 
1 

11 
7 
— 
11 
7 
__ 
11 
7 

6 
4 
-
6 
4 
__ 
6 
4 

7. Since the indices (1,5) of the tensor product were initially the first and 
last indices (a, e) of each factor, of the tensor product P = G~^ (8)T, we 
are dealing with the determination of a contracted tensor product, that 
is, of what some authors call the "inner product" {G~^ • T). 
In addition, as they are indices (a, e) of different valency (PQf o^°) can be 
contracted as a simple homogeneous tensor. 
We initiate the calculus of the first components, and we express in matrix 
form the resulting tensor: 

nßjO 

'' o oS 

i - l l o 
«̂  o o l 

/ . l l o 
•/ oo2 

/.12o 
«̂  oo 1 

-^oo oS6 

_ l l l o o 
~ - ^ o o o l l " 

_ l l l o o 
~" -?^ooo21 " 

_ 11200 
~" -^^oooll 

1/3700 
' -^00 o<51 

2yÖ7oo 
' ^ o o o 5 2 

2 I I 0 0 o I n o 

+ P 

OO0I2 

2 I I 0 O 
^00022 

21200 
OO0I2 

= 4 + 1 

4 + 0 = 4 
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212oo 

467 

^ 1 2 o _ 112oo 
«' oo2 -^ooo 

and then, we obtain 

21 

/3701 

^ 0 0 0 2 2 

2 
4 

= 2 + 1 = 3 

U oo6i 

1 
L2 

It can also be obtained by contracting the blocks of G -"̂  with tensor T, 
and we obtain the extended tensor 

Fa 

"1 0" 
2 1 
2 0 

_1 1_ 

-1 0" 
2 1 
2 0 

_1 1_ 

"2' 
1 

1 
1 

-2 
5 
4 
3 

1 
3 
2 

. 2 

D 

Example 11.7 (Euclidean tensor algebra. Contractions). In a Euclidean space 
-E^(R) referred to a basis {ca} the fundamental metric tensor is given by the 
Gram matrix 

Consider two Euclidean tensors built over the mentioned space, with compo
nents 

0 r 
-1 2 

Tensor U : [u^'i] 

Tensor V : [v Aoi/J 

" 0 
- 1 

2 
1 

1" 
0 

0 
2_ 

1. Give the totally covariant components of P = U <S)V. 

2. Give the totally contravariant components of the tensor SC{1^ 3)V. 
3. Obtain the tensor resulting from the contracted tensor product £C(1, 4)P, 

starting from the data tensors. 
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4. Consider in -E^(R) the new basis {e*i}, and a change-of-basis given by the 
matrix 

" l 0 
1 2 c - K2 

a) Obtain the covariant components of U in the basis {ei}. 
b) Obtain the contravariant components of the tensor <SC(1, 4)P in the 

basis {e^}. 
c) Obtain the covariant components of P in the basis {e^}. 

Solution: We solve the questions by the classic and direct methods. 

1. We first determine the components of both factors U and V in covariant 
coordinates: 

OO O O 0 O r O O l x-i TT 

aß ^ ad oß^ I api 
1 - 1 

-1 2 
0 1 

-1 2 

o o o o o 

which with numbered indices becomes 

V 
/3i/52/33 

ai o o o 0:3 o o Q;2 o 

^ o / 3 I ^ Q ; 2 / ? 2 ^ O ßs Oil o as 

and in matrix form 

v; = {i2^G^i2)^v,= 1 0 
0 1 

1 0 - 1 0 0 0 0 0 
0 1 0 - 1 0 0 0 0 

- 1 0 2 0 0 0 0 0 
0 - 1 0 2 0 0 0 0 
0 0 0 0 1 0 - 1 0 
0 0 0 0 0 1 0 - 1 
0 0 0 0 - 1 0 2 0 
0 0 0 0 0 - 1 0 2 

and condensing the result, we obtain 

(8) 
"1 0 ' 
0 1 

) • 

• 0 " 

1 
- 1 

0 

2 
0 
1 
2 

• 

0" 
1 

- 1 
0 
— 
2 
0 
1 
2 

= 

r 
1 

- 2 
- 1 

-
1 

- 2 
0 
4 

'Xßiyi 

- 1 11 
- 2 - 1 

1-2 
0 4j 
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So that P = U <S>V in covariant coordinates is calculated by extending 
the factors. Executing now its tensor product and condensing in a block 
matrix (of matrix blocks) the result is 

PL = UL® VI 

' 1" 
- 1 
- 2 

3 

0 

" 1" 
1 

- 2 
- 1 

1 
- 2 

0 
4 

and once condensed we get 

[p 
o o o o o-i 

1 
2 

1 
2 

2 
4 

1 
- 1 
- + 

-1 1 
1 1 
- + 

- 2 
2 

1 
0 
— 

- 1 
0 
— 

- 2 
0 

- 2 
4 
— 
2 

- 4 
— 
4 

- 8 
- + - -
3 I 3 - 6 

-3 1 0 12 

2. The indices of the tensor V to be contracted are both covariant indices 
(A, v)^ so that we need to use the Euclidean contraction. 
According to the mnemonic rule, we have 

\v o/xo 

and applying Formula (11.95), we obtain 

1 - 1 
- 1 2 

n - 1 

Go = G-^ : 

G^ = (extension Go 

2 1 
1 1 

[2 1 1 n 

K] 
Gi 

Gl 

1 0 
0 1 
1 0 
0 1 

[1 0] 

[0 1] 

1 0 
0 1 
1 0 
0 1 
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[2 1 1 l]m 

1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0, 

[ 2 1 1 1 ] 
0 0100000 
0 0 0 10 0 0 0 
00000010 
00000001 

[ 2 1 1 1 ] 

[ 2 1 1 1 ] 

foi 
1 
2 

1 0 1 
r-1 

0 
1 
2 

[31 
1 

3. We have Q = £C(1,4)P and the indices (1,4) = (a,/i). 

Method 1. 
Classic approach. We perforin the Euclidean contraction between the two 
factors 

Q < > [q 
o o o-i CK O O O O / X O - i 

^oß9a/j,^Xou\ 

r l o oo o l o , l o oo o 2 o 
"Aot 

2o oo o l o , 2o oo o2o i 

Series 

1 1 1 
1 1 2 
1 2 1 
1 2 2 
2 1 1 
2 1 2 
2 2 1 
2 2 2 

Summand values 

Ox 1 xO + Ox (-1) X ( - l ) + ( - l ) X (-1) x 0 + ( - l ) X 2 x (-1) 
O x l x l + Ox (-1) X 0 + (-1) X (-1) X 1 + (-1) X 2 X 0 
0 x l x 2 + 0 x (-1) X 1 + (-1) X (-1) X 2 + (-1) X 2 X 1 
O x l x O + Ox (-1) X 2 + (-1) X (-1) X 0 + (-1) X 2 X 2 
1 X 1 X 0 + 1 X (-1) X (-1) + 2 X (-1) X 0 + 2 X 2 X (-1) 

I x l x l + l x (-1) X 0 + 2 X (-1) x l + 2 x 2 x 0 
l x l x 2 + l x (-1) X 1 + 2 X (-1) x 2 + 2 x 2 x l 
I x l x O + l x (-1) X 2 + 2 X (-1) x 0 + 2 x 2 x 2 

o o o 

2 
1 
0 

- 4 
- 3 
- 1 

1 
6 

and the sought after tensor Q is 

[q ß\u\ 
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Method 2. 

We determine the tensor product P = U ^ V, but preparing first the 
indices to be contracted, with different valency. 
So, we calculate [u'^^J lowering the index a, which was already done at 
the beginning of question 1, where we obtained 

G'U 

Next, we execute the tensor product P 

performed with the extended tensor factors 
''aß <S) V 

)/ i .O operation that is 

pff u'j F«" = 
r 11 

- 1 
- 2 

3 
(K) 

r ^1 
1 

- 1 
0 

2 
0 
1 

L 2j 

{P"32f = [A\B\C\D], 

where 

A= [ 0 

B=[0 

C = [ 0 

D=[0 

1 - 1 

- 1 1 

- 2 2 

3 - 3 

0 

0 

0 

0 

2 0 1 2 ] 

- 2 0 - 1 - 2 

- 4 0 - 2 - 4 

6 0 3 6 ] . 

Finally we proceed to contract indices (1,4) = (a, /i), which already are in 
the position of a normal homogeneous contraction, over the proper tensor 
product 

Q <> [q ßXui i> O O O / i O - i r O O O Ö O - i 

a^Aoi/J "" iPeßXoJ^ 

where 
OOOÖO o o o l o 1̂  o o o 2 o 

PeßXou ~'Plß\o-u +^2/3Aoz/-

Series 

1 1 1 
1 1 2 
1 2 1 
1 2 2 
2 1 1 
2 1 2 
2 2 1 
2 2 2 

Indices and summand values 

( 1 1 1 1 l ) + (2 1 1 2 l ) = 0 + 2 
(1 1 1 1 2) + (2 1 1 2 2) = l + 0 

(1 1 2 1 l ) + (2 1 2 2 l ) = 2 - f ( - 2 ) 
(1 1 2 1 2) + (2 1 2 2 2) = 0 + (-4) 

( 1 2 1 1 l ) - f ( 2 2 1 2 l ) - 0 - 3 
( 1 2 1 1 2) + (2 2 1 2 2) = - H - 0 
(1 2 2 1 l ) + (2 2 2 2 l ) = - 2 + 3 
( 1 2 2 1 2) + (2 2 2 2 2 ) - 0 + 6 

o o o 
^ßXv 

2 
1 
0 

- 4 
- 3 
- 1 

1 
6 
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As can be seen, it leads to the same result, which, due to the theorem for 
Euclidean tensors could not be otherwise. 

4. The desired components are calculated as follows. 
(a) The direct procedure in this case consists of executing the proposed 

change-of-basis over the tensor U in covariant coordinates. 
From the beginning of question 1 we know that U in covariant coor
dinates is 

^aß\ G^U r 1 
-1 

-1" 
2̂  

r 0 1" 
-1 2j 

r 1 
-2 

-1] 
3j 

and the tensor equation of the change-of-basis is 

oo o o oa on 
IJ aß lo J O ' 

u. 

which interpreted in matrix form, leads to 

1 1 1 1 
0 2 0 2 
0 0 2 2 
0 0 0 4 

(8) ri 11 
0 2 ) • 

r 11 
- 1 
-2 

L 3J 
~l 

• 

r 11 
- 1 
-2 
3 

— 

r 11 
4 
2 
12 

and condensing, 

Ü <> K;] 
1 4 
2 12 

(b) The tensor Q = £C{1, 4)P = £C{1, A)U^V, was already obtained in 
covariant coordinates in question 3: 

Q <> KD 

We proceed to raise all indices, to have it in contravariant coordinates, 
and then, we proceed to change its basis, working with numbered 
indices 

ßlß2ß3 _ ßlOil ß2 0i2 ß^OiS O O O 

which in matrix form becomes 

2 
1 
0 

-4 

( 
[2 1" 
1 1 (8) 

\2 1-
1 1 8) [ 2 1] 

- 3 
- 1 

1 
6 
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8 
4 
4 
2 
4 
2 
2 
1 

4 
4 
2 
2 
2 
2 
1 
1 

4 
2 
4 
2 
2 
1 
2 
1 

2 
2 
2 
2 
1 
1 
1 
1 

4 
2 
2 
1 
4 
2 
2 
1 

2 
2 
1 
1 
2 
2 
1 
1 

2 
1 
2 
1 
2 
1 
2 
1 

1" 
1 
1 
1 

1 
1 
1 
1 

• 

r 21 
1 
0 

- 4 
— 

- 3 
- 1 

1 
6 

= 

r 61 
3 
3 
1 

— 
0 
1 
2 
2 

Once the extended tensor product in contravariant coordinates is 
known, we perform the change-of-basis, where 

C 1 0 
1 2 c-

2 0 
- 1 1 

which leads to the tensor equation of change-of-basis 

which in matrix form becomes 

?' 1 
l O O O J 

ß\v jo to no 
O l / ' 

Q ; = . ( C - ^ 0 C - ^ 0 C - ^ ) * Q ; 

1 r 2 0] ^ 1 r 2 0 2 0 
-1 1 

8 
4 
4 
2 
4 
2 
2 
1 

0 
4 
0 

- 2 
0 

- 2 
0 
1 

0 
0 
4 

- 2 
0 
0 

- 2 
1 

0 
0 
0 
2 
0 
0 
0 

- 1 

0 
0 
0 
0 
4 

- 2 
- 2 

1 

0 
0 
0 
0 
0 
2 
0 

- 1 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
2 0 

- 1 1 

• 

r Ö1 
3 
3 
1 

— 
0 
1 
2 
2 

1 
= — 

4 

r 241 
- 6 
- 6 

1 
— 

-12 
4 
5 

- 1 

which, once condensed, leads to 

Q <> k 
j£n, __ 
oo oJ 

1 
" 4 

r 24 
- 6 

-12 
5 

- 6 
1 

4 
- 1 

(c) As the covariant coordinates of P in the initial basis, were calculated 
in question 1, it remains only to perform the change-of-basis 

P 
ooo o o 
IJ tmn 

o o o o o o a oß oA o/J, ov 
aßXfJbv io jo to mo n o ' 
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where 

where 

A = [ 1 1 - 2 - 1 1 - 2 0 4 ] 

B = [ - 1 - 1 2 1 - 1 2 0 - 4 ] 

C = [ - 2 - 2 4 2 - 2 4 0 - 8 ] 

i:> = [ 3 3 - 6 - 3 3 - 6 0 12 ] . 

and in matrix form: 

^32,1 = {C' ^C'^C'^C'® C) • P^2,l 

"l 0" 
1 2 

t 
(8) 

'l O" 
1 2 

t 
(8) 

"l O" 
1 2 

t 
(8) 

"l 0" 
1 2 

t 
0 

"l O" 
1 2 • -^32,1 

= [ A | B | C | D ] ^ 

where 

A = [ 2 4 2 12 6 8 16 32 ] 

ß = [ 8 16 8 48 24 32 64 128 ] 

C = [ 4 8 4 24 12 16 32 64 ] 

L> = [ 24 48 24 144 72 96 192 384 ] 

which, once condensed, gives 

b: 
O O O O-j 

r ^ 
2 
— 
8 
8 

4 
4 
— 
24 
_24 

4 
12 
- + 
16 
48 

8 
24 
- -
48 
144 

-

-

6 
16 
— 
24 
64 

12 
32 
— 
72 
192 

8 
32 
— 
32 
128 

16 
64 
-
96 
384 

D 

Example 11.8 (Euclidean tensor algebra: Inner product). In a Euclidean space 
£^^(R), referred to the basis {Sa} and fundamental metric tensor, in covariant 
coordinates 

3 - 1 0 ' 
G^[g 

O 0-] -1 2 0 
0 0 1 
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we perform a change-of-basis, of associated matrix 

475 

c - K2 = 
1 1 0 
1 2 1 
1 3 - 1 

Consider the tensors T and U^ built over this space, with components 

1 0 1 
0 2 0 
0 - 1 0 

and \u oß\ 

• 0 

0 
1 

1 
0 
0 

0" 
0 
3 

1. Obtain the contracted tensor of U in the basis {e^} and {e^}. 
2. Obtain the tensor product T <^U in contravariant coordinates of {e^}. 
3. Obtain the contracted "inner product" T•U oiT^U with respect to the 

indices second and second of each data factor, in the initial basis {ca}. 

Solution: With the aim of giving maximum information, and clarifying the 
theory, we proceed to solve these questions by several methods, even though 
solution be evident by some of them. 

1. The contracted tensor of U is obtained as follows. 

it] 
3 

- 1 
0 

1 0" 
2 0 
0 1 

— 1 

1 

~ 5 

"2 1 0" 
1 3 0 
0 0 5 

and with the mnemonic rule 

ßo. p o a o ^ r po-i J 

According to Formula (11.91), we have 

1 0 0 
0 1 0 
0 0 1 

G\ = extension of Go = [100010001] 

and 
[U^y = extension of [w^°]* = [010000103] 

so that applying the formula, we get 

0 
1 
0 
0 
0 
0 
1 
0 
3J 

p = G*^« [7^ = [ 1 0 0 0 1 0 0 0 1 = 0 + 0 + 3 = 3. 
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Since p — 3 is a, scalar, it remains invariant when changing the basis, so 
that this also is the result of the contraction of [/, under the representa
tion [ul°]. However, following the criterion initially presented, it will be 
verified. 
We determine the tensor [/, in the new basis 

io ao i o oß 
oj ß^oa^ J O ' 

and in matrix form 

Ü,= [C-^0C']*U,; C-^ = 
1 1 0 
1 2 1 
1 3 - 1 

5 - 1 - 1 
- 2 1 1 
- 1 2 - 1 

Uo 

Next, we contract in the new basis 

5 - 1 - 1 1 
- 2 1 1 
-1 2 - i j 

(8) 
1 1 1 
1 2 3 
0 1 - 1 

\ 
• 

y 

roi 
1 
0 
0 
0 
0 
1 
0 
3 

—-

r 1/^1 
0 

8/3 
2/3 

2 
- 5 / 3 
- 5 / 3 

- 4 
. 2 / 3 . 

p = dZKv ^0 = b°o] = h 

and according to Formula (11.91), we get G] 
[ 1 0 0 0 1 0 0 0 1] 

1 
0 
0 

It 
cr 

0 0 
1 0 
0 1_ 

5 

= extension of Go 

•^'\ =(üg] = [ 1 / 3 0 8/3 2/3 2 - 5 / 3 - 5 / 3 - 4 2/3] 

p = Gt • t̂<T = [ 1 0 0 0 1 0 0 0 1 ] 3, 

8/3 
2/3 

- 5 / 3 
- 5 / 3 

- 4 
2/3 

whence p = p = 3. 
2. The selected method for solving this question is the following. First, the 

tensor U in contravariant coordinates is determined and next, T and U 
in contravariant coordinates of the new basis and the tensor product P = 
T <S>U are determined. 
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aß _ eß ao^ 

[<f] = KlCo] = UG-' 
r o 1 Ol 

0 0 0 
1 0 3 

1 

5 

[2 1 0" 
1 3 0 
0 0 5 

1 

5 

1 3 0 
0 0 0 
2 1 15 

We change basis [t^^] and [t^o^], using the classical method, and we get 

t'i] = 
Ct 

o ' o a ' oßi 

- 5 - 1 
- 2 1 

. - 1 2 
• 7 - 2 

- 3 1 
- 3 2 

= b 
- 1 " 

1 
- i _ 
- 4 " 

2 
4 

'oaW-'^oolUßo 

"1 0 1" 
0 2 0 
0 - 1 0 

] = 

1 
3 

C-^mTm 

- 5 - 2 -
- 1 1 
- 1 1 -

(C 

- 1 
2 

- 1 

- l \ t 

, U 1 - l \ t 

c-IO(c-) 
1 
3 

1 
45 

5 - 1 - 1 -
-2 1 1 
-1 2 - 1 _ 

1 [ 
5 

16 - 7 40 • 
- 10 10 - 2 5 

4 - 1 3 10. 

"1 3 0" 
0 0 0 
2 1 15 

1 
3 

5 - 2 - 1 
- 1 1 2 
- 1 1 - 1 

P = T (8) 17; 

K 

r ijki-] 
L-^ooooJ 

ijki-i 
ooooJ 

[CJ® 

r 112 
135 

14 
27 

28 
135 

16 
45 

2 
9 

4 
45 
16 
45 

2 
9 

4 
45 

49 
135 

14 
27 

91 
135 

7 
45 

2 
9 

13 
45 
7 

45 
2 
9 

13 
45 

1 
~ 3 

56 
27 
35 
27 
14 
27 

8 
9 
5 
9 
2 
9 
8 
9 
5 
9 
2 
9 

7 -
- 3 
- 3 

32 
135 

4 
27 
8 

135 
16 

135 
2 

27 
4 

135 
32 
135 

4 
27 
8 

135 

-2 
1 
2 

- 4 " 
2 
4 

14 
135 

4 
27 

26 
135 

7 
135 

2 
27 

13 
135 
14 

135 
4 

27 
26 
135 

1 
45 

16 
27 
10 
27 
4 
27 
8 

27 
5 

27 
2 

27 
16 
27 
10 
27 
4 
27 

16 
-10 

4 

64 
135 

8 
27 

16 
135 
32 
135 

4 
27 
8 

135 
64 
135 

8 
27 

16 
135 

- 7 
10 

- 1 3 

28 
135 

8 
27 

52 
135 
14 

135 
4 
27 

26 
135 
28 
135 

8 
27 

52 
135 

40 
- 2 5 

10 

32 
27 
20 
27 
8 

27 
16 
27 
10 
27 
4 
27 
32 
27 
20 
27 
8 

27 

3. We use two methods. 
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Method 1. We wish to know the tensor Q = C(2, A)T®U = T -U. 

[T-U] kZ] - [ 
\l 0 1 

0 2 0 
[0 - 1 0 

"0 1 0" 
0 0 0 
1 0 3 

= [C][u7o]-
t "1 0 1" 

0 2 0 
0 - 1 0 

T'U^ 

"0 0 1" 
1 0 0 
0 0 3 

0 0 4 
2 0 0 

-10 0 

Method 2. We use the direct method (computer), and determine P 
T®U: 

Cf] ^^AI [p 

[p] = Kl:i] 

aßßoi _ 
0 o o A-J 

0 1 0 1 
0 0 0 
1 0 3 

+ 
0 0 0 1 
0 0 0 
0 0 0 

+ 
0 0 0 1 
0 0 0 
0 0 0 

1 0 1 
0 2 0 
0 - 1 0 

0 1 0 
0 0 0 
1 0 3 

0 
0 
0 

0 
0 
2 

0 
0 
1 

0 
0 
0 

2 
0 
0 
— 

- 1 
0 
0 

0 
0 
0 

- -+ • 

0 
0 
6 
- -f 
0 
0 

- 3 

0 1 0 
0 0 0 
1 0 3 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

and contract the indices (2,4) = (/?, A), using Formula (5.73), of model 5, 
and CT = n^ = 3^ = 81 and cr' = ^ = | J = 9, P^ = Psi = P extended as 
a tensor of order 4 (not as a matrix [P]): 

Qg = (h ^ [h 

100-
010 
001 

[1 0 0 ] | / 3 ^ 

"100000000 
000100000 
000000100 

[0 1 0]|/3̂  

010000000 
000010000 
000000010 

•[0 0 l]])*P8i 

0010000001 
000001000 
000000001 • n 81 

Having executed the matrix product, we obtain QQ ^ (extended) 

(3^1 = [ 0 0 4 2 0 0 - 1 0 0 ] ^ 

which, once condensed, leads again to 

= r̂ /̂̂ i _ [Q] ^ b : 
0 0 4 
2 0 0 

- 1 0 0 
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Example 11.9 (Homomorphisms of metric tensors). Consider the Euclidean 
space E^(R) referred to a basis {ca}: such that the fundamental metric tensor 
expressed in covariant coordinates is 

G^K 
O O i _ 

aßl ~ 

• 1 0 
0 1 

- 2 0 
0 0 

- 2 0 
0 0 
6 1 
1 1 

We wish to extend the concept of vectorial tensor product defined in the 
OGS (ordinary geometric space), in the following form. Consider three vectors 
14,1^25^̂ 3 ^ E^{1R). We give the name "triple vector product" and notation 
A^i5^2,^3A to another vector with direction orthogonal to the hyperplane 
defined by the vectors 14,14 and t^, with orientation corresponding to the 
corkscrew rule in the mentioned direction (rotation in the direct orientation 
of the trihedron Pi, 14,1^3) and modulus the volume of the rhombohedron of 
intersecting edges in the trihedron 14,14,14 • 

1. Propose by extension of the OGS, the formula of the mentioned tensor, 
assuming that the vectors X4,14 and 14 are given by its contravariant 
components 

X = 

-x^-
x^ 
x^ 

. x \ 

, Y and Z, 

respectively. 
2. Consider an endomorphism T : E^(R) —> E^CR), such that W G 

£^^(R), T^ ^ (V) = W^ where I4 and I4 are two fixed vectors of co-

andl^ = /\l4,14,i^A' 

ordinates 

Xi = 

" l -

1 
1 

. 2 . 

and X2 = 

-0 

1 
0 

_1 

where the expression means triple vector product of three vectors. 
Give the matrix T associated with the given endomorphism ^ = TX. 

3. If the previous matrix T is anti-symmetric, is the operator T^ ^ anti
symmetric? 

4. Since any T^ ^ needs two fixed vectors of ^ ^ ( R ) to be established, a 
new correspondence of E^ x E^{]R) in the linear space £[^^(11)] = of all 
operators T^ ^ is created. 
Consider the correspondence 0 : E^ x E^{1R) —> C[E^{1R)] that with 
any duple (V^X) e E^ x E^{Ji) associates d^T^ ^. Examine if 0 is or is 
not a monomorphism. 
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To solve this theoretical question we assume that the Euclidean space 
£^^(11) is referred to an orthonormalized basis {ep}^ that is, G = I4. 

Solution. 

1. The desired formula is: 

/\Vi,V2,Vs/\ = 
y 

^2 

y y y 

"copied" by extension of the dimension of the ordinary triple vector prod
uct. Note that the data input is in contravariant coordinates and the 
output is in covariant coordinates (only if G were J4, would the output 
simultaneously be in contravariant coordinates): 

1 0 - 2 0 1 
0 1 0 01 

- 2 0 6 1 
0 0 1 1 

2. The matrix T is obtained as follows. 

|G| = 

r = ej 
o -^a 

^1 ^2 g^3 ^4 

x-^ x^ x^ X 
1 1 2 
1 0 1 

1 1 2 
0 0 1 

X'^ X^ X^ 
ê 2 + 

1 1 2 
0 1 1 
^ 9 A 

X X X 

^ 3 _ 
1 1 1 
0 1 0 

x^ x^ x"^ 
• x^ - x^)e'^ + i-x^ + x^)e' 

X - a;̂ )e*3 + (x^ - a;3)e* 

We express this vector in contravariant coordinates, so that we "raise the 
index" in the Euchdean sense: 

1 0 
0 1 
2 0 
0 0 

- 2 01 
0 0 
6 1 
1 1 

- 1 

^̂  

r 5 0 
0 1 
2 0 

- 2 0 

2 - 2 
0 0 
1 - 1 

- 1 2 

[C] = re9::] = [9Z]iQ = G-'c 
5 0 
0 1 
2 0 

- 2 0 

2 
0 
1 

- 1 

- 2 1 
0 

- 1 
2 

-4 3 7 - 3 
- 1 0 1 0 
-2 1 3 - 1 
3 - 1 - 4 1 

-x^ 4- x"^ 
—x^ — x"^ -\- x^ 

x-^ - x^ 
.1 

x^J 

Ax^ -h 3^2 + 7x^ 
—x^ -hx^ 

-2x^ + 2:̂  + 3x^ 
3x^ - x^ - Ax^ 4 

- 3 x 4 

- x ^ 
-x^ 
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C = TX 
r^'i e 
e 

ie\ 
= T 

r x i ] 

x^ 
.xK 

; T = 

- 4 3 7 - 3 
- 1 0 1 0 
- 2 1 3 - 1 

3 - 1 - 4 1 

3. A morphism is anti-symmetric or alternate in a Euclidean space if the dot 
product representation satisfies the conditions 

vx,y 
<T(x)|y >=<x|T*(y) > 

that is, 

r*G + GT = Q. 
J {TXfGY = X^G{T*Y) ( T^G = GT'' 
S rp^ rp ~^ S rp^ rp 

(11.102) 
If G = I, the previous condition leads to an anti-symmetric matrix T* = 
- T . 
Condition (11.102) is that of an anti-symmetric homomorphism in any 
basis. We examine T: 

r - 4 - 1 -
3 0 
7 1 

_ - 3 0 -

= 

-2 31 
1 - 1 
3 - 4 

-1 1_ 

r 0 -
1 
1 

- 1 

1 
0 
1 
0 

r 1 0 -
0 1 

- 2 0 
0 0 

- 1 1] 
- 1 0 

0 - 1 
1 0 

-2 01 
0 0 
6 1 
1 1_ 

+ 

f 

0 
1 
1 
1 

r 1 0 - 2 01 
0 1 0 0 

- 2 0 6 1 
0 0 1 1_ 

1 1 - 1 1 
0 1 0 

- 1 0 1 
0 - 1 0 

= 

- 4 3 
- 1 0 
- 2 1 

3 - 1 -
ro 0 0 01 

0 0 0 0 
0 0 0 0 

[ 0 0 0 0 

7 - 3 1 
1 0 
3 - 1 
4 i j 

= i74 

Thus, though the operator does not resemble an anti-symmetric matrix, 
it is a Euclidean anti-symmetric tensor. 

4. First, we examine the matrix T of the endomorphism T^ j ^ , which the 

mapping 0 associates with the bivector (V^X) G E^ x E^(Si). 

Consider the components of V <> 

r^'i 
v^ 
v^ 

.v'. 

- x i 

and of X <> 

Av,x,z/\ 
ei 
. ,1 

62 
^,2 

es 
. ,3 

64 

X 
z'-^ ei -

6 4 , 

then the anti-symmetric operator becomes 
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T 

r\ 

0 — 

v^ v'^ 
x^ x^ 

v^ v^ 
x^ x'^ 

« 3 

x' 

0 

v^ 
x^ 

v^ 
X2 

v^ 
x^ 

v^ 
x^ 

v^ 
x^ 

v^ 
x^ 

v^ 
x^ 

Thus, the general matrix of T has the construction 

T = 

0 
- 0 1 2 

<^12 

0 
- Ö 2 3 

- Ö 2 4 

« 1 3 

0 2 3 

0 
- 0 3 4 

Ö14 

0 2 4 

0 3 4 

0 

= Gl2 

+«34 

0 1 
- 1 0 

Ü 

Qi 

CLIS + 

I 0 1 
I - 1 0 

where 6 is the dimension of the basis of matrices generating T. Thus, the 
linear subspace of the operators T in £[^^(11)] is of dimension 6 and since 
the dimension of Ê ^ x £̂ ^ is 8 (that of C[E^{lEi)] is 16), the homomorphism 
O has a proper kernel, thus, it is not a monomorphism^ because it is not 
injective. 
(In any morphism, the kernel dimension plus the range linear subspace 
dimension is the dimension of the initial linear space.) 

11.11 Euclidean tensor metrics: The 

as Euclidean space 

)E'^] (M) space 

Once the ^'Euclidean contraction^^ has been established in detail, there arises 

the possibility of choosing pairs of tensors of a certain tensor space [ ^ E'^ ) ( ^ ) 5 

constructed over a Euclidean space J E " ' ( R ) , and executing totally contracted 
tensor products with them, that is, creating a dot product associated with the 



11.11 Euclidean tensor metrics 483 

tensor space, endowed with a formal rule for such a dot product to become 

also a Euclidean product, that would endow the tensor space ( ̂ E'^ J (R) 

with a proper fundamental metric tensor^ arising from the G of ^ ^ ( R ) as 
follows. 

11.11.1 Inner connect ion in ( 0 E'^ j (IR): Dot p roduc t of 

Euclidean tensors 

Let {ea} be an arbitrary basis of a Euclidean linear space E'^{1R). The basis 

associated with the tensor space ( 'S) E'^ j (R) will be 

5 = {eci (8)^2 ^ . . - ^ e a j , (11.103) 

such that \/aj £ In] Vj G 7^, {Q;I, 0̂ 2, • • •, QJT̂ } be a totally ordered subset of 
natural numbers. 

The inner connection (or dot product) is defined as a "form" ^: 

^ : (^SE-^ ( R ) x ( ^ | E - ) (R) — R;V(r , [ / ) ,# ( r ,C/ ) = C ^ o " : : ? < : , : . : 

(11.104) 
that is, # is defined by means of a totally contracted Euclidean tensor product, 
with the following criterion: Since the dummy indices have ordered notation, 
we contract one index of the first factor with the corresponding index of the 
second factor: i.e., (1, 1),(2, 2), (3, 3 ) , . . . , ( r , r) . 

The tensor factor species is indifferent. We adopt, from this point on, the 
notation "T • I/"" for the dot product ^(T, U) of two Euclidean tensors. 

We insist on the irrelevant character of the species. For example, if the two 
factor tensors are given, the first in contravariant coordinates and the second 
in covariant coordinates as in the definition formula (11.104), we show that 
they can be given in the reverse way. 

With factors of normal contraction: 

TmU 
u u ••• u u ; i u : 2 " " L t r 

" ^ 0 0 • • • o 
U 

CKl 0:2 •••ar 

,CX.lOi2 "-CX-r 0 0 ••• 0 
— T U 

0 0 ••• 0 CX.10L2--- OCr 

/ 0 0 ••• 0 ßicxi 620^2 
~ yßlß2-ßr^ 0 0 i / o 0 • ' 

, 0 0 •-• 0 / / 3 i a 1 / 3 2 0 2 
~" ßlß2--ßr- l i / 0 0 i / 0 0 * 

ßrOir-
i / 0 0 

ßrOLr 
i/ 0 0 

tnß"'>^a^r^: (11.105) 

and also of the type 

T.U = t'^''' ° "^ -^ -^ ° "^"^ ° - ° , (11.106) 
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if mixed factors of complementary species are used. 
With factors of Euclidean contraction, we now have the possibility of ar

bitrary factors 

T mTT —f^^ O as O ••• O O O OL2ß2 O ßs OLA O ^ ^ a^ O ßi O O ß4---ßr /-^-^ ip iyN 

^ • ^ —^ o as o a4--ar.yaißiy o o ^ as o y o ß4 i /o ß^^ o ^2/33 o ••• o ' K^^-^^f J 

The formal properties are: 

1. The commutativity T •U ~ U •T. Though the tensor product of ten
sors is not commutative, the commutativity is a consequence of the total 
contraction^ that is, the dot product is unique, because it is a zero-order 
tensor over the field^R. 

2. Positivity of the Euclidean norm. (This property includes the regularity 
that must exist in any Euclidean space): iV(i7) = 0 G R . 

liT^Q, N{T) =T.T^ C ? " " t ^ ° R 9" ß '" 9^ R ti'i"'"^: > 0. 

It is a consequence of the fact that the matrix [g^^^] of the fundamental 

metric tensor of E'^(R) is positive definite. 
3. Bilinear character of the dot product, with respect to the sum and the 

exterior product by scalars of the tensor space 1 'S) E'^ J (H): 

T • {aU -{- ßV) = aT •U -i- ßT mV = aU •T -{- ßV mT 

= {aU + ßV)^T; \fT,U,V e (SEA (R) . 

It is an immediate consequence of the distributivity of the product of the 
real number with respect to the sums and of the double commutativity of 
the sum and the product of the real numbers. 

Thus, it is established that [ ^ E'^ j (R) is also a Euclidean tensor space, so 

that the concepts modulus of a tensor, orthogonal tensors, sin(a) and cos(a) 
of two tensors, etc. have sense. 

11.11.2 The induced fundamental metric tensor 

The dimension of the tensor space ( S E'^ J (R), that is, the number a of 

basic vectors of the basis B of the tensor space. Formula (11.103), is n^, so 
that the dot products of each pair of vectors of B^ are defined and notated as 

9aJ^a2ß2-''aJr = ^^^i ^ S^,^ S " - ̂  4 J • {eß, 0 6^2 ^ ' ' ' ^ 6/3.) 

= 9^ R -9^ R 9^^ R ^ (11.108) 
^Ctißi ^a2ß2 ^arßr^ ^ ^ 
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where 9^ ß ̂  R '.'.'.^ ß îre the (n^)^ elements of a square matrix notated G{r)^ 
which arise at from Formula (11.108), endowing the tensor space with a fun
damental metric tensor in covariant coordinates. G{r) is a matrix of order 
{'n/'). The definition that proposes Formula (11.108) is based on Property 7 
of Section 1.3.2, which refers to properties of the tensor and inner product of 
matrices. 

Similarly, we know that the same Euclidean tensor space can be notated 
r \ 
^ E'^ 1 (H), as has been established in Section 11.2, when we refer to the 

reciprocal basis, that is 

B* = { r ^ i 0 r^^ (g) • • • (g) e""'"}; yaj G In] Vj e Ir- (11.109) 

The dot products of each pair of vectors in the basis B* are defined and 
notated in an analogous form 

9 '^o^oV^o'.'.'.'^oi^ = (e"""' (8) e ' ' ' ' (8) • • • e"""-) • {e"^' 0 ^^^ (g) • • • e^^^) 

CKi/?! ^ » 2 / 0 2 arß', 
•9T:---CO, (11-110) 

where 9^Q^^OO''--^OO ^^^ ^^^ (n'^)^ elements of a square matrix notated 
G*{r)^ which arise from Formula (11.110), endowing the tensor space with 
a fundamental metric tensor in contravariant coordinates. 

- ^ The bilinear form cj), defined in (11.104), and notated VT, [/ G I 8) E'^ j (R) 

T•U^ is now calculated to work, either with the data tensors in contravariant 
coordinates (metric tensor in covariant coordinates), or with the data tensors 
in covariant coordinates (metric tensor in contravariant coordinates): 

o o ••• o 9r. O O ••• O ̂ CKlyöl 02 /52 

O O ••• O 0!l/3lQ!2/32 

<y.\(y.2---Oir o o o o = t g 

•ar-ßr O O ••• O 

• " 0 " ^ " « a '"R • (11 .111) 

In theory, we can calculate T • U also with other Euclidean contractions 
for "mixed" data, as indicated in Relation (11.107), though they are certainly 
infrequent, 

In practical examples, which are of major importance in this book, we will 
use the corresponding fundamental metric tensor matrix expressions: 

G(r) = [9" o " o '" ° ; ] = (^G^ 
V / \-^ aißia2ß2-'-Oirßr^ \ 1 

= G (g) G (g) • • • (g) G (tensor in covariant coordinates) (11.112) 

= G* ®G*(S)---®G* = (<»G-^] (contravariant). (11.113) 
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It is also possible, as indicated, that the data tensors be mixed in which case, 
the fundamental metric tensor will be given in the form of tensor products of 
the matrices {G^G~^^In} with the ordering imposed by the pairs of indices 
(cüjßj) of the fundamental metric tensor. For example, if 

r^fr^ = \n^^^^ ° o 0:3 o o /34--- o o 1 
^V J — Li/ o o 0:2/32 o ßsa4 o •••arßr^ 

the corresponding matrix would be 

G{r) = G'^ (8) G (g) In (8) /n ^ • • • (S) G (r matrices). (11.114) 

The dot product T •U ^ is executed in matrix form with the "extended" ma
trices of the tensors, as in the classic quadratic forms 

T . [ / = r * ^ i . G ( r ) . / 7 , , i . (11.115) 

11.11.3 Reciprocal and o r thonormal basis 

We recommend that the reader study Sections 1.2 and 11.2, before commenc
ing this section. 

Next, we study the dot product of two arbitrary basic vectors belonging 
to two reciprocal basis B and ß*, respectively. 

According to the definitions and the formulation established in (11.108) 
and (11.110), we have 

O ßi O /32 O ßr 
— Q ' Q Q 

= 5°^'-6°^' S°'^- = K, 

which shows the reciprocal character of the bases B and ß*, because the 
natural sequences {ai, « 2 , . . . , a^-} and {/öi, /32,... ^ ßr} satisfy the reciprocity 
conditions: 

If { a i , a 2 , . . . , a r } = {/?i,/32, • • • ,^r} —^ K = 1 

If {ai, « 2 , . . . , ar} ^ {Ä, /32, ,..,ßr}^K = 0. (11.116) 

Naturally, one can build the reciprocal basis (Bo)*5 of any other basis BQ of 
mixed nature, associated with the tensor space of order r we are dealing with, 
endowed with such a basis type (which, as has been explained, is not usual). 

Finally, we indicate the particular case in which the basis {ca} of E'^{1R) 
be orthonormal. We will use a specific notation for such a situation. The 
basis of E'^ilR) will be notated {h^} = {^1, ^̂ 2, •' • 5 ^n}, which automatically 
implies 

ha^hß = gll = 6ll, (11.117) 
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or equivalently, the fundamental metric tensor of E'^(R) is 

G = In- (11.118) 

Using this notation, the basis associated with the tensor space I ^ E'^ ] 0^)^ 

in agreement with Formulas (11.110) and (11.111), satisfies 

( ~ 0 0 r - 0 0 ( ~ 0 0 
K, 

which again satisfies (11.116), revealing that the basis Bh = {hi'S>h2^" -^hn} 
is auto-reciprocal, that is, an orthonormal basis. 

The conclusion is that all the associated tensors in this space have identical 
components: 

t a.lCX.2-'-<y.r ^:^2 -f- '^ ° CKS- ' -Ct r , O O 

CKl Q;2 O ••• O aiCX2'" O^r 

which is a property that extends that of the Euclidean spaces £^"'(]R), that 
in basis type {h^} their vectors present the same contravariant and covariant 
coordinates. 

The norm of a tensor T G ( (^E^ ] (R) in the basis Bh will be 

N{T) = T.T = e' I' - 1 c ; C /s° • • • * 
\ y o o ••• o a i p i a2P2 

O O ßiß2---ßr 
arßr O O ••• O 

a i a 2 - a . ^ y - A a i a . - a . A > Q if T ^ ß . 
o o ••• o z. i/ \ o o ••• o y / 

ai=l 

(11.119) 

Example 11.10 (Metric of Euclidean associated tensors). 

1. Show that in a Euclidean space £''^(11) referred to a basis {ca] the funda

mental metric tensor of which in covariant coordinates is G = b ^ ^ ] ' ^^^ 

moduli of the associated vectors are identical. 
2. Extend this property to the moduli of the associated tensors of T G 

r \ 
^ E'^ I (1^)5 calculated with the proper metric of the given tensor space, 

derived from the metric of £'"'(H). 

Solution: 

1. Consider the vector V G E'^iJR) referred to a basis {CQ,}. The vector com-

ponents are the column matrices X in contravariant coordinates 

and X* = 
X2 

in covariant coordinates. 
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We propose 
N{v) = |yp = F • y - x^Gx. (11.120) 

We know that in matrix form we "lower" the index (it is passed to covari-
ant coordinates) by means of the relation 

X* = GX, (11.121) 

whence, substituting (11.121) into (11.120), the result is 

N{V) = \V\^ = X\GX) = X̂ X* - X%X* 

= {X'^InXy = {XyinX = {Xyx. (11.122) 

From (11.121) we obtain X = G"'^X*, which when substituted into 
(11.122), leads to 

N{V) = |Fp = (X*)*G-^X* = (X*)^G*X*. (11.123) 

Relations (11.120), (11.122) and (11.123) show that the moduh of the 
associated vectors are coincident. 

2. The proof for tensors T G ( ^ E'^ J (II) belonging to a Euclidean tensor 

space of order r is done in a analogous form, with the following assump-
r 

tions. Let G{r) = I (8) G 1 be the fundamental metric tensor associated 

with the Euclidean tensor space ( '^ E'^ 1 (R) , of dimension fj = n^. Let 

T = [i^o^o'-'-'^o] ^^ ̂ ^^ contravariant components of T and Tg- the ex
tended column-matrix of the T tensor matrix. We know that for obvious 
reasons. Equation (11.120) is now 

N{T) = \Tf = T*T = T^^iG(r)T^,i. 

Then, (11.121) becomes 
T^i == G(r)T,,i 

and (11.122) can be written in reduced form as 

N{T) = |T|2 = r*,i/,r;i = {T:^,yi,T^,i 

and (11.123) becomes 

N{T) = |r|2 = (r;i)*G*(r)r;i, 

where G*{r) = G~^{r), which proves the equahty of the norm for T* = 

For the mixed associated tensors of T, of the same species, the process is 
analogous, we modify only the fundamental metric tensor G{r) associated 
with the corresponding tensor space. As a model we give the following. If 
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E^ (H) = E^ (g) ^ ^ (8) ^ ^ (8) E^ 
1 

the fundamental metric tensor associated matrix is 

G{r) = G (g) G-^ (8) G-^ (8) G (8) • • • (8) G-^ 

^El'^E'', 

G. 

D 

Example 11.11 (Fundamental metric tensor of i ^E^ ] (Si)). In a Euclidean 

space E'^{H) referred to a basis {e^a}, the fundamental metric tensor is given 

by the matrix G = 1 1 
1 2 

1. Calculate the dimension in a basis of the tensor space I ^E'^ J (R). 

2. Obtain the covariant coordinates of the fundamental metric tensor G(3) 
in the basis of the tensor space. 

3. Obtain the contravariant components of the fundamental metric tensor. 

Solution: 

1. The dimension is given by: 

dim )E' 

B = {e 

(H) = n'" - 2^ = , 

8 6/3 0 67} , 

where a,/3,7 € /2-
2. The covariant coordinates of the fundamental metric tensor G(3) in the 

basis of the tensor space are: 

0 0 0 0 0 0 
(e„ ®eß® e^) • (ex ®e^® e^) = 9ax9ß^9j^ 

G(3) = Ki;;;:] G(S)G®G- ri 1] 
1 2 (^ 

\i 1] 
1 2 (^ 

fi 1] 
1 2 

ici;;;i] = GO) 

r 1 1 
1 2 

1 1 
1 2 

1 1 
1 2 

1 1 
_ 1 2 

1 1 
1 2 

2 2 
2 4 

1 1 
1 2 

2 2 
2 4 

1 1 
1 2 

1 1 
1 2 

2 2 
2 4 

2 2 
2 4 

1 11 
1 2 

2 2 
2 4 

2 2 
2 4 

4 4 
4 8 . 
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3. The contravariant components of the fundamental metric tensor are: 

G-' 1 r - i 
1 2 

2 - 1 
-1 1 

aXßfjL-iv 
^o o o o o o 

-̂y ) - ( ^ 

G-̂ (3) = G - 1 )G- )G- 2 - 1 
-1 1 

OLX ßß 71 / 
^ o o^o o ^ o o 

2 - 1 
-1 1 

G*(3)^b:^f::r] = G-H3) 

r 8 - 4 
- 4 4 

- 4 2 
2 - 2 

- 4 2 
2 - 2 

2 - 1 
_ - l 1 

- 4 2 - 4 2 
2 - 2 1 2 - 2 

_ _ J-
4 - 2 
2 - 2 

2 - 1 
- 1 1 

- 2 1 
1 - 1 

2 - 1 
- 1 1 

2 - 1 1 - 2 1 
- 1 1 

4 - 2 
- 2 2 

- 2 1 
1 - 1 

1 - 1 

- 2 1 
1 - 1 

2 - 1 
- 1 1 

• 
Example 11.12 (Analysis of a multiform over i ^E^\ (Q)). In a Euclidean 

space E^{Q) [Q is the field of the rational numbers), referred to an orthonor-

malized basis {ea] consider the tensor F : i ^E^ \ (Q) —> Q, which is a 

multilinear form that associates with each tensor product of three vectors, in 
3 \ 
S)E^ I (Q) a rational scalar of Q. 

.1" 

If the components of Vi^Vz.Vs^ in the basis {e^}, are X — 

form F is defined as 

F f Fl ^V2^ V^ = F{X (g) F (8) ^) = x^y^z^ + x^y^z^ 

y, Z the 

x^y^z^. 

1. Examine if the given form is or is not a symmetric or alternate multilinear 
form. 

2. We choose as the new basis of £^^(Q) that with vectors 

ei == ei + 62, 62 = 62 4- 63 and 63 = ê i + 63, 

which determines the form expression in contravariant coordinates relative 
to the new basis. 

3. Assuming that this form is used to define a new "cubic norm" of vectors 

N(y) = F{V 0V0 V) = /(X,X,X), 

are there any vectors F 7̂  Ö, of null norm? 
In the aflarmative case, give some simple numerical example. 
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Solution: Any multilinear form has the tensor structure 

p = F{Vi (8) Fl (g) • • • (8) K ) = f{Xi 0 X2 (8) • • • 0 Xr) 

491 

/ o o ••• o Oi-i o cao o 

Oiia2---OCr 0 1 - ^ 0 2 • C : ; peQ, 

that is, a total contraction of the tensor 

F=f° ° ••• ° e*"^ ® 

with the tensor products 

Oil o a.2 o 
^ o 1 ^ o 2 • 

Oir-O -^ 

• ^ o r ^ C K i -e«. e fe")(Q)-

1. Our particular problem presents the form (r = 3) with components 

/
O O O A O O O / » O O O ^ 

111 ~ «^222 ~ -^333 ~ -̂  

and in matrix form it becomes 

F = [rs.\ aßj^ 

1 0 0 
0 0 0 
0 0 0 

0 0 0 
0 1 0 
0 0 0 

0 0 0 
0 0 0 
0 0 1 

where a is the block row, ß the row of each block and 7 the column of 
each block, showing that it is a covariant tensor of order (r = 3), and 
thus, a multilinear form. 
Its symmetric and non-alternate (non-anti-symmetric) character is also 
explicit in the matrix representation. 

2. The change-of-basis of matrix C is given by 

\C 616263 [616263] 

1 0 1 
1 1 0 
0 1 1 

;\C\=2y^0; 

C~ 
1 1 - 1 

- 1 1 1 
1 - 1 1 

We solve this question using two different procedures: 
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a) First, we find the new covariant coordinates / ° ° ^ and then we raise 

the indices to new contravariant coordinates f̂ ;!̂ . 
«/ o o o 

b) First, we find the initial contravariant coordinates, raising the indices 

to obtain the components / ^ o ^ , and then we perform the change-of-
basis to the f^i^. 

«̂  o o o 

Since the initial frame of reference is ort honor malized, method (b) is more 
convenient, because the fundamental metric tensor associated with the 
space i ^E^j (Q) is G*(3) = I^^ (g) I^^ (g) I^^ = J27, so that raising 

indices is immediate: 
Fa,i = hr ' F^i, 

which is equivalent to the identity / o o o ~ / a o 7 " 
It remains only to change the tensor to the new basis 

nijk ^ raß-f io jo ko 

« / o O O 'f 0 0 0 'OCK ' oß ' 0 7 ' 

and in matrix form, for a = rf = 3^ = 27, the result is 

^7,1 = (C-^(g)C- ) C - ^ U F , 

1 1 - 1 
-1 1 1 
1 - 1 1 

27,1 

1 1 - 1 
-1 1 1 
1 - 1 1 

1 1 - 1 
-1 1 1 
1 - 1 1 

.F 27,15 

where 

2̂*7 = [ 1 0 0 0 0 0 0 0 0 | 0 0 0 0 1 0 0 0 0 | 0 0 0 0 0 0 0 0 1 ] . 

Once the operations have been performed, we obtain 

F2V,i = ^ [11111 - 3 1 -31111 - 3 1 1 1 -31111 - 3 1 - 3 1 1 1 1 1 ] , 

which once condensed, leads to the matrix representation of F by its new 
contravariant coordinates: 

[/: 
Zjfc-j _ 

oooJ 

1 

~ 8 

r 1 
1 
1 

1 
1 

- 3 

1 
- 3 

1 

1 
1 

- 3 

1 
1 
1 

- 3 
1 
1 

1 
- 3 

1 

- 3 
1 
1 

1 
1 
1 

In this situation, the form F operates as p = fHo-^^i-^^-^l' 
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3. Since the vector V in the initial basis {e^} is 

V = [eie2e3]X = [616263] 

and assuming that Vx*̂  G Q, there must be 

T) T) T) 
x"̂  = —r; x^ = -17; x^ == -^; (arbitrary rational numbers) 

Q Q Q 

and reducing the fractions to common denominator, we obtain x'^ = 
—; x^ = —; x^ = —, and entering these into the form, we must 
have 

N{V) = f{X,X,X) = {x^ + (x^f + {x^f = (^^)' + ( ^ y + (^ ' ) ' ^ 0̂  

which implies 

{z^f + {z'^f = {-z^f; \/z' e Z (relative integers). 

If we let z-^ — x\ 2;̂  = y; —z^ — z\ x^y^z G ]N (natural numbers), we 
must find some natural solution to the equation: 

x'^ -\-y^ = 2;^ 

which is impossible according to the Fermat theorem (proven by Euler for 
exponents n = 3). There are no vectors of null "cubic norm" in Q. 

D 

Example 11.13 (Tensor metrics: tensor geometries). Consider first a Eu
clidean space E'^(IR), referred to a certain basis {e*Q,} and the connection 
fundamental metric tensor of which is given in covariant coordinates by the 
Gram matrix 

and the vectors 

2 5 

a (1 , -1) and 6 (2 , -3) , a.b ^ Eliß.). 

Next, consider another Euclidean space ^ f (^ ) referred to a basis {e!y}, where 
the Gram matrix associated with its fundamental metric tensor is 

G2 ^ [<^] ^ 
1 1 - 1 
1 2 0 

- 1 0 3 

and the vectors: 

p (2 , -1 ,1) and ^ (3 , -1 ,2) , p , g G ^ | ( ] R ) . 
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1. Examine the proper Euclidean character of ^ ^ ( H ) . 
2. Obtain the Euclidean modulus of the vectors a and h. 
3. Give the dot product a • 6 of the two vectors. 
4. Calculate the area of the triangle with sides the vectors a and h. 
5. Examine the proper Euclidean character of ^^fC^)-
6. Calculate the moduli of the vectors p and q. 
7. Calculate the dot product p^q. 
8. Calculate the area of the triangle with sides the vectors p and q. 
9. Calculate the perimeters of the two mentioned triangles. 

10. Obtain the basis B^ of the tensor space Ef 0 J ^ K R ) . 

11. Determine the decomposable tensors U = a^pand W = b^q^ expressing 
their respective components (column-matrices) in the basis Bo- associated 
with the tensor space ^^ (g) ^1(11). 

12. Give the fundamental metric tensor associated with the tensor space E^ 0 
E2OR) and "produced" by the existence of the corresponding tensors Gi 
and G2 of the Euclidean factor spaces. Discuss the Euclidean character of 
Ef(8)E| (R) . 

13. Calculate the moduli of the tensors U and W. 
14. Obtain the dot product of the tensors U,W e Ef ^ E^(R). 
15. Examine the cosÖ that corresponds to tensors U and W. 
16. Obtain the area of the plane triangle of tensor sides U and W, in the 

tensor space 6-dimensional Ei (g) ^ f ( ^ ) • 
17. Obtain the moduli of the tensors: 

a^ä^ b0b^ a0b^ p<^p^ q^q^ p^q-

18. Calculate the perimeter of the tensor triangle formed by the tensor vectors 
U and W. 

19. Indicate if it is hcit to ask for the dot product {a ^ b) • {p^ q). In the 
affirmative case, give such dot product. 

Solution: 

1. We determine the Gram-Schmidt numbers and the terms of the diagonal 
matrix: 

ro = l; A ^ l ; r2 = 1 2 
2 5 

A l , . A _ 1 _ . 

so that there exist canonizing matrices (7i, such that we obtain the 
Sylvesterian matrix Gi, by congruence: 

3Ci\ Gi^ClGiCi 1 0 
0 1 

We have n = r = a = 2 (order = rank = Spanish signature), thus Gi is a 
positive definite matrix, and thus, £̂ f (H) is a Euclidean space. 
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2. The Euclidean moduli of the vectors a and h are: 

495 

\a\ 1 - 1 ] 1 2 
2 5 

1 
- 1 

\^\-p-^][\l][-l 
3. The dot product a • 6 is: 

ä^h=[l-l] 

= \/25 = 5. 

1 2 
2 5 

2 
- 3 

[ - 4 - 1 1 ] 

[ - 1 - 3 ] 7. 

4. We extract the covariant coordinates of the vectors a and h (see special 
tensors Section 1.4): 

1 2 
2 5 X,* = ri 2^ 

.2 5 
r 21 

- 3 = 
r -41 

- i i _ 

We proceed to create a Cartesian system of three dimensions, adopting 
an axis OZ perpendicular to the OXY (oblique) of our Euclidean space. 
The new basic vector, over the axis O Z , will be 63 unitary {\ez\ — 1). 
In this way, we can calculate the vector product , the modulus of which is 
|a A 6| = |a| |6| s inö, and thus, the sought after area is S = | | a A 6|: 

Zi = a Ab •• 

vWs 

ei 62 es 
xi yi zi 

X2 y2 Z2 

\ 

1 

1 1 2 Ol 
2 5 0 
0 0 1 

ei 62 63 
- 1 - 3 0 
- 4 - 1 1 0 

z i - = - e s ; | z i | -= I - e s l = 1; Si = - | a : A 6| = - | i i | = - . 

5. We proceed in an analogous way to question 1. 
The Gram-Schmidt numbers are 

Tn = 1; Ti = 1; To = 
1 1 
1 2 = 1; / : . = 

1 1 - 1 
1 2 0 

- 1 0 3 

A , . T2 _ . Ts . 

i O J-1 J-2 

3(721 G2 — C2G2C2 — 
\1 0 0 ] 

0 1 0 
0 0 1 

n = r = CT = 3. 

G2 is positive definite and thus, ^^fC^) ^̂  ^ Euclidean space. 



496 11 Euclidean Homogeneous Tensors 

6. The moduli of the vectors p and q are: 

b1 

k1 
\ 

-12] 

1 1 -1" 
12 0 

-10 3 

1 1 -1" 
1 2 0 

-10 3 

21 
-1 
ij 

3] 

2j 

= 1 

N 
; o i 3 ] 

7. The dot product p^ qis: 

^ • g = [ 2 - l 1] 
1 1 - 1 
1 2 0 

-10 3 

3 
- 1 

2 
[0 0 1] 

3 
- 1 

2 

N/5. 

2. 

8. We proceed directly, using the vector product pAq, as in question 4. 
p and q in covariant coordinates: 

x: = 

x: 

11 - 1 
1 2 0 

- 1 0 3 

1 1 - 1 
1 2 0 

- 1 0 3 

r 21 
- 1 

1 

r 3] 
- 1 
2 

= 

= 

fol 
0 
1 

[Ol 
1 
3 

Z2 =pAq 
V\G2 

e i 62 63 
^ 1 2/1 Zi 
^ 2 1/2 2:2 

N 
1 1 - 1 
1 2 0 

-10 3 

61 62 63 
0 0 1 
0 1 3 

= - e i ; 

A/I = 1; 52==^ |pA^1=. i | z2 | = ^. Î il = I - e i l = Vei • 61 = y ^ 

9. The third side of the triangle of vector sides a, 6 is (a — 6); 

XQ, — Xb 

\a-b\ = 

1 
-1 -

2 
-3 = 

-1 
2 

-1 2] 1 2 
2 5 

:3 8] 

Pi (perimeter) = |a| + |6| + |a - 6| = \/2 + 5 + VT3. 
The third side of the triangle of vector sides p^ qis {p — q)] 

Xr, — X„ 
r 21 
-1 
1 

— 
r 31 
-1 
2 

=: 
r- 1 1 

0 
-1 

13. 
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V-Q\ = A [ - 1 0 - 1 ] 
r 1 1 - 1 " 

1 2 0 
- 1 0 3 

r - 1 ] 
0 

- 1 J 
^/2. 

P2 (perimeter)^ |pl + Ig] + |p - g] = 1 + V^ + >/2. 
10. (J = dimension of ^^ (g E | ( I l ) = n • r2 = 2 x 3 = 6. 

Let Ba be the basis of E^ g) £^|(R) associated with the respective bases 
{e^} and {e^} of the Euchdean spaces E\{Wl) and J ^ K R ) . 
We have 

Ba ^BQ = {ei g) ei, ei g) 6*2, ei g) ?3,62 (g) ei, 62 g) 6*2,6*2 g) 6*3}. 

11. We proceed as fohows. 

[%,l] = ^ a (8) Xp = 

SO that the tensors are 

[̂ 6,1]̂  - 1 1 - 2 1 

[W6,i]* - [ 6 - 2 4 - 9 3 - 6 

[7 = [ e 1 (g ei e 1 (g e2 ei (g) es e2 (g) ei 62 (g e*2 62 g) es 

W = [ e 1 (g) ei ei g) e'2 e 1 (g e*s e 2 (g ei 62 g) e*2 e 2 (g ês ] 

r 2 1 
- 1 

1 
- 2 

1 
- 1 

6 
- 2 

4 
- 9 

3 
- 6 

12. Following the theory, we have 

G(6) = Gl 0 G2 1 2 
2 5 

1 1 - 1 
1 2 0 

- 1 0 3 

1 1 - 1 2 2 - 2 
1 2 0 2 4 0 

- 1 0 3 - 2 0 6 
2 2 - 2 5 5 - 5 
2 4 0 5 10 0 

L - 2 0 6 - 5 0 15 J 

The Gram-Schmidt numbers of G(6) are 

ro = i; ri = i; r2 
1 1 
1 2 1; A 

1 1 - 1 
1 2 0 

- 1 0 3 
= 1; 
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FA 

r.= 

1 1 - 1 
1 2 0 

- 1 0 3 
2 2 - 2 

1 1 - 1 
1 2 0 

- 1 0 3 
2 2 - 2 
2 4 0 

1 1 2 
1 2 2 
2 2 5 

= 

2 
2 

- 2 
5 

2 2 
2 4 

- 2 0 
5 5 
5 10 

1 1 2 
0 1 0 
2 2 5 

1 1 - 1 2 
0 1 1 0 
0 1 2 0 
0 0 0 1 

= 

1 
— 1 

1 1 - 1 2 2 
0 1 1 0 2 
0 1 2 0 2 
0 0 O i l 
0 2 2 0 5 

= 2 5 = 1. 

Finally, using property 2 of Section 1.3.3, we have 

Te = iG(6)| = |Gi ® G2I = IGi 1̂  - IGap = 1^ • 1̂  = i, 

and thus, all ga = jP^ = 1. 

There exists a change-of-basis matrix C in the tensor space £̂ ^ (g) £^2(^)5 
that can be built by the Gram-Schmidt method, such that 

G{6) = C^G{6)C = h; n- 6. 

G{6) is positive definite and thus, Ef (g E2OR) connected by the funda
mental metric tensor G(6) is a Euclidean tensor space. 

13. The moduh of the tensors U and W are: 

\u\ = ^JuiGien 

\ 

[ 2 - 1 1 - 2 1 - 1 ] G ( 6 ) 

2 
- 1 

1 
- 2 

1 
- 1 

\ 

0 0 - 1 0 0 - 3 

2 
- 1 

1 
- 2 

1 
- 1 

\/2; 

we verify that |[/ | = \a\ • \p\ — \f2 • 1 = \/2, because [/ = a (gp. 
In addition: 

T l̂ = JW^G{6)We -2 4 - 9 3 -6]G{6) 

r 6 
- 2 

4 
- 9 

3 
- 6 
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\ 

[0 - 4 - 1 2 0 - 1 1 - 3 3 ]G(6) 

6 
- 2 

4 
- 9 

3 
1-6 

^^25 = 5\ /5; 

we verify tha t |VF| = \b\ • |g| = 5\ /5 , because VT = 6 ( 
14. The dot product of the tensors U and W is: 

= [ 2 - 1 1 - 2 1 

)q. 

r 1 1 - 1 
1 2 0 

- 1 0 3 
2 2 - 2 
2 4 0 

. - 2 0 6 
6 i 

- 2 
4 

3 
- 6 . 

- 1 4 . 

2 2 - 2 -
2 4 0 

- 2 0 6 
5 5 - 5 
5 10 0 

- 5 0 15. 

r ^ 
- 2 

4 
- 9 

3 
_ - 6 

[0 0 - 1 0 0 - 3 ] 

Alternatively, we check tha t the product of the two real numbers 

(a •b) • {pm q) = 7 X 2 = 14 (according to questions 3 and 7). 

15. From Questions 13 and 14 we extract the da ta | [ / | , |VF| and U •W^ and 
then 

UmW 14 14 
cost^ \U\-\W\ V 2 . 5 V ^ 5 V ^ ' 

We calculate the cosines: 

amb 
cost/i = 

\ä\\b\ V2-b 
and cos^2 

P*Q 

\P\\Q] 1 - 7 5 ' 

and then we have 

cos Ol cos O2 
14 

v / 2 - 5 1 - ^ 5 5\/5 
= COS( 

16. Since we already have the moduli of the tensors U and VF, together with 
the cos 9 calculated in the previous question, we calculate the sin 0: 

sm 0 = \ / l - cos2 9 = \ 1-
14 54 3^/2~x~3 _ 3 v ^ 

bVlÖj ~ bVlÖ ~ 5 ^ 2 X 5 "" 5^/b 

file:///U/-/W/
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and next, the area of the triangle: 

5 = i|C/||W^| sine = ^ v ^ . 5^/5 • ̂  = ^ 7 6 . 
2' " ' 2 5\/5 2 

17. To obtain the moduli of tlie tensors we proceed as follows. 

X, {ä^ä) 
I i _ 

since a ^ a E { ^ Ef ) (R) we need to know the fundamental metric 

tensor of the mentioned tensor space in order to calculate the moduli of 
the tensors then 

G(4) = Gl (8) Gl - 1 2 
2 5 

1 2 
2 5 

1 2 2 4 
2 5 4 10 
2 4 5 10 
4 10 10 25 

\ 

[ 1 - 1 - 1 1 ]G'(4) 

1 
- 1 
- 1 

1 "i 
1 3 3 9 ' 

and we notice that the following holds: 

\ä^ä\ = 2= (V2)2 = lap. 

Similarly, 6 (g) 6 G ( ^ Ef) (R), dmd then 

1 
- 1 
- 1 

1 

= Vl = 2, 

X^ 
r ̂ 1 

r 21 r 21 _ - 6 
I -3J ^ I -3J ~ -6 

I 9] 

= V625 = 25, 
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and we notice again that the following holds: 

\b^b\ = 25 

Finally, ä<^b e ( <S>El) (R), whence 

|6p. 

X, (a06) 

l " 
- 1 0 

2" 
- 3 = 

• 2 " 

- 3 
- 2 

3 

from which 

|a(g)6| 

N 
[ 2 - 3 - 2 3 ] 

1 2 2 4 ] 
2 5 4 10 
2 4 5 10 
4 10 10 25 

r 21 
- 3 
- 2 

3 

\ 

4 11 12 33 5^2, 

which confirms again that 

\a^b\ =bV2 = \ä\'\b\. 

As a consequence of the obtained results, we can advance the moduli of 
the rest of the required tensor products, i.e., |p 0 p | , \q<S) q\^ and |p 0 g|, 

where all the tensors belong to the tensor space { ^E"! I (^) -

We already know that 

18. The third side of the triangle of sides the tensors U and W is the tensor 
{U — VF), because we must not forget that a tensor space is, above all, a 
vector space. From question 11, we get 

Ve = [Ue-We] = [Ue]-[We] 

r ^1 
- 1 

1 
- 2 

1 

L-i J 

r '̂ 
- 2 

4 
- 9 

3 
L-eJ 

r - 4 i 
1 

- 3 
7 

- 2 
L 5 J 
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\U-W\ = \VR ViG{Q)Ve 

\ 

-4 1 - 3 7 - 2 51 

1 1 
1 2 

-1 0 
2 2 
2 4 

-2 0 

2 2 - 2 1 
2 4 0 
2 0 6 
5 5 - 5 
5 10 0 
5 0 15 J 

r -41 
1 

- 3 
7 

- 2 
L 5j 

- V ^ = 3\/lI 

Thus, the perimeter of the tensor triangle becomes 

P = |C/| + IVF| + |L/ - ]¥| = A/2 + 5%/5 + 3VTl. 

19. The Euclidean dot product of two tensors, requires that both belong to 
the same Euclidean space. However: 

1 
b e ®E{ (R) andp(8)g G )El (R) , 

and then, the factor tensors belong to different Euclidean spaces, i.e., the 
question is not licit. 

Remark 11.2. However, at least in theory, an "exterior connection" can be 
established, defining a,n exterior fundamental metric tensor between both 
linear spaces; this is clearly beyond the boundaries of this book. D 

D 

Example 11.14 (Common geometric tensors in Euclidean spaces). In the Eu
clidean ordinary geometric space £^^(]R), we consider a convex polygon of m 
sides L^, z G {1, 2, 3 , . . . , m}, together with the set of m + 2 fixed points inside 
it, {P,Q,A,}. 

With each point Ai we associate a vector a ,̂ perpendicular to Li with 
direction outside the polygon, and with modulus the length of Li. 

1. a) Calculate the value of the expression 

i=l 

Aäi^äi Aq^), 

where pi = PA^; Qi = QAi\ "A" is the symbol of the classic cross 
product. 

b) Idem for the particular case m = 3. 
2. a) In the Euclidean ordinary geometric space we consider a convex poly

hedron of m faces S ,̂ z E {1 ,2 , . . . , m}, together with a set of m + 2 
fixed points interior to it, {P, Q, A^}. With each point Ai we associate 
a vector ai, perpendicular to the face Si, and in the direction outside 
the polyhedron, and with modulus the value of the area of Si. Obtain 
the value of the expression in 1(a). 
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b) Idem for the particular case m = 4. 

Solution: 

1. a) We assume that each side Li of the convex polygon is a vector Li di
rected along all the boundary in the same direction; since the polygon 
is closed, we have 

^ L , = 0; ^ L - e ' „ = 0 ^ ^ [ e i e^] 

which implies 

i=l i=l 

ot 
0, 

z = l 

l o 

V i = 0 

In addition, we have 

X : i ^ : : = 0, a G { l , 2 } . (11.124) 
i=l 

^ ^ X^ (Ä A â  + â  A g;) = ^ {pi A â  - ĝ  A a )̂ = ^ {pi - ĝ ) A äi 
i=l i=l i=l 

i=m i=m i=m 

= X^(PAi - Q X ) A â  = ^ P Q A â  = P Q A ^ a .̂ (11.125) 
i=l i=l 

However, ^ di = R is the resultant of the vectors a ,̂ and thus R is 

independent of the vectors to be linked to points Ai, or applied to the 
same point, for example P . In addition, each äi is a vector rotated 
90° from the corresponding Li. Whence, if we denote by Z = [2:̂ °] 
the rotation matrix, we have 

Substituting (11.126) into (11.125), we get 

i—m /i=m \ 

f=PQ A E(-f>::)^>=pQ A <i E ^:: ^ß^ 

(11.126) 

1=1 ^i=l 

and taking into account (11.124), and replacing this into the last ex
pression we obtain 

f = PQ A 0, 

so that f = 0. 
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b) For the particular case m = 3, we also have T = 0. 
2. a) Since the surface of the polyhedron is closed and convex, the projec

tions of the vectors of the upper and lower faces, over each Cartesian 
plane XOY^XOZ^YOZ^ cancel out, i.e., 

i—m 

or 

SO that in summary, we have 

^ s ^ ^ e , = 0 ; a G {1,2,3}. 
i=i 

Similarly 

(11.127) 

z = l i=l 

^ = I ] (Ä A a, + â  A q^) = PQ A ^ â  - PQ A Y.(^Z^^) 
i=l 

, z = l 

and susbstituting (11.127) into the last expression, we obtain 

f = PQA (O)ec, =. PQ A 0 - 0. 

b) Also for 771 = 4, we have T = 0. 

D 

11.12 Exercises 

11.1. In a Euclidean space E'^{M) referred to a basis {e^} the fundamental 
metric tensor in covariant coordinates is given by the matrix 

G=[9 aßi 
1 1 
1 2 

Consider the Euclidean tensor T of matrix representation 

r a / 3 o o j 
I o 070-1 

1 - 1 
1 2 

2 - 5 
3 1 

3 1 
4 - 1 

1 6 
2 2 
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1. Obtain the matrix representation T' of the tensor associated with T by 
its contravariant coordinates. 

2. Obtain T'' associated with T by its covariant coordinates. 
3. Obtain the tensor T'" associated with T of components [t^^Vl^-

4. Obtain the doubly contracted tensor P — C T. 

5. Obtain the tensor W = C 

6. Is P - W? 

7 
ß 

qnff 

11.2. In the Euclidean vector space E^{B.) referred to a basis {eQ,}, the fun
damental metric tensor is given by the Gram matrix 

G 
2 1 1 
1 2 1 
1 1 2 

Consider the Euclidean tensor of order r = 3 represented by 

, o / ?o 

L a O ' Y J 

3 
1 
0 

3 
0 
0 

0 
1 
0 

0 
3 
1 

1 
3 
0 

1 
0 
1 

0 
0 
3 

0 
1 
3 

0 
0 
0 

1. Obtain the representation T' of the totally contravariant associated tensor 
of T. 

2. Obtain the representation T'^ of the totally covariant associated tensor of 
T. 

3. We perform in £^^(11) a change-of-basis {ê Q,} of matrix 

c ^ [<:] 
1 2 3 
2 3 2 
1 2 2 

Determine the new matrix representations T, T' and T" of the tensor T 
and its associated tensor. 

4. We first proceed with the matrix T of the tensor T in the new basis, and 
later we determine as associated T' and T"'. Verify numerically the results. 

11.3. In a Euclidean space -E^(Il) the fundamental metric tensor is given by 
the matrix 
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G = iCs] 
ri 

0 
1 

0 
2 
0 

1] 
0 
3j 

[Pc 

der two Euclidean tensors P and Q of order 
at ions 

r - 1 2 -24 - 3 6 1 r - 8 

aßji __ I-
O O oJ A 

- 2 - 8 -14 
4 4 4 

- 2 - 8 -14 
1 - 2 - 5 
2 2 2 

4 4 4 
2 2 2 

_ 0 0 0 . 

- 6 
- 4 

- 6 
- 4 
- 2 

- 4 
- 2 

_ 0 

r = 

- 8 
- 6 
- 4 

- 6 
- 4 
- 2 

- 4 
- 2 

0 

3, with matrix 

- 2 2 1 
- 1 8 
- 1 4 

- 1 8 
-14 
-10 

- 1 4 
-10 

- 6 . 

5 

where a is the block row, ß is the row of each block, and 7 is the column of 
each block. 

1. Are P and Q the same tensor? 

2. If the answer is affirmative, give the tensor Q' = [^aöo] dissociated with 

Q. 
3. Execute the Euclidean contraction Vi = SC[a^^)Q. 

ex 
4. Execute the normal contraction F2 = C( )Q'. 
5. Are V\ and V2 the same vector? 

11.4. In a Euclidean space £^^(IR) referred to a basis {e*a} the fundamental 
metric tensor is given by the Gram matrix 

G - \Cß\ = 
3 1 2 
1 1 1 
2 1 2 

Over E^(]R), we consider the tensors S and T of components 

r 7°! 
r 1 0 

0 2 
- 1 0 

- 1 
0 
2 

and 
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T = [tZl] 

1 2 0 
0 - 1 0 

- 1 1 1 

2 0 5 
3 0 1 
0 0 2 

- 1 2 0 
2 0 0 

L 0 0 I J 

1. Find the covariant coordinates of the tensor P — S ®T. 
2. Representing with SC the Euclidean contraction of indices of the same 

species, obtain the contravariant coordinates of the Euclidean tensor Q = 
£C{1,3)T. 

3. a) Starting from the factors, determine the contracted tensor product 

b) Starting from the executed product P , determine the contraction Z — 
£C{1,A)P. 

4. Consider in E^ilR.) a new basis {e^} given by the change matrix: 

C -
1 2 1 
1 3 1 
1 2 2 

a) Obtain the covariant coordinates of the associated tensor of S in the 
basis {e^}. 

b) Obtain the contravariant coordinates of the associated tensor of Z in 
the basis {e^}. 

c) Obtain the covariant coordinates of the associated tensor of P in the 
basis {e^}. 

11.5. In the Euclidean space ^ ^ ( R ) referred to a basis {CQ,} the fundamental 
metric tensor is given by the matrix 

G=K;] 
1 1 1 
1 2 1 
1 1 3 

Consider two tensors of order r = 3, T and U given by their components: 

.ao o , o \ 

t̂ ^^ = a + /3 + 7; u 
O O 1/ 

Xfio A + /i - i/, 

and let P = T (g) [/, 

1. Obtain the contravariant coordinates of P = C I . I P . 

2. Obtain the covariant coordinates of Q = £C (a, u) P . 

a 
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3. Execute the dot product T^U directly, determining the matrix of the ade
quate fundamental metric tensor G{r) that permits the direct calculation, 
by means of a formula of the type (11.114). 

4. Obtain the components of the associated tensor of T, T' = [̂ ^ool* 

5. Obtain the components of the associated tensor of [/, U^ = [u^^^]. 

6. Obtain the moduli of the tensors T and U. 
7. Obtain the moduli of the tensor Q, with the help of the computer. 

11.6. In a Euclidean space E^(1EI) referred to a basis {ca} the fundamental 
metric tensor is given by the Gram matrix 

G Kß\ = 
1 

- 2 
0 

-2 0 
6 1 
1 1 

A multilinear form F , applies the tensors T e E^ 
H, according to the expression 

) F ^ ( 8 ) E 2 ( ] R ) in the field 

F{T) = 2t\ l o l 
2 o 3t 

2 o 2 
o l o 

r / 2 o 3 I / ^ , 2 o l 
o l o o z o 2t 2o3 

o2o ' •At 
3 o l 
o l o t 3o3 

o3o' 

Determine the basis {e**'̂ } reciprocal of the {ê ĉ }, expressed as a linear 
manifold of the basis {CQ;}. 

Determine the basis ß* reciprocal of the basis B oi E^ ^ El ® F^(R) as 
a function of the vectors in the basis B. 
Obtain the mnemonic representation of the tensor space to which F be
longs. 
Obtain a matrix representation of the components of the tensor F. 
Obtain the fundamental metric tensor G* (r) of the Euclidean tensor space 
proposed in question 3. 
Obtain the modulus of F (notated |F|). 
Obtain the fundamental metric tensor G{r) associated with the Euclidean 
tensor space E^ ^ E^ ^ E^(R). 

8. Obtain the modulus of T (notated |T|). 
9. Consider the tensor T, with matrix representation 

r,Q;0 7 i _ 

L^o/3oJ ~ 

r 1 
2 
1 

2 
1 
2 

1 
2 

_ 1 

1 
1 
2 

2 
1 
1 

0 
2 
1 

1 
2 
2 

4 
1 
2 

1 
1 
1 

and give the scalar p = F{T). 
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10. Does the quotient jp^m suggest something to the reader? 

11. We perform in the space E^{M) a change-of-basis {e^} of orthogonal ma
trix 

^0 0 V2^ 
1 - 1 0 
1 1 0 

1 

71 
Answer all the previous questions, but taking now {e^} as the initial basis 
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Modular Tensors over E^{TR) Euclidean Spaces 

12.1 Introduction 

This chapter, after establishing the required mathematical entities, is devoted 
to defining the orientation tensor, analyzing its Euclidean properties as associ
ated tensors, and its application to Euclidean polar tensors. The new concepts 
are illustrated with some examples of tensors deduced from the orientation 
tensor. 

12.2 Diverse cases of linear space connections 

In Chapter 8, Sections 8.2.1 and 8.2.2 we have established the concept of 
"oriented linear spaces" and "oriented tensors". 

The pseudo-Euclidean spaces PSE^{1R) and the Euclidean spaces E'^(1R) 

are frequently used to build over them tensor spaces I ^PSE'^ j (R) and 

r \ 
^E'^ ] (Si), that contain special tensors that are useful in certain applica

tions, as for example the tensor "cross product", "mixed product", "double 
vector product", etc., extended even in certain cases to dimensions (n > 3) 
larger than that of the classic geometric space. 

What happens if a change-of-basis is performed in the fundamental space 
PSE^'in) or E^(R) of matrix C, such that its relative modulus is \C\ < 0? 
Since \C\ is negative it can change the orientation of the n-reference frame, 
which invalidates the definition of certain tensors, such as the "cross product". 

On the other hand, expressions such as Y^|G|, a factor that accompanies 
certain pseudo-Euclidean or Euclidean tensors, produce problems when ex
ecuting changes of basis. If, for example, the fundamental metric tensor of 
E'^{1R) is represented by the Gram matrix G = [̂ ^̂ öJ' ^̂  ̂ ^ ̂ ^^^ known that it 
changes basis by "congruence", i.e., 
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G = C^GC, 

and taking determinants and using the Binet-Cauchy property, we get 

\G\ = \C^GC\ = |C*||G||C| = |C|2|G|, 

which leads to 

\l\Ö\ = \C\^l (12.1) 

which is the change-of-basis expression of a modular tensor (modular scalar 
of weight 1). This leads to a problem if |G| is negative. 

Even worse, in the pseudo-Euclidean spaces, it can happen that 

|G| = |GpG = |Sylvesterian| 

1 
0 

0 
0 

0 
1 

0 
0 

0 • 
0 • 

0 • 
0 • 

• 0 
• 0 

• - 1 
• 0 

0 
0 

0 
- 1 

(-ir 

be negative, where a is the Spanish signature. Thus, we discover that \G\ 
is negative and so its square root becomes imaginary. This fact has led some 
authors to define Relation (12.1) in a different form appropriate for the pseudo-
Euclidean spaces 

absolute value of \G\ — |G|\/absolute value of |G|, 

ignoring the tensor or non-tensor nature of the above square root. 
Fortunately, in the Euclidean spaces E'^(li) over which we have built 

the Euclidean tensors of the previous chapter, the fundamental metric tensor 
matrix, G, is positive definite and so we always have \G\ > 0. Due to all these 
considerations, in this chapter we exclusively deal with "oriented modular 
tensors" (|G| > 0) over Euclidean spaces (|G| > 0). 

12.3 Tensor character of J\G\ 

Though in the introduction we have already presented this topic, and we 
started by saying that it is well known that the fundamental metric tensor 
changes in a congruent way, etc., it is not a sufficiently rigorous presentation, 
as is required by its content, so, we propose a more through development. 

The fundamental metric tensor satisfies the tensor relations: 

oo o o oa o3 . , 
Qn n = 0'̂ /:? .̂ c-^ covariant 

QH = ^Zr^llll'^^R contravariant, 

which expressed to facilitate its treatment in matrix form, become 
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o o OQ; o o ßo 

^ Z J % O^ Oiß O J 

ij i o aß oj 
- ? 0 0 'OCK^OO I ßo 

and taking determinants, and considering that 

i<:]=c'; [<°]=c; b::]=c-\ b;i\ = {cT\ 
we obtain the expressions 

Ki = \c%:;\\c\ 
\9:i\ = ic-^ii5:f ii(c*)-^i 

and because of the determinant properties, we get 

\9Tj\ - \C\'\9:;\ (12.2) 

'"̂ '̂ = J^^lA (12.3) ' OO 

which are a modular tensor of order r = 0 and weight w = 2, and a modular 
tensor of order r = 0 and weight tt; = — 2, respectively. 

If we extract the square root, we obtain 

\9Z\ = \C\^\ (12.4) 

9li\ = •^\\I\A (12.5) 

which are modular tensors of order r = 0 and respective weights wi = 1 and 
W2 — —1. Formula (12.4) is precisely (12.1), expressed by means of the Gram 
matrix \G\ = \gl^°ß\- It is convenient to present the relations (12.4) and (12.5) 
in a reverse form, producing in this way other systems of modular scalars, 
which will be useful later: 

\ C \ - ^ (12.6) 
ijl . \aß 

\9oi\ \\9 
1 

O O l 

= \Cr'~j==. (12.7) 

They are modular tensors of order r = 0 and respective weights wi = 1 
and W2 == —1- Formulas (12.2) to (12.7) can also be written in terms of the 
determinants of the matrices 
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12.4 The orientation tensor: Definition 

From the fundamental metric tensor G associated with E'^{Wl) in the basis 
{e^} and the "Levi-Civita e" systems modular tensor in its two simultaneous 
versions, the contravariant ê ^̂ ^̂ ^̂ Ĵ" (known as Levi-Civita tensor density) 

and the covariant e^ ^ ""̂ ° (known as Levi-Civita tensor capacity), both 
established and analyzed in Section 8.7, we define the system of scalars called 
the "orientation tensor" of the following form: 

^ ^ -^ I O O • • • O ^ / 

•ß° ° - ° =. \g°°\e° ° - ° . (12.9) 

The complete name of Expression (12.8) is "contravariant orientation tensor of 
the Euclidean space E^( I l ) " and that of (12.9) is "covariant orientation tensor 
of the Euclidean space JK" ' (R) " . Evidently, they are totally anti-symmetric^ 
because the Levi-Civita tensors are anti-symmetric. 

12.5 Tensor character of the orientation tensor 

In the title, we have advanced that it is a tensor; however, we need to prove this 
nature. We start by referring to Formulas (8.71) and (8.72), which express the 
modular tensor nature of the Levi-Civita tensor density and tensor capacity: 

^ i i 2 - i r . _ ^Q^a^a2'••ar. ii o i^ o ^ ^ z . o . ^ ^ . I Q ) 
o o ••• o 1 I o o ••• o ' o CKi ' o Q;2 ' O ctn ^ ' 

e ° ° - ° = | C r i e ° ° - ° 7 ° " i 7 ° " ^ . . . 7 ° " " (12.11) 
* l * 2 - " * r i ' ' OL\(y.n---OLn ' %\ O I l2 O ' 2 ^ O V / 

and we also use Formulas (12.4) and (12.7) established in Section 12.3. 
We start with the definitions (12.8) and (12.9), which are formulated in 

the new basis, and we substitute the mentioned formulas, to arrive at the 
following expressions for the initial basis: 

()iii2---in 
o o ••• o 

1^1 a i a 2 - - - a n ^l « ^ ^ 2 o _ z^ o 
I I O O ••• O ' O CKl ' O 0 2 ' O an 

CKl 0:2 •••CKn I 2 l O 22 O I e T T . . . ' 7 
O O ••• O I ' O CKl ' O « 2 ' « 

O O ••• O ' O CKl ' O Q!2 ' O < 
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In summary 
aili2-in ^ MOilOi2-"CXr, il O 12 O _ i n ^ f l 2 1 2 ) 

O O ••• O O O ••• O ' O a i ' O Q!2 ' O Q ; ^ ' V * / 

which reveals that the orientation tensor '^^^^^"'^J' ^̂  ^ totally contravari-
ant and anti-symmetric homogeneous tensor of order r = n (homogeneous is 
equivalent to saying modular of weight w = 0). 

In a similar way we prove the tensor nature of ?? ° o ••• o ^ 

n O O - - - 0 / l O O j 0 0 - - - 0 \ \r^\ I \ ° ° | 1 | / ^ | ~ 1 0 0 - - - 0 OCKl O Oi2 O » n 

0 0 | O O ••• O I O Oil O Oi2 O OLn 

6 \ C C ' ' ' C 
Oiß\ OLiOi2---Oi.n I i l O 22 O i^ O 

O O • • • O O CKi O Q!2 O C K T I 

C C ' ' ' C • 
'CKia2*"Q:n i i o Z2 o ^n o 

and in summary 

* l * 2 " - ' ^ n 0 ; i Q ; 2 - - - Ö ; n Zi O 22 O ^ 7 1 ° ' ^ ^ 

which proves the tensor nature of the orientation tensor d^ '" , which is 
a totally covariant and anti-symmetric homogeneous tensor of order r = n. 

Since the orientation tensor is a totally anti-symmetric homogeneous ten
sor of order r = n, we must not forget that its complete notation is that 
corresponding to the entities of a linear tensor space. According to the def
initions in (12.8) and (12.9) and the declarations established at the end of 
Section 5, we have: 

1. For the contravariant tensor: 

nOiia2'--OCn 

^ o o - . - o ^Oii 

^'^o'^o'^'.'^o^cxi ^ea^ ^ - - - ^ e a ^ ; Oti^ In, « i ^ 0^2 7^ • ' ' 7^ Q^n-
/|G| 

2. For the covariant orientation tensor: 

0 = ^ ° ° - ° r « ^ (8) e"'̂ ^ ® • • • (8) e* 

o o 
= V |G|e;^;^:::;^r"^ ^e^^^®-^® e^^-, a, G /n; C.1 ̂  a2 ^ • • • ^ a , 

12.6 Orientation tensors as associated Euclidean tensors 

The ordered development of the determinant |p° ̂ | by the elements of its fixed 
rows^ with the help of the modular tensor system e, also known as Levi-Civita 
tensor, can be written as: 
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\9o.ß\ = 9iß,92ß, • • • dnß^o o ... o • (12.14) 

Executing any permutation in the rows of the previous determinant, is equiv
alent to multiplying it by (+1), or (—1) depending on the permutation parity; 
in consequence, Expression (12.14), after permuting its rows, taking into ac
count (8.75) can be written as 

o o . . . O | ooi r l 2 ••• n oo oo o o ßiß2--- ßn fl 0 "] ^\ 
^aia2--aj9aß\ ~ ^ a^ oc2 - Oir,91 ß-.d 2 ß2 " '^n/3n^o o ... o ^i^.iöj 

or 
o o ... o I 0 0 , _ o o o o ^ _ o o / 3 i / 3 2 - / 3 . / - ,2 16^ 

^aia2-oijyocß\ ~ yaxßi9oi2ß2 9oir,ßn. o o ... o (.iz.io; 

and since it is 

Ki\ = ^\Cß\s^\9:;i (12.17) 

we substitute (12.17) into the left-hand side of (12.16), and we pass one factor 
to the right-hand side, to obtain 

o o . . . O / | 0 0 | _ 0 0 0 0 O O I ^PlP2• •^P7^ ) ^ 9 1 «^ 
^aia2-c^A\9ocß\-9a^ß^9a2ß2"'9ar.ß^ | /—T^^ o o ... o I • ll^-löj 

If now we substitute into (12.18) Formulas (12.8) and (12.9), which define the 
orientation tensor, we get 

. o o . . . o _ o o o o _ o o aßiß2-ßr. r-^2 IQN 
^a iQs-c t^ ~ 9aißi9a2ß2 ^a^ß^l^ o o ... o ' ^IZ.lb^j 

The conclusion is that the contravariant and covariant orientation tensors 
can be considered as the contravariant and covariant components of a to
tally anti-symmetric Euclidean tensor of order r = n^ where Formula (12.19) 
corresponds to the lowering of all contravariant indices, as associated tensors. 

So, from this section on, every Euclidean space E'^{1R) h.a.s two important 
associated tensors to build tensor spaces: 

1. the fundamental metric tensor G, and 
2. the orientation tensor, i}. 

These will have important applications in the Euclidean exterior algebras. 

12.7 Dual or polar tensors over £'^(]R) Euclidean spaces 

In Section 8.7.3 we established two types of tensors that are associated with 
any given anti-symmetric homogeneous tensor, with the names of adjoint or 
polar tensors of the given tensor. Formulas (8.105) and (8.106) will allow a 
redefinition of these tensors by simply changing the permutation e tensor in 
them, to the orientation tensor, which is the one to be used when such tensors 
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are built over Euclidean spaces ^" ' (H) . So, if we have an anti-symmetric 

tensor B ^ ß".'..ß of given order q with {q <n), the polar tensor of the given 

tensor is the contravariant tensor 

D ßg+lßq+2-ßr. 

q\ ° ° 
•ßn-n o o (12.20) 

Similarly, if the given tensor is A'^^^^[[[^^ of order p {p < n) and totally 
anti-symmetric, its polar tensor is 

D^ 
1 

C^p+lOip + 2---OLn 
p\ 

} aia2---cxp 
A' (12.21) 

The tensor nature of the polar tensors was analyzed in detail in Section 8.7.3, 
and nothing need to be added to the proof, with the exception of replacing the 
orientation tensor 'ß by the permutation tensor e, because the tensor nature 
of 'd has been proved in Section 12.5. 

In the particular case of a number of indices q in the first case or p in the 
second, if p = n ~ 1, the adjoint or polar tensor has only one index and so, the 
resulting tensor is a vector. It is customary to give the name "cross product" 
to the adjoint or polar tensor of the exterior product Fi A 1̂2 A • • • A Vn-i-

We initiate the development of the mentioned mode. Since we have as
sumed that the space is Euclidean, (£^^(R)), and we build the exterior product 

of two vectors, V AW £ A^sH'^) C ( ^ El] (B), we get 

ß;^ T = VAW = {xyo.)A{y:eß) = 
Vo 

vi 
e^Aeß, a.ßels; a < ß, 

the representation of which as an anti-symmetric tensor is 

' 6 /3 
^ 0 

-f 
y: 

vl 
(GQ, (8)6/3 - 6/3 (8)6^), a.ßels; a^ß. 

The order of this tensor isp = n—1 = 3 — 1 = 2. When extracting the polar 
tensor, we obtain a covariant tensor, which is called the "cross product" and 
which unfortunately is also notated V AW (this causes a confusion between 
the exterior product of vectors and the cross product). 

In this book, the cross product, the development and properties of which 
correspond to the next chapter, will be notated as T? x W. 

Example 12.1 (Tensor product of modular tensors). Let ^ ^ ( R ) be a Euclidean 
space over which we consider the corresponding orientation tensor in its con
travariant and covariant representations. Show the tensor character of these 
systems of scalar components, using the tensor product. 
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Solution: 

1. The contravariant orientation tensor is 

naß-y 
o o o 

1 aß J aß^ 

o o I 
^aß\ 

(12.22) 

a/?i 

The first factor of (12.22), according to (12.7), is a modular tensor of order 
r = 0 and weight w = —1, and the second factor of (12.22), according to 
(8.71) is a totally anti-symmetric modular tensor of order r = n = 3 
and weight w^ = 1. Thus, the tensor product is another modular tensor 
of order r = 0 + 3 = 3 and weight w = —1 + 1 = 0, that is, a totally 
contravariant and anti-symmetric homogeneous {w = 0) tensor of order 
r = 3, which allows its tensor change-of-basis equation to be written as 

^ ijk 
•d 

aß^ 
O O O I OCX. 7c 

D jo ko 
3; 'oß ' 0 7 ' 

2. The covariant orientation tensor is 

1} a/37 \9 
o o I 0 0 0 

Q:^ I^Q; /37 9aß\ "aßj' (12.23) 

The first factor of (12.23), according to (12.4), is a modular tensor of order 
r = 0 and weight w = 1^ and the second factor of (12.23), according to 
(8.72) is a totally anti-symmetric modular tensor of order r = n = S and 
weight w^ = —1. Thus, the tensor product is another modular tensor of 
order r = 0 + 3 = 3 and weight w = +1 — 1 = 0, that is, a totally covariant 
and anti-symmetric homogeneous {w ~ 0) tensor of order r = 3, which 
allows its tensor change-of-basis equation to be written as 

A O O O Q O O O OCX. oß 0 7 

ijk Q; /37 ZO j o ko' 

D 

Example 12.2 (Adjoint tensors. Contractions). Over the Euclidean space E^(ES) 
referred to the basis {ea} and for which the interior connection fundamental 
metric tensor is 

3 1 0 0" 
1 1 0 0 
0 0 2 1 
0 0 1 1 

G = 

we build a Euclidean tensor T, of order r = 2, the contravariant components 
of which in the tensor basis associated with the basis {e'ĉ } are given by the 
matrix 

o oJ T = [t ; a ^ O . 
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1. Obtain the tensor 5 = Adj T (adjoint of T). 
2. Obtain the totally contracted product in order of the first factor indices 

with those of the second factor of S ^T. 
3. Let U = T (^ S — S <^T. Is [ / an anti-symmetric tensor? If it is, obtain 

the tensor L — Adj U. 
4. Obtain the totally contracted product in order (of indices 1 with 1 and 2 

with 2) of [/ (8) T. 

5. Obtain (Jf^^t°°t°° 
Xßvp aß 70 

3 1 
1 1 

Solution: 

1. We proceed as follows. 

0 0 

= 2 x 1 = 2; o o I 

Taß\ \G\ = V2. 

_!_ n o o o o Q:/3 _ _ . / 9 , O O O O , Q ; / 3 

21 a/37<5^oo ~ 2 ! ^ / ^ T ^ ^ o o -

Since the only non-null components of the tensor \t^^] are t 
we get 

0 0 

, 3 1 

^7(5 

^24 

V 2 / 0 0 0 0 , 1 3 I 0 0 0 0 , 3 l \ _ V_2 

~ 2 ~ y^l37<5^oo + ^3l7<5^ooy ~~ 2 

V2, 

, 13 ,31 
- 1 3 7 6 

D O O O^ 

1 3 7 ^ ' 

A/2. ae 1324 

0 0 f^ 0 0 0 0 

5^2 — V ^0-6-^3^2 

/ M 0 0 0 0 Z;^ oc 

(-«)]ei375 = v2aei ; 
o /x 0000 /;7 

= -v2ae^234 ^ - v 2 a 

= -V2ae^^°° = ( - y 2 a ) ( - l ) = V^a, 

from which we obtain 

[^6] = 

0 0 0 

0 0 0 

0 0 0 

0 \/2a 0 

0 

0 
0 

which gives its unique component S24 
2. The totally contracted product is 

To = -V2a. ^42 

Ci m 0 0,0.3 0 0 , 1 3 I 0 0 , 3 1 I 0 0 , 2 4 I 0 0 , 4 2 

= 0 • a + 0 • ( -a) + (-V2a) • 0 + {V2a) -0 = 0; S»T = 

obtaining mutually orthogonal tensors. 

0, 
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3. With the aim of being able to subtract the two tensor product tensors, 
and later discuss its anti-symmetries, we decide to express the tensor T 
in covariant coordinates: 

K;] 
r O O.Ow o O-i 

0 
0 

—6a 
—3a 

0 
0 

- 2 a 
—a 

-3 1 0 
1 1 0 
0 0 2 

.0 0 1 
Qa 3a" 
2a a 
0 0 
0 0 _ 

0-
0 
1 
1_ 

• 0 0 a 0" 
0 0 0 0 

- a 0 0 0 
0 0 0 0 

" 3 1 0 0 
1 1 0 0 
0 0 2 1 

_0 0 1 1 

u = T^s-s^T- ui;;i = ti;..;°-<;.Q. (12.24) 
The components 1̂ 4̂24 and '̂ ^2324' chosen with repeated indices take values 

^1424 = ^14 • "^24 - "^14 ' ^24 = (^^) ' ( - ^ 2 ^ ^ ) " 0 • a = -^V2o? ^ 0 

^2324 = ^23 • "^24 " "^23 ' ^24 = (^«^) * ("V^ö^) " 0 • a = - 2 V 2 a 2 ^ 0 

and since the tensor U has non-null components with repeated indices, it 
is not an anti-symmetric tensor. 

4. Let V be the contraction of the tensor U ^T^ since the only non-null 
I O O l 

components of T are t ~ "~̂ oo ~ ^' ^^^ development of V will be 

oo oooo ,Oiß oooo ,13 , oooo ,31 r oooo ooooi 
^j6 ~ ^aßjö ' ̂ 00 — "'137(5 ' ^00 • 

and substituting (12.24) we have 

o o / / f O C oo ,oo\ /j-°° *-̂  *-* °'-' j.oo\ 
~ -^13 ' ^^S) ~ v^31 ' ^-fö ~ -^31 ' 7<5̂  

/ / iOO J . ° ° \ ° ° / ° ° 0 0 \ , 

^ V̂  13 ~ ^31 / ' ^7(5 ~ ^-^13 ~ "^31/ ' '^ 

a ((6a + 6a) 

"7(5 

oo 

^7<5 

O O \ , O O 

7^ 

(0 - 0) • t jS 
1 o 2 o o 

12a • s^.. 
7(3 

Thus, the matrix representation of the resulting tensor is 

b;^] = i2a^[.;^] 

o o o o 
0 0 0 -12V2a^ 
O O O O 

LO 12V2a^ 0 0 

5. If we denote by A the expression resulting after the contraction, as 
a,/5,7, (5 are dummy indices in A, we can exchange its notation ß and 
a to get 
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A^sf''h°°t°° and A' = 5f"''h°°e'l. 
Xßup aß 70 Xßvp ßa 70 

But, on the one hand 5^^^ = —5^^^ and on the other hand the tensor 
T in covariant coordinates presents an anti-symmetric matrix, as can be 
observed in question 3, whence t^° = —t°L which leads to 

A' _ ß:ßoilS ,00 00 _ / c-(xß-i6\ / ,OON 00 _ . 

and we conclude that when changing aß^5 to ßajö^ aßjS to a/3^7, and 
aßjS to 75/?a, we obtain A' ^ A, and since ^^^3p I'̂ Q'̂ ii'̂ s a ^ ß y^ j ^ 5 
in order not to become null, of the 4! = 24 possibilities for the indices only 
^ = 3 permutations remain to be calculated, and then 

A = 8 
/ r l 2 3 4 , o o , o o r l 3 2 4 , o o , o o c-1423,oo,c 
l^^A/xz/p^l2^34 + ^AAti/p^l3^24 "^ ^AMz/p^l4^2 

r l 2 3 4 n ^ , r l 3 2 4 ^ , r l 4 2 3 o O A 

hp^up • 0 • 0 + ^A/x.p • 6a . a + 5^^^^ • 3a • 2aJ 

Xii.un Xn.ijn I ' X n.-u n rv B ^rt Xpvp Xpvp J ' Xpup aß 7^ 

D 

Example 12.3 (Cross products in E'^(ß.)). Consider the Euclidean linear space 
£ '^(R), referred to a basis {Sa}-, with respect to which the fundamental metric 
tensor is given by the matrix G — [^°^]-

We associate with the linear subspace 5 C £^"'(IR), generated by the vec
tors /3o = {x i , ^2 , . . . , Xn-i}-> the vector 

w 
\G\ 

e i 62 • • • Cn 

Xi i rCi2 • • • Xir (12.25) 

I ̂ {n-l)l ^ ( n - l ) 2 • • • ^ ( n - l ) n 

where x^ß is the covariant coordinate ß of the vector Xa-

1. Show the invariant or intrinsic character of the expression defining w. 
2. Show that w is orthogonal to the linear subspace 5, if this is of dimension 

(n — 1). What is vo when S is not? 

3. Setting \B\= Det[ö° o] = Det[xQ; • Xß]., determine the modulus \w\ of w. 

4. Analyze the tensor nature of |w;| and classify it. 

Solution: 

1. We perform a change-of-basis He*̂ !! = ||e'Q;||[c°Q] in the Euclidean space 

E'"'(]R), to examine what happen with the formula of the vector w. 

Denoting [c°^] = (7 by the fundamental metric tensor that changes in a 

congruent form as 
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G = C'GC; \G\ = \C'GC\ = |G||C|' i=^icr-4=, 
Gl 

we proceed to calculate w using the available formula, developing the 
determinant with the help of the Levi-Civita tensor 

w — 

e i 62 

^12 

^ ( n - l ) l ^ ( n - l ) 2 

I\G\ V 

^ ( n — l ) n 

o ^n o 
Q;2 / O Q;^ 

. O Oil O CX.2 O CK(n —1) 

CKl CK2 • • • a n , \ -^ I Oil '^ Zl O 
^ O O ••• O ^ 1 Q ; 1 ^ 2 Q ; 2 • • • ^{n-1) OL (^ri-1) ) ^Oin [^ o i^^ O Q i 

Q;2 O t2 O 
C . 7 

O 22 ' O 0 2 

^CK(n-l) O i ( n _ l ) 

^(rx-1) 1) ' O O^(n-l) 

and since the parentheses represent products of rows by columns of inverse 
matrices, the products of which belong to the diagonal, they all take value 
1, and so 

w •• 
CX-l OiQ, ''' Oiri 

^ o o ... o ^ l a i ^ 2 a 2 • • • ^ ( n - l ) < ^ ( n - l ) ) 6 ^ ^ , 

which is the development of the determinant 

IGI 

ei 
^ 1 1 2^12 

(n—l)n 

W, I . e . , W = W, 

l ^ ( n - l ) l ^{n-l)2 " 

which shows the intrinsic character of the cross product tensor. 
2. We proceed as follows. 

-^ ->• I -L C K i Q ! 2 • • • C K T X - * I 

'i^ ^ Xa — I / n ^ ^ o o . . . o ^ 1 Ö : I ^ 2 Q ; 2 ' ' ' ^ ( n - l ) c K ( ^ _ i ) ^o;^ I 

• \ ^ a j ^ ) 
1 aia2---an 

o o ••• o 

o o ... o ^lai^2a2 ' ' ' ^(n—l)a(^ri-i) v'^ctT^CKri o i 
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^ o o ••• o ^lai^2a2 ^{n—l)a^n-i)'^^^n 

\G\ 

2^22 

^ ( n - l ) l ^ ( n - l ) 2 

X2n 

*^(n—l)n 

0, 

because it has two identical rows, and then w*Xi = 0; Mxi, 1 < i < n — 1. 
If the vectors {xi,X2,.. . ^Xn-i] are linearly dependent, then w = ^ be
cause it is a determinant such that some rows are linear combinations of 
the rest. 
Naturally, we still have if;*x^ = 0 « x ^ = 0 . 
If the linear subspace S spanned by the vectors in /3o is of dimension less 
than n — 1, then, the vector cross product is the vector 0. 

3. Adopting {^i,X2,..., Xn-i,w} as a new reference frame, it is known that 
the mixed product of the basic vectors is 

IG' 
IĜ I = xßP (12.26) 

and if we calculate the mixed product, we get 

\X\ X2 ••• Xn-1 W] = {f\xiX2- •'Xn-l/\) •W = W •W =\wf, 

(12.27) 
and equating both mixed products (12.26) and (12.27), yields 

\w\ \&\ = VC^GC = 
\ 

Q 

\w\ 
= ^fWW=^\- w\ 

and simplifying, we obtain 

\wf =. y[B| . \w\ -^ \w\ = y^\. 

4. \w\ is an intrinsic scalar, that is, a Euclidean tensor of order r = 0. 

Example 12.4 (Tensors obtained from the orientation tensor). 

D 

1. Let T be a contravariant and anti-symmetric homogeneous tensor of order 
r = n^ built over a £̂ ^̂ (11) the strict component of which, in a basis {ca} 
is a e K. 
Consider a change-of-basis with relative modulus a~-^. 

a) Obtain the strict component of T in the new basis. 
b) Obtain the ordinary components of T in both bases. 
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2. Answer the same questions, assuming T to be covariant. 

Solution: 

1. a) Let C be the change-of-basis matrix. Then, \C\ = a~^. Formula (8.74) 
establishes the expression 

^a^ia2---a. = ^^^^"''o'^ (Levi-Civita contravariant tensor). (12.28) 

On the other hand. Formula (8.103) establishes a relation between the 
contravariant anti-symmetric tensors and the generalized Kronecker 
delta 

O O ••• O ißl ß2---ßn) O O ••• O * V • / 

Since the anti-symmetric tensors of order r = n have only one strict 
component, (/öi/32 • •' ßn) = (12 • • • n), and (12.29) becomes 

,aia2---Oin _ ro ; ia2-"ö ;n . ( 1 2 " - n ) 
^ o o ••• o ~ ^ (1 2 ••• n ) ^ o o-.- o ' 

and considering (12.28) and the given data, we get 

,aia2---oin aia2---an,{12---n) aia2---an r-iiy or\\ 
o o ••• o o o ••• o oo--- o o o ••• o V ''^ ) 

Similarly, in the new basis we have 

o o ••• o o o ••• o ' 

where ä is the new strict component of the tensor T. Since T is ho
mogeneous, its change-of-basis is 

J.il *2 ••• * n _ yLÖ!l Ot2--- Oin H O 12 O _ ^ in O 

O O ••• O O O ••• O / O CKi ' O Q;2 ' O Cin'^ 

and replacing the previous expressions we obtain 

a-e'rn':) = {'^•<'rr:)7'i:y::,---7':z, (12.31) 
and susbtituting (8.71) which gives the change-of-basis of ^^^^^[[[^Q, 

into (12.31), we get 

^ \ ^ \ aia2-"Oin il O *2 O . . , ^'^n O _ Oiia2---an il O 12 O ^ ̂  ̂  in O 

I I O O ••• O ' O a i ' O « 2 O Oiin O O ••• O / O CKi ' O Q!2 ' O CKn ' 

and simplifying, we finally obtain 

ä\C\ = a^ä= \C\-^ ' a = (a"^)"^ 'a = a'^. (12.32) 

b) According to (12.30) and (12.32) the ordinary components of T are 

,cxia2-'-an Oiia2---oin. j.iii2---in _ 2 ^l^2•••^n 
O O • • • O O O • • • O ' O O •• • O O O • • • O ' 
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2. If T is in covariant coordinates we have: 
a) The development is analogous to 1(a), but with the formulas for a 

covariant tensor. 
The formula corresponding to (12.30) is 

, o o ••• o o o ••• o 

t = a 6 

and in the new basis, we will obtain 

. o o ••• o ^ o o ••• o 

t.. . — a e. . 

(12.33) 

(12.34) 

The change-of-basis of the tensor T can be written as 

, 0 0 - - - 0 , 0 0 - - - 0 O OCl O Oi2 O O^n 
t • • • ^^ b C • C. ' ' ' C • 

iii2---'i"n aia2---cxn ^i o Z2 o in o ' 

and the Levi-Civita tensor (8.72) gives 

which after replacing terms in (12.33) and simplifying leads to 

ä\C\-^ = a-^ä= \C\a = a'^ • a = 1. (12.35) 

b) From (12.33) and (12.35) the ordinary components are 

, o o ••• o o o ••• o , o o ••• o o o ••• o 

t = ae : t. • . — e. . 

12.8 Exercises 

12.1. Consider a Euclidean space ^ ^ ( R ) referred to a basis {e*Q.} and the 
fundamental metric tensor represented by the Gram matrix 

G = \Cß\ 

1 0 0 1 
0 2 1 0 
0 1 3 2 
1 0 2 5 

and four vectors 14, V ,̂ V ,̂ T4 ^ ^^ (H) represented by the matrix 

\X\, X2, X3, X4 

1 1 1 4 
2 1 1 - 2 

- 1 2 1 1 
0 2 1 - 1 
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1. Determine the exterior vector F = Vi A V2 G /\4 (R), giving also the ma

trix representation of V as an anti-symmetric tensor Iv E {E ^ E)^{1R) 

of second order, in contravariant coordinates. 
2. Determine the exterior vector W = VsAV4 G /y^ ^(R), giving also the ma

trix representation of W as an anti-symmetric tensor IW G {E ^ E)^{H) 

of second order, in contravariant coordinates. 
3. Determine the tensor DV = adj(F), adjoint or polar of the tensor V in 

matrix representation, by its covariant coordinates and by its contravari
ant coordinates. 

4. Determine the tensor DW = adj(]^), adjoint or polar of the tensor W in 
matrix representation, by its contravariant and its covariant coordinates. 

5. Obtain the moduli of V and W. 
6. Obtain the dot product of V • W as vectors of its Euclidean tensor space. 
7. Obtain the modulus of the tensor DA. 
8. Obtain the modulus of the DB. 
9. Obtain the dot product DA • DB. 

12.2. Consider a Euclidean space E^(B.) referred to a basis {e^} and funda
mental metric tensor of Gram matrix 

G = K;] 

2 1 1 1 
1 2 1 1 
1 1 2 1 
1 1 1 2 , 

Over this space we consider three tensors T e /y^^ (H) and U^V G Ef{]R); 
the first one represented by 

r = e"^ A e^^ -f 2e^^ A r ^ - 26^^ A e"^ + 2^^ A e'^ - 4?^ A g^^ - 4e^3 ^ ^4^ 

the second of unknown components by 

and the third by V = e^^ - e'^-^ ^^ ~ ^^. 
We know that the adjoint tensor, W^ of the tensor exterior tensor product 

B = T/\U, is 

W = adj(5) = -j= ( -6ei - 4e2 + Tes + 664) 

and we also know that the dot product U •¥ = —2. 

1. Obtain the matrix representation of T as an anti-symmetric tensor, T G 
2 \^ 
<8)E] (R). 
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2. Calculate the totally developed literal expression of B. 
3. Obtain the components of U. 
4. Determine the moduli of the tensors T and U. 
5. Determine a vector X e Et{Ii) such that T = V AX. 
6. Verify if the "triple vector product" defined with the data in E^{1R) and 

English notation y x X x ?7 is or not W. 
7. Justify the previous result. 

12.3. In the Euclidean space E^{H) referred to the basis {e^} and fundamen-

f scalai 

€{aß) 

tal metric tensor G = [^^°], we consider the system of scalars 

U{aß) = d9i;e{aß) and V{aß) 

where £{aß) is the Levi-Civita e system of order n — 2, associated with E'^(Si) 
ignoring the species. 

1. Analyze the tensor nature of the systems U{aß) and F(a/3), for all possible 
cases, obtaining their (n^r^w). 

2. Study the exterior tensor products U /\V in all licit cases. 
3. Obtain the modulus oiUl\V. 



13 

Euclidean Exterior Algebra 

13.1 Introduction 

In Chapter 9 we have given a detailed exposition of the exterior primal algebra 
of order r, fy^\K)^ and of the exterior dual algebra /y^l{K)^ both built over 
the vector spaces primal V'^{K) and dual V^{K), giving rise to the concepts 
of contravariant and covariant coordinates of the respective exterior tensors. 

Since in the present chapter there exists only a unique linear space, the 
Euclidean space £^"'(IR), which satisfies the identity E'^iJR,) = ^ ^ ( R ) , we 
consider An (-^) ^^ ^ unique linear subspace, i.e., the Euclidean subspace 

^ Ey^ 1 (R) of the anti-symmetric tensors, referred to a special "exterior" 

basis that uses only "strict components" for its representation, and in which of 
special interest is the analysis of the "associated exterior" tensors, that is, the 
raising or lowering of indices, in its strict components. This will be the central 
topic of the present chapter, together with some of its practical applications, 
in the ordinary geometric space (OGS). 

We must also mention that this chapter deals with the creation of funda
mental connection tensors for exclusive use in exterior algebras. 

13.2 Euclidean exterior algebra of order r = 2 

Consider the vectors u^v G £^"'(R), expressed in the basis {ca} of the Eu
clidean space 

Consider the exterior product u A v B.S an exterior tensor of order r = 2, 
u Av £ /\^ ^(R). According to Formula (9.4) we have 

Ü A V = (u'^ec) A {v^^Cß) = {uy^Jca A ep; a, ß e In] a ^ / ? , (13.1) 
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and with the help of (9.5) we also obtain 

u /\v — 
< 

< 

< 

< 
ßochcß] a.ßeln] a<ß. (13.2) 

-1 - \^^ß] Let G = [QCCBI ^^^ G* = G ^ = [g^'^] he the matrices associated with the 
fundamental metric tensor in covariant and in contravariant coordinates, re
spectively. According to Formula (11.32) the tensor relations between the 
primal and dual bases are 

e« = gga^ and also eß = g^^e ^ 

^ « = g^yg and also ^^ = g^^ 
«-̂  O O ^ «-̂  O C 

(13.3) 

(13.4) 

and substituting (13.3) into (13.2), we get 

(5^>--')A(p;>-*'^) u f\v — 

^—^ 

a 
U 

o 
. ß 
U 

o 
a 

U 
o 

, ß 
U 0 

a 
V 

o 
r.ß 
V 

o 
a 

V 
o 

nß 
V 

o 

( S e a O ^ ' ^ ^ " ; a , / 3 , ö , ^ e J „ ; a < ß- 6 ^ ^. 

Following the same technique that the one employed in Formula (9.5), in strict 
components, this is expressed as 

'S A V 
uZ v\ 

o o o o 

o < o o . 0 0 
e'^Ae*'^; a,ß,0,ip e In, a < ß\ 9 < ip. 

(13.5) 
It must be taken into account that due to the fact that in (13.5) a and ß are 
dummy indices, in reality the product of determinants is a sum of products. 

If the data vectors ü and v were to be directly given in covariant coordi
nates: 

u = Une ; V — V e ^. 

and the exterior product calculated directly, we would have obtained 

r ^ A e " ^ ; 0,(peln; 0<if. (13.6) 

If we denote by w the vector ü Av^ Expression (13.6) allows us to write 

I ?^ A r^ 

u A V 
Un Vn 

U V 
if <p 

w = uAv^w^^^^e^'' A e"^ = 
U V 

(p if 
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; e.ipein] e<ip, (13.7) 
Ur, Vn 

u V 

and identifying (13.7) with the strict component of (13.5) we obtain 

w {0<p) 
U V 

ip ip 

a a 

ß ß o o o o ; a,ß,0,ip Gin-, a< ß; 9 < (f. 

(13.8) 
Notating the strict components of the exterior product as simple exterior 
tensors, the relation (13.8) can also be notated as 

o o (ocß) 9ea 
o o 

^ cpa 

9eß 
o o 

9pß 
; a,ß,0,(p e In-, a< ß; 0 < (f, (13.9) 

where (a, ß) are dummy indices from which the Einstein convention holds. 
Expression (13.9) is the relation between the exterior associated tensors 

sought after. If an analogous study starting from the vectors ü = u^^'^ and 

V = v^oC*^ in covariant coordinates were done, the final result would have led 

to the following relation, analogous to (13.9): 

; a,/?,ö,(/9 G In; a< ß; 0 < (p. (6(p) o o 

O O {Oiß) 

Oa eß 
i ' o o ^ o o 

(pa p3 
Q Q 
•̂  o o -̂  o o 

(13.10) 

From (13.9) and (13.10) we conclude that it is possible to build a "fundamental 
metric tensor" G A (2) for the Euclidean exterior space /\^ (H), the tensors of 

which have (2) strict components of a total of (2) = ( 21(̂ ^12)!) components 

of the type 
9ea 3eß 

0 0 0 0 
Q Q 

type 
^o o - ' o o 

pa pß 
0 Q 
- ^ 0 0 • - ' 0 0 

(pa ^ (^ß 
eß 

that together with G* (2), with components of the 

permit us to pass directly from "stretched" column vectors 

built with the tensor strict components of an associated type, to those of 
another type. 

Naturally, all the presented treatment can also be done considering the 

tensor TGAi^^(I^) 

as an arbitrary anti-symmetric tensor, T G ( ® E'^ (I^)-

In fact, let T G Alf^(I^)-

T = t^^^^eo, A eß with a,ß ein and a < ß, (13.11) 
since each basic vector of /\^ (H) satisfies 
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Ca Acß = Ca^ Sß - eß ^ e^, 

substituting (13.12) into (13.11), we obtain 

T = t [ocß), Ca 0 eß — eß (8) ea) with a < ß, 

(13.12) 

(13.13) 

and since T is a Euclidean anti-symmetric tensor we can decide to lower its 
indices (a,/^), passing (13.13) to the dual basis and using (13.3): 

T = t'^o^oi^cc ^eß-eß^ Ca) 

Applying again the same technique as that employed in Formulas (9.5) and 
(13.5), Expression (13.14) is expressed in strict components, and then 

rp ^ ^(«^) 
o o o o 

9ea 9eß 
o o o o 

^ (pa. ^cpß 

e'^Ae'^; a,/5,ö, (̂  G In; a < ß; 6 < cp. (13.15) 

Since T is in the exterior reciprocal basis, its components are the "strict 
covariant coordinates". So, from (13.15) we conclude that 

\0(p) 
,{ocß) 

o o o o 
9ea 9eß 

o o o o 
^(pa ^pß 

; a,ß,e,(peln, (13.16) 

where a < ß are dummy indices and 6 < cp are free indices. 
It is obvious that (13.16) is essentially the same as (13.9). 

13.3 Euclidean exterior algebra of order r (2 < r < n) 

From (9.18), (9.19) and (9.20) we know that the expression of the tensor 
Vi AVZ A' " AVr G An ( ^ ) ' decomposable multivector, in strict components 
is given by 

Vi AV2 A-'- AVr ^ Artß^ A 6/32 A • • • A 6/3^ 

= I Xrl Xr2 ' " Xrr \ 6/3, A C/j^ A • • • A Cß^ 

^ßi o ^ßi o 

o 1 o 2 

ßr-O ßr-O 
^ o 1 ^ o 2 

ßio 
Ü 

o r 

o r 

^/3i A e/32 A • • • A Cß^ 

(13.17) 
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where ßj E In] ßi < ß2 < ' " < ßr and the determinants A^- are the minors of 

the matr ix [Xi X2 • • • Xr ]n,r the columns of which are the da ta vectors 

^ 1 , ^ 7 • • • 5 K expressed in the basis {e^} of the Euclidean space E'^iJR). 

Passing (13.17) to the exterior dual basis of the space /\^'"^(Il), using the 

relations corresponding to (13.3) and (13.4), i.e., 

(13.18) 

(13.19) 

% = dOißj^^''^ ^i^ßj ^ln] i^ In] j ^ Ir 

^^' = Qfl^Oi. 0^.ß3 ^In;ie In] j G / , , 

we get 

Fl A V2 A • • • A Fr = ArCß^ A 6/32 A ••• A 6/5̂  

= ^r ( < ; , e - ^ ^ ) A ( < , > - ^ = ) A . . . A {g;2e-'^ 

= A {9;j,9;2 • ••9ell) ^'' A e-^= A . •. A e-*«^(13.20) 

where the indices satisfy the conditions ßi < ß2 < " ' < ßr and 9i ^ O2 y^ 

If we denote by {71,72, • • • r7r} the ordered set: 

{0l,02,...0r} = { 7 l , 7 2 , . . . , 7 r } ; 7l < 72 < ' ' ' < 7r, 

the exterior basis tha t appears in (13.20) can be wri t ten as 

e"^^ A e"^^ A • • • A e" 
(7i72-"7r-) 

(13.21) 

where 0\i^ 02"^ " ' ^ ^r] 7i < 72 < • * • < 7r, which subst i tuted into (13.20) 
leads to 

Fl A ^2 A • • • A Fr = ^ r U 
• 9i 62--- Or 0 0 0 0 o 

' ( 7 l 7 2 - 7 r ) ^ Ö i / 3 l ^ Ö 2 / 3 2 "'^er-ßr-J ^ 
""11 A ^ 7 2 A e^'^ A e 

where the te rm in parentheses tha t appears in the formula is the development 
of a minor of the matr ix G of the fundamental metric tensor, and Ar according 
to (13.17), is another minor of the da ta matr ix [Xi X2 • • • Xr]n,r tha t 
represents to the vectors Vj^l < j <r. Thus, in summary, we have 

Vl^V2^^" ^Vr 

ßio 

•^ 0 1 

/3rO 
< 1 

- ^ 0 2 

• ^ 0 2 

• ^ 0 2 

/3io 

^ 0 r 

0 r 

ß-rO 
^ 0 r 

0 0 

^lißi 
0 0 

^ 7 2 / 3 i 

0 0 

^lrßl 

^72/52 

^7 r -^2 

11 ßr 
o o 

12 ßr 

o o 

e*Ti A e*^= A . . . A e*^''"7i, /3i e In\ ij G /^; 

ßl<ß2<---<ßr; 71 < 72 < • • • < 7r. (13.22) 
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On the other hand, if the data vectors Vj^l < j < r are given in covariant co
ordinates, the data matrix would be [X^ X | • • • X* ]n^r^ and the minors 

^rl X. 
directly expressed in the dual basis, would be 

r 2 X*^ I. Whence the exterior product of the vectors V}, 

Vi A F2 A • • • A Fr = 

0 0 0 0 

S i l S i 2 
0 0 0 0 

S 2 I S22 
0 0 0 0 

^7^1 S r 2 

o o 

o o 
C 

72 r 

o o 
Ü 

A e =72 A - - - A e HT. 

71 < 7 2 < - - - < 7 r - ( 1 3 . 2 3 ) 

Since Formulas (13.22) and (13.23) represent the same multivector in the same 
exterior dual basis, its strict components must be identical, which leads to 

0 0 0 0 

S i l S i 2 
0 0 0 0 

72 1 72 2 

0 0 0 0 

^ 7 r - l ^ 7 r 2 

o o 
71 "̂ 
o o 

l2r 

7r-r 

^ /5 io ^ /5 io 
-^ G 1 - ^ 0 2 

•̂  o 1 - ^ 0 2 

< 1 ^ o 2 

/3io 
' ' ^ 0 r 

•̂  0 r 

' ' ^ 0 r 

0 0 0 0 0 0 

^71/3i ^71/32 
0 0 0 0 

^72/5l ^72;Ö2 

=^7r/3l 

71/3r 
o o 

^ 7 2 ^r-

0 0 0 0 0 0 

71 <72 < ••• < 7r, 

<ßr] 

(13.24) 

which represents the relation between the strict components in covariant and 
in contravariant coordinates of the decomposable multivector Fi A V2 A • • • A V̂  
and are a generalization of Formula (13.8). 

Following the same line as that in Section 13.2 and notating the strict 
components of the exterior product of (13.24) with the general strict notation 
of exterior tensors, expression (13.24) can also be written as 

( 7 i 7 2 " - 7 r ) 
^.{ßlß'2-ßr-) 

o o ••• o 

o o 

^71 Ä 
o o 

^72/3i 

o o 

^7r/3l 

o o 
^71/^2 

o o 

^72 /^2 

o o 

9lr-ß2 

^llßr 
o o 

^72 /3 . 

o o 

hr-ß. 

(13.25) 

where ßi < ß2 < • •' < ßr are the dummy indices and 71 < 72 < • • • < 7r 
are the free indices, which due to the presence of dummy indices is a sum of 
products. 

With Formula (13.25) we end this section. We only mention the reverse 
formula for raising indices for strict components 

t 
(7i72"-7r-) 

t {ßlß2-'ßr-) 

11 ßl 

«y o o 

72 ft 
*̂  o o 

^lrßl 

^llßl 
i / o o 

rpißl 
• ^ 0 0 

^7r/32 

71/or 
9 00 

72/3 . 

7r/3r 
- ^ 0 0 

(13.26) 
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The change-of-basis in £'"'(]R) is performed exactly the same as in 1/"'(]R), so 
that there is nothing to add to what has been treated in Chapters 9 and 10 
on exterior algebras. 

13.4 Euclidean exterior algebra of order r = n 

This section refers to the tensors T G An ( ^ ) ^^ dimension (^) = 1, 

over the Euclidean space £;^(]R), where /\^^\'Si) is a linear subspace of 

®EJi^ (R) C ( ^ | £ » | ( I R ) . 

For the exterior tensor in contravariant coordinates, its representation is 

T - C z l e , A 62 A • • • A e„; t^^l^^ € R (13.27) 

and for the exterior tensor in covariant coordinates: 

T = tlil:::^' A e-^ A •.. A e^- t^;::^ e R . (13.28) 

fn \ 
As an anti-symmetric tensor T G I ® E]^ 1 (^)^ its respective representations 

(for the non-null components) are 

(13.29) 
and for the anti-symmetric covariant (r = n) tensor 

(13.30) 

so that n\/2 of them are tZ^^'^\ and the other n!/2 are — n̂ 2.""n)-
With respect to their relations as associated tensors, it suffices to apply 

Formula (13.25) with r = n for lowering the indices 

tat'-:) = t^ol:::1\G\ (13.31) 

and for raising the indices we apply (13.26) with r = n to get 

*l'o:::"i = *(°;:::„°)|G-^i- (13.32) 

13.5 The orientation tensor in exterior bases 

In Chapter 12, Section 12.5 we have established with sufficient detail the 
"orientation tensor" of an oriented Euclidean space £''^(11), starting from the 
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possibilities offered by modular tensors over Euclidean spaces and we have 
proved its character as a Euclidean totally anti-symmetric homogeneous tensor 
of order r = n, endowed with its two contravariant and covariant expressions. 

As a summary of all that was established in the final part of Section 
12.5, we propose a notation for the orientation tensor, valid not only for 
oriented Euclidean spaces E'^(]R), but useful even for pseudo-Euclidean spaces 
(P5E^)(]R). Let 

I / I G ^ = ^modulus of |G|. (13.33) 

Its contravariant expression is 

o o 

1 ^OLia2---Ctn-^ 

+ Vl^o| 

|0ro| 

and also written with respect to its exterior basis 

O = X^ I ^ eai A e^^ A • • • A ga^; ai e In] ô i < 0̂ 2 < • • • < a^. (13.34) 
| C T O | 

Its covariant expression is 

aia2---an ^^ K^ 

and also written with respect to its exterior basis 

0 = + / J G ^ e " ^ i A r ^ ^ A . - - A r ^ - ; a^ e In] a i < ^2 < • • • < a^. (13.35) 

13.6 Dual or polar tensors in exterior bases 

In this section we present exclusively the treatment of polar tensors estab
lished over an oriented Euclidean space E'"'(IR), but the reader, if desired and 
considering the previous section, can easily extend it to pseudo-Euclidean 
spaces. 

Let T e /Y^^ ( R ) be a Euclidean tensor of order r < n that is completely 
anti-symmetric, and that is assumed to be given by either of its two represen
tations: 

^(a,a2-a)^ A 6^, A • • • A 6 , , = C ? " " t ^ 
O O ••• O " - 1 *-'-2 ^-*r O O ••• O O "^CKl 
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o o ... o - . „ 1 /^ g«a2 / \ . . . /^ ^ a . ^ ^ o o ... o ^ „ ^ ^ „ ^ a , _ 

We define the polar tensor of T with the notation A as another Euclidean 
tensor of order (n — r) obtained as the contracted tensor product of the ori
entat ion tensor with T. It is also totally anti-symmigtric (if {n — r) > 2) and 
of contrary species. 

The polar of the contravariant tensor T is 

O O ••• O ' V 1 ^ 1 O O ••• O O O ••• O ,aiCX2'"Oir 

ar+iar+2---OCn ^ j Q l » 2 •• • Qlr C K r + l CKr+2 • ' ' CKn O O ••• O 

or in terms of the strict components of T, as A G Anl~^ ( ^ ) -

O O ••• O I V I I O O ••• O O O ••• O , (CKi Q!2 • • • a r ) f-t O Of{\ 

{ar + iar+2---Oin) ^j ai a2 •'' CXr CXr+1 ar+2 ' •• CXn O O ••• O * V ' / 

The polar of the covariant tensor T is 

ar+lOir+2"-OLn _ ^ V 1 ^ 1 ai a2 ••' a-r CXr+l Ctr+2 ••' Oin , O O ••• O 

O O ••- O i r ^ i r ' O O •-• O O O ••- O CKl Q ; 2 •••CKr 

or in terms of the strict components of T, as A G An~^(^)'' 

{ar+lOir-+2-'-Oin) _ " ^ V I ̂  I ai a2 ••• Oir O^r + 1 Oir+2 ••• Oin , O O ••• O / - . ^ 0^\ 

" - o o . . . o ~ l ^ l ^ j ^ o o . . . o o o ••• o ^{aia2---ar)' \ ^ ^ " ^ ' J 

We can observe tha t the contraction is total. In fact, the order of the tensor 
A is {n -i- r) — (2r) = n — r^ obtained from the order of the tensor product 
minus the number of indices lost in the contraction. 

If r = n the polar tensor is a scalar. 
If r = n — 1 the polar tensor is a vector. 
If r < n — 2 the polar tensor is an anti-symmetric tensor. 

~* / /\G\ 

If we use orthonormalized bases {ha} for £^^(R), the factor -\-y/\G\^ {GF 

takes the value 1 and does not appear in Formulas (13.36) and (13.37), re

spectively. 
It is obvious tha t the polar tensor can be notated as an anti-symmetric 

tensor or as an exterior tensor, when n — r >2. 
If it is a covariant tensor we have 

A - a ° ° ••• ° r^'^+^ (g) 6*=̂ -+̂  (8) • • • (g) e*̂ ""-
ar+iar+2---OLn 

= a ° ° - ° ,e*"-+i A 6*""+= A • • • A e*"-
{ar+iar+2---Oin) 

and if it is a contravariant tensor: 

~ ^ O O ••• O ^OLT + I ^ ^CXr+2 A ' ' ' A 6^^ 

a i e In', Cbr+1 < Oir+2 < ' ' ' < ^71-
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13.7 The cross product as a polar tensor in generalized 
Cartesian coordinate frames 

Consider the Euclidean space E^(1R), the classic linear space of three dimen
sions of the ordinary geometric vectors (OGS = ordinary geometric space). 

Consider a reference frame of basis {e*^} and fundamental metric tensor 
G. 

As has been considered in Section 12.7 of the previous chapter, we take 
two vectors V,W £ E^(IR) and we build the exterior product T = V AW, 
where 

T e /\^^\ll) C (^EA (R) C (^EA (B) . 

The result obtained in Section 12.7 is 

\er,0eß, a^ßels; a^ß. (13.38) 

According to Formula (13.35) the corresponding orientation tensor is 

0 = + V l ^ e ° ; ; e * " A e*''A e-^; a,ß,^eh; a </3 < 7, (13.39) 

and, according to (13.36) and (13.38), the cross product tensor will be 

(13.40) 
and developing the indices a, /?, 7 G Is, a 7̂  /? ̂  7, we obtain 

01 = 

a2 = 

000 / 2 3 3 2\ , 000 / 3 2 2 3 
^231 [^oyo - ^0^0 + ^321 ^ 0 ^ 0 - ^ o ^ 

03 

\^\ I 000 / 1 3 3 1 

\j<-y\ 1 0 0 0 / 1 2 2 1 

1̂ 1 ^ 1 2 3 ^ 0 ^ 0 - 2 ^ 0 ^ 0 

^o2/o 

000 / 2 1 1 2 \ 

e2i3(2;^yo~a;„2/„j 

= V\G\ 

= V\G\ 

= V\G\ 

2 2 
0 ^ 0 

3 3 
0 ^ 0 

3 3 
0 "^0 

1 1 
0 ^ 0 

1 1 
0 ^ 0 

2 2 
0 -̂  0 

and then 

A = VxW = aie'^^a2e ̂^ ' ase*"̂  
2 

^ 0 

3 
^ 0 

2 
^ 0 

3 
Vo 

-^1 
e — 

1 
^ 0 

3 
^ 0 

1 
^ 0 

3 
Vo 

-^2 1 

e + 

1 
^ 0 

2 
^ 0 

1 
Vo 

2 
^ 0 

whish is a tensor in covariant coordinates, or 
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VxW \G\ 

e*i 

e*2 

^ 3 

1 

2 

3 
^ 0 

1 
2/o 

2 
Vo 

3 
Vo 

(13.41) 

With respect to the mixed product, we obtain 

[VWZ] = V^{W xZ), 

and since V = [616263] 

r 11 
^ 0 

2 
^ 0 

3 

is in contravariant coordinates, and W x Z in 

covariant coordinates, the metric tensor for this product is Is 

whence 

[VWZ] = \xlxlx% 

-1 
0 
0 

0 
1 
0 

0" 
0 
1 

— 

2 
Vo 

3 
Vo 

1 
Vo 

3 
Vo 

1 
Vo 

2 
Vo 

2 

3 
^ 0 

1 
^ 0 

3 
^ 0 

1 
^ 0 

2 
^ 0 

v 1 ^ 

vM 

viGl 

and operating we obtain 

[VWZ] = V|G| 

Vo 

(13.42) 

which justifies, via a tensor procedure, the formulas in Section 1.4 of "special 
tensors", with the components of the vectors in columns. 

13.8 y |G| geometric interpretat ion in generalized 
Cartesian coordinate frames 

In the OGS referred to an orthonormal trihedron, of basis {ua}^ metric tensor 
G = Is and V | G [ = 1, we know, by reasons of metric and analytical geome
try, that the volume of the parallelepiped built with the vectors V^W^Z as 
concurrent edges is 
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VQ — absolute value of [VWZ] = absolute value of 2 2 2 
^ ^ Vr. ^r. 

O '^ O O 

3 3 3 
^ o Vo ^o 

(13.43) 

Pre-multiplying (13.43) by itself with the transpose matrix determinant, and 
taking into account the Binet-Cauchy formula on determinant products, we 
get 

E(̂ o)' h^lvl) h« 
T/2 _ 

1 
^ r s 

o 
1 

Vo 
1 

Z^ 
o 

2 
^ r . 

o 
2 

Vo 
2 

Z 
o 

3 
^^ o 

3 
Vo 

3 
Z 

o 

1 
X 

o 
2 

^ o 
3 

X 
o 

1 
Vo 

2 
Vo 

3 
Vo 

1 
Z^ 

o 
2 

^o 
3 

2;^ 
o 

— 

1 
3 ^ ^ 

E(2^o^o) 
1 
3 

1 

1 
3 n 

Eivl? 
1 

3 

1 

1 
3 

E(?/o^o 
1 
3 n 

1 

V*V VmW V^Z 
w^v w^w w^z 
ZmV ZmW ZmZ 

(13.44) 

If now we choose a new arbitrary basis {e*ĉ }, and we consider the associated 
fundamental metric tensor 

G 
ei • ei ei • 62 ei • 63 

62 • ei 62« 62 62 • 6*3 

63 • 61 63 • 62 63 • 63 

we observe that its determinant, after considering Formula (13.44), has an 
evident geometric interpretation 

\G\ = Vo\ei,e2^es) and v l ^ j = ^o (6^1,62,63), (13.45) 

i.e., \/\G\ is precisely the volume of the oblique parallelepiped built with the 
basic vectors {Sa} as concurrent edges. 

Prom it, we deduce that Formula (13.42) gives the volume of the par
allelepiped built with the (concurrent in O) vectors F , W^ Z in an oblique 
arbitrary reference frame. 

13.9 Illustrative examples 

Example 13.1 (Associated Euclidean exterior tensors). In a Euclidean space 
referred to a basis {ec^}, the fundamental metric tensor is given by the Gram 
matrix 

1 - 1 0 ' 
G = I - 1 2 0 

0 0 1 
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Consider a tensor T G 

coordinates 

E^ ] (R) that is given by its cova-contravariant 

I aoi 

1 
- 2 
- 7 

1 2 
-1 3 
-5 0 

1. Obtain its strict covariant coordinates. 
2. Obtain its strict contravariant coordinates. 
3. Express T as an exterior covariant tensor. 
4. Extract the exterior components of T in contravariant coordinates, from 

the covariant coordinates of the previous question. 

Solution: With the aim of maximum information, we use several procedures 
to solve some questions. 

1. Classic method. We know, by the theory of Euclidean tensors, that 

, o o oo.oO ,o9 oo 

and in matrix form 

[t 
1 
2 
7 

1 2" 
- 1 3 
- 5 0 

• 1 

- 1 
0 

- 1 0-
2 0 
0 1 

= 
- 0 

- 1 
- 2 

1 2 
0 3 

- 3 0 
a/jJ 

Direct method. We first proceed to change notation and notate the dummy 
and free indices with numbered indices, i.e., 

/Ö1/52 
a i o o o , o CX.2, 

^ o Pi^a2p2 Oil o ' 

and in matrix form 

r ; i = (/3 0 G ) . T , , i : Z 1 - / 3 0 G ; r ; i - Z i . T , , i 

ri"- = 3^^ = 9; 

(13.46) 

' 1 0 01 
0 1 0 
0 0 1 

(8) 
1 - 1 0 

- 1 2 0 
0 0 1 

= 
L J L J 

r 1 
- 1 

0 
0 
0 
0 
0 
0 
0 

- 1 0 0 0 0 
2 0 0 0 0 
0 1 0 0 0 
0 0 1 - 1 0 
0 0 - 1 2 0 
0 0 0 0 1 
0 0 0 0 0 
0 0 0 0 0 -
0 0 0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 - 1 0 

- 1 2 0 
0 0 1 

Zi=h^G--

As T^,i - [ 1 1 2 - 2 - 1 3 - 7 - 5 0 ], applying (13.46), we get 

{T^^^Y = [ 0 1 2 - 1 0 3 - 2 - 3 0 ] , 

which once condensed leads to 

iSl/32 

0 1 2 
- 1 0 3 
- 2 - 3 0 
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2. Classic method. According to the Euclidean tensors theory, 

.aß ae.oß 

and in matrix form 

Kl] = G-\til] = 
"2 1 0" 

1 1 0 
0 0 1 

1 1 2 
-2 - 1 3 
-7 - 5 0 

0 1 7 
- 1 0 5 
- 7 - 5 0 

Direct method. 

^Pi/32 _ a^ßi o ß2, o a;2. rpff _ /r^-1 <:^ T \ ^ T 

Zo = 

G- .Js; r ; ; i = Z 2 . T , , i 

2 
1 
0 

1 
1 
0 

0 
0 
1 

1 0 0 
0 1 0 
0 0 1 

(13.47) 

2 0 0 1 0 0 0 0 0 1 
0 2 0 0 1 0 0 0 0 
0 0 2 0 0 1 0 0 0 
1 0 0 1 0 0 0 0 0 
0 1 0 0 1 0 0 0 0 
0 0 1 0 0 1 0 0 0 
0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

As r^^i = [ 1 1 2 - 2 - 1 3 - 7 - 5 0], applying (13.47), the result is 

( ^ M ) * = [ 0 1 7 - 1 0 5 - 7 - 5 0 ] , 

which once condensed leads to 

t':':] 
0 1 7 

- 1 0 5 
-7 - 5 0 

3. In the two matrices [t°^] and [t^^] from the answers to questions 1 and 2, 
we can notice the anti-symmetric character of tensor T; as such, its strict 
components define T as an exterior tensor. So, taking the covariant coor
dinates of the matrix [t°^] such that a < ß^ that is, the upper triangular 
matrix of the given matrix, we have 

T = t °,2° e"i A e"' + t °,3° ê ^ A e"^ + t^^^f^ A e"^ 

(2) 
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4. Applying Formula (13.10) to our case (n — 3), and remembering the 
matrix G~^^ we have 

(12) _ , o o 
\oi 1/3 

^o o --̂ o o 

= t (12) 

2 a 
^ o o 

11 

21 

= 1-
2 1 
1 1 

. (13) 

,(23) 

^(a/3) 

\o.ß) 

•^ o o 

Sa 
^ o o 

2a 
y o o 

3Q; 

9oo 

2/3 
-'o o 

12 
y oo 

22 

•y 0 0 

2/3 
- ^ 0 0 

3/3 
Poo 

o o 
^ ^ ( 1 3 ) 

2 0 
1 0 

= 1' 

11 
-? 0 0 

21 
î oo 

h3-

2 1 
0 0 

1 1 
0 0 

13 
^ 0 0 

23 

1 0 
0 

2-

2-

^(23) 

2 
0 

1 
0 

0 
1 

0 
1 

12 13 
^ 0 0 i 'oo 

22 23 
^ 0 0 ^ 0 0 

+ 3' 

+ 3' 

1 
0 

1 
0 

0 
1 

0 
1 5, 

whence 

(2) . 
T = t^fo^a A e^ = ei A 62 + 7ei A 63 + 5e2 A 63 G / \ (R). 

We observe that the result is the same if we work with the following strict 
covariant coordinates, given in the solution (point 3): 

(12) 
o o 
(13) 
o o 
(23) 

by means of the matrix of an exterior fundamental metric tensor: 

G* G - 1 

Ar'o^)" Afw 

1 0 0 " 
0 2 1 
0 1 1 

= 
0 1 0" 
0 0 1 
1 0 0 

t 

G-1 
0 1 0 
0 0 1 
1 0 0 

. ( 2 ) / . ( 2 ) / where we assume that /\^ 0^) and /\3^^(]R) are in dual bases. 
In fact 

1 0 0 
0 2 1 
0 1 1 

• 
1 
2 
3 

= 
1 
7 
5 

and because it is congruent with G -"̂  it is also positive definite. 

D 
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Example 13.2 (Geometric polar tensors). In the OGS £^^(R), referred to a 
basis {Sex}-, the fundamental metric tensor is represented by the Gram matrix 

G = [Cß] = 
2 1 0 
1 2 0 
0 0 1 

Consider the exterior algebra /y^ (H) established over that space. 

1. Show that for any T G A f H^)^ 3?2, v G E^(R) such that 

Adjoint of T = u X -?, 

where "x" is the symbol of the ordinary cross product in the OGS. 
2. Given the vector z £ E^QR)^ show that the polar tensor of (T A z) is the 

contraction of (Adjoint T ® z). 
3. Obtain the polar tensor of the tensor S defined as 

o o o a.p o o o" 

4. If the components of T as an anti-symmetric contravariant tensor are 

0 
- 1 
- 2 

1 2 
0 3 

-3 0 

determine the subset of all vectors u^v G ̂ ^ ( R ) that satisfy the condition 

polar of T = Ü X V. 

Is it a linear subspace of J5^(R)? 

Solution: 

1. In Example 9.11 of Chapter 9, we established with various details the 
conditions that an exterior tensor must satisfy to be decomposable, that 
is, an exterior product of vectors. 
Since T e /^g (R), of order p = 2 and dimension n = 3, satisfy them, 
the theorem of point 3 of that example ensures the existence of at least 
two vectors u^v E £^^(R) such that T — ü f\v. Assuming that these two 
vectors are known, we write 

'o o^ 
^(13); 

e i A 62 

, (23) -

ei A es 

2 

3 
« 0 

2 

< 
62 A 63. 
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Let A = polar T, \G\ 
2 1 0 
1 2 0 
0 0 1 

3 and -\-J\G\^ V^; 

O V «̂  O O O J V3 o V*^ ooo.aß V ^ r ooo,{aß) , o o o / , ( Q : / 3 ) \ 1 
% ~ ~2[^ctßj^o o ~" ~^ [^aß-r o o "f" ^ßaj^*^ o o i j 

^ V3 
2! 

r> o o o ( a ^ ) l _ / ^ o o o (a /3) . 
^ ^ ( a / 5 ) 7 o o j — ^ O e ^ ^ ^ > ) ^ 6 ^ ^ , 

and numerically: 

o / ^ o o o ,(12) / ^ 
^ 3 = V 3 6 . ^ 2 ) 3 ^ o o = V 3 

1 1 

2 2 

o /;7 o o o ,(13) / ^ 
" 2 = V 3 £ ( 1 3 ) 2 * 0 0 = - V 3 

o /^: o o o ,(23) / ^ 
^ 1 = v 3 ^ ( 2 3 ) l ^ o o = V 3 

1 1 

3 3 

2 2 

3 3 

thus, the tensor is 

A = a°r^ 

= V3 i 

• a^r^ 4- a°e*̂ 3 

2 
It 

o 
3 

l i 
o 

2 
t' 

o 
3 

V 
o 

- H * l 

e — 

1 
u o 

3 
t i 

o 

1 
'̂ ^ o 

3 
-U 

o 
e + 

1 
"̂ ^ o 

2 
l i 

o 

1 
"̂ ^ o 

2 
t' 

o 

On the other hand, applying Formula (13.41), we have for the cross prod
uct of Üand v 

u X V = v 3 

ê ^ ul vl 
-^2 2 2 

o o 
-^3 3 3 
e^ l i ^ t»^ 

which once developed leads to the equality 

A = Adjoint T == u x v. 

2. According to the statement we have 

R = T Az = üAvAz 

1 1 1 
u^ v^ z^ 

2 2 2 
U^ V^ Z^ 

3 3 3 
U^ V^ Z^ 

- * - » - » (123) - * - * - » 

ei A 62 A es = r\ ^ ^ei A 62 A 63 

and we proceed to analyze the polar tensor R: 
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Adjoint {T Az) = Adjoint R • 

^ÄG\ 

/ 1^1 o o o aß'j . 
q | aß^ o o o 

^ o o o ( Oißl^ o o o Ao!-ßl) 
o | cxß'y \^ o o o (a/37) 0 0 0 

3!e 
3! (aß-r)) 

(123) V3 

In addition we have 

(13.48) 

Contraction (Polar T (g) z) = Contraction {A (g) z) 

Contraction / 0 - ^ 1 , o-*),2 I o-H!4c3\ ^^ / 1 -* , 2-* I 3 - ^ \ 

(a^e -" + a^e ^ + age "") O (z^ei + ^^62 + 2:^63) 

r 1 

o 1 , o 2 , o 3 

==^ l^o+S^o+^3^o 

2 
" 0 

3 
" 0 

2 
^ 0 

3 
« 0 

1 
^ 0 -

1 
« 0 

3 
" 0 

1 
^ 0 

3 
^ 0 

2 , 
^0 + 

1 
« 0 

2 

1 
" 0 

2 
^ 0 

2 2 

3 3 

and a comparison of (13.48) and (13.49) leads to 

Adjoint {T Az) = Contraction (Adjoint T ^ z). 

3. The polar tensor of 5 is 

Polar S = 
V 1^1 0 0 0 uv^ — — f s 

o | /i'l'T 0 0 0 
/ 1^1 000 
3i ß^i 

/X1/7 o o o (123) 
^ 0 0 0 ^ ( 1 2 3 ) ' ^ 0 0 0 

(13.49) 

_ VW\s:ß^l^ o o o (123) _ \ / 3 , (123) _ 7 ^ ( 1 2 3 ) 
~ 31 ^Mi^7 ( 1 2 3 ) ^ 0 0 0 — 3 | ' ^ ' ' - L ' ' ^ o o o — ^ ' ^ ^ o o o 

- V Ö Ö ^ ^ r ^ ^ ^ - V Ö ^ 0 - ^ 2 ^ ^ ^ ^ + ^ 2 l l ^ o o o ^ J 

^ . 2 . / i 2 3 ) ^ 2 v ^ 

1 1 

2 2 
t ' Z^ 

3 3 
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4. The given anti-symmetric tensor, expressed as an exterior tensor is 

T = ei A 62 + 2ei A 63 + 3e2 A 63, 

so that, according to (9.134), the subset of vectors w, v such that ux v = 
Polar T, is the linear subspace 

-•- 0 0 0 0 0 0 ' 

which in our case becomes 

Li = 3x^ - 2x^ + x^ = 0, 

which declares the orthogonality of the vector tx x tT (in covariant co
ordinates) with the vectors x (chosen factors u and v) in contravariant 
coordinates. 

D 

Example 13.3 (Adjoint tensors of exterior products). In a Euclidean space 
J5^(R), referred to a basis {e^}^ the fundamental metric tensor in covariant 
coordinates is given by the Gram matrix 

G 
1 1 - 1 
1 2 0 

- 1 0 3 

Consider the vectors iZ(l,2,3) and ?i;(3,2,l) defined by its contravariant co
ordinates. 

1. Obtain the strict contravariant and covariant coordinates of the Euclidean 
tensor T = üAv. 

2. Idem of the tensor A = Polar T. 
3. Obtain the moduli of the tensors T and A. 
4. Is there any relation between the moduli of T and A? 

Solution: The matrix of the vectors in contravariant coordinates is 

1. These coordinates are obtained as follows: 

T 

1 3 
2 2 
3 1 

u Av -

1 3 
2 2 

e 

a a 
0 0 

1 Ae2 + 

Ca A 

1 3 
3 1 e 1 A es 

-4ei A 62 - 8ei A 63 - 4e2 A 63. 

2 2 
3 1 

62 A 63 
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and the data in covariant coordinates are 

[X*X*] = G [X1X2] = 
1 1 
1 2 

-1 0 

11 
0 
3 

r i 3-
2 2 
3 1 

== 
ro 4] 

5 7 
8 0 

r = ' 

= 

u Av = 

0 4 
5 7 

0 0 
U^ V a a 

0 0 
Up Vp 

e*"Ae 

e*̂  Ae*^ + 
0 4 
8 0 

e*̂  A e*^ + 
5 7 
8 0 

g * 2 ^ ^ 3 

= -20e*i At^- 32e-i A e*^ - 56e*2 A e* ,̂ 

that is, 
r ^ ( i 2 ) i 

^ 0 0 

^(13) 

(23) 
_ ^ o 0 . 

— 
[-4] 

- 8 
- 4 

5 

• , 0 0 " 

^(12) 
, 0 0 

^(13) 
, 0 0 

_ ( 2 3 ) . 

— 
[-20] 

-32 
-56 

ciated exterior tensor, using (13.16): 

t,°°. = ( - 4 ) | } l | + (-8) 

o o 
'{aß) 0 0 ' 

"(12) 

f_ O O 

(13) 

o o 
(23) 

1 - 1 
1 0 

1 - 1 
-1 3 

(-4) 1 2 
-1 0 + (- 1 0 

- 1 3 

+ (-4) 

+ (-4) 

(-4) 

1 - 1 
2 0 

-20 

1 - 1 
0 3 -32 

2 0 
0 3 - -56 , 

which coincide with the previous results. 
2. Because of (13.36), the tensor T, as a contravariant and anti-symmetric 

tensor of order r = 2, has as polar tensor 

1^1 o oo.aß __ 
7 9 ! "^cxßj^oo 2! 

0 0 0 o o o \ ,{aß) /\r^\ ° ° ^ÄOiß) 
''•oiß^ ~ ^ßajj ^ o o ~ V l^ l^ (a ! /3 )7^ o o ' 

and then, the covariant coordinates of the tensor A, taking into account 
0 0 0 

- (23)1 ~ ^ - ^ ' ^ (13)2 ~" "'-*-' ^(12)2 
are 
that +A/iGJ = VT == 1 and that e°^^°° = +1; e°^^^l = — 1; ^(12)3 ~ +-'-' 

r 0 -] 

0 

^ 2 
0 

. " 3 . 

r f(23) 1 

^(13) 
^ 0 0 

^(12) 
_ 0 0 . 

- -4-
8 

L ~4 J 

Similarly, but with Formula (13.37), we obtain 

7 _ " ^ V 1^1 aß^.oo _ y\G\ / a/37 _ / 5 a 7 

2 ! | G | ° ° ° ^ / 5 2 ! | G | V ° ° ° ^ 0 0 0 ^ * ^ ( 0 / ? ) 1̂ 1 ^ 0 0 o^(a^)' 
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that is, 
r 11 

^ o 

2 

3 

L^oJ 

= 

" , O O 

^(23) 
, o o 

~^(13) 
, o o 

L ^12) J 

= 
r -561 

32 

L - 2 0 J 

We can also calculate the covariant coordinates of the tensor A, a° from 

the contravariant coordinates aZ-

r o ~ 

o 
^2 

o 
. « 3 . 

= G 

r i i 

2 

3 

= 
11 
0 
3 

r -561 
32 

[-20 J 
= 

r -4 ] 
8 

- 4 

1 1 
1 2 

-1 0 

verifying again the previous results. 
3. Notating the tensor T as an anti-symmetric contravariant tensor, its rep

resentation is 

2 \ ro -4 
^ M W ; [tZ] = 0 

4 

and as Ö- = n'̂  

The connection tensor of 

3^ = 9, "stretched" can be represented as 

Ta,i = [ 0 - 4 - 8 4 0 - 4 8 4 0 ] . 

2 

1 
(R) is 

G(9) = G^G = 
1 1 - 1 
1 2 0 

- 1 0 3 

1 1 - 1 
1 2 0 

- 1 0 3 

1 
1 

-1 
1 
1 

-1 0 
-1 - 1 
-1 - 2 
1 0 

1 - 1 1 1 
2 0 1 2 
0 3 - 1 0 
1 - 1 2 2 
2 0 2 4 

3 - 2 0 
1 0 0 
0 0 0 
3 0 0 

-1 - 1 
0 - 1 
3 1 

0 
0 0 
0 0 

whence 

|r| = v'ijG(9Jiv 

N 

[0-4-840-4840]G(9) VTl2Ö = 4y7Ö. 
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In addition \A\ 

\ 

[ai a2 as]Is 
\ 

[ - 4 8 
-56 
32 

-20 

V224 + 256 + 80 - V56Ö = 4V35 
4. The relation is | ^ = \/2. 

Example 13.4 (Generic expressions of polar tensors). 

1. In a Euclidean space £^^(Il) referred to the basis {ca}, obtain in covariant 
and contravariant coordinates the polar tensor of P = a Ab, the exterior 
product of two vectors a^b G E'^{1R). 

2. In a Euclidean space ^^(H) referred to the basis {ea}^ obtain in covariant 
and contravariant coordinates the polar tensor of Q G /\4 (R) , given by 
its anti-symmetric representation: 

[Q 

Solution: 

1. The polar tensor is 

aß. 
o oJ 

r 0 
—a 
-b 
—c 

a 
0 

-d 
-f 

b c 
d f 
0 g 

-9 0 

a A b • 

and also 

P = aAb = 
o o 

2 .2 

e"^Ae"^ 

eiAe2=p^^^^eaAi 

The anti-symmetric tensor, in the contravariant case is 

The polar tensor A, of P in contravariant coordinates is: 

±V\G] 
2! 

ô o aß 
2! (e aß ' 

(aß) 
ßa^^ o o > 

SO that the polar tensor of P is the scalar 

1 1.1 

2 72 
ö^ b^ 
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Similarly, the polar A of P in covariant coordinates is the scalar 

551 

\G\ 

U 7 O 

Ü 7 O 

2. Let B be the polar tensor of Q. From the theory, we obtain 

7<5 
+V\G\ 

2! 

o aß 
5^oo ~~ 

+V|G| 
2! (̂ , 

^O O O O N CX.ß 

aßjS ^/3ct76/yoo )?: 

_ "^V 1^1 91 o o oo (a/?) 
~ 2! ' (ct/?)75^ o o ' 

and giving values to the indices, and operating only the strict components 
of tensor 5 , we get 

a ß 
1 2 
1 3 
1 4 
2 3 
2 4 
3 4 

7 (̂  
3 4 
2 4 
2 3 
1 4 
1 3 
1 2 

34 

oo 
24 

\GK2Z'iV} = +VWW. b oo 
43 

|G|(-a) 

|G|e(°3)2:9fi = + ^ ^ ( - 6 ) ; 6:° = + v M 6 
7 O O 

^23 = 

"(24)13^o o 

+ V 1^1^(34)12^0 o 
7 o o 

' ' 12 |G|ff; bll = +y/\G\i-9). 

In summary, the tensor B = Polar Q has as covariant matrix representa
tion 

0 g -f d-
-g 0 c -b 

f -c 0 a 
-d b -a 0 

[̂ , 
o o-i 

'aßl \G\ (13.50) 

To determine the tensor B in contravariant coordinates [6^^], we can con

sider it as associated with [&°o], and raising indices by means of (13.10), 

we obtain 

^aß 
Poo 9 o o 

(f)a 
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where the determinants are minors of the matrix G~^. Developing now 
the first component, we have 

oo 
7 O O 

LI L2 1 

21 22 
i'oo -^oo 1 

1 L O O 

+ ^24 

1 A°° 
+ ^13 

12 14 
JQO i^OO 

22 24 
-'OO -^OO 

/ 

- + v^(p 

+ c 
\g 

12 
oo 9 
23 
oo -̂  

11 13 
^oo ^oo 

21 23 
-̂ oo ^oo 

I L O O 

+ ^34 

11 12 

-^oo -^oo 

21 22 
î oo -̂ oo 

13 

oo 

23 
oo 

\+i-b) 

1 L O O 

+ ^14 

1 13 14 
î oo -'oo 

23 24 
^oo i'oo 

+ (-/) 

11 
i'oo 

21 
^oo 

11 13 
^oo ^oo 

21 23 
•̂ oo ^oo 

12 14 1 
^oo ^oo 

22 24 
i'oo ^oo 

+ a 

14 
î oo 

24 
^oo 

1 L O O 

+ ^23 

+ d 

13 
-̂ oo 

23 
^oo 

9 

9 

11 

^oo 

21 

i'oo 

14 

DO 

24 
DO ) 

12 
i'oo 

^oo 

14 

9oo 
24 

y oo 

5 

13 
•^oo 
^23 
^oo 

and the rest of the components, b^^^b^^^ etc. can be developed by the 
reader, keeping the coefficients in the summands and substituting the 
minors that correspond to each case. 

D 

Example 13.5 (Adjoint tensors of order (n-1)). In a Euclidean space £^^(R) 
referred to a basis {ê Q,}, of Gram matrix 

G - K;] -
1 1 1 1 
1 2 2 2 
1 2 3 3 
1 2 3 4J 

we consider the exterior product of the vectors V ,̂ V2, V3: 

with contravariant coordinates Vi(0,1,1,1), ^2(15 0,1,1) and 1^(1,1, 0,1), and 
we denote by S the polar tensor of T. With respect to the tensor T, answer 
the following questions. 

1. Since it is a Euclidean totally anti-symmetric contravariant tensor, of third 
order, obtain its matrix representation in the basis associated with the 
generic basis {e<^}, as an anti-symmetric tensor. 

2. Obtain its covariant coordinates. 
3. Obtain the covariant representation of tensor S. 
4. Obtain the contravariant representation of tensor S. 
5. Generalizing this statement to a Euclidean space E''^(R), of Gram matrix 

G, where T = Fi A 1̂2 A • • • A Ki- i , would be the exterior product of (n — 1) 
vectors, and S its polar tensor: 
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a) Give the expression of the T components as a tensor T G An ~ (^) -
b) Obtain the most simplified version of the components of the polar S, 

of the tensor T in covariant and contravariant bases. 
6. Specify the number of strict components of T and its value in contravariant 

coordinates. 
7. Considering the dot product of the tensor S and a generic vector 1^, write 

it if the contravariant coordinates of the vectors are VAx °, a: ° , . . . , x 

8. Idem, but in terms of the covariant coordinates VA 

Solution: 

o z / 

1. The data matrix is [Xi X2 Xs] 

mula (13.17), we have 

, so that applying For-

T - Fl A ^2 A V̂s 
0 1 1 
1 0 1 
1 1 0 

0 1 1 
1 1 0 
1 1 1 

e i A 62 A 63 + 
0 1 1 
1 0 1 
1 1 1 

e i A 62 A 64 

6̂ 1 A 6*3 A 6̂ 4 + 

1 0 1 
1 1 0 
1 1 1 

62 A 63 A 64 

= 2 e i A 62 A 63 4- 61 A 62 A 64 — 6*1 A 63 A 64 + 62 A 63 A 64. 

Writing the basic exterior vectors as vectors of the space f ^ ^ M (H), 

we get that T is 

2 [ei <S) €2 0 es + 62 0 €3 <S> ei + ^3 '^ ^1 'S) e2 — €2 0 ei ^ €3 — es ^ 62 0 ei — ei 0 es Ig) 62] 

+ [ei (g) e2 0 64 + e2 (8) 64 (g) e 1 + 64 (8) e 1 0 62 — 62 0 e 1 (g) 64 — 64 (g) e2 (g) e 1 ~ e 1 (g) 64 (g) 62] 

— [ei 0 es <S> e4 -i- es <S e4 <S) ei -\- 64 <S> ei 0 es ~ es 0 ei <Si e4 ~ 64 <S> es 0 ei ~ ei 0 64 <S> es] 

+ [62 (g 63 ® 64 + 6*3 (g 64 (g 62 + 64 (g) 62 0 63 — 63 (g) 62 0 64 — 64 (g) 63 0 62 — 62 0 64 0 63] , 

Sy as a column and arranging the components of T = Ô'OÔ CK ^ ^ß 
matrix of blocks, with a — row block index, ß = row of each block, 7 
column of each block, we have 

r o o o J 

I/S7 
0 0 0 

2/37 
0 0 0 

3/57 
0 0 0 

4/57 
0 0 0 , 

The total number of components is a = n'̂  = 4^ = 64, and the blocks are 
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L o o oJ 

L o o o J 

L o o oJ 

4 /371 ^ 
0 0 oJ 

"0 0 0 0" 
0 0 2 1 
0 - 2 0 - 1 

_0 - 1 1 0_ 

"0 0 - 2 - 1 " 
0 0 0 0 
2 0 0 1 
1 0 - 1 0_ 

" 0 2 0 1" 
- 2 0 0 - 1 

0 0 0 0 
- 1 1 0 0 

• 0 1 - 1 0 " 
- 1 0 1 0 

1 - 1 0 0 
0 0 0 0 

2. The previous contravariant coordinates allow us to know the covariant 
coordinates, lowering the three indices as a Euclidean tensor associated 
with an anti-symmetric tensor 

, u u u u u u u u u 

Vi/32y03 "^ 3a^ß^9ot2ß29oc^ß• 

whlc]l in matrix form, appears as 

CX.\ Oil CKS 

0 0 0 ' 

^64,1 (covariant coordinates) = (G(8)G(8)G)»T64,i (contravariant coordinates) 

followed by the corresponding condensation. 
Nevertheless, since in the present chapter we refer to the Euclidean ex
terior algebra, we execute the lowering of indices by means of Formula 
(13.25), using only and directly the strict components. 
From the previous question the result is: 

^(123)^2; i(124)^ i(134)^_ ^(234)^ 

whence 

(̂123) = 2-

(̂124) 

(̂134) 

(̂234) 

111 
122 
123, 
111 
122 
123 

+ 1 

+ 1 

111 
122 
123, 
111 
122 
124 

2-

2-

r l l l i 
123 

.123. 
[1221 
123 
123 

+ 1-

+ 1-

r i l l i 
123 

_124. 
[122] 
123 
124 

+ (-!)• 

+ (-1) 

(-1) 

+ (-1) 

111' 
122 
133. 
Ill-
122 
134 

+ 1' 

+ 1' 

111 
222 
233. 
iir 
222 
234 

r l l l i 
133 

.134. 
[1221 
133 
134 

+ 1-

H-1-

r l l l i 
233 

.234_ 
[2221 
233 
234 

= 3 

-3 

= 0 

= 1, 
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which permits a reconstruction of the anti-symmetric tensor: 

555 

the blocks being 

^^aß-i\ 

o o o 

o o o 

2/37 
o o o 

3/37 

o o o 

t 

t 

t 

L ^4/37 J 

[*i ßl^ 

0 0 0 0 
0 0 3 3 
0 - 3 0 0 
0 - 3 0 0 

'2/37J 

0 0 - 3 - 3 
0 0 0 0 
3 0 0 1 
3 0 - 1 0 

'3/37J 

0 3 0 0 
-3 0 0 - 1 
0 0 0 0 
0 1 0 0 

^4/37J 

0 3 0 0 
-3 O i l 
0 - 1 0 0 
0 0 0 0 

3. Using (13.36), and taking into account that y |G| = +1 , we have 

o T I 0 0 0 0 , a / 3 7 -̂  / a.ß'y o o o \ o o o oAocß^) Q| o o o oAocß^) 
^X ~ ~3J~^a /37A^ooo ~" ^ \^ooo^aß-i) ^{aßj)X^ o o o "~ '^'^'^{aß^)X^ o o o 

0 0 0 o,(aß'y)^ 
~ ^ ( C K / 3 7 ) A ^ 0 0 0 ' 

and giving numerical values to the indices, it is 

o _ o o o o (234) _ / _ - , N -, _ _ i . 
"^1 ~ ^ ( 2 3 4 ) 1 ^ 0 0 0 ~ V -L; J- — J-, 

o 0 0 0 o , (134) 
^^ ~ ^ ( 1 3 4 ) 2 ^ 0 o o 

o 0 0 0 o , (124) 

2 — ^ (134 )2^ 0 0 0 — ( + 1 ) * ( ^ ) — " 

_ o o o o , (124) _ / _ - , X . _ _- i . 
3 ~ ^ ( 1 2 4 ) 3 ^ 0 0 0 — V J-y J- — -Lv 

o _ o o o o (123) _ / , 1 N o _ r>. 
•^4 ~" ^ ( 1 2 3 ) 4 ^ 0 0 0 — \^^) ^ — ^5 
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S = s°r^ _ ^ l _ ^ 2 _ -»3 . 2e*^ 

[e ^ 1 ^ 2 ^ 3 ^ 4 e^4] 

- 1 
- 1 
- 1 

2 

4. Similarly, using (13.37), and with ± ^ ^ 1, we have 

+1 
of o o o o aßj o o o o ( 0 ^ 7 ) ' 

( -1) .1 = - 1 ; 1 _ ( 2 3 4 ) 1 , o o o 
•^o ~ ^ o o o 0^(234) 

2 _ (134)2 0 0 0 _ / , .N Q _ Q . 
"̂ O — ^ 0 0 0 0 ^ ( 1 3 4 ) " " \ ^ ^ ) ^ — ^5 

3 _ (124)3 , o o o _ . ^ N o _ _ , 
^o ~ ^ 0 0 0 0 ^ ( 1 2 4 ) ~ V ^)-o— c 

4 _ ( 1 2 3 ) 4 , 0 0 0 _ / , -1 N Q _ o . 
^ 0 - ^ 0 0 0 o^(123) - V+J-J 0 - 6 , 

S = slei + sle2 + 5̂ 63 + 5̂ 64 = -ei - 3e3 + 3e4 

= ei 62 63 64 

5. a) Applying Formula (13.17) for r = (n — 1), the result is 

T 

o 1 
o;2 0 

^ ^ o o 2 

o 2 

o n—1 
Q!2 O 

•^ o 1 - ^ 0 2 

o n—1 ^CKi / \ ^o;2 / ^ A Co 

^ o n - 1 

Va^ G In; a;i < «2 < • • • < Q^n-i, 

the (^) = (^ü î) = Ti exterior components of which are the strict 
components, that is, the previous equation can also be written as 

T = t^TV'''-''V^^c.^/\ea2^' • -Ae^.^,; Va^ e In] ai < a2 <••'< a^- i -

b) Following a process parallel to that in question 3, but generalizing for 
r = n — 1, we get 

( n — 1 ) ! ° ° " • ° Ö!IQ;2 

\ o o •-. o o ,(aia!2-"Qiri-i)-*icA 
_ i / ( a i Q;2---CKn-i) A o o ••• o 



(^^C-)'. 
O O • • • 

i)A 
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|G|(-1) n—\o o o 3 ÄOi\OL2---OLn-l) p^\ 
A ( 0 ! l Q ; 2 • • • C K n . - l ) O O ••• O ' 

and giving first numerical values to the dummy index A, followed by 
the proper values of the a^ (proceeding precisely in this ordered way) 
we obtain a determinant with the basis {ê *^} of £^"'(11) in the first 
column, and developing by the polar of this column, we obtain 

5 = (-1)(^-I)V1G| 

e*i 

^ 2 

g*n 

lo 

2o 

no 

lo 
^o2 
2o 

^o2 

no 
^o2 

1 o 
^o(n-l) 
2 o 

^o(n-l) 

n o 
' ^o(n-l) 

(13.51) 

an expression that is considered as the simplest answer to the stated 
question. By a similar development, we obtain for the tensor S the 
expression in contravariant coordinates, with data in covariant coor
dinates: 

(-1) 
( n - l ) . \G\ 

\G\ 

ei 

62 

^11 
oo 

^21 

^ n l 

^^12 
oo 

^^22 
X 

a ( n - l ) 
o o 
2 ( n - l ) 

^ n ( n - l ) 

(13.52) 

6. We have already mentioned that the number of strict components is 
(n-i) ~ ^- ^^ have also given its value in question 5: 

AaiOL2---OLn-l) 

' O 1 

.Oi20 

' O 1 

O 2 

o 2 

C K l O 

o ( n - l ) 
a2 o 
o ( n - l ) 

^(r.-l)0 ^(rx-1) 
1 -^ o 2 • • -^ o ( n - l ) 

ai £ In, ai < a2 <-•• < o^n-i- (13.53) 

7. In this case we have 

s»Vn = i-iy 

ê i 

e*2 

e*" 

lo 

2o 
2̂ ol 

no 
^ol 

lo 
^o2 
2o 

^o2 

no 
^o2 

1 o 
' ^o(n-l) 

2 o 
^o(n-l) 

n o 
' ^o(n-l) 

( ^ o ^ 
^ , 2o -* , , no -̂  \ 
ei + 3:^^62+ - - - + x ^ ^ e n j , 

and taking into account that e^^ • e^ = ^^, after operating it becomes the 

determinant: 
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5.y„ = (-l , n - l IGI 

l o 

2o 

l o 

2o 

lo 
^o2 

2o 
^o2 

1 o 
' ^ o ( n - l ) 

2 o 
* ^ o ( n - l ) 

" o l • ^ 0 2 ^o(n-l) 

We proceed to pass the first column to the last position by performing 
the required (n — 1) transpositions with each of the remaining columns; 
after each transposition the determinant changes sign, so that at the end 
we have 

5.i4 = ( - i r -1)^ iG| 

l o l o 
^ - 1 ^ o 2 

2o 
X 

"ol 
2o 
o l "o2 

^o2 

which leads to 

S*Vn ViV2--- Vn-lVn\ = A M 

l o 
^ o l 

2o 
^ o l 

l o 
^ o 2 

2o 
^ o 2 

^o2 

(13.54) 

where MP-L 1/2 • • • Vn-i Ki is the mixed product of those n vectors. 

It is evident that if we enter in the dot product S •Vn with the vector S 
in contravariant coordinates and the vector Vn in covariant coordinates, 
the final result is 

- [ S.Vn^ \ViV2"-Vn-lVn 
\G\ 

^11 
0 0 

^21 

^ n l 

^12 
0 0 

^̂ 22 

"̂ 712 

(13.55) 

If n = 3, in the (OGS) S •Vn is the called "mixed product" of three 
vectors. 

D 

Example 13.6 (Fundamental exterior tensors). Consider a Euclidean space 
£"^(R) referred to a basis {e*a}. The fundamental metric tensor is given by 
the Gram matrix G, in covariant coordinates: 

1. Consider the exterior algebra /\^ (H) of order r — 2. 
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a) Obtain the dimension and the exterior basis of /\^ (IR)-
b) Give the generic components of the exterior fundamental metric tensor 

relative to Ai^H^^)-

2. Answer the same questions but for the exterior algebra /\^ (IR)-

Solution: 

1. For the exterior algebra An (-^)-
a) An exterior tensor is given by its strict components with respect to 

the basis of Ai^^(5R): 

T = t^f^^eaAep, a.ßeln; a < ß. 

Thus, the basis of An ( ^ ) ^̂  ^^^ increasing ordered set 

{ea A eß}a<ß = {ei A e2 , . . . , Cn-i A e^}. 

The dimension a of An ( ^ ) ' ^̂  ^^^ number of vectors in the basis, 
that is, the number of binary combinations without repetition of the 
set In-

b) We will use two different notations, to represent the product of the 

basic vectors of An v-'^)-

The first notation will carry the expression ^ ' °^ to represent the enti

ties of the Gram matrix G * (2). . associated with the space An (^)5 
An ^ ^ 

a, 6, c, etc. represent, with Roman letters, the positions occupied by 
the basic vectors e^ A eg in the ordered basis, according to the corre
spondence indicated in the table: 

index a, b 
index a,ß 

1 2 ••• n - 1 n n + 1 • " (cr - I) 
ei A 62 ei A 63 • • • 6i A 6n 62 A 63 62 A 64 • • • 6n-2 A Cn 6n-l A Cn 

On the other hand, the second notation refers to the meaning of the 
fOO ^ 

^ ab' 

d'Tb = i^cx A ep)a • (e^ A es)b, (13.57) 

where the subindices a and b refer to the position of the Greek letters 

{a,/3},{7,n-
Finally we indicate that the Euclidean spaces have the property indi
cated in Section 1.3.2, point 5, applicable to four arbitrary vectors of 
E"(IR), i.e., 

(i^lOV3)-(^28''i^4) = ("i7l«F2)®(V3»^4) = iVi*V2)-{V3»Vi). (13.58) 
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To clarify the concepts, we give two illustrative models and we apply 
all the previous properties and notation rules. We remind the reader 
that ^ ° ^ G G means ^ ° ^ = e*ô  • e}3, in the metric tensor of E'"'(R). 

fOO 

9 59 

First model If n = 5 and r = 2, the scalar ^ ' °^ = ^'°° means the 

dot product of the fifth basic vector (e2 A 63) and the ninth (es A 65), 
extracted from its table, i.e., 

(62 A 63) • (es A es) 

= (e2 (8) 63 - es (g) 62) • (es 0 65 - 65 (g) es) 

= (e2 ^ es) • (es (g) 65) - (e2 (g es) • (es (g) es) 

- (es (g) 62) • (es g) es) + (es g) 62) • (es (g) es) 

= (e2 • es) g) (es • es) - (e2 • es) (g) (es • es) 

- (es • es) (g) (e2 • es) + (es • es) g) (e2 • es) 
0 0 0 0 0 0 0 0 0 0 0 0 

^25 ' ^33 ~~ 9ss ' P25 "^ ^35 * ^23 

I oo oo 
^23 ^25 

oo oo 
I^33 ^35I 

oo oo 
^23 •"Ö'sS 

2 / o o o o o o o o \ r» 

(^^23^35 - ^ 2 5 5 3 3 j = 2 
(13.59) 

Second model Let n — 7 and r = 2; the scalar ^^°° = '̂̂ ^̂ g means 
the dot product of the fifth basic vector (ei A e^) and the thirteenth 
(es A es), extracted from its table, so that developing as before, we 
arrive at 

/ oo 
9 ab 

/o o 
5 513 

(ei A ee) • (eg A 65) = 2 

0 0 

^13 ^ 5 
0 0 0 0 

^ 6 3 ^65 

As a practical rule, we observe that the subindices ordered by pairs, 
first of each factor, second of each factor, etc., are the same as the 
ordered main diagonal subindices of the final minor; in the models 
(2 — 3, 3 — 5) and (1 — 3,6 — 5), respectively. 
This result can be generalized for /\^ (IR) by means of the formula 

d'Th ^ {^a^eß)^{e^^e3)) = 2 o o 
9ßl 

o o 

oo 

9ßS 

V5°; e G; a < /?; 7 < <5, 

(13.60) 
where the factor 2 is the value of the order r! of the exterior space 
Af(]R). 
Formula (13.60) answers the question. The number of elements of 

GA (2). . = Wl,l] ŝ ^^ ~ [(2)] ' ^^^ ^^^ ^^ ^^^ ^^^^ ^^^^ ^̂  ^̂  ^ 

symmetric matrix, we need to calculate only (^J ) = ^2 terms 
/ O O 

9 ab-
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2. For the exterior algebra /\^ ^(R). 

a) The basis of An (-^) ^̂  ^^^ increasing ordered set: 

{Ca A e}3 A S y } a < ^ < 7 = {^i A 62 A 63, . . . , en-2 A Cn-l A Cn}, 

of dimension a • basic vectors. 

b) Once we have built the corresponding basic table for / \^^( I l ) , the (3)/ 

generic elements of its fundamental metric tensor G . 

are 
A„ (R) Wahl 

9'Tb = (^" A e> A gy) • (e; A ê  A e^) = 3! 

o o o o 
^ a e "Q;(5 "CKT) 

o o o o o o 
9ße 9ßS 9ßrj 

o o o o 
?--ye ^ 7 6 ^777 

a < / 3 < 7 ; e < 5 < 7 7 , (13.61) 

that has been obtained using the property of Section 1.3.2, point 7: 

(Fl ^Vs^ Vs) • (^2 ^ T?4 0 Ve) = (Fl • ^2) • (1̂ 3 • n) • {Vs • fe). 

The number of elements of the matrix G /̂  (s)^^^ is cr̂  = [(3)] ' ^^^ 

we only calculate (̂ J" )̂ because it is a symmetric matrix. 

D 

Example 13.7 (Use of exterior metric tensors). Consider a Euclidean space 
^ ^ ( R ) referred to a basis {e^}. The fundamental metric tensor is given by 
the Gram matrix G, in covariant coordinates: 

G - K;] 
1 2 
2 5 

A tensor T G 

the matrix 
1 

^^ 1 (R) is represented in contra-covariant coordinates by 

It"^' 2 5 
- 1 - 2 

1. Obtain the strict contravariant coordinates of T. 
2. Obtain the strict covariant coordinates of T. 

We perform a change-of-basis in ^ ^ ( R ) , of matrix 

C = [c!°l = 
1 3 

-1 - 1 

3. Obtain the new strict contravariant coordinates of T. 
4. Obtain the new strict covariant coordinates of T. 
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5. Calculate the modulus of T as exterior contravariant vector in the initial 
basis. 

6. Calculate the modulus of T as exterior covariant vector in the new basis. 

Solution: 

1. We raise the second index of the Euclidean tensor: 

[t' 
ccßi 

.69 

2 5 
-1 - 2 

5 - 2 
-2 1 

5 - 2 
- 2 1 

0 1 
-1 0 

The result is anti-symmetric, with t^^ ^ — 1, whence T — t^^ Jea A Cß 

e i A 62. 

2. We lower the first index of the tensor 

O O^B O r , O 0-] 

y^aß\ — 
1 2 
2 5 

2 5 
-1 - 2 

0 1 
-1 0 

which again shows its anti-symmetry with t?.^^^l;T = e'^f\ e*'^. 

3. 

C 1 3 
-1 - 1 ; C-

'(12) 

L ' 0 Q ; J O 

-1 - 3 
1 1 

Applying the formula of the change-of-basis (9.73), we have 

o o o o 

loa loa 
no jo 

loa loa 

. £(12) ̂  .(12)) 
' o o o o 

lo lo 

2o 2o - 1-
-1/2 
1/2 

-3/2 
1/2 

4. Applying Formula (9.86), we get 

t (12) - ^(12)) AC\ = 1-2 = 2. 

5. 

| r p = (ei A 62) • (ei A 62) = (ei (g) e2 - e2 (g) ei) • (ei 0 62 - 62 (g e*i) 

= (ei (g) 62) • (ei (g) 62) - (ei (g) 62) • (62 (g ei) - {62 (g ei) • (e\ (g 62) 

+(e2 g)ei) • (62 g)ei) 

= 2(ei • ei) g) (62 • 6*2) - 2(ei • 6*2) (g (62 • ei) 

= 2 • 5°°ff22 - 2 • 5^2521 = 2|G| = 2 - ITI = ^^ , 

which reveals that the exterior Gram matrix G A (2) (for contravaraint vec-
/ \ 2 

tors) is the scalar 2|G|; so, it is licit to solve it as |Tp = t'^^^h\G\t''^^^ = 

1 '2(1)-1 = 2-H^|T| = \/2, that is, applying the general matrix relation 
I F P = X^GX. 
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6. 

IT \aß) ^\G'X^h 1-2(1) -1 = 2; \T\ = \/2 

(it is calculated in the initial basis because the modulus is an invariant). 
We ask the reader to solve this in the new basis, determining the new 
fundamental metric tensor G* (2) of £^^(]R), using t?^^)' 

/ \ 2 

D 

Example 13.8 (Change of basis in Euclidean exterior tensors). In a Euclidean 
space £^^(R) referred to the basis {e*Q.}, the Gram matrix of the fundamental 
metric tensor in covariant coordinates is 

G - Kl] 
1 1 0 
1 2 0 
0 0 1 

A Euchdean tensor T G (E3 (g) E*^ ^ Es) (H) is defined by its mixed com
ponents referred to the basis {e^}^ according to the block representation ma
trix 

o/5o-| _ 
0:07] 

r 0 
0 
0 

0 
0 

-p 

-p 
p 

. 0 

0 
0 
p 

0 
0 
0 

-2p 
p 
0 

p 
-p 

0 

2p 
-P 

0 

0 
0 
0 

with a the block row, ß the row in each block and 7 the column in each block. 

1. Give the strict contravariant coordinates of T as exterior tensor, if that is 
possible. 

2. Give the strict covariant coordinates of T as exterior tensor, if that is 
possible. 

3. We define a system 5 of scalar components, by means of the tensor T con
tracted with the Levi-Civita system, of the following mode, in an arbitrary 
basisof E 2 ( R ) : 

5(a/37) = | G | t ^ ^ ^ t ^ ^ X o o V ^ -

Discuss the tensor nature of S. 
4. Assuming that we perform a change-of-basis in £^^(IR), of matrix C = 

'1 0 OI 
1 2 0 , we wish to know the contravariant coordinates of S in the 
1 2 3J 

initial and new bases, by means of the simplest possible expressions. 
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Solution: 

1. We lower the index ß of the tensor, with the aim of determining its co-
variant coordinates: 

t o o,o yo 
aßj 0:07' 

SO that proceeding with the blocks, we get 

,000-1 0 0 , 0 6 / 0 
"1 1 0-

1 2 0 
0 0 1 

0 0 p 
0 0 -p 
Op 0 

0 0 0 
0 0 -p 

lO p 0 

[^2;;] 
o O j ^ o y o 

207 

' l 1 O' 
1 2 0 
0 0 1 

0 0 2p 
0 0 -p 

-p 0 0 

0 0 p 
0 0 0 

-p 0 0 

r , 0 0 0 - | OO.OÖO 
•1 1 0" 

1 2 0 
0 0 1 

-p -2p 0 
p p 0 \ = \ p 
0 0 0 I 10 

-p 0 
0 0 
0 0 

In summary: 

r 0 0 0 . 

0 0 0 
0 0 - p 
0 p 0 

0 0 p 
0 0 0 

-p 0 0 

0 - p 0 
p 0 0 

L 0 0 o j 

with 123 

1 , 0 0 0 

-p and t^23 — 
, 0 0 0 , 0 0 0 , 0 0 0 , 0 0 0 

"132 "^213 ^231 ^312 609-15 t n a t j 

is, the tensor is totally anti-symmetric, of strict component ^^23) — ~P-

I 1 1 0 I 
In addition, |G| = 1 2 0 = 1 and \G-^\ = 1. 

I 0 0 1 I 
Using Formula (13.32) we calculate the strict covariant component 

,(123) _ I o o o | ^ - 1 | 
^ o 0 0 ~" ' ^ ( 1 2 3 ) 1 ^ I = (-p) • 1 = - p , 

and then, in fact, it is possible to express T as a exterior tensor 

Al O I 

(R) 
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2. We have already indicated that tZ^^^ = —_p, and 

3. We will establish the tensor relations of the factors of the system 5, in the 
basis {ca} and in another basis {e^}; denoting by C the change-of-basis 
matrix, we obtain the result. The factor \G\ is a determinant of a covariant 
tensor, because |G| = b^'^l, so that according to point 2 of Example 8.1, 
we have |G| = |G| |Cp. 

The factor t^^^ = t^^ ^ ̂  is the strict component of T G /\3 (R); from 

(9.84) we have 

+ 123 _ 1 ^ , - 1 , ( 1 2 3 ) _ 1 ^ 1 - 1 , 1 2 3 , r o o o _ 1^1,000 
^000 - 1^1 ^ 0 0 0 - 1 ^ 1 ^ 0 0 0 ' ^(123) - I ^ I ^ 1 2 3 -

The factor t" is a homogeneous contravariant tensor of order r = 3, 
O O O Ö 7 

and then its tensor relation is 
Hjk lOü-ßj io JO ko 

0 0 0 0 0 0 I OCX. 'oß ' 0 7 ° 

With respect to the system e^^^ as a modular contravariant tensor we 

have, according to (8.71): 

J^s ^ ^^^ Xßu fo zo so 
000 1 I o o o ' oX I ofx I 01/' 

Finally, the factor t °^^ , as a homogeneous covariant tensor is 

j^ooo , 0 0 0 O0 06 ow 
^fzs ~ ^4>ew^jo^zo^so' 

Multiplying all factors in the new basis, we get 

\iiv fo zo s o , 0 0 0 od) 06 ow 
•e ^ 7 x 7 T t,n Cr C C 

o o o I o X I o ß I ov (pVw JO zo so 

l ^ | 2 | ^ | . 1 2 3 lOiß^ / ' r ^ o r ^ o r'W ô A/xi^\ , 0 0 0 zo jo ko 
— 1^1 l ^ r o o o * ^ 0 0 0 y^oX^oß^ 01^ ' ^oooj ^(f>ew ' ^oa^oß'^oj 

— \n\^\G\f^'^'^ . f^^ßlA^w.oooiojoko 
— \'^\ I ' -^rooo ^ooo^ooo^c^öi t ; /OQ; /o/3 / 0 7 ' 

and finally 
s{ijk) = |Cp5(a/37)7^°7^°7^°, 

which reveals that the system 5 is a modular contravariant tensor of third 
order, and weight 2, that is, 

ijk ^ \n\2 ocß^ io jo ko 
000 I I o o o ' oa ' oß I oj' 
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4. The contravariant coordinates of S are: 

a) In the initial basis {ca}: 
From the data, we extract 

| ^ | , 1 2 3 , a ; Ö 7 (pOw / r ( 1 2 3 ) , o o o \ 
I ^ F o o o ^ o o o ^ o o o \^ (f> e w^ (123) J 

V - r ^ / O O O V J^/ - ^ O O O O O O -^ O O O 

o;/37 _ 
O O O 

b) In the new basis {e^} and \C\ 
1 0 0 
1 2 0 
1 2 3 

6: 

^jk ^ |^ |^123^z, /c / . . / ^ (123) ro o o \ 
OOO 1 I OOO O O O O O O \ / z s ( 1 2 3 ) y 

= \G\\cf-\c\-'i-p)s\i\c\.i-p))i:i': 
-^ O O O O O O -^ 1 1 V O O O O O O / 

Since \C\ = 6 and t^^^fj = \C\-H^^l^^ = ^ , substituting them in 
the previous expression, we get 

Jjk _ ^ „2 1^12 ( P) ijk 
^ooo - ^P 1^1 1^1 ^ o o o 

^ijk 
QP'ICKI: = -36p^e 3jjk 

O O O * 

We can also answer this question (b) starting from the tensor equation 
established in the previous question and from the result of 4(a): 

ijk _ \^\2 cxß^ io jo 

2, ijk 
o o o ' 

D 

Example 13.9 (Exterior tensor contractions). In the geometric space of vectors 
£^^(]R), with oblique reference frame (basis {Ca}) and fundamental metric 
tensor 

^1 1 0" 
1 5 0 
0 0 1 

two Euclidean anti-symmetric tensors T and VF, of order r = n = 3, are 
considered. 

The exterior representation of T is 

T = 2 e i A 62 A 63 

and its total contraction or inner product with W isW •T — 72. 
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1. Obtain the contravariant exterior expression of W. 
2. Obtain the tensor P , the Euclidean contraction of the last two indices of 

the tensor W^ in contravariant coordinates. 
3. Obtain in contravariant coordinates the tensor Q, the contracted tensor 

product of the W by the vector ^(1,1,1) given in covariant coordinates. 
The contraction is with respect to the third index ofW. 

4. Obtain the contravariant and covariant coordinates of the polar tensor of 
Q. 

5. We perform a change-of-basis in ^^ (H) , to the basis {e^} with change 
matrix 

[1 0 0"̂  
C = 1 2 0 

[o 1 2_ 
Obtain the contravariant and covariant coordinates of the tensors T and 
W in the new basis. 

Solution: 

(123) 
1. Let the strict component of tensor W be '^^ 23) ~ ^ ^^^ ^ o o o ^ *̂ 

Q : p 7 0 0 0 

0 0 0 , 1 2 3 0 0 0 , 1 3 2 0 0 0 , 2 1 3 
213^000 ^ 1 2 3 ^ 0 0 0 + ^ 1 3 2 ^ 0 0 0 + ^ 0 . o t 

I 000,231 , 000,312 , 000,321 
+ tÜ0Qlt^^^ + '^OTotr.r.r. + '^QOI^o^^-Zol 000 0I2 000 oZi 000 

Since both tensors are totally anti-symmetric, the sign changes of their 
components occur simultaneously, so that all summands are positive: 

WmT = h-2^h'2-}--"-i-h'2 = 12h; 12h = 72-^h = 6; w (123) 6. 

According to Formula (13.32), with |G| = 
1 1 0 
1 5 0 
0 0 1 

= 4, we have 

(123) 0 0 0 i ^ i - l 
^ 0 0 0 - ^ ( 1 2 3 ) 1 ^ 1 = 

W (123) 

|G| 

W = -ei A 62 A 63. 

2. To perform contractions we represent the tensors as homogeneous anti
symmetric tensors, which leads to the following Euclidean contraction (of 
indices of the same species): 

a a6d> 00 
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where 

\w 
aß^yi 

0 
0 
0 

0 
0 

3/2 

0 
- 3 / 2 

0 

0 
0 

- 3 / 2 

0 
0 
0 

3/2 
0 
0 

0 
3/2 
0 

- 3 / 2 
0 
0 

0 
0 
0 

; [g^J = 
1 1 0 
1 5 0 
0 0 1 

Numerically, we obtain 

1 123 oo , 132 oo f. 
-f̂ o 000*^23 000^32 

2 213 oo , 231 oo ^ 
^ 0 = ^ 0 0 0 ^ 1 3 + ^ 0 0 0 ^ 3 1 = ^ 0 

,312 oo 
^ooo9l2 P o = ^ ; o o P l 2 + ^ o o o P 2 ^ = 0 -

^321 oo 
ôoo-Ö'21 

P = i? = Oei 4- 062 + 0e*3, which is the zero vector of E^iß^). 
3. 

[ill] -

[^.] -

(, 

- KtlK] = 

- l^^TM = 

Oiß ^ 
' o o 

"0 
0 
0 -

0 
0 

3/2 

aße o 
^ooo^ö^ 

0 0 
0 3/2 

-3/2 0 

0 - 3 / 2 
0 0 
0 0 

" l" 
1 
1 

= 
0 

3/2 
- 3 / 2 

"l" 
1 
1 

= 
" - 3 / 2 " 

0 
3/2 

3/3 3/901 L,° l 
boo] = ["'oooll^'e^ 

0 3/2 0" 
3/2 0 0 
0 0 0 

"1" 
1 
1 

= 
' 3/2 " 
- 3 / 2 

0 

Thus, the results must be stacked in a unique matrix, as rows: 

Oiß 
Q 
^ o o 

0 3/2 -3 /2 ' 
-3 /2 0 3/2 
3/2 -3 /2 0 

and then the result Q is an anti-symmetric tensor of second order (r = 2). 
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4. Let A be the dual or polar of Q: 

o J - / )Ooo cxß J- /T7T\ o o o aß /~Ä ° 

giving numerical values to the indices we get 

o o o ocß o o o cx-ß^ 

/37yoo ^aß^^oo^ 

_ooo_23 I ooo 32 
^321^00 «^ = ^ 2 3 1 ^ 0 0 + ^ 3 2 1 ^ 0 0 = 2(1) 

o ooo 13 I ooo 31 c\r -\\ ( '̂  
«2 = ei329oo + £ 3 1 2 ^ 0 0 = 2 ( - l ) 

0 0 0 1 2 I 0 0 0 2 1 

-123 Q 
^ 0 0 

213*^00 — 2(1) ( 2 3^oc 

which shows that A is a vector in covariant coordinates A = 3e*"̂  + 3e*^ -
36**",̂ , and passing to contravariant coordinates we finally get 

G-^ 
ai 
02 

^3 

5 
1 
0 

- 1 0" 
1 0 
0 4 

• 3 -

3 
3 

= 
• 3 -

0 
3 

; A = 3ei + 3e3. 

5. Since T and W are exterior tensors of fy^ (H), we use Formulas (9.84) 
and (9.86) to determine its strict components in the new basis. 

For T, we have 

£(123) ^ 1^,-1 (123) 
0 0 0 I I 0 0 0 

1 
1 
0 

0 
2 
1 

0 
0 
2 

- 1 

2 = ^ = 1 
4 2 

, o 00 _ 1^1 
^(123) ~ 1^1^ 

and for W^ we have 

(123) 4{|G|ti^^'i) = 4 . 4 . 2 = 32, 

w 0 0 0 l i 0 0 0 Ä o 

/̂  O O O 

^(123) ^/;.o.^ = |C|^°°3° = 4 . 6 = 24. 

D 

Example 13.10 (Exterior subspaces). Consider a Euclidean space £^^(R) re
ferred to an orthonormalized basis {UQ,}, in which we adopt the following 
notation criterion, for any pair of generic vectors V ^W G £^^(11). 

In the initial basis {ua}-, we have 

V =\\Üa\\X ^ [U1W2U3] 

r i i 
X 

A 
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and in another arbitrary basis {e«}: 

y = | | e ; | | l = [616263 

r 11 

2 

3 

r -.1-1 

-.2 

- 3 

w \S^\\Y [616263] 

r - H 
^2 

-3 , 
2/0 J 

We perform a change-of-basis in E^(R), given by the equations 

ui = 2ei - 62 + 63; i?2 = ei + 62 + 863; us = - e i + 5e2 - 63, 

and we know that in the exterior algebra fy^ \^) associated with £^^(Il), 
there exists a linear space 5, of analytical equation 

CY _ 1 3 ,1 2 1 
o^o o ^ o 

3 2 , . 1 2 3 1 , 2 3 n 

that is satisfied by certain multivectors T = V ^W given in contravariant 
coordinates of V and W. 

1. Determine, in contravariant coordinates, the new analytical equation of S 
that this change produces. 

2. Determine the new analytical equation of S in covariant coordinates. 
3. Determine the new equation of S in strict contravariant coordinates. 
4. Determine the new equation of S in strict covariant coordinates. 
5. Determine the modulus of T calculated in the initial and new bases. 

Solution: We follow the usual criterion of maximum information, using two 
different procedures for the solution for questions 1 and 2. 

1. (a) Directly, as anti-symmetric tensors. Consider the change-of-basis 

1 
u = Ci |c-^ c-' = 

2 1 
-1 1 
1 3 

C = 
24 

16 2 - 6 
- 4 1 9 

4 5 - 3 
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o 1 3 A 2 1 3 2 , . 1 2 3 1 , 2 3 
S = xv^ — 4:xy^ — xv^ + 4:xv^ — xv^ + ^^?/^ 

O^ O 0"^0 O'^O O^O O ^ O O'^O 

r 1 2 3 i 
L o o o-J 

0 
- 4 
- 1 

4 1 
0 1 

-1 0 

r In 

2 

3 

= x*Ay, 

which is a tensor of anti-symmetric matrix A. 

Since the equations for the change-of-basis for vectors of E^{1R), are 

X = CX; Y = CY, 

we have 

S = X*Ay = {CXfAiCY) = X*(C*AC7)y = X^ÄY; 

and then 

C^AC 
1 

24 

16 
2 

- 6 

-4 4 
1 5 
9 - 3 

0 
4 
1 

4 1" 
0 1 

- 1 0 

1 

24 

" 16 2 
- 4 1 

4 5 

- 6 
9 

- 3 

72 

242 

0 2 6 
- 2 0 1 
- 6 - 1 0 

whence 

5 = 0; S = X^AY = 0 ^ 1 ^ 2 ^ 3 1 
2 6 
0 1 

-1 0 

r ' 1 1 

-2 

-3 

0, 

which operated gives the new analytical expression 

•5 = 2x„y„ + Qx^y^ - 2x^y^ + x^y^ - 6x^y^ - x^y^ = 0. 

(b) Through the exterior algebra. Sorting S adequately we get 

S = 4.- [xlyl - xlyl) + 1 • (x^j/f - xlyl) + 1 • (x^t/f - x^yf) 

[411] 

O O 

r 1 2 2 In xv^ — xv^ 
1 3 3 1 
QCf o O^ O 

2 3 3 2 
xv^ — xv^ 

, (13) , (23) 
^ ^o o ^ ^o o 

= [411] 

= 0, 

r^(i2) 

^(13) 
''o o 
,(23) 

. ' ' 0 O 

(13.62) 

which is the exterior equation of S in contravariant coordinates. 
From (9.74) we have 
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O O O O oo; 0 /3 
c . c • 

\ J o JO 

in which the minors belong to C*, and giving numerical values to the 
indices, we get 

,(12) ^ r(i2) 
o o o o 

16 - 4 
2 1 

£ ( 1 3 ) ^ 
o o 24 

16 - 4 
- 6 9 

r(23)J_ 
o o 24 

2 1 
-6 9 

i l2 ) £(13) £(23) 
o o ' o o ' o o 

(13)^ r(i2)J^ 
o o o o 2 4 

16 4 
2 5 

r(i3)_i_ 
o o 24 

16 4 
- 6 - 3 + t 

(23) _ 

^ 3£(12) _ £(13) £(23) 

(23) ^ £ ( 1 2 ) j ^ 
o o o o 0 4 

-4 4 
1 5 

_£(12) _£(13) 
0 0 0 0 2i 

(13) 1 I ~4 
o o 24 I 9 - 3 

(23) 

24 

£(23) _L 
o o 24 

2 5 
- 6 - 3 

1 5 
9 - 3 

Taking the three relations to (13.62), we obtain 

+ 1 
/ i l 2 ) _ ^(13) _ ^(23)\ 
\ 0 0 0 0 0 0 / eei+isei 3t 

(23) 

that is, 

S ^ 2 ^ <'l+i'n 0, (13.63) 

that is the equation of S in the new strict contravariant coordinates. 
Next, we express (13.63) analytically: 

[ 2 6 ] 

f ( l 2) 
•" o o 

?(1 3) 
' o o 

r(2 3) 

[2 6 11 

r - i - 2 ^2^1 
o^o o^ o 

^ 1 ^ 3 ^ 3 ^ 1 
o^o o^ o 

^ 2 ^ 3 ^ 3 ^ 2 
x^y^ — X y 

QC/ O O ^ O 

and operating we get 

s = '^^Ifo - ^Kvo + ^Kvt - ^KK + Kvl - ô̂ o 
which is the same as the previous result. 

2. In the new basis {Si] the fundamental metric tensor is 
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G c^hc=^^ 

1 

242 

• 288 
48 

-144 -

16 
2 

- 6 

48 -
30 
18 

- 4 41 
1 5 
9 - 3 _ 

-144-
- 1 8 
126 

1 

24 

16 2 
- 4 1 

4 5 

G-^ = (C*C)-^ = C-HC" 

6 - 6 6 
-6 27 - 3 
6 - 3 11 

-\\t 
2 1 
1 1 
1 3 

- 1 -
5 

- 1 

• 2 

1 
- 1 

- 1 
1 
5 

1 
3 

- 1 

(a) Directly, as anti-symmetric tensors. In question 1(a) we have obtained 
the linear subspace S in the new basis; its analytical expression can 
be written in matrix form as 

S: X'ÄY = [xlxlxl] 
L O O OJ 

2 6 
0 1 

-1 0 

r - 1 1 

-2 
Vo 
-3 

Jo. 

and remembering the contravariant and covariant relations for vectors 
of £;3(]R), i.e., 

1 F* = Gy \Y = G-iy* 

and that (G -^Y = G ^ because it is a symmetric matrix, we have 

S = X^AY = (G-^X*)^i(G-^y'*) 

= (X*)*(G-^)^iG-^Y'* = (X*)*(G-UG-^)y* = (l*)*i*y*, 

which leads to 

i * = {G-^)AG-^ = G-^(G-^)*(G*AG)G-\C-^)* = C'^AiC- \\t 

= 
2 1 1" 

- 1 1 5 
1 3 - 1 . 

= 3 

oice 

s 

0 4 11 
- 4 0 1 

. - 1 - 1 0 . 

• 0 9 ? • 

- 9 0 -12 
_ - 7 12 0 . 

E (X*)*i*l >* 

• 2 

1 
- 1 

r ^ O ^ O ^ O-i 3 
r 0 

- 9 
L-7 

- 1 
1 
5 

9 
0 

12 

1] 
3 

- 1 J 

7 
- 1 2 

0 
^ 2 

. ^ 3 . 

= 0, 
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and developing 

If we sort adequately, we obtain the exterior equation of S in new 
covariant coordinates: 

= Qix^y^ - x^y^) + 7{x^y^ - x^y^) - I2{x^y^ - x^y^) 

[9 7 -121 

5 = 9t 

^ 1 ^ 2 ~ ^ 2 ^ 1 

^ 0 /̂ O ^ 0 A.O 

_^22^3 ~~ ' ^ 3 ^ 2 . 

^^(12) ^ ' ^ (13 ) 

= [9 7 

- 12f° ° -

-12] 

0. 

~ TO 0 

^(12) 
T O O 

^(13) 
T o o 

_^(23) 

(13.64) 

(b) Through the exterior algebra theory. We proceed to use its Euclidean 
character, inside the exterior algebra. Since the relation (13.63) and 
the matrix G~^ are known, using Formula (13.26), we get 

£(^1^2) ^ £ o o 
o o (J1J2) 

^ 0 0 i ' o o 

^*2jl -^2J2 
? o o 

and calculating the components t̂ ^̂ ô we obtain 

f(12) 
^(12) 

- 126f'' "" 

6 - 6 
6 27 ' (13) 

6 6 
-6 - 3 H-t (23) 

18^13)-144t(23) 

- 6 6 
27 - 3 

r(i3) _ ro o 
^ 0 0 — ^(12) 

6 - 6 
6 - 3 ' ( 13 ) 

6 6 
6 11 + t 

18t (12) • 3 0 t °3L3° - 4 8 t °23° 

(23) 
- 6 6 
- 3 11 

r(23) 
' ( 12) 

-144t; 

-6 27 
6 - 3 ' (13) 

-6 - 3 
6 11 

48t; 288t; 

^(23) 
27 - 3 

- 3 11 

^(12) - - ^ ( 1 3 ) -^ — - ( 2 3 ) 

and substituting these three expressions in (13.63), we have 

S ^ 2(126t° 2° + 18t° 3° - 144i°23°) + 6(18t(° 2° + 30t°,3° - 48i;3°) 

+ ( - 1 4 < 2) 48t (13) + 288t723°0 = 2m°° + 168i (12) ' ( 1 3 ) 288t (23) 
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and equating to zero and dividing by 24, the result is 

575 

5^9tA^ + 7t; i2t; 0, ' (12) ^ '^(13) -^^^^(23) 

which is again the previous result. Formula (13.64). 

3. It has been answered with Formula (13.63). 
4. It has been answered with Formula (13.64). 

5. In Example 13.6, Formula (13.60) solves the exterior fundamental metric 

tensor associated with /\^ (^)- Applying this formula to our problem 

and with G = Is 
ri 
0 
0 

0 
1 
0 

0] 
0 
1 

for the initial basis we get 

/ O O 

9 12 ui A U2) • {ui A Us) = 2 

g'll = ('^1 A Ü2) • {ui AU2) = 2 

/ O O 

0 22 (ui A M3) • {ui A U3) = 2 

0 0 

9ii 
0 0 

521 

0 0 

9ii 
0 0 

521 

0 0 

5ii 
0 0 

531 

0 0 

5l3 
0 0 

523 

0 0 

5l2 
0 0 

522 

0 0 

5l3 
0 0 

^33 

= 2 
1 0 
n n 

= 2 
1 0 
0 1 

= 2 
1 0 
0 1 

- 2 

and similarly ^'^g — 5''23 0 and p'33 = 0. 

The exterior connection matr ix is G A (2) = 

Since T = t^ ^üi A 'ff2 + t^ ^üi Aus -+• t _ _ '̂ 2 A W3, we have 

[2 
0 
0 

0 
2 
0 

0] 
0 
2 

iTp = [t^^y^'yrh 
2 0 0 
0 2 0 
0 0 2 

. (1)2) 
^ o o 

^(13) 

,(23) 

But, T satisfies the equation (13.62) of S, so, one strict component is not 

free. We choose (t^^^^) = -{At 

expression of | T p , we get 

(12) 
o o t^^ Q )̂, and substi tuting it into the 

\T\ = V2J{t^^y + {t^^y + (4iî 2,) +tfj)2. 

In the new basis, we proceed with the minors of G = ^ 

and with the new strict components of T: 

288 48 - 1 4 4 
48 30 - 1 8 

-144 - 1 8 126 
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^^(12)-r = trjeiAe2+t^ro^eiAe3 (13)- r(23) 
62 A 63 

of an analogous form but more involved. 

13.10 Exercises 

D 

13.1. Following the theory in Example 13.6 of the present chapter. 

1. Determine the matrix of the exterior fundamental metric tensor G * (2),^, 
As ^^) 

associated with the mentioned algebra, established over a Euclidean space 
E'^{'R) that in the basis {e^} presents the Gram matrix 

G - 2 1 
1 1 

2. Similarly, determine the matrix G A (2), . of the algebra established over 

an £^^(]R) that in the basis {ea} has as Gram matrix 

G = lCß] = 
3 1 2 
1 1 1 
2 1 2 

3. Idem for G A (2) .^^,, where 

G=K;] 

1 0 0 1 
0 2 1 0 
0 1 3 2 
1 0 2 5 

13.2. In the Euclidean space E^{1R) referred to the basis {ca} and the fun
damental metric tensor 

G = [gi;] 
' 2 

1 
1 

1 
2 
1 

1" 
1 
2 

consider four vectors V ,̂ 1 < z < 4 by means of the matrix of its contravariant 
coordinates 

" 2 1 5 1" 
[Xi X2 Xs X 4 ] = I - 1 1 - 2 - 1 

1 1 - 2 - 1 

1. Determine the tensor U — Vi A V2 by its strict components, as [/ G 

Af(R)-
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2. Determine the tensor y = V3 A 14 by its strict components, as tensor 

3. Determine the exterior fundamental metric tensor G * (2) 

nects the mentioned algebra. 
4. Give the dot product U •¥ using the previous metric tensor. 
5. Determine the moduli of the tensors U and V. 
6. Execute the exterior tensor product Z = U/\V4. 
7. Obtain the tensor W = Polar Z. 
8. Obtain the modulus of W. 

13.3. Consider a Euclidean space ^^ (H) referred to a basis {ca}, the funda
mental metric tensor of which is represented by the matrix 

°1 
ß\-

" 1 0 0 1 
0 2 1 0 
0 1 3 2 
1 0 2 5 

Consider two exterior tensors S,T e /y^ (H) of strict components s^^^J 

a + /3andt̂ Ĵ ^̂  = 5 - 7 . 

1. Obtain the exterior fundamental metric tensor G A (2). 
/ \ 4 

2. Obtain the moduli of the tensors S and T. 
3. Obtain the dot product 5 • T of the mentioned tensors. 
4. Obtain the tensor Z — S f\T exterior tensor product of S and T. 

5. Obtain the exterior fundamental metric tensor /y^ (I^)-
6. Obtain the modulus of the tensor Z. 
7. Obtain the tensor W dual or polar of Z, that isW — Polar Z. 
8. Obtain the modulus of W. 
9. If we set cosö T§r^\, is it true that sin 0 = ,1 .L ? 

10. We execute in ^ ^ ( R ) the change-of-basis {e^}, of associated matrix 

G L o zJ 

1 2 3 1 
1 3 3 2 
2 4 3 3 
1 1 1 1 

Answer again questions 1 to 7, for the basis {ci}. 
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14 

Affine Tensors 

14.1 Introduction and Motivation 

Although multilinear algebra, tensor theory from the point of view of algebra, 
has been discussed troughout the previous chapters, we have decided to end 
this book with a chapter devoted to the most common affine tensors, so that 
it could act as a bridge to other tensor calculus books or publications. 

In those books functional tensors are dealt with, that can be subject to 
differential and integral processes, and that are built over punctual spaces 
affine to Euclidean or Hermitian linear spaces, which are their "support" or 
"reference frame". The position (space coordinates) and the instant (the time) 
are the usual variables of the mentioned functionals. 

From the algebra point of view, nowadays it is possible to have a tensor 
calculus that is more elaborated, deep and complete that the one its distin
guished founders Voigt, Levi-Civita, Ricci, Riemann, Ghristoffel, Einstein, etc. 
have given to us, since they unfortunately lacked a sufficiently complete alge
braic background, when they started to build such a beautiful mathematical 
structure. 

This chapter aims to show how tensors allow us to solve very interesting 
practical problems. It is structured in three parts. The first part is devoted 
to Euclidean tensors in £^"'(IR), including the projection, the momentum, the 
rotation and the reflection tensors. 

The second part is dedicated to affine geometric tensors or homographies, 
that include general affinities, homothecies, isometrics and products of them. 

Finally, the third part is devoted to some important tensors in physics 
and mechanics, such as the stress and strain tensors, the elastic tensor and 
the inertial moment tensor. 
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14.2 Euclidean tensors in ^^^(IR) 

Consider an orthonormahzed Euchdean space E'^(R) of basis {eQ,}. In addi
tion to the basic tensors used in the Euchdean spaces such as the dot product, 
the cross product, the mixed product of vectors, etc., there exist other ten
sors that it is convenient to define due to their continuous presence in diverse 
tensor processes. 

14.2.1 Projection tensor 

Consider the reference hnear space £"^(11), and assume as data one axis (see 
Figure 14.1), given by its unit vector e = cos aei+sin ae2, and a certain vector 
V ~ x^e\ -^x^e2' We wish to know the vector 'p — {x}-ye\ + (x^)'e2 orthogonal 
projection of v over the given axis, using tensors. More precisely, we look for 
a tensor such that its tensor product by a given vector when contracted gives 
the desired projection. 

Fig. 14.1. Illustration of the projection tensor. 

We denote this executing tensor, which is called a "projector", by P^\ 

Then, we have 

COS a 

sin a cos a sm a = 
cos a sm a cos a 

sin a cos a sin^ a 

COS a sm a cos a 
sin a cos a sin^ a 

(14.1) 

a matrix product that is none other than the mentioned tensor product con
traction. 
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We define the complementary projector tensor, denoted by Pg±, the tensor 
tha t transforms v into the vector q = {x-^Y^ei + {x^y'e2 such tha t p + q = v. 

From the expression q = v—p^ in matr ix form we get 

cos^ a 

sm a cos a 

cos^ a 

- sm a cos a 

sin a cos a 
a sin^ a 

sin a cos a 
. — sin^ a 

'x^' 
X 2 

'x^' 
_x\ 

Pe^{v)\ 
{xr 
(xr 

s i n ^ a 

- sm a cos a 
sm a cos a 
cos^a 

(14.2) 

Evidently, Pg + Pg± = /2 , as it corresponds to complementary projectors. 
Similarly, if we deal with the reference linear space J S ^ ( I R ) , we will have the 
following da ta and solutions: 

e = cos a e i + cos ße2 + cos 763; v = x-^ei -^ x'^e2 + x^es; 

^ 3 \ / / -p= {x'yei + {xye2 + {x^yes; and g = {x'fei + (x^)''e2 + (x^)' 'e3; 

cos a 
cos/3 
cos 7 

[ cos a cos /3 cos 7 ] 

Whence, the tensor operates as 

p = Pg{vy 

cos^a cos a cos ß cos a cos 7 

cos ̂  cos a cos^ ß cos /? cos 7 

cos a cos 7 cos/? cos 7 cos^7 

(xi)' 

ix^Y 
{x^y 

COS a cos a cos /? cos a cos 7 
cos a cos ß cos^ /? cos /? cos 7 

cos a cos 7 cos y5 cos a cos^7 

'xn 
X2 

x3 

and with respect to the complementary projector, we have 
(14.3) 

q = Pg±{v); 
{x^Y 

sin^ a — cos a cos /? 
- cos a cos /? sin ß 
- cos a cos 7 — cos yS cos 7 

cos a cos 7 
cos /3 cos 7 
sin^7 

'x^' 
x^ 

_x\ 

where obviously 
(14.4) 

Pg^P^±=Is. (14.5) 

A property tha t is common to projectors is the idempotence: Pg = Pg. 
If we are in the Euclidean space £^^(]R), there is also the possibility of 

projecting a vector v over a plane TT t ha t we assume is given in vector form, 
tha t is, generated by two unit orthogonal vectors (TTI • 7f2 = 0) of TT, chosen 
as the basis of the linear subspace 

TTi = COS aiei + cos ^162 + cos 7163 

7f2 = COS «261 + COS /S2e2 + cos 7263. 
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We notate this projection tensor by P7J-5 and we consider that P'Tr{v) is 
the vector sum of the projections pi and p2 of v over each one of the axes 
represented by the unit vectors TTI and 7f2. Then, if PT^{V) = P-K-, we have 

Ar = P^{v) =pi +P2 ^ P^i(^) +P^2(^); p i = i^^y^ei + (x^);e2 + {o:%es 

and finally 

{x^y 

— 

TT 

+ 

f 
V 

cos^ a;i 

cos ai cos /?! 

cos ai cos 71 

cos^ a2 
cos a2 cos /32 
cos 0̂ 2 cos 72 

cos cti cos ßi 
cos^ /?i 

COS /3i cos 71 

cos »2 COS ß2 

COS^ /?2 

COS /?2 COS 72 

COS ai COS 7i 

cos /3i cos 7i 

cos^ 71 

cos ̂ 2 COS 72 

COS ß2 COS 72 

cos^ 72 

\ 
, 

/ 

'x^' 
x'^ 
X3 

(14.6) 

Some authors call the tensor kP^ with /c G IR and k ^ 0, the "displacement 
tensor". 

Example 14-1 (Tensor S = aP^ in E'^(H)). We suspend a weight p at the 
center of an approximately horizontal cable of length L, which produces, at 
equilibrium, a vertical displacement / small compared with the length L (see 
Figure 14.2). 

Fig. 14.2. Cable with a suspended weight at its center. 

1. Obtain the traction force F produced by the suspension of the weight. 
2. We define the cable stress tensor S as the tensor aPg^ where a is the cable 

normal stress, A is the cable cross-section, and such that the direction of 
the e axis coincides with that of the cable in traction. Obtain the stress 
tensor. 

3. Use S to obtain the traction force in a cable section the normal unit vector 
of which makes an angle 9 with e. 
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Solution: 

1. We accept E'^{]R) as the vector reference frame for our problem. 
From the vector force diagram in Figure 14.3, we conclude that 

P /2 
F sm( 

Fig. 14.3. Vector diagram. 

and from the geometric characteristic of the suspension, we obtain 

thus, we have 

F L/2^ 4 / -

2. For examining the stresses, we assume that the cable axis coincides with 
the axis OX, that is, e = cosO°ei + sin0°e2 and from Formula (14.1) we 
have 

S = aPg = a 

_ F 

cos^ a sin a cos a 
sin a cos a 

cos^ 0° sin 0° cos 0̂  

sin^ a 

sin^ 0° 
PL 
AfA 

1 0 
0 0 sin 0° COS 0° 

3. The unit vector ft normal to the cross section A^ to be studied is 

n = cos Oei + sin ^62, 

and then, the stress a^ at the section A^ is a^ = S{n): 

PL 
4fl 

1 0 
0 0 

COSÖ 

sinö 
PL 
4/1 

cos^ 
0 

PL 
ÄfÄ cos6'ei. 
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14.2.2 The momentum tensor 

In this section we try to build a tensor, notated Mto{Tx)^ such that when 
transforming v^ it gives as its transform the vector rx v. Naturally, the refer
ence Euclidean space frame is £^^(R) (orthonormalized). 

Since it is a cross product, f= r-^ei+r^62+^^63 and v — x^ei^x^e2-Vx^e^, 
the result is 

r XV 

e i 62 63 

x^ x'^ x^ 

We must have 

whence 

Mto{fyi) 

= {r^x^^ - r^x^)ei + (r'^x^ ~ r^x'^)e2 + {r^x^ ~ r^x^)es 

Mto{rx){v) = rxv, 

'x^' 
x^ 
x^ 

= 

^2^3 _ ^3^2 

1 2 2 1 
Mtoifx) = 

_^-

0 
^1 0 

(14.7) 
In some applications r is the position vector of the point A and the vector v is 
linked to it, and in such a case the transformed vector is called a momentum 
vector (see Figure 14.4) and is notated as 

M = Mto{rx)(v). (14.^ 

Fig. 14.4. Illustration of the momentuni vector. 

An interesting property of the momentum vector with respect to the pro
jection tensor is that the successive application of this tensor (established for 
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a unit ir = e) is the tensor {—Pg±). In effect, let e be a unit vector, then from 
(14.7) we have 

[Mtoiexf = 

^̂^ 

= -

0 — COS 7 cos ß 
cos 7 0 — cos a 

— cos ß COS a 0 

0 
COS 7 

— cos 7 
0 

— cos ß cos a 

cos^ a — 1 cos a cos ß cos a cos 7 
cos a cos /? cos^ /? — 1 cos ß cos 7 
cos a cos 7 cos /? cos 7 cos^ 7 — 1 

- ( / 3 - P e ) = - P e - . 

cos/3 
— cos a 

0 

(1 

Finally, we will establish another tensor, related to the tensor Mto{Tx)-> that 
is cd^ed ^^momentum with respect to an axis^\ which will be notated M(^^y 

We define it as the projection vector over an axis e*, of the vector M. 
In this case the data are: 

1. A vector v and its point A of application. 
2. An axis e. 

Then, we have 

M(e7(^) = P e ( M ) = P^{Mto{fx){v)) 

and if 
m = M(^^(v) = m}ei + m?e2 + m^es 

we obtain the matrix expression 

["m-̂  
m^ 

[m^ 
= 

cos^ a cos a cos /? cos a cos 7 
cos a cos ß cos^ /3 cos /? cos 7 
cos a cos 7 cos /3 cos 7 cos^ 7 

0 - r ^ 
r^ 0 

_ ^ 2 ^ 1 

^2 

—r 
0 

'x^' 
x-" 
X3 

(14.10) 

14.2.3 The rotation tensor 

We discuss in this section the matrix representation of the rotation tensor, 
notated Rg^ which executes the rotation of a vector v^ with respect to the axis 
e, an angle 6] the axis is given by a unit vector e — cos otex + cos ße2 + cos 763, 
which also allows d to be endowed with a sign, by means of the "right-hand 
rule", i.e., when taking the axis with the right hand, with the thumb in the 
direction of the vector e, the remaining fingers brace the axis in the positive 
(+) sense of the rotation angle 6. 

In the proof we will perform a vector process that uses the already estab
lished vector tensors (see Figure 14.5). 

Consider the vector Rg{v) = OB that results after rotating OB = v over 
the axis. We can decompose this vector as the sum of other vectors 
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O 
Fig. 14.5. Illustration of the'rotation tensor. 

OB' = OC + CH + HB', (14.11) 

where: 
OC is the projection over the axis of the vector OB = v^ and we have 

oc_=Pg{vy, ^ 
CB is the vector complementary projection of v^ that is, CB = Pg±{v)^ 
UH is one part of 'CB with modulus \CH\ = \CB'\ COS6> =- \CB\ cosO, so 

that 
UH = 'CBco8e = COS ePg± {v)] 

CD is a vector orthogonal to the vectors e and CB^ which are mutually 
orthogonal, thus 

UD = ex UB = ex v = Mto{ex){v)] 

HB is parallel to CD and one part of it, and has modulus 

\HB'\ - \CB'\sme = \CB\sme = \CD\sme 

so that 
1TB' = smeMto{ex){v). 

As all summands in (14.11) are known, we substitute them to get 

Rg{v) = P^{v) + cosePg±{v) + sin eMto{ex){v), (14.12) 

which can be written, only for tensors, using Formula (14.5): 

file:///CB/sme
file:///CD/sme
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Rg = Pg^ cos0(73 - Pe-) + s inOMtoiex) 

or 
Rg = C0SÖ/3 + (1 - cos6>)Pe' + sin(9Mto(ex), 

and in matr ix form, using Formulas (14.3) and (14.7), we have 

(14.13) 

Rg = cos i 

+ sin6> 

1 0 0 
0 1 0 
0 0 1 

0 
cos 7 

( l - c o s ö ) 

COS 7 
0 

cos^ 7 

cos^ a COS a cos ß cos a cos 7 
COS a cos ß cos^ /5 cos ß cos 7 
cos a cos 7 cos /3 cos 7 

cos/3 
-cos a 

0 — cos ß COS a 

and remembering tha t 1 = cos^ a + cos^ ß + cos^ 7, and operating, we obtain 

Ra — 
rii ri2 Tis 
^21 ^22 r23 
^31 ^32 ^33 

(14.14) 

where 

r i i = cos^ a -\- (cos^ /3 -f cos^ 7) cos 9 

ri2 = cos a cos ß{l — cos Ö) — cos 7 sin ö 

r i3 = cos a cos 7(1 — cos 9) + cos /? sin 9 

^21 = cos a cos /3(1 — cos 9) + cos 7 sin 9 

r22 = cos^ /3 + (cos^ a -f cos^ 7) cos 9 

^23 = COS ß COS 7(1 — COS 9) — COS a sin 9 

^31 = cos a cos 7(1 — cos 9) — cos/3sinö 

^32 = cos a cos 7(1 — cos 9) + cos /3 sin 9 

^33 = cos^ 7 + (cos^ a; -f cos^ /?) cos Ö, 

where v = a:-^e'+0:^62 +2:^63 and Pe'(^/) = {x-^ye + (0:^)^62 + (a:^)'e3; the tensor 
Rg operates in matr ix form in the same way as the other tensors, t ha t is, 

{x'Y] 
{x^y 
{x^y 

= Rg 
'x^' 
x2 

X^ 

Since the rotation is an isometry in ^ ^ ( M ) , it must present an orthogonal 
matr ix, which is to be verified in matr ix form using the two tensors Pg and 
Mto{ex) and their properties: 

RgmRi = ([cos0/3 + (1 - cos6')Pe'] + sm9Mto{ex)) {[cos9Is + (1 - cos6>)Pe'] 

-sin 9 Mto{ex)) 

= [cos6'/3 + (1 - cos6i)Pe']^ - sin^ 9 [Mto{ex)f . 



590 14 Affine Tensors 

Applying Formula (14.9), developing the squares, and taking into account the 
projector property P^ = Pg we get 

Ee-*-ß| == cos^ 0-̂ 3 + ( 1 - 2 cos Ö+cos^ Ö)P|+2 cos 0(1-cos 6')Pe'-sin2 6>[Pe'-/s] 

= (sin^ (9+cos^ Ö)/3 + (l-2cos6^ 4- cos^ 9 + 2cos6> - 2cos^ 0 - sin^ e)Pg 

Rg • Rg = Is —^ Rg = Rg , 

which shows that Rg is a tensor of the associated orthogonal matrix. 

14.2.4 The reflection tensor 

In the Euclidean space E^{]R)^ we consider a plane TT orthogonal to an axis 
given by its unit vector e (see Figure 14.6). 

Fig. 14.6. Illustration of the reflection tensor. 

The "reflection" tensor, also called the Householder tensor, reflects the 
image of the vector v^ as if it were a mirror. We denote this tensor by Hg. 
The vectors e^and v are those already treated in previous sections. Figure 14.6 
declares that AB = Pe{'^)^ and that B^B — 2Pg{v)^ and since OB = Hg{v)^ 
the following vector equation holds: 

OB +B'B = OB: OB =OB-B'B 

and then 
Hg{v) = v- 2Pg{v) = (Is - 2P^)^ (14.15) 
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and taking into account Formula (14.3), the reflection tensor has the matrix 
representation 

v' = Hs{v)-

lix'Y] 
(X2)' 

[{x'yl 
= 

sinket —cos^ a —2 cos a cos/? —2 cos a cos 7 
—2 cos a cos/3 sin^/3 — cos^/3 —2coSyöcos7 
—2 cos a cos 7 —2 cos/? cos 7 sin^7 —cos^7 

'x^' 
x^ 
x^ 

(14.16) 

Tensor H^ is also an "isometry", that is, of orthogonal matrix, because 

H^.Hl = ( / 3 - 2 P 4 J 3 - 2 P e ) ' = {h-2Psf = h^^Pl-4P^^h-HP^P^=l3 

d.ndsoHi = Hz\ 

Example 14-2 (Properties of tensors Mto{ex)^Rg and Hg). 

1. Show that the tensor Mto{ex) is a contraction of the Levi-Civita tensor 
permutation and of the unit vector e. 

2. Show that the components of the "axis" of the tensor Mto{ex) respond 

to the expression cosa^ = "I^Hfo^^fc-
3. Show that e*is an eigenvector of the rotation tensor Rg. What is its eigen

value? 
4. Given a rotation tensor Rg by its associated matrix, obtain the value of 

5. Show that the determinant \Rg\ = 1. 
6. From the data tensor Rg^ obtain the tensor Mto{ex). 
7. Show the involutive character of the tensor Hg^ that is, when applied twice 

it returns to the initial state. 
8. Show that the determinant \Hg\ = — 1. 

Note : We remind the reader that in orthonormalized bases {ca}^ the tensor 
indices can appear in contravariant or covariant positions, indistinctly. 

Solution: 

1. Consider the Levi-Civita permutation tensor of dimension n = 3: 

000-] 

0 
0 
0 

0 
0 
1 

0 
1 

0 
0 

- 1 

0 
0 
0 

1 
0 

0 
1 
0 

- 1 
0 
0 

0 
0 

0 0 0 
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where i is the block row index, j is the row of each block and k is the 
column of each block. 
Let e*be the unit vector, e = c o s a e i + cos/362 -f cos 763 we have 

0 0 0 0-] 

0 0 0 
0 0 1 
0 - 1 0 

0 

r 0 0 0 1 0 0 0 2 0 0 0 3-1 

l^ljk^ ~^2jk^ ""^Sj/c^i 

COS a 

0 0 - 1 
0 0 0 
1 0 0 

cos/3 — 
0 1 0 

- 1 0 0 
0 0 0 

cos 7 

— COS 7 cos ß 
cos 7 0 — cos a 

- cos ß cos a 0 

which is the matr ix associated with the tensor Mto{ex). 
2. We have 

cosai = 

cosa2 = 

cosQ̂ a = 

and then 

1 

~2 
1 

~2 
1 

~2 

000 00 000 00 

^123^23 ̂  ^132^^32 

000 00 000 00 

^213^^13 ̂  ^231^^31 

000 00 000 00 

^312^12 ' ̂ 321^^21 

= —- ((— COS a) + (—1) cos a) = cos a 

= - - ( ( - l ) c o s / 3 ) + ( - cos /? ) ) = c o s / 3 

— —- ((—cos7) + (—1) COS7) = COS7 

cos aiCi — cos a e i -f cos ße2 H- cos 763 = e. 

3. Using Formula (14.13), we have 

R^(e) = cos 073(e) + (1 - cos6')Pe'(e) + sinÖMto(ex)(e), 

and the projection of the unit vector e over e*is the proper e, i.e., P^(e) — e, 
and since 

0 — cos 7 cos ß 
cos 7 0 — cos a 

— cos ß COS a 0 

cos a 
cos/3 
C0S7J 

— COS ß COS 7 + cos ß cos 7 
cos a cos 7 — cos a cos 7 
— cos a cos ß + cos a cos ß 

we obtain Mto{ex){e) — 0, and then 

R^{e) — cos öe*+ (1 — cos9)e-^ 0 = e*, 

which shows it is an eigenvector of eigenvalue A = 1. 
4. From (14.14) we obtain the t race of the R^ matrix, which leads to 

trace(Äe') = (cos^ a + cos^ ß + cos^ 7) + 2(cos^ a + cos^ ß + cos^ 7) cos 9 

= l + 2cos6>, 

from which we get 

cosö 
trace(i^e*) "~ 1 



14.2 Euclidean tensors in ^""(R) 593 

5. In Section 14.2.3 it was shown that the rotation tensor R§: has an asso
ciated orthogonal matrix, and \R^\ = ±1 ; but choosing the axis e = es 
{OZ axis), cos a = cos/? = 0 and cos7 = 1, Formula (14.14) after taking 
determinants leads to 

\Re-\ 
1 0 0 
0 COS 9 — sin f 
0 sin 9 cos 9 

= coŝ 6> + sin6> = + l . 

6. Transposing the matrix equation (14.13), we have 

Rl = cos 0/3 + (1 - cos 9)Pg - sin 9Mto(ex), 

and subtracting this equation, from (14.13): 

Rg-Rl = 2sin9Mto{ex) -> Mto{ex) 

7. Because of Formula (14.15), we have 

1 
2 sin 6» 

{R^- Rg). 

8. Since H^ is of orthogonal matrix, \Hg\ = i t l , and choosing e*= 63, that 
is, cos a = cos/3 = 0 and cos7 = 1, Formula (14.16) leads to 

\m = 
1 0 0 
0 1 0 
0 0 - 1 

-1. 

D 

Example 14-3 (Reduction of vector systems). In the punctual affine space 
Ep (H) or ordinary geometrical space, we consider the system of vectors Vi: 

Vi = 26*1 -f 4e2 — 3e3 lying on the point Ai(—1,0, 2) 

V2 = ei — e2 + 2e3 lying on the point ^2(1, 2,3) 

Vs ~ 36̂ 1 — 2e2 + 63 lying on the point ^3(2,1,0) 

X̂  = 62 + 63 lying on the point ^4(0,1,2). 

1. Obtain the so-called resultant vector R = '^ Vi {it is a. free vector). 
z = l 

2. Obtain the moment vector of the system with respect to the origin 
_ 4 _, 

0(0,0,0), Mo = Y, Mto{'riX)(Vi), where n = OAi is the position vector 
i=l 

of each point A ,̂ and MQ is a free vector, but usually it is assumed to lie 
onO. 

3. Find the moment vector of the system with respect to the point 0'(1,1,2), 
MQ'^ where now fi' — O'Ai. The vectors MQ and MQ' must be related. 
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4. Find a point E{x^y^z) such that ME = AÄ, that is, that the moment 
vector ME be parallel to the resultant. Determine the constant A. 

5. Find the Cartesian equation of the central axis e of the system, the equa
tion of the straight line passing through the point E^ with the direction 
of the resultant vector R. 

6. Show that any point E^ on the axis e satisfies the property of the point 
E: ME' = ME-

This common vector fh = ME-> is known as the "minimum moment vector" 
of the system. 

7. Show that rh is the projection of the vector MQ over the axis e, i.e., 
m = P^{Mo)-

8. Find the constant p called the "rotation radius" of the system: 

_\P,.{Mo)\ 

\R\ 

Solution: 

1. Summing the four vectors we obtain 

^ = 6ei + 262 + es. 

2. Using (14.7) we get 

"C 
2 

.C 

f 

- 2 0" 
0 1 

- 1 0 . 

• 0 0 
0 0 

- 1 2 

r 
2 
3 

2 
4 

-3 

" 
+ 

3" 
- 2 

1 

^ C 
3 

_ - 2 

- 3 2 ' 
0 - 1 
1 0 . 

" 0 - 2 
2 0 

- 1 0 

1" 
0 
0 

1] 
-1 

"0" 
1 
1 

- 8 
1 

- 4 
+ 

V 
1 

- 3 
4-

1 
- 2 
- 7 

4-
- 1 

0 
0 

= 
• - 1 " 

0 
-14 

Mo 

3. We know that 

-ei - 1463. 

n = O'Ai - OAi = O'O = -00' = -61 - 62 - 263 
4 

Mo' -Mo=Yl [Mto{n'x){Vi) - Mto{nx){V^] 

4 4 

= ^ M t o m ' - r , )x) (FO = ^ M t o ( Ö ^ x ) ( y , ) 

= Mto(Ö^x) iiZ^^ = Mto(Ö^x){R); 
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we then have the final formula Mo' — MQ + Mto{00'x){R)^ which in 
matrix form leads to 

- 1 
0 

- 1 4 + 
0 
2 
1 

2 
0 

- 1 

- 1 1 
1 
0 

[ 6 1 
2 
1 

== 
r 2 1 

- 1 1 
L-ioJ 

Mo^ = 2ei - 1162 - lOes. 

4. Applying the last vector formula to the point E{x^ y, z), we have 

ME^MO-^ Mto(EÖx){R) = XR, 

where 
EO = -OE -xei -ye2 - zes, 

and in matrix form 

m} 
m? 
m^ 

= 

E 

r - 1 1 
0 

- 1 4 
+ 

0 
z 
y 

z 
0 

— X 

-y] 
X 

OJ 

[ 6 1 
2 
1 

= A 
[ 6 ] 

2 
1 

which leads to the system of equations 

Since one of its solutions is 

E 

-y + 2z = 
X — 6z = 

-2x + 6?/ = 

22 85 3 \ 
41'41'41 J 

H-6A 
2A 
14 +A. 

; A = -
20 

"41 

we have 

m 

E 

20 \ 
4 1 ; 

"6" 
2 
1 

" 120 " 

% 
L 41 J 

M. £; = — ( -12061-4062-2063) . 

5. An equation of the central axis e is 

22 
X 41 

^ _ 85 
y 41 41 

fl. 

6. The parametric equations of this axis give the general expression for an 
arbitrary point E^ on it (for /i = 0, we obtain the point E): 
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so that we determine the vector Mß'. According to Formula (14.17), ap
plied to the point E\ we get 

ME' = Mo-^Mto{E^Ox){R); 

and in matr ix form 

1 
m 

m^ E' 

- 1 
0 

-14 
+ 

1 + ^ 

0 (IT + M) 

, , 2ß -^p - 2/x 
0 - ^ - 6 / i - f + 6 M 

- 1 4 + ^ + 12/i + | f - 1 2 / i 

120 

41 

M^;. = — ( - 1 2 0 6 1 - 40e2 - 2063), 

t ha t compared with the result ME of question 4, allows us to conclude 
tha t effectively it is the vector fh of the system: 

m = ME=- ME' = — ( - 1 2 0 6 1 - 4062 - 2063). 

7. The axis unit vector e is 

^ 6 2 -f 22 + 12 = V41; e ^ = - ^ e ^ i 
V41 

e2 + 
1 ^ 

es-
/41 " V41 

and since the projection tensor Pg{v) responds to Formula (14.3), in the 

present case P^{Mo) is 

which implies 

r 36 

% 

1̂  
L 41 

12 

'i 
¥ 
41 

6 1 

^ 

Y 
41 J 

• - 1 -

0 
- 1 4 

r 120 -| 

i j 
iA 

L 41 J 

Ps{Mo) ^fh= — ( - 1 2 0 6 1 - 4062 - 2063). 

8. The complementary projection tensor is given by (14.4), whence P^i, {Mo) 
in matrix form is 

and then 

_ 1 2 

41 

'^ 

41 

r - 1 " 
0 

- 1 4 

\ 

~ 41 

F 79 ] 
40 

-554 

\Pe^{Mo) 
41 41 

P = 
\Pe^{Mc 

\R\ 

3V853 X 41 3V'853 

41 41V41 
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The vectors R and rh applied on any point of the axis e, are equivalent to the 
data of the vector system, and are its "reduction". D 

14.3 AfRne geometric tensors. Homographies 

14.3.1 Preamble 

The development of the axiomatic properties of the punctual spaces affine to 
linear spaces corresponds to other books that aim to study analytic geometry, 
and thus, in the present chapter we assume that the reader is sufficiently fa
miliar with this geometry, to capture with clarity the contents to be discussed. 
Our punctual real space will be notated Ê ^ (R) , where Ep refers to a punctual 
space and n is the dimension of the Euclidean linear space ^""(II) affine to 
our punctual space. 

The punctual space ^ ^ ( R ) is endowed with a reference frame system 

{O, Ca} = {Cartesian axes, of abscissas, of ordinates, of levels, etc.}. 

Such axes are created to "supply support" to the basic vectors {e^^} of the 
associated Euclidean linear space. While other circumstances are not specified, 
we assume classical orthonormalized reference systems. Any point P G E'^{]R) 

has some Cartesian coordinates X = 

with the position vector 

ÖP= [ei e2...en]X x^e\ +x^e2 

with a one-to-one correspondence 

+ x ^ e ; G E ^ ( R ) . (14.17) 

Since as in geometric spaces there exist unattainable (at infinity) points P that 
must be frequently used, a new coordinate is added to the point P , that de
clares if it is attainable. Thus, any attainable point P has two types of coordi
nates, P(x^, x^ , . . . , x"'), the Cartesian coordinates and P(a:'-^, x '^ , . . . , x"^, t), 
the homogeneous coordinates, which are related by the equality 

r ^ i x'^/t 
x^'^/t 

(14.18) 

To transform an attainable point P from Cartesian coordinates to homoge
neous coordinates we let t = 1. If P is unattainable, it has only homogeneous 
coordinates, with t = 0. To identify an infinite point (a direction), we project 
such a direction from the origin (see Figure 14.7), by means of a parallel r by 
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X.OO /\oo 

o 

A(a\a2 a") 

Xoo 

Fig. 14.7. Illustration of how to pass from Cartesian to homogeneous coordinates. 

O, and taking an arbitrary at tainable point A, on r, we complete its Cartesian 
coordinates with t — 0, in order to get its homogeneous coordinates 

Z ) o o ( a ^ a ^ . . . , ö ' ' , 0 ) . (14.19) 

If desired, the point A can be at a unit distance from O, tha t is, \0A\ = 1. For 
this, it suffices to divide the coordinates by its modulus, resulting (because 
the fundamental metric tensor is G = 7^) in the expression 

D^ ,0 

(14.20) 
which some authors call the unit vector director or versor of the given direction 
Doo] other authors notate as Doo(cos a i , cos a2, • • •, cos a^, 0) each component 
of (14.20), by means of the "director cosines" of the unit vector director, tT, 
because it is obvious tha t if the mentioned vector is 

V = OA = [ei 62, " ' Cj " - en] 

V'(ai)2 + (a2)2+...+(a-)2 
g^ 

V'(ai)2 + (a2)2+...+(a-)2 

V'(ai)2 + (a2)2 + ...+(a-)2 

(14.21) 

then its j t h component can be wri t ten as 

"0 0 
V ( a i ) 2 + (a2)2 + . . . + (a^)2 

0] /n 

V(ai)2 + (a2)2+...+(a-)2 
a? 

A/(ai)2 + (a2)2+... + (a-)2 

^ ( a i ) 2 + (a2)2+... + (a-)2 

ej9v = l x l x cos a j = cos a^. (14.22) 
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We have the problematic of the unattainable points as D^^ because the use 
of geometric tensors (seldom used in the usual textbooks, which limit their 
scope to operation over attainable points P) for transforming them is licit and 
very convenient on some occasions. 

14.3.2 Definition and representation 

Let E^(JBS) be the ordinary punctual geometric space, affine to a Euclidean 
space E'^{B.) referred to an orthonormalized basis {e^} (G = In)- Assume 
that a certain linear operator or endomorphism T transforms vectors in 
£^^(]R). An affine mapping A : E'^{B.) -^ J5"'(Il), that associates with each 
pair of points P and Q of the punctual space £^^(R) a vector v G £^"'(]R), 
i.e., A{P^Q) = v^ endows the punctual space E'^{B.) of an orthonormalized 
reference frame {O^ect}^ corresponding to the orthonormalized basis of the 
Euclidean space £^"'(IR). Moreover, the linear operator T induces in the space 
E'^(R), by means of the affinity A^ an "affine punctual transformation" that 
is denoted by / , and that satisfies the axiomatic properties that follow: 

1. / : E'^{n) -> £;^(H); / is a linear mapping in E'!^[^). 

VP, Q e E;m : f{P) = P'- f{Q) = Q'; P ^ Q' e ^ ^ ( R ) , 

where it is not specified if P ' and Q^ are or not, attainable. 
2. ^ ( 0 , Q O = T[A{0,Q)] = T[A{0,P)]+T[A{P,Q)], where P and Q are 

arbitrary attainable points of E^ (R) . 

If a point X e P^ (R) satisfies the property 

f{X) = X (14.23) 

we say that it is a "double" or an "invariant" point. 
An affine transformation in Ep{lR) can have 0,1, 2 , . . . , n double or in

variant points, and even a whole affine linear subspace of invariant points, as 
straight lines, planes, etc. 

Since we can not ate the affine transformation as a tensor, and we can 
use it for unattainable points P , we use matrix representations of order (n + 
1) and we work in "homogeneous coordinates". The affine geometric tensor 
transformations are also called homographies^ and their matrix representation 
is 

X' ^F^X 

til 

t21 

tnl 

hi 

tl2 . 

^22 

tn2 • 

b2 . 

• • tin 

• . hn 

• • '^nn 

' K 
+ 

K I K 

l^ 1 

l^ 

p 

+ 1 -

• 

r^'i 
x^ 

x" 

. t _ 

, (14.24) 

where F is the affine tensor matrix. 
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The block of order n of the homography F in (14.24) corresponds to the 
matrix T = [tij] of the linear operator T of the Euclidean space En(R). 

In homogeneous coordinates, the point 0^{a^,a'^^..., a^, 6^+1) is the trans
formed point of the origin O, (0, 0 , . . . , 0 , . . . , 0,1). 

If 6n+i = 0, the affine point of the origin O is an infinite point O ^ of the 
resulting direction. 

If bn+i ^ 0, we divide all coordinates by bn+i for the 6n+i to become 
unity, and the point 

O' 

in homogeneous coordinates, is the Cartesian attainable point 

bn+l ^n+1 &n+l / 
(14.25) 

which is the affine transform of the origin O, in this second case. 
The homographies of dimension n = 2 (in the plane), with an invariant 

point and a straight line of invariant points, are called homologies. 

14.3.3 Affinities 

If a homography transforms attainable points into attainable points, unattain
able points into unattainable points, aligned points into aligned points and in 
addition maintains the simple ratios of three aligned points A, B, C, then, if 

AB 
(A, B,C)^ = => {A\ B\ C) = {A, 5 , C) (14.26) 

is called an affinity or an affine homographic transformation. 
The geometric transformations are classified as "regular" if \F\ ^ 0 and 

"singular" or non-regular, if \F\ = 0. 
The matrix representation of affinities is 

X' = AmX 

ail CL12 

^21 Ö22 

«In 

^271 

'̂1 
p 

r 
— 
1 J 

• 

r x i ] 
x' 

x" 
— 

_ t _ 

Ö-nl Ön2 

t' \ L 0 0 . . . 0 

where the transformation matrix is notified by A, and 

i.e., a one-to-one correspondence is required, that is, regularity. 

(14.27) 

(14.28) 
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When the block matrix T of 4̂ is an orthogonal matrix (T* = T~-^), the 
determinant \A\ = ± 1 , and the affinity is called isometry (direct if 1̂41 = +1; 
and reverse if \A\ = — 1) 

The affinities constitute a multiplicative non-Abelian group. 

Example 14-4 (^ffi'^'^iy)- ^^ the ordinary Cartesian system (O—XY) of dimen
sion n — 2 consider an affinity such that an invariant point is the point D^o in 
the bisectrix of the second quadrant (affinity direction) and a straight line of 
invariant points (the affinity axis e) is the straight line 2x — y — 6 = 0 (Figure 
14.8). We also know that in this affinity the straight line r that joins two 
arbitrary affine points B, B' and Doo intersects the axis at the point S such 
that the simple ratio {S^B\B) is constant: (S^B^B) = k; A: G R; fc ^ 0. 
Such a constant is called the "affinity ratio", which in our case is k = 3. 

1. Determine the Cartesian equation of the straight line r that joins the 
points O and Doo, and obtain the point 5, on the axis. 

2. Since O' ^r and (5,0'^O) — k^ determine the point 0 ^ 
3. Obtain the affinity tensor A. 
4. Confirm the above data, obtaining the invariant points of the tensor A 

resulting from the previous question. 
5. Determine the vertices of the triangle A{0'^P'^Q') affine of the triangle 

O(0,0),P(3,0),Q(0,2). 
6. Confirm that the quotient of the areas a of the triangles A{0'^P'^Q') and 

Z\(0, P, Q) is the affinity ratio k. 
7. Verify that the baricenters G and G' of the triangles above are affine 

points. 

Solution: 

1. The point D^ has homogeneous coordinates D^{—1^ 1,0). The attainable 
point O has homogeneous coordinates 0(0, 0,1). Thus, the equation of the 
straight line r in homogeneous coordinates is 

X - 0 F - 0 t-1 
y + x = o, 

- 1 1 0 

and in Cartesian coordinates 

r = y + X = 0. 

Solving the system 
{Y+X = 0 
\ 2X - y - 6t - 0 

we obtain 5(2, —2,1) in homogeneous coordinates. 
2. Since the affinity ratio is k > 0, the axis does not separate the affine 

points. 
Applying the affinity relation to the O, O^ affine points, we have 
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Fig. 14.8. Illustration of Example 14.4. 

(5,0',0) SO' 

so 
Xs-Xo' Ys-Yo' 

K 
Xs -Xo Ys- Yo 

Since 5(2,2,1) and 0(0,0,1) are in homogeneous coordinates, we get 

2 - X o , 
2 - 0 

3; 
(-2) - YQ, 

( - 2 ) - 0 
Xo' -4; yo '=4 , 

which, in homogeneous coordinates, gives 0'(—4,4,1). 
3. The axis equation in homogeneous coordinates is: 

e = 2X -Y ~6t = 0, 

from which we can obtain, for example, the attainable point P(3,0,1), and 
the unattainable point I/oo(l, 2,0), etc., because they satisfy its equation. 
Since Doo, S^ P, Loo are invariant points, we know their affine transformed 
points. 
We choose the points O^S^P and their affine transforms, to be substituted 
into the affine transformation matrix equation (14.27) and get 

4 
4 
1 

2 31 
- 2 0 

1 1 
= A 

ro 
0 
1 

2 3 
- 2 0 

1 1 
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4 
4 
1 

2 3" 
- 2 0 

1 1 

"0 
0 
1 

2 3" 
- 2 0 

1 1 

— 1 

I 

~ 3 

" 7 
- 4 

0 

- 2 
5 
0 

-12 
12 
3 

which is the matrix of the affinity tensor sought after. 
Evidently, |A| = 1 / 0, which proves the regular character of affinity. 
We observe that the matrix A has the format required in Formula (14.27). 

4. The straight line e, passing through the points P(3,0,1) and ^00(1,2,0) 
has a homogeneous equation ^=^ = ^ ^ = ^ ^ = A. Thus, the parametric 
equation of e for its attainable points in homogeneous coordinates is 

X 

y 
J _ 

= 

e 

"3 + A" 
2A 
1 

and transforming the points of e, we obtain 

A 
X 

y 
_t _ 

1 

3 
e 

1 
~ 3 

• 7 - 2 
- 4 5 

0 0 

"9 + 3A" 
0 + 6A 
3 + 0 

-Vz ) -
12 

3_ 

= 

"3 + Al 
2A 

1 J 
"3 + A" 

2A 
1 

= 
\x 

y 
[t 

which shows that all points of the axis e are invariant points. 
Transforming now Doo(—1,1,0), we obtain 

7 - 2 
-4 5 
0 0 

12" 
12 
3 

• - 1 " 

1 
0 

1 

3 

" - 9 " 
9 
0 

= 
• - 3 " 

3 
0 

which in homogeneous coordinates is the unattainable point Z>oo(—1,1,0), 
an invariant point, as was stipulated in the statement. 

5. The transformed point of 0(0,0,1) is the point 0^(—4,4,1), the trans
formed point of P(3, 0,1) is the point P'(3,0,1) and the transformed point 
of Q is 

"x'" 
y' 
t' 

1 

3 

1 

3 

• 7 - 2 - 1 2 " 
- 4 5 12 

_ 0 0 3_ 

" - 1 6 -
22 

3 
== 

• 0 " 

2 
1 

• - 1 6 / 3 1 
22/3 

1 J 
Q'(-16/3,22/3,1)-

6. Since we have 

(7 = Area of zA(0,P,Q) 
1 

2 

0 3 0 
0 0 2 
1 1 1 

= 3. 
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(j' = AreaofZi(0 ' ,P ' ,QO = 
- 4 3 -16 /3 

4 0 22/3 
1 1 1 

1 /̂  64 ^^ 
= 2 - Y + 2^- - 12 = 9. 

we get 

G 3 
fc. 

7. The baricenters of both triangles in homogeneous coordinates are 

XG' 

XG = 

- 4 + 3 

0 + 3 + 0 
3 

- 1 6 / 3 

= 1; YG 
0 + 0 + 2 

G ( l , - , 1 

19 ^̂  4 + 0 + 22/3 

^ - y ' ^ ' = = — 3 — 
U 
9 

and the affine transform of the baricenter G is 

1 
2/3 

1 

which shows they are affine points. 

x' 
y' 
t' 

1 

3 

r 7 
- 4 

0 

- 2 
5 
0 

-12 
12 
3 

- 4 / 3 - 5 " 
10/3 + 8 

3 
= 

" -19 /9" 
34/9 

1 

°'^-VP 

G^ 

D 

14.3.4 Homothecies 

We give the name homothecy to an affine transformation that has a unique 
attainable invariant point H (the homothecy center). Any point X and its 
homothetic one X' are aligned with üT, and satisfy the condition 

(if,x^x) 
HX' 

WW 
k. 

The constant k is called the "homothecy ratio"; /c G R , k ^ 0. 
If k > 0 the homothecy is called "direct"; otherwise {k < 0) it is called 

"inverse". 
In the direct homothecies H ^ XX^ and in the inverse homothecies, H G 

XX^ (segment). 
The set of homothecies forms a multiplicative non-Abelian subgroup. 
The matrix representation of the homothecy tensor F , in homogeneous 

coordinates is 

r k 

0 

0 

0 

0 
0 

k 

0 

{l-k)h^l 
{l-k)h^ 

(1 - k)h'' 

1 

• 

rxM 
x2 

x" 

. 1 . 

(14.29) 
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where H{h}^ / i ^ , . . . , h^) are the Cartesian coordinates of its homothecy center. 
Formula (14.29) shows that the tensor is known as soon as the homothecy 

center and its ratio, or any other adequate alternative data, are known. 

Example 14-5 (Homothecy). In the ordinary Cartesian system {O — XY) of 
dimension n = 2 we consider a homothecy of center iJ( l ,3) and a pair of 
homothetic points Q(0,2) and Q'(3,5). 

1. Obtain the homothecy ratio. 
2. Obtain the tensor F of the homothecy. 
3. Verify that H is an invariant point. 
4. Obtain the homothetic straight line of the straight line x — y -\- 6 = 0. 
5. Obtain the homothetic line of the hyperbola x"^ — y"^ = 4. 

Solution: 

1. Applying to our case Formula (14.29), we obtain 

F = 
k 0 {l-k)-l 
0 k ( l - Ä : ) - 3 
0 0 1 

and since the point Q' is the transform of point Q, operating in homoge
neous coordinates the points Q and (5^ we must have 

3" 
5 
1 

= 
"A: 0 (l-k)' 
0 A: (3 - ?>k) 
0 0 1 

• 
"o" 
2 
1 

k = - 2 , 

which shows the inverse character of the homothecy. 
2. Substituting the value of the homothecy ratio k = —2 into the matrix F^ 

we obtain 
- 2 0 3 

0 - 2 9 
0 0 1, 

which is the homothecy tensor matrix. 
3. We determine the transform of the point i7(l , 3,1) as 

x' 
y' 
t' 

= 
- -2 

0 
0 

0 3" 
- 2 9 

0 1 

• 1 -

3 
1 

= 
' 1 

3 
1 

^H^ 

which proves its invariant character. 
4. From the homothecy equation 

x' 
y' 
f 

= 
- -2 

0 
0 

0 3 -
- 2 9 

0 1 

X 

y 
t 
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we obtain 

2 
0 
0 

0 3" 
- 2 9 

0 1 

- 1 'x'' 
y' 
t' 

1 

2 

1 
0 
0 

0 3" 
- 1 9 

0 2 

'x^' 

t' 

The given straight line in matrix form is [1 —1 6] 

stituting (14.30) in it, we obtain 

1 

(14.30) 

0 and sub-

-[1 - 1 6] 
1 
0 
0 

0 3 -
- 1 9 

0 2 

'x'' 
y' 
t' 

= 0 <^ x' - y' - 6t' = 0; 

which in Cartesian coordinates is 

x-y 0. 

5. Notating the hyperbola in matrix form and homogeneous coordinates we 
obtain 

[x y t] 

and substituting again (14.30), we get 

1 
0 
0 

0 
- 1 

0 

0" 
0 

- 4 

X 

y 
t _ 

0, 

it"' y' t'] 
1 
0 
0 

0 3" 
- 1 9 

0 2 

z 1 0 0 
0 - 1 0 
0 0 - 4 

1 
0 
0 

0 3" 
- 1 9 

0 2 

'x'' 
y' 
t' 

= 0, 

which, once operated, leads to the homothetic hyperbola 

r - 1 0 - 3 1 \x''\ 
W y' -^']\ 0 - 1 9 yM - 0 , 

L-3 9 -88] [t'J 

and in Cartesian coordinates 

{xf - {yf - 6:r + 18y - 88 = 0. 

D 

14.3.5 Isometries 

Although the particular characteristic condition to be satisfied by the "isome
tries" (the block T^ must be an orthogonal matrix) has already been indicated 
in Section 14.2.3 in relation to affinities, we devote a brief comment to isome
tries to explain where that condition comes from. 
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In the Euclidean space J5"'(IR) associated with the punctual space £^^(IR) 
there exist certain linear operators T that keep invariant the dot product of 
each pair of vectors and their transforms: 

Va,6 G £;^(IR) -^ a • 6 = T{a) • T(6). (14.31) 

In the Euclidean space ^" ' (R) , such operators are called "isometrics". As
suming that this Euclidean space is referred to an arbitrary basis {ca} and 
that the connection fundamental metric tensor has an associated matrix G, 
an isometry T is recognized because its representing matrix T satisfies (14.31) 
by the following matrix relation: 

T^GT = G. (14.32) 

If the basis {ca} of ^" ' (R) is orthonormalized, then G = In^ and the relation 
(14.32) can be written as 

r.T = L, rpt n~i- (14.33) 

proving that the isometry tensor under an orthonormalized basis appears as 
an orthogonal matrix. 

Thus, since in the preamble 14.3.1 we established that our classic reference 
frames are orthonormalized, the requirement for "any isometry" is that Tn 
must be an orthogonal matrix. 

Next, we deal with the most outstanding isometrics, first those of dimen
sion n = 2 (isometrics in a plane) and then, those for n = 3 (isometries in a 
space). There exist other isometries without a proper name, which will not be 
mentioned here, but we emphasize their existence. 

It is important to point out that the isometries constitute a non-Abelian 
multiplicative group, and we remind the reader about the subdivision formu
lated in Section 14.2.3, in direct isometries (|M| = +1) and inverse isometries 
(|M| = - 1 ) . 

Translation (n = 2) 

This isometry is characterized by the fact that the vector difference of two 
corresponding points is a fixed vector of E'^{1R): 

If X' = MX -^ A{XX') = t; te E^{1R) (translation vector). 

Let t — t^ei -{- t^e2 be the translation vector, then the matrix representation 
of this tensor, in homogeneous coordinates, is 

1 0 
0 1 

0 0 

(14.34) 
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which is useful only for translating attainable points. 
There exist some straight lines that are invariant. Some authors call them 

"double straight lines", "invariant straight lines", "guides", etc. 
The term "double straight lines" is confusing, because it is not true that 

the points in such straight lines are translation "invariant or double", because 
this tensor lacks invariant points. Since |M| = +1 it is a direct isometry. 

Rotation (n = 2) 

A rotation is a direct isometry in the plane that has a unique invariant point 
(called its "rotation center" C(a,6)), such that if X and X^ are two corre
sponding points {X^ = MX) , the angle CXX^ = 0 has a constant value, 
that is called "rotation angle", the sense of which can be "dextrorsum" (the 
clockwise sense) or "sinextrorsum" (counterclockwise sense). 

In this section, instead of proposing the rotation tensor directly, we shall 
build it before the reader, with the aim of emphasizing the importance of the 
multiplicative group character of the isometries, and for the reader to be able 
to do the same in similar circumstances. 

We start by assuming that the classic rotation, of center 0(0,0) and angle 
9, in Cartesian coordinates is known: 

cosO 
sin 6 

— sinö 
cos^ 

(14.35) 

Next, we follow the following process: 

1. Translation Mi. We translate the center C(a, 6) to the origin O. 
2. Rotation M2. We rotate one point an angle 6 the sinextrorsum sense, with 

respect to the actual center using Formula (14.35). 
3. Translation M3. We apply the reverse translation, taking the center C 

back to its initial position, C{a^b). 

Consequently, we have 

Ml = 

and fron 

r 1 0 
0 1 

_0 0 

i M = . 

—a 
-b 

1 

M3# 

; M 2 -

cos & — sm t̂  
sin 6 cos 0 

M3 • M2 • Ml the result is 

r 1 0 
0 1 

. 0 0 

a ~ 
b 

1 _ 
; M3 = r i 1 ^ 

COS u — s m f 

sm tf cos t 

[(l-cos6>) sin (9] 

-s inö (1 —COSÖ) 

0 0 

1 
J 

] 

a 
b^ 
a 
b 

_ 
X 

y 
t 

(14.36) 
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which is the matrix representation of the rotation tensor (9) in sinextrorsum 
sense. 

Its properties include: 

• The orthogonal straight line at the center point of the segment XX ' , passes 
through the rotation center. 

• Two corresponding straight lines r and r ' form between them the rotation 
angle 6 and are at the same distance from the rotation center. 

Central symmetry (n = 2) 

The central symmetry is a particular case of the homothecy of ratio k 
Applying Formula (14.29) to our case, we have 

-1. 

1 

V 
1 

- - 1 
0 
-

_ 0 

0 
- 1 
-
0 

1 2/ii-i 
1 2/i2 

+ -
1 1 -

X 

V 
1 

(14.37) 

The center of this homothecy, the point H{h^^h'^)^ that we assume in Carte
sian coordinates, is called the "center of symmetry". This symmetry is an 

isometry because its associated matrix T ~ ' 
0 is orthogonal. 

Since \M\ = -f-1, it is a direct isometry. 
Some authors classify this isometry as a rotation of 6 180° TT radians. 

Axial symmetry (n = 2) 

The axial symmetry is characterized by an invariant straight line, which called 
the "symmetry axis", is the orthogonal straight line at the center of any 
segment X X ' joining corresponding points. 

Following the method for the rotation listed above, we could obtain the 
matrix representation of this tensor by the following process: (1) establishment 
of an axial symmetry of simple axis, (2) general translation and rotation, 
previous to the symmetry to initially locate the axis in an arbitrary position, 
executing the symmetry, and (3) reversing the rotation and the translation, 
in that order. Nevertheless, following the maximum information criterion of 
this book, we employ another method to establish the tensor. 

Assume that the Cartesian equation of the axis is known (see Figure 14.9): 

e = Ax-^By-^C = 0. 

If the data were given in the form e = 
write it in the previous form. 

we first operate and we 

are the 
intersections of the axis e with the Cartesian axes, are invariant points of the 

We know that the points M ( - § , 0 , l) and Â  (O, - § , 1] 
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Y 

/ Poo (A,B,0) 

P'oo (-A,-B,0) 
Fig. 14.9. Illustration of the axial symmetry. 

axis e with homogeneous equation AX + BY + Ct = 0, because they satisfy 
its equation. 

Since the point L^ of e is Loo{—B^A, 0) because it satisfies its equation, 
an orthogonal direction will be Poo{A^ 5 ,0) , because the dot product of both 
vectors is null in E^(R): 

-B A] 1 0 
0 1 0, 

which proves that the two points Poo{A^B^O) and P^{—A^—B^O) are sym
metric. Entering this information into the fundamental tensor equation {X^ = 
MX), we have 

-C/A 0 -A 
0 -C/B -B 
1 1 0 

= M 

and operating 

M •• 

-C/A 0 -A 
0 -C/B -B 
1 1 0 

-C/A 0 A 
0 -C/B B 
1 1 0 

-C/A 0 A 
0 -C/B B 
1 1 0 
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which shows that the axial symmetry tensor is 

611 

712 + ^ 2 

_^2 ^ ß2 _2AB 

-2AB Ä^ - 52 

0 0 

-2AC 
-2BC 

A2 + S2 
(14.38) 

Since the block T of matrix M in (14.38) is 

1 
T: A 2 + 5 2 

- A 2 H- 5 2 

-2AB 
-2AB 

A^-B^ 

TmT^ rp'I __ 

A^-^B'^ 
(A2 + ^2)2 0 

0 (A2 + 5^)2 
= / 2 

it is an orthogonal block and then, M is an isometry. 
On the other hand, the determinant |M| = -[{A^-B^f+AA^B^]{A^+B^ 

(A2+ß2)3 

— 1, which proves it is a reverse isometry. This in geometric terms means that 
we need to move the symmetric figure out of the plane XOY (to the space), to 
turn it and obtain the prototype figure by superposition. When we reach the 
mirror symmetry in the space (n == 3), we will see that taking the geometric 
object from the space of dimension n = 3 to the space of dimension n = 4 
to turn it, is not a feasible explanation, so we prefer the tensor properties 
exposition used up to now, ignoring the imagination of geometry. 

Similarity (n = 2) 

The product of a homothecy by an isometry is called in geometry "similarity". 
One of the most common similarities is the homothecy x rotation, not 

necessarily of coincident rotation C{a^b) and homothecy H{h^^h?) centers, 
though this similarity can be reduced to another similarity the centers of 
which C{s^^s^) = H{s'^^s'^) coincide^ in which case the unique center C = 
H = So{s-^^s'^) is called the "similarity center". We remind the reader that 
the matrix product carries the reverse order to that of its geometric execution. 

As the corresponding tensor of a similarity has as associated matrix the 
product of the matrices associated with the isometry and the homothecy, 
S = MmF^ we do not insist further on the matrix representation of similarities. 
The similarities form a non-Abelian multiplicative group. 

The determinant associated with a homothecy in the plane is \F{n — 2)\ > 
0, and then the determinant of S will be 

| 5 | > 0 i f | M | = + l - ^ (direct similarity) 

|S ' |<0 i f |M | = —1—> (reverse similarity). 
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Example 14-6 (Rotation x Rotation). In the ordinary Cartesian system (O — 
XY) of dimension n = 2 we consider a rotation of center C i ( a i , 6i) and angle 
6̂ 1, followed by a second rotation of center (7(a2, ^2) and angle 62. 

1. Obtain the resulting isometry tensor. 
2. Is this isometry another rotation? 
3. Apply this to the numerical cases: (7i(2,3), Oi — 60° (sinextrorsum) and 

^2(4 ,5 ) , 6>2 = 60°, (dextrorsum). 
4. Idem for the cases C i (5 ,1 ) , 6> = 45° and C2( l ,3 ) , 6*2 = 45°, both sinex

trorsum. 

Solut ion: 

1. Using Formula (14.36), we obtain 

Gl 

G 2 -

costal 
s in^ i 

— smt^i 
COSÖ1 

0 

COSÖ2 

sinÖ2 

0 

— sin 62 

COSÖ2 

a i ( l — COSÖ1) + bi s in^i 
—ai sin 6*1 4- 61 (1 — cos ^1) 

ai (1 — cos O2) + 61 sin 62 
—ai sin Ö2 + 61 (1 — cos 62) 

+ 
0 0 

The tensor of the indicated isometry G = Gi x G2 has associated matr ix 
G = G2*Gi: 

G 

911 9i2 
921 922 

9is 
923 

0 0 1 J 

(14.39) 

where 

gii =cos(6>i +6*2) 

912 = -sin(6>i +Ö2) 

^13 = 01 [1 - cos(6'i + 6*2)] 

+ 61 sin(6>i + 62) + (as - G I ) ( 1 - cos6*2) + (62 - 61) sin6>2 

P21 = sin(6'i + 62) 

g22 = cos(6>i + 6>2) 

923 = - 0 1 sin(6>i + 62) + &i [1 - cos(Öi + 6*2)] 

- {02 - ai)sin(92 + (62 - ö i ) ( l - C0SÖ2). 

2. We have the following cases: 
(a) If Ö1 + 02 = 0 or 6»i + ^2 = STT and (a i ,6 i ) = (a2,62) -^ G = 

h (identity). 
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(b) If öl + Ö2 = 0 or Ö1 + Ö2 = 27r and (ai, 61) ^ (a2, 62) the isometry is a 
translation, of associated vector 

r_ , i -> , ,2-> J t^ = ( a 2 - a i ) ( l - c o s 02) + ( 6 2 - ^ 1 ) sin Ö2 
r - r ei + 1 62 | 2̂ _ _(^^ _ ^^) ^^^Q^ ^ (̂ ^ _ ^̂ ^̂ ^ _ ^̂ ^̂ ^̂ ^ 

(c) If Ö1 + Ö2 = TT it is a central symmetry. 
(d) In the remaining cases, it is a rotation of angle Ö = Ö1 + Ö2. 

3. Applying this we get 

Gl 

1/2 - A / 3 / 2 I 1 + 3A/3 /2 

3/2 1/2 3 / 2 - A / 3 G2 

1/2 A/3/2 I 2 - 5A/3/2" 

-A/3/2 1/2 5 / 2 + 2A/3 

M = G2 • Gl = 

- 1 
0 

. 0 

0 
1 

0 

1 
1 

+ 1 

1 - V ^ 

1 

which is a translation of vector r = (1 — VS)ei + (1 + A/3)62-
4. Applying this we get 

Gl 

A / 2 / 2 - A / 2 / 2 | 5 - 2 A / 2 " 

A/^/2 A/2/2 | 1 - 3 V / 2 ; G2 

A / 2 / 2 - A / 2 / 2 I 1 + A/2' 

A/2/2 A/2/2 | 3 - 2 A / 2 

0 0 1 1 

M = G2 • Gl 

cos 90° 
sin 90° 

0 - 1 I 2 + 3A/2' 

1 0 I - 2 + ^2 

0 0 
- s i n 90° 
cos 90° 

(2 H- A/2) • 1 + 2A/2 • 1 
- ( 2 + A / 2 ) • 1 + 2 A / 2 - 1 

+ 
0 0 I 1 

which reveals that the isometry M is the rotation 

M = G, of center G(2 + A/2, 2A/2) and angle Ö = 90°. 

This example shows that the rotations do not form a multiplicative group. 

D 

Example 14-7 (Axial symmetry x translation). In the ordinary Cartesian 
plane (O — XY) of dimension n = 2, we execute an axial symmetry of axis 
e = 2x-^y — 2 = 0 followed by a translation of vector t — 3ei + 4e2. 
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1. Obtain the matrix representation of the resulting isometry. 
2. Classify this tensor and indicate if it is one of those discussed in the theory, 

justifying the answer. 
3. Execute this isometry over the triangle that the symmetry axis e deter

mines in the first quadrant. 

Solution: 

1. Using Formulas (14.38) and (14.34), we obtain 

Ml 
1 

22 + 12 

M2 = 

- 2 2 + 12 
- 2 - 2 . 1 

0 

1 0 3" 
0 1 4 
0 0 1 

- 2 - 2 - 1 
22 - l2 

0 

; M - A 

2 - 2 - ( - 2 ) ' 
2 - 1 - (-2) 

22 + 1 

1 

^ 5 

- 3 
- 4 

0 

-4 8 
3 4 
0 5 

M2 • Ml = -
5 

- 3 - 4 23 
- 4 3 24 

0 0 5 

2. It is an isometry, because its associated matrix has the format of affini
ties (Formula (14.27) and its block T satisfies the conditions of being an 
orthogonal matrix: 

rp ^ rpt n~i2 -3 - 4 
-4 3 

1 
25 

25 0 
0 25 = h. 

The structure of T does not allow us to identify it as a translation or a 
central symmetry. 
In addition, it is not an axial symmetry, because the terms mis = 23 and 
17123 = 24 do not satisfy the constraints in Formula (14.38). 
The final conclusion is that it is one isometry of those mentioned in the 
introduction to the section 14.3.5, without a proper name. 
The present clarification is done with full knowledge of the fact that some 
authors call it "sliding symmetry", a name that obviously we want to 
avoid. 
As IM| = —1, it is a "reverse" isometry. 

3. The vertices A^O^B of the mentioned triangle have homogeneous coordi
nates A(l, 0,1), 0(0,0,1), -B(0,2,1) and their homologous matrices are 

3 
4 
0 

- 4 8-
3 24 
0 5 

" 1 0 0" 
0 0 2 
1 1 1 

I 

5 

20 23 15 
20 24 30 
5 5 5 

which shows that the Cartesian coordinates of the transformed triangle 
are 

^ '(4,4), 0^(23/5,24/5), B'(3,6). 

D 



14.3 Affine geometric tensors. Homographies 615 

Example 14-8 (Similarity). In the ordinary Cartesian system (O—XY) of di
mension n = 2, we consider the following similarity. First, we execute a ho-
mothecy Fi of center iJ(—6,4) and ratio /c = 1/4 and then we execute over 
the homothetic figure a rotation G2 of center C(0,0) and angle 0 = 90°, 
sinextrorsum. 

1. Obtain the matrix representation of the similarity tensor. 
2. Classify the mentioned similarity. 
3. Obtain the coordinates of the invariant point, called the "similarity cen

ter". 
4. Determine the points H' and C , homologous forms of the points H and 

C according to this similarity. 
5. Determine the equation of the circumference that passing though the point 

C is tangent in C to the straight line HC. 
6. Obtain the equation of the circumscribed circumference to the triangle 

A{HCH^); it is obvious that both circumferences pass through C. 
7. Show that the other common point of the given circumferences is the sim

ilarity center. 

Solution: 

1. 

Fl 
/ 4 
0 
0 

0 
1/4 

0 

3/4. (-6) 
3/4.(4) 

1 

1 

~ 4 

•1 0 
0 1 
0 0 

- 1 8 
12 

4 

Go 
cos(-90°) 
sin(-90°) 

0 

S — 02-^1 — T 
0 1 0 

- 1 0 0 
0 0 1 

- s in ( -90°) 0 
cos(-90°) 0 

0 1 

1 0 -18 
0 1 12 
0 0 4 

which is the similarity tensor. 
2. To classify it we calculate 

1̂1 
4 
is 16 

3. The double point must satisfy 

SX = X; {S-l3)X = Ü 

S = 
1 

0 1 0 
- 1 0 0 
0 0 1 

0 1 12 
-1 0 18 
0 0 4 

> 0 (direct similarity). 

- 1 
1/4 
0 

- 1 / 4 3 " 
- 1 9/2 
0 0 

X 

y 
t 

= 
" 0 " 

0 
0 

with solution 
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X 

1/4 3 
- 1 9/2 

-

y 
- 1 3 

- 1 / 4 9/2 

t 
- 1 1/4 

- 1 / 4 - 1 

X y 

60 
t 

17' 

which implies that the similarity center in Cartesian coordinates is So (f|, f |) 
4. The homologous points are 

H' 

0 1 12 
- 1 0 18 

0 0 4 

0 1 12 
-1 0 18 
0 0 4 

- 6 
4 
1 

3 
9/2 

1 

i^'(4,6) 

C'(3,9/2). 

y-o 
4 

CH = 

C^P 

5. The equation of the tangent line at C is CH = f̂̂  
2x + 3y = 0. 
The equation of the tangent line at C is C ^ = ^ = ^ = ^ 
Ax - y + (9/2 - 3A) = 0. 
The equation of the chord CC is ^ = ff§ : CC = 3x - 2y = 0. 
The set of conies generated by the two tangents and the chord is 

{2x + 3y)[Ax -y-^ (9/2 - 3A)] + /i(3x - 2yf = 0, 

which developed leads to the set 

(2A+9/i)x^ + (-3+4/x)2/2+(-2+3A-12/x)x^+(9-6A)x+(27/2-9A)?/ - 0. 

Since it is a circumference, it must be 

2A + 9/i = - 3 + 4/i 

- 2 + 3A - 12/i = 0 

from which we obtain the parameters 

A = - 2 / 3 ; /i = - 1 / 3 , 

and substituting them into (14.40), we obtain the circumference 

2x'^ + 2y2 - 6a: - 9?/ = 0. 

6. The circumscribed circumference to the triangle A{HCH') is 

(14.40) 

x"^ +y2 y 1 
( -6)2+42 - 6 4 1 

Ô  + Ô  0 0 1 
42+ 6^ 4 6 1 

0, 

and operating, the result is 

x^ -^y2 + 2x- lOy = 0. 
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7. The radical axis associated with the previous circumferences is 

2(x^ + y2 + 2x - lOy) - {2x^ + 2y2 - 6x - 9?/) = 0 -> lOx - lly = 0, 

and solving the system of one of them with that of the radical system, we 
obtain the desired points 

r x^ + y2 + 2x - lOy = 0 f C(0,0) 
\ lOx - l l y = 0 "" \ 50(66/7,60/17) 

which proves the desired result. 

D 

Translation (n = 3) 

Nothing needs to be added to what was established for the dimension n = 2, 
with the exception that now the fixed vector t — t^ei+t^e2-\- t^e^ obviously 
satisfies fGE^(IR). 

In this case, the tensor is represented as 

X' = MX 

X' 

y' 
z' 

1 
0 
0 

0 
1 
0 

0 
0 
1 

0 0 0 
+ 

(14.41) 

Central symmetry (n = 3) 

As has been already indicated in the section dedicated to the central symmetry 
for (n = 2), it is a particular case of homothecy, with k — —1, so that applying 
Formula (14.29), we have 

vx'^ 

y' 
z' 

_ t ^ 

- 1 0 0 I 2h^ 
0 - 1 0 I 2h? 
0 0 - 1 I 2h? 

0 0 0 I 1 

(14.42) 

The homothecy center is called the "symmetry center", the point H[h}^ h^, h^) 
in Cartesian coordinates, and we have an isometry, because the associated 

-1 0 0", 
is orthogonal. matrix T \ 

Since \M 

0 - 1 0 
0 0 - 1 . 

== —1, it is a reverse isometry. 
Obviously, H is the center point of all segments XX'. 
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Rota t ion (n = 3) 

Since in Section 14.2.3 we have done a detailed analysis of the rotation tensor, 
when we referred to the vector application tensors, in this section devoted to 
the affine punctual space ^ | ( ]R), we will use all the available information 
from there. 

Assume that we have the following rotation data: 

1. The axis Cartesian equation is 

X — a 

m 

where (a, 6, c, 1) is an attainable point on the axis and {l^m^n^o) is the 
direction Poo of this axis. 

2. The rotation angle is Ö, the direction of which is given by the "right-hand 
rule", already established in Section 14.2.3. 

The unit vector defining the axis direction is 

r^l 
m 

Fe2 + ' n 

To execute the rotation G we proceed as follows: 

63. (14.43) 

1. We perform a translation Mi to bring the point (a^b^c) to the Cartesian 
origin (0, 0,0) and the whole axis with it. 

2. Once the axis passes through O, we perform a rotation Rg of angle 9 with 
respect to the actual axis, with the help of the corresponding tensor. 

3. Once the rotation has been performed, we perform a translation M2 oppo
site to the initial one, to reestablish the entire system to its initial position. 
Naturally, we must have G = M2 • Rg • Mi. 

The indicated matrix Mi is 

M l 

1 
0 
0 

0 
1 
0 

0 
0 
1 

0 0 0 
H- -
I 1 J 

To obtain the matrix associated with tensor R^ we use Formula (14.14) with 
the director cosines of our vector e, written in homogeneous coordinates: 

Re — P + m2 - n^ 

rii 

r2i 

rsi 

ri2 

r22 

^32 

ri3 

r23 

rss 

L 0 

0 
0 
0 

4- m̂  + n?) 



where 
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m = ^^ + (m^ + n^) cos 0 

ri2 = im{l — COSÖ) — n s i n ö 

ri3 = in{l — cos 6) -\-msinÖ 

r2i = £m{l — cos Ö) + n sin 6 

r22 = m^ + (^^ + n^) cos 6̂  

^23 = mn{l — cos 9) — £ sin Ö 

rs i = -^n(l — cos 9) — m sin Ö 

^32 = mn{l — cos Ö) + ^ sin 9 

r33 = n ^ + (£2 - fm^)cosö 

M2 = 

1 
0 
0 

0 
1 
0 

0 
0 
1 

a 
b 
c 

+ 
0 0 0 1 

The result of G = M2 • Rg • Mi is the rotat ion matr ix 

where 

G 
£2 4- m^ + n^ 

5̂ 11 
^21 
P31 

0 

9l2 
922 
932 

0 

Ö'13 

^23 

Ö'33 

0 

gii = f̂  + (m^ + n^) cos Ö 

gi2 — im{l — cos 9) — nsin9 

9i3 = -^^(1 — COSÖ) + msinÖ 

g2i — im(\ — cos Ö) + n sin Ö 

^22 = m^ + (^^ + n^) cos 9 

923 = mn{l — cos 9) — £ sin ^ 

^31 = -^n(l — COSÖ) — m s i n ö 

932 — mn{l — cos 9) -{- £ sin Ö 

^33 = n^ + (-̂ ^ + m^) cos 9 

914 
924 
934 

944 

914 
924 
934 

\-944 

Sil 

«521 

531 

512 

522 

532 

513 

523 

533 

2̂ + m2 

(14.44) 

(14.45) 

file:///-944
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' 2 + n 2 ) ( l - c o s Ö ) 

( m n ( l — cos^) — -^sinö) 

where 

5ii = {w? + n^ ) ( l - cosÖ) 

5i2 = —{lm{l — cos 9) — nsinO) 

5i3 = —{in{l — cosö) 4- m s i n ö ) 

521 = —{irn{l — cos 6) + n s i n ö ) 

522 = G 

523 = -

531 = —{in{l — cosO) — m s i n ö ) 

532 = — ( m n ( l — cosö) + £sin^) 

533 = ( ^ ^ + m ^ ) ( l - C O S Ö ) . 

The block T of the matr ix G is T3 = Rg^ which is an orthogonal matrix, 
as was proved in the section devoted to the rotation tensor. Thus, G is an 
isometry. 

Since the determinant \G\ — 1, it is a direct isometry. 
Some of its properties are: 

• The plane orthogonal to the segment XX^ passing through its center point 
contains the rotation axis. 

• Two straight lines r and r ' t ha t are homologous are at the same distance 
from the rotation axis. 

Remark 1J{..1. If the rotation axis were given as the intersection of two planes 

{Aix + Biy-^Ciz-^Di^O 
\ A2X + B2y -f C2Z + D2 = 0. 

and the rotation axis were required in the form 

X — a y — b z — c 

£ m n ' 

one possible solution for obtaining the rotation matrix G is the formula 

X 
1 
A 

{Bi - Ci 
{B2 — C2 

\B^ Ci 

1B2 C2 

) D, 
) D2 y 

1 
A 

(Ci - Al 
(C2 - A2 

\Ci Al 
C2 A2 

) Dil 

) I?2 
1 
A 

{Al - ß i 
{A2 - B2 

U i S i 
\A2 B2 

) D, 
) D2 

(14.46) 
with 

A = 
Bi 

B2 

Ci 

C2 + 
Ci Al 
C2 A2 + 

Al Bi 
A2 B2 

Finally, if the tensor G were the data , the rotation axis can be obtained as the 
tensor straight line of invariant (double) points, and its angle, as was indicated 
in Example 14.2 point 4, using the t race of the rotation tensor Rg. D 
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Axial symmetry (n = 3) 

This isometry is a particular case of the rotation, with angle 6 — 180°, and 
then, the only data is the symmetry axis 

X — a y — b z — c 

m 

The axis unit vector e*is that in Formula (14.43). We notate this symmetry as 
S^. The corresponding tensor matrix is obtained, letting 9 = 180° in Formulas 
(14.44) and (14.45): 

S,-

where 

1 
£2 + m2 + n2 

Sil 

Sl2 

513 

S i 4 

521 

522 

523 

524 

531 

532 

533 

5 34 

511 512 

521 522 

531 532 
n 

0 0 

^ ^ 2 _ ( ^ 2 ^ ^ 2 ) 

= 2em 

= 2£n 

= 2[(m2-f n ^ ) a -

= 2fm 

= m2-(^2 + n2) 

== 2mn 

= 2[-^ma+(^^ + 

= 2in 

— 2mn 

= n^-{i^ + m'') 

513 

523 

533 

0 

£mb-

r^)b-

= 2[~-ina - mnb + {e'^ -{-

1 
1 
+ -
1 

£nc] 

- mnc 

m^)c] 

514 

524 

534 5 

(̂ 2 + ,n2+n2) J 
(14.47) 

As in the rotation case, it is a direct isometry, where l̂ e-l = 1. The matrix S^ 
is involutive, 5*1 = J4. 

Other interesting properties are: 

• The segments XX' of homologous points have an orthogonal line at their 
center point, which is the symmetry axis. 

• Any straight line secant and orthogonal to the axis and any plane orthog
onal to the axis are "invariant". 

Remark 14-2. The same comments as those for the dimension n = 2 and with 
Formula (14.46) are applicable here. D 
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Mirror symmetry (n = 3) 

This tensor is characterized by having a plane of invariant points, called the 
symmetry plane. This plane is the plane orthogonal to all segments XX'^ 
that join homologous points, at its center point. Assume that this symmetry 
is given by the plane 

7r = Ax-^By^Cz-^D = 0. (14.48) 

In vector notation, it is the reflection tensor He^ treated in Section 14.2.4. 
The plane TT is illustrated on Figure 14.6. 

Since the data tensor H^^ is a unit vector orthogonal to the plane TT, we 
will use all that has been established in Section 14.2.4, taking a vector e'from 
the plane TT, that is, the data vector 

A B C 
e*= en H eo H 63, (14.49) 

which determines cos a, cos/? and cos 7. If cos a = 4,„ =^, then sin a = 

- ^ ^ = ^ = = ^ , with similar conclusions for the remaining director cosines. 
Once we have these data, we can enter them in the reflection tensor formula 

(14.16) to establish the mirror symmetry tensor, notated as S^^ which lacks 
only the fourth column: 

OTT — 

where 

5 l l S12 Sis 
521 ^22 523 
531 532 533 

0 0 0 

541 
542 
543 

^ 2 + ^ 2 + C^ 

Sil = - ^ 2 + 52 _̂  Q2. ^^2 ^ ^̂ ^ ^ -2AB; Sis = ssi = -2AC 

S22 = A^-B^ + C2; 523 = SS2 = -2BC; sss = A^ ^ B^ - C\ 

We know that the points ( - f ,0 ,0 , l ) , ( 0 , - § , 0 , l ) , ( 0 , 0 , - g , l ) are the 
intersections of the plane TT with the Cartesian axes, and that they are invari
ant; thus, transforming them we determine the elements of the fourth column. 

From the transformation of the first abscissa, we obtain 

A2 + B^ + C^ - A '^^~ ^ ^ ^ -

Similarly, with the other two we obtain 

542 = - 2 B D ; 543 = -2CD, 

which permits us to complete the mirror symmetry tensor. 
The block T determinant is | r | = \B^\ = — 1, which requires \ST^\ — —1, 

and so we have a reverse isometry. In Section 14.2.4 we have proved the 
involutive character of the reflection tensor R^^ thus, the matrix ST^ satisfies 

si = h. 
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14.3.6 Product of isometries 

We give the name "product of isometries" or "decomposable isometries" to 
those isometries that come from the consecutive executions of several simple 
isometries, such as those already mentioned. 

The corresponding matrix is the product M — Mk • Mk-i • • • M2 • Mi of 
the matrices associated with the factor isometries. The resulting isometry can 
be or not be one of the already studied isometries. 

If the determinant |M| = 1 the resulting isometry is a direct isometry, 
otherwise, i.e., \M\ = —1, we have a reverse isometry. 

The set of all isometries M such that \M\ — —1 are called by some authors 
"pseudo-isometries", which refers to isometries that are not proper. 

We note that the product of an even number of reverse isometries is obvi
ously a direct isometry. 

We consider it of interest to mention some concrete decomposable isome
tries: 

• The product of two mirror isometries ST^^ • 5?^ is: 
1. A translation, if TTI and 7r2 are parallel. 
2. A rotation if TTI and 7r2 intersect. 

• The product of two central symmetries is a translation. 
• The product of two axial symmetries S^^ • Sg^, is: 

1. A rotation if the axes ei and 62 intersect. 
2. The product of a rotation by a translation if the axes ei and 62 cross 

without intersection. 
• The product of three central symmetries, of non-aligned centers, is another 

central symmetry, of center the fourth vertex of the parallelogram defined 
by the centers of the given symmetries. 

• The product of a rotation by a translation of direction that of the rotation 
axis, is called helicoidal isometry, though certain authors call it "oblique 
helicoidal" when the translation direction does not coincide with the ro
tation axis. 

Example 14-9 (Product of transformations). We consider a rotation in the clas
sic geometric space Ep{lR) of value 6 and direct sense (see Figure 14.10). The 
rotation axis is contained in a plane that passes through the axis OZ and 
makes an angle ß with the plane XOZ. That axis passes through the origin 
O, making an angle a with the axis OZ. Next, we perform a "scaling" (change 
in the dimensions of the Cartesian axes) of factors ki, /c2 and ks, respectively. 

1. Obtain the rotation matrix Gi. 
2. Obtain the scaling matrix F2. 
3. Obtain the matrix T of the mixed transformation. 
4. Give the equation of the transformed sphere of the sphere with equation 

2:̂  + y^ -f 2^ = 1, in the following numerical case: 

a = 45°; ^ = 30°; ki = 1; ^2 = 2; ks = 3. 
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Y 

Fig. 14.10. Illustration of a product of transformations. 

Solution: 

1. The unit vector of the rotation axis is 

e = sina cos ßei + sin a sin ße2 + cos aes. 

Applying Formulas (14.44) and (14.45), we have the block To', 

hi ^12 ^13 

^21 ^22 ^23 

^31 ^32 ^33 

where 

t i l = sin^ a cos^ ß + (sin^ a sin^ ß + cos^ a) cos 6 

ti2 — sin^ a sin ß cos /3(1 — cos Ö) — cos a. sin Ö 

ti3 = sin OL cos a cos /3(1 — cos Ö) + sin a sin /? sin B 

t2i = sin^ a sin ß cos /3(1 — cos 0) + cos a sin 6 

t22 — sin^ a sin^ ß + (sin^ a cos^ ß + cos^ a) cos 6 

t23 = sin a cos a sin /?(1 — cos 6) — sin a cos ß sin Ö 

3̂1 — sin a cos a cos /3(1 — cos Ö) — sin a sin /? sin 9 

ts2 = sin a cos a sin /3(1 — cos 9) + sin a cos ß sin ^ 

3̂3 = cos^ a + sin^ a cos 9^ 

which is orthogonal because TQ - T^ = Is 
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For the rotat ion 

Gl 
To 

0 0 0 

(in homogeneous coordinates). 

2. The scaling is an affine transformation, the matr ix of which has the format 
in Formula (14.27), with the origin 0 ( 0 , 0 , 0 ) as unique invariant point: 

Fo = 

3. r - F 2 - G i . 
4. The numerical values are 

sin a — cos a 

ki 
0 
0 

0 
k2 
0 

0 
0 
ks 

0 
0 
0 

0 0 0 1 J 

V2 . 'l ^ x/3 
— ; sm/3=: - ; cos/3 = — ; 

1 0 0 0 
0 2 0 0 
0 0 3 0 
0 0 0 1 

3+5 cos e \ /3( l -cos g)-4\ /2 sin (9 \ /3( l-cos0) + \/2sin6' r. 
8 8 4 ^ 

y 3 ( l - c o s 6')+4\/2sin6 1+7cos6» (1-cos 6>)-\/6 sing r. 
r- ^ r- ^ r- ^ 

\ /3( l -cos6 ' ) - \ /2s ing (1-cos 6»)+Vising l+cos^ n 
4 4 2 ^ 
0 0 0 

which leads to 

3+5 cos 6> \/3(l-cos6>)-4\/2sing \/3(l-cos6>)+\/2sin6' r. 
8 8 4 ^ ^ 

\/3(l-cos6>)+4\/2sinö 1+7 cos 6* ( l - c o s g ) - \ / 6 sin6' r. 
r~ ^ ^ ^ r- 2 ^ 

3\/3(l-cos6>)-3\/2sin6' 3(l-cos6')+3\/6 sine» 3+3 cos6> n 
A A O ^ 

However, the application of the operator in this case is simpler if we use 
the factors. 
Since the rotat ion axis G\ is one of the sphere diameters, the rotated 
sphere is the same sphere. Thus, we need to apply only the "scaling" 
tensor to the sphere: 

-t^ ^{)-^\x y z i \ 

1 0 0 
0 1 0 
0 0 1 
0 0 0 

01 
0 
0 

- 1 

~ x~ 
V 
z 
i 

0 (sphere); 
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'x'' 
y' 
z' 
t' 

= F2 

' x~ 
y 
z 
t 

—> 
~ x' 
y 
z 
t 

= F2-' 

'x'' 
y' 
z' 
t' 

and substituting this into the sphere equation, we get 

ü' y^ z' f]{F^ 

which implies 

- i \ t 

rJ f] 

1 0 0 0 
0 1/2 0 0 
0 0 1/3 0 
0 0 0 1 

1 0 0 01 
0 1 0 0 
0 0 1 0 
0 0 0 - 1 

F,-' 

'x'' 
y' 
z' 
t' 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 - 1 

= 0, 

1 0 0 01 
0 1/2 0 0 
0 0 1/3 0 
0 0 0 1 

'x'' 
y' 
z' 
t' 

[x' y' t'] 

1 0 0 0 1 
0 1/4 0 0 
0 0 1/9 0 
0 0 0 - 1 

'x'' 
y' 
z' 
t' 

which is an ellipsoid. 

.o^(xr+\{yr^l{zr=h 

D 

14.4 Tensors in Physics and Mechanics 

Given an arbitrary body in static equilibrium, subject to a set of exterior 
forces and moments and subject to given supporting conditions, we present 
the problem of determining the distribution of the interior forces, together 
with the strains that such stresses produce on this material. 

The problem has been faced by substituting the real body by simplified 
models that allow us to apply tensor methods to obtain results that are close 
to the real ones. Next, we mention some of the common models. 

• Rigid solid. A rigid solid is an ideal undeformable solid typical of rational 
mechanics; by eliminating possible deformations it permits us to calcu
late the reactions in certain cases (isostatic problems) and not in others 
(hyperstatic problems). 

• Elastic solid. This model considers the elastic deformation of the body, 
which permits us to establish tensor differential equations, frequently in 
sufficient number for its resolution, but for which integration is the main 
difficulty. 
It is customary to accept the linearity in the stress—strain relationship 
(Hooke's law), according to which the object recovers its initial form as 
soon as the causes of its deformation disappear (linear elasticity). 
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In other cases, when the problem nature requires more complicated as
sumptions, it is necessary to accept that the forces and moments are in
fluenced by deformation and we enter into the region called "non-linear 
elasticity". 
Plastic solid. Permanent deformations are accepted. 
Isotropic solid. The elastic and plastic properties are the same for all di
rections. 
Anisotropic solid. The elastic and plastic properties depend on the consid
ered direction. 

We will consider also the simplifications related to the stress concept. 

Fig. 14.11. Illustration of the stress concept. 

Consider a solid in equilibrium under the external actions and the reactions 
acting on its supporting points (see Figure 14.11). Let A be a solid interior 
point and TT a plane with given orientation passing through A. The solid is 
divided into two parts by TT. Removing the upper part, but substituting its 
effect on point A, in order not to alter its equilibrium, from mechanics we 
know (see Example 14.3) that all the actions of the removed upper part on 
the point A can be reduced to a single resulting force R and a pair of forces, 
the moment MA • Taking over the plane TT and around A a small neighborhood 
of area AS and assuming the following limits: 

lim —— = t; lim —— = m = 0; null pair 
As^O As As-^O As 

in linear elasticity the vector t (stress vector) is "the stress at the point A 
corresponding to the orientation of TT" and m, though it is non-null, is not 
considered. However, m is considered in non-linear elasticity. 

If we denote by e*the unit vector orthogonal to the plane TT, the orthogonal 
projection of t over e can be obtained by means of the projection tensor, 
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notated G and called the "normal stress": 

and the complementary projection vector of the vector t is notated r, and is 
called the "shear stress": 

both at the point A and relative to TT. 

14.4.1 The stress tensor S 

Consider a stress tensor, defined by means of a symmetric matrix 

S{x,y,z) = 
a^ {x, y, z) Ta^y (x, y, z) r^^^ {x, y, z) 
T:^y{x,y,z) (jy{x,y,z) Tyz{x,y,z) 

{x,y,z) Ty^{x,y,z) cr^{x,y,z) 

which associates with each point A{XQ^ yoy^o) of the geometric punctual space 
Ep{lR) a numeric tensor, then we obtain 

S=^ xy 

ixy 

lyz 

lyz (stress tensor). (14.50) 

Assuming Cartesian axes with the origin at the point A and parallel to 
the reference frame, the tensor S assigns to each unit vector e = cos ai + 
cosßj -f cosjk^ which gives the orientation of the orthogonal plane TT that 
passes through A, the corresponding stress t = t^i -\- t^j + t^k. In summary, 
the tensor operates as 

t = 5(e); 

For example, the scalars of the first column of the tensor matrix S are 
none other than the stress components t in A, related to the plane YOZ^ and 
e'is the direction (1,0,0) in this case. 

If we calculate the vector Pe{i) = S^^we obtain the "normal stress" vector 
in A to the surface, the modulus of which, according to the projector Pg is 

't^' 

e t3 
= S 

COS a 

cos/3 
cos 7 

Ge — e't—[ COS a cos ß cos 7 ] 
(^x 

Txy 

'^xz 

^xy 

ay 

^yz 

^xz 

'Tyz 

(Jz _ 

COS a 

cos yS 

cos 7 

which implies 



14.4 Tensors in Physics and Mechanics 629 

Gr^ COS^ Oi-V (Jy COS^ ß -^ Cfz COS^ 7 + "^.Tr^y COS a COS ß 

+ 2Txz cos a COS 7 + 2Ty2 cos /? cos 7. (14.51) 

Similarly, if we calculate (J3 — P(e'))(^ = ^-K-, we obtain the "shear stress" 
vector, the modulus of which can be calculated from the Pythagoras theorem: 

T. = 4W^l-
The "main directions" ei^eji^em are those associated with the unit eigen
vectors of the matrix 5, In such directions, the resulting stress t has only a 
normal stress component a and lacks the shear stress component (TV = 0), 
that is, t = a. The stresses a/, (?//, auj are called the main stresses. 

The characteristic polynomial of the matrix 5 must satisfy 

5(e) 
ax - cr 

Txy 

'xy 

'yz 

'^xz 

^yz (14.52) 

Once the eigenvalues crj^cru^auj of the symmetric matrix S have been ob
tained, three mutually orthogonal unit eigenvectors are determined, which 
supply the orthogonal change-of-basis matrix Q, such that 

S = Q'SQ = Q-^SQ 
0 - / 0 0 
0 an 0 
0 0 am 

(14.53) 

Some authors resolve the stresses in a certain direction at the point A, starting 
from the canonized tensor S and with the help of interesting geometrical 
constructions (Mohr diagram), but not from the tensor point of view. 

Finally, we comment on other utility of the stress tensor. When varying 
the directions of the unit vector e'on the point A, if we assign it the role of a 
position vector, the extremity of which is the point P{x^ ?/, z) with respect to 
the Cartesian system {A — XYZ)^ it is evident that the set of points covered 
by its extreme P is the sphere x^ -^ y'^ -[- z^ = 1. 

Similarly, we can assign to the extremity P ' of the stress vector t the 
coordinates of P\X^Y^Z) = P\kt^^kt^^kt^)^ with the t components at a 
given scale k. Next, we discuss which is the set of points covered by the point 
P' of t corresponding to the extreme points P of e. Using the tensor relation 

we obtain 

X 
Y 
Z 

cos Of 

cos/3 
cos 7 

kS 
cos a; 
cos/3 
cos 7 

k-^S-
X 
Y 
Z 

(14.54) 
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and since 

[ cos a cos ß cos 7 ] 

substituting into (14.54) and (14.55) we get 

cos a; 
cos/3 
cos 7 

(14.55) 

[X Y Z]{S-^)' {S-^^ 

from which we get the quadratic equation 

X 
Y 
Z 

[X Y Z] 
(^x 

'Txy 

"^xz 

Txy 

ay 

^yz 

^xz 

^yz 

CTz _ 

"T 
/ 

'X' 
Y 

[z\ 
(14.56) 

This quadratic can be classified easily when we subject Formula (14.56) to 
the change-of-basis in (14.53): 

( i ) ' [ X Y Z]{S 

^[^\x Y Z] 

-)'r 

0 

0 

') 

X 
Y 
Z 

0 

0 

and operating, we obtain the new Cartesian eq 

}p y2 Z 

0 

nation 

2 

) \ 

'X 
Y 
Z 

+ {kaif {kauf {kcJnif 
(14.57) 

which proves that (14.56) is an ellipsoid, called a "stress ellipsoid", that de
clares in a visual way the stress state around the point A. 

14.4.2 The strain tensor F 

Assume an orthonormalized reference frame {O — XYZ) in the ordinary punc
tual space £^|(]R), and consider a solid body of a continuous elastic material 
over which several exterior forces and moments act, keeping it in static equi
librium. This originates on its interior some stresses that modify the relative 
position of its particles, a situation known as "elastic deformation". It is con
venient to substitute the complex reality of the phenomenon being analyzed 
by a mathematical model that, close to it, permits us to make acceptable 
predictions. This section is devoted to the model description. 
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If a particle initially occupies an arbitrary position P{x^y^z)^ and after 
the deformation occupies the position P^{x\y\z^)^ the vector PP^ = c — 
u{x^ y, z)i + v{x^ ?/, z)j + w{x^ y, z)k (see Figure 14.12) is called the "displace
ment vector" of the given point. In this way we assist in the creation of a 
vector field c such that to each concrete point PQ a displacement vector CQ is 
assigned (which would be numeric if the scalar functions of u^v and w were 
known). 

PIP' = QQ" = c 

PQ = TO" = Ar̂  

Q"Q'" = A(Aro)=ACi 

C r p ' = r(ArS)=Ac2 

Q ^ ' = A'c=A î+A"c2 

QQ' = c+A'c 

X 
Detail: 

Fig. 14.12. Illustration of the strain tensor. 

If the displacement QQ^ of another point Q{x + Ax^ y + ^y , z + Äz)^ close 
to P , is known, we can study and compare the changes in the initial distance 
\PQ\ of the points P and Q, and th-e final distance |P 'Q' | of the new final 
positions. Similarly, we can analyze the relative position of the vectors PQ 
and P 'Q' , due to the elastic deformation. 

The intervening vectors are 

Aro =PQ=-OP-OQ = Axi + Ayj + Azk. 

If we set 

where 

Ar^ = \PQ\ = ^{AxY + {Ayf + {Az^, 

Ax ^ Ay Az 
cos a = ~—; cos p — ——; cos 7 = —— 

Zlro Ar^ Ar^ 
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e = cos Oil + cos /3j + cos 7/c (unit vector), 

we can assume 

and similarly 

Afo = PQ-= Aroe 

Af= P'Q' = Ar^'%-^ Ar'^j-i-Ar^k. 

(14.58) 

(14.59) 

The tensor that directly transforms the vector Afo into Af will be denoted 
by Tjj and called the "strain tensor" 

Af=TD{Afo)=TD{Aro^, 

which in matrix form becomes 

rz\r^i 
Ar"" = TD 

'Ax' 
Ay 
Az 

and also 
Ar^ 
Ar^ 
Ar^ 

= ATOTD 

cos Of 

cos/3 
cos 7 

(14.60) 

If we denote by "J7" the Jacobian matrix 

J 
U V W 

X y z 

du du du 
dx dy dz 
dv dv dv 
dx dy dz 
dw dw dw 
dx dy dz 

as in the tensor analysis treatises, the following matrix relation is, as a first 
approximation, established: 

TD=h+ J: (14.61) 

not considering higher order terms. A tensor field has been created that assigns 
to each point PQ a strain tensor To, useful for studying the vectors Afo close 
to PQ. 

The conclusions of the mentioned study are separated, in the tensor anal
ysis books, into three steps that are illustrated in Figure 14.12: 

1. In the first step the vector PQ = Afo undergoes a translation equal to 
the displacement c of the point P , to reach the position P'Q^'. From the 
figure, we get 

which is 

PQ + QQ' ^PP' + P^Q'] zAfo + (c + Z\c) = c + Z\r, 

Af = Afo + Ac. (14.62) 
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2. In the second step we analyze the vector Ac and we conclude that it 
is composed of two summand vectors. The first one, the vector Q"Q"' 
represents a rotation of the vector Zlfo during the deformation. We confirm 
this by means of a tensor, denoted by A and called a "rotation tensor", 
the associated matrix of which is anti-symmetric: 

A^-{J-J' 
0 -w^ 

w^ 0 
Wy 

0 
(14.63) 

If Q"Q''' = Aci = {Aci^i + {AciYj + {Acifk it operates as Aci 
A(Z\fo), i-e., in matrix form 

\{^c,n 
(Ac^r 

[{^c,r\ 
= A 

'Ax' 
Ay 
Az 

AVQA 
cos a 
cos/3 
cos 7 

(14.64) 

We insist that this tensor rotates the vector ATQ^ but it does not deform 
it. 

3. In the third step we study the second summand of Z\c, the vector Q'"Q' ̂  
which represents the true measure variation that Ar^ undergoes during the 
process. This summand is determined by the creation of another tensor, 
denoted by F and called a "pure strain tensor". As usual, a new tensor 
field is created that assigns to each point PQ its F tensor, represented by 

r = -[j7 + jr*]^ 
L 2'^xz 

2lxy 

2^y^ 

olxz 
2lxz 

e. 

(14.65) 

Finally, if we set Q"'Q' = Ac2 = {Ac2)^i-i-{Ac2)'^j-^{Ac2)^k, the F tensor 
operates as 

Ac2=F{Aro); 
\i^c,)n 

(Ac,)'' 
[(^CifJ 

= r 
' Ax^' 
Ax' 
Ax^ 

AroF 
cos a; 
cos/3 
cos 7 

(14.66) 

As has been indicated, this tensor gives the variation (the increment or decre
ment) of vector Z\fo, so that, as can be deducted from the detail of Figure 
14.12, the vector of strict deformation (ignoring rotations) is 

Afo + F{Afo) = {h + r){Aro) ^ ToEAfo). (14.67) 

A new tensor denoted by TBE and called a "strict deformation tensor" has 
been created, the associated matrix of which is 

F'DE — l2>^ F. (14.e 
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The moduli of the vectors Tc)£'(^fo) give the strict measure of the deformation 
but ignoring rotations and translations. 

In summary, we substitute Formulas (14.60), (14.64) and (14.66) into 
(14.62), which precisely is 

/4r - Afo + {Aci + Ac2), 

and we obtain the matrix relation 

1" 

2 

3 
= AT^TD 

cos a 
cos/3 
cos 7 

= Avoh 
cos a 
COSyS 

cos 7 
-VAr^A 

cos a 
cos/3 
cos 7 

^Ar^r 
cos a 
cos/3 
cos 7 

and from it, the tensor relation 

TD = (Is + r ) + A = TDE - (14.69) 

a very important expression that relates all tensors that play a role in the 
total strict elastic deformation. 

If we apply only the tensor F over the unit vector e, we obtain the vector of 
"pure deformation" that corresponds to the mentioned direction. This vector, 
projected over the direction ?, gives the component "unit enlargement e in 
the direction of e*", of the pure deformation vector r{e): 

e = e^ r{e) = [cosa cos/3 cos 7] 
^x 2̂  Tec?/ 

'ölxy ^y 
2lfxy 2^yz 

Ix 

2^y^ 

cos a 
cos/3 
cos 7 

(14.70) 
The other component of the r{e) vector, orthogonal to e, is called "angular 
or tangent deformation" and it is represented as ^7. It can be calculated by 
means of the Pythagoras theorem (in a similar way to that for the stress tensor 
S in Section 14.4.1), and then, we obtain 

If we look for the vectors ?or ^7 we can use the projectors 

(14.71) 

e = P,{r{e)); -j = P,^{r{e)). (14.72) 

We clearly appreciate that, according to the proposal, if the orthonormal basis 
of Ep{lR) is {e*a}, the tensor components of F can be interpreted as 

raa=='ea*F{ea) and F^ß = Fßa = ea^F{eß) = ep9F{ea), a^ß. (14.73) 

As any symmetric tensor, F has real eigenvalues (e/ ,ej/ , e///) and the cor
responding unit eigenvectors are orthogonal, that represent the directions of 
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maximum or minimum unit deformation (e) and in addition null tangent de
formation (7 = 0). With the given eigenvectors, the orthogonal matrix L is 
built that canonizes the tensor 

r = L^n = L-^n 
€/ 0 0 
0 en 0 
0 0 em 

(14.74) 

all in agreement with the behavior of the stress tensor S. 
The directions 

Ia(0,±cos45°,±cos45°); ?6(±cos45°,0, d=cos45°); 4 (±cos45° , dicos45°,0) 

applied to the tensor F and using the Formulas (14.70) and (14.71), allow us 
to calculate the maximum tangent deformations (|7max)'-

27.«.) = VlADP - (e.)̂  = J f ^ H ^ ^ l - i'-^^A^^ ^ 

'II + ^iii - ^^ii^ni ^ eii - em ^ (14.75) 

Similarly, for e& and ic-
The first invariant of the characteristic polynomial, that is, the trace of T, 

is called the "cubic unit dilatation coefficient" at the point P and is denoted 
by Cy: 

Cv = e^ + ey -i- ez = ei -^ en + e///, (14.76) 

which represents the unit volume increment of a small volume 5V in the 
neighborhood of P , 

due to elastic deformation. 

14.4.3 Tensor relationships between S and F. Elastic tensor 

In the most general case of anisotropy, Hooke's law can be generalized, assum
ing that (cr, r ) produce deformations not only in the corresponding directions 
but in other directions. 

In summary, we assume that each of the six stresses ax^ cry, az, Txy, r^z•> ^yz 
that constitute the stress tensor S are homogeneous linear functions of the 
six deformations ex->ey,ez^ Ixy^lxz^lyz of the tensor F. In addition, since 
the deformation potential function must have coincident cross derivatives, the 
matrix F must be symmetric, and the generalized Hooke's law, in matrix form 
becomes 



636 14 Affine Tensors 

' O-x ' 

Oy 

^Z 

Txy 

'^xz 

-^yz -

E 

•^x,y 

•^x^z 

^x^xy 

^x,xz 

^x,yz 

E 
^x^y 
E 

^y.xy 

^y,xz 

^y,yz 

Ex 
Ey 
E. 

G 
G. 
G 

z,xy 

z,yz 

Gx 
Gy 
G 

G, 
G, 
G. 

z,xy 

xy,xy 

xy,xz 

xy,yz 

Gx 
G 
G. 

Gx 
G. 
G 

y,xz 

xy,xz 

xy,yz 

G: 
G 
G 

G 
G.. 
G 

x,yz 

y,yz 

z,yz 

xy,yz 

xy,yz 

xy,yz -

• ^x " 

^y 

^z 

Ixy 

TiCZ 

-lyz -
(14.78) 

Of the 36 coefficients in this matr ix, 21 are not repeated. 

The tensor conception of the generalized Hooke's law for an anisotropic 

elastic solid given in Formula (14.78), appears such tha t the stress tensor 

S — [5°°1 comes from the contraction of a fourth-order tensor, called the 

"elastic tensor" C 
" i j k i 

], which represents the elastic properties of the 

medium, with the deformation tensor F — [7°°], all of them associated with 

the Euclidean space ^ ^ ( R ) . The contracted tensor equation is 

0 0 0 0 0 0 0 0 

ijki^ki^ (14.79) 

with all indices in covariant position, because they are tensors in orthonor-
malized bases. The matr ix representation of the tensors tha t appear in (14.79) 
is 

r o°i 
'xy 

'^xz 

ixy 

lyz 

>yz \r = Yi k£i olxy 

2 7a: 2: 

2^^y 

2^yz 

olxz 

2^yz 

C^[c°Z\ = 

J^x^x 

^x,xy -^x,y 

^x,xz ^x,yz 

^x,xy ^x 
G. 
Ex 

x,yz 

^x,xy ^xy,xy^xy,xz 

^xy,xy ^y,xy ^xy,yz 

^xy,xz^xy,yz ^z,xy 

G, ^xy,xz^x 

^xy,xz ^y,xz ^xz,yz 

}-^xz,xz^xz,yz ^z,xz 

^x,xy ^xy,xy^xy,xz 

^xy,xy ^y,xy ^xy,yz 

^xy,xz^xy,yz ^z,xy 

^x,yz ^xy,yz^xz,yz 

^Xy,yZ Gy^yz Gyz,yz 

^xz,yz^yz,yz ^z,yz 

^xy,xz^xz,xz 

^xy,xz ^y,xz ^xz,yz 

t^xz,yz ^z,xz 

x,yz ^xy,yz^xz,yz 

^xy,yz ^ _ _ ^yz,yz 

xz,yz^yz,yz ^z,yz 

Ex,. ^z,xy ^z 

^z,xy -^y-iZ 

^z.xz ^z 

^z,yz 
E 

^z,yz -^z^z 

(14.80) 
with 1 < i^j^k^i < 3; where i is the row block index, j is the column block 
index, k is the row index in each block and £ is the column index in each 
block. 

The usual planning of the elastic problem is as follows: 
1. The tensor field S{x^ y, z) of the stress s tate is known. 
2. We discover the elastic tensor field C{x^y^ 2:), by performing experiments 

in the laboratory. 
3. The tensor field r[x^y^z) is determined by means of Formula (14.79), 

which permits us to relate the Jacobian J partial derivatives. 
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4. The partial differential equations obtained in the previous step are inte
grated to discover the displacement tensor field c. 

5. Once c is known, the remaining deformation tensors T]j^A and T^E can 
be obtained. 

In the most common case, that is, the case of homogeneous isotropic elas
tic solid^ the following material constants of the material are defined and 
validated: 

1. E^ elasticity modulus or Young's modulus. 
2. I/, Poisson's ratio. 
3. G , transversal elasticity modulus, shear modulus. 
4. A, Lame's constant. 

Some existing relations among them are 

E , vE 
G 

2(1+ i/)' 
A 

A 
(l + z/)(l-2zy)' 2(A + G) ' 

E = 
(3A 4- 2G)G 

A + G 
(14.81) 

With these constants we establish the isotropic elastic tensor: 

C^[c\ jkii 

(A + 2G) 
0 
0 

0 
G 
0 

0 
0 
G 

0 0 
A 0 
0 A 

G 0 
0 0 
0 0 

0 G 
0 0 
0 0 

0 
G 
0 

A 
0 
0 

0 
0 
0 

(A 

G 
0 
0 

0 
+ 2G) 
0 

0 
0 
G 

0 
0 
0 

0 
0 
A 

0 
G 
0 

0 0 
0 0 
G 0 

0 0 
0 0 
0 G 

A 0 
0 A 
0 0 (A 

G 
0 
0 

0 
G 
0 

0 
0 

+ 2G) 
(14.82) 

Once the contraction in Formula (14.79) is performed, we arrive at the 
isotropic elastic matrix relation, with the expressions 

or 

S - 2 G r + A(trace r)h 

r=^S-^{tmceS)h 

(14.83) 

(14.84) 

(14.85) 
because 

trace 5 = (3A + 2G) (trace T). 

We remind the reader that trace F = Cy (cubic dilatation coefficient). 
Formulas (14.83), (14.84) and (14.85) are equivalent to the Lame equa

tions: 

Xcy + 2Gex; r^y = Gj^ Jxy 

Cy ACy -f- ZLrCy, I XZ 

(Jz — Xcy + 2Ge^; r, 
IXZ 

yz — ^lyz' 

(14.86) 
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Example 14-10 (Elastic and thermic tensors). Consider a homogeneous, elas
tic and isotropic solid, of cubic form and edge £, the material of which has a 
Young's modulus E and a Poisson's ratio v. Three exterior forces of respective 
values Fx, Fy and Fz act orthogonally to three contiguous faces of the solid 
(see Figure 14.13). Due to the elevation of the temperature, thermic stresses 
are produced inside the solid and are proportional to the thermic gap Z\t, 
where the material proportionality constant is /c, where both k and At are 
data. 

- F w 

Fig. 14.13. Illustration of the elastic and thermic tensors. 

1. Obtain the tensor and matrix representation of the stated problem. 
2. Determine the solid unit cubic dilatation coefficient Cy expressing it in 

terms of the "Bulk modulus", B — ^^^2^^)' 
3. Assuming that the solid is incompressible, determine its Poisson ratio. 
4. Assuming that the solid is liberated from any exterior force, what is the 

pure deformation F tensor to which it is subject due to thermic action? 

Solution: 

1. Assuming that initially the material is subject to stresses due to the exter
nal forces, experimentally we observe that the thermic dilatation relaxes 
them. This permits us to complete Formula (14.79) by means of the tensor 
expression 

o o o o oo K.Ai. 

For an isotropic solid we use the matrix formula (14.83): 

S = 2Gr + A(trace F)h - khAt. (14.87) 

2. Developing the diagonal terms, from the matrix equation (14.87) we obtain 

cr^ = 2Gea, + A (trace F) - kAt 

ay = 2Gey -K A (trace F) - kAt 

Gz = 2Gez + A(trace F) - kAt, 
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and adding them 

<̂x + cTy + cr;̂  = 2G{tx + ê  + e )̂ + 3A(trace F) — 3kAt 

or 
trace 5 = (2G + 3A)(trace T) - 3kAt, (14.88) 

which is none other than Formula (14.85) completed with the thermic 
term. 
On the other hand, from Formulas (14.76) and (14.81) we have 

c-y = ê  + Cy -^ Cz = trace F 

E uE (1 + iy)E 
2G -f 3A = 2 

2(1+ z/) (l + z/)( l -2i / ) (l + z/)( l -2i / ) 

and taking Cy and (2G H- 3A) to Formula (14.88) we get 

trace 5 /cZ\t 
trace 5 = 3^c^ — ok At -^ Cy = —-— \ —, 

DID JD 

which in this case is 

trace b = ax -\- (Ty -^ az = -
(2 

which finally leads to 

^Fx + Fy^Fz kAt 

3. For it to be incompressible it must be Cy = 0, which from Formula (14.76), 
implies trace F = 0. 
Obtaining the trace F from Formula (14.87), and taking into account that 
in the previous question we obtained (2G + 3A) = j : ^ ^ , we arrive at 

^ trace 5 + 3kAt 1 — 2zy , ^ ^ ̂  ^ x 
trace F = ^ = — ^ (trace S + 3kAt) = 0, 

an expression that, if z/ = | , is null. 
4. If there are no exterior forces and moments, the stress tensor is S = i?, 

which implies trace 5 = 0. Taking now the first condition to the matrix 
equation (14.87) and the second to (14.88), we obtain 

2 G r + A(trace r ) / 3 - kAth = ^\ 
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trace F • 
SkAt 

(2G + 3A)' 

In the second question, when we studied the Bulk modulus, we obtained 
2G + 3A = i-2iy^ thus, taking the last two expressions to the previous 
matrix equation, we obtain 

2Gr + A UkAt^^ ^^^ ) h - kAth = ^, 

and substituting G and A and operating we get 

2(1 +i/) 
vE 

(l + i / )( l-2z/) 

3(1 - 2v) 
~E 

- 1 kAth = ^ 

E 

that is, 

-r kAth = ^ ; EF -\- (2i/ - \)kAth = ^ , 

F 
E 

kAt] h-

n 
Example 14-11 (Main stresses). The stress state of a solid at a certain point 
is 

-4 ; Gy 2; a. = 1; r, xy 4; T^ Tyz = 0. 

1. Obtain the stress tensor S. 
2. Obtain the total stress tensor t that acts on a plane TT the normal to which 

has the direction of the vector r*(l, 2, 3) and obtain also the modulus of t. 
3. Determine the "normal component" vector a and its modulus cr, corre

sponding to t. 
4. Determine the "tangent component" vector r and its modulus r , acting 

on the plane TT corresponding to t. 
5. Determine the main stresses, vectors ffi^^ii^^iii^ and their moduli. 
6. Determine the maximum shear stress. 
7. Give the orthogonal directions of the planes where the maximum shear 

stress acts. 
8. Give the value of the normal stress corresponding to the maximum shear 

stress. 
9. Obtain the orthogonal direction to a plane such that it has an associated 

pure shear state (a = 0). 
10. Obtain the vector r and its modulus r in the previous case. 

Solution: 

1. The stress tensor is 
-4 4 0 
4 2 0 
0 0 1 
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2. The unit vector of direction f is 

1 (?+2j-f3^) 

and then 

[t] = S[er] 
4 4 0" 
4 2 0 
0 0 1 

1 

vTi 

" i " 
2 
3 

1 

vTi 

"4" 
8 
3 

t = (4^^4-8/4-3fc) 

1 |tI = - = V 4 2 + 82 + 32 = 

3. Using Formula (14.3) for the Projector P^^, we have 

1 
14 

1 2 3 
2 4 6 
3 6 9 

Pe.& 14x/l4 

1 2 3" 
2 4 6 
3 6 9 

• 4 " 

8 
3 

1 
V l4 

F l 1 
V, 

3 

29. 
a = Pg^{^ = —er -

29 
14 "• 14VT4 

;i + 2j + 3A:). 

The previous equality declares that a = \a\ — j | , though it can also be 
calculated as a dot product: 

1 
a = Cr • t • 

W 
1 2 31 5̂ (4 + 16 +9) ^ g . 

4. Using Formula (14.4) for the "complementary" projector P^J-, we have 

%(* ) 
14V14 

13 - 2 - 3 
- 2 10 " 6 
- 3 - 6 5 

13 - 2 - 3 
- 2 10 - 6 
- 3 - 6 5 

9V70 
14V14 

.[3?+6j-5A;] , 

1 

V70 

r 31 
6 

- 5 

14 "̂ " 14VT4^ 

which declares that r = \f\ = ^ ^ , though it can also be calculated using 
the Pythagoras theorem: 

/89 29 /:—77; 7: ov / ^v \ '±K)0 V /— /405 
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5. The characteristic polynomial of S is 

- 4 - 0 - 4 0 
4 2 - er 0 
0 0 1-cr 

0 ( c r - l ) ( a^ + 2 a - 2 4 ) = 0, 

and the corresponding eigenvalues are 

a I — 4; an = 1; cr/// -6, 

which are the moduli of the main stresses; the first two are tensions (pos
itive) and the last one is a compression (negative). 
The unit eigenvectors are 

-8 4 
4 - 2 
0 0 

For cTj = 4 

which leads to aj — •4=(̂  + 2^'). 

For Gu = 1 : 

which leads to an — k 

For (J/// = -

x' 
X2 

X3 

= 
0 
0 
0 

-> 
x̂  
x2 

x̂  
= 

1 
2 
0 

-5 
4 
0 

2 
4 
0 

4 
3 
0 

4 
8 
0 

0 
0 
0 

0 
0 
7 

x̂  
X2 

X3 
= 

0 
0 
0 

-^ 
x' 
x^ 
x3 

= 
0 
0 
1 

x̂  
X2 

X3 
= 

0 
0 
0 

-^ 
x' 
X2 

X3 

= 
r 21 
-1 

L oj 

which leads to am = -4=(2i — j ) . 
It can be verified that the change-of-basis associated with the eigenvectors 
is a direct orthogonal matrix 

l/%/5 0 2/Vh 
2/Vb 0 - 1 / v ^ 

0 1 0 

1 2 
2 - 1 = 1, 

that is, the new trihedron is a "direct" trihedron. 
The matrix Q produces the "orthogonal canonization" of S as 

5 = Q- ^SQ = Q'SQ = 
[4 0 0 
0 1 0 
0 0-6 

Finally, the sought after vectors are 

4 
^/ = —^i^ + 2i); aii = k; ani = -^(2i-j). 
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6. According to Formula (14.75) applied to the stress tensor S and directions 
^a^^b^^c^ we obtain the following results: 

(Tii - (Tin 1 - (-6) 7 
y^maxja 

\^max)b 

y^maxjc 

CTI 

2 2 
4 - ( - 6 ) 

a I - an 

= 5 

4 - 1 

2 2 2 
and conclude that the maximum shear stress corresponding to the orthog
onal directions e?>(cos45°, 0, ±sin45°) is Tmax — 5. 

7. The previous orthogonal vectors (-^,0,±-y^) are the directions of the 

maximum shear stress referred to the tensor S. Since the question refers 
to the tensor 5, we must recover with the change-of-basis Q, the directions 
to the initial basis {i, j , k}. In matrix form, the inverse change is 

X - 2 / v ^ 0 
0 1 

2/%/5 
- 1 / V ^ 

0 

3/VlO 
1/yiö 

0 

•l/x/2 l/x/2 
0 0 

_1/V^ - l / ^ / 2 

so that the orthogonal directions sought after of shear stress r — b are 

- I / V I O 
3/\/IÖ 

0 

e^i (3?+J) and ê ^ = -j={-i-\- 3j). 
10 

The reader can verify, applying the process described in question 4, that 
in fact a value r = 5 corresponds to the cited directions. 

8. The normal stress corresponding to the maximum shear stresses can be 
calculated as 

0-1 = e^, •5(efeJ 

^ [ 3 1 0] 

10 

14 
0 

[3 I 01 
- 4 4 01 

4 2 0 
0 0 1 

I 

VTÖ 

"3" 
1 
0 

10 
(-24 + 14 + 0) 

-10 

10 
= - 1 ; 

0-2 = 662 • S{et2) 

10 
[ - 1 3 0] 

10 

16" 
2 
0 

[ - 1 3 o; 

10 

thus, we have ai — a2 — —1. 
The two planes of shear stress r 
value 1. 

-4 4 0 
4 2 0 
0 0 1 

1 

v ^ 

" - 1 " 
3 
0 

(-16 + 6 + 0) 
-10 

10 
= - 1 ; 

5 undergo normal compressions of 
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9. To solve this question we refer it to the reference frame system of tensor 
5, and once solved, we return to the initial reference frame, as it was done 
in question 7. 
Let e(£, m, h) be the desired direction; we must have 

a- = e » 5 ( e ) = 0 ; [i m h] 
4 0 
0 1 
0 0 

01 
0 

-6 J 

£ 
rh 
n 

0; 4i^ + m^-6n^ 0. 

The general solution of this equation, in parametric coordinates, is 

rh = 2\/6A/Li 
n - / i ( l + A2). 

We choose X = fi — 1; {£^m,n) = (0,2^6,2), that is, the vector 
f(0, \/6,1), and we proceed to return it to the initial basis 

One solution is 

e' 
m 
n 

_2_ 0 ^ 
0 1 0 

0 

1 

1 

75 
2 

- 1 

f — 2i — j -i- v30k; eV ( 2 z - J + V30A:). 

10. The vector ê  = - ^ ( 2 i — j -\- \^k) has associated stress U: VS5 

- 4 4 0 
4 2 0 
0 0 1 

2 
- 1 

-12 
6 

and since a 

\/35 

- 0, then r 

v/6. 

t^ = 1 (_12i*4- Qj-i- VSÖk) and r = |C 

• 
Example 14-12 (Mixed stresses). Consider a metal tube for which the scheme 
is given in Figure 14.14, with radius R = 30 cm and width 5 = 2 mm. 

Over the ends of the tube two moments are applied: 

• A bending moment in the plane YOZ of value Mp — 3i mT (meter x 
tonne). 

• A torque moment of axis OZ and value MT — 4^ mT. 

1. Give the stress tensor S at the point P far from the tube ends. 
2. Indicate the points at which the maximum stress occurs. 
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Fig. 14.14. Illustration of the metal tube. 

3. Give the value of this maximum stress. 
4. Give the unit vector orthogonal to the plane in which this stress occurs. 

Solution: 

1. We assume as a simplifying assumption that the mean radius of the tube 
is R^ that is, that the width is negligible with respect to the radius. Ac
cording to this, the tangent stress produced by the torque moment on the 
plane XOY is 

_ MT _ MT 

^ ~ R{27rRs) " 27r5i?2' 

and then the shear stresses on this plane, parallel to the axis OX and OF, 
as can be seen in Figure 14.15, are 

"̂  ^xz'^ I '^yzj -r sm ai -\- r cos aj 
y ^ X ^ 

thus, in summary: 
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MT y MTV 
^11Z 

27: sB? R 2TISR^' ^^ 

MT X 

2nsB^ ' 'R 

MTX 

2iTsR^' 

Fig. 14.15. Illustration of the stresses on the metal tube. 

On the other hand, due to the bending moment a tension is produced 
on the plane section XOY^ t ha t , according to the theory, is az = —p^. 
To calculate the inertial moment I^, of the plane section with respect to 
the axis OX we apply again, as a first approximation, the simplifying 
assumption of negligible width with respect to the radius. Then, we have 

I.= 
2 

^{27rRs)R^ TTSR"^ 

and taking this result to a^, we obtain az = ^f^-
Once these stresses are known, we can determine the stress tensor at the 
point P ( x , y, z) far from the tube ends, at which concentration of stresses 
takes place due to the proper deformation. The tensor S is 

ixy '^xz 

'^yz 

(Jr. 
27rsR^ 

0 
0 

-MTV 

0 
0 

MTX 

-MTV 

MTX 

2MFy 

2. By means of the characteristic polynomial, we determine the main stresses 
and from them we deduce where the maximum stresses occur: 

-a 0 
0 -a 'yz 

Tn yz 

0; a [o-̂  - (Jzcr -f (r^^ + r̂  
•yzJ 
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In conclusion, cr[cr̂  — a^a + r^] = 0 and o- = ^ ±\/[^) -\-T'^, and since 
T is constant, the maximum value of a will occur for the + sign and at 
the tube generatrix AB^ for which ciz is a maximum. 

3. The value of az at the generatrix points AB [y — R) is 

(2MFy\ MF 

and the maximum stress becomes 

\S^z)max _, {^z)r 
l 2 

-i^+jr^^v+r^^v 
2'KsE? "̂  V î  21:sB? ) '^ \ 2TTsR? ) 

1 

Numerically, expressing the moments in cmxkg, we get 

amax = ^ ^[3x10^+732 + 42x10^1 = i ^ i l L ^ 235.8 kg/cm^ 
27r X 0.6 X 302 ^ ^ v ^ j 339292 ^/ 

or amax = 235.8 x 9.8 x 10^ = 2311 x 10^ pascal. 
4. The eigenvector corresponding to the eigenvalue a is 

£ m n 

and for the Gmax is 

so that the eigenvector becomes 

• [i,m,n) = (-T,0,a^a^) = ^ ^ ^ (-MT,0,M^ + ^JM^VM^ 

= Ao(-4,0,8). 

Finally, the unit vector is e^^^^ = "7F("~^ + 2/c). 

14.4.4 The inertial moment tensor 

Consider the ordinary geometric space referred to the classical orthonormal-
ized system [O-XYZ). 

D 
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Fig. 14.16. Illustration of the inertial moment tensor. 

An homogeneous rigid solid S lies on O, rotates around an axis that passes 
through O and has instantaneous direction e. 

We consider an elemental mass in the neighborhood of a given point 
P(x, y, z) of the solid (see Figure 14.16). The sum of all products of the mass 
times the square of its distance to the axis is called the "inertial moment of 
the solid with respect to the axis e" and is denoted by 

h= r'^dm. (14.89) 

s 

If we notate the unit vector e as 

e = £i-h mj-^ nk; f' + m .̂ -f n^ = 1 

and the position vector of the point P is 

V = OP = xi ^ yj -|- zk^ 

we can calculate the vector Fusing the complementary projector P^±, Formula 
(14.20), as 

r = P^±{v) = 
(1 - f) -im -£n 

~im (1 — m^) —mn 
—in —mn (1 — n^) 
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so that since P^± = Pl^ we have 

r'^ =z f9r= [x y z] Pi± • P^. = [^ y z]Pl^ 

and since the projectors are idempotent, we obtain 

'{l-P) -Urn 
r =\x y z] Pg± [x y z] 

-In 
im (1 — m?) —mn 
-in —mn (1 — n^) 

or 

[x y z] 
(m^ + n^) —im —in 

—im (ß + v?) —mn 
—in -mn {ß + m?) 

Next, we develop this expression and substitute in Formula (14.89), to obtain 

7e = / r^dm = f {m^ + n^)x^ + {i^ + n^)y2 + {i^ + m^)z^ 

s s 
— 2{imxy 4- inxz + mnyz)dm 

7 (y^ + z'^)dm + m^ / (x^ + z'^)dm + n^ / {x^ + y^)d?: 

(im / xydm -\- in I xzdm + mn / y2;dm , 

s s s I 

i I {y^ + z^)dm-i-m^ I [x^-^ z^ )dm ^ n^ I {x^ -\-y^)dm 

s s 

xydm -\- in I xzdm + mn 

s 

where we not ate 

h= I {y^ + z'^)dm; Iy= {x^ + z^)dm; h= {^'^ + y^)dm; 

s s s 

^xy = / xydm; Pxz = / xzdm; Pyz= yzdm. 

s s s 

(14.90) 

The expressions Ix',Iy> Iz are the inertial moments with respect to the Carte
sian axes and because of its essence they are always positive scalars. The 
expressions Pxy>Pxz^Pyz are called "inertial products" and also "centrifugal 
moments". If Formulas (14.90) are taken into the expression for le, we get 

4 = 4^2 _̂  j ^ ^ 2 ^ j^^2 _ 2P^yim - 2P^zin - 2Pyzmn 

eml{e). (14.91) m n] 
• 4 

•Lxy 

•'- xz 

— P 
•Lxy 

ly 
— P 

•^yz 

— P 
-'- xz — P 
-Lyz 
Iz 

' i 
m 
n 
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The notation / corresponds to the so-called "inertial moment tensor", and is 
a symmetric tensor, the matr ix representation of which is 

1 = 

-P.. 
-P. 

-P. 
(14.92) 

If t he origin O of the Cartesian system coincides with the center of gravity G 
of the solid 5 , the inertial moment tensor is denoted by IQ-

If the axis e does not pass through the solid center of gravity, but another 
parallel axis passes through it, the inertial moment with respect to the passing 
axis will be denoted by {lG)e and its relation to Jg Is called the Steiner theorem 

/ . {h G)e, (14.93) 

where m is the solid mass and A the distance between the two parallel axes. 
If the rotation mentioned at the beginning of this section has angular 

velocity w around the axis e, the "angular velocity" vector will be 

w = we = w£i + wmj -h wnk = w\i + W2J + w^^k^ (14.94) 

where w is in radians/sec. 

The vector I{w) is called the "kinetic moment" of the solid S with respect 

to the axis e and it is denoted by he- ^^ he = h\i -\- h2J -\- h^k^ we have 
(remember tha t i + m . 2 _ 

hi 
h2 
hs 

I{w) = 

wl{e) — w 

1) 

-p. 
xy 

-P. 

xy 

yz 

-P.. 
yz W2 

Ws 

xy 

-P —P 
•^ xy •'• x 

I —P 
J.OJ J. q 

yz 
•^ xz -'- yz -^z 

(14.95) 

The dot product | it;*/ie is denoted by Ec and is called the "kinetic energy" 
of the solid S due to the rotat ion w. We have 

Ec = -t t ; • Ke = - {we) • I{w) = - {we) • {wl{e)) 

and applying Formula (14.91), the result is 

E. 

\w\e.l{e)\ 

lhw\ 
2 

(14.96) 

As for all the second-order symmetric tensors, the characteristic polynomial 
of the tensor / presents real eigenvalues, J i , / 2 , / 3 , in this case all positive, 
tha t are called "main inertial moments" . 
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The unit eigenvectors 01,02,03, associated with these eigenvalues are the 
"main directions" and give the maximum and minimum inert ial moments, 
and null inertial products. 

With the eigenvector components in columns a orthogonal matrix Q is 
built, that canonizes the tensor J: 

/ = Q-^IQ = QUQ = 
h 
0 
0 

0 
h 
0 

0 
0 
h 

; / i > /2 > 3̂ > 0. (14.97) 

Equation (14.91), which gives the solid inertial moment /e as a function 
of the director cosines {£^m^n) of the unit vector e*, can be written as 

I. 

-2P. 

m 

We 
n 

+ /. 

2P, yz 

n 

m 

7z. 
n 

TT, 

t m 

and if we choose a point A{x^y^ z) in space, the coordinates of which satisfy 
the conditions 

(. m n 
y / • ^ e V - ^ e V - ^ e 

the end A of the position vector OA covers the surface: 

IxX^ + lyy'^ + Izz"^ - 2Pa:yXy - 2Pa:zXz - 2Pyzyz = 1, (14.98) 

which is known as the "inertial ellipsoid" of the solid 5, referred to the axis 
e. 

Example 14-13 (Inertial tensors associated with a solid). Consider an orthog
onal parallelepiped, with its edges coinciding at a vertex a^b^c^ and assume a 
material with density p = 1. 

1. Obtain the solid inertial tensor, assuming that its position on the reference 
frame is a e OX, b £ 'ÖY and c G UZ. 

2. Give the inertial tensor / G , with respect to the system (G—XYZ). 
3. Give the inertial moment le of the solid with respect to the axis e= OG^ 

verifying its calculation in the system: (a) (O—XYZ), (b) (G—XYZ). 
4. We locate the solid in the reference frame system {O — XYZ) in another 

position b £ OX; c G OY; a G OZ. Answer again questions 1, 2 and 3. 
5. Are the values of the main inertial moments of the tensors labc^ hca main

tained? 
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Solution: 

1. According to Formulas (14.90), we have: 

4 = hy'^ + z^)dm= / / {y^-i-z'^)dxdydz 

s s 
a b c 

= I dx J dy Jiy' +z'')dz=^{b' +0") 
0 0 0 

^y = / (^^ + z'^)dm = / / (x^ + z^)dxdydz 

s s 

a b c 

= fdx fdy f{x^ + z^)dz = ^{a^ + c'') 

0 0 0 

Pxy = {xy)dm= / / {xy)dxdydz 

s s 
a b c 

= / xdx / xdy dz = —— (ab) 

0 0 

_ abc . . 
Pxz = - ^ ( ß c ) 

Pyz = -^{bc) 

3 inertial tensor, 

/ = {abc) 

0 

according 

3 
ab c 
4 

ab 
4 

to Formula 

ab ac 
4 4 

3 4 
6c a^+b^ 
4 3 

2. When locating the reference frame system {G — XYZ) with origin at the 
point G ( | , | , I ) and axes parallel to those in (O — XYZ)^ the limits in 
the integrals change and since the solid presents three axes of symmetry 
in G, the inertial products are all null. Summarizing: 

{IG)X = {y2 + z'^)dm = f I f{y2 + z'^)dxdyd 

6/2 c/: 

/ * / 

s s 
a/2 6/2 c /2 

dx ' ^- ' ^- - • -2 

-a/2 - 6 / 2 - c / 2 

abc, 
(y2 + z')dz=—{b' + c') 



14.4 Tensors in Physics and Mechanics 653 

{IG). 

abc 

~V1 
abc 
~V2 

{a'^-c^) 

(a'-^b') 

and Po xy 

IG = 

yz ~ ^' which proves tha t the inertial tensor is 

2 0 

0 

abc 
0 a'^ ^c^ 

0 a 
2 , ^2 

We note tha t in this case the inertial moments {lG)x^{lG)y>{lG)z ^ire 
the main inertial moments, and tha t the main directions are those of the 
Cartesian axes (for the tensor IQ)-

3.(a) The director vector OG is ( f ^ l^ f ) ' ^^^ ^^ ^^^ ^^^^ vector will be 

e = 

Using Formula (14.91), we have 

{ai + bj -h ck). 

(abc) 
1 

abc 

\abc] 

h^+c' 
3 
ah 
4 

ah 
4 

ah 
n 4 , 

a^^-c^ 
3 
he 
4 

ac 
4 
6c 

o 4 , 
a'-^h' 

3 

62 + c2 

abc 

a^ ^c^, + 6̂  a& 

vo^TFT? 

6c, 
c^ - 2—a6 - 2 — a c - 2 —6c ; 

a2 + 62 + c2 

a6ca262 + 62c2 

2(a262 + 62c2 + a2c2) a262 + 62c2 + a^c 

c?^ 
6 a2 + 62 + c2 • 

(b) Using the same formula with the tensor IQ we obtain 

a6c 1 
ilG)e 

12 Va2 + 62 + c2 
\abc\ 

b^-^c^ 0 0 
0 a^ _!_ ^2 Q 
0 0 a^ _̂  6^ 

a6c (6^ + c2)a2 + (a^ + c2)ö2 + [p? + 62)c2 a6c a^ö^ + 52^2 ^ ^2^. 

VoMTpTfT^ 

^2^2 

12 a2 + 62 + c2 a2 + 62 + c2 

We obtain the same results, as it corresponds to the same axis. 
4. (a) Following a parallel process, we obtain 

abc, cy ^ abc,^^ 9. 
4 = — ( c ^ + a^); / y - — ( ö ^ + a^); / . 

abc 
(6^ + c2); 
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P -^bc- P -—ha- P -—ca-

r = (abc) 

2 , 2 
a +c 

3 bc 
4 

ab 
4 

6c 
4 

^ 2 1 7 2 

3 
ac 
4 

a6 
4 
ac 
4 

b^+c^ 
3 

(b) 

abc, abc abc, 
{lGh = ^{c'-^a'); {Ia)y = ^{b' + a'); (1^)^ = ^{b'+ c'); 

12 

. abc 

12 12 

a^+c^ 0 0 

0 0 b^^c^ 

(c) i. The director vector OG is now (6, c, a), and so the unit vector will 
be 

e^ = _^{bi + cj + ak) 

IL, 
abc 

^JWTWT^ 
[bca 

a + c be ab 

\ 2 12 4 
oc g + 0 ac 
4 3 - 4^ 

_ab _ac b + c 
4 4 3 

1 

v o ^ T F T ? 

u. 

(/^ 
a6c 

GJe' 
12 vo^TT^T? 

[6ca] 
a^ + ĉ  0 0 

0 a^ + 62 Q 
0 0 b'^-hc^, 

Va^ + 62 + c2 

5. We can observe that 

that is, if M : 

, _, . a6c a262 + 62c2 + a2c2 _ , ^ . 
( ^ ) e ' - T " a2 + 62 + c2 = ( ^ ) 

with MM* = Js, the result is 
0 0 1 
1 0 0 
0 1 0 

0 1 0 
0 0 1 
1 0 0 

{abc) 

b^+c^ ab ac 

3 2 ^ 2 ^ ab a -\-c be 
4 3 4 
ab be a -j-b 
4 4 3 

0 0 1 
1 0 0 
0 1 0 

(abc) 

a + c be ab 
3 4 4 
be a +b oc 

\ ^ \ 2 ^2 
ab oc 0 + c 
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Since the matrices I and I' are orthogonally similar, with passing matrix 
M, they have the same characteristic polynomial. Thus, the matrices I, F 
have the same eigenvalues, and thus, the same "main" inertial moments. 
In reality, the matrix M is the proper matrix of a rotation around an 
instantaneous axis that passes through O, as it corresponds to the most 
general displacement of a solid with a given fixed point. In fact, analyzing 
the matrix M, we have \M\ — 1, that is, it is a "direct" rotation. 
In Example 14.2, point 2, we obtain the formula giving the value of the 
rotation angle Ö, when its associated matrix is known: 

^ trace M - 1 0 - 1 1 ^ , ^ ^ o r. l . / . V ^ 
cosö = = = > Ö = 120°; cos6> = - - ; smO = -V-

2 2 2 ' 2 ' 2 
According to the rotation tensor formula (14.14), identifying the terms 
mil and mi2, we determine the director cosines of the axis e: 

mil =cos^aH-(cos^/3 + cos^ 7) cos Ö = cos^ a + (cos^yö + cos^7)(—1/2) = 0 

m22 =COS^/3H- (cos^a + cos^ 7) cos Ö = cos^ ö̂ + (cos^ a + cos^7)(—1/2) =0 . 

In our case, a simple solution is (cosa, cos./3, cos7) = ( "Tf? ^ 5 ^ ) 5 

represents a rotation with respect to the which reveals that M • 
0 0 1 
1 0 0 
0 1 0_ 

I = J, the bisectrix of the first quadrant, and angle 6 — 120°, an 
isometry that is equivalent to placing the solid in the position of question 4, 
with respect to its position in question 1. 

D 

14.5 Exercises 

14.1. Three forces Fi,F2^Fs with moduli 6, 26 and 36, respectively, act on 
the vertices of an equilateral triangle, A, B and C (see Figure 14.17): 

A(-a ,0 ) ; B (o.aVs); a.ndC{a,0), 

where Fi _L CA, F2 -L AB and F3 ± BC, and all moments Mi of each force 
Fi with respect to the origin O are dextrorsum. 

1. Obtain the resultant force R of the given system of forces. 
2. Obtain the resultant moment of the system with respect to the Cartesian 

origin O. 
3. Obtain the central axis of the given system of forces. 
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Fig. 14.17. System of forces considered in Exercise 14.1. 

4. All the forces are rotated with respect to their application points, in the 
dextrorsum sense, 90°. Give the new resultant force R\ 

5. Obtain the new central axis of the given system of forces. 
6. Obtain the "center" E of the system. 
7. Obtain the minimum moment mß of the system with respect to E. 
8. Obtain the mean radius of the minimum moment: 

rriEl 
P = ^ ^ -

\R\ 

14.2. A cube of edge a is referred to a Cartesian system (O—XYZ) the origin 
of which coincides with the cube center of gravity (O = G) and such that the 
directions of the axes are parallel to the edges. 

We subject the solid to a mixed isometry of the following characteristics: 
First, it is subjected to a rotation the axis of which has the direction 

^( ~7^' " ^ ' ~^ I' ^^S^^ "̂ ^̂  ^^^ sense (+) according to the right-hand rule, 
and then to a reflection of plane TT = | — t = a. 

1. Give the coordinates of the cube vertices after the isometry. 
2. With the aim of verifying the correct execution of the isometry, determine 

the lengths of the cube diagonals from the results of the previous question. 
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3. Assuming that the cube weight is P , we wish to find the required energy 
to produce the isometry. 

14.3. The points of a continuous, isotropic and elastic medium, subject to 
given exterior forces in equilibrium, undergo a displacement with respect to a 
reference frame system (O—XYZ) given by the vector 

-̂  -̂  r 4 ^^ 2 2^ 1 2r 
c = m -^ vj -{- wk =^ "^^ "̂  IF^ ^ ~^ 'K^ ' 

and the elastic constants of the medium have the following values: 

i r = 1 0 ^ c m s ; E - 2 . 6 X lO^kg/cm^; u = 0.3. 

1. Determine the strain tensor, T^, at the generic point P. 

2. Determine the so-called "rotation" tensor, A, at the point P. 
3. Obtain the "strict strain tensor", TJJE^ at the point P. 
4. Obtain the "pure deformation" tensor, P , at P. 
5. Knowing that the rotation vector 6 = ö^i + Oyj -\- 6zk of the points in a 

neighborhood of P satisfies the relation (14.7), Mto{Ox) = A, obtain the 
vector 6. 

6. Obtain the displacement c, at the point PQ{1^1^1). 

7. Obtain the tensors TD^A^TDE^^ at the point PQ. 

8. Obtain the coordinates of the point PQ, the position of PQ after the dis
placement. 

9. Obtain the directions of the main strain directions of the tensor P at PQ, 
by means of the corresponding unit vectors. 

10. A sphere with center P and elemental radius dro undergoes medium de
formation. What is the equation of the transformed surface, with respect 
to the Cartesian system of the main directions? 

11. Obtain the maximum shear strain at PQ. 
12. Obtain the strain e of an element dr^ with origin at P , that makes identical 

angles with the three coordinate axes. Give the enlargement at PQ. 
13. Using Equations (14.83) give the stress tensor at the point PQ. 
14. Obtain the normal and shear stresses in the direction of the enlargement 

in question 12. 

14.4. Consider an orthogonal tetrahedron, homogeneous, with mass m and 
orthogonal edges a, 6, c coincident with the axes OX, OY^ OZ^ respectively, 
of the ordinary reference Cartesian system. 

A system of forces, each one with modulus K acts over each edge and in 
the directions Ö 3 , OP, ÖC, IB, PÜ, UÄ. 

1. Obtain the resultant moment of the system with respect to the origin O 
and with respect to the center of gravity G of the tetrahedron. 

2. Obtain the torque moment of the system of forces with respect to the axes 
ax, ÖY and UZ. 
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3. Obtain the torque moment M^ of the system with respect to the axis e, 
represented by the straight line OG. 

4. Obtain the inertial moments Ix^Iy^ Iz of the solid with respect to the axes 
ÖX, O F and OZ. 

5. Obtain the inertial products Pxy» Pxz^ Pyz of the given tetrahedron. 
6. Obtain the inertial tensor of the tetrahedron with respect to the point O. 
7. Obtain the inertial moment Je of the solid with respect to the axis e. 
8. If the torque moment M^ acts during t seconds starting from rest, find 

the solid angular velocity \0Q\. 
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tensor product, 207 
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representation of tensors, 56 
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Mixed 
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terminology, 397 
exterior product 
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exterior products, 404 
multivector, 319 
stresses, 644 
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Modular 
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tensor nature 
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