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Preface

Embedded systems are becoming more and more ubiquitous in our daily lives.
Since the embedded systems interact with the physical environment, they often
have to behave within specified time limits. We call such systems real-time systems.
Violating the timing constraints may lead to disastrous consequences. Therefore, it
must be guaranteed that the time constraints are satisfied in all situations. This is an
extremely difficult task, as the number of possible system states is overwhelmingly
large or even infinite.

In this book, we introduce some new methods to design and analyze real-time
systems. Timing analysis of real-time systems is typically performed in a bottom-
up manner, starting with the system’s smallest components and then gradually
up toward analyzing the system as a whole. The analysis on the program level
aims to give each piece of program an upper limit of its execution time. On
the component level (e.g., in a processor or a communication channel), many
computation/communication tasks compete for the same platform, and the analysis
should guarantee each of them obtains enough resource to process in time. On the
system level, the analysis takes into account the interaction between the computation
and communication activities that are distributed on various components. This book
covers topics on each of these three levels.

On the program level (Part I) we study the worst-case execution time (WCET)
analysis problem in the presence of caches with two commonly used replacement
policies MRU and FIFO. Most of the research done with respect to the impact of
caches to WCET of programs assume LRU caches. However, LRU is actually not
commonly used in commercial processors because it requires a relatively complex
hardware implementation. Hardware manufacturers tend to design the caches that
are not using the LRU policy, particularly for embedded systems which are subject
to strict restrictions in cost, power consumption, and heat. It has been found that
existing methods of analysis, which is based on a qualitative classification of hits
and misses in the cache, are not suitable to analyze MRU or FIFO cache. Our main
contribution in this part is the development of a quantitative analysis methodology
which is better suited to analyze the MRU and FIFO.
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viii Preface

On the processor level (Part II) we address the challenges that arise due to
the trend of multi-core processors. We first study some fundamental problems
in multiprocessor real-time scheduling theory. Multiprocessor scheduling can be
divided into two main paradigms, global and partitioned scheduling. In global
scheduling, it is generally unknown what corresponds to the worst combination of
contemporary software activations, which makes the analysis of such scheduling
more difficult than its counterpart on single processors. Analysis of partitioned
multiprocessor scheduling is simpler, but there is instead the challenge of how to
allocate workload to individual processors for high resource utilization. We have
studied the above theoretical problems and greatly advanced the state of the art.
Moreover, we also consider practical aspects of real-time scheduling on multi-cores,
to solve the interference arising between processor cores because of shared caches.
We propose to use cache-aware scheduling where page-coloring are used to provide
predictable cache performance of individual tasks.

On the system level, we introduce new techniques that solve the efficiency
problem in the widely used real-time calculus (RTC) framework. Operations within
the RTC generate curves with a frequency that is the product of the periodicity of
the input curves. Therefore, RTC has an exponential complexity, and in practice
the efficiency can be very low for complex systems. In this book, we present
finitary real-time calculus to solve the above problems. The idea is to only maintain
operations on the prefix of each trace which can affect the final result of the
analysis. In that way we can show that analysis complexity is reduced to be
pseudo-polynomial, and in practice the analysis efficiency is dramatically improved
comparing with the ordinary RTC. An additional contribution to the RTC in this
book is new analysis techniques of the earliest deadline first (EDF) scheduling
algorithm in the RTC framework.

This book is the collection of some of the work I did during my Ph.D. study
in Uppsala University, Sweden. I would like to thank my supervisor Wang Yi. I
am truly grateful for his guidance, support, inspiration, patience, and optimism,
especially when I was depressed by the negative aspects of my work as he
consistently believes that there will be a way out and encourages me to carry on. I
learned a lot more than computer science from him during the past 5 years. Without
him, the work in this book would not have been possible to be finished (not possible
to be started actually).

Kowloon, Hong Kong Nan Guan
September 2015
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Chapter 1
Introduction

Embedded systems are playing a more and more important role in our daily life;
they exist everywhere in our society from consumer electronics such as multimedia
systems, mobile phones, microwave ovens, refrigerators to industrial fields such as
robotics, telecommunications, environment monitoring, and nuclear power plants.
According to statistics reported by ARTEMIS [1], 98 % computing devices in the
world are embedded systems.

Due to close interaction with physical world, embedded systems are typically
subject to timing constraints. They are often referred as to real-time systems.
Violating timing constraints is fatal to such a system, which may lead to catastrophic
consequences such as loss of human life.

Therefore, at design time, it must be guaranteed that the system satisfies the
pre-specified timing constraints at run-time under any circumstance. For all but
very simple systems, the number of possible execution scenarios is either infinite
or excessively large, where exhaustive testing cannot be used to verify the timing
correctness. Instead, formal analysis techniques are necessary to ensure the timing
predictability.

To meet the increasing requirements on functionality and quality of service,
embedded systems are becoming more powerful and more cooperative, moving
from dedicated single-functionality control logics to complex systems hosting
multiple tasks executing concurrently and distributively over a networked platform.
Timing analysis of such systems is typically performed in a bottom-up manner,
consisting of:

• Program-level analysis. Timing analysis is first performed on the program level,
to bound the worst-case execution time (WCET) of each individual task assuming
fully dedicated hardware.

• Component-level analysis. Then the WCET information of individual tasks on a
component (a processing unit or a communication interconnection) is gathered,
to investigate the contention of processing capacity among different tasks in a
multitasking environment.

© Springer International Publishing Switzerland 2016
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2 1 Introduction

• System-level analysis. Finally, the analysis is conducted in the scope of the whole
network, considering the interaction among computation and communication
activities distributed over different processing units and interconnections.

Timing analysis of a computer system has to take into account the underlying
hardware platform. Modern processors rely on fast caches, deep pipelines, and many
speculative mechanisms such as prefetching to achieve high computation power.
The product of these complex hardware features and the inherent complexity of
software programs make it a very difficult problem to efficiently and precisely
predict the WCET of even a small piece of code. For example, minor mis-predictions
of the cache access behavior may cause great deviation in the analysis of a program’s
WCET, since the execution time of individual instructions may vary by several
orders of magnitude depending on whether the memory access is a hit or miss on
the cache.

A more significant trend in computer hardware is the paradigm shift to multi-core
processors. The processor manufacturers have run out of room to boost processor
performance with their traditional approaches of driving clock frequency further
and further. Instead, processors are evolving in the direction of integrating more and
more processing cores on a single chip, which provides higher computation power
at lower cost of energy consumption. This brings great opportunities to embedded
systems area, and at the same time also new challenges. While the scheduling of
tasks on traditional uniprocessor platforms only involves a single dimension in time,
i.e., to decide when to execute a certain task, the problem becomes two dimensional
on multi-core processors as it also needs to decide where (i.e., on which core) to
execute the task. Apart from the processing cores, different tasks also contend on
many other resources in multi-core processors, such as shared caches, shared buses,
and shared memory interfaces. Interleaving of concurrent accesses to these shared
resources creates a tremendous state space of the system behavior, making its timing
analysis extremely difficult if not impossible at all [2].

The number of cores integrated in a multi-core chip is increasing rapidly. Chips
with hundreds of cores are not rare in the market today, and the industry has recently
coined the “New Moore’s law,” predicting that the number of cores per chip will
double every 2 years over the next decade [3]. On the other hand, heterogenous
multi-core architectures using dedicated cores for specific functionalities yield
simpler structures, less power consumption, and higher performance. Therefore, the
design and analysis of real-time systems on future multi-core processors will be
founded on a large-scale heterogenous networking base, facing more challenging
scalability and diversity problems than traditional macro-world distributed real-time
systems.

The aim of this thesis is to develop new techniques to address several important
problems raised by above challenges in the design and analysis of real-time
embedded systems, in particular covering the following aspects:

• On the program level, we study the problem of predicting cache access behaviors
to precisely estimate the WCET of a program.
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• On the component level, we investigate design and analysis techniques for
scheduling real-time applications on multi-core processors.

• On the system level, we improve both the scalability and precision of Real-Time
Calculus (RTC) for modular performance and timing analysis of distributed real-
time systems.

1.1 Technical Background

This chapter presents a brief introduction to the technical areas addressed in this
thesis.

1.1.1 WCET Estimation and Cache Analysis

The execution time of a program depends on the inputs and hardware states. It
is usually infeasible to determine the exact WCET of a program due to the huge
number of inputs and initial hardware states. The goal of WCET estimation [4] is to
compute safe upper bounds of, and preferably close to, the real WCET value of the
program. Figure 1.1 shows the main building blocks of WCET estimation:

• Control-flow Reconstruction analyzes and disassembles the binary executable,
and transforms it into a control-flow graph (CFG) [5].

• Program-behavior Analysis annotates the CFG with extra information to further
regulate its possible behaviors, e.g., bounding the maximal iterations of loops
(loop analysis) [6–9] and excluding infeasible paths (control-flow analysis)
[7, 10–12].

• Micro-architectural analysis determines the execution delay of each program
fragment, e.g. each instruction or each basic block. This needs to consider
the effect of hardware components, e.g., pipelines [13–16], caches, branch
prediction, memory controllers, etc.

• Path Analysis determines the execution time bounds of the overall program, using
the output of micro-architectural analysis and the annotated CFG [17–20].

Fig. 1.1 Main building blocks of WCET estimation
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Fig. 1.2 Illustration of the LUR, FIFO and MRU cache replacement policies

The focus of this thesis is on the scope of micro-architectural analysis and path
analysis. In particular, we consider the cache issue in micro-architectural and path
analysis.

A cache is a small, fast memory which stores copies of frequently used data in the
main memory to reduce memory access latencies. At run-time, when the program
accesses the memory, the processor first checks whether the content is in the cache.
If yes, it is a hit, and the content is directly accessed from the cache. Otherwise,
it is a miss, and the content is installed in the cache while the program accesses it
from the memory. The cache is usually too small to accommodate all the memory
contents needed by a program, so a replacement policy must decide which memory
content to be evicted from the cache upon a miss.

Commonly used cache replacement policies include LRU (least-recently-used)
[19], FIFO (first-in-first-out) [21], MRU (most-recently-used-bit) [22], and PLRU
(pseudo-least-recently-used) [23]. Figure 1.2 depicts the replacement rules of LRU,
FIFO and MRU. LRU always stores the most recently accessed memory block in the
first cache line. FIFO behaves in the same way as LRU upon a miss, but does not
change the cache state upon a hit. MRU stores an extra MRU-bit, being 1 indicates
that this line was recently visited. When the program accesses a memory content
s, MRU first checks whether s is already in the cache. If yes, then s is still stored
in the same cache line and its MRU-bit is set to 1 regardless of its original state.
If s is not in the cache, MRU finds the first cache line whose MRU-bit is 0, then
replace the originally stored memory block in it by s and set its MRU-bit to 1. After
the above operations, if there still exists some MRU-bit at 0, the remaining cache
lines’ states are kept unchanged. Otherwise, all the other cache lines’ MRU-bits are
changed from 1 to 0.

Exact characterization of cache access behaviors in WCET estimation suffers
from serious state-space explosion. The state-of-the-art techniques are based on
an over-approximate analysis framework consisting of cache analysis by abstract
interpretation (AI) [24] and path analysis by implicit path enumeration [18]. The
idea is to derive an upper bound for the timing delay of each program segment
(whenever it is executed) such that the WCET bound is obtained by finding the
weighted longest path in the CFG, which can be efficiently solved as an integer
linear programming problem.

The main target in AI-based cache analysis is to decide the cache hit/miss
classification for each program point [24, 25]:
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AH (always hit): The memory accesses are always hits whenever the program
point is visited.

FM (first miss): The memory accesses are a miss for the first execution, but
always hits afterwards. This classification is useful to handle “cold miss” in
loops.

AM (always miss): The memory accesses are always misses whenever the
program point is visited.

NC (non-classified): The memory accesses cannot be classified into any of the
above categories. This category has to be treated as AM in the path analysis.

These four classifications can be grouped into two categories: AH and FM are
positive since they ensure that (the major portion of) the memory accesses of a node
to be hits, while AM and NC are negative since any program point belong to these
classifications are treated as always miss in the path analysis.

The analysis maintains a set of possible cache states at each program point,
and iteratively updates the cache states according to the control flow and memory
access at each point. This procedure terminates as soon as the cache states at all
program points reach fixed-points, i.e., no new possible cache states are generated
if the update procedure continues. Now the fixed-point includes all the possible
cache states at each program point, by which the cache hit/miss classification is
determined. For example, the memory content at a program point is AH if it appears
in all possible cache states when the fixed-point is reached.

The number of possible cache states at each program point may explode exponen-
tially during the procedure described above. For scalability, different possible cache
states can be merged into certain form of abstractions, with the update operations
performed in the abstract domain [24]. Constructing the abstraction domain is
specific to a certain replacement policy, and it preferably maintains as much as
possible information by a limited amount of data, to get both good precision and
scalability.

In general, LRU is considered to be much more predictable than other commonly
used replacement policies [26]. LRU is recommended as the only option for
the cache replacement policy when the timing predictability is a major concern
in system design [27], and most research work in real-time systems involving
cache issues assumes LRU caches by default. There have been few works on the
analysis of non-LRU replacement policies, which end up with either considerably
lower precision due to the difficulty of constructing precise abstract domains
[21, 23, 28] or poor scalability due to state-space explosion in explicit cache state
enumeration [29].

On the other hand, many non-LRU replacement policies enjoy the benefit
of simpler hardware implementations and are preferred than LRU in practical
processor design. This raises an important yet challenging problem of how to
precisely analyze these non-LRU cache replacement policies for real-time systems.
As the existing analysis framework has shown inadaptability to non-LRU caches,
new insights from a different perspective would be necessary to address this
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problem. In the next chapter, we will present a novel quantitative cache analysis
method and use it to precisely predict the cache/hiss behavior of MRU and FIFO
caches for tighter WCET estimation.

1.1.2 Multiprocessor Real-Time Scheduling

The aim of real-time scheduling is to execute multiple applications on a shared
hardware platform such that their timing constraints are always met. The software
system is modeled by a sporadic task set � [30], which consists of N independent
tasks. Each sporadic task �i is characterized by a tuple .Ci; Di; Ti/, where Ci is the
WCET, Di is the relative deadline, and Ti is the minimum inter-arrival separation
time (also referred to as the period) of the task. We further define the utilization of a
task as Ui D Ci

Ti
, which represents the portion of the processing capacity requested

by this task in the long term. In general, the relative deadline Di of a task may
be different from its period Ti. An implicit-deadline task �i satisfies the restriction
Di D Ti, a constrained-deadline task �i satisfies Di � Ti, whereas an arbitrary-
deadline task �i does not limit the relation between Di and Ti, and in particular
allows Di > Ti.

A sporadic task generates a potentially infinite sequence of jobs with successive
job-arrivals separated by at least Ti time units. A job released by task �i at time
instant r needs to finish its execution (for up to Ci time units) no later than its
absolute deadline d D rCDi. The response time of a job is the timing delay between
its release and time point when it is finished. The worst-case response time (WCRT)
[31] Ri of task �i is the maximal response time value among all jobs of �i in all job
sequences possible in the system. Si D Di�Ri is the worst-case slack time of task �i.

Fixed-priority scheduling (FPS) [32] is one of the most commonly used
approaches to schedule real-time tasks. In FPS, each task is assigned a priority
and all jobs released by the task inherit this priority. The active jobs in the ready
queue are ordered by their priorities, and the scheduler always picks the job at the
head of the ready queue (i.e., with the highest priority) for execution. We follow the
convention in most real-time scheduling literatures that tasks are ordered by their
priorities and a smaller index implies a higher priority.

The scheduler can be either preemptive or non-preemptive. A preemptive
scheduler may re-order the ready queue as soon as some job is released, such that it
may suspend the currently executing job and executes the newly release job with a
higher priority. In a non-preemptive scheduler, the ready queue is re-ordered only at
job completion, and thus each job occupies the processor until completion without
interference once it starts execution.

When Di > Ti, it is possible that several jobs of a task are active simultaneously.
We restrict that a job can execute only if its precedent job has been already finished,
which avoids unnecessary working space conflict and automatically resolves the
data dependencies among jobs of the same task. This restriction is commonly
adopted in the implementation of real-time operating systems, e.g., RTEMS [33]
and LITMUSRT [34].
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An important problem in embedded systems design is to analyze the schedu-
lability of the task set. A task is schedulable iff all of its released jobs can finish
before their absolute deadlines, and a task set � is schedulable iff all tasks in
� are schedulable. The analysis of sporadic task sets preemptively scheduled on
uniprocessor platforms has been well studied since the seminal work by Liu and
Layland [32]. An essential concept of its analysis is the critical instant, which
describes the release time of a task for which its response time is maximized. Liu
and Layland proved that [32]:

A critical instant for any task occurs whenever the task is requested simultaneously with
requests for all higher priority tasks.

Therefore, the schedulability analysis can focus on one concrete release pattern,
despite the infinitely many release scenarios that are possible at run-time. Based on
this worst-case release pattern, one can calculate the worst-case response time by
(symbolically) simulating the execution sequence (response time analysis [31, 35]),
and compare it with the relative deadline to verify a task’s schedulability. The
knowledge of critical instant forms the foundation of uniprocessor fixed-priority
schedulability analysis for sporadic task systems and many of its variants, with
non-preemptive blocking [36, 37], resource sharing [38], release jitters and burst
behaviors [39, 40], offsets between tasks [41, 42], task dependencies [43, 44], etc.

Based on the critical instant, Liu and Layland developed another classical result
in uniprocessor FPS: the rate-monotonic (RM) priority assignment policy (tasks
with shorter periods have higher priorities) is optimal for implicit-deadline task
systems, with which the schedulability is guaranteed by the following condition:

X

8�i2�

Ui � N � .2
1
N � 1/

The expression N�.2
1
N �1/ is known as Liu and Layland’s utilization bound, which

is a monotonically decreasing function with respect to N, the number of tasks, and
reaches its minimum ln.2/ � 0:693 as N approaches infinity. Liu and Layland’s
utilization bound gives a very simple sufficient schedulability test, which can be
used for, e.g., admission control and workload adjustment at run-time [45, 46].

The above results are all for the case that tasks are scheduled on a uniprocessor.
However, the scheduling problem becomes much more difficult if the execution
platform consists of multiple processors, as noted by Liu [47]:

Few of the results obtained for a single processor generalize directly to the multiple
processor case . . . The simple fact that a task can use only one processor even when several
processors are free at the same time adds a surprising amount of difficulty to the scheduling
of multiple processors.

Multiprocessor scheduling can be categorized into two major paradigms [48, 49]:
global scheduling, in which each task can execute on any available processor at
run-time, and partitioned scheduling in which each task is assigned to a processor
beforehand, and at run-time each task can only execute on this particular processor.
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Global scheduling [50–55] on average utilizes computing resource better, and is
more robust in the presence of timing errors. A major obstacle in analyzing global
scheduling is the unknown critical instant. The critical instant of fixed-priority
uniprocessor scheduling (simultaneous releases of higher priority tasks) does not
necessarily lead to the worst-case response time in global scheduling [56, 57].
Moreover, global scheduling algorithms based on widely optimal uniprocessor
scheduling algorithms like RM and EDF (earliest-deadline-first) [32] suffer from
the so-called Dhall effect [58], namely some system with total utilization arbitrarily
close to 1 may be infeasible by global RM/EDF scheduling no matter how many
processors are added to the system.

Partitioned scheduling [58–64] does not allow dynamic load balancing, but
enjoys the benefit of relatively easier analysis. As soon as the system has been
partitioned into subsystems that will be executed on individual processors, the
uniprocessor real-time scheduling and analysis techniques can be applied to each
subsystem. Workload partitioning to individual processors is similar to the well-
known intractable bin-packing problem [65]. Theoretically, the worst-case utiliza-
tion bound of partitioned scheduling cannot exceed 50 % �M (M is the number of
processors) regardless of the local scheduling algorithm on each processor [48]. In
order to break through this hard limitation and get higher utilization bounds, task
splitting mechanisms are added to standard partitioned scheduling, such that a small
number of tasks are allowed to migrate among cores under strict control [66–69].

The multiprocessor real-time scheduling problem has drawn a rapidly increasing
interest during the last decade, motivated by the significant trend of multi-core
processors. Typical multi-core architectures integrate several cores on a single
processor chip. The cores usually share a memory hierarchy including L2/L3
caches and DRAM, and an interconnection infrastructure offering communication
mechanism among them. Thanks to these on-chip shared resources, the cost of
task migration is greatly reduced and thus scheduling algorithms allowing task
migration (e.g., global scheduling) become practical options. However, on-chip
shared resources also cause serious negative effects to timing predictability of the
system: the timing behavior of a task depends on co-running tasks due to non-
deterministic contentions on shared resources, which invalidates the traditional
analysis framework with independent program-level and component/system-level
timing analysis. This problem is a major obstacle to use multi-core processors in
real-time embedded applications [70, 71].

Today, 40 years after the publication of Liu and Layland’s seminal paper [32],
people have gained good understanding of how to design and analyze real-time
systems on uniprocessor platforms. However, the field is far from mature for multi-
core systems. From the fundamental multiprocessor scheduling theory to practical
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solutions to build efficient and predictable real-time embedded systems are still
open. In the next chapter, we will address some of these important problems,
extending Liu and Layland’s classical results in uniprocessor scheduling theory to
multiprocessor scheduling and solving the shared cache contention problem for real-
time scheduling on multi-core processors.

1.2 Real-Time Calculus

Many embedded systems have functionalities distributed over multiple processing
components and communicated by different interconnections. One method to
analyze the timing properties of distributed systems is the holistic approach [72, 73],
which extends the classical analysis techniques in uniprocessor scheduling to
certain workload models and resource arbitration policies in a distributed computing
environment. The holistic approach allows to take global dependencies into account,
which benefits in analysis precision. However, it suffers relatively higher analysis
complexity, and needs to be adopted to specific workload and resource arbitration
models.

A different way for timing analysis of distributed systems is the modular
approach [74, 75], which divides the analysis of the whole systems into separate
analysis on local components and integrates individual local analysis results to
obtain performance characterizations of the complete system. Comparing with the
holistic approach, the modular approach exhibits significantly better flexibility and
scalability, and thus is prevailing in the analysis of complex distributed embedded
real-time systems.

This thesis considers a specific modular performance analysis approach called
RTC [76], which originates from the Network Calculus [77] theory for deterministic
traffic analysis of network systems. In RTC, workload and resource availability
is modeled using variability characterization curves [78], which generalize many
existing task and resource models in real-time scheduling theory. RTC has proved
to be one of the most powerful methods for real-time embedded system performance
analysis, and has drawn a lot of attention in recent years.

In RTC, the workload is modeled by arrival curves. Let RŒs; t/ denote the
total amount of requested capacity to process in time interval Œs; t/. Then, the
corresponding upper and lower arrival curves are denoted as ˛u and ˛l, respectively,
and satisfy:

8s < t; ˛l.t � s/ � RŒs; t/ � ˛u.t � s/ (1.1)

where ˛u and ˛l are functions with respect to time interval sizes and ˛u.0/ D
˛l.0/ D 0.
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The resource availability is modeled by service curves in RTC. Let CŒs; t/ denote
the number of events that a resource can process in time interval Œs; t/. Then, the
corresponding upper and lower service curves are denoted as ˇu and ˇl, respectively,
and satisfy:

8s < t; ˇl.t � s/ � CŒs; t/ � ˇu.t � s/ (1.2)

where ˇu and ˇl are functions with respect to time interval sizes and ˇu.0/ D
ˇl.0/ D 0.

A software processing system or a dedicated HW unit is modeled as a component.
A workload stream represented by arrival curves ˛u and ˛l enters the component and
is processed with resource represented by service curves ˇu and ˇl. The component
generates output workload stream represented by arrival curves ˛u0

and ˛l0 , and the
remaining resources is represented by service curves ˇu0

and ˇl0 .
In RTC we can model HW/SW processing units with different resource arbi-

tration policies. An example is the Greedy Processing Component (GPC), which
processes computation requests from the input workload stream in a greedy fashion.
The arrival and service curves that characterize the output of a GPC is computed
by [74]:

˛u0 , min..˛u ˝ ˇu/˛ ˇl; ˇu/ (1.3)

˛l0 , min..˛l ˛ ˇu/˝ ˇl; ˇl/ (1.4)

ˇu0 , .ˇu � ˛l/˛ 0 (1.5)

ˇl0 , .ˇl � ˛u/˝ 0 (1.6)

where the min-plus convolution ˝, max-plus convolution ˝, min-plus deconvolu-
tion˛, and max-plus deconvolution ˛ are defined as:

.f˝g/.�/ , inf
0����

ff .� � �/C g.�/g (1.7)

.f˝g/.�/ , sup
0����

ff .� � �/C g.�/g (1.8)

.f˛g/.�/ , sup
��0

ff .�C �/ � g.�/g (1.9)

.f˛g/.�/ , inf
��0
ff .�C �/ � g.�/g (1.10)

We can model the FPS by cascading several GPC with their resource inputs
and outputs connected. For different resource arbitration policies, tailored relations
between the input and output curves need to be established. Under some policies
such as FIFO and EDF, the calculation of an output workload stream may need
information of all other streams involved in the resource arbitration, which can be
modeled by components with multiple pairs of input and output workload streams.
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When a workload stream with upper arrival curve ˛u is processed by a GPC
on a resource with lower service curve ˇl, the maximal delay to complete a
computational request issued in the workload stream is bounded by [74]:

D.˛u; ˇl/ , sup
��0

˚
inff� 2 Œ0; �� W ˛u.� � �/ � ˇl.�/g�

On the other hand, we can bound the maximal backlog, i.e., the total amount of
unfinished workload that has been requested at any time instant, which is useful,
e.g., to determine the buffer size to store unprocessed input data [74]:

B.˛u; ˇl/ , sup
��0

˚
˛u.�/ � ˇl.�/

�

Intuitively, B.˛u; ˇl/ and D.˛u; ˇl/ are the maximal vertical and horizontal distance
from ˛u to ˇl.

The RTC framework connects multiple components into a network to model
systems with networked structures. The analysis of the whole network follows
the workload and resource flows, starting with a number of initial input curves
and generating output curves step by step to traverse all the components in the
network. In case the network contains cyclic flows, the analysis starts with under-
approximation of the initial inputs and iterates until a fixed point is reached [79].
RTC Toolbox [80] is an open source Matlab library that implements the state-of-
the-art modeling capacity and analysis techniques of the RTC framework.

Although RTC has proved itself a successful framework for the analysis of many
distributed real-time systems, some major limitations need to be addressed to extend
its competitiveness to a wider scope. On one hand, RTC may run into serious
scalability problems for large-scale systems with complex timing characterizations.
On the other hand, the analysis precision is still unsatisfactory for components with
complex arbitration policies such as EDF. Both problems will be addressed in the
next chapter, with new techniques exploring implicit useful information that has not
been investigated in the original RTC framework.

1.3 What’s New in This Book

In this chapter we briefly describe the main contributions of this thesis in each of
the areas presented above.

1.3.1 Quantitative Cache Analysis for WCET Estimation

Although LRU holds a dominating position in research of real-time systems, it is
actually not so common to see processors equipped with LRU caches on the market.
The reason is that the hardware implementation of LRU is relatively expensive [81].
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Fig. 1.3 An example to illustrate the cache access behavior under MRU and FIFO

On the other hand, many non-LRU replacement policies enjoy simpler implementa-
tion logic, but still have almost as good average-case performance as LRU [82].
Therefore, hardware manufacturers tend to choose these non-LRU replacement
policies, especially for embedded systems that are subject to strict cost, power, and
thermal constraints.

In this thesis, we develop a quantitative cache analysis approach and apply it to
two common non-LRU replacement policies, MRU (Chap. 2) and FIFO (Chap. 3).
MRU has been used in mainstream processor architectures like Intel Nehalem [83]
and UltraSPARC T2 [84], and FIFO is adopted in many processor series of Intel
XScale, ARM9, and ARM11 [26]. The existing cache analysis techniques based
on qualitative cache hit/miss classifications (either positive or negative) are not
adequate to precisely capture the cache miss/hit behavior under MRU and FIFO
replacement, as shown in the following example.

Figure 1.3a shows the CFG of a loop structure, and we consider a particular
execution sequence in which the two branches are taken alternatively. Figure 1.3b, c
depict the cache state update under MRU and FIFO replacement, respectively. Under
MRU, the first three accesses to s are all misses, but the fourth access is a hit. If the
sequence continues, the accesses to s will always be hits afterwards. Under FIFO,
hits and misses occur alternatively. In both cases, the first miss is a cold miss which
is unavoidable under our initial cache state assumption, but the other misses are all
because s is evicted by other memory blocks. Indeed, node n1 cannot be determined
as AH or FM, and one has to put it into the NC classification and treat it as being
always a miss whenever it is executed. This shows the inherent limitation of the
existing cache analysis techniques based on qualitative cache access classifications,
which treat each node as either “black” or“white.” But in fact many nodes of the
program has a “grey” behavior. For a safe approximation they have to be treated
as “black,” which is inherently very pessimistic in predicting the overall execution
time of the program.

In order to precisely characterize the “grey” behaviors, we introduce quantitative
cache access classifications. In contrast to the qualitative classifications, quantitative
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classifications bound the number of misses incurred at individual or a set of program
points, hence can more precisely capture the nuanced behavior of MRU and FIFO
caches. In particular, we introduce the k-miss classification for MRU which states
that at most k accesses are misses while all the others are hits, and introduce the
� -set classification for FIFO which bounds the ratio of misses out of all memory
accesses of certain program points. In the above example, the cache access behavior
of node s can be captured by the 3-miss classification and 1

2
-set classification under

MRU and FIFO, respectively.
It turns out that it is a difficult problem to directly decide whether a program

point can be put into these quantitative classifications in the analysis framework
of abstract interpretation. Our solution is to reduce the verification of quantitative
properties to qualitative problems. We use the cache analysis results of the same
program under LRU to derive k-Miss classification under MRU, which inherits the
advantages in both efficiency and precision from the state-of-the-art LRU analysis
based on abstract interpretation [19].

Experiments with benchmark programs show that the proposed quantitative
cache analysis methods have both good precision and efficiency. For both MRU
and FIFO caches under typical settings, the over-estimation ratio of the WCET
obtained by our quantitative analysis method is around 10 %, and the analysis
procedure for each benchmark program terminates in seconds. These results also
suggest that the predictability of MRU and FIFO has been under-estimated before.
They may still be reasonable candidates of cache replacement policies for real-time
systems, considering their other advantages in hardware cost, power consumption,
and thermal output.

1.3.2 Real-Time Scheduling for Multi-Cores

The aim of this part is to gain better understanding of the design and analysis
principle of real-time systems on multi-core platforms. Although the uniprocessor
real-time scheduling theory has been well established, many important problems are
still open in the multi-core setting. In this thesis we look into several fundamental
problems in multiprocessors scheduling theory, with both the global (Chaps. 4
and 5) and partition-based (Chaps. 6 and 7) approaches. Moreover, in Chap. 8 we
consider the unpredictable inter-core interferences caused by contentions on shared
caches.

1.3.2.1 Global Scheduling

As mentioned in Sect. 1.1.2, the critical instant in global FPS is in general unknown.
The simultaneous release of higher-priority tasks does not necessarily lead to the
worst-case response time in global scheduling. Existing analysis techniques either
(explicitly or symbolically) enumerate all the possible system behaviors, which is
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extremely inefficient due to state-space explosion [85–87], or safely cover all the
possible behaviors by approximating the system workload, which results in over-
pessimistic analysis results.

The first contribution of this part is to deal with the problem of unknown
critical instant in global scheduling. Chapter 4 develops the concept of abstract
critical instant for the analysis of fixed-priority global scheduling, where all higher-
priority tasks, except M � 1 of them (M is the number of processors), are requested
simultaneously with the task in question. Even though the abstract critical instant
still does not provide precise information about the worst-case release times of the
higher priority tasks, we are left with a set among which the real critical instant
can be found. This set is significantly smaller than the whole space of all possible
job sequences, which enables very precise analysis by excluding impossible system
behaviors from the calculation of interference. In Chap. 5 we extend the above
insights to non-preemptive global FPS, by counting the blocking of low-priority
tasks, and propose several schedulability test conditions to compromise the analysis
efficiency and precision.

Another important difference between fixed-priority global scheduling and its
uniprocessor counterpart is the condition for bounded responsiveness. In fixed-
priority uniprocessor scheduling, each task of a task set � has a bounded response
time iff workload does not exceed the processor capacity in the long term (i.e.,P
8�i2� Ui � 1). Unfortunately, this condition does not directly generalize to

global multiprocessor scheduling with the sporadic task model introduced in
Sect. 1.1.2 (particularly, several active jobs released by the same task cannot execute
simultaneously). Some task may still have infinitely growing response time under
the condition

P
8�i2� Ui � M.

The second contribution of this part is to establish the condition for the response
time of each task to be bounded in fixed-priority global scheduling. We have derived
a condition for the termination of the response time analysis procedure for an
arbitrary-deadline task �k, which implies the bounded response time of this task:

X

8i<k

Vk
i CM � Uk < M

where Vk
i D min.Ui; 1 � Uk/ and i < k denotes that �i’s priority is higher than �k’s.

Intuitively, the item M � Uk in the above inequality captures the resource waste in
the situation that all the other M � 1 processors are idle when the analyzed task
is executing. The refined utilization metric Vk

i restrict the interference of a higher-
priority to the part that executes not in parallel with the analyzed task �k.

1.3.2.2 Partitioned Scheduling

The challenge in partitioned scheduling is how to divide the system workload
to individual processors, such that the resource utilization is maximized. On
uniprocessors, Liu and Layland discovered in 1973 the utilization bound
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X

8�i2�

Ui � N � .2
1
N � 1/

for fixed-priority uniprocessor scheduling (with the optimal RM priority assignment
scheme) with implicit-deadline sporadic task systems. It has been a long-standing
open problem that whether this classical result can be generalized to multiprocessor
scheduling.

We close this open problem by introducing a partition-based scheduling algo-
rithm with Liu and Layland’s utilization bound in Chap. 6. The algorithm schedules
workload on each processor with RM priority ordering, and guarantees success
partitioning and run-time schedulability of any task set satisfying the condition

X

8�i2�

Ui � M � N � .2
1
N � 1/

As mentioned in Sect. 1.1.2, the general utilization bound of any strictly parti-
tioned scheduling algorithm is limited by 50 %. To overcome this limitation, the
proposed algorithm in this thesis allows a small number of tasks to migrate across
different processors, and falls into the category of partitioned scheduling with task
splitting (also called semi-partitioned scheduling).

Partitioning workload on multiprocessors shares similarities with the bin-packing
problem. The bin-packing problem will become trivial if we are allowed to split the
items. But this is not the case in the partitioned scheduling problem. The challenge
is that the scheduling algorithm must guarantee the serial execution of a split task
on different processors. The proposed algorithm uses the worst-fit bin-packing
heuristics and increasing priority order for task allocation. The key insight is that
the worst-fit bin-packing and increasing priority order guarantee that task splitting
happens only with tasks with relatively high priorities. The high-priority tasks have
larger slack times, and thereby can tolerate extra timing constraints to guarantee the
serial execution of different parts of a split task on different processors.

The Liu and Layland utilization bound is tight, but may be pessimistic for a
specific task set. There are a large number of task systems that exceed the Liu
and Layland utilization bound but are indeed schedulable. If more information
about the task system parameter is available in the design phase, it is possible
to derive tighter parametric utilization bounds regarding available task parameter
information. This thesis further extends the above algorithm to generalize most of
the known parametric utilization bounds in uniprocessor real-time scheduling to
multiprocessors in Chap. 7.

1.3.2.3 Cache-Aware Scheduling

Typical multi-core architectures use shared caches to boost average-case perfor-
mance. The accesses to a shared cache from different cores may interfere with
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each other. Therefore, to precisely predict the execution time of each task, one
needs to take into account the execution information of all the tasks executing
simultaneously, which in turn depends on the scheduling of these tasks. This leads
to a cyclic dependency between the timing behavior on the program-level and higher
levels, and makes the analysis of the whole system hard or even impossible in
general [2, 70].

Different from previous work [88–90] aiming at directly solving the analysis
problem, Chap. 8 presents an approach that avoids the inter-core cache contention
problem in the first place. We use cache partitioning techniques (such as page-
coloring) combined with scheduling to isolate the cache spaces of hard real-time
tasks running simultaneously. This yields an efficient method to control the shared
cache access, in which a portion of the shared cache is assigned to each running
task, and the cache replacement is restricted to each individual partition.

We assume that the shared cache is divided into partitions, and the cache
space size of each task is fixed. We design cache-aware scheduling algorithms
which make sure that at any time, any two running tasks’ cache spaces are non-
overlapped. A task can get to execute only if it gets an idle core as well as
enough space (not necessarily continuous) on the shared cache. Therefore, the
scheduling involves two types of resources (processing cores and caches), and the
arbitration of cache resources is two dimensional (time and size). We extend the
traditional analysis techniques in multiprocessor scheduling to the above described
cache-aware scheduling problem, and present scheduability test conditions with
compromising analysis precision and efficiency.

1.3.3 Scalable and Precise Real-Time Calculus

In this part we present techniques to improve the RTC analysis framework in both
efficiency and precision. Chapter 9 deals with the high computational complexity
of RTC by ruling out redundant information irrelevant to the final results from the
analysis procedure. Chapter 10 improves the analysis precision of EDF scheduling
in RTC.

1.3.3.1 Finitary Real-Time Calculus

The arrival/service curves in RTC are defined in the infinite range of positive real
numbers. For practical implementation, RTC Toolbox [80] restricts to a class of
curves that have a long-term periodicity and thus can be represented by finite data
structures. In many RTC operations, the period of the output curve equals to the
least common multiplier of the input periods. When many components are serially
connected, the number of segments contained by the curves increases exponentially,
and thus the time cost of the analysis increases exponentially as it traverses along
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the workload and resource flows. Due to this “period explosion” problem, RTC has
an exponential complexity in general, and may run into serious scalability problems
with complex systems.

Chapter 9 introduces a refinement of RTC, namely Finitary Real-Time Calculus,
to solve the scalability problem. The key idea of Finitary Real-Time Calculus is to
only keep a small prefix of each curve that is relevant to the final results during the
whole analysis procedure. In this way, Finitary RTC drastically improves over the
original RTC, and is insensitive to the parameter oddness. At the same time, Finitary
RTC does not introduce any extra pessimism while getting better efficiency, i.e., it
yields analysis results as precise as the original RTC.

The first crucial observation of Finitary RTC is that, the local maximal delay
and backlog at each component occurs before the first intersection point of the
upper arrival and lower service curves (called MBS, maximal busy-period size).
Intuitively, we only need to look into the busy periods [32] during which the resource
is continuously busy, to observe the worst-case performance. This enables us to only
visit the input curves up to MBS at each component to precisely obtain its maximal
backlog and delay.

The second crucial observation is that at each component we can use input
finitary curves to generate finitary curves at output. This is non-trivial, since the
min-plus and max-plus deconvolution operations

.f˛g/.�/ D sup
��0

ff .�C �/ � g.�/g

.f˛g/.�/ D inf
��0
ff .�C �/ � g.�/g

require to check the value of f .�C �/ � g.�/ for all � � 0. To solve this problem,
we use a finitary version of the deconvolution operations in the computation of the
output arrival and service curves. We prove that to calculate the output curve up to
interval size x, it is enough to only visit the part of input curves up to interval size
xCMBS.

However, the MBS value for each component is not revealed until its input
arrival and service curves are actually known. To address this problem, we use safe
approximations of the input curves to quickly pre-analyze the whole network and
obtain safe estimation of the MBS value for each component. Then we can backtrack
the analysis network with MBS estimations to decide the size of the input finitary
curves for each component, and eventually decide the size of the curves we need to
keep at the initial inputs.

The computational complexity of Finitary RTC is pseudo-polynomial, in contrast
to the exponential complexity of the original RTC. Experimental evaluations
with case studies and randomly generated systems show that Finitary RTC can
drastically improve the analysis efficiency, especially for systems with complex
timing characteristics.
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1.3.3.2 Analysis of EDF in Real-Time Calculus

The RTC theory was originally established with a specific type of components GPC
[74], which naturally models the FPS policy for resource arbitration among different
workload streams. EDF is another important scheduling policy in real-time systems.

Recently, RTC has also been extended to model EDF scheduling, but with rather
imprecise analysis backbone. The current method [91] to compute output arrival
curves of an EDF component consists of two steps. It first verifies whether the
computational request of all streams can be served by its deadline. If yes, the output
curves are generated assuming that the processing of each request completes just
before the deadline. This is clearly over-pessimistic, since in many cases the requests
may be served much earlier than their deadlines even in the worst-case, especially
when the total workload is much lower than the resource service.

Apart from the imprecise computation of output curves, the above method also
limits the modeling power of RTC. The deadline of each request in EDF can be
viewed as the metric to decide its priority, i.e., the so-called priority point [92, 93].
The priority point is not necessarily the same as the deadline, but can be any instant
in time. For example, if the priority point of each request aligns with its invocation
time, the requests will be scheduled in a FIFO manner. However, the current RTC
framework interprets EDF scheduling in a narrow sense and in general does not
allow to model EDF-like scheduling algorithms with priority points different from
deadlines.

Chapter 10 presents a new method to analyze EDF components in RTC. The
key is to use worst-case response times, instead of deadlines, in the calculation of
output arrival curves. This method not only improves the analysis precision, but also
decouples the concept of deadline and priority point in EDF scheduling, and thereby
supports modeling and analysis of a wide range of EDF-like scheduling policies in
RTC.

The technical challenge is how to precisely bound the response time of each
request under EDF scheduling in RTC. Response time analysis techniques for
EDF have been developed for restricted task models [94], based on the explicitly
enumeration of a (potentially very large) number of release patterns that may lead
to the worst-case response time. This is, on one hand, computationally expensive,
and on the other hand difficult to handle the abstract workload and resource model
in RTC.

In Chap. 10, we develop a new response time analysis technique for EDF
scheduling, which upper bounds the response time indirectly by calculating a lower
bound of the slack time. We first present a simple but over-approximate analysis
method which lower-bounds the slack time by measuring the maximal horizontal
distance between the lower service curve and the curve of demand bound function
[30] (derived from the upper arrival curve). Based on the insights of the first analysis,
we then develop an exact response time analysis method at the cost of increased
computational complexity. Finally, we use a case study to demonstrate the precision
improvement by our techniques for the analysis of EDF components in RTC.
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Chapter 2
MRU Cache Analysis for WCET Estimation

Most previous work on cache analysis for WCET estimation assumes a particular
replacement policy LRU. In contrast, much less work has been done for non-LRU
policies, since they are generally considered to be very unpredictable. However,
most commercial processors are actually equipped with these non-LRU policies,
since they are more efficient in terms of hardware cost, power consumption, and
thermal output, while still maintaining almost as good average-case performance as
LRU.

In this chapter, we study the analysis of MRU, a non-LRU replacement policy
employed in mainstream processor architectures like Intel Nehalem. Our work
shows that the predictability of MRU has been significantly under-estimated
before, mainly because the existing cache analysis techniques and metrics do not
match MRU well. As our main technical contribution, we propose a new cache
hit/miss classification, k-Miss, to better capture the MRU behavior, and develop
formal conditions and efficient techniques to decide k-Miss memory accesses. A
remarkable feature of our analysis is that the k-Miss classifications under MRU
are derived by the analysis result of the same program under LRU. Therefore,
our approach inherits the advantages in efficiency and precision of the state-of-
the-art LRU analysis techniques based on abstract interpretation. Experiments with
instruction caches show that our proposed MRU analysis has both good precision
and high efficiency, and the obtained estimated WCET is rather close to (typically
1–8 % more than) that obtained by the state-of-the-art LRU analysis, which indicates
that MRU is also a good candidate for cache replacement policies in real-time
systems.
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2.1 Introduction

For hard real-time systems one must ensure that all timing constraints are satisfied.
To provide such guarantees, a key problem is to bound the worst-case execution time
(WCET) of programs [4]. To derive safe and tight WCET bounds, the analysis must
take into account the timing effects of various micro-architecture features of the
target hardware platform. Cache is one of the most important hardware components
affecting the timing behavior of programs: the timing delay of a cache miss could be
several orders of magnitude greater than that of a cache hit. Therefore, analyzing the
cache access behavior is a key problem in WCET estimation. However, the cache
analysis problem of statically determining whether each memory access is a hit or a
miss is challenging.

Much work has been done on cache analysis for WCET estimation in the last
two decades. Most of the published works assume a particular cache replacement
policy, called LRU (Least-Recently-Used), for which researchers have developed
successful analysis techniques to precisely and efficiently predict cache hits/misses
[4]. In contrast, much less attention has been paid to other replacement policies
like MRU (Most-Recently-Used)1 [97], FIFO (First-In-First-Out) [21], and PLRU
(Pseudo-LRU) [96]. In general, research in the field of real-time systems assumes
LRU as the default cache replacement policy. Non-LRU policies in general, in fact,
are considered to be much less predictable than LRU, and it would be very difficult
to develop precise and efficient analyses for them. It is recommended to only use
LRU caches when timing predictability is a major concern in the system design [27].

However, most commercial processors actually do not employ the LRU cache
replacement policy. The reason is that the hardware implementation logic of LRU
is rather expensive [81], which results in higher hardware cost, power consumption,
and thermal output. On the other hand, non-LRU replacement policies like MRU,
FIFO, and PLRU enjoy simpler implementation logic, but still have almost as good
average-case performance as LRU [82]. Therefore, hardware manufacturers tend
to choose these non-LRU replacement policies in processor design, especially for
embedded systems subject to strict cost, power, and thermal constraints.

In this chapter, we study one of the most widely used cache replacement policies
MRU. MRU uses a mechanism similar to the clock replacement algorithm in
virtual memory mapping [98]. It only uses one bit for each cache line to maintain
age information, which is very efficient in hardware implementation. MRU has
been employed in mainstream processor architectures like Intel Nehalem (the
architecture codename of processors like Intel Xeon, Core i5, and i7) [99] and
UltraSPARC T2 [100]. A previous work comparing the average-case performance

1The name of the MRU replacement policy is inconsistent in the literature. Sometimes, this policy
is called Pseudo-LRU because it can be seen as a kind of approximation of LRU. However, we
use the name MRU to keep consistency with previous works in WCET research [26, 95], and
to distinguish it from another Pseudo-LRU policy PLRU [96] which uses tree structures to store
access history information.



2.1 Introduction 23

of cache replacement policies with the SPEC CPU2000 benchmark showed that
MRU has almost as good average-case performance as LRU [82]. To the best of our
knowledge, there has been no previous work dedicated to the analysis of MRU in
the context of WCET estimation. The only relevant work was performed by Reineke
et al. [26] and Reineke and Grund [101], which studies general timing predictability
properties of different cache replacement policies. The cited work argues that MRU
is a very unpredictable policy.

However, this chapter shows that the predictability of MRU actually has been
significantly under-estimated. The state-of-the-art cache analysis techniques are
based on qualitative classifications, to determine whether the memory accesses
related to a particular point in the program are always hits or not (except the first
access that may be a cold miss). This approach is highly effective for LRU since
most memory accesses indeed exhibit such a “black or white” behavior under LRU.
In this work we show that the memory accesses may have more nuanced behavior
under MRU: a small number of the accesses are misses while all the other accesses
are hits. By the existing analysis framework based on qualitative classifications,
such a behavior has to be treated as if all the accesses are misses, which inherently
leads to very pessimistic analysis results.

In this chapter, we introduce a new cache hit/miss classification k-Miss (at
most k accesses are misses while all the others are hits). In contrast to qualitative
classifications, k-Miss can quantitatively bound the number of misses incurred at
certain program points, hence it can more precisely capture the nuanced behavior
in MRU. As our main technical contribution, we establish formal conditions to
determine k-Miss memory accesses, and develop techniques to efficiently check
these conditions. Notably, our technique uses the cache analysis results of the same
program under LRU to derive k-Miss classification under MRU. Therefore, our
technique inherits the advantages in both efficiency and precision from the state-
of-the-art LRU analysis based on abstract interpretation (AI) [19].

We conduct experiments with benchmark programs with instruction caches to
evaluate the quality of our proposed analysis, which show that our MRU analysis
has both good precision and efficiency: the estimated WCET obtained by our MRU
analysis is on average 2–10 % more than that obtained by simulations, and the
analysis of each benchmark program terminates within 0:1 s on average. Moreover,
the estimated WCET by our MRU analysis is close to (typically 1–8 % more
than) that obtained by the state-of-the-art LRU analysis. This suggests that MRU
is also a good candidate for instruction cache replacement policies in real-time
systems, especially considering MRU’s other advantages in hardware cost, power
consumption, and thermal output.

Although the experimental evaluation in this chapter only considers instruction
caches, the properties of MRU disclosed in this chapter also hold for data caches
and our analysis techniques can be directly applied to systems with data caches.
We didn’t include experiments with data caches because predicting data cache
behaviors heavily relies on value analysis [4], which is another important topic in
WCET estimation but orthogonal to the cache analysis issue studied in this chapter.
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Since our prototype does not yet support high-quality value analysis functionalities,
we currently cannot provide a meaningful evaluation with data caches. The evalua-
tion of the proposed MRU analysis with data caches is left as our future work.

2.2 Related Work

Most previous work on cache analysis for static WCET estimation assumes the
LRU replacement policy. Li and Malik [18] and Li et al. [102] use integer
linear programming (ILP)-only approaches where the cache behavior prediction is
formulated as part of the overall ILP problem. These approaches suffer from serious
scalability problems due to the exponential complexity of ILP, and thus cannot
handle realistic programs on modern processors. Arnold et al. [103] and Mueller
[104, 105] proposed a technique called static cache simulation, which iteratively
calculates the instructions that may be in the cache at the entry and exit of each
basic block until the collective cache state reaches a fixed point, and then uses this
information to categorize the caching behavior of each instruction.

A milestone in the research of static WCET estimation is establishing the
framework combining micro-architecture analysis by abstract interpretation (AI)
and path analysis by implicit path enumeration technique (IPET) [19]. The AI-
based cache analysis statically categorizes the caching behavior of each instruction
by sound Must, May, and Persistence analyses, which have both high efficiency
and good precision for LRU caches. The IPET-based path analysis uses the cache
behavior classification to derive a delay invariant for each instruction and encodes
the WCET calculation problem into ILP formulation. Such a framework forms the
common foundation for later research in cache analysis for WCET estimation. For
example, it has been refined and extended to deal with nested loops [106, 107],
data caches [108–110], multi-level caches [111, 112], shared caches [113, 114], and
cache-related preemption delay [115, 116].

In contrast, much less work has been done for non-LRU caches. Although some
important progress has been made in the analysis of policies like FIFO [21, 28] and
PLRU [23], in general these analyses are much less precise than for LRU. To the
best of our knowledge, there has been no work dedicated to the analysis of MRU in
the context of WCET estimation.

Reineke et al. [26], Reineke and Grund [101, 117] and Reineke [95] have
conducted a series of fundamental studies on predictability properties of different
cache replacement policies. Reineke et al. [26] defines several predictability metrics,
regarding the minimal number of different memory blocks that are needed to (a)
completely clear the original cache content (evict), (b) reach a completely known
cache state (fill), (c) evict a block that has just been accessed (mls). Reineke and
Grund [117] studies the sensitivity of different cache replacement policies, which
expresses to what extent the initial state of the cache may influence the number of
cache hits and misses during program execution. According to all the above metrics,
LRU appears significantly more predictable than other policies like MRU, FIFO,



2.3 Basic Concepts 25

and PLRU. Reineke and Grund [101] studies the relative competitiveness between
different policies by providing upper (lower) bounds of the ratio on the number of
misses (hits) between two different replacement policies during the whole program
execution. By such information, one can use the cache analysis result under one
replacement policy to predict the number of cache misses (hits) of the program
under another policy. This approach is different in many ways from our proposed
analysis based on k-Miss classification. Firstly, while the relative competitiveness
approach provides bounds on the number of misses of the whole program,2 the
k-Miss classification bounds the number of misses at individual program points.
Secondly, while the bounds on the number of misses provided by the relative
competitiveness analysis are linear with respect to the total number of accesses,
our k-Miss analysis provides constant bounds. Thirdly, the k-Miss classification for
MRU does not necessarily rely on the analysis result of LRU, and one can identify
k-Miss by other means, e.g., directly computing the maximal stack distance as
defined in Sect. 2.4. Overall, our proposed analysis based on k-Miss can better
capture MRU cache behavior and support a much more precise WCET estimation
than the relative competitiveness approach.

Finally, we refer to [4, 118] for comprehensive surveys on WCET analysis
techniques and tools, which cover many relevant references that are not listed here.

2.3 Basic Concepts

We assume an abstract processor architecture model: The processor has a perfect
pipeline and instructions are fetched sequentially. The processor has a cache
between the processing core and the main memory. The execution delay of each
instruction only depends on whether the corresponding memory content is in the
cache or not, and the time to deliver data from the main memory to the cache is
constant. Other factors affecting the execution delay are not considered.

We assume that the cache is set-associative or fully-associative. In set-associative
caches, the accesses to memory references mapped to different cache sets do not
affect each other, and each cache set can be treated as a fully-associative cache and
analyzed independently. We present the cache analysis techniques in the context of
a fully-associative cache for simplicity of presentation, and the experiments are all
conducted with set-associative caches. Let the cache have L ways, i.e., the cache
consists of L cache lines. The memory content that fits into one cache line is called
a memory block.

We consider the common class of programs represented by control-flow graphs
(CFG). Programs that are difficult to be modeled by CFGs, e.g., self-modified

2The relative competitiveness can also be used as Must/May analysis to predict the cache access
behavior at individual program points. However, this relies on the analysis under other policies
with typically a much smaller cache sizes (to get 1-competitiveness), which generally yields very
pessimistic results.
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programs, are usually not suitable for safe-critical systems and out of our scope.
A CFG can be defined on the basis of individual nodes as follows:

Definition 2.1 (CFG on the Basis of Nodes). A CFG is a tuple G D .N; E; nst/:

• N D fn1; n2; � � � g is the set of nodes in the CFG;
• E D fe1; e2; � � � g is the set of directed edges in the CFG;
• nst 2 N is the unique starting node of the CFG.

A CFG can also be represented as a digraph of basic blocks [119]:

Definition 2.2 (CFG on the Basis of Basic Blocks). A CFG is a tuple G D
.B; E; bst/:

• B D fb1; b2; � � � g is the set of basic blocks in the CFG;
• E D fe1; e2; � � � g is the set of directed edges connecting the basic blocks in the

CFG;
• bst 2 B is the unique starting basic block of the CFG.

Figure 2.1 shows a CFG example on the basis of individual nodes and basic blocks
respectively. Letter a, b, � � � inside each node denotes the memory block accessed
by the node. When we mention the CFG in the rest of this chapter, it is by default
on the basis of nodes unless otherwise specified.

At run-time, when (a node of) the program accesses a memory block, the
processor first checks whether the memory block is in the cache. If yes, it is a hit,
and the program directly accesses this memory block from the cache. Otherwise, it
is a miss, and this memory block is first installed in the cache before the program
accesses it.

A memory block only occupies one cache line regardless of how many times it
is accessed. So the number of unique accesses to memory blocks, i.e., the number
of pairwise different memory blocks in an access sequence is important to the cache
behavior. We use the following concept to reflect this:

Fig. 2.1 A control-flow-graph example. (a) On the basis of nodes, (b) on the basis of basic blocks
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Definition 2.3 (Stack Length). The Stack Length of a memory access sequence
corresponding to a path p in the CFG, denoted by �.p/, is the number of pairwise
different memory blocks accessed along p.

For example, the stack length of the access sequence

a! b! c! a! d! a! b! d

is 4, since only 4 memory blocks a, b, c, and d are accessed in this sequence.
The number of memory blocks accessed by a program is typically far greater than

the number of cache lines, so a replacement policy must decide which block to be
replaced upon a miss. In the following we describe the LRU and MRU replacement
policy, respectively.

2.3.1 LRU Replacement

The LRU replacement policy always stores the most recently accessed memory
block in the first cache line. When the program accesses a memory block s, if s is
not in the cache (miss), then all the memory blocks in the cache will be shifted one
position to the next cache line (the memory block in the last cache line is removed
from the cache), and s is installed to the first cache line. If s is in the cache already
(hit), then s is moved to the first cache line and all memory blocks that were stored
before s’s old position will be shifted one position to the next cache line. Figure 2.2
illustrates the update upon an access to memory block s in an LRU cache of 4 lines.
In the figure, the uppermost block represents the first (lowest-index) cache line and
the lowermost block is the last (highest-index) one. All figures in this chapter follow
this convention.

A metric defined in [26] to evaluate the predictability of a replacement policy
is the minimal-life-span (mls), the minimal number of pairwise different memory
blocks required to evict a just visited memory block out of the cache (not counting
the access that brought the just visited memory block into the cache). It is known
that [26]:

Lemma 2.1. The mls of LRU is L.

Recall that L is the number of lines in the cache. The mls metric can be directly used
to determine cache hits/misses for a memory access sequence: if the stack length of

Fig. 2.2 Illustration of LRU
cache update with L D 4,
where the left part is a miss
and the right part is a hit
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the sequence between two successive accesses to the same memory block is smaller
than mls, then the later access must be a hit. For example, for a memory access
sequence

a! b! c! c! d! a! e! b

on a 4-way LRU cache, we can easily conclude that the second access to memory
block a is a hit since the sequence between two accesses to a is b ! c ! c ! d,
which has stack length 3. The second access to b is a miss since the stack length of
the sequence c ! c ! d ! a ! e is 4. Clearly, replacement policies with larger
mls are preferable, and the upper bound of mls is L.

2.3.2 MRU Replacement

For each cache line, the MRU replacement policy stores an extra MRU-bit, to
approximately represent whether this cache line was recently visited. An MRU-bit
at 1 indicates that this line was recently visited, while at 0 indicates the opposite.
Whenever a cache line is visited, its MRU-bit will be set to 1. Eventually there will
be only one MRU-bit at 0 in the cache. When the cache line with the last MRU-bit
at 0 is visited, this MRU-bit is set to 1 and all the other MRU-bits change back from
1 to 0, which is called a global-flip.

More precisely, when the program accesses a memory block s, MRU replacement
first checks whether s is already in the cache. If yes, then s will still be stored in the
same cache line and its MRU-bit is set to 1 regardless of its original state. If s is
not in the cache, MRU replacement will find the first cache line whose MRU-bit is
0, then replace the originally stored memory block in it by s and set its MRU-bit to
1. After the above operations, if there still exists some MRU-bit at 0, the remaining
cache lines’ states are kept unchanged. Otherwise, all the remaining cache lines’
MRU-bits are changed from 1 to 0, which is a global-flip. Note that the global-flip
operation guarantees that at any time there is at least one MRU-bit in the cache
being 0.

In the following we present the MRU replacement policy formally. Let M be the
set of all the memory blocks accessed by the program plus an element representing
emptiness. The MRU cache state can be represented by a function C W f1; � � � ; Lg !
M�f0; 1g. We use C.i/ to denote the state of the ith cache line. For example, C.i/ D
.s; 0/ represents that cache line i currently stores memory block s and its MRU-bit
is 0. Further, we use C.i/:! and C.i/:ˇ to denote the resident memory block and the
MRU-bit of cache line i. The update rule of MRU replacement can be described by
the following steps, where C and C0 represent the cache state before and after the
update upon an access to memory block s, respectively, and ı denotes the cache line
where s should be stored after the access:
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Fig. 2.3 An example illustrating MRU and its mls

1. If there exists h s.t. C.h/:! D s, then let ı  h, otherwise let ı D h s.t. C.h/:ˇ D
0 and C.j/:ˇ D 1 for all j < h.

2. C0.ı/ .s; 1/

3. If C.h/:ˇ D 1 for all h ¤ ı, then let C0.j/  .C.j/:!; 0/ for all j ¤ ı (i.e.,
global-flip), otherwise C0.j/ C.j/ for all j ¤ ı.

Figure 2.3 illustrates MRU replacement with a 4-way cache. First the program
accesses memory block s, which is already in the cache. So s still stays in the
same cache line, and the corresponding MRU-bit is changed to 1. Then the program
accesses e, which is not in the cache yet. Since only the 4th cache line’s MRU-bit
is 0, e is installed in that line and triggers the global-flip, after which the 4th cache
line’s MRU-bit is 1 and all the other MRU-bits are changed to 0. Then the program
accesses f and s in order, which are both not in the cache, so they will be installed
to the first and second cache line with MRU-bits at 0 and change these bits to 1.

In MRU caches, an MRU-bit can roughly represent how old the corresponding
memory block is, and the replacement always tries to evict a memory block that is
relatively old. So MRU can be seen as an approximation of LRU. However, such an
approximation results in a very different mls [26]:

Lemma 2.2. The mls of MRU is 2.

The example in Fig. 2.3 illustrates this lemma, where only two memory blocks e and
f are enough to evict a just-visited memory block s. It is easy to extend this example
to arbitrarily many cache lines, where we still only need two memory blocks to evict
s. Partly due to this property, MRU has been believed to be a very unpredictable
replacement policy, and to the best of our knowledge it has never been seriously
considered as a good candidate for timing-predictable architectures.

2.4 A Review of the Analysis for LRU

As we mentioned in Sect. 2.1, the MRU analysis proposed in this chapter uses
directly the results of the LRU analysis for the same program. Thus, before
presenting our new analysis technique, we first provide a brief review of the state-
of-the-art analysis technique for LRU.

Exact cache analysis suffers from a serious state-space explosion problem.
Hence, researchers resort to approximation techniques separating path analysis and
cache analysis for good scalability [19]. Path analysis requires an upper bound on
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the timing delay of a node whenever it is executed. Therefore, the main purpose of
the LRU cache analysis is to decide the cache hit/miss classification (CHMC) for
each node [19, 103]:

• AH (always hit): The node’s memory access is always hit whenever it is executed.
• FM (first miss): The node’s memory access is miss for the first execution, but

always hit afterwards. This classification is useful to handle “cold miss” in loops.
• AM (always miss): The node’s memory access is always miss whenever it is

executed.
• NC (non-classified): Cannot be classified into any of the above categories. This

category has to be treated as AM in the path analysis.

Among the above CHMC, we call AH and FM positive classification since they
ensure that (the major portion of) the memory accesses of a node to be hits, and call
AM and NC negative classification.

Recall that the mls of LRU is L, and one can directly use this property to decide
the hit/miss of a node with linear access sequences. However, a CFG is generally a
digraph, and there may be multiple paths between two nodes.

The following concept captures the maximal number of pairwise different
memory blocks between two nodes accessing the same memory block in the CFG.

Definition 2.4 (Maximal Stack Distance). Let ni and nj be two nodes accessing
the same memory block s. The Maximal Stack Distance from ni to nj, denoted by
dist.ni; nj/, is defined as:

dist.ni; nj/ D
�

maxf�.p/ j p 2 P.ni; nj/g if P.ni; nj/ ¤ ;
0 if P.ni; nj/ D ;

where P.ni; nj/ is the set of paths satisfying

• ni and nj is the first and last node of the path, respectively;
• None of the nodes in the path, except the first and last, accesses s.

Note that the maximal stack distance between two nodes is direction sensitive, i.e.,
dist.ni; nj/ may not be equal to dist.nj; ni/. The example in Fig. 2.4 illustrates the
maximal stack distance using a CFG with three nodes n1, n3, and n7 accessing the
same memory block s. We have dist.n1; n7/ D 5 since P.n1; n7/ contains a path

n1 ! n4 ! n5 ! n8 ! n4 ! n6 ! n8 ! n4 ! n7

in which s, a, c, d, and e are accessed. We have dist.n1; n3/ D 2 since n1 ! n2 ! n3

is the only path in P.n1; n3/ (any other path from n1 to n3 does not satisfy the second
condition for P). We have dist.n3; n7/ D 0 since any path from n3 to n7 has to go
through n1 which also accesses s.

Now one can use the maximal stack distance to judge whether the CHMC
of a node ni is positive: nj falls into the positive classification (AH or FM), if
dist.ni; nj/ � L holds for any node ni that accesses the same memory block s as nj.
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Fig. 2.4 Illustration of Maximal Stack Distance

This is because there are not enough pairwise different memory blocks to evict s
along any path to ni since the last access to s.

However, computing the exact maximal stack distance is in general very
expensive. Therefore, the LRU analysis resorts to over-approximation by abstract
interpretation. The main idea is to define an abstract cache state and iteratively
traverse the program until the abstract state converges to a fixed point, and use the
abstract state of this fixed point to determine the CHMC. There are mainly three
fixed-point analyses:

• Must analysis to determine AH nodes.
• May analysis to determine AM nodes.
• Persistence analysis to determine FM nodes.

A node is an NC if it cannot be classified by any of the above analyses. We refer to
[24, 110] for details of these fixed-point analyses.

2.5 The New Analysis of MRU

In this section we present our new analysis for MRU. First we show that the existing
CHMC in the LRU analysis as introduced in last section is actually not suitable to
capture the cache behavior under MRU, and thus we introduce a new classification
k-Miss (Sect. 2.5.1). After that we introduce the conditions for nodes to be k-Miss
(Sect. 2.5.2), and show how to efficiently check these conditions (Sect. 2.5.3). Then
the k-Miss classification is generalized to more precisely analyze nested-loops
(Sect. 2.5.4). Finally we present how to apply the cache analysis results in the path
analysis to obtain the WCET estimation (Sect. 2.5.5).

2.5.1 New Classification: k-Miss

First we consider the example in Fig. 2.5a. We can see that dist.n1; n1/ D 4, i.e.,
4 pairwise different memory blocks appear in each iteration of the loop no matter
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Fig. 2.5 An example motivating the k-Miss classification. (a) A CFG example, (b) cache update
when the two branches are taken alternatively

which branch is taken. Since dist.n1; n1/ is larger than 2 (the mls of MRU), n1

cannot be decided as a positive classification using mls.
Now we have a closer look into this example, considering a particular execution

sequence in which the two branches are taken alternatively, as shown in Fig. 2.5b.
Assume that the memory blocks initially stored in the cache (denoted by “?”) are all
different from the ones that appear in Fig. 2.5a, and initial MRU-bits are shown in
the first cache state of Fig. 2.5b.

We can see that the first three executions of s are all misses. The first miss is
a cold miss which is unavoidable anyway under our initial cache state assumption.
However, the second and third accesses are both misses because s is evicted by other
memory blocks. Indeed, node n1 cannot be determined as AH or FM, and one has to
put it into the negative classification and treat it as being always miss whenever it is
executed.

However, if the sequence continues, we can see that when n1 is visited for the
fourth time, s is actually in the cache, and most importantly, the access of n1 will
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always be a hit afterwards (we do not show a complete picture of this sequence, but
this can be easily seen by simulating the update for a long enough sequence until a
cycle appears).

The existing positive classification AH and FM is inadequate to capture the
behavior of nodes like n1 in the above example, which only encounters a smaller
number of misses, but will eventually go into a stable state of being always hits. Such
behavior is actually quite common under MRU. Therefore, the analysis of MRU will
be inherently very pessimistic if one only relies on the AH and FM classification to
claim cache hits.

The above phenomenon shows the need for a more precise classification to
capture the MRU cache behavior. As we show in Sect. 2.5.2, the number of misses
under MRU may be bound not only for individual nodes, but also for a set of nodes
that access the same memory block. This leads us to the definition of the k-Miss
classification as follows:

Definition 2.5 (k-Miss). A set of nodes S D fn1; � � � ; nig is k-Miss iff at most k
accesses by nodes in S are misses while all the other accesses are hits.

The traditional classification FM can be viewed as a special case of k-Miss with
a singleton node set and k D 1. Note that although the k-Miss classification can
bound the number of misses for a set of nodes, it does not say anything about when
do these k times of misses actually occur. The misses do not necessarily occur at the
first k accesses of these nodes. It allows the misses and hits to appear alternatively,
as long as the total number of misses does not exceed k.

2.5.2 Conditions for k-Miss

In this section we establish the conditions for a set of nodes to be k-Miss. We start
with an important property of MRU:

Lemma 2.3. At least k pairwise different memory blocks are needed to evict a
memory block in cache line k with MRU-bit at 1.

Proof. Only the memory block in a cache line with MRU-bit at 0 can be evicted, so
before the eviction of s there must be a global-flip to change the MRU-bit of cache
line k from 1 to 0. Right after the global flip, the number of 0-MRU-bits among
cache lines f1; � � � ; kg is at least k � 1, so k � 1 pairwise different memory blocks
(which are also different from the one triggering the global-flip) are needed to fill
up these 0-MRU-bit cache lines. In total, the number of pairwise different memory
blocks required is at least k.

Lemma 2.3 indicates that the minimal-life-span of memory blocks installed to
different cache lines are asymmetric: a cache line with a greater index provides
a larger minimal-life-span guarantee (while the mls metric does not distinguish
different positions but simply captures the worst case). To provide a better analysis
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than the mls approach, one needs information about where a memory block is
installed. However, under MRU a memory block may be installed to any cache
line without restricting the cache state beforehand. Since the initial cache state is
unknown, and the precise cache state information is lost quickly during the abstract
analysis, it is difficult to precisely predict the position of a memory block in the
cache.

However, Lemma 2.3 indeed gives us opportunities to do a better analysis. When
a memory block is installed to a cache line with a larger index, it becomes more
difficult to be evicted. So the main idea of our analysis is to verify whether a memory
block will eventually be installed to a “safe position” (a cache line with large enough
index) and stay there afterwards (as long as it executes in the scope of the program
under analysis). The k times of misses in k-Miss happens before the memory block
is installed to the “safe position,” and after that all the accesses will be hits. In the
following we show the condition for a memory block to have such behavior. We first
introduce an auxiliary lemma:

Lemma 2.4. On an L-way MRU cache, L pairwise different memory blocks are
accessed between two successive global-flips (including the ones triggering these
two global-flips).

Proof. Right after a global-flip, there are L � 1 cache lines whose MRU-bits are 0.
In order to have the next flip, all these cache lines of which the MRU-bits are 0 need
to be accessed, i.e., it needs L � 1 pairwise different memory blocks that are also
different from the one causing the first global-flip. So in total L pairwise different
memory blocks are involved in the access sequence between two successive global-
flips.

Lemma 2.4 is illustrated by the example in Fig. 2.6 with L D 4. The access
to memory block a triggers the first global-flip, after which 3 MRU-bits are 0. To
trigger the next global-flip, these three MRU-bits have to be changed to 1, which
needs 3 pairwise different memory blocks. So in total 4 pairwise different memory
blocks are involved in the access sequence between these two global-flips. With this
auxiliary lemma, we are able to prove the following key property:

Fig. 2.6 Illustration of Lemma 2.4
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Fig. 2.7 Illustration of Lemma 2.5. (a) A path from nx to ny, (b) s is moved to a larger index when
it is loaded back

Lemma 2.5. Suppose that under MRU at some point a memory block s is accessed
by node nx at cache line i (either hit or miss), and the next access to s is a miss
caused by ny upon which s is installed to cache line j. We have j > i if the following
condition holds:

dist.nx; ny/ � L: (2.1)

Figure 2.7 illustrates Lemma 2.5, where nx and ny are two nodes accessing the same
memory block s and satisfying Condition (2.1). We focus on a particular path as
shown in Fig. 2.7a. Figure 2.7b shows the cache update along this path: first nx

accesses s in the second cache line. After s is evicted out of the cache and is loaded
back again, it is installed to the third cache line, which is one position below the
previous one. In the following we give a formal proof of the lemma.

Proof. Let event evx be the access to s at cache line i by nx as stated in the lemma,
and event evy the installation of s to cache line j by ny. We prove the lemma by
contradiction, assuming j � i.

The first step is to prove that there are at least two global-flips in the event
sequence fevxC1; � � � ; evy�1g (evxC1 denotes the event right after evx and evy�1 the
event right before evy).

Before evy, s has to be first evicted out of the cache. Let event evv denote such an
eviction of s, which occurs at cache line i. By the MRU replacement rule, a memory
block can be evicted from the cache only if the MRU-bit of its resident cache line is
0. So we know C.i/:ˇ D 0 right before evv .

On the other hand, we also know that C.i/:ˇ D 1 right after event evx. And since
only a global-flip can change an MRU-bit from 1 to 0, we know that there must exist
at least one global-flip among the events fevxC1; � � � ; evv�1g.

Then we focus on the event sequence fevv; � � � ; evy�1g. We distinguish two
cases:

• i D j. Right after the eviction of s at cache line i (event evv), the MRU-bit of
cache line i is 1. On the other hand, just before the installation of s to cache line
j (event evy), the MRU-bit of cache line j must be 0. Since i D j, there must be at
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least one global-flip among the events fevvC1; � � � ; evy�1g, in order to change the
MRU-bit of cache line i D j from 1 to 0.

• i > j. By the MRU replacement rule, we know that just before s is evicted in
event evv , it must be true that 8h < i W C.h/:ˇ D 1, and hence C.j/:ˇ D 1.
On the other hand, just before the installation of s in event evy, the MRU-bit of
cache line j must be 0. Therefore, there must be at least one global-flip among
the events fevv; � � � ; evy�1g, in order to change the MRU-bit of cache line j from
1 to 0.

In summary, there is at least one global-flip among fevv; � � � ; evy�1g.
Therefore, we can conclude that there are at least two global-flips among the

events fevxC1; � � � ; evy�1g. By Lemma 2.4 we know that at least L pairwise different
memory blocks are accessed in fevxC1; � � � ; evy�1g. Since evy is the first access to
memory block s after evx, there is no access to s in fevxC1; � � � ; evy�1g, so at least
LC 1 pairwise different memory blocks are accessed in fevx; � � � ; evyg.

On the other hand, let p be the path that leads to the sequence fevx; � � � ; evyg.
Clearly, p starts with nx and ends with ny. We also know that no other node along
p, apart from nx and ny, accesses s, since evy is the first event accessing s after
evx. So p is a path in P.nx; ny/ (Definition 2.4), and we know dist.nx; ny/ � �.p/.
Combining this with Condition (2.1) we have �.p/ � L, which contradicts with that
at least LC1 pairwise different memory blocks are accessed in fevx; � � � ; evyg as we
concluded above.

To see the usefulness of Lemma 2.5, we consider a special case where only
one node n in the CFG accesses memory block s and dist.n; n/ � L as shown in
Fig. 2.8a. In this case, by Lemma 2.5 we know that each time s is accessed (except
the first time), there are only two possibilities:

• the access to s is a hit, or
• the access to s is a miss and s is installed to a cache line with a strictly larger

index than before.

So we can conclude that the access to s can only be miss for at most L times since
the position of s can only “move downwards” for a limited number of times which
is bounded by the number of cache lines. Moreover, we can combine Lemma 2.3
and Lemma 2.5 to have a stronger claim: if condition dist.n; n/ � k holds for some
k � L, then the access to s can only be miss for at most k times, since the number of
pairwise different memory blocks along the path from n back to n is not enough to
evict s as soon as it is installed to cache line k.

However, in general there could be more than one node in the CFG accessing
the same memory block, where Lemma 2.5 cannot be directly applied to determine
the k-Miss classification. Consider the example in Fig. 2.8b, where two nodes n1

and n2 both access the same memory block s, and we have dist.n1; n2/ � L
and dist.n2; n1/ > L. In this case, we cannot classify n2 as a k-Miss, although
Lemma 2.5 still applies to the path from n1 to n2. This is because Lemma 2.5 only
guarantees the position of s will move to larger indices each time n2 encounters a
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Fig. 2.8 An example
illustrating the usage of
Lemma 2.5. (a) Only one
node n accesses s and
dist.n; n/ � L. (b) Two nodes
n1 and n2 both accesses s with
dist.n1; n2/ � L and
dist.n2; n1/ � L

miss, but the position of s may move to smaller indices upon misses of n1 (since
dist.n2; n1/ > L), which breaks down the memory block’s movement monotonicity.

In order to use Lemma 2.5 to determine the k-Miss classification in the general
case, we need to guarantee a global movement monotonicity of a memory block
among all the related nodes. This can be done by examining the condition of
Lemma 2.5 for all node pairs in a strongly connected component (maximal strongly
connected subgraph) together, as described in the following theorem:

Theorem 2.1. Let SCC be a strongly connected component in the CFG, let S be the
set of nodes in SCC accessing the same memory block s. The total number of misses
incurred by all the nodes in S is at most k if the following condition holds:

8nx; ny 2 S W dist.nx; ny/ � k (2.2)

where k is bounded by the number of cache lines L.

Proof. Let evf and evl be the first and last events triggered during program
execution. Since S is a subset of the strongly connected component SCC, any event
accessing s in the event sequence fevf ; � � � ; evlg has to be also triggered by some
node in S (otherwise there will be a cycle including nodes both inside and outside
SCC, which contradicts with that SCC is a strongly connected component).

By k � L, Condition (2.2) and Lemma 2.5, we know that among the events
fevf ; � � � ; evlg whenever the access to s is a miss, s will be installed to a cache line
with a strictly larger index than before. Since every time after s is accessed in the
cache (either hit or miss), the corresponding MRU-bit is 1, so by Condition (2.2)
and Lemma 2.3 we further know that among the events fevf ; � � � ; evlg, as soon as s
is installed to a cache line with index equal to or larger than k, it will not be evicted.
In summary, there are at most k misses of s among events fevf ; � � � ; evlg, i.e., the
nodes in S have at most k misses in total.

2.5.3 Efficient k-Miss Determination

Theorem 2.1 gives us the condition to identify k-Miss node sets. The major
task of checking this condition is to calculate the maximal stack distance dist./.
As mentioned in Sect. 2.4, the exact calculation of dist./ is very expensive, which is
the reason why the analysis of LRU relies on AI to obtain an over-approximate clas-
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sification. For the same reason, we also resort to over-approximation to efficiently
check the conditions of k-Miss. The main idea is to use the analysis result for the
same program under LRU to infer the desired k-Miss classification under MRU.

Lemma 2.6. Let ny be a node that accesses memory block s and is classified as
AH/FM by Must/Persistence analysis with a k-way LRU cache. For any node nx

that also accesses s, if there exists a cycle in the CFG including nx and ny, then the
following must hold:

dist.nx; ny/ � k:

Proof. We prove the lemma by contradiction. Let nx be a node that also accesses
s and there exists a cycle in the CFG including nx and ny. We assume that
dist.nx; ny/ > k. Then by the definition of dist.nx; ny/ we know that there must
exist a path p from nx to ny satisfying (i) �.p/ > k and, (ii) no other node accesses
s apart from the first and last node along this path (otherwise dist.nx; ny/ D 0).
This implies that under LRU, whenever ny is reached via path p, s is not in the
cache. Furthermore, ny can be reached via path p repeatedly since there exists a
cycle including nx and ny. This contradicts with that ny is classified as AH/FM by
the Must/Persistence analysis with a k-way LRU cache (Must/Persistence yields
safe classification, so in the real execution an AH node will never be miss and an
FM node can be miss for at most once).

Theorem 2.2. Let SCC be a strongly connected component in the CFG, and S the
set of nodes in SCC that access the same memory block s. If all the nodes in S are
classified as AH by Must analysis or FM by Persistence analysis with a k-way
LRU cache, then the node set S is k-Miss with an L-way MRU cache for k � L.

Proof. Let nx; ny be two arbitrary nodes in S, so both of them access memory block
s and are classified as AH/FM by the Must/Persistence analysis with a k-way LRU
cache. Since S is a subset of a strongly connected component, we also know nx

and ny are included in a cycle in the CFG. Therefore, by Lemma 2.6 we know
dist.nx; ny/ � k. Since nx; ny are arbitrarily chosen, the above conclusion holds
for any pair of nodes in S. Therefore, S can be classified as k-Miss according to
Theorem 2.1.

Theorem 2.2 tells that we can identify k-Miss node sets with a particular k by
doing Must/Persistence analysis with a LRU cache of the corresponding number
of ways. Actually, we only need to do the Must and Persistence analysis once
with an L-way LRU cache, to identify k-Miss node sets with all different k (� L).
This is because the Must and Persistence analysis for LRU cache maintains the
information about the maximal age of a memory block at certain point in the CFG,
which can be directly transferred to the analysis result with any cache size smaller
than L. For example, suppose by the Must analysis with an L-way LRU cache,
a memory block s has maximal age of k before the access of a node n, then by
the Must analysis with a k-way LRU cache this node n will be classified as AH.
We will not recite the details of Must and Persistence analysis for LRU cache
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or explain how the age information is maintained in these analysis procedures, but
refer interested readers to the references [19, 110].

Moreover, the maximal age information in the Must and Persistence analysis
with an 2-way LRU cache can also be used to infer traditional AH and FM clas-
sification under MRU according to the relative competitiveness property between
MRU and LRU [95]: an L-way MRU cache is 1-competitive relative to a 2-way
LRU cache, so a Must (Persistence) analysis with a 2-way LRU cache can be used
as a sound Must (Persistence) analysis with an L-way MRU cache. Therefore, if
the maximal age of a node in a Must (Persistence) analysis with an L-way LRU
cache is bounded by 2 (L � 2), then this node can be classified as AH (FM) with
an L-way MRU cache. Adding this competitiveness analysis optimization helps us
to easily identify AH nodes when several nodes in a row access the same memory
block. For example, if a memory block (i.e., a cache line) contains two instructions,
then in most cases the second instruction is accessed right after the first one, so
we can conclude that the second node is AH with a 2-way LRU cache, and thus
is also AH with an L-way MRU. Besides dealing with the above easy case, the
competitiveness analysis optimization sometimes can do more for set-associative
caches with a relatively large number of cache sets. For example, consider a path
accessing 16 pairwise different memory blocks, and a set-associative cache of 8

sets. On average only 2 memory blocks on this path are mapped to each set, so
competitiveness analysis may have a good chance to successfully identify some AH
and FM nodes.

2.5.4 Generalizing k-Miss for Nested Loops

Precisely predicting the cache behavior of loops is very important for obtaining
tight WCET estimations. In this chapter, we simply define a loop L` as a strongly
connected subgraph in the CFG.3 (Note the difference between a strongly connected
subgraph and a strongly connected component.)

The ordinary CHMC may lead to over-pessimistic analysis when loops are
nested. For example, Fig. 2.9 shows a program containing two-level nested loops
and its (simplified) CFG. Suppose the program executes with a 4-way LRU cache.
Since dist.ns; ns/ D 6 > 4 (see s ! f ! d ! e ! g ! b ! d ! s), the
memory block s can be evicted out of the cache repeatedly, and thus we have to put
ns into the negative classification according to the ordinary CHMC, and treat it as
being always miss whenever it is accessed. However, by the program semantics we
know that every time the program enters the inner loop it will iterate for 100 times,

3In realistic programs, loop structures are usually subject to certain restrictions (e.g., a natural loop
has exactly one header node which is executed every time the loop iterates, and there is a path back
to the header node [120]). However, the properties presented in this section are not specific to any
particular structure, so we define a loop in a more generic way.
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Fig. 2.9 A program with nested loop and its (simplified) CFG

during which s will not be evicted out of the cache since the inner loop can be fit into
the cache entirely. So node ns has only 5 misses out of the total 500 cache accesses
during the whole program execution. Putting ns into the negative classification and
treating it as being always miss is obviously over-pessimistic.

To solve this problem, [24, 106] reloaded the FM classification by relating it to
certain loop scopes:

Definition 2.6 (FM Regarding a Loop). A node is FM regarding a loop L` iff it
has at most one miss (at the first access) and otherwise will be always hit when the
program executes inside L`.

In the above example node ns is FM regarding the inner loop L2.
The same problem also arises for MRU. Suppose the program in Fig. 2.9 runs

with a 4-way MRU cache. For the same reason as under LRU, node ns has to be put
into the negative classification category. However, we have dist.ns; ns/ D 3 if only
looking at the inner loop, which indicates that ns can be miss for at most 3 times
every time it executes inside the inner loop. As with FM, we can reload the k-Miss
classification to capture this locality:

Definition 2.7 (k-Miss Regarding a Loop). A node is k-Miss regarding a loop L`

of the CFG iff it has at most k misses and all the other accesses are hits when the
program executes inside L`.

The sought k-Miss classification under MRU for a loop can be inferred from
applying the FM classification under LRU to the same loop:

Theorem 2.3. Let L` be a loop in the CFG, and S the set of nodes in the loop that
access the same memory block s. If all the nodes in S are classified as FM regarding
L` with a k-way LRU cache (k � L), then the node set S is k-Miss regarding L`

with an L-way MRU cache.

Proof. Similar to the proof of Theorems 2.1 and 2.2.
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A node may be included in more than one k-Miss node sets regarding different
loops. This typically happens across different levels in nested loops. For example,
if the program in Fig. 2.9 executes with an 8-way MRU cache, then by Theorem 2.3
fnsg is classified as 3-Miss regarding the inner loop and 6-Miss regarding the outer
loop. The miss number constraints implied by k-Miss with different k and different
loops are generally incomparable. For example, with the loop bound setting in
Fig. 2.9, 3-Miss regarding the inner loop allows at most 3 � 5 D 15 misses during
the whole execution, which is “looser” than the outer loop 6-Miss which allows at
most 6 misses. However, if we change the outer loop bound to 1, then the inner loop
3-Miss actually poses a “tighter” constraint as it only allows 3 misses while the
outer loop 6-Miss still allows 6 misses. Although it is possible to explore program
structure information to remove redundant k-Miss, we simply keep all the k-Miss
classifications in our implementation since the ILP solver for path analysis can
automatically and efficiently exclude such redundancy, as we illustrate in the next
section.

2.5.5 WCET Computation by IPET

By now we have obtained the cache analysis results for MRU:

• k-Miss node sets that are identified by Theorems 2.2 and 2.3.
• AH and FM nodes that are identified using the relative competitiveness property

between MRU and LRU as stated at the end of Sect. 2.5.3.
• All the nodes not included in the above two categories are NC.

Note that a node classified as AH by the relative competitiveness property may
also be included in some k-Miss node set. In this case, we can safely exclude this
node from the k-Miss node set, since AH provides a strong guarantee and the total
number of misses incurred by other nodes in that k-Miss set is still bounded by k.

In the following we present how to apply these results in the path analysis
by IPET to obtain the WCET estimation. The path analysis adopts a similar ILP
formulation framework to the standard, but it is extended to handle k-Miss node
sets. All the variables in the following ILP formulation are non-negative, which will
not be explicitly specified for simplicity of presentation.

To obtain the WCET, the following maximization problem is solved:

Maximize

8
<

:
X

8ba

ca

9
=

;

where ca denotes the overall execution cost of basic block ba (on the worst-case
execution path). Since a basic block typically contains multiple nodes with different
CHMC, the execution cost for each basic block is further refined as follows.
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We assume the execution delay inside the processing unit is constant for all
nodes, and the total execution delay of a node only differs depending on whether
the cache access is a hit or a miss: Ch upon a hit and Cm upon a miss. Since the
accesses of an AH node are always hits, the overall execution delay of an AH node
ni in ba is simply Ch � xa where the variable xa represents the execution count of
ba. Similarly, the overall execution delay of an NC node is Cm � xa. The remaining
nodes are the ones included in some k-Miss node sets (regarding some loops). For
each of such nodes ni, we use variables zi (� xa) to denote the execution count of ni

with cache access being miss. So the overall execution delay of a node ni in some
k-Miss node set is Cm � zi C Ch � .xa � zi/. Putting the above discussions together,
we have the total execution cost of a basic block ba:

ca D .�AH � Ch C �NC � Cm/ � xa C
X

ni2b�

a

�
Cm � zi C Ch � .xa � zi/

�

where �AH and �NC is the number of AH and NC nodes in ba, respectively, and b�a is
the set of nodes in ba that are contained in some k-Miss node sets (regarding some
loops). Since at most k misses are incurred by a k-Miss node set regarding a loop
L` every time the program enters and iterates inside the loop, we have the following
constraints to bound zi:

8.S;L`/ s.t. S is k-Miss regarding L` W
X

ni2S

zi � k �
X

ej2entr`

yj

where entr` is the set of edges through which the program can enter L` and we use
variable yj to denote how many times an edge ej 2 entr` is taken during program
execution. Recall that a node may be contained by multiple k-Miss sets (e.g., k-Miss
regarding both the inner and outer loop with different k), so each zi may be involved
in several of the above constraints.

Besides the above constraints, the formulation also contains program structural
constraints which are standard components of the IPET encoding. The WCET of the
program is obtained by solving the above maximization problem, and the execution
count for each basic block along the worst-case path is also returned.

2.6 Experimental Evaluation

The main purpose of the experiments is to evaluate

1. the precision of our proposed MRU analysis, and
2. the predictability comparison between LRU and MRU.

To evaluate (1), we compare the estimated WCET obtained by our MRU analysis
and the measured WCET obtained by simulation with MRU caches. To evaluate
(2), we compare the estimated WCET obtained by our MRU analysis and that by
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the state-of-the-art LRU analysis based on abstract interpretation (Must and May
analysis in [19] and Persistence analysis in [110]). The smaller is the difference
between the estimated WCET by our MRU analysis and by the LRU analysis,
the more confident we are to claim that MRU is also a good candidate for cache
replacement policies in real-time embedded systems, especially taking into account
MRU’s other advantages in hardware cost, power consumption, and thermal output.

2.6.1 Experiment Setup

As presented in Sect. 2.5.5, we assume the execution delay of each node only differs
depending on whether the cache access is a hit or miss. The programs execute
with a 1K bytes set-associative instruction cache. Each instruction is 8 bytes, and
each cache line (memory block) is 16 bytes (i.e., each memory block contains
two instructions). All instructions have a fixed latency of 1 cycle. The memory
access penalty is 1 cycle upon a cache hit, and 10 cycles upon a cache miss. To
conduct experiments with cache of different number of ways, we keep the total
cache size fixed and change the number of cache sets correspondingly. Although
the experiments in this chapter are conducted with instruction caches, the theoretical
results of this work also directly apply to data caches, and we leave the evaluation
for data caches as our future work.

The programs used in the experiments are from the Mälardalen Real-Time
Benchmark suite [121]. Some programs in the benchmark are not included in our
experiments since the CFG construction engine (from Chronos [122]) used in our
prototype does not support programs with particular structures like recursion and
switch-case very well. The loop bounds in the programs that cannot be automatically
inferred by the CFG construction engine are manually set to be 50. The size of these
programs used in our experiments ranges from several tens to about 4000 lines of
C code, or from several tens to about 8000 assembly instructions compiled by a
gcc compiler re-targeted to the SimpleScaler simulator [123] with �O0 option (no
optimization is allowed in the compilation).

Since the benchmark programs have been compiled by a gcc compiler re-targeted
to SimpleScalar, a straightforward way of doing the simulation is to execute the
compiled binary on SimpleScalar (configured and modified to match our hardware
configuration). However, the comparison between the measured execution time
by this approach and the estimated WCET may be meaningless to evaluate the
quality of our MRU analysis since (a) simulations may only cover program paths
that are much “shorter” than the actual worst-case path, and (b) the precision of
the estimated WCET also depends on other factors, e.g., the tightness of the loop
bounds, which is out of the interest of this chapter. In other words, the estimated
WCET can be always significantly larger than the measured execution time obtained
by the above approach, regardless the quality of the cache analysis.
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In order to provide meaningful quality evaluation of our MRU cache analysis,
we built an in-house simulator, which is driven by the worst-case path information
extracted from the solution of the IPET ILP formulation and only simulates the
cache update upon each instruction. This enables us to get closer to the worst-case
path in the simulation and exclude effects of other factors orthogonal to the cache
behavior. Note that the solution of the IPET ILP formulation only restricts how many
times a basic block executes on the worst-case path, which allows the flexibility of
arbitrarily choosing among branches as long as the execution counts of basic blocks
still comply with the ILP solution. In order to obtain execution paths that are as close
to the worst-case path as possible, our simulator always takes different branches
alternatively which leads to more cache misses. The manual and source code of the
simulator are online available [124].

2.6.2 Results and Discussions

Tables 2.1 and 2.2 show the simulation and analysis results with 4-way caches. In
simulation with each cache, for each program we record the measured execution
time (column “sim. WCET”) and the number of hits and misses. In the analysis
with each cache, for each program we record the estimated WCET (column “est.
WCET”) and the number of memory accesses that can and cannot be classified as hit
(column “hit” and “miss”) respectively. We calculate the over-estimation ratio of the
LRU and MRU analysis respectively (column “over est.”). For example, the “sim.
WCET” and “est. WCET” of program bs under LRU is 3911 and 3947, respectively,
then the over-estimation ratio is .3947 � 3911/=3911 D 0:92 %. Finally, we
calculate the excess ratio of MRU analysis over LRU analysis (column “exc. LRU”).
For example, the estimated WCET of program bs under LRU and MRU is 3947 and
4089, respectively, then the excess ratio is .4089 � 3947/=3947 D 3:60 %.

The results show that the WCET estimation with our MRU analysis has very
good precision: the over-estimation comparing with the simulation WCET is on
average 2:06 %. We can also see that the estimated WCETs with MRU and LRU
caches are very close: the difference is 1:17 % on average.

For several benchmark programs, the simulated WCETs are exactly the same
under LRU and MRU. The reason is that MRU is designed to imitate the LRU
policy with a cheaper hardware logic. In some cases, the cache miss/hit behavior
under MRU could be exactly the same as that under LRU, and thereby we may
obtain exactly the same simulated WCET with MRU and LRU for some programs.
Moreover, the total number of memory accesses in the simulation may be different
with two policies for the same program. This is because our simulator simulates the
program execution with each policy according to the “worst-case” path information
obtained from the solution of the corresponding ILP formula for WCET calculation.
Sometimes, the ILP solutions with these two policies may correspond to different
paths in the program, which may lead to different total numbers of memory accesses.
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Then we conduct experiments with 8-way and 16-way caches (with the same
total cache size but different number of cache sets). Note that it is rare to see set-
associative caches with more than 16 ways in embedded systems, since a large
number of ways significantly increase hardware cost and timing delay but brings
little performance benefit [81]. So we did not conduct experiments with caches with
more than 16 ways. Figure 2.10 summarizes the results with 8-way and 16-way
caches, where the WCETs are normalized as the ratio versus the simulation results

Fig. 2.10 Experiment results with 8-way and 16-way caches. (a) 8-way caches, (b) 16-way caches
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under LRU. The over-estimation by our MRU analysis is 4.59 and 9.81 % for 8-way
and 16-way caches, respectively, and the difference between the MRU and LRU
analysis is 3:56 and 8:38 %. Overall, our MRU analysis still provides quite good
precision on 8-way and 16-way caches.

We observe that for most programs the over-estimation ratio of the WCET by our
MRU analysis scales about linearly with respect to the number of ways, the reason
of which can be explained as follows. The k times of misses of k-Miss nodes is
merely a theoretical bound for extreme worst-cases. In the simulation experiments,
we observe that it hardly happens that a k-Miss node really encounters k times
of misses. Most k-Miss nodes actually only incur one miss and exhibit similar
behavior to FM nodes under LRU. For example, suppose a loop that contains k
nodes accessing different memory blocks executes with k-way caches. Under LRU,
the maximal ages of these nodes are all k, so our MRU analysis will be classified
each of these nodes as k-Miss, and k � k D k2 misses have to be taken into account
for the WCET estimation. However, in the simulation these k nodes can be entirely
fit into the cache, and each of them typically only incurs one miss, so the number of
misses reflected in the simulation WCET is typically k, which is k times smaller than
that claimed by the analysis. So the ratio of over-estimated misses increases linearly
with respect to the number of cache ways, and thus the over-estimation ratio in terms
of WCET also scales about linearly with respect to the number of cache ways.

In the above experiments, while our MRU analysis has a precision close to that of
LRU analysis for most programs, it obtains relatively worse performance for several
programs (bs, edn, ndes, prime, qurt, and sqrt). While various program structures
may lead to pessimism in our MRU analysis, there is a common reason behind that
phenomenon, which can be explained as follows. The precision of our MRU analysis
is sensitive to the ratio between the k value of k-Miss nodes and the number of times
for which the loops containing these nodes iterate. For example, suppose a node is
classified as 6-Miss with respect to a loop under MRU. If this loop iterates for 10

times, then the total execution cost of this node is estimated by 11�6C2�4 D 74,
where 11 is the execution cost upon a miss, 6 is the number of misses of this node,
2 is the execution cost upon a cache hit, and 4 is the number of hits of this node. On
the other hand, this node is an FM with respect to the same loop under LRU, and
the total execution cost is 11� 1C 2� 9 D 29. The estimated execution cost under
MRU is about 2:5 times of that under LRU. However, if this loop iterates for 100

times, the total execution cost of this node under MRU is 11 � 6C 2 � 94 D 254,
which is only 1:2 times of that under LRU (11 � 1 C 2 � 99 D 209). The high
precision of our MRU analysis relies on the big amount of hits predicted by k-Miss.
If a program contains many k-Miss nodes with comparatively large k values but
iterates for a small number of times, the estimated WCET by our MRU analysis
is less precise. This implies that, from the predictability perspective, MRU caches
are more suitable for programs with relatively “small” loops that iterate for a great
amount of times, e.g., with large loop bounds or nested-loops inside.

Figure 2.11 shows comparisons among the LRU analysis, the state-of-the-art
MRU analysis (competitiveness analysis) and our k-Miss-based MRU analysis with
various combinations of different optimization. Each column in the figure represents
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Fig. 2.11 Comparison of different analyses

the normalized WCET (the ratio versus the simulated WCET under LRU) averaged
over all benchmark programs. With each cache setting, the first two columns are
simulations, the next 4 columns are analyses with nested-loop optimization, and the
last 4 columns are analyses without nested-loop optimization:

• s-LRU: Simulated WCET under LRU.
• s-MRU: Simulated WCET under MRU.
• e-LRU: Estimated WCET under LRU.
• e-MRU: Estimated WCET under MRU by the analysis in this paper.
• e-MRU-nc: Estimated WCET under MRU by the analysis in this chapter, but

excludes the competitiveness analysis optimization.
• e-MRU-comp: Estimated WCET under MRU only by competitiveness analysis,

which is the state-of-the-art MRU analysis before our k-Miss-based analysis.
• e-LRU�: Estimated WCET under LRU but excludes the nested-loop optimiza-

tion.
• e-MRU�: Estimated WCET under MRU by the analysis in this paper but

excludes the nested-loop optimization.
• e-MRU-rtas: Estimated WCET under MRU by the analysis in the previous

conference version of this work [22].
• e-MRU-comp�: Estimated WCET under MRU only by competitiveness analysis,

but excludes the nested-loop optimization.

By comparing e-MRU with e-MRU-comp we can see that our new MRU
analysis greatly improves the precision over the state-of-the-art technique for MRU
analysis (competitiveness analysis), and the improvement is more significant as the
number of cache ways increases. Recall that the competitiveness analysis relies on
the analysis results for the same program with a 2-way LRU cache (with the number
of cache sets unchanged, and thus the cache size scaled down to 2

L of the original
L-way cache), so its results are more pessimistic when L is larger.

By the comparison among e-MRU, e-MRU-nc, e-MRU�, and e-MRU-rtas we
can see that both the competitiveness analysis and nested-loop optimization help to
improve our MRU analysis precision. However, the contribution by the nested-loop
optimization is much more significant.
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By comparing columns 3–6 with columns 7–10 we see that in general adding
nested-loop optimization can significantly improve the analysis precision. The only
exception is e-MRU-comp with more cache ways (thus less cache sets, as we keep
the total cache size unchanged), where even the memory blocks mapped to one
cache set in an inner loop are too many to fit into 2 cache ways.

By comparing e-MRU with e-LRU and comparing e-MRU-rtas with e-LRU�,
we can see that the nested-loop optimization, which greatly affects the precision of
each analysis, does not significantly affect the ratio between the estimated WCET
under LRU and MRU. This is because our MRU analysis directly uses the LRU
analysis results to find k-Miss nodes. With a more precise LRU analysis, our MRU
analysis also becomes correspondingly more precise. This is why do this paper and
its earlier conference version [22] draw similar conclusions about the precipitability
comparison between LRU and MRU, although the analysis results in them are
different.

We also evaluate the efficiency of our analysis. As presented in previous sections,
our MRU analysis only requires to do the LRU cache analysis once to infer all the
cache access classifications, so the MRU cache analysis procedure is as efficient
as the state-of-the-art LRU cache analysis based on abstract interpretation. The
interesting problem is the efficiency of the IPET-based path analysis, where more
variables are used to support the constraints for k-Miss nodes. We solve the ILP
formulation with an open source solver lp_solve [125] on a desktop machine with a
3.4 GHZ Core i7 2600 processor. The ILP formulation can be solved very efficiently:
the calculation for each program takes on average 0:1 s and at most 0:8 s.

In summary, the experiment results show that our MRU analysis has both good
precision and high efficiency. The estimated WCET by our MRU analysis is quite
close to that by LRU analysis under common hardware setting, which indicates that
MRU is a good candidate for cache replacement policies in real-time embedded
systems, especially considering MRU’s other advantages in hardware, power, and
thermal efficiency.

2.7 Conclusions

This chapter studies the problem of WCET analysis with MRU caches. MRU was
considered to be a very unpredictable replacement policy in the past, due to the lack
of effective techniques to predict its hit/miss behavior. In this chapter, we disclose
important properties of MRU, and develop efficient techniques to precisely bound
the number of misses and thereby support high-quality WCET estimations with
MRU caches. Experiments with benchmark programs indicate that the estimated
WCET with MRU caches is rather close to that with LRU. This suggests a great
potential for MRU to be used as the cache replacement policy in real-time embedded
systems, especially considering the MRU’s advantages in better cost, power, and
thermal efficiency.
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The experiments in this chapter only consider instruction caches. The reason is
that our WCET analysis prototype does not support high-quality value analysis, so
currently we cannot provide a meaningful evaluation with data caches. However,
the properties of MRU disclosed in this chapter also hold for data caches, and our
proposed analysis techniques can be directly applied to MRU data caches.



Chapter 3
FIFO Cache Analysis for WCET Estimation

Although most previous work in cache analysis for WCET estimation assumes the
LRU replacement policy, in practice more processors use simpler non-LRU policies
for lower cost, power consumption, and thermal output. This chapter focuses on the
analysis of FIFO, one of the most widely used cache replacement policies. Previous
analysis techniques for FIFO caches are based on the same framework as for LRU
caches using qualitative always-hit/always-miss classifications. This approach,
though works well for LRU caches, is not suitable to analyze FIFO and usually
leads to poor WCET estimation quality. In this chapter, we propose a quantitative
approach for FIFO cache analysis. Roughly speaking, the proposed quantitative
analysis derives an upper bound on the “miss ratio” of an instruction (set), which
can better capture the FIFO cache behavior and support more accurate WCET
estimations. Experiments with benchmarks show that our proposed quantitative
FIFO analysis can drastically improve the WCET estimation accuracy over previous
techniques (the average over-estimation ratio is reduced from around 70 to 10 %
under typical setting).

3.1 Introduction

A fundamental problem in the design and analysis of hard real-time systems is to
bound the worst-case execution time (WCET) of programs [4]. To derive safe and
tight WCET bounds, the analysis must take into account the cache architecture of
the target processor. However, the cache analysis problem of statically determining
whether each memory access is a hit or a miss is a challenging problem.

In the last two decades, precise and efficient analysis techniques have been
developed for caches with a particular replacement policy, LRU (Least-Recently-
Used). In contrast, less work has been done for other policies like MRU [97], FIFO
[21], and PLRU [96]. However, in practice it is more common for commercial
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processors to use non-LRU caches, which are simpler in hardware implementation
but still have almost as good average-case performance as LRU [82]. Therefore,
hardware manufacturers tend to choose these non-LRU policies, especially for
embedded processors that are subject to strict cost, power, and thermal constraints.

This chapter studies the analysis of FIFO (First-In-First-Out), a cache replace-
ment policy that is widely adopted in processor architectures like Intel XScale,
ARM9, ARM11 [26]. The FIFO policy is very simple, but analyzing it is much
harder than analyzing LRU. The state-of-the-art cache analysis techniques for
WCET estimation are based on qualitative memory access classifications: to
determine whether the memory accesses related to a particular instruction are
always hits or always misses. Such an approach is highly effective for LRU caches
since most instructions under LRU indeed exhibit such a “black or white” behavior.
However, many instructions under FIFO exhibit a more nuanced behavior: a portion
of the accesses are misses while all the other accesses are hits (e.g., at most
1=3 of the accesses are misses). By existing analysis techniques based on the
qualitative classification, such a behavior has to be treated as if these accesses are all
misses, which inherently leads to very pessimistic analysis results. Recently, Grund
and Reineke have developed FIFO analysis techniques based on the qualitative
classification [21, 28]. Although their techniques are rather sophisticated, the
derived WCET bounds are still grossly over-pessimistic (as shown in Sect. 3.6).

In this chapter we propose a quantitative approach to analyze FIFO caches,
by which we can better capture the FIFO cache behavior and thus obtain much
tighter WCET bounds for common programs. The proposed analysis derives an
upper bound on the number of misses an instruction (set) may encounter through the
whole program execution. As an efficient implementation, we use the cache analysis
results of the same program under LRU replacement to derive the quantitative miss
bound under FIFO replacement. Therefore, our technique inherits the advantages in
efficiency and precision from the state-of-the-art LRU analysis techniques based on
abstract interpretation [19].

The proposed analysis is based on a general metric miss distance of the
underlying cache, and thus applies to any replacement policy as long as the miss
distance of the underlying cache is known. The miss distance metric also enables
an efficient persistence analysis to determine instructions that only encounter a cold
miss but will always be hits afterwards, which further improves the overall analysis
precision.

We have conducted experiments with benchmark programs on instruction caches
to evaluate the quality of our proposed analysis. Experiments show that the
estimated WCET by our FIFO analysis is much tighter than previous techniques
(the average over-estimation ratio is reduced from around 70 to 10 % under typical
setting), while still maintaining good analysis efficiency.
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3.1.1 Relation to Previous Work

Although the always-hit/always-miss classification approach is dominating in previ-
ous work on cache analysis for WCET estimation [4, 126], recently there also have
been a couple of work towards the direction of quantitative cache analysis. Reineke
and Grund [101] studied the relative competitiveness between different policies by
providing upper (lower) bounds of the ratio on the number of misses (hits) between
two different replacement policies during the whole program execution. By this,
one can use cache analysis results under one replacement policy to predict the
number of cache misses (hits) of the same program under another policy. This
approach differs from our proposed quantitative cache analysis in several ways:
Firstly, while the relative competitiveness approach provides bounds on the number
of misses of the whole program, our quantitative cache analysis bounds the number
of misses at individual program points. Secondly, while the relative competitiveness
computation suffers scalability problems and thus does not cover cases with great
number of ways, our analysis can efficiently deal with large caches. Thirdly, the miss
(hit) bounds derived by the relative competitiveness is universal to all programs and
thus is much more pessimistic than our quantitative cache analysis in analyzing a
concrete program.

3.2 Preliminaries

3.2.1 Basic Concepts

For simplicity of presentation, we assume a fully-associative cache. However, the
analysis techniques of this chapter are directly applicable to set-associative caches,
since the accesses to memory references mapped to different cache sets do not
affect each other, and each cache set can be treated as a fully-associative cache and
analyzed independently. The memory content that fits into one cache line is called a
block.

Since this work focuses on the cache behavior, we do not consider the timing
effect of other components in the processor (e.g., pipeline and memory controller),
but assume the execution delay of each instruction only differs depending on
whether the cache access is a hit or a miss.

The program can be represented by a control-flow graph (CFG) G D .N; E/,
where N D fn1; n2; � � � g is the set of nodes, and E D fe1; e2; � � � g is the set of directed
edges. A loop L in the CFG is a strongly connected subgraph of G. Note that here
we only provide a simple definition of the CFG and loops since the proposed cache
analysis does not rely on any particular CFG or loop structure. In Sect. 3.5 we will
redefine these definitions for the presentation of path analysis.
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At run-time, when (a node of) the program accesses a block, the processor first
checks whether the block is in the cache. If yes, it is a hit, and the program directly
accesses this block from the cache. Otherwise, it is a miss, and this block is first
installed in the cache before the program accesses it.

A block occupies only one cache line regardless how many times it is accessed.
So the number of different blocks in an access sequence is important to the cache
behavior. We use the following concept to reflect this:

Definition 3.1 (Stack Length). The stack length of an access sequence corre-
sponding to a path p in the CFG, denoted by �.p/, is the number of different blocks
accessed along p.

For example, the stack length of access sequence “a ! b ! c ! a ! b” is 3,
since only a, b, and c are accessed.

3.2.2 LRU and FIFO

The cache update rule of LRU and FIFO is the same upon misses: when the program
accesses a block ı that is not in the cache, all the blocks in the cache will be shifted
one position to the next cache line (the block in the last cache line is removed from
the cache), and ı is installed to the first cache line.

LRU and FIFO only differ in their update rules upon hits. Let the program access
a block ı that is already in the cache. In LRU caches, ı is moved to the first cache line
and all blocks that were stored before ı’s old position will be shifted one position
to the next cache line. In FIFO caches, ı stays at the original position and thus
the whole cache keeps unchanged. Figure 3.1 illustrates the cache update upon an
access to block ı on a 4-way LRU and FIFO cache, respectively.

3.2.3 LRU Cache Analysis

As mentioned in Sect. 3.1, our quantitative FIFO analysis uses the analysis results
of the same program under LRU to infer the cache behavior under FIFO. Thus, we
provide a brief review of the state-of-the-art LRU cache analysis technique.

Fig. 3.1 Illustration of LRU and FIFO replacement
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WCET estimation with precise cache analysis suffers from serious state-space
explosion, so people resort to approximation techniques separating path analysis
based on IPET (Implicit Path Enumeration Techniques) and cache analysis based
on AI (Abstract Interpretation) for good scalability [19]. The AI-based LRU cache
analysis uses three fix-point analyses on the abstract cache domain:

• Must analysis determines if the accesses of a node are always hits (AH);
• May analysis determines if the accesses of a node are always misses (AM);
• Persistence analysis determines if a node will at most encounter a cold miss and

afterwards will be always-hit when the program executes inside a particular loop;
the classification of such nodes is first-miss (FM) regarding the corresponding
loop.

If a node is not determined by any of the above analyses, then it is classified as not-
classified (NC). Under the problem model assumption of this chapter, NC nodes
are treated in the same way as AM in the path analysis to calculate safe WCET
bounds. We refer to the references [19, 106, 107, 110] for details about these fix-
point analyses.

3.3 A New Metric: Miss Distance

This section introduces a general metric miss distance, which will be useful to
establish the quantitative FIFO cache analysis in the next section. Before formally
introducing the miss distance, we first use the following example to motivate why
it is an interesting metric relevant to the timing predictability of cache replacement
policies:

Given a loop accessing K blocks and a K-way cache. Since the whole loop can
be fit into the cache, there is a strong intuition to claim the property that each node
in the loop is FM regarding this loop. However, this is not always true. It depends on
the underlying replacement policy: it holds for many policies including LRU, MRU,
and FIFO, but not for others including PLRU.

This property is attractive since it enables a very efficient Persistence analysis
by only counting the number of different blocks accessed in a loop. Since a program
typically spends most of its execution time in loops, this property is highly relevant
to the timing analysis of the whole program. Therefore, it is interesting to ask the
following questions: What is the essence for a cache replacement policy to have this
property? If it does not hold under a given policy, would it be true for a smaller
loop? If yes, what is the upper limit of the loop size? Unfortunately, the existing
cache replacement predictability metrics [26] cannot answer these questions.

Now we formally introduce the new metric miss distance:

Definition 3.2 (Miss Distance). The miss distance of a cache is the minimal
number of different blocks being accessed between any pair of consecutive cache
misses on the same block.
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By examining the FIFO rule, it is easy to know:

Lemma 3.1. The miss distance of a K-way FIFO cache is K.

Proof. A block is installed to the first cache line upon a miss, and other K blocks
need to be accessed to evict it.

The miss distance is K for a K-way LRU or MRU cache, and is log2K C 1 for a
K-way PLRU cache (proof omitted). LRU, MRU, and FIFO are optimal regarding
this metric:

Lemma 3.2. The miss distance of a K-way cache with any replacement policy is
no larger than K.

Proof. Assume a K-way cache with miss distance K0 > K. Given a loop accessing
K0 different blocks, by Lemma 3.3 each of these blocks only encounters a cold miss
and then be always hits when the program iterates inside the loop. However, this is
impossible since a K-way cache cannot store more than K blocks at the same time.

With this new metric, we can answer the above questions:

Lemma 3.3. Given a cache with miss distance X, and a loop L in which the number
of different blocks is no larger than X. Any block in L encounters at most one miss
(the cold miss) every time when the program executes inside L.

Proof. Since the miss distance of the underlying cache is X, after the cold miss of a
block ı, at least X other different blocks are needed for the next miss on ı to happen.
However, this is impossible when the program executes inside the loop L since it
does not contain enough blocks.

Thus we have obtained a very efficient Persistence analysis: Given a K-way
FIFO (LRU, MRU) cache, if the total number of different blocks accessed in loop
L is no larger than K, then all the nodes are FM regarding L. Similarly all the nodes
in a loop accessing at most log2K C 1 different blocks are FM regarding this loop
on a K-way PLRU cache.

3.4 Quantitative FIFO Analysis

The idea behind the quantitative FIFO cache analysis is fairly simple. Consider the
following access sequence:

ı ! a! b! ı ! c! d! ı ! e! f ! g! ı ! h! i! ı

Suppose the underlying FIFO cache has four ways, then by Lemmas 3.3 and 3.1
we know that for any pair of consecutive misses to ı there are at least 4 different
blocks accessed in between. In the above sequence, if the first access to ı is a miss,
then the second one must be a hit since only 2 blocks are accessed in between.
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One can see that at most 3 out of the total 5 accesses to ı are misses. For any
memory access sequence, one can calculate an upper bound on the misses for each
block. However, there are exponentially many paths in the CFG and it is infeasible
to do the above analysis for each individual path. In the following, we will show
how to do the quantitative analysis in the context of the CFG structure, and in
the next section the analysis result will be integrated into the IPET framework to
efficiently calculate a WCET bound of the whole program. First define the maximal
stack distance between two nodes accessing the same block in the scope of a certain
loop:

Definition 3.3 (Maximal Stack Distance). Let ni and nj be nodes in loop L
accessing the same block ı (ni and nj may be the same node). The maximal stack
distance from ni to nj regarding loop L, denoted by distL.ni; nj/, is defined as:

distL.ni; nj/ D
�

maxf�.p/jp 2 PL.ni; nj/g if PL.ni; nj/ ¤ ;
0 otherwise

where PL.ni; nj/ is the set of paths satisfying:

• All nodes along the path are included in loop L;
• ni (nj) is the first (last) node of the path;
• No other nodes in the path, besides ni and nj, access ı.

Figure 3.2 illustrates the maximal stack distance related to block ı with an inner loop
Lin and an outer loop Lout, respectively. For example, we have distLin.n6; n6/ D 3

since a “longest” path from n6 back to n6 in the scope of Lin accesses 3 different
blocks (n6 ! n3 ! n5 ! n6), while distLout .n6; n6/ D 6 since the “longest” path in
the scope of Lout accesses 6 different blocks (n6 ! n9 ! n2 ! n7 ! n9 ! n2 !
n3 ! n5 ! n6).

Lemma 3.4. Given a cache with miss distance K. Let � be the set of nodes in a
loop L accessing block ı, and it holds

Fig. 3.2 A CFG example. The letter inside each circle denotes the block accessed by this node
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8ni; nj 2 � W distL.ni; nj/ � ` (3.1)

where ` is a positive integer no larger than K. Then the total number of misses for
nodes in � is bounded by:

b� � xc C y (3.2)

where � D 1= .1C b.K � 1/=.` � 1/c/, x is the total number of executions of nodes
in � and y is the total number of times the program enters loop L during the whole
program execution.

Proof. The first step is to prove there are at least b.K � 1/=.`� 1/c hits by nodes in
� between any pair of consecutive misses for nodes in �. Since the miss distance
of the underlying cache is K, after a miss of ı, at least K different blocks need to
be accessed in order to evict ı from the cache. In other words, all the accesses to ı

are hits, as long as the number of different blocks have been accessed after the first
miss to ı does not exceed K � 1. By (3.1) we know that when the program executes
inside loop L, the number of different blocks accessed between any two consecutive
accesses to ı (not including ı) is at most ` � 1. So ı will be accessed for at least
b.K � 1/=.` � 1/c times before it is evicted from the cache.

The program enters loop L for y times. We use xm (1 � m � y) to denote how
many times ı is accessed when the program for the mth time enters and executes
inside L. Above, we have proved there are at least b.K � 1/=.` � 1/c hits by nodes
in � between any pair of consecutive misses for nodes in �, so the total number of
misses among these xm accesses to ı can be bounded by:

1C bxm= .1C b.K � 1/=.` � 1/c/c

Summing up this for each xm we get an upper bound on the total number of misses
for nodes in �:

yC
yX

iD1

bxm= .1C b.K � 1/=.` � 1/c/c

By the general inequality property
�

a
c

˘C�
b
c

˘ � �
aCb

c

˘
and

Py
iD1 xm D x, the above

expression is bounded by (3.2).

Intuitively speaking, Lemma 3.4 implies a “ratio” � of the misses over all the
accesses by a set of nodes when the program iterates inside a loop. We call such
a node set a � -set regarding L. Note that a node may be included by several � -
sets regarding different loops and different � values. For example, suppose the CFG
in Fig. 3.2 is executed with a cache of miss distance 8, then n6 is included in a
singleton 1

4
-set regarding Lin (� D 1= .1C b.8 � 1/=.3 � 1/c/ D 1=4), as well as a

1
2
-set fn6; n8g regarding Lout (� D 1= .1C b.8 � 1/=.6 � 1/c/ D 1=2).
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To use Lemma 3.4, one needs to compute the maximal stack distance distL./. In
general, the time complexity of computing distL./ is at least exponential regarding
the number of cache ways,1 so we need efficient approximation to handle real-life-
size problems. Actually, computing distL./ is exactly the essential problem to solve
in the analysis of LRU caches. Therefore, we can use the over-approximate AI-based
LRU analysis introduced in Sect. 3.2.3 to efficiently bound distL./.

Lemma 3.5. Given a `-way LRU cache. Let � be the set of nodes in a loop L
accessing block ı. If all the nodes in � are classified as AH or FM regarding L by
the cache analysis, then it must hold:

8ni; nj 2 � W distL.ni; nj/ � ` (3.3)

Proof. Prove by contradiction. Assume two nodes ni and nj in S have distL.ni; nj/

> `. Then by the definition of distL.ni; nj/ there is at least one path from ni to nj

inside L has stack length larger than `. Now suppose this particular path is always
taken when the program iterates inside the loop, then nj will always encounter
misses. This contradicts that the cache analysis claims that nj is miss for at most
once when the program executes inside this loop.

Now combining Lemmas 3.1, 3.4 and 3.5, we obtain the main result of this
section:

Theorem 3.1. Let � be the set of nodes in a loop L accessing block ı. If all the
nodes in � are classified as AH or FM regarding L by a safe analysis on an `-way
LRU cache, then the total number of misses for nodes in � on a K-way FIFO cache
is bounded by:

b� � xc C y

where � D 1= .1C b.K � 1/=.` � 1/c/, x is the total number of executions of nodes
in � and y is the total number of times the program enters loop L during the whole
program execution.

Since � is non-decreasing with respect to `, we want to find the minimal ` such
that all nodes in � are classified as AH or FM regarding L under LRU in order
to minimize the “miss ratio.” To do this, we actually only need to conduct the LRU
cache analysis once with a K-way cache. This is because the Must and Persistence
analysis for LRU maintains the information about the maximal age of a block at
certain point in the CFG (when the program executes in a certain loop), which can
be directly transferred to the analysis result with any LRU cache of size smaller than
K. For example, suppose in the Must analysis with an 8-way LRU cache, a block

1This can be shown by a reduction from the well-known 3-SAT problem, the details of which are
omitted due to the space limit.
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ı has maximal age of 4 before the execution of a node accessing ı, then by the
Must analysis with a 4-way LRU cache this node will be classified as AH. We will
not recite the LRU Must and Persistence analysis details, neither explain how the
age information is maintained in the analysis procedure. Interested readers can find
details in the references [106, 107, 110].

3.5 Computation of WCET Bounds

In this section we introduce how to integrate the quantitative FIFO cache analysis
results from the last section into IPET to efficiently compute a WCET bound of the
analyzed program. First redefine the CFG on the basis of basic blocks:

Definition 3.4 (CFG). A CFG is a tuple G D .B; E; bst/:

• B D fb1; b2; � � � g is the set of basic blocks in the CFG;
• E D fe1; e2; � � � g is the set of directed edges connecting the basic blocks in the

CFG;
• bst 2 B is the unique starting basic block of the CFG.

As a common restriction in structured programming [127], we assume each loop
contains a single head basic block, and the program can jump into the loop by
reaching the head basic block via some entry edges. The loop bound restricts the
maximal times the loop iterates every time the program enters it. The head basic
block tests whether the loop condition is satisfied. If yes, the program continues
to execute the body basic blocks, which are the basic blocks in the loop excluding
the head basic block, otherwise the program exists the loop. Formally, a loop is
defined as:

Definition 3.5 (Loop). A loop in the CFG is represented by a tuple Ll D
.entrl; headl; bodyl; lpbl/ with:

• entrl: the set of entry edges of the loop;
• headl: the head basic block of the loop;
• bodyl: the set of all body basic blocks of the loop;
• lpbl: the loop bound.

The overall FIFO cache analysis results can be summarized as follows: AH
nodes decided by the Must analysis in [21, 28], FM nodes (regarding some loop)
decided according to Lemma 3.3, and � -sets (regarding some loop) determined by
Theorem 3.1. Finally, the nodes that do not belong to any of the above classification
are treated as AM. Note that if a node ni is FM regarding loop L, the number of
misses with ni is bounded by the number of times the program enters this loop, so
fnig can be viewed as a special case of � -set with � D 0 [the bound (3.2)] becomes
yC b0 � xc D y). For simplicity of presentation, in the following we use term � -set
to include both the original ones derived by Theorem 3.1 and the FM singleton sets
with � D 0.
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The standard IPET for WCET computation with LRU caches is encoded as an
ILP (Integer Linear Programming) problem. Since our FIFO cache analysis results
involve non-integers (miss ratio � ), we encode the IPET for FIFO cache as an
MILP (Mixed-Integer Linear Programming) problem. The constants used in MILP
formulation include Ch (the execution delay of each node upon a cache hit), Cm (the
execution delay of each node upon a cache miss), and the miss ratio � for each � -set.

The formulation uses the following non-negative variables:

• ca: for each ba, ca is ba’s total execution cost,
• xa: for each ba, xa is the execution count of ba,
• yj: for each edge ej, yj counts how many times this edge is taken during the whole

execution,
• zi: for each node ni included in some � -set, zi counts how many times ni executes

as cache misses.

The following maximization object is a safe WCET bound of the analyzed
program:

Maximize

8
<

:
X

all ba

ca

9
=

;

The following constraints are respected to bound the object.
Cost Constraints: The overall delay of an AH (AM) node ni in ba is simply Ch �xa

(Cm � xa). The remaining nodes are the ones included in some � -set (including FM
nodes as stated above). For each of such nodes ni, we use variables zi (s.t. zi � xa)
to denote the execution count of ni with cache accesses being misses. So the overall
delay of such a node ni is Cm � zi C Ch � .xa � zi/. Putting the above discussions
together, we have the total execution cost of each basic block:

8ba W ca D.�ahCh C �amCm/ � xa C
X

ni2b�

a

�
zi � Cm C .xa � zi/ � Ch

�

where �ah and �am is the number of AH and AM nodes in ba, respectively, and b�a is
the set of nodes in ba that are involved in some � -set.

� -Set Constraints: The total number of misses for nodes in a � -set regarding a
loop Ll is bounded by b� � xcC y, where x is the total number of executions of nodes
in this � -set and y is the total number of times the program enters Ll. So we can
bound the number of misses incurred by a � -set:

8.S;Ll/ s.t. S is a � -set regarding Ll W
X

ni2S

zi �
X

ej2entrl

yj C
X

ni2S

bxa � �c

where entrl is the set of entry edges of Ll and yj to denote how many times an edge
ej 2 entrl is taken during the whole program execution. Recall that a node may be
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contained by multiple � -sets, so each zi may be involved in several of the above
constraints.

Structure Constraints: The same as in the standard encoding of IPET with LRU
caches [19].

3.6 Experimental Evaluation

We assume the execution delay of each node only differs depending on whether the
cache access is a hit or a miss: all instructions have the same execution delay of 1

cycle, the memory access penalty is 1 cycle upon a cache hit and 10 cycles upon
a cache miss. Each instruction is 8 bytes, and each block (cache line) is 16 bytes
(i.e., each block contains two instructions). The programs used in the experiments
are from the Mälardalen Real-Time Benchmark [121]. Some loop bounds cannot be
automatically inferred, which are manually set to be 50. The size of these programs
used in our experiments ranges from several tens to about 4000 lines of C code, or
from several tens to about 8000 assembly instructions compiled by a gcc compiler
re-targeted to the SimpleScalar [123] with -o0 option.

Simulation experiments are conducted with our in-house simulator, which is
driven by the worst-case path information extracted from the solution of the MILP
formulation. This approach can exclude the effects of other factors orthogonal to
the cache behavior (e.g., the tightness of loop bounds), by which we can better
evaluate the quality of the cache analysis itself than using traditional full-processor
simulations. The solution of the MILP formulation only restricts how many times
a basic block executes on the worst-case path, which allows the flexibility of
arbitrarily choosing upon branches as long as the execution counts of basic blocks
still comply with the MILP solution. In order to obtain execution paths that are
as close to the worst-case path as possible, our simulator always takes different
branches alternatively which leads to more cache misses.

Figure 3.3 shows the WCET estimations with a 0:5 K 4-way FIFO cache by the
analysis of this work and Grund and Reineke’s Must analyses [21, 28] (a node is

Fig. 3.3 Experiment results with a 0.5 K 4-way cache
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classified as AH if it is determined by one of these two analyses). The must analyses
in [21, 28] can only determine AH nodes. However, for a more fair comparison,
we integrate these two must analyses with the VIVU technique [19] and thus
they can also be used to determine FM nodes. The x-axis of the figure represents
different benchmark programs (the last group is the average over all programs),
and the y-axis is the normalized WCET estimation (the ratio between the WCET
estimation and the execution time obtained by simulation). For most programs,
the WCET estimation with our quantitative analysis is very close to simulation
results: the normalized WCET estimation is on average 110:3 %. In contrast, the
WCET estimation by Grund and Reineke’s Must analysis is grossly pessimistic: the
normalized WCET estimation is on average 171:8 %. In other words, by our new
analysis, the over-estimation ratio is reduced from 71:8 to 10:3 %.

We also conducted experiments with various configurations: the cache size is
0:5 K, 1 K, or 2 K; the number of ways is 4, 8, 16, or 32 (the number of sets
changes correspondingly, resulting in 12 different configurations). These experi-
ments showed that our analysis is even more accurate with a greater cache size
and/or a large number of cache ways, while the quality of Grund and Reineke’s
Must analysis is similar under different configurations. Detailed result figures with
different configurations are omitted due to space limit.

Our FIFO analysis uses the analysis results of the same program under LRU
to derive the quantitative guarantee, and thus is as efficient as the state-of-the-art
LRU cache analysis based on abstract interpretation. The IPET with our quantitative
FIFO analysis is encoded as an MILP problem and uses a greater number of
variables, thus in general takes more time to solve than the standard ILP formulation
in previous LRU analysis. However, some pragmatic optimizations in the MILP
encoding are possible to improve the efficiency of the MILP solver performance.2

Experiments showed that this approach has a good analysis efficiency with the
benchmark programs in use. We solved the MILP formulation by lp_solve [128] on
a laptop with an Intel Core i7 CPU (2.7 GHZ). The computation for each program
takes at most several seconds.

3.7 Discussion and Conclusion

This chapter presented a quantitative approach for FIFO cache analysis. Unlike the
previous standard cache analysis methods based on qualitative AH/AM classifica-
tion, this new approach quantitatively bounds the number of misses caused by an
instruction (set) during the whole program execution. Experiments with benchmark
programs showed that the proposed analysis can significantly improve the WCET
estimation accuracy over previous techniques while still maintains good efficiency.

2The idea is to group as many nodes with the same �-set characterization into “blocks,” to reduce
the number of variables used in the MILP encoding.
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Although the quantitative analysis approach supports a significantly better
precision in predicting the number of cache hits/misses, we would like to point out
that the guarantee provided by qualitative analysis is stronger and has the benefit of,
e.g., being easier to be integrated in the analysis of architectures that are not fully
timing-compositional [27]. Therefore, the next step of our work is to study how to
integrate the quantitative cache analysis with the analysis of other components in the
processor (e.g., pipelines). We also plan to evaluate the scalability of the proposed
analysis with large-scale programs, and extend to multi-level caches and another
widely used policy PLRU [23].

Appendix: The Complete IPET Formulation

We first introduce the loop structures adopted in our ILP encoding. As a common
restriction in structured programming [127], we assume each loop contains a single
head basic block, and the program can jump into the loop by reaching the head
basic block via some entry edges. The loop bound restricts the maximal times the
program iterates every time it enters the loop. The head basic block tests whether
the loop condition is satisfied (e.g., the loop bound has not been reached). If the
loop condition is satisfied, the program continues to execute the body basic blocks,
which are the basic blocks in the loop excluding the head basic block, otherwise the
program exists the loop. Formally we define a loop as:

Definition 3.6 (Loop Structure). A loop in the CFG is a tuple L` D .entr`;

head`; body`; lpb`/ with:

• entr`: the set of entry edges of the loop;
• head`: the head basic block of the loop;
• body`: the set of all body basic blocks of the loop;
• lpb`: the loop bound.

The ILP formulation uses the following constants

• Ch: the execution delay of each node upon a cache hit,
• Cm: the execution delay of each node upon a cache miss,

and the following non-negative variables

• ca: for each basic block ba, ca is ba’s total execution cost,
• xa: for each basic block ba, xa is the execution count of ba,
• yj: for each edge ej in the entry edge set entr` of some loop L`, yj counts how

many times this edge is taken during the whole execution,
• zi: for each node ni included in some k-Miss node sets regarding some loops, zi

counts how many times ni executes with cache misses.
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To obtain the WCET, the following maximization problem is solved:

Maximize

8
<

:
X

8ba

ca

9
=

;

The following constraints are respected to bound the total cost:

• Cost Constraint: As discussed in Sect. 2.5.5, the total cost of each basic block is

8ba W ca D .�AH � Ch C �NC � Cm/ � xa C
X

ni2b�

a

�
Cm � zi C Ch � .xa � zi/

�

where �AH and �NC is the number of AH and NC nodes in ba, respectively, and
b�a is the set of nodes in ba that are contained in some k-Miss node sets (regarding
some loops). Additionally, each ni 2 b�a should satisfy zi � xa.

• k-Miss Constraint: As discussed in Sect. 2.5.5, the following constraints bound
the number of misses incurred by a k-Miss node set:

8.S;L`/ s.t. S is k-Miss regarding L` W
X

ni2S

zi � k �
X

ej2entr`

yj

• Structure Constraint: Each basic block should have balanced input and output:

8ba W xa D
X

ej2input.ba/

yj D
X

ej2output.ba/

yj

The start basic block bst of the program is executed only once:

xst D 1

Each time the program enters the loop, each body basic block executes for at
most lpb` times, so we have

8L`;8ba 2 body` W xa � lpb` �
X

ej2entr`

yj

The head basic block may execute one more time to realize that the loop
condition is not satisfied and thus the program exists the loop, so we have:

8L`; ba D head` W xa � .lpb` C 1/ �
X

ej2entr`

yj
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Chapter 4
Analyzing Preemptive Global Scheduling

Recently, there have been several promising techniques developed for schedulability
analysis and response time analysis for multiprocessor systems based on over-
approximation. In this chapter, we apply Baruah’s window analysis framework
[53] to response time analysis for sporadic tasks on multiprocessor systems to
improve the analysis precision. The crucial observation is that for global fixed-
priority scheduling, a response time bound of each task can be efficiently estimated
by fixed-point computation without enumerating all the busy window sizes as in
[53] for schedulability analysis. The technique is proven to dominate theoretically
state-of-the-art techniques for response time analysis for multiprocessor systems.
Our experiments also show that the technique results in significant performance
improvement compared with several existing techniques for multiprocessor schedu-
lability analysis.

4.1 Introduction

There is an increasing interest in developing real-time applications on multiproces-
sor platforms due to the broad introduction of multi-core chip processors. It is also
one of the most challenging problems today for the real-time research community
to develop efficient techniques for the analysis of such systems.

Recently, there have been several promising techniques developed for sched-
ulability analysis, e.g., [53] and response time analysis, e.g. [129], for global
multiprocessor scheduling. In this chapter, we take a second look at the problem
of Response Time Analysis (RTA) for multiprocessor systems with global fixed-
priority scheduling. We will present a new RTA technique to further improve the
analysis precision of the existing techniques and also a non-trivial extension of the
technique to task systems with arbitrary deadlines for multiprocessor systems.

© Springer International Publishing Switzerland 2016
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Roughly speaking, RTA is to estimate the response time bound for each task
in a set of tasks when they are scheduled using a given scheduling policy. It is an
important technique for the design and analysis of not only hard real-time systems
as it may be used for schedulability analysis but also soft real-time systems as the
response time bounds provide an indication on how a system performs. For single
processor systems, RTA has been intensively studied in the past two decades, and
extended to various task models [35, 39, 41, 130, 131], to deal with real-life systems.
Today we have obtained a rather good understanding of RTA for single-processor
scheduling. In contrast, much less work on RTA for multiprocessor scheduling has
been done by now.

Our work is mainly built upon the work of Bertogna and Cirinei [129] and
Baruah [53]. We apply the window analysis framework of Baruah [53] to response
time analysis inspired by the work of Bertogna and Cirinei [129] for sporadic tasks
on multiprocessor systems with both constrained and arbitrary-deadline tasks. The
crucial observation is that when the earliest time instant, after which all processors
are occupied with tasks of higher priorities, occurs just before the release of a task,
it results in an upper bound of the worst-case response time of the task for global
fixed-priority scheduling. This allows us to efficiently compute the bound by fixed-
point computation without enumerating all the busy window sizes as in [53] for
schedulability analysis.

4.2 Problem Setting

We consider global fixed-priority scheduling on a multiprocessor platform consist-
ing of M processors.

A sporadic task set � consists of N sporadic tasks running on this platform. We
use �i D hCi; Di; Tii to denote such a task where Ci is the worst-case execution time
(WCET), Di is the relative deadline for each release, and Ti is the minimum inter-
arrival separation time also referred to as the period of the task. We further assume
that all tasks are ordered by priorities, i.e., �i has higher priority than �j iff i < j. The
utilization of a task �i is Ui D Ci=Ti.

A constrained-deadline task �i satisfies the restriction Di � Ti, whereas an
arbitrary-deadline task �i does not constrain the relation between Di and Ti. We
consider constrained-deadline tasks in this chapter.

A sporadic task �i generates a potentially infinite sequence of jobs with succes-
sive job-arrivals separated by at least Ti time units. We use Jh

i to denote the h-th job
of �i. We omit the superscript h and just use Ji to denote a job of �i if there is no
need to identify which job it is. Each job Jh

i adheres to the conditions Ci and Di of
its task �i and has additional properties concerning absolute time points related to
its execution, which we denote with lowercase letters. The release time is denoted
by rh

i , the deadline by dh
i which is derived by dh

i D rh
i C Di, and the finish time by
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f h
i , which is the time instant at which Jh

i just finished its execution. We define the
response time of Jh

i as the difference between its release and finish times:

Rh
i D f h

i � rh
i

The worst-case response time (WCRT) Ri of task �i is the maximal response time
value among all jobs of �i in all job sequences possible in the system.

Since Di is allowed to be larger than Ti, it is possible that several jobs of a task
are active (i.e., released but not yet finished) simultaneously. We restrict that a job
Jh

i can execute only if its precedent job Jh�1
i has been already finished, to avoid

unnecessary working space conflict. This restriction is commonly adopted in the
implementation of real-time operating systems for multi-cores/multiprocessors, for
instance, RTEMS [33] and LITMUSRT [34]. Thus, we define the ready time �h

i of
Jh

i as �h
i D max.rh

i ; f h�1
i /, which is the earliest time instant for a released job Jh

i to
execute if no higher-priority task is interfering with it. At all time points t 2 Œ�h

i ; f h
i /

we call Jh
i ready. Note that there is at most one ready job of each task at each time

point (also for arbitrary deadlines).
We use the discrete time concept, i.e., any time value involved in the scheduling is

a non-negative integer. This is based on the assumption that all events in the system
happen only at clock ticks. Thus, we use time point t to represent the entire time
interval Œt; tC 1/.

Without loss of generality, we assume that tasks are strictly periodic (i.e., that
rh

i D rh�1
i CTi), unless stated otherwise. However, all the results are also applicable

to sporadic task sets in general.
For simplicity of expression, we further use the following notations to express

that a value A is “limited” if it is below or above a certain threshold B or C,
respectively: ŒA�B D max.A; B/; ŒA�C D min.A; C/; and ŒA�CB D ŒŒA�B�C. This
expression just keeps the value A if it is within the interval ŒB; C�, otherwise it is
B if A < B or C if A > C.

4.3 Previous Work

Before presenting our proposed techniques, we briefly review the previous work on
RTA, to provide a primary knowledge background to readers that are not familiar
with this field, as well as outline the contributions of this chapter against previous
work.

4.3.1 The Basic Single-Processor Case

The RTA technique was for the first time proposed in [31], where it is only
applicable to constrained-deadline task sets (i.e., 8�i 2 � W Di � Ti).
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RTA of a task �k is based on the concept of level-k busy period. Intuitively,
the level-k busy period is the maximum continuous time interval during which
a processor executes tasks of priority greater than or equal to the priority of
the considered task �k, until �k finishes its active job. For single-processor fixed-
priority scheduling, the situation exhibiting the worst-case response time is known
to happen at a well-defined critical instant: All higher priority tasks are released
together with the analyzed task �k, i.e., at the same time instant. Thus, the maximal
interference suffered by �k in a level-k busy period of length x can be computed byP

i<k dx=Tie � Ci. Using this, �k’s WCRT can be calculated by finding the minimal
solution of the following recursive equation:

x D
X

i<k

�
x

Ti

�
� Ci C Ck

This solution can be found by interpreting the RHS as a monotonic function in x,
whose minimal fixed point can be computed iteratively, starting at x D Ck.

4.3.2 The Basic Multiprocessor Case

RTA has been applied to multiprocessor scheduling with constrained-deadline task
systems. The difference to the single-processor case is that the critical instant in
multiprocessor scheduling is generally unknown. This prevents calculation of the
exact interference suffered by the analyzed task �k during a level-k busy period.
Instead, one has to derive an upper bound of the interference.

The work done by a task �i in the worst case during a level-k busy period can be
divided into three parts:

• body: the contribution of all jobs (called body jobs) with both release time and
deadline in the level-k busy period;

• carry-in: the contribution of at most one job (called carry-in job) with release
time earlier than the level-k busy period and deadline in the level-k busy period;

• carry-out: the contribution of at most one job (called carry-out job) with release
time in the level-k busy period and deadline after the level-k busy period.

A naive upper bound of the workload of each task �i during a level-k busy
period of length x is obtained by assuming that the carry-in and carry-out of �i both
contribute Ci each:

Wnaive
k .�i; x/ D

�
x

Ti

�
Ci C Ci

Adding the workload of all higher-priority tasks, one can use the term
1
M

P
i<k Wnaive

k .�i; x/ as an upper bound of the interference time suffered by �k

during the level-k busy period of length x, due to all higher-priority tasks workload.
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Therefore, an upper bound of the response time of �k can be obtained by finding the
minimal solution of the following recursive equation [56, 132, 133]:

x D 1

M

X

i<k

	�
x

Ti

�
Ci C Ci



C Ck

Bertogna and Cirinei [129] have significantly improved the above result. We refer
to their RTA technique as [BC-RTA] for short and give now a short overview of their
key ideas. Firstly, rather than assuming that the carry-in and carry-out of a task are
both Ci, they derived a more precise upper bound Wk.�i; x/ of the workload for each
task �i which is more precise than Wnaive

k .�i; x/, by carefully identifying the worst-
case workload of each individual task.

Secondly, they observed that if the workload of a task �i is “too large,” not
necessarily all its workload can cause interference to the analyzed task �k, since
the “extra” part of �i’s workload has to be executed in parallel with �k. This is
a fundamental difference between single-processor scheduling and multiprocessor
scheduling (since in single-processor scheduling, no parallel execution takes place).
In particular, they define the interference of �i to �k during a level-k busy period of
length x as:

Ik.�i; x/ D ŒWk.�i; x/�
x�CkC1
0 (4.1)

Using this observation, the recursive equation becomes:

x D
$

1

M

X

i<k

Ik.�i; x/

%
C Ck (4.2)

Note that in Eq. (4.1), the upper bound of �i’s interference is .x � Ck C 1/ rather
than .x�Ck/. With .x�Ck/ as the upper bound, the solution we get from Eq. (4.2)
would not be guaranteed to be the upper bound of �k’s response time. Intuitively, the
“C1” is necessary to increase the right-hand side of (4.2) as long as there is more
interference that could potentially prevent �k from running. For example, when the
iterative search for the least fixed point is started with x D Ck, the search would stop
immediately, since min.Wk.�i; x/; x�Ck/ would be 0 for all i. A formal explanation
of this issue can be found in [129].

4.4 Constrained-Deadline Task Sets

4.4.1 Busy Period Extension

In [BC-RTA], to derive a safe upper bound of the interference suffered by the
analyzed task �k, it is assumed that every higher priority task �i has carry-in. This is
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an over-pessimistic assumption, since in a real scheduling sequence, it may be the
case that some task �i’s carry-in job has finished before the beginning of the busy
period, therefore it actually does not contribute any carry-in to the interference of
�k. To address a similar problem in schedulability tests of global EDF scheduling,
Baruah [53] extends the busy period to an earlier time instant, which allows to
bound the number of tasks doing carry-in by M � 1 (with M being the number
of processors), which is in general much smaller than the N (the number of tasks) in
[BC-RTA].

In the following we will apply Baruah’s idea of busy period extension to RTA. It
should be noted that a trivial combination of the busy period extension and RTA will
lead to very high computational complexity, and could fail to yield analysis results
for large-scale systems in reasonable time. However, as will be shown later, we can
combine them without decreasing the analysis efficiency.

From now on, we let Jk be a job of �k that has the worst-case response time. As
in [53], we extend the beginning of the level-k busy period from rk (the release time
of Jk) to an earlier time instant t0, which is defined as the earliest time instant before
rk, such that at any time instant t 2 Œt0; rk/ all processors are occupied by tasks with
higher priority than �k. If there is no such a time instant, we set t0 D rk. Using
this, the level-k busy period is defined as the time interval Œt0; fk/, and we define
' D rk � t0, which is the time span by which the busy period extends to the left, as
shown in Fig. 4.1.

This definition of t0 is chosen to impose a bound on the number of tasks
contributing carry-in, since at time point t0 � 1, there have to be strictly less than M
higher priority tasks active. We state that property as the following lemma:

Lemma 4.1. There are at most M � 1 tasks having carry-in, and for each task �i,
the carry-in is at most Ci � 1.

Proof. By discussion above, similar to [53].

Comparing with the original level-k busy period, with which one has to assume
that all higher-priority tasks have carry-in, the over-estimation of the interference
has been significantly reduced.

However, as introduced here, this busy period extension technique is not for free,
since it is generally unknown when t0 actually is, i.e., ' is an unknown variable. To
solve this, [53] derives an upper bound (denoted by ˚B) of all '’s values that need
to be checked. The schedulability test is then conducted by enumerating every value
of ' in Œ0; ˚B�. Finally, Jk (and therefore �k) is determined to be schedulable if the
test can succeed with every value in Œ0; ˚B�.

Fig. 4.1 Extended level-k
busy period for
constrained-deadline task sets

0

k

kk
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The upper bound ˚B is pseudo-polynomial in the values of the task parameters,
and in practice usually very large—especially for task sets with large parameter
scales and/or with high utilizations. The RTA procedure itself (finding the fixed
point) is also generally of pseudo-polynomial complexity, and requires quite a
number of iterations in practice. Therefore, if one trivially conducts the RTA on each
value of ' in Œ0; ˚B�, the complexity of the analysis would be very high in practice,
and thus not practically usable. However, as we will see, the RTA procedure in our
setting actually needs to be conducted only one single time with ' D 0, to get the
same safe WCRT upper bound as enumerating all possible values of '.

4.4.2 Workload and Interference

Before introducing the RTA procedure in detail, we will show bounds for workload
and interference of tasks �i in a busy period of length x. These will later be used in
the analysis.

4.4.2.1 Workload

The workload of a task in a certain busy period is the length of the accumulated
execution time of that task within the busy period. We use Wk.�i; x/ to denote an
upper bound of the workload of each task �i with higher priority than the analyzed
task �k in the level-k busy period of length x. From Lemma 4.1, we already know
that there are at most M � 1 tasks doing carry-in, and all other tasks do not provide
carry-in. So we define two types of workload:

• WNC
k .�i; x/ denotes the workload bound if �i does not have a carry-in job;

• WCI
k .�i; x/ is the workload bound if �i has a carry-in job.

To compute them, we have the following lemma.

Lemma 4.2. The workload bounds can be computed with

WNC
k .�i; x/ D

�
x

Ti

�
� Ci C Œx mod Ti�

Ci (4.3)

WCI
k .�i; x/ D

�
Œx � Ci�0

Ti

�
� Ci C Ci C ˛ (4.4)

where ˛ D ŒŒx � Ci�0 mod Ti � .Ti � Ri/�
Ci�1
0 .

Proof. Similar to reasoning in [53, 134], see Fig. 4.2.
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Fig. 4.2 Computing WNC
k .�i; x/ and WCI

k .�i; x/. (a) WNC
k .�i; x/. (b) WCI

k .�i; x/

Due to space limitations, we chose not to present a detailed proof and just show
some intuition for the computation in Fig. 4.2. We would like to point out two
important issues:

First, ˛ in the computation of WCI
k .�i; x/ represents the carry-in of �i, which is

limited to Ci � 1 according to Lemma 4.1. Further, the carry-in job is guaranteed
to finish its computation within its response time Ri. Since we do the RTA for each
task in their priority order, a bound of Ri is already known for each higher-priority
task �i when computing WCI

k .�i; x/ for �k.
Second, and most important, we see from Eqs. (4.3) and (4.4) that both

WNC
k .�i; x/ and WCI

k .�i; x/ are independent of '. This means that, given only the
length x of the level-k busy period, we always get the same result of WNC

k .�i; x/ and
WCI

k .�i; x/, no matter when t0 is (i.e., how large ' is). This key observation enables
us to greatly reduce the computational efforts necessary to derive the safe WCRT
bound.

4.4.2.2 Interference

As in [BC-RTA], we define the interference Ik.�i; x/ of �i in the level-k busy period
of length x. The interference denotes the part of the workload that can actually
prevent �k from running. It can be less than the workload as we already discussed
in Sect. 4.3.2. By carefully setting bounds, the analysis precision can be greatly
improved.

Similar to the workload, we also use two types of Ik.�i; x/: We use INC
k .�i; x/ to

denote the bound on the interference of �i to �k during a busy period of length x if
�i does not have a carry-in job, while we use ICI

k .�i; x/ if �i has a carry-in job. Both
values can be calculated with:

INC
k .�i; x/ D ŒWNC

k .�i; x/�
x�CkC1
0 (4.5)
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ICI
k .�i; x/ D ŒWCI

k .�i; x/�
x�CkC1
0 (4.6)

As discussed in Sect. 4.3.2, the upper bound of the interference needs to be x�CkC1

rather than x � Ck.
We now define the total interference ˝k.x/, as the maximal value of the sum of

all higher-priority tasks’ interference among all possible cases with

˝k.x/ D max
.�NC;�CI/2Z

0

@
X

�i2�NC

INC
k .�i; x/C

X

�i2�CI

ICI
k .�i; x/

1

A ; (4.7)

where Z � � � � is the set of all partitions of the set �<k D f�1; : : : ; �k�1g into
�NC and �CI, such that �NC [ �CI D �<k, �NC \ �CI D ; and j�CIj � M � 1. By
taking the maximum over this set, ˝k.x/ describes the maximal total interference
when at most M � 1 are having carry-in, and all the others do not have carry-in.
According to Lemma 4.1, M � 1 is the maximal number of tasks with carry-in, so
indeed, ˝k.x/ expresses the maximal interference of higher-priority tasks to a task
�k during a level-k busy period of length x.

Note that ˝k.x/ can be computed in linear time, since it is sufficient to find the
M�1 maximal values of the difference ICI

k .�i; x/� INC
k .�i; x/, as pointed out in [53].

We state an important lemma about ˝k.x/.

Lemma 4.3. For job Jk and all x < fk � t0, the following holds:

�
˝k.x/

M

�
> x � Ck (4.8)

Proof. The proof is given in Appendix 4.6.

Intuitively, the lemma states that, if we let the level-k busy period end before
Jk’s finish time, the total interference of all higher-priority tasks is large enough
to prevent Jk from being finished within the level-k busy period. This in turn
indicates that the level-k busy period actually has not reached its end, and thereby
should continue to increase. Thus, this property of ˝k.x/ enables the iterative RTA
procedure as will be presented in the next section.

4.4.3 The RTA Procedure

After defining an upper bound ˝k.x/ of the total interference to a task �k in a level-k
busy period of length x, we present now how to use this for conducting the response
time analysis for �k. The level-k busy period begins at the time point t0, which is '

time units before rk, the release of �k’s job (see Sect. 4.4.1). In general, ' is an open
variable. For a moment, we assume that the length ' of the busy period extension
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is given, and consider the particular t0 D rk � ' derived from that. The following
lemma expresses the response time analysis for such a particular t0.

Lemma 4.4. Given a ' � 0, let � be the minimal solution of the recursive equation

x D
�

˝k.x/

M

�
C Ck: (4.9)

Then ��' is an upper bound of �k’s response time with this particular t0 D rk �'.

Proof. Suppose the real worst-case response time of �k with t0 D rk � ' is R, and
assume � � ' < R for the sake of contradiction. Since R is the real WCRT, there
is a job sequence in which a job Jk exhibits this response time, i.e., fk � rk D R. It
follows:

� < RC ' D fk � rk C ' D fk � t0

Thus, Lemma 4.3 applies, and therefore (4.8) holds with x D �. This contradicts the
assumption of � being a solution of (4.9).

Note that for all k � M, the minimal solution of (4.9) is trivially Ck, since in that
case, ˝k.x/ < M for x � Ck by definition. This matches the intuition that the M
highest priority tasks don’t suffer any interference, since M processors are available
to accommodate them independently.

We have now seen how an upper bound of the response time of �k can be derived,
if a particular ' is given. Since ' is an open variable, we need to find an upper bound
of all response times for all ' to get a safe bound for the response time in general.
Naively, it would seem that we have to enumerate all possible values of ' and solve
(4.9), to obtain a safe upper bound of �k’s WCRT.

However, as mentioned in Sect. 4.4.2, the computation of WNC
k .�i; x/ and

WCI
k .�i; x/ is independent of '. Thus, it turns out that ˝k.x/ is also independent

of '. Therefore, no matter what value of ' we are dealing with, the solution of
Eq. (4.9) is always the same. And since � � ' is an upper bound of �k’s response
time (with that particular '), the maximal value and therefore general response
time bound is �. Thus, we only need to do the RTA according to Lemma 4.4 with
t0 D rk (i.e., ' D 0). The derived solution is guaranteed to be an upper bound of
�k’s WCRT.

Note that this observation can be regarded as a kind of critical instant for
multiprocessor fixed-priority scheduling. In the context of our analysis, ' D 0

is guaranteed to be worst among all cases. Namely, we get the worst case when
the earliest time instant after which all processors are occupied by higher-priority
tasks occurs just before the release of �k. Still, since this does not provide precise
information about the worst-case release times of the higher priority tasks, we
are left with a set among which the real critical instant is found—but this set is
significantly smaller than the whole space of possible job sequences.

We summarize the conclusion as the following theorem.
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Theorem 4.1 ([OUR-RTA]). Let � be the minimal solution of the following
Eq. (4.10) by doing an iterative fixed point search of the right-hand side starting
with x D Ck.

x D
�

˝k.x/

M

�
C Ck (4.10)

Then � is an upper bound of �k’s WCRT.

Proof. By Lemma 4.4 and the above discussion.

Note that the iterative fixed point search should terminate with an “unschedula-
ble” result as soon as x > Dk.

Since ˝k.x/ in [OUR-RTA] is no larger than
P

i<k Ik.�i; x/ in [BC-RTA],
[OUR-RTA] dominates [BC-RTA] in the sense that an upper bound of the WCRT
derived by [OUR-RTA] is guaranteed to be no larger than the one derived by
[BC-RTA].

4.5 Performance Evaluation

We evaluate the performance of the proposed RTA technique in terms of acceptance
ratio. We follow the method in [135] to generate task sets: A task set of M C 1

tasks is generated and tested. Then we iteratively increase the number of tasks by
1 to generate a new task set, and all the schedulability tests are run on the new
task set. This process is iterated until the total processor utilization exceeds M. The
whole procedure is then repeated, starting with a new task set of MC1 tasks, until a
reasonable sample space has been generated and tested. This method of generating
random task sets produces a fairly uniform distribution of total utilizations, except
at the extreme end of low utilization.

The default setting of the experiments whose results we show in Fig. 4.3 is
as follows: the priorities are assigned according to global Deadline Monotonic
scheduling; the number of processors is 6; for each task �i, Ti is uniformly
distributed in Œ10; 30�. For each subfigure, the range of Ui and Di=Ti is tuned (see
the caption of each subfigure), to get task sets with different characteristics.

In all the figures, the curve “Sim” denotes the acceptance ratio of simulations.
Since it is not computationally feasible to try all possible task release offsets and
inter-release separations exhaustively in simulations, all task release offsets are set
to be zero and all tasks are released periodically, and simulation is run for the hyper-
period of all task periods. Simulation results obtained under this assumption may
sometimes determine a task set to be schedulable even though it is not, but they can
serve as a coarse upper bound of the ratio of all schedulable task sets.

Figure 4.3 shows the comparison between [OUR-RTA] and previous work for
constrained-deadline task sets. In [129], [BC-RTA] has been compared with all state-
of-the-art analysis for constrained-deadline task sets at that time, and shown clear
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Fig. 4.3 Acceptance ratio: X-axis is total utilization
P

i Ui; Y-axis is acceptance ratio. (a) Ui 2
[0:05; 0:1]; Di

Ti
2 [0:8; 1]. (b) Ui 2 [0:05; 0:1]; Di

Ti
2 [0:8; 1]. (c) Ui 2 [0:05; 0:1]; Di

Ti
2 [0:8; 1]

performance improvement. Thus, we compare our analysis [OUR-RTA] (denoted
by “Our”) with [BC-RTA] (denoted by “BC”) and the schedulability test from [53]1

(denoted by “Bar”), which is not included in the comparison in [129]. Another
recent work by Bertogna et al. [136] is not included in Fig. 4.3 because it is
outperformed by [BC-RTA]. It can be seen from the evaluation that [OUR-RTA]
has non-trivial performance improvement over the others, especially with task sets
with low utilizations.

4.6 Conclusions

We have developed a new technique to derive response time bounds for global
fixed-priority scheduling on multiprocessors. This work made contributions in two
folds: (1) The analysis precision has been significantly improved against previous
work and, (2) To our best knowledge, this is the first work to study RTA of
arbitrary-deadline systems on multiprocessors. We have used intensive experiments
with randomly generated task sets to evaluate the performance of the proposed
analysis techniques, in terms of both precision and efficiency. Experiments show
that the proposed analysis has significant improvement of the analysis precision
over existing methods, and can easily handle real-life-scale task systems. For future

1Works on global EDF scheduling, however, it can be easily adapted to global fixed-priority
scheduling [53].
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work, we will extend the proposed techniques to deal with platforms and task
systems with shared resources and task synchronization.

Appendix: Proof of Lemma 4.3

Proof. We recall that by definition, ˝k.x/ consists of two sums over the sets �NC

and �CI which are a partitioning of � such that ˝k.x/ is maximal:

˝k.x/ D
X

�i2�CI

ICI
k .�i; x/C

X

�i2�NC

INC
k .�i; x/

Let #CI � �CI and #NC � �NC be subsets of both partitions, such that

8�i 2 #CI W WCI
k .�i; x/ > x � Ck C 1

8�i 2 #NC W WNC
k .�i; x/ > x � Ck C 1

Thus, # WD #CI [ #NC captures the relatively “dense” tasks of � . Using this,
ICI
k .�i; x; h/ and INC

k .�i; x; h/ can be rewritten using WCI
k .�i; x/ and WNC

k .�i; x/ in the
definition of ˝k.x/:

˝k.x/ D j#j � .x�CiC 1/C
X

�i2�CIn#CI

WCI
k .�i; x/C

X

�i2�NCn#NC

WNC
k .�i; x/ (4.11)

We consider the case of j#j < M. (Otherwise, the lemma obviously holds.)
Now let x < fk � t0, as in the assumption of the lemma, so the Job Jk is still

active at time point x. Thus, only at strictly less than Ck time points of the interval
Œt0; t0 C x/, Jk was able to run. Now we know that all tasks from # could keep at
most j#j processors busy at each time unit during the interval. It follows that the
remaining tasks (those from � n #) kept the remaining M � j#j processors busy for
at least x�CkC1 time units during the interval (otherwise, Jk would have been able
to execute for Ck time units and thus finish until t0 C x). Consequently, the tasks
from � n # must have generated a workload of at least .M � j#j/ � .x � Ck C 1/

over the considered x time units. Since WCI
k .�i; x/ and WNC

k .�i; x/ are upper bounds
of their workloads, we have

X

�i2�CIn#CI

WCI
k .�i; x/C

X

�i2�NCn#NC

WNC
k .�i; x/ � .M � j#j/ � .x � Ck C 1/ (4.12)

From (4.11) and (4.12) it follows

˝k.x/ � M � .x � Ck C 1/;

which is equivalent to the lemma.



Chapter 5
Analyzing Non-preemptive Global Scheduling

Non-preemptive scheduling is usually considered inferior to preemptive scheduling
for time critical systems, because the non-preemptive block would lead to poor task
responsiveness. Although this is true in single-processor scheduling, we found by
empirical simulation experiments that it is not necessarily the case in multipro-
cessor scheduling. Additionally, non-preemptive scheduling enjoys other benefits
like lower implementation complexity and run-time overhead. So non-preemptive
scheduling may be a better alternative compared to preemptive scheduling for a
considerable part of real-time applications on multiprocessor/multi-core platforms.

As the technical contribution, we study the schedulability analysis of global
non-preemptive fixed-priority scheduling (NP-FP) on multiprocessors. We propose
schedulability tests for NP-FP, building upon the “problem window analysis” by
Baruah [53] for preemptive scheduling. We firstly derive a linear-time general
schedulability test condition that works for not only NP-FP, but also any other work-
conserving non-preemptive scheduling algorithm. Then we improve the analysis and
present a test condition of quadratic time-complexity for NP-FP, which has signifi-
cant performance improvement comparing to the first one. A notable advantage of
our proposed test conditions is, while the test in [53] needs to enumerate for a large
number of possible problem window sizes, our proposed test conditions only need to
be conducted with a single problem window size, and thereby are significantly more
efficient. Experiments with randomly generated task sets are conducted to evaluate
the performance of the proposed test conditions.

5.1 Introduction

Non-preemptive scheduling has received considerable less attention in the research
community compared to preemptive scheduling. However, non-preemptive schedul-
ing is widely used in industry practice, and it may be preferable to preemptive
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scheduling for a number of reasons [137]: non-preemptive scheduling algorithms
are easier to implement and have lower run-time overhead than preemptive schedul-
ing algorithms; the overhead of preemptive scheduling algorithms is more difficult
to characterize and predict than that of non-preemptive scheduling algorithms due
to inter-task interference caused by caching and pipelining. These benefits of non-
preemptive scheduling are more important on multiprocessor platforms, where the
task migration overhead is even higher and more difficult to predict. However,
this problem is much less severe for non-preemptive scheduling, where each task
instance runs to completion on one processor, and task migrations only happen at
task instance boundaries.

Multiprocessor systems are becoming more and more important, with indus-
try trends such as multi-core processors and Multiprocessor Systems-on-a-Chip
(MPSoC). Therefore, real-time scheduling and schedulability analysis for multipro-
cessor systems have become an important research area. Multiprocessor scheduling
algorithms can be classified into two categories: partitioned scheduling, where
each task is assigned to a processor, and task migration between processors is not
allowed; and global scheduling, where each task can migrate between different
processors either during execution of one of its instances or between different
instances. The analysis of global scheduling is significantly more difficult than
partitioned scheduling [53]. In this chapter we focus on global scheduling.

Non-preemptive scheduling is considered inferior for real-time systems because
of its poor responsiveness. In a single processor system, a high-priority task may be
blocked by a low-priority task for a long time due to non-preemptiveness, and thus
miss its deadline. However, this problem is less severe in a multiprocessor system,
since the natural parallelism of the multiprocessor platform can mitigate the harmful
effect of non-preemptive blocking. Even if several processors are occupied by low-
priority tasks with large execution time, high-priority tasks still have chances to
execute on other processors and meet their deadlines. We have conducted simulation
experiments to compare the performance, measured in terms of the percentage
of task sets that can be feasibly scheduled with a given scheduling algorithm,
of global preemptive fixed-priority scheduling (P-FP) and non-preemptive fixed-
priority scheduling (NP-FP). To our surprise, under many parameter settings
NP-FP actually outperforms P-FP (the simulation experiments will be presented
in detail in Sect. 5.8). Note that we did not count context switch overheads in
the simulation experiments, which would reduce the performance of preemptive
scheduling algorithms further compared to non-preemptive scheduling algorithms.
This leads us to believe that non-preemptive scheduling may be a better alternative
compared to preemptive scheduling with respect to real-time performance for
certain applications on multiprocessor platforms.

In this chapter, we address the schedulability analysis problem of NP-FP for
sporadic task sets on identical multiprocessors. The proposed analysis techniques
are built upon Baker’s “problem window” analysis framework [52] and Baruah’s
technique of “problem window extension” to bound the number of tasks doing
carry-in [53]. To the best of our knowledge, this is the first work to study the
schedulability analysis problem of NP-FP. A notable advantage of our proposed test
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conditions is, while all the previous works with the “problem window extension”
[53, 138] are of pseudo-polynomial complexity and need to enumerate for a large
number of possible sizes of the problem window, our proposed test conditions only
need to be conducted for a single problem window size, and thereby are significantly
more efficient.

We first present a general schedulability test condition of linear computational
complexity, which works on any work-conserving non-preemptive multiprocessor
scheduling algorithm (therefore, it can be used for NP-FP). Then we refine the
“problem window” and proposed the second schedulability test condition specially
found for NP-FP, which is of quadratic computational complexity. Experiments
with randomly generated task sets are conducted to evaluate the performance of
the proposed test conditions.

5.2 Related Work

5.2.1 Preemptive Scheduling

All scheduling algorithms discussed in this paragraph are implicitly “global pre-
emptive,” e.g., we refer to “global preemptive EDF” as “EDF” for short. Goossens
et al. [139] introduced a schedulability test with polynomial time-complexity for
periodic task sets scheduled by EDF based on the resource-augmentation technique
[140]. Similar techniques were used in [50] to derive schedulability tests for
tasks with limited utilization scheduled by Rate Monotonic (RM) scheduling.
Baker [52] presented schedulability tests for both EDF and Deadline Monotonic
(DM) scheduling by determining the necessary conditions on the parameters of all
the tasks to cause a given task �k’s instance to miss its deadline. Based on Baker’s
idea, Bertogna et al. [54] observed that the work done in parallel with a task instance
does not need to be added to its interference, and provided a new test condition with
polynomial time-complexity that can sometimes outperform Baker’s test condition.
Baruah [53] improved Baker’s approach by “problem window extension” to reduce
the over-estimation of the so-called carry-in jobs, and provided a test condition with
pseudo-polynomial time-complexity. It has higher acceptance ratio than previous
test conditions for task systems that satisfy the following conditions: the number
of tasks n is significantly larger than the number of processors m (i.e., n 	 m),
or the parameters of different tasks have widely varying orders of magnitude
[53]. Andersson et al. [56] first used the approximate response time analysis for
multiprocessor scheduling, which was later improved by Bertogna et al. [129] by
applying their techniques in [54] and exploring task slack time to reduce the degree
of pessimism in the computation of the approximate response time. Bertogna et al.
[136] also applied the same idea of slack time exploration to schedulability tests for
EDF and FP scheduling. Recently, Guan et al. [55] applied Baruah’s idea of problem
window extension to the response time analysis of FP scheduling, and proposed new
response time bounds for FP scheduling that dominates the result in [129].
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5.2.2 Non-preemptive Scheduling

For single-processor scheduling, Jeffay et al. [137] considered non-preemptive
algorithms for scheduling periodic or sporadic task systems with relative deadlines
equal to periods under the work-conserving assumption and presented an exact
schedulability test of pseudo-polynomial time-complexity for a periodic or sporadic
task set under non-preemptive EDF scheduling on a single processor. George
et al. [37] addressed general task models in which relative deadlines and periods
are not necessarily related, and established exact schedulability tests for both
non-preemptive EDF and non-preemptive fixed-priority scheduling on a single
processor with pseudo-polynomial time complexity. Baruah et al. [141] addressed
schedulability analysis for non-preemptive recurring tasks, which is the general
form of non-preemptive sporadic tasks, and showed that the non-preemptive schedu-
lability analysis problem can be reduced to a polynomial number of preemptive
schedulability analysis problems.

For multiprocessor scheduling, Baruah [142] proposed a sufficient but not
necessary polynomial-time schedulability test condition [TEST-BAR] for global
non-preemptive scheduling for periodic task sets, which can be easily generalized
to sporadic task sets. [TEST-BAR] used a technique similar to [139] and took into
account the extra interference time caused by non-preemption. According to [TEST-
BAR], a task set � is NP-EDF schedulable on m processors if

Vsum.�/ � m � .m � 1/Vmax.�/ (5.1)

where

Vsum.�/ D
X

�i2�

Vi; Vmax.�/ D max
�i2�

Vi

Vi D
(

Ci
Di�Cmax

Di > Cmax

1 Di � Cmax

and Cmax is the maximum execution time among all tasks. It is obvious that a
task set with arbitrarily low utilization cannot pass the test if Cmax � Dmin, where
Dmin denotes the minimal Di among all tasks. Intuitively, it means that for any task
instance Jk, if there is some task with an execution time large enough to cover its
relative deadline Dk, Jk will definitely miss its deadline. This is true for single-
processor scheduling, but not necessarily true for multiprocessor scheduling, since
even if some processors are occupied for a long time by a task instance with a large
Ci, other task instances can execute on different processors to meet their deadlines.
Recently Baruah’s idea of problem window extension [53] has been applied to non-
preemptive multiprocessor scheduling [134, 138]. However, both [134, 138] focused
on EDF scheduling while in this paper we focus on Fixed-Priority scheduling.
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Moreover, the test conditions proposed in this chapter are of polynomial (linear
and quadratic respectively) computational complexity and applicable to the dense
time model, while all previous schedulability tests applying the “problem window
extension” [53, 134, 138] are of pseudo-polynomial computational complexity and
only applicable to the discrete time model.

5.3 System Model and Notations

We assume that a multiprocessor platform consists of M identical processors. A
sporadic task set � consists of N sporadic tasks. A sporadic task is denoted by �i D
.Ci; Di; Ti/, where Ci is the worst-case execution time, Di is the relative deadline,
and Ti is the minimum inter-release separation, also referred to as its period. For
each task �i we assume Di � Ti and define Si D Di � Ci. The utilization of task
�i is defined as Ui D Ci

Ti
, and we use U.�/ to denote the sum of Ui of all �i 2 � .

Each task has a unique priority. We use hp.k/ to denote the set of tasks with higher
priorities than �k, and hep.k/ D hp.k/ [ f�kg the set of tasks whose priorities are
no lower than �k. Similarly, L.k/ is the set of tasks with lower priorities than �k and
lep.k/ D L.k/ [ f�kg the set of tasks whose priorities are no higher than �k.

Such a sporadic task �i generates a potentially infinite sequence of jobs (also
called task instances) with successive releases separated by at least Ti time units.
We use Jp

i to denote the pth job of �i. We also use Ji to denote a job of �i in general
if we do not want to specify which job it is. Each job Ji has a release time (arrival
time) ri and an absolute deadline di D ri C Di. We use li D di � Ci to denote Ji’s
latest feasible start time which is the latest time point for Ji to start execution in
order to meet its deadline.

A job is pending at time instant t if it was released before t and has uncompleted
work at t. A task is pending at time instant t if it has a pending job at t.

We use 	.t; �k/ to denote the set of pending tasks with higher priorities than �k

at time t, i.e.,

	.t; �k/ D f�ij�i 2 hp.�k/ ^ �i is pending at tg (5.2)

j	.t; �k/j denotes the number of elements in 	.t; �k/.
For simplicity of expression, we further use the following notations to express

that a value A is “limited” if it is below or above a certain threshold B or C,
respectively: ŒA�B D max.A; B/; ŒA�C D min.A; C/; and ŒA�CB D ŒŒA�B�C. This
expression just keeps the value A if it is within the interval ŒB; C�, otherwise it is
B if A < B or C if A > C.
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Fig. 5.1 Problem window in (b) preemptive and (a) non-preemptive scheduling

5.4 The General Schedulability Test

In this section we present a general schedulability test condition that works for any
work-conserving non-preemptive scheduling algorithm.

Given a work-conserving non-preemptive scheduling algorithm Schd, and
suppose a task set � is non-schedulable by Schd, let Jk be the first job missing
its deadline, and rk is the release time of Jk. Let to denote the earliest time instant
before rk, such that there are M tasks running at any time instant t 2 Œto; rk�, and let
'k D rk � to, as shown in Fig. 5.1a. Since all processors are idle when the system
starts, there always exists such a to.

By the definition of to, we know that all processors are continuously busy during
Œto; rk�. Since preemption is not allowed, once a job starts execution, it will run to
completion without interruption. So if Jk starts to execute before its latest start time
lk, it will be able to finish execution before the deadline dk. Since Schd is work-
conserving, we know that in order for Jk to miss its deadline, all M processors must
be continuously busy in the time interval Œto; lk�. What happens after lk has no effect
on the schedulability of Jk. We name the time interval Œto; lk� as problem window, as
shown in Fig. 5.1a.

The definition of the problem window above follows the idea in [53] for
preemptive scheduling but is slightly different. With the problem window in [53]
all M processors are continuously busy in the time interval Œto; rk�, but do not have
to be continuously busy in the time interval Œrk; dk� as long as the sum of the busy
segments (shadow area in Fig.5.1b) is large enough to cause �k to miss its deadline.

A necessary condition for the deadline miss to occur is that the worst-case
workload in the problem window by all other jobs in the task set � except Jk, is
no less than .'k C Sk/M (the shadow area in Fig. 5.1a). Since the critical instant is
generally unknown in global multiprocessor scheduling, it is not possible to find
the worst-case situation without exhaustively simulating the system. So we will
compute the worst-case workload by each task in the problem window, and use the
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Fig. 5.2 Body, carry-in and carry-out of a task in the problem window Œto; lk�

sum of each task’s workload as an upper bound of the overall worst-case workload
in the problem window. The workload of a task �i in the problem window can be
categorized into three parts:

• carry-in: the contribution of at most one job (called carry-in job) with release
time earlier than to and deadline in the problem window;

• carry-out: the contribution of the last job (called carry-out job) with release time
in the problem window and deadline outside the problem window;

• body: the contribution of the jobs except the carry-in job and carry-out job.

We always consider a carry-in job is executed as late as possible, a carry-out job
is executed as early as possible and all jobs of a task are released periodically, as
shown in Fig. 5.2. This is a pessimistic but safe approximation to count the workload
of a task in the problem window [52].

By the definition of to, we have the following lemma:

Lemma 5.1. At most M � 1 tasks have carry-in jobs.

Proof. Recall that to is the earliest time instant before rk, such that all M processors
are busy at any t 2 Œto; rk�. We use t�o to denote a time instant that is earlier than and
arbitrarily close to to, so there are at most M � 1 tasks executing at t�o , and there is
no other pending task at t�o . Since only the tasks pending at t�o have carry-in jobs,
we know there are at most M � 1 tasks having carry-in jobs.

We use W to denote the total workload of the task set � in the problem window,
and we get an upper bound for W1:

Lemma 5.2. We sort all Ci in a non-increasing list, and use Csum
M-1 to denote the sum

of the first .M � 1/ elements in this list. Then we have

W � Csum
M-1 C

X

�i2�

�
'k C Sk

Ti

�
Ci C

X

�i2�

Ci (5.3)

1One can get a tighter bound on W with a more precise calculation of carry-in/carry-out. However,
to get a linear over-approximation of workload in the derivation of the first test condition in the
following, a bound needs to be relaxed anyway, which leads to the same result as using this simple
bound.
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Proof. For each task �i 2 � , its workload in the problem window consists of three
parts: carry-in, body, and carry-out. The carry-in of each job is bounded by its
computation time, and by Lemma 5.1 we also know at most M� 1 tasks have carry-
in jobs, so the total work by all carry-in jobs is bounded by Csum

M-1 [the first item in the
RHS of Inequality (5.3)]. The number of body jobs of task �i is bounded by b 'kCSk

Ti
c,

so the second item in the RHS of Inequality (5.3) is an upper bound of the workload
of all body jobs. The carry-out of each job is also bounded by its computation time,
so the second item in the RHS is an upper bound of the workload by all carry-out
jobs.

The main idea of the proposed schedulability test condition is as follows: If
one can guarantee that this upper bound of total workload is smaller than the total
processor capacity in the problem window, i.e.,

Csum
M-1 C

X

�i2�

�
'k C Sk

Ti

�
Ci C

X

�i2�

Ci < .'k C Sk/M (5.4)

it can be concluded that the workload of the task set is not enough to make all
processors continuously busy during the problem window, so Jk can start execution
no later than lk. This contradicts with our assumption that Jk misses its deadline, so it
implies Jk can meet its deadline. By applying this reasoning to each task in � , we can
get a sufficient schedulability condition for Schd. Note that a difficulty to derive the
needed condition is that the unknown variable 'k appears on both sides of Inequality
(5.4). However, we observe that as 'k increases, the proportion of the carry-in and
carry-out in the overall workload of a task in the problem window tends to decrease,
which means that the effect of the over-estimation of the carry-in and carry-out is
more severe with smaller 'k C Sk values, with the extreme case of 'k D 0. Thus
we derive our first test condition for an arbitrary work-conserving non-preemptive
scheduling algorithm Schd:

Theorem 5.1. [TEST-1] A task set � is schedulable by a work-conserving non-
preemptive scheduling algorithm Schd on M processors if:

U.�/ < M �
P

�i2� Ci C Csum
M-1

Smin
(5.5)

where Smin is the minimal Si among all tasks.

Proof. We prove the theorem by contradiction. Assume a task set � satisfies
Inequality (5.5) but is non-schedulable, and �k is the first task missing its deadline.
We know that the total workload W should not be smaller than .'k C Sk/M, and by
Lemma 5.2 we have

Csum
M-1 C

X

�i2�

�
'k C Sk

Ti

�
Ci C

X

�i2�

Ci � .'k C Sk/M
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Since b 'kCSk
Ti
cCi � .'k C Sk/

Ci
Ti

and U.�/ DP
�i2�

Ci
Ti

, we have

Csum
M-1 C .'k C Sk/U.�/C

X

�i2�

Ci � .'k C Sk/M

)
X

�i2�

Ci C Csum
M-1 >� .'k C Sk/.M � U.�//

and since 'k � 0 and Sk � Smin, we get

U.�/ � M �
P

�i2� Ci C Csum
M-1

Smin

which contradicts our assumption that � satisfies Inequality (5.5).

[TEST-1] works on any work-conserving non-preemptive scheduling algorithm,
since no scheduling algorithm specific properties are used in its proof, except that
the algorithm is work-conserving.

Note that [TEST-1] does not suffer from the disadvantage in [TEST-BAR] that
any task set with Cmax � Dmin will be rejected.

Ui,
PN

iD1 Ci and Smin can all be computed in linear time, and we can use linear-
time selection [143] to compute Csum

M-1 , so [TEST-1] has linear-time complexity.

5.5 The Improved Schedulability Test for NP-FP

In the last section we derived a sufficient schedulability test condition [TEST-1] that
works on any work-conserving non-preemptive multiprocessor scheduling algo-
rithm. [TEST-1] is safe, but very pessimistic, since it uses a grossly coarse upper
bound on the task set’s workload in the problem window. In this section, we will
present a less pessimistic test condition for NP-FP by refining the definition of the
“problem window” and deriving more precise bounds on the workload.

Again, we suppose a task set � is non-schedulable by NP-FP, and let Jk be the first
job missing deadline, and rk is the release time of Jk. We will re-define the problem
window. First, we adopt the definition of to in [138] to NP-FP: Let to be the earliest
time instant before rk, such that 8t 2 Œto; rk/ one of the following two properties
holds:

1. j	.t; �k/j D M and all tasks in 	.t; �k/ are executing.
2. There are some tasks in 	.t; �k/ not executing at t.

Recall that 	.t; �k/ is the set of all pending tasks with higher priority than �k at t. If
there does not exist such a to, we let to D rk.
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Fig. 5.3 The new problem window

We re-define the end of the problem window to be tf D to C Sk, and the time
interval Œto; tf � is the new problem window, as illustrated in Fig. 5.3. Note that the
length of the problem window is a fixed value Sk, although the start point (and
thereby the end point) of the problem window is not fixed.

We have the following properties with the new problem window:

Lemma 5.3. During the problem window Œto; tf � all processors are occupied by jobs
of tasks in hp.k/ or jobs starting execution earlier than to.

Proof. We will prove the lemma in two steps: First we prove during Œto; tf � all
processors are continuously busy; second we prove that any job executing during
Œto; tf � either is of a task in hp.k/ or has started execution before to.

Now we prove the first step. Remind the two conditions in the definition of to.
For any time instant t 2 Œto; rk/, all processors are busy if the first condition holds.
If the second condition holds, some pending task cannot execute. And since NP-FP
is work-conserving, we know all processors are busy at t, and thus all processors
are continuously busy during Œto; rk/. Since Jk misses its deadline, we also know
all processors are continuously busy during Œrk; lk�. By the definition of tf we have
tf � lk, so we know that during Œto; tf � all processors are continuously busy.

Next we prove the second step by contradiction. Suppose there is a job Ji of a
task �i in lep.k/ and starting execution at t (t 2 Œto; tf �). We distinguish two cases:
(1) t 2 Œto; rk/; (2) t 2 Œrk; tf �.

First we consider case (1). Since Ji starts execution at t, we know all tasks in
	.t; �i/ are executing at t and j	.t; �i/j < M. Since �i’s priority is no higher than �k,
we have 	.t; �k/ � 	.t; �i/. So we know that all tasks in 	.t; �i/ are executing at t
and j	.t; �i/j < M, which contradicts with the definition of to.

Then we consider case (2). Since Jk misses its deadline, no job with lower priority
than �k can start execution in Œrk; lk�. Jk’s precedent job also cannot start executing
in Œrk; lk� since each task’s relative deadline is no larger than its period. So we know
if Ji is of a task �i in lep.k/, it cannot start execution in Œrk; lk�, and since tf � lk, it
cannot start execution in Œrk; tf �, which contradicts with our assumption about Ji.

So both cases lead to contradictions, by which we know any job executing during
Œto; tf � either is of a task in hp.k/ or starts execution earlier than to.

Lemma 5.4. At most M tasks have carry-in jobs.
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Proof. Still we use t�o to denote a time instant that is earlier than to and arbitrarily
close to to, so by the definition of to we know j	.t�o ; �k/j ¤ M and all tasks in
	.t�o ; �k/ are executing. Since it is not possible for more than M tasks executing at
the same time, the only possible case is 	.t�o ; �k/ < M and all tasks in 	.t�o ; �k/

are executing. A task in hp.k/.�/ has carry-in only if it’s in 	.t�o ; �k/, so we know
there are j	.t�o ; �k/j tasks in hp.k/.�/ having carry-in. A task in L.k/.�/ has carry-in
only if it is executing at t�o . The number of tasks in L.k/.�/ executing at t�o is at most
M�j	.t�o ; �k/j, since 	.t�o ; �k/ processors have been occupied by tasks in hp.k/.�/

as mentioned above. Therefore, there are at most j	.t�o ; �k/j C .M � j	.t�o ; �k/j/ D
M tasks doing carry-in.

We use INC
k .�i/ to denote an upper bound of �i’s workload in the problem window

if �i has no carry-in job, and use ICI
k .�i/ to denote an upper bound of �i’s workload

if �i has a carry-in job. In the following we will show how to compute ICI
k .�i/

and INC
k .�i/ by identifying the worst-case scenario of each task’s workload in the

problem window under NP-FP.

• Computing INC
k .�i/

– �i 2 hp.k/. The worst-case workload of task �i in this case is shown in Fig. 5.4
(the reasoning is rather simple so we omit it), according to which we can
compute INC

k .�i/ by:

INC
k .�i/ D

�
Sk

Ti

�
Ci C ŒSk mod Ti�

Ci (5.6)

– �i 2 lep.k/. By Lemma 5.3, we know that for any task �i 2 lep.k/, only the
job starting execution before to can execute in the problem window, so �i’s
workload in the problem window is 0 if it has no carry-in job, i.e.,

INC
k .�i/ D 0 (5.7)

Fig. 5.4 The worst-case scenario of (a) INC
k .�i/ and (b) ICI

k .�i/



96 5 Analyzing Non-preemptive Global Scheduling

• Computing ICI
k .�i/

– �i 2 hp.k/. The worst-case workload of task �i in this case is shown in Fig. 5.4,
by which we can compute ICI

k .�i/ by

ICI
k .�i/ D ŒbŒSk � Ci�0=TicCi C Ci C ˛�Sk (5.8)

where ˛ D ŒŒSk � Ci�0 mod Ti � .Ti � Di/�
Ci
0 . Note that we pose an upper

bound Sk on INC
k .�i/, since the work actually done by a task in a time interval is

no larger than the length of the problem window, and the part of its workload
beyond the length of the problem window will actually not interfere with �k.

– �i 2 lep.k/. By Lemma 5.3 we know that for any task �i 2 lep.k/, only its job
starting execution before to can execute in the problem window, and we know
there is at most one such job of �i, so we can compute ICI

k .�i/ by

ICI
k .�i/ D ŒCi�

Sk (5.9)

An important observation on the above computation is, INC
k .�i/ and ICI

k .�i/ are
completely independent on when is to. This is because the problem window defined
in this section is an interval with fixed length Sk (Recall that the problem window in
last section is defined as Œto; dk�. Since to is an unknown time point and dk is a fixed
time point, the length of the problem window is not fixed.).

Now we define ˝k as the maximal value of the sum of all tasks’s work in the
problem window among all possible cases with

˝k D max
.�NC;�CI /2Z

0

@
X

�i2�NC

INC
k .�i/C

X

�i2�CI

ICI
k .�i/

1

A ; (5.10)

where Z � � � � is the set of all partitions of the task set � into �NC and �CI,
such that �NC [ �CI D � , �NC \ �CI D ;, and j�CIj � M. By taking the maximum
over this set, ˝k describes the maximal total interference when at most M tasks are
having carry-in, and all the others do not have carry-in. According to Lemma 5.4, M
is the maximal number of tasks with carry-in, so indeed, ˝k expresses the maximal
workload of the task set in the problem window. Note that ˝k can be computed
in linear time, since it is sufficient to find the M maximal values of the difference
ICI
k .�i/ � INC

k .�i/, as pointed out in [53].
If one can show that ˝k is smaller than the total processor capacity during the

problem window, then �k can start execution in the problem window, i.e., no later
than tf , and since the end of the problem window tf is no later than lk, �k can meet its
deadline. By applying this to each task in the task set, we get obtain the improved
schedulability test condition for NP-FP:

Theorem 5.2. The task set � is NP-FP schedulable if 8�k 2 � we have

˝k < SkM (5.11)
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Both INC
k .�i/ and ICI

k .�i/ can be computed in linear time, and we can use linear-
time selection [143] to find the M maximal values of the difference ICI

k .�i/� INC
k .�i/,

so for each task �k 2 � the test condition is of linear computational complexity, and
the overall scheduling test is of quadratic computational complexity.

5.6 Sustainability

Baruah and Burns [144] introduced the concept of sustainability (also named as
robustness [145] and predictability [146] in earlier literatures) for a schedulability
test. A schedulability test is sustainable if a system that is determined to be
schedulable under its worst-case specification remains schedulable when its actual
run-time behavior is “better” than worst-case, e.g., when inter-release separations
are increased, relative deadlines are increased or task execution times are reduced.
The sustainability property is important. If a schedulability test is sustainable,
then the system designer only needs to consider the worst-case parameter values
to determine if the system is schedulable, instead of considering every possible
execution time value in the interval (BCET, WCET) and/or the infinitely-many
possible inter-release separation and deadline values in ŒDi;1/ and ŒTi;1/.

Recently Baker and Baruah [147] introduced a stronger concept self-sustainab-
ility. A schedulability test is self-sustainable if a system that is determined to
be schedulable under its worst-case specification can still pass this schedulability
test with “better” parameters. The property of self-sustainability is useful in
incremental, interactive design processes. If a schedulability test is self-sustainable,
it is guaranteed that relaxing timing constraints will not make a schedulable system
(subsystem) unverifiable, thus one can safely relax the task parameters of the
schedulable system in order to explore the design state space. It is easy to see that
any self-sustainable schedulability test is also sustainable.

Now we present the (self-)sustainability properties of the proposed test condi-
tions.

Theorem 5.3. The schedulability test [TEST-1] is self-sustainable with regard to
execution time, deadline, and inter-release separation.

Proof. The proof follows directly from examination of Condition (5.5).

Theorem 5.4. The schedulability test [TEST-2] is sustainable with regard to
execution time, deadline, and inter-release separation, and is self-sustainable with
regard to inter-release separation.

Proof. Let �k be a task that can pass the schedulability test [TEST-2]. [TEST-2] is
independent of Tk, and both INC

k .�i/ and ICI
k .�i/ are non-increasing with respect to

Ti, so [TEST-2] still holds if we increase the inter-release separation of any task.
Therefore [TEST-2] is self-sustainable with regard to inter-release separation, which
also implies [TEST-2] is sustainable with regard to inter-release separation.
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Next we show [TEST-2] is sustainable with regard to execution time. Still let �k

be a task that can pass the schedulability test [TEST-2], which means any job Jp
k

of �k can start execution no later than its latest start time lpk , so decreasing Ck will
not make Jp

k missing its deadline. Now we consider relaxing the parameter of some
other �i. Since both INC

k .�i/ and ICI
k .�i/ are non-decreasing with respect to Ci, if we

decrease �i’s execution time Ci, �k can still pass [TEST-2], so �k is still schedulable.
At last we show [TEST-2] is sustainable with regard to relative deadline. In

fixed-priority scheduling, the scheduling decision only depends on the tasks’ pri-
orities, but independent tasks’ deadlines, which means for any concrete scheduling
sequence, if we increase some task’s relative deadline, the scheduling sequence is
unchanged, by which we know a schedulable task �k will not become unschedulable
if some task’s relative deadline is increased.

Note that [TEST-2] is not self-sustainable with regard to execution times and
relative deadlines. This happens when we decrease the execution time or increase
the relative deadline of the analyzed task: Both decreasing the execution time
and increasing the relative deadline will lead to a larger problem window size Sk.
However, ˝k is a piecewise linear function with respect to Sk and increasing Sk may
lead to a greater increase on the LHS of [TEST-2] than its RHS. Consider the task
set in Table 5.1 with M D 2, in which �5 is the task under analysis. With the current
parameters S5 D 10 and we have

˝5 D 10C 8C 0:9C 0:9 D 19:8 < 10 � 2 D S5 �M (5.12)

(�1 and �2 have carry-in, while �3 and �4 do not), by which �5 is determined to be
schedulable. However, if we decrease C5 or increase D5 by 1, then S5 D 11 and we
have

˝5 D 11C 8C 1:8C 1:8 D 22:6 > 11 � 2 D S5 �M (5.13)

by which �5 is determined to be non-schedulable. However, decreasing execution
time and increasing relative deadline of other tasks does not cause the analyzed
task to violate the test condition [TEST-2]. So in the design phase, when a task’s
parameter becomes “better,” the designer only needs to re-examine if this particular
task still satisfies the test condition, but does not need to worry about other tasks.

Table 5.1 An example to
show [TEST-2] is not
self-sustainable with respect
to Ck and Dk

Task Ti Di Ci

�1 10 10 6

�2 10 10 4

�3 10 10 0.9

�4 10 10 0.9

�5 (analyzed task) 14 14 4
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5.7 Performance Evaluation

In this section, we use synthetic task sets to compare the performance of these
schedulability test conditions in terms of acceptance ratio, i.e., the percentage of task
sets determined by each schedulability test condition to be schedulable. A higher
acceptance ratio indicates a more accurate test, since all tests compared are safe but
pessimistic. Figure 5.5 shows the acceptance ratio of the proposed test conditions
(“TEST-1” is the general schedulability test presented in Sect. 5.4; “TEST-2” is the
schedulability test for NP-FP in Sect. 5.5) and the simulation (“Sim”).

Fig. 5.5 Performance of the proposed schedulability tests in terms of acceptance ratio. (a) Ui 2
[0:1; 0:4]; Ti 2 [10; 20]; (b) Ui 2 [0:1; 0:6]; Ti 2 [10; 20]; (c) Ui 2 [0:1; 0:4]; Ti 2 [10; 40]; (d)
Ui 2 [0:1; 0:6]; Ti 2 [10; 40]; (e) Ui 2 [0:1; 0:4]; Ti 2 [10; 60] (f) Ui 2 [0:1; 0:6]; Ti 2 [10; 60]
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In the simulation of each task set, we set all tasks release offsets as 0, task inter-
release separation as Ti and task execution time as the Ci, and check the task set
until its hyper-period. Even though these assumptions do not guarantee to generate
the worst-case scenario in terms of schedulability, they are adopted since it is not
computationally feasible to try all possible task release offsets, task inter-release
times or task execution times. Simulation results obtained under this assumption
may sometimes determine a task set to be schedulable even though it is not, but they
can serve as an upper bound of the ratio of all schedulable task sets.

We follow the method in [135] to generate synthetic task sets: A task set of MC1

tasks is generated and tested for schedulability using the schedulability tests and
simulation. Then the number of tasks is increased by 1 to generate a new task set, and
it is tested again. This process is repeated until the total processor utilization exceeds
M. The whole procedure is then repeated, starting with a new task set of MC1 tasks,
until 10,000 task sets have been generated and tested. This method of generating
synthetic task sets produces a fairly uniform distribution of total utilization values
(except very low utilization values, which are not of our interest anyway).

The task parameter settings in Fig. 5.5a are as follows: The number of processors
is 4; for each task, its period Ti is uniformly distributed in Œ10; 20�; the ratio between
its deadline Di and period Ti is uniformly distributed in [0.9, 1]; its utilization
Ui D Ci

Ti
is uniformly distributed in Œ0:1; 0:4�. In Fig. 5.5b–f, the parameter

concerning Ui and Ti is tuned while all other parameters are kept unchanged. The
general schedulability test [TEST-1]’s acceptance ratio is low, because very coarse
approximation on the workload in the problem window is used in the test. However,
as can be seen in Fig. 5.5, by exploring the scheduling algorithm specific properties
and refining the definition of the problem window, the performance of the second
test [TEST-2] is significantly improved.

5.8 Simulations

In the section, we compare the performance of the scheduling algorithms NP-FP
and P-FP by simulations. For hard real-time systems, the performance of a test
condition is usually considered to make more sense than the absolute performance
of a scheduling algorithm itself. However, studying the performance characteristics
of the scheduling algorithms will disclose their “potentials” and may inspire the
development of new scheduling and analysis techniques.

We use the same task generation strategy as in the last section, by which one
can get a fairly uniform distribution of total utilization values (except very low
utilization values, which are not of our interest anyway). We use the well-known
Deadline-Monotonic (DM) policy to assign task priorities.

Since exhaustive simulations of global multiprocessor scheduling with sporadic
task systems are not computationally feasible [85, 86], we adopt non-exhaustive
simulations in our experiments: For each task set, the initial release time of each task
�i is randomly chosen from Œ0; Ti�; when a task �i has experienced its minimal inter-
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Fig. 5.6 Simulation experiments with different period ranges (M D 4, Ui 2 Œ0:1; 0:4�). (a) NP�
FP; (b) P-FP

Fig. 5.7 Simulation experiments with different utilization ranges (M D 8, Ti 2 Œ10; 80�). (a)
NP� FP; (b) P-FP

release separation Ti from its last release time, at each time instant, the probability
for �i to release the next job is 3=4 (i.e., the probability is 1=4 for �i to not release at
this time instant, but wait until at least the next time instant). For each task set, the
simulation starts from time 0, and terminates at min.5� 106; hyper-period/ (it is not
feasible to simulate every task set to its hyper-period, since the task sets’ hyper-
periods could be very large under some parameter setting). For each parameter
setting we simulate 5 � 105 task sets.

In the experiments of Fig. 5.6, the number of processor is 4, each task’s utilization
is randomly chosen from Œ0:1; 0:4�, and we tune the range of task periods. From
Fig. 5.6a we can see that, as the range of task periods become broader, the
performance of NP-FP degrades. This is because with a broader range of task
periods (keeping the utilization range unchanged), tasks have larger execution
times, and thereby cause longer non-preemptive blocking, which is bad for the
schedulability of NP-FP. However, from Fig. 5.6b we can see that the period range
has much smaller effect on the performance of P-FP.

In the experiments of Fig. 5.7, the number of processor is 8, each task’s period
is randomly chosen from Œ10; 80�, and we tune the range of task utilizations.
Figure 5.7a shows that as tasks become “heavier,” the performance of NP-FP
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Fig. 5.8 Simulation experiments with different processor numbers (Ti 2 Œ10; 320�, Ui 2
Œ0:1; 0:4�). (a) NP� FP; (b) P-FP

degrades. This is because of the same reason as above: long execution times form
longer non-preemptive blocking. Again, the effect of utilization range on P-FP is
much smaller as shown in Fig. 5.7b.

In the experiments of Fig. 5.8, we tune the number of processors with a fixed
period and utilization range (Ti 2 Œ10; 320�; Ui 2 Œ0:1; 0:4�). Figure 5.8a shows that
NP-FP’s performance gets better as the number of processors increases. Although
a broad task period range causes longer non-preemptive blocking, the performance
of NP-FP can be compensated by a larger processor number. This observation is of
particular interest: Since the number of cores on a die is growing rapidly, the effect
of non-preemptive blocking will become smaller and smaller in future “many-core”
systems. Figure 5.8b shows that the effect of processor numbers on the performance
of P-FP is very small.

Another interesting (even surprising) phenomenon disclosed by the above exper-
iments is, under many parameter settings NP-FP actually performs better than P-FP
(e.g., the experiments with Ti 2 Œ10; 20� and Ti 2 Œ10; 40� in Fig. 5.6, Ui 2
Œ0:1; 0:2� in Fig. 5.7, and M D 64 in Fig. 5.8), which counters the widely accepted
intuition that non-preemptive scheduling in general has worse responsiveness than
preemptive scheduling due to the non-preemptive blocking. Note that the context
switch overhead is not considered in the simulation experiments. In the following we
intuitively explain this counterintuitive phenomenon. In non-preemptive scheduling,
a job will execute to completion once it starts, which is in general good for the
schedulability of low-priority tasks. But at the same time, the low-priority tasks
may form non-preemptive blocking, which is harmful for the schedulability of high-
priority tasks. On single processor platforms, the effect of non-preemptive blocking
is dominating: as long as there is a low-priority task with very long execution
time, the high-priority tasks with “short” relative deadlines are doomed to miss
their deadlines. However, this is not necessarily the case on multiprocessors: In
global scheduling, even if there is a very “long” task non-preemptively occupying
a processor, other “short” tasks still have chances to execute on other processors
and meet their deadlines. As the number of processors increases, the effect of non-
preemptive blocking becomes even smaller, as we can see in Fig. 5.8a. So when the
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Table 5.2 An example task
set is schedulable by NP-FP
but not by P-FP

Task Ti Di Ci Priority

�1 5 5 1 High

�2 5 5 1 Medium

�3 11 11 8C 
 Low

Fig. 5.9 Schedule of the task set in Table 5.2 under (a) P-FP and (b) NP-FP

effect of non-preemptive blocking is small, and the benefit of non-preemption for
low-priority tasks is dominating, NP-FP will exhibit a better real-time performance
than P-FP. As an example, we consider the task set in Table 5.2 running on 2

processors. Figure 5.9 shows the schedule under P-FP and NP-FP, respectively
(assuming each task’s initial release time is 0, and is released periodically). We can
see in Fig. 5.9a that the lowest-priority task �3 misses its deadline in P-FP, while a
lot of processor utilization is wasted (one processor is idle during Œ1; 5� and Œ6; 10�).
However, as shown in Fig. 5.9b, �3 can meet its deadline in NP-FP (it executes to
completion once it starts at time 2). At the same time, the non-preemptive blocking
of �3 is not enough to prevent �1 and �2 from meeting their deadlines. Actually this
task set can pass the test condition [TEST-2], so it is indeed schedulable by NP-FP
(without the assumption on its release pattern in Fig. 5.9).

In summary, we can conclude that the real-time performance of NP-FP heavily
depends on the parameter characteristics, while P-FP’s performance is quite
stable under different parameter settings. In general NP-FP has better real-time
performance than P-FP when (1) the range of task periods/deadlines is narrow,
(2) the task utilization is low, and (3) the number of processors is large. Since the
number of cores on multi-core platforms is rapidly increasing, we suggest that non-
preemptive scheduling may have better potential than preemptive scheduling for a
considerable part of applications in future multi-core/many-core systems.

5.9 Conclusions

In this chapter, we study the schedulability problem of global non-preemptive
scheduling on multiprocessor platforms. We conducted our simulation experiments
empirically comparing the real-time performance of preemptive and non-preemptive
global fixed-priority scheduling, by which we obtained interesting (even surprising)
results suggesting that for a considerably part of applications on multiprocessor
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platforms, non-preemptive scheduling is actually a better choice than preemp-
tive scheduling regarding the real-time performance. As technical contributions,
we studied the schedulability analysis problem of non-preemptive fixed-priority
scheduling (NP-FP) on multiprocessors. We firstly derived a linear-time general
schedulability test condition that works on not only NP-FP, but also any other work-
conserving non-preemptive scheduling algorithm. Then we improve the analysis
and present a test condition of quadratic time-complexity for NP-FP, which has
significant performance improvement compared to the first test condition.



Chapter 6
Liu and Layland’s Utilization Bound

Liu and Layland discovered the famous utilization bound N.2
1
N � 1/ for

fixed-priority scheduling on single-processor systems in the 1970s. Since then, it
has been a long-standing open problem to find fixed-priority scheduling algorithms
with the same bound for multiprocessor systems. In this chapter, we present a
partitioning-based fixed-priority multiprocessor scheduling algorithm with Liu and
Layland’s utilization bound.

6.1 Introduction

Utilization bound is a well-known concept first introduced by Liu and Layland in
their seminal paper [32]. Utilization bound can be used as a simple and practical
way to test the schedulability of real-time task sets, as well as a good metric to
evaluate the “quality” of a scheduling algorithm. It was shown that the utilization
bound of Rate Monotonic Scheduling (RMS) on single processors is N.2

1
N �1/. For

simplicity of presentation we let 	.N/ D N.2
1
N � 1/.

Multiprocessor scheduling is usually categorized into two paradigms [48]: global
scheduling, in which each task can execute on any available processor in the run-
time, and partitioned scheduling in which each task is assigned to a processor
beforehand, and during the run-time each task can only execute on this particular
processor. Although global scheduling on average utilizes computing resource
better, the best known utilization bound of global fixed-priority scheduling is
only 38 % [51], which is much lower than the best known result of partitioned
fixed-priority scheduling 50 % [59]. Fifty percent is also known as the maximum
utilization bound for both global and partitioned fixed-priority scheduling [50, 63].
Although there exist scheduling algorithms, like the pfair family [148, 149], offering
utilization bounds of 100 %, these scheduling algorithms are not priority-based and
incur much higher context-switch overhead [150].
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Recently a number of works have been done on the semi-partitioned scheduling,
which can exceed the maximum utilization bound 50 % of the partitioned schedul-
ing. In semi-partitioned scheduling, most tasks are statically assigned to one fixed
processor as in partitioned scheduling, while a few number of tasks are split into
several subtasks, which are assigned to different processors. A recent work [151]
has shown that the worst-case utilization bound of semi-partitioned fixed-priority
scheduling can achieve 65 %, which is still lower than 69.3 % (the worst-case value
of 	.N/ when N is increasing to the infinity). This gap is even larger with a
smaller N.

In this chapter, we propose a new fixed-priority scheduling algorithm for
multiprocessor systems based on semi-partitioned scheduling, whose utilization
bound is 	.N/. The algorithm uses RMS on each processor, and has the same task
splitting overhead as in previous work.

We first propose a semi-partitioned fixed-priority scheduling algorithm, whose
utilization bound is 	.N/ for a class of task sets in which the utilization of each
task is no larger than 	.N/=.1C	.N//. This algorithm assigns tasks in decreasing
period order, and always selects the processor with the least workload assigned so
far among all processors, to assign the next task. Then we remove the constraint on
the utilization of each task, by introducing an extra task pre-assigning mechanism;
the algorithm can achieve the utilization bound of 	.N/ for any task set.

6.2 Prior Work

Semi-partitioned scheduling has been studied with both EDF scheduling [66, 67, 69,
152–155] and fixed-priority scheduling [151, 156, 157].

The first semi-partitioned scheduling algorithm is EDF-fm [66] for soft real-time
systems based on EDF scheduling. Andersson et al. proposed EKG [152] for hard
real-time systems, in which split tasks are forced to execute in certain time slots.
Later EKG was extended to sporadic and arbitrary deadline task systems [67, 153]
with the similar idea. Kato et al. proposed EDDHP and EDDP [69, 154] in which
split tasks are scheduled based on priority rather than time slots. The worst-case
utilization bound of EDDP is 65 %. Later Kato et al. proposed EDF-WM, which
can significantly reduce the context switch overhead against previous work.

There are relatively fewer works on the fixed-priority scheduling side. Kato et al.
proposed RMDP [156] and DMPM [157], both with the worst-case utilization bound
of 50 %, which is the same as the partitioned scheduling without task splitting.
Recently, Lakshmanan et al. [151] proposed the algorithm PDMS_HPTS_DS,
which can achieve the worst-case utilization bound of 65 %, and can achieve the
bound 69.3 % for a special type of task sets that consist of “light” tasks. They also
conducted case studies on an Intel Core 2 Duo processor to characterize the practical
overhead of task-splitting, and showed that the cache overheads due to task-splitting
can be expected to be negligible on multi-core platforms.
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6.3 Basic Concepts

We first introduce the processor platform and task model. The multiprocessor
platform consists of M identical processors fP1; P2; : : : PMg. A task set � D
f�1; �2; : : : ; �Ng consists of N independent tasks. Each task �i is a 2-tuple hCi; Tii,
where Ci is the worst-case execution time, Ti is the minimum inter-release separation
(also called period). Ti is also �i’s relative deadline.

Tasks in � are sorted in non-decreasing period order, i.e., j > i) Tj � Ti. Since
our proposed algorithms use rate-monotonic scheduling (RMS) as the scheduling
algorithm on each processor, we can use the task indices to represent the task
priorities, i.e., �i has higher priority than �j if and only if i < j. The utilization
of each task �i is defined as Ui D Ci=Ti.

6.4 The First Algorithm SPA1

A significant difference between SPA1 and the algorithms in previous work is that
SPA1 employs a “worst-fit” partitioning, while all previous algorithms employ a
“first-fit” partitioning [151, 156, 157].

The basic procedure of “first-fit” partitioning is as follows: select a processor,
and assign tasks to this processor as much as possible to fill its capacity, then pick
the next processor and repeat the procedure. In contrast, the “worst-fit” partitioning
always selects the processor with the minimal total utilization of tasks that have been
assigned to it, so the occupied capacities of all processors are increased roughly “in
turn.”

The reason for us to prefer worst-fit partitioning is intuitively explained as
follows. A subtask � k

i ’s actual deadline (4k
i ) is shorter than �i’s original deadline Ti,

and the sum of the synthetic utilizations of all �i’s subtasks is larger than �i’s original
utilization Ui, which is the key difficulty for semi-partitioned scheduling to achieve
the same utilization bound as on single-processors. With worst-fit partitioning, the
occupied capacity of all processors is increased “in turn,” and task splitting only
occurs when the capacity of a processor is completely “filled.” Then, if one partitions
all tasks in increasing priority order, the split tasks in worst-fit partitioning will
generally have relatively high priority levels on each processor. This is good for
the schedulability of the task set, since the tasks with high priorities usually have
better chance to be schedulable, so they can tolerate the shortened deadlines better.
Consider an extreme scenario: if one can make sure that all split tasks’ subtasks
have the highest priority on their host processors, then there is no need to consider
the shortened deadlines of these subtasks, since, being of the highest priority level
on each processor, they are schedulable anyway. Thus, as long as the split tasks with
shorten deadlines do not cause any problem, Liu and Layland’s utilization bound
can be easily achieved. The philosophy behind our proposed algorithms is making
the split subtasks get as high priority as possible on each processor.
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In contrast, with the first-fit partitioning, a split subtask may get quite low priority
on its host processors.1 For instance, with the algorithm in [151] that achieves the
utilization bound of 65 %, in the worst case the second subtask of a split task will
always get the lowest priority on its host processor.

As will be seen later in this section, SPA1 does not completely solve the
problem. More precisely, SPA1 is restricted to a class of light task sets, in which
the utilization of each task is no larger than 	.N/=.1 C 	.N//. Intuitively, this is
because if a task’s utilization is very large, its tail subtask might still get a relatively
low priority on its host processor, even using worst-fit partitioning. (We will solve
this problem with SPA2 in Sect. 6.5.)

In the following, we will introduce SPA1 as well as its utilization bound property.
The remaining part of this section is structured as follows: we first present the
partitioning algorithm of SPA1, and show that any task set � satisfying U.�/ �
	.N/ can be successfully partitioned by SPA1. Then we introduce how the tasks
assigned to each processor are scheduled. Next, we prove that if a light task set is
successfully partitioned by SPA1, then all tasks can meet their deadlines under the
scheduling algorithm of SPA1. Together, this implies that any light task set with
U.�/ � 	.N/ is schedulable by SPA1, and finally indicates the utilization bound
of SPA1 is 	.N/ for light task sets.

1: if U.�/ > 	.N/ then abort
2: UQ WD Œ�1

N ; �1
N�1; : : : ; �1

1 �

3: �Œ1 : : : M� WD all zeros
4: while UQ ¤ ; do
5: Pq := the processor with the minimal �

6: � k
i := pop_front(UQ)

7: if (Uk
i C �Œq� � 	.N/) then

8: � k
i 7! Pq

9: �Œq� WD �Œq�C Uk
i

10: else
11: split � k

i into two parts � k
i and �

kC1
i such that

Uk
i C �Œq� D 	.N/

12: � k
i 7! Pq

13: �Œq� WD 	.N/

14: push_front(� kC1
i , UQ)

15: end if
16: end while

Algorithm 1: The partitioning algorithm of SPA1

1Under the algorithms in [157], a split subtask’s priority is artificially advanced to the highest level
on its host processor, which breaks down the RMS priority order and thereby leads to a lower
utilization bound.
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6.4.1 SPA1: Partitioning and Scheduling

The partitioning algorithm of SPA1 is very simple, which can be briefly described
as follows:

• We assign tasks in increasing priority order, and always select the processor on
which the total utilization of tasks have been assigned so far is minimal among
all the processors.

• When a task (subtask) cannot be assigned entirely to the current selected
processor, we split it into two parts and assign the first part such that the total
utilization of the current selected processor is 	.N/, and assign the second part
to the next selected processor.

The precise description of the partitioning algorithm is in Algorithm 6.4. UQ is
the list accommodating unassigned tasks, sorted in increasing priority order. UQ is
initialized by f�1

N ; �1
N�1; : : : ; �1

1 g, in which each element �1
i D hc1

i D Ci; Ti;41
k D

Tii is the initial subtask form of task �i. Each element �Œq� in the array �Œ1 : : : M�

denotes the sum of the utilization of tasks that have been assigned to processor Pq.
The work flow of SPA1 is as follows. In each loop iteration, we pick the task at

the front of UQ, denoted by � k
i , which has the lowest priority among all unassigned

tasks. We try to assign � k
i to the processor Pq, which has the minimal �Œq� among

all elements in �Œ1 : : : M�. If

Uk
i C �Œq� � 	.N/

then we can assign the entire � k
i to Pq, since there is enough capacity available on

Pq. Otherwise, we split � k
i into two subtasks � k

i and � kC1
i , such that

Uk
i C �Œq� D 	.N/

(Note that with Uk
i D ck

i =Ti we denote the utilization of subtask � k
i .) We further set

�Œq� WD 	.N/, which means this processor Pq is full and we will not assign any
more tasks to Pq.

Then we insert � kC1
i back to the front of UQ, to assign it in the next loop iteration.

We continue this procedure until all tasks have been assigned.
It is easy to see that all task sets below the desired utilization bound can be

successfully partitioned by SPA1:

Lemma 6.1. Any task set with

U.�/ � 	.N/ (6.1)

can be successfully partitioned to M processors with SPA1.

Note that there is no schedulability guarantee in the partitioning algorithm. It will
be proved in the next subsection.
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After the tasks are assigned (and possibly split) to the processors by the parti-
tioning algorithm of SPA1, they will be scheduled using RMS on each processor
locally, i.e., with their original priorities. The subtasks of a split task respect their
precedence relations, i.e., a split subtask � k

i is ready for execution when its preceding
subtask � k�1

i on some other processor has finished.

6.4.2 Schedulability

We first show an important property of SPA1:

Lemma 6.2. After partitioning according to SPA1, each body subtask has the
highest priority on its host processor.

Proof. In the partitioning algorithm of SPA1, task splitting only occurs when a
processor is full. Thus, after a body task was assigned to a processor, there will be
no more tasks assigned to it. Further, the tasks are partitioned in increasing priority
order, so all tasks assigned to the processor before have lower priority.

By Lemma 6.2, we further know that the response time of each body subtask equals
its execution time, so the synthetic deadline 4t

i of each tail subtask � t
i is calculated

as follows:

4t
i D Ti �

X

j2Œ1;B�

cbj
i D Ti � .Ci � ct

i/ (6.2)

So we can view the scheduling in SPA1 on each processor without considering
the synchronization between the subtasks of a split task, and just regard every split
subtask � k

i as an independent task with period Ti and a shorter relative deadline4k
i

calculated by Eq. (6.2), as shown in Fig. 6.1.
In the following we prove the schedulability of non-split tasks, body subtasks,

and tail subtasks, respectively.

Δi
k∑ ci

j

j<k
∑ ci

j

j<k
Δi

k

release of τi ready for τi
k release of τi ready for τi

k

Ti

Fig. 6.1 Each subtask � k
i can be viewed as an independent task with period of Ti and deadline

of4k
i
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Non-split Tasks

Lemma 6.3. If task set � with U.�/ � 	.N/ is partitioned by SPA1, then any
non-split task of � can meet its deadline.

Proof. The tasks on each processor are scheduled by RMS, and the sum of the
utilization of all tasks on a processor is no larger than 	.N/. Further, the deadlines
of the non-split tasks are unchanged and therefore still equal their periods. Thus,
each non-split task is schedulable.

Note that although the synthetic deadlines of other subtasks are shorter than their
original periods, this does not affect the schedulability of the non-split tasks, since
only the periods of these subtasks are relevant to the schedulability of the non-split
tasks.

Body Subtasks

Lemma 6.4. If task set � with U.�/ � 	.N/ is partitioned by SPA1, then any body
subtask of � can meet its deadline.

Proof. The body subtasks have the highest priorities on their host processors and
will therefore always meet their deadlines. (This holds even though the deadlines
were shortened because of the task splitting).

Tail Subtasks

Now we prove the schedulability for an arbitrary tail subtask � t
i , during which we

only focus on � t
i , but do not consider whether other tail subtasks are schedulable

or not. Since the same reasoning can be applied to every tail subtask, the proofs
guarantee that all tail subtasks are schedulable.

Suppose task �i is split into B body subtasks and one tail subtask. Recall that
we use �

bj

i ; j 2 Œ1; B� to denote the jth body subtask of �i, and � t
i to denote �i’s tail

subtask. U
bj

i D c
bj

i =Ti and Ut
i D ct

i=Ti denotes �
bj

i ’s and � t
i ’s original utilization,

respectively.
Additionally, we use the following notations (cf. Fig. 6.2):

• For each body subtask �
bj

i , let Xbj denote the sum of the utilizations of all the

tasks �k assigned to Pbj with lower priority than �
bj

i .
• For the tail subtask � t

i , let Xt denote the sum of the utilizations of all the tasks
assigned to Pt with lower priority than � t

i .
• For the tail subtask � t

i , let Yt denote the sum of the utilizations of all the tasks
assigned to Pt with higher priority than � t

i .

We can use these now for the schedulability of the tail subtasks:
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...  ...

Pb2 PbB Pt

(N)

Xb1 Xb2 XbB Xt

Ui
bBUi

b2Ui
b1

Y t

Ui
t

low 
priority

high
priority

Fig. 6.2 Illustration of Xbj , Xt, and Yt

Lemma 6.5. Suppose a tail subtask � t
i is assigned to processor Pt. If � t

i satisfies

Yt � Ti=4t
i C Vt

i � 	.N/; (6.3)

then � t
i can meet its deadline.

Proof. The proof idea is as follows: We consider the set � consisting of � t
i and all

tasks with higher priority than � t
i on the same processor, i.e., the tasks contributing

to Yt. For this set, we construct a new task set Q� , in which the tasks’ periods
that are larger than 4t

i are all reduced to 4t
i. The main idea is to first show that

the counterpart of � t
i is schedulable with this new set Q� by RMS because of the

utilization bound, and then to prove this implies the schedulability of � t
i in the

original set � .
In particular, let Pt be the processor to which � t

i is assigned. We define � as
follows:

� D f� k
h j � k

h 7! Pt ^ h � ig (6.4)

We now give the construction of Q� : For each task � k
h 2 � , we have a counterpart

e� k
h in Q� . The only difference is that we possibly reduce the periods:

eck
h D ck

h; eTh D
(

Th; if Th � 4t
i

4t
i; if Th > 4t

i

We also keep the same priority order of tasks in Q� as their counterparts in � ,
which is still a rate-monotonic ordering.

Figure 6.3 illustrates the construction. In Fig. 6.3a, � contains three tasks. �1 has
a period that is smaller than 4t

i, and �2 has a larger one. Further, � t
i is contained

in � . According to the construction, Q� in Fig. 6.3b has also three tasks e�1, e�2, and
e� t

i , where only the periods of e�2 and e� t
i are reduced to4t

i.
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Δ Δ

a b

Fig. 6.3 Illustration of (a) � and (b) Q�

Now we show the schedulability of e� t
i in Q� . We do this by showing the sufficient

upper bound of 	.N/ on the total utilization of Q� .

U. Q� / D
X

�k
h2�

ck
h=eTh D

X

�k
h2� nf� t

i g
ck

h=eTh C Vk
i (6.5)

We now do a case distinction for tasks e� k
h 2 Q� , according to whether their periods

were reduced or not.

• If Th � 4t
i, we have eTh D Th. Since Ti > 4t

i, we have

ck
h=eTh D ck

h=Th D Uk
h < Uk

h � Ti=4t
i

• If Th > 4t
i, we have eTh D 4t

i. Because of the priority ordered by periods, we
have Th � Ti. Thus:

ck
h=eTh D ck

h=4t
i � ck

h=Th � Ti=4t
i D Uk

h � Ti=4t
i

Both cases lead to ck
h=eTh � Uk

h � Ti=4t
i, so we can apply this to (6.5) from above:

U.e� / �
X

�k
h2� nf� t

i g
Uk

h � Ti=4t
i C Vk

i (6.6)

Since Yt DP
�k

h2� nf� t
i gUk

h, we have

U. Q� / � Yt � Ti=4t
i C Vt

i

Finally, by the assumption from Condition (6.3) we know that the right-hand side is
at most 	.N/, and thus U. Q� / � 	.N/. Therefore, e� k

i is schedulable. Note that in Q�
there could exist other tail subtasks whose deadlines are shorter than their periods.
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However, this does not invalidate that the condition U. Q� / � 	.N/ is sufficient to
guarantee the schedulability of e� t

i under RMS.
Now we need to see that this implies the schedulability of � t

i . Recall that the only
difference between � and Q� is that the period of a task in � is possibly larger than
its counterpart in Q� . So the interference � t

i suffered from the higher-priority tasks
in � is no larger than the interference e� t

i suffered in Q� , and since the deadlines of
e� t

i and � t
i are the same, we know the schedulability of e� t

i implies the schedulability
of � t

i .

It remains to show that Condition (6.3) holds, which was the assumption for this
lemma and thus a sufficient condition for tail subtasks to be schedulable. As in the
introduction of this section, this condition does not hold in general for SPA1, but
only for certain light task sets:

Definition 6.1. A task �i is a light task if

Ui � 	.N/

1C	.N/
:

Otherwise, �i is a heavy task.
A task set � is a light task sets if all tasks in � are light tasks.

Lemma 6.6. Suppose a tail subtask � t
i is assigned to processor Pt. If �i is a light

task, we have

Yt � Ti=4t
i C Vt

i � 	.N/:

Proof. We will first derive a general upper bound on Yt based on the properties of
Xbj , Xt and the subtasks’ utilizations. Based on this, we derive the bound we want
to show, using the assumption that �i is a light task.

For deriving the upper bound on Yt, we note that as soon as a task is split into
a body subtask and a rest, the processor hosting this new body subtask is full, i.e.,
its utilization is 	.N/. Further, each body subtask has by construction the highest
priority on its host processor, so we have

8j 2 Œ1; B� W Ubj

i C Xbj D 	.N/

We sum over all B of these equations, and get

X

j2Œ1;B�

U
bj

i C
X

j2Œ1;B�

Xbj D B �	.N/ (6.7)

Now we consider the processor containing � t
i , denoted by Pt. Its total utilization

is Xt C Ut
i C Yt and is at most 	.N/, i.e.,

Xt C Ut
i C Yt � 	.N/:
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We combine this with (6.7) and get

Yt �
P

j2Œ1;B� U
bj

i

B
C

P
j2Œ1;B� Xbj

B
� Ut

i � Xt (6.8)

In order to simplify this, we recall that during the partitioning phase, we always
select the processor with the smallest total utilization of tasks that have been
assigned to it so far. (Recall line 5 in Algorithm 6.4). This implies Xbj � Xt for
all subtasks �

bj

i . Thus, the sum over all Xbj is bounded by B � Xt and we can cancel
out both terms in (6.8):

Yt �
P

j2Œ1;B� U
bj

i

B
� Ut

i

Another simplification is possible using that B � 1 and that �i’s utilization Ui is the
sum of the utilizations of all of its subtasks, i.e.,

P
j2Œ1;B� U

bj

i D Ui � Ut
i :

Yt � Ui � 2 � Ut
i

We are now done with the first part, i.e., deriving an upper bound for Yt. This can
easily be transformed into an upper bound on the term we are interested in:

Yt � Ti

4t
i

C Vt
i � .Ui � 2 � Ut

i/ �
Ti

4t
i

C Vt
i (6.9)

For the rest of the proof, we try to bound the right-hand side from above by 	.N/

which will complete the proof. The key is to bring it into a form that is suitable to
use the assumption that �i is a light task.

As a first step, we use that the synthetic deadline of � t
i is the period Ti reduced

by the total computation time of �i’s body subtasks, i.e., 4t
i D Ti � .Ci � ct

i/, cf.
Eq. (6.2). Further, we use the definitions Ui D Ci=Ti, Ut

i D ct
i=Ti and Vt

i D ct
i=4t

i
to derive

.Ui � 2 � Ut
i/ �

Ti

4t
i

C Vt
i D

Ci � ct
i

Ti � .Ci � ct
i/

Since ct
i > 0, we can find a simple upper bound of the right-hand side:

Ci � ct
i

Ti � .Ci � ct
i/
D Ti

Ti � .Ci � ct
i/
� 1 <

Ti

Ti � Ci
� 1

Since �i is a light task, we have

Ui � 	.N/

1C	.N/
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and by applying Ui D Ci=Ti to the above, we can obtain

Ti

Ti � Ci
� 1 � 	.N/

Thus, we have established that 	.N/ is an upper bound of Yt � Ti
4t

i
C Vt

i with which
we started in (6.9).

From Lemmas 6.5 and 6.6 it follows directly the desired property:

Lemma 6.7. If task set � with U.�/ � 	.N/ is partitioned by SPA1, then any tail
subtask of a light task of � can meet its deadline.

6.4.3 Utilization Bound

By Lemma 6.1 we know that a task set � can be successfully partitioned by the
partitioning algorithm of SPA1 if U.�/ is no larger than 	.N/. If � has been
successfully partitioned, by Lemmas 6.3 and 6.4 we know that all the non-split
task and body subtasks are schedulable. By Lemma 6.7 we know a tail subtask � k

i is
also schedulable if �i is a light task. Since, in general, it is a priori unknown which
tasks will be split, we pose this constraint of being light to all tasks in � to have a
sufficient schedulability test condition:

Theorem 6.1. Let � be a task set only containing light tasks. � is schedulable with
SPA1 on M processors if

U.�/ � 	.N/ (6.10)

In other words, the utilization bound of SPA1 is 	.N/ for task sets only containing
tasks with utilization no larger than 	.N/=.1C	.N//.

	.N/ is a decreasing function with respect to N, which means the utilization
bound is higher for task sets with fewer tasks. We use N� to denote the maximal
number of tasks (subtasks) assigned to on each processor, so 	.N�/, which is
strictly larger than 	.N/ also serves as the utilization bound on each processor.
Therefore we can use 	.N�/ to replace 	.N/ in the derivation above, and get that
the utilization bound of SPA1 is 	.N�/ for task sets only containing tasks with
utilization no larger than 	.N�/=.1C	.N�//. It is easy to see that there is at least
one task assigned to each processor, and two subtasks of a task cannot be assigned
to the same processor. Therefore the number of tasks executing one each processor
is at most N �M C 1, which can be used as an over-approximation of N�.
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6.5 The Second Algorithm SPA2

In this section we introduce our second semi-partitioned fixed-priority scheduling
algorithm SPA2, which has the utilization bound of 	.N/ for task sets without any
constraint.

As discussed in the beginning of Sect. 6.4, the key point for our algorithms to
achieve high utilization bounds is to make each split task getting a priority as high
as possible on its host processor. With SPA1, the tail subtask of a task with very
large utilization could have a relatively low priority on its host processor, as the
example in Fig. 6.4 illustrates. This is why the utilization bound of SPA1 is not
applicable to task sets containing heavy tasks.

To solve this problem, we propose the second semi-partitioned algorithm
SPA2 in this section. The main idea of SPA2 is to pre-assign each heavy task whose
tail subtask might get a low priority, before partitioning other tasks, therefore these
heavy tasks will not be split.

Note that if one simply pre-assigns all heavy tasks, it is still possible for some
tail subtask to get a low priority level on its host processor. Consider the task set
in Table 6.1 with two processors, and for simplicity we assume 	.N/ D 0:8, and
	.N/=.1C	.N// D 4=9. If we pre-assign the heavy task �1 to processor P1, then
assign �2 and �3 by the partitioning algorithm of SPA1, the task partitioning looks
as follows:

1. �1 7! P1,
2. �3 7! P2,
3. �2 cannot be entirely assigned to P2, so it is split into two subtasks �1

2 D
h3:75; 10; 10i and �2

2 D h0:5; 10; 6:25i, and �1
2 7! P2,

4. �2
2 7! P1.

4

3
b

5

3
t

2

1

Fig. 6.4 The tail subtask of a task with large utilization may have a low priority level

Table 6.1 An example task
set

Task Ci Ti Heavy task? Priority

�1 3 4 Yes Highest

�2 4.25 10 No Middle

�3 4.25 10 No Lowest
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Then the tasks on each processor are scheduled by RMS. We can see that the tail
subtask �2

2 has the lowest priority on P1 and will miss its deadline due to the higher
priority task �1. However, if we do not pre-assign �1 and just do the partitioning with
SPA1, this task set is schedulable.

To overcome this problem, a more sophisticated pre-assigning mechanism is
employed in our second algorithm SPA2. Intuitively, SPA2 pre-assigns exactly
those heavy tasks for which pre-assigning them will not cause any tail subtask to
miss deadline. This is checked using a simple test. Those heavy tasks that don’t
satisfy this test will be assigned (and possibly split) later together with the light
tasks. The key for this to work is, that for these heavy tasks, we can use the property
of failing the test in order to show that their tail subtasks will not miss the deadlines
either.

6.5.1 SPA2: Partitioning and Scheduling

We first introduce some notations. If a heavy task �i is pre-assigned to a processor
Pq in SPA2, we call �i as a pre-assigned task, otherwise a normal task, and call Pq

as a pre-assigned processor, otherwise a normal processor.
The partitioning algorithm of SPA2 contains three steps:

1. We first pre-assign the heavy tasks that satisfy a particular condition to one
processor each.

2. We do task partitioning with the remaining (i.e., normal) tasks and remaining
(i.e., normal) processors using SPA1 until all the normal processors are full.

3. The remaining tasks are assigned to the pre-assigned processors; the assignment
selects one processor to assign as many tasks as possible, until it becomes full,
then select the next processor.

The precise description of the partitioning algorithm of SPA2 is shown in
Algorithm 6.5. We first introduce the data structures used in the algorithm:

• PQ is the list of all processors. It is initially ŒP1; P2; : : : ; PM� and processors are
always taken out and put back in the front.

• PQpre is the list to accommodate pre-assigned processors, initially empty.
• UQ is the list to accommodate the unassigned tasks after Step (1). Initially it is

empty, and during Step (1), each task �i that is determined not to be pre-assigned
will be put into UQ (already in its subtask form �1

i ).
• �Œ1 : : : M� is an array, which has the same meaning as in SPA1: each element

�Œq� in the array �Œ1 : : : M� denotes the sum of the utilization of tasks that have
been assigned to processor Pq.

In the following we use the task set example in Table 6.2 with four processors
to demonstrate how the partitioning algorithm of SPA2 works. For simplicity, we
assume 	.N/ D 0:7, then the utilization threshold for light tasks 	.N/=.1C	.N//

is around 0:41. The initial state of the data structures is as follows:
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1: if U.�/ > 	.N/ then abort
2: PQ := ŒP1; P2; : : : ; PM �

3: PQpre := ;
4: UQ := ;
5: �Œ1 : : : M� := all zeros
6: for i WD 1 to N do
7: if �i is heavy ^P

j>i Uj � .jPQj � 1/ �	.N/ then
8: Pq := pop_front(PQ)
9: Pre-assign �i to Pq

10: push_front(Pq, PQpre)
11: �Œq� WD �Œq�C Ui

12: else
13: push_front(�1

i , UQ)
14: end if
15: end for
16: while UQ ¤ ; do
17: � k

i := pop_front(UQ)
18: if 9Pq 2 PQ W �Œq� ¤ 	.N/ then
19: Pq := the element in PQ with the minimal �

20: else
21: Pq := pop_front(PQpre)
22: end if
23: if Uk

i C �Œq� � 	.N/ then
24: � k

i 7! Pq

25: �Œq� WD �Œq�C Uk
i

26: if Pq came from PQpre then
27: push_front(Pq, PQpre)
28: end if
29: else
30: split � k

i into two parts � k
i and �

kC1
i such that

Uk
i C �Œq� D 	.N/

31: � k
i 7! Pq

32: �Œq� D 	.N/

33: push_front(� kC1
i , UQ)

34: end if
35: end while

Algorithm 2: The partitioning algorithm of SPA2

Table 6.2 An example
demonstrating SPA2

Task Ci Ti Heavy task? Priority

�1 0.5 10 No highest

�2 4.5 10 Yes

�3 6 10 Yes

�4 4 10 No

�5 3 10 No

�6 6 10 Yes

�7 3 10 No Lowest
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• PQ D ŒP1; P2; P3; P4�

• PQpre D ;
• UQ D ;
• �Œ1 : : : 4� D Œ0; 0; 0; 0�

In Step (1) (lines 6–15), each task �i in � is visited in increasing index order, i.e.,
decreasing priority order. If �i is a heavy task, we evaluate the following condition
(line 7):

X

j>i

Uj � .jPQj � 1/ �	.N/ (6.11)

in which jPQj is the number of processors left in PQ so far. A heavy task
�i is determined to be pre-assigned to a processor if this condition is satisfied.
The intuition for this is: If we pre-assign this task �i, then there is enough space on
the remaining processors to accommodate all remaining lower priority tasks. That
way, no lower priority tail subtask will end up on the processor which we assign
�i to.

In our example, we first visit the first task �1
1 . It is a light task, so we put it to the

front of UQ (line 13). The next task �2 is heavy, but Condition (6.11) with jPQj D 4

is not satisfied, so we put �1
2 to the front of UQ. The next task �3 is heavy, and

Condition (6.11) with jPQj D 4 is satisfied. Thus, we pre-assign �3 to P1, and put
P1 to the front of PQpre (lines 8–10). �4 and �5 are both light tasks, so we put them
to UQ, respectively. �6 is heavy, and Condition (6.11) with jPQj D 3 (P1 has been
taken out from PQ and put into PQpre) is satisfied, so we pre-assign �5 to P2, and
put P2 to the front of PQpre. The last task �7 is light, so it is put to the front of UQ.
So far, the Step (1) phase has been finished, and the state of the data structures is as
follows:

• PQ D ŒP3; P4�

• PQpre D ŒP2; P1�

• UQ D Œ�1
7 ; �1

5 ; �1
4 ; �1

2 ; �1
1 �

• �Œ1 : : : 4� D Œ0:6; 0:6; 0; 0�

Note that the processors in PQpre are in decreasing priority order of the pre-assigned
tasks on them, and the tasks in UQ are in decreasing priority order.

Steps (2) and (3) are both in the while loop of lines 16 
 35. In Step (2), the
remaining tasks (which are now in UQ) are assigned to normal processors (the ones
in PQ). Only as soon as all processors in PQ are full, the algorithm enters Step (3),
in which tasks are assigned to processors in PQpre (decision in lines 18–22).

The operation of assigning a task � k
i (lines 23–34) is basically the same as in

SPA1. If � k
i can be entirely assigned to Pq without task splitting, then � k

i 7! Pq and
�Œq� is updated (lines 24–28). If Pq is a pre-assigned processor, Pq is put back to
the front of PQpre (lines 26–28), so that it will be selected again in the next loop
iteration, otherwise no putting back operation is needed since we never take out
elements from PQ, but just select the proper one in it (line 19).
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If � k
i cannot be assigned to Pq entirely, � k

i is split into a new � k
i and another

subtask � kC1
i , such that Pq becomes full after the new � k

i being assigned to it, and
then we put � kC1

i back to UQ (see lines 29–33).
Note that there is an important difference between assigning tasks to normal

processors and to pre-assigned processors. When tasks are assigned to normal pro-
cessors, the algorithm always selects the processor with the minimal � (the same as
in SPA1). In contrast, when tasks are assigned to pre-assigned processors, always
the processor at the front of PQpre is selected, i.e., we assign as many tasks as
possible to the processor in PQpre whose pre-assigned task has the lowest priority,
until it is full. As will be seen later in the schedulability proof, this particular order of
selecting pre-assigned processors, together with the evaluation of Condition (6.11),
is the key to guarantee the schedulability of heavy tasks.

With our running example, the remaining tasks are first assigned to the normal
processors P3 and P4 in the same way as by SPA1. Thus, �1

7 7! P3, then �1
5 7! P4,

then �1
4 7! P3, then �1

2 is split into �1
2 D h4; 10; 10i and �2

2 D h0:5; 10; 6i, and
�1

2 7! P4. So far, all normal processors are full, and the state of the data structures
is as follows:

• PQ D ŒP3; P4� (both P3 and P4 are full)
• PQpre D ŒP2; P1�

• UQ D Œ�2
2 ; �1

1 �

• �Œ1 : : : 4� D Œ0:6; 0:6; 0:7; 0:7�

Then the remaining tasks in UQ are assigned to the pre-assigned processors. At first
�2

2 7! P2, after which P2 is not full and still at the front of PQpre. So the next task
�1

1 is also assigned to P2. There is no unassigned task any more, so the algorithm
terminates.

It is easy to see that any task set below the desired utilization bound can be
successfully partitioned by SPA2:

Lemma 6.8. Any task set with

U.�/ � 	.N/

can be successfully partitioned to M processors with SPA2.

After describing the partitioning part of SPA2, we also need to describe the
scheduling part. It is the same as SPA1: on each processor the tasks are scheduled
by RMS, respecting the precedence relations between the subtasks of a split task,
i.e., a subtask is ready for execution as soon as the execution of its preceding subtask
has been finished. Note that under SPA2, each body subtask is also with the highest
priority on its host processor, which is the same as in SPA1. So we can view the
scheduling on each processor as the RMS with a set of independent tasks, in which
each subtask’s deadline is shortened by the sum of the execution time of all its
preceding subtasks.
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6.5.2 Properties

Now we introduce some useful properties of SPA2.

Lemma 6.9. Let �i be a heavy task, and there are  pre-assigned tasks with higher
priority than �i. Then we know

• If �i is a pre-assigned task, it satisfies

X

j>i

Uj � .M �  � 1/ �	.N/ (6.12)

• If �i is not a pre-assigned task, it satisfies

X

j>i

Uj > .M �  � 1/ �	.N/ (6.13)

Proof. The proof directly follows the partitioning algorithm of SPA2.

Lemma 6.10. Each pre-assigned task has the lowest priority on its host processor.

Proof. Without loss of generality, we sort all processors in a list Q as follows: we
first sort all pre-assigned processors in Q, in decreasing priority order of the pre-
assigned tasks on them; then, the normal processors follow in Q in an arbitrary
order. We use Px to denote the xth processor in Q. Suppose �i is a heavy task pre-
assigned to Pq.

�i is a pre-assigned task, and the number of pre-assigned task with higher priority
than �i is q � 1, so by Lemma 6.9 we know the following condition is satisfied:

X

j>i

Uj � .M � q/ �	.N/ (6.14)

In the partitioning algorithm of SPA2, normal tasks are assigned to pre-assigned
processors only when all normal processors are full, and the pre-assigned processors
are selected in increasing priority order of the pre-assigned tasks on them, so we
know only when the processors PqC1 : : : PM are all full, normal tasks can be assigned
to processor Pq. The total capacity of processors PqC1 : : : PM are .M � q/ � 	.N/

(in our algorithms a processor is full as soon as the total utilization on it is 	.N/),
and by (6.14), we know when we start to assign tasks to Pq, the tasks with lower
priority than �i all have been assigned to processors PqC1 : : : PM , so all normal tasks
(subtasks) assigned to Pq have higher priorities than �i.

Lemma 6.11. Each body subtask has the highest priority on its host processor.

Proof. Given a body subtask �
bj

i assigned to processor Pbj . Since task splitting only
occurs when a processor is full, and all the normal tasks are assigned in increasing
priority order, we know �

bj

i has the highest priority among all normal tasks on Pbj .
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Additionally, by Lemma 6.10 we know that if Pbj is a pre-assigned processor, the

pre-assigned task on Pbj also has lower priority than �
bj

i . So we know Pbj has the
highest priority on Pbj .

6.5.3 Schedulability

By Lemma 6.11 we know that under SPA2 each body subtask has the highest
priority on its host processor, so we know all body subtasks are schedulable.

The scheduling algorithm of SPA2 is still RMS, and the deadline of a non-split
task still equals to its period, so the schedulability of non-split tasks can be proved
in the same way as in SPA1 (Lemma 6.3).

In the following we will prove the schedulability of tail subtasks. Suppose �i is
split into B body subtasks and one tail subtask. Recall that we use �

bj

i ; j 2 Œ1; B� to
denote the jth body subtask of �i, and � t

i to denote �i’s tail subtask. Xt, Yt, and Xbj

are defined the same as in Sect. 6.4.2.
First we recall Lemma 6.5, which is used to prove the schedulability of tail

subtasks in SPA1: if a tail subtask � t
i satisfies

Yt � Ti=4t
i C Vt

i � 	.N/ (6.15)

� t
i can meet its deadline. This conclusion also holds for SPA2, since the scheduling

algorithm on SPA2 is also RMS, which is only the relevant property required by
the proof of Lemma 6.5. So proving the schedulability of tail subtasks is reduced to
proving Condition (6.15) for tail subtasks under SPA2.

We call � t
i a tail-of-heavy if �i is heavy, otherwise a tail-of-light. In the following

we prove Condition (6.15) for � t
i in three cases:

1. � t
i is a tail-of-light, and Pt is a normal processor,

2. � t
i is a tail-of-light, and Pt is a pre-assigned processor,

3. � t
i is a tail-of-heavy.

Case (1) can be proved in the same way as in SPA1, since both the partitioning
and scheduling algorithm of SPA2 on normal processors are the same as SPA1.
Actually one can regard the partitioning and scheduling of SPA2 on normal
processors as the partitioning and scheduling with a subset of tasks (those are
assigned to normal processors) on a subset of processors (normal processors) of
SPA1. So the schedulability of � t

i in this case can be proved by exactly the same
reasoning as for Lemma 6.6.

Now we prove Case (2), where � t
i is a tail-of-light, and Pt is a pre-assigned

processor.
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Lemma 6.12. Suppose � t
i is a tail-of-light assigned to a pre-assigned processor Pt

under SPA2. We have

Yt � Ti=4t
i C Vt

i � 	.N/

Proof. By Lemma 6.10 we know � t
i has higher priority than the pre-assigned task

of Pt, so Xt is no smaller than the utilization of this pre-assigned task. And since a
pre-assigned task must be heavy, we have

Xt >
	.N/

1C	.N/
(6.16)

On the other hand, since �i is light, we know

Ci

Ti
� 	.N/

1C	.N/

We use cB
i to denote the total execution time of all �i’s body tasks. Since cB

i < Ci

and 	.N/ < 1, we have

cB
i <

1

1C	.N/
� Ti

, Ti.1 � 1

1C	.N/
/ < Ti � cB

i

, Ti

Ti � cB
i

.	.N/ � 	.N/

1C	.N/
/ < 	.N/

, Ti

4t
i

.	.N/ � 	.N/

1C	.N/
� Ut

i/C Vt
i < 	.N/ (6.17)

By (6.17) and (6.16) we have

Ti

4t
i

.	.N/ � Xt � Ut
i/C Vt

i < 	.N/

and since the total utilization on each processor is bounded by 	.N/, i.e.,

Yt � 	.N/ � Xt � Ut
i

finally we have Yt � Ti=4t
i C Vt

i < 	.N/.

Now we prove Case (3), where � t
i is a tail-of-heavy. Note that in this case Pt can

be either a pre-assigned or a normal processor.
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Lemma 6.13. � t
i is the tail subtask of a normal heavy task �i, then we have

Yt � Ti=4t
i C Vt

i � 	.N/

Proof. By the property in Lemma 6.9 concerning normal heavy tasks we know �i

satisfies the condition
X

j>i

Uj > .M �  � 1/ �	.N/

in which  is the number of pre-assigned tasks with higher priority than �i.
We use M to denote the set of all processors, so jM j D M, and use H to denote

the set of the pre-assigned processors on which the pre-assigned tasks’ priorities are
higher than �i, so jH j D , so we have

X

j>i

Uj > .M � jH j � 1/ �	.N/ (6.18)

By Lemma 6.10 we know any normal task assigned to a pre-assigned processor
has higher priority than the pre-assigned task of this processor. Therefore, �i’s body
and tail subtasks are all assigned to processors in M n H . Moreover, when we
start to assign �i, all tasks with lower priority than �i have already been assigned
(pre-assigned) to processors in M nH , since pre-assigned tasks have already been
assigned before dealing with the normal tasks, and all normal tasks are assigned in
increasing priority order.

We use K to denote the set of processors in M nH that contain neither �i’s
body nor tail subtask, and for each processor Pk 2 K we use Xk to denote the total
utilization of the tasks with lower priority than �i assigned to Pk. Then we have

Xt C
X

j2Œ1;B�

Xbj C
X

k2Œ1;jK j�
Xk D

X

j>i

Uj

Since jK j D M � jH j � .BC 1/, and 8Pk 2 K ; Xk � 	.N/, we have

Xt C
X

j2Œ1;B�

Xbj �
X

j>i

Uj � .M � jH j � .BC 1// �	.N/ (6.19)

By Inequalities (6.18) and (6.19) we have

Xt C
X

j2Œ1;B�

Xbj > B �	.N/ (6.20)

Now we look at processor Pt, the total utilization on which is bounded by 	.N/,
so we have

Yt � 	.N/ � Xt � Ut
i (6.21)
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By (6.20) and (6.21) we have

Yt � 	.N/ � .B �	.N/ �
X

j2Œ1;B�

Xbj/ � Ut
i

and since Ut
i C

P
j2Œ1;B� U

bj

i D Ui, we have

Yt � 	.N/ � B �	.N/ � Ui C
0

@
X

j2Œ1;B�

Xbj C
X

j2Œ1;B�

U
bj

i

1

A (6.22)

Since each body task has the highest priority on its host processor, and the total
utilization of any processor containing a body subtask is 	.N/, we have

X

l2Œ1;B�

Xbl C
X

l2Œ1;B�

Ubl
i D B �	.N/ (6.23)

By (6.22) and (6.23) we have

Yt � 	.N/ � Ui

, Yt � Ti=4t
i C Vt

i � .	.N/ � Ui/ � Ti=4t
i C Vt

i

By applying Ui D Ci=Ti and Vt
i D ct

i=4t
i to the RHS of the above inequality, we get

Yt � Ti=4t
i C Vt

i � 	.N/ � Ti=4t
i � Ci=4t

i C ct
i=4t

i (6.24)

We use cB
i to denote the sum of the execution time of all �i’s body subtasks, so we

have ct
i C cB

i D Ci and4t
i D Ti � cB

i . We apply these to the RHS of (6.24) and get

Yt � Ti=4t
i C Vt

i �
Ti	.N/ � cB

i

Ti � cB
i

(6.25)

Since 	.N/ < 1, we have

cB
i > cB

i �	.N/

, Ti �	.N/ � cB
i < Ti �	.N/ � cB

i �	.N/

, Ti �	.N/ � cB
i

Ti � cB
i

< 	.N/ (6.26)

So by Inequalities (6.25) and (6.26) we have

Yt � Ti=4t
i C Vt

i < 	.N/
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6.5.4 Utilization Bound

Now we have known that any task set � with U.�/ � 	.N/ can be successfully
partitioned on M processors by SPA2 (Lemma 6.8). In the last subsection, we
have shown that under the scheduling algorithm of SPA2, the body subtasks are
schedulable since they are always with the highest priority level on their host
processors; the non-split tasks are also schedulable since the utilization on each
processor is bounded by 	.N/. The schedulability for the tail subtasks is proved
by case distinction, in which the schedulability for the light tail subtasks on normal
processors can be proved by the same reasoning as for Lemma 6.6, for the light tail
subtasks on pre-assigned processors is proved by Lemma 6.12, and for the heavy
tail subtasks is proved by Lemma 6.13. So we have the following theorem:

Theorem 6.2. � is schedulable by SPA2 on M processors if

U.�/ � 	.N/

So 	.N/ is the utilization bound of SPA2 for any task set.
For the same reason as presented at the end of Sect. 6.4.2, we can use 	.N�/, the

maximal number of tasks (subtasks) assigned to on each processor, to replace 	.N/

in Theorem 6.2.

6.5.5 Task Splitting Overhead

With the algorithms proposed in this chapter, a task could be split into more than
two subtasks. However, since the task splitting only occurs when a processor is full,
for any task set that is schedulable by SPA2, the number of task splitting is at most
M � 1, which is the same as in previous semi-partitioned fixed-priority scheduling
algorithms [151, 156, 157], and as shown in case studies conducted in [151], this
overhead can be expected to be negligible on multi-core platforms.

6.6 Conclusions and Future Work

In this chapter, we have developed a semi-partitioned fixed-priority scheduling
algorithm for multiprocessor systems, with the well-known Liu and Layland’s
utilization bound for RMS on single processors. The algorithm enjoys the following
property. If the utilization bound is used for the schedulability test, and a task set is
determined schedulable by fixed-priority scheduling on a single processor of speed
M, it is also schedulable by our algorithm on M processors of speed 1 (under the
assumption that each task’s execution time on the processors of speed 1 is still
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smaller than its deadline). Note that the utilization bound test is only sufficient
but not necessary. As future work, we will challenge the problem of constructing
algorithms holding the same property with respect to the exact schedulability
analysis.



Chapter 7
Parametric Utilization Bounds

Future embedded real-time systems will be deployed on multi-core processors to
meet the dramatically increasing high-performance and low-power requirements.
This trend appeals to generalize established results on uniprocessor scheduling,
particularly the various utilization bounds for schedulability test used in system
design, to the multiprocessor setting. Recently, this has been achieved for the famous
Liu and Layland utilization bound by applying novel task splitting techniques.
However, parametric utilization bounds that can guarantee higher utilizations (up
to 100 %) for common classes of systems are not yet known to be generalizable to
multiprocessors as well. In this chapter, we solve this problem for most parametric
utilization bounds by proposing new task partitioning algorithms based on exact
response time analysis (RTA). In addition to the worst-case guarantees, as the exact
RTA is used for task partitioning, our algorithms significantly improve average-case
utilization over previous work.

7.1 Introduction

It has been widely accepted that future embedded real-time systems will be deployed
on multi-core processors, to satisfy the dramatically increasing high-performance
and low-power requirements. This trend demands effective and efficient techniques
for the design and analysis of real-time systems on multi-cores.

A central problem in the real-time system design is timing analysis, which
examines whether the system can meet all the specified timing requirements.
Timing analysis usually consists of two steps: task-level timing analysis, which, for
example, calculates the worst-case execution time of each task independently, and
system-level timing analysis (also called schedulability analysis), which determines
whether all the tasks can co-exist in the system and still meet all the time
requirements.

© Springer International Publishing Switzerland 2016
N. Guan, Techniques for Building Timing-Predictable Embedded Systems,
DOI 10.1007/978-3-319-27198-9_7
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One of the most commonly used schedulability analysis approaches is based on
the utilization bound, which is a safe threshold of the system’s workload: under this
threshold the system is guaranteed to meet all the time requirements. The utilization-
bound-based schedulability analysis is very efficient, and is especially suitable
to embedded system design flow involving iterative design space exploration
procedures. A well-known utilization bound is the N.21=N � 1/ bound for RMS
(Rate Monotonic Scheduling) on uni-processors, discovered by Liu and Layland
in the 1970s [32]. Recently, this bound has been generalized to multiprocessors
scheduling by a partitioning-based algorithm [68].

The Liu and Layland utilization bound (L&L bound for short) is pessimistic:
There are a significant number of task systems that exceed the L&L bound but are
indeed schedulable. This means that system resources would be considerably under-
utilized if one only relies on the L&L bound in system design.

If more information about the task system is available in the design phase, it
is possible to derive higher parametric utilization bounds regarding known task
parameters. A well-known example of parametric utilization bounds is the 100 %
bound for harmonic task sets [158]: If the total utilization of a harmonic task set �

is no greater than 100 %, then every task in � can meet its deadline under RMS on a
uni-processor platform. Even if the whole task system is not harmonic, one can still
obtain a significantly higher bound by exploring the “harmonic chains” of the task
system [45]. In general, during the system design, it is usually possible to employ
higher utilization bounds with available task parameter information to better utilize
the resources and decrease the system cost. As will be introduced in Sect. 7.4, quite
a number of higher parametric utilization bounds regarding different task parameter
information have been derived for uni-processor scheduling.

This naturally raises an interesting question: Can we generalize these higher para-
metric utilization bounds derived for uni-processor scheduling to multiprocessors?
For example, given a harmonic task system, can we guarantee the schedulability of
the task system on a multiprocessor platform of M processors, if the utilization sum
of all tasks is no larger than M?

In this chapter, we will address the above question by proposing new RMS-based
partitioned scheduling algorithms (with task splitting). Generalizing the parametric
utilization bounds from uni-processors to multiprocessors is challenging, even with
the insights from our previous work generalizing the L&L bound to multiprocessor
scheduling. The reason is that task splitting may “create” new tasks that do not
comply with the parameter properties of the original task set, and thus invalidate the
parametric utilization bound specific to the original task set’s parameter properties.
Section 7.4 presents this problem in detail. The main contribution of this chapter
is a solution to this problem, which generalizes most of the parametric utilization
bounds to multiprocessors.

The approach of this chapter is generic in the sense that it works irrespective of
the form of the parametric utilization bound in consideration. The only restriction
is a threshold on the parametric utilization bound value when some task has
a large individual utilization; apart from that, any parametric utilization bound
derived for single-processor RMS can be used to guarantee the schedulability of



7.2 Related Work 131

multiprocessors systems via our algorithms. More specifically, we first proposed
an algorithm generalizing all known parametric utilization bounds for RMS to
multiprocessors, for a class of “light” task sets in which each task’s individual
utilization is at most 	.�/

1C	.�/
, where 	.�/ D N.21=N � 1/ is the L&L bound for

task set � . Then we proposed the second algorithm that works for any task set and
all parametric utilization bounds under the threshold 2	.�/

1C	.�/
.1

Besides the improved utilization bounds, another advantage of our new algo-
rithms is the significantly improved average-case performance. Although the algo-
rithm in last chapter can achieve the L&L bound, it has the problem that it never
utilizes more than the worst-case bound. The new algorithms in this chapter use
exact analysis, i.e., RTA, instead of the utilization bound threshold as in the
algorithm of last chapter, to determine the maximal workload on each processor.
It is well known that on uni-processors, by exact schedulability analysis, the average
breakdown utilization of RMS is around 88 % [159], which is much higher than its
worst-case utilization bound 69:3 %. Similarly, our new algorithm has much better
performance than the algorithm in [68].

7.2 Related Work

Multiprocessor scheduling is usually categorized into two paradigms [48]: global
scheduling, where each task can execute on any available processor at run-time, and
partitioned scheduling, where each task is assigned to a processor beforehand, and
at run-time each task only executes on its assigned processor. Global scheduling
on average utilizes the resources better. However, the standard RMS and EDF
global scheduling strategies suffer from the Dhall effect [58], which may cause
a task system with arbitrarily low utilization to be unschedulable. Although the
Dhall effect can be mitigated by, e.g., assigning higher priorities to tasks with higher
utilizations as in RM-US [50], the best known utilization bound of global scheduling
is still quite low: 38 % for fixed-priority scheduling [51] and 50 % for EDF-
based scheduling [160]. On the other hand, partitioned scheduling suffers from the
resource waste similar to the bin-packing problem: the worst-case utilization bound
for any partitioned scheduling cannot exceed 50 %. Although there exist scheduling
algorithms like the Pfair family [148, 149], the LLREF family [161, 162] and the
EKG family [67, 152], offering utilization bounds up to 100 %, these algorithms
incur much higher context-switch overhead than priority-driven scheduling, which
is unacceptable in many real-life systems.

Recently, a number of works [66–69, 151, 152, 155–157] have studied partitioned
scheduling with task splitting, which can overcome the 50 % limit of the strict
partitioned scheduling. In this class of scheduling algorithms, while most tasks
are assigned to a fixed processor, some tasks may be (sequentially) divided into

1When N goes to infinity, 	.�/
:D 69:3 %, 	.�/

1C	.�/

:D 40:9 % and 2	.�/

1C	.�/

:D 81:8 %.



132 7 Parametric Utilization Bounds

several parts and each part is assigned and thereby executed on a different (but
fixed) processor. In this category, the utilization bound of the state-of-the-art EDF-
based algorithm is 65 % [69], and our recent work [68] has achieved the L&L bound
(in the worst case 69:3 %) for fixed-priority based algorithms.

7.3 Basic Concepts

We consider a multiprocessor platform consisting of M processors P D
fP1; P2; : : : PMg. A task set � D f�1; �2; : : : ; �Ng complies with the L&L task model:
Each task �i is a 2-tuple hCi; Tii, where Ci is the worst-case execution time and Ti

is the minimal inter-release separation (also called period). Ti is also �i’s relative
deadline. We use the RMS strategy to assign priorities: tasks with shorter periods
have higher priorities. Without loss of generality we sort tasks in non-decreasing
period order, and can therefore use the task indices to represent task priorities, i.e.,
i < j implies that �i has higher priority than �j. The utilization of each task �i is
defined as Ui D Ci=Ti, and the total utilization of task set � is U .�/ D PN

iD1 Ui.
We further define the normalized utilization of a task set � on a multiprocessor
platform with M processors:

UM.�/ D
X

�i2�

Ui=M

Note that the subscript M in UM.�/ reminds us that the sum of all tasks’ utilizations
is divided by the number of processors M.

A partitioned scheduling algorithm (with task splitting) consists of two parts:
the partitioning algorithm, which determines how to split and assign each task
(or rather each of its parts) to a fixed processor, and the scheduling algorithm, which
determines how to schedule the tasks assigned to each processor at run-time.

With the partitioning algorithm, most tasks are assigned to a processor (and
thereby will only execute on this processor at run-time). We call these tasks non-
split tasks. The other tasks are called split tasks, since they are split into several
subtasks. Each subtask of a split task �i is assigned to (and thereby executes on) a
different processor, and the sum of the execution times of all subtasks equals Ci. For
example, in Fig. 7.1 task �i is split into three subtasks �1

i , �2
i , and �3

i , executing on
processor P1, P2, and P3, respectively.

The subtasks of a task need to be synchronized to execute correctly. For example,
in Fig. 7.1, �2

i should not start execution until �1
i is finished. This equals deferring the

actual ready time of �2
i by up to R1

i (relative to �i’s original release time), where R1
i is

�1
i ’s worst-case response time. One can regard this as shortening the actual relative

deadline of �2
i by up to R1

i . Similarly, the actual ready time of �3
i is deferred by up

to R1
i C R2

i , and �3
i ’s actual relative deadline is shortened by up to R1

i C R2
i . We use

� k
i to denote the kth subtask of a split task �i, and define � k

i ’s synthetic deadline as
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Fig. 7.1 An illustration of task splitting

4k
i D Ti �

X

l2Œ1;k�1�

Rl
i: (7.1)

Thus, we represent each subtask � k
i by a 3-tuple hCk

i ; Ti;4k
i i, in which Ck

i is the
execution time of � k

i , Ti is the original period, and4k
i is the synthetic deadline. For

consistency, each non-split task �i can be represented by a single subtask �1
i with

C1
i D Ci and41

i D Ti. We use Uk
i D Ck

i =Ti to denote a subtask � k
i ’s utilization.

We call the last subtask of �i its tail subtask, denoted by � t
i and the other subtasks

its body subtasks, as shown in Fig. 7.1. We use �
bj

i to denote the jth body subtask.
We use �.Pq/ to denote the set of tasks �i assigned to processor Pq, and say

Pq is the host processor of �i. We use U .Pq/ to denote the sum of the utilization
of all tasks in �.Pq/. A task set � is schedulable under a partitioned scheduling
algorithm A , if (i) each task (subtask) has been assigned to some processor by A ’s
partitioning algorithm, and (ii) each task (subtask) is guaranteed to meet its deadline
under A ’s scheduling algorithm.

7.4 Parametric Utilization Bounds

On uni-processors, a Parametric Utilization Bound (PUB for short) �.�/ for a task
set � is the result of applying a function �.�/ to � ’s task parameters, such that
all the tasks in � are guaranteed to meet their deadlines on a uni-processor if � ’s
total utilization U .�/ � �.�/. We can overload this concept for multiprocessor
scheduling by using � ’s normalized utilization UM.�/ instead of U .�/.

There have been several PUBs derived for RMS on uni-processors. The follow-
ing are some examples:

• The famous L&L bound, denoted by 	.�/, is a PUB regarding the number of
tasks N: 	.�/ D N.21=N � 1/
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• The harmonic chain bound: HC-Bound.�/ D K.21=K � 1/ [45], where K is the
number of harmonic chains in the task set. The 100 % bound for harmonic task
sets is a special case of the harmonic chain bound with K D 1.

• T-Bound.�/ [163] is a PUB regarding the number of tasks and the task periods:

T-Bound.�/ DPN
iD1

T0

iC1

T0

i
C 2 � T0

1

T0

N
� N, where T 0i is �i’s scaled period [163].

• R-Bound.�/ [163] is similar to T-Bound.�/, but uses a more abstract parameter
r, the ratio between the minimum and maximum scaled period of the task set:

R-Bound.�/ D .N � 1/.r1=.N�1/ � 1/C 2=r � 1:

We observe that all the above PUBs have the following property: for any � 0
obtained by decreasing the execution times of some tasks of � , the bound �.�/ is
still a valid utilization bound to guarantee the schedulability of � 0. We call a PUB
holding this property a deflatable parametric utilization bound (called D-PUB for
short).2 We use the following lemma to precisely describe this property:

Lemma 7.1. Let �.�/ be a D-PUB derived from the task set � . We decrease the
execution times of some tasks in � to get a new task set � 0. If � 0 satisfies U .� 0/ �
�.�/, then it is guaranteed to be schedulable by RMS on a uni-processor.

The deflatable property is very common: Actually all the PUBs we are aware of
are deflatable, including the ones listed above and the non-closed-form bounds in
[164]. The deflatable property is of great relevance in partitioned multiprocessor
scheduling, since a task set � will be partitioned into several subsets and each
subset is executed on a processor individually. Further, due to the task splitting,
a task could be divided into several subtasks, each of which holds a portion of the
execution demand of the original task. So the deflatable property is clearly required
to generalize a utilization bound to multiprocessors.

However, the deflatable property by itself is not sufficient for the generalization
of a PUB �.�/ to multiprocessors. For example, suppose the harmonic task set � in
Fig. 7.2a is partitioned as in Fig. 7.2b, where �2 is split into �1

2 and �2
2 . To correctly

execute �2, �1
2 and �2

2 need to be synchronized such that �2
2 never starts execution

before its predecessor �1
2 is finished. This can be viewed as shortening �2

2 ’s relative
deadline for a certain amount of time from �2’s original deadline, as shown in
Fig. 7.2c. In this case, �2

2 does not comply with the L&L task model (which requires
the relative deadline to equal the period), so none of the parametric utilization
bounds for the L&L task model are applicable to processor P2. In [68], this problem
is solved by representing �2

2 ’s period by its relative deadline, as shown in Fig. 7.2d.
This transforms the task set f�1; �2

2 g into an L&L task set f�1; �2�
2 g, with which we

2There is a subtle difference between the deflatable property and the (self-)sustainable property
[144, 147]. The deflatable property does not require the original task set � to satisfy U .�/ � �.�/.
U .�/ is typically larger than 100 % since � will be scheduled on M processors. �.�/ is merely a
value obtained by applying the function �.�/ to �’s parameters, and will be used to each individual
processor.
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Fig. 7.2 Partitioning a harmonic task set results in a nonharmonic task set on some processor

can apply the L&L bound. However, this solution does not in general work for other
parametric utilization bounds: In our example, we still want to apply the 100 %
bound which is specific to harmonic task sets. But if we use �2

2 ’s deadline 6 to
represent its period, the task set f�1; �2�

2 g is not harmonic, so the 100 % bound is
not applicable. This problem will be solved by our new algorithms and novel proof
techniques in the following sections.

7.5 The Algorithm for Light Tasks

In the following we introduce the first algorithm SPA1, which achieves �.�/ (any
D-PUB derived from � ’s parameters), if � is light in the sense of an upper bound on
each task’s individual utilization as follows.

Definition 7.1. A task �i is a light task if Ui � 	.�/

1C	.�/
, where 	.�/ denotes the

L&L bound. Otherwise, �i is a heavy task. A task set � is a light task set if all tasks
in � are light. 	.�/

1C	.�/
is about 40:9 % as the number of tasks in � grows to infinity.

For example, we can instantiate this result by the 100 % utilization bound for
harmonic task sets: Let � be any harmonic task set in which each task’s individual
utilization is no larger than 40:9 %. � is schedulable by our algorithm SPA1 on M
processors if its normalized total utilization UM.�/ is no larger than 100 %.
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7.5.1 Algorithm Description

The partitioning algorithm of SPA1 is quite simple. We describe it briefly as
follows:

1. Tasks are assigned in increasing priority order. We always select the processor on
which the total utilization of the tasks that have been assigned so far is minimal
among all processors.

2. A task (subtask) can be entirely assigned to the current processor, if all tasks
(including the one to be assigned) on this processor can meet their deadlines
under RMS.

3. When a task (subtask) cannot be assigned entirely to the current processor,
we split it into two parts.3 The first part is assigned to the current processor.
The splitting is done such that the portion of the first part is as big as possible,
guaranteeing no task on this processor misses its deadline under RMS; the
second part is left for the assignment in the step.

Note that the difference between SPA1 and the algorithm in [68] is that SPA1 uses
the exact RTA, instead of the utilization threshold, to determine whether a (sub)task
can fit in a processor without causing deadline miss.

Algorithms 1 and 2 describe the partitioning algorithm of SPA1 in pseudo-code.
At the beginning, tasks are sorted (and will therefore be assigned) in increasing
priority order, and all processors are marked as non-full which means they still can
accept more tasks. At each step, we pick the next task in order (the one with the
lowest priority), select the processor with the minimal total utilization of tasks that
have been assigned so far, and invoke the routine Assign.� k

i ; Pq/ to do the task
assignment. Assign.� k

i ; Pq/ first verifies that after assigning the task, all tasks on
that processor would still be schedulable under RMS. This is done by applying exact
schedulability analysis of calculating the response time Rh

j of each (sub)task � k
j on

Pq after assigning this new task � k
i , and compare Rh

j to its (synthetic) deadline �h
j .

If the response time does not exceed the synthetic deadline for any of the tasks

1: Task order �1
N , . . . , �1

1 by increasing priorities
2: Mark all processors as non-full
3: while exists an non-full processor and an unassigned task do
4: Pick next unassigned task � k

i ,
5: Pick non-full processor Pq with minimal U .Pq/

6: Assign.� k
i ; Pq/

7: end while
8: If there is an unassigned task, the algorithm fails,

otherwise it succeeds.

Algorithm 1: The Partitioning Algorithm of SPA1

3In general a task may be split into more than two subtasks. Here we mean at each step the currently
selected task (subtask) is split into two parts.
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1: if �.Pq/ with � k
i is still schedulable then

2: Add � k
i to �.Pq/

3: else
4: Split � k

i via .� k
i ; �

kC1
i / WD MaxSplit.� k

i ; Pq/

5: Add � k
i to �.Pq/

6: Mark Pq as full

7: �
kC1
i is the next task to assign

8: end if

Algorithm 2: The Assign.� k
i ; Pq/ Routine

on Pq, we can conclude that � k
i can safely be assigned to Pq without causing any

deadline miss. Note that a subtask’s synthetic deadline �k
j may be different from

its period Tj. After presenting how the overall partitioning algorithm works, we will
show how to calculate �k

j easily.
If � k

i cannot be entirely assigned to the currently selected processor Pq, it will
be split into two parts using routine MaxSplit.� k

i ; Pq/: the first part that makes
maximum use of the selected processor, and a remaining part of that task, which
will be subject to assignment in the next iteration. The desired property here is that
we want the first part to be as big as possible such that, after assigning it to Pq, all
tasks on that processor will still be able to meet their deadlines. In order to state the
effect of MaxSplit.� k

i ; Pq/ formally, we introduce the concept of a bottleneck:

Definition 7.2. A bottleneck of processor Pq is a (sub)task that is assigned to Pq,
and will become unschedulable if we increase the execution time of the task with
the highest priority on Pq by an arbitrarily small positive number.

Note that there may be more than one bottleneck on a processor. Further, since
SPA1 assigns tasks in increasing priority order, MaxSplit always operates on the
task that has the highest priority on the processor in question. So we can state:

Definition 7.3. MaxSplit.� k
i ; Pq/ is a function that splits � k

i into two subtasks � k
i

and � kC1
i such that

1. � k
i can now be assigned to Pq without making any task in �.Pq/ unschedulable.

2. After assigning � k
i , Pq has a bottleneck.

MaxSplit can be implemented by, for example, performing a binary search over
Œ0; Ck

i � to find out the maximal portion of � k
i with which all tasks on Pq can meet their

deadlines. A more efficient implementation of MaxSplit was presented in [151],
in which one only needs to check a (small) number of possible values in Œ0; Ck

i �.
The complexity of this improved implementation is still pseudo-polynomial, but in
practice it is very efficient.

The while loop in SPA1 terminates as soon as all processors are “full” or all tasks
have been assigned. If the loop terminates due to the first reason and there are still
unassigned tasks left, the algorithm reports a failure of the partitioning, otherwise a
success.
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Calculating Synthetic Deadlines

Now we show how to calculate each (sub)task � k
i ’s synthetic deadline �k

i , which was
left open in the above presentation. If � k

i is a non-split task, its synthetic deadline
trivially equals its period Ti.

We consider the case that � k
i is a split subtask. Since tasks are assigned in

increasing order of priorities, and a processor is full after a body subtask is assigned
to it, we have the following lemma:

Lemma 7.2. A body subtask has the highest priority on its host processor.

A consequence is that, the response time of each body subtask equals its execution
time, and one can replace Rl

i by Cl
i in (7.1) to calculate the synthetic deadline of

a subtask. Especially, we are interested in the synthetic deadlines of tail subtasks
(we don’t need to worry about a body subtask’s synthetic deadline since it has the
highest priority on its host processor and is schedulable anyway). The calculation is
stated in the following lemma.

Lemma 7.3. A tail subtask � t
i ’s synthetic deadline �t

i is calculated by

�t
i D Ti � Cbody

i

where Cbody
i is the execution time sum of �i’s body subtasks.

Scheduling at Run-Time

At run-time, the tasks will be scheduled according to the RMS priority order on
each processor locally, i.e., with their original priorities. The subtasks of a split task
respect their precedence relations, i.e., a split subtask � k

i is ready for execution when
its preceding subtask � k�1

i on some other processor has finished.
From the presented partitioning and scheduling algorithm of SPA1, it is clear

that successful partitioning implies schedulability (remember that for split tasks, the
synchronization delays have been counted into the synthetic deadlines, which are
the ones used in the RTA to determine whether a task is schedulable). We state this
in the following lemma:

Lemma 7.4. Any task set that has been successfully partitioned by SPA1 is
schedulable.
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7.5.2 Utilization Bound

We will now prove that SPA1 has the utilization bound of �.�/ for light task sets,
i.e., if a light task set � is not successfully partitioned by SPA1, then the sum of the
assigned utilizations of all processors is at least4 M ��.�/.

In order to show this, we assume that the assigned utilization on some processor
is strictly less than �.�/. We prove that this implies there is no bottleneck on that
processor. This is a contradiction, because each processor with which MaxSplit has
been used must have a bottleneck. We also know that MaxSplit was used for all
processors, since the partitioning failed.

In the following, we assume Pq to be a processor with an assigned utilization
of U.Pq/ < �.�/. A task on Pq is either a non-split task, a body subtask or a
tail subtask. The main part of the proof consists of showing that Pq cannot have a
bottleneck of any type.

As the first step, we show this for non-split tasks and body subtasks (Lemma 7.5),
after which we deal with the more difficult case of tail subtasks (Lemma 7.7).

Lemma 7.5. Suppose task set � is not schedulable by SPA1, and after the
partitioning phase it holds for a processor Pq that

U .Pq/ < �.�/ (7.2)

Then a bottleneck of Pq is neither a non-split task nor a body subtask.

Proof. By Lemma 7.2 we know that the body subtask has the highest priority on Pq,
so it can never be a bottleneck.

For the case of non-split tasks, we will show that Condition (7.2) is sufficient
for their deadlines to be met. The key observation is that although some split
tasks on this processor may have a shorter deadline than period, this does not
change the scheduling behavior of RMS, so �.�/ is still sufficient to guarantee the
schedulability of a non-split task. For a more precise proof, we use � to denote
the set of tasks on Pq, and construct a new task set � � corresponding to � such
that each non-split task �i in � has a counterpart in � � that is exactly the same as
�i, and each split subtask in � has a counterpart in � � with deadline changed to
equal its period. It’s easy to see that � � can be obtained by decreasing some tasks’
execution times in the original task set � (a task in � but not � � can be considered
as the case that we decrease its execution time to 0). By Lemma 7.1 and Condition
(7.2) we know, the deflatable utilization bound �.�/ guarantee � �’s schedulability.
Thus, if the execution time of the highest-priority task on Pq is increased by an
arbitrarily small amount " such that the total utilization still does not exceed �.�/,
� � will still be schedulable. Recall that the only difference between � and � � is
the subtasks’ deadlines, and since the scheduling behavior of RMS does not depend

4By this, the normalized utilization of � strictly exceeds �.�/, since there are (sub)tasks not
assigned to any of the processors after a failed partitioning.
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on task deadlines (remember that at this moment we only want to guarantee the
schedulability of non-split tasks), we can conclude that each non-split task in � is
also schedulable, which is still true after increasing " to the highest priority task
on Pq.

In the following we prove that in a light task set, a bottleneck on a processor with
utilization lower than �.�/ is not a tail subtask either. The proof goes in two steps:
We first derive in Lemma 7.6 a general condition guaranteeing that a tail subtask
cannot be a bottleneck; then, we conclude in Lemma 7.7 that a bottleneck on a
processor with utilization lower than �.�/ is not a tail subtask, by showing that the
condition in Lemma 7.6 holds for each of these tail subtasks.

We use the following notation: Let �i be a task split into B body subtasks
�

b1

i : : : �
bB
i , assigned to processors Pb1 : : : PbB , respectively, and a tail subtask � t

i

assigned to processor Pt. The utilization of the tail subtask � t
i is Ut

i D Ct
i

Ti
, and

the utilization of a body subtask �
bj

i is U
bj

i D C
bj
i

Ti
. We use Ubody

i to denote the total
utilization of �i’s all body subtasks:

Ubody
i D

X

j2Œ1;B�

U
bj

i D Ui � Ut
i

For the tail subtask � t
i , let Xt denote the total utilization of all (sub)tasks assigned to

Pt with lower priority than � t
i , and Yt the total utilization of all (sub)tasks assigned

to Pt with higher priority than � t
i .

For each body subtask �
bj

i , let Xbj denote the total utilization of all (sub)tasks

assigned to Pbj with lower priority than �
bj

i . (We do not need Ybj , since by Lemma 7.2
we know no task on Pbj has higher priority than �i.)

We start with the general condition identifying non-bottleneck tail subtasks.

Lemma 7.6. Suppose a tail subtask � t
i is assigned to processor Pt and 	.�/ is the

L&L bound. If

Yt C Ut
i < 	.�/ � .1 � Ubody

i / (7.3)

then � t
i is not a bottleneck of processor Pt.

Proof. The lemma is proved by showing � t
i is still schedulable after increasing the

utilization of the task with the highest priority on Pt by a small number 
 such that
: .Yt C 
/C Ut

i < 	.�/ � .1 � Ubody
i / (note that one can always find such an 
). By

the definition of Ubody
i and4t

i, this equals

..Yt C 
/C Ut
i/ � Ti=4t

i < 	.�/ (7.4)

The key of the proof is to show that Condition (7.4) still guarantees that � t
i can meet

its deadline. Note that one cannot directly apply the L&L bound 	.�/ to the task
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set � consisting of � t
i and the tasks contributing to Yt, since � t

i ’s deadline is shorter
than its period, i.e., � does not comply with the L&L task model. In our proof, this
problem is solved by the “period shrinking” technique [68]: we transform � into
an L&L task set � � by reducing some of the task periods, and prove that the total
utilization of � � is bounded by the LHS of (7.4), and thereby bounded by 	.�/.
On the other hand, the construction of � � guarantees that the schedulability of � �
implies the schedulability of � t

i . See [68] for details about the “period shrinking”
technique.

Note that in Condition (7.3) of Lemma 7.6, the L&L bound 	.�/ is involved. This
is because in its proof we need to use the L&L bound 	.�/, rather than the higher
parametric bound �.�/, to guarantee the schedulability of the constructed task set
� � where some task periods are decreased. For example, suppose the original task
set is harmonic, the constructed set � � may not be harmonic since some of task
periods are shortened to 4t

i, which is not necessarily harmonic with other periods.
So the 100 % bound of harmonic task sets does not apply to � �. However, 	.�/

is still applicable, since it only depends on, and is monotonically decreasing with
respect to the task number.

Having this lemma, we now show that a tail subtask � t
i cannot be a bottleneck

either, if its host processor’s utilization is less than �.�/, by proving Condition (7.3)
for � t

i .

Lemma 7.7. Let � be a light task set unschedulable by SPA1, and let �i be a split
task whose tail subtask � t

i is assigned to processor Pt. If

U .Pt/ < �.�/ (7.5)

then � t
i is not a bottleneck of Pt.

Proof. The proof is by contradiction. We assume the lemma does not hold for one
or more tasks, and let �i be the lowest-priority one among these tasks, i.e., � t

i is a
bottleneck of its host processor Pt, and all tail subtasks with lower priorities are
either not a bottleneck or on a processor with assigned utilization at least �.�/.

Recall that f�bj

i gj2Œ1;B� are the body subtasks of �i, and Pt and fPbjgj2Œ1;B� are
processors hosting the corresponding tail and body subtasks. Since a body task
has the highest priority on its host processor (Lemma 7.3) and tasks are assigned
in increasing priority order, all tail subtasks on processors fPbjgj2Œ1;B� have lower
priorities than �i.

We will first show that all processors fPbjgj2Œ1;B� have an individual assigned
utilization at least �.�/. We do this by contradiction: Assume there is a Pbj with
U .Pbj/ < �.�/. Since tasks are assigned in increasing priority order, we know any
tail subtask on Pbj has lower priority than �i. And since �i is the lowest-priority task
violating the lemma and U .Pbj/ < �.�/, we know any tail subtask on Pbj is not
a bottleneck. At the same time, U .Pbj/ < �.�/ also implies the non-split tasks
and body subtasks on Pbj are not bottlenecks either (by Lemma 7.5). So we can
conclude that there is no bottleneck on Pbj which contradicts the fact there is at least
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one bottleneck on each processor. So the assumption of Pbj ’s assigned utilization
being lower than �.�/ must be false, by which we can conclude that all processors
hosting � t

i ’s body tasks have assigned utilization at least �.�/. Thus we have

X

j2Œ1;B�

.U
bj

i C Xbj/„ ƒ‚ …
U .Pbj /

� B ��.�/ (7.6)

Further, the assumption from Condition (7.5) can be rewritten as

Xt C Yt C Ut
i < �.�/ (7.7)

We combine (7.6) and (7.7) into

Xt C Yt C Ut
i <

1

B

X

j2Œ1;B�

.U
bj

i C Xbj/

Since the partitioning algorithm selects at each step the processor on which the
so-far assigned utilization is minimal, we have 8j 2 Œ1; B� W Xbj � Xt. Thus, the
inequality can be relaxed to:

Yt C Ut
i <

1

B

X

j2Œ1;B�

U
bj

i

We also have B � 1 and Ubody
i DP

j2Œ1;B� U
bj

i , so

Yt C Ut
i < Ubody

i

Now, in order to get to Condition (7.3), which implies � t
i is not a bottleneck

(Lemma 7.6), we need to show that the RHS of this inequality is bounded by the
RHS of Condition (7.3), i.e.,

Ubody
i � 	.�/.1 � Ubody

i /

It is easy to see that this is equivalent to the following, which holds since �i is by
assumption a light task:

Ubody
i � 	.�/

1C	.�/

By now we have proved Condition (7.3) for � t
i and by Lemma 7.6 we know � t

i is not
a bottleneck on Pt, which contradicts to our assumption.

We are ready to present SPA1’s utilization bound.
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Theorem 7.1. �.�/ is a utilization bound of SPA1 for light task sets, i.e., any light
task set � with

UM.�/ � �.�/

is schedulable by SPA1.

Proof. Assume a light task set � with UM.�/ � �.�/ is not schedulable by SPA1,
i.e., there are tasks not assigned to any of the processors after the partitioning
procedure with � . By this we know the sum of the assigned utilization of all
processors after the partitioning is strictly less than M � �.�/, so there is at least
one processor Pq with a utilization strictly less than �.�/. By Lemma 7.5 we know
the bottleneck of this processor is neither a non-split task nor a body subtask, and
by Lemma 7.7 we know the bottleneck is not a tail subtask either, so there is
no bottleneck on this processor. This contradicts the property of the partitioning
algorithm that all processors to which no more task can be assigned must have a
bottleneck.

7.6 The Algorithm for Any Task Set

In this section, we introduce SPA2, which removes the restriction to light task sets
in SPA1. We will show that SPA2 can achieve a D-PUB �.�/ for any task set � , if
�.�/ does not exceed 2	.�/

1C	.�/
. In other words, if one can derive a D-PUB �0.�/ from

� ’s parameters under uni-processor RMS, SPA2 can achieve the utilization bound
of �.�/ D min.�0.�/;

2	.�/

1C	.�/
/. Note that 2	.�/

1C	.�/
is decreasing with respect to N,

and it is around 81:8 % when N goes to infinity. For example, we can instantiate our
result by the harmonic chain bound K.21=K � 1/:

• K D 3. Since 3.21=3 � 1/ � 77:9 % < 81:8 %, we know that any task set � in
which there are at most 3 harmonic chains is schedulable by our algorithm SPA2
on M processors if its normalized utilization UM.�/ is no larger than 77:9 %.

• K D 2. Since 2.21=2 � 1/ � 82:8 % > 81:8 %, we know 81:8 % can be used
as the utilization bound in this case: any task set � in which there are at most 2

harmonic chains is schedulable by our algorithm SPA2 on M processors if its
normalized utilization UM.�/ is no larger than 81:8 %.

So we can see that despite an upper bound on �.�/, SPA2 still provides significant
room for higher utilization bounds.
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For simplicity of presentation, we assume each task’s utilization is bounded
by �.�/. Note that this assumption does not invalidate the utilization bound of our
algorithm for task sets which have some individual task’s utilization above �.�/.5

SPA2 adds a pre-assignment mechanism to handle the heavy tasks. In the pre-
assignment, we first identify the heavy tasks whose tail subtasks would have low
priority if they were split, and pre-assign these tasks to one processor each, which
avoids the split. The identification is checked by a simple test condition, called
pre-assign condition. Those heavy tasks that do not satisfy this condition will be
assigned (and possibly split) later, together with the light tasks. Note that the number
of tasks need to be pre-assigned is at most the number of processors. This will be
clear in the algorithm description.

We introduce some notations. If a heavy task �i is pre-assigned to a processor
Pq, we call �i a pre-assigned task and Pq a pre-assigned processor, otherwise �i a
normal task and Pq a normal processor.

7.6.1 Algorithm Description

The partitioning algorithm of SPA2 contains three phases:

1. We first pre-assign the heavy tasks that satisfy the pre-assign condition to one
processor each, in decreasing priority order.

2. We do task partitioning with the remaining (i.e., normal) tasks and remaining
(i.e., normal) processors similar to SPA1 until all the normal processors are full.

3. The remaining tasks are assigned to the pre-assigned processors in increasing
priority order; the assignment selects the processor hosting the lowest-priority
pre-assigned task, to assign as many tasks as possible until it is full, then selects
the next processor.

The pseudo-code of SPA2 is given in Algorithm 3. At the beginning of the
algorithm, all the processors are marked as normal and non-full. In the first phase,
we visit all the tasks in decreasing priority order, and for each heavy task we
determine whether we should pre-assign it or not, by checking the pre-assign
condition:

X

i<j

Uj � .jPF.�i/j � 1/ ��.�/ (7.8)

where jPF.�i/j is the number of processors marked as normal at the moment we
are checking for �i. If this condition is satisfied, we pre-assign this heavy task to

5One can let tasks with a utilization more than �.�/ execute exclusively on a dedicated processor
each. If we can prove that the utilization bound of all the other tasks on all the other processors is
�.�/, then the utilization bound of the overall system is also at least �.�/.
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1: Mark all processors as normal and non-full

// Phase 1: Pre-assignment
2: Sort all tasks in � in decreasing priority order
3: for each task in � do
4: Pick next task �i

5: if DeterminePreAssign.�i/ then
6: Pick the normal processor with the minimal index Pq

7: Add �i to �.Pq/

8: Mark Pq as pre-assigned
9: end if

10: end for

// Phase 2: Assign remaining tasks to normal processors
11: Sort all unassigned tasks in increasing priority order
12: while there is a non-full normal processor

and an unassigned task do
13: Pick next unassigned task �i

14: Pick the non-full normal processor Pq with minimal U .Pq/

15: Assign.� k
i ; Pq/

16: end while

// Phase 3: Assign remaining tasks to pre-assigned processors
// Remaining tasks are still in increasing priority order

17: while there is a non-full pre-assigned processor
and an unassigned task do

18: Pick next unassigned task �i

19: Pick the non-full pre-assigned processor Pq with the
largest index

20: Assign.� k
i ; Pq/

21: end while

22: If there is an unassigned task, the algorithm fails,
otherwise it succeeds.

Algorithm 3: The Partitioning Algorithm of SPA2

the current selected processor, which is the one with the minimal index among all
normal processors, and mark this processor as pre-assigned. Otherwise, we do not
pre-assign this heavy task, and leave it to the following phases. The intuition of the
pre-assign condition (7.8) is: We pre-assign a heavy task �i if the total utilization of
lower-priority tasks is relatively small, since otherwise its tail subtask may end up
with a low priority on the corresponding processor. Note that, no matter how many
heavy tasks are there in the system, the number of pre-assigned tasks is at most
the number of processors: after jPF.�i/j reaching 0, the pre-assign condition never
holds, and no more heavy task will be pre-assigned.

In the second phase we assign the remaining tasks to normal processors only.
Note that the remaining tasks are either light tasks or the heavy tasks that do not
satisfy the pre-assign condition. The assignment policy in this phase is the same
as for SPA1: We sort tasks in increasing priority order, and at each step select the
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1: PF.�i/ WD the set of normal processors at this moment
2: if �i is heavy then
3: if

P
j>i Uj � .jPF.�i/j � 1/ ��.�/ then

4: return true
5: end if
6: end if
7: return false

Algorithm 4: The DeterminePreAssign.�i/ Routine

normal processor Pq with the minimal assigned utilization. Then we do the task
assignment: we either add � k

i to �.Pq/ if � k
i can be entirely assigned to Pq, or split

� k
i and assigns a maximized portion of it to Pq otherwise.

In the third phase we continue to assign the remaining tasks to pre-assigned
processors. There is an important difference between the second phase and the
third phase: In the second phase tasks are assigned by a “worst-fit” strategy, i.e.,
the utilization of all processors is increased “evenly,” while in the third phase
tasks are now assigned by a “first-fit” strategy. More precisely, we select the pre-
assigned processor which hosts the lowest-priority pre-assigned task of all non-full
processors. We assign as much workload as possible to it, until it is full, and then
move to the next processor. This strategy is one of the key points to facilitate the
induction-based proof of the utilization bound in the next subsection.

After these three phases, the partitioning fails if there still are unassigned tasks
left, otherwise it is successful. At run-time, the tasks assigned to each processor are
scheduled by RMS with their original priorities, and the subtasks of a split task need
to respect their precedence relations, which is the same as in SPA1.

Note that, when Assign calculates the synthetic deadlines and verifies whether
the tasks assigned to a processor are schedulable, it assumes that any body subtask
has the highest priority on its host processor, which has been proved true for SPA1
in Lemma 7.2. It is easy to see that this assumption also holds for the second phase
of SPA2 (the task assignment on normal processors), in which tasks are assigned
in exactly the same way as SPA1. But it is not clear for this moment whether this
assumption also holds for the third phase or not, since there are pre-assigned tasks
already assigned to these pre-assigned processors in the first phase, and there is a
risk that a pre-assigned task might have higher priority than the body subtask on that
processor. However, as will be shown in the proof of Lemma 7.13, a body subtask on
a pre-assigned processor has the highest priority on its host processor, thus routine
Assign indeed performs a correct schedulability analysis for task assignment and
splitting, by which we know any task set successfully partitioned by SPA2 is
guaranteed to meet all deadlines at run-time.
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7.6.2 Utilization Bound

The proof of the utilization bound �.�/ for SPA2. follows a similar pattern as
the proof for SPA1, by assuming a task set � that can’t be completely assigned.
The main difficulty is that we now have to deal with heavy tasks as well. Recall that
the approach in Sect. 7.5 was to show an individual utilization of at least �.�/ on
each single processor after an “overflowed” partitioning phase. However, for SPA2,
we will not do that directly. Instead, we will show the appropriate bound for sets of
processors.

We first introduce some additional notation. Let’s assume that K � 0 heavy tasks
are pre-assigned in the first phase of SPA2. Then P is partitioned into the set of
pre-assigned processors:

PP WD fP1; : : : ; PKg

and the set of normal processors:

PN WD fPKC1; : : : ; PMg:

We also use

P�q WD fPq; : : : ; PMg

to denote the set of processors with index of at least q.
We want to show that, after a failed partitioning procedure of � , the total

utilization sum of all processors is at least M � �.�/. We do this by proving the
property

X

Pj2P�q

U .Pj/ � jP�qj ��.�/

by induction on P�q for all q � K, starting with base case q D K, and using the
inductive hypothesis with q D mC1 to derive this property for q D m. When q D 1,
it implies the expected bound M ��.�/ for all the M processors.

7.6.2.1 Base Case

The proof strategy of the base case is: We assume that the total assigned utilization
of normal processors is below the expected bound, by which we can derive the
absence of bottlenecks on some processors in PN . This contradicts the fact
that there is at least one bottleneck on each processor after a failed partitioning
procedure.
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First, Lemma 7.5 still holds for normal processors under SPA2, i.e., a bottleneck
on a normal processor with assigned utilization lower than �.�/ is neither a non-
split task nor a body subtask. This is because the partitioning procedure of SPA2 on
normal processors is exactly the same as SPA1 and one can reuse the reasoning for
Lemma 7.5 here. In the following, we focus on the difficult case of tail subtasks.

Lemma 7.8. Suppose there are remaining tasks after the second phase of SPA2.
Let � t

i be a tail subtask assigned to Pt. If both the following conditions are satisfied

X

Pq2PN

U .Pq/ < jPN j ��.�/ (7.9)

U .Pt/ < �.�/ (7.10)

then � t
i is not a bottleneck on Pt.

Proof. We prove by contradiction: We assume the lemma does not hold for one or
more tasks, and let �i be the lowest-priority one among these tasks.

Similar with the proof of its counterpart in SPA1 (Lemma 7.7), we will first show
that all processors hosting �i’s body subtasks have assigned utilization at least �.�/.
We do this by contradiction. We assume U .Pbj/ < �.�/, and by Condition (7.9) we
know the tail subtasks on Pbj are not bottlenecks (the tail subtasks on Pbj all satisfy
this lemma, since they all have lower priorities than �i, and by assumption �i is the
lowest-priority task does not satisfy this lemma). By Lemma 7.5 (which still holds
for normal processors as discussed above), we know a bottleneck of Pbj is neither a
non-split task nor a body subtask. So we can conclude that there is no bottleneck on
Pbj , which is a contradiction. Therefore, we have proved that all processors hosting
�i’s body subtasks have assigned utilization at least �.�/. These results will be used
later in this proof.

In the following we will prove � t
i is not a bottleneck, by deriving Condition (7.3)

and apply Lemma 7.6 to � t
i . �i is either light or heavy. For the case �i is light, the

proof is exactly the same as for Lemma 7.7, since the second phase of SPA2 works
in exactly the same way as SPA1. Note that to prove for the light task case, only
Condition (7.9) is needed (the same as in Lemma 7.7).

In the following we consider the case that �i is heavy. We prove in two cases:

• Ubody
i � �.�/�	.�/

1�	.�/

Since �i is a heavy task but not pre-assigned, it failed the pre-assign condition,
satisfying the negation of that condition:

X

j>i

Uj > .jPF.�i/j � 1/ ��.�/ (7.11)

We split the utilization sum of all lower-priority tasks in two parts: U ˛ , the part
contributed by pre-assigned tasks, and U ˇ , the part contributed by normal tasks.
By the partitioning algorithm construction, we know the U ˇ part is on normal
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processors and the U ˛ part is on processors in PF.�i/ nPN . We further know
that each pre-assigned processor has one pre-assigned task, and each task has a
utilization of at most �.�/ (our assumption stated in the beginning of Sect. 7.6).
Thus, we have

U ˇ � .jPF.�i/j � jPN j/ ��.�/ (7.12)

By replacing
P

j>i Uj by U ˛ CU ˇ in (7.11) and applying (7.12), we get

U ˛ > .jPN j � 1/ ��.�/ (7.13)

The assigned utilizations on processors in PN consists of three parts: (i) the
utilization of tasks with lower priority than �i, (ii) the utilization of �i, and
(iii) the utilization of tasks with higher priority than �i. We know that part (i)
is U ˛ , part (ii) is Ui, and the part (iii) is at least Yt. So we have

U ˛ C Ui C Yt �
X

Pq2PN

U .Pq/ (7.14)

By Condition (7.9), (7.13), and (7.14) we get

Ui C Yt � �.�/

In order to use this to derive Condition (7.3) of Lemma 7.6, which indicates
� t

i is not a bottleneck, we need to prove

�.�/ � Ubody
i � 	.�/.1 � Ubody

i /

, Ubody
i � �.�/ �	.�/

1 �	.�/
.since 	.�/ < 1/

which is obviously true by the precondition of this case.
• Ubody

i <
�.�/�	.�/

1�	.�/

First, Condition (7.10) can be rewritten as

Xt C Yt C Ut
i < �.�/ (7.15)

Since all processors hosting �i’s body subtasks have assigned utilization at
least �.�/ (proved in above), we have

X

j2Œ1;Bi�

Xbj C Ubody
i > Bi ��.�/
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Since at each step of the second phase, SPA2 always selects the processor with
the minimal assigned utilization to assign the current (sub)task, we have Xt � Xbj

for each Xbj . Therefore we have

BiXt C Ubody
i � Bi ��.�/

) Xt � �.�/ � Ubody
i .since Bi � 1/

combining which and (7.15) we get

Yt C Ut
i < Ubody

i

Now, to prove Condition (7.3) of Lemma 7.6, which indicates � t
i is not a

bottleneck, we only need to show

Ubody
i � 	.�/.1 � Ubody

i /

, Ubody
i � 	.�/

1C	.�/

Due to the precondition of this case Ubody
i <

�.�/�	.�/

1�	.�/
, we only need to prove

�.�/ �	.�/

1 �	.�/
� 	.�/

1C	.�/

, �.�/ � 2	.�/

1C	.�/

which is true since �.�/ is assumed to be at most 2	.�/

1C	.�/
in SPA2.

In summary, we know � t
i is not a bottleneck.

By the above reasoning, we can establish the base case:

Lemma 7.9. Suppose there are remaining tasks after the second phase of SPA2
(there exists at least one bottleneck on each normal processor). We have

X

Pq2PN

U .Pq/ � jPN j ��.�/

7.6.2.2 Inductive Step

We start with a useful property concerning the pre-assigned tasks’ local priorities.

Lemma 7.10. Suppose Pm is a pre-assigned processor. If



7.6 The Algorithm for Any Task Set 151

X

Pq2P�mC1

U .Pq/ � jP�mC1j ��.�/ (7.16)

then the pre-assigned task on Pm has the lowest priority among all tasks assigned
to Pm.

Proof. Let �i be the pre-assigned task on Pm. Since �i is pre-assigned, we know that
it satisfies the pre-assign condition:

X

j>i

Uj � .jPF.�i/j � 1„ ƒ‚ …
jP�mC1j

/ ��.�/

Using this with (7.16) we have

X

Pq2P�mC1

U .Pq/ �
X

j>i

Uj (7.17)

which means the total capacity of the processors with larger indices is enough to
accommodate all lower-priority tasks.

By the partitioning algorithm, we know that no tasks, except �i which has been
pre-assigned already, will be assigned to Pm before all processors with larger indices
are full. So no task with priority lower than �i will be assigned to Pm.

Now we start the main proof of the inductive step.

Lemma 7.11. We use SPA2 to partition task set � . Suppose there are remaining
tasks after processor Pm is full (there exists at least one bottleneck on Pm). If

X

Pq2P�mC1

U .Pq/ � jP�mC1j ��.�/ (7.18)

then we have

X

Pq2P�m

U .Pq/ � jP�mj ��.�/

Proof. We prove by contradiction. Assume

X

Pq2P�m

U .Pq/ < jP�mj ��.�/ (7.19)

With assumption (7.18) this implies the bound on Pm’s utilization:

U .Pm/ < �.�/ (7.20)
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As before, with (7.20) we want to prove that a bottleneck on Pm is neither a
non-split task, a body subtask nor a tail subtask, which forms a contradiction and
completes the proof. In the following we consider each type individually.

We first consider non-split tasks. Again, �.�/ is sufficient to guarantee the
schedulability of non-split tasks, although the relative deadlines of split subtasks
on this processor may change. Thus, (7.20) implies that a non-split task cannot be a
bottleneck of Pm.

Then we consider body subtasks. By Lemma 7.10 we know the pre-assigned task
has the lowest priority on Pm. We also know that all normal tasks on Pm have lower
priority than the body subtask, since in the third phase of SPA2 tasks are assigned
in increasing priority order. Therefore, we can conclude that the body subtask has
the highest priority on Pm, and cannot be a bottleneck.

At last we consider tail subtasks. Let � t
i be a tail subtask assigned to Pm. We

distinguish the following two cases:

• Ubody
i <

	.�/

1C	.�/

The inductive hypothesis (7.18) guarantees with Lemma 7.10 that the pre-
assigned task has the lowest priority on Pm, so Xt contains at least the utilization
of this pre-assigned task, which is heavy. So we have

Xt � 	.�/

1C	.�/
(7.21)

We can rewrite (7.20) as Xt C Yt C Ut
i < �.�/ and apply it to (7.21) to get:

Yt C Ut
i < �.�/ � 	.�/

1C	.�/
(7.22)

Recall that �.�/ is restricted by an upper bound in SPA2:

�.�/ � 2	.�/

1C	.�/

, �.�/ � 	.�/

1C	.�/
� 	.�/.1 � 	.�/

1C	.�/
/

By applying Ubody
i <

	.�/

1C	.�/
to above we have

�.�/ � 	.�/

1C	.�/
< 	.�/.1 � Ubody

i /

And by (7.22) we have Yt C Ut
i < 	.�/.1 � Ubody

i /. By Lemma 7.6 we know � t
i

is not a bottleneck.
• Ubody

i � 	.�/

1C	.�/
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Since �i is a heavy task but not pre-assigned, it failed the pre-assign condition,
satisfying the negation of that condition:

X

j>i

Uj > .jPF.�i/j � 1/ ��.�/ (7.23)

We split the utilization sum of all lower-priority tasks into two parts: U ˇ , the part
contributed by tasks on P�m, U ˛ , the part contributed by pre-assigned tasks on
PnP�m. By the partitioning algorithm construction, we know the U ˛ part is on
processors in PF.�i/ nP�m. We further know that each pre-assigned processor
has one pre-assigned task, and each task has a utilization of at most �.�/ (our
assumption stated in the beginning of Sect. 7.6). Thus, we have

U ˇ � .jPF.�i/j � jP�mj/ ��.�/ (7.24)

By replacing
P

j>i Uj by U ˛ CU ˇ in (7.11) and applying (7.12), we get

U ˛ > .jP�mj � 1/ ��.�/ (7.25)

The assigned utilizations on processors in P�m consists of three parts: (i) the
utilization of tasks with lower priority than �i, (ii) the utilization of �i, and (iii)
the utilization of tasks with higher priority than �i. We know that part (i) is U ˛ ,
part (ii) is Ui, and the part (iii) is at least Yt. So we have

U ˛ C Ui C Yt �
X

Pq2P�m

U .Pq/ (7.26)

By (7.19), (7.25), and (7.26) we have

Yt C Ui < �.�/

, Yt C Ut
i < �.�/ � Ubody

i

) Yt C Ut
i <

2	.�/

1C	.�/
� Ubody

i

	
�.�/ � 2	.�/

1C	.�/




By the precondition of this case Ubody
i � 	.�/

1C	.�/
, we have

2	.�/

1C	.�/
� Ubody

i � 	.�/.1 � Ubody
i /

Applying this to above we get Yt C Ut
i < 	.�/.1 � Ubody

i /. By Lemma 7.6 we
know � t

i is not a bottleneck.
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In summary, we have shown that in both cases the tail subtask � t
i is not a

bottleneck of Pm. So we can conclude that there is no bottleneck on Pm, which
results in a contradiction and establishes the proof.

7.6.2.3 Utilization Bound

Lemma 7.9 (base case) and Lemma 7.11 (inductive step) inductively proved
that after a failed partitioning, the total utilization of all processors is at least
M ��.�/. And since there are (sub)tasks not assigned to any processor after a failed
partitioning, � ’s normalized utilization UM.�/ is strictly larger than �.�/. So we
can conclude:

Lemma 7.12. Given a task set � and a D-PUB �.�/ � 2	.�/

1C	.�/
. � can be

successfully partitioned by SPA2 if its normalized utilization UM.�/ is bounded
by �.�/.

Now we will show that a task set is guaranteed to be schedulable if it is
successfully partitioned by SPA2.

Lemma 7.13. If a task set is successfully partitioned by SPA2, the tasks on each
processor are schedulable by RMS.

Proof. SPA2 uses routine Assign for task assignment and splitting, which assumes
a body subtask has the highest priority on its host processor (this has been shown to
be true for SPA1 in Lemma 7.2, so in SPA1 a successfully partitioning implies the
schedulability). In SPA2, this assumption is clearly true for normal processors, on
which the task assignment is exactly the same as SPA1. In the following, we will
show this assumption is also true for pre-assigned processors.

Let Pq be a pre-assigned processor involved in the third phase of SPA2, and a

body subtask �
bj

i is assigned to Pq. By Lemmas 7.9 and 7.11 we can inductively
prove that the total utilization of processors in P�qC1 is at least jP�qC1j � �.�/.
So by Lemma 7.10 we know a pre-assigned task on processors Pq has the lowest

priority on that processor, particularly, has lower priority than �
bj

i . We also know

that all other tasks on Pq have lower priority than �
bj

i , since tasks are assigned in

increasing priority order and �
bj

i is the last one assigned to Pq.
In summary we know that after partitioned by SPA2, any body subtask has the

highest priority on its host processor. So Assign indeed performs a correct task
assignment and splitting, which guarantees that all deadlines can be met at run-time.

By now we have proved that any task with total utilization no larger than �.�/

can be successfully partitioned by SPA2, and all tasks can meet deadline if they are
scheduled on each processor by RMS. So we can conclude the utilization bound
of SPA2:
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Theorem 7.2. Given a parametric utilization bound �.�/ � 2	.�/

1C	.�/
derived from

the task set � ’s parameters. If

UM.�/ � �.�/

then � is schedulable by SPA2.

Proof. Directly follows Lemmas 7.12 and 7.13.

7.7 Conclusions

We have developed new fixed-priority multiprocessor scheduling algorithms over-
stepping the Liu and Layland utilization bound. The first algorithm SPA1 can
achieve any sustainable parametric utilization bound for light task sets. The second
algorithm SPA2 gets rid of the light restriction and work for any task set, if the
bound is under a threshold 2	.�/

1C	.�/
. Further, the new algorithms use exact analysis

RTA, instead of the worst-case utilization threshold as in [68], to determine the max-
imal workload assigned to each processor. Therefore, the average-case performance
is significantly improved. As future work, we will extend our algorithms to deal
with task graphs specifying task dependencies and communications.



Chapter 8
Cache-Aware Scheduling

The major obstacle to use multicores for real-time applications is that we may not
predict and provide any guarantee on real-time properties of embedded software
on such platforms; the way of handling the on-chip shared resources such as L2
cache may have a significant impact on the timing predictability. In this chapter, we
propose to use cache space isolation techniques to avoid cache contention for hard
real-time tasks running on multicores with shared caches. We present a scheduling
strategy for real-time tasks with both timing and cache space constraints, which
allows each task to use a fixed number of cache partitions, and makes sure that at
any time a cache partition is occupied by at most one running task. In this way, the
cache spaces of tasks are isolated at run-time.

As technical contributions, we present solutions for the scheduling analysis
problem. For simplicity, the presentation will focus on non-preemptive fixed-
priority scheduling. However our techniques can be easily adapted to deal with other
scheduling strategies like EDF. We have developed a sufficient schedulability test
for non-preemptive fixed-priority scheduling for multicores with shared L2 cache,
encoded as a linear programming problem. To improve the scalability of the test,
we then develop our second schedulability test of quadratic complexity, which is
an over approximation of the first test. To evaluate the performance and scalability
of our techniques, we use randomly generated task sets. Our experiments show that
the first test which employs an LP solver can easily handle task sets with thousands
of tasks in minutes using a desktop computer. It is also shown that the second test
is comparable with the first one in terms of precision, but scales much better due
to its low complexity, and is therefore a good candidate for efficient schedulability
tests in the design loop for embedded systems or as an on-line test for admission
control.

© Springer International Publishing Switzerland 2016
N. Guan, Techniques for Building Timing-Predictable Embedded Systems,
DOI 10.1007/978-3-319-27198-9_8
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8.1 Introduction

It is predicted that multicores will be increasingly used in future embedded systems
for high performance and low energy consumption. The major obstacle is that we
may not predict and provide any guarantee on real-time properties of embedded
software on such platforms due to the on-chip shared resources. Shared caches such
as L2 cache are among the most critical resources on multicores, which severely
degrade the timing predictability of multi-core systems due to the cache contention
between cores.

For single processor systems, there are well-developed techniques [4] for timing
analysis of embedded software. Using these techniques, the worst-case execution
time (WCET) of real-time tasks may be estimated, and then used for system-level
timing analyses like schedulability analysis. One major problem in WCET analysis
is how to predict the cache behavior, since different cache behaviors (cache hit or
miss) will result in different execution times of each instruction. The cache behavior
modeling and analysis for single-processor architectures have been intensively
studied in the past decades and are supported now in most existing WCET analysis
tools [4]. Unfortunately the existing techniques for single processor platforms are
not applicable for multicores with shared caches. The reason is that a task running
on one core may evict the useful L2 cache content belonging to a task running on
another core and therefore the WCET of one task cannot be estimated in isolation
from the other tasks as for single processor systems. Essentially, the challenge is
to model and predict the cache behavior for concurrent programs (not sequential
programs as for the case of single processor systems) running on different cores.

To our best knowledge, the only known work on WCET analysis for multicores
with shared cache is [89], which is only applicable to a very special application
scenario and very simple hardware architecture (we will discuss its limitation
in Sect. 8.2). Researchers in the WCET analysis community agree that “it will
be extremely difficult, if not impossible, to develop analysis methods that can
accurately capture the contention among multiple cores in a shared cache” [2].

The goal of this chapter is not to solve the above challenging problem. Instead,
we use cache partitioning techniques such as page-coloring [165] combined with
scheduling to isolate the cache spaces of hard real-time tasks running simultane-
ously to avoid the interference between them. This yields an efficient method—
cache space isolation—to control the shared cache access, in which a portion of the
shared cache is assigned to each running task, and the cache replacement is restricted
to each individual partition. For single-processor multi-tasking systems, cache
space isolation allows compositional timing analysis where the WCET of tasks
can be estimated separately using existing WCET analysis techniques [166]. For
multicores, to enable compositional timing analysis, we need isolation techniques
for all the shared resources. For the on-chip bus bandwidth, techniques such as
time-slicing have been studied in, e.g., [167]. In this chapter, we shall focus on
shared caches only, and study the scheduling and analysis problem for hard real-time
tasks with timing and cache space constraints, on multicores with shared L2 cache.
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We assume that the shared cache is divided into partitions, and further assume that
the cache space size of each application task has been estimated by, for example, the
miss-rate/cache-size curve or static analysis, and the WCET of each task is obtained
with its assigned cache space size. In the system design phase, one can adjust tasks’
L2 cache space sizes (and therefore their WCETs) to improve the system real-time
performance, which can be built upon the schedulability analysis techniques studied
in this work.

We shall present a cache-aware scheduling algorithm which makes sure that
at any time, any two running tasks’ cache spaces are non-overlapped. A task can
get to execute only if it gets an idle core as well as enough space (not necessarily
continuous) on the shared cache. For the simplicity of presentation, we shall focus
on non-preemptive fixed-priority scheduling. However, our results can be easily
adapted to other scheduling strategies such as EDF. Our first technical contribution
is a sufficient schedulability test for multicores with shared L2 cache, encoded as
a linear programming problem. To improve its scalability, we then propose our
second schedulability test of quadratic complexity, which is an over approximation
of the first test. To evaluate the performance and scalability of our techniques, we
use randomly generated task sets. Our experiments show that the first test which
employs an LP solver can easily handle task sets with thousands of tasks in minutes
using a desktop computer. It is also shown that the second test is comparable with
the first one in terms of precision, but scales much better due to its low complexity,
and therefore it is a good candidate for efficient schedulability tests in the design
loop for embedded systems.

8.2 Related Work

Since L2 misses affect the system performance to a much greater extent than L1
misses or pipeline conflicts [168], the shared cache contention may dramatically
degrade the system performance and predictability. Chandra et al. [169] showed that
a thread’s execution time may be up to 65 % longer when it runs with a high-miss-
rate co-runner than with a low-miss-rate co-runner. Such dramatic slowdowns were
due to significant increases in L2 cache miss rates experienced with a high-miss-rate
co-runner, as opposed to a low-miss-rate co-runner.

L2 contention can be reduced by discouraging threads with heavy memory-to-L2
traffic from being co-scheduled [168]. Anderson et al. [170–172] applied the policy
of encouraging or discouraging the co-scheduling of tasks (or jobs), to improve
the cache performance and also to meet the real-time constraints. All these works
assumed that the WCETs of real-time threads are known in advance. However,
although improved cache performance can directly reduce average execution costs,
it is still unknown how to obtain the WCET of each real-time thread in their
system model. Yan and Zhang [89] is the only known work to study the WCET
analysis problem for multi-core systems with shared L2 cache. A particular scenario
is assumed that two tasks simultaneously run on a dual-core processor with a
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direct-mapped shared L2 instruction cache. However, their analysis technique is
quite limited: firstly, most of today’s multi-core processors employ set-associative
caches rather than direct-mapped cache as their L2 cache; secondly, when the system
contains more cores and more tasks, their analysis will be extremely pessimistic;
thirdly, their analysis technique cannot handle tasks in priority-driven scheduling
systems.

In contrast with Anderson’s work, we employ cache space isolation in the
scheduling algorithms to avoid the cache accessing interference between tasks
simultaneously running on different cores, and therefore we can apply existing
analysis techniques to derive safe upper bounds of a task’s WCET,1 with which
we can do safe schedulability analysis for the task system.

The schedulability analysis problem of global multiprocessor scheduling has
been intensively studied [50, 52–54, 134, 138]. These analysis techniques are also
extended to deal with more general cases, e.g., the global scheduling on 1-D FPGAs
[173, 174], where a task may occupy multiple resources (columns on FPGAs) during
execution. However, all these techniques are not applicable to our problem, since
with cache space isolation, tasks are actually scheduled on two resources: cores and
the shared cache.

Fisher et al. [175] studied the problem of static allocation of periodic tasks onto
a multiprocessor platform such that on each processor, the total utilization of the
allocated tasks is no larger than 1, as well as the total memory size of the allocated
tasks does not exceed the processor’s memory capacity. Suhendra et al. [176] and
Salamy et al. [177] studied the problem of how to statically allocate and schedule
a task graph onto an MPSoC, in which each processor has a private scratch-pad
memory, to maximize the system throughput. In summary, in the above work tasks
are statically allocated to processors, so the schedulability analysis problem is trivial
(reduced to the case of single-processor scheduling). In our work, different instances
of a task are allowed to run on different cores, so the schedulability analysis
problem is more difficult. In [2], several scheduling policies with shared cache
partitioning and locking are experimentally evaluated, however, the schedulability
analysis problem was not studied.

8.3 Preliminaries

In this section, we briefly describe the basic assumptions on the hardware platform
and application tasks, which our work is based on.

1We focus on the interference caused by the shared L2 cache, and there could be other interference
between tasks running simultaneously. However, we believe the scheduling algorithm and analysis
techniques in this paper is a necessary step towards completely avoiding interference between
tasks running on multicores, and can be integrated with techniques of performance isolation on
other shared resources, for instance, the work in [167] to avoid interference caused by the shared
on-chip bus.



8.3 Preliminaries 161

8.3.1 Cache Space Partitioning

We assume a multi-core containing a fixed number of processor cores sharing
an on-chip cache. Note that this is usually an L2 cache. We will not explicitly
model core-local caches (usually L1) or other shared resources like interconnects.
Since concurrent accesses to the shared cache give raise to the problem of reduced
predictability due to cache interference, we assume the existence of a cache
partitioning mechanism, allowing to divide the cache space into non-overlapping
partitions for independent use by the computation tasks, see Fig. 8.1a.

Partitioning a cache shared among several tasks at the same time is a concept
which has already been used, most notably, for reducing interference in order
to improve average-case performance or to increase predictability in single-core
settings with preemption [178–180].

Different approaches may be used to achieve cache partitioning. Assuming a
k-associative cache that consists of l cache sets with k cache lines each, one can
distinguish set-based [165] and associativity-based [181] partitioning. The first one
is also called row-based partitioning and assigns different cache sets to different
partitions. It therefore enables up to l partitions and is thus quite fine-grained for
bigger caches. The second one assigns a certain amount of lines within each cache
set to different partitions and is also called column-based partitioning, so it is
rather coarse-grained with a maximum of just k partitions. Mixtures of both variants
are also possible. The approaches can be software- or hardware-based and differ
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regarding additional hardware requirements, partitioning granularity, influence on
memory layout and the possibility as well as complexity of on-line repartitioning.

Here we give a brief description of a set-based approach, which is also known as
page coloring. It has the advantage of being entirely software-based by exploiting
the translation from virtual to physical memory addresses present in the virtual
memory system.2 Assume a simple hardware-indexed cache with cache line size
of 2m1 words and 2m2 cache sets, so the least significant bits of the physical address
will contain m1 bits used as cache line offset and m2 bits used as the set number, see
Fig. 8.1b. Further assume a virtual page size of 2n words, so the n least significant
bits of the virtual address comprise the page offset. Consequently, all the other (more
significant) bits are the page number and will be translated by the virtual memory
system via the page table into the most significant bits of the physical address. If
m1 C m2 > n (which is the case with larger caches), a certain number of bits used
to address the cache set are actually “controlled” by the virtual memory system, so
that each virtual page can be (indirectly) mapped on a particular subset of all cache
sets. The number of available page colors by that method is therefore 2.m1Cm2/�n.

An example system supporting cache partitioning is reported in [182], where
the authors modified the Linux kernel to support page-coloring based cache space
isolation, in which 16 colors are supported, and conducted intensive experiments on
a Power 5 dual-core processor. Note that the method enforces a certain (physical)
memory layout, since it influences the choice of physical addresses. This restricts
the memory size available to each task, as well as flexibility for recoloring. These
problems can be compensated for by a simple rewiring trick as described in [183].
Therefore it is reasonable for our model to assume a cache with equally sized cache
partitions that can be assigned and reassigned arbitrarily during the lifetimes of the
tasks in question.

8.3.2 Task Model

Assume a multi-core platform consisting of M cores and A cache partitions, and a
set � of independent sporadic tasks whose numbers of cache partitions (cache space
size needed) and WCETs are known for the platform. We use �i D hAi; Ci; Di; Tii
to denote such a task where Ai is the cache space size, Ci is the WCET, Di � Ti is
the relative deadline for each release, and Ti is the minimum inter-arrival separation
time also referred to as the period of the task. We further assume that all tasks are
ordered by priorities, i.e., �i has higher priority than �j iff i < j. The utilization of a
task �i is Ui D Ci=Ti and its slack Si D Di � Ci, which is the longest delay allowed
before actually running without missing its deadline.

2Note that this is just an example of how cache partitioning can be achieved; by no means is virtual
memory a necessity to the results presented in this chapter.
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A sporadic task �i generates a potentially infinite sequence of jobs with succes-
sive job-arrivals separated by at least Ti time units. The ˛th job of task �i is denoted
by J˛

i , so we can denote a job sequence of task �i with .J1
i ; J2

i ; : : :/. We omit ˛

and just use Ji to denote a job of �i if there is no need to identify which job it is.
Each job Ji adheres to the conditions Ai, Ci and Di of its task �i and has additional
properties concerning absolute time points related to its execution, which we denote
with lowercase letters: The release time, denoted by ri, the deadline, denoted by di

and derived using di D ri C Di, and the latest start time, denoted by li and derived
using li D ri C Si. Finally, without losing generality, we assume that time is dense
in our model.

8.4 Cache-Aware Scheduling

We present the basic scheduling algorithm studied in this chapter, and the analysis
framework for the technical contributions presented in the next sections. We should
point out that the simple scheduling algorithm itself is not the main contribution
of this work. Our contributions are in solving the schedulability problem for this
algorithm.

8.4.1 The Scheduling Algorithm FPCA

Since cache-related context-switch overhead of each task due to preemption is
usually hard to predict, we focus on non-preemptive scheduling. The idea of
cache space isolation can be applied to many different traditional multiprocessor
scheduling algorithms, and for simplicity reasons, we will take the Non-preemptive
Fixed-Priority Scheduling as the example in this chapter.

The algorithm, the Cache-Aware Non-preemptive Fixed-Priority Scheduling
(FPCA), is executed whenever a job finishes or when a new job arrives. It always
schedules the highest priority waiting job for execution, if there are enough
resources available. In particular, a job Ji is scheduled for execution if:

1. Ji is the job of highest priority among all waiting jobs,
2. There is at least one core idle, and
3. Enough cache partitions, i.e. at least Ai, are idle.

Note that, since we suppose Di � Ti for each task, there is at most one job of each
task at any time instant.

Figure 8.2 shows an example of the task set in Table 8.1 scheduled by FPCA

(the scenario that all tasks are released together). Note that at time 0, the job J1
4

cannot execute according to the definition of FPCA, although it is ready and there
is an idle core and enough idle cache partitions to fit it, since it is not at the first
position of the waiting queue, i.e. there is a higher priority job (J1

3) waiting for
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Fig. 8.2 An example to illustrate FPCA

Table 8.1 The task set to
illustrate FPCA

Task Di Ti Ci Ai

�1 3 3 2 1

�2 4 4 3 2

�3 5 5 2 2

�4 8 8 2 1

execution. J1
3 cannot execute since there is not enough idle cache partitions available.

Thus, we note that FPCA may waste resources as it does not schedule lower priority
ready jobs to execute in advance of higher priority ready jobs even though there are
enough resources available to accommodate them. However, it enforces a stricter
priority ordering, which is in general good for predictability. We name this kind of
scheduling policy as blocking-style scheduling.

Sometimes one may prefer to allow lower priority ready jobs to execute in
advance of higher priority ready jobs, if the idle cache partitions are not enough
to fit the higher priority ones, to trade predictability for better resource utilization.
We name this kind of scheduling policy as non-blocking-style scheduling.

For simplicity, we will present the schedulability analysis in context of FPCA,
which is blocking-style scheduling. However, note that the schedulability analysis
techniques are applicable to both blocking-style scheduling and non-blocking-style
scheduling. Later in Sect. 8.8, we will discuss the comparison between them in more
detail.

8.4.2 Problem Window Analysis

To check whether a given set of tasks can be scheduled using the above algorithm
without missing the deadline for any job released, we shall study the time interval
during which an assumed deadline missing task is prevented from running. Note that
this interval is the so-called slack of the task, which we shall also call the problem
window [52].
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In the following, we outline how the problem window can be used for schedu-
lability analysis in the case when tasks are scheduled only on the cores or only on
the shared cache partitions. Two schedulability test conditions will be developed for
the two special cases. Then, in Sect. 8.5, we combine them to deal with the general
case.

The Case Without Cache Scheduling

A schedulability test for the case when the tasks are scheduled only on the cores can
be derived as follows:

1. Assume M cores for execution of a task set � as described before, but in the task
model, the Ai’s are 0 (alternatively the total number of cache partitions is large
enough such that no task will be blocked by a busy cache).

2. Suppose that the task set � is unschedulable, then there is a job sequence
.J˛1

k1
; J˛2

k2
; : : :/ in which a job misses its deadline. Let Jk, a job of �k, be the first

job missing its deadline. Its release time is rk and the latest time point, at which it
would have needed to start running (but it did not, since it is missing its deadline)
is lk D rk C Sk. We define the time interval Œrk; lk� of length Sk as the problem
window, as shown in Fig. 8.3a. The intuition is that at all time points within the
interval, each of the cores must be occupied by another task, preventing Jk from
running.

3. To find out why Jk is not scheduled to run during the window, we may estimate
the workload or an upper bound of this, generated by a task that may occupy a
core in the window. We denote such an upper bound by Ii

k, which is normally
called the interference contributed to Jk’s problem window by task �i. The sumP

i Ii
k is an upper bound of the total workload interfering with Jk in the problem

window. We describe in detail how to calculate such an upper bound in the next
section. A more precise calculation is given in the appendix.

4. We note that the non-preemptive fixed-priority scheduling algorithm (without
cache) enjoys the work-conserving property, that is, none of the M cores is
idle if there is some ready job waiting for execution. Therefore, Jk can miss its
deadline only if

P
i Ii

k � Sk � M holds, i.e., the whole area with diagonals in
Fig. 8.3a is occupied. Otherwise, Jk is safe from ever missing its deadline, i.e., �k

is schedulable, if the following condition holds:
P

i Ii
k < Sk �M.

We may also view this last step in a different way. We know that the sum of all
work (of all tasks �i) interfering with Jk is bounded by

P
i Ii

k, and it is in the worst
case executed in parallel on M cores, thus preventing Jk from running. Therefore, if
we divide this sum

P
i Ii

k by M, we get an upper bound on the maximum time that job
Jk can be delayed by other tasks. We call this the interference time. Consequently,
Jk is guaranteed to be schedulable, if this interference time is strictly less than its
slack, i.e., if the following condition holds:
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Fig. 8.3 Problem window. (a) Only considering scheduling on cores. (b) Only considering
scheduling on the cache

1

M

X

i

Ii
k < Sk (8.1)

By applying the above procedure to each task �k 2 � (i.e., checking that the
inequality holds for all tasks), one can construct a sufficient schedulability test for
the case without a shared cache.

The Case Without Core Scheduling

The above problem window analysis can be generalized to the case where each task
occupies several computing resources. In our scenario, one task can occupy several
cache partitions at once while executing.

To present the idea, let us assume for the moment that we only care about the
scheduling of the shared cache (suppose there are always enough cores for tasks to
execute). A job Ji may start running as soon as it is the first one in the waiting queue
Qwait, and the number of idle cache partitions is at least Ai. Otherwise, Jk in Qwait

(it is now not necessarily the first job) may have to wait, if the number of idle cache
partitions is less than max.A1; : : : ; Ak/.

Note that we take the maximum over all higher priority tasks here, since even
though there might be Ak cache partitions idle, there could be a job Ji of higher
priority (i < k) in Qwait that needs more cache partitions to run, but is prevented from
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running, which in turn prevents Jk from running, because of the blocking property
of FPCA. We define this number as

Amax
k D max

i�k
Ai

Note that Amax
k is the minimal number of idle cache partitions needed in order that

Jk is not blocked from running because of a busy cache. Equivalently, the minimal
number of busy cache partitions that may block Jk from running is A � Amax

k C 1.
Therefore Jk can miss its deadline only if the whole area with diagonals in

Fig. 8.3b is occupied. Since each task �i is occupying Ai cache partitions while it
is executing, we know that Jk can miss its deadline only if the condition

P
i AiIi

k �
Sk � .A � Amax

k C 1/ holds. Thus we have a test condition for scheduling analysis
when the shared cache is considered:

P
i AiIi

k < Sk � .A � Amax
k C 1/.

Like in Sect. 8.4.2, we again prefer the view on that in terms of interference time:
We get an upper bound of the interference time suffered by job Jk in the problem
window by dividing this sum of maximal total cache use

P
i AiIi

k by the minimal
number of busy cache partitions .A � Amax

k C 1/ throughout the problem window.
This is, again, an upper bound of the time, by which job Jk can be delayed by other
tasks. Thus, the schedulability test condition is

1

A � Amax
k C 1

X

i

AiI
i
k < Sk (8.2)

As we see now in Constraints (8.1) and (8.2), one can derive test conditions for
scheduling on cores and cache partitions separately, once Ii

k is known for each task
�i. Since in the scheduling algorithm in question, FPCA, the scheduling happens on
cores and cache together, the conditions have to be combined in a way that still
makes for a safe schedulability test condition. In the following section, we will
derive a novel way of combining both conditions.

8.5 The First Test: LP-Based

In order to apply the problem window analysis to FPCA, two questions need to be
answered:

1. How to compute Ii
k, i.e., an upper bound of the interference of each task �i in the

problem window? We will answer this question in Sect. 8.5.1.
2. How to determine whether the interference of all tasks is large enough to prevent

Jk from executing in the problem window? We will answer this question in
Sect. 8.5.2.
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Sk

rk lkTi

Problem Window

Ti dk

carry-in job body jobs carry-out job

Fig. 8.4 Carry-in job, carry-out job, and body jobs

8.5.1 Interference Calculation

The first question can be answered by categorizing each job of �i in the problem
window into one of three types, as shown in Fig. 8.4:

body job: a job with both release time and deadline in the problem window; All
the body jobs together contribute bSk=Tic � Ci to the interference.

carry-in job: a job with release time earlier than rk, but with deadline in the
problem window; This job contributes at most Ci to the interference.

carry-out job: a job with release time in the problem window, but with deadline
later than lk; This job also contributes at most Ci to the interference.

It follows that an upper bound of �i’s interference in the problem window is given by

Ii
k D

	�
Sk

Ti

�
C 2



� Ci: (8.3)

We can derive a more precise computation of Ii
k by carefully identifying the

worst-case scenario of each task’s interference, which is given in the appendix.

8.5.2 Schedulability Test as an LP Problem

The answer of the second question is non-trivial.
As introduced in Sect. 8.4.2, the problem window analysis can be applied to

analyzing the scheduling on cores or on the cache separately. However, if we
consider the scheduling on both cores and cache, it is generally unknown what
the lower bound of the occupied resources on each of them is, to cause Jk to miss
deadline. For example, in Fig. 8.2, at time instant 0, the job J1

3 is ready for execution,
but it cannot execute since the number of idle cache partitions on the shared cache
is not enough to accommodate it, so it is not true any longer that all M cores must be
busy during the problem window to cause the considered task to miss its deadline.
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Dividing Up the Problem Window

The key observation to our analysis is that at each time point in the problem
window where the job Jk cannot start running, all cores are already occupied, or—
wherever that is not the case—enough cache partitions are occupied to prevent Jk

from running. This is expressed in the following lemma about FPCA:

Lemma 8.1. Let Jk be a job that misses its deadline. Then at any time instant in the
problem window Œrk; lk�, at least one of the following two conditions is true:

1. All M cores are occupied;
2. At least A � Amax

k C 1 cache partitions are occupied.

Proof. Suppose there is a time instant t 2 Œrk; lk�, such that both of the above two
conditions do not hold. Since Jk misses its deadline, it cannot start executing in the
problem window, thus also not at t. Therefore, the waiting queue Qwait is not empty
at t, since at least Jk is in Qwait.

Let now Ji be the first job in Qwait at time t. Since, for FPCA, the waiting queue is
ordered in strict priority order, Ji is the highest priority job waiting. By assumption,
there are less than A� Amax

k C 1 cache partitions occupied, so there are at least Amax
k

partitions available. Further, Ai � Amax
k by definition, and there is an idle core by

assumption. Thus, Ji must be able to execute, contradicting the assumption that it is
waiting.

Following these two conditions, we can now divide the problem window into two
parts (see Fig. 8.5):

Problem Window

-intervals -intervals

lkrk

A-Ak
max+1

Fig. 8.5 Illustration of ˛-intervals and ˇ-intervals
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1. ˛-intervals, in which all cores are busy;
2. ˇ-intervals, in which at least one core is idle. Note that it follows from

Lemma 8.1 that during the ˇ-intervals, at least A � Amax
k C 1 partitions of the

shared cache are occupied by a running task.

It is generally unknown at what length of the ˛- and ˇ-intervals the maximal
interference to Jk is achieved. We approach this by introducing a Linear Program-
ming (LP) formulation of our problem, to create a schedulability test for FPCA.

LP Formulation

Suppose, as before, the task set � is unschedulable by FPCA, and Jk is the first task
that is missing its deadline. The time interval Œrk; lk� is the problem window.

The LP formulation will use the following constants:

• M: the number of cores.
• A: the total number of partitions on the shared cache.
• Ai: the number of cache partitions occupied by each task �i. (We also use the

constant Amax
k , which is derived from these as above.)

• Ii
k: an upper bound of the interference by �i in the problem window, which is

computed as in Sect. 8.5.1 (or as in the appendix) for each �i.

Further, the following non-negative variables are used:

• ˛i: for each task �i, we define ˛i as �i’s accumulated execution time during
˛-intervals.

• ˇi: for each task �i, we define ˇi as �i’s accumulated execution time during
ˇ-intervals.

During the ˛-intervals, all M cores are occupied. Further, we know that
P

i ˛i

equals to the total computation work of all tasks during the ˛-intervals (which is the
area with grids in Fig. 8.5). We can therefore express the accumulated length of all
˛-intervals as

1

M

X

i

˛i (8.4)

During the ˇ-intervals, at least A�Amax
k C1 cache partitions are occupied. Further,P

i Aiˇi is the total cache partition use of all tasks during the ˇ-intervals (which is
an upper bound of the area with diagonals in Fig. 8.5). We can therefore express an
upper bound of the accumulated length of all ˇ-intervals as

1

A � Amax
k C 1

X

i

Aiˇi (8.5)
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Since Jk is not schedulable, we further know that the sum of the accumulated
lengths of the ˛- and ˇ-intervals is at least Sk. Thus, using the expressions from
(8.4) and (8.5), it must hold that

X

i

	
1

M
˛i C Ai

A � Amax
k C 1

ˇi



� Sk (8.6)

We can use an LP solver to detect if the ˛i and ˇi variables can be chosen in a way
to satisfy this condition. If this is not the case, then �k would be schedulable. We can
use the object function of our LP formulation for that check:

Maximize
X

i

	
1

M
˛i C Ai

A � Amax
k C 1

ˇi



(8.7)

Thus, if the solution of the LP problem is smaller than Sk, we can determine that �k

is schedulable.
So far, the variables ˛i and ˇi are not bounded, so without further constraints, the

LP formulation will not have a bounded solution (which would trivially render all
tasks unschedulable). Therefore, we add constraints on the free variables that follow
directly from the structure of our schedulability problem. We have three constraints:

'1: Interference Constraint We know that Ij
k is the upper bound of the work done

by �j in the problem window, so we have

8j W ˛j C ˇj � Ij
k

'2: Core Constraint The work done by a task in the ˛-intervals cannot be larger
than the total accumulated length of the ˛-intervals [see Expression (8.4)], so we
have

8j W ˛j � 1

M

X

i

˛i

'3: Cache Constraint The work done by a task in the ˇ-intervals cannot be larger
than the total accumulated length of the ˇ-intervals. Thus, it cannot be larger than
the upper bound of the total length of the ˇ-intervals [see Expression (8.5)], so
we have

8j W ˇj � 1

A � Amax
k C 1

X

i

Aiˇi

To test �k for schedulability, we can now invoke an LP solver on the LP problem
defined by constraints '1 to '3 and the object function in (8.7). By construction, we
have a first schedulability test for � :



172 8 Cache-Aware Scheduling

Theorem 8.1 (The First Test). For each task �k, let �k denote the solution of the
LP problem shown above. A task set � is schedulable by FPCA, if for each task �k 2 �

it holds that

�k < Sk: (8.8)

8.6 The Second Test: Closed Form

Although the LP-based test presented in the previous section exhibits quite good
scalability (as will be shown in Sect. 8.7), simple test conditions are often preferred
in, e.g., on-line admission control and efficient analysis in the systems design loop.
Thus, we will present a second schedulability test, which can be seen as an over-
approximation of the LP-based test. It has quadratic computational complexity.

In the LP-based test, each task �i finds its interference Ii
k divided into two parts ˛i

and ˇi, expressed by constraint '1. From the object function (8.7) one can see that
if 1=M � Ai=.A � Amax

k C 1/, �i tends to contribute with as much ˛i as possible,
as long as '2 is respected; likewise in the opposite case with ˇi. However, since the
accumulated lengths of the ˛- and ˇ-intervals (as used on the right-hand sides of
'2 and '3) are also dependent on the unknown variables, it is in general unknown
how the ˛i and ˇi variables are chosen to maximize the interference time caused
by all tasks. Therefore, the first schedulability test employs the LP solver to help
“searching over all possible cases” for the maximal solution.

However, if we take out the constraints '2 and '3 from the LP formulation, each
task �i will contribute ˛i D Ii

k; ˇi D 0 if 1=M � Ai=.A�Amax
k C1/, or ˇi D Ii

k; ˛i D 0

otherwise, to maximize the object function. With this observation, we can derive a
closed-form schedulability test which does not need to solve a search problem:

Theorem 8.2 (The Second Test). For each task �k let

��k WD
X

i

max

	
1

M
;

Ai

A � Amax
k C 1



� Ii

k:

A task set � is schedulable by FPCA, if for each task �k 2 � it holds that

��k < Sk: (8.9)

Proof. We prove the theorem indirectly. Let � be a task set not schedulable by FPCA,
and Jk the deadline missing task as before. We already know that this implies the
existence of a solution for the LP problem, such that in particular, '1 to '3 hold, and
the value of the object function satisfies the following inequality:

X

i

	
1

M
� ˛i C Ai

A � Amax
k C 1

� ˇi



� Sk
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Table 8.2 The example task
set to illustrate Theorem 8.2

M A� Amax
k C 1 I1

k A1 I2
k A2 I3

k A3

2 4 4 1 4 3 6 1

By relaxing the inequality, we get

X

i

max

	
1

M
;

Ai

A � Amax
k C 1



� .˛i C ˇi/ � Sk

Now, we apply condition '1:

X

i

max

	
1

M
;

Ai

A � Amax
k C 1



� Ii

k

„ ƒ‚ …
��

k

� Sk

The theorem follows.

Note that the upper bound ��k derived in the above theorem is an over-
approximation of the LP solution �k in the previous section. For example, consider
a task set with the interference parameters as stated in Table 8.2. The LP problem
(from the first test) has the following solution:

˛1 D 4 ˇ1 D 0

˛2 D 1 ˇ2 D 3

˛3 D 3 ˇ3 D 3

This results in an upper bound of �k D 7, which is the value of the object function.
In the second test, for ��k , each task �i contributes all Ii

k as ˛i if 1=M > Ai=.A �
Amax

k C 1/, and as ˇi otherwise, so we get the following bound:

��k D
1

2
� 4C 3

4
� 4C 1

2
� 6 D 8

Although the simple test condition is more pessimistic than the LP-based test, we
found by extensive experiments that the performance of the second test is very close
to the LP-based test in terms of acceptance ratio. We will show that in Sect. 8.7. It
follows that, for practical matters, the second test does not lose much precision for
most task sets, while being of comparatively low complexity (quadratic with respect
to the number of tasks).
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8.7 Performance Evaluation

At first we evaluate the performance of the proposed schedulability tests in terms of
acceptance ratio. We follow the method in [135] to generate task sets: A task set of
MC1 tasks is generated and tested. Then we iteratively increase the number of tasks
by 1 to generate a new task set, and all the schedulability tests are run on the new
task set. This process is iterated until the total processor utilization exceeds M. The
whole procedure is then repeated, starting with a new task set of MC1 tasks, until a
reasonable sample space has been generated and tested. This method of generating
random task sets produces a fairly uniform distribution of total utilizations, except
at the extreme end of low utilization.

Figure 8.6 shows the acceptance ratio of the first test (denoted by “T-1”), and
second test (denoted by “T-2”) and the simulation (denoted by “Sim”). Since it is
not computationally feasible to try all possible task release offsets and inter-release
separations exhaustively in simulations, all task release offsets are set to be zero
and all tasks are released periodically, and simulation is run for the hyper-period of
all task periods. Simulation results obtained under this assumption may sometimes
determine a task set to be schedulable even though it is not, but they can serve as a
coarse upper bound of the acceptance ratio.

The parameter setting in Fig. 8.6a is as follows: the number of cores is 6; the
number of cache partitions is 40; for each task �i, Ti is uniformly distributed in
Œ10; 20�, Ui is uniformly distributed in [0.1, 0.3] and Ai is uniformly distributed in
Œ1; 5�, and we set Di D Ti. We can see that the performance of the first test is a little
better than the second test. In Fig. 8.6b, the range of Ui is changed to Œ0:1; 0:6� and
other settings are the same as Fig. 8.6a. In Fig. 8.6c, the range of Ai is changed to
Œ2; 10� and other settings are the same as Fig. 8.6a. We can see that, in both cases,
the acceptance ratio of all the simulations and tests degrades a little bit when the
average utilization of tasks is slightly decreased, and the difference between the
performance of the first test and second test is even smaller. In summary we can
see that the second test does not lose too much precision, compared to the first test
condition.

As mentioned earlier, the second test is of O.N2/ complexity. The scalability of
the first test is of our special concern since it employs the LP formulation. We use

Fig. 8.6 Acceptance ratio: X-axis is total utilization
P

i Ui; Y-axis is acceptance ratio. (a) 0:1 �
Ui � 0:3; 1 � Ai � 5. (b) 0:1 � Ui � 0:6; 1 � Ai � 5. (c) 0:1 � Ui � 0:3; 2 � Ai � 10
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Table 8.3 Running time and peak memory usage of
lpsolve to solve the LP formulation in the first test

Number of tasks 4000 6000 8000 10,000

Time in LP (s) 49.24 114.53 208.45 334.95

Mem. in LP (KB) 20,344 28,876 37,556 46,664

the open source LP solver lpsolve [125] to solve the LP formulation of the first test.
Table 8.3 shows the running time and maximal peak memory usage of lpsolve with
different task set scales. The experiment is conducted on a normal desktop computer
with an Intel Core2 processor (2.83 GHz) and 2G memory. The experiments show
that the first test can handle task sets with thousands of tasks in minutes.

8.8 Extensions

8.8.1 Blocking vs. Non-blocking Scheduling

As we mentioned in Sect. 8.4.1, FPCA may introduce a type of resource wasting
in certain situations, caused by a difference in tasks cache requirements, in
combination with strict adherence to priority ordering. The possible scenario is that
when the current idle cache is not enough to fit the first job in the waiting queue (the
highest-priority job among all ready jobs), there could be some lower-priority job
in the waiting queue with a fitting cache requirement. In FPCA as analyzed so far,
lower-priority waiting jobs are not allowed to start execution in advance of the first
job in the waiting queue since the priority ordering is enforced strictly. We call this
sort of policy the blocking-style scheduling. The blocking-style scheduling would
waste computing resources to guarantee the execution order of waiting jobs, as we
saw earlier in the example in Fig. 8.2. But it will not suffer from the unbounded
priority inversion problem due to the sharing of cache partitions as for the non-
blocking approach described below.

Alternatively, to improve resource utilization, a lower-priority waiting job may
be allowed to start execution in advance of the first job in the waiting queue, if
the above described situation occurs, which we call non-blocking-style scheduling.
Figure 8.7 shows how the task set in Table 8.1 is scheduled by the non-blocking-
style version of FPCA. In this variant, the scheduler always runs the highest priority
waiting job in the queue among all jobs that can actually run, given their resource
(i.e., cache) constraints. This is done until there are no more jobs of that kind. In
the example in Fig. 8.7, we can see that at time instant 0, job J1

4 starts execution
although J1

3 cannot start.
From the predictability point of view, the blocking-style scheduling is usually

to be preferred, in which waiting jobs start execution in strict priority orders. The
reason is that �h may suffer more interference than it is the case in the blocking-style
scheduling, since in the non-blocking-style scheduling, a lower priority task �l can
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Fig. 8.7 The non-blocking
version of FPCA
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execute earlier than a higher priority task �h, and must run to completion because of
non-preemptive scheduling. As shown in Fig. 8.7, due to the advanced execution of
J1

4 , the start time of J1
3 is delayed to time 3, and J1

3 will finally miss its deadline. In the
worst case, this priority inversion effect could even cause unbounded interference to
a task with even the highest priority.

On the other hand, the non-blocking-style scheduling utilizes resources better,
since it always tries to utilize the computing resources as much as possible.
Regarding the complexity at run-time, this comes with the cost that the scheduler
needs to keep track of more than the head of the priority queue, since lower priority
tasks might be able to run. The blocking-style variant is more lightweight, since
only the head of the priority queue needs to be checked.

The system designer can choose to use blocking-style or non-blocking-style
scheduling, as well as some compromise policy as a mixture of these two alterna-
tives, according to the application requirement. However, even though the proposed
schedulability analysis techniques are done in the context of the blocking-style
scheduling, they are also applicable to the non-blocking-style scheduling. For this, it
is only necessary to incorporate some extra consideration of the interference caused
by the lower priority jobs that may execute in advance of the analyzed job. We omit
the detailed presentation of the analysis of non-blocking-style scheduling here due
to page limitations, and referred the interested readers to our technical report [184].

8.8.2 Other Scheduling Strategies

Besides FPCA, cache space isolation can also be applied to other scheduling
algorithms, like EDF scheduling. The schedulability analysis in that case can be
achieved by techniques which are similar to those introduced in this chapter.

One can also apply cache space isolation in a way similar to the partitioned
multiprocessor scheduling [48]: each task is assigned to a core and a set of cache
partitions in advance. One reason for us to be interested in the partitioned scheduling
is that the shared cache on multicores could be non-uniform in terms of accessing
speed: data residing in the part of a large cache close to the core could be accessed
much faster than data residing physically farther from the core. In [185], it was
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shown in an example that in a 16-megabyte on-chip L2 cache built in a 50-nm
processor technology, the closest bank could be accessed in 4 cycles while an access
to the farthest bank might take 47 cycles. Therefore, with non-uniform shared cache,
one should assign fixed cores and cache blocks to each task for scheduling and to
calculate their WCETs. Due to page limitation in this paper, the discussion about
partitioned scheduling with cache space isolation is also presented in our technical
report [184].

8.9 Conclusions

The broad introduction of multicores brings us many interesting research challenges
for embedded systems design. One of these is to predict the timing properties of
embedded software on such platforms. One of the main obstacles is the sharing of
on-chip caches such as L2. The message of this chapter is that with proper resource
isolation, it is possible to perform system-level schedulability analysis for multi-
core systems based on task-level timing analysis using existing WCET analysis
techniques. Our contributions include two efficient techniques for such analyses
in the presence of a shared cache. We may argue that hard real-time applications
should be placed in local caches such as L1. An interesting future work is to develop
techniques for estimating the cache space requirements of tasks.

However, when there is not enough local cache space, the techniques presented
here will be needed. We believe that our analysis techniques are also applicable
to handle other types of on-chip resources such as bus bandwidth. We leave this
for future work. As future work, we will also study how the allocation of cache
space size for individual tasks will influence system-level performance and timing
properties.

Appendix: Improving the Interference Computation

The computation of Ii
k, an upper bound of the interference caused by �i over Jk, in

Eq. (8.3) (Sect. 8.5.1) is grossly over-pessimistic. In the following we will present a
more precise computation of Ii

k by carefully identifying the worst-case scenario of
�i’s interference.

Recall that the problem window Œrk; lk� is a time frame of a given length
(lk � rk D Sk) for which we want to derive a bound of how much interference a
task �i (or rather its jobs) can cause to possibly prevent Jk from running. We can
compute Ii

k using the following lemma:

Lemma 8.2. An upper bound of the interference contributed by �i in the problem
window of length Sk can be computed by
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Ii
k D

8
ˆ̂̂
<

ˆ̂̂
:

Sk i < k ^ Sk < Cij
Sk�Ci

Ti

k
Ci C Ci C ! i < k ^ Sk � Ci

0 i D k
min.Ci; Sk/ i > k

(8.10)

where

! D min


Ci; max
�
0; .Sk � Ci/ mod Ti � .Ti � Di/

��
(8.11)

Proof. The lemma is proved in the following cases:

1. i < k, i.e., �i’s priority is higher than �k’s.
If Sk < Ci, i.e., a job of �i can execute even longer than Jk’s slack, trivially

Ii
k D Sk is a safe bound.

If Sk � Ci, the worst-case for Ii
k occurs when

(a) one of �i’s jobs is released at lk � Ck,
(b) all jobs are released with period Ti, and
(c) the carry-in job executes as late as possible.

See Fig. 8.8. To see that this is indeed the worst-case, we imagine to move the
release times of �i’s jobs leftwards for a distance 
l < Ti � Ci or rightwards
for a distance 
r < Ci, to see if it is possible to increase Ii

k by doing so. (It’s
easy to see that moving �i’s jobs’ releases more in either direction creates a
situation equivalent to one of these two cases. Further, Ii

k cannot be increased
if the number of �i’s jobs in Œrk; lk� is decreased, which means we only need
to consider the scenario that all jobs are released periodically.) If it is moved
leftwards by 
l, �i’s interference cannot increase at neither the left nor the right
end of the interval Œrk; lk�, so moving leftwards for a distance 
l < Ti � Ci will
not increase the interference. On the other hand, when moving rightwards by 
r,
the interference is increased by no more than 
r at the left end, but decreased
by 
r at the right end, so moving rightwards for a distance 
r < Ci will also not
increase the interference. In summary, based on the scenario in Fig. 8.8, Ii

k cannot
be increased no matter how we move the release time of �i. With this worst-case
scenario, we can see that the interference contributed by the carry-out job is Ci,
the number of the body jobs is b.Sk�Ci/=Tic (each contributing Ci interference),

dkto
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hdi
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Fig. 8.8 Computation of Ii
k if i < k and Sk � Ci
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and the interference contributed by the carry-in job is bounded by both Ci and the
distance between rk and the carry-in job’s deadline. Thus, for each task �i with
i < k ^ Sk � Ci, we can compute Ii

k by

Ii
k D

�
Sk � Ci

Ti

�
Ci C Ci C ! (8.12)

where ! is defined as in Eq. (8.11).
2. i D k, i.e., �i is the analyzed task. Since Dk � Tk holds for each task �k, the other

jobs of �k cannot interfere with Jk, so in this case we have

Ii
k D 0 (8.13)

3. i > k, i.e., �i’s priority is lower than �k.
In FPCA, a job Jh

i with lower priority than Jk can interfere with Jk only if it
is released earlier than rk. Therefore, �i can only cause interference to Jk with
at most one job, so its interference is bounded by Ci. The interference is also
bounded by the length of the problem window Sk. Thus, for i > k, we can
compute Ii

k by

Ii
k D min.Ci; Sk/ (8.14)
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Chapter 9
Finitary Real-Time Calculus

Real-time calculus (RTC) is a powerful framework to analyze real-time performance
of distributed embedded systems. However, RTC may run into serious analysis effi-
ciency problems when applied to systems of large scale and/or with complex timing
parameter characteristics. The main reason is that many RTC operations generate
curves with periods equal to the hyper-period of the input curves. Therefore, the
analysis in RTC has exponential complexity. In practice the curve periods may
explode rapidly when several components are serially connected, which leads to
low analysis efficiency.

In this work, we propose Finitary RTC to solve the above problem. Finitary
RTC only maintains and operates on a limited part of each curve that is relevant
to the final analysis results, which results in pseudo-polynomial computational
complexity. Experiments show that Finitary RTC can drastically improve the
analysis efficiency over the original RTC. The original RTC may take hours or
even days to analyze systems with complex timing characteristics, but Finitary RTC
typically can complete the analysis in seconds. Even for simple systems, Finitary
RTC also typically speeds up the analysis procedure by hundreds of times. While
getting better efficiency, Finitary RTC does not introduce any extra pessimism, i.e.,
it yields analysis results as precise as the original RTC.

9.1 Introduction

RTC [186] is a framework for performance analysis of distributed embedded
systems rooted in the Network Calculus theory [187]. RTC uses variability char-
acterization curves [188] to model workload and resource, and analyzes workload
flows through a network of computation and communication resources to derive
performance characteristics of the system. RTC has proved to be one of the most

© Springer International Publishing Switzerland 2016
N. Guan, Techniques for Building Timing-Predictable Embedded Systems,
DOI 10.1007/978-3-319-27198-9_9

183



184 9 Finitary Real-Time Calculus

powerful methods for real-time embedded system performance analysis, and has
drawn considerable attention from both academia and industry in recent years.

Although one of RTC’s advantages is avoiding the state-space explosion problem
in state-based verification techniques such as timed automata [189], it may still
encounter scalability problems when applied to systems with complex timing
properties. The major reason of RTC’s efficiency problem is due to the fact that
the workload/resource representations and computations in the RTC framework are
defined for the infinite range of time intervals. Although in practice it is possible
to compactly represent the workload and resource information of infinite time
intervals by finite data structures [78], it may still have to maintain a great amount
of information in the analysis procedure and take very long time to complete the
computations when the timing characteristics of the system are complex. More
specifically, many RTC operations generate curves with periods equal to the LCM
(least common multiple) of the input curve periods. Therefore, the curve periods
may explode rapidly when several components with complex timing characteristics,
(e.g., co-prime periods) are connected in a row. We call this phenomenon period
explosion (Sect. 9.3 discusses the period explosion problem in detail). In general,
the analysis in RTC has exponential complexity and in practice the efficiency may
be extremely low for large systems with complex timing characteristics.

In this chapter, we present Finitary RTC, a refinement of the RTC framework,
to solve the above problem. Finitary RTC has pseudo-polynomial complexity, and
in practice can drastically improve the analysis efficiency of complex distributed
embedded systems. The key idea is that only the system behavior in time intervals
up to a certain length is relevant to the final analysis results, hence we can safely
chop off the part of a workload and resource curve beyond that length limit and only
work with a (small) piece of the original curve during the analysis procedure.

While getting better efficiency, Finitary RTC does not introduce any extra
pessimism, i.e., the analysis results obtained by Finitary RTC are as precise as
using the original RTC approach. This is a fundamental difference between Finitary
RTC and other methods that approximate the workload and resource information
to simplify the problem but lead to pessimistic analysis results (e.g., adjusting task
periods for a smaller hyper-period).

We conduct experiments to evaluate the efficiency improvement of Finitary
RTC over the original RTC. Experiments show that Finitary RTC can drastically
speed up the analysis. For systems with complex timing characteristics, the analysis
procedure in the original RTC may take hours or even days, but Finitary RTC
typically can complete the analysis in seconds. Even for simple systems, Finitary
RTC also typically speeds up the analysis procedure by hundreds of times.

9.1.1 Related Work

RTC is based on Network calculus (NC) [187]. There are several significant
differences between RTC and NC. First, RTC can model and compute the remaining
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service of each component, which is not explicitly considered in NC. Second, while
NC mainly uses the upper arrival curves and lower service curves, RTC uses both
lower and upper curves for both events and resource, which supports a tighter
computation of the output curves. Furthermore, RTC has been extended to model
and analyze common problems in the real-time embedded system domain, such as
structured event streams [190], workload correlations [191], interface-based design
[192], mode switches [193], and cyclic systems [79].

The classical real-time scheduling theory is extended to distributed systems by
holistic analysis [194]. MAST [195] is a well-known example of this approach.
MAST supports offset-based holistic schedulability analysis to guarantee various
real-time performance constraints such as local deadlines, global deadlines, and
maximal jitters. Different from the holistic analysis approach in MAST, RTC
supports a compositional analysis framework, where local analysis is performed
for each component to derive the output event/resource models and afterwards
the calculated output event models are propagated to the subsequent components.
SymTA/S [40] is another well-known compositional real-time performance analysis
framework, which uses a similar event and resource model with RTC. The local
analysis in SymTA/S is based on the classical busy period technique in real-time
scheduling theory [35]. We refer to [196] for comparisons among these frameworks.

State-based verification techniques such as Timed Automata [189] provide
extremely powerful expressiveness to model complex real-time systems. However,
this approach usually suffers from the state-space explosion problem. The analytical
(stateless) method of RTC depends on solutions of closed-form expressions, which
in general yields a much better scalability than the state-based approach. Hybrid
methods combining RTC and timed automata [197] are used to balance the
expressiveness and scalability in the design of complex systems. However, although
RTC is significantly more scalable than state-based verification techniques, it still
may run into serious efficiency problems due to the period explosion phenomenon.

9.2 RTC Basics

9.2.1 Arrival and Service Curves

RTC uses variability characterization curves (curves for short) to describe timing
properties of event streams and available resource:

Definition 9.1 (Arrival Curve). Let RŒs; t/ denote the total amount of requested
capacity to process in time interval Œs; t/. Then, the corresponding upper and lower
arrival curves are denoted as ˛u and ˛l, respectively, and satisfy:

8s < t; ˛l.t � s/ � RŒs; t/ � ˛u.t � s/ (9.1)

where ˛u.0/ D ˛l.0/ D 0.
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Definition 9.2 (Service Curve). Let CŒs; t/ denote the number of events that a
resource can process in time interval Œs; t/. Then, the corresponding upper and lower
service curves are denoted as ˇu and ˇl, respectively, and satisfy:

8s < t; ˇl.t � s/ � CŒs; t/ � ˇu.t � s/ (9.2)

where ˇu.0/ D ˇl.0/ D 0.

The arrival and service curves are monotonically non-decreasing. Further, we
only consider curves that are piece-wise linear and the length of each linear segment
is lower bounded by a constant. Therefore, we exclude curves that are “infinitely
complex.” The number of linear segments contained by a curve in an interval is
polynomial with respect to the interval length. To simplify the presentation, we
sometimes use a curve pair ˛ (ˇ) to represent both the upper curve ˛u (ˇu) and
the lower curve ˛l (ˇl).

The RTC framework intensively uses the min-plus/max-plus convolution and
deconvolution operations:

Definition 9.3 (Convolution and Deconvolution). Let f , g be two curves, the min-
plus convolution ˝, max-plus convolution ˝, min-plus deconvolution ˛, and max-
plus deconvolution ˛ are defined as

.f˝g/.�/ , inf
0����

ff .� � �/C g.�/g

.f˝g/.�/ , sup
0����

ff .� � �/C g.�/g

.f˛g/.�/ , sup
��0

ff .�C �/ � g.�/g

.f˛g/.�/ , inf
��0
ff .�C �/ � g.�/g

We assume an upper (lower) bound curve to be sub-additive (super-additive) [78]:

Definition 9.4 (Sub-Additivity and Super-Additivity). A curve f is sub-
additive iff

8x; y � 0 W f .x/C f .y/ � f .xC y/

A curve f is super-additive iff

8x; y � 0 W f .x/C f .y/ � f .xC y/

Moreover, we assume the arrival curve ˛ D .˛u; ˛l/ and service curves ˇ D .ˇu; ˇl/

to be causal [198]:
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Definition 9.5 (Causality). Given a sub-additive upper bound curve f u and a super-
additive lower bound curve f l, curve pair f D .f u; f l/ is causal iff

f u D f u˛f l and f l D f l˛f u

The arrival and service curves are well defined if they comply with the monotonicity,
sub/super-additivity, and causality constraints. Arrival and service curves that are
not well-defined contain inconsistent information in modeling realistic system tim-
ing behaviors, and can be transferred into their monotonicity, sub/super-additivity
and causality closures [78, 198]. The computations in RTC generate well-defined
arrival and service curves if the inputs are well defined. We assume that all arrival
and service curves are well defined, which is necessary to establish the Finitary RTC.
Finally, we define the long-term slope of a curve f as

s.f / , lim
�!C1 .f .�/=�/

9.2.2 Greedy Processing Component

We focus on the most widely used abstract component in RTC called Greedy
processing component (GPC) [74]. A GPC processes events from the input event
stream (described by arrival curve ˛) in a greedy fashion, as long as it complies
with the availability of resources (described by the service curve ˇ). GPC produces
an output event stream, described by arrival curve ˛0 D .˛u0

; ˛l0/, and an output
remaining service, described by service curve ˇ0 D .ˇu0

; ˇl0/:

˛u0 , Œ.˛u ˝ ˇu/˛ ˇl� ^ ˇu (9.3)

˛l0 , Œ.˛l ˛ ˇu/˝ ˇl� ^ ˇl (9.4)

ˇu0 , .ˇu � ˛l/˛ 0 (9.5)

ˇl0 , .ˇl � ˛u/˝ 0 (9.6)

where .f ^ g/.�/ D min.f .�/; g.�//. We use the following form to compactly
represent the computation in (9.3) 
 (9.6):

.˛
0

; ˇ
0

/ D GPC.˛; ˇ/

The number of events in the input queue, i.e., the backlog, and the delay of each
event can be bounded by B.˛u; ˇl/ and D.˛u; ˇl/, respectively:

B.˛u; ˇl/ , sup
��0

˚
˛u.�/ � ˇl.�/

�
(9.7)

D.˛u; ˇl/ , sup
��0

˚
inff� 2 Œ0; �� W ˛u.� � �/ � ˇl.�/g� (9.8)
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Fig. 9.1 Illustration of
B.˛u; ˇl/, D.˛u; ˇl/, and
MBS.˛u; ˇl/

Intuitively, B.˛u; ˇl/ and D.˛u; ˇl/ are the maximal vertical and horizontal
distance from ˛u to ˇl, as illustrated in Fig. 9.1. In this chapter, we intensively use
another notation maximal busy-period size:

MBS.˛u; ˇl/ D minf� > 0 W ˛u.�/ D ˇl.�/g

Intuitively, MBS.˛u; ˇl/ is the maximal length of the time interval in which ˛u is
above ˇl, i.e., the maximal size of the so-called busy periods [30] (formally defined
in the appendix). Note that in general ˛u may go above ˇl again after they intersect at
MBS.˛u; ˇl/, as shown in Fig. 9.1. We use MBS as the abbreviation of MBS.˛u; ˇl/

when ˛u and ˇl are clear from the context.
We assume for each component s.˛u/=s.ˇl/ is bounded by a constant " that is

strictly smaller than 1, and thus MBS.˛u; ˇl/ is bounded by a number that is pseudo-
polynomially large. This is essentially the same as the common constraint in real-
time scheduling theory that the system utilization is strictly smaller than 1 [199].

9.2.3 Performance Analysis Network

The RTC framework connects multiple components into a network to model
systems with resource sharing and networked structures, as illustrated in Fig. 9.2.
As in most literature on RTC we assume the performance analysis networks are
acyclic. Therefore, one can conduct the analysis of the whole network following
the event and resource flows: it starts with a number of initial input curves, to
generate intermediate curves step by step, and eventually generate the final output
curves. The components whose inputs are all initial input curves are called start
components, and the ones whose outputs are all final output curves are called end
components.

For example, in Fig. 9.2 the analysis starts with the start component 1, using the
initial input curves ˛1; ˇ1 to derive its backlog bound B.˛u

1; ˇl
1/ and delay bound
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Fig. 9.2 An example of
analysis network in RTC

Fig. 9.3 Illustration of the segment number increase caused by a plus operation, where the red
part of each curve are the segments that need to be stored to represent the whole curve

D.˛u
1; ˇl

1/, and generate the output curves ˛
0

1; ˇ
0

1. Then ˛2; ˇ
0

1 are used to analyze
component 2, and ˛2; ˇ

0

1 are used to analyze component 3, and finally the resulting
curves ˛

0

2; ˇ
0

2 from these two components are used to analyze the end component 4.

9.3 Efficiency Bottleneck of RTC

In RTC, the arrival/service curves are defined for the infinite range of positive real
numbers � 2 R�0. For a practical implementation, we need a finite representation
of curves and the curve operations should be completed in a finite time.

To solve this problem, RTC Toolbox [80] restricts to a class of regular curves
[78], which can be efficiently represented by finite data structures but are still
expressive enough to model most realistic problems. A regular curve consists
of an aperiodic part, followed by a periodic part. Each part is represented by a
concatenation of linear segments. Generally, the computation time and memory
requirement of an operation between two curves is proportional to the number of
segments contained by the curves.

Many RTC operations (e.g., plus, minus, and convolution) generate output curves
with much longer periods than the periods of the input curves. Typically, the period
of the output curve equals to the LCM of the input periods. Figure 9.3 shows an
example of the plus operation of two curves. Both input curves are strictly periodic
(i.e., the aperiodic parts are empty). The first input curve’s period is 4 and the second
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input curve’s period is 5. Each of them only contains one segment. Applying the plus
operation to these two curves, the result is a periodic curve with period 20, which is
the LCM of 4 and 5, and containing eight segments.

In general, when many components are serially connected in a row, the number of
segments contained by the curves increases exponentially, and thus the time cost of
the analysis increases exponentially as it steps forward along the analysis flow. We
call this phenomenon period explosion, which is the major reason why the analysis
of large-scale systems in RTC is problematic.

9.4 Overview of Finitary RTC

We start with a simple example of only one component. As introduced in Sect. 9.2.2,
the backlog bound B.˛u; ˇl/ and delay bound D.˛u; ˇl/ of this system are calculated
by measuring the maximal horizontal and vertical distance between ˛u and ˇl (in
the part where ˛u is above ˇl).

Actually, to calculate B.˛u; ˇl/ and D.˛u; ˇl/, one only needs to check both
curves up to MBS.˛u; ˇl/ on the x-axis:

Theorem 9.1. Given a sub-additive upper arrival curve ˛u and a super-additive
service curve ˇl,

B.˛u; ˇl/ D sup
MBS���0

˚
˛u.�/ � ˇl.�/

�

D.˛u; ˇl/ D sup
MBS���0

˚
inff� 2 Œ0; �� W ˛u.� � �/ � ˇl.�/g�

Theorem 9.1 is proved in the appendix.
Note that ˛u may be above ˇl again after MBS, as shown in Fig. 9.1. Neverthe-

less, Theorem 9.1 guarantees that the maximal backlog and delay occurs in time
intervals of size up to MBS.˛u; ˇl/. Therefore, the analysis can “chop off” the parts
beyond MBS.˛u; ˇl/ of both curves, and only use the remaining finitary curves to
obtain exactly the same B.˛u; ˇl/ and D.˛u; ˇl/ results as before. This represents
the basic idea of Finitary RTC:

Main Idea: Instead of working with complete curves, we only work with the part of
each curve that is relevant to the analysis results.

This is similar to the standard analysis techniques based on busy periods in
classical real-time scheduling theory. For example, in the schedulability analysis of
EDF based on demand bound functions [30], one only needs to check what happens
in a busy period. The analysis of time intervals beyond the maximal busy period size
is irrelevant to the system schedulability and thereby can be ignored.

However, it is difficult to apply this idea to the analysis of networked systems
in the RTC framework. For example, suppose we want to analyze the backlog and
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delay bound of component 4 in Fig. 9.2. By the discussions above, we only need to
keep the input curves of component 4 up to MBS.˛u0

2 ; ˇl0
2 / on the x-axis to obtain the

desired results. However, the value of MBS.˛u0

2 ; ˇl0
2 / is not revealed until we have

actually obtained ˛u0

2 and ˇl0
2 . To calculate ˛u0

2 and ˇl0
2 , we need to first accomplish

the analysis of components 2 and 3, and component 1 at the first place. Therefore,
we still have to conduct the expensive analysis for the preceding components of
component 4 with complete curves, although we only need a small part of the input
curves of component 4 to calculate its backlog and delay bound. In this way, the
efficiency improvement is trivial since the analysis procedure is as expensive as in
the original RTC except for the very last step to analyze component 4.

The target of Finitary RTC is to work with finitary curves (the parts of curves
up to certain limits) through the whole analysis network. In other words, we should
already use finitary curves at the initial inputs, and generate finitary curves at outputs
from the input finitary curves at each component. By this, the overall analysis
procedure is significantly more efficient than the original RTC approach. To achieve
this, we first need to solve the following problem:

Problem 1: How to compute the output finitary curves from the input finitary curves
for each component?

Recall that the computation in .˛
0

; ˇ
0

/ D GPC.˛; ˇ/ uses the min-plus and
max-plus deconvolution operations:

.f˛g/.�/ D sup
��0

ff .�C �/ � g.�/g

.f˛g/.�/ D inf
��0
ff .�C �/ � g.�/g

In order to calculate .f˛g/.�/ or .f˛g/.�/ for a particular �, it is required to check
the value of f .�C �/ � g.�/ for all � � 0, i.e., slide over curve f from � to above
and slide over the whole curve g, to get the suprema (infima). Therefore, even if we
only want to calculate a small piece of a curve at the output, we still need to know
the complete input curves defined in the infinite range. Section 9.5 is dedicated to
the solution of this problem, where we use a “finitary” version of the deconvolution
operations in the computation of the output arrival and service curves. We prove that
to calculate the output curve up to interval size x, it is enough to only visit the part
of input curves up to interval length xCMBS.

If we somehow know the MBS value for each component, then we can
“backtrack” the whole analysis network to decide the size of the input finitary curves
for each component, and eventually decide the size of the curves we need to keep
at the initial inputs. However, the MBS value for each component is not revealed
until its input arrival and service curves are actually known, and we do not want to
actually perform the expensive analysis with complete curves to obtain the MBS
information. Therefore, we need to solve the following problem:
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Problem 2: How to efficiently estimate the MBS value of each component in the
network?

We address this problem in Sect. 9.6, using safe approximations of the input
curves to quickly “pre-analyze” the whole analysis network and obtain safe
estimation of the MBS value for each component. The key point is that as long
as we always use over-approximations (formally defined in Sect. 9.6) of the curves,
the obtained MBS estimation is guaranteed to be no smaller than its real value.
Note that the over-approximations of input curves are used merely for the purpose
of estimating MBS. After we have obtained the MBS estimation of each component,
the following analysis procedure does not introduce any extra pessimism, and the
analysis results we finally obtained are as precise as using the original RTC.

9.5 Analyzing GPC with Finitary Deconvolution

This section addresses the first problem, i.e., how to compute the output finitary
curves from the input finitary curves for each component. We first define the finitary
version of the min-plus and max-plus deconvolutions operations:

Definition 9.6 (Finitary Deconvolution). The finitary min-plus deconvolution and
finitary max-plus deconvolution regarding a non-negative real number T , denoted
by˛T and˛T respectively, are defined as

.f ˛T g/.�/ , sup
T���0

ff .�C �/ � g.�/g

.f ˛T g/.�/ , inf
T���0

ff .�C �/ � g.�/g

The result of .f˛Tg/.�/ and .f˛Tg/.�/ for a particular � only depends on f in
Œ�; �C T� and g in Œ0; T�.

Now we can refine the computation .˛
0

; ˇ
0

/ D GPC.˛; ˇ/, using ˛T and ˛T

to replace ˛ and ˛, and still safely bound the output event stream and remaining
service:

Theorem 9.2. Given an event stream described by the arrival curves ˛u; ˛l and a
resource described by the service curves ˇu; ˇl. If T is a real number with

T � MBS.˛u; ˇl/

then the processed event stream and remaining service are bounded from above and
below by .˛

0

; ˇ
0

/ D GPCT.˛; ˇ/:

˛u0 , ..˛u ˝ ˇu/˛T ˇl ^ ˇu/ (9.9)
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˛l0 , ..˛l ˛T ˇu/˝ ˇl ^ ˇl/ (9.10)

ˇu0 , .ˇu � ˛l/˛T 0 (9.11)

ˇl0 , .ˇl � ˛u/˝ 0 (9.12)

Moreover, GPCT does not sacrifice any analysis precision comparing with GPC
that uses the original deconvolution operations:

Theorem 9.3. The output event arrival curves and remaining service curves
obtained by GPCT in Theorem 9.2 is at least as precise as that obtained by GPC.

The proofs of Theorems 9.2 and 9.3 are presented in the appendix. Note that
these proofs are not simple reproductions of their counterparts in the original RTC.
Particularly, sophisticated techniques are developed to utilize the busy period
concept in the construction of the desired bounds in Theorem 9.2, and Theorem 9.3
relies on the sub/super-additivity and causality property of the input arrival and
service curves.

The original deconvolution in GPC is replaced by the finitary deconvolution
operations in GPCT , so the computation of a particular point on the output curve
only requires to slide over a limited range of the input curves. Therefore, we can
establish the information dependency between the input curves and output curves
in GPCT :

Theorem 9.4. Let .˛
0

; ˇ
0

/ D GPCT.˛; ˇ/. The computation of ˛
0

or ˇ
0

in the
range of Œ0; x� on the x-axis only depends on the input curves in the range of Œ0; xCT�

on the x-axis.

Theorem 9.4 can be easily proved by rewriting (9.9) 
 (9.12) with the definition of
the convolution and finitary deconvolution operations. Proof details are omitted due
to space limit.

We use jf j to denote the upper limit on the x-axis to which we want to keep the
curve (pair) f . Then according to Theorem 9.4, we know the following constraint
between the upper limits of the input and output curves in GPCT :

j˛j D jˇj � T Cmax.j˛0 j; jˇ0 j/ (9.13)

For example, if we want to use GPC6 to generate output curves with upper limit of
5, then the upper limit of the input curves should be at least 5 C 6 D 11, i.e., the
input curves should be defined at least in the range Œ0; 11�.

9.6 Analysis Network in Finitary RTC

The GPC networks considered in this work are acyclic. Therefore, as soon as we
have chosen the T value in GPCT for each component, we can traverse the network
backwards and use the relation in (9.13) to iteratively decide the upper limits of the
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input finitary curves of each component. The choice of T for each component is
subject to the constraint T � MBS. Therefore, it is sufficient to derive an upper
bound of MBS, and use this upper bound as the value of T in GPCT at each
component. In the following, we first introduce how to efficiently compute a safe
upper bound of MBSi for each component i, then introduce how to decide the upper
limits of input finitary curves of each component.

9.6.1 Bounding Individual MBS

We first define the over-approximation of curves:

Definition 9.7 (Over-Approximation). For two upper bound curves cu� and cu, if
8� � 0 W cu�.�/ � cu.�/, then cu� is an over-approximation of cu. For two
lower bound curves cl� and cl, if 8� � 0 W cl�.�/ � cl.�/, then cl� is an over-
approximation of cl. Curve pair c� D .cu�; cl�/ is an over-approximation of curve
pair c D .cu; cl/ if cu� and cl� are over-approximations of cu and cl, respectively.
We use a � b to denote that a is an over-approximation of b.

To compute a safe upper bound of MBSi for each component, we use over-
approximations of the initial input curves to “pre-analyze” the whole network. First
we have the following property by examining the computation rules of GPC:

Property 9.1. If ˛1 � ˛2 and ˇ1 � ˇ2, then ˛
0

1 � ˛
0

2 and ˇ
0

1 � ˇ
0

2, where .˛
0

1; ˇ
0

1/ D
GPC.˛1; ˇ1/ and .˛

0

2; ˇ
0

2/ D GPC.˛2; ˇ2/.

So we know that if we start with over-approximations of the initial input curves,
then during the whole “pre-analysis” procedure all the resulting curves are over-
approximations of their correspondences. Further, we know

Property 9.2. If ˛u
1 � ˛u

2 and ˇl
1 � ˇl

2, then MBS.˛u
1; ˇl

1/ � MBS.˛u
2; ˇl

2/.

Therefore, if we use over-approximations of the initial input curves to conduct
the analysis of the system, then the resulted maximal busy-period size of each
component i, denoted by MBS�i , is a safe upper bound of the real MBSi of that
component with the original curves.

There are infinitely many possibilities to over-approximate the initial input
curves to conduct the pre-analysis procedure. We choose to use the “tightest” linear
functions as their over-approximations: each initial input curve pair f D .f u; f l/

is over-approximated by f D .f u; f l/ where f u.�/ D au � � C bu and f l.�/ D
al ��C bl with

au D s.f u/ bu D inff b j 8� W au ��C b � f u.�/g
al D s.f l/ bl D supf b j 8� W al ��C b � f l.�/g
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Using these linear functions as the initial inputs, the generated curves in the pre-
analysis procedure only contain polynomially many segments and the computations
are very efficient.

9.6.2 Decision of Curve Upper Limits

The decision of the upper limit of each finitary curve starts with the end components.
Since the output curves of an end component are not used by other components, it
is enough to set the upper limit of the input finitary curves of each end component
i to be MBS�i . Then we can traverse the whole analysis network backwards, using
(9.13) to iteratively compute the upper limits of the finitary input curves of each
component. The pseudo-code of this procedure is shown in Algorithm 5.

Example 9.1. We use linear functions to over-approximations the initial inputs
˛1; ˛2; ˇ1; ˇ2 to pre-analyze the system in Fig. 9.2. Suppose the resulting estimated
maximal busy-period sizes are MBS�1 D 10, MBS�2 D 12, MBS�3 D 14, and
MBS�4 D 20. Then we iteratively compute the size of the finitary curves:

j˛0

2j D jˇ
0

2j D MBS�4 D 20

j˛0

1j D jˇ2j D MBS�3 Cmax.jˇ0

2j; 0/ D 14C 20 D 34

j˛2j D jˇ0

1j D MBS�2 Cmax.j˛0

2j; 0/ D 12C 20 D 32

j˛1j D jˇ1j D MBS�1 Cmax.j˛0

1j; jˇ
0

1j/ D 10C 34 D 44

1: Mark all component as unfinished.
2: for each end component i do
3: j˛in

i j D jˇin
i j  MBS�

i
4: Mark component i as finished
5: end for
6: while exist unfinished components do
7: Select an unfinished component j whose successors are both finished (i.e., j˛out

j j and jˇout
j j

are known).
8: j˛in

j j D jˇin
j j  MBS�

j Cmax.j˛out
j j; jˇout

j j/
9: Mark component j as finished

10: end while

Algorithm 5: Pseudo-code of algorithm computing the upper limit of each finitary
curve.
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9.6.3 Complexity

In summary, the analysis of a network by Finitary RTC consists of three steps:
(1) Using linear over-approximations of initial input curves to analyze the network
“forwards” and get an estimated MBS� for each component. (2) Using the estimated
MBS� values to traverse the analysis network “backwards” to decide the upper
limits of the input finitary curves of each component. (3) Conduct the analysis of
the network “forwards” with the finitary curves.

Finding the “tightest” linear over-approximation of a curve is of pseudo-
polynomial complexity (polynomial with respect to the number of segments
contained by the curve). With the linear over-approximations of the initial input
curves, the maximal number of segments of each curve generated in the pre-analysis
is polynomial with respect to network size. So the overall complexity of step (1) is
pseudo-polynomial. It is easy to see that the complexity of step (2) is polynomial.
Since for each component s.˛u/=s.ˇl/ is bounded by a constant " strictly smaller
than 1, the estimated MBS� with the linear curve over-approximations is bounded
by a number that is pseudo-polynomially large. Therefore, each finitary curve
obtained by Algorithm 5 has a pseudo-polynomial upper limit. Since the complexity
of GPCT is polynomial with respect to the curve upper limits and the value of T (i.e.,
the estimated MBS�), the complexity of the analysis for each component is pseudo-
polynomial, and the overall complexity of step (3) is also pseudo-polynomial.
In summary, the overall complexity of the whole analysis procedure is pseudo-
polynomial.

9.7 Evaluation

In this section we use synthetic systems to evaluate the efficiency improvement
of the Finitary RTC approach. We use the metric speedup ratio to represent the
efficiency improvement of Finitary RTC over the original RTC:

speedup ratio D time cost of analysis by original RTC

time cost of analysis by Finitary RTC

In Sect. 9.7.1 we present a case study to give a general picture of the efficiency
improvement by Finitary RTC. Then in Sect. 9.7.2 we adjust the parameters of this
system to discuss different factors that affect the speedup ratio.

We implement Finitary RTC in RTC Toolbox [80]. RTC Toolbox consists of two
major software components: a Java-implemented kernel of basic RTC operations
and a set of Matlab libraries to provide high-level modeling capability. Since the
Java kernel is not open-source, we implement Finitary RTC only using the open-
source Matlab libraries: For each finitary curve f , we use a linear curve to replace
the part beyond its upper limit jf j instead of actually removing this part. Therefore,
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Fig. 9.4 Analysis network of
the case study

GPC 11 GPC 12 GPC 13

GPC 21

GPC 31 GPC 32 GPC 33

GPC 41 GPC 42 GPC 43

GPC 22 GPC 23

b1
a1

a2

a3

a4

b2 b3

we can reuse the Java kernel of RTC Toolbox to implement the idea of Finitary RTC.
All experiments are conducted on a desktop computer with a 3.4GHZ Intel Core i7
processor.

9.7.1 Case Study

We consider a fairly small and simple system of a 4�3 2D-mesh analysis network, as
shown in Fig. 9.4. All initial input event curves are specified by the parameter triple
.p; j; d/, where p denotes the period, j the jitter, and d the minimum inter-arrival
distance of events [200]. The arrival curves of a .p; j; d/-specified stream are

˛u.�/ D min

	�
�C j

p

�
;

�
�

d

�

; ˛l.�/ D

�
� � j

p

�

All initial input service curves correspond to TDMA resource. Each resource is
specified by a triple .s; c; b/, where a slot of length s is allocated with very TDMA
cycle c, on a resource with total bandwidth b [80]. The service curves of a .s; c; b/-
specified resource are

ˇu.�/ D
	�

�

c

�
� sCmin.� mod c; s/



� b

ˇl.�/ D
	�

�0

c

�
� sCmin.�0 mod c; s/



� b

where �0 D max.� � c C s; 0/. The parameters of the input arrival and service
curves are shown in Table 9.1.

Using the original RTC approach, the analysis of the whole network completes
in 415 seconds, while using the Finitary RTC approach, the analysis only takes 0:14

seconds. The Finitary RTC approach leads to a speedup ratio of about 3000 in this
case study.
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Table 9.1 Parameters of the initial input arrival and service curves

˛1 ˛2 ˛3 ˛4

p 10 14 18 22

j 2 3 5 6

d 4 6 8 4

ˇ1 ˇ2 ˇ3

s 4 6 8

c 6 8 10

b 1 1 1

If we modify the system parameters by changing the period p of the third and
fourth event stream to 19 and 23, respectively, which leads to a larger hyper-period
of the four event streams, then the original RTC approach cannot accomplish the
analysis since an overflow error occurs in the Java kernel of the RTC-Toolbox, while
the analysis by Finitary RTC still completes within 0:14 s.

9.7.2 Factors That Affect the Speedup Ratio

The speedup ratio between the Finitary RTC and original RTC heavily depends
on the system parameters. In this section we adjust the parameters of the example
system in the above case study to discuss factors that affect the speedup ratio.

As introduced in Sect. 9.3, in the original RTC the period of the output curves
typically equals the LCM of the periods of the input curves. For example, a system
with initial input curves having co-prime periods may lead to very large curve
periods. To evaluate the analysis efficiency of the original RTC with different
parameter complexity degree, we adjust the period parameter p of each initial input
arrival curve to get systems with different hyper-periods. We randomly generate
period p of each curve (within a certain scope), to construct systems with different
hyper-periods of input event streams, then calculate the average analysis time cost
in the original RTC and Finitary RTC of systems with hyper-periods in a certain
scope, as shown in Table 9.2. For example, the column starting with “1 
 2” in
Table 9.2 reports the average analysis time cost in the original RTC and Finitary
RTC of systems with hyper-period between 1000 and 2000. From Table 9.2 we can
see that the analysis time cost in the original RTC grows rapidly as the hyper-period
increases, while Finitary RTC is not sensitive to the hyper-period changes and keeps
very low time cost all the time. The speedup ratio is more significant for systems
with more complex timing characteristics.

The analysis efficiency of Finitary RTC depends on the curve upper limits. In
general, the closer is the long-term ratio of ˛u to ˇl, the bigger is MBS.˛u; ˇl/ and
thus the bigger is the upper limits of the finitary curves. We define the maximal
utilization among all the components in the analysis network:

Umax D max
each component i

�
s.˛u

i /

s.ˇl
i/

�
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Table 9.3 Experiment results of systems with different maximal utilizations

b (bandwidth) 1 0.9 0.8 0.7 0.6 0.5 0.45 0.425

Umax 0.41 0.45 0.51 0.58 0.68 0.82 0.91 0.96

Original RTC (second) 415.58 487.24 522.38 419.58 388.64 271.01 322.17 305.77

Finitary RTC (second) 0.14 0.14 0.15 0.19 0.20 0.40 14.25 12.74

Speedup ratio 2968 3478 3480 2747 2092 970 19 24

where ˛u
i and ˇl

i are the input upper arrival and lower service curve of component i.
We adjust the bandwidth b for all of the three .s; c; b/-specified TDMA resource
in Table 9.1 to construct systems with different Umax. We are only interested in
systems with Umax � 1, since otherwise some components in the system deem to
have unbounded backlog and delay, and the system is considered to be a failure
immediately. From Table 9.3 we can see that the time cost of the Finitary RTC
approach increases as we increase Umax. Nevertheless, Finitary RTC can speed up
the analysis by 1000 times with systems of relatively high Umax (up to 0:8). Even
for systems with Umax that are pretty close to 1 (e.g., Umax D 0:96), Finitary RTC
still can significantly improve the analysis efficiency (speed up the analysis by 20

times).
The above experiments show that Finitary RTC drastically speeds up the analysis

under different parameter configurations. The speedup is more significantly for
systems with more complex timing characteristics and lighter workloads.

9.8 Conclusions and Future Work

In this chapter we present Finitary RTC to drastically improve the analysis efficiency
of the RTC framework. The central idea is to use a (small) piece of each infinite
curve in the analysis procedure, which avoids the “period explosion” problem in
the original RTC and results in a pseudo-polynomial complexity (the original RTC
has exponential complexity). In practice, Finitary RTC can drastically improve
the analysis efficiency, especially for systems with complex timing characteristics.
Finitary RTC does not introduce any extra pessimism, i.e., its analysis results are as
precise as using the original RTC.

Although we present Finitary RTC in the context of a particular type of
component GPC, the same idea can also be extended to components modeling
different scheduling policies like FIFO and EDF. In this work we assume the
analysis networks to be acyclic. It is not clear yet how to generalize Finitary
RTC to the analysis of systems with cyclic event and resource dependencies.
A straightforward extension of Finitary RTC to cyclic systems is to bound the
number of iterations after which the analysis is guaranteed to converge, and extend
the curve upper limits following the analysis iterations, which may lead to very large
curve upper limits and less significant efficiency improvement. In the future we will
study efficient application of Finitary RTC to cyclic systems.
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Appendix 1: Proof of Theorem 9.1

We first prove that in order to compute B.˛u; ˇl/ it is sufficient to only check ˛u and
ˇl up to MBS.˛u; ˇl/. More precisely, we prove

sup
��0

˚
˛u.�/ � ˇl.�/

� D sup
MBS���0

˚
˛u.�/ � ˇl.�/

�
(9.14)

Let m D MBS.˛u; ˇl/, so ˛u.m/ D ˇl.m/. For any non-negative �, let q D b �
mc

and r D ��q �m, and by the sub-additivity of ˛u and super-additivity of ˇl we have

˛u.�/ D ˛u.q � mC r/ � ˛u.q � m/C ˛u.r/ � q � ˛u.m/C ˛u.r/

ˇl.�/ D ˇl.q � mC r/ � ˇl.q � m/C ˇl.r/ � q � ˇl.m/C ˇl.r/

by which we have

˛u.�/ � ˇl.�/ � q � .˛u.m/ � ˇl.m//C ˛u.r/ � ˇl.r/

, ˛u.�/ � ˇl.�/ � ˛u.r/ � ˇl.r/ .* ˛u.m/ D ˇl.m//

In other words, for any � � 0, we can always find a corresponding r in the range of
Œ0; m� (m D MBS.˛u; ˇl/) such that ˛u.�/ � ˇl.�/ � ˛u.r/ � ˇl.r/, which proves
(9.14).

To prove the theorem for D.˛u; ˇl/, we can use the same reasoning as above
to the “inverse functions” of ˛u.�/ and ˇl.�/: D.˛u; ˇl/ is the horizontal distance
between the “inverse functions” of ˛u.�/ and ˇl.�/, and the “inverse function” of
˛u.�/ is super-additive and the “inverse function” of ˇl.�/ is sub-additive. We omit
the proof details for D.˛u; ˇl/ due to space limit.

Appendix 2: Proof of Theorem 9.2

We first introduce some useful concepts and notations [78]: RŒs; t/ denotes the
number of events arrived in time interval Œs; t/, and R0Œs; t/ denotes the number of
processed events in Œs; t/. CŒs; t/ denotes the amount of available resource in Œs; t/,
and C0Œs; t/ denotes the amount of remaining resource in Œs; t/. Further, the following
relation is known [78]:

R0Œs; t/ D CŒs; t/ � C0Œs; t/ (9.15)

B.t/ denotes the backlog at time t. Moreover, we use p to denote an arbitrarily
early time point with B.p/ D 0. The RTC framework assumes there always exists
such a time point p.
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Definition 9.8 (Busy Period). A time interval .s; t/ is a busy period iff both of the
following conditions hold: (i) 8x 2 .s; t/ W B.x/ ¤ 0 and (ii) B.s/ D B.t/ D 0.
Moreover, we call s the start point of the busy period .s; t/, and t its end point.

Lemma 9.1. Given an event stream restricted by upper arrival curve ˛u and
resource restricted by lower service curves ˇl, the size of any busy period is bounded
by MBS.˛u; ˇl/.

Proof. Follows the definitions of MBS and busy period.

Then we introduce another important auxiliary lemma:

Lemma 9.2. Let x2 be an arbitrary time point with B.x2/ D 0. Then 8x1 W p �
x1 � x2:

sup
x1�x�x2

fCŒp; x/ � RŒp; x/g D C0Œp; x2/ (9.16)

Proof. Since B.x2/, all the events arrived before x2 have been processed before x2,
so we have

C0Œp; x2/ D CŒp; x2/ � RŒp; x2/ � B.p/

D CŒp; x2/ � RŒp; x2/ .* B.p/ D 0/

So in the following we only need to prove

CŒp; x2/ � RŒp; x2/ D sup
x1�x�x2

fCŒp; x/ � RŒp; x/g (9.17)

It is easy to see that the LHS of (9.17) is no larger than its RHS. In the following we
only need to prove that it holds LHS � RHS as well. We do this by contradiction,
assuming

CŒp; x2/ � RŒp; x2/ < sup
x1�x�x2

fCŒp; x/ � RŒp; x/g

So there must exist a time point x0 2 Œx1; x2/ such that

CŒp; x2/ � RŒp; x2/ < CŒp; x0/ � RŒp; x0/ (9.18)

, CŒx0; x2/ < RŒx0; x2/ (9.19)

i.e., the total service provided in Œx0; x2/ is strictly smaller than the events arrived in
the same time interval, which leads to a contradiction with B.x2/ D 0.

In the following we prove that the upper/lower bounds in Theorem 9.2 are safe.
More specifically, for any two time points s; t with t � s D � � 0, we prove the
following inequalities:
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˛u0 W R0Œs; t/ � min. sup
0���T

f inf
0����C�

f˛u.�/

C ˇu.�C� � �/g � ˇl.�/g; ˇu.�//

˛l0 W R0Œs; t/ � min. inf
0����

f sup
0���T

f˛l.�/

� ˇu.�C� � �/g C ˇl.�/g; ˇl.�//

ˇu0 W C0Œs; t/ � inf
����T

fˇu.�/ � ˛l.�/gC

ˇl0 W C0Œs; t/ � sup
0����

fˇl.�/ � ˛u.�/g

Proof of ˛u0

First of all, by R0Œs; t/ D R0Œp; t/ � R0Œp; s/ and (9.15) we have

R0Œs; t/ D CŒp; t/ � C0Œp; t/ � CŒp; s/C C0Œp; s/ (9.20)

We define a time point s0 as follows:

• If B.s/ D 0, then let s0 D s.
• If B.s/ ¤ 0, then let s0 be the start point of the busy period containing s. By

T � MBS and Lemma 9.1 we know s � T � s0.

Then we can apply Lemma 9.2 (x1 D s � T and x2 D s0) to get

C0Œp; s0/ D sup
s�T�b�s0

fCŒp; b/ � RŒp; b/g

Therefore, we can rewrite (9.20) as

R0Œs; t/ D sup
s�T�b�s0

fCŒs; t/ � C0Œp; t/C CŒp; b/ � RŒp; b/g (9.21)

Now we focus on the expression inside the sup-operation in the above equation,
with an arbitrary b satisfying s � T � b � s0.

By the same way as defining s0, we define t0 with respect to t, and apply
Lemma 9.2 (x1 D b and x2 D t0) to get

C0Œp; t0/ D sup
b�a�t0

fCŒp; a/ � RŒp; a/g (9.22)

We discuss in two cases
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• If B.t/ D 0, i.e., t D t0, we can rewrite (9.22) as

C0Œp; t0/ D sup
b�a�t
fCŒp; a/ � RŒp; a/g

• If B.t/ ¤ 0, i.e., t0 is the start point of the busy period containing t. Therefore, for
any time point c 2 .t0; t�, the available resource in time interval Œt0; c/ is strictly
smaller than the request in that interval (otherwise the busy period terminates at
c), i.e.,

8c 2 .t0; t� W CŒt0; c/ � RŒt0; c/ < 0

,8c 2 .t0; t� W CŒp; c/ � RŒp; c/ < CŒp; t0/ � RŒp; t0/

) sup
b�a�t
fCŒp; a/ � RŒp; a/g D sup

b�a�t0
fCŒp; a/ � RŒp; a/g

Combining this with (9.22) we get

C0Œp; t0/ D sup
b�a�t
fCŒp; a/ � RŒp; a/g

In summary, no matter whether B.t/ equals 0 or not, we have

C0Œp; t0/ D sup
b�a�t
fCŒp; a/ � RŒp; a/g

And by the definition of t0 we know C0Œt0; t/ D 0, we have

C0Œp; t/ D C0Œp; t0/ D sup
b�a�t
fCŒp; a/ � RŒp; a/g

So we can rewrite (9.21) as

R0Œs; t/ D sup
s�T�b�s0

fCŒs; t/ � sup
b�a�t
fCŒp; a/ � RŒp; a/g

C CŒp; b/ � RŒp; b/g
D sup

s�T�b�s0

f inf
b�a�t
fCŒs; t/C CŒa; b/ � RŒa; b/gg

� sup
s�T�b�s

f inf
b�a�t
fCŒs; t/C CŒa; b/ � RŒa; b/gg

We define � D s� b and � D aC�� s. Since a � b, we also know � � 0. Further,
� D t � s. Applying these substitutions to above we have

R0Œs; t/ � sup
0���T

f inf
0����C�

fRŒs � �; � � �C s/

C CŒ� � �C s; t/ � CŒs � �; s/g
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Use the upper and lower curves to substitute R and C in above:

R0Œs; t/ � sup
0���T

f inf
0����C�

f˛u.�/C ˇu.�C� � �/g � ˇl.�/g

Further, it is obvious that R0Œs; t/ is also bounded by ˇu.�/, so finally we have

R0Œs; t/ �min. sup
0���T

f inf
0����C�

f˛u.�/C ˇu.�C� � �/g

� ˇl.�/g; ˇu.�//

Proof of ˛l0

By the computation of ˛l0 in the original GPC we have

R0Œs; t/ �min. inf
0���t�s

fsup
0��

f˛l.�/ � ˇu.�C t � s � �/g

C ˇl.�/g; ˇl.t � s//

) R0Œs; t/ �min. inf
0���t�s

f sup
0���T

f˛l.�/ � ˇu.�C t � s � �/g

C ˇl.�/g; ˇl.t � s//

Proof of ˇu0

By the computation of ˇu0

in the original GPC we have

C0Œs; t/ � inf
t�s��
fˇu.�/ � ˛l.�/gC

) C0Œs; t/ � inf
t�s���T

fˇu.�/ � ˛l.�/gC

Proof of ˇl0

The proof is trivial since the computation of ˇl0 in GPCT is exactly the same as in
the original GPC.



206 9 Finitary Real-Time Calculus

Appendix 3: Proof of Theorem 9.3

We first introduce an important lemma:

Lemma 9.3. Given well-defined arrival and service curves ˛ and ˇ, and two
arbitrary non-negative real numbers x and y,

˛l.x/ � ˛l.xC y/ � ˛u.y/ (9.23)

ˇu.x/ � ˇu.xC y/ � ˇl.y/ (9.24)

Proof. Since ˛ D .˛u; ˛l/ is a well-defined (thus causal) arrival curve pair, we
know ˛l D ˛l˛˛u (see Definition 9.5), i.e.,

˛l.x/ D sup
��0

f˛l.xC �/ � ˛u.�/g

) ˛l.x/ � ˛l.xC y/ � ˛u.y/

Since ˇ D .ˇu; ˇl/ is also a causal service curve pair, we know ˇu D ˇu˛ˇl, i.e.,

ˇu.x/ D inf
��0
fˇu.xC �/ � ˇl.�/g

) ˇu.x/ � ˇu.xC y/ � ˇl.y/

Now we start to prove Theorem 9.3. More specifically, we shall prove that the output
arrival/service upper curves obtained by GPCT are no larger than its counterpart
obtained by GPC, and the output arrival/service lower curves are no smaller than
that obtained by GPC.

Proof of ˛u0

Let F.�; �/ D inf0����C�f˛u.�/Cˇu.�C���/g�ˇl.�/. To prove that the ˛u0

obtained by GPCT is no larger than that obtained by GPC, we need to show that
8� � 0:

minf sup
0���T

fF.�; �/g; ˇl.�/g � minfsup
0��

fF.�; �/g; ˇl.�/g

which is obviously true.
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Proof of ˛l0

The main task of this proof is to show

sup
0���T

f˛l.�C �/ � ˇu.�/g D sup
0��

f˛l.�C �/ � ˇu.�/g (9.25)

As soon as (9.25) is proved, it is easy to see that the ˛l0 obtained by GPCT is no
smaller than its counterpart obtained in GPC. In the following we prove (9.25).

For simplicity of presentation, let m D MBS.˛u; ˇl/, so ˛u.m/ D ˇl.m/. For an
arbitrary � with � � 0, let q D b �

mc and r D �� q �m. Then by Lemma 9.3 and the
sub-additivity of ˛u we know

˛l.�C �/ � ˛l.�C r/ � ˛u.q � m/ � q � ˛u.m/ (9.26)

On the other hand, by Lemma 9.3 and the super-additivity of ˇl we also know

ˇu.�C �/ � ˇu.�C r/ � ˇl.q � m/ � q � ˇl.m/ (9.27)

By (9.26), (9.27), and ˛u.m/ D ˇl.m/ we can get

˛l.�C �/ � ˇu.�C �/ � ˛l.�C r/ � ˇu.�C r/

In other words, for any � � 0, we can always find a corresponding r in the range of
Œ0; m� such that ˛l.�C �/ � ˇu.�C �/ � ˛l.�C r/ � ˇu.�C r/, and by m � T
we finally get (9.25).

Proof of ˇu0

We want to prove

inf
0���T

fˇu.�/ � ˛l.�/gC D inf
0��
fˇu.�/ � ˛l.�/gC (9.28)

Similar with the above proof, let m D MBS.˛u; ˇl/, so ˛u.m/ D ˇl.m/. Let q D
b �

mc and r D � � q � m. Then by Lemma 9.3 and the sub-additivity of ˛u we know

˛l.�/ � ˛l.r/ � ˛u.q � m/ � q � ˛u.m/ (9.29)

On the other hand, by Lemma 9.3 and the super-additivity of ˇl we can get

ˇu.�/ � ˇu.r/ � ˇl.q � m/ � q � ˇl.m/ (9.30)
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By (9.29), (9.30) and ˛u.m/ D ˇl.m/ we have

ˇu.�/ � ˛l.�/ � ˇu.r/ � ˛l.r/

In other words, for any � � 0, we can always find a corresponding r in the range
of Œ0; m� such that ˇu.�/ � ˛l.�/ � ˇu.r/ � ˛l.r/, and since m � T , finally we get
(9.28).

Proof of ˇl0

The proof is trivial since the computation of ˇl0 in GPCT is exactly the same as in
the original GPC.



Chapter 10
EDF in Real-Time Calculus

Response time analysis (RTA) is one of the key problems in real-time system design.
This chapter proposes new RTA methods for EDF scheduling, with general system
models where workload and resource availability are represented by request/demand
bound functions and supply bound functions. The main idea is to derive response
time upper bounds by lower-bounding the slack times. We first present a simple
over-approximate RTA method, which lower bounds the slack time by measuring
the “horizontal distance” between the demand bound function and the supply bound
function. Then we present an exact RTA method based on the above idea but
eliminating the pessimism in the first analysis. This new exact RTA method not
only allows to precisely analyze more general system models than existing EDF
RTA techniques, but also significantly improves analysis efficiency. Experiments
are conducted to show efficiency improvement of our new RTA technique, and
tradeoffs between the analysis precision and efficiency of the two proposed methods
are discussed. We also illustrate the application of the proposed RTA techniques
to Real-Time Calculus for the analysis of components with EDF scheduling in a
distributed computing environment.

10.1 Introduction

RTA is one of the most important problems in real-time system design. RTA is not
only useful to perform local schedulability test on single processors, but also plays
important roles in the analysis of more complex real-time systems, e.g., distributed
systems where the completion of a task generates outputs triggering computation
or communication tasks on subsequent infrastructures [41, 75, 194, 201]. Since the
completion time of the preceding task decides the release times of subsequent tasks,
one can use RTA to bound the completion time of each task and decide the “release
jitter” of the subsequent tasks.

© Springer International Publishing Switzerland 2016
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EDF is a widely used real-time scheduling algorithm. Spuri [94] developed EDF
RTA techniques for periodic tasks with extensions of jitters and sporadic bursts.
It turns out that the RTA problem of EDF is more difficult than that of fixed-
priority scheduling. Although RTA for fixed-priority scheduling has been extended
to general workload and resource models represented by request bound functions
(arrival curves) and supply bound functions (service curves) [202], no such work
has been done for EDF to our best knowledge.

Spuri’s EDF RTA technique relies on enumerating a (typically very large)
number of concrete release patterns as the candidates of the worst-case scenario.
On one hand, this requires high computational effort. On the other hand, this
complicates its extension to more expressive models, as the technique needs to
be customized to include new features of each new model. This is particularly
hindering when workload and resource is specified in a rather abstract way.

In this chapter we present EDF RTA methods for general models with workload
and resource represented by request/demand bound functions and supply bound
functions. These general models are used in design and analysis frameworks such
as Real-Time Calculus [203] and SymTA/S [75]. The key insight is that in EDF it is
easier to derive response time upper bounds indirectly by lower-bounding the slack
times. This not only allows us to perform RTA with general workload and resource
models, but also can greatly improve the analysis efficiency.

More specifically, we first present a simple over-approximate RTA method,
which lower bounds the slack times by measuring the “horizontal distance” between
the demand bound function and the supply bound function. Then we present an exact
RTA based on the similar idea but eliminating the pessimism in the first analysis.
Experiments show that the new RTA technique can greatly improve the analysis
efficiency comparing with Spuri’s RTA. We also discuss the tradeoff between the
analysis precision and efficiency of the two methods proposed in this chapter.

10.2 Preliminaries

10.2.1 Resource Model

We consider a processing platform with capacity characterized by a supply bound
function sbf.ı/ [204, 205], which quantifies the minimal cumulative computation
capacity provided by the processing platform within a time interval of length ı. The
supply bound function is essentially the same as the lower service curve in Real-
Time Calculus [203].

sbf is a continuous function. The pseudo-inverse function of sbf, denoted by sbf,
characterizes the minimal interval length to provide a certain amount of computation
capacity:

sbf.x/ D minfıjsbf.ı/ D xg
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Fig. 10.1 Illustration of (a) sbf and sbf, (b) rbf and dbf

Figure 10.1a illustrates sbf and its pseudo-inverse sbf of a TDMA resource with
a period of 4 and slot size of 3.

10.2.2 Workload Model

The task system � consists of N independent tasks f�1; �2; � � � ; �N g. Each task �i

releases infinitely many jobs. We use Jj
i to denote the jth job released by task �i.

For simplicity, we also omit the superscript and use Ji to denote a job released by �i

when the context is clear.
Each task �i has a relative deadline Di, which specifies the requirement that the

computation demand of each job must be finished no later than Di time units after
its release time.

The workload of a task �i is characterized by a request bound function rbfi.ı/

[43], which quantifies the maximum cumulative execution requests that could be
generated by jobs of �i released within a time interval of length ı.

rbfi is a staircase function, and it is essentially the same as the upper arrival curve
in Real-Time Calculus [203] and SymTA/S [75]. As a common assumption in EDF
scheduling analysis [30, 94], there exists a bounded number L 0 such that

rbf.L 0/ � sbf.L 0/

which guarantees that in long term the system source supply is no smaller than the
total execution demand. We let L D L 0Cd where d is the largest relative deadline
among all tasks.

In the analysis of EDF scheduling, an important concept is the demand bound
function dbfi [30], which can be obtained by horizontally “shifting” rbfi rightwards
for Di time units:

dbfi.ı/ D
�

0 ı < Di

rbfi.ı � Di/ ı � Di
(10.1)
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Figure 10.1b illustrates the rbf and dbf of a sporadic task [30] with period of
4, relative deadline of 3, and worst-case execution time of 2. We define sbf.ı/ and
dbf.ı/ as the total demand bound function of the system:

rbf.ı/ D
X

8�i2�

rbfi.ı/ and dbf.ı/ D
X

8�i2�

dbfi.ı/

Finally, we assume the number of points where rbf and dbf “steps” in a unit-
length interval is bounded by a constant, to exclude the case that rbf/dbf curves are
“infinitely complex.”

10.2.3 EDF Scheduling and Worst-Case Response Time

When a job of task �i is released at time t, its absolute deadline is at tCDi. The task
system is scheduled by EDF algorithm, which assigns priorities to active jobs (jobs
that have been released but not finished yet) according to their absolute deadlines:
the earlier deadline and higher priority. In case of multiple active jobs having the
same absolute deadline, the EDF scheduler may prioritize any of them for execution.
The aim of this chapter is to calculate the worst-case response time Ri of each task:

Definition 10.1 (Worst-Case Response Time). The worst-case response time Ri

of a task �i is the length of the longest interval from a job’s release till its completion.

Note that we allow the case of Ri > Di. A job finishes after its absolute deadline
is called a tardy job [150]. Although a tardy job cannot finish computation before
the expected deadline, it is still interesting to know its tardiness, i.e., how much it
lags behind, in many soft real-time systems [150, 206].

10.2.4 Review of Spuri’s RTA for EDF

Spuri [94] introduced an RTA method for sporadic tasks with jitters and sporadic
bursts on a fully dedicated processor (sbf.ı/ D ı). For simplicity of presentation,
we review Spuri’s RTA technique with periodic tasks. Details about handling jitters
and sporadic bursts can be found in [94].

Each task �i is characterized by three parameters: worst-case execution time
Ci, relative deadline Di, and period Ti. The worst-case response time Ri of �i is
calculated by

Ri D max8p2P;a2Ap;
Ri.a; p/
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where

P D Œ1; dL =Tie�
Ap D fx � .p � 1/Ti � Dijx 2 X \ Œ.p � 1/Ti C Di; pTi C Di�g
X D

[

8�j2�;q2Œ1;dLTj
e�
f.q � 1/Tj C Djg

Ri.a; p/ D w.a; p/ � a � .p � 1/Ti

and w.a; p/ is the minimal solution of equation

w.a; p/ D pCi C
X

�j¤�i

Wj.w.a; p/; aC .p � 1/Ti C Di/

where Wj.x; y/ D min.d x
Tj
e; b y�Dj

Tj
c C 1/ � Cj.

Spuri’s analysis is rather complicated, even with the simple sporadic task and
fully dedicated resource model. Extending it to more expressive models could be
difficult and error-prone. On the other hand, Spuri’s analysis contains tremendous
redundant computation, which leads to low analysis efficiency. The overall com-
plexity of Spuri’s RTA to a periodic task set is O.N T L 02/, where N is the total
number of tasks, T is the maximal period among all tasks, and L 0 is the maximal
busy period size. The target of this chapter is to overcome the above problems, by
providing EDF RTA techniques that are more general, more efficient, and easier to
understand and remember.

10.3 Over-Approximate RTA

In this section, we first introduce a simple over-approximate RTA method. After
presenting the analysis, we also use an example to explain why it may over-estimate
the response time. Then in Sect. 10.4, we will reuse these insights and present our
second RTA method which yields exact results.

Unlike traditional RTA techniques [31, 35, 94], our RTA method bounds the the
response times indirectly: it calculates a lower bound on the worst-case slack time
of the task, by which the response time upper bound can be easily obtained.

Definition 10.2 (Worst-Case Slack Time). The worst-case slack time Si of a task
�i is the length of the shortest interval from a job’s completion till its absolute
deadline.
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The task’s worst-case response time is calculated by

Ri D Di � Si

Note that Ri is greater than Di when Si is negative.
We can safely lower bound the slack time of each task by

Theorem 10.1. The slack time of task �i is bounded from below by

S�i D min8ıWL�ı�Di

n
ı � sbf.dbf.ı//

o
(10.2)

Proof. We prove the theorem by contradiction. Suppose at run-time task �i has a job
Ji whose slack time, denoted by S0, is strictly smaller than S�i . Let tr, td, and tf be
the release time, absolute deadline, and finish time of Ji, respectively. Let to be the
earliest time instance before tf such that at any time instant in Œto; tf � there is at least
one active job with deadline no later than td. Let ` D td � to.

The total amount of workload (of jobs with deadline no later than td) in Œto; td�

is bounded by dbf.`/, and it takes the resource for at most sbf.dbf.`// time units
to provide enough capacity to finish it. So we know there exists a time point in
Œto; to C sbf.dbf.`//� at which the processor is idle or executing jobs with deadline
later than td. By the definition of to we know that this time point is not in Œto; tf /, so

to C sbf.dbf.`// � tf (10.3)

Since Ji itself is an active job at tr, by the definition of to we know to � tr and
thus ` � Di. On the other hand, the length of .to; tr� is bounded by L 0 and the length
of .tr; td� is bounded by d, so ` � L . In summary, L � ` � Di. Then by (10.2)
we have S�i � ` � sbf.dbf.`/, and by S0 < S�i we have S0 < ` � sbf.dbf.`/, i.e.,
td � S0 > td � `C sbf.dbf.`/. Then we apply substitutes to D td � ` and tf D td � S0
to get tf > to C sbf.dbf.`/, which contradicts (10.3).

Intuitively, the slack time lower bound stated in the above theorem is the minimal
“horizontal distance” between dbf and sbf (in the range of ı � Di). Note that if
dbf.ı/ is larger than sbf.ı/ for some ı > Di, then S�i is negative.

Example 10.1. Suppose task set � consists of three sporadic tasks �1; �2, and �3 with
parameters as follows: fC1 D 1; T1 D D1 D 4g, fC2 D 1; T2 D D2 D 12g, and
fC3 D 3; T3 D D3 D 16g. The task set is scheduled by EDF on a TDMA resource
with period of 4 and slot size of 3. By Theorem 10.1 we obtain the slack time lower
bound of each tasks: S�1 D 2 and S�2 D S�3 D 4, as illustrated in Fig. 3.2a. So the
worst-case response time of �1, �2, and �3 is bounded by D1 � 2 D 2, D2 � 4 D 8,
and D3 � 4 D 12, respectively.

The slack time lower bound S�i is safe, but in general pessimistic, as shown in the
following example.
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Fig. 10.2 Illustration of
Examples 10.1 and 10.2.
(a) The computation of S�

i .
(b) The pessimism of S�

i

Example 10.2. When we analyze �3 in the above example, the minimal horizontal
distance between sbf.ı/ and dbf.ı/ (only considering the part on dbf.ı/ with
ı � D3) occurred at ı D 16, with dbf.16/ D 8 and sbf.dbf.16// D sbf.8/ D 12.
The slack bound of �3 is 12 � 8 D 4, and its response time bound is D3 � 4 D 12.
However, if we simulate the worst-case workload in a time interval of length 16 as in
Fig. 10.2b, the response time is actually 11 (which is indeed the worst-case response
time of �3). This is because, although the workload of the last job of �1 is included
in dbf.16/, this job is actually released after the finish time of the analyzed job of �3

and thus does not really contribute to the interference.

10.3.1 Special Case Where S�
i Is Exact

Although S�i is generally a pessimistic bound, it is indeed the exact answer in the
following special case:

Theorem 10.2. S�i is the exact worst-case slack time of task �i if S�i < 0.

Due to space limit we omit the formal proof but only provide the intuition:
According to the standard dbf-based EDF schedulability test [30], a task �i is not
schedulable iff sbf and rbf cross each other at some point no smaller than Di, i.e.,
S�i < 0. When a job Ji finishes after its deadline, the jobs with release time and
deadline in Œto; td� all can interfere with Ji. So the over-estimation problem in the
above example does not exist, and dbf.td�to/ precisely quantifies the total workload
that needs to be finished before Ji is done.



216 10 EDF in Real-Time Calculus

When S�i is negative, �i is a tardy task. Theorem 10.2 says that jS�i j is the exact
worst-case tardiness of a tardy task �i.

10.3.2 Algorithmic Implementation and Complexity

The computation of S�i for different tasks is essentially the same. The only difference
is that for each task �i we only need to visit ı no smaller than its Di. So we only need
to “scan” the curve dbf.ı/ for one time, to compute the slack time bounds of all tasks
in � .

Algorithm 6 shows the pseudo-code of the algorithm to compute S�1 ; � � � ; S�N .
For simplicity of presentation, we assume all tasks have different relative deadlines,
and tasks are sorted in increasing order of their relative deadlines. The case where
multiple tasks have the same relative deadline can be easily handled with minor
revisions of the presented algorithm. Intuitively, the algorithm first calculates the
minimal “horizontal distance” between dbf and sbf with ı values in each segment
ŒDi; DiC1/, recorded by si. With these si, the slack time bound of all tasks can be
calculated in O.N / time.

Since sbf is continuous and dbf is a staircase function, the candidate values of ı

are the points in ŒD1;L � at which dbf.ı/ is not differentiable i.e., where dbf “steps.”
So the number of candidate values of ı is bounded by O.L / (recall that the number
of points where dbf “steps” in a unit length is bounded by a constant). Moreover,
the second for-loop iterates for N times. So the overall complexity of Algorithm 6
is O.L CN /.

1: s1 D s2 D � � � D sN D C1
2: i D 1

3: for each candidate value of ı do
4: if ı � DiC1 then
5: i iC 1

6: end if
7: si  min.si; ı � sbf.dbf.ı///

8: end for
9: for i N � � � 1 do

10: S�

i  si

11: si�1  min.si; si�1/ // does not execute when i D 1

12: end for
13: return S�

1 ; S�

2 ; � � � ; S�

N

Algorithm 6: Pseudo-code of the algorithm implementing Theorem 10.1.
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10.4 Exact RTA

S�i is a pessimistic slack time lower bound since it ignores the fact that the workload
released after the finish time of the analyzed job should not be included into the
interference calculation. In this section we address this problem and present an exact
RTA method.

As presented in last section, S�i is the exact worst-case slack time if �i is a tardy
task (S�i is negative). So in this section we focus on the case that �i is not tardy, i.e.,
it holds

8ı � Di W dbf.ı/ � sbf.ı/ (10.4)

We first define a task’s mixed bound function:

Definition 10.3 (Mixed Bound Function). For any ı � � � 0, the mixed bound
function of �i is defined as

mbfi.ı; �/ D min.dbfi.ı/; rbfi.�//

Figure 10.3 illustrates mbfi.ı; �/. We consider two time intervals Œto; to C ı� and
Œto; to C �� which both start at time to. mbfi.ı; �/ captures the workload of �i’s jobs
that are released in Œto; to C �� and with deadline no later than to C ı. In (a), while
dbf.ı/ includes all of the five jobs, sbf.�/ only includes the first four jobs since the
last job is released after to C � , so mbfi.ı; �/ equals the total workload of the first
four jobs. In (b), while all the three jobs are released in Œto; to C ��, dbf.ı/ excludes
the last job as its deadline is later than to C ı.

We define the total mixed bound function of the system:

mbf.ı; �/ D
X

8�i2�

mbfi.ı; �/

Note that mbf.ı; �/ does not necessarily equal min.dbf.ı/; sbf.�//. With this new
function mbf.ı; �/, we can compute a task’s exact worst-case slack time:

Theorem 10.3. The exact worst-case slack time of task �i is computed by

Si D min8ıWL�ı�Di

max8� W��ı
fı � � jmbf.ı; �/ � sbf.�/g (10.5)

Fig. 10.3 Illustration of the
mixed bound function
mbfi.ı; �/
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Proof. First, we show Si is well defined in the sense that

f.ı; �/jL � ı � Di ^ � � ı ^mbf.ı; �/ � sbf.�/g (10.6)

is not empty and thus (10.5) always returns an answer.
Let x be a number in ŒDi;L �, then by (10.4) we know

dbf.x/ � sbf.x/) mbf.x; x/ � sbf.x/

so any .ı; �/ s.t. L � ı � Di ^ ı D � is contained in (10.6).
In the following we prove Si is both a safe and tight lower bound of �i’s slack

time.
Safety: We shall prove that the slack time of any job released by �i is no smaller

than Si. We prove it by contradiction. Suppose Ji is a job of task �i with slack time
S0 < Si. Let tr, td, and tf be the release time, absolute deadline, and finish time of Ji,
respectively. Let to be the earliest time instance before tf such that at any time instant
in Œto; tf � there is at least one active job with deadline no later than td. Let ı0 D td�to.
Since Ji is active at tr, we know to � tr and thus ı0 � Di. The length of Œto; tr� is
bounded by L 0 and the length of Œtr; td� is bounded by d, so ı0 � L D L 0 C d. In
summary, L � ı0 � Di. Then by the definition of Si and S0 < Si we have

S0 < max
��ı0

fı0 � � jmbf.ı0; �/ � sbf.�/g

Let � 0 be the smallest assignment of � s.t. mbf.ı0; �/ � sbf.�/ (thus ı0 � � is
maximized), then we have

S0 < ı0 � � 0) td � S0 > td � ı0 C � 0) tf > to C � 0 (10.7)

On the other hand, since mbf.ı0; � 0/ � sbf.� 0/, the workload of all jobs released in
Œto; toC � 0� and with deadline no later than toC ı0 D td has been finished by toC � 0,
and particularly, Ji has been finished by to C � 0, which contradicts (10.7).

Tightness: We shall construct a scenario where the slack time of a job of �i is
exactly Si. Let ı0 and � 0 be the assignments of ı and � that give the value of Si in
(10.5). Let each task release its first job at time to and release as much workload
as possible since then (following its rbfi). Moreover, we move the release time of
the last job of the analyzed task �i released in Œto; to C ı0 � Di�, denoted by Ji, such
that its deadline aligns with to C ı0. Note that Œto; to C ı0 � Di� is well defined since
ı0 � Di. Let Ji have the lowest priority among all the jobs with deadlines at to C ı0.
Since � 0 is the assignment of � maximizing ı0 � � with this particular ı0, we know:

8� 00 < � 0 W mbf.ı0; � 00/ > sbf.� 00/ (10.8)

Under the particular release pattern described above, mbf.ı0; � 00/ is the exact total
workload of jobs (of all tasks) released in Œto; to C � 00/ and having priority no lower
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than Ji. By (10.8) we know toC� 0 is the first time point after to at which the processor
is idle or executing jobs with priority lower than Ji. Therefore Ji is finished exactly
at to C � 0 and its slack time equals ı0 � � 0, i.e., equals Si.

By examining (10.5) we can get a general property of EDF scheduling concern-
ing the relation of tasks’ relative deadlines and worst-case slack times:

Corollary 10.1. For any two tasks �i and �j in a task set � scheduled by EDF, it
holds

Di D Dj ) Si D Sj and Di > Dj ) Si � Sj

10.4.1 Algorithmic Implementation and Complexity

A naive way to compute Si using (10.5) is enumerating all the combinations of
ı and � candidate values satisfying L � ı � Di and ı � � . This could be
inefficient when L is large. Algorithm 7 presents the pseudo-code for a more
efficient implementation.

Similar to Algorithm 6, Algorithm 7 also integrates the slack time bounds
computation of all tasks, using si to keep track of the local minimum in each segment
ŒDi; DiC1/. Algorithms 7 and 6 differ in the first for-loop. Two optimizations are
applied to speed up the analysis. Firstly, to compute

1: s1 D s2 D � � � D sN D C1
2: i D 1

3: for each candidate value of ı (in increasing order) do
4: if ı � DiC1 then
5: i iC 1

6: end if
7: if ı � sbf.dbf.ı// < si then
8: �old  0

9: �new  sbf.mbf.ı; 0//

10: while �new ¤ �old do
11: �old  �new

12: �new  sbf.mbf.ı; �old//

13: end while
14: si  min.si; ı � �new/

15: end if
16: end for
17: for i D N � � � 1 do
18: Si  si

19: si�1  min.si; si�1/ // does not execute when i D 1

20: end for
21: return S1; S2; � � � ; SN

Algorithm 7: Pseudo-code of the algorithm implementing Theorem 10.3.
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max8� W��ı
fı � � jmbf.ı; �/ � sbf.�/g

with a particular ı, we use the well-known iterative fixed-point calculation technique
[31] instead of searching over all possible � values (lines 8 to 14).

Secondly, for each candidate value of ı, we first check whether ı � sbf.dbf.ı//

is smaller than the current si. If not, then we can safely skip further calculation
regarding this ı value. This is because ı � sbf.dbf.ı// is a lower bound of the slack
time with this particular ı. If this lower bound is already greater than si, then using
mbf.ı; �/ to further refine this bound (make it potentially bigger) will not yield a
result smaller than si. This optimization is very effective in practice. Typically, the
worst-case slack time of a task occurs with relatively small ı values. Since we check
the ı candidates in increasing order, we can obtain small slack time estimations
with smaller ı values, and skip the fixed-point computation regarding � with large
ı values.

Similar to Algorithm 6, the candidate values of ı are the points in ŒD1;L � where
dbf “steps.” The overall complexity of Algorithm 7 is O.L 2 CN /.

10.5 Evaluation

10.5.1 Efficiency Improvement

We first evaluate the analysis efficiency improvement of the exact slack (response)
time analysis in Sect. 10.4 comparing with Spuri’s method in [94]. We adopt the
sporadic task model [30] and a fully dedicated processor (sbf.ı/ D ı), with
which Spuri’s method is also applicable. Tasks are randomly generated, with the
periods (Ti) uniformly distributed in Œ100; 1000�, utilizations (Ci=Ti) uniformly
distributed in Œ0:01; 0:2�, and the ratio between the relative deadline and period
(Di=Ti) uniformly distributed in Œ0:8; 1�. We generate task sets as follows: A task
set of 2 tasks is generated and analyzed by both our exact RTA and Spuri’s RTA.
Then we increase the number of tasks by 1 to generate a new task set. This process
is iterated until the total utilization exceeds 100 %. The whole procedure is then
repeated, starting with a new task set of 2 tasks, until a reasonably large sample
space has been generated.

Figure 10.4 shows the speedup of our new exact RTA over Sprui’s. For each task
set, the speedup is the ratio between the analysis time by Sprui’s RTA and that by
our exact RTA. A point in the curve represents the average speedup of all task sets
generated in a certain scope of system utilization corresponding to the abscissa.

From Fig. 10.4 we can see that the analysis efficiency improvement of our
new RTA over Spuri’s RTA is significant, especially with task sets of high total
utilizations. The reason is twofold. First, Sprui’s RTA analyzes each task separately,
while our RTA integrates the analysis of all tasks and only “scans” the demand
bound function curve once. A task set with higher utilization typically contains more
tasks, so the efficiency improvement of our RTA is greater. Second, when the task
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Fig. 10.4 Speedup of our
exact RTA comparing with
Spuri’s method

Fig. 10.5 Comparison of the
two RTA methods

set’s total utilization is close to 100 %, L is typically very large. The efficiency of
Sprui’s RTA is sensitive to L : the number of different combinations to be checked
by Sprui’s RTA grows rapidly as L increases. However, thanks to the optimization
of skipping the refinement with ı values satisfying ı�sbf.dbf.ı// < si (see the last
second paragraph of Sect. 10.4), our exact RTA can skip the computation between
lines 8 and 14 of Algorithm 7 for most large ı values, and thus is less sensitive to
the growth of L .

10.5.2 Comparing the Two Proposed Methods

In the following we compare the two RTA methods of this work, regarding their
efficiency and precision. We use the same strategy as above to generate task sets. In
Fig. 10.5, each point on curve over-estimation represents the average ratio between
the response time bounds obtained by the approximate RTA and by the exact
RTA for task sets in a certain total utilization scope. Each point on curve speedup
represents the average ratio between the analysis time of the exact RTA and the
approximate RTA in a certain total utilization scope.
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By curve over-estimation we see that the precision of the approximate RTA
increases as the total utilization increases. This is because that in task sets with
higher total utilization, tasks’ response times are typically closer to relative dead-
lines, so it has lower chance for the approximate RTA to mis-include the workload
released after the analyzed job’s finish time.

By curve speedup we see that the efficiency gap between the exact and the
approximate RTA methods is smaller for task sets with either very low or very high
total utilization. When the task set has very low total utilization, the iterative fixed-
point calculation regarding � typically converges very quickly, so the analysis time
by the two methods is close. When the task set has very high total utilization, L
is typically very large. As we discussed in last subsection, the exact RTA skips the
fixed-point calculation regarding � for a large portion of ı values. In other words,
for most ı values the computation effort of both methods is the same, so the gap
between their overall analysis time is small.

From the above results we can see that as the total utilization increases, the
approximate RTA becomes more precise and gets more rewards in efficiency. For
tasks with very high total utilization (� 80 %), the approximate RTA is almost as
precise as the exact RTA, but at the same time the efficiency of the exact RTA is also
catching up. It’s up to the system designer to choose the proper analysis method
according to their efficiency and precision requirements. But at least one can draw
a clear conclusion that for task systems with very low total utilization, it does not
make much sense to use the approximate RTA as it leads to rather imprecise results
but benefits little in efficiency.

10.6 Analysis of EDF Component in RTC

An important application of RTA for EDF scheduling is the analysis of distributed
systems, where the processed tasks generate output events triggering tasks on the
subsequent computation units or communication interconnections.

Real-Time Calculus [203] is a general framework for performance analysis
of distributed embedded systems, which is rooted in and significantly extending
Network Calculus theory [187]. In RTC, workload is represented by a pair of upper
and lower arrival curves ˛u; ˛l and resource availability is represented by a pair
of upper and lower service curves ˇu; ˇl. As mentioned in Sect. 10.2, essentially
˛u (defined on the basis of workload rather number of events) is the same as the
request bound function rbf, and ˇl is the same as the lower bound function sbf. The
RTC framework connects multiple components into a network to model systems
with resource sharing and networked structures. At each component, RTC generates
the output arrival and service curves from the input arrival and service curves,
and then propagates the output curves to the subsequent components. So one of
the most important problems in RTC is how to compute the output curves from
input curves for various types of components modeling different resource arbitration
mechanisms.
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The state-of-the-art techniques for analyzing EDF scheduling in RTC was
introduced by Perathoner [207], where the output curves and EDF component are
computed by

˛0ui .�/ D min.˛u
i .�C Di � BCETi/; Q̨ 0ui .�// (10.9)

˛0li .�/ D max.˛l
i.�C Di � BCETi/; Q̨ 0li .�// (10.10)

where BCETi is the best-case processing time of a single request. A detailed
explanation of Q̨ 0ui .�/ and Q̨ 0li .�/ can be found in [207]. In the following we focus
on the first items in the min and max operation. Intuitively, ˛u

i .�C .Di � BCETi/

and ˛l
i.�� .Di �BCETi// bounds the output curves by counting the delay variance

of each request: the maximal delay is bounded by its relative deadline Di and the
minimal delay is its best-case processing time.

Since the worst-case response time Ri also bounds the maximal delay of each
request, we can use Ri to replace Di in (10.9) and (10.10) to compute more precise
output curves. Figure 10.6 shows an example of RTC analysis network of three
workload streams flowing through three EDF components. The initial input arrival
curves model the PJD tasks [40], and the input service curves model the TDMA
resources, with the parameters shown in Tables 10.1 and 10.2. Figure 10.7 depicts
the output arrival curves at each component. In each picture, the red curves are
generated using the current implementation of EDF components in RTC Toolbox
[80] using (10.9) and (10.10), and the blue curves are generated using the exact
response time bound Ri derived by the method of Sect. 10.4 to replace the deadline
Di in (10.9) and (10.10). In Fig. 10.7f the red curves and the blue curves are exactly
the same and only the blue ones are displayed. The end-to-end delay bounds (sum
of delay bounds of each component) of the three streams using the original method
and our new techniques are shown in Table 10.3. From these results we can see that
our RTA can help to greatly improve the analysis precision of EDF components in
RTC.

Apart from the imprecise computation of output curves, the original method by
Perathoner also limits the modeling power of RTC. The deadline of each request in
EDF can be viewed as the metric to decide its priority, i.e., the so-called priority
point. The priority point is not necessarily the same as the deadline, but can
be any instant in time. For example, if the priority point of each request aligns

Fig. 10.6 An example of
RTC analysis network with
EDF components
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Table 10.1 PJD-task
parameters of ˛1, ˛2, and ˛3

Stream no. Period Jitter Distance Deadline

1 12 20 6 12

2 20 4 18 16

3 22 10 20 18

Table 10.2 TDMA
parameters of ˇ1, ˇ2, and ˇ3

Resource no. Slot size Period

1 8 10

2 10 12

3 1 1
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Fig. 10.7 Illustration of the output arrival curves in the example, (a) ˛0
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with its invocation time, the requests will be scheduled in a FIFO (first-in-first-
out) manner. In general, the scheduling algorithms that define priority points for
each task with a fixed offset with the release time of each job are called EDF-
like scheduling algorithm. However, the current RTC framework interprets EDF
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Table 10.3 The end-to-end
delay bounds of each
workload stream

Stream no. Original method Our new method

1 22 = (8C 8C 6) 11 = (5C5C1)

2 25 = (9C 10C 6) 16 = (6C7C3)

3 26 = (9C 10C 7) 21 = (8C 8C 5)

scheduling in a narrow sense and in general does not allow to model EDF-like
scheduling algorithms except EDF and FIFO. Our new RTA technique not only
improves the analysis precision, but also decouples the concept of deadline and
priority point in EDF scheduling, and thereby supports modeling and analysis of a
wide range of EDF-like scheduling policies in RTC.

10.7 Conclusions

RTA is not only useful in local schedulability test, but also lends itself to many
complex design and analysis problems. Examples include distributed systems (as
we discussed in Sect. 10.1) and the compositional scheduling problem [204, 205]
(where the response time of a task on a certain level helps to tighten the resource
supply bound to its inner task subsystem). The deadline adjustment technique
with EDF [204, 208] can also be used to regulate task finish times in the above
problems. However, when the scheduler is encapsulated but not open to designers
for modification (which is common in component-based system design), the
deadline adjustment technique is not applicable and one has to resort to RTA for
finishing times characterization. We propose new RTA methods for EDF, with
general system models represented by request/demand bound functions and supply
bound functions. Our new RTA method not only allows to precisely analyze more
general system models than existing EDF RTA techniques, but also significantly
improves analysis efficiency.
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