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Foreword 

It is with pleasure that I write the foreword to this excellent book.  A wide 

range of observations in geology and solid-earth geophysics can be ex-

plained in terms of fractal distributions.  In this volume a collection of pa-

pers considers the fractal behavior of the Earth's continental crust.  The 

book begins with an excellent introductory chapter by the editor Dr. V.P. 

Dimri.  Surface gravity anomalies are known to exhibit power-law spectral 

behavior under a wide range of conditions and scales.  This is self-affine 

fractal behavior.  Explanations of this behavior remain controversial.   

In chapter 2 V.P. Dimri and R.P. Srivastava model this behavior using 

Voronoi tessellations.  Another approach to understanding the structure of 

the continental crust is to use electromagnetic induction experiments.  

Again the results often exhibit power law spectral behavior.  In chapter 3 

K. Bahr uses a fractal based random resister network model to explain the 

observations. 

Other examples of power-law spectral observations come from a wide 

range of well logs using various logging tools.  In chapter 4 M. Fedi, D. 

Fiore, and M. La Manna utilize multifractal models to explain the behavior 

of well logs from the main KTB borehole in Germany.  In chapter 5 V.V. 

Surkov and H. Tanaka model the electrokinetic currents that may be asso-

ciated with seismic electric signals using a fractal porous media.   

In chapter 6 M. Pervukhina, Y. Kuwahara, and H. Ito use fractal net-

works to correlate the elastic and electrical properties of porous media. 

In chapter 7 V.P. Dimri and N. Vedanti consider fractal distributions of 

thermal conductivity in determining the thermal structure of the litho-

sphere. In chapter 8 L. Telesca and Vincenzo Lapenna apply fractal con-

cepts to streaming potentials in porous media.  And in chapter 9 H.N. 

Srivastava considers the embedding dimensions of seismicity patterns. 

The editor, Dr. V.P. Dimri, is to be congratulated on putting together an 

excellent collection of related papers.  The basic theme is the use of fractal 

techniques to better understand the geophysics of the continental crust. The 

papers included are important for both fundamental and applied reasons. 

Donald L. Turcotte 

Department of Geology, University of California, USA 

 

October, 2004 
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Preface

Though the theory of fractals is well established, but still it is in nascent 

stage of its widespread applicability in geosciences. There is clear-cut hia-

tus between theoretical development and its application to real geophysical 

problems in the available literature. The present book is an attempt to 

bridge this existing gap and it is primarily aimed at postgraduates and re-

searchers having interest in geosciences. 

In this book the state-of-the-art fractal theory is presented and the reader 

obtains an impression of the variety of fields for which scaling and fractal 

theory is a useful tool and of the different geophysical methods where it 

can be applied. In addition to the specific information about multi-

geophysical applications of fractal theory in imaging of the heterogeneous 

Earth, ideas about how the theory can be applied to other related fields has 

been put forward. A strong point for writing this book is to touch almost 

all the topics of geophysics used for oil/mineral exploration viz. potential 

field methods, electrical methods, magnetotellurics and fractals in geo-

thermics (a new concept proposed first time), which are very important 

topics for any one practicing geoscience. The chapters are written by inter-

nationally known Earth science experts from Germany, Italy, Russia, Ja-

pan, and India with numerous references at the end of each chapter.  

This is the first book of its kind, contributed by some of the pioneers in 

the related fields, which covers many applications of fractal theory in 

multi-geophysical methods, at an accessible level. The complicated con-

cepts are introduced at the lowest possible level of mathematics and are 

made understandable. Readers will find it as an interesting book, to read 

from cover to cover. 

I take this opportunity to express my sincere thanks and regards to Pro-

fessor Donald L. Turcotte for reading the first draft of the chapters and 

writing the foreword for this book.  

Finally, I would express my deep gratitude towards Professors Karsten 

Bahr, Maurizio Fedi, Vadim V. Surkov, Drs Marina Pervukhina, Luciano 

Telesca, H.N. Srivastava, and all other contributing authors, who have co-

operated with me at every stage of editing this volume. We thank all the 

publishers and authors for granting permission to publish their illustrations 

and tables in the volume. 

Last but not least my special thanks are due to wife Kusum, who sup-

ported my endeavor with great patience.  

February 11, 2005                 V.P.Dimri 
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Chapter 1. Fractals in Geophysics and 

Seismology: An Introduction 

V.P.Dimri 

National Geophysical Research Institute, Hyderabad, India 

1.1 Summary 

Many aspects of nature are very much complex to understand and this has 

started a new science of geometrical complexity, known as 'Fractal Ge-

ometry'.Various studies carried out across the globe reveal that many of the

Earth’s processes satisfy fractal statistics, where examples range from the 

frequency-size statistics of earthquakes to the time series of the Earth's 

magnetic field. The scaling property of fractal signal is very much appeal-

ing for descriptions of many geological features. Based on well-log meas-

urements, Earth’s physical properties have been found to exhibit fractal 

behaviour. Many authors have incorporated this finding in various geo-

physical techniques to improve their interpretive utility. The aim of present 

chapter is to briefly discuss the fractal behaviour of the Earth system and 

the underlying mechanism by citing some examples from potential field 

and seismology. 

1.2 Introduction

B.B. Mandelbrot, in his book “Fractal Geometry of Nature” writes that the 

fractal geometry developed by him, describes many of the irregular and 

fragmented patterns around us, and leads to full-fledged theories, by iden-

tifying a family of shapes, he calls “Fractals”. Using this geometry, com-

plex patterns of nature like rocky coast lines, shape of the clouds, jagged 

surfaces of mountains etc. can be mapped. 

The classical geometry deals with objects of integer dimensions. Zero 

dimensional points, one dimensional lines, two dimensional planes like 

squares, and three dimensional solids such as cubes make up the world as 

we have previously understood it, but the newly coined fractal geometry 

describes non-integer dimensions. Many natural phenomena are better de-

scribed with a dimension partway between two whole numbers. So while a 



2      V.P.Dimri 

straight line has a dimension of one, a fractal curve will have a dimension 

between one and two depending on how much space it takes up as it twists 

and curves (Peterson 1984). The more that flat fractal fills a plane, the 

closer it approaches two dimensions. So a fractal landscape made up of a 

large hill covered with tiny bumps would be close to the second dimen-

sion, while a rough surface composed of many medium-sized hills would 

be close to the third dimension (Peterson 1984). A higher fractal dimen-

sion means a greater degree of roughness and complexity, for example the 

smooth eastern coast of Florida has a fractal dimension very close to unity, 

while the very rugged Norwegian coast having fjords has fractal dimension 

D = 1.52. Fractal geometry is a compact way of encoding the enormous 

complexity of many natural objects. By iterating a relatively simple con-

struction rule an original simple object can be transformed into an enor-

mously complex one by adding ever increasing detail to it, at the same 

time preserving affinity between the whole and the parts or scale invari-

ance, which is very significant property of fractals. The essence of fractal 

theory lies in the scaling of properties. 

Mandelbrot and Van Ness (1968) extended the concept of fractals in 

terms of statistical self-similarity or scale invariance in time series analysis 

which was done within the context of self-affine time series. The basic 

definition of a self affine time series is that the power spectrum has power-

law dependence on frequency.  

Fractal concept is very much useful for interpretation of time series data 

in various branches of Earth science like horizontal variability of tempera-

ture, humidity, rainfall, cloud water in atmosphere etc. All these phenom-

ena obey power law behavior over well-defined wavenumber ranges. 

These results are very much important for understanding the variability of 

the atmosphere and for improved characterization of these fields into large 

scale models of the climate system. A number of properties of the solid 

Earth have been discussed in fractal terms (Turcotte 1992). Fractal theory 

in geophysical observations has numerous applications in correlating and 

predicting situation from known to unknown and hence has attracted the 

attention of geoscientists. 

1.3 Fractal signal analysis 

Geophysical data are in the form of time series. A geophysical time series 

can be characterized by combination of stochastic component, trend com-

ponent and periodic component (Malamud and Turcotte 1999). To quan-

tify the stochastic component of the time series it is necessary to specify 
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the statistical distribution of values and persistence. There exists variety of 

techniques to quantify the strength of persistence,  but the most commonly 

used is the spectral analysis, where the Fourier spectrum of time series is 

plotted against frequency (or wavenumber in case of space series) and the 

value of slope, known as scaling exponent (say ) gives an estimation of 

persistence. Depending upon the value of scaling exponent  persistence 

can be characterized as weak or strong.  
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Fig. 1.1 Power spectrum of (a) random data, (b) persistent data, and (c) anti- 

persistent data 
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Scaling exponent controls the balance of high and low frequencies and de-

termines the degree of smoothness or correlation of the series. There exists 

a relation between the scaling exponent, Euclidean dimension (E) and frac-

tal dimension (D) of data, given as D=E-1- .

1.3.1 Analyzing geophysical time series

Persistence of the time series is a measure of correlation between adjacent 

values of the time series. The uncorrelated or random data with zero per-

sistence is the white noise. The case =0 (Fig. 1.1a) has power independ-

ent of frequency and is the familiar case of white noise. Values of such a 

time series are uncorrelated and completely independent of one another. 

The time series is anti-persistent if adjacent values are anti-correlated. 

When <0, (Fig.1.1b) the series is anti-correlated and each successive 

value tends to have the opposite sign. Noise with =-1 is sometimes called 

flicker noise, while that with =-2 is Brownian noise. The time series is 

persistent if adjacent values are positively correlated to each other. For 

>0 (Fig.1.1c) the series is positively correlated. 

1.3.2 Fractal behaviour of various physical properties 

The Earth's inherent complexity makes it difficult to infer the location, dis-

tribution and structure of rock types, grain size distribution, material 

strength, porosity, permeability etc. from the direct observations; these 

characteristics are often inferred from the distribution of fundamental 

physical properties such as density, electrical conductivity, acoustic im-

pedance and others. Table 1.1 lists physical properties that are most com-

monly related to geological materials and/or structures, and types of geo-

physical surveys that can map variations of these physical properties.  

Table 1.1  Physical properties and associated geophysical surveys 

Earth’s physical properties Associated geophysical survey  

Electrical resistivity /conductivity DC resistivity, all electromagnetic 

methods 

Magnetic susceptibility Magnetic methods 

Density Gravity, and Seismic methods 

Acoustic wave velocity Seismic reflection or refraction 
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Other physical properties that can be usefully mapped include charge-

ability, natural radioactivity, dielectric permittivity, and porosity. These 

properties, measured indirectly through geophysical surveys, record the 

Earth's response. It is observed from the German Continental Deep Drill-

ing Programme (KTB) examples illustrated in Fig. 1.2 that the source dis-

tribution of above-mentioned physical properties follow power-law, hence 

they are fractal in nature.  
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Fig.1.2 Power spectrum for (a) density, (b) susceptibility, (c) electrical resistiv-

ity and (d) thermal conductivity data from KTB borehole Germany 

For geophysical study the physical response of the Earth can be ap-

proximated by convolution model (Dimri 1992). Extraction of useful in-

formation from the observations made over the surface needs advanced 

processing and interpretation techniques. Fractal theory finds vivid appli-

cations in all the aspects of geophysical exploration, which has been dis-
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cussed in subsequent section by citing some examples mainly from acqui-

sition, processing and interpretation of potential field data. 

Data acquisition

Geophysical surveys are generally carried out along the existing roads. 

Such a convenient survey can miss an anomaly of interest. An optimal de-

sign of survey network can delineate anomaly of interest. The detectibility 

limit of a large-scale geophysical survey depends on the fractal dimension 

of the measuring network and the source of anomaly (Lovejoy et al. 1986; 

Korvin 1992). The geophysical anomaly resulting from the fractal nature 

of sources (Turcotte 1992), such as nonrandom distribution of density 

(Thorarinsson and Magnusson 1990) and susceptibility (Pilkington and 

Todoeschuck 1993, Pilkington et al. 1994, Maus and Dimri 1994; 1995; 

1996), cannot be measured accurately unless its fractal dimension does not 

exceed the difference of the 2-D Euclidean and fractal dimension of the 

network (Lovejoy et al. 1986, Korvin 1992). A well-designed geophysical 

survey can delineate structures of interest that otherwise would be missed. 

A theoretical relation between the dimensionality of geophysical measur-

ing network and anomaly has been established by Dimri (1998). The de-

tectibility limits of geophysical surveys is given by Korvin (1992) as 

Ds=E-Dn where Dn and Ds are the fractal dimensions of the network and 

the source, respectively, and E is the Euclidean dimension. Sources with 

fractal dimensions less than Ds cannot be detected by a survey network of 

fractal dimension Dn. Hence, the fractal concept can be used to design the 

survey network in order to detect the small sources of interest. The same 

concept can be applied to design seismic arrays also. 

Data processing

The fractal theory plays a crucial role in interpolation of the data at the 

time of processing, as the spatial locations of data sets are in-

homogeneously distributed. Gridding of such data suffers from the interpo-

lation errors, which are manifested in terms of spurious anomalies due to 

aliased-interpolated data. Short wavelength anomalies of potential field 

data produce aliasing, which can be minimized using this approach. The 

fractal dimension of measuring network characterizes the data distribution 

and represents the density of data distribution in simplest way, unlike other 

techniques. Using fractal dimension, optimum gridding interval can be ob-

tained, which is used for optimum interpolation interval obeying Shanon’s 

sampling theorem. This concept is being widely used while processing of 
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potential field data where an error in gridding and interpolation can lead to 

spurious results. 

The potential field data are often subject to a number of processing 

techniques to improve their interpretive utility, which can be efficiently 

carried out in the frequency domain using fast Fourier transform (FFT). In 

general the acquired geophysical data sets do not satisfy basic require-

ments of FFT, hence grid extrapolation is required by filling in any unde-

fined values and enlarging the original grid size so that the effects of the 

periodicity is minimized. In such cases a fractal based conditional simula-

tion method (Tubman and Crane 1995) can be used for grid extrapolation. 

Fig. 1.3 The error between the reflectivity and the output from (a) standard de-

convolution and (b) scaling deconvolution method. The relative error energy is 

13% for standard deconvolution, and 5% for scaling deconvolution (after Toverud 

et al 2001) 

In seismic data processing deconvolution plays a crucial role and to in-

corporate the fractal behaviour of reflectivity sequence, new deconvolution 

operators have been designed (Todoeschuck and Jensen 1988; 1989, Sag-

gaf and Toksoz 1999). Toverud et al (2001) have compared the perform-

ance of standard deconvolution with scaling deconvolution and arrived to 

the conclusion that the percentage error involved with recovery of reflec-

tivity series using fractal based scaling deconvolution is less than that 

compared to the standard deconvolution which is optimal only for a white 

noise reflectivity (Fig. 1.3). 
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Data interpretation

Interpretation of geophysical data is usually carried out in space and fre- 

quency domain. Normally one of the following types of source distribution 

is assumed in geophysical interpretation. 

Spector and Grant (1970) suggested spectral method, based on random 

distribution of source, to estimate thickness of sedimentary basins from 

gravity and magnetic data. Later the concept of fractal distribution was in-

troduced for preliminary interpretation of geophysical data (Pilkington and 

Todoeschuck 1990; 2004, Gregotski et al. 1991, Maus and Dimri 1994; 

1995; 1996, Fedi et al. 1997, Quarta et al. 2000). This new method is 

known as scaling spectral method (SSM). The conventional spectral 

method is a particular case of the scaling spectral method.  Second order 

statistics that includes the power spectrum of density and susceptibility of 

the core samples obtained from different boreholes, can be given as  

P(f) = f - (1.1)

where P(f) is power spectrum, f is wavenumber and  is the scaling expo-

nent. For mathematical convenience, earlier authors have assumed random 

behavior of sources ( =0). The SSM has been applied to many potential 

field data sets (Fig. 1.4) for estimation of depth to the top of the sources. 

Bansal and Dimri (1999; 2001) demonstrated the application of this 

method to interpret gravity and magnetic data acquired along the Nagur-

Jhalawar and Jaipur-Raipur geo-transacts in India. 

Fractal models can be used in the inversion of potential field data. Com-

putation of forward gravity response over a fractal structure has been de-

scribed in Chapter 2 of this book. In case of magnetics, when the data is 

inverted by using models of constant susceptibility distribution blocks, the 

fractal behaviour can be introduced through the parameter covariance ma-
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trix, in the least squares solution of the problem (Pilkington and To-

doeschuck 1991). The parameter covariance matrix controls the smooth-

ness of the final solution. The matrices can be designed to maximize the 

smoothness, under the assumption, that the results contain a minimum 

amount of features that are found more likely to represent those which are 

actually present in the data (Constable et al. 1987). Pilkington and To-

doeschuck (1991) showed that the inclusion of fractal behaviour of vari-

ables in the inversion is equivalent to imposing a smoothness constraint. 

Such inversions can be called naturally smooth on the grounds that they 

have their smoothness determined in an objective manner from data.  

Fig. 1.4 Power spectrum of aeromagnetic data over a sedimentary basin (data 

from Pilkington et al. 1994). The correct depth to source is approximately 1700 m. 

The solid lines indicate the best fit of the model power spectrum in a least square 

sense for some selected values of . For  =3.8 the best overall fit is obtained, 

=3.0 is the mean value of of the scaling exponent for aeromagnetic data derived 

by Gregotski et al. (1991) and =0 corresponds to the Spector and Grant method. 

The smaller the values we assume for , greater the estimated depth to source. (af-

ter Maus and Dimri 1996) 

The effect of including fractal behaviour in magnetic susceptibility for 

the inversion of magnetic data has been illustrated by Pilkington (1997) 

with a 2-D example using a conjugate gradient inversion algorithm. Re-

sults obtained using =0, showed spurious variations in susceptibilities, 

which were likely to be caused by the inversion method itself. In contrast 
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of above, the scaling solution behaved well and had a level of smoothness, 

consistent with the prior knowledge of the spatial variability of the variable 

for which it was solved. 

Another practical example is the use of aeromagnetic data to estimate 

the depth to basement in sedimentary basins. As sedimentary rocks gener-

ally have low susceptibilities the field can be taken as originating from 

crystalline rocks of the basement. Downward continuation of a white 

power spectrum greatly overestimates the source depth (Pilkington et al. 

1994). Maus and Dimri (1996) have examined potential field spectra and 

found that in each case, the spectra can be fit well simply by a fractal mag-

netization distribution whose top is at ground level. This reveals that the 

potential field spectra do not contain independent depth information and a 

priori constraints are needed to resolve the correct depth to source.  

If it is assumed that the magnetization of the continental crust is induced 

by the main field, then the prediction of a 1/f4 3-D magnetization distribu-

tion (field) is also a prediction of a 1/f4 distribution of magnetic suscepti-

bility (source). Maus and Dimri (1994) pointed out that the scaling expo-

nents of density and susceptibility distribution are related to the scaling 

exponents of the observed gravity and magnetic field respectively by sim-

ple equations. However, it is possible that in certain geological situations 

these relationships are not exact. 

Here, one can assert that using a single straight line to describe the 

power spectrum is an oversimplification and some times the spectrum 

could be fitted with more complicated functions. This forms an interesting 

problem for future research.  

1.3.3 Variogram analysis of potential field data 

Maus (1999) claimed that variograms are the appropriate space domain 

statistical tools to analyze magnetic and possibly gravity data. He trans-

formed a self similar spectral model analytically to the space domain in 

order to avoid the distorting effects of transforming the measured data to 

wavenumber domain. After describing the gravity and magnetic scaling 

spectral models Maus (1999), has derived the corresponding variogram 

model for the complex case of aeromagnetic profiles in a non-vertical in-

ducing field. The variogram model for gravity data is subsequently derived 

as a special case.  

It is noteworthy to mark that model variograms do depend on scaling 

exponent besides other related parameters viz. orientation of the profile (in 

magnetic case), depth, and source intensity. Hence, the precise estimation 
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of scaling exponent is essential for determination of depths using the 

variogram analysis.  

1.4 Analysis of seismological data 

1.4.1 Size-Frequency distribution of earthquakes 

The relationship between the size of an earthquake and its frequency of 

occurrence obeys fractal statistics. It is well known that very large earth-

quakes are rare events and very small earthquakes are very frequent (seis-

mically active regions can register hundreds of small earthquakes per day). 

What is remarkable is that there is a power law relationship between the 

number of large and number of small earthquakes in a given region per 

unit time. For instance every year, globally there is on an average just one 

earthquake of magnitude eight, ten earthquakes of magnitude seven, one 

hundred earthquakes of magnitude six, one thousand earthquakes of mag-

nitude five and so on. The power law in this case is  

N(m) = a A- b (1.2) 

where N(m) is the total number of earthquakes per unit time in a given re-

gion with magnitude m or greater, and A is the amplitude of ground mo-

tion, and m ~ log(A). Taking logarithm, the power law becomes  

log N (>m) = log (a)-bm (1.3)

This empirical formula is known as the Gutenberg-Richter law of earth-

quake. Globally the value of b (usually called the "b-value") is observed to 

be around 1.0, and the constant ‘a’ is about 1x108 /year (it represents the 

number of magnitude 1 earthquakes in a year). The relation between D 

(fractal dimension) and b is given as  

D = 3b/c (1.4)

where c is a constant depending on the relative duration of the seismic 

source and time constant of the recording system. For crystalline rocks the 

value of c is taken to be 3.0, for subduction zones (100-700 km depth) this 

value is suggested to be 2.4 and for most of the earthquake studies it is be-

lieved to be 1.5 (Kanamori and Anderson 1975). 
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1.4.2 Omori’s law: analysis of aftershock data  

Omori’s law (1894) in seismology is recognized as the first fractal law in 

seismology (Moharir 2000). According to it, the rate of aftershock events 

decays as the inverse power law in elapsed time after the main shock.  The 

Omori’s law describes the decay of aftershock activities with time. It is 

characterized by a power law given as 

N (t)  ~ t –p          (1.5)

where, N (t) is the number of aftershock events in unit time interval after 

the main shock and ‘p’ is the rate of decay of aftershocks. In Omori law, 

the p-value ranges from 0.5 to 2.5 but normally comes closer to 1. Subse-

quently the Omori’s law has been modified. The modified Omori law de-

scribes the rate of decay of an aftershock sequence by equating the number 

of aftershocks at some time t after a mainshock with the quantity t plus K1

(a constant) to the negative power of ‘p’, all multiplied by K2 (another con-

stant):

N(t) = K2 * (t + K1)
-p (1.6) 

1.4.3 Fractal dimension and seismicity distribution 

The fractal theory has led to the development of a wide variety of physical 

models of seismogenesis including nonlinear dynamics and it can be effi-

ciently used to characterize the seismicity pattern of a region. The fractal 

nature of the spatial distribution of earthquakes was first demonstrated by 

Kagan and Knopff (1980), Hirata and Imoto (1991), and Hirabayashi et al. 

(1992). The hypocenter distribution data suggests that the changes in frac-

tal dimension could be a good precursor parameter for earthquakes as it is 

a measure of the degree of clustering of seismic events. A change in fractal 

dimension corresponds to the dynamic evolution of the states of the sys-

tem. Generally the values of fractal dimension cluster around 1, when the 

system is relatively stable and decreases to lower values around 0.3 prior 

to the failure. The decrease in value of fractal dimension before a big 

earthquake is observed by several authors (Ouchi and Uekawa 1986, De 

Rubies et al.  1993).  

Hirata et al. (1987) showed that the change in fractal dimension with 

time is largely dependent on the crustal conditions of the study region. In 

the case of constant differential stress experiment, fractal dimension de-

creases along with the evolution of the fracture process. On the other hand, 

fractal dimension increases when differential stress increases at a constant 
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rate. These changes are also reflected in the generalized dimension spectra. 

Hence, the importance of fractal dimensional analysis, as a robust index to 

follow the evolution of spatial and temporal distribution of seismicity in 

relation to the occurrence of large earthquakes has been emphasized 

(Dimri 2000).

1.4.4 Concept of self-organized criticality  

The concept of self organized criticality (SOC) was first introduced by Bak 

et al. (1987; 1988), which is defined as a natural system in a marginal sta-

ble state, when the system is perturbed from the state of marginal critical-

ity it evolves back into it. An example of self-organized critical system is a 

sand pile, where sand is slowly dropped onto a surface, forming a pile. As 

the pile grows, avalanches occur, which carry sand from the top to the bot-

tom of the pile. In model systems, the slope of the pile becomes independ-

ent of the rate at which the system is driven by dropping sand. This is a 

self-organized critical slope. This concept of SOC has been widely used to 

explain the existence of self-similar processes like crustal deformation etc.  

In seismology, the most commonly cited example of SOC is the Guten-

berg-Richter magnitude frequency relationship. Earthquakes are largely re-

sponsible for the spatio-temporal fluctuations in strain hence, correlation 

between the scaling exponents of the spatial, temporal and magnitude dis-

tribution of earthquakes may be ascribed to the self-organization of crustal 

deformation. According to Hanken (1983), the macroscopic properties of 

self-organized systems may change systematically with time due to the 

perturbations in physical state of system, while the whole crust would be in 

a critical state and the mechanism of earthquake generation can be self or-

ganized. A good example of SOC is series of earthquakes in Koyna, India 

(Mandal et al. 2005). 

Analysis of Himalayan earthquakes like Chamoli, 1999 and Uttarkashi, 

1991 of India reveal multifractal behavior, which mainly depends on 

physical state of the system; hence there exists a direct relation of fractal 

behavior with seismotectonics of the region. The multifractal behavior of 

both the earthquakes can be linked with multiphased process of active Hi-

malayan tectonics, which is a frontier research problem. However the af-

tershock sequence of 1993 Latur earthquake that occurred in stable conti-

nent region of India exhibited monofractal behaviour (Ravi Prakash and 

Dimri 2000).
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1.4.5 Earthquake forecasting 

In order to understand the mechanism of earthquake occurrence, more 

seismic stations, monitoring micro seismicity of the region are required. 

These data sets need to be analyzed in proposing predictive model. The 

earthquakes are notoriously difficult to predict because the underlying me-

chanics that produces them is likely to be chaotic. The chaotic behavior of 

slider-block models is strong evidence that the behavior of the Earth’s 

crust is also chaotic. This implies that exact prediction of the earthquake is 

not possible, but it does not imply that earthquakes cannot be forecasted 

with considerable accuracy. Quake forecasting declares that a certain 

tremor has a certain probability of occurring within a given time, not that 

one will definitely strike. Fractals, defined previously as mathematical 

formula of a pattern that repeats over a wide range, sizes, and time scales 

are hidden within the complex Earth system. By understanding the fractal 

order and scale embedded in pattern of chaos, we can obtain a deeper un-

derstanding that can be utilized in forecasting the earthquake events. Al-

though the technique is still maturing, it is expected to be reliable enough 

to make official warnings possible in future. 

Research is being carried out to unify scaling laws like Gutenberg–

Richter law, the Omori law of aftershocks, and the fractal dimensions of 

the faults that provides a framework for viewing the probability of the oc-

currence of earthquakes in a given region and for a given magnitude. These 

laws can be unified together by a single scaling relation (Christensen et al. 

2002), which can be turned into an equation that can be solved to find the 

probability that one or more aftershocks in a given magnitude range will 

occur within a specified time range. This will assist seismologists to fore-

casts for aftershock sequence activities. 

Fractals and forecasting of tsunami 

The North Sumatra earthquake (M=9.3) of December 26, 2004 spawned a 

gigantic tsunami in the Indian Ocean that completely washed out the lives 

and property in coastal areas of many south-east Asian countries (like In-

donesia, Srilanka, Thailand and India), has drawn serious attention of the 

seismologists (Gupta 2005, Raju et al. 2005). 

Tsunami, a Japanese word which means harbour wave is defined as an 

ocean wave of local or distant origin that results from large-scale seafloor 

displacements associated with large earthquakes, major submarine slides, 

or exploding volcanic islands. These waves are capable of causing consid-

erable destruction in coastal areas, especially where underwater earth-

quakes occur. Tsunami wave travels at the speed proportional to gh, 
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where ‘g’ is acceleration due to gravity and ‘h’ is the depth of water col-

umn. For example tsunami wave takes a speed of about 720 Km/hr to 360 

Km/ hr for ocean depth varying from 4Km to 1Km respectively. As soon 

as the wave reaches the shore, its speed reduces but following the principle 

of conservation of energy, the amplitude increases and the run-up occurs. 

Hence, in the open sea the wave height may be less than 1 m, it steepens to 

height of 15 m or more in shallow water to cause severe damage. There ex-

ists a lead time before the arrival of tsunami after an underwater displace-

ment, which leaves a room for an effective tsunami warning system to play 

an important role in hazard reduction.  

Better understanding of tsunami generation process is also important for 

numerical modeling of tsunami (Kowalik and Murty 1993 a, b). The finite 

difference and finite element methods have been widely used to model 

tsunami waves. Numerical models for different ocean domains, such as 

open ocean propagation or near coast propagation requires semitransparent 

boundary conditions to connect high resolution calculation to propagation 

models (Kowalik 2003). Tsunami wave propagation modeling in Indian 

ocean is different from the Pacific ocean. In order to map irregular coast-

lines, Dimri (2005), stressed the need of fractals in modeling of Tsunami 

for estimation of hazard.  

The tsunami prediction studies (eg. Choi et al. 2002, Mofjeld et al. 

1999, Abe 1995, Pelinovsky 1989) involve scaling relationships to de-

scribe the tsunami run-up heights, which can provide a basis for probabil-

istic forecasting of size and number of these devastating events. The 

power-law scaling is observed for the cumulative frequency-size distribu-

tions for tsunami run-ups recorded in Japan (Burroughs and Tebbens 

2005). Authors of this paper claim that the scaling relationship can be used 

for probabilistic forecasting of the recurrence interval of future tsunami 

events within the range of run-up heights observed. Such studies to predict 

the recurrence intervals of large tsunami events can help in reduction of 

severe damage in future. 

1.5 Wavelet transform: a new tool to analyze fractal signals 

A wavelet is defined as a function that integrates to zero and oscillates. 

Wavelet transform as introduced by Grossmann and Morlet (1984) is a fil-

ter whose effective width is generally increased by powers of two (Mala-

mud and Turcotte 1999). When this filter is passed over a time series it 

gives information corresponding to all scales, which helps in quick detec-

tion of noise components. The wavelet analysis involves a series of high 
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and low pass filters convolved with the input signal, where the high pass 

filter is the wavelet function and the low pass filter is its scaling function. 

Multiresolution analysis of any data set using wavelet transform gives-

broad information with the scaling function and the detailed information 

with the wavelet function. This segregates small scaled features from 

large-scaled ones and helps in quick identification of different components 

present in the signal. The wavelet transform has got a fractal basis and is 

being widely used for analysis of non-stationary time series. 

1.5.1 Wavelet variance analysis  

The wavelet transform is a filter whose effective width is generally in-

creased by powers of two. The wavelet transform of any time series f (t) 

can be written as

dt
x

yt
)t(f

x

1
)y,x(W

(1.7)

where
x

yt
is a wavelet, W (x, y) are wavelet coefficients generated 

as a function of x and y, ‘t’ is time, ‘x’ is time scaling or dilation and, ‘y’ is 

time shift or translation. Small values of scale parameter ‘x’ represent high 

frequency components of the signal; whereas large values of ‘x’ represent 

low frequency components of the signal. Thus the wavelet analysis of a 

time series at smaller scales represents detailed view and analysis at larger

scales represent broader view of the data. Computation of wavelet absolute 

coefficients at various scales by changing the value of ‘x’ is the basis of 

multi-scale analysis. 

The variance of wavelet coefficients obtained at various scales is found 

to follow a power law relation with scale ‘x’ for aftershocks sequence of 

2001 Bhuj earthquake India (Fig.1.5). Mathematically this relation can be 

written as

x~Vw
(1.8)

where Vw is the variance of wavelet coefficients obtained at various scales 

and  is the wavelet exponent known as Hölder exponent. This exponent 

can be used to compute the fractal dimension also. The Wavelet transform 

with fractal basis, is becoming an indispensable signal and image process-

ing tool for a variety of geophysical applications. 
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Fig. 1.5 Wavelet variance analysis at small scales of aftershocks of 2001Bhuj 

earthquake of India (after Dimri et al 2005) 

1.6 Discussion 

In previous sections, role of fractals in potential field exploration method 

and in understanding Earth’s non-linear processes like earthquakes has 

been emphasized. The theory and applications of fractals is developing 

very rapidly. Over the past decade, many conventional techniques like 

Fourier analysis are being complimented by advanced techniques like 

wavelet analysis.  

As discussed above, if a single power-law exponent is sufficient to dis-

cuss the statistics of a data set, we term it as a monofractal case otherwise 

while dealing with most of the geophysical data sets we talk about multi-

fractal models. The term multifractal was first introduced by Frisch and 

Parisi (1985) and in view of certain limitations it became necessary to go 

from fractal sets to multifractal measures (Mandelbrot 1989). The main 

property of multifractals is the infinite hierarchy of statistical exponents 

that offer a very convenient framework to quantify the complex Earth sys-

tem.  

The notion that fractals and multifractals are relevant in geophysical 

studies leads to revision of the methods of geo-exploration (Turcotte 

1989). Many authors like Fedi (2003) have carried out multifractal analysis 
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of the physical quantity distributions, derived from well log measurements 

of the KTB to improve the classical rock characterization, which has been 

discussed in details in Chapter 4 of this book.  Multifractal analysis is very 

popular in seismology (Sunmonu et al. 2001), which helps in better under-

standing of seismotectonics of the region.  
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Chapter 2. Fractal Modeling of Complex 

Subsurface Geological Structures

V. P. Dimri, Ravi P. Srivastava 

National Geophysical Research Institute, Hyderabad, India 

2.1 Summary 

The essential component of gravity modeling is an initial model with arbi-

trary shape having regular geometry. This regular geometry approximates 

causative body of irregular geometry. For best approximation of causative 

bodies using regular geometry one requires several polygons represented 

by many vertices, which are perturbed during global optimization to 

achieve best model that fits the anomaly. We have circumvented the 

choice of multi-face regular polygonal initial model by using Lp norm 

modified Voronoi tessellation. This tessellation scheme provides realistic 

irregular (fractal) geometry of the causative body using a few parameters 

known as Voronoi centers, which makes inversion algorithm faster as well 

as provides an irregular realistic final model for the causative body. 

2.2 Introduction 

There are two ways to interpret the gravity data viz. forward and inverse. 

According to the equivalent layer theorem there are infinite models whose 

theoretical response could fit the observed gravity data, but the number of 

possible models is reduced if a priory guess about the source model is 

known (Dimri 1992). Depending on the non-linearity relation between the 

change in data parameter and its response to model parameter, Dimri 

(1992) grouped the inversion scheme in following four categories: 

i) linear ii) weakly non-linear iii) quasi non-linear and iv) highly non-

linear. The methods like generalized inversion, singular value decomposi-

tion, gradient methods, Monte Carlo method and its variants like simulated 

annealing and genetic algorithms are recommended depending on non-

linearity in the system, but success of all these methods depends on the ac-

curacy of the forward modeling. Hence in this chapter a new approach ap-
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plying fractals is used to formulate the problem suitable for the automated 

inversion schemes. 

 In case of geophysical studies the density contrast between different in-

terfaces is responsible for the gravity anomaly. Nettleton (1940;1942) used 

two simple methods for making approximate gravity anomaly calculations. 

One involves the use of circular discs and the other uses an end correction 

to two-dimensional bodies. Bott (1960) suggested a method to trace the 

floor of a sedimentary basin, which involved the approximation of a sedi-

mentary basin by a series of two dimensional juxtaposed rectangu-

lar/square blocks of uniform density. Computation of gravity anomaly due 

to 2D and 3D bodies of arbitrary shape (Talwani et al. 1959, Talwani and 

Ewing 1960) uses number of contours to approximate the body and these 

contours are replaced by polygonal lamina for computation of the anom-

aly. Several other workers pioneered different approaches of gravity 

anomaly computation viz. computation of gravity response using, me-

chanical integrator (Arnold 1942), fast Fourier transform (Parker 1973, 

Bhattacharya and Navolio 1976) and complex polynomials (Sergio and 

Claudia 1997) but all of them have used regular geometry of the causative 

body as an initial model. 

Generally many patterns of nature are so irregular and fragmented, that, 

compared with Euclid geometry nature exhibits not simply a higher degree 

but an altogether different level of complexity (Mandelbrot 1983). In geo-

physical context, almost all the natural bodies under study are highly ir-

regular. Existence of these patterns entails to study those forms that Euclid 

leaves aside as being formless to investigate the causative body.  

In the fractal models of the porous rocks (Turcotte 1997, Korvin 1992), 

there is a tendency to focus on the rock matrix to predict physical proper-

ties, viz. density, susceptibility; useful in mineral exploration. Another as-

pect of fractals for porous rocks is the distribution and connectivity of the 

pore space to predict transport properties, and percolation clusters; useful 

in petroleum and groundwater study. The similar property has been used 

for earthquakes study in chapter 5. 

Dimri (2000) used the concept of fractals for studying the flow media 

and also opined scaling behavior of potential fields (Gregotski et al. 1991, 

Pilkington and Todoeschuck 1993, Maus and Dimri 1994; 1995; 1996, 

Dimri 2000) by establishing a relation between the scaling exponent of 

source and field, which is useful for understanding of fractal geology.  

The problem we shall take up is the following: Given a gravity anomaly 

along a profile or over an area, what is the shape of a 2D/3D causative 

body of varying physical property, which will produce this anomaly. Re-

cent and ongoing attempts have centered about solving the problem by 

automated inversion of assumed polygonal causative body either by per-
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turbation scheme (Bott 1960, Corbato 1965, Tanner 1967, Negi and Garde 

1969) or by using iterative procedure of fast Fourier transform method for 

calculating the shape of perturbing body (Parker 1973, Oldenburg 1974), 

which leads to numerous disadvantages (Oldenburg 1974). 

Fig.  2.1 Approximation of arbitrary 3D body (after Talwani and Ewing 1960) 

2.3 Conventional forward method 

In conventional methods the forward problem involves computation of 

gravity effects of geological body described by a closed polygon as shown 

in Fig. 2.1 (Talwani and Ewing 1960). The computed gravity value is 

compared with the observed gravity value at each point and the difference 

is given by gdiff = gcal - gobs. 

In each iteration depth/density contrast of the source is altered and new 

gravity response is computed until the difference between computed and 

observed is minimum as decided by the interpreter (Dimri 1992). This 

technique is called trial and error and has been used by Talwani and 

Heirtzler (1964) and many others and even now the modified version of 

this technique imposed with certain constraints is used for the inverse 

modeling of gravity data. Inverse modeling is also done in frequency do-

main. Oldenburg (1974) has slightly modified the fast computation of 
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gravity anomaly using fast Fourier transform proposed by Parker (1973) 

for inverting the gravity data and later Li and Oldenburg (1997) used 

wavelets for fast inversion of the magnetic data. These authors have ex-

ploited data compression property of the wavelets and used sparse matrices 

to reconstruct the signal. Fergusion et al. (1988) modified the method and 

achieved better stability using Tikhonov (1963) regularization. Guspi 

(1992) used the same method proposed by Parker (1973) with the slight 

modification of density variations expressed by polynomials in z with 

variable coefficients in x and y. Li and Oldenburg (1997) have used a pri-

mal logarithmic barrier method with the conjugate gradient technique as 

the central solver. In the logarithmic barrier method, the bound constraints 

are implemented as a logarithmic barrier term. 

The purpose of this study is to attack the problem of regular geometry of 

causative body by replacing it with the realistic irregular (fractal) geome-

try, which not only leads towards realistic final model of the causative 

body but also simplifies the process of perturbing the model during global 

optimization (Dimri 1992). The fractal geometry can be generated using 

very few parameters by Voronoi tessellation. Moharir et al. (1999) have 

also used a similar technique called lemniscates tessellation for global op-

timization of sub-surface geometry by hamming scan.  

2.4 Theory 

There are a variety of algorithms available to construct Voronoi diagrams 

(Lee 1982, Okabe et al. 1992). One popular method known as sweep line 

algorithm is the incremental algorithm that adds a new site to an already 

existing diagram (Fortune 1987). 

Given a set S of n distinct points in Rd, Voronoi diagram is the partition 

of Rd into n polyhedral regions V(p). Each region V(p), called the Voronoi 

cell of point ‘p’ is defined as the set of points in Rd which are closer to ‘p’ 

than any other arbitrary point ‘q’ in S, or more precisely, 

pSq)q,x(dist)p,x(distRx)p(V d (2.1)

where, ‘dist’ is the Euclidean distance function. 

In a straight forward iterative algorithm for the planar Voronoi diagram 

Tipper (1990) illustrated that the Voronoi tessellation in a two dimensional 

space consists of enclosing every center by a Voronoi polygon (Fig.2.2) 

such that  common edge of adjacent polygons is perpendicular bisector to 

the line joining the centers on each side of that edge. Here we have 
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generalised the notion of Voronoi tessellation by using LP distances instead 

of the Euclidian distances, so that Voronoi domains are not necessarily of 

polygonal shape. The Lp distance is given by the expression: 

p/1

jp )px(L (2.2)

where x is an arbitrary point and Pj is a vector whose distance has to be 

calculated, and p is an exponent which can hold any real value, j=1:N, 

where N is the number of Voronoi centers. 

Fig. 2.2 Voronoi polygons corresponding to the Voronoi centers shown as 

black dots 

Initially a few Voronoi centers are taken and from them two 

dimensional tessellated region is generated in which, domains with 

different physical properties are shown in different colours (Fig. 2.3). The 

present geometrical representation brings a new facet of domain charac-

terization by a set of parameters, referred herein as Voronoi centers. These 

parameters are perturbed and thus the different tessellated regions are gen-

erated at different depths. This characterization method entails the devel-
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opment for the solution of geophysical inverse problems with the help of 

global optimization techniques. Assigning density contrast to regions of in-

terest is accomplished during the tessellation of domains using modified 

Voronoi tessellation method.  

Fig. 2.3 Tessellated domains: color represents domains of different physical prop-

erties

2.5 Computation of gravity response for fractal subsurface 

The forward gravity response due to each tessellated region at depth Z is 

calculated at each node of the grid laid at the surface. The computation of 

gravity response is repeated for another tessellated regions at different 

depths, and then integrated response is calculated at each node of the 

surface grid (Fig. 2.4) by numerical integration with depth. If tessellated 

regions are at equal depths then the integrated response can be calculated 

by Simpson’s rule otherwise Gauss’s quadrature formula can be used for 

computation of the cumulative response due to tessellated regions at 

unequal depths. 
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Fig. 2.4 Grid laid over the area of interest on the surface

 2.5.1 Mathematical expressions for computation of the 
gravity anomaly 

The gravity anomaly caused by the polygonal lamina per unit thickness, in 

a form suitable for programming is expressed in terms of the co-ordinates 

of two successive vertices of the polygon viz. xi,yi,z and xi+1,yi+1,z, as 

given by (Talwani and Ewing 1960)  
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positive, W= -1 if mi is negative,‘Z’ is depth and ‘n’ is number of sides in 

the polygon, and 
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2.6 Generation of fractal subsurfaces: some examples 

Example 1 

A fractal subsurface is generated using Lp norm taking p=1.5, wherein the 

Voronoi region is defined by the co-ordinates x= 20 to 45 and y= 25 to 50. 

The Voronoi centers chosen within this region are given by the following 

co-ordinates:

x y 

22.6 

30.6 

36.6 

41.4 

28.75 

30.6 

36.6 

41.4 

The subsurface thus generated is shown in Fig 2.3 with Voronoi centers 

marked as black dots. 

Example 2 

In another example the fractal subsurface at different depth levels are gen-

erated using different Lp norms. The coordinates of Voronoi region for all 

the subsurfaces were taken as x = 20 to 50 and y = 5 to 65 and Voronoi 

centers within the region were taken as: 



Fractal Modeling of Complex Geological Structures      31 

x y 

22.0 

30.0 

37.0 

46.0 

48.0 

26.0 

33.0 

40.0 

48.0 

58.0 

Fig. 2.5 The 3-D subsurface structure wherein 2-D layers of variable physical 

property regions are overlain to generate 3-D volume. The figure demonstrates the 

ability of generating various kind of structures shown in different layers merely by 

changing exponent p in Lp norm, keeping Voronoi centers fixed 

This example shows the variation in geometry and provides an excellent 

way of changing the geometry merely by changing the exponent p in Lp

norm. The results are shown in Fig. 2.5 where the first layer (topmost) cor-

responds to p=1.5, the middle layer corresponds to p=-1.5 and the lower-

most corresponds to p=1.0, which is equivalent to L1 norm. 
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Fig. 2.6 The figure demonstrates the another possibility of generating various 

structures as shown in different layers by changing Voronoi centers keeping 

exponent p constant in Lp norm 

Example 3 

In this example the fractal subsurface at different depth levels are gener-

ated using same Lp norm, where p=1.5 but Voronoi centers are changed. 

This example illustrates the possibilities of generating different kind of 

structures by changing Voronoi centers as shown in Fig. 2.6. The co-

ordinates of Voronoi region for all the subsurfaces were taken as x= 20 to 

50 and y= 5 to 65 and 5 Voronoi centers within the Voronoi region were 

taken with following x, y co-ordinates: 

Top layer Middle Layer Bottom Layer 

x1 y1 x2 y2 x3 y3

22.0 

30.0 

37.0 

46.0 

48.0 

26.0 

33.0 

40.0 

48.0 

58.0 

22.0 

22.0 

35.0 

50.0 

50.0 

7.0 

50.0 

33.0 

7.0 

50.0 

15.0 

30.0 

35.0 

45.0 

55.0 

8.0 

50.0 

10.0 

45.0 

10.0 
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Example 4 

This example shows the gravity anomaly computed over the fractal subsur-

face is shown (Fig. 2.7). Fig. 2.7(a) corresponds to the particular case 

wherein Voronoi centers are taken along a line which gives layered model 

where as Fig. 2.7(b) represents the tessellated fractal structure bounded by 

x=20 to 50 and y= 5 to 65, wherein  the Voronoi centers correspond to 

those given in Example 1. The density values corresponding to red, blue, 

green and magenta colors are 2.1, 2.3, 2.67 and 2.5 respectively. The frac-

tal subsurface is assumed at the depth of 10 unit from the surface. 

%VOR.M: program for generating fractal structures by Voronoi tessellation us-

ing L(p) distances  

hp=[ ]; 

reg=[10 25 10 25]; 

p=2; 

n=4; 

a=reg(1);b=reg(2);c=reg(3);d=reg(4); 

colour=['.r' '.b' '.g' '.m' '.c' '.k' '.y' '.w']; 

xc=a+(b-a)*rand(1,n); 

zc=c+(d-c)*rand(1,n); 

figure(1) 

xdiff=b-a; zdiff=d-c; 

np=50; 

for i = 1:np 

for j = 1:np 

x=a+(b-a)*i/np; 

z=c+(d-c)*j/np;

dp=((abs(x-xc)).^p + (abs(z-zc)).^p).^(1/p); 

[dpmin,k(i,j)]=min(dp); 

for ni=1:n 

if (k(i,j)==ni) 

   plot(x,z,colour(2*ni-1:2*ni),'MarkerSize',10); 

   hp=[hp;x,z,ni,dp]; 

axis(reg)

hold on 

end

end

end

end

hold off 
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Fig. 2.7 (a) Gravity anomaly response over the simplified horizontal layered 

model 

Fig. 2.7 (b) Gravity response calculated over fractal subsurface structure show-

ing four regions of different physical property (density) variations  
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2.7 Discussions 

The new method to generate fractal geometry using modified Voronoi 

tessellation discussed here is very useful for any kind of inverse and for-

ward geophysical modeling. The geometry of natural sources is so com-

plex that approximating it with regular geometry may not be useful in case 

of high resolution studies. In case of potential fields it may be bypassed 

because of low resolution of the potential field data but the given tech-

nique has another advantage of using very few parameters, hence it pro-

vides faster solutions than the conventional methods wherein for describ-

ing geometry itself many vertices are involved.  

Another application of this method is in understanding the movement of 

oil front for reservoir monitoring programmes using gravity measurements. 
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3.1 Summary 

Although electromagnetic induction is governed by a linear diffusion equa-

tion, the magnetotelluric method has provided evidence of fractal struc-

tures in the crust. During the search for an electrical conduction mecha-

nism that is compatible with the geophysical anomalies in the middle and 

lower crust, random resistor networks were developed. They contain two 

types of resistors, representing the rock matrix and the conductive phase. 

Random resistor network models can explain both the electrical anisotropy 

and the lateral variability of the bulk conductivity found in large scale 

electromagnetic array experiments. These observations are a consequence 

of the very non-linear relationship between the amount of conductive ma-

terial and the bulk conductivity of strongly heterogeneous media. Coinci-

dence between the statistical properties of field data and modelled data is 

obtained if resistor networks with fractal geometry are employed. This can 

indicate that the natural conductive networks also have fractal geometry 

and stay close to a percolation threshold. 

3.2 Introduction 

Crustal fault networks have been studied by Gueguen, David & Gavrilenko 

(1991) and Gueguen, Gavrilenko and Le Ravalec (1996) in order to study 

the scale effect of rock permeability. Fault networks with self-similar ge-

ometry were studied in the context of earthquake cycle development by 

Heimpel and Olson (1996) and Heimpel (1997). This review shall provide 

independent evidence for the existence of these fault networks from an ex-

On leave from: 
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ploration technique which so far rarely contributed to the subject of frac-

tals in geophysics: the magnetotelluric (MT) method. The existence of 

electrically conductive structures with fractal geometry emerged in two ba-

sic steps: (1) the application of a general 'anisotropy test' to MT field data 

shows that the well-known midcrustal and lower crustal geophysical 

anomalies can be electrically anisotropic (Kellet et al. 1992, Bahr et al. 

2000), and (2) This anisotropy results from the anisotropic connectivity of 

conductive material in conductive fractures networks with fractal geometry 

(Bahr 1997). 

With respect to the electrical conductivity of the upper mantle and tran-

sition zone, results from geophysical large scale induction studies and from 

laboratory studies are in reasonable agreement (Xu et al. 1998). In con-

trast, there is a discrepancy between the high conductivities found by EM 

studies focusing on the middle and lower crust (see reviews by Haak and 

Hutton 1986, Jones 1992) and the low conductivities found in laboratory 

studies of crustal rocks with appropriate temperatures and pressures (e.g. 

Lastovickova 1991). 

The route to fractal conductors in the middle crust was to some extent 

paved by the search for a conduction mechanism. From the observations in 

the German deep drilling program, KTB it can be concluded that neither 

electronic conduction nor electrolytic conduction can be ruled out 

(ELEKTB 1997). Kontny et al. (1997) point out that even if electronic 

conduction is considered then fluids still play an important role in the 

deposition of ores and of graphite. Another result of the ELEKTB (1997) 

group where the distribution functions of the electrical resistivity on all 

scales (Fig. 3.1): while seismic velocities in the crust are observed only 

within a narrow band, electrical resistivity can vary over 3 orders magni-

tude.

Field studies by Cull (1985), Rasmussen (1988), Tezkan et al. (1992) 

and Kellett et al. (1992) for the first time gave evidence of electrically ani-

sotropic structures in the crust. Interpretations ascribing conductivity 

anomalies in the middle or lower crust to graphite (Frost et al. 1989, Mare-

schal 1990, Mareschal et al. 1992, Jödicke 1992) or to brines (Shankland 

and Ander 1983, Gough 1986, Touret 1986, Bailey et al. 1989, Hyndman 

and Shearer 1989, Marquis and Hyndman 1992) must explain electrical 

anisotropy as an additional property. All these models incorporate a mix-

ture of a low-conductivity rock matrix and a second highly conductive 

phase. Therefore the search for the conduction mechanism is related to the 

research on the distribution of pores and cracks (Wong et al. 1989, Allegre 

and LeMouel 1993) and on mixing laws (Greenberg and Brace 1969, 

Kirkpatrick 1973, Madden 1976, Doyen 1988).   
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Fig. 3.1 Frequency distribution function of electrical resistivity on three scales: 

borehole samples, d  1 cm; laterolog, d  1m; and audiomagnetotellurics, d 

1km 

The model of an embedded network (Madden 1976) can explain the ob-

served electrical anisotropy if the network is anisotropic with respect to its 

two different electrical connectivities in two different directions. This is an 

application of percolation theory (e.g. Kirkpatrick 1973, Zallen 1983, 

Stauffer and Aharony 1992, Gueguen and Palciauskas 1994), and those 

networks which exhibit strong anisotropy of their connectivity are in the 

vicinity of the percolation threshold (Bahr 1997). 

I shall first review the basic concept of magnetotellurics and summarize 

the development of a series of general conductivity models anticipating the 

anisotropic model of Kellet et al. (1992). The discussion on the origin of 

the crustal conductors is mentioned only briefly here because extensive lit-

erature on this subject is available (Jones 1992, Simpson 1999; 2001, Wan-

namaker 2000, Yardley and Valley 1997; 2000). I finally demonstrate how 

random resistor networks can be used to model the conduction mechanism 

in very heterogeneous media. Both fractal and non-fractal networks are 

employed. If the conductive structure has fractal geometry then many 

properties of the field data and in particular the anisotropy can be 

explained.
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3.3 Basic concept of a layered Earth model 

Magnetotellurics (MT) is a geophysical exploration technique which uses 

natural time-varying electromagnetic (em) signals of ionospheric and 

magnetospheric origin for probing the conductivity distribution of the sub-

surface. The physical process is induction, and due to the skin effect low 

frequency em fields penetrate deeper into the ground than high frequency 

signals. In the original concept of Tikhonov (1950) and Cagniard (1953) a 

layered earth was considered, and from Maxwell's equations the em diffu-

sion equation for the electric field vector En within the n'th layer of con-

ductivity n can be derived. 

t
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It has the solution 
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wherein Cn is a complex frequency dependent (transfer function) penetra-

tion depth within nth layer.  

At the surface the transfer function Co or the impedance Z can be calcu-

lated from orthogonal components of the horizontal magnetic and electric 

field.
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Wait (1954) showed that the solution of the forward problem that relates to 

the model parameters can be found with the recurrence formula 
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It links the transfer function Cn at the top of the nth layer with thickness dn

= Zn-Zn-1 to the known transfer function Cn-1at the bottom of the layer (Fig. 

3.2). The recursion starts with the transfer function at the top of the under-

lying homogenous half-space with conductivity n.
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2
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MT data from both forward model studies and field experiments are con-

veniently displayed as apparent resistivity 

2

0a )(C)( (3.6)

and phase of impedance 

)Hy/Exarg()( (3.7)

as a function of period or frequency f= /2 . For a homogenous halfspace 

of resistivity =1/ , the apparent resistivity a= , and the phase is 45 deg. 

Weidelt (1972) discovered the Kramers-Kroenig relationship between the 

real and imaginary part of C, also the functions a(T) and (T) are not in-

dependent of each other.  

Fig.  3.2 Layered half-space model (Wait 1954) 

Schmucker (1973) showed that for periods 6,8,12, 24h or longer, C can be 

estimated from purely magnetic data of a global induction process, using 

either the magnetic daily variation or magnetic storms. The MT method is 



44      Karsten Bahr 

therefore complementary to earlier approaches to the global induction 

process in a spherical conductivity Earth model (Lahiri and Price 1939). 

The real part of the complex Schmucker-Weidelt transfer function C is the 

central depth of the in-phase induced currents and an upper limit of the 

depth range of the exploration technique. It depends on period and conduc-

tivity (Eq. 3.2a). Geomagnetic variations in the 10s - 1000s period range 

are typically used in studies of conductors in the middle crust, although a 

wider period range that includes smaller and larger penetration depths is 

often desirable. 

It should be noted at this stage that (Eq. 3.1) is a linear differential equa-

tion. Although (Eq. 3.4) is a non-linear relationship between MT models 

and MT data, even layered earth models which include a very heterogene-

ous or fractal conductivity structure in one layer will create very smooth  

a (T) and  (T) profiles. This is a consequence of Weidelt's (1972) rela-

tionships which predicts neighbored MT data for neighbored evaluation 

periods. The route to fractals in MT exploration first requires a departure 

from the layered earth model. 

3.4 Generalized conductivity model 

The development of the MT method following the initial one-dimensional 

(layered earth) model in the 60's, 70's and 80's was strongly influenced by 

a series of general conductivity models which allowed for more structure 

than a 1D model but not for complete three-dimensionality. The first gen-

eral model was suggested by Cantwell (1960), who replaced the scalar im-

pedance in Eq. 3.3 by a rank 2 impedance matrix Z which links the 2-

component horizontal electric and magnetic variational fields E, H 
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In the case of a 2-dimensional conductivity structure, e.g. two quarter-

spaces with different layer structures (Fig. 3.3), or a dyke, this impedance 

matrix would - in an appropriate coordinate system - reduces to 
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with Zxy and  Zyx being the different impedances of two decoupled systems 

of equations describing induction with electric fields parallel and perpen-

dicular to the "strike" of the 2D structure (Swift 1967). The large success 
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of this model was partly due to the fact that numerical solutions for induc-

tion in 2D structures were available very early (e.g. Jones and Pascoe 

1971). Swift (1967) also provided a scheme for estimating the strike direc-

tion of the 2D structure from the elements of the measured impedance ma-

trix, as well as a misfit parameter "skew" which indicates whether the gen-

eral model explains measured data (see also Vozoff 1972). 

In an alternative approach, Larsen (1975) considered the superposition 

of a regional 1D layered Earth model and a small scale structure of anoma-

lous conductance at the surface (Fig. 3.4). If the size of that anomaly is 

small compared to the penetration depth p of the electromagnetic field, 

then impedance matrix of Larsen's general model can be described as 
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where Z is the regional impedance of Cagniard's 1D model and A is a real 

distortion matrix which describes the galvanic (rather than inductive) ac-

tion of the local scatterer on the electric field. Numerous suggestions have 

been made for estimating the elements of this distortion matrix from inde-

pendent information (see review by Groom and Bahr (1992) and refer-

ences therein). 

Fig. 3.3 General two-dimensional model (Swift 1967). The conductivity varies 

only in the y and z directions, and x is the direction of 'strike' 
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Fig. 3.4 Layered half – space    superposition model (Larsen 1977). A small-

scatterer with anomalous conductance a causes amplitude and direction changes 

of the induced electric fields (after Simpson and Bahr 2005) 

At first, the general models Eq.(3.9) and Eq.(3.10) seem to be comple-

mentary. A measured impedance matrix will either fit Eq. (3.10), because 

its elements do all have the same phase but they all do not vanish or it will 

fit Eq. (3.9) because there is a coordinate system in which, Zxx= Zyy=0, but 

Zxy and Zyx have different phases, due to the different layered structures on 

both sides of the strike. Ranganayaki (1984) first pointed out that the MT 

phase strongly depends on the direction in which the electric field is meas-

ured.

The existence of a large class of measured matrices which would fit nei-

ther of these models, because all matrix elements do not vanish and two 

different phases occur, led Bahr (1988) to another general model. In it a 

surface scatterer is superimposed on a regional 2D structure (Fig.3.5) and 

the impedance matrix takes the form 
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This general model was adopted by Groom and Bailey (1989), Bahr 

(1991), Chave and Smith (1994), and Pracser and Szarka (2000) with im-

proved mathematical techniques for the estimation of the regional strike, 

and applied to many data sets. Because all strike estimation techniques re-
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quire the existence of two different phases in the impedance matrix (Berdi-

chevky 1999), it was surprising that this general model was successful in 

most cases: within a wide period range and in most target areas, there is 

always a magnetotelluric strike. With respect to fractal conductivity struc-

tures, the existence of this strike turned out to be the key observation of 

magnetotelluric exploration of the crust. 

Fig. 3.5 Two-dimensional superposition model (Bahr 1988): Combination of 

the two dimensional structure in Fig. 3.3 and the anomalous conductance scatterer 

in Fig. 3.4 (after Simpson and Bahr  2005) 

3.5 Conductivity of the middle crust and its anisotropy 

The two narrative strings of this chapter, general conductivity models and 

conduction in the crust, were merged by Kellet et al. (1992) who suggested 

that the existence of a 'strike' and the phase difference associated with it 

can be a consequence of electrical anisotropy in a particular depth range. 

The Eq. (3.11) was still used by Kellet et al. (1992) but their physical 

model was a superposition of a surface scatterer and an electrically anisot-

ropic regional structure (Fig. 3.6). Although developed for a limited target 

area, their model can be used as a general one, because it explains why Eq. 

(3.11) describes so many different data sets. An example for the phase split 

created by an anisotropic structure is presented in Fig. 3.7. The concept of 
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lower crustal electrical anisotropy in connection with the impedance ma-

trix decomposition was used by Jones et al. (1993) and Eisel and Bahr 

(1993), and resistivity ratios of up to 60 were used. Bahr et al. (2000) sug-

gested a general 'anisotropy test' based on the magnetotelluric phase in ar-

ray data, and showed that this test can distinguish between the model of 

crustal anisotropy and the model of an isolated conductivity anomaly. The 

search for the origin of the anisotropy was linked to the search for a con-

duction mechanism, and led to the consideration of two-phase structures 

with fractal geometry in the crust. 

Fig. 3.6 Anisotropic superposition model (Kellet et al. 1992). In numerical 

studies, the anisotropic layer has either been modeled with two different conduc-

tivities 2x, 2y (Yin 2000) or with a series of macroscopic conductive lamellae 

(Tezkan et al. 1992). From magnetotelluric field data, we can not distinguish be-

tween these two models (Eisel and Haak 1999), and in the context of this review 

both are oversimplifications (after Simpson and Bahr 2005) 

3.6 Anisotropy and conduction mechanism 

The debate on the conduction mechanism in the crust reflected the fact 

that, besides the rock matrix, an additional conductive component is re-

quired to provide the high bulk conductivities observed by magnetotellu-

rics.
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Fig. 3.7 Magnetotelluric apparent resistivity and phase at site GAM in southern 

Germany (Bahr et al. 2000). The splitting of the two apparent resistivities xy, yx

of the two polarizations at periods longer than 10 s is associated with a splitting of 

the phases xy, yx. This splitting occurs at 7 sites of an array in the same period 

range, suggesting that electrical anisotropy is a more likely explanation than an 

isolated conductivity anomaly: in the x direction, a conductor is seen which does 

not occur in the y direction (Bahr et al. 2000) 
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The bulk conductivity of a very large system of fractures filled with 

conductive material has been calculated with effective medium theory (e.g. 

Bruggeman 1935), renormalization methods (e.g. Bernasconi 1978) and 

percolation theory (e.g. Stauffer and Aharony 1992). David (1993) pointed 

out that network or critical path analysis can describe a porous medium 

better than the older mixing laws provided by effective medium theory. 

With respect to the bulk conductivity anisotropy of two-component sys-

tems, percolation theory and random network studies turned out to be the 

key tools. 

According to Hashin and Shtrikman (1962) for any given mixing ratio 

, a maximal bulk conductivity describing the case of perfect interconnec-

tion and a minimal conductivity for the 'isolated pockets' model are ob-

tained. Waff (1974) showed that under certain assumptions, e.g. the con-

ductivity contrast between rock matrix and high conductive phase should 

be large  compared to the mixing ratio  , the 'upper Hashin-Shtrikman 

bound' for the perfect interconnection case can be written as 

mb
3

2 (3.12)

if m  is the conductivity of the high conductive phase. But this case is in-

appropriate to describe anisotropic bulk conductivity, because the mixing 

ratio cannot be anisotropic, and there is no material with an intrinsic elec-

trical anisotropy as large as the anisotropy in MT models, except for crys-

talline graphite (Kelly 1981). Instead, the degree of interconnection of the 

conductive phase can be anisotropic. Interconnectivity smaller than 1 can 

be numerically described by a dimensionless connectivity coefficient Io, 

and the bulk conductivity is 

Io
3

2
mb

(3.13)

Bahr (1997) used ensembles of random resistor networks in order to 

calculate the connectivity as a function of the model geometry. These net-

works can be chosen to be anisotropic with respect to their electrical con-

nectivity, and the ratio of the connectivities in two different directions in-

creases with increasing complexity of the network. The complexity was 

increased by the use of embedded networks (Fig. 3.8). Embedded networks 

were originally suggested by Madden (1976), who nevertheless did not 

perform random resistor experiments. Fig. 3.9 shows the electrical connec-

tivity Io as function of the percentage p of open fractures. Io was estimated 

by use of a statistical approach. For every percentage p of open fractures, 

1000 embedded network where created. A random generator was used to 
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distribute low resistance resistors (open fractures) and high resistance re-

sistors (closed fractured) in an actual realization of the embedded network. 

The "electrical connectivity" is the average normalized current passing the 

network (Bahr 1997). If, for example, p = 0.25 then Io(p) = 0, because 

25% open fractures (black in Fig. 3.8) will not form a conducting path 

through the entire network. In the vicinity of the percolation threshold, the 

Io(p) function has a non-linear increase. Due to the limited size of the net-

work, this numerical approach does not provide the exact solution for the 

percolation threshold of the 2-dimensional quadratic network, p = 0.5 

(Stauffer and Aharony 1992). The non-linearity of the Io(p) function is the 

key to the understanding of the anisotropy: suppose there are slightly more 

open fractures in one horizontal direction then in the other, and both p val-

ues are in the vicinity of the percolation threshold (Fig. 3.9). The resulting 

connectivities in the two directions differ very much. This model can ex-

plain how cracks, which are filled with some highly conductive material 

and which occur slightly more often in one direction can create anisotropy 

of the bulk conductivity. 

3.7 The route to fractals: random resistor experiments 

The example of a random resistor network in Fig. 3.8 is still too regular to 

be a fractal. In the "fractal embedded network" (Fig. 3.10) some sub-

networks are replaced by single resistors, matching a situation where 

cracks of many different sizes co-exist in the crust. If many realisations of 

this type of network are generated in a statistical approach, then a distribu-

tion function of the parameter 'electrical connectivity' is obtained (Fig. 

3.11). The variability of the bulk resistivity in the field data in Fig. 3.1 

arises from the variability of the connectivity in the highly conductive 

component. 

No suggestion has been offered by the fractals approach about the origin 

and nature of the high conductive material. But the result in Fig. 3.11 can 

only be obtained if the system is close to the percolation threshold. If, in-

stead, p is chosen close to 1, then Io (p) will also be close to unity, and 

only little direction dependence of Io (p) can be obtained. As a conse-

quence, Io is significantly smaller than 1, and therefore the fraction  of 

conductive material has to be enlarged in order to give the same bulk con-

ductivity in Eq. (3.13). This rules out electrolytic conduction in some 

cases, because the required porosities become unreasonably high (Bahr 

2000, Simpson 2001). 
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Fig. 3.8 Embedded network with limited connectivity. Black resistors represent 

high conductive material in open fractures and open resistors represent absence of 

conductive material. Distribution of 50% 'black' resistors over thew 123 = 1728 

possible positions in the network by use of a random generator 

The self-similar geometry of the conductive structures in Fig.s 3.8, 3.10 

is, of course, a consequence of the employment of embedded networks. 

But do the anisotropy data and conductivity distribution functions require 

the self-similarity? Blome (2004) showed that it is not necessary to enforce 

a self-similar geometry of the model network by employing embedded 

networks. Blome (2004) performed bond percolation experiments in ordi-

nary (not embedded) 240*240 resistor networks with a systematic varia-

tion of the relative number p of 'black' resistor representing the highly con-

ductive phase. 
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Fig. 3.9 Connectivity Io of the embedded network plotted as a function of the 

proportion p of conductive material. Suppose that 50 % of the resistors in the x di-

rection and 60% of the resistors in the y direction represent conductive material 

and therefore the network is slightly above the conduction percolation threshold in 

both directions. The resulting connectivities Iox, Ioy in both directions are small 

compared to the upper Hashin-Shtrikman limit Io = 1 and they differ by a much 

larger factor then px and py, giving rise to anisotropic conduction in the network 

Only at the percolation threshold the model network can exhibit strong 

anisotropy of the electrical connectivity. Fig. 3.12 shows an example of a 

resistor network at the percolation threshold. It is well known (e.g. Stauffer 

and Aharony 1992) that only in the vicinity of the percolation threshold, 

e.g. p=0.5 for bond percolation in squared lattices, the size-frequency dis-

tribution function of clusters of linked bonds is fractal. For smaller p, the 

large clusters are missing and for larger p only large clusters occur. Thus, 

from all possible two-component structures, only the ones at the percola-

tion threshold exhibit fractal geometry and explain the statistical properties 

of the em field data with penetration depth relevant to the lower crust. Re-

cently, Everett and Weiss (2002) showed that electromagnetic responses 

from near-surface structures can also be fractal signals. 
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Fig. 3.10 A possible realization of the twice-embedded fractal network. The 

probability that a resistor is replaced by a small-scale network is 70% 

3.8 Discussion: fractals and anisotropy 

Kozlovskaya and Hjelt (2000) stress the need for model parameterization 

schemes that can be used to model the distribution of more than one physi-

cal parameter. They choose the fractal rock model because it allows the 

description of the real complicated rock microstructure by a small number 

of parameters, and because elastic and electric properties can be calculated 

within that framework. Here I showed that a statistical evaluation of mag-
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netotelluric field data can provide independent evidence that fractal struc-

tures exist in parts of the crust. The model which simulates the statistical 

properties of the field data is a resistor network in the vicinity of the perco-

lation threshold. In such a network, the resistors representing the conduc-

tive material form a fractal cluster system. 

Fig. 3.11 Modeled distribution function of connectivity f (Io) of the twice-

embedded fractal network 

According to Gavrilenko and Gueguen (1989) fluid pressure is the driv-

ing force for hydraulic fracturing. This force is turned off when the hy-

draulic percolation threshold is reached. The resulting network of fractures 

will stay close to the percolation threshold and will have a self-similar ge-

ometry, as supported by the self-similarity of cracks in rocks found in ex-

perimental studies by Schmittbuhl et al. (1995) and Meheust and 

Schmittbuhl (2001). If the fractures are filled with brines, the resulting 

conductive network also has a self-similar geometry. In an alternative 

model, ancient fluid percolation allowed for the precipitation of graphite 

and the conduction mechanism in the network is electronic conduction. 

There are more similarities between crack networks and the resistor net-

works that are employed here. 
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Fig. 3.12 Network of 3200 resistors at the percolation threshold, p=0.5. No 

fractal geometry is enforced by applying the embedded network approach, but 

cluster system formed by the resistors representing conductive material has a frac-

tal geometry for p = 0.5 

 The bulk properties, permeability and electrical conductivity are 

strongly influenced by the connectivity of cracks (Berkowitz and Adler 

1998) and by the connectivity of conductors (Bahr 1997, Kozlovskaya and 

Hjelt 2000), respectively. Meheust and Schmittbuhl (2001) pointed out that 

the self-similarity of the crack system creates heterogeneity on all scales, 

and therefore there exists hydraulic anisotropy on all scales. Electrical ani-

sotropy could occur in crustal conductors on all scales, although the mag-

netotelluric method can detect it only on the larger scales. In this chapter, I 

tried to review the route which the magnetotelluric technique went in order 

to find electrical anisotropy, and to provide some evidence of links be-

tween anisotropy and conduction in fractals. Both fields are, however, sub-

ject to continuous research, and exciting results should come up in the fu-

ture.
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4.1 Summary 

Well logs are largely used for oil exploration and production in order to 

obtain geological information of rocks. Several parameters of the rocks can 

be scanned and interpreted in term of lithology and of the quantity and 

kind of fluids within the pores. Generally the drilled rocks are mostly 

sedimentary and the modelling is mainly petrophysical. Here we analyze 

four logs from the KTB Main Borehole, drilled for the German Continen-

tal Deep Drilling Program. The hole cuts across crystalline rocks like am-

phibolites, amphibolite-metagabbros, gneiss, variegated units and granites. 

A multifractal model is assumed for the logs and they are analyzed by a 

new methodology called Regularity Analysis (RA), which maps the meas-

ured logs to profiles of Holder exponents or regularity. The regularity gen-

eralizes the degree of differentiability of a function from integer to real 

numbers and it is useful to describe algebraic singularities related not only 

to the classical model of jump discontinuity, but to any other kind of 

‘edge’ variations. We aim at a) characterizing the lithological changes of 

the drilled rocks; and b) identifying the zones of macro and micro frac-

tures. The RA was applied to several geophysical well logs (density, mag-

netic susceptibility, self potential and electrical resistivity) and allowed 

consistent information about the KTB well formations. All the regularity 

profiles independently obtained for the logs provide a clear correlation 

with lithology and from each log we derived a similar segmentation in 

terms of lithological units.  

A slightly different definition of regularity, called an average-local regu-

larity, yields a good correlation between each known major fault and local 

maxima of the regularity curves. The regularity profiles were also com-

pared with the KTB “Fracture Index” (FI), showing a meaningful relation 

among maxima of regularity and maxima of fracture index. 
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4.2 Introduction 

Well log prospecting is mainly used for characterizing reservoirs in sedi-

mentary rocks; in fact it is one of the most important tools for hydrocarbon 

research among international oil companies. Less frequently, but with an 

increasing interest, other kinds of rocks (i.e. metamorphic and magmatic 

rocks) have been drilled, like in the German Deep Drilling Project (KTB) 

and in the International Ocean Drilling Project (ODP). This kind of deep 

drillings may help to fix some features about the structural and geological 

setting of an area. Crystalline rocks have a complex mineralogy and a low 

porosity and permeability, typically decreasing with the depth. The occur-

rence of macrofractures and related systems of microfractures (Gregg and 

Singh 1979) may however account for an increase of porosity at depths al-

lowing fluid transport over large distances.  

Following Bremer et al. (1992) we assume here that log signals will de-

pend on lithology (rock matrix) as well as on macro and microfractures. It 

is often assumed that geological units are marked by sharp boundaries, so 

that most of the research for interpreting logs has regarded the possibility 

of detecting the edges of such boundaries (Vermeer and Alkemade 1992). 

The edges are typically regarded as jump (or step) discontinuities, which 

mark discontinuities of piece-wise continuous functions which are locally 

homogeneous. 

Here, we assume a more general definition for edges, which extends 

over the complexity of piece-wise functions and considers general alge-

braic singularities instead of jump discontinuities only. In the case of an 

isolated singularity we will refer to a local scale-invariance. A multiscale 

local analysis is very useful to study the isolated singularities since these 

may be characterized by a parameter, called Holder regularity. It may be 

meaningful thought as a generalization of the degree of differentiability 

from integer to real numbers (see section 4.5). If the singularities are 

dense, or accumulated, the medium has to be considered as a fractal and 

the local multiscale analysis becomes much more complicated, due to the 

reciprocal interferences from the various singularities.  

Homogeneous fractals, or simply monofractals, are however character-

ized by a complexity which is well accounted for just a single global pa-

rameter, the fractal dimension, which is closely related to a single degree 

of Holder regularity. An efficient estimator of the fractal dimension is the-

Fourier or wavelet power spectrum. Multifractals, instead, have a variable 

degree of Holder regularity. This means that the scale-dependence is in-

homogeneous, so that a distance dependent frequency (or scale) analysis is 

needed. The optimal tool is given by wavelets, being well localized both in 
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distance and frequency. Self-similarity and the concept of multifractals in 

geophysics have been pioneered by Mandelbrot (1982). Since then, fractal 

models have arisen often in many scientific disciplines, such as physics, 

chemistry, astronomy and biology.  

Fig. 4.1 A. Scheme of main units of Hercynian basement (Kossmat 1927 modi-

fied). RH-Rhenohercinian Zone; ST-Saxothuringian Zone; MN- Moldanubion 

Zone. B. Main tectonometamorphic units and DEKROP seismic line. 1 metamor-

phic nappes; 2. lower nappes; 3.ST; 4. MN; 5. KTB well. MN-Munchberg Massif; 

ZEV-Erberdorf-Vohenstrauss Zone; ZTT-Tepl-Taus Zone; ZTM- Tirshenreuth-

Maharing Zone 

The self-similar fractals show an irregular structure at any scale, which 

is similar at any zooming (in and out) of the signal. Real phenomena may 

be rarely described using simple deterministic fractal models, but similar-
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ity can hold on several scales in a statistical sense, leading to the notion of 

random fractals. A random fractal model is assumed here for well log data. 

An important issue is linking in a coherent way the complex behaviour 

of the physical properties measured with well logs to other physical quanti-

ties, which are related to those parameters, but are independently meas-

ured. More clearly we have to define how the complexity of the medium, 

revealed from well logs of susceptibility, density or wave speed, is mapped 

to the complexity of fields, like the magnetic field, the gravity field or the 

seismic wavefield. Herrmann (1997) found evidences of an inhomogene-

ous scaling for both well log acoustic waves and reflectivity, so suggesting 

that the singularity structure is transported from space to space-time.  

Other authors (Gregotski et al. 1991, Pilkington and Todoeschuck 1993, 

Maus and Dimri 1994) interpreted the complexity of susceptibility or den-

sity logs in terms of scaling sources and considered their magnetic or grav-

ity fields as scaling quantities, with fractal dimensions related in a simple 

way to the fractal dimension of the source parameters. Fedi (2003) studied 

a deep susceptibility log data from the KTB and found that a multifractal 

model was more appropriate than a monofractal one for the statistical 

modelling of these signals. In fact, logs are highly intermittent signals, 

with distinct active bursts and passive regions. They cannot be satisfacto-

rily represented in terms of a second-order statistics, but need a higher or-

der statistics. In other words, power spectra or variogram analysis may be 

useful for the characterization of the signal up to the second order statis-

tics, but may fail in explaining more complex structures. 

Even Marsan and Bewan (1999) did not find an appropriate monofractal 

model for the P-wave sonic velocities recorded at the KTB main borehole 

and evidenced the multifractal distribution for it and also for the gamma 

log.

The present work follows that of Fedi (2003) about the KTB susceptibil-

ity log and deals with the multifractal analysis of the physical quantity dis-

tributions derived from well log measurements. More specifically we will 

try to obtain a characterization of the medium by analyzing data from the 

KTB logs of density, susceptibility, electrical resistivity and self potential. 

The multiscale structure derived from logs will be compared with each pa-

rameter and also to the known distribution of macro and microfractures 

and lithology, following a technique (Fedi et al. 2003) for time varying 

geomagnetic signals. We aim to improve the classical rock characteriza-

tion by performing a multifractal analysis for more than a single log.  
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4.3 KTB: an example 

In agreement with Vollbrecht et al. (1989) the Central Europe may be di-

vided into four main tectonic units: the Rhenohercynian zone (RH), the 

Saxothuringian zone (ST), the Moldanubian zone (MN) and Subvariscan 

Foredeep. In this region many units are also present such as klippen or 

metamorphic nappes, forming the uppermost structural level (Behr et al. 

1984), which are the Munchberg Massif (MM), the Erberdorf-

Vohenstrauss Zone (ZEV) and the Tepl-Taus Zone (ZTT) (Fig. 4.1).  

The KTB well logs studied in this work fall under the ZEV unit. A geo-

logical sequence of the KTB main borehole area is shown in Fig. (4.2). 

Fig. 4.2 Stratigraphic sequence of ZEV units from KTB well (from 

http://icdp.gfz-potsdam.de/html/ktb, modified) 
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A broad, sinuous, roughly E-W trending Variscan fold belt represents 

one of the most important geological features of the Europe. The Variscan 

Orogen of Northern Europe consists in a series of Ordovician to Carbonif-

erous rift-generated basins, separated by metamorphosed crystalline ridges, 

which were progressively closed by the northward migration and subse-

quent collision of African Gondwanaland with northern Baltica. This proc-

ess has given rise to a system of major and minor fold-and-thrust belts on 

the external flanks of the entire system as well as to a major zone of highly 

metamorphic rocks in the internal core. The European Variscides are a 

prime example of a fossil, deeply eroded collisional mountain belt, which 

has involved sequential collision of several continental plate fragments. 

After collision most of the orogenic belt has been overprinted by proc-

esses, which have resulted in the formation of late-orogenic basins, large 

scale crustal melting and magmatism, and a reduction of crustal thickness 

back to average thickness.

4.3.1 Well logs measurements 

Boreholes can yield much geological information by measuring the 

physical properties of the penetrated formation with the aid of wire line 

logs. The equipment that measures the physical properties is housed in a 

cylindrical sonde, which is lowered down to the borehole through an 

electric cable. Many different parameters of the rocks can be measured and 

interpreted in terms of lithological porosity, quantity and type of fluids 

within the pores. The logs studied in this work are (1) electric, (2) 

radioactive, and (3) magnetic susceptibility. 

Electric logs 

Self-Potential (SP) logs measure the charge caused by the flow of ions Na+

and Cl-  from concentrated (generally the formation fluids) to more diluted 

solution. The electric potential is strictly related to the permeability of the 

formation. The deflection is related to an arbitrarily determined shale base 

line, which indicates the less permeable formation. The deflection indi-

cates the presence of a permeable formation like sandstone or carbonate. In 

practice, the SP log may be used to delineate the most permeable zone.  

Resistivity logs are made to record the resistivity of penetrated forma-

tion. It can be performed in many ways, by modifying the distance and/or 

the configuration of the electrodes on the sonde. So we can have conven-

tional resistivity logs, laterologs, which focus the current horizontally, and 
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induction logs that use a variable magnetic field to generate current in the 

formation.

Radioactivity logs 

Gamma ray logs measure the natural radioactivity of a formation. The 

main radioactive element of sedimentary rocks is potassium, generally pre-

sent in illitic clays, feldspars, mica and glauconite. The radioactive miner-

als existing in the organic matter (abundant in oil shale) are derived from 

the Uranium and Thorium series. Radioactivity is measured in API units. 

Recent gamma ray spectrometry allowed differentiation among various ra-

dioactive minerals. 

Neutron logs are made by a neutron bombardment of the penetrated 

formation that emits gamma rays in proportion to their hydrogen content. 

The response of neutron log is essentially correlated to the porosity. 

Density logs and gamma-gamma logs measure the formation density by 

emitting gamma rays and recording the gamma rays radiating from the 

formation; the recorded gamma rays can be related to the electron density 

of the atoms in the formation, which is related to the bulk density of the 

formation.

Magnetic susceptibility log 

This log can be used in rocks presenting a noticeable magnetic susceptibil-

ity to infer lithological changes or alteration zones. 

Crystalline rocks are generally considered very tight with low porosity 

and the fluid transport may be possible only in fractured zones. In particu-

lar, for the KTB crystalline rocks macrofractures are normally surrounded 

by a zone of microfractures (Bremer et al. 1992) and more than of 50% of 

the pores can be attributed to this kind of fractures, also called as capillar-

ies. So, the response of logs in crystalline rocks is not only in term of rock 

matrix, permeability and porosity etc., like in sedimentary rocks, but also it 

depends on the degree of fracturization. 

4.4 The regularity analysis 

As shown in several studies it is quite reasonable to assume a multifractal 

model for well log signals (Herrmann 1997, Marsan and Bean 1999, Fedi 

2003). We assume that the log signals will depend on lithology (rock ma-

trix) as well as on the occurrence of macro and microfractures (Bremer et 
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al. 1992). Our aim is therefore at assessing whether the properties of the 

lithology and of the fractures may be determined not only from the meas-

ured well logs, but even from the Holder regularity of such logs. The 

analysis of the Holder regularity will be hereafter called Regularity Analy-

sis (RA) similarly to the case studied for time geomagnetic anomalies 

(Fedi et al. 2003).

RA detects the second order statistical properties of the analysed sig-

nals, helping to distinguish, for instance, among signals characterized by 

the same power spectrum. An example of this is represented by two ran-

dom processes: the fractional Brownian motion (fBm) and the general 

Fractal noise (gFn). Even though such processes show comparable power 

spectra, they are strongly different. The fBm is a typical monofractal proc-

ess, while the fGn shows clearly multifractal characteristics, like inhomo-

geneous spikiness or, in other words, a various degree of intermittence 

with sudden bursts of high frequency activity and large outliers. Multifrac-

tals were introduced by Mandelbrot (1974) to describe the turbulence phe-

nomena; subsequently they have been used in many different contexts. The 

typical construction of a multifractal process or measure can be obtained 

iteratively in a multiplicative way from a coarse scale and developing the 

details of the process on finer scales. An example of this is the binomial 

multifractal (Feder 1988).  There are two ways to study the properties of 

multifractals, which are respectively of local and global nature (Fedi 

2003). The first one consists of defining a procedure to estimate the global 

repartition of the various Holder exponents, but not their location. As such, 

it leads to the definition of a spectrum, D( ), called singularity spectrum, 

which is useful to assess the multifractal properties of a given signal. 

The second one is related to the possibility of estimating the Lipschitz-

Holder regularity locally. This is possible especially if the singularities ap-

pear isolated. Otherwise, the estimation may be difficult, due to interfer-

ence effects, which may occur especially at large scales and also to the fi-

nite numerical resolution. In both cases suitable techniques are based on 

the continuous wavelet transform (Mallat 1998, Flandrin 1999) and, in par-

ticular, on the wavelet transform at local maxima, as described in a land-

mark paper of Mallat and Hwang (1992). The regularity analysis is based 

on this second approach. In the well log case, one may indeed search for 

depth regions, defined by different lithologies, scaling in its own way, and 

try to characterize the intricate set of not isolated singularities, provided 

their scaling behaviour persists over a wide enough scale range. 

Strictly speaking, the singularities (i.e. (ir) regularities) of a signals f(x) 

are the points at which the derivative of a given function of a complex 

variable does not exist but every neighbourhood of which contains points 

for which the derivative exists. 
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A function f(x) has a local Holder exponent  at x0 if and only if with 

constants C, h0 >0 and a polynomial Pn of order n such that for h<h0:

1h  | C   (h)P  h)f(x           n0 nn (4.1)

The Holder regularity of a given signal at some point x0 is the superior 

bound of all  verifying the above equation. If the Holder regularity is 

at some point x0, the signal is not differentiable at x0 and  will fully 

characterize the singularity type. However, for tempered distributions, also 

negative exponents may be considered (Mallat and Hwang 1992), similar 

to a Dirac (x) distribution.  

In this chapter, we will consider two different approaches for computing 

the regularity of a multifractal signal. As mentioned earlier the first one is 

the local approach, based on the estimation of regularity at each point, and 

the second one is the average-local approach, which is based on the esti-

mation of the regularity within a moving window.In both cases, the first 

step is the computation of the Continuous Wavelet Transform (CWT) of 

the signal. The Continuous Wavelet Transform of f(x)  L2 (R) at scale s 

and point x0 is 

dt
s

xx

s

1
f(x)f,s),Wf(x 0

s,x0 0

(4.2)

where the kernel function ]/)[()/(1)( 0

2/1

0
sxxsxsx  is the 

analyzing wavelet. 

The choice of the analyzing wavelet is significant in order to obtain a 

good computation of the CWT. First of all, the analysing wavelet must 

possess a number of vanishing moments adequate to analyze the given sig-

nal and then it has also to be more regular (or smoother) than the process 

under study. Otherwise, the analysis will be biased by the wavelet’s prop-

erties instead of the signal.  

The estimation of the regularity  can be obtained by the CWT consid-

ering the local modulus maxima of the CWT at the singularity point x0.

The regularity  is evaluated by the relationship  where is the 

log-log slope of the amplitude of the modulus maxima line with respect to 

the scale.

The average-local approach, instead, provides the regularity using a 

moving window L. In practice, it yields the estimation of the regularity 

(Holder exponent ) at each point xi of the signal computing the global 

regularity in the ith moving window centered in xi. Such global regularity is 

evaluated again by the relationship 1 where  is now the log-log 
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slope of the component at scale s of the CWT power spectrum related to 

the ith window, with respect to s. The  is referred to the ith window center 

and represents a smoothed and more stable evaluation of the local regular-

ity.Basically, using these two approaches we have two different levels of 

study of the problem. In the local one we will study the signals at the finest 

detail, while using the average-local we are smoothing out much of the de-

tail and retain the information related closely to the main structural phe-

nomena. 

4.5 RA applied to well log data 

We now discuss the application of the RA technique to the KTB well logs 

data. We consider logs of density (D), magnetic susceptibility (MS), self-

potential (SP) and electrical resistivity (ER).  

Fig. 4.3 Local regularity of the KTB in which log D is correlated with the geo-

logical section. The RA evidences rather homogeneous zones which seem well 

correlated to the lithologic units marked by the same colours 
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As described in previous section (4.4), the RA provides an evaluation of 

the local and average-local regularity of the available well log data. 

Roughly speaking the local approach provides punctual and somewhat 

noisy information about the lithological and also other structural effects, 

like faults, while the average-local approach tends to reveal the occurrence 

of the major fractured zones. In practice, we will see that the second ap-

proach allows a better identification of the fractured zones, reducing the 

influence of the lithology.   In the following, we will discuss the results ob-

tained using either a local or the average-local approach. 

Fig. 4.4 Local regularity of the KTB in which, log MS is correlated with the 

geological section. Also for MS the RA evidences rather homogeneous zones 

which seem well correlated to the lithologic units marked by the same colours 

4.5.1 Local RA curves 

The regularity profiles independently obtained from the logs (Fig. 4.3-4.6), 

computed using the local approach, present a clear correlation with lithol-
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ogy. While a meaningful segmentation in terms of lithological units was 

already obtained for the magnetic susceptibility log only (Fedi 2003), here 

we find further insights by comparing the regularity values for the several 

analyzed logs. The first zone (from 0 to 3500 m approximately), is relative 

to a sequence consisting of variable units: gneiss, variegated and amphibo-

lite units. From 3000-6000 m the well intersects a rather homogeneous 

zone of amphibolite units, sometimes interested by major faults. First of all 

we note that regularities from density and magnetic susceptibility logs 

have a very similar behavior. For instance, the highest value of  in both 

cases is obtained for the gneiss rocks, while amphibolite and variegated 

units are well identified by lower values.  On the other hand, similar con-

siderations occur for the regularities obtained from the resistivity and self-

potential logs, but we find that the highest values are obtained for amphi-

bolite and variegated units.  

Fig. 4.5 Local regularity of the KTB in which log SP is correlated with the geo-

logical section. Also for SP, the RA evidences rather homogeneous zones which 

seem well correlated to the lithologic units marked by the same colours 
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 The different behavior may be caused by the major role played by po-

rosity in fractured zones for electrical logs with respect to the logs of den-

sity and magnetic susceptibility. The values of the Holder exponent that 

we find consistently range between 0.45 and 0.55 for Gneiss and it is esti-

mated in an interval from 0.3 to 0.45 for the Variegated Units. As already 

said, regularity of the Amphibolites Units is instead different for the sev-

eral logs: it is estimated between 0.25 and 0.3 for D and MS logs, while it 

is between 0.45 and 0.7 for the two electrical logs. 

Fig. 4.6 Local regularity of the KTB in which log ER is correlated with the 

geological section. Also for ER, the RA evidences rather homogeneous zones 

which seem well correlated to the lithologic units marked by the same colours 

4.5.2 Average-local RA curves 

Now, we describe the regularity curves computed using the average-local 

approach. As mentioned earlier, this method provides an estimation of the 

regularity of the signal by computing the global regularity within a moving 

window. In order to obtain a suitable regularity evaluation it is important 
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to choose an optimal window length. After several attempts, we selected a 

window with a length of 40 points to analyze the logs D, MS, SP and ER. 

This was the minimum length yielding a rather good linearity in a log-log 

plot between the local CWT modulus maxima versus scales. In this way a 

reliable evaluation of the regularity exponent  is obtained, since the scal-

ing exponent may be estimated through a linear regression with a good 

correlation coefficient.

Fig. 4.7 Comparison between the average-local regularity curve computed for 

log D and the geological section. The red lines connect the structural features 

(faults) present in the geological section with local maxima of regularity. This 

shows a good correlation among known macrofractures and local maxima of log D 

regularity 

The average-local regularity curve for four well log data 

(D,MS,SP,ER)are plotted in Figs 4.7 to 4.10, in which we observe a good 

relation between each major fault reported in the geological section (num-

bered from 1 to 9) and local maxima of the regularity curves.  This shows 

that the macrofractures affect regularity in a consistent way, even though 

the physical effects relating the several measured quantities to the occur-
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rence of macrofractures is not the same. The converse is not strictly true: 

some regularity maxima do not correspond to any fault. However an inter-

esting comparison could be made using microfracture information. We 

have also correlated the computed regularities with the KTB fracture index 

(FI) (Bremer et al. 1992). Their fracture index was intended to be: a) sensi-

tive to micro as well as to macrofractures; b) a better measure of the ‘frac-

turedness’ of the rocks than the fracture density of cores.

Fig. 4.8 Comparison between the average-local regularity curve computed for 

log MS and the geological section. Also in this case the red lines connect the 

structural features (faults) present in the geological section with local maxima of 

regularity. This shows a good correlation among the known macrofractures and 

local maxima of log MS regularity  

A surprising relation between the local maxima of regularity curves and 

fractured zones identified by the FI is seen in Fig. 4.11. This relation can 

be qualitatively explained with an increase of the homogeneity of the frac-

tured zone, due to the strong increase of fluids within the enlarged system 

of pores connected to the fractured zones, which in turn should cause an 
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increase of the regularity.  We recall in fact that =-1 corresponds to 

spikes and  =1 instead to the bell-shaped singularities (Fedi et al. 2003). 

Fig. 4.9 Comparison between the average-local regularity curves computed for 

log SP and the geological section. Also in this case the red lines connect the struc-

tural features (faults) present in the geological section with local maxima of regu-

larity. This shows a good correlation among the known macrofractures and local 

maxima of log SP regularity  

4.6 Discussion 

In this chapter, we have proposed a method for analyzing geophysical well 

logs, based on the application of the regularity analysis to a multiple set of 

logs. We applied the technique to the data gathered from the KTB well. 

The well log interpretation is generally based on the interpretation of the 

several logs measurements, aiming at improving the information related to 

the geological and structural characterization and to the fluid content of the 

drilled formations.  
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Here we focused our attention to the characterization of the signals in 

terms of its statistical properties at an order higher than two. We assumed a 

multifractal model for well logs and then applied RA to several logs. Two

different approaches were considered for computing the regularity of a 

multifractal signal. The first is a local approach, based on the estimation of 

regularity at each point, and the second is an average-local approach, 

which is based on the estimation of the regularity within a moving win-

dow. Our results show that the first approach is more suitable to detect the 

changes in lithological formations, while the second is more sensible to the 

occurrence of macro- and microfractures. 

Fig. 4.10 Comparison between the average-local regularity curve computed for 

log ER and the geological section. Also in this case the red lines connect the struc-

tural features (faults) present in the geological section with local maxima of regu-

larity. This shows a good correlation among the known macrofractures and local 

maxima of log ER regularity 

We find a strong correlation between the different regularity profiles. 

The correlation is more striking between the electrical logs as well as be-

tween density and susceptibility logs. So, the analysis of the KTB logs al-
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lows us to conclude that the RA provides a rather unique characterization 

of the drilled rock formations and that just a few well log types may be 

used to characterize the drilled formations.

Fig. 4.11 A comparison between the average-local regularity curve of log D 

and the “Fracture index” computed for KTB well (Bremer et al. 1992). It is seen 

that many local maxima of regularity curves correspond well to fractured zone, as 

identified by the Fracture Index 

The average-local approach provides evidence for an interesting correla-

tion between the local maxima of regularity and those of the fracture index 

(FI). Hence, we may suggest that the RA yield detailed information close 

to that provided by the FI. Hence, the regularity analysis is found to be a 

good tool for fracture investigations also.  Even though further research is 

needed to assess the utility and applicability of the regularity analysis, it 

seems nevertheless valid to improve the log interpretation and optimize the 

time for the analysis and the interpretation of the geological features of 

stratigraphic sequences. 
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5.1 Summary 

In this chapter the theory of electrokinetic effect on fractal is developed. 

Inhomogeneous water-saturated medium with fractal structure of pore 

space is a subject of investigation. The fluid migration along the percola-

tion clusters is accompanied by the electrokinetic effect caused by contact 

potential difference at phase bounds. The electrokinetic current density is 

found to depend on both the transport critical exponent and correlation 

length critical exponent. Two different models of the inhomogeneity em-

bedded in rock are considered. In the first model a fractal core with high 

pore fluid pressure is surrounded by weak permeable rock. In the second 

one a non-fractal core composed of high permeable broken rock is sur-

rounded by a fractal periphery. The electrokinetic current in the fractal re-

gions results in the appearance of electric currents in conductive layers un-

der the ground. Amplitude of the electric signal versus the size of fractal 

structure and distance from the source is estimated. This dependence is ap-

plied for seismic electric signals (SES) occasionally observed prior to great 

crustal earthquakes. Interestingly enough the empirical dependence of the 

SES amplitude on earthquake magnitude can be explained solely by ac-

counting for the scaling arguments. A special credit is paid to study the du-

ration of the SES. The fluid migration is described by a generalized diffu-

sion type equation in Euclidean spaces to fractal spaces. The use of this 

equation makes it possible to consider the envelope of the fluid pressure, 

which is, in fact, a non-analytic function. The SES duration is found to be 

the same order of magnitude as the time of fluid diffusion on fractal that is 

much greater than the duration of the electric current propagation in con-

ductive medium. 
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5.2 Introduction 

The electrokinetic current in pore water-saturated rock is due to the migra-

tion of charged fluid. Walls of pores and cracks can adsorb ions of certain 

elements from fluid whereas fluid is charged oppositely, and then fluid 

flow is accompanied by an electric current. Large-scale rock fractures in 

the vicinity of an earthquake focal zone can be accompanied by the migra-

tion of underground fluid, thus the electrokinetic current flows. It has long 

been known that the electrokinetic effect is responsible for the seismoelec-

tric phenomena associated with seismic wave propagation in moist soil 

(so-called seismoelectric effect of the second kind) (Ivanov 1940, Frenkel 

1944, Martner and Sparks 1959). The similar effect is supposed to be a 

possible cause of so-called seismic electric signals (SES) observed in 

seismoactive regions (Varotsos et al. 1984a, b 1996, Uyeda et al. 2000). In 

this case the large scaled fluid migration is caused by the tectonic stress 

variations before seismic events. The continuous monitoring of telluric po-

tential difference on the network of grounded non-polarization electrodes 

have been made to detect the isolate SES with duration from tens minutes 

up to several hours. It was hypothesized by Varotsos et al. (1984a, b) that 

such signals occasionally observed several hours or days before an im-

pending strong crust earthquake can serve as a short term electromagnetic 

precursor. The logarithm of the SES amplitude was found to depend on 

magnitude of a forthcoming earthquake in a linear fashion. The coefficient 

proportionality in this empirical dependence does not follow from theoreti-

cal models based on electrokinetic effect (Bernard 1992, Fenoglio et al. 

1995). Surkov et al. (2002) have shown that some features of this depend-

ence including the coefficient proportionality can be explained on the sup-

position that the electrokinetic current spreads in water-saturated rock with 

fractal structure of pore space. The part of the international geophysical 

community doubts about the validity of the assumption that the SES is re-

lated to earthquake. In spite of this fact the electrokinetic effect has been 

the subject of a great deal of laboratory research in the past two decades 

(Mizutani and Ishido 1976, Jouniaux and Pozzi 1999). The possibility for 

the detection of earthquake electromagnetic precursors is an intriguing 

problem which is widely discussed up to now. 

The goals of this chapter are (1) to relate the SES amplitude and dura-

tion to critical exponents and fractal zone size and (2) to drive the relations 

between the SES parameters and magnitude of earthquakes on the basis of 

the electrokinetic effect on a fractal structure above percolation threshold. 
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5.3 Estimation of electric field amplitude 

In multiphase heterogeneous medium the contact potential difference and 

electric charges can be formed on the phase bounds. For example, in the 

pore water-saturated rocks the underground water consists of electrolyte 

solutions that include ions and dissociated molecules. The surfaces of 

cracks and pores can adsorb ions of certain sign from the fluid. For exam-

ple the surface charge of solid phase can be negative due to acid dissocia-

tion of the surface hydroxyl groups (Parks 1965, 1984) 

+

1-nn HOOHMOHM

As a result the cations are concentrated at the crack surfaces. In such a 

case the double electric layers are formed in the vicinity of the crack walls. 

Rock deformation due to the tectonic stresses is accompanied by under-

ground fluid migration. This migration is supposed to occur at the higher 

depth up to several kilometers (Nikolaevskiy 1966), and it can be espe-

cially intensive near the fault zone. Moving along the crack/channel, the 

fluid carries anions, and thus produces an extrinsic electric current. The 

electrokinetic current density averaged with respect to the cross section 

can be written as 

PCj re (5.1)

f

0C
(5.2)

where C is the streaming potential coefficient, r is the average rock con-

ductivity, f is the fluid conductivity, P is gradient of the fluid pressure 

in the cracks,  and  are the dielectric permeability and viscosity of fluid, 

0 is the electric constant and  denotes the potential difference across the 

electric double layer on crack walls ( -potential). Since the solid matrix 

conductivity is much smaller than that for the fluid the average rock con-

ductivity in Eq. (5.1) is mainly determined by the fluid content. It should 

be noted that single pores and cracks can not be the conductor for the fluid 

flow as well as for the electrokinetic current (5.1) and thus only those 

cracks and channels, which create a connected system or cluster are able to 

contribute into the conductivity r. In the non-conductive matrix 

approximation the rock conductivity is 

c0r nn (5.3)
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where n is the rock porosity, nc is the percolation threshold, 0 is constant 

with dimension of conductivity and  is the transport critical exponent 

(Feder 1988, Stauffer 1979). In what follows we shall use Eq. (5.3) in or-

der to describe solely the rock conductivity due to formation of the perco-

lation cluster filled by the water. In reality the rock conductivity is never 

zero because there is ion conductivity of the solid matrix, i.e. the percola-

tion threshold of the rock conductivity is absent. In our case nc denotes the 

percolation threshold for the electrokinetic current due to fluid flow. 

An infinite cluster has a fractal structure above the percolation threshold 

within spatial scale, which does not exceed the correlation length 

c

0

nn

(5.4)

where  is the correlation length critical exponent, 0 is constant of dimen-

sion of length. Once such fractal structure is formed in rock, its character-

istic scale is of the order of the correlation length (5.4). 

It is assumed that the upper crust includes great deals of small-scaled 

fluid-filled inhomogeneities, reservoirs with nonhydrostatic fluid, fracture 

zones and others. Some of such formation can be unstable, for example the 

sealed underground compartments with high pore pressure may become 

unstable by weak seismic events (Bernard 1992, Fenoglio et al. 1995). The 

typical size of the inhomogeneities can vary from several meters up to sev-

eral kilometers. The focal zone of a forthcoming earthquake is frequently 

associated with such an unstable zone. 

Consider an inhomogeneity, which includes high-permeability water-

saturated rock. High pore pressure in this inhomogeneity is capable to sus-

tain the outward fluid migration. Suppose that the pore space in this zone 

exhibits fractal structure. In this case the characteristic size of the inho-

mogeneity, L, is of the order of the correlation length (5.4), i.e. L .

Combining the Eqs. (5.1) - (5.4) one can find a rough estimation of the 

electric current density due to the fluid migration 

P
L

Cj 0
0e

(5.5)

The electrokinetic current (5.1) is partially compensated by the conduc-

tion current, which can flow in the fluid as well as in the solid matrix. Sta-

tionary current distribution in the rock obeys continuity equation 

.(Je+ E) = 0, where E is electric field strength. The electric current is 
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characterized by another average rock conductivity,  that has no percola-

tion threshold and thus does not coincide with r. Introducing the electric 

potential through E = – , we get 

e

2 j (5.6)

The term on the right-hand side of Eq. (5.6) plays a role of the source. 

Let V be the volume occupied by the electrokinetic currents so that je and 

C vanishes outside this zone. Assuming for the moment that  is uniform, 

then at the large distance, when r >> L, the solution of Poisson equation 

(5.6) can be written as 

V

e3
dVjd    ,

r4

rd (5.7)

where d is the effective dipole moment of the electrokinetic currents je and 

V L3.

It should be noted that in the uniform medium, i.e.,  and C are constant 

everywhere, the conduction and electrokinetic currents are completely 

compensated by each other in all space including the volume V, so that the 

effective moment d becomes zero (Surkov 2000, Fedorov et al. 2001). 

Actually this compensation does not arise because the coefficients  and C 

are different in the inhomogeneity and surrounding rock due to the change 

in porosity. Hence one obtain the rough estimation d je L3. Notice that 

this estimation is valid except for the case of the nonrealistic spherically 

symmetric current distribution when d equals zero. 

We also assume that P P/L, where P is the pore fluid pressure 

difference between the inhomogeneity and surrounding rock. In the case of 

large-scaled inhomogeneities such as earthquake hypocenter, P is sup-

posed to be proportional shear stress drop, s, caused by rock fracture be-

fore main shock. The shear stress drop is of the order of crushing/shear 

strength and thus s is independent of the size L (Scholz 1990). We as-

sume the same as to P, i.e. P is independent of the size L.  

Taking into account these expressions and substituting Eq. (5.5) into Eq. 

(5.7) gives the potential . Finally we obtain the dependence of the electric 

field on distance r and inhomogeneity size L: 

2
0

3

2

0 L
Lr4

LPC
E

(5.8)

Note that for the non-fractal inhomogeneity we get E L2.
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In the model reported by Surkov et al. (2002) the permeability and po-

rosity are maximal in the center of inhomogeneity and decrease in the ra-

dial directions so that the porosity gradient can be estimated as dr n/L,

where L denotes the characteristic size of the inhomogeneity. The central 

non-fractal part/core of the inhomogeneity consists of broken rock with so 

high permeability and porosity that the correlation length tends to zero in 

this region. The core is surrounded by the layer L – H < r < L with fractal 

structure, where the porosity decreases down to the percolation threshold 

nc. The thickness, H, of this layer is estimated as 1LH . In such a case 

the effective dipole moment of the electrokinetic currents in the fractal re-

gion is d je L2H, where the electrokinetic current density is 

L

P

H
Cj 0

0e

Hence

1
1

LE
(5.9)

The typical size of earthquake focal zone, L, can be related with the 

earthquake magnitude, M, by the empirical rule (Kanamori and Anderson 

1975):

9.1M5.0Llog (5.10)

where L is measured in kilometers. Combining the Eq. (5.9) and (5.10), 

yields (Surkov et al. 2002) 

1
15.0a,baMElog

(5.11)

where b is constant. Using the critical exponents = 1.6, = 0.88 obtained 

by numerical simulation on three-dimensional grids (Feder 1988, Stauffer 

1979) gives a 0.31. The same dependence has been reported by Varotsos 

et al. (1996) for the so-called seismic electric signals (SES) occasionally 

observed prior to strong crust earthquake occurrence. Interestingly enough 

the empirical factor ‘a’ presented by Varotsos et al. (1996) is a 0.34 –

0.37, that is close to the above predicted value. One should note that for 

the non-fractal inhomogeneity a = 1.
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5.4 Estimation of the signal duration 

It is known that in conductive layers of the upper crust the low-frequency 

(ULF band) electromagnetic field and currents mainly propagate due to 

diffusion process. In such a case an electromagnetic field perturbation 

propagates as 0

2 tr , where r is the distance from the source,  is the 

rock basement conductivity and 0 denotes the magnetic constant. Hence 

the moment of the perturbations arrival at a fixed point r obeys the law: t

0 r2. Taking the characteristic distance r = 100 km and = 10–3 S/m we 

obtain the time interval t 10 s, that is much less than observed single SES 

duration (several tens minutes). Based on this estimation it is reasonable to 

assume that the SES duration is determined, in the first place, by the dura-

tion of mechanical processes in the source itself. 

In order to evaluate the electromagnetic signal duration consider a 

highly permeable fractured area with higher fluid pressure surrounded by 

lower permeable rock or vise versa a lower permeable area surrounded by 

water-saturated rock. The changes of tectonic stresses can result in the 

rock fracture. Formation of fresh cracks and voids leads to the increase of 

permeability, and then fluid starts to flow from higher fluid pressure area 

to lower one. First we ignore the fractal properties of the pore space. Sup-

pose that the fluid begins to move from the surrounding rock towards the 

center of the fracture zone/area. This process will be lasted until the pore 

fluid pressure in the fracture zone becomes equal to that in the surrounding 

space.

Consider a simplified model of the medium instead of study with a rig-

orous formulation of the problem. The fluid velocity, v, in narrow chan-

nel/crack is much smaller than the sound velocity Cf in the fluid. Therefore 

the fluid density variations,  is small, i.e. << 0, where 0 is undis-

turbed fluid density, and the linearized equation for fluid motion can be 

used

k

v
Pvt0

(5.12)

where P is variations of the pore fluid overpressure (above hydrostatic 

pressure),  is the coefficient of the fluid viscosity and k is the rock per-

meability, t = / t denotes partial time-derivative. Here we have ignored 

the fluid velocity distribution in the channel and solid matrix compressibil-

ity as well. In the stationary case, when tv = 0, Eq. (5.12) is converted to 

the form 
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P
k

v
(5.13)

that coincides with well-known Darcy's law.  

The linearized continuity equation is given by 

0v0t (5.14)

The fluid density variation,  can be related to the variation of the pore 

fluid overpressure, i.e. P = Cf
2 . Combining this expression with the Eqs. 

(5.12) and (5.14), yields 

P
k

PCP t

0

22

f

2

t

(5.15)

where k is the average rock permeability and P makes sense of the fluid 

pressure averaged over elementary rock volume. In the low frequency case 

the second order time-derivative on the left-hand side of Eq. (5.15) can be 

omitted. Then we come to diffusion-type equation for the average pressure 

PKP 2

t
(5.16)

Here K is the diffusion coefficient for the fluid moving along the under-

ground channels 

f

2

f0 kGCk
K

(5.17)

where Gf is the compressibility modulus of the fluid. Note that, in spite of 

the simplified approach, our estimation of diffusion coefficient coincides 

with exact solution obtained by Frenkel (1944) for the more complicated 

model at least by the order-of-magnitude 

s

f

s

f

G

G
1

G

G
1

n

1
1      where,

kG
K

Here Gs and G are the compressibility modules of the solid matrix and the 

dry porous rock and n is porosity. 

The diffusion duration can be roughly estimated from Eq. (5.16) 

K

L
t

2 (5.18)

where L is the characteristic size of the inhomogeneity/fracture zone. For 

example, taking the parameters L = 0.3 km, k = 10–12–10–14 m2, = 10–4 kg/ 
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(m s) and Gf = 2.3 109 Pa one can find that t 1 – 100 h. The duration of 

typical single SES as observed by Varotsos et al. (1996) is of the order of 

one hour. 

Now we consider a model problem for infinite fracturing medium with 

fractal structure in order to estimate the duration of the fluid migration in 

fractal pore space. The medium contains a region/inhomogeneity with high 

pore fluid pressure. This inhomogeneity plays a role of natural reservoir or 

the fluid source. Once the percolation threshold is exceeded, say due to 

stress variation and energization of crack formation, the fluid begins to 

penetrate into surrounding rock. Suppose the fluid distribution is spheri-

cally symmetric on average so that all quantities depend on distance r from 

the origin. 

It follows from Eq. (5.17) that the diffusion coefficient is proportional to 

the rock permeability k. According to the percolation theory, the perme-

ability depends on the porosity in the same way as conductivity (5.3), i.e. 

cnnk (5.19)

where  is the transport critical exponent (Feder 1988). This quantity, k, 

can be related to the active porosity, na, which includes only those chan-

nels and cracks that belong to percolation cluster 

ca nnn (5.20)

where  is the order parameter critical exponent that can be expressed 

through the fractal dimension D of the percolation cluster: = (3–D). The 

active porosity varies with distance in the fractal zone as 3Dr . Combining 

this dependence with the Eqs. (5.17), (5.19) and (5.20), gives 

r

K
rK 0 (5.21)

where K(r) is the coefficient of abnormal diffusion in fractal zone, = /

is the critical exponent of the diffusion coefficient and K0 is constant. It 

should be noted that in a fractal medium the pore fluid pressure P is highly 

nonanalytic function, and in fact contains singularities on all length scales. 

To simplify the problem, one can consider the smooth envelope of this 

function P(r, t), where r is the distance from the center of the inhomogene-

ity. It follows from the numerical modeling that the dynamics of P(r, t) are 

well approximated by the differential equation (O`Shaughnessy and Pro-

caccia 1985a, b) 
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PrKr
r

1
P r

1D

r1Dt

(5.22)

where r = / r. Eq. (5.22) describes the diffusion on fractal with dimen-

sion D, in contrast to usual diffusion equation (5.16), which is valid as D =

3. In a word, Eq. (5.22) is a generalization of spherically symmetric diffu-

sion equation in three dimensional spaces.  

Let a be the radius of the inhomogeneity/source. Multiplying both sides 

of Eq. (5.22) by the factor rD–1 and integrating with respect to r from a to 

infinity, gives 

a

r

1D

0t

1D t,aPaKdrt,rPr
(5.23)

Here we have taken into account that 0Pr r

1D  when r . Let m (t) 

be the net fluid mass penetrated into the surrounding rock for the time in-

terval t. The fluid mass crossing the surface confined by the radius r = a per 

unit of time is St,avtmd 0t , where 1DaS  denotes the surface area in 

space with dimension D. The fluid velocity, v (a, t) obeys the Darcy law 

(5.13), where the rock permeability k is given by Eq. (5.19). As before we 

find that rk  and hence 

t,aPatmd r

1D0
t

(5.24)

Combining Eq. (5.23) and (5.24), gives the boundary condition at r = a. For 

simplicity consider the case of point source when a 0

0

1D tmdrt,rPr
(5.25)

Here m(t) is given function and  is constant. The solution of equation 

(5.22) with the condition (5.25) has the form 

t

0 2

D

t

2

0

2

1
2

D2
2

D

0
tt

tdtmd

tt2K

r
exp

2K
2

D
t,rP

(5.26)

where (x) denotes -function. It follows from Eq. (5.26) that the integral 

depends on the dimensionless parameter t2Kr
2

0

2 . Once L is the 

characteristic spatial scale of the region, the time of fluid migration into 

this region has the form 
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22

0

2 L2KLt (5.27)

that is typical for a random walker on fractal medium. If the quantity 

(5.27) is much greater than the characteristic period of function dtm (t), 

one may replace it by the delta-function and take the integral in Eq. (5.26). 

In such a case Eq. (5.27) defines the characteristic duration of both the 

fluid diffusion and the single SES. 

For the more complicated model of inhomogeneity (Surkov et al. 2002), 

where the high permeable core is surrounded by fractal zone with spatial 

scale 1LH , the duration of diffusion obeys  

122 LHt (5.28)

Taking a notice of the fact that this model gives a good correlation with 

the SES observation before earthquakes, at least as for the SES amplitude 

(5.10), we shall try to estimate the SES duration in the same way. Combin-

ing Eqs. (5.10) and (5.28) we find 

12

2
a,bMatlog 111

(5.29)

where M is the magnitude of impending earthquake and b1 is constant. 

Taking above parameters for the critical exponents  and , gives a1 0.89. 

We can not compare the predicted dependence (5.29) with observation be-

cause proper statistics of the single SES duration is still absent. One should 

note that for the non-fractal inhomogeneity a1 = 1.

5.5 Discussion 

The scaling analyses presented in this chapter reveal that the fractal prop-

erties of pore space considerably affect the electrokinetic effect. The am-

plitude and duration of the seismic electric signals originated from the 

electrokinetic effect depend on both the correlation length and transport 

critical exponents. These estimations can be applied to the near and pre-

seismic electromagnetic phenomena possibly associated with forthcoming 

earthquakes. In particular we have related the SES parameters with earth-

quake magnitude. It was found that in the case of fractal medium the coef-

ficient ‘a’ that relates Elog  to M becomes about one-third compared to 

that in the case of non-fractal medium. It is worth mentioning that such es-

timations is sensitive to topology of the real pore space, structure of the 

water-saturated region and the fluid pore pressure gradient. For example, 
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two above considered models, i.e. the fractal inhomogeneity above the 

percolation threshold and the fractured region with high permeable core 

surrounded by the fractal zone, reveal different relationships between the 

SES parameters, the fractal zone size and earthquake magnitude (cf. the 

Eqs. (5.8) and (5.9) or the Eqs. (5.27) and (5.28)).  

Another mechanism for the ULF electromagnetic field variations ob-

served before strong crust earthquake have been recently proposed by 

Surkov (1997; 1999; 2000) and Surkov et al. (2003). The electromagnetic 

noises can be excited by acoustic emissions associated with crack forma-

tion at the Earth conductive stratums immersed in a uniform geomagnetic 

field. Energization of crack formation and fracture process in a focal zone 

before the main shock gives rise to the electromagnetic variations, whose 

amplitudes are proportional L3. Hence, as it follows from Eq. (5.10), 

M5.1Elog  in contrast to the Eqs. (5.27) and (5.28). This fact makes it 

possible to distinguish these different mechanisms for telluric electric sig-

nals.

The SES duration was estimated in terms of the time needed for the 

fluid to penetrate from the fractured fractal region with high fluid pressure 

into the surrounding rock or vise versa depending on the model. It should 

be noted, this estimation is based on the assumption that percolation clus-

ter are formed for short time compared to the fluid migration. Besides we 

have omitted such details as possible formation of the "viscous fingers" at 

the front of fluid penetrating in the rock and the anisotropy of the rock 

permeability. Once the anisotropic disordered medium are formed, the 

fluid filtration with a fixed bias direction, say due to gravity force, can 

arise. As the porosity is far above the percolation threshold the fluid mo-

tion can exhibit log-periodic oscillations in the effective exponent versus 

time (Stauffer and Sornette 1998, Bustingorry and Reyes 2000). Note that 

this effect has analogy with diffusion of low-frequency electromagnetic 

field into magnetized plasma when anisotropic plasma conductivity takes 

place (Surkov 1996). One may expect appearance of the SES oscillations 

due to such effect. 

Acknowledgments 

This research was partially supported by ISTC under Research Grant No. 

1121. 



Electrokinetic Effect in Fractal Pore Media      95 

5.6 References 

Bernard P (1992) Plausibility of long electrotelluric precursors to earthquakes. J 

Geophys Res 97: 17531-17546 

Bustingorry S, Reyes ER (2000) Biased diffusion in anisotropic disordered sys-

tems, Phys Rev E 62: 7664-7669 

Fedorov EN, Pilipenko VA, Vellante M, Uyeda S (2001) Electric and magnetic 

fields generated by electrokinetic processes in a conductive crust. Phys Chem 

Earth C 26:793-799 

Fenoglio MA, Johnston MJS, Byerlee JD (1995) Magnetic and electric fields as-

sociated with changes in high pore pressure in fault zones: Application to the 

Loma Prieta ULF emissions. J Geophys Res 100:12.951-12.958 

Feder E (1988) Fractals. Springer, Berlin Heidelberg New York 

Frenkel Ya I (1944) On the theory of seismic and seismoelectric phenomena in 

moist soil. Proc Academy of Sciences USSR series of geography and geo-

physics 8: 133-150 

Ivanov AG (1940) Seismoelectric effect of the second kind. Proc Academy of Sci-

ences USSR series of geography and geophysics 4: 699-726 

Jouniaux L, Pozzi JP (1999) Streaming potential measurements in laboratory: a 

precursory measurement of the rupture and anomalous 0.1- 0.5 Hz measure-

ments under geochemical changes. In: Hayakawa M(ed) Atmospheric and 

ionospheric phenomena associated with earthquakes TERRAPUB, Tokyo, pp. 

873-880 

Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in 

seismology. Bull Seism Soc Amer 65:1073-1095 

Martner ST, Sparks NR (1959) The electroseismic effect. Geophysics 24: 297-308 

Mizutani H, Ishido T (1976) A new interpretation of magnetic field variation as-

sociated with the Matsushita earthquakes. J  Geomagn Geoelectr 28:179-188 

Nikolaevskiy VN (1996) Geomechanics and Fluidodynamics. Dordecht Boston, 

London 

Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and 

aqueous hydroxo complex systems. Chem Rev 65:177-198 

Parks GA (1984) Surface and interfacial free energies of quartz. J. Geophys. Res. 

89:3997-4008 

O`Shaughnessy B, Procaccia I (1985a) Analytical solutions for the diffusion on 

fractal objects. Phys Rev Lett 54:455-458 

O`Shaughnessy B, Procaccia I (1985b) Diffusion on fractals. Phys Rev 32A: 

3073-2083 

Scholz CH (1990) The Mechanics of earthquakes and faulting. Cambridge Univ. 

Press, Cambridge UK 

Stauffer D, Sornette D (1998) Log-periodic oscillations for biased diffusion on 

random lattice. Physica A 252: 271-277 



96      V.V. Surkov, H. Tanaka  

Surkov VV (1996) Front structure of the Alfven wave radiated into the magneto-

sphere due to excitation of the ionospheric E layer. J Geophys Res 101:15403-

15409 

Surkov VV (1997) The nature of electromagnetic forerunners of earthquakes, 

Trans (Doklady) Russian Acad  Sci. Earth Science Sections 355:945-947 

Surkov VV (1999) ULF electromagnetic perturbations resulting from the fracture 

and dilatancy in the earthquake preparation zone. In: Hayakawa M (ed) At-

mospheric and Ionospheric Phenomena Associated with Earthquakes  

TERRAPUB, Tokyo, pp. 357-370 

Surkov VV (2000) Electromagnetic effects caused by earthquakes and explosions. 

MEPhI, Moscow 

Surkov VV, Uyeda S, Tanaka H, Hayakawa M (2002) Fractal properties of me-

dium and seismoelectric phenomena. J Geodynamics 33: 477-487 

Surkov VV, Molchanov OA, Hayakawa M (2003) Pre-earthquake ULF electro-

magnetic perturbations as a result of inductive seismomagnetic phenomena 

during microfracturing. J Atmosphere and Solar-Terrestrial Physics 65:31-46 

Uyeda S, Nagao T, Orihara Y, Yamaguchi T, Takahashi I (2000) Geoelectric po-

tential changes: Possible precursors to earthquakes in Japan. Proc Natl Acad 

Sci 97: 4561-4566 

Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the 

electric field of the earth preceding earthquakes, I. Tectonophysics 110:73-98 

Varotsos P, Alexopoulos K (1984b) Physical properties of the variations of the 

electric field of the earth preceding earthquakes, II Determination of epicenter 

and magnitude. Tectonophysics 110:99-125 

Varotsos P,  Lazaridou M, Eftaxias K., Antonopoulos G, Makris J, Kopanas J 

(1996) Short term earthquake prediction in Greece by seismic electric signals. 

In: Lighthill S J (ed) A Critical Review of VAN, World Scientific, Singapore.  

pp 29-76 



Chapter 6. Fractal Network and Mixture Models 

for Elastic and Electrical Properties of Porous 

Rock

M. Pervukhina, Y. Kuwahara,  H. Ito 

Geological Survey of Japan, Higashi, Tsukuba, Ibaraki, 305-8567 Japan.  

6.1 Summary 

Study of the correlation of elastic and electrical properties of porous rock 

is important for predicting parameters, such as porosity and permeability. 

We review the methods that allow calculations of both electrical and elas-

tic properties of porous rock for the same microstructure. The methods are 

categorized into mixture theories and fractal networks theories. The mix-

ture theories describe electrical and elastic properties for limited cases of 

microstructures and fail to predict properties of porous rock near percola-

tion. Fractal models, recently developed for elastic and electrical properties 

of porous rock are described for conductivity and seismic velocities for a 

wide range of isolated and interconnected pore geometries. We review the 

application of the model to the results of collocated seismic velocity tomo-

graphy and magnetotelluric experiments at an active faults of the experi-

mental data using the fractal model illustrated that the deep extension of 

the active fault can be regarded as the region, with small aspect ratios 

equal to 10-2, showing that the pore geometry in the region is far from the 

interfacial energy-controlled fluid geometry. 

6.2 Introduction 

Theoretical problems of effective properties of elasticity and resistivity of 

composite material have been intensively studied for a long time in the 

field of material science. This kind of problem has also become of practi-

cal importance in the field of solid earth science. Examples of the problem 

are found in collocated magnetotelluric (MT), seismic velocity tomogra-

phy studies of the crust and the upper mantle and in borehole measure-

ments of resistivity and seismic velocities. The investigation of the correla-

tions of elastic and electrical properties of porous rock is important for 
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understanding of the structure of studied area and for estimation of non-

measured parameters, such as porosity and permeability. The precise na-

ture of porous rock analysis of both elastic and electromagnetic data is 

very interesting, especially for percolation. Experimental data of electrical 

resistance and seismic velocities must be analyzed using the method that is 

able to calculate both properties for the same microstructure.   However, 

most of interpretations of the experimental data are based on inconsistent 

theories and/or empirical dependencies. This situation is possibly caused 

from the fact that the conventional mixture theories (Berryman 2000) de-

scribe electrical and elastic properties only for limited cases of microstruc-

tures and fail to predict properties of porous rock near percolation.  

Network theories are other plausible approach to describe rock that is 

mixture of crystals, voids, cracks, and fractures. Methods based on random 

networks, for example, renormalization group method (Madden 1983), 

percolation theory (Gueguen et al. 1991) and fractal random networks 

(Bahr 1997) are a standard approach for calculation of transport properties, 

namely, conductivity and permeability of rock. Spangenberg (1998) devel-

oped a fractal model for elastic properties of porous rock. Pervukhina et al. 

(2003) modified his model to describe isolated pore case. Application of 

the modified model to the electrical properties allowed calculation of 

seismic velocities and resistivities for a wide range of microstructures in-

cluding 3D grain and pore anisotropy and different interconnection extent 

from isolated to interconnected pores. 

In this chapter, we review the theories for elastic and electrical proper-

ties of porous medium. These theories are conventionally divided into mix-

ture theories and network theories as shown in Fig.6.1. We examine the 

mixture models for elastic and electrical properties of porous rock, paying 

particular attention to the bounds and estimates, which could be made for 

both electrical and elastic properties for the same microstructure. Then 

fractal network models allowing calculation of both elastic and electrical 

properties are discussed. Finally, we review an application of the fractal 

model to results of a collocated seismic velocity tomography and magneto-

telluric experiments. 

6.3 Mixture theories   

Mixture theories are used to determine effective properties of composites. 

The theories do not consider reflection and refraction of the electrical and 

elastic wave on inhomogeneity, assuming that the size of inhomogeneity is 

much smaller than the length of elastic wave in the case of elastic proper-
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ties or the free path length in the case of electric properties (so-called, 

long-wave approximation). We restrict our review with electrical and elas-

tic properties of two-phase mixtures, which are commonly applied for cal-

culation of physical properties of rocks.  

Fig. 6.1 Mixture theories and network models of electrical and elastic proper-

ties of porous rocks 

There are two types of results obtained in the theory of mixtures: bounds 

obtained for nonspecific geometry of constituents and results obtained for 

a specific microstructure of composite. Hereafter we call these as bounds 

and estimates, respectively. Bounds are based on thermodynamic stability 

criteria or on variational principles and can be calculated for both electrical 

and elastic properties of mixtures. The theoretical results obtained for a 

specific mixture microstructure are supposed to satisfy the bounds and 

play essential role in evaluating of the rock properties.  

6.3.1 Bounds 

Voigt (1910) and Reuss (1929) determined bounds for highly anisotropic 

composite materials. The assumption of homogeneous strain (Voigt 1910) 

results in parallel connection of equivalent network or arithmetic mean of 
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elastic moduli. The assumption of homogeneous stress (Reuss 1929) leads 

to a serial connection or a harmonic mean of elastic moduli of the compo-

situres. Using variational principles, Hill (1952) showed that the assump-

tions of homogeneous strain and strain are the rigid upper and lower 

bounds for all possible mixture microstructures including anisotropic ones. 

As regards to electrical properties, the bounds of anisotropic mixtures are 

the resistivities of horizontally and vertically layered medium. The resis-

tivity of the horizontal and vertical lamellar medium can be calculated as 

resistivity of equivalent networks as arithmetic mean for serial connections 

and as harmonic mean for parallel ones. 

Hashin and Shtrikman (1961; 1962) used a variational approach to de-

termine the bounds for both elastic and electrical properties for isotropic 

composite materials. The bounds for electrical conductivity for solid-liquid 

mixture can written as 
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where  is a volumetric fraction of fluid and m and p are conductivities 

of matrix and pore fluid, respectively.  

Hashin-Shtrikman bounds for elastic moduli are usually presented in 

terms of bulk and shear moduli and sometimes for Young’s modulus and 

Poisson’s ratio. In the present article we mainly use elastic modulus 

M=Vp
2 , where Vp is compressional wave velocity and  is density. Con-

sidering that the modulus M equals to M=K+4/3 , where K and  is bulk 

and shear moduli, respectively, we rewrite the Hashin-Shtrikman bounds 

for the modulus M as 
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Here Mm, m, Mp and p are elastic moduli for matrix and pore materials 

respectively.   

Hashin-Shtrikman bounds for shear modulus are 
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Hashin-Shtrikman’s upper and lower bounds are the best ones that could 

be done for elastic and electrical properties of isotropic mixture without a 

priori knowledge of composite microstructure. The useful alternative is to 
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specify geometry of the phases to get more accurate estimation of electri-

cal and elastic properties of mixture. Below the electric and elastic proper-

ties are estimated for some particular geometry of phases. 

6.3.2 Estimates 

Among the numerous estimates for effective properties of porous rock, we 

here review the estimate theories that can be made for elastic and electrical 

properties for the same microstructure (Fig. 6.1). Firstly, we refer several 

estimates for both the properties for homogeneous media with isolated in-

clusions of different simple shapes, namely, spheres, needles, disk and axis 

symmetric ellipsoids.  It is noted that these results are valid for an assump-

tion of non-interactions between the inclusions, i.e. for dilute concentra-

tions of fluid inclusions. Secondly, we mention an estimate for elastic and 

transport properties of two-phase medium with isotropic matrix and 

aligned interconnected ellipsoidal inclusions (Bayuk and Chesnokov 

1998). This estimate is considering high concentration of inclusions and 

taking into account the microstructure of the porous medium.  

Isolated inclusions 

For clarity of presentation we refer unified formulas presented by 

Berryman (2000), who generalized diverse results for effective electrical 

and elastic properties of isotropic composite with isolated inclusions of 

different shapes.

Effective electrical conductivity eff of inclusions of different shapes in 

an isotropic matrix was obtained by Cohen et al. (1973) and Galeener 

(1971). For two-phase mixtures it can be calculated as 

f)(
2

mp

meff

meff ,

where m, p are the conductivity of matrix and of pore filling and the fac-

tor f is presented in Table 6.1 for different shapes of inclusions. The for-

mula for isolated axis symmetric ellipsoidal conductive inclusions was de-

rived by Semjonow (1948) as: 
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where  is the aspect ratio of the axis symmetric inclusions. 

Table 6.1 Three examples of coefficients for different shape of inclusions in 

isotropic composites. 

Inclusion shape Factor f 

Spheres
mp 2

1

Needles
mpm

41

9

1

Disks
mp

21

9

1

Kuster and Toksöz (1974) derived estimates of bulk and shear moduli of 

composites with isotropic matrix and isolated spherical inclusions. Theirs 

results were generalized by Wu (1966), Walpole (1969) and Walsh (1969) 

for the nonspherical inclusions as: 
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Qmp
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Coefficients P and Q are presented in Table 6.2 for the same four type 

of inclusions, which were mentioned for electrical properties. Special 

characters used in Table 6.2 are defined by 4K3/K3 ,

7K3/K3 ,and 2K/8K96/ . The expressions 
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for penny-shaped cracks were derived by Walsh (1969) and assuming 

1K/K mp  and 1/ mp .

Table 6.2 The coefficients P and Q for different shapes of inclusions 

Inclusion 

shape 

P Q 
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Interconnected aligned ellipsoidal inclusions 

Using the general singular approximation (GSA) method (Schermergor, 

1977), Bayuk and Chesnokov (1998) suggested a way to calculate either 

elastic or electrical properties of rock for the single microstructure. This 

method allows considering high concentration of inclusions and takes into 

account the inner structure of the porous medium. The GSA method based 

on the assumption that the properties of composite body can be expressed 

using the effective operator Leff, which connects the average vector <U>

with average divergence of stress or electrical conductivity tensor <LU> as 

<LU>=L
eff<U>

In the elasticity case, the operator L has the form lijkljik CL , where 

C is the fourth-rank tensor of the elastic constants and U is a vector of dis-

placements. In case of electrical properties jiji TL , here T is the two-

rank tensor of electrical conductivity. Here we used the notation
i

i
x

.
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The effective properties of the composite body are expressed through 

the properties of homogeneous body of the same size and shape, so-called 

comparison body, with the known tensor of elastic constants CC and tensor 

of electrical conductivity TC. After algebraic transformation and neglecting 

the formal component of the second derivative of the Green function, 

Shermergor (1977) derived the formula of the effective properties of the 

inhomogeneous body as 
1

1C1C* ))XX(gI))XX(gI(XX ,

where X=C (4th-rank tensor) in the elasticity case and X=T (2nd-rank ten-

sor) in the electrical properties case. The tensor g is the singular part of the 

second derivate of the Green function. For ellipsoidal inclusions, the tensor 

g in the case of elasticity takes the form 
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In the case of electric properties, 
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sind , wherein a1, a2 and a3 are semi-axes of the ellipsoidal inclu-

sions.

The properties of comparison body is usually chosen as 

pmC XkX)k1(X ,

where  is volumetric fraction of inclusions, Xm and Xp are tensors of elas-

tic or electrical properties of matrix and pore material respectively, and k is 

percolation factor with numerical values in the interval [0,1].  
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6.4 Fractal network models  

6.4.1 Elastic properties

Spangenberg (1998) proposed to describe a real porous rock as a combina-

tion of matrix, pore canals and contact region (Fig.6.2). The geometrical 

unit corresponds to cuboids of free eligible ratios of the edges l1, l2, l3. Pore 

canals are described by canals with free eligible sizes a1, a2, a3. Contact re-

gion can be filled by an arbitrary number of self-similar generations. Po-

rosity and density can be calculated for this model with arbitrary number 

of substructures filling contact region. To calculate elastic properties of the 

model, Spangenberg (1998) subdivided the geometrical model into rectan-

gular components of matrix material, contact region and pore fill, com-

bined the components in serial or parallel connections and calculated the 

physical properties for the resulting “equivalent network”. He suggested 

that the combination of serial and parallel connections for the elastic 

moduli corresponds to an assumption of regions of homogeneous stress 

(Reuss 1929) and regions of homogeneous strain (Voigt 1910), respec-

tively. Accordingly, he fulfilled horizontal subdivision and vertical subdi-

vision of the model. Then he showed that the principal dependencies on 

geometry, porosity, contact and composition are the same for the models 

corresponding to both kinds of subdivision and used for further calcula-

tions only the formulas corresponding to vertical subdivision of the model: 
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where M=Vp2 ,  Vp is compressional velocity and  is density, Mm, 

Mp, Mc are the moduli for matrix, pore filling and contact region respec-

tively and m, p, c are shear moduli for matrix, pore filling and contact 

area respectively. If the contact region is filled with N generation of self-

similar substructures, the calculation of the elastic moduli is an iterative 

process. The Mc and c for the smallest generation is assumed to be equal 

to Mm and m respectively. Elastic moduli of the contact region for other 

generations can be obtained using above formula.  
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The compressional and shear seismic velocities can be calculated from 

the elastic moduli and density as below:  

    

,
M

Vp sV .

Fig. 6.2 Open and isolated pore geometrical units. Contact regions of the open 

pore unit and connection regions of the isolated pore unit can be filled with N sub-

generations of the self-similar units 

6.4.2 Electrical properties 

Numerous models were developed for the description of the electrical 

properties of binary mixtures of insulating matrix and conducting pores 

that are a very common case in rock physics (eg. Madden (1976; 1983) 

and Bahr (1997)). Random networks are investigated as models of such 

binary mixtures. The critical and averaging behavior of such network was 
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investigated using different approaches, for example, numerical experi-

ments and renormalization group method. These results were applied to a 

study of electrical conductivity of porous media.  Kozlovskaya and Hjeit 

(2000) made an attempt to combine Bahr’s model for electrical properties 

of porous rock and Spangenberg’s model for elastic properties, so we con-

sider Bahr’s model in more details. 

Bahr (1997) formulated the fractal network model that is a combination 

of the mixture theory with the percolation theory. He considered Hashin-

Shtrikman upper bound under the assumption that volumetric fraction of 

high-conductive phase <<1 and conductivity of pore filling is much 

higher than matrix one p>> m. He obtained the approximation derived by 

Waff (1974) for the conduction of the perfectly interconnected high-

conductive phase. Then he introduced a dimensionless parameter C(p), so 

called “electrical connectivity”, which depends on the probability p of 

high-conductive phase to be interconnected at any point of the medium. 

The introduction of C(p) extends Waff’s approximation to the case of 

lower interconnections of high-conductive phase: 

)p(C
3

2
meff .

Numerical values for C(p) are in the interval [0,1], where 1 stands for a 

perfectly interconnected high-conductive phase and 0 for ‘isolated pock-

ets’ case. 

Kozlovskaya and Hjeit (2000) suggested a simple link to connect the 

models and declared that the joint model describes the electrical and elastic 

properties for the same pore geometry. They assigned the connectivity 

Ci(p) to be equal to  

ii 1)p(C ,

where i defines a direction of current propagation (i=1, 2, 3) and i is the 

contact parameter introduced by Spangenberg and equals to 

N

0g g,kg,j

g,kg,kg,jg,j

i
ll

)al)(al(
,

where i, j, k=1, 2, 3 and kji . N is the total number of generations of 

the model. 

Such definition of C(p) does not allow description of effects near the 

percolation, because the Spangenberg’s model describes interconnected 

pores. To overcome the above limitation the fractal model of elastic and 

electrical properties of porous rock was developed. 
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6.4.3 Elastic and electrical properties for a single 
microstructure

The fractal model was developed to describe both elastic and electrical 

properties of porous rock for the single microstructure by Pervukhina et al. 

(2003). The iterative process suggested by Spangenberg was extended to 

calculate electrical properties of the model with N sub-generations of self-

similar units in the contact region.  

The original model of Spangenberg (Fig. 6.2a) is failed to describe the 

electrical properties of pore rock with isolated pores. This impossibility re-

sults from the pore channel geometry. The geometry was designed not to 

describe the isolated inclusions case, but to describe the grains surrounded 

by water. To modify the model for describing the isolated pores case, the 

inverted geometrical unit with pore inclusion surrounded by matrix mate-

rial was developed (Fig. 6.2b). The contact area in the original model, can 

be filled with N generations of the self-similar structures and determine the 

degree of pore interconnection of the model. Hereafter we will call the 

original model as open pore model and the inverted geometrical unit as the 

isolated pore model. The elastic moduli of the isolated pore model can be 

calculated similarly to the ones of the open pore model. 

To calculate electrical properties of the unit, the following steps were 

taken: the geometric model is subdivided into rectangular areas of matrix 

material, pore filling and contact region, then the components were com-

bined in a serial or parallel connection, and finally the electrical properties 

of equivalent network were calculated. Formulae for electrical resistivity 

and elastic moduli for open and isolated pore models are presented below. 

Spangenberg (1998) showed that the principal dependencies for both hori-

zontal and vertical subdivision are the same, thus formulae for vertical 

subdivision are presented. Calculation of the electrical resistance of the 

model with N generation of self-similar models filling the contact region is 

iterative process. Firstly, the resistance of the smallest generation is calcu-

lated under the assumption that rc=rm for the smallest generation.  Then us-

ing the formula i

3

i

2

i

1

ii lllRr , the resistivity of the contact region of the 

upper generation can be found, etc. The formulas for the resistance and the 

elastic moduli for both open and isolated pore model are presented in Ta-

ble 6.3. 

The conductivity for the vertical subdivision of Spangenberg model 

with 0 generation for open pore unit is presented in Fig. 6.3. The parame-

ters for calculations are m=10-4 S /m and p=10-1 S /m; and geometric pa-

rameters of model: l1=l2=l3=1 mm, a1=a2=a3=0…1 mm. For comparison 

with Spangenberg mode, the results for other models, namely, Hashin-

Strikman upper and lower bounds (HS+ and HS-), Waff’s (1974) results 
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for regularly arranged solid cubs surrounded by fluid and conductivity of a 

system containing fluid filled tubes along cubic grain edges (Grant and 

West 1965) are also shown in Fig 6.3. The obtained conductivity for the 

vertical subdivision of open pore model is in a good agreement with the re-

sults of the tubes (Grant and West 1965) for porosities less than 10%. The 

conductivities of the model throughout all porosities are enclosed between 

the curve for a system containing fluid filled tubes along grain edges 

(Grand and West 1965) and the curve for films along grain faces (Waff 

1974).  

Table 6.3 Resistance and elastic moduli for the vertical subdivision for both 

open and isolated pore models 

The results of the vertical subdivision of the isolated pore model for 

fluid inclusions with aspect ratios of 10-1, 10-2 and 10-3 are presented in 

Fig. 6.4 in comparison with the results for isolated spheroidal inclusions 

given by Semjonov (1948) wherein the parameters for calculations are as-

sumed as m=10-4 S/ m, p=10-1 S/ m; and geometric parameters of the 

model: l1=l2=l3=1 mm, a1=a2=0…1 mm, curve I - a3=a1/1000, curve II - 

a3=a1/100, curve III - a3=a1/10.
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Fig. 6.3 Results of conductivity modeling for the vertical subdivision of Span-

genberg model with 0 generation in contact region in comparison with other mod-

els

Fig. 6.4 Results of conductivity modeling for the isolated pore model with 0 

generation in the contact region in comparison with Semjonov’s (1948) results for 

elliptical fluid inclusions with different aspect ratio
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The comparison of electrical conductivities calculated using both open 

and isolated pore unit demonstrated an agreement of the reviewed model 

with other theoretical models.    

6.5 Application of the fractal model to collocated 

magnetotelluric and seismic velocity tomography results  

The fractal model was applied to the collocated magnetotelluric (MT) and 

seismic velocity tomography results obtained at Nagamachi-Rifu zone area 

(Pervukhina et al. 2004).  

Fig. 6.5 Mutual location of MT sites, seismic velocity tomography results pro-

file and surface trace of the Nagamachi-Rifu fault. The star indicates the epicenter 

of an earthquake with M 5.0, which occurred on this fault on 15 September 1998 

at the depth of about 12 km 

A collocated magnetotelluric and seismic velocity tomography experi-

ment was performed to explore a deep extension of the active Nagamachi-

Rifu fault, Northern-East Japan.  Mutual location of MT points, a line of 

projection of seismic velocity tomography results and surface trace of Na-
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gamachi-Rifu fault are presented in Fig.6.5. The epicenter of an earthquake 

with M5.0, which occurred near this fault on 15 September 1998 at the 

depth of about 12 km, is indicated by a star (Unimo et al. 2002). They sug-

gested that this event was a slip at a deepest portion of the fault. The seis-

mic velocity tomography images were obtained by Nakajima et al. (2004). 

Fig. 6.6 Seismic velocities and resistivity perturbations. The cross-section along 

the location of MT sites. Circles show the supposed deep extension of the Naga-

machi-Rifu fault 

Magnetotelluric image was obtained by Ogawa et al. (2003). Resistivity, 

P-wave and S-wave velocity perturbation images are presented in Fig. 6.6. 

The parameters of the model for simulation for elastic and electrical prop-

erties are presented in Table 6.4 wherein calculations were carried out for 

 equals 2 10-1 and 10-2 and for t equals 6 10-4, 10-2, 3 10-2, and 9 10-2. Up-

per subscripts of geometrical sizes indicate generation number. Aspect ra-

tio of pore space of isolated pore generations and the porosity of open pore 
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generation were chosen as two independent parameters. The calculations 

were carried out with the next parameters: matrix conductivity m=104

S/m, matrix seismic velocities Vp0=6200m/s, Vs0=3570 m/s, fluid conduc-

tivity p=30 S/m and fluid seismic velocity Vp=1517 m/s. For analysis, the 

grid nodes with compressional velocity Vp perturbations more than 2.5% 

of the average value in the region of suggested deep extension of Naga-

machi-Rifu fault were taken into account. The experimental data of resis-

tivity and seismic velocities were compared with the simulation results for 

two aspect ratio =0.2 and =0.01 (Fig. 6.7a and b correspondingly). The 

aspect ratio of 0.2 corresponds to interfacial energy-controlled fluid ge-

ometry of porous rock and aspect ratio of 0.01 characterizes regions where 

pore geometry is far from the dominant textural equilibrium (Takei 2002). 

For both aspect ratios, calculations were fulfilled for the porosities of the 

open pore generation equals to 10-4 %, 3 10-2 %, 3 10-1 % and 2%.  

Table 6.4 Geometric parameters of the model for simulation of elastic and 

electrical properties mentioned in Fig. 6.7 

n Type of 

generation 

l1

[mm] 

l2

[mm] 

l3

[mm] 

a1 [mm] a2 [mm] a3 [mm] 

0  Isolated 

pore unit 

1 1 1 )i1(l0

1

, i= 

0.01..1/

)i1(l0

2

, i= 

0.01..1/

)i1(l0

3

, if i 1,

0, if i>1; 

i=

0.01..1/

1 Isolated 

pore unit 

0

1a /2
0

1a /2
0

1a /2 )i1(l11
, i= 

0.01..1/

)i1(l12 ,

if i 1

0, if i>1; 

i=

0.01..1/

)i1(l13
, i= 

0.01..1/

2  Isolated 

pore unit 

1

1a /2
1

1a /2
1

1a /2 )i1(l 2

1
,

if i 1

0, if i>1; 

i=

0.01..1/

)i1(l2

2

, i= 

0.01..1/

)i1(l2

3

, i= 

0.01..1/

3  Intercon-

nected

pore unit 

2

2a /2
2

2a /2
2

2a /2 3

1l t 3

2l t 3

3l t

n is a generation number 

An attempt to explain the mutual resistivity and seismic velocities re-

duction with equilibrium pore geometry (aspect ratio =0.2) (Fig. 6.7a) 
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leads to large values of the porosity of 4-5%. Such values of 4-5% are sur-

prisingly large for the depth of about 15 km.  

Fig. 6.7 Comparison of magnetotelluric and seismic velocity tomography data 

(points) with simulation results (lines) for two aspect ratios (a) of 0.2 and (b) of 

0.01 (b). Porosity with the open pore generation is indicated along the lines.  Dif-

ferent total porosity is presented with different colors: light gray 1%, gray 

1%< 3%, and black >3%

Moreover, the values of the ratio of the measured compressional and 

shear velocities divided by the ratio of the compressional and shear veloci-

ties of the matrix material )VV()VV( 0s0psp  are larger than the predict-

able values throughout the range of 0ss VV , the ratio of the measured 

shear velocity to the shear velocity of the matrix material  (Fig. 6.7a, bot-

tom graph). While, for the small aspect ratio of 0.01, the experimental ve-

locity perturbation can be explained with less than 3% of porosity and 
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measured reduction Vp with Vs is correspond to simulating curves (Fig. 

6.7b). As the small aspect ratios of 0.01 means that the pore microstructure 

is far from equilibrium, this result suggests some strong shear stress re-

gime that preventing the fluid filled pores from achieving the equilibrium 

geometry. Thus, application of the fractal model for quantitative analysis 

of experimental data of resistivity and seismic velocities was fruitful for 

recognition of the state of active fault. 

6.6 Discussion 

The present review mentioned some deficiency of the mixture theories of 

elastic and electrical properties of porous rock that are able to describe the 

variety of probable microstructures of crust and upper mantle. The fractal 

network models of electrical and elastic properties of porous rock are 

shown to be more adequate. However, the fractal models of porous rock 

(Bahr 1997, Spangenberg 1998, Kozlovskaya and Hjeit 2000) allow calcu-

lating properties of porous rock for a wide range of microstructures and 

this can be deficiency in some cases. For instance, Spangenberg (1998) re-

ports, that in the case of isotropy, all the velocity data between the Hashin-

Shtrikman upper and lower bounds can be fitted by the use of different 

self-similar substructure generations. In the case of numerous simulating 

parameters and shortage of measured ones, it is difficult to discriminate the 

influence of a particular factor and make reliable conclusion about rock 

microstructure.

Further progress in this field can be achieved when plausible micro-

structures for the crust and the upper mantel are defined more exactly, 

those microstructures are taken into account for developing of theoretical 

models for both elastic and electrical properties of porous rock, and ex-

perimental data are quantitatively interpreted using the theoretical models 

that reflect those microstructures. 

The fractal model suggested by Pervukhina et al. (2003; 2004) has been 

developed to describe pore microstructures in the lower crust and the upper 

mantle and deal with parameters (namely, pore aspect ratio and connec-

tivity) that are generally obtained from analyzing seismic velocity tomo-

graphy and electrical resistivity experimental data. Application of the 

model to electrical resistivity and seismic velocities data, measured across 

the deep extension of the Nagamachi-Rifu fault (Northeastern Japan), al-

lowed to make important conclusion about a strong shear stress regime that 

preventing the fluid-filled pores from achieving the equilibrium geometry. 
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Chapter 7. Scaling Evidences of Thermal 

Properties in Earth’s Crust and its Implications 

V.P. Dimri, Nimisha Vedanti 

National Geophysical Research Institute, Hyderabad, India 

7.1 Summary 

Fractal behaviour of the Earth’s physical properties has been discussed 

briefly in chapter 1. In this chapter, thermal properties of the Earth’s crust 

are analyzed and the significance of the results obtained is discussed. Here 

we redefine the traditional heat conduction equation for computation of 

geotherms by incorporating fractal distribution of thermal conductivity. 

Further, our study suggests the fractal distribution of radiogenic heat pro-

duction rate inside the Earth, against the popularly used exponential and 

step models, which needs to be incorporated in the heat conduction equa-

tion.

7.2 Introduction 

Geophysical observations made at specific time/space interval form the 

time series. Two main attributes, governing the properties of data series are 

statistical distribution of values in the series and the correlation between 

the values, which is known as persistence. All values in white noise data 

are independent of other values, hence the persistence becomes zero. The 

time series that exhibit long-range persistence is termed as fractal time se-

ries. Appropriate tools to analyze the variability and the degree of persis-

tence within data sets are power spectra, rescaled range analysis (R/S) 

analysis and wavelet analysis. In this chapter, we briefly explain the basic 

principles of all these techniques and apply them to understand thermal 

structure of the Earth’s crust.  
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7.2.1 Spectral analysis 

Spectral analysis is a technique that estimates the power spectral density 

function, or power spectrum, of a time series. The standard approach is to 

carry out a Fourier transform on a time series, which is concerned with ap-

proximating a function by a sum of sine and cosine terms (Robinson and 

Trietel 1980, Pristley 1989, Dimri 1992, Percival and Walden 1993). Al-

though the Fourier spectral analysis is the most popular method of spectral 

estimation, it suffers with major drawbacks like loss of temporal localiza-

tion, Gibbs phenomena, and elimination of some portion from all frequen-

cies when the signal is transformed back to time domain. 

7.2.2 Rescaled range analysis  

Hurst et al. (1965), found empirically that many data sets in nature satisfy 

the power law relation given as 

Hu

K

K )
2

K
(

S

R (7.1)

where Hu is the Hurst coefficient, K is the lag for which a range (RK) and 

standard deviation (SK) of the data set are to be calculated.  

The range (RK) is defined as 

min,nmaxnK )y()y(R (7.2)

where

1N,2n,)yy(y
n

1i

nin

(7.3)

wherein y represents values of the time series and n is the number of data 

points.

The plot of log(R/S) vs. log (K) is a straight line whose slope gives the 

value of Hurst coefficient Hu. The robustness of the R/S analysis is advo-

cated by Mandelbrot and Wallis (1969), as compared to the spectral meth-

ods. The characteristic measure of R/S analysis is the Hurst coefficient. 

This method quantifies the strength of persistence in the range 0< Hu<1.

White noise has Hurst coefficient Hu = 0.5. Values of Hu > 0.5 reveal per-

sistence of the signal from smaller to larger scale, whereas Hu < 0.5 indi-

cates anti-persistence in a given data sequence (Mandelbrot 1982).  
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7.2.3 Wavelet analysis 

In many ways wavelet analyses are the most satisfactory measure of the 

strength of persistence or fractal behaviour, especially in case of non-

stationary time series (Malamud and Turcotte 1999). In wavelet analysis, 

the data series is convolved with the series of wavelet filters. The general-

ized form of wavelet transform is given by 

dt
x

yt
)t(f

x

1
)y,x(W

(7.4)

where
x

yt
 is a wavelet and W(x, y) are wavelet coefficients gen-

erated as a function of x and y, wherein ‘t’ is time, ‘x’ is time scaling or di-

lation and, ‘y’ is time shift or translation. Repeating patterns in wavelet ab-

solute coefficient plot of the time series reveal fractal behaviour in the 

data.

7.3 Fractal behaviour of thermal conductivity data 

The rock thermal conductivity depends upon many parameters like miner-

alogy, porosity, temperature, pressure, pore fluid of the subsurface rocks 

etc. An accurate estimation of thermal conductivity is essential to compute 

geo-isotherms inside the Earth. In this study we use the thermal conductiv-

ity data of core samples collected at different depths from the German con-

tinental deep drilling project (KTB) borehole as they represent more realis-

tically the insitu conditions. The time series of thermal conductivity with 

depth contains all information regarding the variation of thermal conduc-

tivity with depth, which in turn depends upon many other factors like 

genesis of crust and pressure-temperature regime. Since it is difficult to 

measure the variation in thermal conductivity caused by these parameters 

separately, we study the combined effect of all these parameters by the sta-

tistical methods discussed above. These methods are useful in understand-

ing the heterogeneity of the Earth system. 

We carried out the R/S and wavelet analysis of the KTB core samples 

and the result obtained from the R/S analysis is shown in Fig.7.1. The 

value of Hurst coefficient (0.8  0.048) confirms fractal distribution of 

thermal conductivity in the Earth’s crust. Wavelet absolute coefficients 

plot of thermal conductivity data from the KTB borehole is shown in Fig. 

7.2. Repeating patterns as seen in Fig. 7.2, are clear evidences of fractal 
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distribution of the data. Statistical correlation among the values is the char-

acteristic property of a fractal time series; hence the future values of the 

time series can be forecasted using the Hurst coefficient. Since the upper 

crustal samples obtained from the boreholes, solely can’t represent the 

lower crust, we analyse only the statistical correlation among the values of 

the upper crustal samples.  

Fig. 7.1 Rescaled range analysis of thermal conductivity data with depth from 

KTB borehole Germany 

To map the fractal thermal conductivity distribution inside the Earth, we 

assume a model of heterogeneous crust lying over the homogeneous man-

tle where heterogeneity in crust decreases with depth. An empirical func-

tion for estimation of thermal conductivity can be formulated using this 

model. Here we propose an empirical scaling function to model the effec-

tive thermal conductivity in subsurface, in which effective thermal conduc-

tivity is given as a product of surface thermal conductivity K and a vari-

able constant ‘a’ raised to the power ‘D’, as:  

D

 e aK  K (7.5)

where ‘D’ is the fractal dimension of thermal conductivity data, which can 

be computed as: 
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Hu   -1E D (7.5a)

where in E is Euclidean dimension of the data.

Since, the Earth is more homogeneous at deeper levels; the fractal di-

mension increases with depth (Nimisha and Dimri 2003). The fractal di-

mension in Eq. (7.5) accounts for increase in thermal conductivity because 

of pressure, compaction etc. The variable constant ‘a’ in Eq. (7.5) accounts 

for variation in thermal conductivity due to temperature but is assumed to 

be constant in a particular geological layer. As the effect of temperature on 

thermal conductivity of basalts is of relatively small magnitude, the value 

of ‘a’ for middle and lower crust comes to 1 using Eq. (7.5). Change in the 

value of fractal dimension and the variable constant ‘a’ at deeper levels re-

sults change in value of Ke at boundaries (Nimisha and Dimri 2004).  
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Fig. 7.2 Wavelet absolute coefficient plot of thermal conductivity data with 

depth from KTB borehole Germany. 

7.4 Application to 1-D heat conduction problem

Keeping in view the fractal behaviour of thermal conductivity, we refor-

mulate 1-D heat conduction equation. Following Lachenbruch (1970) and 

Lachenbruch and Sass (1978), the temperature-depth distributions can be 

computed as: 
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dZ

0 eA)
dz

dT
)z(K(

dz

d (7.6)

where T is temperature as a function of depth z, A0 is radiogenic heat 

production, and d is characteristic depth. 

By substituting Eq. (7.5) in Eq. (7.6) and considering the variation of 

thermal conductivity independent of depth in a layer, we get  

dZ

02

2
D eA

dz

Td
aK

(7.7)

or

D

dZ

0

2

2

aK

eA

dz

Td (7.8)

Integrating w.r.t. z, we get 

1D

dZ

0 C
aK

edA

dz

dT (7.9)

Integrating again we get  

21

DdZ2

0 CzCaKedA)z(T (7.10)

where C1 and C2 are integration constants. 

Substituting the first surface boundary condition at z = 0 as 

 T (0) = T0 and D = 0, in Eq. (7.10) we get 

KdATC 2

002
(7.11)

Using the second surface boundary condition at z = 0 as 

S

D Q
dz

dT
aK and D = 0 

in Eq.(7.9), we get 

K

dAQ
C 0S

1

(7.12)

Substituting values of C1 and C2 in Eq. (7.10) we get 

d

z

a

e
1

K

dA

K

zQ
T)z(T

D

dZ2

0S

0

(7.13)
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The Eq. (7.13) can be used to obtain the crustal temperature depth dis-

tributions.

Below Moho Eq. (7.6) becomes zero hence we get 

0
dz

Td
aK

2

2
D

(7.14)

Integrating the Eq. (7.14) we get 

3

D C
dz

dT
aK

(7.15)

where C3 is integration constant.

Integrating Eq. (7.15) we get 

4D

3 C
Ka

zC
)z(T

(7.16)

where C4 is integration constant. 

Eq.(7.16) at z = zm and T(z) = Tm yields 

4d

m3
m C

Ka

zC
T

(7.17)

where zm is depth to Moho and Tm is temperature at Moho.       

The boundary condition at z = zm is given as

m

D Q
dz

dT
aK

(7.18)

where  Qm is mantle heat flow 

From Eqs (7.15) and (7.18), we get  

               Q C m3 (7.19)

Substituting (7.19) in (7.15) we get   

D

mm
m4

Ka

zQ
TC

(7.20)

Again substituting the values of C3 and C4 in Eq.(7.16) we get 

mmD

m T)zz(
Ka

Q
)z(T

(7.21)

The Eq.(7.21) can be used to quantify the lithospheric temperature dis-

tributions below Moho.  
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7.5 Source distribution of radiogenic heat generation inside 

the Earth 

In the continental crust, temperature distribution depends mainly on two 

factors; the heat supplied from the earth's interior, and the radiogenic heat 

sources present in the upper crust. The crustal radiogenic sources contrib-

ute to about 40% of the heat flow at the surface in continental regions mak-

ing this an important element in determining the crustal temperature distri-

bution. 238U and 232Th are the primary heat producing elements today. 235U

and 40K were more important in the Earth's early history.  

Most radioactive isotopes are concentrated in the upper continental 

crust. There is very small amount of radioactive isotopes in the oceanic 

crust and almost negligible in the mantle. In the absence of direct meas-

urements of radioactive heat generation, various models for the depth dis-

tribution of radiogenic heat sources have been proposed in the literature 

(Birch et al 1968, Lachenbruch 1970, Lachenbruch and Bunder 1971). 

Among the various models proposed for the depth distribution of radio-

genic sources, the exponential model (Lachenbruch 1970, Lachenbruch 

and Sass 1978) has been widely used. Heat production in the crustal rocks 

is caused by the transformation of kinetic energy to thermal energy during 

the radioactive decay of uranium, thorium, and potassium. In general the 

upper crust is composed of granites. The range of typical heat production 

rate for granite or equivalent rocks is given as 2 Wm-3- 10 Wm-3.

The variation of heat production rate in granites with depth has been 

studied for the boreholes GPK1 and GPK2, situated at the European Hot-

Dry-Rock site in Soultz (Fig. 7.3). Lachenbruch (1968; 1970) suggested an 

exponential decrease of heat production rate in granitic plutons with re-

striction to regions showing a linear heat flow-heat production relation 

(Pribnow and Winter 1997). Dashed line in Fig.7.3 indicates an exponen-

tial fit to the data. Deviation from exponential model fit is observed at 

greater depths in Fig. 7.3. If we zoom the lower part of figure, this argu-

ment becomes clearer that at greater depths, heat production rate in this 

borehole cannot be explained by the same exponential model. 

We have carried out rescaled range analysis of the calculated heat 

production data of Soultz boreholes. The value of Hurst coefficient for the 

data is obtained as 0.84  0.073 (Fig.7.4), which clearly indicates the frac-

tal distribution of the heat production data. 
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Fig. 7.3 Heat production rate calculated from Natural Gamma-Ray Spectrome-

ter (NGS) logs run by Schlumberger in GPK1 and GPK2 boreholes of Soultz. The 

dashed line indicates an exponential fit (after Pribnow et al. 1999) 
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 Another evidence of complex behaviour of heat production rate is 

shown in Fig.7.5 (Pribnow and Winter 1997). It is clear that the heat pro-

duction rate in the KTB boreholes (Fig.7.5), can’t be explained by a simple 

exponential model. 

Fig.7.4 Rescaled Range analysis of radiogenic heat production data with depth 

from Soultz borehole. 

An opportunity to study more directly the variation of heat production 

with depth is provided by the lower crustal data from Western Canterbury 

region, New Zealand. The variation of measured heat generation with the 

depth corresponding to the expressed vertical sequence is shown in Fig.7.6 

(Pandey 1981). At the first look the heat production rate appears to vary 

randomly between 0.92 and 2.39 w/m3 with the mean value of 1.56 

0.007 w/m3, which is very much higher than the normal value taken for 

the lower crust. This contributes an important evidence for the deviation of 

the exponential model of heat production rate of lower crustal rocks. Rate 

of decrease in heat production with depth is necessary to consider the 

variations of heat flow with depth and heat flow extrapolation to greater 

depth is crucial to obtain the boundary conditions in numerical models. 

Therefore this study has implications to the temperature distribution in the 

crust and the results thus obtained indicate a radiogenic source distribution 
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which is more complex than a simple exponential model. This finding also 

needs to be incorporated in the heat conduction equation (Eq. 7.5) to com-

pute the crustal geotherms.

Fig. 7.5 Heat production data from borehole and laboratory measurements for 

KTB borehole with simplified lithological profiles for the HB (left) and VB (right) 

A: Amphibolite; MG: Metagrabro G: Gneiss A/G: Alternate sequence FL: Fran-

conian Lineament. Dashed line represents the average values for respective lithol-

ogy (after Pribnow and Winter 1997)
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Fig. 7.6 Variation of radioactive heat generation with depth beneath Western 

Canterbury Region, New Zealand (after Pandey 1981) 

7.6 Discussion 

Analysis of radiogenic heat production and thermal conductivity in crust 

clearly indicates the fractal distribution of both the parameters inside the 

Earth. Hence, it may be necessary to employ the concept of fractal behav-

iour of these quantities in 1-D steady state heat conduction equation to 

compute the crustal and lithospheric temperature distributions.  
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Chapter 8. Fractal Methods in Self-Potential 

Signals Measured in Seismic Areas 

Luciano Telesca, Vincenzo Lapenna 

Institute of Methodologies for Environmental Analysis, Tito (PZ), Italy 

8.1 Summary 

The self-potential (SP) signals are mainly generated by the streaming 

potential, which causes a voltage difference when a fluid flows in a porous 

rock. In seismic focal areas, this effect is strengthened by the increasing 

accumulation strain, which can produce dilatancy of rocks. Therefore, tec-

tonic processes can be directly revealed by the investigation of the tempo-

ral fluctuations of SP signals, which may be useful to monitor and under-

stand complex phenomena related with earthquakes. 

Can the concept of fractal be used to qualitatively and quantitatively 

characterize an SP signal? Fractals are featured by power-law statistics, 

and, if applied to time series, can be a powerful tool to investigate their 

temporal fluctuations, in terms of correlations structures and memory phe-

nomena. In the present review we describe monofractal and multifractal 

methods applied to SP signals measured in seismic areas. Persistent scaling 

behaviour characterizes SP signals, which, therefore, are not realizations of 

a white noise process. Furthermore, in multifractal domain SP signals 

measured in intense-seismicity areas and those recorded in low-seismicity 

areas are discriminated. 

8.2 Introduction 

Seismic research has given growing evidence to the analysis of a large va-

riety of geophysical signals that can provide indirect information on the 

dynamics underlying tectonic processes. Geophysical parameters may be 

useful to monitor and understand many seemingly complex phenomena 

linked to seismic activity (Rikitake 1988, Zhao and Qian 1994, Park 1997, 

Martinelli and Albarello 1997, Di Bello et al. 1998, Vallianatos and Tzanis 

1999, Hayakawa et al. 2000, Telesca et al. 2001, Tramutoli et al. 2001).  

Variations in the stress and fluid flow fields can produce changes in the 
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self-potential (SP) field (Scholz 1990), so that investigating these induced 

fluctuations may give information on the governing mechanisms both in 

normal conditions and during intense seismic activity. 

Fig. 8.1 Schematic representation of the double electrical layer 

The method of SP consists in measuring the voltage difference between 

two points on earth’s surface due to the presence of an electric field pro-

duced by natural sources distributed in the subsoil (e.g. Parasnis 1986, 

Sharma 1997 and references therein).  

The SP signals have been largely applied in geothermal, environmental 

and engineering research to locate and delineate sources associated with 

movement of fluids and groundwater (Ogilvy et al. 1969, Corwin and 

Hoover 1979, Sharma 1997, and references therein). Furthermore, other 

significant applications can be found in the geophysical survey of volcanic 

and tectonic areas (Di Maio and Patella 1991, Lapenna et al. 2000, Di 

Maio et al. 1997). 

In near surface geophysics the most relevant phenomenon that could 

originate the SP anomalous field is known as electrofiltration or streaming 

potential: the electrical signal is produced resulting from fluid flow in a 

Solid

Solid

Z

X
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porous rock under a pore pressure gradient. The phenomenon is generated 

by the formation within the porous ducts of a double electrical layer be-

tween the bounds of the solid that absorbs electrolytic anions and cations 

distributed in a diffused layer near the boards. The dissolved salts increase 

the amount of anions and cations of the underground liquids. The free liq-

uid in the centre of the rock pore is usually enriched in cations, while ani-

ons are usually absorbed on the soil surface in silicate rock. The free pore 

water carries an excess positive charge, a part of which accumulates close 

to the solid-liquid interface forming a stable double layer. When the liquid 

is forced through the porous medium, the water molecules carry free posi-

tive ions in the diffusion part of the pore (Fig. 8.1). This relative move-

ment of cations with reference to the firmly attached anions generates the 

well known streaming potential (Keller and Frischknecht 1966). Of course, 

the role of the electrical charges can be reversed, according to the absorp-

tion properties of the rocks. As suggested by Mizutani et al. (1976), the 

streaming potential can be responsible for the voltage measures on the 

ground surface preceding an earthquake (Patella 1997). Other possible fac-

tors are temperature gradients, especially in volcanic areas, and concentra-

tion gradients related to tortuousity and narrowings of the capillary system 

of cracks (Di Maio and Patella 1991). 

The increasing accumulation of strain in a seismic focal region can 

cause dilatancy of rocks (Nur 1972). The phenomenon of dilatancy con-

sists in the formation and propagation of cracks inside a rock as stress 

reaches about half its strength (Brace et al. 1966). If the rocks volumes in 

the focal region and surroundings are saturated with fluids, the voids gen-

erate pressure gradients, to which the fluid particles are subjected. Hence, 

fluids invade the newly opened voids and flow until the pressure balances 

inside the whole system of interconnected pores. During fluid invasion the 

condition of rock dilatancy hardening can be reached: the rock suddenly 

weakens and the earthquake is triggered. 

In order to assess the use of SP signals as indicators of earthquake 

preparation (Hayakawa and Fujinawa 1994, Hayakawa 1999), the funda-

mental issue to address is if these parameters are able to reveal dynamical 

characteristics of active tectonics, and we have to understand if there is a 

significant correlation between seismic sequences and SP temporal fluc-

tuations. Obviously, the existence of such a correlation can be established 

only after a dynamical characterization of these signals has been per-

formed.

To quantitatively characterize SP dynamics, we employ techniques, 

which are able to extract robust features hidden in their complex fluctua-

tions. Fractality is one of the features of such complexity. What does frac-

tality mean? A fractal is an object whose sample path included within 
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some radius scales with the size of the radius. It is clear from the definition 

of fractal, that fractal processes are characterized by scaling behaviour, 

which leads naturally to power-law statistics. In fact, consider a statistics 

f(x), which depends continuously on the scale x, over which the measure-

ments are taken. Suppose that changing the scale x by a factor a, will ef-

fectively scale the statistics f(x) by another factor g(a), f(ax)=g(a)f(x). The 

only nontrivial solution for this scaling equation is given by f(x)=bg(x), 

g(x)=x
c
, for some constants b and c (Thurner et al. 1997, and references 

therein). Therefore, power-law statistics and fractals are very closely re-

lated concepts. 

The fractality of a signal can be investigated aiming to its geometrical 

characterization as self-similar curve; but if the fractality of a time series is 

studied in order to characterize its temporal fluctuations, we need to per-

form second-order fractal measures, which furnish information regarding 

the correlation properties of a time series. 

8.3 Power spectrum analysis 

The spectral analysis represents the standard method to detect correla-

tion features in time series fluctuations. The power spectrum is obtained by 

means of the Fourier transform of the signal. It describes how the power is 

concentrated at various frequency bands. Thus, the power spectrum reveals 

periodic, multiperiodic or non-periodic signals. The fractality of a time se-

ries is revealed by a power-law dependence of the spectrum upon the fre-

quency, S(f) 1/f , where the scaling (spectral) exponent  informs on the 

type and the strength of the time-correlation structures intrinsic in the sig-

nal fluctuations (Havlin et al. 1999). If =0 the temporal fluctuations are 

purely random, typical of white noise processes, characterized by com-

pletely uncorrelated samples. If >0, the temporal fluctuations are persis-

tent, meaning that positive (negative) variations of the signal will be very 

likely followed by positive (negative) variations; this feature is typical of 

system which are governed by positive feedback mechanisms.  If <0, the 

temporal fluctuations are anti-persistent, meaning that positive (negative) 

variations of the signal will be very likely followed by negative (positive) 

variations; this feature is typical of system which are governed by negative 

feedback mechanisms. 

Generally, observational time series are affected by gaps; thus, they can 

be considered as unevenly sampled. Therefore, for unevenly sampled time-

series the power spectrum can be calculated by means of the Lomb perio-

dogram method (Lomb 1976). 
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Fig. 8.2 (a-d) Lomb spectra of four SP signals measured in southern Italy. The 

spectra reveal that the signals are not characterized by white noise dynamics, but 

present long-range correlations, as indicated by the scaling behaviour (after 

Colangelo et al. 2003)  
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Denoting as xn the datum measured at instant tn, the Lomb Periodogram 

is defined by the following formula: 

n n

2

2

n nn

n n

2

2

n nn

2 tcos

tcosxx

tsin

tsinxx

2

1
P

(8.1)

where =2 f  is the angular frequency and  is given by 

n n

n n

t2cos

t2sin
2tan .

(8.2)

The slope of the line fitting the log-log plot of the power spectrum by a 

least square method in the linear frequency range gives the estimate of the 

spectral index . Fig.8.2 provides an example in which the Lomb Periodo-

gram of four SP is calculated. The power-law behaviour extending over a 

wide range of frequencies in all signals denotes that they are long-range 

correlated and not realizations of white noise processes, which model un-

correlated systems. The power spectrum, furthermore, evidences the pres-

ence of some periodic components superimposed on the basic power-law 

behaviour, thus informing on the coexistence of different mechanisms 

(meteo-climatic-type), which modulate the SP variability at particular fre-

quencies (Fig. 8.2a). Dimri and Ravi Prakash (2001) have used the Lomb 

approach (1976) to get power spectrum of unevenly spaced fossil records. 

The estimate of the spectral exponent is rather rough, due to large fluc-

tuations in the power spectrum, especially at high frequencies. Further-

more, the power spectrum is sensitive to nonstationarities that could be 

present in observational data.  

8.4 Higuchi analysis 

In the literature, many papers have been devoted to find methods capable 

of giving stable estimations of the power-law spectral index. Burlaga and 

Klein(1986), presented a method to calculate stable values of the fractal 

dimension D of large-scale fluctuations of the interplanetary magnetic 

field; the relationship between the fractal dimension D and the spectral ex-

ponent , is given by Berry’s expression D=(5- )/2 (Berry 1979), for 

1< <3. They defined the length LBK( ) of the B(t) curve as 
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/)t(B)t(B)(L
N

1k

kkBK

(8.3)

where )t(B k  denotes the average value of B(t) between t=tk and t=tk+ .

This length is a function of , and for statistically self-affine curves, the 

length is expressed as LBK( ) -D. Using this relation, the value of D can 

be estimated as the slope of the log-log plot of the length LBK( ) versus the 

time interval . Then, using Berry’s relation D=(5- )/2 for 1< <3, the 

spectral exponent can be estimated. 

Another method, which also gives a stable value of the fractal dimen-

sion, has been presented by Higuchi (1988; 1990). A new time-series is 

constructed from the given time series X(i), (i=1, 2, ...., N), 

),.....1m();]/)mN[(m(X),....,2m(X),m(X),m(X;Xm (8.4)

where [ ] implies Gaussian notation. The length of the curve is defined as 

1

]/)mN[(

1N
)1i(m(X)im(X)t(L

]/)mN[(

1i

m

(8.5)

The average value <L( )> over  sets of )(Lm is defined as the length of 

the curve for the time interval . If <L ( )> -D, within the range min

max then the curve is fractal with dimension D in this range. He exam-

ined the relationship between the fractal dimension D and the power law 

index , by calculating the fractal dimension of the simulated time series, 

which follows a single power-law spectrum density. Even in this case, the 

spectral exponent estimation could be carried out using Berry's relation.  

For 0< <1, Higuchi (1990), proposed an integrated series of the original 

time series which is given by: 

 N) ...., 2, 1,(j)i(X)j(X
j

1i

(8.6)

which is an increment process of X(i). The fractal dimension of  X (j) can 

be designated by D , and the power law index can be denoted by . As 

is related to  by  = +2, D  is expressed as D = (3- )/2. Thus, the fractal 

dimension D   is estimated applying Eq. (8.6) for the length of the inte-

grated time series  X (j).

Fig. 8.3 shows the spectral analysis performed using the maximum 

entropy method (Box and Jenkins 1976), for two SP signals measured in 

southern Italy.  



Fractal Methods in Self-Potential Signals      141 

Fig. 8.3 Power spectrum density S(f) vs. frequency f, obtained with maximum 

entropy method. The two graphs a) and b) are related to two SP signals measured 

in southern Italy (after Cuomo et al 1999)  
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Fig. 8.4 Length of the time series curve L( ) vs. the time interval . The two 

graphs a) and b) are related to two SP signals measured in southern Italy, whose 

power spectra is plotted in Figure 8.3 (after Cuomo et al. 1999) 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.5

2.5

3.5

4.5

5.5

b)

E-W

D=1.019,
D
=0.001

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.5

2.5

3.5

4.5

5.5
N-S

D=1.051

a)

L (

L (

log( )



Fractal Methods in Self-Potential Signals      143 

We can exclude the possibility that SP data are purely random (white 

noise): the analysis shows the presence of the power-law form for the 

power spectrum density (coloured-noise type), and the slope of the line fit-

ting the log-log plot of the power spectrum density gives an estimate of the 

spectral index. In both cases, the power spectrum density shows fluctua-

tions that influence the estimate of the power-law index. But, Fig. 8.4 pro-

vides an example of the use of the Higuchi method to calculate the fractal 

dimension D and, thus, the spectral exponent  for the two SP signals in a 

more accurate manner. The slope of the line fitting the log-log plot of the 

length of the curve X (t) vs. the time interval  gives an estimate of the 

fractal dimension D , from which the power-law exponents can be calcu-

lated.

Fig. 8.5 Detrending method performed in the DFA 

8.5 Detrended fluctuation analysis 

Recently, the method of Detrended Fluctuation Analysis (DFA) has been 

developed to reveal long-range correlation structures in observational time 

series. This method was proposed by Peng et al. (1995), and it avoids spu-

rious detection of correlations that are artefacts of nonstationarity, that of-
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ten affects experimental data. Such trends have to be well distinguished 

from the intrinsic fluctuations of the system in order to find the correct 

scaling behaviour of the fluctuations. Very often we do not know the rea-

sons for underlying trends in collected data and we do not know the scales 

of underlying trends. The DFA is a well established method for determin-

ing the scaling behaviour of data in the presence of possible trends without 

knowing their origin and shape (Kantelhardt et al. 2001).  
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Fig. 8.6 Scaling behaviour in a SP time series (a) investigated by the Lomb 

Periodogram (b), Higuchi method (c) and DFA (d) (after Telesca et al. 2003) 

The methodology operates on the time series x(i), where i=1,2,...,N and N 

is the length of the series. xave indicates  the average value 
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The signal is first integrated 

k

1i

avex)i(x)k(y .
(8.8)

Next, the integrated time series is divided into boxes of equal length n. In 

each box a least-squares line is fit to the data, representing the trend in that 

box (Fig. 8.5). The y coordinate of the straight line segments is denoted by 

yn(k). Next we detrend the integrated time series y(k) by subtracting the 

local trend yn(k) in each box. The root-mean-square fluctuation of this in-

tegrated and detrended time series is calculated by  

N

1k

2

n )k(y)k(y
N

1
)n(F .

(8.9)

Repeating this calculation over all box sizes n, we obtain a relationship be-

tween F(n), which represents the average fluctuation as a function of box 

size, and the box size n. If F(n) behaves as a power-law function of n, data 

present scaling: 

dnF(n) . (8.10)

Under these conditions the fluctuations can be described by the scaling co-

efficient d, representing the slope of the line fitting log F(n) to log n. The 

values of exponent d may represent a range of processes. For example 

d=0.5 means that the signal samples are uncorrelated or short-range-

correlated. An exponent d 0.5 in a certain range of scales n suggests the 

existence of long-range correlations. If d<0.5 the temporal fluctuations are 

antipersistent. If d>0.5 the temporal fluctuations are persistent. In particu-

lar, if d=1.0 the temporal fluctuations are of flicker-noise type; if d=1.5 the 

temporal fluctuations are of Brownian noise type. The DFA scaling expo-

nent d and the spectral exponent  are related to each other as described in 

(Buldyrev et al. 1994) by the following equation: 

2

1
d .

(8.11)

Fig. 8.6 provides an example of Lomb Periodogram, Higuchi analysis and 

DFA concomitantly performed on a SP time series. Power-law behaviours 

are clearly detected in all the statistics. The Lomb Periodogram shows 

scaling form, but the estimate of the scaling exponent is strongly affected 

by the fluctuations especially at high frequency bands (Fig. 8.6b). The es-

timate of the scaling exponent by means of the Higuchi method presents 

higher stability. The DFA method furnishes a measure for the scaling ex-
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ponent slightly different from that given by the spectral method. The rea-

son for this difference is due to the capability of the DFA to capture dy-

namics in nonstationary signals, while the power spectrum is sensitive to 

trends and nonstationarities, which could affect the scaling behaviour of a 

time series. Furthermore, Stanley et al. (1996), argue that there is a theo-

retical support for the hypothesis that DFA produces less noisy plots. They 

link DFA to a double summation of the series autocorrelation function, 

while the power spectrum is derived from a Fourier transformation of the 

autocorrelation. The double summation acts effectively as a noise filter, 

providing more accurate estimates. 

8.6 Magnitude and sign decomposition method 

Recently (Ashkenazy et al. 2001), it was shown that the fluctuations in a 

dynamical signal could be characterized by two components- magnitude 

(absolute value) and sign (direction). These two quantities reflect the un-

derlying interactions in a system, and the resulting force of these fluctua-

tions at each moment determines the magnitude and direction of the fluc-

tuations (Ashkenazy et al. 2003). 

In this section the two-point correlation (scaling) properties of the mag-

nitude and sign series with long-range correlations are studied. Any power-

law long-range correlated time series can be decomposed into two sub-

series (Ashkenazy et al. 2001), given the series x(i), define the increments 

as

x(i)-1)x(i , (8.12)

then the magnitude sub-series is the absolute value of the increments 

|)i(x|m(i) , (8.13)

while the sign sub-series is the sign of the increments  

 ))i(xsgn(s(i) , (8.14)

therefore

 |)i(x|))i(xsgn( , (8.15)

Then, to identify the presence of correlations and their type in the sign and 

magnitude sub-series, the detrended fluctuation analysis (DFA) is 

performed (see section 8.5). Therefore, the correlation analysis of the 

magnitude and sign sub-series consists of the following steps:  

i) From the time series x(i) the increments x(i) are derived.
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ii) The magnitude m(i) and sign s(i) sub-series are formed from the in-

crements. If x(i)=0, s(i) can be defined as +1, 0 or –1. 

iii) To avoid artificial trends from the magnitude and sign series their re-

spective average values are subtracted. 

iv) Since the DFA does not permit accurate estimation of scaling expo-

nents of strong anticorrelated signals (d close to zero), the sub-series are 

firstly integrated.  

v) The DFA is performed on the integrated sub-series. Then, the value 

obtained of the scaling exponent is d’=d+1, where d is the scaling expo-

nent of the original sub-series. 

It has been shown that scaling in the magnitude series is related to the 

non-linear properties of the signal, while scaling in the sign series is re-

lated to its linear properties (Ashkenazy et al. 2003). As an example, Fig. 

8.7 shows: (a) the original series x(i); (b) the increment series x(i); (c) the 

magnitude sub-series m(i), and (d) the sign sub-series s(i) of a time series. 
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Fig. 8.7 (a) Original series x(i); (b) increment series x(i); (c) magnitude sub-

series m(i), and (d) sign sub-series s(i) of a time series. 

Correlation in the magnitude series indicates that an increment with 

large (small) magnitude is more likely to be followed by an increment with 

large (small) magnitude. Anticorrelation in the sign series indicates that a 

positive increment is more likely to be followed by a negative increment 

and vice versa. 
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Fig. 8.8(a-d) Ubication of the SP monitoring stations and epicentres of the 

earthquakes satisfying the Dobrovolsky’s rule in relation with the location of the 

measuring stations: a)Giuliano, b)Marsico, c)Tito and  d) Laterza. 
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Fig. 8.9 Hourly variability of the nine SP signals recorded at stations Giuliano, 

Marsico, Tito and Laterza, along with the occurrence of the earthquakes selected 

by means of the Dobrovolsky’s rule (after Telesca et al. 2004a) 
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Figs. 8.8-8.12 describe the performance of the magnitude and sign de-

composition method to nine time series of minute values of SP from Janu-

ary 2001 to September 2002, recorded in seismic (Giul1, Giul2, Marsico, 

Tito1, Tito2, Tito3 and Tito4) and aseismic (Lat1 and Lat2) areas in south-

ern Italy. Fig. 8.8 shows the locations of the stations and the epicentres of 

the earthquakes extracted by means of the Dobrovolsky’s rule (Dobrovol-

sky et al. 1979, Dobrovolsky 1993), which identifies earthquakes capable 

to influence the time variability of SP data. The seismic data are extracted 

from the INGV (National Institute of Geophysics and Volcanology) seis-

mic catalogue (Telesca et al. 2004a) In fact; the stress field produces 

cracks on the rock volumes triggering fluid pressure variations. As a result 

of this process we have an underground charge motion and, subsequently, 

we observe anomalies in the electrical field on the surface only if the 

preparation region is near the measuring station. It is necessary to dis-

criminate the useful events (i.e. earthquakes responsible for significant 

geophysical variations in a rock volume of the investigated area) from all 

the seismicity that occurred in the area surrounding the measuring station. 

Therefore, from the whole seismicity, only earthquakes that could be re-

sponsible for strain effects in the areas around the monitoring stations have 

to be considered. The area monitored by station Laterza (Fig. 8.8d) is char-

acterized by a substantial absence of earthquakes. Fig. 8.9 shows the time 

variations of the SP signals along with the earthquakes occurred during the 

observation period. A striking feature is visible concerning especially the 

graphs of station Tito: an increased seismic activity, also with events with 

a relatively high magnitude (M 4.0), characterizes the SP time fluctuations 

in the temporal range 104 hours < t <1.5 104 hours. In this temporal range, 

Tito SP fluctuations present the largest variability and irregularity. Giuli-

ano signals are characterized by similar behaviour, with an increased num-

ber of spikes in the same temporal range as Tito. Marsico signal presents a 

long gap during the same time range, but its dynamics vary significantly 

between 1.3 104 hours and 1.5 104 hours. The decomposition method has 

been performed. The SP data present gaps; therefore, we considered for 

each signal the longest segments without data gaps. The order of the mag-

nitude of the length of each segment is about 103 hours, thus permitting to 

obtain reliable estimates of the scaling exponents. For each signal segment, 

the increment series is created, and then the magnitude and the sign sub-

series are calculated. Thus the DFA is performed over all the sub-series 

following the steps i)-v). Fig.  8.11 shows the scaling exponents, dmag and 

dsig, estimated for the magnitude and sign sub-series respectively, for each 

signal segment.  
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Fig. 8.10 Scaling exponents of the magnitude (a) and sign (b) sub-series for 

each signal segment 
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The signals measured in seismic areas (Giul1, Giul2, Mar, Tit1, Tit2, 

Tit3 and Tit4) are on average characterized by a value of the scaling expo-

nents dmag and  dsig higher than those estimated for signals measured in 

aseismic areas (Lat1 and Lat2). Scaling laws based on two-point correla-

tion methods cannot inform about the nonlinearity of a series, but the two-

point correlations in the magnitude series reflect the nonlinearity of the 

original series (Ashkenazy et al. 2003).  

Fig. 8.11 99% significance analysis of the magnitude and sign scaling expo-

nents  

In order to verify the latter point, for each segment 10 surrogate series 

have been generated. Each surrogate series is obtained by the following 

procedure:

1) Fourier transforming the original series; 

2) preserving the amplitudes of the Fourier transform of the series (this 

implies that the power spectral density of the surrogate series is the same 

as the original  one); 

3) randomizing the phases of the Fourier transform, i.e. attributing to the 

phase a random number between 0 and 2 ;
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4) inverse-Fourier transforming. The surrogate series, generated by 

means of this procedure, have the same linear properties as the original 

ones, like the power spectrum, while the nonlinear properties, stored in the 

Fourier phases, are destroyed. The difference between the exponents be-

fore and after the surrogate data test for nonlinearity may be quantified as 

follows. If dmag,sig is the exponent derived from the original magnitude or 

sign sub-series and S, S are the average and standard deviation of the ex-

ponents derived from the surrogate data, then the separation is given by 

S

Ssigmagd ,
(8.16)

where  measures how many standard deviations the original exponent is 

separated from the surrogate data exponent. The larger the  the larger the 

separation between the exponents derived from the surrogate data and the 

exponent derived from the original data. Thus, larger  values indicate 

stronger nonlinearity. The p-value is calculated by means of the formula 

p=erfc( 2) (Theiler et al. 1992), this is the probability of observing  or 

larger if the null hypothesis is true, where the null hypothesis is given by 

the absence of nonlinearity. Fig. 8.11 shows the  value for the magnitude 

and sign sub-series for each signal segment. It is also shown by the hori-

zontal dotted line, representing the threshold of 99% significance. Thus, 

values below this threshold indicate no statistically significant difference 

between original data and surrogate data; in other word, if the  value is 

over the threshold, the corresponding signal has the probability of 99% to 

be characterized by nonlinear dynamics. We observe that Laterza  values 

are below the threshold regarding both the sign and the magnitude series 

(only Lat24 has the magnitude exponent significantly different from the 

mean surrogate exponent). The other signals, measured in seismic areas, 

present magnitude  value above the threshold in most cases; while the 

sign  values above the threshold and those below are almost identically 

distributed. From this result, the magnitude series conveys information 

about the nonlinearity of the process underlying the signal variation. The 

signals measured in aseismic areas, like Laterza, are characterized by lin-

ear dynamics, while those measured in seismic areas by nonlinear dynam-

ics. But, a better discrimination between both classes of signals can be ob-

tained plotting all the points representing the original data and the 

surrogate data in the dmag-dsig plane. Fig. 8.12 shows this relation for the 

original signals (circle) and surrogates (crosses) of Tito (a), Giuliano (b), 

Marsico (c) and Laterza (d).
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Fig. 8.12 dmag-dsig plane representation of the signal segments along with their 

surrogates: (a) Tito, (b) Giuliano, (c) Marsico and (d) Laterza
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We can observe that the points representing the signals measured in 

seismic areas (Tito, Giuliano and Marsico) are well discriminated from 

those corresponding to the surrogates, while the points associated to the 

signals measured in aseismic areas (Laterza) are mixed with the surrogates. 

8.7 Multifractal formalism 

Monofractals are homogeneous objects, in the sense that they have the 

same scaling properties, characterized by a single singularity exponent 

(Stanley et al. 1996). Generally, there exist many observational signals, 

which do not present a simple monofractal scaling behavior. The need for 

more than one scaling exponent can derive from the existence of a cross-

over timescale, which separates regimes with different scaling behaviors, 

suggesting e.g. different types of correlations at small and large scales. Fig. 

8.13 provides an example of such case: different scaling exponents are 

visible in both DFA plots (Fig. 8.13b and Fig. 8.13c) with a crossover at 

about 48 hours. In the first scaling region (timescales less than 48 hours) 

the dynamics is flicker-noise-type, while in the second scaling region 

(timescales larger than 48 hours) the dynamics is Brownian-noise-type. 

a)
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Fig. 8.13(a) Hourly SP means recorded at station Tramutola (southern Italy) 

during the 1995; (b and c) DFA results: clear power-law behaviour with scaling 

index d 1.1 and d 1.4 with a crossover at about 48 hours (after Telesca et al. 

2002) 
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Different scaling exponents could be required for different segments of 

the same time series, indicating a time variation of the scaling behavior. In 

this case a time variation of the scaling exponent has to be performed to 

identify temporal patterns in the scaling behavior of the signal. Fig. 8.14 

shows an analysis of the time evolution of the spectral index  for SP data, 

measured in southern Italy, performed concomitantly with the evolution of 

the Hurst exponent H (Feder 1988), of the seismicity occurred in the area 

(Telesca et al. 2001). The values of  vary from 1.12 to 1.78 with average 

1.4. The values of H range from 0.5 to 0.92 with a mean value of 0.74.

The two exponents,  and H, tend to respectively decrease and increase 

during the process of the preparation of the major event occurred in the 

area, approaching unity almost 200 days before the M4.5 April 3, 1996 

earthquake.

Fig. 8.14 Time variation of the Hurst exponent H of the seismicity of southern 

Italy from 1991 to 1997 and the spectral power-law index  of the SP signal 

recorded during the same period (after Telesca et al. 2001)

This result is in agreement with the behavior of the ULF (Ultra-low fre-

quency) spectral exponent observed in Hayakawa (1999). The decrease of 

 and the increase of H both toward unity before the occurrence of the ma-

jor event can be viewed as an indicator of self-organized criticality of the 

geophysical system governing both the SP and the seismic temporal fluc-

tuations.



Fractal Methods in Self-Potential Signals      163 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0
Marsico

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0 Giul1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0
Giul2

f(
)

f(
)

f(
)



164      Luciano Telesca, Vincenzo Lapenna 

0.0 0.4 0.8 1.2 1.6 2.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 Tito1

0.0 0.4 0.8 1.2 1.6 2.0

-0.1

0.1

0.3

0.5

0.7

0.9

1.1
Tito2

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0 Tito3

f(
)

f(
)

f(
)



Fractal Methods in Self-Potential Signals      165 

Fig. 8.15 Legendre spectra of the signals measured in southern Italy. For each 

signal, we selected 2 to 4 longest segments without gaps, whose length is ap-

proximately 103 points. All the spectra evidence the single-humped shape, typical 

of multifractal signals (after Telesca et al. 2004a) 
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 In agreement with the interpretation furnished by Hayakawa (1999), the 

evolution of the Earth’s crust toward the self-organized criticality involves 

the formation of fractal structures in the fault zone, and the decrease of  is 

consistent with the appearance of small-scale fractal structures in the focal 

zone (Hayakawa et al. 2000), generating higher frequency components. 

In even more complicated cases, different scaling exponents can be re-

vealed for many interwoven fractal subsets of the time series; in this case 

the process is not a monofractal but multifractal. A multifractal object re-

quires many indices to characterize its scaling properties. Multifractals can 

be decomposed into many-possibly infinitely many-sub-sets characterized 

by different scaling exponents. Thus multifractals are intrinsically more 

complex and inhomogeneous than monofractals (Stanley et al. 1999) and 

characterize systems featured by very irregular dynamics, with sudden and 

intense bursts of high frequency fluctuations (Davis et al. 1994).  

Multifractals can be considered as a generalization of fractal geometry, 

essentially developed for the description of geometrical patterns. Indeed, 

fractal geometry has been introduced to describe the scaling relationship 

between patterns and the measurement scale: the ‘size’ of the fractal object 

varies as the scale raised to a scaling exponent, given by the fractal dimen-

sion. The concept of multifractal leads to the existence of an infinite hier-

archy of sets, each with its own fractal dimension. Therefore, multifractals 

require an infinite family of different exponents. The multifractal formal-

ism is based on the definition of the so-called partition function Z(q, ),

boxesN

1i

q

i,qZ .
(8.17)

The i( ) is a measurable quantity, which depends on , the size or scale of 

the boxes used to cover the sample. The boxes are labelled by the index i 

and Nboxes( ) indicates the number of boxes of size  needed to cover the 

sample. The exponent q is a real parameter, giving the order of the moment 

of the measure. The choice of the functional form of the measure i( ) is 

arbitrary, provided that the most restrictive condition i( ) 0 is satisfied. 

The parameter q can be considered as a powerful microscope, able to 

enhance the smallest differences of two very similar maps. Furthermore, q 

represents a selective parameter: high values of q enhance boxes with 

relatively high values for i( ); while low values of q favour boxes with 

relatively low values of i( ). The box size  can be considered as a filter, 

so that big values of the size are equivalent to apply a large scale filter to 

the map (Diego et al. 1999). Changing the size , one explores the sample 

at different scales. Therefore, the partition function Z(q, ) furnishes 

information at different scales and moments. 
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The generalized dimension are defined by the following equation 

ln

,qZln

1q

1
limqD

0

(8.18)

D(0) is the capacity dimension; D(1) is the information dimension, and 

D(2) is the correlation dimension. An object is called monofractal if D(q) 

is constant for all values of q, otherwise is called multifractal. In most 

practical applications the limit in Eq. (8.18) cannot be calculated, because 

we do not have information at small scales, or because below a minimum 

physical length no scaling can exist at all (Diego et al. 1999). Generally, a 

scaling region is found, where a power-law can be fitted to the partition 

function, which in that scaling range behaves as 

q,qZ .
(8.19)

The slope (q) is related to the generalized dimension by the following 

equation:

 1)D(q)-(q . (8.20)

A usual measure in characterizing multifractals is given by the singular-

ity spectrum or Legendre spectrum f( ) that is defined as follows. If for a 

certain box j the measure scales as  

j

j
(8.21)

the exponent , which depends upon the box j, is called Hölder exponent. 

If all boxes have the same scaling with the same exponent , the sample is 

monofractal. The multifractal is given if different boxes scale with differ-

ent exponents , corresponding to different strength of the measure. De-

noting as S  the subset formed by the boxes with the same value of , and 

indicating as N ( ) the cardinality of S , for a multifractal the following re-

lation holds: 

fN (8.22)

By means of the Legendre transform the quantities  and f( ) can be re-

lated with q and (q): 

dq

qd
q

(8.23)
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(q) -)q(q)f( . (8.24)

The curve f( ) is a single-humped function for a multifractal, while re-

duces to a point for a monofractal. In order to quantitatively recognize pos-

sible differences in Legendre spectra stemming from different signals, it is 

possible to fit, by a least square method, the spectra to a quadratic function 

around the position of their maxima at 0 (Shimizu et al. 2002): 

C)(B)A()f( 0

2

0 ,
(8.25)

where parameter B serves as an asymmetry parameter, which is zero for 

symmetric shapes, positive or negative for a left- or right-skewed (centred) 

shape, respectively. Another parameter is the width of the spectrum, that 

estimates the range of  where f( )>0, obtained extrapolating the fitted 

curve to zero; thus the width is defined as 

21W

where

0)(f)f( 12 . (8.27)

The width W measures the length of the range of fractal exponents in the 

signal; therefore, the wider the range, the “richer” the signal in structure. 

The asymmetry parameter B provides about the dominance of low or high 

fractal exponents  with respect to the other. 

As an example of application of the multifractal method to reveal dy-

namical features in SP data, we discuss the multifractal discrimination be-

tween the nine SP signals considered in the previous section, and recorded 

in seismic (Giul1, Giul2, Marsico, Tito1, Tito2, Tito3 and Tito4) and 

aseismic (Lat1 and Lat2) areas in southern Italy. Fig. 8.15 shows the Leg-

endre spectra for the selected segments for each signal. All the spectra pre-

sent the typical single-humped shape that characterizes multifractal sig-

nals. Tito signals present a couple of curves very different from each other, 

the wider corresponding to the segment of data extracted in the temporal 

range in which an increase of seismic activity has been recorded (see Fig. 

8.9). For each multifractal spectrum the three parameters, maximum 0,

asymmetry B and width W have been calculated; then an average among 

them has been performed, obtaining a set of three multifractal parameters 

for each original signal. In order to evaluate the significance of the results, 

for each segment 10 surrogate series have been generated, and for each of 

them, the multifractal spectrum and the three multifractal parameters. The 

maximum-width, maximum-asymmetry and asymmetry-width relations for 



Fractal Methods in Self-Potential Signals      169 

the original and the surrogate series are described respectively in details by 

Telesca et al.(2004a). The SP signals measured in seismic areas (Giuliano, 

Tito and Marsico) are discriminated from the surrogate series; while 

Laterza signals do not show any separation between the points represent-

ing the original signals and the those representing the surrogates. Fig. 8.16 

shows a 3D plot of the multifractal parameters, where the signals Lat1 and 

Lat2, recorded in aseismic area, are well discriminated from the other sig-

nals measured in seismic areas. 

Fig. 8.16 3D plot of the multifractal parameters: the signals Lat1 and Lat2, 

recorded in aseismic area, are well discriminated from the other signals measured 

in seismic areas (after Telesca et al. 2004b)  

8.8 Multifractal detrended fluctuation analysis 

Observational data often present clear irregular dynamics, characterized by 

sudden bursts of high frequency fluctuations, which suggest performing a 

multifractal analysis evidencing the presence of different scaling behav-

iours for different intensities of fluctuations. Furthermore, the signal may 

appear nonstationary, and, for this reason, the Multifractal Detrended Fluc-
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tuation Analysis (MF-DFA) (Kantelhardt et al. 2002) could be a useful 

tool to characterize multifractality. 

The method is based on the conventional DFA. Thus, it operates on the 

time series x(i), where i=1,2,...,N and N is the length of the series. Assume 

that x(i) are increments of a random walk process around the average xave,

the “trajectory” or “profile” is given by the integration of the signal 

i

1k

avex)k(x)i(y

Next, the integrated time series is divided into NS=int(N/s) without 

overlapping segments of equal length s. Since the length N of the series is 

often not a multiple of the considered time scale s, a short part at the end of 

the profile y(i) may remain. In order not to disregard this part of the series, 

the same procedure is repeated starting from the opposite end. Thereby, 

2NS segments are obtained altogether. Then the local trend for each of the 

2NS segments is calculated by a least square fit of the series. Then one 

calculates the variance 

s

1i

22 )i(yis1y
s

1
),s(F

(8.28)

for each segment , =1,..,NS and 

s

1i

2

S

2 )i(yisNNy
s

1
),s(F

(8.29)

for =NS+1,..,2NS. Here, y (i) is the fitting line in segment . Then, an av-

erage over all segments is performed to obtain the q-th order fluctuation 

function

q

1

N2

1

2

q
2

S

q

S

,sF
N2

1
)s(F

(8.30)

where, in general, the index variable q can take any real value except zero. 

The value h(0) corresponds to the limit h(q) for q 0, and cannot be de-

termined directly using the averaging procedure of Eq. 8.30 because of the 

diverging exponent. Instead, a logarithmic averaging procedure has to be 

employed, 

)0(h
N2

1

2

S

0 s,sFln
N4

1
exp)s(F

S

.

(8.31)
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Repeating the procedure described above, for several time scales s, Fq(s)

will increase with increasing s. Then analyzing log-log plots Fq(s) versus s 

for each value of q, the scaling behaviour of the fluctuation functions can 

be determined. If the series xi is long-range power-law correlated, Fq(s) in-

creases for large values of s as a power-law: 

)q(h

q s(s)F
.

(8.32)

In general the exponent h(q) will depend on q. For stationary time se-

ries, h(2) is the well defined Hurts exponent H (Feder 1988). Thus, we call 

h(q) the generalized Hurst exponent. Monofractal time series are character-

ized by h(q) independent of q. The different scaling of small and large 

fluctuations will yield a significant dependence of h(q) on q. For positive 

q, the segments  with large variance (i.e. large deviation from the corre-

sponding fit) will dominate the average Fq(s). Therefore, if q is positive, 

h(q) describes the scaling behaviour of the segments with large fluctua-

tions; and generally, large fluctuations are characterized by a smaller scal-

ing exponent h(q) for multifractal time series. For negative q, the segments 

 with small variance will dominate the average Fq(s). Thus, for negative q 

values, the scaling exponent h(q) describes the scaling behaviour of seg-

ments with small fluctuations, usually characterized by larger scaling ex-

ponents.

Fig.  8.17 Fluctuation functions for q=-10, 0, +10 and time scales ranging be-

tween 5 103 min to N/4, where N is the total length of the series
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Fig. 8.18 Generalized Hurst exponents h(q) for q varying between –10 and 10. 

It is evident the multifractal behaviour of the original series (a); while the smaller 

range of the exponents concerning the shuffled series (10 realizations; the average 

 1 standard deviation is shown) indicates that the multifractality of the original 

signal depends mostly on the different long-range correlations for small and large 

fluctuations (b) 
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Two types of multifractality that underlies the q-dependence of the gen-

eralized Hurst exponent in time series can be discriminated: (i) due to a 

broad probability density function for the values of the time series, and (ii) 

due to different long-range correlations for small and large fluctuations. 

Both of them need a multitude of scaling exponents for small and large 

fluctuations. The easiest way to discriminate between these two types of 

multifractality is by analyzing the corresponding randomly shuffled series. 

In the shuffling procedure the values are put into random order, and al-

though all correlations are destroyed, the probability density function re-

mains unchanged. Hence the shuffled series coming from multifractals of 

type (ii) will exhibit simple random behaviour with hshuf(q)=0.5, which 

corresponds to purely random dynamics. While those coming from multi-

fractals of type (i) will show h(q)=hshuf(q), since the multifractality depends 

on the probability density. If both types of multifractality characterize the 

time series, thus the shuffled series will show weaker multifractality than 

the original one. Fig. 8.17 provides three fluctuation functions Fq(s) (q=-

10, 0, 10) for a self-potential signal measured in southern Italy for time-

scales s ranging from 5 102 min  to N/4, where N is the total length of the 

series. The length of the series (N 1.2 106) allows us to consider the esti-

mated exponents reliable. Fig.8.18 shows the q-dependence of the general-

ized Hurst exponent h(q) determined by fits in the regime 5 102 min < s < 

N/4.  Also shown are the generalized Hurst exponents versus q, averaged 

over 10 randomly shuffled versions of the original time series. The error 

bars delimit the 1-  range around the mean values. The hshuf(q)-values

range around 0.5, but with a slight q-dependence; this indicates that the 

most multifractality of the self-potential data is due to different long-range 

correlations for small and large fluctuations. 

8.9 Discussion 

The geophysical phenomenon underlying the geoelectrical variations is 

complex and the use of fractal analysis to detect scaling laws in the statis-

tics describing the geoelectrical time series can lead to a better understand-

ing of the physics of the process. Recently, the study of the dynamics of 

extended systems have suggested that complex systems are very common 

in nature and a typical effect in the time domain is known as 1/f  noise, so 

the power spectra of these processes exhibit a linear behaviour on log-log 

scales. Monofractals and multifractals are particularly well suited for char-

acterizing long-range power-law correlated self-potential signals. The 

mono- and multifractality observed in self-potential signals recorded in 



174      Luciano Telesca, Vincenzo Lapenna 

seismic areas can reflect the irregularity and heterogeneity of the crust, 

within which phenomena generating self-potential fields occur. Therefore 

the structure of the self-potential signal is linked to the structure of the 

seismic focal zone. In fact, the geometry and the structure of individual 

fault zones can be represented by a network with an anisotropic distribu-

tion of fracture orientations, and consisting of fault-related structures in-

cluding small faults, fractures, veins and folds. This is a consequence of 

the roughness of the boundaries between each component and the interac-

tion between the distinct components within the fault zone (O’Brien et al. 

2003). In fact earthquake faulting is characterized by irregular rupture 

propagation and non-uniform distributions of rupture velocity, stress drop 

and co-seismic slip. These observations indicate a non-uniform distribution 

of strength in the fault zone, whose geometry and mechanical heterogenei-

ties are important factors to be considered in the prediction of strong mo-

tion. Experimental studies on the hierarchical nature of the processes un-

derlying fault rupture, leading to the possibility of recognizing the final 

preparation stage before a large earthquake have been performed (Lei et al. 

2003). The phenomenon of electrofiltration or streaming potential, which 

is known to be the most relevant phenomenon that could originate the 

geoelectrical field, can be influenced by the structure of the seismic focal 

zone, under the condition of dilatancy-induced crack formation and propa-

gation. The fractal analysis of this generated geoelectrical signal could re-

veal the fractality of such structure. 
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Chapter 9. Earth System Modeling Through 

Chaos

H. N. Srivastava 
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9.1 Summary 

Modeling parameters using deterministic chaos have been discussed for 

Earth system through atmospheric pressure, maximum and minimum tem-

perature, monsoon rainfall, cyclonic storm tracks, long term climate, 

ozone, radio refractive index, magnetosphere ionosphere system, volca-

noes, earthquakes and fluid flows in core and mantle using the method of 

Grassberger and Procaccia and Lyapunov exponents. It was found that the 

atmospheric phenomena generally showed a strange attractor dimension of 

6 to 7 implying at least 7 to 8 parameters for modeling the system.  On the 

other hand, the magnetosphere-ionosphere system had a low dimension.  

Most interesting results were found for earthquakes whose strange attractor 

dimension provides a methodology for differences between interplate and 

intraplate Indian region.  It also provides a dynamical justification for de-

lineation of seismicity patterns based on epicenters of earthquakes on dif-

ferent closely located fault systems up to 500 km radius from the impend-

ing earthquake. 

Another interesting result pertains to the Koyna region, India where a 

low strange attractor dimension of 4.5 provides justification for earthquake 

predictability programme in this region.  

9.2 Introduction 

Earth as a dynamic system involves extensive studies from the core and 

mantle processes, tectonic plate movements (causing earthquakes and vol-

canoes), atmospheric, ocean solar and terrestrial relationships.  The pre-

dominant effects on the magnetosphere and ionosphere have been attrib-

uted to the solar radiation and particle fluxes.  The atmosphere is affected 

by the solar irradiance.  The plate motions are governed by the convection 

processes in the mantle.  Thus the interactions and feed backs among the 
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Earth system components are primarily responsible for complexity in the 

phenomenon which occurs in the biosphere, atmosphere, hydrosphere, 

lithosphere, mantle and the core.  A unified approach is therefore required 

to model these phenomenon which cause global changes.  In view of the 

problems to solve the complicated dynamical equations, recourse is taken 

through chaotic dynamics. 

9.3 Methodology 

In order to examine whether a system is chaotic, methods like Grassberger 

and Procaccia (1983), Lyapunov exponents (Wolf et al. 1985), are widely 

used.

9.3.1 Strange attractor dimension 

In the Grassberger and Procaccia (1983) method, phase space of the dy-

namical system is reconstructed by using an observed time series of num-

ber of earthquakes or any other parameter as variables and the time series 

of the same variable but shifted by (n – 1) time lags,  

X(t) = [x(t), x(t + 1), …………… x(t+n-1)]  

A set of N points on an attractor embedded in a phase space of n dimen-

sions is obtained from the time series given by, 

xi ((ti),  x(ti +  )…………………….. x(tI+(n-1) ) (9.1)

which stands for a point of phase space, the difference (XI - Xj) from the 

N-1 remaining points are computed. 

The correlation function of the attractor Cm(r) is given by 

N

1j,i

i2m ji)],XjX(r[H
N

1
)r(C

(9.2)

for embedding dimension m and where H is Heaviside function 

i.e.

H(x)=0   ,  if x<0 

     H(x)=1   ,  if x>0 

(9.3)

and r is distance 

The dimensionality d of the attractor is related to Cm(r) by the relation 
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d

m r)r(C  or )rln(d)r(Cm (9.4)

The dimensionality d of the attractor is given by the slope of the Cm(r) 

versus ln(r). The slope of the scaling region is obtained for various embed-

ding dimensions.  As we increase the embedding dimension m, the slope 

saturates to a limiting value obtained for two consecutive delay times.  

This gives the strange attractor dimension.  The minimum and the maxi-

mum number of parameters for predictability are d + 1 and 2d respectively. 

9.3.2 Lyapunov exponent 

We consider a system described by N ordinary differential equations 

N,.....2,1i),x,......x,x(F
dt

dx
n21i

i
(9.5)

The solution space for this problem conceptually follows the solutions 

that start within a hypersphere of radius r. As the solution evolves, the hy-

persphere is deformed into a hyperellipsoid with principal axis Ei(t). The 

Lyapunov Exponent is given by, 

)]r/)t(E(t/1[x i
)0r,tlim(

i
(9.6)

If all I  0, all solutions that start with initial conditions close to each 

other will converge i.e., there is no sensitivity to initial conditions.  But if 

just one i is positive, the nearby solutions will diverge, i.e., there will be 

extreme sensitivity to the initial conditions.  The growth in uncertainty in 

time t is given by 

t

0eNN (9.7)

where No is the initial condition and  is related to the concept of en-

tropy in information theory and also related to another concept i.e., the 

Lyapunov exponent, which measures the rate at which the nearby trajecto-

ries of a system in phase space diverge. 

It may be noted that in order to avoid spurious results being obtained, 

the number of earthquakes N should satisfy the Ruelles criterion 

DNlog2 10 (9.8)

where D is the strange attractor dimension. 

Some significant results pertaining to Earth system from core of the 

Earth to the magnetosphere through the intervening ocean-atmospheric re-
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gion would throw light about the predictability of the phenomenon which 

affects our lives in one way or the other. 

9.4 Earth 

Earth consists of three main layers called the crust, mantle and the core. 

Several text books (e.g. Gutenberg 1959, Lowrie 1997) give detailed de-

scription of these layers.  

9.4.1 Outer core 

Rikitake (1958) first parameterized and solved a set of dynamic equations 

which were shown to be examples of deterministic chaos.  This was based 

on the characteristics of the core dynamics due to which the Earth’s mag-

netic field undergoes reversals and is expected to be turbulent. 

9.4.2 Earth’s mantle 

The heat transport in the Earth’s mantle is mainly attributed to thermal 

convection.  Stewart and Turcotte (1989) considered a higher order expan-

sion in Fourier series based on Lorenz equations and showed that the time 

evolution of the solution is fully chaotic for Rayleigh Number = 4.5 X 104.

No fixed points were stable.  The phenomenon has assumed greater impor-

tance because the movement of the global plates is governed by the heat 

convection in the mantle pushing the plates away at the oceanic ridges.  

Some of the volcanic eruptions also originate in this region and are re-

ported to be chaotic.  The deep focus earthquakes in the mantle (up to 

about 700 km) are, however, least destructive, whose dynamics is least un-

derstood.

9.4.3 Earth’s crust 

The most destructive earthquakes generally originate in the upper crustal 

layers.  The earthquakes of magnitude 8 or more may occur near the 

boundaries of the global plates of continent-continent (collision) or conti-

nent oceanic (subduction) type.  The largest magnitude of earthquakes is 

generally 6 to 6.5 near the mid oceanic ridges.  However, the largest mag-

nitude of the earthquakes may reach 8 in the transform faults such as San 

Andreas in California. Intraplate seismicity provides greater challenges to 
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seismologists.  The recurrence of a great earthquake in Bhuj, India in 

January 2001 only after a gap of 183 years within the Indian plate attracted 

the attention of seismologists throughout the world. Chaotic methods have 

been used to study the dynamic behaviour of crustal earthquakes, which 

occurred in different parts of the world. 

San Andreas fault 

California (U.S.A.) is considered to be one of the most seismically active 

regions of the world.  The section of San Andreas fault near Parkfield is 

tectonically more interesting because the great 1857 earthquake in south-

ern California was preceded by foreshocks with their epicenters near Park-

field.  This region is characterized by `characteristic earthquakes’.   Closer 

examination of Parkfield earthquakes, however, suggests that different in-

ter-event intervals of 12 and 32 years between 1922, 1934 and 1966 earth-

quakes are inconsistent with a simple application of either the time or slip 

predictable recurrence models. 

Horowitz (1989) and Julian (1990) reported that a strange attractor ex-

ists in the Parkfield region of California.  However, Beltrami and Mare-

schal (1993) did not find any evidence of a chaotic process in the region 

through generation of a random series and using seismic energy release of 

earthquake.  They suggested that the occurrence in this region is random or 

had a strange attractor dimension larger than 12 implying inherent limita-

tions in evolving a predictive model.  In view of these results of diver-

gence nature, Srivastava and Sinha Ray (1999) re-examined earthquake 

predictability in this region using two different approaches namely, 

Lyapunov exponent and strange attractor dimension.  This was based on 

75000 earthquakes on which the analysis of Beltrami and Mareschal 

(1993) was based during 1969-1987.  Fig. (9.1a) shows the plot of lnCm(r) 

versus ln(r) for embedding dimensions from 2 to 16.  Fig. 9.1(b) gives the 

strange attractor dimension as 6.3 since saturation occurred for time delays 

of 4 and 5 days.  This suggested that at least 7 parameters are needed for 

the predictability of earthquakes in the region.  This unequivocally lent 

support to the results reported by Horowitz (1989) who found a chaotic 

process in this region.  Further evidence of chaotic process in the region 

was provided by small positive value of the largest Lyapunov exponent 

(0.045).   

Indian region 

   Bhattacharya and Srivastava (1992) found a strange attractor of dimen-

sion 6.9 in the Hindukush region.    
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Fig. 9.1 (a) Distance dependence of the correlation function for a sequence of 

embedding dimensions in California region. (b) Dimensionality D of the attractor 

as a function of embedding dimensions, (after Srivastava and Sinha Roy 1999). 
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Tiwari et al. (2003) found that in the central India, K2 entropy had a low 

nonzero value (0.2 – 0.4) which suggested the occurrence of a weak 

“memory” and some predictability. In the northeast Indian region, 

Srivastava et al. (1996) found that a strange attractor of dimension 6.1 ex-

ists within 220 km and 440 km radius around Shillong with a positive 

value of the Lyapunov exponent.  Using different data sets, however, Ti-

wari and Rao (2001) found a weak support to the chaotic process in this 

region.

    In the peninsular India, Srivastava et al. (1994a) found a low strange at-

tractor dimension of about 4.5 in the Koyna region. It was suggested as a 

new evidence of seismotectonics in the region. This value is considerably 

less as compared to the interplate Indian region.  The value compares with 

that reported for the Aswan region of Egypt which is also characterized as 

a shield region. (Srivastava et al. 1995) 

Japan region 

Palvos et al. (1994) found a low strange attractor dimension in Japanese 

region using a micro earthquake catalogue which is also intraplate region. 

9.4.4 Volcanic eruptions 

The sequence of eruptions for a given volcano shows a complex temporal 

pattern.  Many studies have brought out the possibility that dates of erup-

tions might exhibit “nonrandom” pattern which could be used in forecast-

ing eruption.  In this case, one is interested in the dynamics over very large 

time spans between 10 and 1000 years or larger.  In order to characterize 

the volcano’s dynamics, it would be necessary to record at least the time 

evolution of a physical variable over such long time intervals.  Because of 

the relatively recent systematic physical study of volcanoes, such a pro-

gram can be applied only to the variables which have been recorded over 

long time intervals, namely the times at which an eruption begins and 

ends.  Using the data for 46 eruptions for the Kilauea and 38 for Mauna 

Loa volcanoes in Hawaii and by grouping both in a single set to maximize 

the data, the strange attractor dimension was found as 4.6 which was more 

than twice that for Piton de la Fournaise eruption (Sornette et al. 1991).  It 

was surmised that each of the two volcanoes forming the complex struc-

ture of Hawaii, are weakly coupled with a dimension of about 2. 
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9.5 Atmosphere 

9.5.1 Meteorological observations 

Srivastava et al. (1994b) computed strange attractor dimension for daily 

sea level pressure, maximum temperature and daily minimum temperature 

for twelve well distributed stations over India following the method given 

by Grassberger and Procaccia (1983). 

Table 9.1 Strange attractor dimension for meteorological parameters at Indian 

stations from 1969-1991 

S.No Station Name Atmospheric 

Pressure (hp) 

Max Temp. 

(0C)

Min Temp. 

(0C)

1 Thiruvananthapuram 

(TRV) 

5.5 5.7 5.7 

2 Madras (MDS) 5.8 5.7 5.9 

3 Mangalore (MNG) 5.9 5.8 5.7 

4 Visakhapatnam 

(VSK) 

5.7 5.7 5.8 

5 Hyderabad (HYD) 5.5 5.9 5.3 

6 Pune (PNE) 5.7 5.3 5.1 

7 Bombay (BMB) 5.7 5.3 5.7 

8 Nagpur (NGP) 5.3 5.3 5.7 

9 Calcutta (CAL) 5.7 5.7 5.7 

10 Bhopal (BHP) 5.6 5.5 5.3 

11 Gauhati (GHT) 5.3 5.3 5.1 

12 Amritsar (AMR) 5.7 5.9 5.7 

Daily data for 23 years (1969-1991) from India Meteorological depart-

ment was utilized for this purpose.  lnCm(r) was plotted against ln(r); the 

dimension d was calculated for embedding dimensions from 2 to 16 from 

the scaling region.  The computation was made for delay time  = 1 day, 

= 2 day and  = 3 day.  Fig.9.2a shows the plot of lnCm(r) vs. ln(r) for de-

lay time  = 3 day, (daily pressure of Nagpur).  Fig. 9.2b shows plot of 

slope d against embedding dimension m.  The saturation value of the frac-

tal dimension was obtained at  = 2 and 3 day and for embedding dimen-

sion 14.  Similar computations were made for all parameters for each sta-

tion. The strange attractor dimension was found to vary between 5 and 6.  

The results are shown in Table 9.1. These are slightly smaller than the Ber-
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lin surface pressure, which gave the dimension of the attractors as 6.8 – 7.1 

(Fraedrich 1987). 

Fig. 9.2 Daily Pressure (1969-1991) (a) lnCm(r) Vs ln(r) (b) Slope D against 

embedding dimension m (after Srivastava and Sinha Roy 1997) 
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9.5.2 Monsoon rainfall

Rainfall during southwest summer monsoon over the Indian region is well 

known for its variability on a wide range of time scales, especially its large 

variability on the inter-annual time scale. Attempts were made to 

understand whether there is a strange attractor underlying the evolution of 

the monsoon and determine its topological characteristics (Satyam 1988). 

The data was taken from the 116-year record of the all-India summer 

monsoon (June to September) rainfall for the period 1871 to 1986.  The 

correlation function for the time series was computed beginning in a two-

dimensional phase based on Grassberger and Procaccia method (1983).  

The strange attractor dimension was found as 5.1.   

9.5.3 Dynamical weather systems 

Tropical cyclones, extra tropical cyclones (which affect the Indian region 

as Western Disturbances with diffuse frontal characteristics) and monsoon 

depressions (which typically occur in the Bay of Bengal and Arabian Sea 

during the Southwest Monsoon) are the examples of the dynamical 

weather systems which are associated with rain (sometimes extensive and 

heavy) and strong winds.  Of these, tropical cyclones cause large casualties 

besides considerable damage to property and agricultural crop near the 

coastal districts.  The maximum destruction is generally within 100 km 

from the centre of the cyclone caused by fierce winds, torrential rain, 

flooding and high storm tide due to the combined effect of storm surge and 

tide.  These storms form out of a weak low pressure system over warm 

seas where moisture provides the chief source of energy for the develop-

ment of cyclonic storm.  

The strange attractor dimension for typhoons in Pacific ocean was found 

as 4.l85 indicating 5 variables in the dynamic system (Yongqing and 

Shaojin 1994).  Pal (1991) found the attractor dimension for the tropical 

cyclones over the north Indian region.  His results based on 105 cyclones 

during October and November gave the strange attractor dimension 

between 5 and 6. 

9.5.4 El Nino – Southern Oscillation (ENSO) 

The phenomenon of El Nino has attracted the attention of the scientists due 

to its influence over the global weather.  They occur irregularly every 2 to 

6 years and are manifested through extended periods of anomalously warm 
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sea surface temperature off the coast of South America.  These changes are 

intimately linked to the atmospheric zonal circulation in this region  known 

as Southern Oscillation.  The zonal transport of atmospheric mass (Walker 

circulation) across the Pacific ocean produces a dipole surface pressure 

fluctuation which is clearly identified by subtracting monthly average sea-

level pressures at Darwin from similarly averaged values at Tahiti.  Persis-

tent negative values of this Southern Oscillation Index (SOI) correlate well 

with El Nino events. Seasonal anomalies also occur in sea surface tem-

peratures. Normalized monthly values of SOI beginning in January of 

1882 and continuing through April of 1992 (1324 consecutive months) 

were used to study the predictability of this phenomenon.   

Bauer and Brown (1992) using the method of singular-spectrum analy-

sis (SSA) showed that the underlying dynamics of the ENSO system can 

be captured in a deterministic low order model.    

Elsner and Tsonis (1992) adopted another procedure called the method 

of surrogate, which generates a large number of random sequences of 

equal length as the time series to be tested.  The idea is that the surrogate 

time series should be a non-deterministic record but similar in appearance 

to the original data.  In this process, the autocorrelation is preserved in the 

surrogate data, which is otherwise random.  A null hypothesis is defined 

against which the raw data can be tested using a discriminating statistics.  

According to the above algorithm for generating surrogate records, the null 

hypothesis is that the raw data come from a linear autocorrelated Gaussian 

process. The discriminating statistics (e.g., Lyapunov spectrum, correlation 

dimension etc.) is computed for each surrogate time series and this distri-

bution approximated. If the discriminating statistics for the real data is sig-

nificantly outside the range of the distribution based on the surrogates, 

then the null hypothesis of linearly correlated noise is rejected.  It can, 

therefore, be concluded that significant nonlinear structure is present in the 

record.  This technique further provided evidence of low dimensional 

chaos in ENSO (Elsner and Tsonis 1993).   

The El Nino’s dynamics is best explained through the equatorial ocean 

using Kelvin and Rossley waves.  Accordingly, their prediction is based on 

Atmosphere – Ocean coupled models.  Tziperman et al. (1997) suggested 

an alternate method for controlling spatio-temporal chaos in realistic El 

Nino prediction model.  A criterion was evolved for determining the opti-

mum points in reconstructed delay–coordinate phase space to apply the 

feedback control.  This led to stabilization of a full domain oscillation in 

an unstable periodic orbit through a single degree of freedom at a carefully 

single ‘choke point’ in space.  Physically, the ‘choke point’ occurs at the 

western boundary of the Pacific ocean, which affects the entire tropical re-

gion through the reflection of the Rossby waves into Kelvin waves.  Thus 
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the control variable was taken as the Kelvin mode amplitude at the western 

boundary with a single degree of freedom out of thousands in the model.   

9.5.5 Radio refractivity 

Radio refractive index (RRI) at the ground surface has been extensively 

used to predict microwave signal strengths in different parts of the world.  

It is based on three meteorological variables namely atmospheric pressure, 

temperature and water vapour. 

Surface meteorological observations and the radio sonde profiles 

provide the basic data for modeling. Direct measurements of RRI through 

microwave refractometers are costly and can be limited to only a few 

places.

Of late, the applications of the underlying principles in the propagation 

of microwaves in the earth atmosphere system are numerous. Global Posi-

tioning Systems (GPS) are now extensively used to measure crustal de-

formation, plate movements, and retrieval of water vapour in the atmos-

phere and soil moisture for agricultural operations. 

However, the accuracy of microwave measurements is based on the pro-

files of radio refractivity and the calibration procedures. To validate the re-

sults, the effect of regional models (Srivastava and Pathak 1970) on the ac-

curacy of GPS measurements needs to be examined for Indian region. 

The radio refractivity at microwave frequencies is complex and can be 

expressed in two parts as, 

N= Nd (Dry part) + Nw (Wet part) (9.9)

 Radio refractivity (N) was calculated based on daily values using the 

formula given below 

T

m71.7
1

T

p6.77
N

(9.10)

where T is dry bulb temperature (0K), m is mixing ratio (gm/kg),           

p is station level pressure (hPa). 

Daily mixing ratio m for each station was computed from 

s

s

eP

e622.0
m

(9.11)

where   es  is saturation vapor pressure (hPa) given by 



Earth System Modelling Through Chaos      191 

6

0n
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(9.12)

The dew point temperature Td (oC) and constants a0 to a6 are given below  

a0 =6.107799961 x 10-0,            a1 = 4.426518521 x 10-1

a2 =1.428945805 x 10-2,            a3 = 2.650648471 x 10-4

a4=3.031240396 x 10-6,             a5 = 2.034080948   x 10-8

a6 =6.136820929 x 10-11.

(9.13)

Large spatial and temporal variations of the radio refractivity in the 

atmosphere are attributed to the water vapor, which introduces ‘delay’ due 

to the absorption or attenuation of microwaves caused, by the complex part 

of the radio refractivity. 

 The correlation dimension of attractors of radio refractivity is obtained 

from the correlation integral Cm (r) for different values of r using Grass-

berger and Procaccia (1983) method. lnCm (r) is plotted against ln(r) in 

Figs. 9.3 (a-c) for  =7 day. To obtain strange attractor dimension (D) us-

ing Eq(9.4) we require the slope d of the straight line passing through the 

points corresponding to each embedding dimension m. However, Cm(r) 

saturates at large values of r due to finite size of the attractor and at small 

values of r due to finite N. 

The computations were made for 2 to 18 embedded dimensions. The re-

sults are shown in Figs. 9.4 (a-c) for three representative stations namely, 

Gauhati, New Delhi and Mumbai corresponding to three distinctive radio 

climatic regimes. As given in Table 9.2 and Fig. 9.4 (a-c) there is satura-

tion for  =3, 5 and 7 days but only representative curves for  =7 are given 

in the Figs. 9.4 (a-c). 

The strange attractor dimension for Gauhati, Nagpur, New Delhi, 

Mumbai, Calcutta, Madras, Port Blair and Vishakhapatnam are given in 

Table 9.2. It may be noted that the strange attractor dimension in the 

Indian region lie in the range of 5.9 to 8.3 implying that 6  to 9 parameters 

are needed  for modeling  the radio refractivity. Among the inland stations, 

only 7 parameters are needed for modeling at Nagpur and Gauhati while at 

New Delhi, eight parameters are needed. On the other hand, at a coastal 

station like Mumbai where anomalous propagation extending up to coast 

of Arabian Sea was reported since World War II, only six parameters are 

needed for modeling. This could be attributed to the different physical 

processes for the ducting conditions over the inland stations as compared 

to that over sea.  
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Fig. 9.3 lnCm(r) versus ln(r) for: (a) Gauhati, (b) New Delhi and, (c) Bombay 

(after Srivastava et al. 1994) 

At Vishakhapatnam, which has the highest value of surface refractivity 

among coastal stations during the southwest monsoon, nine parameters are 

needed to model the refractivity system. Such a large difference in the 

modeling parameters between Mumbai and Vishakhapatnam may be at-
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tributed to greatest turbulence in the refractivity parameter, which makes 

the system more complex. 

 Fig. 9.4 Slope (d) versus embedding dimension (m) for: (a) Gauhati, (b) New 

Delhi and (c) Bombay 



194      H. N. Srivastava 

Table 9.2 Strange attractor dimension over India (Radio Refractivity) 

Strange attractor dimension Station 

 = 3  = 5  = 7 

 (a) Inland stations 

Gauhati 6.9 6.3 6.3 

Nagpur 6.6 6.1 6.1 

New Delhi 8.0 7.6 7.6 

(b) Coastal stations 

Bombay 6.5 5.9 5.9 

Calcutta 7.0 6.5 6.3 

Madras 8.3 8.3 8.3 

Port Blair 7.3 7.3 7.3 

Vishakhapatnam 8.1 8.1 8.1 

9.5.6 Ozone 

Observations of depletion of ozone over Antarctic region and its impact on 

the environment have created interest among scientists to know the 

processes involved. It is now well known that the chlorofluorocarbons are 

the major cause of ozone depletion in the stratosphere. During the last few 

decades, increase in the tropospheric ozone is being detected which is 

attributed to industrial as well as agriculturally produced CO and CH4. The

decrease in stratosphere ozone and increase in tropospheric ozone 

influence total ozone in varying degree at different latitudes. However, the 

variations in the total amount of ozone over low latitudes are relatively 

small throughout the year. A question arises whether the total amount of 

ozone in the atmosphere is chaotic and if so, the minimum number of 

parameters needed for its predictability. 

Daily total ozone data for the period of January 1975 to December 1993 

at 5 Indian stations were utilized for constructing the time series x(t). A 

phase-space was constructed with x(t),x(t+ ),………,x(t+(n-l) ),where ,

is the delay time which is an integral multiple of sampling time  is chosen 

such that the shifted co-ordinates should be linearly independent. The larg-

est Lyapunov exponent was found to be positive for all five stations, which 

indicate that variation of total ozone in the atmosphere is chaotic i.e. the 

evolution of the system lies on a strange attractor. The plot of lnCm(r) vs. 

ln(r) is shown in Fig. 9.5a. The slope d is calculated from the straight line 
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passing through the points corresponding to each embedding dimension 

.The plot of slope d versus embedding dimension m is shown in Fig. 9.5b. 

Table 9.3 gives the strange attractor dimension of total ozone for all the 

five stations in India. The non-integral dimensions obtained suggest that 

the system is chaotic and the trajectories of the total ozone lie on a strange 

attractor. The values of strange attractor dimension at the stations namely 

Varanasi, Srinagar, Kodaikanal and Pune lie between 5.5 and 5.7, which 

indicate that atleast six parameters are needed to model the total atmos-

phere ozone. It is also seen that saturation of the slope takes place at em-

bedding dimension 14, which is an upper bound for the number of vari-

ables sufficient to model the dynamics of the attractor. The strange 

attractor dimension for New Delhi was found to be 6.5 indicating that at-

least seven parameters are needed to model total atmospheric ozone over 

New Delhi. However, the saturation of the slope took place at embedding 

dimension of 14 in this case also, suggesting that the upper bound of the 

number of parameters sufficient to model the dynamics of the attractor is 

the same for all the stations. 

Table 9.3 Strange attractor dimension of total ozone over Indian stations 

S.No Station  

Name 

Period No. of data 

points 

Strange

attractor

dimension 

1. Varanasi January 1976 to 

December 1992 

6210 5.7 

2. Srinagar January 1976 to 

December1989 

5114 5.7 

3. New Delhi January 1983 to 

December1988 

2192 6.5 

4. Kodaikanal January 1975 to 

December1991 

6209 5.7 

5. Pune January 1980 to 

December1993 

5114 5.5 

9.5.7 Ionospheric scintillations 

Spatial variations of electron density in the ionosphere cause scintillations 

in the amplitude and phase of radio wave propagating through the iono-

sphere. Stochastic approach adopted earlier in the theories of ionospheric 

scintillation due to complexity of the electron density structures was found 

to be chaotic with low dimension of 4.41(amplitude data) and 3.61 (phase 
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data) for the strange attractor. This study was based on the amplitude and 

phase measurements carried out on a 140 MHz signal transmitted from the 

geostationary satellite ATS-6 and received in India at Ootacamund using 

800 data points (Bhattacharya 1990). 

Fig. 9.5 (a) Daily total ozone amount (January 1975 – December 1991). Dis-

tance dependence of the correlation function for a sequence of embedding dimen-

sions (2,4,8,12,14 and 16) (b) Dimensionality d of the attractor function of em-

bedding dimensions (January 1975 December 1991). (after Srivastava and Sinha 

Roy 1997) 
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Magnetosphere –Ionosphere dynamics 

The Earth’s atmosphere extends up to the magnetopause, which acts as a 

boundary between the Earth and the interplanetary medium. The geomag-

netic field deflects the solar wind (which is an ionized and highly conduct-

ing gas, consisting mainly of electrons and protons, being emitted continu-

ously from the sun) resulting in the formation of a cavity, which is known 

as the magnetosphere. The boundary of the magnetosphere is called the 

magnetopause. As a result of solar wind geomagnetic field interaction, the 

geomagnetic field is compressed on the day side (to ~10RE) and stretched 

on the night side into a long tail extending by 1000 RE, where RE is the 

Earth’s radius. Further, magnetosphere extracts energy from the solar wind 

continuously and dissipates it by setting up a complex pattern of several 

current systems .The solar wind power which penetrates the magneto-

sphere is 1010 to 1011 W during geomagnetic quiet time and 1012 W during 

geomagnetically disturbed periods. 

The geomagnetic indices give a measure of the large scale eastward 

(AU) and westward (AL) electrojet intensities. It is believed that AL, AU 

and auroral electrojet index (AE) quantify the response of the magneto-

sphere to the solar wind during the sub-storms. The field-aligned currents 

that connect the magnetotail to the auroral zone are closed by the high lati-

tude ionospheric electrojets. The index AL/AU characterizes the fluctua-

tions in the westward/eastward electrojet field, while the index AE=(AU–

AL) is a measure of both electrojets. Chaotic techniques were applied to 

analyse the AE or AL time series to understand the sub-storm dynamics. 

The geomagnetic index (AE or AL time series) was used to construct 

higher dimensional phase spaces in an attempt to find the low-dimensional 

response of the magnetosphere. Several scientists have adopted different 

methodology to study the problem. Vassiliadis et al. (1992) used AE data 

to study chaoticity of the geomagnetic activity based on observations for 

21 days in January 1983 averaged over 1-min interval in 5000 point sub-

sets. Each data subset was embedded in a reconstructed state space using 

the method of time delays. It was found that the dimension of the attractor 

determined from was about 3.6 on average, with the dimension being in-

dependent of activity level. Baker et al (1991) found the correlation di-

mension as 4.0 using 40000 data sets. However, lower strange attractor 

dimensions of the order of 2.5 were also reported. Sharma et al (1993) ana-

lyzed the AE data by using singular spectrum analysis and found that the 

sub-storm attractor persists but with dimension ~2.5. Takalo et al (1993) 

showed that many properties in AE data are similar to those of bicolored 

noise. They found average correlation dimension of 3.4 by analyzing 1 
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minute AE data from the years 1979-85. The phase space reconstruction 

using the singular spectrum analysis brought out a fractal dimension of 2.5. 

Vassiliadis et al (1992) subjected 2.5 min resolution AL time series of 

length N=29,000 to the time delay embedding techniques with  = 175 min 

and m=10 to determine the Lyapunov exponent. They found the Lyapunov 

exponent to be 0.11  0.05 min-1, which supported the chaotic aspects of 

the sub-storm activity. 

The loading–unloading model of geomagnetic activity generally con-

sists of the loading phase in which the magnetotail field increases due to 

the day side reconnection, and the unloading phase in which the stored 

magnetic energy is suddenly released. This model may reflect interval 

magnetosphric dynamics through a low dimension of attractor. This ap-

pears more plausible because the directly driven model does not involve 

triggering or sudden release of energy and would imply an attractor of high 

dimension.

9.6 Prediction aspects 

It would be seen from the above results that several components in Earth 

system show chaotic behaviour. Among these, the strange attractor dimen-

sion in atmospheric pressure, minimum and maximum temperature, mon-

soon rainfall, cyclones and ozone remained of the same order namely 5 to 

6. It implies that atleast 6 to 7 parameters are required for predictability in 

general. Somewhat larger variations are found in radio refractivity in the 

atmosphere. In the case of magnetosphere–ionosphere dynamics, number 

of parameters is less, which is of the order of 3 to 4. In the case of earth-

quakes, there is wide regional variation. For the Himalayan region, this 

number of parameters for predictability is larger than for the peninsular In-

dia. In Japanese region, the strange attractor dimension for earthquakes is 

of the same order as volcanic eruptions in Hawaii. 

The predictability h on attractors can be estimated from slopes of the 

distribution function in a lnCm(r) vs. ln(r), if the dimension m is chosen 

sufficiently high that the attractor is embedded in the phase space of time 

shifted coordinate (Fraedrich 1987). The difference between ln[Cm+k ( r)] 

and ln[Cm ( r)] at a fixed distance threshold leads  to the mean predictabil-

ity as 

hm

m

C

C
lnK

1
h

(9.14)
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The fixed distance should be selected from the ln(r) interval where the 

related distribution ln[Cm( r) ] can be approximated by straight  lines of 

identical slopes, i.e. where C( r) ~r  is satisfied. The inverse value 1/h of 

the mean divergence defines a mean time scale up to which predictability 

may be possible, if e-folding volume expansion is considered. Using the 

above relationship, Srivastava and Sinha Ray (1997) found the predictabil-

ity of station level pressure and temperature (maximum and minimum) in 

the Indian region as 8 to 11days. The time limit of predictability of ty-

phoons in Pacific was reported as about 61 hours. Some attempts have 

been made to apply chaotic results for the prediction of tracks of tropical 

cyclones in Bay of Bengal and climate epochs. 

9.6.1 Tropical cyclone track prediction  

Although weather satellites have helped on the prediction of the track of 

cyclones, the numerical prediction techniques are being improved in this 

direction to forecast the future movements well in advance. Pal (1991) 

used deterministic chaos to supplement the efforts for the prediction of 

tropical- cyclone tracks. 

The following prediction formula was suggested assuming that the fu-

ture position of the cyclone depends on the previous position, at n+1 time 

step

M

1i

Mini1n XaX
M

1i

Mini1n YbY
(9.15)

where  Xn and Yn are cyclone position coordinates and regression coeffi-

cients ai and bi were determined from past cyclones data for the period 

1890 – 1970 published by the India Meteorological Department. This 

process is repeated for further prediction. The coefficient ai and bi are de-

termined by least squares method using all seven consecutive places of 105 

cyclone trajectories. More weight was given to the current position and 

nearby point than to the far away points. Out of the results presented for 

two tropical cyclones during November 1984 and 1988, the turning direc-

tion for the 1984 cyclone was successfully predicted which appeared to be 

failed if the persistence method was used (Fig.9.6). 

9.6.2 Climate dynamics 

 (a) The important feature of climatic records is that of variability. 

Nicolis (1982) modeled climate according to a forced non-linear oscilla-
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tion and showed the existence of complex non-periodic behaviour similar 

to that observed in climatic records. It is possible however that climate as a 

dynamical system may have multiple attractors. Its dynamics may be dic-

tated by jumps from one attractor to another. Fraedrich (1987) examined 

the oxygen isotope (180) record of planetonic species from a 10.7m long 

deep sea core from the eastern equatorial Atlantic and found a predictabil-

ity time scale of 10 to 15 thousand years with strange attractor as 4.4 to 

4.8.

Fig. 9.6 Sample predictions for November cyclones of 1984 and 1988. Thick 

line is actual track and dashed lines with dots and crosses are predictions by per-

sistence (Pal PK 1991) 

 (b) India Meteorological department has been issuing long-range 

weather forecast for the rainfall during June to September every year based 

on the 16 parameters since 1988, using power regression models. Although 

the predictions lie generally within the statistical limits of normal but in 
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2001, the model failed. New models have been evolved from April 2003 

for long range weather forecasting in India. But the problems remain due 

to the large number of parameters in the model, which change correlations 

with time. Srivastava and Singh (1993) used the principal components 

analysis to explain the overall variability of rainfall using less number of 

parameters. Models based on these results need to be synthesized with dy-

namical approach. However, the concepts of compound chaos have so far 

been used for only two systems (Singh et al 1996). Srivastava (1997) re-

ported that this may be a severe constraint in its application. Similar prob-

lems are envisaged if we wish to couple more than two dynamical systems 

components of the Earth system. 

9.7 Discussion 

It is seen from the above results that several components in Earth system 

show chaotic behavior. Among these, the strange attractor dimension in 

atmospheric pressure, minimum and maximum temperature, monsoon 

rainfall, cyclones and ozone remained of the same order namely 5 to 6. It 

implies that atleast 6 to 7 parameters are required for predictability in gen-

eral. Somewhat larger variations are found in radio refractivity in the at-

mosphere. In the case of magnetosphere–ionosphere dynamics, number of 

parameters is less, which is of the order of 3 to 4. In the case of earth-

quakes, there is wide regional variation. For the Himalayan region, this 

number of parameters for predictability is larger than for the peninsular In-

dia. In Japanese region, the strange attractor dimension for earthquakes is 

of the same order as volcanic eruptions in Hawaii. 

The predictability on attractors can be estimated from slopes of the dis-

tribution function in a lnCm(r) vs. ln(r), if the dimension m is chosen suffi-

ciently high that the attractor is embedded in the phase space of time 

shifted coordinate. The inverse value 1/h of the mean divergence defines a 

mean time scale up to which predictability may be possible, if e-folding 

volume expansion is considered. The time limit of predictability of ty-

phoons in Pacific was reported as about 61 hours. Some attempts have 

been made to apply chaotic results for the prediction of tracks of tropical 

cyclones in Bay of Bengal and climate epochs. 

It is of interest to note that several earthquakes are generally chaotic in 

nature. Thus, prediction efforts need to be intensified in the same way as 

for weather, which is also chaotic. In view of low strange attractors in the 

Koyna region, India with a localized source and recurrence of earthquakes 

of magnitude 5 from time to time, the methodology suggested by 
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Srivastava and Bhattacharya (1998) based on the Principal Component 

Analysis offers a systematic approach to evolve a prediction strategy. 
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