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Mass spectrometry is an extremely powerful analytical technique, capable of elucidat-
ing not only the molecular weight but also the chemical structure of target compounds. 
Recent advances have paved the way for deciphering complex and rich biomolecules 
spanning applications in diagnostics, biodiscovery and detection. In recent years, 
 spectacular advances in mass spectrometry technology have improved all aspects of 
the  instrumentation, making it more robust and easier to use, thus breaking new 
 frontiers in life sciences research, pharmaceutical analysis and, more recently, clinical 
diagnostics.

Modern mass spectrometers deliver information‐rich data with high reproducibil-
ity and sensitivity, which makes them suitable for identifying and quantifying low‐
level biomarkers with high confidence. The ability of the technique to “read” multiple 
targets in a single experimental sequence allows mass‐spectrometry‐based assays to 
target a multitude of markers in a single assay. Structural analysis, powerful statistical 
 techniques and database‐based bioinformatics are employed to increase the fidelity 
of results.

The main types of mass spectrometers utilized in clinical practice today are triple 
quadrupoles (QqQ), quadrupole‐time‐of‐flight hybrids (Q‐TOF) and matrix‐assisted 
laser desorption and ionization time‐of‐flight (MALDI‐TOF) mass spectrometers. 
Triple quadrupoles and Q‐TOFs deliver very high sensitivity and specificity of results by 
mostly using targeted structural analysis. MALDI‐TOF mass spectrometers deliver easy 
and economical high‐throughput analysis with highly reproducible pattern  recognition 
or ‘fingerprints’. Several other types of mass spectrometers including FT‐ICR‐type (e.g. 
Orbitrap®‐based instruments) are used in state‐of‐the‐art life sciences research and 
 biomarker discovery and are already finding their way into clinical laboratories.

Triple quads and Q‐TOFs normally utilize electrospray ionization (ESI), a technique 
that generates a fine spray from liquid samples, presented directly into an orifice to be 
transferred into the instrument’s vacuum system. Droplets dry out and release ions with 
one or several charges. These instruments need a high vacuum to operate, and thus a 
vacuum and ion optics system is utilized to transfer ions into the high‐vacuum part of 
the device through direct infusion or liquid phase separation (HPLC). In many cases, 
fast HPLC runs may be adequate; however, such treatment increases complexity 
and  time per analysis, which is the main drawback of ESI‐based assays. Emerging 
 technologies have been introduced that may present solutions to this challenge, includ-
ing desorption electrospray ionization (DESI), disposable ESI nozzles and paper spray.

Preface

A Brief Tour of the Technology and New Grounds for Innovation
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In analytical research, ESI is the dominant MS largely because of its seamless coupling 
with liquid phase separation methods. This great advantage for comprehensive analysis 
of complex samples becomes a disadvantage for high‐throughput clinical diagnostics, 
when front‐end simplicity, robustness and speed of analysis are of critical importance. 
This is where MALDI‐TOF has dominated the developments in microbial analysis and 
clinical diagnostics.

MALDI‐TOF MS and its variants (e.g. surface‐enhanced laser desorption and 
 ionization—SELDI‐TOF MS) typically utilize high‐power–short‐pulse‐width laser 
pulses for desorption and ionization of the sample. MALDI can be coupled with various 
ion analyzers and ion processors (e.g. ion traps); however, being a pulsed ionization 
method, it is preferably coupled with time‐of‐flight (TOF) mass analyzers. The funda-
mental principle of TOF mass analysis is to link the mass of an ion (or more precisely, 
its mass‐over‐charge ratio, m/z) to its “flight” time to a detection point. In the simplest 
theoretical construct, all ions need to start their flight at the same time and place, 
whereas ion velocities should differ in relation to their mass. In that case, a simple 
 formula/calibration function would transform time of flight to m/z. MALDI‐TOF mass 
spectrometers accelerate all ions at the same kinetic energy level in an ion source; as 
different mass ions travel with different velocities, they are allowed to ‘fly’ in a field‐free 
region where they separate in space; then the device records their arrival time to a set 
point in space, and it is translated into their mass by the system electronics and 
software.

Although the principle is simple, modern instruments employ several technologies 
and state‐of‐the‐art electronics to improve performance. Devices are designed to 
 correct or minimize several aberrations, by means of specialized ion optics, electrody-
namic extraction pulses and highly sophisticated detection devices. Another 
complication is that the entire process should be carried out in high vacuum. This is to 
minimize random collisions with ambient gas, which reduce constant velocity through-
out measurement. A rather complex vacuum load lock is normally employed to transfer 
sample into the vacuum. The need for high analysis speed requires several samples to 
be loaded in a single loading cycle, leading to large multi‐spot sample plates and com-
plicated sample manipulation mechanisms. Various systems solutions are emerging to 
tackle these engineering challenges and enhance speed and sensitivity.

MALDI‐TOF suitability for high‐throughput analysis makes it an ideal technology to 
develop diagnostic tests spanning a wide variety of targets, including blood disorders 
(e.g. sickle cell anaemia), lipid profiling and other metabolic and proteomics‐based 
assays. An important target application is early cancer diagnostics, which has been 
attempted at the research level with protein biomarkers (SELDI‐based methods) or by 
probing key proteomic post‐translational modification, for example, semi‐quantitative 
glycosylation profiling. These exciting developments maintain a keen focus in the field 
and become an incentive to make the technology even more powerful, robust, economical 
and easy to use. The advance of mass spectrometry in the clinical laboratory will help 
early diagnosis, treatment monitoring and personalized medicine, thus contributing to 
public health and well‐being.

Currently, all commercial MALDI‐based clinical platforms utilize one of the sim-
plest forms of TOF, a linear TOF mass analyzer. Its success in clinical microbiology 
over the last decade or so has been described as transformative. In the United Kingdom, 
for example, most clinical microbiology laboratories currently either possess a 
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MALDI‐TOF MS instrument or are actively seeking to acquire one. Recent refinement 
in  software and bioinformatic tools are supporting further extraction of data from sam-
ples to derive not only species identification, but typing differences among strains of the 
same species (see, e.g. Chapters 5, 6, 11–13, 16 and 21). Additional specialized 
 pre‐ sample processing methods are also facilitating the characterization of antibiotic 
resistance of isolates (e.g. Chapters 10 and 15).

This first phase of MALDI‐TOF MS applications has been designated as a ‘new era in 
clinical microbiology’ because of its dramatic impact on diagnostics (see Chapters 1–12 
and 21). The next phase is likely to move towards higher‐specification instruments as 
well as MS/MS‐based methods, where considerable progress has already been achieved. 
Therefore, the second half of this book (Chapters 13–20) focuses on these methods. 
Mass spectrometry and proteomics are also being propelled forward by the increasing 
availability of whole genome sequencing of microorganisms, hence providing a wealth 
of data for in silico prediction and comparative validation of proteins, sequences and 
identity. This approach of combined data analysis is termed proteogenomics, which in 
clinical microbiology is not only yielding fingerprint capabilities and improved antibi-
otic sensitivity assays, but will have the capacity to identify toxins, signal molecules, 
attachment target proteins, metabolic intermediates and a plethora of virulence deter-
minants that reveal the pathogenic potential of a microorganism in real time. This will 
transform patient treatment and will serve as a powerful, rapid tool for both patient 
care and public health interventions, from pursuing transmission to developing  vaccines 
and therapeutics.

Emmanuel Raptakis
Managing Director, Citylabs, Manchester, UK
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1.1 Introduction

The outlooks of a microbial systematics research laboratory and a clinical diagnostic 
laboratory are scientifically and logistically polarized, due almost entirely to the nature 
of their approach to generating knowledge and translating technological tools. 
Research laboratories are generally sustained through scientific grants, and their focus 
is driven by development and applications of novel and emerging technologies; their 
direction is more fluid and innovative. By contrast, the clinical diagnostic laboratory is 
more c ircumspect and notoriously resistant to change in methodology and mindful of 
the meticulous level of validation and accreditation needed to implement new work-
flows. Thus, over the years, whereas researchers exploited biochemical and chemot-
axonomical advances, the traditional clinical diagnostic laboratory remained largely 
disinclined.

The arrival of comparative 16S rRNA sequence analysis heralded a new era of micro-
biology and allowed for the first time the classification of microorganisms along phylo-
genetic lines. This began in the 1970s with the introduction of rRNA cataloguing, then 
reverse transcriptase sequencing of the 5S, 16S and 23S rRNA subunits and, finally, 
with the arrival of PCR and sequencing of genes in the 1990s. The impact of compara-
tive 16S rRNA sequence analysis enabled the biggest change witnessed in microbial 
systematics for over a century and led to the assembly of the largest database in the 
h istory of life sciences. Although at the higher taxonomic level, the topography of many 
of the lineages remained stable, substantial changes in classification and nomenclature 
were being recorded at the genus and species levels. The need to study intra‐generic 
and intra‐species diversity became essential. Clinical microbiology was at a crossroads; 
it could not ignore the increasing volume of literature, and began slowly to embrace 
these changes.

A Paradigm Shift from Research to Front‐Line Microbial 
Diagnostics in MALDI‐TOF and LC‐MS/MS: A Laboratory’s 
Vision and Relentless Resolve to Help Develop 
and Implement This New Technology amidst 
Formidable Obstacles
Haroun N. Shah1 and Saheer E. Gharbia 2

1 Proteomics Research and 2Genomic Research Unit, Public Health England, London, UK
1 Current address: Department of Natural Sciences, Middlesex University, London, UK
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1.1.1 Personal Experience at the Interface of Systematics and Diagnostics

The Public Health Laboratory Service (PHLS) established its first dedicated 
Molecular Identification Services Unit (MISU) in late 1997 with a remit to find novel 
methods to identify atypical, rarely isolated and emerging taxa that clinical laborato-
ries failed to identify. PHLS at that time comprised a network of some 50 specialist 
laboratories in England and Wales that served as a national referral centre for the 
characterization of human pathogens that could not be delineated by clinical labora-
tories. In spite of the specialist nature of PHLS laboratories, a significant proportion 
of samples remained incertae sedis and were left unreported. MISU’s remit was to 
address this problem, and one of the authors (HNS), joined PHLS to spearhead 
reshaping diagnostics along a systematic and technology framework. Despite years 
of experience (from the early 1970s) in the field of microbial systematics, particularly 
with the Bacteroidaceae using b iochemical, chemical and molecular methods, the 
implementation of 16S rRNA from a research laboratory to a daily service function 
was a daunting challenge and only became a routine procedure by establishing a 
workflow from sample to sequence and data in hours rather than in days, the time-
line associated with multiple steps in amplification and DNA sequencing. This was 
facilitated by the new Applied and Functional Genomics Unit (headed by author SEG 
in 2002) and provided the momentum for the service to be accredited. Over the 
years, a large number of novel genomics and proteomic technologies were explored 
by both laboratories and served as a platform to introduce new technologies and 
their potential applications. Matrix‐assisted laser d esorption/ionization (MALDI)‐
time‐of‐flight mass spectrometry (MALDI‐TOF MS) was the first of these and dates 
back to its inception in October 1997.

1.1.2 MALDI‐TOF MS: The Early Years

The arrival of MALDI‐TOF MS coincided with attempts to introduce 16S rRNA as a 
diagnostic method in PHLS. The almost simultaneously publication of work from sev-
eral laboratories – for example, Claydon et al. (1996); Cain et al. (1994); Holland et al. 
(1996) and Krishnamurthy and Ross (1996) – highlighted its potential to create a pat-
tern derived from bacterial cells that discriminated between fairly disparate species. 
However, it was given little attention by clinical microbiologists, largely because of the 
success, ease and by now, the availability of public databases of 16S rRNA sequences. 
This was in direct contrast to MALDI‐TOF MS, for which there was only a general 
bench‐top instrument, no standard protocol nor more than a few dozen MALDI‐TOF 
MS spectra that were published mainly in MS journals.

The motivation to explore the application of this technology by the author stems 
from the need to find new methods to identify the unusual range of taxa that were 
received for identification for which even 16S rRNA results were equivocal. Having 
previously reported extensive work on characterization of lipids by MS (see, e.g. 
Shah and Collins, 1980; Shah and Collins, 1983; Shah and Gharbia, 2011), the poten-
tial use of MALDI‐TOF MS, which had the capability to ionize molecules orders of 
magnitude greater in mass, was an intriguing challenge and was explored initially 
using species of the genus Porphyromonas. A key character of this group is their 
inability to ferment carbohydrates, the primary means of identifying bacterial spe-
cies at that time. DNA‐DNA reassociation and lipid analyses by MS were the only 
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reliable methods to delineate members of this genus, but this was undertaken by 
only a few specialist laboratories and was lengthy, tedious, required a large biomass 
(>50 mg of cells) and was limited in scope (see, e.g. Shah et al., 1982). By contrast, 
when Porphyromonas species were subjected to analysis by MALDI‐TOF MS in 
early 1998, they were readily delineated using just a few cells directly from an agar 
plate (see Figure 1.1; see Shah et al., 2000; Shah et al., 2002). This watershed moment 
not only provided proof of concept but gave such confidence in the potential of this 
technology that MISU would go on to painstaking pursue its development for nearly 
two decades (Shah, 2005).
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Figure 1.1 Examples of the distinctive MALDI‐TOF‐MS profiles of intact cells of Porphyromonas 
sp. containing both genus‐specific (e.g. 618 and 844 Da mass ions) and also a significant number 
of species‐specific mass ions (examples indicated by arrows). Members of the genus 
Porphyromoas now comprise 18 species, in addition to several others that have not yet been 
validated (Bergey’s manual, 2011). However, with the exception of DNA/DNA reassociation, they 
could not be reliably delineated at the time. The three representative MALDI‐TOF‐MS spectra 
shown and those reported earlier (Shah et al., 2002) revealed that each species could be 
unambiguously distinguished. It was this poorly characterized group of anaerobes that became 
one of the compelling forces for the development of this technique for microbial identification. 
Early meetings to demonstrate an appreciation of the technology were mostly presented at 
meetings on anaerobic taxa and helped rejuvenate interest in this area of microbiology again 
(see Chapter 5 and Figure 1.4).
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1.1.3 The Formidable Challenge to Gain the Confidence of the Clinical 
Microbiologist in MALDI‐TOF MS

At its commencement, many microbiologists pointed to the dismal failure of pyrolysis 
MS (PyMS, circa 1970–1990) as a clinical diagnostic tool and simply branded MALDI‐
TOF MS as a newer version of PyMS that generated a mass spectral profile of unidenti-
fied proteins of intact cells. However, a minority believed that MALDI‐TOF MS was 
inherently superior, had more scope for development and took up the mantle to unlock 
its potential. Our laboratory was one of the forerunners, which embraced the drive to 
develop and implement MALDI‐TOF MS for microbial identification.

The proposal to introduce MALDI‐TOF MS for diagnosis in a molecular‐based 
s ervice for human infectious diseases seemed preposterous to many. Efforts to develop 
MALDI‐TOF MS and proteomics, in particular, were met with fierce resistance both 
from within and outside PHLS. Consequently, no core funding was allocated for its 
development throughout the years; support came from scientific grants, industrial 
funding and collaboration with various MS companies. Initially, Kratos Analytical, 
Manchester, UK, which designed and built the first bench‐top linear MALDI‐TOF mass 
spectrometer, the Kompact AlphaTM mass spectrometer, placed this instrument in 
MISU between 1998 and 1999 to help develop the methodology and explore the poten-
tial applications of the technique (Figure 1.2). To bring it to the attention of the wider 
scientific community, the first conference in the field entitled ‘Intact Cell MALDI: 
A Novel Technique for the Rapid Identification of Microorganisms’ was held at PHLS, 
London on 27 October 1998 and was attended by some 150 scientists (see Figure 1.3). 

Flight tube: Horizontal

20 sample wells-single target plate

Figure 1.2 The first bench‐top linear MALDI‐TOF mass spectrometer, the Kratos Kompact Alpha 
(Kratos Analytical, Manchester, UK), that inspired the development of the technology for clinical 
microbiology. The target plate, with a capacity for 20 samples, is shown and was used for generating 
the spectra shown in Figure 1.1. The instrument revealed the potential of the technology, but it was 
manual and unsuitable for a microbial diagnostic laboratory.
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The authors’ presentation titled ‘A Review of the Current Methods of Bacterial 
Identification: MALDI‐TOF MS in the Characterisation of the Obligate Anaerobes 
Fusobacterium and Porphyromonas’ outlined the paucity of reliable characters for 
delineating many taxa within the Bacteroidaceae and presented early data using 
MALDI‐TOF MS as proof of principle of the technique.

Although there were intermittent reports in the scientific community on the analysis 
of specific taxa, there was neither a generally accepted method nor a coherent plan 
to establish a universal approach to using MALDI‐TOF MS as a diagnostic tool. 
Furthermore, major concerns were raised at the meeting about introducing a 
new  technique to analyze human pathogens involving use of intact, viable cells. 
We carried out thorough investigations on the safety aspects of the procedures and 
produced a detailed application note for Kratos Analytical in 1999. To verify this, 
tough resistant spore‐formers, Bacillus stearothermophilus (NCTC 10003) and 
Bacillus subtilis (NCTC 10073), which are industry standard controls for heat and 

Figure 1.3 The conference leaflet of the first meeting held on 27 October 1998 to explore the 
potential application of MALDI‐TOF mass spectrometry for microbial identification. These meeting 
were held annually to showcase developments in the field. However, it still took a decade of research 
and development for this technology to gain widespread acceptance in the clinical microbiology 
laboratory.



MALDI-TOF Mass Spectrometry8

chemical sterilization, were processed through the instrument at various concentra-
tions and samples collected at potential leakage points within the instrument and 
vacuum pumps. No growth was observed in any sample, and this, together with other 
successful safety tests, led to the Health and Safety Executive granting approval for 
the use of MALDI‐TOF MS in a clinical laboratory and permission for engineers to 
carry out repairs in situ when necessary. MISU organized several hands‐on workshops 
for service engineers from MS companies to alert them to the hazards of undertaking 
fieldwork.

However, in spite of careful assessment of the risk, one major accident occurred in the 
laboratory in 2000 that nearly terminated all future work at PHLS. The standard method 
used for cleaning target plates at the time was sonicating for half‐hour intervals in 
methanol followed by washing in 33% (w/v) aqueous nitric acid, and final rinsing in 
distilled water (e.g. Evason et al., 2001). If the methanol and nitric acid are mixed and 
kept in a sealed container, the reaction is explosive. This error occurred, and a huge 
accident resulted in the laboratory being closed for several months and the project 
nearly being terminated.

However apart from safety issues, the mere separation of a few disparate species by 
differences in MALDI‐TOF MS spectra was insufficient to introduce a new technol-
ogy for clinical diagnostics. Instrument design, robust sample preparation among the 
varied bacterial chemotypes, reproducible mass spectra on a single instrument as well 
as other instruments and development of a database were among the major chal-
lenges faced at the time. From these initial stages, we set out to explore the various 
forms of MALDI‐TOF MS and later on, tandem MS/MS proteomics for the charac-
terization of human pathogens. Annual international conferences were organized to 
showcase developments at each stage together with horizon scanning for future work 
(see Table 1.1).

1.2 Overcoming the Variable Parameters of MALDI‐TOF MS 
Analysis: Publication of the First Database in 2004

Between October 1997 and December 1999, we began to explore the diagnostic poten-
tial of MALDI‐TOF MS with Manchester Metropolitan University using the Kratos 
Kompact AlphaTM mass spectrometer. Samples were taken from broth and plate 
 cultures with cells from various growth phases. We analyzed intact and broken cells 
preparations, fractions from gradient centrifugation steps, and so on. Several matrix 
solutions, at a range of concentrations, were used to derive a reproducible MALDI‐
TOF MS spectrum. These included 5‐chloro‐2‐mercaptobenzothiazole (CMBT), α‐
cyano‐4‐hydroxycinnamic acid (α‐Cyano), sinapinic acid and ferulic acid. Several 
matrices were known at the time to improve signal reproducibility (e.g. Gusev et al., 
1995), and it soon became common practice to use CMBT for gram‐positive and α‐
Cyano for gram‐negative bacteria. We tested instrumental parameters, some of which 
were inflexible; for example, the laser was set at 337 nm, and the pulse width was fixed 
at 3 ns. However, other parameters such as the voltage could be altered, and this 
was rigorously tested and eventually set at 20 kV accelerating potential. Initially, data 
was collected over a wide range of m/z values, but the highest density of mass ions was 



Table 1.1 International conferences organized by the Molecular Identification Services Unit (MISU) 
and Applied and Functional Genomics Unit (AFGU) to showcase work achieved and future directions 
in proteomics using MALDI‐TOF MS and tandem MS/MS and genomics. (MISU and AFGU were 
amalgamated in September 2009 in the new Department of Bioanalysis and Horizon Technologies.)

Date Title

27 October 1998 1st: Intact Cell MALDI – A Novel Technique for the Rapid 
Identification of Microorganisms

14–15 June 1999 2nd: The Impact of the Environment on Human Infections through 
Molecular and Mass Spectrometric Analyses

17–18 April 2000 3rd: Microbial Characterisation, Diversity and Function through 
Genome and Proteome Analysis

25–27 June 2001 4th: Decoding the Microbe Using Advanced Tool of Genomics, 
Transcriptomics and Proteomics

1–2 July 2002

Workshops: 23–24 
June 2004

5th: Applications of Biomics (Genomics, Proteomics and 
Bioinformatics) in the Research and Diagnostic Laboratory
(Workshops in genomics, proteomics and bioinformatics)

16–17 June 2003 6th: Disease Biomarkers and Polymorphisms in Microbes
21–22 June 2004.

Workshops: 23–24 
June 2004

7th: Meeting the Challenges of Infectious Diseases through advances in 
Developing Technologies
(Workshops in genomics, proteomics and bioinformatics).

13–14 June 2005 8th: Sequenced‐Based Approaches to Diagnosis of Infectious Disease Agents
25–26 September 2006 9th: Development and Application of High Throughput Systems in 

Diagnostic Microbiology
18–19 September 2007 10th: The Changing Landscape of Diagnostic Microbiology; from 

Decades of Traditional Methods to Applied Genomics and Proteomics
26–27 June 2008 11th Use of New Technologies to Further Understand the Biology of 

Transient and Host‐Derived Human Pathogens
25–26 June 2009 12th: Target Molecules and Biomarkers in the Characterisation of 

Microbes in Disease and the Environment
24–25 June 2010 13th: Microbial Infections: Novel Approaches to Looking at Old Problems
23–24 June 2011 14th: Exploration of Novel Technologies for Biomarker Discovery and 

Point of Care Diagnostics
21–22 June 2012

Supplementary 
meeting: 4–5 April 2012

15th: Unlocking Genomic and Proteomic Signatures for Functional 
Characterisation of Human Pathogens
Microbial Diagnostic Applications of Mass Spectrometry (Jointly 
between PHE and the University of Minho, Portugal)

27–28 June 2013 16th: Microbial Subtyping in Disease and the Environment; the Pivotal 
Role of Reference Collections

26–27 June 2014 17th: The Power of the Genome and Proteome in Public Health 
Interventions
(Joint meeting between PHE and The Royal College of Pathologists)

25–26 June 2015 18th: Applications of High Throughput Genomics and Proteomics in 
Infection

23–24 June 2016 19th: Next Generation Genomics and Proteomics, Advances in 
Microscale Analysis
(Joint meeting between PHE, Animal and Plant Health Agency and 
Middlesex University, London)
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found to lie within the m/z range of 500 to 10,000 kDa. Thus, most samples were 
 analyzed within this range. This was subsequently extended to 20,000 kDa. Once these 
constraints were set, various parameters that affect the stability of the mass spectrum 
were meticulously investigated. Media types and suppliers were tested (see Figure 1.4; 
Shah et  al., 2000). The effect of spores on ionization, impact of temperature, pH, 
growth phase and cell density were all investigated and used to derive a standard 
 protocol. Data analysis was achieved by using a modified Jaccard coefficient and 
UPGMA to analyze and interpret interrelationships between strains. At each stage, 
the progress made was incorporated into an annual report presented at a series of 
i nternational conferences (Table 1.1).

Following considerable preliminary work using this instrument, recommendations 
for improvement were made in 1999. The base of the instrument was quite large because 
of the need to accommodate the horizontally positioned flight tube. A suggestion to 
reposition the flight tube vertically would shrink its width and so enable the instrument 
to fit into the normally cramped space of a clinical laboratory. Other recommenda-
tions included the need to automate the many operational steps and redesign the 
fragile 20‐well target plate (Figure 1.2), two of which were used as standards for lock 
mass corrections while those at the extreme ends of the target plate yielded unreliable 
results.
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Figure 1.4 Changes in the MALDI‐TOF‐MS profile of the same strain of Porphyromonas catoniae (NCTC 
12856) grown of Fastidious Anaerobic Agar (FAA) and Columbia Blood Agar (CBA). Many of the 
significant mass ions, e.g. 542, 580, 618, 689, 784 and 845 Da, are retained. However, significant mass 
ions such as 935 Da are present only in cells grown on CBA.
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A new instrument with the designed features described above was built by Micromass 
(Manchester, UK) in late 1999 and became the first upright bench‐top linear and 
reflectron MALDI‐TOF MS instruments (see Figure 1.5). The linear TOF instrument 
designated M@LDI was delivered to our laboratory on 12 April 2000, on a long‐term 
loan to develop its applications.

This was two working days before the third annual conference on 17–18 April 2000 
(see Table  1.1) and just prior to the Congress of the Confederation of Anaerobic 
Societies, Manchester, 10–12 July 2000 (Figure 1.6A). Work on poorly characterized 
anaerobic species was presented by author HNS in 2001 at the symposium ‘An Anaerobe 
Odyssey’ in UCLA, Los Angeles, CA, to demonstrate the optimism that was already 
developing (Figure 1.6B). PHLS underscored this momentous event in its 2001 year-
book, during which these early results were highlighted. This instrument, reconfigured 
with a vertical flight tube, utilized a solid stainless steel 96‐well target plate which 
c omprised rows of 12 sample wells with a central position between each of four wells for 
lock mass correction. Author HNS incorporated it into the clinical services of the 
Identification Service Unit, which published its first promotional flyer in 2000, a deci-
sion that emanated from its confidence in the use of MALDI‐TOF MS for microbial 
identification (Figure 1.7).

Figure 1.5 The first dedicated linear MALDI‐TOF mass spectrometer for microbial identification used 
for creating the first MALDI‐TOF MS database in 2004 (Keys et al., 2004). The instrument, manufactured 
by Micromass (Manchester, UK), remedied many of the shortcomings of the Kratos Konpact Alpha and 
had the capacity to analyze 96 samples automatically.
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Figure 1.6 Early meetings on MALDI‐TOF MS were focused on poorly defined anaerobic species to 
emphasize, even at that time, the resolution of the method. Many of these species are non‐
fermentative so that methods involving the use of API or various biochemical tests, which were the 
primary methods then, were negative. New species were proposed mainly on the basis on DNA‐DNA 
reassociation, which could not be applied in a clinical laboratory. MALDI‐TOF MS when introduced 
contributed significantly to a resurgence of interest in anaerobic microbiology because of its capacity 
to resolve such complex taxonomic problems. (A) As early as the year 2000, a specific symposium was 
held to demonstrate the high resolving power of MALDI‐TOF MS in delineating poorly defined 
anaerobic species in the United Kingdom and (B) in 2001, in the United States.

ANAEROBE 2000; the first Congress of the Confederation of Anaerobic
Societies: 10 – 12 July, 2000 in Manchester, England

Society for Anaerobic Microbiology (UK); Anaerobe Society of the
Americas, Japanese Association for Anaerobic Infection Research

(A)

Micromass Satellite Symposium
New Techniques in Mass

Spectrometry
Tuesday, July 11, 2000

Micromass UK Ltd. will offer a seminar on
“New Techniques in Mass Spectrometry”
during the Lunch Period on Tuesday, July
11, 2000. The session will be presented by
Prof. Haroun N. Shah and will address how
mass spectrometry techniques (MALDI-TOF
MS) enable bacteria to be identified with
unprecedented selectivity and speed. This
workshop is intended both to illustrate the
potential of these emerging typing strategies
and stimulate debate on their practicability.

2001: An Anaerobe Odyssey
August 12, 2001

UCLA Faculty Center, Los Angeles, CA

The Anaerobe Society of the Americas and the Infectious Disease
Asssociation of California present 2001: An Anaerobe Odyssey at the
UCLA Faculty Center in Los Angeles, CA. The symposium celebrates the
80th birthday of Dr. Sydney M. Finegold, noted anaerobe researcher and
Founding President of the Anaerobe Society.

Program:

Ellen Baron: Speculations on the Microbiology Laboratory of the Future

Diane Citron: Changes in the Genus Fusobacterium

Sydney Finegold: The Possible Role of Intestinal Flora in Autism

Ellie Goldstein: Therapy of Anaerobic Infections

David Hecht: Evolution of Anaerobic Susceptibility Testing

Hannele Jousimies-Somer: The Taxonomic Evolution of Gram-negative Anaerobes

Carl Nord: The Status of Research on Anaerobes in Europe

Haroun N. Shah: MALDI-TOF Mass Spectrometry and Proteomics: A
       New Era in Anaerobic Microbiology
Dennis Stevens: Clostridial Toxins

Kazue Ueno: The Status of Research on Anaerobes in Japan

Hannah Wexler: Outer Membrane Proteins of Gram-negative Anaerobes

(B)
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With the basic parameters for a microbial database established, our major goal over 
the following five years was to develop a database of mass spectral profiles. Funding for 
this came through a collaborative multicentre venture with Manchester Metropolitan 
University and Micromass (Floats Road, Manchester) for a five‐year intensive pro-
gramme. The first year of the project was used to meticulously optimize protocols and 
interrogate the software and search engine. The National Collection of Type Cultures 
(NCTC) is part of the PHLS, and its vast range of type and reference strains were used 
as the resource for creating the database. For development of the database, NCTC’s 
strains were sent out independently and blindly to each of the three collaborating 
laboratories for analyses. Twenty strains per week were analyzed over 50 weeks annu-
ally with each strain being analyzed 12 times at each site. Thus, during the first year, 
36,000 spectra were collected and analyzed. Operation of the mass spectrometer was 

MALDI-TOF-Mass Spectrometer– (2000)

Figure 1.7 The first promotional service flyer for the Molecular Identification Services Unit 
(MISU, PHLS), which was printed and advertised from 2000. It signalled a strong declaration 
of MISU’s vision to elevate MALDI‐TOF MS as its principal method of microbial identification by 
placing a M@LDI‐TOF mass spectrometer (Micromass, Manchester, UK) in the central position 
on the flyer.
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performed using a specially designed software designated MassLynxTM. Automated 
calibration of the TOF tube, followed by automated acquisition of the bacterial spectra, 
was then performed using the real‐time data selection (RTDS) function in the 
MassLynxTM software. Spectral profiles were collected in the mass range 500–
10,000 kDa, acquiring 10 shots per spectrum at a laser firing rate of 20 Hz. Fifteen spec-
tra per sample well and 10 spectra per lock mass well were collected using the RTDS 
option to optimize the collection of quality data. For database inclusion, the spectral 
reproducibility between the 12 replicates per sample was tested using a root mean 
square (RMS) calculation to identify and reject outliers at a value greater than 3.0. The 
RMS is the normalized deviation of the median of test spectra from the spectral average 
and therefore was used to compare each replicate spectrum in turn to the composite 
spectra of the remaining replicates. All verified spectra were combined to produce a 
composite spectral entry for each bacterium included in the database. The system was 
challenged with unknown and clinical isolates. Database searching was based on an 
estimation of the probability that the mass spectral peaks in the test spectrum are com-
parable with the database spectrum. A list of the top matches was provided together 
with RMS values. A high probability and low RMS value indicated a good match. The 
correlation between results at each laboratory was so high that after the first year, the 
compilation of the database was done independently and added to a composite data-
base. The results were reported in 2004 when the database comprised 3500 spectra 
(see Keys et al., 2004).

While this work was in progress, our laboratory, MISU, began using the instrument in 
tandem with 16S rRNA sequencing as part of its service function, and numerous unu-
sual isolates that would hitherto be left unreported were now being identified 
(Figure 1.7). For example, the receipt of an unusual isolate from a patient who devel-
oped a severe wound infection after a visit to the Dead Sea was erroneously identified 
on primary culture as S. aureus because of its striking morphological resemblance to 
this species. However, its MALDI‐TOF MS spectrum was significantly different, trig-
gering further analysis, and it was subsequently identified as Exiguobacterium auran-
tiacum using 16S rRNA (Mohanty and Mukherji, 2008). The inclusion then of E. 
aurantiacum into the database enabled rapid identification of this species and prompted 
clinicians to send in samples from patients with similar symptoms. Within six months, 
18 patients with bacteraemia were shown to have E. aurantiacum. A subsequent study 
using MALDI‐TOF MS rapidly identified strains of this alkaliphilic, halotolerant bacte-
ria from six patients with bacteraemia, three of whom had myeloma (Pitt et al., 2007). 
Some of most difficult species received for identification by MISU belonged to the 
Acinetobacter, Kingella and Moraxella complex. These were extensively studied and 
delineated very early in this study and reported at the American Society for Mass 
Spectrometry 48th meeting in 2000.

Work continued on microbial identification using MALDI‐TOF MS, with the data-
base now containing nearly all the NCTC’s type and reference strains. The next phase 
of the work involved the trial of the instrument in a hospital laboratory. Through The 
Royal London Hospital (University of London), it was possible to gain access to primary 
routine cultures over several weeks. Hospital staff were trained in sample preparation 
and analysis, and over 600 samples were analyzed. Because of the problems associated 
with MRSA and C. difficile infections at the hospital, priority was given to presumptive 
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isolates of these species. Although it was not possible to separate MRSA from sensitive 
strains, all samples were correctly identified to the species level (Rajakaruna et  al., 
2009). However, the work suffered a major setback by the failure to confidently identify 
isolates of C. difficile. This was remedied through a collaboration which began in 2007 
with a small company, AnagnosTec GmbH (Potsdam OT Golm, Germany), and led to a 
change of matrix solutions and formic acid extraction of samples prior to MALDI‐TOF 
MS analysis. Meetings organized by AnagnosTec were held annually for four years in 
Potsdam Golm and comprised a small group of about 20–30 participants from various 
parts of Europe who had a vested interest in implementing MALDI‐TOF MS as a diag-
nostic tool (Figure 1.8). Most of the motivation to establish MALDI‐TOF MS in clinical 
laboratories was concentrated in Europe, as the United State’s FDA approval seemed a 
distant goal. This is reflected in the authorship of the book Mass Spectrometry for 
Microbial Proteomics (Wiley, 2010).

Initially, the instrument was set up to profile the surface molecules of cells, the ration-
ale being that differences between virulent and avirulent strains, where the pathogenic 
potential is due to surface‐associated molecules, could be mapped and used for detec-
tion of pathogenic variants. For some species such as Peptostreptococcus micros, this 
was highly successful, where resolution of the two pathotypes (‘smooth’ and ‘rough’ 
variants) were readily distinguishable through characteristic mass ions (see Rajendram, 
2003). However, to obtain such mass spectra, it was necessary to use rigorously stand-
ardized parameters that may alter the morphology of cells grown on agar plates. In our 
experience, a more fruitful way to approach this is the use of MALDI‐TOF MS with 
ProteinChip Arrays (designated surface‐enhanced laser desorption/ionization TOF 
MS, or SELDI‐TOF MS).
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Figure 1.8 Identification of clinical isolates received by MISU using 16S rRNA and MALDI‐TOF MS 
(Micromass, UK) over a 10‐year period. MISU receives atypical, rarely isolated and emerging 
pathogens, and for such unusual isolates, the results shows that MALDI‐TOF MS was significantly more 
useful in identifying these isolates to the species level.
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1.3 SELDI‐TOF MS: A Powerful but Largely Unrecognized 
Microbiological MALDI‐TOF MS Platform

Microorganisms constantly undergo microevolution, and the expression of these 
changes is reflected in proteins; consequently, we envisaged that these biomolecules 
would be a rich source of biomarkers. Because proteins dictate virtually all the biological 
functions of a cell, we proposed to systematically catalogue cellular proteins of key 
pathogens and investigate how they change in response to disease and environmental 
factors including exposure to antibiotics. Initially, some investigators attempted to 
deduce components of the bacterial cell envelope using linear MALDI‐TOF MS 
(see, e.g. Claydon et al., 1996). We were acutely aware at the commencement of this 
programme that this instrument would only provide diagnostic profiles for microbial 
identification. To unravel the microbial proteome, various forms of higher‐resolution 
MS would be necessary and, at that time, several gel‐based methods were also indis-
pensible prior to MS analysis.

Through a collaborative programme with Ciphergen Biosystems, we acquired the 
ProteinChip® System, designated SELDI‐TOF MS. The ProteinChip technology has the 
capacity to rapidly perform separation, detection and analysis of proteins (at the femto-
mole level) directly from biological samples. Key components of the technology are 
ProteinChip arrays that comprise minute chromatographic wells that contained either 
a chemical (anionic, cationic, metal ion, hydrophobic, hydrophilic, etc.) or biochemical 
(antibody, receptor, DNA, etc.) surfaces to capture specific classes of proteins from a 
crude sample (see Figure 1.9). In practice, a few microlitres of a cell extract may be dis-
pensed onto the ProteinChip surfaces, a quick wash is performed to remove unbound 
proteins and interfering substances and the sample allowed to air‐dry for a few minutes. 
The matrix solution (sinapinic acid) is then added and samples analyzed by MALDI‐
TOF MS using the Ciphergen Biosystems instrument. The resulting molecular ions of 
the proteins, which remained bound to the ProteinChip surface, are deduced in min-
utes from its mass spectrum (see Figure 1.9). Because of the chemistry of the ProteinChip, 
the system has the capacity to capture a range of biomolecules. Our first applications of 
the technology for characterization of microbes were presented at the fourth of the 
annual conferences (Table 1.1) together with other potential applications. For example, 
antibodies may be covalently immobilized onto the ProteinChip Array surface by an 
initial incubation and washing, after which antigens may be specifically captured and 
analyzed directly to determine their intact masses. The potential to replace many con-
ventional ELISA systems therefore existed. Furthermore, for epitope mapping, the 
bound proteins may be enzymatically digested by on‐chip incubation with endopro-
teases. Following a wash to remove the unbound fragments, SELDI analysis may be 
used to identify the retained fragments and so enable characterization of the epitope. 
Through various grant‐funded projects, MISU characterized a number of pathogenic 
determinants such as the botulinum toxins to find alternatives to animal experiments, 
determined pathotypes of Peptostreptococcus micros (Rajendram 2003), adhesins of 
Enterococcus faecalis (Reynaud et al., 2007), etc. (see review by Shah et al., 2010).

The potential of SELDI‐TOF MS has been recognized by only a few microbiologists 
and consequently was never fully exploited. As early as 2001, the SELDI‐TOF MS 
t echnology was interfaced with the Applied Biosystems QSTAR Hybrid LC/MS/MS to 
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Figure 1.9 Some of the most popular types of ProteinChip arrays (H50, Q10, CM10 and NP20) used for analysis of microbial cells 
extracts and an overview of the process to obtain a mass spectral profile. From left to right, the sample is added to the ProteinChip 
array, the wells washed and air‐dried for a few minutes, the matrix (Sinapinic acid) added, followed by mass spectral analysis to yield 
the spectra shown.
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identify biomarkers with an upper limit of <4 kDa. This significantly expanded the 
scope of SELDI to include characterization of proteins, protein interactions and struc-
tural analysis. Had this developed further, SELDI‐TOF would have had a greater pres-
ence in microbiology. Ciphergen Biosystems was acquired by Bio‐Rad in 2006 and with 
their long‐standing interest in characterizing microbes using SDS‐PAGE methods, this 
again should have stimulated interest among microbiologists. The company phased out 
the early instruments, and customers were left with mass spectrometers that could not 
be serviced; interest rapidly declined. In July 2009, a similar attempt was made to com-
bine Bio‐Rad’s ProteinChip (SELDI)‐based technology with Bruker’s ultrafleXtreme 
MALDI‐TOF/TOF mass spectrometer, but as before, this had little impact among 
microbiologists and interest rapidly declined. As a typing tool, we believe that systems 
such as SELDI‐TOF MS offer considerable advantage over traditional MALDI‐TOF MS 
(see review, Shah et al., 2005) and used this approach recently to delineate the hetero-
geneity of Propionibacterium acnes. For the first time, mass ions derived from both 
MALDI‐ and SELDI‐TOF MS were used as new criteria to propose two new subspecies 
(see Chapter  5; Dekio et  al., 2015) and supports the confidence MALDI‐TOF MS 
inspires today.

1.4 MALDI‐TOF MS as a Platform for DNA Sequencing

Although MALDI‐TOF MS is widely used for proteomic and peptide mass fingerprint-
ing, very few laboratories worldwide have applied this powerful technology for micro-
bial genomics. A barrier to its direct analysis stems from the instability of DNA when 
subjected to MALDI‐TOF analysis because, during desorption, base protonation causes 
rapid destabilization of the N‐glycosidic bond, causing base loss and fragmentation at 
many positions along the DNA (Figure  1.10). This is in contrast to RNA, whose 2′‐
hydroxyl group enables greater stability. In practice, primers tagged with a T7 promoter 
enable transcription of DNA amplicons to the more ‘stable’ RNA molecules. These are 
cleaved at nucleotide bases, and their molecular weights readily identified by MS and 
compared with the simulated spectra of reference sequences. Not only is the method 
rapid and very accurate but base modifications such as methylation and acetylation are 
readily detected. Sequenom GmbH was the first company to exploit this phenomenon 
and initially focused on single‐nucleotide polymorphisms for which viruses were 
c ommon targets (see Chapter 8). As early as 2002, the authors (HNS and SEG) began to 
investigate the potential of this technology for microbial genotyping, and early data 
were reported by Dirk van den Boom at the fifth annual meeting (Table  1.1). Data 
obtained was used to support a successful joint scientific grant application in 2005 to 
expand the depth of the technology for microbial typing (Honisch et al., 2007, 2010). 
Among the applications developed using the Sequenom MassARRAY® System was the 
transfer of the traditional serotyping system of Kauffmann and White for typing of 
Salmonella, which because of identifiable mutations in the genes encoding the ‘O’ and 
‘H’ antigens, was readily transferable (Bishop et al., 2010).

The long awaited first visit of Franz Hillenkamp, the pioneer and inventor of the 
t echnique he called matrix‐assisted laser desorption/ionization TOF‐MS, took 
place at the Gordon Museum, Guy’s Campus, University of London, on 13 December 
2007, through an invitation of the London Biological Mass Spectrometry Discussion 



Figure 1.10 Proposed mechanism for the degradation of DNA in a MALDI‐TOF mass spectrometer. This was taken from Franz 
Hillenkamp’s notebook during his visit to MISU and AFGU in 2008. See text for details.
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Group (LBMSDG). In a room packed to capacity with enthusiasts, Hillenkamp deliv-
ered a p ersonal, riveting and moving lecture on the history of the technology; gener-
ously acknowledging his competitors and expressing his pride in seeing the 
applications of the technology today ‘in areas he had not foreseen’. He generously 
complimented the work of our laboratory, and in the midst of his presentation 
invited author HNS to p resent some of the biological applications of the technology 
that were in use at PHE. He then resumed his presentation and speculated on future 
applications.

This visit led directly to his second trip to London the following year where he was 
invited to deliver the Plenary Lecture ‘MALDI‐TOF MS: Development of an Analytical 
Tool for Biological Sciences’ at our 11th annual meeting (Table 1.1). He spent four days 
in the laboratory working with staff and PhD students and left a lasting impression on 
all who met him as a humble, gifted scientist who had a lifelong passion for science. The 
scientific community strongly believed he should have shared the Noble Prize in 2002 
for Chemistry with Koichi Tanaka for the development of MALDI‐TOF MS. He dis-
missed this as inconsequential and basked in the practical applications of his pioneering 
work. He took up an advisory post with Sequenom (which moved from Germany to San 
Diego, CA) and co‐authored a chapter titled ‘DNA Resequencing by MALDI‐TOF MS 
and Its Application to Traditional Microbiological Problems’ (Honisch et al., 2010).

1.5 Insights into the Proteome of Major Pathogens  
2005–2009: Field Testing of MALDI‐TOF MS

The award of a major five‐year scientific grant in 2005 to the authors for integrating 
genomics and proteomics for biomarker discovery (entitled ‘Detection of virulence and 
species biomarkers of deliberate release pathogens using an integrated genomic‐prot-
eomic high resolution platform’ (S.E. Gharbia and H. N. Shah for about £2 million) 
served as a springboard for the development of proteomics in PHLS (by then known as 
the Health Protection Agency [HPA]). Prior to this, our proteomics research was under-
taken by PhD students. This major programme enabled the appointment of several 
dedicated staff and the purchase of a plethora of proteomic equipment including, a 
MALDI Reflectron, Sequenom’s MassARRAY® System, various gel‐based equipment, 
imaging systems for DIGE, robotic stations for trypsin digestion, etc. However, it was 
the acquisition of the new and novel Thermo Electron Corporation’s nano‐LC LTQ 
Orbitrap mass spectrometer system which propelled the organisation into advanced 
proteomics and had a dramatic impact in the field. At the eighth annual conference in 
2005, the need for a London‐based biological MS group took root and was eventually 
established by Anthony Sullivan as the LBMSDG, which up to now holds quarterly 
meetings in central London and attracts some of the pioneers in the field.

Alexander Makarov invented the Orbitrap, which subsequently led to a whole series 
of Thermo Fisher Scientific instruments that are used for both bottom‐up and top‐
down proteomics. Michaela Scigelova, who worked closely with Makarov (Scigelova 
and Makarov, 2006), expounded the virtues of the Orbitrap in her presentation 
“Advances in the analysis of biomolecules using high resolution hybrid mass spec-
trometers” at our ninth annual conference in 2006. Although Makarov had presented 
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proof‐of‐principle results of the Orbitrap analyzer at the ASMS conference as early as 
1999, commercial introduction of this analyzer by Thermo Fisher Scientific, as part of 
the hybrid LTQ Orbitrap instrument, did not materialize until 2005. With the timely 
success of this grant, we were therefore the recipient of one of the first instruments, and 
work began almost immediately. Proteome analysis of serovars Typhimurium and 
Pullorum of Salmonella enterica subspecies (Encheva et al., 2005, 2007) and Neisseria 
gonnorrhoeae were reported (Schmid et al., 2005). A basic proteome reference map of 
Streptococcus pneumonia was published in the journal Proteomics (Encheva et al., 2006) 
while the Sequenom Mass Cleave technology was by then firmly established as a micro-
bial typing tool in our laboratory (Honisch et al., 2007). The bridging of genomics and 
proteomics was now established (see, e.g. Al‐Shahib et al., 2010; Misra et al., 2012).

1.6 2010–2011: The Triumph of MALDI‐TOF MS 
and Emerging Interest in Tandem MS for Clinical 
Microbiology

During the first decade of the millennium, ideas that were being explored at the turn of 
the century began to take root. There was a period of considerable development both in 
hardware, software and bioinformatics tools. The latter was already an integral part of 
genomics and was by then beginning to underpin developments in proteomics. Whole 
genome sequencing was becoming a reality for the clinical research laboratory, and 
with the vast amount of microbial sequence data accumulating, protein identification 
by MS/MS analysis, which is dependent on sequence data, accelerated significantly. The 
burgeoning field of proteogenomics was now inseparable and began expanding rapidly. 
The organization restructured its laboratories accordingly to facilitate this interaction. 
Thus, in 2010, Proteomics and Genomics Services and Research were amalgamated 
into one large specialty designated Department of Bioanalysis and Horizon Technologies, 
bringing genomics and proteomics laboratories in juxtaposition. Even though develop-
ments were gradual, a decade of work seemed to have reached a new milestone in 2010. 
New bioinformatics approaches were being used to characterize microbial biomarkers 
(see, e.g. Shah et al., 2011). Bottom‐up analysis of MS/MS data was permitting in‐depth 
analysis of the microbial proteome, and new insights into their structure, metabolism 
and pathogenicity were being reported (see reviews in Shah and Gharbia, 2010). A nota-
ble example was the elucidation of the outer membrane proteome of Salmonella enter-
ica serovar Typhimurium utilizing a lipid‐based protein immobilization technique 
which was undertaken in collaboration with Roger Karlsson’s laboratory in Sweden 
(Chooneea et  al., 2010). This work has now advanced as a means of proteotyping 
m icrobial species, which significantly expands the use of proteomics for microbial 
c haracterizations (see Chapter 16).

Bacterial pathogens considered category A biothreat agents such as Bacillus anthra-
cis, Francisella tularensis, Clostridium botulinium and Yersinia pestis or category B 
agents such as Burkholderia pseudomallei and Burkholderia mallei require work in 
Biosafety level 3 cabinets (Rotz et  al., 2002). Because of the need to undertake all 
p reparative work at such a high containment level, work on such pathogens was 
restricted to few laboratories and focused mainly on genomics. With the arrival of 
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nano‐LC systems coupled to the LTQ Orbitrap, it was possible to work with microlitre 
volumes of cell extracts and undertake analysis of such pathogens. The number of 
strains and species could now be scaled up for MS/MS analysis. Consequently, we were 
able to develop a pipeline for biomarker discovery using MS and bioinformatics to 
included category A pathogens (Al‐Shahib et al., 2010). Among species where differen-
tiation from closely allied taxa were contentious by genomic methods, unique strain‐
specific peptides were found that delineated each clearly (see Chapter  13) and was 
reported at the 20th meeting of the European Congress of Clinical Microbiology and 
Infectious Diseases (ECCMID) in Vienna in 2010.

ECCMID, because of its strong focus on microbial diagnostics has, over the years, 
become a vehicle for reporting developments in the application of MALDI‐TOF MS for 
microbial identification, typing and antimicrobial resistance detection. In previous 
years, lecture theatres would be sparsely occupied during presentations on MALDI‐
TOF MS. At ECCMID in Glasgow, 10–13 May 2003, the author’s presentation on 
MALDI‐TOF MS in microbial identification drew 15 people in a room with a capacity 
for 150. However, at ECCMID 2010, the largest lecture halls could not accommodate all 
who wished to attend, signalling a significant turning point in the acceptance of this 
technology. There was a dedicated symposium of invited speakers titled ‘MALDI‐TOF 
in Clinical Microbiology’ (11 April 2010) in which our presentation titled ‘MALDI‐TOF 
MS of Surface‐Associated and Stable Intracellular Proteins for Identification and 
Resistance Profiling of Human Pathogens’ covered the work of the last decade. Many 
groups of species in which we previously encountered difficulties in obtaining confident 
identification, such as Clostridium difficile, Bacillus species or mycobacteria, were now 
being resolved and reported with improved confidence scores (e.g. Figures  1.11 and 
1.12). The three other speakers of this session echoed this confidence to a large audi-
ence. A Poster Session on 12 April titled simply ‘MALDI‐TOF’ reinforced this: there 
were 27 poster presentations on MALDI‐TOF MS. The following day ended with an 
oral session titled ‘What Can We Expect from MALDI‐TOF?’ in which there were 10 
presentations. This immense endorsement of MALDI‐TOF MS at one meeting led to a 
feeling of reflective optimism following a decade of persistent work and coincided with 
the publication the book Mass Spectrometry for Microbial Proteomics (Shah and 
Gharbia, 2010). Displayed at the publisher’s, Wiley’s, desk at ECCMID 2010, copies 
were sold out to the new wave of transformed microbiologists.

Perhaps the biggest barrier to acceptance of this radical change to MALDI‐TOF MS 
was for microbiologists to leave behind the deeply rooted role that morphological and 
biochemical tests played in bacterial identification since its inception in the late nine-
teen century. The first chapter of the book, titled ‘Changing Concepts in the 
Characterisation of Microbes and the Influence of Mass Spectrometry’ (Shah et  al., 
2010), charts the course of determinative microbiology and makes the case for this 
r adical change to MALDI‐TOF MS. Fundamental changes had already taken place in 
microbiology with the accessibility of DNA sequencing as described in the following 
chapter, ‘Microbial Phylogeny and Evolution Based on Protein Sequences – The Change 
from Targeted Genes to Proteins’ (Gupta, 2010), but clinical microbiologists still alluded 
to this as the domain of the research laboratory. Thus‚ nearly all the presentations at 
ECCMID 2010 used biochemical tests as a comparator to access the performance of 
MALDI‐TOF MS. It is interesting that bioMérieux, one of the global leaders of bio-
chemical tests, revealed their acclamation of MALDI‐TOF MS at ECCMID 2010 by the 
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acquisition of AnagnosTec in a sweeping public display in which they substituted all 
AnagnosTec marketing literature with bioMérieux’s promotional material during the 
Trade Exhibition. bioMérieux states on their web site: ‘Right from the moment it 
launched, API® completely revolutionized the field of bacteriology. API® brings together 
high quality and ease of use with standardized, miniaturized strips of biochemical tests 
to use with comprehensive identification databases. With API®, bacterial and fungal 
identification is simple, rapid and reliable’ (http://www.biomerieux‐diagnostics.com/
apir‐id‐strip‐range). To many, this change seemed extraordinary because although a 
few bioMérieux’s staff visited and worked at PHE for short intervals on MALDI‐TOF 
MS, the company had no experience in MS, while Shimadzu, which manufactured the 
instruments, remained anonymous.

Thermo Fisher Scientific, which has an enormous global portfolio in MS, also had a 
strong presence at ECCMID 2010 but from their microbiological products perspective. 
They too were strongly influenced at ECCMID 2010, and a meeting was set up with the 
authors on the first evening to explore ways in which they might enter microbial MS. 
We already had five years experience with Thermo Fisher’s LTQ Orbitrap and presented 

C. difficile

P. acnes,

S. warneri

Figure 1.11 Identification of Clostridium difficile. Initially this posed a major problem for accurate and 
reproducible identification. The dendrogram shows some100 clinical isolates of C. difficile clustering in 
a single phenon and distant from other species such as Propionibacterium acnes and Staphylococcus 
warneri, with which it initially formed a common cluster.
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a significant amount of microbial proteomics at this meeting using this instrument. 
The  outcome of this meeting was to either develop the bottom‐up approach using 
nano‐LC MS/MS further or explore the use of a new MALDI‐TOF mass spectrometer.

The euphoric end to ECCMID 2010 was followed by several hundred e‐mails and 
communications for more information immediately following the meeting. This opti-
mism was channelled into our 13th annual conference in June 2010 (Table 1.1) in which 
both MALDI‐TOF MS and LC‐MS/MS work on human pathogens was reported. 
Prominent among these was a presentation titled ‘MALDI‐TOF MS Detection of Low 
Abundance and Low Molecular Weight Proteins Using Nanoparticles’ which was based 
on the preliminary work we had embarked upon with the National Physical Laboratory; 
the hypothesis being to incorporate nanoparticles to capture low‐abundance proteins 
that normally evade mass spectral analysis.

1.7 Preparations for MALDI‐TOF MS Analysis on a Grand 
Scale: The Looming London 2012 Olympics

Following the summer of 2011 in the which a major outbreak of food‐borne illness was 
caused by E. coli (see below), attention began to focus on the summer of 2012 in which 
the London Olympics and Paralympic Games were due to take place. Mass gatherings 
both in winter and summer pose a health threat, the most common being viral respira-
tory tract infections, including influenza, measles and multi‐resistant TB, STDs and low‐
dose enteric infections that show person‐to‐person spread. Through the consumption 

Scanning Electron Microscopy of cells of C. difficile mixed with Matrix Solution

Negative

1 mm 10 µm

Positive

Figure 1.12 Scanning electron micrographs of Clostridium difficile cells mixed with the matrix solution 
2,5‐ dihydroxy benzoic acid in acetonitrile: ethanol: water (1:1:1) with 0.3% TFA. The electron 
micrographs show the clumps of cells which give a MALDI‐TOF MS spectrum (indicated by positive) if 
the laser strikes, whereas in areas where there are no cells, no spectra are obtained (negative).
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and sharing of food and drink, the list of bacterial and fungal pathogens can be greatly 
extended. The HPA (later titled PHE) had a central role in infectious disease surveillance 
for these events, setting up a suite of robust and multisource surveillance systems 
(see, e.g. Severi et al., 2012).

At the laboratory level, cases were being made for simple, rapid, cost‐effective, accu-
rate, high‐throughput methods. Up to this point, all MS work in PHE from 1998 
onwards developed through successful research grants by the authors. For implementa-
tion to service function, it was necessary for the organization to purchase its own equip-
ment, and between 2005 and 2010, request was made annually by the authors but 
declined. With the London Olympics looming, we made a fresh case again for a MALDI‐
TOF MS for its service function and was this time successful. An instrument was quickly 
installed, and we began reporting data on patients’ samples by October 2011, three days 
after its arrival. The immediate success of this led to instruments being purchased for 
other PHE laboratories in Cambridge, Southampton, Birmingham and Bristol. With 
such a network developing, the authors established a PHE User Group in January 2012 
which held meetings and symposia. With the University of Minho, Portugal, we imme-
diately organized a two‐day conference titled ‘Microbial Diagnostic Applications of 
Mass Spectrometry’ on 4–5 April 2012 at PHE, London. Just prior to this, ECCMID 
held its 22nd meeting between 31 March and 3 April 2012 in London, within the vicin-
ity of the London 2012 main Olympics venue. Bruker Daltonik sponsored a session 
titled ‘Microbial Identification for the 21st Century – and Beyond’ which was chaired 
by Markus Kostrzewa. A presentation by Matthew Ellington (HPA, Cambridge, 
Addenbrookes, UK) titled ‘HPA MS Implementation Group: Current Results and Future 
Plans’ highlighted our hope and aspirations for MALDI‐TOF MS within PHE. Soon 
after this meeting, PHE purchased a second instrument for our site in London to meet 
the demands of many laboratories that were now processing clinical samples daily using 
the microflex Biotyper. Over the next few months, this would expand to about 20 labo-
ratories within PHE‐ and NHS‐affiliated laboratories and now represents the largest 
global network of MALDI‐TOF MS instruments in a single organization.

1.8 Investigating the Detection and Pathogenic Potential 
of E. coli O104:H4 during Outbreak of 2011

On 1 May 2011 an E. coli outbreak began in Germany with a trickle of patients present-
ing bloody diarrhoea (Askar et  al., 2011). By the end of the month, the number of 
reported cases surged to 1240, including cases reported in eight other European coun-
tries (see Shah and Gharbia, 2012). The whole outbreak resulted in more than 4000 
reported cases and 50 deaths. A number of patients suffered from haemolytic‐uraemic 
syndrome (HUS), a devastating and rare disease characterized by disintegration of red 
blood cells, acute kidney failure, and impaired ability to clot blood. The outbreak strain 
was positively identified on 25 May 2011. Workers at the University of Münster and the 
Robert Koch Institute identified the strain through serotyping and PCR assays. 
Multilocus sequencing was used to confirm that the outbreak was caused by a single 
clone, HUSEC041, and that it had the rare serotype of O104:H4. This serotype is 
n ormally associated with enteroaggregative E. coli (EAEC) that are known to cause 
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persistent diarrhoea, but not haemorrhaging or HUS (Frank et al., 2011). The strain 
lacked features characteristic of O157:H7, such as an enterocyte effacement patho-
genicity island and an intimin‐positive gene, but produced aggregative factors typical of 
EAEC. However, the strain did exhibit high resistance to third‐generation cephalospor-
ins, trimethoprim/sulfamethoxazole and tetracycline, which is typical of O157:H7. 
The strain also possessed the rarer and more potent Shiga toxin 2 gene.

DNA sequencing would provide the initial blueprint for understanding the pathogen’s 
novel set of characteristics. In June, two independent groups completed DNA sequenc-
ing of the outbreak isolate’s 5.2 Mb genome and two large plasmids using short‐read 
DNA sequencers. Both groups released the sequencing data to the scientific commu-
nity, which rapidly performed bioinformatics to explain the strain’s pathogenicity and 
evolutionary origin. It was also suggested that the strain may harbour genes unique 
from those in other strains.

By early June, the first cases were being reported in the United Kingdom, and samples 
were sent to our laboratories for whole genome sequence analysis. Cultures were grown 
overnight in 5 × 100 LB broth and nutrient agar plates in a Class 3 cabinet. All extracts 
were subcultured into enriched broths and retested for loss of viability before any 
f urther work was allowed. Author SEG had just acquired a Roche Junior and began 454 
sequencing on 7 June 2011. By 9 June, the group began to assemble the scaffolds, which 
was successfully completed the following day and the full sequence deposited in real 
time in the National Center for Biotechnology Information (NCBI) library for crowd-
sourcing bioinformatics analysis. This work, which was acknowledged in Nature 
Biotechnology (see editorial, 2011), provided the blueprint for a unique opportunity to 
explore whether it was possible to undertake proteome analysis of the cell extracts in 
real time using nano‐LC‐MS/MS.

Proteomic analysis was performed using an established workflow (Figure 1.13) on 
five E. coli strains of serotype O104: three clinical isolates from patients affected by 
the German outbreak and two other isolates that were previously characterized as 
serotype O104, but have EAEC, EHEC/STEC genetic composition, respectively. The 
genomes of the three German outbreak isolates were sequenced to confirm they were 
from the same strain. Strains were cultured on LB broth and agar as described above 
for DNA extracts and then harvested prior to employing two parallel approaches for 
reducing complexity of the mixture for MS analysis. In the first approach, lysates were 
separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and 1 cm 
gel slices were digested with trypsin. Peptides were analyzed using nano‐LC‐MS/MS. 
In the second approach, the entire cell lysate was digested directly with trypsin in 
solution and injected onto two LC‐MS/MS systems (LTQ Orbitrap, DBHT and LTQ 
Orbitrap Velos (Thermo Fisher, Hamel Hampstead), each with a front‐end Ultimate 
3000 Dionex nano/capillary liquid chromatography system, Thermo Fisher Scientific) 
that provided ultra‐high‐resolution and accurate masses for differentiating closely 
related peptides.

The recorded peptide MS/MS spectra were matched to both protein and in silico 
genome‐translated databases to identify expressed proteins. The peptides were then fed 
into a bioinformatics pipeline (Al‐Shahib et al., 2010) to acquire unique signatures at the 
genus and species levels. An extensive list of identified peptides was then searched, using 
Blast and Scaffold, for virulence determinants, E. coli virulence factors and putative 
EHEC/STEC and EAEC‐specific virulence markers. The peptide lists identified proteins 
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that covered a significant percentage of the predicted open reading frames of the 
sequenced outbreak strain genome, indicating the sensitivity and reliability of the nano‐
LC‐MS/MS method in yielding protein profiles using selective or enriched culture prep-
aration. Peptides resulting from high‐abundance proteins were then analyzed for markers 
and signatures that uniquely identified genus, species or virulence characteristics. 

MS ANALYSIS

Peptide fractionation via reverse phase chromatography.
Peptides analysed using: 

Thermo Fisher Scientific LTQ-Orbitrap Classic (PHE)
Thermo Fisher Scientific LTQ-Orbitrap Velos (Hemel Hempstead)
Thermo Fisher Scientific LTQ-Orbitrap Elite (Hemel Hempstead)

MS/MS data analysed: Mascot and Scaffold.

Gel separation using 1D (10% polyacrylamide, NuPage, Invitrogen) gels.
10 µg of sample.
Gels fractionated (24 & 12 slice (60 min gradient))
Digestions performed using MS grade trypsin (in-solution and in-gel).
Direct injection (300 minute)

Cell lysis and clean up: lysis cocktail of 30 mM Tris-Cl pH 8.5, 7 M Urea, 2 M 
Thiorurea, 4% CHAPS and 40 mM DTT buffer mix

SAMPLE PREPARATION

Figure 1.13 Bottom‐up workflow used to deduce strain‐specific peptides and virulence 
determinants of E. coli O104:H4 during the outbreak of 2011. The classical 1‐D SDS‐PAGE followed by 
in‐gel trypsin digestion or directly loaded onto LC‐MS/MS were also used. Three different Orbitrap 
mass spectrometers, with varying resolutions, were used to obtain comprehensive profiles of the 
proteome of strains.
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The mosaic outbreak strain’s virulence signatures were compared to both EAEC and 
EHEC protein signatures, all obtained using the same proteome approach.

Data for isolate E. coli O104:H4 strain 280 was the first genome to be assembled into 
near complete topology. Approximately 2500 proteins from the outbreak isolates were 
identified. A collection of 68 peptide signatures were unique to the outbreak E. coli iso-
lates and not shared by the parent source, separating the outbreak strain from other 
closely related Enterobacteriaceae. Species‐level peptide signatures were also detected, 
including those for the AggR transcription factor, haemolysin protein, Aaf fimbriae pro-
tein and Iha adhesion protein. In all, 3031 peptides were identified as unique to the 
outbreak strains when compared against control isolates.

The technique detected features that were expected on the basis of prior laboratory 
tests and genomic data, including the production of Shiga toxin, Pic serine protease 
(autotransporter toxin) and tellurium resistance. The list of peptides was then filtered 
to exclude physiological and regulatory proteins. Search of the simplified list for E. coli 
pathotype virulence determinants and virulence factors resulted in a definitive list of 
expressed virulence determinants of the outbreak strain. The results supported the 
view that the background genome came from an EAEC progenitor that acquired plas-
mids and prophages, and exchanged chromosomal loci, leading to the emergence of an 
aggressive strain with a distinctive profile. All strains shared 89% of the expressed pro-
teins. The two large plasmids encoded 31 proteins. Peptide signatures for adhesion and 
multidrug resistance (including β‐lactamase, CTX‐M extended spectrum β‐lactamase 
and metallo‐β‐lactamase enzymes) were observed.

These experimental results demonstrated that a proteomic approach, based on nano‐
LC‐MS/MS and comparison against a database of known pathogenic markers, acceler-
ates the identification and characterization of the sources of E. coli‐related illnesses and 
diseases. This study revealed for the first time that nano‐LC‐MS/MS was able to iden-
tify a significant number of pathogenic markers with no requirement for enrichment, 
selective media or antibiotic incorporation that can otherwise delay analysis. The pro-
tein signatures detected provide definitive characterization at the genus, species and 
often strain level, as well as detection of expressed pathogenic determinants and antibi-
otic resistance mechanisms. This mass‐spectrometry‐based approach enables clinical 
laboratories investigating outbreak strains to design screening and verification tests 
directly and in an unbiased manner, rather than performing multiple, potentially futile 
detection approaches while the outbreak is under way. The level of resolution achieved 
in this study could not be done using a linear MALDI‐TOF MS and paves the way for 
MS/MS‐based analysis for simultaneous microbial strain typing and pathotyping 
during outbreak investigations.

1.8.1 The Transition from MALDI‐TOF MS to High‐Resolution LC‐MS/MS: Merits 
of Bottom‐Up and Top‐Down Proteomics for Microbial Characterization

By 2010, our laboratory had worked with all available forms of MALDI‐TOF MS and 
now had five years experience with nano‐LC‐electrospray‐MS/MS (see overview in 
Figure 1.14). Between 2011 and 2015, we investigated high‐resolution MS to rapidly 
analyze minute volumes of complex cell extracts for strain identification and typing of 
expression markers. Supported by Thermo Fisher Scientific, we used three different 
models of the Q‐Exactive instruments during the E. coli 0104:H4 outbreak of 2011 that 
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provided proof of principle that LC‐MS/MS could be used to type and reveal the 
p athogenic potential of strains simultaneously (Shah and Gharbia, 2012).

Unlike MALDI‐TOF MS, scrupulous attention needs to be given to bacterial protein 
extraction prior to MS/MS analysis. The challenge for the clinical microbiologists is to 
devise a universal protocol that encompasses the most fragile gram‐negative cells to the 
most robust structures such as spores and the complex cell envelopes of mycobacteria. 
Furthermore, although effective reagents are needed, lysis methods need to avoid c hemicals/
detergents that cause interference with chromatography or MS. This was investigated, 
and the lysis mixtures that best met these criteria were designated as follows:

DIGE 7 M Urea, 2 M thiourea, 4% CHAPS, 30 mM Tris and 70 mM DTT

CHAPS 4% CHAPS, 30 mM Tris and 70 mM DTT

ACN/TFA Acetonitrile : Water : Trifluoroacetic acid (33%:66.9%:0.1%)

ACN/FA Acetonitrile : Water : Formic acid (50%:45%:5%)

ACN/TFA and ACN/FA were introduced to mitigate the potential problems associated 
with urea and were being used for top‐down proteomics. As an example, two c linically 
relevant species representing opposite ends of the spectrum, Clostridium difficile and 
Escherichia coli, were tested. E. coli is a gram‐negative, non‐spore‐forming, facultative 
anaerobe, whereas C. difficile is a gram‐positive spore‐forming anaerobe; they repre-
sent many of the physiological and phenotypic features that are likely to be encountered 
in the clinical laboratory and would provide a challenging panel for mass‐spectrometry‐
based workflows.

A standard shotgun protocol for C. difficile and E. coli was, briefly, to harvest cells 
grown for 24 h on Columbia blood agar plates and suspend the cells in 300 µl of one of 
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Figure 1.14 Phasing in of MS‐based‐methods in MISU‐AFGU into clinical microbiology from 1998. 
These methods were used to characterize clinical isolates by our laboratories. The time lines and 
providers of the technology are shown in the figures. In 2010 bioMérieux acquired AnagnosTec, while 
Sequenom’s interest shifted away from microbiology to solely human applications.
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the lysis solutions. Samples in triplicate were then lysed in one of two ways: (1) either 
incubating the bacteria in the lysis solution for 30 min at room temperature before 
c entrifugation and protein extraction or (2) with mechanical lysis using the FastPrep 
system (MP Biomedicals). The FastPrep samples contained 100–150 µl of glass beads 
added to the sample and were beaten at 4 m/s for three rounds of 20 s. With lysis com-
plete, the samples were centrifuged at 21,000 × g for 30 min at 4 °C, and the supernatant 
stored at −20 °C until LC‐MS/MS analysis. If lysis is efficient, samples were separated 
on a 12% SDS‐PAGE gel for a brief period (≈15 min) to exclude impurities and salts. 
Gel slices of 1 cm were excised, destained and digested overnight with trypsin. 
Chromatographic separation of the complex mixture of peptides derived from tryptic 
digest was achieved on C18 column over a 60 min gradient and immediately analyzed 
with the LTQ Orbitrap mass spectrometer. Protein identification was performed by 
searching databases with search engines such as Mascot, Sequest or Phenyx (IS 2011). 
The resultant datasets were processed using a pipeline that we established as an in‐
house marker discovery workflow (Al‐Shahib et al., 2010). For C. difficile there were 
2383 different peptide markers specific for C. difficile and conserved between the three 
biological replicates. For E. coli there were 104 different peptide specific markers con-
served between the three replicates. The disparity between the number of markers is 
due in part to the difficulties in species resolution. E. coli is closely related to species of 
the genus Shigella; hence, many peptides are shared, whereas C. difficile is phylogeneti-
cally more distinct and therefore has a greater number of unique peptide biomarkers.

Despite the marked differences between these species, the results demonstrate une-
quivocally that among bacterial species several hundred unique peptides are present 
that may be used to characterize bacterial isolates at the species and strain levels. 
Furthermore, markers of antibiotic resistance are evident that correlate with known 
antimicrobial profiles of strains (unpublished work; see abstract ECCMID, 2010). 
A  drawback of the method is that the workflow is still too complex and lengthy for 
r outine processing of clinical samples. However, methodologies are rapidly changing, 
and trypsin digestion, for example, which hitherto required overnight incubation is now 
done in minutes in most laboratories (Hustoft et  al., 2012). With processing rapidly 
decreasing, bottom‐up proteomics will soon be achievable in a few hours. It is expected 
that the entire workflow will be automated, which will bring this approach into the 
realms of the clinical laboratory.

An alternative approach would be to utilize top‐down proteomics‚ which is infinitely 
faster, capable of quantitating unique proteoforms including post‐translational modifi-
cations (PTM) and avoids the need for enzymic digestion of samples (Roth et al. 2008). 
In the top‐down protocol, proteoforms are delivered to the mass spectrometer intact 
and then sequenced by fragmentation inside the instrument, thereby retaining their 
critical linkage information (see overview of the method compared to the earlier 
bottom‐up approach in Figure 1.15). This is technically more demanding in that the intact 
proteins are more difficult to fractionate and fragment than peptides, and more chal-
lenging to separate by liquid chromatography. Given the need to distinguish proteins 
varying by only small chemical differences, high‐end, high‐resolution instruments are 
required to resolve such large molecules when they are so similar in size. Dedicated 
software (e.g. ProSightPC 2.0) is used for analysis. A range of instruments are now ame-
nable to top‐down analysis. Prior to 2010, Fourier‐transform ion‐cyclotron resonance 
(FT‐ICR) mass spectrometers were the main instruments used for top‐down analysis. 



MALDI-TOF Mass Spectrometry32

Today, more affordable quadrupole‐time‐of‐flight (qTOF) instruments, such as the 
Waters SYNAPT G2‐Si, the Bruker maXis ll or the new range of Orbitrap instruments 
(Thermo Fisher Scientific) have made the technology more accessible (Shah et al., 2015).

Unlike the human proteome bacterial extracts are not subjected to the same level of 
complexity, and hence pre‐separation methods such as those employed by Ahif et al. 
(2013) are superfluous. However, the multiplicity of the bacterial proteome is known 
to be significantly enhanced through PTMs (see review, Mijakovic et al., 2014). These 
include methylation, phosphorylation, acetylation, glycosylation, pupylation, sirtuin 
acetylation, lipidation, carboxylation, bacillithiolation, etc. This rapidly expanding 
c atalogue, made possible by advanced detection methods in MS, will provide a pleth-
ora of new proteoforms. Because many of these have regulatory functions, the impor-
tance of their detection in microbial pathogenicity cannot be overstated. A significant 
advantage of top‐down analysis is its ability to detect these PTMs, sequence variants 
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Figure 1.15 A comparative overview of bottom‐up versus top‐down proteomics. Although the former 
has been used extensively for comprehensive analysis of the proteome of several species, it is 
currently too cumbersome for a clinical laboratory. It seems likely that top‐down based approaches 
will supersede MALDI‐TOF MS as the next‐generation approach to microbial identification and typing.
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and degradation products, markedly increasing the potential number of species/
strain protein signatures.

In terms of elucidating molecular mechanisms of microbial pathogenicity, the ability 
to now deduce protein variations that arise from alternative splicing, allelic variation, or 
PTMs opens a new chapter in this field. One elegant example by Julia Chamot‐Rooke’s 
group used a combination of bottom‐up and top‐down MS to characterize a PTM on 
the major pilin (PilE) of Neisseria meningitidis Type IV pili. It was then shown that this 
modification (glycerophosphorylation), which is induced in vivo after several hours of 
host cell contact, is a prerequisite for the dissemination of the bacterium, a crucial step 
that precedes invasive infection (Chamot‐Rooke et  al., 2011; see Chapter  18). Such 
applications are the real beneficiaries of these new technologies and will have a pro-
found impact on the next phase of elucidating the diverse range of pathogenic mecha-
nisms exhibited by microorganisms.

1.9 Conclusions

In the vast landscape of proteomics, the greatest success achieved to date in the clinical labo-
ratory is the rapid, accurate, low‐cost and simple method of identification of microbial path-
ogens using a linear MALDI‐TOF mass spectrometer. A statement of our confidence in the 
method was evident since 2000 through various publications (Shah et al., 2010). Having 
analyzed tens of thousands of clinical samples in parallel with 16S rRNA sequencing, chem-
otaxonomic and biochemical tests, we believe that MALDI‐TOF MS has significantly sur-
passed all as the method of choice today, and the implementation of a network of over 20 
instruments in the Health Services laboratories at present is a testament to this confidence.

There is currently no comparable achievement in clinical biomarker application for com-
plex human and animal diseases, but many believe that top‐down proteomics will achieve 
equivalent success in the near future (see review; Gregorich and Ying, 2014). Because the 
proteome of microorganisms are orders of magnitude smaller than eukaryotes, success in 
clinical microbiology may be more forthcoming using top‐down MS. Although top‐down 
proteomic analysis can be operated at relatively high speed in order to successfully map the 
bacterial proteome, the rate of identification of new proteins after initial rounds will need 
to be significantly enhanced for application in the clinical laboratory. Direct infusion is 
possible but may not be practical for automation; instead, an integrated single or dual LC 
with tandem MS that is completely ‘hands‐free’ is likely to be the way forward.

There is little doubt that highly automated sophisticated instruments will soon be 
available. For MS/MS to reach a similar level of success as MALDI‐TOF MS, the quality 
and reproducibility of cell extracts from the same strain grown in different media, 
v arious time intervals and analyzed by different models of the same instrument are criti-
cal parameters that need validation in the transition to top‐down proteomics from the 
research to the clinical laboratory. Unlike MALDI‐TOF MS, protein concentrations 
need to be predetermined and standardized and up to the present time, a vailable meth-
ods for quantifying protein concentrations do not give similar results. For example, 
newer, simple methods using NanoDrop, which performs efficiently for DNA, does 
not  give comparable results with the standard 40‐year‐old Bradford assay (1976). 
A simple, rapid method needs to be incorporated as a baseline for strain comparison 
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because the key to success is the quality of the sample and the standardization of cell 
preparations.

The success of MALDI‐TOF MS has been underpinned by the ability to retain the 
basic platform on which to assemble the database. Thus, although current commercial 
systems are capable of higher resolution and protein identification in reflectron mode, 
microbial identification is performed in the linear mode. In our experience, analysis of 
the proteome of cells cultured on agar plates is more reproducible than broth cultures 
but in assessing the pathogenic potential of a strain such as C. difficile for toxin expres-
sion, it may be necessary to culture in both broth and agar plates. The distribution of 
cellular proteins is markedly influenced by the type of extraction method. Some methods 
involving harsh detergents can yield very high levels of the more stable ribosomal 
p roteins (>70%), which can mask the cellular proteins (unpublished). We believe that 
comprehensive representation of the proteome (e.g. in the form of a simple pie chart; 
Figure 1.16) enables visualization of the sample and is necessary prior to assembly of an 
MS/MS database. Current work in several laboratories is now enabling this baseline to be 
established, and it is expected in the near future that MS/MS‐based methods will become 
a reality for strain typing, antibiotic sensitivity profiling and pathotyping in real time.
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2

2.1 Introduction

The database of a MALDI‐TOF mass‐spectrometry‐based microorganism identifica-
tion system is its key component and clearly the most important element for secure 
identification and differentiation of organisms. The quality as well as the quantity of 
database entries largely determine the usefulness of a system in practice, in clinical 
microbiology but also in other areas. Manufacturers of commercially available systems 
are offering libraries which cover a broad range of microorganisms or are restricted to 
a more specific area, that is, dedicated to particular groups of microorganisms such as 
filamentous fungi or mycobacteria. On the other hand, reference libraries created by 
users themselves help fill gaps in the systems of manufacturers or enable the coverage 
of species or systematic groups which are of special interest to them. Databases are 
further closely related to the preparation method which has been applied to the 
 generation of reference entries or identification rules/biomarkers. Generally, the same 
method as that used for database generation gives the best identification results for the 
isolates investigated. Extensive and thoroughly quality‐controlled databases have made 
MALDI‐TOF MS the new laboratory standard for microorganism identification.

2.2 Commercially Available Databases

Manufacturers of MALDI‐TOF‐MS‐based identification systems are delivering libraries 
which are specific for their instrument, preparation technique and identification 
 algorithm. Currently, three main commercial systems from two market‐dominating 
manufacturers are available. Each of these systems has its own database(s) as well as its 
dedicated strategies for library creation and identification algorithms.

SARAMIS (Spectral ARchive and Microbial Identification System) is working with 
the so‐called SuperSpectra as the main reference entries for identification [1]. 
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SuperSpectra are peak lists that are generated from individual peak lists of different 
strains which belong to a common systematic category, for example, a microbial  species. 
For their generation, mass spectra are acquired from each strain from different 
 cultivation media, and the respective single peak lists are created using the mass spec-
trometer’s processing software. The individual peak lists are compared, and stable, 
 representative peaks are chosen in a manual or semiautomatic manner to build a  specific 
compromise peak list, the SuperSpectrum. Peaks can be weighted according their 
importance for identification in this process. The match against the database compris-
ing the SuperSpectra of the contained species (or other systematic entities) results in an 
identification of up to 99.9% probability. If no sufficient match is obtained against the 
SuperSpectra, a match against all single spectra can help give a hint about the identity 
of the unknown organism. Originally, SARAMIS was developed by a small German 
company (AnagnosTec) as an MS‐manufacturer‐independent software and database 
which could be combined with any MALDI‐TOF MS system. In 2010, the French 
microbiology company bioMérieux acquired the microbial database for bacterial iden-
tification, the related intellectual property and know‐how from AnagnosTec. Currently, 
SARAMIS is the research‐use‐only MALDI‐TOF solution of bioMérieux (Vitek MS 
RUO), combined with a mass spectrometer manufactured by Shimadzu (Japan).

For diagnostic purposes, bioMérieux, as a part of the Vitek MS IVD, has developed a 
new dedicated software and database system which is not directly related to the 
SuperSpectra database or even approach of SARAMIS. The Advanced Spectra Classifier 
(ASC) system [2] uses a kind of biomarker approach to characterize microbial species. 
Mass spectra are acquired from multiple strains representing different geographical 
locations and cultivation conditions. These spectra are divided into bins, where each 
bin is considered a possible marker. In a huge bioinformatics comparison approach for 
each bin/biomarker, the significance for a given species is determined: is it apparent in 
this species only, is it found in this and other species or does it not occur in the respec-
tive species but only in others? The identification of an unknown isolate is done on the 
basis of the biomarker network and given with a probability value (up to 99.9%). It has 
to be mentioned that this calculation has to be done in a ‘closed system’, that is, for a 
given number of species which are set in a ‘biomarker network’ for differentiation. 
An extension of a database based on the ASC biomarker network can change relation-
ships inside the network (e.g. a formerly unique biomarker can occur also in a newly 
added species). But, as the ASC approach is only used in the diagnostic MALDI‐TOF 
MS  system of bioMérieux, any recalculation is done (and has to be done) by the manu-
facturer. The Vitek MS IVD is CE marked, and a version has obtained FDA clearance in 
2012. For more information, the reader may visit the homepage of the manufacturer 
(http://www.biomerieux.com/).

The third identification system, the MALDI Biotyper, comes from the second main 
manufacturer of MALDI‐TOF MS for microbial identification, Bruker (USA). The 
MALDI Biotyper database and software algorithm are not related to any of the systems 
described above, but again use their own strategy to identify and differentiate microor-
ganisms based on their MALDI‐TOF spectra. Here, independent references for single 
strains of a given species are created and stored in the database. The reference for a 
single strain, a main spectrum (MSP), is based on multiple measurements, that is, tech-
nical replicates of spectra of the respective strain. Peak lists derived from the individual 
spectra are used by a proprietary algorithm of the MALDI Biotyper software to  generate 

http://www.biomerieux.com
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the MSP. The MSP contains the 70 most prominent peaks of the spectra collection 
 representing the strain, including information on average peak intensity, peak position 
and peak occurrence frequency. Identification of an unknown strain is performed by 
matching the peak list derived from its profile mass spectrum against each reference 
entry of the database. A score is calculated by multiplication of three factors (each  factor 
can reach a maximum of 1), that is, matches of the unknown spectrum against the MSP, 
matches of the MSP against the unknown spectrum and similarity of the intensity 
 profile of matching peaks. The logarithm of these calculated scores (multiplied by 1000) 
gives the log(score), maximum 3 (log(1 × 1 × 1 × 1000) = 3). All log(scores) are ranked 
from the highest to the lowest. The match with the highest log(score) results in a 
 species‐level identification if a threshold is exceeded (log(score) ≥2 for high confidence, 
log(score) ≥1.7 for low confidence).

The MALDI Biotyper is offered in two diagnostic versions, (1) the IVD MALDI 
Biotyper for the European market and other countries where IVD‐CE labelling is 
 applicable and (2) the MALDI Biotyper CA in the United States. As diagnostic systems, 
both do not allow database extension or library addition by the user and are restricted 
to their validated workflow. In contrast, the MALDI Biotyper RUO, a research‐use‐only 
system, allows extension of the libraries available from the manufacturer as well as the 
creation of custom user‐defined libraries. The RUO system uses the same identification 
engine as the MALDI Biotyper IVD, but the parameters can be modified by the user for 
special purposes.

2.3 Establishment of User‐Defined Databases

A particular strength of MALDI‐TOF technology is that the user can build his or her 
own databases. Such databases can consist of special groups of organisms of particular 
importance as described for filamentous fungi [3–13], mycobacteria [14–19], and 
anaerobes [20–23], to more rare taxonomic groups, for example, Prototheca [24], or 
even to higher evolved or “exotic” systematic groups such as, for example, insects [25–31], 
crustaceans [32], and others. Also, databases for more dedicated application areas, for 
example, for beer spoiling organisms in breweries [33–40], can easily be established. 
Such user‐generated databases might be deployed stand‐alone for identification 
 purposes, or they might be used to supplement a database supplied by the manufacturer 
to improve the sensitivity and/or specificity of identification results.

At this point, it has to be mentioned that the authors of this chapter are specialists in 
the MALDI Biotyper system. Therefore, this chapter is focused on the criteria which 
have been found to be important for the creation of high‐quality databases for this 
 particular system. Nevertheless, most of the following statements and descriptions can 
be generalized and also will be important for any MALDI‐TOF‐MS‐based reference 
database system which is being deployed for microorganism identification. The basis 
for MALDI‐TOF MS reference databases always is inclusion of well‐controlled organ-
isms and thorough inspection of mass spectrometry conditions at certain checkpoints.

To guarantee a high quality of reference entries, some important rules have to be 
 followed in all parts of the database creation process, that is, reference identification of 
included strains, sample preparation, MALDI‐TOF measurement, reference spectra 
calculation, library entry quality control, and so on.
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For MALDI reference library generation, four important phases should be consid-
ered. For each phase of library creation, control measures as well as standard operation 
procedures (SOPs) should be established to ensure their reliability.

Pre‐analytical phase
 ● Correct taxonomical species identification

Sample preparation
 ● Microorganism cultivation/growth conditions
 ● MALDI target plate preparation (direct transfer/extended direct transfer/

extraction)
 ● MALDI matrix and solvent composition
 ● Crystallization conditions (temperature, humidity)

MALDI‐TOF MS measurement
 ● Instrument settings (mass range, detector voltage, and so on)
 ● Calibration
 ● Settings for automatic spectra acquisition

Data analysis and library calculation
 ● Data processing (spectra quality assessment and reference generation)
 ● Strain selection based on ‘MALDI diversity’
 ● Reliability check

Details on how to proceed in these phases will be described in the following paragraphs.

2.4 Species Identification/Control of Reference Strains 
to Be Included into a Database

Prior to the database creation, the correct taxonomic identification of all isolates that are 
intended to be included is mandatory. It is preferable to use a set of methods  (morphology, 
biochemical/physiological tests, gene sequencing, etc.) to identify a strain ‘polyphasically’ 
and unambiguously prior to its introduction as a reference entry. Although molecular 
biology, that is, 16S rRNA gene sequencing, is becoming acknowledged as the gold stand-
ard for microorganism identification, there is no “one‐fits‐all” method which can be 
applied alone for all species. For many bacteria, 16S rRNA gene sequence analysis is very 
useful to determine the correct species. But in many cases, closely related species have to 
be differentiated by at least one further method, preferably the sequences of a protein 
encoding gene or certain biochemical characteristics or serology.

A database designed for, for example, medical diagnostics should contain, in  addition 
to the spectra of representatives of infection outbreaks, also those of type strains as 
‘taxonomic marker entries’. As mass spectra contain general species information but 
may also exhibit strain‐specific markers, a species should be represented at best 
by using strains representing MALDI diversity in the species. Geographical or host 
origins  are usually less important if different geographical variants show a similar 
MALDI pattern.

As a good starting point for genetic species delineation, the CLSI MM‐18a rules [41] 
can be used to define a certain species based on their 16S rRNA gene sequence. Clear 
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thresholds on how to interpret 16S rRNA gene sequences and recommendations on 
which further protein gene sequences can be used –  for example, if 16S rRNA gene 
sequencing does not sufficiently differentiate closely related species – are described in 
these rules. If after applying these rules, species identity remains uncertain, further tests 
(morphology, biochemical tests or DNA sequence alignments) have to be deployed to 
improve reliability.

Although a MALDI‐TOF MS reference library may be designed for the same purpose 
(identification of bacteria) as a 16S rRNA gene library, MALDI‐TOF mass spectra are 
exposed to additional factors of influence compared to 16S rRNA gene sequences. 
Sequencing of DNA is more or less ‘digital’ (i.e. it was either successful or unsuccessful 
for each data point), and the sequencing result is independent of cultivation or other 
biological influences. MALDI spectra may look ‘near‐to‐perfect’, but if calibration, 
 cultivation or sample preparation have been not adequate, the spectra might be not 
suitable for reference generation.

2.5 Sample Preparation

2.5.1 Microorganism Cultivation

Many microorganisms can be cultivated on quite different cultivation media. In 
clinical routine laboratories, they are grown commonly on complex media as well as 
on  selective media. Complex media are composed to offer a broad range of nutri-
ents to guarantee effective growth of a broad range of microorganisms. On complex 
media, microorganisms commonly grow fast and show high reproduction rate with 
high protein biosynthesis (high concentration of highly abundant ribosomal pro-
teins). Because human specimens are not always derived from originally sterile 
samples (such as blood or CSF) but from naturally microorganism‐populated sam-
ples such as stool or skin, complex media are not always applicable. Selective media 
are commonly designed to prefer the growth of selected species or groups, or the 
sought‐after species or groups show a  specific property (e.g. a specific colour). 
Growth on such media generally is stressful for microorganisms, even for the targeted 
species. The protein pattern can be slightly changed due to adapted stress physiol-
ogy, which commonly does not influence MALDI‐based identification purposes. 
For MALDI‐TOF MS database reference entry generation, it is recommended to 
choose cultivation media which are optimal for the growth of selected species (e.g. 
complex media). Also, the media intended to be used in the later application should 
be considered. Cultivation generally shows different growth phases such as lag 
phase, log phase or death phase. The most suitable growth phase for references is 
the log phase because bacteria show in this phase the highest growth rates. In gen-
eral, fast‐growing species are optimally cultivated overnight, but slow‐growing 
 species should be grown until sufficient biological material is visible on agar plates 
(up to several days or even weeks).

In conclusion, to ensure broad applicability of a MALDI‐TOF MS reference database, 
it is generally recommended to use optimal growth conditions to cultivate reference 
strains to secure optimal MALDI spectra generation.



MALDI-TOF Mass Spectrometry44

2.5.2 MALDI Sample Preparation

The most popular and most widespread sample preparation technique for identifica-
tion of microorganisms is the direct application of low amounts of biological material to 
the MALDI target plate. A single bacterial colony is smeared on the MALDI target and 
either directly overlaid with matrix (‘direct transfer’) or by 1 μL formic acid which is 
applied prior to matrix application to improve cell lysis (‘extended direct transfer’). 
After short drying, the samples are ready for MALDI measurement.

In addition to these very fast direct methods, short extraction protocols exist if at 
all spectra acquisition after such a direct transfer of biological material delivered 
ambiguous results or failed. This can be observed if strong capsules or cell walls are 
covering/protecting the organisms (e.g. fungi or mycobacteria) or slimy/mucoid 
 substances interfere with the MALDI process. For such situations, extraction 
 protocols exist where the organisms are subjected to short washing and/or chemical 
extraction steps. During the extraction, several additional factors contribute to an 
improvement of MALDI‐TOF MS spectra. Components such as salts, carbohydrates 
or peptides can be effectively removed. In addition, more biological material can be 
used, and higher acid concentrations can be applied for more effective destruction of 
cell walls and protein release. Due to careful suspending in extraction fluids, every 
cell can be reached by the extraction solution, and clumpy pieces can be broken. 
The interaction time with the solvents can be prolonged and carefully controlled, too. 
Finally, a homogeneous cell‐free extract is generated and can be transferred to the 
MALDI target. Such a procedure guarantees a higher degree of standardization and 
therefore a higher reproducibility of mass spectra.

Thus, a short extraction procedure is generally the preferred sample preparation 
technique for reference entry generation (note: this only applies to the MALDI Biotyper 
system). Because spectra derived from direct transferred samples are generally very 
similar or largely contained in extraction spectra, the identification is reliable if DT 
samples are compared against extracted references.

Although simple sample preparation techniques can be used for most microorgan-
isms, some groups have specific properties hampering successful MALDI measure-
ments. As examples, for mycobacteria as well as filamentous fungi, specific protocols 
should be applied to improve sample preparation and guarantee reproducible, high‐
quality biological material for the measurement [3–14,17–19,42]. Filamentous fungi 
show several growth and germination phases which lead to different MALDI patterns 
for each phase. Therefore, it is advantageous to use a standardized growth procedure to 
guarantee similar spectra for strains of a species. Growth in liquid medium has been 
described as facilitating this, in particular for species which exhibit fast sporulation and 
when direct mycelium analysis from solid medium fails [13].

Highly pathogenic agents such as Francisella tularensis or Burkholderia mallei can be 
measured in the same way as other organisms, but secure inactivation [43–51] has to be 
shown before any transport out of the high‐level security laboratory and introduction 
into the mass spectrometer.

Several MALDI matrices can be used for microorganism measurement. The most 
popular matrix is alpha‐cyano‐hydroxy‐cinnamic acid (HCCA). This matrix shows a 
homogeneous crystallization (important in particular for fast MALDI measurement) as 
well as a good ionization capacity in the commonly used mass range (2,000 to 
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20,000 m/z). The function of the organic solvent of the matrix solution is to guarantee a 
good cell lysis and protein release as well as to prove a certain ‘crystallization behaviour’. 
Because an optimal matrix/analyte co‐crystallization is mandatory, it is necessary to 
ensure an adequate duration for this crystallization process. If the matrix crystallizes 
too fast (e.g. because of too high a temperature), the required co‐crystallization does 
not occur; and if the time for the process is too long (e.g. because of a very low tempera-
ture), large matrix crystals can be observed which lead to prolonged measurement time 
(the laser has to find ‘sweet spots’ to generate adequate mass spectra). In the typically 
used mass range of 2,000 to 20,000 m/z, many ribosomal proteins appear. The high con-
centration of ribosomal proteins and their excellent ionization efficiency lead to the 
good reproducibility and reliability of MALDI microorganism identification although 
the described effects can be observed. But for database generation, no negative effects 
should be tolerated.

2.6 MALDI‐TOF MS Measurement

Standard settings of a MALDI‐TOF mass spectrometer in the appropriate mass range 
(e.g. 2,000 to 20,000 m/z) based on the manufacturer’s specifications are commonly 
optimal for identification approaches. No further optimization by users is necessary 
because IVD‐CE‐labelled products even inhibit any user interaction.

A ‘mass spectrum’ covers a certain mass range and contains a certain number of peaks. 
A ‘peak’ represents a cell component (i.e. protein, peptide, lipid, …, molecule) displayed 
by its mass per charge ratio (m/z; its value on the X‐axis), its intensity (its value on the 
Y‐axis) and its resolution (i.e. the peak width). The MALDI‐TOF MS  spectra acquisition 
depends on several technical instrument settings such as laser power, acceleration 
 voltage, detector voltage, calibration constants or delayed ion extraction.

For measurement of reference entries, optimization and/or control of the MALDI 
measurement process is strongly recommended. The ability of users to analyze and 
quality‐control the optimal instrument settings should be a precondition for optimal 
reference generation. An ‘optimal mass spectrum’ means the presence of many peaks 
(up to ~150 peaks are possible), high signal‐to‐noise (S/N) ratios (i.e. low noise and 
peaks with high intensities), high resolution of peaks over the whole mass range and 
high mass accuracy. For users who intend to build their own databases, practical 
training by the respective system manufacturer is advised and cannot be replaced by 
this article.

The achievable quality of a mass spectrum strongly depends on the taxonomic group 
of the organisms studied. For example, it is much easier to obtain ‘high‐quality’ mass 
spectra from fast‐growing gram‐negative rods than from slow‐growing mycobacteria. 
Nevertheless, it is possible to create mass spectra of good quality from nearly any kind 
of organism. This has led to the proposal that MALDI‐TOF MS might be a “universal 
identifier” [52]. It is always necessary to achieve the optimum for a particular group of 
organisms.

To assess the optimal instrument setting, external standards can be used. The Bruker 
Bacterial Test Standard is such a standard, a bacterial extract produced under stringent 
quality control and supplemented with a concentration of proteins optimal for checking 
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the instrument settings. The choice of bacterial extract as the calibrant satisfies the rule 
that calibration should be performed with a substance which represents the analyte to 
be measured. The protein concentration of this standard is close to the detection limit 
and contains substances covering the whole mass range of bacterial MALDI‐TOF mass 
spectra with true bacterial proteins and two additionally spiked proteins. Alternatively, 
microorganisms with known calibrator masses or non‐bacterial proteins can be applied.

2.7 Quality Control during Creation and after 
Establishment of Reference Libraries

For the establishment or extension of a MALDI‐TOF MS fingerprint reference database‚ 
it should be clear that the purpose of the acquired mass spectra requires but also enables 
quality control steps at various times of the process which are different from those applied 
for routine measurement for microorganism identification. These quality control steps 
are more extensive and thorough than the automated quality control by the instrument 
and software during the simple identification measurement. The following table is 
intended to depict some of the prominent differences between both processes.

The quality of mass spectra is a key point in establishing a database and follows the 
general principle that if poor data is used, spurious results will be obtained. Therefore, 
careful standardization and control of the sample preparation, mass spectra acquisition 
and post‐measurement control of acquired spectra is a key factor for the creation of a 
valuable database.

A checklist of factors (see Table 2.1) which influence the MALDI‐TOF measurement 
and therefore have to be tightly controlled or standardized follows.

2.8 Common Influencing Factors for MALDI‐TOF MS

Standardize and control:

Target preparation (quality, thin layer, dried droplet, etc.)
Matrix and solvent
Analyte concentration and analyte:matrix ratio
Crystallization conditions (temperature, humidity)
Instrument parameters (ion source, detector)
Laser energy (see Figure 2.1)
Instrument calibration
Data processing (baseline correction, peak picking, smoothing)

2.8.1 Influencing Factors, Specifically Weighted for MALDI Biotyper

Cultivation conditions (low influence)
Age (low influence)
Vegetative cells/spores
Direct transfer/extended direct transfer/extraction (sample dependent)

A list of recommendations by the authors follows. This is not meant to be mandatory 
nor complete but might be used as a guideline.
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2.8.2 Selection of Strains

 ● Check: Is identification secure, documented?
 ● Check: Is influence of growth conditions expected?

(Not frequent but, e.g. sporulation)

Generally: let the microorganisms grow in good condition, harvest as fresh, viable cells

2.8.3 Sample Preparation for Measurement

 ● Use appropriate sample prep protocol (e.g. standard extraction).
 ● Use a fresh matrix and solvents.
 ● Always include a Bruker Bacterial Test Standard (BTS) at one position.
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Figure 2.1 Example of spectra acquired with different laser energies. Too low laser energy leads to 
few peaks with low intensity, and too high energy causes a lift of baseline and broadening of peaks. 
Broadening of peaks can lead to fusion of closely located signals.

Table 2.1 Different requirements of MALDI‐TOF MS measurements and QC for routine identification 
and database establishment.

Routine ID Library construction

 ● Fast measurement with sufficient spectral 
quality

 ● No (or few) interaction(s) with acquisition 
software

 ● Fully automated data processing
 ● Mainly automated quality control at data 

acquisition and interpretation

 ● High spectral quality
 ● Quality > speed
 ● More interaction with acquisition software 

possible
 ● Semi‐automated data processing
 ● Automated, but also significant manual/

visual quality control at data acquisition and 
post‐measurement interpretation
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 ● Prepare multiple spots per sample, and if possible multiple measurements per 
spot  too (e.g. 24 spectra per sample; at least 20 have to pass QC later) have to be 
performed.

 ● Control and document spotting.

2.8.4 Mass Spectrometry Measurement

 ● Use a well‐‘tuned’ and calibrated instrument.
 ● Take care that your acquisition/processing parameters are the same as for subsequent 

identification procedures.

Finally, the already acquired mass spectra as well as the library that has been calcu-
lated based on those should be controlled again. A proven control procedure for the 
mass spectra in a team dedicated to reference library construction is spectra control by 
two different specialists; that is, the person responsible for the measurement performs 
a first check, and the second analysis (as a final quality gate) is done by a different 
 specialist. Standards and requirements for the mass spectra may differ depending on 
the intended library.

2.8.5 Spectra Analysis/Quality Control

 ● For MALDI Biotyper: Check BTS; Identified as E. coli with high log (score) (e.g. >2.2)? 
Spectral quality?

 ● Investigate and compare mass spectra using adequate mass spectrometry software, 
for example, FlexAnalysis for the MALDI Biotyper (intensity, resolution, number of 
peaks).

On the basis of the acquired mass spectra, the reference entries/library have to be 
calculated depending on and in accordance with the MALDI‐TOF system used. For the 
MALDI Biotyper, this means calculation of the so‐called main spectra (MSP). In many 
cases‚ the standard setting given by the manufacturer should be applied, but this 
depends on the intended purpose of the database. Finally, the established library should 
be controlled for agreement with and discrepancies from the contained references. This 
can be done in different, complementary ways, also depending on the mass spectrom-
etry system which is used. One kind of control which is specific for the MALDI Biotyper 
is calculation of ‘local MSP dendrograms’. For this purpose, new reference entries are 
included in a similarity dendrogram calculation which contains established and con-
firmed database entries, some of them more closely related, others more distinct. 
Figure  2.2 shows an example where a wrong pre‐identification of a strain could be 
detected with this simple control step. As such a procedure is a push‐button process in 
the MALDI Biotyper software, it should be mandatory in quality control for each data-
base creation and extension. Discrepancies detected in this control step have to be 
 further investigated and resolved by other methods, subsequently.

A second very valuable control step is the comparison of newly established database 
entries with as many as possible existing references, again to check for congruence with 
the existing data or discrepancies. For the MALDI Biotyper, the new MSPs can simply 
be loaded in the software and matched against each available database entry. This can 
be facilitated using the ‘Explorer’ module for so‐called ‘offline analysis’; details can be 
found in the manual supplied by the manufacturer. Using the standard database that 
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Figure 2.2 Dendrogram of a novel MSP (strain VA2219, depicted in red) with old database references; wrong pre‐identification has 
been detected by cluster analysis. The strain could be confirmed as Aggregatibacter aphrophilus, subsequently.
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accompanies the system, currently this enables comparison with about 6000 database 
entries representing more than 2300 species. As an example, a new database entry 
which is created from a species not known to be related to any of the species covered by 
the existing database should not result in a close match with the existing MSPs. Further, 
this step as well as the dendrogram calculation may give a hint regarding a lack of 
 differentiation of closely related species. If so, this has to be further investigated by 
more extensive tests (e.g. validation with a larger set of well‐characterized strains) and 
resolved or – if resolution of the problem is not possible – it may point to the incapabil-
ity of the method to distinguish these species.

A third step to control a newly established database, or a database extension can be 
the control for spectra acquired from strains not contained in the database. For repeated 
database extensions, it makes sense to use an established set of such spectra, for exam-
ple, from a large validation study, as a standard. For the MALDI Biotyper, again this can 
be accomplished using the Explorer module of the program. Spectra from new species 
in a database can be controlled further by measurement and matching of new, database‐
independent strains (if available).

As a summary, quality control is possible and should be performed for MALDI‐TOF 
MS profile libraries at various stages in the process of database entry generation. 
Research databases may be controlled with less effort, and the more a database will be 
used in a routine setting, the more control is recommended. A proven principle for 
increased quality assurance is the ‘principle of four eyes’: two people perform an 
 independent control for each step.

2.8.6 MSP Creation and Analysis/Quality Control

 ● Create MSP using the appropriate parameters (e.g. Bruker standard).
 ● Create dendrograms – check if reasonable (e.g. grouping of closely related/unrelated 

organisms).
 ● Match against the Bruker database and/or your own library  –  check if reasonable 

(no match with unrelated organism, match with closely related organisms).
 ● Match with quality control spectra set which was not part of the library creation.

2.9 User‐Created and Shared Databases: Examples 
and Benefits

It is not the intention of this chapter to promote the distribution of databases which 
have been created by users of a system. One should be aware that the person or institu-
tion creating such a MALDI‐TOF MS fingerprint database is fully responsible for its 
quality and applicability. As described above, careful quality control during the estab-
lishment of a library is necessary, but this is an elaborate process. Databases intended 
and validated for diagnostic purposes are ‘closed’ by manufacturers. They cannot be 
extended or modified by design. On the other hand, in particular for research purposes 
but also for routine applications which are not in the clinical diagnostic field, it may 
make sense for a user to creates his or her own dedicated database or to extend a data-
base delivered by the manufacturer to close gaps in species coverage. As an example, 
strain collections can create references for stored strains which in a later quality control 
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process can help to secure strain identity. For example, this has been the practice at the 
German strain collection in Braunschweig (DSMZ) and the strain collection of the 
Institute Pasteur in Paris (CIP) for years (personal communication Dr. Schumann, 
DSMZ, and Dr. Bizet, CIP, respectively). Further, a consortium working on the explora-
tion of bacteria from the genus Vibrio has developed a library which complements the 
MALDI Biotyper database with many strains from their research work [53]. This library 
is also offered to other users for their research purposes. There are more examples, and 
most are not published; therefore‚ it is not intended to reference a broad library collec-
tion here. But it should be mentioned also that the manufacturers can learn from the 
work which is done in this field, and obtain examples of possible database improve-
ment. Manufacturers should observe such research and carefully investigate if there are 
suggestions for improvement even for their own diagnostic databases. Although 
MALDI‐TOF MS fingerprinting already can be considered the laboratory standard for 
microorganism identification in clinical microbiology laboratories, there still are oppor-
tunities for improvement which should be exploited to benefit users and patients.
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3

3.1 Introduction

Laboratory results account for a large part in physicians’ management of patients. 
Although the majority of the laboratory results are available the same day of hospital 
admission, microbiology analysis may be associated with longer time‐to‐results. A sus-
picion of infection is generally based on clinical symptoms and signs, some of them 
highly unspecific [1,2]. Indeed, a similar clinical presentation can be caused by different 
etiologies and different microorganisms. As a consequence, empirical treatments com-
prising broad‐range antibiotics are often started [3,4]. In bacteriology and mycology, a 
large part of the diagnostic is culture‐based, a sensitive approach (when the sampling is 
achieved before the introduction of antibiotics) that is semiquantitative or quantitative 
and provides a pure isolate for species identification and antibiotic susceptibility testing 
(AST), which will allow adapting the antibiotic treatment if needed. The main disad-
vantage of culture‐based approaches is the time to positivity, which varies according to 
the microorganism growth. When a culture is positive, the identification of the incrimi-
nated microorganism may rely on (1) colony morphology and microscopic appearance 
determined by Gram staining or other specific staining, and (2) biochemical identifica-
tion; some rapid enzymatic and antigenic detection assays allow a rapid identification; 
however, these methods are restricted to a limited number of microorganisms. High‐
throughput automated systems for subculture‐based microorganism identification, 
which represents a large majority of biochemical identifications, are still time consuming 
because of the need for a subculture.

Matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry 
(MALDI‐TOF MS) represents one of the most accurate, reliable‚ and fast methods for 
the identification of bacterial strains from positive cultures, and therefore it has largely 
replaced all other previously used approaches for microbial identification. It has proved 
to be much cheaper than nucleic‐acid‐based methods such as polymerase‐chain 
 reaction plus sequencing, fluorescence in situ hybridization (FISH), or microarrays.

Applications of MALDI‐TOF Mass Spectrometry in Clinical 
Diagnostic Microbiology
Onya Opota, Guy Prod’hom and Gilbert Greub

Institute of Microbiology, University Hospital Center, and University of Lausanne, Lausanne, Switzerland
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The principle of MALDI‐TOF MS is to generate the mass spectrum profile of a 
 sample that consists of a mix of proteins with different masses. Matrix‐assisted laser 
desorption ionization (MALDI) is a method in which proteins are embedded in a 
 specific matrix that will facilitate the ionization achieved by a laser. The ionized  proteins 
are subsequently separated according to their time of flight (TOF), which is a function 
of their mass and charge. A detector will generate a mass spectrum according to the 
calculated TOF. MALDI‐TOF MS was initially applied for the identification of microor-
ganisms directly from whole cells, which made it easy to implement in the routine 
workflow of clinical microbiology laboratory from colonies obtained on agar plates. 
The success of MALDI‐TOF MS is largely due to easy‐to‐use instruments with friendly 
software accessible to nonchemists. MALDI‐TOF MS was further applied for the iden-
tification of microorganisms from other samples, including positive blood cultures and 
for various applications such as typing and antibiotic resistance determination. In this 
chapter, we intend to summarize the main applications of MALDI‐TOF MS in clinical 
microbiology.

3.2 Principle of Microorganisms Identification 
using  MALDI‐TOF MS

3.2.1 Soft Ionization and MS Applied to Microorganisms Identification

MALDI‐TOF MS identification includes three major steps:

1) The sample (whole cells or protein extract) is deposited on a metal plate and embed-
ded in a matrix that crystallizes the analytes. The sample is then bombarded by brief 
laser pulses that achieve the ionization by proton transfer from the matrix, which 
results in positively charged analytes (MALDI).

2) The ions formed by this process are accelerated in an electrostatic field and directed 
in the flight tube in which they are separated according to their TOF, a function of 
their mass‐to‐charge ratio (m/z), which is proportional to the square of the drift time 
m/z = 2t2K/L2 (m = mass, z = number of charges on ion, t = drift time, L = drift length, 
K = kinetic energy of the ion) (Figure 3.1). To avoid ion collisions in the flight tube, a 
high vacuum is generated by a pump, before laser pulses, which this takes 1–2 min.

3) A mass spectrum is eventually generated by protein detection at the exit of the flight 
tube. The mass spectrum is composed of peaks of specific mass‐to‐charge ratios 
with different intensities, which correspond to a reproducible fingerprint of a defined 
microorganism [5]. Some characteristic mass peaks are shared by phylogenetically 
related bacteria and assist identification at the genus of species level [6,7]. The iden-
tification is achieved by a comparison of the mass spectrum with a database of refer-
ence mass spectra generated with well‐classified bacterial strains.

3.2.2 Biomarker Proteins

MS is a technology initially developed for the analysis of small molecules in chemistry. 
The use of MS for bacterial identification was first proposed in 1975, based on the fact 
that different bacterial extracts were associated with unique protein spectra [8]. Rapid 
identification of microorganisms from intact colonies using MS relies on the ability to 
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Figure 3.1 Principle of MALDI‐TOF MS identification of microorganisms. The sample is first deposited on a metal plate and 
embedded in the matrix that crystallizes the analytes; it is then bombarded by brief laser pulses that achieve the ionization 
(MALDI) by proton transfer from the matrix, which results in positively charged analytes. The desorbed ions are then accelerated by 
an electrostatic field and directed in the flight tube, in which they are separated according to their time of flight (TOF) in the flight 
tube, in which a high vacuum is generated by a pump. Ions are detected at the exit of the flight tube, and a software generates a 
mass spectrum. The identification is achieved by comparison of the mass spectrum with a database of reference mass spectra 
(adapted from Croxatto, A. et al. (2012). FEMS Microbiology Reviews 36: 380–407).
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generate ions from various proteins including ribosomal proteins. MALDI, a soft 
 ionization technique that uses short UV laser pulses (generally around 337 nm), does 
not degrade extracted proteins. Holland and colleagues reported for the first time that 
MALDI TOF MS could be applied directly to whole cells to achieve identification by 
comparison with the MS obtained with either archived reference spectra or with spec-
tra co‐generated with cultures of known bacteria [7]. Batches of blinded bacterial 
 colonies from agar plate were mixed with the matrix and air‐dried, before MALDI‐TOF 
MS. The obtained spectra were compared to the blinded spectra. A number of high‐
mass ions corresponding to bacterial proteins could be used for species–species 
matches (7). This method was confirmed by several other studies and used for rapid 
bacterial identification from whole bacterial cells [6,9,10].

Biomarker proteins that constitute the mass spectrum have a molecular mass lower 
than 15 KDa. A large majority (~50%) of the proteins used for identification are ribosomal 
proteins owing to their abundance and because the organic solvents and the acidic 
 conditions that are used for cell lysis promote their extraction [11,12]. The results 
 proposed by the identification software correspond to the more closely related species 
in the database and are associated with a score that integrates the number of concord-
ant peaks as well as the quality of the spectrum. This score enables acceptance of the 
identification at the genus or at the species level or of its rejection according to the 
threshold established by the manufacturer.

3.2.3 Current Commercial MALDI‐TOF MS Instruments

The success of MS in clinical microbiology relied on the commercialization of instru-
ments requiring limited hands‐on‐time for the sample preparation and overall requiring 
limited skills for data analysis as they integrated identification software and databases. 
This allowed the use of MS by clinical microbiologists and not just by chemists or 
biochemists.

The Biotyper mass spectrometer systems (Bruker Daltonics) are the most widely 
used. They allow identification from bacteria or fungal cells and make it possible to 
implement the database with spectra generated with the users’ own isolates. The iden-
tification is associated with a log scale of 0 to 3. A score above 2.3 corresponds to a high 
level of confidence of the identification at the species level. A score between 2.0 and 
2.3 allows identification at the species level with a good probability. A score between 
1.7 and 2.0 suggests a correct identification at the genus level. Scores above 1.7 have 
limited accuracy.

The VITEK MS (bioMérieux, France) is the former Axima Assurance system 
(Shimadzu Corporation, Kyoto, Japan). The identification are rated as “ready to report,” 
“requiring further review,” or “no identification made” [13,14].

The Autoflex II mass spectrometer (Bruker Daltonics) and the Axima Assurance 
 system (Shimadzu), which are the most widespread, display similar performance for 
routine identification of microorganisms both in term of percentage of valid identifica-
tions and percentage of correct identifications. A comparative study between the two 
systems performed on 720 consecutive bacterial colonies obtained in routine clinical 
laboratory conditions and using the sequencing of the 16S rRNA gene as gold standard 
reported 99.1% (674/680) of correct identifications for the Bruker MS system (Bruker) 
and 99.4% (635/639) for the Shimadzu MS system [15]. In a similar study, Martiny et al. 
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reported 92.7% and 93.2% of correct identifications for the Biotyper and the VITEK MS 
systems, respectively (n = 986) [16]. Both systems displayed equivalent performance for 
identification of yeasts: 93.0% (175/188) for the VITEK MS and 92.6% (174/188) for the 
Bruker Biotyper [17]. Other studies comparing the VITEK MS and the Bruker systems 
confirmed the equivalent performances of the two instruments [18–21]. The Andromas 
system (Andromas SAS, Paris, France) uses a software that determine the percentage of 
similarity of the obtained spectrum with reference strains present in the database which 
provide a “good identification,” an “identification to be confirmed,” or an “absence of 
identification” [22–24]. To date only a few studies have been published.

3.2.4 Automated Colony Picking

Manual colony picking is a major limitation of the throughput of MS identification and 
causes major errors due to inversions, which are estimated to occur at the rate of 0.25% 
[25]. The throughput as well as the occurrence of major errors should be improved by 
the emergence of new automated systems for clinical microbiology laboratories, such 
as the Total Laboratory Automation (TLA) system from BD Kiestra (the Netherlands) 
and the WASP Lab from Copan Diagnostics (Italy), including automated colony picking 
 systems [26]. Because MALDI‐TOF MS is currently used to identify more than 95% of 
all isolated strains in laboratories, should they be implemented, such systems will 
undoubtedly have a major positive impact on the laboratory technicians’ overall 
workload.

3.3 Factors Impacting the Accuracy 
of MALDI‐TOF MS Identifications

3.3.1 The Importance of the Database

MALDI‐TOF MS accuracy for a microorganism’s identification largely relies on the 
representativeness and the quality of the reference spectra database [27,28]. Commercial 
databases are made of reference spectra that are expected to cover the maximum num-
ber of clinically relevant isolates. These spectra are generally made of an accumulation 
of several spectra obtained for a single isolate or for different isolates. Reference spectra 
can also be made with isolates from different origins as regards to potential geographic 
diversity. However, a comprehensive database does not exist yet.

Some misidentifications can be due to an insufficient number of reference spectra 
for a specific species or to the absence of reference spectra. The databases need to be 
frequently updated with new spectra. Most of the systems allow users to expand the 
commercial database with spectra generated with “local” isolates. For instance, one 
could implement the database with the spectrum of an isolate unsuccessfully identified 
using MALDI‐TOF MS but that has been unambiguously identified using other 
approaches such as 16S rDNA sequencing or other molecular approaches; this has 
been shown to significantly increase the identification rate [29,30]. To reduce  inter‐
analysis variability, new references spectra should be generated by the addition of 
 several spectra obtained with a defined isolate. Errors in the database due to a wrong 
identification of the strain that will serve as reference or taxonomic errors constitute a 
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major source of misidentifications. Thus, implementing one’s own spectra with local 
isolates requires specific care on the part of the user, especially regarding the methods 
used for the identification.

Some BSL3 agents such as Burkholderia pseudomallei, Brucella suis, Brucella meliten-
sis, Francisella tularensis, or Bacillus anthracis are not present in all commercial 
 databases and are included in dedicated databases [31].

3.3.2 Quality of the Spectrum and Standardization of the Pre‐analytic

Both for bacteria and fungi, the mass spectrum is dependent on the age of the colony 
and the growth medium. Therefore, it is recommended to perform MS identification 
from fresh colonies. In addition, when implementing the database, it is important that 
the new reference spectra be made in similar conditions to those used for routine 
 identifications. The quality of the spectrum may also vary according to the investigated 
species. For instance, difficult‐to‐lyse bacteria such as Klebsiella pneumoniae, which is 
encapsulated, can lead to poor identification scores. Other organisms such as 
Mycobacteria spp., Nocardia spp., Actinomycetes, yeasts, and fungi need specific 
extraction protocols [32,33].

3.3.3 Limit of Detection

A sufficient biomass is required to generate a spectrum whose quality is sufficient to pro-
vide identification. MALDI‐TOF MS was initially restricted to colonies obtained from 
culture on solid or liquid media. A major improvement in the diagnosis of bloodstream 
infections and patient’s management is the identification of bacteria and fungi directly 
from positive blood cultures allowed by the validation of specific protocols aimed at 
removing erythrocytes and nonmicrobial cells elements and to concentrate bacterial or 
fungal cells [34]. Recent studies also support the potential use of MALDI‐TOF MS for a 
microorganism’s identification directly from clinical samples such as urine [27].

3.3.4 Errors and Misidentifications

Absence of identification can be due to incomplete databases; however, a large number 
of identification failures result from the poor quality of the mass spectrum obtained for 
the microorganism of interest, which can impair the identification of a concordant 
spectrum in the database. This can be due to a poor biomass or to inefficient cell lysis 
or inefficient protein extraction. Erroneous identifications of the reference spectra in 
the database can be a cause of major errors [25,28]. Misidentifications often stem from 
similar analytes displaying different TOFs as a result, for instance, of an incomplete 
ionization. This can be avoided by using a fresh matrix. Finally, the routine identifica-
tion procedure has to be similar to the procedure used to obtain the mass spectrum for 
the database as these could impact the quality and quantity of the peaks and impair 
identification.

3.3.5 Mixed Bacterial Populations

MALDI‐TOF MS has been developed for a microorganism’s identification from pure 
culture; identification of a mixed bacterial population can lead to unexpected results. 
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The Gram staining that remains mandatory could disclose a mixed infection. Indeed, 
identification from mixed populations can generate a nonexistent mass spectrum 
resulting from the sum of two or more spectra from phylogenetically distinct bacteria. 
Alternatively, the identification software could propose two distinct strains that are 
not genetically related. In general, the identification scores hardly reach the threshold 
for high confidence identification at the species level. It is essential that the MALDI‐
TOF MS identification match the microorganism’s morphotype revealed by the Gram 
 staining and/or suggested by phenotypic characteristics. Thus, identifications obtained 
from mixed populations should be considered as not definitive; a subculture is recom-
mended for the isolation of the microorganisms and further identification on 
 monobacterial colonies.

3.3.6 Closely Related Species

Some closely related species cannot be differentiated using MALDI‐TOF MS even with 
high‐quality spectrum using routine procedures (Table  3.1). This is the case of 
Streptococcus spp. of the “viridians” group. For Streptococcus pneumoniae identifica-
tion, additional phenotypic tests such as the Optochin susceptibility test or the bile 
solubility test are required for definitive identification [35–40]. Some strategies, based 
on the analysis of specific peaks (6949, 9876, and 9975 m/z), allow discrimination 
between S. pneumoniae and group mitis Streptococcus species; however, they are hardly 
suitable for routine application [39]. The same issue is true for the distinction between 
Escherichia coli and Shigella spp., for which even when specific peaks are used, misiden-
tifications still occur [16; 41–43]. In the absence of phenotype confirmation such as 
lactose fermentation or lysine decarboxylase activity, the identification of E. coli should 
be presumptive. In practice, one may report the identification of some bacteria as a 
“complex” or “group” of bacteria when the clinical relevance of differentiating some spe-
cies is questionable and more than one species of these complex are generally obtained 
with an identification score greater than 2 (Table 3.1) [44]. Nevertheless, such strategies 
should be updated according to improvements in database availability, new bioinfor-
matic algorithms, and taxonomy evolutions. On the basis of empirical observations, 
some authors have proposed an alternative acceptance criteria for gram‐negative 
 bacteria, which consist in the acceptance of identification at the species level when at 
least a 0.200 log difference is observed between multiple species present besides a log 
score ≥2.0 [45].

3.4 Identification of Microorganisms from Positive Cultures

3.4.1 Identification from Positive Cultures on Solid Media

The main application of MALDI‐TOF MS in clinical microbiology laboratories is the 
identification of bacteria from colonies recovered from solid culture media (Figure 3.2). 
A standard procedure is suitable for a large majority of the bacteria, which is convenient 
for routine identification. Specific identification procedures, which will be discussed 
later in this chapter and are presented in detail in chapters of this book, are needed for 
some bacteria, such as Actinomycetes and Mycobacteria.



Table 3.1 Example of interpreted results as currently reported in our laboratory.

Complex of bacteria Species

Acinetobacter baumanii complex A. baumanii
A. calcoaceticus
A. nosocomialis
A. pittii

Bacteroides fragilis complex B. caccae
B. eggerthii
B. fragilis
B. ovatus
B. stercoris
B. thetaiotaomicron
B. uniformis
B. vulgatus

Burkholderia cepacia complex
(depending on the clinical situation,  
identification to species level may be 
clinically relevant)

B. ambifaria
B. anthina
B. arboris
B. contaminans
B. cenocepacia
B. diffusa
B. dolosa
B. lata
B. latens
B. metallica
B. multivorans
B. pyrrocinia
B. seminalis
B. stabilis
B. vietnamiensis
B. ubonensis

Citrobacter freundii complex C.brakii
C. freundii
C. gillenii
C. murliniae
C. rodentium
C. sedlakii
C. serkmanii
C. youngae

Enterobacter cloacae complex E. asburiae
E. cancerogenus
E. cloacae
E. dissolvens
E. hormaechei
E. kobei
E. ludwigii
E. nimipressuralis
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For routine identification of bacteria, colonies are picked from agar plates using a 
sterile loop, deposited on the metal MALDI plate, and overlaid with a matrix [27,46,47]. 
The mixture is air‐dried (a step that can be accelerated using a warming plate) and then 
introduced in the device and subjected to laser pulses. Matrices with different proper-
ties can be used: 2,5‐dihydroxybenzoic acid (DHB), a‐cyano‐4‐hydroxycinnamic acid 
(CHCA), sinapinic acid (SA), ferulic acid (FA), and 2,4‐hydroxy‐phenyl benzoic acid 
[27,46]. Each device is generally associated with a specific matrix recommended by the 
manufacturers. This procedure is straightforward, simple, and fast: less than 5 min from 
the colony picking to the final identification. To improve the quality of the spectrum 
and to increase the accuracy (confidence score) of the identification, the analysis can be 
achieved following protein extraction using an acetonitrile/formic acid procedure that 
promotes the generation of positive ions and increases the number of peaks available 
for the analysis [25,48]. The formic acid can be added directly on the colonies on the 
MALDI plate and air‐dried before the embedding into the matrix [27]. If no identifica-
tion is obtained, the third option is to perform a full protein extraction using ethanol 
and formic acid.

Table 3.1 (Continued)

Complex of bacteria Species

Haemophilus influenzae complex H. haemolyticus
H. influenzae

Klebsiella oxytoca complex K. oxytoca
Raoultella ornithinolytica
Raoultella planticola
Raoultella terrigena

Proteus vulgaris complex P. hauseri
P. penneri
P. vulgaris

Streptococcus bovis complex S. equinus
S. gallolyticus
S. infantarius
S. lutetiensis
S. pasteurianus

Streptoccus mitis complex S. gordonii
S. infantis
S. massiliensis
S. mitis
S. oralis
S. peroris
S. parasanguinis
S. sanguinis
S. tigurinus

Streptococcus salivarius complex S. salivarius
S. vestibularis
S. thermophilus



MALDI-TOF Mass Spectrometry64

The performance of MALDI‐TOF MS identification relies on (1) the number of mass 
spectra that reach the quality allowing identification and (2) the number of correct 
identifications. For these two parameters, all the commercial devices available display 
similar performances. The percentage of correct identifications ranges from 95% to 99% 
with the Bruker system [15,25,28], whereas the VITEK MS system provided 96.2% of 
correct identifications at the species level [49]. It is recommended to avoid working 
with old colonies and to minimize the number of passages.

3.4.2 Identification from Positive Blood Cultures

Bloodstream infection (BSI) is suspected by physicians on the basis of nonspecific 
 criteria, which leads to the introduction of empiric antimicrobial treatments. The time 
to identification of the etiologic agent of a BSI is crucial as the mortality and morbidity 
of patients are directly dependent on the introduction of the first efficient anti‐infectious 
treatment. Empiric treatments, introduced prior to the identification of the incrimi-
nated microorganism and its susceptibility profile, are generally based on broad‐ 
spectrum antibiotics with a deleterious impact on the profitable microbiota.

3.4.2.1 Identification from Positive Blood Cultures Via a (Short) Subculture
Positive blood cultures are not suitable for direct identification using MALDI‐TOF MS as 
the bacterial concentration is generally too low (106 to 109 cells/ml) and because of the 
presence of an excess of nonbacterial proteins that would impair MS identification [50]. 
A first strategy is to perform a subculture of the positive blood culture (BC) in order to 
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Figure 3.2 Application of MALDI‐TOF MS in clinical microbiology.
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obtain a pure culture on agar‐based medium, on which the standard MALDI‐TOF MS 
identification methods described above can be applied. However, this is a time‐consuming 
method. Indeed, considering that MALDI‐TOF MS identification turnaround time (TAT) 
is lower than 5 min, it is regrettable that the time to result because the positive BC is 
detected is delayed by several hours because of a long subculture. To accelerate the time 
to result from the detection of the positive BC, an alternative strategy is to achieve a short 
subculture on an agar plate. The efficiency of this procedure is, however, dependent 
on the bacterial strain growth rate [27]. This approach is particularly suitable for gram‐
negative bacteria for which subcultures of ≤4, ≤6, ≤8, and ≤12 h yielded 95.2%, 97.6%, 
97.6%, and 97.6% of correct identifications; in contrast, the same incubation time yielded 
only 18.6%, 64.0%, 96.5%, and 98.8% of correct identifications for gram‐positive bacteria 
[51]. With an incubation period of 5 h, Verroken et  al. reported 81.1% (727/896) for 
monomicrobial cultures with misidentifications mainly occurring for yeasts and anaer-
obes [52]. A subculture is especially suitable for laboratories with a large volume of the 
positive BC and with limited technicians, as up to now subculture‐independent methods 
that will be  presented below require a lot of hands‐on time (Table 3.2) [34].

3.4.2.2 Directly from the Positive Blood Culture Vial
In order to reduce the TAT to final identification from positive BCs, several subculture‐
independent strategies, whose principle is to remove nonmicrobial material (erythro-
cytes, cells debris) and to concentrate the microorganisms, have been developed and 
reported in numerous publications. The first method consists of bacterial enrichment 
from the positive BC by centrifugation and erythrocyte lysis with ammonium chloride 
solution. This procedure gives a successful identification for 78.7% of the bacterial pel-
lets tested with 99% of correct identifications [53,54]. A method using collection tubes 
with separator gels in which 1.5 ml from the positive BC is injected before bacterial 
protein extraction and MALDI‐TOF MS analysis gives more than 90% of correct iden-
tifications [35]. A similar method using a tube containing a separator gel and a clot 
activator leads to 95.3% of correct identifications [36]. Equivalent results can be obtained 
with commercial pellet preparation kits [37,55–57].

The pellet enriched in bacterial cells generated from a positive BC for MALDI‐TOF 
MS identification can also be used for ASTs using disk diffusion methods, E‐test 
 (bioMérieux, France), or automated systems. Prod’hom et al. reported 99% and 74% of 
 correct identifications for Enterobacteriaceae and for staphylococci, respectively, and 
less than 1% of errors for AST using the VITEK 2 automated system [58]. More recently, 
another group obtained similar results using saponin and chloride ammonium. This 
strategy has been transposed to the BD Phoenix automated system with 97.9% of  correct 
AST [59]. Using a commercial lysis‐filtration method of bacterial enrichment from a 
positive BC associated with the VITEK MS system, Machen et al. reported a TAT of 
11.4 h until the AST result, when the TAT for conventional methods was 56.3 h [60].

3.5 Identification of Microorganisms Directly from Samples

3.5.1 Urine

Ferreira et al. first reported the possibility of diagnosing urinary tract infections by direct 
detection of bacteria in urinary samples [61]. The procedure consisted of an  initial 
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Table 3.2 MALDI‐TOF MS applications in clinical microbiology and references.

Application Comments
Selected 
references

Standard 
identification from 
colonies

Fast, accurate; misidentification associated with 
absence or incorrect identification of the reference 
spectra in the database.

[25,27,28,49]

Identification from 
positive blood 
culture via a short 
subculture

Suitable for gram‐negative bacteria; not suitable for 
gram‐positive bacteria, anaerobes, and yeast.

[51,52]

Identification from 
positive blood 
culture via bacterial 
pellet

Positive impact on patient management; 
misidentification or absence of identification is 
generally associated with insufficient biomass or 
mixed bacterial population. High hands‐on time.

[34–37,144–146]

Identification from 
urine

For culture positive with more than 103–105 CFU/ml 
depending on the study; high workload, unknown 
impact on patient management.

[61–63,147]

Identification from 
cerebrospinal fluid

Proof of concept provided for a meningitidis case. [65]

Alpha‐hemolytic 
streptococci

Misidentification of group mitis streptococci and 
S. pneumonia.

[39,148]

Beta‐hemolytic 
streptococci

Fastest method; more accurate than conventional 
methods.
Errors can occur with rare species.

[133]

Aerobic gram‐
positive bacilli

Accuracy depends on the database. [23,90]

Shigella spp./E. coli Routine distinction methods with 100% sensitivity 
and specificity are not available.

[16,41–43]

Anaerobes Important added value due to the long incubation 
time required for these microorganisms.

[127–132]

Mycobacteria Rapid for the identification of NTM.
No added value for MTBC complex identification. 
Needs specific inactivation and cell lysis procedure, 
no added value for laboratory with a molecular 
diagnosis platform.

[69–71,149]

Yeast Accurate; same procedure as for bacteria. [17,24,150–154]
Fungi Requires specific extraction procedure to achieve 

cell lysis.
Impacted by the age of the colony and the growth 
stage.

[22,75]

Dermatophytes Variable sensitivity according to the species, limited 
clinical impact of identification at the species level.

[76]

Protozoan parasites Amoeba.
Leishmania species.
Giardia species.

[139]
[137]
[136]
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 centrifugation of 4 ml of urine at low‐speed (2000 g) to remove leukocytes, followed by a 
high‐speed centrifugation (15,500 g) to obtain a bacterial pellet suitable for MALDI‐TOF 
MS analysis. The performance of MALDI‐TOF MS was compared to the performance of 
the culture for the detection and identification of 260 positive urine samples using the 
automated screening device UF‐1000i (bioMérieux, France) based on flow cytometry as 
the reference. Among the 260 samples, 235 corresponded to monobacterial cultures 
with > 105 CFU/ml. MALDI‐TOF MS correctly identified 91.8% (202/235) microorgan-
isms at the species level and 92.7% (204/235) at the genus level [61]. In another study, 
March et al. also reported a threshold of 105 CFU/ml for successful identification directly 
from urine [62]. In contrast, Kohling et al. reported that the identification of bacteria 
directly from urine samples is possible for concentrations as low as 103 CFU/ml. The 
authors also noticed that the presence of human defensin that gets inserted into the 
membrane of bacteria and cannot be removed by washing had a negative impact on 
MALDI‐TOF MS identification [63]. A screening of positive urine using the automated 
system UF‐1000i followed by direct analysis using MALDI‐TOF MS has been reported to 
give 94.8% (1381/1456) of correct identifications [64]. Altogether, these studies demon-
strate the potential of MALDI‐TOF MS to detect pathogens directly from urine. However, 
given the workload associated with such procedures and the number of urine samples to 
investigate, this approach is not widely used. Moreover, the impact of such an approach 
on patient management still needs to be investigated and might be limited if MALDI‐
TOF MS rapid identification is not associated with rapid AST.

3.5.2 Cerebrospinal Fluid

To date, no study has addressed the reliability and usefulness of MALDI‐OF MS for the 
detection of pathogens directly from cerebrospinal fluid (CSF). Nevertheless, a case 

Table 3.2 (Continued)

Application Comments
Selected 
references

Ticks and fleas Proof of concept from hemolymph (ticks) and 
various body parts (fleas).

[140,143,155,156]

Typing Can be accurate but is still time consuming. [81,82,91–93]
Resistance Essentially for carbapenemase‐producing strain 

identification.
[78–80]

Toxin Requires identification of exact virulence factor‐
associated peak.
Misidentification can be due to type‐associated 
peaks rather than toxin‐associated peaks.

[85,88,89]

Viruses Detection, identification (including simultaneous 
detection), typing, nucleic‐acid methylation.

[96,97,106–108,157]

PCR‐ESI MS Universal (>800 pathogens), detection of mixed 
bacterial populations, semiquantitative.
Low throughput (8 samples/8 h), expensive, no 
interventional studies.

[50,111,118,158]
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report discussed the feasibility of such a strategy. In this report, CSF from an uncon-
scious febrile patient who presented with a nuchal rigidity, was sent to the clinical 
microbiology laboratory and analyzed by MALDI‐TOF MS using the same protocol 
that was described above for urine: low‐speed centrifugation (2000 rpm for 30 s) to 
remove leucocytes and then high‐speed centrifugation (13,000 rpm for 5 min) to 
obtained a bacterial pellet deposited onto the MALDI plate for analysis. This approach 
proposed Streptococcus pneumoniae as the etiological agent [65]. There is a need for 
additional studies to determine the reliability and the added value of such approaches.

3.6 Microorganisms Requiring a Specific Processing 
for MALDI‐TOF MS Identification

Although most of the bacteria can be identified from positive cultures using MALDI‐
TOF MS, some of them would require specific processing mainly aimed at promoting 
cell lyses. In addition, some microorganisms require an inactivation step for biosafety 
reasons. Several chapters of this book are dedicated to the identification of specific 
bacteria using MALDI‐TOF MS; nevertheless, in this section, we have selected and 
emphasized some of these aspects.

3.6.1 Nocardia and Actinomycetes

Nocardia spp. and Actinomycetes have a difficult‐to‐lyse cell wall requiring specific 
processing prior to MALDI‐TOF MS identification. Verroken et al. developed a method 
for identification of Nocardia spp. that consists of 30 min of boiling, followed by a full 
protein extraction using ethanol and formic acid [66]. Using this procedure together 
with an extended homemade database made of 110 isolates, the authors could  accurately 
identify 88% (38/43) of the Nocardia strains including 34/43 correct identifications at 
the species level [66]. In contrast, only 44% (19/41) of correct identifications, including 
10 correct identifications at the species level, were obtained using the MALDI Biotyper 
commercial database [66].

3.6.2 Mycobacteria

The identification of Mycobacterium tuberculosis from a positive culture is generally 
achieved by antigen detection and by PCR. Similarly, the identification of non‐tuberculosis 
mycobacteria (NTM) can also be achieved by PCR or other nucleic‐acid‐based  methods 
such as DNA–DNA hybridization. Mycobacteria identification using MALDI‐TOF MS 
has been proposed to decrease the TAT, labor, and cost compared to nucleic‐acid‐based 
methods. Several procedures including bacteria inactivation and cell disruption have 
been developed for the different MALDI‐TOF MS systems commercially available with 
similar performances [67; see Chapter 4]. However, the concordance of Mycobacterium 
species identification using MALDI‐TOF MS with molecular‐based methods varies 
according to the studies and the protocols. This is because some closely related strains 
can hardly be distinguished using this method [68]. However, MALDI‐TOF MS may 
interest laboratories lacking a molecular diagnosis platform for nucleic acid extraction, 
amplification, and sequencing or for nucleic acid hybridization.
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Prior to MS identification, Mycobacterium species need specific sample processing to 
inactivate the microbes and to achieve cell disruption. Inactivation can be achieved by 
incubating the bacteria at 95 °C for 30 min in 70% ethanol. A sonication step is necessary 
to optimize cell disruption before protein extraction. Using this procedure on cells col-
lected from 7H11 agar medium, Machen et al. reported 82.2% of correct identifications 
at the species level and 88.8% at the genus level [69]. Kodana et al., proposed a slightly 
different procedure in which the heat inactivation is achieved in water with a subsequent 
ethanol treatment. Alternatively, El Khechine et  al. proposed a heat inactivation 
 performed in the presence of Tween‐20 followed by a mechanic cell lysis and a full 
 protein extraction; using this method, the authors reported 100% of agreement with con-
ventional molecular methods for 124 clinical isolates, including 87 M. tuberculosis strains 
and 37 NTM strains [70]. Cell inactivation and disruption can also be achieved simulta-
neously by vigorous vortex of the cells during 15 min in 70% ethanol in the presence of 
glass bead, which gave 88.8% of correct identifications [69]. A heat‐independent inacti-
vation/extraction method has been proposed by Lotz et al. in which a cell pellet obtained 
from positive MGIT or Lowenstein–Jensen culture was inactivated in 70% ethanol, 
which was sufficient for work outside Biosafety Level 3 (BSL3) laboratories [71]. The cell 
suspension was deposited on the MS plate and air‐dried before the addition of the matrix 
(SA, 20 mg/ml; acetonitrile, 30%; trifluoroacetic acid, 10%). After the addition of 10 mM 
ammonium phosphate on the crystallized mixture, the sample was analyzed by MS, 
 giving 97% of correct identifications from Lowenstein–Jensen and 77% of correct identi-
fications from MGIT [71]. Very recently, another group demonstrated that a 5 min 70% 
ethanol inactivation may be sufficient for mycobacterial identification [33].

In conclusion, MALDI‐TOF MS can provide a same day result from positive myco-
bacteria cultures. Inactivation of the cells should be ensured in order to perform the 
analysis outside BSL3 laboratories. The inactivation procedure is generally not suffi-
cient for cell disruption, which requires a specific step. However, misidentifications can 
occur for closely related strains or for rare species for which there are not enough refer-
ence mass spectra in the database [68,71]. This is the case for M. abscessus, M. massil-
iense, and M. bolletii and for M. tuberculosis, M. bovis, M. bovis BCG, M. microti, and 
M. africanum. In conclusion, Mycobacteria spp. can accurately be identified using 
MALDI‐TOF MS.

3.6.3 Yeast and Fungi

Yeast identification using MALDI‐TOF MS can be achieved directly from whole cells 
using a procedure similar to the standard bacterial identification procedure from agar 
plates (see Chapter  9). The two main commercial MALDI‐TOF MS systems display 
similar performances for the identification of yeast at the species level with up to 89.8% 
of correct identifications for the Bruker Biotyper MS system and 84.3% for the VITEK 
MS system [17,72]. These performances are comparable to the VITEK 2 system [17]. 
A  full extraction method that consists of a pretreatment in 70% ethanol and formic 
acid/acetonitrile protein extraction gave 99% of correct identifications using the Bruker 
Daltonics MALDI Biotyper software [73]. The age of the colony is expected to impact 
the accuracy of yeast identification; however, Goyer et al. reported similar results for 
colonies grown in 48 h or 72 h, with respectively 95.1% and 96.6% of correct  identifications 
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from chromogenic agar media [74]. Nevertheless, caution is warranted for much older 
colonies (≥5 days).

The identification of invasive filamentous fungi using protein MALDI‐TOF MS is 
more complex than for bacteria and yeast, because of their complex life cycle (see 
Chapter 9). Indeed, different life stages, spores, conidiophores, and mycelium can be 
present on the same colony. A first strategy is to mix the different growth stages present 
in a single colony, and then to perform protein extraction for MALDI‐TOF MS analysis 
[22]. Specific sample preparation methods are also required to achieve cell lysis and to 
improve protein extraction. In contrast to yeast identification, the accuracy of MALDI‐
TOF MS for the identification of filamentous fungi is largely dependent on the growth 
medium, the age of the colony, and the growth stage. Repeated identification can be 
necessary. Using a simplified extraction method and an extended database generated 
with 55 species of Aspergillus spp., Fusarium spp., and Mucorales spp., De Carolis et al. 
reported 96.8% (91/94) of correct identifications [75]. Samples were prepared by  placing 
1 µl of a suspension of mycelium and conidia onto the MALDI plate, from which direct 
protein extraction was achieved using ethanol/alpha‐cyano‐4‐hydroxycinnamic acid in 
50% acetonitrile/2.5% trifluoroacetic acid [75].

Dermatophyte identification at the species level is generally not necessary because 
the antibiotic susceptibility profile is generally shared by all the members of a defined 
group. If identification at the species level is required, an in situ identification by micros-
copy and PCR is possible. The identification of dermatophytes using MALDI‐TOF MS 
is complicated by the fact that microorganisms are difficult to recover after culture. 
Dermatophytes require a long (4 to 5 d) culture, with a significant impact on protein 
expression, which can impact the MALDI‐TOF MS analysis. Nevertheless, some proto-
cols have been proposed. As for other filamentous fungi, it is recommended to pool the 
different growth stages present in the same colony or to multiply the identifications 
within the same colony. Using an extended database, De Respinis et al. reported 60% to 
100% of correct identifications of dermatophytes depending on the species [76]. More 
recently, Wang et al. also successfully used MALDI‐TOF MS, not only to identify yeasts 
at the species level, but also dermatophytes [77].

3.7 Detection of Antimicrobial Resistance

3.7.1 Carbapenemase Detection

Carbapenemases are enzymes produced by some Enterobacteriaceae and some 
nonfermenting gram‐negative bacteria that can hydrolyze carbapenems, a class of 
broad‐ spectrum antibiotics. The first approach to the identification of carbapene-
mases‐producing strains using MALDI‐TOF MS is based on the detection of ertap-
enem hydrolysis corresponding to a shift or a disappearance of the antibiotic‐specific 
peak on the mass spectrum. Kempf et al. focused on Acinetobacter baumannii, a 
bacterium that mainly produces three families of carbapenemases: OXA‐23‐like, 
OXA‐24‐like, and OXA‐58‐like. On the mass spectrum obtained by MALDI‐TOF 
MS, carbapenemase production resulted in the reduction of a 300.0 m/z peak cor-
responding to native imipenem and the increase of a 254.0 m/z peak corresponding 
to the natural metabolite of imipenem in the supernatant of bacteria incubated with 
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imipenem during 4 h [78] (see Chapter 15). This method displayed 100% sensitivity 
and 100% specificity for the detection of  carbapenemase‐producing strains. 
Carvalhaes et  al. monitored ertapenem degradation through the disappearance 
of the 475 and 497 m/z peaks corresponding to the native form and to the monoso-
dium salt form of the molecule. This strategy identified 72.4% (21/29) of the 
 carbapenemase‐producing strains including 100% of the KPC‐2 and 100% of the 
SPM‐1 (100%) but hardly any OXA‐23‐producing Acinetobacter baumannii strains 
[79]. A similar method described by Vogne et al., monitoring ertapenem degradation, 
showed 100% sensitivity and 100% specificity for the detection of carbapenemase‐
producing strains among Klebsiella pneumoniae, Escherichia coli, Enterobacter 
 cloacae, Providencia stuartii, Serratia marcescens, Enterobacter aerogenes, Hafnia 
alvei, Klebsiella oxytoca, Proteus vulgaris, Morganella morganii, Pseudomonas aer-
uginosa, Acinetobacter baumanii, and Aeromonas species [80]. The simple approach 
proposed by Vogne et al. exhibited a short TAT (~60 min) as it used a commercially 
available antibiotic disk, which reduced the hands‐on‐time. In addition, this 
approach could benefit from the high stability of the antibiotic molecule in such 
commercial formulations.

3.7.2 Methicillin‐Resistant S. aureus

Approaches, more related to typing, aim to identify genotype associated with specific 
resistance profiles using MALDI‐TOF MS. They have been mainly used to distinguish 
between methicillin‐susceptible S. aureus (MSSA) and methicillin‐resistant S. aureus 
(MRSA) [81,82]. These approaches correspond to the detection of biomarker proteins 
associated with resistance strains. However, Edwards‐Jones et  al. suggested that the 
identification of some MALDI‐TOF MS characteristic peaks could be used for the dis-
tinction between methicillin susceptibility and methicillin‐resistant S. aureus [83].

3.7.3 Vancomycin‐Resistant Enterococci

By comparing spectra obtained from vancomycin‐sensitive Enterococcus faecium and 
vancomycin‐resistant isolates (VRE), Griffin et al. demonstrated that a 5945 Da peak 
could distinguish sensitive and resistant strains. Another peak at 6603 Da could distin-
guish vanA‐ and vanB‐positive isolates [84]. This likely represents strain‐type identifi-
cation rather than antibiotic susceptibility markers and should be treated with caution.

Other aspects of the antibiotic resistance detection based on strain typing will be 
addressed in chapters 10 and 15. Altogether these studies suggest that MALDI‐TOF MS 
is suitable for antibiotic resistance determination. However, these studies need to be 
extended to more bacterial isolates and need to be reproduced in other locations to 
determine if the accuracy of these approaches is impacted by the local epidemiology of 
resistance isolates.

3.8 Detection of Bacterial Virulence Factors

Because of its accuracy, MALDI‐TOF MS has the potential to detect specific peaks 
 corresponding to virulence factors such as toxins. Gagnaire et al. demonstrated that 
MALDI‐TOF MS applied to S. aureus whole cells could detect two peaks at 3005 Da and 



MALDI-TOF Mass Spectrometry72

3035 Da corresponding to the S. aureus delta toxin, a biomarker of the activity of the agr 
(accessory gene regulator) system [85]. In S. aureus, the agr system regulates the 
 expression of numerous virulence factors and pathogenesis‐associated determinants, 
which represents a therapeutic target [86,87].

MALDI‐TOF MS has also been proposed for S. aureus strain typing or for the detec-
tion of biomarkers of the most virulent toxigenic isolates. The Panton–Valentine leuko-
cidin (PVL), a toxin produced by some strains of MSSA and MRSA, is associated with 
recurrent skin and soft tissue infections as well as necrotizing pneumonia. The gene 
encoding the PVL brought by phages has a high potential to spread among isolates. 
Bittar et al. initially reported the identification of two peaks of 4448 and 5302 Da associ-
ated with PVL‐positive isolates [88]. However, a second study revealed that there were 
no reliable associations between the 4448 and 5302 Da peaks and the presence of PVL; 
PVL‐positive strains were identified by chance because of similar mass profiles due to 
their high relatedness [89].

Konrad et  al. reported the correct identification of 99.1% (116/117) of toxigenic 
Corynebacterium sp. (C. diphtheriae, C. ulcerans, and C. pseudotuberculosis) among 
non‐toxigenic species using the MALDI‐TOF MS system Microflex LT mass spectrom-
eter (Bruker Daltonics) and the Biotyper 2.0 identification software. This result was not 
obtained directly from colonies but after rapid protein extraction using ethanol and 
formic acid. The discordant result was a C. tuberculostearicum isolate that could nei-
ther be identified at the species level by using the MALDI‐TOF MS (log (score) of 1.8) 
nor by sequencing the rpoB gene or by using the API Coryne gallery [90]. When the 
score was above 2.0, the negative predictive value and the positive predictive value were 
both 100%, attesting to the high reliability of the detection of potential toxigenic 
Corynebacterium species.

3.9 Typing and Clustering

At present, the reference methods for isolate typing are nucleic‐acid‐based methods 
such as multi‐locus sequence typing (MLST) and pulsed‐field gel electrophoresis 
(PFGE) because of their excellent discriminatory power that only whole genome 
sequencing can surpass. However, these methods can be time consuming and expen-
sive, and so more rapid and cost‐effective methods are needed.

3.9.1 MRSA Typing

S. aureus typing by MLST or PFGE generally relies on the spa gene (S. aureus protein 
A gene). Wolters et  al. reported that the analysis of 13 characteristic peaks allows 
 discrimination of the major S. aureus MRSA lineages by MALDI‐TOF MS with a 
 discriminatory index of 0.770 (95% CI 0.671–0.869), which is comparable to the dis-
criminatory indices of genotyping using the spa gene 0.818 (95% CI 0.721–0.915) [82]. 
Lu et al. proposed a peak‐based approach allowing discrimination between S. aureus 
SCCmec types IV and V isolates that are mainly community‐associated (CA) MRSA 
and SCCmec types I–III isolates that are hospital‐associated (HA) MRSA [81]. Josten 
et al. analyzed the mass spectrum profile of 401 MRSA and MSSA strains and identi-
fied peaks that differentiate between the main S. aureus MRSA and MSSA clonal 
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complexes and could be used to distinguish between sensitive and resistant strains 
[91]. To  conclude, these studies suggest that MALDI‐TOF MS is a reliable method for 
the typing

3.9.2 Enterobacteriaceae Typing

Noteworthy typing using MALDI‐TOF MS requires a precise calibration of the instru-
ment using highly conserved peaks and generally requires a database of references 
spectra representing the major lineages of the species of interest. However, Christner 
et  al. developed an approach that includes the identification of biomarker peaks for 
MALDI‐TOF MS typing during an outbreak. This approach identified two peaks, one 
at m/z 6711 and the other at m/z 10883, that correctly classified 292/293 isolates of 
Shiga‐toxin producing E. coli during the 2011 outbreak that occurred in northern 
Germany [92]. The reliability of MALDI‐TOF MS for typing isolates directly from 
whole cells has also been demonstrated for Yersinia enterocolitica [93] and Salmonella 
enterica [94]. Interestingly, strain typing using MALFI‐TOF MS generally relies on the 
analysis of selected specific biomarkers only.

3.9.3 Typing Mycobacterium spp.

By comparing the mass spectra of M. abscessus, M. massiliense, and M. bolletii isolates, 
Suzuki et al. identified a cluster of M. massiliense strains closely related to M. abscessus 
due to the similarity of their mass spectra, indicating that MALDI‐TOF MS could also 
be used for Mycobacterium strain typing and clustering [95].

3.10 Application of MALDI‐TOF MS in Clinical Virology

Clinical virology aim at (1) virus detection, (2) identification (including typing and 
 epidemiology), and (3) resistance detection. For these purposes, the clinical virology 
laboratories rely on cell culture, electron microscopy, serology, and PCR with satisfac-
tory results. Nevertheless, several groups have addressed the possibility of using 
MALDI‐TOF MS in these different aspects of clinical virology, and when possible, they 
address the added value [96] (see Chapter 8).

The first approach is the detection of biomarker viral proteins from infected cell 
 cultures. Using this strategy, Calderaro et al. reported the detection of Picornaviridae 
from infected cell culture using the viral protein VP4 as a biomarker [97].

La Scola et al. demonstrated that giant viruses (capsid sizes of 150 to 600 nm) could 
be characterized using MALDI‐TOF MS analysis of viral particles. The results obtained 
correlated with results provided by the sequencing of the polB gene [98]. However, this 
method requires specific equipment and is time consuming (cell lysis, filtration, con-
centration by centrifugation, rinsing, ultracentrifugation), which makes routine use 
difficult.

Another approach applied for influenza viruses detection consisted in the capture of 
viral particles using magnetic nanoparticles functionalized with H5N2 specific antibod-
ies with subsequent MALDI‐TOF MS analysis of the complexes nanoparticles/viruses 
to detect the hemmaglutannin protein HA [99]. This allowed H5N2 detection with no 
cross reactivity with H5N1 viruses.
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3.11 PCR‐Mass Assay

MS technologies have been applied to the analysis of nucleic acid post amplification. 
This approach that combines PCR and MALDI‐TOF MS, also known as PCR‐Mass 
assay, allows the simultaneous detection of several amplicons at the same. In addition, 
this technology is sensitive enough to detect a single‐nucleotide polymorphism or a 
nucleic acid modification such as methylation.

3.11.1 Application of PCR‐Mass Assay in Clinical Bacteriology

The Sequenom MassARRAY platform (Sequenom) is an instrument dedicated to nucleic 
acid analysis using the PCR‐Mass assay approach [100]. The amplification is achieved in 
the presence of deoxyuridine triphosphate (dUTP) instead of deoxythymidine triphos-
phate (dTTP). The amplicons are then fragmented with uracil‐DNA‐glycosylase, and 
the obtained fragments are analyzed by MALDI‐TOF MS [101]. The mass pattern is 
then compared with a database or with a reference spectrum. Bacterial identification can 
be achieved by using PCR targeting the 16S rDNA [101]. This technique is also reliable 
for microbe typing or to detect mutations at the level of a single nucleotide that are 
 associated with antibiotic resistance [102]. The sensitivity also allows detection of meth-
ylation variations [103].

This technology can be applied to the detection of uncultivable microorganisms 
directly from clinical samples as demonstrated for Bordetella species detection by 
 targeting the 16S rRNA gene [101].

3.11.2 Application of PCR‐Mass Assay in Clinical Virology

The PCR‐Mass assay is an extremely sensitive and specific approach that has been 
applied to clinical virology for the detection, identification, and quantification of 
viruses as well as for the genotyping and the detection of drug resistance [96]. It is 
noteworthy that this technology allows simultaneous analysis of several amplicons. 
Using two multiplex PCRs followed by MALDI‐TOF MS analysis of the amplicon, 
Sjoholm et al. could detect and identify any herpesviruses directly from various body 
fluid including bronchoalveolar lavage, conjunctival fluid, sore secretion, blister 
material, plasma, serum, and urine with an average concordance of 95.6% (86.4%–
97.2%) with PCR results [104]. Piao et al. reported the simultaneous detection and 
identification of eight enteric viruses (enterovirus 71, coxsackievirus A16, reovirus, 
poliovirus, hepatitis E virus, norovirus, astrovirus, and hepatitis E virus) with a 
 detection limit of 100–1000 copies per reaction [105]. Discrepant results during the 
validation of these methods have been associated with false negative results due to 
RNA degradation [105].

Mass assay technology was also demonstrated to be useful for the high‐through-
put diagnosis of HPV infections with simultaneous genotyping to differentiate 
between the high‐risk and low‐risk types [106,107]. The mass assay has been suc-
cessfully used for the detection of Cytomegalovirus (CMV) resistance to ganciclovir 
in patients treated with this drug by detecting a single point mutation of the viral 
phosphotransferase (UL97) or the viral polymerase UL54 associated with  ganciclovir 
resistance [108].
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3.12 PCR‐ESI MS

PCR electrospray ionization mass spectrometry (PCR‐ESI MS) is a technology that 
associates DNA amplification by PCR and performs subsequent analysis of the obtained 
amplicon by MS [109,110]. Basically, nucleic acids extracted from clinical samples are 
amplified using multiple broad‐range PCRs. Then, the precise molecular mass of 
the amplicon(s) is(are) determined by ESI/MS. This mass integrated to the amplicon 
length and to the DNA complementary rule provides the exact base composition (%A, 
%C, %G, and %T) of the amplicons. Pathogen identification is then achieved by com-
parison with a database [110,111]. This technology allows the detection of a broad 
range and a high number of pathogens: more than 750 bacteria and fungi, more than 
200 fungi, and more than 130 viruses. The bacterial panel includes primers for the 
detection of the resistance genes mecA, blaKPC, vanA, and vanB. Compared to current 
methods of clinical microbiology, PCR‐ESI MS has a short TAT (~8 h) because (1) it can 
be applied directly on clinical samples without culture due to its high sensitivity and (2) 
the analysis of the amplicon is achieved by ESI‐MS rather than by Sanger sequencing. 
PCR‐ESI MS has been tested on various clinical samples such as CSF [112–114] and 
respiratory tract samples [115–117] with an increased sensitivity when compared to 
culture. The last platform developed allows diagnosis of bloodstream infections as it 
can accept up to 5 ml of sample and because of the optimization of the nucleic acid 
extraction and the amplification step [118]. This device, known as the PLEX‐ID (Abbott 
Molecular, Des Plaines, IL), has recently been commercialized under the name Iridica. 
The Iridica system can detect more than 800 hundred pathogens directly from blood 
with a sensitivity of 50%–91% and a specificity of 98%–99% [50]. PCR‐ESI/MS can 
detect polymicrobial infections and provide information on the abundance of each 
microorganism based on a semiquantitative analysis. The broad spectrum of this tech-
nology together with its extremely low detection limit makes it highly sensitive to con-
tamination. Interventional studies will determine the exact clinical impact of this new 
technology, especially the impact on antibiotic stewardship.

3.13 Impact of MALDI‐TOF MS in Clinical Microbiology 
and Infectious Disease

3.13.1 Time to Result

A challenge for clinical microbiology is to accelerate diagnosis when an infection is 
suspected, especially when most of the other laboratory results are obtained within the 
first hours of hospitalization [119]. Despite recent developments, especially in the 
domain of molecular diagnostic, culture‐based methods remain predominant. Thus, 
MALDI‐TOF MS dramatically reduces the time interval between the positive culture 
and the final identification when compared to subculture‐based phenotypic identifica-
tions. In a large prospective study, Seng et al. estimated that MALDI‐TOF MS identifi-
cation took approximately 6 to 8.5 min when the time to result was 5 to 8 h for the 
VITEK system (BioMérieux, France) and 5 to 20 h for the Phoenix system (BD 
Diagnostic), which rely on phenotypic methods [28] (see Table  3.3). Tan et  al. also 
reported a reduction of the time to result for a set of 20 bacteria, with a mean time gain 
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of 1.45 d [120]. In particular, the reduction monitored by the authors was ~1.35 d for 
S. aureus and Enterobacteriaceae identification. The maximum gain was observed for 
gram‐positive rods, with a reduction of 4.13 d (Table 3.3).

3.13.2 Impact on Patient Management

With a bloodstream infection, delaying the introduction of an efficient anti‐infectious 
treatment directly impacts patient survival. Despite the emergence of culture‐independent 
methods, blood cultures remain the gold standard to determine the etiologic agent of a 
bloodstream infection [34,50]. A prospective observational study performed in a ter-
tiary hospital that evaluated the impact of MALDI‐TOF MS on BC positive with gram‐
negative bacteria using a rapid bacterial pellet method reported that the empirical 
therapy was often inappropriate or too broad. In 35.1% of cases, the rapid identification 
led to a modification of the empirical therapy [121]. In this study, a correct identification 
at the genus level was obtained in 86.7% (143/165) of monomicrobial infections [121]. In 
their study, Martiny et al. demonstrated that MALDI‐TOF MS was helpful in confirm-
ing suspected contamination in 37.50% of cases for pediatric patients [122].

3.13.3 Impact on Rare Pathogenic Bacteria and Difficult‐to‐Identify Organisms

Rare microorganisms can be defined as microorganisms with less than 10 reports 
 designating them as human pathogens on the Pubmed database [123]. Alternatively, 
some organisms were difficult to identify accurately because of the phenotypic proxim-
ity with other organisms [124]. The identification of these pathogens is generally time 
and labor consuming as it often requires gene sequencing. MALDI‐TOF MS allows us 
to report the first case of bacteremia caused by Comamonas kerstersii, a nonfermenting 
microorganism that was difficult to distinguish from other Comamonas species or 
closely related Delftia spp. in the pre‐MALDI era [125]. For both rare microorganisms 
and difficult‐to‐identify microorganisms, MALDI‐TOF MS significantly reduces the 
use of DNA sequencing as we reported in a study where we obtained nearly 50% of 
accurate identifications for this type of organism [126].

The accuracy of MALDI‐TOF MS identification might reveal the real incidence and 
the pathogenic role of some rare/difficult‐to‐identify microorganisms [20,123,124].

Table 3.3 Added value of MALDI‐TOF MS in clinical microbiology.

Comment
Selected 
references

Reduced time‐to‐results Gain of 24 h and more over conventional 
methods.

[15,28]

Reduced cost Cost‐effective due to reduced cost of 
identification of a given isolate.

[15,120,134]

Improved therapeutic 
management of sepsis

Adaptation of the antibiotic treatment in ~35% 
of bacteremia involving gram‐negative bacteria.

[34,121]

Increasing accuracy Less than 2% of errors at species level. [25,27,28,49]
Improved identification of 
specific pathogenic agents

Reduced need for 16S rRNA gene sequencing.
Discovery of new pathogens.

[20,123,124,126]
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3.13.4 Anaerobes

The diagnosis of anaerobic bacteria is generally a long process because of their slow 
growth, and its accuracy is often limited owing to their limited biochemical activity. In 
addition, anaerobes often occur in polymicrobial infections, resulting in multiple differ-
ent species in the same sample. In a study conducted between 2010 and 2011 on 283 
anaerobic bacteria, Nagy et al. reported 77% of correct identifications at the species 
level and 10.95% of correct identifications at the genus level using the MALDI‐TOF MS 
[127] (see Chapter 5). Moreover, among 544 anaerobic bacteria isolated from clinical 
samples, La Scola et al. reported 61% of identifications at the species level using MALDI‐
TOF MS compared to 39% of successful identifications by 16S rRNA gene sequencing 
[128]. This demonstrated the potential of MALDI‐TOF to reduce the number of time‐
consuming and expensive 16S rRNA gene sequencing for anaerobe identification as 
reported for rare microorganisms’ identification (Table 3.3). Significantly, the rate of 
successful identification of anaerobes using MALDI‐TOF MS, meaning the percentage 
of identifications that obtain a sufficient confidence score, is dependent on the repre-
sentativeness of the database [129–132].

3.14 Identification of Protozoan Parasites

While waiting for confirmatory studies, several publications suggest that MALDI‐TOF 
MS may be used for the identification of protozoa. The analysis of mass spectra obtained 
with intact Giardia lamblia and Giardia muris cysts identified common peaks as well as 
species‐specific peaks that could be used for MALDI‐TOF MS identification of these two 
microorganisms [136]. Cassagne et  al. demonstrated that Leishmania promastigotes 
could successfully be identified at the species level from in vitro culture using a home-
made reference mass spectra database comprising the main Leishmania species known 
to cause infection in humans. This strategy correctly identified correctly identified 66 of 
the 69 Leishmania promastigote isolates tested with log score values greater than 2. Two 
isolates failed to generate interpretable mass spectra, whereas one isolate identified a 
Leishmania braziliensis isolate as the closely related Leishmania peruviana isolate [137]. 
To evaluate the ability of MALDI‐TOF MS to determine the subtype of enteric Blastocystis, 
Martiny et al. constructed a database of specific protein signatures of five Blastocystis 
subtypes. This approach gave correct subtype determination for 19 axenic cultures of 
various Blastocystis subtypes used to challenge the database [138]. By analyzing the 
MALDI‐TOF MS spectra of Entamoeba histolytica and Entamoeba dispar, Calderaro 
et al. identified five peaks that could be used to discriminate the two species [139].

3.15 Identification of Ticks and Fleas

Yssouf et al. demonstrated that mass spectra obtain from leg‐extracted hemolymph was 
reliable for the identification of ticks at the species level. The proof of concept was 
achieved using a homemade database made of five Rickettsia‐free tick species 
(Rhipicephalus sanguineus, Hyalomma marginatum rufipe, Ixodes ricinus, Dermacentor 
marginatus, and Dermacentor reticulatus), one infected tick species (Amblyomma var-
iegatum infected by Rickettsia africae), and other arthropods, including mosquitoes, 
lice, triatomines, and fleas [140]. Using a second database enriched in hemolymph from 
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Rickettsia africae infected ticks, the authors could reliably distinguish noninfected and 
infected specimens [140–142]. The same group also demonstrated that fleas could be 
identified based on MS generated from various body parts [143].

3.16 Costs

So far, the price and maintenance expenses of MALDI‐TOF MS instruments have been 
high. Nevertheless, MALDI‐TOF MS has been shown to be inexpensive in comparison 
with phenotypic and genotypic methods of identification. Indeed, the cost for the iden-
tification of a given isolate can be less than 1.5 € per identification using MALDI‐TOF 
MS versus 5.9–8.23 € for the VITEK system [28,133]. A prospective costs analysis study 
compared the MALDI‐TOF MS protocol with the standard identification protocol. For 
this study, the supplementary tests necessary for the identification of some bacteria 
such as Streptococcus pneumoniae and Shigella, the additional cost due to repeated 
MALDI‐TOF MS analyses, the instrument maintenance expenses, and microorganism 
prevalence were included [120]. By integrating all these data, the authors anticipated a 
56% of reduction of reagent and labor costs for one year. In another retrospective cost 
assessment study after MALDI‐TOF MS implementation, an overall 89.3% cost saving 
was obtained [134]. This group also mentioned an important decrease in waste disposal 
and a reduction in subculture medium expense. As we also reported, MALDI‐TOF MS 
has the potential to reduce the expense due to DNA sequencing for some difficult‐to‐
identify isolates [126], (Table 3.3). In another prospective economical study, we reported 
that microbial identification was 2.43‐fold less expensive with MALDI‐TOF MS than 
with standard methods. However, this ratio varied from 0.70 to 7.0 according to the 
bacterial species. Some identifications (for example, urinary Escherichia coli identified 
on chromogenic culture media and confirmed by a simple spot indole test) were cheaper 
with standard identification than with MALDI‐TOF MS. The cost savings will thus 
depend on the epidemiology and the prevalence of each species encountered in the 
clinical laboratory and the laboratory habits and procedures (Heiniger et al., unpub-
lished data). Using a mathematical model, it was calculated that implementation of 
MALDI‐TOF equipment and identification would be cost‐effective if more than 5300 
to 8000 strains were identified yearly. With more than 20,000 identifications/year, Tran 
et al. estimated that the initial cost of the instrument would be recovered after about 
three years [120]. Martiny et al. have shown that the implementation of the MALDI‐
TOF MS technology is an opportunity for the mutualization of processes such as ana-
lytical platforms with important cost savings [135]. Further cost savings may occur in 
the near future with the automation of the preparation of MALDI‐TOF target plates.

3.17 Conclusions

MALDI‐TOF MS is one of the major revolutions that have occurred in clinical micro-
biology laboratory in the last decades, nearly rendering obsolete all biochemical identi-
fication galleries, because more than 95% of all bacterial identification are nowadays 
performed using MALDI‐TOF MS. With the exception of some body fluids such as 
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urine, MALDI‐TOF MS is still dependent on positive culture (agar plate or blood 
 culture, for instance) because more than 104 cells (approximately 107 cells/ml) are 
required to generate a good‐quality spectrum suitable for identification [144]. Further 
developments such as microorganism enrichment by affinity or an increasing in the 
sensitivity limit of MALDI‐TOF MS might make it reliable for identification directly 
from samples. In the meantime, new approaches such as PCR‐MALDI‐TOF MS and 
PCR‐ESI MS will extend mass spectrometry applications in clinical diagnostic microbi-
ology as these nucleic‐amplification‐based methods are suitable for diagnosis directly 
from clinical samples including blood [50]. MALDI‐TOF MS has also proved its relia-
bility for other applications such as antibiotic resistance detection and typing; however, 
most of the procedures developed so far are still difficult to achieve on a routine basis 
and are restricted to specialized laboratories. Because MALDI‐TOF MS is reliable at 
determining bacterial biomass, one could expect that in the future this could represents 
a reliable read‐out for rapid AST based on the impact of an antibiotic on bacterial 
growth. As it is an innovation with increased accuracy and undisputed convenience 
impacting the identification of rare microorganisms and allowing the discrimination 
between closely related organisms, MALDI‐TOF MS might reveal the real incidence 
and the pathogenic role of some organisms.
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4

4A.1 Taxonomic Structure of the Genus Mycobacterium

A genus of Actinobacteria, mycobacteria are aerobic, rod‐shaped bacteria which are 
characterised by a high GC content and a complex lipid‐rich cell wall comprised of 
mycolic acids which can total up to 60% of the dry weight (Madigan, 2012). It was this 
physical property of the cell wall that was exploited in 1882 by Koch, who first demon-
strated the presence of the obligate human pathogen, Mycobacterium tuberculosis, the 
causative agent of tuberculosis (TB), through staining with alkaline methylene blue 
(Sakula, 1982). Later in the same year, the Ziehl–Neelsen stain was developed, which 
used a similar process to identify acid‐fast bacteria, and is still widely used to identify 
mycobacteria.

The genus now comprises more than 174 different species (http://www.bacterio.net/
mycobacterium.html). Among these, other pathogenic species include M. leprae, which 
causes leprosy, and M. bovis, which principally causes bovine TB. In addition to these 
pathogenic species, the genus is largely made up of environmental organisms and is 
therefore widespread throughout nature, ranging from inhabitants of soil and water. 
However, these non‐tuberculosis mycobacteria (NTMs) are important opportunistic 
human and animal pathogens, with the ability to cause pulmonary diseases similar to 
tuberculosis, as well as cutaneous and disseminated infections. It was this similarity 
that led to the group being described as environmental or atypical mycobacteria in an 
attempt to distinguish them from M. tuberculosis infections, but NTM is the favoured 
designation.

Early classification of mycobacterial species was made on the basis of a variety of 
phenotypic features, such as growth rate and pigmentation, as well as clinical signifi-
cance (Stahl and Urbance, 1990). On the basis of the growth rate, a fundamental  division 
can be made, splitting mycobacteria into two major groups: fast and slow growers. 
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The fast growers include mainly opportunistic or non‐pathogenic mycobacteria, such 
as M. fortuitum and M. smegmatis, which can be cultured from dilute inocula within a 
week. In contrast, the slow‐growing species can take one or more weeks for visible 
growth from dilute inocula, which includes the species M. tuberculosis, M. bovis and 
M.  leprae, the causative agents of human and bovine TB and leprosy, respectively. 
Pigmentation separates the genus into three groups: pigmentation when grown in light 
or photochromogens (includes M. kansasii), pigmentation irrespective of light or 
 scotochromogens (includes M. gordonae) and finally non‐pigmented or nonchromo-
gens (includes M. tuberculosis and M. ulcerans). Using clinical importance, species can 
be separated in descending order based on (1) obligate pathogens, (2) facultative 
 intracellular pathogens and (3) saprophytes. Taken together, Timpe and Runyon devel-
oped a working classification of all NTMs in the 1950s based on these characteristics, 
designating NTMs into Runyon groups I–IV (Timpe and Runyon, 1954).

As molecular methods were developed, such as 16S rRNA sequencing, these have 
now revealed the macro‐population structure of mycobacteria (Stahl and Urbance, 
1990). The phylogenetic structure of mycobacteria based on this method is shown in 
Figure 4A.1, and of note is the position of the TB‐causing species, collectively known as 
the Mycobacterium tuberculosis complex (MTBC) (Cole et al., 1998), together with the 
smooth tubercle bacilli, which includes M. canetti; it is hypothesised that it was an 
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Figure 4A.1 Phylogenetic structure of the genus Mycobacterium. The neighbour‐joining tree is based 
on 16S sequences from 17 smooth mycobacterial and MTBC strains. The blue triangle represents the 
MTBC strains, which differ by up to one nucleotide. Bootstrap support higher than 90% shown on 
nodes. Scale bar is pairwise distances after Jukes‐Cantor correction. Image reproduced from Gutierrez 
et al. (2005), under the Creative Commons Attribution License (CCAL), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and source are credited.
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ancestral pool of smooth tubercle‐like bacilli from which the MTBC originated (Supply 
et al., 2013). Lastly, ongoing whole genome sequencing and analysis of different myco-
bacterial species a enabling the definitive resolution of the phylogenetic relationships of 
the genus (O’Neill et al., 2015; Tortoli et al., 2015).

4A.2 Tuberculosis‐Causing Mycobacteria

Tuberculosis (TB) is caused by several closely related species known as the MTBC, and 
as previously described, the infamous member of the MTBC is the human‐adapted 
pathogen M. tuberculosis, the aetiologic agent of human TB along with M. africanum, a 
phylogenetic variant limited to West Africa (de Jong et al., 2010). Together these species 
are regarded as human‐adapted MTBC members. Early sequencing of MTBC species 
showed that they share more than 99.9% sequence identity (Sreevatsan et al., 1997), as 
demonstrated by the collapsed branches within Figure 4A.1 for the MTBC members. 
However, despite this close relatedness, members of the MTBC display different pheno-
typic characteristics and mammalian host ranges. The MTBC includes several other 
species and subspecies that are adapted to various hosts, including both wild and 
domestic animal species; these bacterial variants have been referred to as ‘ecotypes’ 
(Smith et al., 2006). Here, an ecotype is used as the definition of a set of strains using the 
same or similar ecological resources. The host of M. bovis is largely cattle, which is of 
considerable agricultural significance owing to the associated cost of bovine TB, esti-
mated globally at $3 billion per year (Garnier et al., 2003). M. bovis can also cause TB in 
humans through the consumption of unpasteurized milk (de la Rua‐Domenech, 2006), 
but modern food practices have effectively stopped this transmission route, and person‐
to‐person transmission of M. bovis is rare (Evans et al., 2007).

Other MTBC pathogens include M. microti (infects voles), M. caprae (infects sheep 
and goats) and M. pinnipedii (infects seals and sea lions). An MTBC pathogen of 
Dassies, or Rock Hyrax, has been isolated in South Africa and named the Dassie bacillus 
(Parsons et al., 2008), while more recently an MTBC pathogen of banded mongooses 
has been identified in Botswana named M. mungi (Alexander et al., 2010). A special 
member of the MTBC is M. canetti, a rare tubercle bacillus with an unusual smooth 
colony phenotype, unlike the classical rough appearance of other MTBC members (Van 
Soolingen et  al., 1997). M. canetti and the other smooth TB bacilli harbour greater 
genetic diversity compared with the rest of the MTBC, and are more distantly related to 
the remaining MTBC than any two other MTBC strains are to each other (Gutierrez 
et al., 2005). M. canetti is subsequently a common choice as an outgroup in phyloge-
netic analysis (Bentley et  al., 2012; Comas et  al., 2010). It is anticipated that MTBC 
members of other ecotypes will likely be identified in future studies.

4A.3 Non‐tuberculosis Mycobacteria

In the developed world, NTM incidence is now greater than TB infections (Johnson and 
Odell, 2014), and these species are recognized as emerging pathogens with significant 
impact on human health. Incidence is increasing largely owing to longer life expectancy, 
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immunosuppressive chemotherapy and within immunocompromised patients due to 
the AIDs pandemic. Owing to their saprophytic lifestyle, NTMs are ubiquitous in 
nature, and have been isolated from a wide range of habitats, including soil, water, food 
and artificial environments (Falkinham, 2009).

The most notable member of the NTMs are the species and subspecies that make up 
the M. avium complex (MAC), which are the most common cause of NTM disease in 
humans, and include many species and subspecies. They are found in both fresh and 
saltwater sources, as well as various animals, household dust and cigarettes (Eaton 
et al., 1995; Johnson and Odell, 2014). Within this complex, the species M. avium and 
M. intracellulare are the most common NTM infection in patients with AIDS. Another 
MAC species, M. chimaera, has recently been implicated in endocarditis infections 
through contaminated water within equipment used during heart surgery (Sax et al., 
2015), while a MAC subspecies, M. avium subspecies paratuberculosis, has been asso-
ciated with Crohn’s disease (Behr and Kapur, 2008; Hermon‐Taylor, 2009). Moving to 
non‐MAC species, the second most common NTM to cause respiratory disease within 
patients with AIDS is M. kansasii, which was first described in 1953 (Buhler and Pollak, 
1953). M. abscessus, a fast‐growing NTM, is the third most common cause of respira-
tory disease (Johnson and Odell, 2014), and is also the cause of skin and soft tissue 
infections, along with M. fortuitum and M. chelonae.

1. Tackling TB is one of the key priorities for Public Health England (‘Tuberculosis in 
the UK’, Public Health England, 2014 Report), as it remains an infectious disease 
with one of the highest mortality rates. Research has focused largely on elucidating 
pathogenic factors of the causative organism, M. tuberculosis; however, to date, there 
are no obvious virulence factors such as toxins even among ‘superspreader’ strains. 
The sequencing of whole genomes has opened up new vistas for clinical microbiology, 
making it possible to decipher potential virulence factors from their encoding genes. 
Tuberculosis is a major threat to the United Kingdom, particularly with the upsurge in 
antimicrobial resistance and the increasing number of latent and asymptomatic carriers 
in the population (Van der Werf, 2014). Reliable and rapid detection of pathogens, as 
well as other opportunistic mycobacteria, are of major consequence because the num-
ber of species reported to be causing other  pulmonary infections is escalating. New 
vaccines and drugs are needed to stem the worldwide epidemic of TB that kills over 
two million people annually (‘Global Tuberculosis Control’, WHO Geneva 2012 
Report). To rationally develop new anti‐tubercular agents in the midst of the declining 
efficacy of BCG and a concomitant increase in antibiotic resistance, it is essential to 
employ the most powerful technologies to  dissect out detailed mechanisms of patho-
genicity of M. tuberculosis and related mycobacteria to uncover potential new target 
molecules. It is equally important to understand clearly the host response to ascertain 
how mycobacteria circumvent host defences and cause disease.

Among the plethora of potential virulence determinants, the mycobacterial cell wall 
components have been shown to have profound immune modulatory activity. This is 
partly attributed to the interaction of the surface components with macrophages during 
phagocytosis and involves pattern recognition receptors (e.g. Toll‐like receptors). 
Despite a century of work on M. tuberculosis, the full spectrum of factors that contrib-
ute to their virulence remains only partly understood. This is largely due to lack of 
clearly defined pathogenic determinants that are produced by other actinobacteria such 
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as the exotoxin of Corynebacterium diphtheriae. Current views are that several poten-
tial virulence factors contribute to the capacity of this species to adapt, infect, persist 
and cause transmissible pathology in its host species. Evidence today from whole 
genome analysis indicates that components of their unique cell wall play a crucial role 
in the underlying mechanisms of pathogenicity and are potentially the most likely site 
of new vaccine and antimicrobial drug targets. Detailed understanding of the complex 
cell envelope is therefore a necessary precursor to current approaches to studying the 
aetiology of tuberculosis. One of the striking features of the M. tuberculosis genome is 
the large number of genes (517 = 15.5% of total coding capacity) involved in cell wall and 
cell processes. Recent genome analysis revealed that over 225 annotated genes encode 
enzymes for the metabolism of fatty acids, of which approximately 100 are predicted to 
function in the β‐oxidation of fatty acids (Cole et  al., 1998). This preponderance of 
enzymes involved in lipid metabolism is most likely related to its ability to utilize fatty 
acids as a major carbon, a trait retained from its original environmental niche. It was 
long known that M. tuberculosis can shift its metabolism from carbohydrates during in 
vitro growth to fatty acids when grown in infected host cells, a hypothesis that was sub-
sequently supported by more recent genome analysis (van Els et  al., 2014). Various 
alkanes may be used by mycobacteria as a carbon source, their uptake being dependent 
on the species, the length of the alkane, its availability and the environment they colo-
nize. Interestingly, they secrete glycolipid surfactants, which allow for the cellular 
uptake and usage of these compounds. Degradation of alkanes with two or more car-
bons starts with the oxidation of the terminal methyl group by alkane hydroxylases, 
yielding the corresponding primary alcohol, which in turn is oxidized by alcohol dehy-
drogenase to an aldehyde, which is then eventually converted to a fatty acid to be used 
as an energy source or for cell wall synthesis.

Research focused on the proteome and transcriptome of mycobacteria have been 
aimed at elucidating detailed mechanisms of adaptation and virulence by unravelling 
global information on gene expression by measuring the levels of proteins during differ-
ent growth conditions such as iron starvation (Calder and Horwitz, 1998) and mac-
rophage infections (Lee and Horwitz, 1995). Despite considerable work on the proteome 
of this taxon, this is perhaps the area that is most poorly understood, and yet they are 
the most highly represented in its genome. For example, proteins of unknown function 
and conserved hypothetical function can account for >1500 genes (~30% of the coding 
capacity), in addition to the unusual presence of the unrelated PE and PPE families of 
acidic, glycine‐rich proteins. The function of many proteins localized in the cell wall 
and cell membrane is still unknown, and the vast majority of the proteome remains 
designated ‘unknown function’.

Clear and unambiguous definition of a species and subspecies is crucial to monitor-
ing disease trends from the environment and controlling infections in the future. 
Pathogenic species were once in the environment; it is unlikely that this trend will cease. 
Instead, gene decay or gene acquisition, for example through horizontal gene transfer, 
is likely to drive more species into the human ecosystem. The dDDH data based on 
WGS is revealing that among some mycobacteria, the centre of variation of ‘human spe-
cies’ appears to overlap with some environmental taxa and emphasizes the fluidity of 
this transmission. Even for such a well‐studied genus as Mycobacterium, which consists 
of 170 species, many are poorly circumscribed and extremely difficult to reliably deline-
ate. M. tuberculosis is a high‐risk pathogen, and thus safe and sustainable healthcare 
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services are essential to combat disease. Traditional methods of identifying these spe-
cies are being replaced by NGS technologies, but this still needs considerable develop-
ment to have a direct impact on a patient’s well‐being. Proteomics, in the form of 
MALDI‐TOF mass spectrometry, is poised to supersede existing methods, but in the 
case of mycobacteria it is not optimized and needs a programme of focused research 
and development. As the pilot programme to implement WGS into tuberculosis patient 
care and information management pathways develops, a key gap remains in supporting 
rapid diagnostics. Genomics require 3–5 days to process and analyze DNA sequencing 
before results are reported; by contrast, species identification by MALDI‐TOF mass 
spectrometry (MS) takes minutes and, if implemented, will aid selection of intervention 
and treatment choice. Building the required database will provide a safe, inexpensive 
and rapid method of identification because most laboratories today have access to 
MALDI‐TOF MS technology. Once established, this would lead to an unprecedented 
advance for infection treatment and control because same‐day identification of 
Mycobacterium species, resistance and relatedness to particular clades would be avail-
able. This technology paves the way for the application of the next generation of more 
automated and advanced forms of MS. The development of specialized mycobacterial 
MALDI‐TOF MS databases began a process of transformation.

4A.4 MALDI‐TOF MS Mycobacteria Library  
and Parameters for Identification

The Mycobacteria Library was created as a stand‐alone database to assemble spectra of 
reference and clinical strains generated using a modified method that was applied to 
that of other prokaryotes, to optimize the mass spectral profiles of Mycobacterium spe-
cies. Factors such as their robust cell wall, dense mycolic acid layers and relatively lower 
concentration of ribosomal proteins compared to other microorganisms exacerbate the 
problem of obtaining high‐confidence identification scores. Therefore, a bespoke 
approach was undertaken by Bruker Daltonics to create a database (Version 2) of 
256  MSPs of 131 species of Culture Collection strains and 44 clinical isolates of 
mycobacteria.

The identification of most bacteria by MALDI‐TOF MS is assessed by the following 
parameters: a score of 2–3 provides identification at a high level of confidence; a score 
1.7–1.9, identification at a low confidence level while a score below 1.7 indicates unreli-
able identification. However, because of the inherent difficulties associated with identi-
fication of mycobacteria, a decrease in log (score) value to 1.8 for high‐confident species 
and to 1.6 for low‐confident species identification is generally accepted by most labora-
tories. In addition, manual acquisition appears to improve the quality of the spectra and 
therefore increases species identification, particularly at the lower score. This could be 
due to the low biomass of the starting material and manual adjustment to enhance the 
acquisition of the lower intensity of peaks obtained for mycobacterial samples (Pranada 
et al., 2014).

Previously published procedures for the extraction of mycobacterial proteins have 
been technically complex and involved extensive washing and centrifugation steps lead-
ing to loss of biological material (Khéchine et al., 2011; Machen et al., 2013). To protect 
handlers of suspected pathogens, Bruker recommends a heat inactivation step of 30 min 
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at 95 °C (Bruker’s SOP: ‘Inactivation and sample preparation procedure for mycobacte-
ria sp.’), but others advise 60 min at 95 °C. To assess its potency, we tested several meth-
odologies and concluded that 30 min at 95 °C in a water bath, rather than a heating 
block, leads to adequate inactivation. We further tested the method described by 
Khéchine et al. (2011), which is recommended for specialist laboratories and includes 
treatment with Tween 20 in the lysis step to aid cell disruption. However, it was neces-
sary to wash off the Tween 20 before mass spectral analysis, which added substantially 
to the time and a potential loss of biological material. MALDI‐TOF MS identification 
requires about 105 cells to provide reliable identification.

The methods reported here are based on the use of a vortex and the FastPrep cell 
disruption system in the presence of glass or silica beads and removal or depletion of 
the lipid layer prior to cell disruption for identification with the Bruker Biotyper instru-
ment (Part 4A), and in Part 4B, a new system, designated ASTA, with its own mycobac-
terial database, is explored.

4A.5 Methods for Extraction

To assess the effect of disruption, viable, intact cells of M. fortuitum were compared 
with cells treated with dichloromethane in an attempt to remove or deplete their lipid 
content. Initially, cells were inactivated by incubation for 30 min at 95 °C, after which 
mechanical lysis with 0.5 mm zirconium beads was also used. Preparations, visualized 
by electron microscopy, revealed significant differences in cell shapes and aggregation 
as shown in Figure 4A.2.

4A.5.1 Method: Bruker’s Protocol

Cells were suspended in 300 µl of water, and three different concentrations of cells were 
tested: 10 µl loop, half of that amount (5 µl) and 1 µl loop. The cells were inactivated for 
30 min at 95 °C followed by addition of 900 µl of 100% ethanol. After centrifugation at 
14,000 g for 2 min and drying of the pellet, 50 µl of 100% acetonitrile was added, and the 
pellet was re‐suspended. A small spatula of silica/zirconium beads (0.1 mm) was added, 
and the samples were vortexed for 1 min. Fifty microlitres of 70% TFA was added. The 
samples were mixed well by vortexing, and centrifuged. Each sample was analyzed on 
four spots: the first two had 1 µl of supernatant applied followed by 1 µl of matrix, and 
the following two had 1.5 µl of sample followed by 1.5 µl of matrix.

4A.5.2 The Methods of Khéchine et al., 2011

The same amounts of cells were used as in Bruker’s protocol, and the cells were sus-
pended in 500 µl of water containing 0.5% Tween 20. The samples were inactivated for 
1 h at 95 °C, after which the pellets were washed twice with 500 µl of water; each wash 
being followed by 10 min centrifugation at 13,000 g. The pellets were re‐suspended in 
500 µl of water, and a small spatula of silica/zirconium beads (0.1 mm) was added. The 
samples were batched as follows:

A) Three tubes were placed in the FastPrep for 3 min at a max setting (level 6).
B) Three tubes were vortexed for 1 min.
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After centrifugation for 1 min at 11,000 g, the supernatants were spotted on the target 
plate, 1.5 µl of each sample followed by 1.5 µl of matrix (as suggested in Khéchine et al.). 
One microlitre of each supernatant was placed in duplicate onto an MSP 96 target pol-
ished steel (Bruker Daltonics) and air‐dried.

From both methods, the spots were overlaid with 1 μL of α‐Cyano‐4‐hydroxycin-
namic acid (CHCA) (saturated solution of CHCA in 50 % acetonitrile/2.5 % trif-
luoroacetic acid) and air‐dried to co‐crystallize the sample and matrix. The target 
plate was then processed using a Microflex LT mass spectrometer (Bruker Daltonics, 
UK, software version 3.4). Data collection was done in an automatic mode by col-
lecting 240 laser shots from six different positions within the spot. MALDI‐TOF 
measurements were recorded in a positive linear mode within the mass range 
2–20 kDa.

This method took 45 min in addition to the time to complete Bruker’s protocol. 
The samples prepared using the FastPrep had the highest scores (all above 2.3), but 
the vortexed samples were also satisfactory with identification scores of between 2.0 
and 2.29.

(C)

(A) (B)

(D)

Figure 4A.2 Electron microscopy images of Mycobacterium fortuitum cells: (A) Native cells (cell 
suspension in water diluted 1:1 in a fixing solution), (B) cells after inactivation (30 min at 95°C in a 
water bath), (C) pellet of inactivated cells after mechanical lysis with 0.5 mm silica beads, (D) cells after 
lipid extraction with dichloromethane (before treatment with ethanol and bead beating); loss of 
polarity and clumping of cells were evident.
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4A.5.3 Silica/Zirconium Bead Variation

In this study, we tested using cells harvested from MGIT broth and Löwenstein–Jensen 
(LJ) slopes as a starting material because both are routinely used for culture and  isolation 
of clinical isolates of suspected mycobacteria. Two sizes of silica/zirconium beads were 
tested. The spectra obtained using 0.5 mm beads were cleaner and yielded higher scores 
(see Figure 4A.3).

For MGIT broth samples, 2 ml of broth was used with 0.1 mm silica beads and with 
acetonitrile to solubilize the pellet followed by the addition of 70 % formic acid.

For the LJ slope samples, 0.1 mm silica beads were used with acetonitrile to solubilize the 
pellet followed by 70% formic acid. LJ slope samples with 0.5 mm silica beads were also 
used, and 70% formic acid was used for the suspension of the pellet instead of the acetoni-
trile. LJ‐grown cultures gave better and more consistent results compared to those from 
liquid media (MGIT), confirming a previous observation by Suzuki et al. (2015). The results 
obtained using 0.5 mm zirconium beads rather than 0.1 mm were noticeably superior.

4A.5.4 Results and Recommendations

Initially, the method we developed was tested using M. fortuitum strains, and results 
were outstanding with 98% of samples scoring over 2.000. This was used to establish 
wider profile acquisitions from all available strains, but lower scores were obtained for 
some species. Because the method by Khéchine et al. (2011) required more time and 
extra washes due to Tween 20 interference with the final result, it was decided to change 
some of the extraction parameters. After testing several experimental protocols, we 
found the following robust method.

A quarter of a loopful of cells (about 5 µl volume) is thoroughly suspended in 300 µl water 
and placed in a boiling bath for 30 min. The samples are then cooled, and 900 µl of 100% 
ethanol is added to each tube; each sample vortexed for 10 s. The samples are centrifuged 
at 14,000g for 2 min, and the supernatant is decanted. The centrifugation step is repeated, 
and the remaining supernatant is removed using a pipette. The pellet is suspended in 50 µl 
of 70% formic acid, mixed well by pipetting, and 0.5 mm zirconium beads is added (a third 
of the volume of the sample). Each tube is mixed well by vortexing for 1 min. Fifty µl of 
100% acetonitrile is added to the sample and mixed well by vortexing for 1 min. The sample 
is centrifuged at 14,000g for 2 min, and 1 µl of each supernatant is placed in duplicate onto 
MSP 96 target polished steel (Bruker Daltonics) and air‐dried. The spots are overlaid with 
1 µl of α‐Cyano‐4‐hydroxycinnamic acid (CHCA) (saturated solution of CHCA in 50% 
acetonitrile/2.5% trifluoroacetic acid) and air‐dried to co‐crystallize the sample and matrix. 
The target plate is then processed using a Microflex LT mass spectrometer (Bruker 
Daltonics, UK, software version 3.4). Data collection is done in an automatic mode by 
 collecting 240 laser shots from six different positions within the spot. MALDI‐TOF MS 
measurements are recorded in a positive linear mode within the mass range 2–20 kDa.

The results listed in Table  4A.1 show that mechanical disruption using 0.5 mm 
 zirconium beads provided high scores. Some strains proved to be more difficult to 
extract; for example, the highest score achieved with cells of M. gordonae was 1.567. 
Two strains of M. selandiae and M. tomidae have similar mass spectral profiles and 
were identified as M. austroafricanum and M. chimaera intracellulare, respectively. 
This ambiguous identification is likely to be the result of taxonomic issues and was 
 confirmed by DNA–DNA hybridization (Walker T., PhD thesis).



Figure 4A.3 Influence of growth and methods on identification scores. 1: (Top) MGIT broth, 0.1 mm silica beads, elution in 100% 
acetonitrile and 70% formic acid. Score: 1.881 2: (Middle) LJ culture, 0.1 mm silica beads, elution in 100% acetonitrile and 70% formic 
acid. Score: 1.782 3: (Bottom) As in A above, LJ culture, 0.5 mm beads. Score: 2.066
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Table 4A.1 List of mycobacterial strains used blindly for MALDI‐TOF MS identification.

Mycobacterium Strain MALDI ID Identification Score

M. abscessus subsp. massiliense JCM15300 M. abscessus 2.398
M. algericum DSMZ45454 M. algericum 2.054
M. aurum NCTC10437 M. aurum 2.294
M. avium NCTC 13034 M. avium 2.253
M. chubuense NCTC 10819 M. chubuense 2.072
M. celatum JCM12373 M. celatum 2.402
M. chimaera JCM14737 M. chimaera intracellulare group 2.309
M. chelonae X29303 M. chelonae 2.108
M. farcinogens NCTC10955 M. farcinogenes senegalense group 2.450
M. fortuitum NCTC10894 M. fortuitum 2.349
M. immunogenicum F7156 M. mucogenicum phocaicum group 2.093
M. kansasii NCTC10268 M. kansasii 2.219
M. kumamotonense JCM13453 M. kumamotonense 2.047
M. perigrinum NCTC10264 M. perigrinum 2.521
M. phlei NCTC8151 M. phlei 2.412
M. rhodesiae NCTC10779 M. rhodesiae 2.050
M. scrofulaceum NCTC10803 M. scrofulaceum 2.259
M. smegmatis NCTC00333 M. smegmatis 2.311
M. smegmatis NCTC 08159 M. smegmatis 2.443
M. thermoresistibile NCTC 10409 M. thermoresistibile 2.164
M. vaccae NCTC 10916 M. vaccae 2.437
M. vulneris JCM18115 M. vulneris 2.063
M. xenopi NCTC 10042 M. xenopi 2.202
M. agri JCM6377 M. agri 1.818
M. kyorinense JCM15038 M. kyorinense 1.819
M. shimoidei JCM12376 M. shimoidei 1.661
M. terrae JCM12143 M. terrae 1.68
M. gordonae NCTC9822 M. gordonae 1.567
M. hafniae NCTC11056 Not reliable ID
M. triplex JCM14744 Not reliable ID
M. selandiae NCTC 11054 M. austroafricanum 2.171
M. tomidae NCTC 10428 M chimaera_intracellulare group 2.109

With the exception of M. chelonae X29303 and M. immunogenicum F7156, which were clinical isolates, 
others were from Culture Collections. All results were obtained by using the extraction method with a 
cell inactivation of 30 min at 95 °C, followed by cell disruption with 0.5 mm zirconium beads as described 
in 4A.5.4.
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4A.6 Protein Profiling of Cell Extracts using SELDI‐TOF MS

The challenge of analyzing Mycobacterium spp. by MALDI‐TOF MS requires further 
work and potentially more thorough disruption of cells; perhaps another form of 
MALDI‐TOF MS would in the future prove more appropriate (see review, Shah et al., 
2005). We have investigated SELDI‐TOF MS for a range of human pathogens and, in 
general, have found it particularly useful for distinguishing species that are closely 
related, such as subgroups of Propionibacterium acnes (see Dekio et al., 2015, Chapter 5). 
SELDI‐TOF MS is unique in that it uses chromatographic surfaces to retain proteins 
based on their physio‐chemical characteristics (see Chapter 1, Section 1.3). Proteins 
that are bound and retained on the surfaces are analyzed by MALDI‐TOF MS. Here, the 
samples prepared for analysis by MALDI‐TOF MS were used, and 1 µl of each sample 
was applied to each spot of the ProteinChip® array (for details, Shah et al., 2005). The 
chip was dried, and 0.5 µl of sinapinic acid applied twice onto each spot. The ProteinChip® 
arrays were analyzed in a mass spectrometer (Ciphergen BioSystems, Model, PBS II) 
according to an automated data collection protocol. The spectra were generated at a 
laser intensity 220, high mass 50 kDa, detector sensitivity 10 and focus mass 25 kDa. 
The instrument was operated in positive ion mode, and a nitrogen laser emitting at 
337 nm was used. Figure  4A.4 shows a partial mass spectrum of the extended mass 
range that SELDI‐TOF MS achieves and the unique spectral profile for each 
Mycobacterium spp. tested. A comprehensive study of the parameters is required to 
optimize this approach further, but preliminary  evidence suggests that it may prove a 
valuable adjunct to the existing MALDI‐TOF MS method for species that are poorly 
resolved by virtue of the additional mass ions derived.

4A.7 Conclusion

The impetus to utilize MALDI‐TOF MS for species identification has been widely 
reported, and new, improved methods are frequently being investigated (Lotz, et al., 
2010; Mäkinen et al., 2006, Mather et al., 2014; Wang et al., 2012). However, the identi-
fication of Mycobacterium to the species level has been fraught with difficulties, largely 
because of the poor growth, low cell yield and long mean generation times of some 
 species. Added to this, the group comprises immense species diversity in which many 
taxa are described using poorly defined characters. Even the use of whole genome 
sequencing is often unable to resolve differences between some closely related taxa, and 
specific SNPs are being used to define subgroups. However, for species that are better 
defined, MALDI‐TOF MS has shown enormous potential. Key to successful implemen-
tation depends greatly on sample preparation. It appears to be difficult to establish one 
reproducible method for the extraction of mycobacterial proteins. Mechanical disrup-
tion is essential; depending on the laboratory setup, vortex or beat beating using 
FastPrep or Biospec were applied with high‐confidence identification scores here (see, 
e.g. Table 4A.1). It was suggested by several MALDI‐TOF users that a local, site‐specific 
database should be established to aid identification of geographically significant species 
and strains (Khéchine et al., 2011; Mather et al., 2014). Many authors agree that this 
technique allows for faster and easier diagnosis of mycobacteria compared with 
 conventional phenotypic identification methods.
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Figure 4A.4 Partial mass spectrum using SELDI‐TOF MS of Mycobacterium species. From top to bottom; M. abscessus, M. agri. M. 
fortuitum, M. intracellulare, M. kansasii and M. smegmatis. SELDI‐TOF MS has the capacity to generate mass ions in excess of 100,000 kDA 
(see Shah et al., 2005) and clearly has potential application for identification of Mycobacterium species.
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At scientific conferences, very comprehensive studies have been reported in sympo-
sia devoted entirely to problems relating to the characterization of Mycobacterium 
 species. In one such study (ECCMID 2015), the general consensus reached was that for 
the identification of Mycobacterium species using the Bruker Biotyper, the confidence 
threshold should be lowered to between 1.6 and 1.9 for this group. However, the genus 
Mycobacterium comprises many environmental species that are poorly defined and 
excluded from MALDI‐TOF MS mycobacterial databases. It is our view that a general 
rule should not be applied across the whole genus. Here we demonstrated that many 
species give an acceptable score of >2 (see Table 4A.1). However, other species such as 
M. gordonae yield poor confidence scores of around 1.6. In the long term, it might be 
necessary to develop a sliding scale for various groups of mycobacterial species. This 
will highlight the poorly resolved taxa which may be investigated further while empha-
sizing those that can be identified with confidence. Currently, the high scores reported 
for many species indicate that MALDI‐TOF MS has considerable potential for identifi-
cation of Mycobacterium species, and more in‐depth analytical methods would  continue 
to improve the methodology, particularly to separate closely related taxa of the 
Mycobacterium tuberculosis complex of species that are poorly differentiated by 
MALDI‐TOF MS.
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4B.1 Introduction

4B.1.1 The Genus Mycobacterium, Disease and MALDI‐TOF Mass Spectrometry

Although the most important species of the genus are members of the Mycobacterium 
tuberculosis complex (MTB), which are responsible for 1.5 million deaths annually 
(World Health Organization, 2015), infections caused by nontuberculous mycobacteria 
(NTM) can also be serious, especially in patients who are immunosuppressed or have an 
underlying chronic pulmonary disease (Hoefsloot et al., 2013; Johnson and Odell, 2014).

Identification and differentiation of the species of the genus Mycobacterium is com-
plex and is described in Part 4A. However, regarding the diagnosis, treatment, and pre-
vention of MTB and NTM disease, it is recommended that clinically significant NTM 
 isolates be identified to the species level, and MTB be differentiated from NTM (Griffith 
et al., 2011; Griffith, 2015). Mycobacterium spp. identification has traditionally relied 
upon phenotypic traits (e.g., growth rate and pigmentation) and biochemical analyses 
(e.g., nitrate reduction and semi‐quantitative catalase activity) (Griffith et  al., 2011; 
Griffith, 2015). Unfortunately, many of these methods are not only time consuming but 
also have poor resolution. As a result, species identification by molecular‐based meth-
ods has been augmented and includes the use of commercially available DNA probes 
and DNA sequencing of target genes (e.g., 16S rRNA and rpoB) (Kim et al., 1999; Lee 
et al., 2000; Woo et al., 2008) (see Figure 4A1, Part 4A). Although these methods are 
routinely used in developed countries, they are expensive to perform and require spe-
cific technical expertise and facilities.

Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry 
(MALDI‐TOF MS) provides a rapid alternative for microorganism identification based 
upon differences in protein profiles (Claydon et  al., 1996; Hettick et  al., 2004; Seng 
et al., 2009). MALDI‐TOF MS spectra can be obtained by direct cell analysis which 
involves spotting a colony from a culture plate onto a MALDI target without extensive 
pre‐treatment. The spectrum is then compared with protein profiles in the database for 
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identification. The US Food and Drug Administration (FDA) has approved the Bruker 
Biotyper and VITEK MALDI‐TOF MS for species‐level identification of several 
gram‐positive and gram‐negative bacteria with this simple sample treatment method. 
However, MALDI‐TOF‐MS‐based identification of mycobacteria has not yet been 
approved by the FDA, because methods of optimization are still in progress (see Part 4A).

The identification of mycobacteria using MALDI‐TOF MS first started in 1996 with 
the analysis of an M. smegmatis strain (Claydon et al., 1996). Since then, several studies 
(Balážová et al., 2014; El Khéchine et al., 2011; Kim et al., 2015; Pignone et al., 2006; 
Saleeb et al., 2011) have evaluated the utility of MALDI‐TOF MS for the identification 
of mycobacterial species. It is now well established that prior to analysis of mycobacte-
ria, extensive protein extraction procedures are required for biosafety reasons, and to 
facilitate the removal or rupture of the dense lipid layer on the surface of the cell (see 
Part 4A). Commercially available protein extraction methods have been compared, and 
new simplified sample preparation methods were suggested (Day et al., 2014).

In this section, recent progress in the use of MALDI‐TOF MS for the identification of 
mycobacteria from clinical samples is described using new approaches for faster, safer, 
and more efficient sample treatment, and algorithms and databases for more efficient 
identification.

4B.2 MycoMp Database for Mycobacterium: The ASTA 
Mycobacterial Database

A new commercial MALDI‐TOF MS analytical system for microbiology, designated the 
MicroID system (ASTA, Suwon), was launched recently. MycoMP is a database focussed 
specifically on mycobacterial identification. The MicroID system comprises a linear 
MALDI‐TOF MS system (Tinkerbell LT), MicroID software, a MicroID database and a 
disposable kit for sample treatment (Figure 4B.1).

The linear MALDI‐TOF MS system Tinkerbell LT is designed to be as simple as pos-
sible for use by general laboratory personnel who do not have specialized mass spectrom-
etry experience. The majority of the data acquisition operates automatically. Minimum 
maintenance, reduced maintenance costs and time are achieved with a long‐life Nd YLF 
laser and vacuum pump with modular components. Furthermore, the system is also 
designed to be extended with a mass selector which offers high resolution and sensitivity 
in the selected mass range. The selection of positive or negative ions can also be used for 
the future development of small molecule pattern databases for drug resistance or sensi-
tivity. Figure  4B.2 shows MS spectra obtained by Tinkerbell LT from four different 
Mycobacterium species. Different mass spectral profiles for each species are clearly 
 evident; in another example, similarities between peak patterns of M. tuberculosis and 
Bacillus Calmette–Guérin (BCG) spectra are shown in Figure 4B.3.

4B.3 MicroID Software

The identification software MicroID™ uses a unique mass picking and matching method. 
Here, masses are picked by a machine‐learning algorithm to determine the maximum 
independence of each peak in intra‐ and inter‐classification clusters. The mass and 
intensity profiles of test samples pass through a cluster‐by‐cluster matching process with 
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a pre‐built reference database (DB), and the results are shown as probabilities of match-
ing extent to potential species or strains. The software employs norm (distance) value 
discrimination to compute cross‐correlation or matching similarity of a sample spectrum 
to a reference dataset. Test data are matched to the reference data from each species in 
the reference DB, and probabilities of matching extent are computed. Results are shown 
as a percentage for each specific species or strain. The algorithm employs a deep‐learning 
technique to reduce computation time and find the optimum intensity factor and num-
ber of mass peaks. Data variations from different users are covered with this algorithm. 
Automatic processing and reporting functions allow for fast and convenient identifica-
tion of 96 samples in a single run. After MALDI‐TOF MS analysis, users can reprocess 
data to reconfirm results whenever it is necessary. The MicroID™ user interface is com-
posed of three panels with three different user interfaces that are intuitive for beginners.

4B.4 Database

The MicroID™ database includes strains from the Korean Collection of Type Culture 
(KCTC) as well as clinical isolates from hospitals in Korea. It currently comprises 2591 
species and 3905 strains and is being extended. The database is divided into specific 
DBs according to the application. The structure of the MicroID database is shown in 

ASTA
MycoMP DBTM

Micro IDTM

MALDI-TOF MS
Tinkerbell LTTM

Figure 4B.1 The Micro ID system comprises the ASTA Tinkerbell LT MALDI‐TOF spectrometer, Micro ID 
software and database, and disposable kit with disposable MALDI plates, matrix, standards solution.
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Figure 4B.4. Each DB was created for a specific application; for example, the Core DB is 
for general bacteria, the Food DB for food‐borne bacteria, the Clin DB for clinical appli-
cations, the Agri DB for agriculture and animals, the Environ DB for environmental 
applications and the MycoMP DB is for M. tuberculosis and NTM, which can be used 
independently or combined with the Clin DB.

4B.5 MycoMP Database for Mycobacteria

Table  4B.1 list the strains that comprise the MycoMP database from the KCTC 
(Taejeon, Korea) and reference strains obtained from clinical isolates in Korea 
(Table 4B.2). All clinical isolates were verified by sequencing the 16SrRNA, rpoB and 
tuf genes. Reference strains and clinical isolates were frozen at −80°C. Strains were 
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Figure 4B.2 Typical spectra obtained by MALDI‐TOF‐MS (Tinkerbell LT, Suwon, Korea) of Mycobacterium 
species: (A) Mycobacterium gordonae, (B) Mycobacterium fortuitum, (C) Mycobacterium saskachewanense 
and (D) Mycobacterium phlei.
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thawed at room temperature and cultured in 2% or 3% Ogawa, Löwenstein‐Jensen or 
Mycobacteria Growth Indicator Tubes (MGITs) to compensate for variation in the cul-
ture medium. However, differences in media composition did not have an effect on the 
mass spectral pattern of mycobacteria. A flowchart of the developing Myco MP DB is 
shown in Figure 4B.5.

Apart from the dense lipid layer that complicates protein extraction from cells and 
prolongs the methodology, cell inactivation is also recommended prior to MALDI‐
TOF MS analysis to minimize exposure of laboratory personnel to the Mycobacterium 
tuberculosis complex. The ASTA’s mycobacterial protein extraction protocol was 
derived on the basis of extensive experiments for optimizing many variables. Using 
microtubes pre‐filled with 1 mm glass beads, the protein extraction efficiency is maxi-
mized, and steps for protein extraction are minimized (Figure 4B.6). Briefly, the opti-
mization  procedure was as follows: one loopful of mycobacterial biomass was collected 
in a 2 ml screw‐cap microcentrifuge tube containing 20 pills of 1 mm glass beads. 

Mycobacterium tuberculosis H37Ra
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(B)

(C)

(D)

Last

Last
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2000 4000 6000 8000 10000 12000 14000 16000 18000

Mycobacterium bovis BCG Pasteur

Mycobacterium bovis BCG Danish

Mycobacterium bovis BCG Glaxo

Figure 4B.3 MALDI spectra representing the Mycobacterum tuberculosis complex: (A) Mycobacterium 
tuberculosis, (B), (C), (D) M. bovis BCG.
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After the addition of 0.3 ml distilled water (Merk Millipore), the sample was boiled for 
30 min to inactivate the mycobacterial cells. Following addition of a further 0.7 ml 
ethanol (Sigma‐Aldrich), the sample was vortexed for 5 min, and then centrifuged for 
5 min. The supernatant was discarded. The pellet was re‐suspended in 30 µl 100% 
formic acid (Sigma‐Aldrich) and then subjected to bead beating (FastPrep‐24; MP 
Biomedicals) for 1 min (max speed: 6 m/s). After the addition of 30 µl 95% acetonitrile 
(Sigma‐Aldrich), the sample was vortexed for 5 s, and then centrifuged at 3000 rpm for 
3 s. Then 1μl supernatant was transferred to a MALDI target plate (ASTA Inc. Suwon, 
Korea).

MALDI‐TOF MS spectra were obtained with 1 µl of supernatant from each test sam-
ple pipetted onto a spot on the disposable MALDI target plate, and 1 µl of the calibra-
tion standard (E. coli ASTA standard) onto a separate spot. The samples were treated 
with 2 µl of the MALDI matrix (a freshly prepared saturated solution of α‐Cyano‐4‐
hydroxycinnamic acid in 50% ACN and 2.5% trifluoroacetic acid). Spectra were acquired 
over a mass range from 2,000 to 20,000 Da, and 1,000 laser shots over 20 sites on each 
sample were summed.

The correlation of Mycobacterium spp. in the MycoMP DB was analyzed using 
MALDI‐TOF mass spectra in the MycoMP DB (Figure 4B.7). The MycoMP DB was 
used to evaluate 82 mycobacterial isolates and showed 92.7% matching accuracy. 
M. tuberculosis and BCG are clearly distinguished from others. This DB is currently 
being tested and expanded with clinical samples. Strains from ATCC are being used for 
validation of the database. For more validation, comparison with other databases such 
as Biotyper 3.0 DB is required.

General
pathogenic
bacteria

Clinic DB

ASTA core DB

Food DB

Agri DB

Environ DB

MycoMP DB

Isolated
from food

Isolated from
agricultural source

Isolated from sea,
lake, and etc

Mycobacterium
species

Sample
preparation 

MALDI
analysis

Qualification of
data 

Series of focused
database

Standard
reference Clinical sample 

Figure 4B.4 Structure of MicroID database. Each database (DB) is dedicated to a specific application.



Table 4B.1 The type strains of Mycobacteriium spp. from KCTC (Korean Collection of Type Cultures) used for the MycoMP database.

No. Species
KCTC
strain no. No. Species

KCTC
strain no. No. Species

KCTC
strain no.

1 M. abscessus 19621 26 M. farcinogenes 19647 51 M. parascrofulaceum 9979
2 M. acapulcensis 9501 27 M. fortuitum subsp. fortuitum 9510 52 M. paraseoulense 19145
3 M. agri 9502 28 M. fortuitum subsp. fortuitum 1122 53 M. paraterrae 19556
4 M. alvei 19709 29 M. fortuitum subsp. fortuitum 29797 54 M. phlei 2192
5 M. asiaticum 9503 30 M. frederiksbergense 19100 55 M. phlei 3037
6 M. aubagnense 19639 31 M. gallinarum 9511 56 M. phlei 9689
7 M. aubagnense 29645 32 M. gilvum 19423 57 M. porcinum 9517
8 M. austroafricanum 9504 33 M. gordonae 9513 58 M. pulveris 9518
9 M. abscessus sp. bolletii 19281 34 M. heckeshornense 19648 59 M. rufum 29649
10 M. botniense 19646 35 M. holsaticum 19650 60 M. rufum 29650
11 M. brisbanense 19641 36 M. immunogenum 19643 61 M. sakatchewanense 9978
12 M. brumae 19711 37 M. interjectum 19649 62 M. salmoniphilum 29801
13 M. canariasense 19644 38 M. intracellulare 9514 63 M. sediminis 19999
14 M. celatum 19714 39 M. kansasii 9515 64 M. senuense 19147
15 M. chelonae subsp. chelonae 9505 40 M. komossense 29798 65 M. seoulense 19146
16 M. chelonae 29796 41 M. koreense 19819 66 M. septicum 29802
17 M. chlorophenolicum 19089 42 M. manitobense 9977 67 M. smegmatis 9108
18 M. chubuense 19712 43 M. massiliense 19086 68 M. sp 1466
19 M. conceptionense 19640 44 M. moriokaense 9516 69 M. sp 1829



20 M. conceptionense 39499 45 M. moriokaense 29799 70 M. szulgai 9520
21 M. cookii 19715 46 M. mucogenicum 19088 71 M. terrae 9614
22 M. cosmeticum 19713 47 M. neworleansense 29800 72 M. vaccae 19087
23 M. diernhoferi 9844 48 M. neoaurum 19096 73 M. vanbaalenii 9966
24 M. diernhoferi 9506 49 M. obuense 19097 74 M. yongonense 19555
25 M. fallax 9508 50 M. parakoreense 19818 74 M. tuberculosis H37Ra
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Table 4B.2 103 Clinical strains of Mycobacteria belonging to 25 Mycobacteriium species.

No. Species No. Species No. Species

1 M. abscessus 13 10 M. gordonae 4 19 M. mucogenicum 2
M. abscessus ssp. bolletii 8 11 M. indicuspranii 1 20 M. neoaurum 3

2 M. algericum 1 12 M. intracellulare 12,1 21 M. paragordonae 1
3 M. alvei 1 13 M. iranicum 1 22 M. peregrinum 5
4 M. avium 13 14 M. kansasii 6,1 M. peregrinum 2
5 M. chelonae 3 15 M. kumamotonense 1 23 M. phocaicum 2
6 M. chimaera 6 16 M. kyorinense 1,1 24 M. porcinum 2
7 M. colombiense 2 17 M. lentiflavum 25 M. yongonense 1
8 M. conceptionense 2 18 M. massiliense 1 Total 121
9 M. fortuitum 5

Mycobacteria strain

2% Ogawa

3% Ogawa

L-J

MGIT

Culture with 4 media

Sample preparation

Strain confirmation
by

DNA analysis
and MALDI MS

Mycobacteria
MALDI

Database

MALDI-TOF MS analyses
and repetitions

Ext. Cal: 300 ppm 

Common peak
selection by

‘make standard’

Figure 4B.5 The workflow for developing a mycobacterial MALDI‐TOF MS database.
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Figure 4B.6 Stages in the preparation of a mycobacterial sample for MALDI‐TOF MS analysis.
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Figure 4B.7 Cluster analysis of selected mass spectra of Mycobacterium spp. from the MycoMP database using Perseus 
(Computational Systems Biochemistry, Germany). The inter‐relatedness of the Mycobacteriium species is illustrated and M. 
tuberculosis is distinguished from other mycobacteria.
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4B.6 Conclusion

We have established that this new system has the capacity to identify most mycobacte-
rial strains to the species level using MALDI‐TOF MS, while the software can differen-
tiate the intrinsic similarities from small differences in mass profiles among species. 
Due to tremendous advances in the development of identification software technology, 
improvements in MALDI‐TOF MS resolution and the simplicity and speed of sample 
preparation, it is anticipated that MALDI‐TOF MS will be used routinely for mycobac-
terial identification in most clinical laboratories in the near future.
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5

5.1 Introduction

Interest in anaerobic bacteria over the last century have been recurrent, driven very 
much by new technologies and restricted to a few highly specialized laboratories. 
However, anaerobic species have been reported since the late nineteenth century (see, 
e.g. Veillon and Zuber, 1898) and have been an integral part of Bergey’s Manual from its 
inception (Bergey, 1923). In particular, considerable attention has been given to gram‐
positive clostridial spore‐formers because of the severity of diseases they cause. By con-
trast, gram‐negative species, which have long been regarded as the dominant taxa of the 
colon, have been largely overlooked until the 1970s. Prior to this, the most exhaustive 
studies were undertake at the Pasteur Institute, where Prévot and colleagues carried out 
detailed analysis of pathogenicity of strains while simultaneously employing standard 
organic chemistry methods to determine their products of metabolism to facilitate 
characterization of species (see, e.g. Prévot, 1938). The arrival of gas chromatography 
(GC) in the 1970s simplified these methods, and microbiological laboratories began 
acquiring these en masse. Their introduction in clinical laboratories had an enormous 
impact on interest in anaerobes, and centres such as the Virginia Polytechnic Institute 
and State University, USA, were among the first to employ GCs to profile the volatile 
fatty acids of anaerobes to enable their routine identification (Holdeman et al., 1977). 
This, together with the arrival of anaerobic cabinets for large‐scale culture, triggered an 
enormous upsurge of interest in anaerobes, and several official societies were estab-
lished to promote work on anaerobes. The United Kingdom’s ‘Anaerobic Discussion 
Group’ was established in 1978 and later became the ‘Society for Anaerobic Microbiology’. 
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Its conference proceedings were already being published by 1979 (Shah and Hardie, 
1979), after which biennial conferences were held to stimulate further work on 
 anaerobes. In 1992, two of the authors (HNS, SEG) relocated to Dalhousie University, 
Halifax, Canada, and founded the ‘Canadian Society of Anaerobic Microbiology’ in 
February 1992. This was established with strong links to Professor Hebe M. Bianchini’s 
laboratory in Argentina (Laboratorio Microbiología, Centro de Educación Médica e 
Investigaciónes Clínicas, Buenos Aires). A chance visit to Halifax by Professor Sydney 
Finegold around the same period swiftly led to its extension with the United States and 
South America to form the ‘Anaerobic Society of the Americas’ the same year. These 
societies vigorously promoted anaerobic microbiology. In particular, increasing resist-
ance to metronidazole, the antibiotic reserved for treatment of anaerobic infections, 
spurred on much work on resistance mechanisms. At the same time, new technologies 
in mass spectrometry such as pyrolysis mass spectrometry (MS), electron impact and 
fast atomic bombardment MS were applied to study the systematics of gram‐negative 
taxa such as the Bacteroidaceae which eventually led to substantial taxonomic revisions 
in the 1980s (see e.g., Shah and Collins, 1980, 1983, 1988–1990; Magee et  al., 1989; 
Tavana et al., 1998).

Many of these taxonomic proposals were confirmed with the arrival of 16S rRNA 
(see e.g., Lawson et  al., 1989, 1991) and which in subsequent years continued to 
shape the systematics of this group. However, by the late 1990s to early 2000, inter-
est in anaerobes declined considerably because much of the equipment used to 
identify anaerobes routinely such as gas chromatographs, mass spectrometers and 
spectrophotometers were no longer in general use in microbiology laboratories. 
The almost total reliance on comparative 16S rRNA analysis presented a formidable 
task for clinical laboratories that depended on phenotypic tests to characterize clin-
ical isolates. This was exacerbated by the absence of reliable characters for defining 
species, especially because many of the newly proposed taxa such as P. gingivalis, 
P.  endodontalis and P. asaccharolytica were non‐fermentative (see, e.g. Shah and 
Collins, 1988).

The arrival of MALDI‐TOF MS had an immediate, significant impact on anaerobic 
microbiology largely because among the first microorganisms to be studied were mem-
bers of the fastidious, poorly characterized and obscure members of the genus 
Porphyromoas (see Chapter 1; Shah et  al., 2002). These were analyzed to assess the 
resolution of MALDI‐TOF MS and to establish proof of concept of this new and novel 
technology. Soon the basic parameters for a reproducible method were published (Shah 
et al., 2000), and assembly of the first comprehensive database of MALDI‐TOF mass 
spectral  profiles reported (Keys et al., 2004) and proof of concept established (Shah, 
2005). In the ensuing years, many laboratories reported extensive studies on the charac-
terization of anaerobic species using MALDI‐TOF MS, and its implementation in clini-
cal laboratories has been transformative. Whereas a few years ago, meetings on 
anaerobes were poorly attended, the arrival of MALDI‐TOF MS has led to significant 
rekindling of interest in anaerobes.

This chapter reports work on the use of MALDI‐TOF MS for the characterization of 
clinically important anaerobes to the species level from clinical samples, efforts to 
improve the coverage of anaerobic species by expanding the database and the potential 
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of the technique to type specific human pathogens. Specific reference is made here to 
the identification of Bacteroides and other clinically relevant anaerobes, where the 
impact has been considerable.

5.2 Identification in the Clinical Laboratory

Since the development of commercially available equipment for oxygen‐free culture of 
bacteria from clinical specimens, there has been a significant increase in information 
relating to infections caused by non‐spore‐forming anaerobes. Apart from the tradi-
tionally studied sites, where an abundant anaerobic flora is present on mucosal surfaces, 
such as in intraabdominal or pelvic infections and infections in connection with the oral 
cavity, a great variety of other infections were proven to be caused by strict anaerobic 
bacteria alone or in combination with other microaerophilic or facultative anaerobes. 
The main problems for routine laboratories to deal with the diagnosis of anaerobic 
infections are the difficulties to identify these microorganisms in real time, due to their 
slow growth even in good anaerobic environment and the need to confirm their strict 
anaerobic nature by subculturing (Jousimies‐Somer et al., 2002). Furthermore, quite a 
few clinically important anaerobic bacteria are biochemically inactive. Accordingly, 
their identification by commercially available kits, which need a 24–48‐h incubation in 
an anaerobic environment, such as the API20A (bioMérieux, Mercy‐l’Etoile, France), or 
detection of preformed enzymes within 4–6 h, such as RapID ANA II (Remel, KS, USA), 
Rapid 32A (bioMérieux) and VITEK ANI card (bioMérieux), is not always possible. On 
the other hand, these identification kits have relatively narrow spectrum databases for 
anaerobes and usually require large amounts of inoculum, which is difficult to obtain 
with anaerobes producing very small colonies even after a long incubation time.

With the arrival of MALDI‐TOF MS into the routine of clinical microbiology laborato-
ries, it became evident that it will be much easier to identify a great variety of bacteria and 
yeasts at the species level by comparing the mass spectra of the unknown isolates with 
reference spectra of known species included in the database. Routine identification of the 
most frequently isolated anaerobes, such as clostridia and Bacteroides strains, also became 
available very early, based mainly on the mass spectra of the conserved ribosomal proteins. 
In early studies (Shah et al., 2002; Stingu et al., 2008), it was already seen that even mem-
bers of the genera Prevotella (P. nigrescens and P. intermedia) or Clostridium (C. septicum 
and C. chauvei), which are difficult to differentiate, could be discerned by their MALDI‐
TOF mass spectra with an efficacy similar to those of the DNA‐based techniques.

Two systems are available today for routine identification of clinical isolates, the MALDI 
Biotyper (Bruker Daltonik GmbH, Bremen, Germany), which utilizes the Microflex or 
Autoflex MS with the MALDI Biotyper database (versions: research use only, RUO; and 
in‐vitro diagnostic, IVD), and the VITEK MS system (bioMérieux, Marcy‐l’Etoile, France), 
which uses the Shimadzu Axima MS with an IVD database and SARAMIS as the RUO 
database. The two systems differ in the requirements for sample preparation, in the inter-
pretation of the measured mass spectra and the databases of the microorganisms. The 
performance of these equipments and their databases were tested by many reference and 
routine laboratories dealing with everyday testing of anaerobic specimens.
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5.3 Pre‐analytical Requirements Influence Species 
Identification of Anaerobic Bacteria

Despite the simple usage of MALDI‐TOF MS instruments developed for routine iden-
tification of clinical isolates, the pre‐analytical steps influence the quality of the mass 
spectra and the correct identification. Most studies using the MALDI Biotyper agree 
that the composition of the culture media does not affect the identification of anaerobes 
(Grosse‐Herrenthey et al., 2008; Federko et al., 2012; Hsu and Burnham, 2014). However, 
at least in the case of Clostridium spp., the extended incubation time may lead to devia-
tion in the fingerprint patterns due to extensive sporulation (Grosse‐Herrenthey et al., 
2008). Application of different complete or selective media used by routine laboratories 
to isolate anaerobic bacteria, such as sheep blood agar, colistin nalidixic acid agar, 
Brucella laked blood agar with kanamycin and vancomycin and Bacteroides bile esculin 
agar, did not influence the identification of 28 anaerobic clinical isolates representing 16 
species (Hsu and Burnham, 2014).

The performance of MALDI‐TOF MS not only depends on the quality of the data-
base of the system but also on the quality of the spectrum obtained for a given isolate. 
The proteins detected with the current method for bacterial identification using 
MALDI‐TOF MS are predominantly ribosomal proteins (Arnold and Reilly, 1999). 
Consequently, the quality of a spectrum is optimal when bacterial cells are in the expo-
nential phase of growth and is influenced by the extraction method used. The on‐target 
extraction by 70% formic acid and full extraction by formic acid and acetonitrile both 
aim to disrupt the bacterial cell envelope to release the proteins. Consequently, the 
amount of bacteria spotted on the target and the homogeneity of the smear across the 
surface will also affect the reproducibility of the spectrum. Insufficient amount of bac-
teria results in poorly resolved mass ions, whereas too large a mass of cells yields only 
the prominent peaks and saturation at the detector (De Bruyne et al., 2011). Studies 
have shown that a heavy smear combined with an on‐target extraction by 70% formic 
acid provides the best results (Williams et al., 2003; Ford and Burnham, 2013; McElvania 
et al., 2013). However, “a heavy smear” is difficult to define. Veloo et al. (2014) assessed 
some of the parameters needed for high‐quality spectra of anaerobic bacteria. 
Compared to aerobic bacteria, many anaerobic species show slower growth, and for 
some species colonies are small or rough, which make it difficult to obtain a good‐qual-
ity, homogeneous preparation. The best results are obtained when the MALDI‐TOF 
MS measurement is  performed after 48 h of incubation in an anaerobic environment 
and when bacterial cells are spotted on the same day and are not exposed to oxygen for 
more than 24 h (see Table 5.1). The influence of oxygen exposure on MALDI‐TOF MS 
performance was also investigated by Hsu and Burnham (2014). After 1 d and 5 d of 
exposure to oxygen, 71% and 80%, respectively, of the tested anaerobic bacteria were 
correctly identified. However, the identification score obtained after 1 d was higher 
than after 5 d of exposure to oxygen. Veloo et al. (2014) observed that for Fusobacterium 
necrophorum a mass spectrum was not obtained after 24 h of exposure to oxygen nor 
from Prevotella intermedia after 48 h of exposure. They attributed this to cell wall dam-
age caused by oxygen exposure, causing the leakage of proteins out of the cell. For all 
other tested gram‐negative and gram‐positive anaerobic bacteria, a good‐quality 
 spectrum was still obtained after 48 h of exposure to oxygen, with no decrease in 
 identification score.
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Among the different techniques, the on‐target extraction by 70% formic acid was 
found the most successful for gram‐positive anaerobic bacteria (Hsu and Burnham, 
2014; Veloo et al., 2014). In general, the method of spotting the cells has a significant 
impact on the quality of the spectrum obtained and, as expected, this is influenced by 
the technical experience of the staff and also the nature of bacterial colony being spot-
ted. In Table 5.2, it is shown that an experienced scientist produces better and more 
consistent results (Veloo et al., 2014). However, the inherent nature of the sample also 

Table 5.1 The influence of exposure to oxygen on the quality of the MALDI‐TOF MS spectrum.

Exposure to oxygen (h)

Species 0 1 6 24 48

Gram‐negative bacteria
Bacteroides thetaiotaomicon 2.14 2.24 2.10 2.17 2.35
Bacteroides stercoris 2.19 2.14 2.18 2.25 2.27
Parabacteroides johnsonii 2.23 2.32 2.29 2.31 2.28
Fusobacterium necrophorum 2.08 2.30 2.19 <1.7a <1.7a

Fusobacterium nucleatumb 2.08 2.27 2.32 2.19 2.08
Prevotella intermedia 1.92 1.93 1.86 1.95c <1.7a

Prevotella oris 2.08 2.17 2.01 2.35 2.29
Alistipes onderdonkii 2.21 2.24 2.29 2.29 2.21
Veillonella parvula 2.25 2.13 2.2 2.20 2.16

Gram‐positive bacteria
Finegoldia magna 2.24 2.05c 2.34 2.52 2.50
Peptoniphilus harei 2.15 2.00 2.13 2.23b 2.19
Peptoniphilus ivorii <1.7d 1.81e <1.7d 1.76e 1.80e

Clostridium hathewayii 2.36 2.23 2.29 2.07 2.19
Clostridium ramosum 2.03 2.19 2.27 2.06 2.17
Actinomyces graevenitzii 2.05c 2.03e 2.11 2.06e <1.7d

Actinomyces meyeri 2.03 2.27 2.35 2.19 2.25
Bifidobacterium longum 2.00c 2.12c 1.99c 2.15 2.17
Propionibacterium acnes 2.18 2.14c 2.12 2.13 2.13
Eggerthella lenta 2.11 2.30 2.27 2.16 2.02e

Collinsella aerofaciens 2.26c 2.16 2.23c 2.32c 2.28c

a With direct spotting and on‐target extraction, no reliable identification or peaks were obtained.
b The MALDI‐TOF MS system identifies F. nucleatum as either F. nucleatum or F. naviforme.
c On‐target extraction with 70% formic acid.
d With all three sample preparations methods, no reliable identification or peaks were obtained.
e Full extraction.
Adapted from: Veloo et al. (2014). The influence of incubation time, sample preparation and exposure to 
oxygen on the quality of the MALDI‐TOF MS spectrum of anaerobic bacteria. Clin. Microbiol. Infect. 20: 
O1091–O1097.



Table 5.2 The range of log scores and identification results of spotting the same strain ten times by two different examiners.

Less experienced examiner Experienced examiner

Strain Range SD
No reliable  
ID (n)a Genus ID (n) Species ID (n) Range SD

No reliable  
ID (n)a Genus ID (n) species ID (n)

Gram‐negative bacteria
B. thetaiotaomicron 2.031–2.198 0.052 0 10 10 2.080–2.257 0.052 0 10 10
P. intermedia 1.958–2.121 0.050 0 10 8 1.976–2.092 0.042 0 10 8
F. necrophorum 2.263–2.387 0.050 0 10 10 2.187–2.418 0.072 0 10 10
F. nucleatum 1.596–2.108 0.152 1 9 4 1.192–2.107 0.269 1 9 5
C. ureolyticus 0.962–2.012 0.859 8 2 1 1.700–2.043 0.826 2 8 2
V. parvula 2.306–2.402 0.039 0 10 10 2.182–2.416 0.071 0 10 10
Gram‐positive bacteria
P. micra 1.687–2.338 0.233 1 9 6 2.202–2.399 0.058 0 10 10
F. magna 0.959–2.116 0.344 1 9 5 1.831–2.108 0.075 0 10 7
P. ivoriib 1.255–1.743 0.162 7 3 0 1.162–1.637 0.137 10 0 0
A. minutumb 1.831–2.528 1.244 4 6 5 2.183–2.481 0.105 0 10 10
C. butyricum 2.054–2.244 0.070 0 10 10 2.009–2.265 0.086 0 10 10
A. israelliib 1.114–1.314 0.639 10 0 0 1.968–2.006 0.838 8 2 1
A. graevenitziib 1.338–2.191 0.926 5 5 2 1.851–2.250 1.082 4 6 4
A. meyerib 1.946–2.239 1.116 6 4 3 1.308–2.217 0.961 6 4 2
B. dentiumb 1.912–2.304 0.908 2 8 7 2.163–2.388 0.971 2 8 8
B. longumb 1.780–2.229 0.150 0 10 6 2.018–2.218 0.071 0 10 10
P. acnesb 2.014–2.177 0.713 1 8 8 2.058–2.316 0.088 0 10 10
E. lentab 1.263–1.851 0.833 8 2 0 2.104–2.311 0.929 2 8 8

a A log score <1.7 or no peaks.
b An on‐target extraction was performed using 70% formic acid.
Adapted from: Veloo et al. (2014). The influence of incubation time, sample preparation and exposure to oxygen on the quality of the MALDI‐TOF MS spectrum of 
anaerobic bacteria. Clin. Microbiol. Infect. 20: O1091–O1097.
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affects the mass spectrum. For example, species that produce tiny colonies such as 
Campylobacter ureolyticus or species that characteristically yield a rough, dry colony 
morphology such as Actinomyces israellii often produce poor mass spectra.

5.4 Recent Database Developments for Anaerobes

In routine laboratories, the most frequent anaerobic isolates, besides clostridia and a 
great variety of gram‐positive anaerobic cocci (GPACs), are the members of the gram‐
negative anaerobic genera Bacteroides, Parabacteroides, Prevotella and Porphyromonas. 
Recent taxonomic changes in these genera are not fully concordant with the commer-
cially available phenotypic identification kits and, accordingly, certain species, such as 
Bacteroides nordii, Bacteroides dorei, Parabacteroides gordonii, Parabacteroides johnso
nii, Prevotella heparinolytica and Prevotella zoogleoformans, cannot be identified by 
them (Watanabe et al., 2010; Könönen et al., 2015). Attention switched to the potential 
use of MALDI‐TOF MS. In some cases, database developments were performed in col-
laboration with a company or carried out by reference laboratories by incorporating the 
mass spectra of the newly characterized species into the original database.

A large collection of Bacteroides/Parabacteroides clinical isolates was involved in an 
antibiotic surveillance study during 2008–2009 (Nagy et al., 2011a). The strains were 
collected from different countries of Europe to determine species‐specific resistance 
differences among the isolates. Besides using phenotypic methods, species determina-
tion was also carried out using the MALDI Biotyper (version 3.0) (Nagy et al., 2009). 
Applying the full formic acid/acetonitrile extraction for sample preparation, 97.5% of 
the 277 strains were correctly identified to the species level (log score > 2.000). This 
result indicated a rather advanced database for the genus Bacteroides/Parabacteroides 
even at that time. In case of discrepant results, 16S rRNA gene sequencing was used, 
which confirmed the MALDI‐TOF MS results in each case. There were only seven iso-
lates which could not be identified by the MALDI Biotyper, and the sequencing data 
showed that they were missing from the database. After the inclusion of a reference 
spectrum of one of the four Parabacteriodes distasonis isolates into the database, the 
three other isolates were also identified with high log scores (>2.500). Furthermore, 
spectra of Bacteroides eggerthii, Bacteroides goldsteinii and Bacteroides intestinalis iso-
lates determined by 16S rRNA sequencing were also added to the Biotyper database 
(Nagy et al., 2009).

Prevotella is another important gram‐negative anaerobic genus. After its description 
and the transfer of 16 species from the genus Bacteroides (Shah and Collins, 1990), sev-
eral new species (up to 44) were added to it. Most of these species have been described 
since 2004 (Shah et al., 2009), and a majority of them may be involved in a variety of 
human infections. Species‐level identification of Prevotella strains by the classical 
methods is challenging, time consuming and often leads to erroneous results. Using the 
MALDI Biotyper (Reference Library 3.2.1.0), which included the spectra of only 20 
Prevotella species at that time, Wybo et  al. (2012) could identify only 62.7% of 102 
Prevotella clinical isolates at the species level and 73.5% at the genus level. The com-
mercial database was extended in‐house with the spectra of 23 further Prevotella refer-
ence strains, increasing the number of the identifiable species to 33. This improved the 
species‐ and genus‐level identification of the 102 clinical isolates from 62.7% to 83.3% 
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and from 73.5% to 89.2%, respectively. Following the addition of a sequenced clinical 
isolate of Prevotella heparinolytica, the other two isolates of the collection could also be 
identified (Wybo et al., 2012).

Among gram‐positive bacteria, Clostridium species are clinically the most important 
anaerobes. Although some species can be easily identified, determination of others may 
be difficult (Jousimies‐Somer et al., 2002). During early development of the MALDI 
Biotyper database, 64 Clostridium isolates belonging to 31 species (most of them origi-
nating from different type culture collections) were used. A further 28 clinical and envi-
ronmental Clostridium isolates, identified by biochemical tests and sequencing, were 
added to improve the discriminatory power of MALDI‐TOF MS for this genus (Grosse‐
Herrenthey et al., 2008). Using this developed database, 25 environmental Clostridium 
isolates could be correctly identified by the MS method compared with sequencing or 
biochemical tests. Chean et  al. (2014) recently compared VITEK MS and MALDI 
Biotyper for the identification of clinically relevant Clostridium isolates evaluating also 
the impact of the sample preparation and the completeness of the databases. They 
found that out of 52 blood culture isolates belonging to 10 Clostridium spp. identified 
by sequencing, VITEK MS identified 47 (90.4%) isolates at the species level using the 
‘direct transfer’ sample preparation method, whereas MALDI Biotyper identified all 52 
isolates using the ‘extended direct transfer method’, adding formic acid to the samples 
on the target plate. In another study, there was only 1 of 66 clinical Clostridium isolates 
representing 12 species which could not be identified at the species level by MALDI 
Biotyper. The 16S rRNA sequence of this isolate showed a 99.9% identity to that of 
Clostridium hathewayi, which was not present in the database of the Biotyper. After 
constructing the main spectra using the full chemical extraction of this strain, it was 
included to the database of the MALDI Biotyper (Nagy et al., 2012).

GPACs including 13 genera and at least 33 species are among those anaerobic species 
which are difficult to identify by conventional methods. They are usually inactive in 
biochemical tests, and several recent taxonomic changes make their identification even 
more difficult. As early as 2000, MALDI‐TOF MS was explored to study the taxonomy 
of the group (see Murdoch and Shah, 1999; Murdoch et al., 2000; Rajendram, 2003). 
Database development for these bacteria was carried out using the AXIMA (Shimadzu) 
MALDI‐TOF MS equipment (Veloo et al., 2011a). In this study, 12 sequenced reference 
strains representing 12 species and six genera and 77 clinical isolates identified by clas-
sical methods and sequencing were involved. The SARAMIS database was developed 
for better identification of GPACs by adding the species‐specific identifying spectra, the 
so‐called SuperSpectra, of all these isolates. The performance of the constructed data-
base was tested using 107 clinical isolates. Ninety‐six of them (90%) could be identified 
to the species level. However, 3 of 32 Finegoldia magna, 1 of 3 Peptoniphilus ivorii and 
1 of 2 Anaerococcus vaginalis could not be determined when direct transfer sample 
preparation was applied.

Actinomyces spp. are components of the normal flora and frequently isolated on 
anaerobically incubated media. Identification of these gram‐positive anaerobic and 
aero‐tolerant bacteria is difficult, and MS may be a great help for routine laboratories. 
The number of described species has increased during recent years, and about 20 of 
them are relevant for human medicine. Recently, a database for MALDI Biotyper was 
developed in‐house by Stingu et al. (2015). Mass spectra obtained from 11 reference 
strains and 140 sequenced clinical isolates were used to create the reference database 
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representing 14 Actinomyces species. A cross‐validation of this reference database 
yielded correct identification for all species, which were represented by more than two 
strains in the database. This database was challenged by 574 unknown Actinomyces 
isolates. All of them could be identified belonging to the 12 most frequent species. For 
Actinomyces naeslundii and Actinomyces johnsonii as well as Actinomyces meyeri and 
Actinomyces odontolyticus, similar to the 16S rRNA sequences, the mass spectra were 
not discriminatory. Only tentative identification could be achieved for species which 
were not sufficiently represented in the collection, such as Actinomyces graevenitzii, 
Actinomyces europaeus or Actinomyces radicidentis (Stingu et al., 2015).

5.5 Application of the MALDI‐TOF MS Method for Routine 
Identification of Anaerobes in the Clinical Practice

Early evaluations of MS for identification of anaerobic bacteria in routine clinical 
microbiological laboratories started in 2010 using recent or earlier collected clinical 
isolates, but only a narrow spectrum of genera and species was tested in these first 
studies (Culebras et al., 2011; Knoester et al., 2012). Further studies summarizing the 
experience of the performance of MALDI Biotyper or VITEK MS in routine clinical 
microbiological practice differed in the number of anaerobic isolates tested (<100 to 
>1000), as well as in the number and composition of the genera and the species involved 
(between 11 and 39, and 26 and 102, respectively), mainly depending on the clinical 
background of the laboratories (Nagy 2014) (Table 5.3). In most cases, results obtained 
by the MS method were compared with those obtained by phenotypic identification 
(La Scola et al., 2011; Federko et al., 2012; Nagy et al., 2012; Barreau et al., 2013; Coltella 
et al., 2013; Kierzkowska et al., 2013; Barba et al., 2014; Garner et al., 2014; Li et al., 
2014; Lee et  al., 2015). If discrepant results were found, 16S rRNA sequencing was 
regularly applied to confirm the MALDI‐TOF MS identification. In a few studies, 16S 
rRNA sequencing was used as a ‘gold standard’ for the identification of anaerobes if 
MALDI‐TOF MS failed to give a species‐level identification (Justesen et  al., 2011; 
Barreau et al., 2013).

During the routine use of MS, several rare and/or recently described anaerobic 
 species were identified by the MALDI Biotyper, such as Anaerotruncus colihominis, 
Anaerococcus murdochii, Anaerococcus tetradius, Dialister micraerophilus, Porphyromo
nas gulae, Bacteroides heparinolyticus, Bacteroides salyersiae, Bacteroides tecticus, 
Prevotella nanceiensis, Prevotella baroniae or Turicibacter sanguinis (Barreau et  al., 
2013), showing the rapid development of the databases and the applicability of this 
method for routine identification of clinically important anaerobic bacteria. The per-
formance of the MS‐based identification of anaerobic bacteria in daily routine work is 
highly influenced by the composition of the database at the time of the study and the 
identification criteria (i.e. cut‐off values for species‐ or genus‐level identification) pro-
vided by the manufacturers or selected by the laboratories. In these studies, the per-
centage of the species‐ and genus‐level identification of strict anaerobic bacteria varied 
between 70.8% and 93.8% and 88% and 98%, respectively (Table 5.3). A highly diverse 
set of anaerobic clinical isolates belonging to 39 genera and 102 species including 
numerous less frequent anaerobes was tested by Schmitt et  al. (2013), which may 
explain the relatively low level of correct species identification (70.8%) using the cut‐off 



Table 5.3 Identification of anaerobic bacteria by MALDI‐TOF MS in clinical microbiology laboratories (evaluation according to the manufacturer’s instructions).

Time of 
collection 
of strains

MALDI‐TOF MS 
systems used
(version of the 
database)

Number of isolates 
tested (genus/species)

Correct identification 
at species level

Correct identification 
only at genus level

Not reliable 
identification Reference

2004‐06 Bruker Biotyper (2.0) 193 (2/13) 181 (93.8%) 11 (5.7%) 1 (0.5%) Culebras et al., 2011
2010 Bruker Biotyper (NF) 296 (6/NF) 164 (55%) 85 (29%) 47 (15.8%) Knoester et al., 2012
<2011 Bruker Biotyper 

(2.0.4.)
152 (24/75) 125 (82%) 12 (17%) 15 (9.8%) Fedorko et al., 2012

2010–11 Bruker Biotyper (3.0) 283 (15/58) 218 (77%) 31 (11%) 34 (12%) Nagy et al., 2012
2011 Bruker Biotyper (3.0) 238 (13/34) 185 (77.7%) 33 (14%) 20 (8.4%) Fournier et al., 2012
2010–11 Bruker Biotyper (3.0) 484 (18/51) 387 (80%) 87 (18%) 8 (2%) Coltella et al., 2013
2011–12 Bruker Biotyper (3.0) 253 (39/102) 179 (70.8%) 53 (20.9) 20 (7.9%) Schmitt et al., 2013
2012 Bruker Biotyper (3.0) 1325 (32/95) 1030 (77.7%) 281 (21%) 14 (1%) Barreau et al., 2013
2012 VITEK MS IVD (2.0) 651 (11/26) 594 (91.2%) 8 (1.2%) 49 (7.5%) Garner et al., 2013
2014 VITEK MS IVD (2.0) 50 (10/14) 46 (92%) 1 (2%) 4 (8%) Li et al., 2014
2011 VITEK MS IVD (1.1) 249 (12/27) 209 (83.9%) 18 (7.2%) 22 (8.8%) Lee et al., 2015

NF: not found.
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>2.000 log score. In some publications, lower log scores (>1.700 to >1.900) were accepted 
for species‐level identification (La Scola et al., 2011; Barreau et al., 2013; Schmitt et al., 
2013), and significantly higher percentages of correct identification could be achieved 
for anaerobic species. Two database versions (DB1 including 4111 entries and DB2 
including 4613 entries) of the Bruker system were evaluated in the Anaerobes Reference 
Unit (Public Health Wales, Cardiff, UK) on 1195 clinical isolates (representing 200 dif-
ferent anaerobic species and 60 anaerobic genera) identified also by 16S rRNA gene 
sequencing (Copsey et al., 2013). The more developed DB2 identified 71% of the iso-
lates compared to the 63% of correct identifications using the DB1. In this study, many 
rare isolates of gram‐negative taxa (e.g. Anaerospirillum, Desulfovibrio, Selenomonas, 
Sneathia, Sutterella) and gram‐positive genera (e.g. Abiotrophia, Anaerostipes, Catabacter, 
Collinsella, Caprobacillus, Flavonifractor, Moryella, Parascardovia, Propioniferax, 
Solobacterium, Tissierella and Turicibacter) were represented with one only isolate in 
both databases or appeared to be excluded. The best identification was achieved for 
Bacteroides, Clostridium, Propionibacterium acnes and Finegoldia magna by the 
updated database, which correctly identified 91%, 88%, 71% and 94% of the isolates of 
these genera and species, respectively.

Despite the fact that there are fewer reports on the VITEK MS system and its IVD 
database compared to the MALDI Biotyper, there are no significant differences in the 
performance of the two systems for the common clinical isolates of anaerobic species 
(Justesen et al., 2011; Veloo et al., 2011b; Martiny et al., 2012; Jamal et al., 2013; Garner 
et al., 2014; Lee et al., 2015).

The biodiversity of some anaerobic species is well known. It is well recognized that 
the expansion of the reference spectrum libraries and the inclusion of well‐characterized 
(16S rRNA/protein gene sequenced) clinical isolates into the databases is impor-
tant to improve the performance of the MS systems for correct identification 
of   anaerobic bacteria. In those cases where certain species, such as Anaerococcus 
 vaginalis, Campylobacter (Bacteroides) ureolyticus, Finegoldia magna or Clostridium 
hathewayi, were represented in the Biotyper database only by one or two entries, they 
obviously did not cover their natural variability (Veloo et al., 2011a; Nagy et al., 2012). 
Out of the frequently isolated genera, clinical isolates of Fusobacterium and Actinomyces 
are still difficult to differentiate at the species level by MALDI‐TOF MS, which may be 
explained by the wide heterogeneity of some species (such as Fusobacterium nucleatum) 
due to potential horizontal gene transfer (Claypool et al., 2010). Sample preparation 
may also be important to improve species‐level identification of some anaerobic species 
(see Section 5.3 above).

However, despite the rapid expansion of the databases, there are still examples where 
both MALDI‐TOF MS systems failed to yield species‐level identification, such as in the 
cases of Bacteroides vulgatus and the closely related, newly described Bacteroides dorei 
or Bacteroides ovatus and Bacteroides xylanisolvens. The Shimadzu/SARAMIS system 
gave a double result (i.e. B. vulgatus/B. dorei and B. ovatus/B. xylanisolvens), whereas 
the MALDI Biotyper misidentified these species (Justesen et al., 2011). Mass spectra 
of these species pairs do not distinguish them, indicating the possible limitation of this 
technology or rather the possibility that the two species are identical. A similar observa-
tion was reported by Chean et al. (2014), who identified Clostridium barati variably as 
Clostridium barati or Clostridium paraperfringens using the MALDI Biotyper. In fact, 
Clostridium. barati and Clostridium paraperfringens are considered to be a single 
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 species based on morphology, biochemical tests and DNA‐DNA homology; however, 
both were registered separately in the MALDI Biotyper database at the time of the 
investigation.

5.6 The European Network for the Rapid Identification 
of Anaerobes (ENRIA) Project

Some anaerobic bacterial species are represented in the MALDI Biotyper database by 
only the type strains. Because of the intrinsic diversity of many species discussed above 
and the lack of a good representative type strain of some species, reliable identification 
of an unknown strain may sometimes be challenging. This can be partly resolved by the 
inclusion of additional reference spectra to the MALDI Biotyper database, obtained 
from genotypically well‐characterized clinical isolates of a given species. Seng et  al. 
(2009) noted that ‘the statistical significance of the correlation between the precision in 
MALDI‐TOF MS identification and the number of reference spectra increased from ≥5 
reference spectra to ≥10 reference spectra in the database’. This suggests that it is essen-
tial that the number of reference spectra present in the MALDI Biotyper database 
should be ≥5 in order to correctly identify an unknown strain.

Ribosomal proteins (Arnold and Reilly, 1999) utilized for identification using MALDI‐
TOF MS produce mass ions in the range 2–20 kDa; thus, the topology of the dendro-
gram created from the spectra may resemble that of a phylogenetic tree derived from 
16S rRNA gene sequences (Stackebrandt and Ebers, 2006). However, a phylogenetic 
tree is based on genotypic information, whereas a MALDI‐TOF MS dendrogram is 
based on proteins that may have undergone post‐translational modifications. This 
 supports the need to have sufficient reference spectra present in the database to allow 
for eventual intraspecies variation. It is anticipated that the intraspecies variation will 
fluctuate among different taxa. Analysis of composite spectra and validation of the 
 optimized database should reveal which species require more than five reference spec-
tra to be present in the database to identify wild type strains.

For the optimization of the MALDI Biotyper database for the identification of anaer-
obic bacteria, a large collection of strains representing all clinically relevant species is 
needed. To achieve this goal, ENRIA was established through a collaboration between 
the ESCMID study groups for anaerobic infections (ESGAI) and epidemiological mark-
ers (ESGEM). The ENRIA study team consists of a group of core laboratories that are 
specialized in anaerobic bacteriology and represents different European countries in 
collaboration with the manufacturer of the Microflex MALDI‐TOF MS system, Bruker 
Daltoniks, Bremen, Germany. The goal of ENRIA is to optimize the MALDI Biotyper 
database by collecting strains of anaerobic bacterial species not yet included or under-
represented in the database. To achieve this objective, a minimum of five reference 
spectra of each species is being collected and will be added to the database. Validation 
of the identity is achieved through 16S rRNA gene sequencing of each strain using 
98.7% as a cut‐off value for a reliable species identification, as recommended by 
Stackebrandt and Ebers (2006). To gain insight in the performance of each collaborating 
laboratory regarding the identification of anaerobic bacteria, a “ring test” was  organized. 
Characterized strains were sent out blindly to each laboratory, and identification scores 
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were collected and discussed at closed meetings of the group. The results of this quality 
control assessment of anaerobic species identification by the MS‐based method will be 
published at the end of the project.

So far more than 600 strains have been collected and characterized. Among these 
strains are species regularly encountered in clinical specimens and which were 
 underrepresented in the MALDI Biotyper database, and newly described species, 
whose clinical relevance is not established yet. The addition of reference spectra of hith-
erto undescribed species will assist in clarifying their clinical relevance. Furthermore, 
species that are phenotypically difficult to identify can be reliably identified with the use 
of MS, and their clinical relevance can be assessed.

5.7 Subspecies‐Level Typing of Anaerobic Bacteria 
Based on Differences in Mass Spectra

At present, there are only a few clinical situations where typing of anaerobic bacteria is 
needed for epidemiological or other reasons. Clostridium difficile causes severe diar-
rhoea in hospital settings or in the community and is one of those species where typing 
may be important to follow the spread of virulent, antibiotic‐resistant subtypes. Among 
the many different typing methods, PCR ribotyping is accepted worldwide for Clostridium 
difficile. This method is time consuming, expensive and generally  performed in special-
ized reference laboratories. With the availability of MS, possible use of protein‐profile‐
based typing for Clostridium difficile was tested. Using a standard collection of isolates 
belonging to 25 different Clostridium difficile PCR ribotypes, a database was constructed 
and recorded in the SARAMIS software (Reil et al., 2011). The database was validated 
with 355 Clostridium difficile clinical isolates belonging to 29 different PCR ribotypes. In 
this study, the most frequent ribotypes were type 001 (70%), 027 (4.8%) and 078/126 
(4.7%). The Shimadzu MALDI‐TOF MS system with the specially developed SARAMIS 
database could differentiate all three frequent ribotypes and allowed a very rapid, effec-
tive discrimination of these strains from the others. As this is the only report using 
MALDI‐TOF typing for this purpose, it is still unclear if MS‐based typing will have wide 
application and give results comparable with PCR ribotyping for Clostridium difficile.

Using various molecular typing methods, such as arbitrary primed PCR, ribotyping, 
multilocus enzyme electrophoresis and sequencing of the recA and glnA genes, it was 
clearly demonstrated that Bacteroides fragilis can be divided into Division I and Division II 
(Gutacker et al., 2000). It has been shown that Bacteroides fragilis strains, which har-
bour the cfiA gene (responsible for carbapenemase production), belong to Division II, 
whereas those which do not have the cfiA gene form Division I (Nagy et al., 2011b; Wybo 
et al., 2011). Rapid selection of isolates harbouring the cfiA gene may cause the ineffec-
tiveness of carbapenem treatment of such infection. Two studies using MALDI‐TOF 
MS identification for anaerobic bacteria revealed that the Bacteroides fragilis strains 
belonging to Divisions I and II can be differentiated more rapidly by MALDI‐TOF MS 
than by DNA‐based methods (Nagy et al., 2011b; Wybo et al., 2011). The two studies 
followed different approaches. Nagy et al. (2011b) measured the MS of well‐defined 
cfiA‐positive and cfiA‐negative Bacteroides fragilis strains and evaluated them using 
ClinProTools 2.2 software (Bruker Daltonik). The software searched for group‐specific 
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peaks and peak shifts. It was found that MS peaks (4826, 9375, 9649 m/z) are 
 characteristic of Division II isolates, and the software also searched for these peaks in a 
randomly selected group of Bacteroides fragilis strains identified earlier by MALDI‐
TOF MS with a high log score (>2.000). Nine of 38 Bacteroides fragilis strains were 
found to belong to Division II, and the presence of the cfiA gene was confirmed by 
 specific PCR (Nagy et al., 2011b). This approach was used during a six‐month period in 
a Hungarian  clinical microbiology laboratory when routine identification of Bacteroides 
isolates was done by MALDI‐TOF MS. Out of 60 Bacteroides fragilis strains, five (8.3%) 
belonged to Division II. This corresponds to or is slightly higher than the prevalence of 
these strains (5.7%) observed previously in this country (Fenyvesi et al., 2014). Wybo 
et al. applied a different method at the same time. The composite correlation index tool 
of the MALDI Biotyper and a dendogram calculated of all tested Bacteroides fragilis 
isolates (248) clearly separated those which harboured the cfiA gene. The dendogram 
created by MALDI‐TOF spectra analysis also grouped together the carbapenem‐resist-
ant Bacteroides fragilis strains in another study (Trevino et  al., 2012). Using this 
approach, it was possible to report carbapenemase‐positive Bacteroides fragilis isolates 
directly identified from positive blood cultures using the MALDI Biotyper OC software 
and a dedicated library of cfiA‐negative and cfiA‐positive main spectral profile (MSP) 
(Johannson et al., 2014a). Getting the cfiA‐positive MSP as the first best match and with 
a log score difference of >0.3 to the second best match was sufficient to consider the 
isolate cfiA‐positive. Detection of the cfiA gene by PCR confirmed this approach.

5.8 Impact of MALDI‐TOF MS on Subspecies Classification 
of Propionibacterium acnes: Insights into Protein 
Expression using ESI‐MS‐MS

Propionibacterium acnes is another anaerobic species where typing was explored to 
distinguish isolates belonging to the normal skin flora from those involved in superficial 
infection (acne) or deep infections (e.g. prosthetic joint infections, endocarditis or 
osteomyelitis). Propionibacterium acnes can be differentiated into a number of distinct 
phylotypes by MLST or other typing methods, which are known as types IA1, IA2, IB, 
IC, II and III (McDowell et al., 2012). It has been shown that there are some associations 
of these Propionibacterium acnes phylotypes with certain pathological conditions. In a 
recent study (Nagy et al., 2013), MS‐based typing was tested for the resolution of these 
genetic subgroups of Propionibacterium acnes after routine identification by MALDI 
Biotyper. The ClinProTools 2.2 and the FlexAnalysis 3.3 software (Bruker) were used to 
analyze the mass spectra of reference strains belonging to types IA, IB, IC, II and III. 
Peak variations were identified visually and also by FlexAnalysis 3.3 software. A differ-
entiating library was created and used to type clinical isolates of Propionibacterium 
acnes. The MALDI‐TOF MS typing results were comparable with those obtained 
blindly by MLST for the clinical isolates; however, the MS‐based typing could not 
 differentiate subtypes in the IA phylogroup (Nagy et al., 2013). Consequent usage of 
this typing method directly after the MALDI‐TOF MS identification may help to find 
further correlation between the main types of Propionibacterium acnes and their 
involvement in specific infection processes.
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In a separate series of studies by Dekio et al. (2012, 2013, 2015), various forms of 
mass spectrometry (MALDI and SELDI‐TOF MS and electrospray ionization tandem 
mass spectrometry) were used to study the relative pathogenic potential and distribu-
tion of the three main phylotypes of Propionibacterium acnes. A total of 75 clinical 
isolates from human skin, blood product contaminants and eye infections, along 
with  several Culture Collection strains of Propionibacterium acnes and other 
Propionibacterium species, were studied. Plate‐cultured cells were lysed and the 
 cellular proteins analyzed using a Bruker MALDI‐TOF MS and a Ciphergen SELDI‐
TOF MS instrument as described previously (Lancashire et  al., 2005; Shah et  al., 
2005). The latter extended the mass range of the ions more than twofold. Both 
MALDI‐ and SELDI‐TOF MS readily differentiated strains into two distinct mass 
spectral  subgroups (Figure 5.1). Whole genome sequencing was then used to under-
take comparative in silico DNA/DNA hybridization (DDH) based on BLAST analysis 
as described by Dekio et al. (2015). The results showed good congruence between MS 
types and DDH values. Thus, between 91% and 100% were found among genomes of 
type I strains and 96% among type II strains. However, values between type I and type 
II were between 74% and 78.5%, whereas those between types I/II and type III were 
between 72% and73%, suggesting that type III strains were more distantly related. 
These results are in agreement with an acceptable sequence homology to retain them 
into a single species, but delineate isolates into two subspecies. Extensive electron 
microscopy (Figure 5.2), biochemical tests and in‐depth proteome analysis were used 
to characterize strains belonging to these phylotypes, and two centres of variation 
were clearly evident, for which two new subspecies were proposed. Type I and type II, 
which included the original type strain, were assigned to Propionibacterium acnes 
subspecies acnes, whereas type III strains, which were characterized by more elon-
gated cells, were assigned to Propionibacterium acnes subspecies elongatum (Dekio 
et al., 2015).

Representative strains that exhibited growth under aerobic, microaerophilic and 
anaerobic atmospheres were cultured under these growth conditions, and their cellular 
proteins were subjected to SDS‐PAGE analysis. Figure  5.3 shows an area of the gel 
where there were striking differences in protein expression for one strain (type IB, strain 
K115) which had the capacity to grow in air, microaerophically and anaerobically. These 
areas were excised, fractions digested with trypsin and analyzed by electrospray ioniza-
tion tandem MS using a Thermo Fisher LTQ Orbitrap. Type I strains overexpressed the 
virulence CAMP factor when cultured anaerobically/microaerophically, whereas the 
enzyme methyl malonyl CoA mutase was also shown to be upregulated. The former 
may have a direct impact on hair follicle plugging and consequently inflammatory acne. 
By contrast, when grown under aerobic conditions, no such overexpression was 
observed. The major end product of the metabolism of Propionibacterium acnes is 
 propionic acid (which therefore gives the genus its name) and is produced during nor-
mal growth under anaerobic conditions. The overexpression of enzymes involved in 
metabolism such as methylmalonyl‐CoA mutase must confer an ecological advantage 
for type I strains. This is an adenosyl‐cobalamin‐dependent enzyme that catalyzes 
the structural rearrangement of succinyl‐CoA into methylmalonyl‐CoA as part of the 
 propionic acid fermentation pathway in Propionibacterium species. It is essential for 
growth and energy conservation of this species in anaerobic environments and must 
confer a selective advantage over competing isolates.
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Figure 5.1 (Left): Partial MALDI‐TOF MS profiles of anaerobic culture cell extracts of P. acnes types and other species. Types I and II 
share more common mass ions compared to type III. (Right): SELDI profiles of aerobic and anaerobic cultured cell extracts P. acnes 
types covering a mass range between 5 kDa to 30 kDa,
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Figure 5.2 Cell morphologies of three types revealed by electron microscopy. A: Type IB (strain K115), 
B: Type II (strain B23), C: Type III (strain B12) showing an elongated cell structure (0.4–0.7 µm and up to 
15 µm long).

Figure 5.3 1D SDS‐PAGE gel analysis of type IB (strain K115). The anaerobic and microaerophilic culture 
lysates showed dense bands at 12–15 kDa (1 and 3) compared with same section of aerobic lysate 
band (2). These were excised, trypsin‐digested and analyzed using ESI‐MS/MS (see text for details).
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5.9 Direct Identification of Anaerobic Bacteria 
from Positive Blood Cultures

Direct identification of bacteria (including anaerobes) and fungi from positive blood 
cultures by MALDI‐TOF MS (La Scola and Raoult, 2009; Moussaoui et al., 2010; Meex 
et al., 2012; Leli et al., 2013) using different sample preparation methods, such as the 
Sepsityper kit (Bruker) or in‐house methods, is a new approach. So far, only a few cases 
have been described where anaerobic bacteria could be identified directly from positive 
anaerobic blood cultures. Using an in‐house sample preparation method, Leli et  al. 
(2013) reported the species‐level identification of 85.5% of gram‐positive and 96.9% of 
gram‐negative isolates directly from positive blood cultures, and all seven anaerobic 
species (three Bacteroides fragilis, one Bacteroides thetaiotaomicron, one Clostridium 
paraputrificum, one Parvimonas micra and one Actinomyces odontolyticus) were 
 correctly identified if >1.7 log score was accepted as a cut‐off for species‐level identifi-
cation. In another study, 91% of gram‐negative and 89% of gram‐positive bacteria in 
positive blood cultures were correctly identified to the species level, including 5 of 13 
anaerobic isolates (all Bacteroides fragilis) (Moussaoui et  al., 2010). However, one 
Bacteroides fragilis, one Bacteroides ovatus, four Propionibacterium acnes and two 
Clostridium spp. could not be identified even at the genus level.

Applying artificial spiking of anaerobic blood culture bottles by different Bacteroides 
fragilis isolates, species‐level identification and detection of isolates belonging to 
Division II were achieved with high log scores in all cases after positive signal, using an 
in‐house sample preparation (Johannson et al., 2014b). Further studies are needed to 
establish the applicability of this method for rapid identification on a wide range of 
 different anaerobic species obtained directly from positive blood cultures or from the 
culture of any other originally sterile body site. Another possible approach is the 
 subculturing of the positive blood cultures on solid media for 5 h and performing 
MALDI‐TOF MS identification immediately when colonies appear on the surface of 
the media (Verroken et al., 2014). Using this technique, only 1 Actinomyces sp. and a 
Clostridium perfringens were identified from the 10 different anaerobes involved 
(Verroken et  al., 2014). As anaerobic bacteria grow rather slowly even under strict 
anaerobic conditions, the 5 h incubation time to obtain colonies from the positive 
blood cultures may not be sufficient.
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6.1 Introduction

The introduction of matrix‐assisted laser desorption ionization time‐of‐flight mass 
spectrometry (MALDI‐TOF MS) into the clinical microbiology laboratory has resulted 
in a major change in the way microorganisms are identified. Since the time of Robert 
Koch, microbiologists have relied on detecting the metabolic capabilities of microbes 
for classification and identification. Methods to detect fermentation, oxidation, and 
other forms of metabolism dominated the diagnostic laboratory for over a century. 
These methods survived with only minor modifications because they were practical, 
relatively inexpensive, and could be partially automated, simplifying the process of rou-
tine identification in ever‐shrinking clinical laboratories. Molecular biology techniques 
such as nucleic acid probes, PCR, and DNA sequencing have found niche roles in the 
microbiology laboratory, but have generally not replaced traditional culture and bio-
chemical identification. Cost is a major factor, but breadth of coverage is also a major 
limitation. Of the routinely available DNA‐ or RNA‐based methods, only DNA sequenc-
ing of universal targets, such as ribosomal RNA genes, can match the extremely broad 
capabilities of biochemical identification. Unfortunately, this approach is too costly for 
routine identification of typical bacteria and suffers from the nature of its breadth in 
that it is difficult to apply efficiently to samples containing mixed populations of micro-
organisms. MALDI‐TOF MS is a molecular biology method that rivals biochemical 
identification of microbes in not only its breadth of coverage (nearly 2300 species in the 
Bruker Biotyper 5627 spectrum database), but also in its speed and relative cost. Most 
biochemical systems require multiple panels, the choice of which is determined by at 
least basic knowledge of the growth and Gram stain characteristics of the microorgan-
ism, to cover the full range of organisms within its capabilities. Because metabolic reac-
tions are the basis of identification in these systems, an incubation period of several 
hours to overnight is generally required. The most rapid tests, designed to detect pre-
formed enzymes, can reduce that delay to a few hours. In contrast, MALDI‐TOF MS 
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can be applied regardless of the prior knowledge of the phenotypic characteristics of 
most bacteria routinely encountered in the clinical microbiology laboratory. Further, 
once organisms are isolated on culture media, identification can be achieved in min-
utes. The application of this technology to the analysis of positive blood cultures and 
even direct specimens is poised to transform the microbiology laboratory from a 
service that is perceived to provide important, but often supportive data (e.g., after 
clinical decisions have been made), to an active participant in the early diagnostic 
process [1,2].

The capability of MALDI‐TOF MS to identify an extremely broad range of micro-
organisms has been shown in many publications in recent years [3–9]. However, 
 several have pointed out limitations in the commercial systems’ abilities to resolve 
certain closely related organisms, including numerous significant pathogens such as 
Streptococcus mitis and S. pneumoniae, Yersinia pseudotuberculosis and Y. pestis, the 
Mycobacterium tuberculosis complex, and Escherichia coli and Shigella spp. [3–7,10–12]. 
It is not surprising, nor unexpected, that a single method with such broad identifica-
tion capabilities could suffer from lack of resolution at the fine level of detail needed 
to distinguish closely related organisms. In fact, some error must be tolerated in 
the identification algorithms in order to allow for natural variation within bacterial 
species and in data acquisition [13,14]. Neither biochemical identification methods, 
nor the arguable gold standard for microbial identification, rRNA gene sequencing, 
are immune to such difficulties. Interestingly, there is a significant degree of overlap 
between organisms that challenge the resolution of these methods [3–7,10–12,15]. 
Because MALDI‐TOF MS is such a broadly applicable technology, and likely to 
become an integral part of routine clinical microbiology, it seems important to pur-
sue its limits in addressing these difficult challenges. To that end, in this study, a 
solution to the apparent inability of MALDI‐TOF to distinguish between E. coli and 
Shigella spp. was sought.

Numerous investigators using a variety of methods, such as DNA–DNA hybridiza-
tion, multilocus enzyme electrophoresis, and both housekeeping gene and whole 
genome comparative analyses, have indicated that Shigella spp. and E. coli are likely the 
same species [16–19]. E. coli is thought to have diverged from other bacteria roughly 
8–22 million years ago, yet Shigella spp. and a very similar E. coli pathovar, enteroinva-
sive E. coli (EIEC), appear to have diverged from the parent E. coli several times within 
the last 300,000 years [20]. Although these organisms should be considered the same 
species, differences in pathology necessitate their distinction. Shigella spp. are highly 
infectious, with an infectious dose of roughly 10 bacteria, and there are approximately 
80–165 million cases and 600,000 deaths per year worldwide from Shigella infection 
[21]. Biochemical methods are usually capable of distinguishing typical E. coli isolates 
from Shigella spp., which is a major reason they have traditionally been considered 
 different species. However, atypical E. coli isolates, such as metabolically “inactive” 
strains, and even the approximately 5% of isolates that do not ferment lactose, are much 
more challenging for clinical laboratories to correctly distinguish from Shigella spp. As 
current routine MALDI‐TOF MS identification systems, and even the gold‐standard 
method of bacterial identification, 16S rRNA gene sequencing, fail to reliably differenti-
ate even the typical isolates of these organisms (Figure 6.1) [5,10,15], a rapid, inexpen-
sive MALDI‐TOF MS method that would fit into routine workflow would be very 
beneficial to the clinical microbiology laboratory.
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6.2 Experimental Methods

6.2.1 Strains and Traditional Identification

A total of 138 isolates (72 E. coli, 66 Shigella spp.) were evaluated, including 127 clinical 
isolates from 17 US states submitted to ARUP Laboratories (Salt Lake City, UT, USA) 
between 2006 and 2012 for reference identification. Strains were isolated from a variety 
of clinical specimens and body sites such as stool, urine, genital, wound, tissue, respira-
tory, and blood. The remaining 11 isolates were composed of 5 ATCC reference strains: 
E. coli (25922), S. sonnei (25931), S. flexneri (12022), S. boydii (8700), and S. boydii 
(BAA‐1247); 2 S. dysenteriae and 2 S. boydii isolates submitted to the Utah Department 
of Health (gifts from Chad Campbell); and 2 related S. dysenteriae isolates, CVD1254 
and CVD1255 lacking the stxAB and guaBA, stxAB, and sen genes, respectively (gifts 
from Dr. Eileen Barry, University of Maryland) [22]. In all, there were 31 typical and 41 
inactive E. coli, 35 S. sonnei, 23 S. flexneri, 4 S. boydii, and 4 S. dysenteriae. Isolates were 
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Figure 6.1 Representative MALDI Biotyper analysis of a S. sonnei isolate. The database lacks Shigella 
spp. reference spectra, and highly reliable species‐level matches occur for E. coli.
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identified by traditional and automated biochemicals and/or serogrouping according to 
standard clinical microbiology procedures [23]. Isolates with discrepant identifications 
were further analyzed by PCR for the ipaH and lacY genes [24,25]. “Inactive” E. coli 
were defined as E. coli isolates that lacked two or more of gas production from glucose, 
motility, or lactose fermentation [23]. Unless otherwise indicated, isolates were grown 
for 18 to 24 h at 35 °C on Columbia sheep blood agar (SBA) for biochemical and pheno-
typic testing and on MacConkey agar for MALDI‐TOF MS (Hardy Diagnostics, Santa 
Maria, CA, USA).

Inactive E. coli and Shigella spp. were serogrouped using antisera specific for groups 
A‐D (BD Diagnostics) according to manufacturer’s recommendations. Briefly, bacteria 
were harvested from SBA plates and used to make a dense suspension in 0.85% saline. 
Bacterial suspensions were mixed 1:1 with each of the anti‐A, ‐B, ‐C, and -D reagents 
(corresponding to S. dysenteriae, S. flexneri, S. boydii, and S. sonnei, respectively), 
rocked gently for 1 min, and observed for 3‐4+ agglutination, indicating a positive reac-
tion. Isolates that displayed biochemical or phenotypic characteristics consistent with 
Shigella but failed to agglutinate strongly in antisera were reanalyzed after boiling the 
suspension for 60 min to remove envelope antigens, which may block specific antibody 
binding. Boiled suspensions were centrifuged (1000 rpm, 15 min), the supernatant dis-
carded, and the pellet resuspended again in saline prior to reanalysis.

Routine phenotypic and biochemical methods were used to identify isolates according 
to standard clinical microbiology procedures [23]. Automated (Phoenix NID panel, BD 
Diagnostics, Sparks, MD, USA) and/or traditional biochemical analyses using lysine‐iron 
agar (LIA), motility‐indole‐ornithine (MIO), triple sugar iron (TSI), and MacConkey agars 
(Hardy Diagnostics) were interpreted according to manufacturer’s recommendations.

6.2.2 PCR Identification

Real‐time PCR assays targeting the ipaH (invasion plasmid antigen H) and lacY  
(β‐galactoside permease) genes were developed to distinguish E. coli from Shigella species 
as previously described [24,25]. DNA was extracted from pure cultures (MagaZorb 
DNA Mini‐Prep, Promega, Madison, WI) and quantified by spectrophotometry. 
Quantitative PCR (qPCR) was performed using appropriate positive and negative con-
trols as described below on the SmartCycler real‐time PCR instrument (Cepheid, 
Sunnyvale, CA) using the dsDNA binding dye LCGreen Plus + (BioFire Diagnostics, Salt 
Lake City, UT).

The ipaH gene qPCR reactions (25 µl) contained 1X Colorless GoTaq Flexi 
DNA  Polymerase (Promega), 3 mM of MgCl2, 0.3 mM dNTP Blend (Promega), 
0.5 μM  each  of forward (5′‐TCGATAATGATACCGGCGCTC‐3′) and reverse (5′‐
CTGCGAGCATGGTCTGGAA‐3′) primer, 0.5X LCGreen Plus+, and 100 ng genomic 
DNA. PCR cycling conditions consisted of an initial melt at 95 °C for 2 min, then 
30 cycles of 95 °C for 20 s, 55 °C for 30 s, and 72 °C for 20 s, with a terminal extension of 
72 °C for 5 min and a final melt curve to confirm the 147 bp lacY PCR product. Positive 
(S. flexneri) and negative (E. coli) control genomic DNA samples were analyzed on 
every run. An isolate was called positive for the lacY gene when the crossing thresh-
old (Ct) value was within ±3.3 cycles (10‐fold concentration) of the positive control 
and had a characteristic melt peak at 83.5 °C, and negative when the Ct value was less 
than 9.97 cycles (0.001‐fold concentration) of the positive control.
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The lacY gene qPCR reaction and data interpretation conditions were identical to the 
ipaH PCR except for the use of 20 ng genomic DNA and 58 °C annealing temperature to 
generate a 102 bp amplicon using the forward 5′‐CTGCTTCTTTAAGCAACTGGCGA‐3′ 
and reverse primer 5′‐ACCAGACCCAGCACCAGATAAG‐3′. Positive (E. coli) and 
negative (S. sonnei) control genomic DNA samples were analyzed on every run.

6.2.3 MALDI‐TOF MS Identification

Standard extractions were performed on isolates from MacConkey agar as previously 
described [5,26]. Briefly, 5–10 mg of bacteria were washed and inactivated by resuspen-
sion in 300 µl dH2O, then mixed by inversion with 900 µl absolute ethanol. Bacteria were 
harvested by centrifugation (16000 × g, 2 min), and any residual ethanol was removed by 
aspiration following a subsequent centrifugation (16000 × g, 2 min). Cells were resus-
pended in 70% formic acid (50 µl), vortexed for 1 min, and mixed with an equal volume 
of pure acetonitrile. The bacterial extract was transferred to a fresh tube following a 
final centrifugation (16000 × g, 2 min). Triplicate 1 µl aliquots were allowed to air‐dry on 
polished steel targets and were overlaid with 1 µl matrix (saturated alpha‐cyano‐4‐
hydroxycinnamic acid in 50% acetonitrile–2.5% trifluoroacetic acid) that was allowed to 
air‐dry prior to analysis.

Mass spectra were acquired on a microflex LRF instrument (Bruker Daltonics, 
Billerica, MA) between 2000 and 20000 m/z in linear positive ionization mode. Standard 
MALDI Biotyper (Bruker Daltonics) automated acquisition settings were used except 
that each spectrum was a sum of 500 shots collected at intervals of 100. Isolates with 
low‐quality spectra, defined as failure to be identified as E. coli with a Biotyper score of 
≤1.9, were reanalyzed using manual data acquisition. Isolates whose spectra failed 
recalibration in ClinProTools 2.2 (Bruker Daltonics) as described below were regrown, 
reextracted, and spectra re‐collected as described above.

Models based on statistical analysis of peaks found in each group of organisms (e.g., 
classes) were developed using three distinct approaches with the goal of identifying reli-
able organism classifiers. In each approach, spectra from subsets of the organisms, or 
model generation cohorts, were used to identify peaks that could distinguish between 
classes of isolates (e.g., species). Following model generation, known test cohort spectra 
were identified, or “classified,” by the model to evaluate its performance. ClinProTools 
was used in model development, and in two approaches, for final isolate classification. 
The classification in ClinProTools involved two steps: the first was used to differentiate 
between only two classes (Shigella spp. and E. coli, or “genus‐level” distinction); the 
second step was used to differentiate all five classes of organisms (S. sonnei, S. flexneri, 
S. boydii, S. dysenteriae, and E. coli, or species‐level distinction). If the classification 
results from the two‐class and five‐class models were concordant (e.g., if both models 
agreed at the genus level), then the species‐level identification was accepted. Inconsistent 
results, or those which disagreed at the genus level, were flagged for additional analysis. 
In a typical laboratory, this would lead to supplemental testing by biochemical 
approaches and/or serotyping. MALDI‐TOF MS accuracy was determined by agree-
ment with the reference identification, which was derived from serotyping, biochemical 
methods, and/or PCR, as described above.

To generate the semiautomated models, potentially distinguishing peaks were identi-
fied from ClinProTools’ Peak Statistic Tables, which were calculated after comparison 
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of each class of organisms. FlexAnalysis (Bruker Daltonics) was used to confirm, by 
visual inspection, that peaks were real and reliably present in at least one class. Each 
spectrum was processed in FlexAnalysis for baseline subtraction, smoothing, and cal-
culation of mass lists using default parameters. The frequencies at which potential bio-
marker peaks were present within isolates of a given class were calculated using custom 
MATLAB code (Mathworks, Natick, MA; code available upon request). Biomarker 
peak frequencies were assembled into “reference peak profiles,” which were compared 
to mass lists from each test isolate. Pearson’s correlation coefficients were calculated for 
each reference peak profile, and the profile with the highest score was deemed the iden-
tification of the test isolate.

Classification models generated by the automated approach relied on ClinProTools 
for both data preparation and model generation, as well as the final spectrum classifi-
cation step. Spectra were prepared for analysis and model generation in ClinProTools 
using the following parameters: baseline subtraction using top hat with minimal base-
line width of 10%, normalization using total ion current, recalibration (maximal peak 
shift = 1,000 ppm, 30% match to calibrant peaks, spectra unable to be recalibrated were 
excluded), average spectrum calculation using a resolution of 800, average peak list 
calculation using a signal‐to‐noise threshold of 5, individual spectrum peak calcula-
tion, and peak list normalization. Multiple model generation algorithms (genetic algo-
rithm, supervised neural network, quick classifier) were initially evaluated using 
default settings. The genetic algorithm [27] was chosen for routine analysis and was 
used with the following settings: up to 15 peaks acceptable, initial number of peak 
combinations automatically detected, up to 50 generations of evolution, 0.5 crossover 
rate, 0.2 mutation rate, 3 neighbors, and no varying random seed. As part of the model 
generation process, ClinProTools calculates two statistics, Cross Validation and 
Recognition Capability, for each model. Cross Validation is calculated by randomly 
dividing the input spectra into a model subset and a test subset. A model is generated 
and used to classify spectra in the test subset. This process is iterated, and the results 
are used to calculate a normalized Cross Validation score, or the average percentage of 
correct identifications across these iterations [28]. This statistic describes the model’s 
reliability and may be used to predict its future performance. Recognition Capability 
describes the model’s ability to correctly identify the individual spectra used to build 
the final model. It is defined as the number of spectra classified correctly by the model 
itself, divided by the total number of spectra used in model generation, or the percent-
age of spectra that were correctly classified by the model. The choice of which model 
generation algorithm to use was based on maximizing both of these scores. Unknown 
or test spectra were identified using the ClinProTools Classify function, and at least 
two of the three replicate spectra per isolate were required to agree in order to accept 
an identification.

A hybrid approach was developed by using the same data preparation and model 
generation settings as the automated approach, except that selected peaks from the 
semiautomated approach were included using the ClinProTools Force Peak option. 
Peaks were selected for the hybrid model if they increased the Cross Validation and 
Recognition Capability scores relative to the automated model.

To evaluate statistical significance, the Fisher’s exact test was used to assess interac-
tion of categorical variables using the statistical computing software R (v.2.15.0; http://
www.R‐project.org). P values < 0.05 were considered statistically significant.

http://www.R-project.org
http://www.R-project.org
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6.3 Results

Preliminary manual analyses using FlexAnalysis software comparing extracts of 
S.  flexneri and typical E. coli indicated that slightly different mass profiles could be 
observed under routine MALDI‐TOF MS conditions. These differences were more 
pronounced when strains were grown on MacConkey agar compared to Columbia 
sheep blood or Hektoen Enteric agars. Because MacConkey agar is routinely used in the 
clinical laboratory, it was determined that an assay based on growth from this media 
would fit well in a normal laboratory workflow, and this approach was used for the 
remainder of the study.

6.3.1 Semiautomated Models

The semiautomated approach relied on an initial statistical analysis of the presence, 
absence, and intensity of peaks found in each organism category. Significant manual 
review was necessary to validate that peaks were of sufficient intensity and frequency 
of occurrence to be reliable in a classification model. An early semiautomated model 
based on four organism classes (typical E. coli, inactive E. coli, S. flexneri, and S. sonnei) 
revealed 13 peaks that were reasonably distinguishing (Table  6.1). Application of 
Pearson’s correlation analysis to each test isolate resulted in scores that could be used 
for identification. This early model performed well in identifying S. sonnei and  
S. flexneri (95% accuracy), but was unable to reproducibly identify E. coli correctly (44% 
accuracy). Figure 6.2 shows that isolates generally showed the highest correlation coef-
ficient with their cognate model; however, inactive E. coli showed significant overlap 
with all four models, and 14% of typical E. coli isolates were misidentified as S. sonnei. 
Further development of this model by consolidation of all E. coli isolates into a single 
class, addition of S. dysenteriae and S. sonnei (four each), and refinement of distin-
guishing peaks (added 7288 and 7302 m/z and removed peak 2874 m/z to give 14 final 
peaks) failed to significantly improve its performance: 94% (31 of 33) of Shigella but 
only 56% (20 of 36) of E. coli test cohort isolates were correctly identified by this five‐
class semiautomated model.

6.3.2 Automated Models

Because the semiautomated models were unable to reliably identify E. coli, ClinProTools 
was used to generate models in an automated fashion using the genetic algorithm [27]. 
This approach differed from the semiautomated approach in that peaks were evaluated 
for the ability to distinguish classes based on relative intensity in addition to presence or 
absence. As a result, a different, but partially overlapping, set of peaks was identified to 
distinguish among two (genus‐level model: E. coli vs. Shigella spp.) or five classes of 
organisms (species‐level model) (Table  6.2). Although, as with the semiautomated 
models, the chosen peaks were not absolutely conserved across classes (Figure 6.3), this 
approach clearly outperformed the semiautomated models overall, correctly identi-
fying 64 of 69 isolates (94%, including 100% of Shigella spp. and 89% of E. coli) at the 
genus level, and 63 of 69 (91%, including 85% of Shigella spp. and 97% of E. coli) at 
the species level. Several isolates were correctly identified by one model (e.g., genus or 
 species level), but not the other. To handle these discrepancies, a two‐step algorithm 
was implemented that required agreement across both the two‐way (genus) and five‐way 
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Table 6.1 Semiautomated model peak frequency profiles across four organism classes.

Marker peaks (m/z) S. flexneri S. sonnei Typical E. coli Inactive E. coli

2400 0.0 0.0 75.0 16.7
2874 0.0 65.9 61.1 29.5
3791 0.0 0.0 83.3 17.9
4162 98.0 83.0 0.0 0.0
4855 0.0 0.0 86.1 91.0
4869 94.1 72.7 0.0 1.3
5096 17.6 100 100 100
5752 5.9 89.8 81.9 62.8
8323 98.0 93.2 5.6 3.8
8457 96.1 5.7 1.4 2.6
9711 0.0 0.0 91.7 88.5
9736 90.2 79.5 13.9 9.0

10458 70.6 3.4 1.4 32.1

Values indicate the percentage of spectra containing the indicated peak.
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Figure 6.2 Pearson’s correlation coefficients for isolates tested by the four‐class semiautomated 
model (Table 6.1). Three‐dimensional plot showing the degree of correlation between each isolate 
and the four‐peak frequency profiles (Table 6.1): S. flexneri (Sf ), S. sonnei (Ss), typical E. coli (Ec), and 
inactive E. coli (iEc). A score of +1 indicates a direct correlation and −1 indicates a perfect inverse 
correlation.
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(species) models to secure an identification. Disagreement between models resulted in 
an inconclusive result that would flag the isolate for further testing, such as serogroup-
ing or PCR. Using this two‐step algorithm, the automated model was able to correctly 
identify 86% of the 69 test isolates, including 85% of Shigella spp. and 86% of E. coli. 
Nine isolates showed discrepant results between genus‐ and species‐level models, 
including two S. sonnei and one S. boydii called E. coli by the species‐level model, but 
only a single isolate was misidentified after applying the algorithm. The lone misidenti-
fication was a S. flexneri isolate that was reported as S. boydii by the species‐level model.

6.3.3 Hybrid Models

Although the automated models together outperformed the semiautomated models, 
manual review of spectra suggested that some peaks identified in the semiautomated 
approach might improve the performance of the automated models. ClinProTools 
allows peaks to be manually selected for, or “forced into,” a model, and by forcing several 
peaks from the semiautomated approach along with peaks chosen in the automated 
approach, new hybrid models were generated. Three semiautomated model peaks were 
included in the species‐level and five in the genus‐level model (Table 6.2). Recognition 
Capability scores were nearly perfect for both sets of models (99.8%–100%). However, 
Cross Validation scores indicated that the hybrid genus‐level model was slightly better 
(99.8% vs. 99.4%), and the hybrid species‐level model was markedly better (97.2% vs. 

Table 6.2 Biomarker peaks (m/z) identified in the automated MALDI‐TOF MS approaches.

Automated Hybrid

Genus‐level 
model

Species‐level 
model

Genus‐level 
model

Species‐level 
model

2848
3577
3673
5120
5326
6507
6668
6825
6857
7157
8349
9223
9264
9448

11706

2701
3673
5096
5136
8324
8444
9533

10135
12222
13601
14725

2400 a

3577 b

3673 b

3792 a

4162 a

4856 a

5326 b

6507 b

6668 b

7157 b

8349 b

9223 b

9448 b

9711 a

11731

2400 a

3578 b

3673 b

5096 a, b

5136 b

6668 b

8324 b

8444 b

8455 a

9533 b

10135 b

13601 b

a Peaks from the semiautomated approach selected for inclusion in ClinProTools models.
b Peaks from the automated approach selected for inclusion in ClinProTools models.
Adapted with permission from Khot, P. D. et al., J. Clin. Microbiol., 51, 3711–3716 (2013), 
doi:10.1128/JCM.01526‐13, Copyright © American Society for Microbiology.
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90.3%), than the corresponding automated models. The genus‐level model accurately 
identified 66 (96%) of the test isolates, whereas the species‐level model correctly identi-
fied 63 (91%). Using the two‐step algorithm requiring agreement between both models, 
90% of the 69 test isolates were correctly identified, including 91% of Shigella spp. and 
89% of E. coli (Table 6.3). Five isolates were reported as inconclusive, and two were misi-
dentified: a S. flexneri was reported as S. boydii, and a typical lactose‐fermenting E. coli 
was reported as S. sonnei (Table 6.4). In the latter case, this typical E. coli would gener-
ally not have resulted in an incorrect final report because, due to its lactose‐fermenting 
phenotype, it would not routinely be tested using this method. As with the automated 
models, the application of the two‐step algorithm reduced the total number of correct 
identifications relative to the species‐level model, albeit by a single isolate, but it also 
reduced the number of misidentifications from four to two (Table 6.4).

6.3.4 MALDI‐TOF MS versus Traditional Identification Methods

The success of the hybrid model indicated that this approach could be used routinely in 
the clinical laboratory. However, replacing traditional methods may be difficult to 
 justify because of their established position in recommendations and guidelines. To 
provide evidence to justify the use of this novel approach, the accuracy of identification 
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Figure 6.3 An example of peaks chosen by the ClinProTools automated model generation algorithm. 
Spectra are shown in a gel‐like view with E. coli spectra below and Shigella spp. spectra above the 
dotted line. Peak 8349 was chosen by the algorithm for the genus‐level model, 8324 for the species‐
level model, and 8366 was considered nondiscriminatory.



Differentiation of Closely Related Organisms using MALDI‐TOF MS 157

Table 6.3 Accuracy of the hybrid MALDI‐TOF MS assay, serogrouping, and automated biochemicals 
(Phoenix) relative to the reference identification for test isolates.

No. of isolates (%) identified correctly

Organism (no. tested)

MALDI‐TOF MS Result

Serotyping PhoenixGenus‐level model Species‐level model Final result a

S. sonnei (18) 18 (100) 17 (94) 17 (94) 13 (72) 16 (89)
S. flexneri (11) 11 (100) 10 (91) 10 (91) 11 (100) 8 (73)
S. boydii (2) 2 (100) 2 (100) 2 (100) 2 (100) 2 (100)
S. dysenteriae (2) 1 (50) 1 (50) 1 (50) 2 (100) 1 (50)
All Shigella spp. (33) b 32 (97) 30 (91) 30 (91) 28 (85) 27 (82)
E. coli, typical (16) 15 (94) 15 (94) 15 (94) — 16 (100)
E. coli, inactive (20) 19 (95) 18 (90) 17 (85) 15 (75) 16 (80)
All E. coli (36) c 34 (94) 33 (92) 32 (89) — 32 (89)

Total (69) 66 (96) 63 (91) 62 (90) 43 (81) d 59 (86)
a Final MALDI‐TOF identification was accepted when results from genus‐level and species‐level models 
were in agreement.
b All Shigella species combined.
c Typical and inactive E. coli combined.
d 53 isolates tested by serogrouping. Typical E. coli isolates were not tested.
Adapted with permission from Khot, P. D. et al., J. Clin. Microbiol., 51, 3711–3716 (2013), doi:10.1128/
JCM.01526‐13, Copyright © American Society for Microbiology.

Table 6.4 Discrepant results between reference identification and hybrid MALDI‐TOF MS results.

Isolate
Reference 
identification

ID based on MALDI PCR amplification

Genus‐level Species‐level Final lacY gene ipaH gene

22 a E. coli (inactive) E. coli S. sonnei Further workup Neg Neg
82 S. sonnei Shigella spp. E. coli Further workup Neg Pos

102 E. coli (typical) Shigella spp. S. sonnei S. sonnei Pos Neg
123 E. coli (inactive) Shigella spp. E. coli Further workup Pos Neg
124 E. coli (inactive) E. coli inconclusive Further workup Pos Neg
129 S. flexneri Shigella spp. S. boydii S. boydii Neg Pos
136 S. dysenteriae E. coli inconclusive Further workup Neg Pos

a Although the lacY gene for isolate #22 did not amplify, it was determined to be E. coli on the basis of ipaH 
gene PCR and biochemical tests.
Adapted with permission from Khot, P. D. et al., J. Clin. Microbiol., 51, 3711–3716, (2013), doi:10.1128/
JCM.01526‐13, Copyright © American Society for Microbiology.
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using the traditional approaches of automated biochemical and serogrouping were 
compared to that of the hybrid MALDI‐TOF MS model. Surprisingly, the hybrid model, 
with 90% overall accuracy, outperformed both traditional methods when directly com-
pared as stand‐alone tests (Table 6.3). The automated biochemical method (Phoenix) 
identified 86% of isolates correctly, whereas serogrouping accurately identified only 
81% of tested isolates. The latter comparison excluded typical E. coli because they are 
not routinely tested by serogrouping. In addition, because of the redundancy of the 
two‐step algorithm in the MALDI‐TOF MS approach, only two of the seven (28.6%) 
discrepant isolates were incorrectly reported, whereas both the Phoenix and serotyping 
incorrectly reported nine of ten (90%) discrepant isolates. The results of this direct 
comparison indicate that the advanced MALDI‐TOF MS approach described here may 
be able to replace traditional identification methods while maintaining patient care.

6.4 Discussion and Implications

Since the initial discovery of S. dysenteriae in the late 1800s, it has been considered 
important to distinguish Shigella spp. from the mostly commensal E. coli isolated from 
diarrheal stools [29,30]. Although genetically considered the same species [16–19]), 
typical isolates can usually be distinguished using traditional biochemical methods, 
including lactose fermentation, indole production, motility, lysine decarboxylase activ-
ity, and gas production from glucose. Unfortunately, atypical and “inactive” isolates are 
much less reliably differentiated using these and other biochemical tests [23]. 
Interestingly, previously published mass spectrometry studies described some level of 
resolution of E. coli and Shigella spp. [31–34]; however, the currently available commer-
cial MALDI‐TOF MS systems are unable to reliably differentiate these organisms 
(Figure 6.1) [5,10]. Taken together, this suggested that distinguishing E. coli and Shigella 
spp. might be feasible using MALDI‐TOF MS coupled with advanced data analysis 
methods.

ClinProTools is a software package for the visualization and statistical analysis of 
mass spectrometry data. This software allows users to view statistical parameters 
describing peaks found among “training sets,” or isolates of known identity chosen for 
model generation. This data, known as the Peak Statistic Table, allows for a hands‐on 
approach to biomarker discovery, as was used in our semiautomated model approach. 
ClinProTools also includes advanced algorithms for the generation of classification 
models. The goal of such “classifiers” is to allow an organism’s identity (at the genus, 
species, strain, or other classification level) to be predicted based on spectral patterns 
observed among training set isolates. The software allows the user to rapidly assess 
models generated by three different algorithms: the genetic algorithm, supervised neu-
ral network, and quick classifier. It is able to generate models in an automated manner 
with little user intervention, yet is flexible enough to allow the user to modify the algo-
rithm parameters, and even the peaks ultimately included in or excluded from the 
model. As part of the model generation process, Cross Validation and Recognition 
Capability statistics are calculated to help assess the likely performance of the models 
on unknown isolates. These statistics were used to determine that the genetic algorithm 
provided the most robust models, and that our hybrid model was superior to the auto-
mated model generated using default ClinProTools settings. Recent studies have also 
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used ClinProTools in the development of models to distinguish isolates at the strain 
level (Staphylococcus aureus) or closely related species (Streptococcus pneumoniae and 
S. mitis) [35,36]. In both of these studies, the genetic algorithm was either the optimal 
method, or performed as well as other methods in classifying these organisms. Neither 
of these studies required such complex models as described here. In fact, single models 
using only three peaks were successful in both cases, whereas our models required 12 to 
15 peaks and a two‐model interrogation algorithm to achieve optimal performance. 
This may very well be a testament to the high degree of spectral overlap between E. coli 
and Shigella spp., but may also be due to the fact that our models were designed to dis-
tinguish up to five classes of organisms (E. coli and four Shigella spp.).

Among the three sets of models described here, the semiautomated models were the 
least effective overall. However, they correctly identified most Shigella spp., indicating 
that MALDI‐TOF does have the discriminatory power to resolve these closely related 
organisms. It is interesting to note that a pair of discriminatory peaks identified using 
this approach (9710 and 9737 m/z) were shown using TagIdent (http://web.expasy.org/
tagident/) to match very well with the mature forms of the acid stress chaperone HdeA 
from E. coli and Shigella, respectively. These proteins differ by two amino acids (K92Q 
and S94N in E. coli vs. Shigella), which accounts for the observed mass difference of 
27 Da. Unfortunately, some strains of E. coli carry the 9737 m/z isoform of this protein, 
leading to somewhat reduced specificity of these markers (Figure 6.4). In fact, the semi-
automated models lacked specificity overall in that the majority of misidentifications 
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Figure 6.4 Peaks likely corresponding to amino acid changes in the acid resistance chaperone HdeA.
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(88%) were E. coli isolates reported as S. sonnei. Although it would seem preferable to 
overcall rather than miss Shigella spp., these models were insufficiently specific for rou-
tine clinical use, forcing the evaluation of more sophisticated modeling approaches.

The automated models showed significantly better performance in correctly identify-
ing E. coli compared to the semiautomated model. There was surprisingly little overlap 
between the models generated by these two approaches – only the 5096 and 8324 m/z 
peaks were shared. Interestingly, there were similarities among discriminatory peaks 
from other studies. Everley et al. found two peaks at 7287 ± 2 and 16886 ± 2 m/z that 
were present in S. flexneri but not S. sonnei or E. coli [33]. The first likely corresponds 
to the 7288 m/z peak in our semiautomated model, and the second may correspond to 
the 8444 m/z peak (as [M + 2H]2+ ions) in our automated species‐level model. The 
TagIdent tool suggested that the 7288 peak corresponds to the 50S ribosomal protein 
L29 of S. flexneri, which differs from the same proteins in E. coli and Shigella sonnei/
boydii by +15 Da (7273 Da) and in S. dysenteriae by −14 Da (7302 Da). The 7302 peak 
was also identified as discriminatory for S. dysenteriae in our semiautomated approach. 
In thesis work by van de Wiel et al., features corresponding to the 9736, 10458, and 
11706 m/z peaks in our models were described as being discriminatory [37]. Although 
these matching peaks substantiate our data, the lack of more corroborating peaks may 
indicate that standardizing MS‐based differentiation of these organisms across instru-
ments or platforms could be difficult. Consistent with this concern, subsequent attempts 
to analyze data acquired on different instruments have been met with limited success, 
likely due to multiple factors ranging from sample preparation to variations in instru-
ment performance.

Because of the limited overlap between our initial models, it seemed counterintui-
tive that forcing peaks from the semiautomated model could improve upon the auto-
mated models. However, the improvements in the Cross Validation and Recognition 
Capability scores between the automated and hybrid models were notable, especially 
for the species‐level model. As suggested in the ClinProTools documentation, these 
scores predicted the improved performance of the hybrid models and may generally 
serve as useful indicators of models’ potential for success relative to each other. The fact 
that manually selected peaks improved the automated models stressed the idea that 
visual and statistical analyses may complement each other, and one should not simply 
trust a model without a detailed review of the selected peaks. Although the hybrid 
model outperformed the automated model to a modest degree, the automated model 
still performed well – at a level equivalent to the FDA‐cleared Phoenix automated bio-
chemical system and the traditional gold‐standard method of serogrouping (Table 6.3).

Other analytical approaches have been used in an attempt to resolve E. coli and 
Shigella spp. In a study by van de Wiel et al., a more complex experimental and statisti-
cal approach using the elastic net modeling method was applied in order to improve the 
distinction of these species [37]. The authors considered a hierarchical analysis approach 
to be important in order to capitalize on the stepwise nature of bacterial evolution. This 
work provides an interesting alternative to the approaches used in the present study and 
further demonstrates that the current inability to distinguish between closely related 
organisms might be due more to insufficient data analysis than limitations in the 
technology.

Serogrouping by the agglutination of cells using antisera directed against the O‐antigen 
has long been used in the identification of Shigella spp., and is still recommended by most 
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authorities [23,38]. This method, although somewhat subjective in its interpretation – weak 
agglutination is considered negative and only strong agglutination should be used for posi-
tive identification – remains one of the few relatively reliable tests to distinguish atypical 
E. coli isolates from Shigella spp. It was somewhat unexpected that, although serogrouping 
performed reasonably well in identifying Shigella spp. overall (85% of 33 test isolates), it 
faltered with S. sonnei, failing to correctly identify 5 of the 18 isolates upon initial testing 
(Table 6.3). These were discovered only through PCR analyses and repeat serogrouping, 
which would not routinely be performed in most clinical laboratories, leaving some doubt 
as to the real‐world performance of serogrouping in the identification of Shigella spp.

Automated microbiology instruments are widely used in clinical laboratories because of 
their generally reliable identification and antimicrobial susceptibility testing (AST) capa-
bilities. The performance of the Phoenix system in this study was acceptable for the identi-
fication of E. coli (89% of 36 test isolates), but the system struggled with Shigella spp., with 
only 82% correctly identified (Table 6.3). Not surprisingly, the system also had difficulties 
with inactive E. coli, with only 16 of 20 (80%) isolates being correctly identified. These 
observations are not unprecedented, as the Phoenix and other automated systems have 
struggled to identify Shigella spp. and some E. coli isolates in other studies [39–42]. In one 
recent study, 4 of 23 Shigella spp. isolates were incorrectly identified as E. coli [39]. Among 
these, 75% were S. sonnei – by far the most commonly isolated Shigella species in the United 
States – which could have significant consequences not only in individual patients, but also 
in missed opportunities to limit the spread of these highly infectious organisms [21,43].

Among the primary limitations of this study was the small numbers of S. dysenteriae 
and S. boydii isolates, due to very low prevalence in the United States [43]. One approach 
to mitigating such a limitation would be to perform confirmatory testing on any isolate 
identified as either species by the models. Given the low frequency of isolation of these 
species, this approach would be required only rarely [43]. There may have also been 
limitations imposed by the modest numbers of other isolates. Because model genera-
tion was based on only half of the available isolates (to allow for an equally sized set of 
test isolates), the entire scope of diversity among our collection could not be encom-
passed. It is possible that a larger set of isolates could result in models with even better 
performance than those described here. One factor limiting the expansion of these 
models is the inability of ClinProTools to analyze spectra acquired at different digitizer 
sample rates. This could prevent the retrospective incorporation of data collected using 
different instrument settings over time into comprehensive, and potentially more accu-
rate, models. A minor limitation is the fact that this method relied on protein extracts 
from isolates grown on MacConkey agar as opposed to whole‐cell analysis of isolates 
harvested from SBA. Although the latter approach would certainly be more convenient, 
early investigations suggested this approach would produce less discriminatory models. 
Although the extraction method is simple and MacConkey agar is a routine laboratory 
medium, developing successful models from a more streamlined analytical process 
using a universal growth medium would be a substantial improvement over the current 
process. Other more complicated mass spectrometric methods utilizing liquid chroma-
tography or nanoparticle‐associated capture, digestion and subsequent MS/MS analysis 
have been shown to distinguish E. coli from some Shigella spp. [31,33], but the instru-
ments and processing methods employed in these studies are not routinely available in 
clinical microbiology laboratories. Such methods would require further validation and 
optimization to be made compatible with the typical microbiology laboratory workflow. 
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The methods described here demonstrate that a simple, routine sample preparation 
method combined with a standard linear MALDI‐TOF MS instrument generate data 
that, with advanced analytical tools, can address an important limitation in current 
commercial systems. Our models outperformed not only the Phoenix automated 
 biochemical instrument, but also serogrouping, the gold‐standard method. This 
approach could simplify the algorithm used by clinical laboratories for identification of 
Shigella spp., while reducing the response time for public health officials to intervene 
and control outbreaks.
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7.1 Introduction

Blood samples are among the most medically relevant patient specimens, and a positive 
bacterial culture derived from such a sample stimulates clinical interest. Antimicrobial 
treatment is imminent, and therapy is usually started by using empiric, broad‐spectrum 
antibiotics. In most cases, blood cultures are monomicrobial: only between 5% and 10% 
may contain a mixture of different species. The nature of such species may differ 
depending on underlying disease, prior antibiotic usage, local prevalence of the organ-
ism and the ratio in which the bacterial species were present in the original clinical 
specimen. Adequate diagnostics of mixed infection depends on classical microbiology 
because purification of the individual species is needed, and this is easily managed by 
looking at individual colonies on a solid growth medium. This process usually involves 
overnight incubation and is considered slow, delaying the moment at which more tai-
lored antibiotics can be prescribed to the patient.

In search of a faster diagnostic technology, matrix‐assisted laser desorption/ioniza-
tion‐time‐of‐flight mass spectrometry (MALDI‐TOF MS) was explored as an alterna-
tive to selective cultivation. This involved developing sample preparation protocols that 
are able to quickly and efficiently extract bacterial cells from positive blood cultures, 
hence avoiding growing the microorganisms on solid agar plates (Fothergill et al., 2013; 
Croxatto et al., 2014; Mestas et al., 2014). Although this approach has proved successful 
for the identification of monomicrobial cultures, commercially available systems failed 
to adequately detect mixtures of bacteria as such, and then also failed to identify two or 
more causative species (Chen et  al., 2013). Indeed, although studies were limited in 
specimen numbers, only a single species was identified in most cases (Kok et al., 2011; 
Buchan et al., 2012; Lagacé‐Wiens et al., 2012; Fothergill et al., 2013). One of the main 
issues with this type of mixed specimens is in the software components of MALDI‐TOF 
MS systems; these are unable to detect spectra that are built from a combination of 
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more than a single species fingerprint, and even if they do so correctly, then the 
 subsequent step, the splicing of the combined spectrum into the individual fingerprints, 
becomes a problem. Although mixed cultures can sometimes be identified, this usually 
involves lowering the confidence score required to make an identification. Besides, this 
requires the intervention of a human expert to interpret the results and decide between 
an actual mixture of spectra, or simply a limited degree of discrimination between the 
species proposed. Although this approach can, and does, work in some cases where 
the mixed species are present in equal cell densities, one wonders if it will work for 
unbalanced mixtures. Indeed, in this latter case, as will be shown later in Figure 7.1, the 
 spectral fingerprint of the minority species may only be partly revealed in the overall 
combined spectrum. Its score may therefore be significantly lower than that of the 
majority species, and probably also lower than that of its close relatives (e.g., other 
 species of the same genus). This calls for alternative, or at least complementary, 
 algorithms explicitly interpreting the MALDI‐TOF MS spectrum as a potential combi-
nation of microbial fingerprints, in order to deal with polymicrobial samples.

Up to now, no method has been described that automatically and adequately infers 
the composition of a polymicrobial sample after MALDI‐TOF MS, and in those few 
cases where software has been developed, their performance has not been studied in 
detail (Wahl et al., 2002; Schleif et al., 2011). In this chapter, we introduce a new method 
developed to infer the composition of polymicrobial samples on the basis of a single 
mass spectrum. Starting from a MALDI‐TOF mass spectrum preprocessed by the 
VITEK®MS system (bioMérieux, France), as is done for all culture‐based MS identifica-
tions, the method automatically predicts, within certain limitations, how many and 
which species are present in the sample, and provides an estimation of their relative 
concentrations. Our approach relies on a penalized nonnegative linear regression 
framework making use of species‐specific prototypes that can be derived directly from 
the routine reference database of single‐species spectra. Building upon our previous 
work in this area (Mahé et al., 2014), we present here further proof of concept toward 
the clinical application of this method to identify microbial cells extracted from positive 
blood cultures, and lay the groundwork for future developments.

7.2 A New Algorithm to Identify Mixed Species in a 
MALDI‐TOF Mass Spectrum

7.2.1 Mixed Spectrum Model

In the following sections, we consider a peak‐list representation of mass spectra in 
which a mass spectrum is represented by a vector x p , where p is the number of 
channels or “bins” involved in the peak‐list representation, and each entry xb is derived 
from the intensity of the peak(s) falling in the bth bin. Several schemes have been 
 proposed to define such a representation (Coombes et al., 2007). In this work, we rely 
on the approach embedded in the VITEK®MS system, which provides a representation 
defined on p = 1300 bins, covering a mass window ranging from 3 to 17 kDa. We also 
assume that we have a reference database of mass spectra covering a panel of K micro-
bial species, which in our case corresponds to, or, depending on the application, may be 
extracted from, the reference database embedded in the VITEK®MS system. Given this 
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Figure 7.1 Artificial mixtures prepared in vitro. Artificial mixtures were prepared in vitro by diluting and 
mixing two calibrated monobacterial suspensions to obtain bimicrobial suspensions at the following 
relative concentrations: 1:0, 10:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:10, and 0:1. (A) Visualization of mixed mass spectra. 
Five smoothed mass spectra obtained at concentrations 1:0, 2:1, 1:1, 1:2, and 0:1 are shown on a 2–12 kDa 
grid. The top (resp. bottom) panel represents the pure spectra of the first (resp. second) species of the 
mixture, and the panels in between represent the spectra obtained when the proportion of the second 
species increases. We note that peaks specific for the second species gradually appear and increase with its 
relative proportion, whereas the peaks specific of the first species gradually decrease and disappear. (B) 
Mixed versus reference mass spectra. A principal component analysis (PCA) was carried out from the spectra 
of the reference database corresponding to the two species involved in these mixtures, shown as red and 
blue empty circles. The spectra obtained from the in vitro mixtures were then projected in the PCA space 
and shown as filled circles, with the color turning from red to blue as the relative proportion of the second 
species increases. We note a remarkably smooth transition from the first to the second species as their 
relative concentration varies. This PCA analysis was carried out from peak‐list representation of the spectra. 
These artificial mixed spectra correspond to the mixture E involved in Mahé et al., 2014, and are available 
online at the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/MicroMass).

https://archive.ics.uci.edu/ml/datasets/MicroMass


MALDI-TOF Mass Spectrometry170

dataset, we address the problem of trying to predict which of the K species are actually 
present in a spectrum to analyze.

For that purpose, we model a spectrum x as a positive linear combination of species‐
specific prototypes built from the reference database. In its simplest form described 
below, our algorithm considers a single prototype per species, but it can easily be 
extended to accommodate a variable number of prototypes per species to optimally 
capture their degree of spectral variability. Our mixed spectrum model can therefore be 
formally written as follows:

x P
i

K

i i
1

,

Where Pi
p  is the prototype spectrum representing species i, the coefficient i 0 

accounts for its contribution in explaining the input spectrum x, and  p  is a vector 
of independent and identically distributed random residuals, assumed to be normally 
distributed.

Although this model may seem naïve and overly simplistic, it has worked in practice 
(see Mahé et al. and the results described therein) and seems to properly reflect the 
combined mass spectra. Indeed, as shown in Figure 7.1, we observed on artificial bimi-
crobial mixtures prepared in vitro that mixed spectra exhibited a smooth transition 
between their two constituent species as their relative concentrations varied.

7.2.2 Algorithm Description

Given a spectrum to identify, the problem therefore translates into that of obtaining an 
estimation   of the vector 1 , , K  on the basis of the species prototypes P1, … PK. 
A species is then predicted to be present in the sample whenever its corresponding 
entry in the vector  , estimated from the acquired mass spectrum, is positive. We note 
that the spectrum can be predicted to be polymicrobial as soon as more than one of 
these coefficients is positive. In addition, an estimation of the relative concentration ci 
of the microbial species i K1, ,  can be empirically derived from the model parameters 
according to, for instance, ci i jj

k
  

1 .
In its simplest form, our algorithm is a three‐step process. The first step amounts to 

defining the species prototypes from the reference database of mass spectra. For that 
purpose, we carry out a simple procedure in which we consider a minimum frequency 
threshold to introduce a peak at a given position in a prototype: a peak is introduced in 
the prototype provided that it appears sufficiently often in the individual spectra of the 
corresponding species. Its intensity is then defined as the median intensity of the refer-
ence spectra that exhibit this peak. This procedure is done off‐line, once and for all, and 
does not need to be repeated, because it forms part of the basic knowledge base from 
that moment onward. Given a spectrum to identify, we then start by defining a list of 
candidate (poly)microbial compositions. For typical clinical specimens, we expect the 
number of distinct species found in the sample to be relatively small. We therefore rely 
on a penalized nonnegative linear regression framework making use of the L1 penalty 
to favor sparsity in the vector β of model coefficients. More precisely, we consider the 
following optimization problem to estimate:



arg
R
min

K
x P 2

1
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where P P PK
P K[ ]1 , ,   is a matrix containing the K prototypes, and 1

1i

K

i  is 

the L1 norm of β. This problem is the standard Lasso problem (Tibshirani, 1996) with 
the addition of a nonnegativity constraint. Solving this problem for increasing values of 
the λ parameter provides solutions with a decreasing number of non‐null coefficients 
in β, and hence a collection of models achieving various trade‐offs between recon-
struction error (small λ values leading to many positive coefficients) and sparsity of 
the solution (high λ values resulting in few positive coefficients). In practice, efficient 
algorithms make it possible to access the whole collection of solutions that can be 
reached when the parameter λ is varied, collectively referred to as the regularization 
path of the problem. We therefore propose to use the LARS‐EN algorithm (Zou and 
Hastie, 2005) for that purpose, which can be easily modified to accommodate an addi-
tional nonnegativity constraint (Efron et al., 2004). This procedure therefore provides 
us with a list of (usually nested) spectrum compositions involving an increasing num-
ber of species. Finally, to select the most plausible solution, we need to choose where 
to stop on the regularization path and find the number of species prototypes achiev-
ing the appropriate trade‐off between the quality of the spectrum approximation and 
the sparsity of the solution. To do so, we base our model selection strategy on the 
Bayesian information criterion (BIC). The log‐likelihood component of the BIC is 
derived from a standard (unpenalized) linear regression model and is directly related 
to a least‐squares residual, which can naturally be interpreted in this case as the spec-
trum reconstruction error. The BIC penalizes this error by the complexity of the 
reconstruction model, which corresponds here to the number of components involved 
in the reconstruction, and we select the model that minimizes the BIC along the 
 regularization path.

In practice, however, we observed a correlation structure between prototypes that 
reflects the taxonomic proximity of the corresponding species. Therefore, even if a 
spectrum to identify involves a single microbial fingerprint, its optimal decomposition 
in terms of residual sum of squares may involve the contribution of several prototypes, 
depending on their level of correlation with the prototype of the species actually present 
in the sample. This phenomenon is highly species dependent, and can lead to the pre-
diction of additional erroneous components in the decomposition obtained by the 
above procedure. To overcome this issue, we proposed, in the spirit of Lindner and 
Renard (2013), to introduce γ = [γ1,...,γK] , the vector of unknown positive contributions 
of each of the K species to the spectrum, and to redefine i

j
ij ja , where aij is a 

predefined measure of similarity between species i and j. We postulated that the estima-
tions obtained by the procedure described above were noisy because a species actually 
present in the spectrum may “turn on” other prototypes of similar species. To estimate 
the vector of actual species contributions γ, we note that the original mixed spectrum 

model x p
i

K

i i
1

 can be equivalently expressed as

x a P P where P a P
i

K

j

K

ij j i
j

K

j j
a

j
a

i

K

ij i
1 1 1 1
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We can therefore obtain an equivalent mixed spectrum model, but expressed in terms 
of the actual species contributions, after an appropriate redefinition of the prototypes, 
which we shall refer to as adjustment. Using the adjusted prototypes instead of the 
 original ones in the above procedure therefore allows one to estimate directly the vector 
of coefficients γ that is used ultimately to predict the composition of the spectrum. 
We have empirically observed that the prototype adjustment is of critical importance 
for the success of the method. Although several definitions can be considered for the 
similarity measure aij, we have found the Jaccard coefficient to be a safe choice. Figure 7.2 
illustrates the whole procedure, and we refer the interested reader to Mahé et al. (2014) 
for further details about this algorithm and its application.

7.2.3 A Simulation Framework to Optimize the Model Parameters

In its current form, the above algorithm involves three main tuning parameters: the 
frequency threshold involved in the prototype construction method, the spectrum 
 similarity measure to consider for the adjustment, and the choice of the likelihood com-
ponent involved in the BIC (which may involve an intercept or not). These parameters 
are difficult to choose a priori. Instead, we propose to rely on a simulation framework, 
which is described in detail in Mahé et al. (2014) and that we briefly recall here.

The idea underlying this simulation framework is to generate artificial mixtures by 
combining spectra of the reference database, that is, monomicrobial spectra obtained 
from colonies, using the same additive linear model as the one used for the decomposi-
tion algorithm. Large databases of mixed spectra can therefore be generated and used 
to study in detail the behavior of the algorithm, which is useful in two respects. First, it 
provides an objective way to set the algorithm parameters. It may indeed be necessary, 
or at least beneficial, to optimize these parameters with respect to the reference dataset 
considered, which can be application dependent. Moreover, it allows one to estimate 
the level of performance that may be reached for the reference dataset considered and 
to study the mixture identification performance on a (pair of ) species per (pair of ) spe-
cies basis. Indeed, our previous work has shown that the performances obtained by 
simulation and on real in vitro samples were relatively consistent when the simulated 
dataset matched the experimental one (Mahé et al., 2014). This was especially the case 
for balanced mixtures, the performance obtained by simulation being optimistic for 
unbalanced mixtures, and quite consistently observed across various pairs of mixed 
species. This simulation framework could therefore be useful, in particular, to identify 
pairs or groups of species that are too close to be efficiently separated from a mixed 
fingerprint and that thus should be grouped as a composite class.

7.3 Toward Direct‐Sample Polymicrobial Identification 
from Positive Blood Cultures

In this section, we present a proof of concept toward the application of the algorithm 
presented in the previous section to correctly identify microbial cells extracted from 
positive bloodcultures containing either single or mixed species. Experiments involved 
mono‐ and bimicrobial spectra obtained in silico, generated by the simulation frame-
work mentioned above, and in vitro, by spiking microorganisms into blood culture 
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Figure 7.2 The mixed identification algorithm. Shown on the right‐hand side (orange) are the operations done off‐line to 
prepare the species‐specific prototypes. First, a prototype must be built for each reference species considered (shown here in red, 
blue, and green for species A, B, and C). These prototypes are derived from the reference spectra database embedded in the 
commercial VITEK®MS system. Then, although not strictly mandatory, the prototypes should be adjusted in order to limit the risk 
of obtaining erroneous decompositions in subsequent analyses. Shown on the left‐hand side (blue) are the operations carried out 
to predict the composition of a sample on the basis of these reference prototypes. First, a spectrum is acquired and preprocessed 
by the standard algorithm used for routine (culture‐based) identification, in order to extract its prominent peaks. A list of 
candidate (poly)microbial compositions is then obtained by means of a nonnegative linear regression framework involving the 
Lasso penalty and the LARS algorithm. Finally, the most plausible decomposition, achieving a trade‐off between the accuracy of 
the approximation of the spectrum as a combination of prototypes and the number of species involved, is selected by the 
Bayesian information criterion (BIC).
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bottles. Before discussing the results obtained, we first present the reference microbial 
panel considered and define the indicators used to measure the performance of the 
algorithm.

7.3.1 Microbial Panel Considered

We relied on a small‐sized microbial panel involving 26 bacterial and fungal species 
chosen for their high prevalence in bloodstream infections. This list, given in 
Table 7.1, covers a large fraction of species frequently documented in recent clinical 
studies related to direct microbial species identification from positive blood cultures 
(e.g., Lagacé‐Wiens et al., 2012; Chen et al., 2013; Fothergill et al., 2013). For each of 
these species, between 28 and 171 spectra could be extracted from the spectral data-
base embedded in the VITEK‐MS database, leading altogether to a reference data-
base of 1617 spectra. Although this setting might look somehow restrictive, it 
allowed one to conveniently study the behavior of the method, and, as will discussed 
later on, constitutes a natural first step toward more challenging settings involving a 
larger number of species.

7.3.2 Qualifying the Success of the Identification

The main objective of our work was to evaluate the ability of the method to detect a 
microbial mixture and to identify its components. We defined the sensitivity and 
specificity of mixture detection, respectively, as the proportion of mixed and pure 
spectra detected as such by the method. Detection of a mixture was considered to be 
successful if two or more species were predicted. A mixture was said to be correctly 
identified whenever all of its species components – and only those components – were 
detected, and partially identified when only some of its species components were 
detected. A  misidentification occurred whenever a species that was not part of the 
spectrum was predicted.

Table 7.1 List of species considered for the proof of concept related to direct 
identification from microbial cells extracted from positive blood culture bottles.

Acinetobacter baumannii Staphylococcus aureus
Citrobacter freundii Staphylococcus capitis
Enterococcus faecium Staphylococcus epidermidis
Enterococcus faecalis Staphylococcus hominis
Enterobacter aerogenes Staphylococcus saprophyticus
Enterobacter cloacae Staphylococcus haemolyticus
Escherichia coli Streptococcus agalactiae
Haemophilus influenzae Streptococcus oralis
Klebsiella oxytoca Streptococcus pneumoniae
Klebsiella pneumoniae Streptococcus pyogenes
Proteus mirabilis Candida albicans
Pseudomonas aeruginosa Candida glabrata
Serratia marcescens Candida parapsilosis
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7.3.3 In Silico Experiments

We begin by presenting results obtained in silico by using exclusively the spectra of the 
reference database, which were hence obtained according to the standard workflow 
used in clinical routine in which the corresponding microorganisms were grown on an 
agar plate.

The first experiment we considered relied on the simulation framework described 
above and aimed (1) to set the algorithms parameters and (2) to evaluate the perfor-
mance that could be achieved on a (pairs of ) species per (pairs of ) species basis. For that 
purpose, we generated a simulated dataset by repeating 20 times the following proce-
dure in which, for every pair of species of the reference panel, we first randomly picked 
two spectra from the reference database that were then used to simulate mixtures 
with relative proportions in 100%–0%, 90%–10%, 80%–20%, …, 20%–80%, 10%–90%, 
0%–100% by means of linear combinations. The weights used to implement these linear 
combinations were the same as those used in our previous work, and we refer the inter-
ested reader to the original publication for a more detailed description. This procedure 
led to a dataset of 71.500 spectra,1 which was then used to evaluate the performance 
obtained with several parameterizations of the algorithm, differing in the following:

 ● The peak frequency threshold involved in the prototype construction, taken as the 
fractions 0.2, 0.3, 0.4, 0.5, and 0.6.

 ● The similarity criterion used to adjust the prototypes, which was defined as a binary 
function (hence corresponding to not adjusting the prototypes), as their Jaccard or as 
their cosine coefficient.

 ● The definition of the linear model involved in the likelihood component of the BIC, 
and hence in the final model selection, that could integrate an intercept or not.

The resulting 30 configurations were evaluated by decomposing the spectra of the sim-
ulated dataset: prototypes were built from the reference dataset, adjusted if necessary, 
and used to decompose each spectrum according to the LARS/BIC procedure.2 The 
results obtained with the selected configuration are shown in Figure 7.3. We first noted 
(Figure 7.3A) that 94.1% of the 13.000 spectra that were actually monomicrobial were 
correctly identified. Bimicrobial spectra (58.500 spectra, 82% of the simulated dataset) 
were correctly identified in 80.8% of the cases. The vast majority of the remaining mixed 
spectra (16.3%) were partially identified, and globally, only 3.4% of the spectra were 
misidentified. We noted, however (Figure 7.3B), that the probability of correctly identi-
fying a mixture depended on the species involved. In particular, mixtures involving 
Pseudomonas aeruginosa or any of the three Candida species could be correctly identi-
fied in more than 87% of the cases. Conversely, Enterobacter cloacae was the hardest to 
identify, with a correct identification rate of 71.2%. Among the 26 species, 21 had a 
misidentification rate below 3%. The 5 remaining ones had error rates between 3% and 
6%, except Streptococcus oralis, which showed a misidentification rate of 16.7%. Taking 
a closer look at the misidentifications, we realized that more than half (2% out of 3.4% 

1 (26 × 25/2) possible combinations of 2 species, times 11 relative concentration, times 20 repetitions.
2 We note, however, that this procedure was actually repeated 6500 times; that is, for each of the 325 
(26 × 25/2) pairs of species and each of the 20 repetitions, in order to exclude the spectra used to generate 
the simulated spectra from the reference dataset before building the prototypes.
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Figure 7.3 In silico results – simulated mixtures. (A) Overall performance in terms of correct (green), 
partial (orange), and erroneous (red) identification computed globally (left), and on mixed and pure 
spectra only (middle and right, respectively). The proportions of erroneous identification are split into 
same‐genus misidentifications that involve prediction of species that belong to the same genera as the 
ones actually present in the samples (light red, second figure shown on top of the bar) and those 
involving species of other genera (dark red). (B) Mixed spectra: Species‐level performance. Performance 
obtained among mixed spectra involving each of the species of the reference dataset. (C) Same‐genus 
misidentifications: Proportion of genera involved. The great majority of same‐genus errors involve 
confusing streptococci and to a lesser extent staphylococci. (D) Streptococci confusion. The great majority 
of same‐genus errors involving Streptococci amount to confusing Streptococcus oralis and S. pneumoniae.
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of misidentified spectra) involved mistaking a species for another one of the same 
genus, which was predicted instead of it, or in addition to it. It turned out that the prob-
ability of such same‐genus misidentifications depended on the genus itself. Indeed, as 
shown in Figure 7.3C, more than 70% and 20% of these same‐genus errors, respectively, 
involved Streptococcus and Staphylococcus. Although issues with Streptococcus have been 
observed independently (Buchan et al., 2012), this observation may be explained in part 
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by the fact that these two genera are the most represented in the reference dataset 
 considered (four and six species, respectively). Nevertheless, a detailed analysis of the 
streptococcal misidentifications, shown in Figure 7.3D, revealed that more than 80% 
involved predicting Streptococcus pneumoniae instead of, or together with S. oralis, and 
vice versa. This indicated that such same‐genus misidentifications may not be  uniformly 
distributed but involve specific pairs of species. We also noted that the probability of 
mistaking S. oralis for S. pneumoniae was much higher than the opposite. This may be 
an artifact of our algorithm that may be fixed with more elaborate ways of defining the 
prototypes. As a final remark, we noted that the configuration of the algorithm selected 
by this simulation study was slightly different than the one retained in our previous 
work. Here, the peak frequency threshold was set to 0.3, whereas it was set to 0.4 with 
the reference dataset considered earlier. This illustrated the relevance of this simulation 
framework to objectively set the algorithm parameters with respect to the (application‐
dependent) reference dataset.

The second in silico experiment aimed to further evaluate the specificity of the algo-
rithm, that is, its ability to correctly detect and identify a monomicrobial spectrum as 
such. For that purpose, we relied on a cross‐validation procedure using the spectra of 
the reference dataset. The dataset was evenly split in ten subsets, subsequently called 
folds. We then repeated ten times the following procedure in which species prototypes 
were built and adjusted from nine of the ten folds, using the parameters selected by the 
previous simulation study, and used to identify the spectra of the remaining fold. We 
noted that the method was highly specific: 96.9% of these monomicrobial spectra were 
detected as such, and 93.6% were correctly identified at the species level. We noted, 
however, that on the same cross‐validation experiment, a support vector machine algo-
rithm could reach up to 98.8% of correct identification. This therefore indicated, as 
could be expected, that the propensity of the algorithm to identify polymicrobial sam-
ples comes at a price in its ability to correctly identify pure cultures. The proposed 
algorithm nevertheless remained competitive with this purely discriminative approach, 
which often reached state‐of‐the‐art performance on various classification tasks. 
Moreover, a natural synergy between both approaches could be envisioned, in which 
the identification of a sample predicted to be monomicrobial by the mixture algorithm 
could be ultimately provided by such a discriminative algorithm. This procedure would 
most likely achieve an intermediate level of performance for pure cultures.

7.4 In Vitro Experiments

In a second step, we relied on in vitro experiments: experiments involving spiking and 
growing microorganisms into blood culture bottles, to evaluate the performance of the 
algorithm.

The first experiment we considered aimed to evaluate the specificity of the algorithm, 
its ability to identify monomicrobial spectra, and therefore we spiked a single microor-
ganism into blood culture bottles. The motivation followed directly that of the previous 
cross‐validation experiment, with the striking difference that identification was made 
directly and in “semi‐clinical” practice from microbial cells extracted from these blood 
cultures. More precisely, mass spectra were acquired according to the following proto-
col. Microbial suspensions were prepared by growing microorganisms on blood agar 
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(COS) plates, from which some colonies were then harvested and diluted in a suspen-
sion buffer to reach a concentration of 1000 CFU/ml. An inoculum of 0.4 ml was then 
injected into blood culture bottles of type BacT/ALERT® SA (bioMérieux, reference 
259789) along with 10 ml of SPS anticoagulated human blood from healthy donors. The 
bottles were then placed into an incubator at 35 °C until positivity, determined by check-
ing the colorimetric sensor change due to CO2 production by the multiplying bacteria. 
The microbial concentration after positivity approximately ranged from 107 to 109 CFU/
ml. Once the bottles were positive, two sample preparation protocols were carried out 
in parallel:

 ● A reference protocol, which consisted in streaking an inoculum of 0.05 ml on a COS 
agar plate. The plate was then placed in an incubator for 24 h, after which a (portion 
of a) colony was picked with a 1 µl loop.

 ● A direct‐sample protocol involving a lysis‐filtration method described earlier 
(Fothergill et al., 2013).

In both cases, the microorganisms collected were spotted four times on a MALDI slide, 
and mass spectra were acquired with the VITEK®MS system.

Nineteen strains of 19 bacterial and fungal species were included in this experiment. 
The above protocols were carried out only once for most of them, and twice for five of 
them, which therefore provided us with 96 spectra3 for each protocol. Results were 
shown in Figure  7.4, where we first confirmed (Figure  7.4A) that the algorithm was 
highly specific: 94.7% and 95.7% of the spectra obtained with the reference and the 
direct‐sample protocols, respectively, were predicted to be monomicrobial. A correct 
identification rate of 85.1% was obtained with the direct‐sample protocol, and was 
lower than that of 92.6% obtained with the reference protocol. As shown in Figure 7.4B, 
the majority of misidentifications were consistent across replicate mass spectra. In par-
ticular, the four spectra obtained from an S. oralis experiment were systematically pre-
dicted as representing S. aureus (either alone, or together with another Staphylococcus 
species) with both protocols. Interestingly, these spectra were also identified as S. aureus 
specific with the routine VITEK®MS system, which indicated that these misidentifica-
tions did not specifically arise from using our algorithm. A second experiment involving 
the same strain carried out another day led to a correct identification of all spectra, with 
both protocols. Regarding the reference protocol, only three other misidentifications 
were obtained, originating from three distinct strains. In all cases, the spectrum was 
predicted to be derived from a mixture of two species, the actual one representing the 
majority of the mixture, and the three remaining replicates were correctly identified. 
The lower rate of correct identification obtained with the direct‐sample protocol could 
mainly be attributed to two strains that were almost systematically misidentified. 
In the first case, four spectra obtained from a Staphylococcus capitis extraction 
were predicted to be a mixture of S. capitis and S. aureus. In the second case, three 
out of four spectra obtained from a S. pneumoniae extraction were  predicted as S. 
oralis. In both cases, these observations were consistent with the simulation study 
reported previously (Figure 7.3C).

The second experiment involved bimicrobial cultures prepared in vitro. However, 
instead of growing each pair of microorganisms in a common blood culture bottle, each 

3 Fourteen strains with 4 replicate spectra + 5 strains with 2 × [4 replicate spectra].
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microorganism was grown in its “own” bottle, and the mixtures were prepared after-
ward by mixing the resulting positive cultures. This procedure allowed one to precisely 
control the relative concentrations of the microorganisms within the blood cultures 
prior to the subsequent steps of sample preparation and spectral acquisition. This 
would have been harder to control if pairs of microorganisms were spiked in the 
same bottle, where they could grow at different rates or influence each other’s growth 
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Figure 7.4 In vitro results – spiked monomicrobial blood cultures. (A) Spectrum detection and 
identification performance. Overall performance of the algorithm in detecting and identifying spiked 
monomicrobial blood cultured processed according to the reference (left) and direct‐sample (right) 
protocols. Each bar represents the proportion of the spectral dataset for which a given number of 
species (here, 1 or 2) was predicted. The green and gray fractions of the bars represent the proportions 
of spectra correctly and misidentified, respectively. (B) Overview of misidentifications. Details about the 
misidentifications obtained using the reference protocol (left) and the direct‐sample protocol (right). 
In both cases, the top row gives the actual relative concentration of the species in the mixture, and the 
bottom row gives the relative concentrations inferred by the algorithm, obtained by normalizing the 
vector γ of coefficients obtained by the algorithm, as described in the text.
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 patterns. More precisely, mass spectra were acquired according to the following protocol. 
Microbial suspensions were prepared by growing microorganisms on Tryptic Soy Agar 
with 5% sheep blood for bacteria, or Sabouraud Dextrose Agar for yeast, overnight at 
36 °C. The microorganisms were then harvested from isolated colonies and diluted in 
Tryptic Soy Broth to reach a concentration of 40–400 CFU/ml. An inoculum of 0.4 ml 
of these suspensions of individual microorganism strains were then injected into blood 
culture bottles of type BacT/ALERT® SA (bioMérieux, reference 259789) along with 
10 ml of SPS anticoagulated human blood from healthy donors. The inoculated bottles 
were grown until flagged positive by the BacT/ALERT 3D system and then immediately 
placed at 2 °C–8 °C until processing to prevent further growth. Mixtures of the positive 
blood culture broths were prepared from the pure cultures at predetermined volumet-
ric ratios in order to reach relative concentrations of 100%–0%, 90%–10%, 50%–50%, 
10%–90%, and 0%–100%. For this purpose, the concentration of cells in a blood culture 
was quantified in terms of CFU/ml, which was measured by making a dilution series of 
broth from each positive bottle, growing them on the appropriate agar plates, and 
counting the resulting colonies. We note, however, that dry cell mass is a more impor-
tant consideration than CFU/ml for MS analysis, and that the latter was chosen because 
of its simplicity. Microorganisms were then extracted by means of a lysis‐centrifugation 
protocol. Blood cells were first lysed with a similar approach to that of Fothergill et al. 
(2013). The resulting lysate was then layered on top of a density cushion and centri-
fuged, which had the effect of letting the lysed blood and media above the cushion. The 
pelleted microorganisms were then resuspended with purified water. One microliter of 
these suspensions was applied to a MALDI‐TOF target plate together with 1 µl of 50% 
formic acid, and, after drying at ambient temperature, 1 µl of matrix solution. Mass 
spectra were finally acquired with the VITEK®MS instrument.

Four pairs of microorganisms were considered in this experiment:

 ● Mixture A involved Staphylococcus epidermidis and S. aureus.
 ● Mixture B involved Escherichia coli and S. aureus.
 ● Mixture C involved E. coli and P. aeruginosa.
 ● Mixture D involved Candida albicans and S. aureus.

Results were shown in Figure 7.5, where we noted that the method correctly identified 
the majority of the spectra (17 out of 20), and in particular every 50%–50% mixture. 
Two partial identifications were obtained for unbalanced (10%–90%) mixtures, where 
the majority species was solely identified, and a misidentification involved predicting 
Citrobacter freundii instead of E. coli, in a case where it accounted for 10% of the 
mixture.

7.5 Discussion and Perspectives

We have developed a fully automatic in silico procedure to characterize a polymicrobial 
sample on the basis of a single mass spectrum. Our method builds upon the same refer-
ence database as the one used to identify pure cultures in the commercial VITEK®MS 
system, and hence could be easily translated for and used in routine clinical microbiology 
practice. Although this method was previously evaluated in a comprehensive way on a 
large and challenging spectral dataset obtained from in vitro mono‐ and bimicrobial 
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samples, we have further described here a proof of concept of its applicability for direct 
identification from positive blood cultures. Our experiments involved spectra generated 
in silico and in vitro, and although preliminary, we think these results are encouraging. 
First, we could confirm and validate the specificity of the algorithm: we have confidence 
in its ability to correctly detect and even identify a pure culture. Moreover, although the 
number of in vitro bimicrobial samples available was limited, most of them could be cor-
rectly identified. This was indeed the case for every balanced mixture and for the major-
ity of the highly unbalanced ones (10%–90% proportions), among which we noted that 
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Figure 7.5 In vitro results – mixed positive blood cultures. From top left to bottom right: mixtures 
A, B, C, and D. In each case, the top row gives the actual relative concentration of the species in the 
mixture (100%–0%, 90%–10%, 50%–50%, 10%–90%, or 0%–100%), and the bottom row gives the 
relative concentrations inferred by the algorithm, obtained by normalizing the vector γ of coefficients 
obtained by the algorithm, as described in the text.
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the major species was always correctly identified. Finally, the overall mixture performance 
estimated in silico was encouraging. Interestingly, we revealed a species‐dependent level 
of performance that should be further understood, and hopefully improved when possi-
ble, in future work. As a concluding remark, we note that this algorithm can be useful to 
simply detect a mixed infection. Indeed, although not ultimately actionable in terms of 
diagnostics, being able to quickly do so, even if the sample is not properly identified to the 
bacterial species level yet, may already be useful to a clinical microbiologist to initiate 
additional cultivation of the microorganisms on a solid medium. In the setting considered 
in this study, we observed that the algorithm was almost as good in detecting a mixture 
and in identifying its composition. Indeed, the algorithm reached a rate of correct mixture 
identification of 80.8% (Figure 7.3A), while 83.5% of mixed spectra were recognized as 
such. Figure 7.5 shows such a case of correct detection but misidentification obtained 
from an in vitro sample, where a mixed E. coli/P. aeruginosa spectrum was identified as 
C. freundii/P. aeruginosa.

This study does not provide answers to at least three important questions. First, con-
sidering that a limited reference dataset was used in this study, proof of concept would 
most likely constitute a serious limitation from a routine clinical microbiology perspec-
tive. Whether the method would be compatible with a larger and more diverse micro-
bial panel and a larger reference database remains an open question. Preliminary 
experiments suggested, however, that the method would scale up reasonably well up to 
a certain point. Three additional larger (nested) microbial panels were considered in a 
preliminary assessment. The first one consisted of 49 species and involved additional 
Streptococcus and Staphylococcus, as well as species of new genera such as Salmonella 
enterica, Listeria monocytogenes, and several Aspergillus species. The second one 
involved 138 species, and included every possible species of additional genera such as 
Bacillus, Lactobacillus, Bacteroides, Propionibacterium, Campylobacter, or Prevotella, 
to name a few. The largest one involved 269 species, and basically involved every spe-
cies available for any genus represented in the previous lists. The experiments presented 
before were reproduced considering a reference dataset defined for each of these pan-
els. In terms of specificity, a drop of up to 10% in terms of mixture detection and iden-
tification could be observed, based on the cross‐validation procedure carried out from 
the reference datasets. In terms of mixture identification, performances estimated by 
simulation remained relatively steady when 26 to 138 species were considered. When 
the largest list of 269 species was considered, however, a serious drop in the rate of cor-
rect identification was observed (66.1% instead of 82.5% with the 26‐species panel), that 
lead to a corresponding increase of the partial identification rate (22.6% instead of 
13.6%). This analysis indicated that, in its current form, our method is not able to scale 
to very large reference panels with the same level of performance. Scaling the method 
to 100 species or so should remain feasible, but our approach would probably be hard to 
deploy on the whole VITEK®MS database, for instance. We emphasize, however, that 
these experiments did not take any prior information about the species involved, and 
hence some pairs of species considered to generate a mixture may be unrealistic with 
respect to a bloodstream infection application. This therefore means that the actual 
performance that may be reached in this setting may even more significantly differ from 
the above figures. We note moreover that the current VITEK®MS medical database 
cleared by the FDA comprises 193 species, somewhere in between the two most chal-
lenging settings (138 and 269 species) considered in this preliminary analysis. Regarding 
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the direct positive blood culture application, we would therefore recommend to design 
a reference panel involving up to around 100 species, which should allow one to at least 
detect, and hopefully identify, mixed cultures with a sufficient level of performance. 
The discriminative algorithm embedded in the routine identification system could be 
used to confirm the identification of a sample predicted to be monomicrobial by our 
algorithm, which should constitute the majority of positive blood cultures encountered 
in clinical routine.

Second, the limit of detection of the minority species of a mixture has yet to be dem-
onstrated. Indeed, although we could empirically observe in our previous work (Mahé 
et al., 2014) that the probability of correctly identifying a mixture decreased when the 
mixture was unbalanced (between 78% for balanced mixtures, down to 65% for 5:1 and 
40% for 10:1 mixtures), we also know that our simulation framework is optimistic for 
unbalanced mixtures, and hence does not allow one to properly estimate this limit of 
detection. In the direct positive blood culture setting, we also note that the relative 
 concentrations present in the positive bottle may be different from the ones originally 
present in the sample, because different species will grow at different rates. This limit‐of‐
detection issue can therefore be approached at two levels: at the sample level and at the 
positive bottle level. Our future work will involve spiking several bacterial and/or fungal 
strains at various relative concentrations in several types of blood culture bottles to 
investigate this question.

A third question raised by this study is that of mixtures involving more than two spe-
cies. Although we could not evaluate our method on current real in vitro spectra in this 
setting, a simulation study described in our previous work suggested that the approach 
could work reasonably well for balanced mixtures involving two to five different spe-
cies. Although the proportion of mixtures correctly identified steadily decreased for an 
increasing number of species, mixed spectra were in general detected as such, and 
remained partially identified with only a single component missed in most cases. 
Regarding the direct positive blood culture application, however, it seems that such an 
event would be rare, according to recent studies involving clinical samples (Kok et al., 
2011; Lagacé‐Wiens et al., 2012; Chen et al., 2013; Fothergill et al., 2013).

In terms of perspectives, our future work will address these issues, which will require 
defining the most appropriate reference microbial panel to consider for a real‐life sce-
nario, spiking several bacterial and fungal species at various relative concentrations in 
several types of blood cultures, and subsequently validating this method using actual 
clinical samples.
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8A.1 Introduction

Matrix‐assisted laser desorption time‐of‐flight mass spectrometry (MALDI‐TOF 
MS) has been applied to sequencing for over 25 years (Köster et al.‚ 1996; Tang et al.‚ 
1995). Today the technology is being used in an increasing number of clinical labora-
tories around the world. A breakthrough has been the successful implementation of 
whole cell analysis of cultured microorganisms about a decade ago, which is now 
broadly accepted as an innovative tool for genus and species identification (van 
Belkum et al.‚ 2012). Two whole cell analysis systems, the bioMeriéux Vitek MS and 
the Bruker MALDI Biotyper as well as a nucleic acid analysis system, the Agena 
IMPACT Dx mass spectrometer (former Sequenom MassARRAY), have received 
FDA approval.

In contrast to clinical microbiology, where culture‐based methods are still widely 
used to confirm the viability of the organism, especially in the context of antibiotic 
treatment regimes, clinical virology has shifted to molecular nucleic‐acid‐based tests 
owing to increased sensitivity, specificity, and faster turnaround times when compared 
to viral cultures (Buchan and Ledeboer‚ 2014). In general, the molecular detection and 
identification of viruses is based on the specific recovery and detection of certain 
genomic fragments inclusive for the viral species of interest and exclusive for addi-
tional species in the sample flora and nearest phylogenetic neighbors. Low viral loads 
can be detected quantitatively in complex samples after DNA or RNA purification 
owing to the efficient and specific amplification of a target region by polymerase chain 
reaction (PCR). Nucleic‐acid‐based MALDI‐TOF MS has successfully been used for 
the molecular detection and identification of viral species, for the characterization of 
their genetic heterogeneity, and for tracking of transmissions (Ganova‐Raeva and 
Khudyakov, 2013).
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8A.2 The Molecular Detection and Identification of Viruses

Nucleic‐acid‐based MALDI‐TOF MS applications for the detection and identification 
of viruses use specific or broad‐range PCR primers in combination with different post‐
PCR biochemistries. The most widely used biochemistry and variations thereof, a PCR/
primer extension assay (Figure 8A.1) (Storm et al., 2002; Jurinke et al., 2004) has been 
applied to the detection and genotyping of RNA and DNA viruses with a multiplexing 
level and throughput that support large‐scale epidemiological research studies and 
might improve diagnosis of infections and co‐infections in clinical applications.

The simultaneous detection of several viruses in a single sample has been demon-
strated for the differentiation of human herpesviruses. Herpes simplex virus (HSV) 
types 1 and 2, varicella‐zoster virus (VZV), Epstein‐Barr virus (EBV) types A and B, 
cytomegalovirus (CMV), human herpesvirus 6 (HHV6) types A and B, and HHV7 and 
HHV8 (Kaposi’s sarcoma‐associated herpesvirus) infect humans and are often asymp-
tomatic in healthy subjects. They can cause oral and genital lesions (HSV), chicken 
pox or shingles (VZV), infectious mononucleosis (EBV and CMV), or roseola (HHV6) 
and are associated with even more severe diseases in immunologically compromised 
hosts (Murray et al., 1998), for example, transplant patients. Herpesvirus infections 
during pregnancy have been associated with birth defects or premature delivery 
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Figure 8A.1 Workflow of PCR/primer extension MALDI‐TOF MS assays. PCR and primer extension with 
dNTP/ddNTP stop mixes (left); PCR and primer extension with mass‐modified deoxyribonucleotides (right).
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(Arvin, 1996). The detection limit of the developed MALDI‐TOF MS assay at 100% 
sensitivity was found to be at five copies for EBV, HHV6A, and HHV6B and 10 copies 
for HHV7 as well as 100 copies for HSV‐1, HSV‐2, CMV, and HHV8. This qualifies the 
assay for multiplex HHV detection in large‐scale research studies, for example, on 
archival samples and shows potential for validation of the test in patient samples 
(Sjöholm et al., 2008).

The early detection and accurate identification of human enteric viruses, which are 
the most common cause of illnesses during early childhood, ranging from gastroenteri-
tis to life‐threatening diseases such as hand, foot, and mouth disease or neurological 
complications (Chan et al., 2003; Tu et al., 2007), is crucial to patient management and 
control of infection. A multiplex MALDI‐TOF MS assay for the simultaneous detection 
of eight distinct enteric viruses, including poliovirus (PLV), coxsachievirus A16 
(CoxA16), enterovirus 71 (EV71), hepatitis E virus (HEV), echovirus (ECHO), norovi-
rus (NVG), astrovirus (ASTRV), and reovirus (REV), showed sensitivity levels ranging 
from 100 to 1000 copies/reaction and better agreement with results from direct 
sequencing than real‐time RT‐PCR (Piao et al., 2012).

The examples demonstrate that the concordance rate between nucleic‐acid‐based 
MALDI‐TOF MS and reference methods such as real‐time PCR, dideoxy sequencing, 
and oligonucleotide microarrays for viral detection and identification is generally high, 
and the detection limits are comparable. MALDI‐TOF MS detects an intrinsic physical 
property of the intact analyte – the molecular mass‐to‐charge ratio (m/z) of the exten-
sion product. This means no fluorescent or radio labeling is required; thus, multiplex-
ing levels are not limited to the available number of chemical labels on a probe, for 
example, the limitation of four or five colors of real‐time PCR.

When compared to a technology such as dideoxy sequencing, data acquisition times 
are much faster, requiring only a few seconds per sample and multiplex on a MALDI‐
TOF MS instrument. On commercially available systems, 24, 96, or 384 samples can be 
analyzed in one run in a maximum data acquisition time of 1 h. The accuracies and 
resolution of today’s benchtop mass spectrometers allow for the detection of hundreds 
of nucleic‐acid‐specific signals per spectrum, which translates into multiplexing levels 
of 40 to 60 biallelic loci or single‐nucleotide polymorphisms as well as insertions and 
deletions in one reaction and spectrum. A distinct advantage of the multiplexing capa-
bilities of nucleic‐acid‐based MALDI‐TOF MS is an easy extension of existing assays by 
adding new type‐specific primers (Cobo, 2013).

The latest development of the PCR/primer extension‐based assay utilizes a single 
 mutation‐specific chain terminator labeled with a moiety for solid phase capture. Captured, 
washed, and eluted products are interrogated for mass and mutational genotypes using 
MALDI‐TOF MS. An ultrasensitive detection of mutations down to 0.125% of a mutant in 
the background of wild type has been acchieved as demonstrated for the detection of 
somatic cancer mutations (Mosko et al., 2015) and would be applicable to viral detection.

8A.3 Viral Quantification

Viral vaccines contain live attenuated virus. Successful viral vaccines prevent, for 
 example, yellow fever, measles, rubella, and mumps. The quality control to determine 
 vaccine safety requires monitoring of small quantities of mutants or revertants that may 
 indicate incomplete or unstable attenuation.
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A PCR/primer extension assay and MALDI‐TOF MS can be used to analyze frequen-
cies of mutants by calculating the areas of the extension peaks of wild type and mutant. 
An application of this quantitative approach was demonstrated in a study supporting 
mumps vaccine control. Viral quasispecies of the mumps virus were determined 
between Jeryl Lynn substrains in live, attenuated mumps/measles vaccine on the basis 
of five distinct nucleotide positions in the viral genome. Feasibility was shown in refer-
ence with the existing QC methodology used by the Federal Drug Administration 
(FDA). Quantitative analysis of mutants by MALDI‐TOF MS can thus be used to moni-
tor the genetic stability of viruses during clinical trials of vaccines, for epidemiological 
surveillance of new virus isolates, and for screening of emerging drug‐resistant viral 
strains in the course of antiviral therapies (Amexis et al., 2001).

8A.4 The Characterization of Viral Genetic Heterogeneity

In addition to the detection and quantification of viruses, PCR/primer extension assays 
on MALDI‐TOF MS enable the characterization of viruses by genotyping.

High‐risk human papillomavirus infections (HPV), especially infections with HPV 
types 16 and 18, are associated with cervical cancer and in some cases with head/neck 
and schistosomiasis‐associated bladder cancers. HPV detection and the differentiation 
of high and low risk types are an established and useful tag to screen for cervical cancer 
and monitor the efficacy of newly introduced HPV vaccines. A type‐specific, MALDI‐
TOF‐MS‐based multiplex competitive PCR/primer extension assay of the viral E6 
region was designed that detects and differentiates the 15 most important high‐risk 
HPV subtypes (16, 18, 31, 33 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 73). The differen-
tiation of all 15 types and the resultant sensitivity was shown to be superior to the 
standard four‐color real‐time fluorescent PCR‐based assays and performed at least as 
well as the commercially available Hybrid Capture 2 High‐Risk HPV DNA test (HC2; 
Digene Corp., Gaithersburg, MD) (Patel et al., 2009). The sensitivity of the MALDI‐
TOF MS method extended down to individual molecules while specificity was main-
tained (Stenmark et al., 2013; Yang et al., 2004).

The technology was further successfully applied to the identification of hepatitis C 
(HCV) by genotype‐specific point mutations in the 5′ untranslated region (5′ UTR) of 
the virus. Even with treatment regimes available, HCV is the leading cause of liver 
transplantation (Hugo and Rosen, 2011). Genotypes and subtypes of the virus vary by 
geographical region and in treatment outcome (Ilina et al., 2005).

Hepatitis B virus (HBV) is another causative agent of liver disease and cancer. The 
genetic diversity of HBV resulted in the classification of the virus into 8 genotypes and 
24 subtypes (Gish and Locarnini, 2007; Roque‐Afonso et al., 2003). The genotype of the 
virus has been associated with the severity and progression of chronic hepatitis B, the 
response to therapy, and the risk of liver cancer (Mahtab et al., 2008; Palumbo, 2007).

PCR/primer extension assays have successfully been applied to genotype HBV and to 
detect up to 60 single‐nucleotide drug resistance mutations in the HBV polymerase 
gene (Luan et al., 2009; Malakhova et al., 2009).

Comparative sequencing by MALDI‐TOF MS uses PCR and four nucleotide‐specific 
cleavage reactions of RNA molecules transcribed in vitro from the PCR products to a 
generated MS pattern that can be automatically compared to a simulated pattern based 
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on sequences in a reference database (Figure 8A.2) (Stanssens et al., 2004). The results 
are returned with a scoring system and probability call (Honisch et  al., 2010). Target 
regions are identified, and sequence polymorphisms can be discovered (Böcker, 2003). 
The principle is in analogy with tryptic digestion of proteins and the subsequent  peptide 
analysis by MS and database comparison. Sensitivity of two levels, exponential amplifica-
tion by PCR combined with linear amplification in in vitro transcription, is achieved.

The application of comparative sequencing by MALDI‐TOF MS on the S gene of 
HBV allowed for the automated and accurate identification of all eight virus‐specific 
genotypes. As opposed to the targeted PCR/primer extension biochemistry, compara-
tive sequencing by base‐specific cleavage is amenable to the detection of novel HBV 
variants down to a single‐nucleotide polymorphism (Honisch et al., 2007). Mass peak 
patterns were automatically compared to sequences from known and database‐deposited 
HBV genotypes. The assay is highly reproducible because of the built‐in redun-
dancy of the four cleavage reactions. Parameters such as viral titer, genotype, 
heterogeneity, quality of PCR, and MS patterns were carefully evaluated. The quality of 
the PCR product, and thus the quality of the PCR template, was the only parameter 
found to have a significant impact on the accuracy of the assay. Assay performance 
showed complete concordance with the gold‐standard dideoxy sequencing results and 
phylogenetic analysis (Ganova‐Raeva et  al., 2010). The application of the protocol 
achieved sensitivities of 64 genome copies of HBV/ml or 11 IU/ml. Mixtures of wild‐
type and mutant alleles can be identified if the minority type is present at >10% (Ehrich 
et al., 2005). Due to its high throughput and semi‐automation, the assay was  commended 
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for molecular surveillance of HBV infections at the Center of Control and Prevention 
(CDC, Atlanta, GA) as a low‐cost alternative to dideoxy sequencing (Ganova‐Raeva 
et al., 2012).

8A.5 Viral Transmission Monitoring

The global outbreak of severe acute respiratory syndrome (SARS) in February 2003 
appears to have started in Guangdong Province, China, in November 2002 and spread 
explosively to Singapore, Hanoi and Toronto with exported cases on every continent. 
Caused by a coronavirus (SARS‐CoV), SARS was the first disease to show the damage 
possible in a globalized world. Near the end of June 2003, the total number of cases was 
8456 in 30 countries, of which 809 resulted in death (Fleck, 2003). The Genome Institute 
in Singapore developed a MALDI‐TOF MS PCR/primer extension assay based on 21 
single‐nucleotide variations (SNVs) in the viral genome to track the transmission route 
of the virus in Singapore. MALDI‐TOF MS analysis showed high sensitivity, providing 
a successful detection of the virus more than 95% of the time at viral concentrations of 
75 copies per reaction, which was found to be close to the detection limit of 5–58 copies 
of viral RNA per reaction in RT‐PCR‐based diagnostic tests and within the concentra-
tion range reported in respiratory and plasma samples (Liu et  al., 2005). The study 
 demonstrates the importance of genetic analysis and informative molecular markers for 
rapid and high‐throughput epidemiological studies of pathogen transmission.

Hepatitis C (HCV) is an RNA virus with extremely variable genomic RNA. Its genetic 
heterogeneity is a hallmark of the virus, which exists in each infected individual as qua-
sispecies, a heterogeneous and dynamic mixture of mutants (Argentini et  al., 2009). 
HCV is classified into 6 major genotypes and over 50 subtypes (Tellinghuisen et al., 
2007) with several distinct types differing by as much as 33% over the entire genome 
(Nolte et  al., 2003). Genotypes vary in disease outcome and response to therapy. 
Consensus sequencing of the hypervariable region HVR1 and regions in the NS5a and 
b gene are commonly used to identify HCV transmission. However, a consensus 
sequence cannot represent the entire HCV population present in the host, particularly 
in chronically infected patients.

The specific mass peak pattern of all four concatenated base‐specific cleavage 
 reactions of the comparative sequencing application on MALDI‐TOF MS reflect the 
sequence context, heterogeneity, and diversity of HCV sample populations and can 
be  mathematically presented as a numeric vector of the detected masses and their 
 corresponding normalized peak intensities. Distances between these vectors corre-
spond to the genetic relatedness of HCV strains among infected patients and allow for 
the accurate molecular detection of HCV transmission. The mass peak patterns are 
applicable to evaluate phylogenetic relationships between HCV populations. The 
approach has been found to match the accuracy of dideoxy sequencing, which had been 
implemented for this analysis after time‐consuming limited dilution PCR or subclon-
ing. Hundreds of isolated viral species and sequencing reactions had to be performed to 
obtain a snapshot of the population structure of a single sample in contrast to just one 
PCR and four base‐specific cleavage reactions on MALDI‐TOF MS.

An alternative applicable technology is next‐generation sequencing (NGS), which is 
challenged by NGS sequencing errors per single DNA read, in a complex mixture of 
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high intra‐host viral heterogeneity as well as extensive data processing required for 
NGS data analysis (Ganova‐Raeva et al., 2013).

8A.6 Additional Nucleic Acid Applications  
of MALDI‐TOF MS

The separation of polymerase‐chain‐reaction‐amplified and restriction‐digested DNA 
fragments (PCR‐RFLP) by MALDI‐TOF MS as a replacement for gel electrophoresis 
was demonstrated for avian influenza viruses (Deyde et al., 2011; Harder et al., 2009; 
Hong et al., 2008), HCV (Ilina et al., 2005), drug‐resistant HBV variants (Han et al., 
2011), and HPV genotyping (Hong et al., 2008). The biochemistry introduces TypeIIS 
restriction endonuclease recognition sites (e.g., FokI and BtsCI) by PCR surrounding a 
genotype‐specific motif of interest. TypeIIS restriction enzymes cleave DNA subse-
quently at a fixed distance from their recognition site and make the assay independent 
of restriction sites within the target region of interest. Enzymatic digestion releases a 
pair of double‐stranded fragments representative of the genotypic information. Both 
strands are analyzed by MALDI‐TOF MS in parallel, providing a level of internal 
confirmation.

8A.7 Conclusion

A fully automated and integrated nucleic‐acid‐based MALDI‐TOF MS platform has not 
yet been commercialized, even through the workflow from sample preparation through 
PCR amplification and cleanup is highly amenable to liquid handling automation.

Although the application of MS to nucleic‐acid‐based pathogen detection and identi-
fication is described in detail in the literature, the mere use of MS as a detection system 
in place of, for example, real‐time PCR, gel electrophoresis, or sequencing does not 
resonate with clinical laboratories, mainly because of the seemingly high complexity of 
the technology and the cost of the instrumentation.

Multiplexing of up to 40–60 targets without a fluorescent‐dye‐based channel limita-
tion and the possibility of quantifying the analyte can be beneficial when testing speci-
mens from patients presenting with nonspecific symptoms attributable to a number of 
different pathogens. MS is the superior technology when it comes to the detection of 
various biomarker molecules including proteins, lipids, small molecules, carbohydrates, 
and nucleic acids on a single platform. MS as well as next‐generation sequencing (NGS) 
have the potential to analyze specimens in a massively parallel fashion and measure 
molecular details that will enable precise diagnosis of infectious agents.
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8B.1 Introduction

The progress that has been made in mass spectrometry has revolutionized proteomics 
research. New strategies have been developed not only for analyzing specific proteins 
but also for global protein expression. Microbial proteomics has attracted considerable 
attention worldwide as a clinical tool for new methods of identification that are fast, 
robust, and relatively inexpensive. An obvious trend would be to adapt the existing 
technology for viral detection and identification. Furthermore, through in‐depth 
 proteomics research, molecular interactions between virus and host and also between 
virus and antiviral drugs can be revealed, providing useful data that can be utilized for 
 prevention and treatment of viral diseases (Trauger et al., 2013). The present part of this 
chapter will address the advances that have been made in this field and the challenges 
that have been encountered. Using a combination of mass spectrometry proteomic‐
based approaches, a significant number of viruses (from human and animal origin) have 
been investigated. From these, the origins of over 600 proteins were identified; of these, 
more than 100 were novel proteins (Table 8B.1).

The analysis of proteins in bacterial cell lysate or intact organism using matrix‐assisted 
laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) pro-
vides a rapid means of bacterial identification which, in many cases, provides a species‐
level identification (Chapters 1–6, 11; Shah and Gharbia, 2010). The approach used for 
viruses needs to be different because of the restricted range of target proteins and the 
inability to culture viruses in pure cultures in an accessible manner. Viruses are found in 
complex matrices where other proteins (sometimes with the same molecular weight) are 
much more abundant than viral proteins. Even in the case of cultivable viruses, the viral 
proteins are “masked” by other proteins from the cell or tissue culture that is used. Hence, 
it is necessary to extract the protein(s) in order to obtain a relatively clean preparation.
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For extraction of viral proteins, sample preparation is usually a complex process that 
involves several centrifugation steps beginning with a low‐speed centrifugation in order 
to remove cell debris and other large fragments and moving to high‐speed centrifuga-
tion. The extract can be purified further using gradient centrifugation (Calderaro et al., 
2014). Despite its efficiency, gradient ultracentrifugation is an expensive, lengthy, and a 
potential hazardous process that cannot be applied in a routine diagnostic workflow. 
Therefore, attention has focused on other purification methods intended to capture and 
purify viruses or viral proteins. These exploit antigen–antibody binding (Chou et al., 
2011) or size exclusion filtration (Colquhoun et al., 2006).

Methods based on antigen–antibody binding involve the use of different surfaces 
coated with monoclonal antibodies. Magnetic nanoparticles are commonly used as a 
substrate for monoclonal antibodies because they have the advantage of a large surface‐
to‐volume ratio and thus capture a large quantity of viral particles (Chou et al., 2011). 
Due to their magnetic properties, the nanoparticles are easy to handle and can be used 
with a minimum of laboratory hardware (Tian et al., 2008).

The use of antibodies to capture a virus is highly specific and has been shown to be very 
efficient (Chou et al., 2011). However, most viruses are highly variable entities, acquiring 
mutations in a relatively short period of time (Goering et al., 2013). Thus, this high diver-
sity would necessitate production of new antibodies every time a new strain emerges.

Table 8B.1 A selection of viruses that have been investigated using proteomic‐based approaches.

Virus/host
Number of proteins 
detected/identified Ref.

Adenovirus type 5/human 11/2 Chelius et al. (2002)
Channel catfish virus/fish 16/ND Davison et al. (1995)
Vaccinia virus/human 80/13 Resch et al. (2007)

75/10 Chung et al. (2006)
63/2 Yoder et al. (2006)

Cytomegalovirus/human 21/6 Baldick and Shenk (1996)
71/12 Varnum et al. (2004)

Murine cytomegalovirus/mouse 58/20 Kattenhorn et al. (2004)
Epstein Barr virus/human 41/ND Johannsen et al. (2004)
Kaposi’s sarcoma associated
herpes virus/human

24 (5) Zhu et al. (2005)

Rhesus radiovirus/monkey 33 (3) O’Connor et al. (2006)
White spot syndrome virus/shrimp 18/14 Huang et al. (2002)

45/13 Li et al. (2007)
SARS coronavirus/human 4/4 Zeng et al. (2004)
HIV‐1/human 14/ND Saphire and Bark (2006)

10 (ND) Chertova et al. (2006)
Murine gammaherpesvirus 68 Mouse 17 (5) Bortz et al. (2003)
Poliovirus type 1, 2 and 3/human 15/9 Calderaro et al. (2014)
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Following the initial sample purification and enrichment, the process continues with 
disassembling of the viral particles and solubilizing the proteins. The proteins can 
then be analyzed in intact form (Trauger et al., 2013). However, this only provides the 
 molecular weight of the protein. To unequivocally identify the protein, it has to be 
digested and the resulting peptides analyzed using tandem mass spectrometry. This 
can be achieved either by in‐solution digestion followed by mass spectrometric analy-
sis or separation of proteins using SDS‐PAGE and in‐gel digestion of proteins(s) of 
interest followed by MS and MS/MS analysis. The most frequently used protein sepa-
ration method is polyacrylamide gel electrophoresis, which can be used to separate 
proteins in one dimension (separation according to size) or in two dimensions (based 
on the isoelectric point in the first dimension and size in the second) (Shevchenko 
et  al., 1996). In‐gel digestion of protein is often achieved using trypsin because it 
 generates a significant number of peptides since it cleaves the protein chain at the 
carboxyl side of lysine – arginine, two amino acids that are found in great abundance 
(Trauger et al., 2013).

8B.2 Norovirus Identification using MS

Norovirus infection represents the principal cause of gastroenteritis in both hospitals 
and the community. Although it is rarely life threatening, severe economic losses occur 
as a result of the large burden of the disease. It is estimated in the United Kingdom that 
nosocomial gastroenteritis costs the NHS up to 12.5% of the total £930 million that is 
spent every year on tackling all nosocomial infections (Lopman et  al., 2004). In the 
community, norovirus has an estimated rate of 47 cases per 1000 person/year. Thus, 
norovirus is responsible for three million disease cases every year and 130,000 GP con-
sultations in the United Kingdom (Tam et al., 2012).

Norovirus is a naked virus with icosahedral symmetry, and the diameter of the 
virion is 27–32 nm (Hardy, 2005). The genome consists of a 7.7 kb positive‐sense, 
single‐stranded RNA. It encodes three open reading frames (ORFs). ORF 2 encodes 
the major capsid protein VP1, whereas ORF 3 encodes the minor structural protein 
VP2, which does not play any role in the particle assembly but is essential in the 
production of infectious virus. ORF 1 encodes a polyprotein that plays a role in viral 
replication and does not have a structural role. VP1 is made up of 530–545 amino 
acids and has a molecular weight of 58–60 kDa (Zheng et  al., 2006). Each viral 
 particle consists of 180 copies of VP1 that are arranged in an icosahedral virion 
(Hardy, 2005).

The VP1 protein includes two domains: P (protruding, with two subdomains P1 
and P2) and S (shell). P2 is responsible for the majority of cellular and immune inter-
actions, and it has the most sequence divergence. The capsid protein plays both a 
structural role and an attachment function. It determines the antigenicity of the viral 
strains (Zheng et al., 2006). Norovirus cannot be cultivated in laboratory conditions. 
However, VP1 protein can be expressed in a recombinant system. The VP1 that is 
expressed self‐assembles in virus‐like particles (VLPs), which are structurally and 
antigenically indistinguishable from native virions but do not contain any RNA (Ausar 
et al., 2006).



MALDI-TOF Mass Spectrometry200

8B.3 Sample Preparation Considerations

The fact that the norovirus capsid consist of a single protein in a large number of copies 
should, at least in theory, make it easily detectable using MS. The main challenge is the 
complexity of feces in which the norovirus is found. Feces contain carbohydrates, 
 protein, fat, and fiber, which originate from food, gut microbiota, and human cells. All 
this highlights the need for a very efficient purification method. The easiest way to 
achieve this would be to cultivate the virus in a cell culture. However, norovirus cannot 
be cultivated outside the human body. One desired approach would be to isolate the 
virus directly from feces. The isolate should have a purity that would allow the detection 
and identification of the VP1, equivalent to the identification of norovirus.

Because the use of monoclonal antibodies to capture norovirus is limited by the high 
antigenic variability between strains, a generic purification method that could be used 
to capture more than one norovirus strain was tested. The approach was based on 
exploiting the binding capacity of norovirus to human histo‐blood group antigens 
(HBGA) (Huang et al., 2005) as it has been shown that these antigens are present on the 
surface of the epithelial cells of the gastrointestinal tract (Tian et al., 2008). Capture of 
norovirus using synthetic HBGA will allow its concentration and purification from 
complex matrix and enable rapid detection and identification using MS. Human HBGA 
is difficult to obtain; therefore, a porcine gastric mucin (PGM) was used as an alterna-
tive. PGM contains HBGA similar to those found in humans, and it has been used 
 successfully for capturing and concentrating norovirus prior to PCR analysis by Tian 
and coworkers (2008), the result being a two‐log increase in sensitivity.

8B.4 Experimental Workflow

In a study carried out in our laboratory, VLPs were used for optimizing the method and 
for spiking norovirus‐negative samples. The VLPs were produced in a Baculovirus 
recombinant system using a GII‐4 norovirus strain circulating after the 2002 epidemic, as 
described by Allen et al. (2009). A number of norovirus‐positive feces samples were used.

The approach used was based on the PGM capture method using magnetic beads as 
substrate. The extracts were then analyzed in a high mass range using MALDI‐TOF MS 
and its variant, surface‐enhanced laser desorption/ionization (SELDI) for detecting the 
intact VP1 protein. The extracts were further processed using SDS‐PAGE. The bands 
corresponding to the VP1 were excised and subjected to in‐gel digestion with trypsin. 
The resulting peptides were analyzed using MALDI‐TOF MS and high‐performance 
liquid chromatography coupled to an ion‐trap time‐of‐flight mass spectrometer  
(LC‐IT‐TOF MS) (Figure 8B.1).

8B.5 Detection of Intact VP1 using MALDI‐TOF  
and SELDI‐TOF MS

Using MALDI‐TOF and SELDI‐TOF MS, the intact VP1 was detectable at concentra-
tions as low as 6.25 µg/ml in VLP suspensions in phosphate‐buffered saline PBS. Using 
MALDI‐TOF, the VP1 protein was detected as a monomer and in a single‐charge state 
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Figure 8B.1 Workflow for sample preparation and analysis of VP1 protein from norovirus.
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at m/z of 59 kDa (Figure 8B.2). This corresponds to the calculated mass for the sequence 
that was used for producing the VLPs. The mass spectra of VP1 acquired using SELDI‐
TOF MS showed that in addition to the m/z of 59 kDa corresponding to the single‐
charged VP1 monomer, additional peaks at m/z of 30 kDa and 120 kDa were detected. 
These represented the double‐charged monomer and dimer, respectively (Figure 8B.2).

However, intact VP1 could not be detected in fecal samples spiked with VLPs or 
 norovirus‐positive samples using these techniques. This may be attributed to 
 contaminants in the extracts, which may affect the ionization and desorption processes.

8B.6 Peptide Mass Fingerprinting

As VP1 protein could not be detected in spiked fecal samples or norovirus‐positive 
samples, the PGM‐captured protein was further processed using polyacrylamide gel 
electrophoresis. The bands corresponding to VP1 protein (Figure 8B.3) were excised, 
and following reduction, alkylation incubated with trypsin. The resulting tryptic digests 
were analyzed using MALDI‐TOF MS and LC‐IT‐TOF. The mass spectral data were 
analyzed against an in‐house database that contains the sequence used for producing 
the VLPs and the all entries in the Mascot database.

Using MALDI‐TOF MS for PMF, the VP1 protein was identified in clean VLP suspen-
sion. A coverage of up to 54% of the VP1 theoretic protein sequence was obtained. From 
PMF, the most intense ions were selected for MS/MS analysis, and the identity of five 
target peptides was confirmed (Table 8B.2). PMFs of VLP‐spiked fecal specimens (even 
at concentrations of 25 µg VLPs/ml 10% fecal emulsion) and norovirus‐positive samples 
did not produce any significant protein identifications.

In contrast, VP1 protein in fecal samples spiked with VLPs was detected using LC‐IT‐
TOF. These samples contained approximately 100 mg of fecal material spiked with only  
5 µg of VLPs, which represents 83 pmol of VP1 protein or 2.8 × 1011 VLPs. The initial PMF 
revealed a number of unmatched peptides, which suggests that other proteins are present 
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Figure 8B.2 Mass spectra showing VP1 detected using (A) MALDI‐TOF MS and (B) SELDI‐TOF MS. 
In the MALDI‐TOF spectrum, only the single‐charged monomer was detected. In the SELDI‐TOF 
spectrum, besides the peak corresponding to the single‐charged monomer (59,759 m/z Da), peaks 
corresponding to the double‐charged monomer (29,932 m/z Da) and single‐charged dimer (120,458 
m/z Da) of VP1 were also detected.
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in the sample in the 55–60 kDa range. To reduce the likelihood of false identification, a 
LC‐MS/MS method was developed. From the initial PMF, three peptides were selected 
for MS/MS. These were selected on the basis of their intensity and the unicity of the cor-
responding peptide (for GII norovirus). The unicity of the peptides was  evaluated by 
blasting them against an in‐house, UniProt, and Swiss‐Prot databases. The  fragmentation 
of the three peptides provided information on their sequence and thus more confident 
identification of the VP1 protein. The tandem MS spectra of peptides with m/z of 
905.5711, 488.865, and 1719.828 confirmed the identity of the peptides as FVNPDTGR, 
QLEPVLIPLPDVR, and NNFVQAPGGEFTVSPR, respectively (Table 8B.3).

8B.7 Conclusions

Developing an MS‐based method for detecting norovirus in stool is a challenging task. 
The fact that the VP1 protein, which originates in native noroviruses, could not be iden-
tified may be due to the low concentration in feces, the complexity of the matrix, and 
the lack of a specific capturing method. These may be overcome in the near future by 
using more specific capture methods and higher‐resolution mass spectrometers.

It was not feasible to detect intact VP1 in VLPs spiked into fecal samples and posi-
tive samples using MALDI‐TOF MS. However, the presence of protein was confirmed 

15 kDa

50 kDa

60 kDa

260 kDa

VP1

Clean VLPs
suspension

Faeces sample
spiked with VLPs

Figure 8B.3 Gel electrophoresis showing (left) separation of VP1 protein and proteins captured from 
the clean VLP suspension and (right) those in fecal samples spiked with VLPs.



Table 8B.2 Observed and theoretical m/z of peptides detected using MALDI‐TOF MS analysis of VLP tryptic digest together with error in ppm. The sequence 
of peptides highlighted in red was confirmed using tandem MS.

Observed m/z Expected m/z Mass accuracy (ppm) Peptide sequence

843.4501 842.4902 −56.3 R.FPIPLEK.L
905.4137 904.4403 −37.4 R.FVNPDTGR.V

1052.521 1051.5411 −26.2 R.GDVTHIPGTR.T
1120.555 1119.5958 −43.4 R.IQGMLTQTTK.R
1206.656 1205.6842 −29.6 K.LIAMLYTPLR.A + Oxidation (M)
1281.584 1280.6249 −37.6 K.ATVSTGSADFTPK.L
1488.834 1487.8712 −30.1 R.QLEPVLIPLPDVR.N
1525.618 1524.6627 −34.3 R.ANNAGDDVFTVSCR.V
1572.732 1571.7693 −28.4 R.FTPVGVTQDGSTAHR.N
1688.743 1687.7954 −35.3 R.NEPQQWVLPDYSGR.N
1719.789 1718.8376 −32.3 R.NNFVQAPGGEFTVSPR.N
1804.866 1803.9268 −37.7 K.LFTGPSSAFVVQPQNGR.C
1844.744 1843.8125 −40.9 R.NNFYHYNQSNDSTIK.L
2062.992 2062.0769 −44.9 R.TKPFTVPILTVEEMTNSR.F
2078.992 2078.0718 −42.2 R.TKPFTVPILTVEEMTNSR.F + Oxidation (M)
2329.983 2329.0459 −30.1 K.LGSIQFATDTDNDFETGQNTR.F
2453.136 2452.2091 −32.7 R.CTTDGVLLGTTQLSPVNICTFR.G
2532.27 2531.3424 −31.4 R.VLTRPSPDFDFIFLVPPTVESR.T
2543.198 2542.2288 −14.9 R.FDSWVNQFYTLAPMGNGAGRRR.A
3246.403 3245.5088 −34.8 R.MNLASQNWNNYDPTEEIPAPLGTPDFVGR.I
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using gel electrophoresis of captured protein and in‐gel tryptic digestion of 55–60 kDa 
bands followed by LC‐MS analysis, which lead to an increase in sample preparation 
time and require specialized equipment. However, without employing all these tech-
niques together with LC‐IT‐TOF, the presence of VP1 could not be confirmed in fecal 
samples spiked with VLPs. MALDI‐TOF MS was also used in this study because it 
offers a  significant advantage in speed of analysis. However, its sensitivity and selec-
tivity were not high enough to allow VP1 to be detected in VLP‐spiked fecal samples 
because of the low levels of VP1 and impurities from the gel bands. The use of LC‐
MS, on the other hand, provides a means of separating the peptides, meaning that 
they will enter the mass spectrometer at different times, improving both the sensitiv-
ity and selectivity. In addition, with MALDI‐TOF MS, due to lack of chromatographic 
separation, the more intense ions suppress the less intense ones. Also, using IT‐TOF, 
pockets of ions can be accumulated in the ion trap and then separated in the TOF 
analyzer.

Mass spectral identification of VP1 following tryptic digestion requires a complete or 
partial sequence of the targeted virus. In the present study, the sequence used for pro-
ducing the VLPs was also used for data analysis. This approach is somehow limited by 
the high genomic variability of norovirus. A proteomic‐based detection method for 
norovirus (and any other highly viable virus) would require a permanently updated 
database that contains the sequence of every new strain. However, the three peptides 
chosen for MS/MS are found in the vast majority of the GII noroviruses and, following 
fragmentation, they are a good set of biomarkers to use for reliable identification. Mass 
spectral identification of other genotypes could be employed in a similar manner using 
other unique peptide sequences.

The present study represents an important step in developing assays for the detection 
of viral proteins from complex samples using various genotypes of norovirus to devise 
model for non‐cultivable viruses. New forms of MS‐based proteomics are developing 
together with new high‐resolution instruments that may provide the tools for detection 
of viruses in complex matrices. The challenge for the future is to be able to find  common 
proteins that are both genotype specific while retaining a common core of species‐
specific proteins.

Table 8B.3 Observed and theoretical m/z of peptides detected using LC‐MS/MS analysis of VP1 
originating from VLP‐spiked feces together with error in ppm. The sequence of peptides highlighted 
in red was confirmed using tandem MS.

Observed m/z Expected m/z Mass accuracy (ppm) Peptide

905.571 905.4476 136 (R)FVNPDTGR(V)
1488.865* 1487.858 −9.03 R.QLEPVLIPLPDVR.N
1525.66 1524.653 −6.56 R.ANNAGDDVFTVSCR.V
1572.756 1571.749 −13.1 R.FTPVGVTQDGSTAHR.N
1688.791 1687.784 −6.93 R.NEPQQWVLPDYSGR.N
1719.828* 1718.821 −9.85 R.NNFVQAPGGEFTVSPR.N
2330.036 2329.029 −7.36 K.LGSIQFATDTDNDFETGQNTR.F
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8B.8 Bacteriophage Identification using MS

Bacteriophages are viruses that infect and replicates within bacteria. They are  composed 
of proteins that encapsulate a DNA or RNA genome that may encode a few genes to as 
many as hundreds of genes. Bacteriophages have structural and functional similarities. 
A large proportion of bacteriophage genera possess a head and tail‐like structure and 
infect bacteria by injecting their genome into its cytoplasm (Ackermann, 2009; McGrath 
and van Sinderen, 2007). The capsid is built by multiple copies of one or a few proteins, 
most often having an icosahedral structure. In some cases, they may have lipid enve-
lope. The tail‐like structure is responsible for attaching the bacterial wall and delivering 
the phage genome (Goering et al., 2013).

The emergence of antibiotic‐resistant bacteria represents a critical problem in today’s 
medicine. Administration of bacteriophages for treating bacterial infections was con-
sidered even before the discovery of antibiotics. Although this approach was discarded 
in the United States and Western Europe, once antibiotics became widespread, phages 
continued to be used in Eastern Europe, where several studies were conducted 
(Bogovazova et al., 1992; Rajagopala et al., 2011; Sulakvelidze et al., 2001). Considering 
the imperative need for finding an alternative to classic antibiotics, the results of early 
and more recent studies suggest that phages may be effective therapeutic agents and 
warrant further studies in the field (Sulakvelidze et al., 2001).

Proteomic‐based studies could address some of the problems of early therapeutic 
phage research. One of these is the insufficient purity of phage preparations. The cell 
lysates containing the phages also contained other contaminants such as endotoxins 
(Bogovazova et al., 1992). Also, bacterial sterility has to be ensured (Carlton, 1999). MS 
combined with high‐performance liquid chromatography can be used to evaluate the 
purity of these preparations. Also, the titer of phages could be determined indirectly by 
quantification of their structural proteins using quantitative MS. The use of MALDI‐
TOF MS and LC‐MS are offering a rapid and efficient way to achieve this.

8B.9 Bacteriophages

A study was undertaken to evaluate the use of MS for rapid and accurate identification 
of bacteriophages. The phages were cultivated in E. coli cultures on agar plates. The 
plates exhibiting plaques (clear zones in the bacterial lawn, induced by phage) were 
selected. SM phage buffer was used for diluting the phages. An aliquot of the suspen-
sion was separated using SDS‐PAGE. The protein bands were excised, and following 
reduction and alkylation treated with trypsin. Also, the suspension was precipitated 
with acetone, reconstituted in ammonium bicarbonate buffer, and subjected to 
 reduction, alkylation, and tryptic digestion. The peptides obtained from both in‐gel and 
solution digestion were analyzed using MALDI‐TOF MS and LC‐IT‐TOF.

8B.10 Protein Identification

MALDI‐TOF MS was used for peptide mass fingerprinting. LC‐IT‐TOF was used in 
MS/MS mode, and all ions detected were selected for tandem mass spectrometric 
 analysis. The peptide mass fingerprint data obtained were compared to all entries from 
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Table 8B.4 Proteins identified using LC‐IT‐TOF in MS/MS mode following in‐solution tryptic digestion 
of bacteriophages protein lysates.

Protein Species

Major capsid protein Enterobacteria phage T7
Tail fiber protein Enterobacteria phage T7
Capsid assembly scaffolding protein Enterobacteria phage T7
Single‐stranded DNA‐binding protein Enterobacteria phage T7
Portal protein Enterobacteria phage T7
Tail tubular protein gp12 Enterobacteria phage T7
Protein D 11 Escherichia phage T5
L‐alanyl‐D‐glutamate peptidase Escherichia phage T5
Tail tube protein Escherichia phage T5
Deoxyuridine 5’‐triphosphate nucleotidohydrolase Escherichia phage T5
Protein sciB Escherichia phage T5
Probable portal protein Escherichia phage T5
Major capsid protein Escherichia phage T5
Probable tape measure protein Escherichia phage T5
Probable baseplate hub protein Escherichia phage T5
DNA polymerase Escherichia phage T5
Major capsid protein Enterobacteria phage lambda
DNA‐packaging protein FI Enterobacteria phage lambda
Capsid decoration protein Enterobacteria phage lambda
Tail assembly protein GT Enterobacteria phage lambda
Tail tube protein Enterobacteria phage lambda
Serine/threonine‐protein phosphatase Enterobacteria phage lambda
Tail tube terminator protein Enterobacteria phage lambda
Capsid assembly protease C Enterobacteria phage lambda
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Figure 8B.4 PMF spectra of bacteriophage lambda major capsid protein digests showing the 
differences between (A) in‐solution and (B) in‐gel digestion. The spectra were recorded using MALDI‐
TOF MS in positive ion reflectron mode.
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the Swiss‐Prot database. The MALDI‐TOF MS PMF data identified one protein (major 
capsid protein) originating in enterobacteria phage lambda both from in‐gel and  
in‐solution digested samples (Figure 8B.4).

From IT‐TOF data, various viral proteins were identified from both in‐gel and in‐
solution digestion. Alongside Lambda, phages related to enterobacteria phages T5 and 
T7 were also identified (Table 8B.4).

8B.11 Conclusions

The number of matched peptides was significantly greater after the gel electrophoresis 
and in‐gel digestion. However, the in‐solution digestion followed by LC‐IT‐TOF analy-
sis provided a confident identification of all three phage species. Furthermore, in‐solution 
digestion is much easier to perform and takes less time to complete. In‐solution diges-
tion takes around 5 h to complete. One approach that can be used to reduce this is to 
use microwave‐assisted digestion, which has been shown to reduce the incubation time 
to around 10 min (Lill, 2009). Although not assessed in this study, the process could 
also benefit from the use of magnetic beads (reducing the incubation time to as low as 
30 s), which act by concentrating the protein on their surface and by absorbing radia-
tion (Lill, 2009).
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9.1 Introduction

The science of microbial identification can be considered to have arisen from the  seminal 
work of the Dutch microbiologist Antonie van Leeuwenhoek. He provided the pioneer-
ing microscopic work in 1683 using rudimentary equipment to support the studies of the 
equally important French microbiologist Louis Pasteur, who described the biological 
functions of microbes. In Germany, Robert Koch demonstrated the aetiology of the 
infectious disease process in humans. The search for the accurate identification of micro-
bial pathogens became crucial for underpinning medicine in treating diseases.

Florentine Pier Antonio Micheli published the Nova Plantarum Genera in 1729, 
which is an illustrated work detailing approximately 1900 ‘plant’ species. Of these, about 
900 were fungi and lichenized fungi. In fact, Micheli specialized in microfungi and is 
notable for having defined several important genera including Aspergillus. Even now, 
classical mycological identifications are performed by some of those classical methods 
based on micro‐ and macromorphology (Simões et al., 2013).

In any discussion of the history of fungal identifications, it is fundamental to divide 
them into two groups: the single‐celled yeasts and the filamentous fungi, as each tax-
onomy has developed differently. Yeasts have a limited morphology upon which it is 
impossible to circumscribe taxa sufficiently. However, the biochemical and physiologi-
cal diversity is sufficiently large to allow tests such as growth on various carbon sources 
to be used, in a manner similar to those for bacteria. Filamentous fungi have a plethora 
of morphological characteristics such as shapes of hyphae, spores and, particularly, 
conidiophores, which allowed a greater range of taxonomic characters [e.g. Rapper and 
Fennell (1965) for Aspergillus]. In addition, many fungi show distinctive macromor-
phologies that vary with different agars, temperatures and water content which can be 
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used in classifications [e.g. Pitt (1973) for Penicillium]. Consequently, a sophisticated 
taxonomy was constructed for these organisms based on morphology. However, it was 
becoming apparent that morphologies for filamentous fungi had limitations in that not 
all taxa could be reliably identified, and so biochemical and physiological methods were 
increasingly introduced. The biochemical procedures were often based on chromato-
graphic techniques, culminating in a wide range of methods potentially being employed 
(Frisvad et  al., 1989; Paterson and Bridge, 1994; Paterson et  al., 2006; Simões et  al., 
2013). Indeed, the use of secondary metabolites in some groups has been particularly 
emphasized by Frisvad (e.g. Frisvad and Filtenborg, 1983; Frisvad and Thrane, 1987) 
and are still used in metabolomics (Alexander et al., 2015).

Increasingly, it was realized that a single method was unavailable that could be used 
for each taxon and that a multidisciplinary, or polyphasic approach, using many different 
characters from various disciplines was optimal, which was first reported by Bridge et al. 
(1989a) for the terverticillate penicillia: it is now generally accepted as the optimal 
approach to cover a wide range of taxa. Careful consideration is required regarding 
which individual methods are to be used and on what to base the core taxonomy. To a 
large extent, these biochemical and physiological methods have themselves been com-
plemented or superseded by molecular biology methods for filamentous fungi and yeasts 
in the clinical field (Liu, 2011; Paterson and Lima, 2015), with DNA barcoding finding 
prominence as a single‐method procedure for fungal identifications (Robert et al., 2015).

Polyphasic identification aims at the integration of different taxonomic characters 
(Simões et al., 2013). Interestingly, Bridge et al. (1989b) were also the first to employ 
numerical taxonomy as an integration method for filamentous fungi, often used previ-
ously for other microorganisms. However, there remains the problem of variation, 
which can originate from the fungal specimen, and/or the analytical technique employed 
(Paterson, 1998). By using numerous techniques, it is assumed the level of variation in 
the technique can be reduced, although variation in the fungal specimen remains. The 
time and resources required to undertake a particular identification also have to be 
considered. What can be done in a fully equipped mycological centre is different from 
what can be done in a clinical diagnostic laboratory with limited resources or in an 
industrial food laboratory, where the practical approach based on antifungal resistance 
or mycotoxin characters, respectively, can provide answers to specific problems. These 
factors intensify the need for the scientific community to find new and complementary 
fungal identification tools.

In the ground‐breaking paper by Cain et al. (1994), a new methodology for the iden-
tification of bacteria by matrix‐assisted laser desorption/ionization time‐of‐flight mass 
spectrometry (MALDI‐TOF MS) was presented, where sample preparation involved 
minimal purification of cells. Holland et  al. (1996) described for the first time an 
improved method for the rapid identification of whole bacterial cells by MALDI‐TOF 
MS, establishing the basis of the current methodology. This inspired the use of MALDI‐
TOF MS in fungal identifications (Kallow et al., 2006). MALDI‐TOF MS has now been 
applied routinely to analyze the chemical cellular composition of microorganisms, pro-
viding rapid and discriminatory proteomic profiles for identification and subtyping 
(Amiri‐Eliasi and Fenselau, 2001; Dias et al., 2011; Erhard et al., 2008; Kallow et al., 
2006; Maier et al., 2006; Nicolau et al., 2014; Rodrigues et al., 2011; Rodrigues et al., 
2014; Oliveira et al., 2015; Passarini et al., 2013; Pereira et al., 2014; Santos et al., 2010, 
2011; Seyfarth et al., 2008; Silva et al., 2015; Stackebrandt et al., 2005).



Impact of MALDI-TOF MS in Clinical Mycology; Progress and Barriers in Diagnostics 213

The application of this technique for the identification of clinical fungal samples is 
currently well established based on the remarkable reproducibility for the measurement 
of constantly expressed and highly abundant proteins, such as ribosomal proteins, that 
are used as biomarkers to generate a fingerprint profile that ranges between 2 and 
20 kDa (Dias et al., 2011; Lima‐Neto et al., 2014; Pereira et al., 2014; Santos et al., 2010; 
Santos et al., 2011). For example, proteomic profiles by MALDI‐TOF MS have been 
used in the identification of filamentous fungi isolated in complex matrices and from 
different clinical substrates (Becker et al., 2014; Silva et al., 2015).

MALDI‐TOF MS has been used as (1) an important component in the polyphasic 
identification of clinical fungi and (2) a rapid diagnostic tool for routine clinical fungal 
identifications (Croxatto et al., 2012; Schulthess et al., 2014). However, there are some 
important limitations to MALDI‐TOF MS, particularly in relation to the identification 
of closely related fungal taxa, such as the dimorphic fungi with mycelial‐to‐yeast phase 
transitions or highly encapsulated yeasts. Commercial databases of MALDI‐TOF MS 
spectra have also limitations in their coverage of taxa, although this has expanded 
recently (Lohmann et al., 2013; Mancini et al., 2013).

Commercial databases are based on the different protocols used by the main MALDI‐
TOF MS manufacturers and are widely available. In some cases, sample preparation 
protocols have been changed over the time even for the same database, as MALDI‐TOF 
MS evolved and sample preparation to produce databases may have been developed in 
a generalized manner without using clinical samples. For example, sample optimization 
may have occurred when comparing small differences in spectra from the same taxon. 
This evolution of sample preparation was not always accomplished with a data cleaning 
process or data storage conversion. Commercial databases for clinical fungi are less well 
established and comprehensive than for bacteria.

For fungal, and other, identifications by MALDI‐TOF MS, commercial databases are 
built with software that uses a point system based on the peak list with mass signals 
weighted according to their specificity. Similarity between individual spectra is 
expressed as the relative or absolute number of mass signals matching after subjecting 
the data to a single link agglomerative clustering algorithm analysis. In general, the pro-
tocols used in different laboratories are not standardized. A large number of publica-
tions contain different (1) protocols for protein extraction, (2) matrices for MALDI‐TOF 
MS analysis and (3) growth conditions for fungi are available in the scientific literature. 
These can affect negatively the spectra quality and consequently fungal identification 
with potentially serious shortfalls in clinical diagnoses. The sources of variation are 
protein extraction, matrices, growth conditions and databases without even consider-
ing the natural variation of fungal strains.

9.2 Evolution in Commercial Methodologies 
of Sample Preparation

9.2.1 Fungal Identification

The identification of clinically relevant fungi in the mycological laboratory has been 
attempted by MALDI‐TOF MS. Rapid identification of some filamentous fungi and 
yeasts are possible without time‐consuming subculturing and phenotypic identification 
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(Bader, 2013; Schulthess et al., 2014). However, some fungal taxa remain problematic 
due to their wall cell rigidity, heterogeneity of biological materials and poor protein 
extraction generating low numbers of mass peaks in the spectra (Oliveira et al., 2015). 
However, MALDI‐TOF MS in routine diagnostic clinical mycology is rare, especially 
for filamentous fungi, mainly due to (1) extended sample preparation for filamentous 
fungi for good‐quality spectra, (2) low numbers of representative taxa in databases and 
(3) the quality of databases (Schulthess et  al., 2014). Compared to bacterial sample 
preparation, fungal sample preparation is laborious and time consuming.

Different studies have reported the establishment of in‐house database sets within com-
mercially available databases covering mainly a single fungal genus, such as Aspergillus, 
Candida, Fusarium and Lichtheimia. In other cases, the (1) Pseudallescheria/Scedospor
ium complex, (2) Mucorales, (3) the dermatophytes and (4) clinically relevant yeasts are 
covered (De Carolis et al., 2012; De Carolis et al., 2014a; Lima‐Neto et al., 2014; Santos 
et al., 2011; Schulthess et al., 2014). Despite the proliferation of in‐house and commercial 
databases, two main commercial platforms are currently available for use in clinical labo-
ratories: MALDI Biotyper® (Bruker Daltonics®, Germany) and VITEK® MS (bioMérieux, 
France). Furthermore, the smaller platform of MS LT2‐ANDROMAS (http://andromas.
com/a‐propos/, France) is also available and is discussed in the following.

9.2.2 MALDI Biotyper

Bruker Daltonics published an application note for the Biotyper MALDI‐TOF MS as a 
fast and reliable method for the classification and identification of bacteria, yeasts and 
filamentous fungi using spectral fingerprinting (Maier et al., 2006). This has applications 
in clinical diagnostics, environmental and taxonomical research and food‐processing 
quality control using a straightforward and generic sample preparation protocol. 
According to the application note, the system allowed identifications of yeasts and fungi 
in few minutes. Sample preparation was described as very simple through the direct 
transfer of a thin layer of the microbial cells (without any treatment) directly from the 
culture plate to the MALDI‐TOF sample plate, followed by the addition of a α‐cyano‐4‐
hydroxycinnamic acid (CHCA) matrix solution and spectral acquisition (Maier et  al., 
2006). This method was considered optimal and fit for purpose for all microorganisms.

The diagnostic procedure employed by Biotyper is implemented by the MALDI 
Biotyper database, which generates cellular biocompound profiles which leads to 
microbial identification using well‐developed protocols of sample preparation. Fresh 
fungal material should be used for analysis, whereas overnight growth is used for yeasts. 
In contrast, slow‐growing fungi may need to be cultivated for several days before spec-
tral analysis, which makes obtaining fresh material problematic. Fungi stored for more 
than 3 d, even at 4°C or lower, should be avoided because it has a negative impact on 
spectral quality and reproducibility. In addition, according to this manufacturer, culture 
plates with different recommended media and growth temperatures could also have a 
negative effect on final identification results.

Filamentous fungi are grown in liquid, using a standardized method. Briefly, tubes 
containing media are inoculated with the filamentous fungi, placed in Bruker’s cultiva-
tion tubes, transferred to a shaker and incubated overnight or until enough biological 
material is observed. The samples are left for 10 min until the filamentous fungus 
 sediments on the bottom of the tube. A sample (1.5 ml) is taken from the sediment and 
centrifuged for 2 min at full speed (e.g. 10,000g). The supernatant is carefully removed, 

http://andromas.com/a-propos/
http://andromas.com/a-propos/


Impact of MALDI-TOF MS in Clinical Mycology; Progress and Barriers in Diagnostics 215

and 1 ml distilled water is added to the pellet. The sample is vortexed for 1 min with 
washing, and re‐vortexed. An extraction with ethanol is performed prior to sample 
transfer to the MALDI‐TOF sample plate, to which CHCA matrix solution in 50% 
 acetonitrile and 1.5% trifluoroacetic acid is added. The sample is air‐dried at room 
 temperature and analyzed.

Analysis for yeast identification is mainly performed based on a standard microtube 
extraction protocol. A single colony is thoroughly suspended in 300 µl of distilled water, 
and then 900 µl of absolute ethanol is added. The cell suspension is vortexed and cen-
trifuged at 10,000g for 2 min. The supernatant is removed, 50 µl of formic acid is added 
to the mixture after which it is re‐vortexed. Acetonitrile (50 µl) is added and vortexed 
vigorously, and the tube is centrifuged at 10,000g for 2 min. One microlitre of the super-
natant is spotted onto the MALDI‐TOF sample plate and allowed to dry before overly-
ing with CHCA matrix as described above for filamentous fungi. MALDI‐TOF sample 
plates are applied to the MS, and the results are analyzed in automatic and linear mode 
as per instructions of the manufacturer.

Recently, a direct blood culture test using culture‐independent methods for yeasts 
identification was developed (Morgenthaler and Kostrzewa, 2015). In this procedure, 
1 ml of liquid blood culture is harvested and transferred to a microtube. After addition 
of 200 µl of lysis buffer (Bruker Daltonics), the sample is stirred for 10 s and then centri-
fuged for 1 min at 10,000g at room temperature. The supernatant is discarded, and pel-
let suspended in 300 µl of distilled water. The sample is washed twice with 900 µl ethanol 
and subjected to centrifugation cycles of 2 min at 10,000g. The pellet is suspended in 
30 µl of 70% formic acid. Acetonitrile (30 µl) is added, and the sample is vortex and 
centrifuged. One microlitre of the extract is spotted onto a MALDI‐TOF sample plate 
and analyzed according to the MALDI Biotyper standard procedure, as described above 
for the analysis of yeasts on pure culture.

The identification generated is associated with a numerical score. There are thresh-
olds where values greater or equal to 2.0 represent proven species or particular groups 
of strains. Values from 1.99 to 1.7 indicate genus identification, whereas samples with 
lower than 1.7 need to be reanalyzed.

These databases are controlled by the company, and customers cannot introduce 
spectra obtained by different methodologies. However, it is possible to modify proto-
cols and add information to in‐house libraries in a private field of the MALDI Biotyper 
system. In this case, all generated spectra will only be available to each end user. The 
user is entirely responsible for the validation and use of results derived from library 
entries they generate in their in‐house libraries (MALDI Biotyper, 2014).

In a study by performed by the authors, MALDI‐TOF spectra of Aspergillus udaga-
wae (Figure 9.1A), an emergent human pathogen associated with invasive aspergillosis, 
and Trichosporon asahii (Figure 9.1C), an emerging fungal pathogen seen particularly in 
immunologically compromised patients, were obtained by the MALDI Biotyper using 
the manufacturer’s methodology. An analysis of the same fungal isolates and  conditions, 
but using two sample preparation procedures were evaluated (Figures 9.1B and D). The 
spectra are different for each fungus, and different protocols gave different spectra. The 
alternative sample preparation was based on the NIH‐National Institutes of Health, 
USA protocol (Lau et  al., 2013), which uses absolute ethanol and 0.1‐mm‐diameter 
 zirconia‐silica beads to disrupt the fungal cell wall before MALDI‐TOF MS analysis.

The modification of sample preparation protocols may have changed the fungal 
 profiles and misidentifications were obtained by the alternative method, although 
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Figure 9.1 Spectra obtained for Aspergillus udagawae DMic 062879 (A and B) and Trichosporon asahii 
CBS 2479 (C and D) by the MALDI Biotyper® system. Spectra A and C were obtained by the MALDI 
Biotyper standard protocol, and spectra B and D were obtained by the NIH‐National Institutes of 
Health protocol.
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 repetitions were required to obtain an accurate assessment. Spectral data produced 
with different methodologies and quality assurances have been shared among laborato-
ries around the world. A data cleaning process, which involve a process of detecting, 
diagnosing and editing faulty data in in‐house libraries that archive spectra obtained by 
different methodologies is mandatory, and a similar approach should be implemented 
with the commercial databases. More extensive data about the methodology associated 
with the archival spectral files in these databases is needed. It is suggested that a joint 
effort on data cleaning processes should be addressed by all data providers to avoid 
spectral data that does not represent real fungal species identity.

9.2.3 VITEK® MS

The VITEK MS system was developed with the experience gained on the Spectral 
ARchive And Microbial Identifications System (SARAMIS™), developed by AnagnosTec 
(Germany), with the contributions of researchers participating in the biennial SARAMIS 
Experts Meeting held in Potsdam, Germany, and once in Guimarães, Portugal (held by 
Micoteca da Universidade do Minho culture collection). The VITEK MS comprises a 
MALDI‐TOF MS spectral database with a level of microbial diversity comparable to the 
MALDI Biotyper, in terms of strain origin and sites of isolation.

Stackebrandt et al. (2005) were pioneers in the use of MALDI‐TOF MS and the SARAMIS 
software package for grouping bacteria on the basis of similarities: a set of Myxococci 
(Corallococcus) strains was evaluated, and the methodology based on this study was used in 
the SARAMIS software package for microbial identification, before the enterprise changed 
the sample preparation protocol. Briefly, a few micrograms of dried bacteria were placed 
onto a stainless steel target plate, and 1 µl of matrix [10 mg/ml 2,5‐dihydroxybenzoic acid 
(DHB) in water/acetonitrile (1:1) with 0.03% trifluoroacetic acid (TFA)] was added imme-
diately. Samples were air‐dried at room temperature and analyzed by MALDI‐TOF MS. 
Kallow et al. (2006) were able to separate the newly described species Aspergillus ibericus 
(Serra et al., 2006) from the two closely related species A. niger and A. carbonarius within 
the section Nigri by MALDI‐TOF MS using the SARAMIS software package. A similar 
protocol was used for sample preparation as described for bacteria with DHB and TFA.

Seyfarth et al. (2008) and Erhard et al. (2008) published the first protocols for analysis 
of clinically relevant filamentous fungi by MALDI‐TOF MS to be identified using the 
SARAMIS software package. The method was similar to the protocol established by 
Stackebrandt et al. (2005) and Kallow et al. (2006), although with fresh cells rather than 
dried cell and 0.3 µl of DHB matrix and 1% TFA, instead 1 µl of DHB and 0.3% TFA. 
From this point, this new protocol was used, and the spectral information generated is 
still available and has been widely used for research and clinical identification. This 
protocol was optimized for use in commercial kits.

Currently, VITEK MS is a customized system, which makes the MALDI‐TOF MS 
analysis expensive due to the stringent protocols and disposable consumables that need 
to be used. This optimized workflow involves a pipette tip to transfer a piece of fungal 
culture from an agar medium to a 2 ml microtube containing 50 µl TFA. Then, the sam-
ple is vortexed for a few seconds and allowed to stand for 30 min. The acidic suspension 
is then diluted 1/10 by adding 450 µl demineralized and deionized water to each micro-
tube. Samples are vortexed for a few seconds, and then 1 µl of the suspension is spotted 
onto the disposable MALDI‐TOF sample plate. Samples are air‐dried, and then 1 µl of 
the customized VITEK MS‐CHCA matrix is added (VITEK MS‐CHCA 41107). The 
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sample is then immediately analyzed by the VITEK MS system, and the results are 
 analyzed by the SARAMIS software using the automatic method and linear mode. The 
results are expressed as confidence values ranging from 0 to 99.9. Results of 99.9 have a 
strong match and may be reported. In contrast, results from 60 to 99.8 indicate a low 
discrimination capability and require further review. Values lower than 60 represent 
low‐quality results with no associated identification.

The current VITEK MS system evolved from the Axima@SARAMIS software pack-
age due to the efforts of various researchers using clinical samples from different coun-
tries, but it was only used for research proposes (Dias et al., 2011; Lima‐Neto et al., 
2014; More and Rosselló‐Móra 2011; Oliveira et al., 2015; Santos et al., 2011). Then, 
when bioMérieux bought the Axima@SARAMIS system, it was incorporated into the 
VITEK MS RUO (research use only). A pre‐commercialized database called VITEK MS 
IVD (In Vitro Diagnostic Applications) version‐1 was established, and continuously 
updated versions have been available to the costumers.

A direct blood culture test using culture‐independent methods for fungal identifica-
tion by VITEK MS was also developed by bioMérieux. The basis of the test is a custom-
ized kit modified to match the RUO sample processing method, where identification of 
pathogenic fungi in blood is directly analyzed by the VITEK MS system. The custom-
ized kit contents include the VITEK MS blood culture lysis and washing buffers. The 
procedure is similar to that of the MALDI Biotyper as the same reagents are used for 
sample preparation.

SARAMIS database works as part of a network where spectra archived by end users 
become available for participants in the network. A disadvantage therefore is that errors 
and/or low‐quality spectra can be propagated in the network database. Furthermore, 
laboratories are unable to maintain confidentially.

9.2.4 MS LT2‐ANDROMAS

The MS LT2‐ANDROMAS is an integrated MALDI‐TOF MS system with an MS 
 database, and can be used for clinical yeast and filamentous fungal identifications. The 
system operates with the same sample preparation and form of analysis as the MALDI 
Biotyper and VITEK MS. However, operating information and the interface spectral 
acquisition, analysis and identification is only available in French, which restricts its use. 
It is possible to add spectra by using MS LT2‐ANDROMAS to develop in‐house librar-
ies, which can be used to increase the number of reference strains.

It should be noted that in all of the above systems, it is essential that correctly identi-
fied fungi are employed using DNA sequencing wherever possible, to generate reliable 
reference data.

9.3 Effect of In‐House Sample Preparation 
on Database Reliability

9.3.1 Yeast Identification in Pure Culture

Amiri‐Eliasi and Fenselau (2001) were pioneers in the identification of yeast by MALDI‐
TOF MS. The authors could identify and characterize Saccharomyces cerevisiae, and 
described an optimal technique for yeast cell wall lysis for analysis which involved the 
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use of high concentrations of formic acid solutions. Identification of clinically relevant 
yeast by MALDI‐TOF MS has been addressed frequently in the literature (Croxatto 
et al., 2012; Lima‐Neto et al., 2014; Maier et al., 2006; Oliveira et al., 2015; Santos et al., 
2011; Sow et al., 2015; Wang et al., 2014). However, various sample preparation meth-
ods were reported among the different laboratories, or even within a laboratory or 
research group (Bidart et al., 2015).

Modified protocols for sample preparation have been established by the main 
MALDI‐TOF MS manufacturers for yeasts to improve spectral acquisition. These 
ranged from on‐site plate inactivation with protein extraction using organic solvents 
plus the matrix to a full‐scale protein extraction in microtubes with ethanol‐based 
methods (Bernhard et  al., 2014; Clark et  al., 2013; De Carolis et  al., 2014b; Reich 
et al., 2013).

However, the clinical yeast inter‐ and intraspecific diversity is much greater than the 
spectral information currently stored on the databases, and new spectra are continually 
being archived. The choice of best MALDI‐TOF matrices and yeast cell disruption 
methods to release intracellular proteins have been evaluated, and this shows that the 
simplest sample preparation procedure is the direct smear protocol, for which different 
matrices are commercially available and have been widely used. The most commonly 
used matrices for yeast identification are the aforementioned DHB, CHCA plus sinapinic 
acid (SA). These are optimal matrices for detection of ions in the mass spectra range 
used for microbial identification (Bader, 2013). The most frequently used laser for 
microbiological applications is nitrogen, which works at 337 nm wavelength, and DHB, 
CHCA and SA are compatible. It is necessary to point out that the chosen matrices have 
to be in accordance with the laser wavelength that each equipment uses.

A standard procedure based upon yeast cell inactivation and further protein extrac-
tion is widely used. Although the full details are not given in the manuals for yeast 
identification of the main MALDI‐TOF MS manufacturers, several in‐house MALDI‐
TOF MS yeast libraries based on this sample preparation procedure have been 
established.

The method consists of suspending yeast cells in an aqueous ethanol solution (water‐
ethanol 1:3, v/v) followed by a centrifugation step. The pellet obtained is further vor-
texed with a solution composed of 70% aqueous solution of formic acid and an equal 
volume of acetonitrile. The sample is finally transferred onto a MALDI‐TOF MS sample 
plate and overlaid with an appropriate matrix solution (Bader, 2013; Posteraro et al., 
2013). This method is laborious and time consuming and is considered a potential limi-
tation in clinical laboratories (Chen et al., 2013). In order to overcome this, alternative 
protocols have been evaluated (Bidart et al., 2015).

Short ‘on‐target lysis’, ‘on‐plate extraction’ or ‘fast formic acid’ extraction involve an 
additional step consisting of yeast cell treatment with ca. 1 µl of 25%–70% formic acid 
on the smeared yeasts on the MALDI‐TOF sample plate which is air‐dried at room 
temperature. Ethanol can be added in order to aid cell lysis, after which the matrix solu-
tion is overlaid on the dried sample (Posteraro et al., 2013).

Revisions of the manufacturer‐recommended criteria for yeast identification are 
available. Cassagne et al. (2013) compared the impact of four pre‐treatment procedures 
on the performance of MALDI‐TOF‐based identification: direct smear, fast formic acid 
extraction and two additional variants of a standard protocol involving complete formic 
acid/acetonitrile extractions. The authors concluded that the longer, complete  extraction 
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procedures are better suited for yeast identification than the shorter approach. Smear 
and fast formic acid extraction procedures yielded lower (<40%) correct identification 
rates than the use of the two complete extraction procedures (>77%) of portions of 
 colonies grown on Sabouraud and chromogenic media.

De Carolis et  al. (2014a) evaluated the impact of sample preparation on database 
 performance. These authors used an adapted sample preparation protocol based on a 
preliminary yeast cell extraction with a 10% aqueous solution of formic acid. Using this 
sample preparation procedure, an in‐house MALDI‐TOF MS library with spectra of 
156 reference and clinical yeast isolates (48 species belonging to 11 genera) was created. 
After a retrospective validation study, the database was evaluated on 4232 yeasts rou-
tinely isolated during a 6‐month period and analyzed by MALDI‐TOF MS. A high level 
(95.8%) of correct yeast identification was obtained.

The establishment of a public database of spectra, in which researchers could deposit 
their spectra made in their in‐house systems, has been suggested in different fora. 
However, to avoid mistakes, it will be necessary to obtain agreement on the most suit-
able culture growth conditions and protein extraction protocols. To ensure a high‐quality, 
complete and accurate database, the spectral deposition should be monitored in 
 compliance with quality assurance quality control guidelines (Vermeulen et al., 2012).

However, reproducibility of yeast identification by MALDI‐TOF MS may be unaf-
fected by growth conditions such as culture media or temperature (Bernhard et  al., 
2014; Clark et al., 2013; De Carolis et al., 2014b; Reich et al., 2013). The main reason for 
this is that the ribosomal proteins, which are the target compounds analyzed by 
MALDI‐TOF MS, do not vary with environmental conditions. This is contradicted by 
the observation that when MALDI‐TOF MS is used for identification of closely related 
yeasts, standardization of growth conditions and sample preparation protocols remain 
crucial. For example, standardized MALDI‐TOF MS analysis is able to distinguish 
between yeast complexes, such as Candida parapsilosis, C. orthopsilosis and C. metap-
silosis (Santos et al., 2011); Cryptococcus neoformans and C. gattii (Balážová et al., 2014; 
Firacative et al., 2012; McTaggart et al., 2011; Posteraro et al., 2012; Šedo et al., 2013), 
and the Sporothrix schenckii complex (Oliveira et al., 2015). Very closely related species 
such as C. glabrata, C. bracarensis, C. nivariensis, C. albicans and C. dubliniensis 
(Santos et  al., 2011) or phenotypically similar species such as Candida famata and 
C. guillermondii (Castanheira et al., 2013; Ghosh et al., 2015) can also be distinguished.

The authors obtained preliminary data on growth conditions of clinical yeasts and 
sample preparation that can affect MALDI‐TOF MS identifications of closely related 
species. Figure  9.2 shows an IGS1 phylogenetic analysis and a statistical grouping 
obtained by using the MALDI Biotyper with spectra of clinical isolates of Trichosporon 
faecale and T. asahii. All the isolates tested were also identified using morphology and 
biochemistry methods according to Chagas‐Neto et al. (2009). Two methods of protein 
extraction were tested for their accuracy to identify the Trichosporon strains. Figure 9.2B 
illustrates the protein spectra generated by the MALDI Biotyper using the manufac-
turer’s protocol (ethanol‐formic acid‐acetonitrile) for extraction. In contrast, Figure 9.2C 
illustrates the protein spectra obtained by the MALDI Biotyper using the protocol with 
trypsin as an additional proteolytic treatment. Figures 9.2B and C show that changes in 
the protocol for MALDI‐TOF MS analysis impacts the clustering of the strains. By add-
ing trypsin to the protocol, the protein spectra changed significantly, as documented by 
the number of ions peaks and respective molecular weight generated by both methods. 
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Figure 9.2 Dendrograms obtained for species of Trichosporon by (A) molecular biology through the 
IGS1 region sequencing; by MALDI Biotyper® using (B) the manufacturer’s protocol (ethanol‐formic 
acid‐acetonitrile); and (C) using protein extraction by treatment of the sample with trypsin (Credits are 
due to Elaine Francisco (UNIFESP, Brazil] and Cledir Santos (Universidad de La Frontera, Chile].)
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Consequently, the Trichosporon strains clustered differently as a result of the trypsin in 
the protein extraction protocol. However, more extensive work is required for final con-
clusions to be made.

9.3.2 Filamentous Fungi Identification

Filamentous fungi are more difficult than yeast to analyze by MALDI‐TOF MS. Diverse 
spectral profiles of the same filamentous fungus strain can be obtained for reasons 
other than genuine taxonomic differences; for example, samples prepared with mycelia, 
conidiophores and/or spores may give different results. Similarly, (a) newly grown com-
pared to preserve fungi and/or (b) the presence of secondary metabolites may affect 
results. The CHCA and DHB are the optimal matrices for filamentous fungi identifica-
tion, where the principal objective is to achieve an optimal signal‐to‐noise ratio (Santos 
et al., 2010; Simões et al., 2013). Nonetheless, if all these are standardized, the results 
obtained become more comparable and reliable, if they are represented in the reference 
mass spectra database (Santos et al., 2010). Finally, the ionization process in MALDI‐
TOF MS could be inhibited if there are high concentrations of melanin in the fungi 
(Buskirk et al., 2011; Valentine et al., 2002).

Welham et al. (2000) published a formative paper for the characterization of fungal 
spores of Penicillium spp., Scytalidium dimidiatum and Trichophyton rubrum using 
MALDI‐TOF MS. In order to provide a source of protons to facilitate sample ioniza-
tion, fungal spores were washed with 0.1% TFA aqueous solution. Samples were then 
vortexed and centrifuged, after which the fungal spores were re‐suspended in methanol 
and transferred to the MALDI‐TOF sample plate, covered with the matrix solution and 
analyzed.

This intact spore methodology allowed procurement of simple spectra with only a 
few peaks of the cellular material over the mass range 2 to 13 kDa that enabled differen-
tiation of Penicillium strains, Scytalidium dimidiatum and Trichophyton rubrum. 
Additional studies were developed for filamentous fungi on the basis of their spores 
(Chen and Chen, 2005; Kemptner et al., 2009; Valentine et al., 2002). No databases are 
available based on poor spectra such as those generated from fungal spores. For reliable 
filamentous fungi species identification, more peaks are required, especially in the case 
of closely related clinical filamentous fungi.

Identification of clinically relevant filamentous fungi is based on the analysis of the 
whole fungal biomass of fungi such as dermatophytes. Pereira et al. (2014) evaluated the 
potential of MALDI‐TOF MS for the typing and identification of clinical isolates of 
Trichophyton rubrum. Isolates were identified at the species level, and results were 
compared with sequencing of the internal transcribed spacers (ITS1 and ITS2) with the 
5.8S rDNA region. Furthermore, in order to assess the intraspecific variability of 
Trichophyton rubrum strains, PCR fingerprinting analysis using primers M13, (GACA)4 
and (AC)10 was performed.

The authors evaluated DHB and CHCA matrices. In addition, (1) different extraction 
protocols (including formic acid and sonication) and (2) previous suspension of cells in 
water or solvent mixtures were evaluated. These did not improve results compared to 
the smear application of cells onto the MALDI‐TOF sample plate. Results provided new 
insights into mass spectra analysis and the potential for strain typing for MALDI‐TOF 
MS. Statistical analysis of the mass spectral profiles (Figure 9.3A) and comparison with 
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Figure 9.3 Analysis of the mass spectral profiles obtained by SARAMIS™ software package for 
(A) T. rubrum strains and (B) its comparison with molecular ITS sequence.
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molecular ITS profiles (Figure 9.3B) provided the determination of phenotypic  similarity 
and variability of T. rubrum strains. Moreover, MALDI‐TOF MS was a valid alternative 
tool for intraspecific variability determination of T. rubrum at the strain level.

The MALDI‐TOF spectra‐based dendrogram was obtained by using the SARAMIS 
software package. The T. mentagrophytes strain is separate from the T. rubrum strains 
from MALDI‐TOF and ITS. Interestingly, the MALDI‐TOF MS profiles demonstrated 
that 10 strains (about 53%) were identical (Figure 9.3A), whereas 17 (about 90%) were 
identical by ITS (Figure 9.3B). The two strains which were dissimilar from the majority 
were MUM 08.11 and 10.133. The MALDI‐TOF MS method indicated differences 
among those strains, where about 47% exhibited considerable spectrum variation 
between the strains and from the main cluster. Interestingly, strains MUM 08.11 and 
10.133 were distinct from each other in Figure  9.3A. The clonal propagation of this 
fungus that is well adapted to its ecological niche could elucidate these results, and the 
sources from where each strain was isolated would be useful information to obtain.

The sample preparation is the most important step in the procedure (Chalupova 
et al., 2013). However, due to the heterogeneity of some microbial taxa, it is very 
difficult to determine which strategy is optimal for these. Figure  9.4 shows a 
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Figure 9.4 Dendrogram obtained for DMic strains with data generated by the MALDI Biotyper® from 
applying the manufacture’s protocol with ethanol‐formic acid‐acetonitrile in blue and the NIH 
protocol with absolute ethanol and zirconia‐silica beads in yellow.
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 comparative study developed with reference strains deposited at the Department of 
Mycology (DMic) culture collection of Instituto Nacional de Enfermedades 
Infecciosas of Dr. Carlos G. Malbrán, Buenos Aires, Argentina. Sample preparation 
was based upon two methodologies, mainly by applying the standard protocol with 
ethanol‐formic acid‐acetonitrile and by the US National Institutes of Health (NIH) 
protocol, which uses absolute ethanol and zirconia‐silica beads to increase the 
extraction. This shows that sample preparation can have an effect on the final fungal 
groupings.

Some strains present further difficulties when analyzed, such as A. udagawae 
DMic134311 and A. brasiliensis DMic144728, where spectra were not generated by the 
protocols. When analyzed by the NIH protocol, A. udagawae DMic062879 gave a spec-
trum closer to A. fumigatus than the same strain analyzed by the manufacture’s proto-
col (Figure  9.4). This is particularly important as A. fumigatus is a very important 
human pathogen where correct identification is essential.

Furthermore, 11 strains were evaluated in quadruplicate by both protocols in this 
study. Only A. terreus and A. fumigatus analyzed by the manufacture’s protocol gener-
ated spectra for all tests. For the other strains, the manufacture’s protocol was also the 
most effective in spectral generation when compared with the NIH’s protocol. Spectral 
differences in a database can generate misidentification in clinically relevant filamen-
tous fungi. The worst situation would be misidentifications in the clinical setting where 
a patient’s health is at risk. The transfer of this type of data between clinical laboratories 
could propagate incorrect information across the entire network, leading to long‐stand-
ing misidentifications.

9.4 Conclusion

MALDI‐TOF MS is an accurate and rapid technique for identification of clinically 
important yeasts and filamentous fungi. It is inexpensive in terms of labour and con-
sumables. However, general acceptance as the only procedure required for an identi-
fication will be achieved only when more diverse taxa are studied by employing 
extensive databases. The method adds an important additional range of characters 
for the generally recommended polyphasic approach essential for fungi. The limita-
tions of (1) different manufacturers’ equipment providing dissimilar results, (2) data-
bases with limited coverage of representative fungal taxa and (3) diverse sample 
preparation protocols demonstrate the need to standardize results and extend 
research and development. The intrinsic variation in characters of different strains of 
the same fungal taxa also needs addressing, although this is a general requirement 
addressed by the polyphasic approach. The number of databases is increasing, but 
they will need to become more interpretative to cope with the slightly different spec-
tra generated by different sampling methods. Further work will lead to construction 
of a global database based on a distributive network, to reduce data fragmentation 
and promote the use of MALDI‐TOF MS for clinical fungi. With approximately 500 
publications since 2010 (SCOPUS) concerning MALDI‐TOF MS and fungal identifi-
cations, and with more general use of the method at the point of care in clinics, data-
base evolution is required to fully realize the vast potential of this technology in the 
clinical mycology field.
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10.1 Attempts to Correlate Signature Mass Ions  
in MALDI‐TOF MS Profiles with Antibiotic Resistance

Although the identification of microbes using MALDI‐TOF MS is well documented, 
less well known are the early attempts to detect antimicrobial resistance markers of 
bacteria using MS. The field was stimulated by an enormous increase in bacterial 
 resistance, not only in Europe, but worldwide. Multi‐resistant phenotypes of bacteria 
can complicate the treatment of infections in critically ill patients and delay the start 
of appropriate and effective therapy (Livermore, 2012). Both multi‐resistant and pan‐
resistant strains have been described (Nordmann et al., 2011; Tzouvelekis et al., 2012). 
The multi‐resistant gram‐negative bacteria are a more recent occurrence, whereas the 
resistant gram‐positive species have been known for decades. For example, in Portugal, 
the increase in MRSA resulted in a higher rate of methicillin‐resistant Staphylococcus 
aureus (MRSA) isolates from blood cultures compared to methicillin‐susceptible 
Staphylococcus aureus (MSSA). Such developments result in a high rate of in‐hospital 
mortality, especially in the elderly (Rebelo et al., 2011).

As early as 2000, Gordon’s group in Manchester typed 20 MRSA strains using intact 
cell mass spectrometry (ICMS) and defined specific peaks for MRSA (Edwards‐Jones 
et al., 2000). They detected peaks typical for MSSA and concluded that ICMS may have 
the potential for MRSA identification and typing. Two years later, Du et al. (2002) in 
Beijing published confirmatory data that the spectral profiles of MSSA and MRSA 
differ greatly from each other. They used a nuc and mecA gene‐based PCR to control 
the results and drew the conclusion that comparison of MALDI‐TOF MS spectral 
 profiles of microorganisms could serve as a simple and rapid method for bacterial 
 identification and antibiotic susceptibility analysis. In that study, seven mecA negative 
strains were misidentified as MRSA strains, a fact which was explained by the authors 
to be due to the heterogeneity of methicillin resistance in S. aureus. In the same year, 
Bernardo et al. (2002) stated that no uniform signatures for MRSA could be detected in 
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the mass spectra of the strains they studied. Szabados et al. (2012) later substantiated 
the lack of uniform signatures for MRSA and MSSA. They intensively analyzed an 
 isogenic Staphylococcal Cassette Chromosome (SCCmec)‐harbouring parent and a 
SCCmec‐minus daughter strain with the same genetic background and unequivocally 
ruled out  strain‐specific protein peaks and could not show differences in the peak 
 profile. They and others concluded that the protein encoded by the mecA gene, the 
penicillin binding protein 2A (PBP2A), is too large (76 kDA) and present in too low a 
concentration to be detected by mass spectrometry directly from cell extracts during 
routine measurements.

In 2011, Chatterjee et  al. described a small peptide, the phenol soluble modulin 
(PSM), and its gene the psm‐mec, which is linked to the mecA gene complex. It is not 
present in all SCCmec cassette types, but only in types II, III and VIII. Even in these 
cassette types, the expression of the psm‐mec gene is strictly regulated by the RNAIII‐
independent Agr system. Josten et al. (2014) confirmed these findings a few years later. 
They analyzed their MRSA strain collection, finding that 95% of agr‐positive MRSAs 
harbouring these cassette types can be identified by this signal. They defined a surro-
gate marker for the activity of this expression system using delta‐toxin (m/z 3007) as an 
indicator, as it was present in 89% of their collection. The PSM peptide was detected in 
more than 95% of all relevant MRSA strains with a peak signal at 2415 m/z (2411–2419 
m/z strain variance) (Figure 10.1). No additional or special measurements needed to be 
done for acquisition of this peak. A detailed software driven re‐analysis of the relevant 
mass zone of the routine mass spectrum acquired for identification is sufficient and can 
provide an early indicator for routine identification that MRSA is present.

The most important antimicrobial drugs effective against MRSA are glycopeptides. 
Therefore, Majcherczyk focused not only on methicillin but also investigated teicopla-
nin resistance of S. aureus isolates. MALDI‐TOF MS was found to show a superior 
discriminatory power compared to pulsed field gel electrophoresis (PFGE) or pepti-
doglycan muropeptide analysis for clonal strain analysis. Convincing test results in 
terms of teicoplanin resistance or susceptibility was not provided (Majcherczyk et al., 
2006). One study was published that demonstrated the ability of MALDI‐TOF MS to 
distinguish between vancomycin‐resistant enterococci and susceptible isolates. Griffin 
et al. (2012) analyzed 67 vanB‐positive Enterococcus faecium strains and were able to 
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Figure 10.1 Mass spectrum of USA 100 MRSA strain. PSMmec peak (2415 m/z) as MRSA marker and 
the delta‐toxin (3007 m/z) as surrogate marker for agr system (Josten et al., 2014).
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predict susceptibility or resistance to vancomycin through specific spectral peaks. The 
sensitivity of the assay was 97%, and the specificity was 98%. Up to now, this pattern 
analysis and these profiles were only used in one laboratory. Therefore, the possibility 
of the effects of clonal variants has not been ruled out.

10.2 Distribution and Spread of Carbapenems 
and Mass Spectrometry

All of these approaches share a common assumption; they infer the resistance of a  specific 
bacterium towards a certain antibiotic from mass spectral peaks that are  unrelated to 
the mechanism of resistance. However, these approaches need appropriate validation 
before the technique and its conclusions can be used in different laboratories.

It was pointed out in his review, ‘Fourteen Years in Resistance’ (Livermore, 2012), that 
the situation of multi‐resistant gram‐positive cocci had improved, but that of gram‐
negative rods had worsened over the last decade. In recent years, especially the percent-
age of carbapenem‐resistant bacteria had increased at an alarming pace and became a 
major threat to patient recovery. This development culminated in the discovery of the 
NDM‐1 carbapenemase (New Delhi Metallo‐ß‐lactamase), an enzyme degrading all ß‐
lactam antibiotics, not only in India and Pakistan, but also in Europe (Kumarasamy 
et al., 2010). Bonomo’s group in Ohio was the first to investigate the stability of carbap-
enems against OXA‐1 carbapenemases using mass spectrometry (e.g. MALDI‐TOF 
and ESI‐TOF). They used a quadrupole time‐of flight mass spectrometer with a nano-
spray source to measure binding between different ß‐lactam antibiotics and bacterial 
carbapenemases of the OXA class to predict susceptibility and effectiveness (Bethel 
et al., 2008). In more recent studies, mass spectrometry was also used to predict the 
structure of and antibiotic susceptibility for cephamycinase enzymes such as the wide-
spread AmpC ß‐lactamase, providing insights into the substrate specificity of this 
enzyme that is spreading worldwide (Lefurgy et al., 2015). All resistant bacterial taxa 
mentioned above grow aerobically. However, rapid resistance determination of anaerobic 
bacteria is also of major clinical importance, especially in abdominal surgery and 
 neurosurgery. Bacteroides fragilis, one of the most important species of the genus 
Bacteroides, is the leading anaerobic pathogen in human monobacterial or polymicrobial 
infections (Aldridge et al., 2003; see Chapter 5). Members of the Bacteroides, including 
B. fragilis, often exhibit resistance to different drugs, such as ß‐lactams, clindamycin and 
fluoroquinolones. However, the majority of strains are still susceptible to metronidazole 
and carbapenems.

It is said that up to 10% of Bacteroides fragilis strains might already be resistant to 
carbapenems. Elisabeth Nagy et  al. (2011) from the Hungarian Anaerobe Reference 
Laboratory analyzed these strains and found that nearly all of them express a class B 
metallo‐ß‐lactamase, encoded by the cfiA gene, that confers resistance to all ß‐lactam 
antibiotics. She reviewed the peaks in the mass spectrum of 40 strains of Bacteroides 
fragilis of known imipenem MICs and detected two specific peaks shifts from 4711 and 
4817 to 4688 and 4826 Da, when the carbapenemase enzyme was expressed (see 
Chapter 5). The shift can be visualized in pseudo‐gel view and supported by analytical 
software tools of the mass spectrometer. Johansson et al. (2014) later found out that this 
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method also works directly with positive blood cultures, which is important for rapid 
antibiotic sensitivity testing in septicaemia and other severe infections caused by anaer-
obes. Another Hungarian group demonstrated the usefulness of this protocol under 
routine conditions in a larger number of samples (Fenyvesi et al., 2014).

10.3 Carbapenem‐Resistant Enterobacteriaceae

As already mentioned, carbapenem‐resistant enterobacteriaceae (CRE) have spread 
globally and represent a serious and growing threat to public health. One of the most 
frequent carbapenemases, which often induces hospital outbreaks and is difficult to 
contain by the infection control team, is Klebsiella pneumoniae carbapenemase (KPC) 
(Wendt et al., 2010). Nowadays special assays are necessary to detect such resistance 
mechanisms (e.g. modified Hodge test or PCR), but it would be an enormous advantage 
for infection control to have a real‐time tracking method for it while undertaking 
 bacterial identification in the routine workflow. Lau et al. (2014) used a combination of 
proteomics and molecular techniques to identify a specific peak at 11,109 Da which is 
specific for the presence of a plasmid containing the ß‐lactamase gene kpc (blaKPC). 
Identification of resistance using this MALDI‐TOF MS method was accomplished in 
as little as 10 min from single colonies and half an hour from positive blood cultures, 
proving the potential clinical utility for real‐time plasmid tracking in an outbreak. The 
authors stated that although a pKpQIL_p019 MALDI‐TOF MS peak was identified 
in all 18 re‐cultured outbreak isolates studied, these did not constitute as a statistical 
validation set as they were all from a single outbreak. To confirm the concept, the same 
group analyzed 860 Enterobacteriaceae for the specific KPC peak (Figure 10.2). In a 
collection of outbreak strains, 100% of strains containing the resistance plasmid p019 
were detected in MS analysis (n = 26), whereas in a larger retrospective investigation, 
9 out of 720 isolates (1.3%) were positive (Youn et al., 2016). The method was  appropriate 
for reliable detection of the resistance mechanism and the transferable plasmid in a 
routine workflow automatically in real time and with high throughput. The authors 
emphasized that instrument tuning and calibration had a significant effect on assay 
sensitivity, highlighting important factors that must be considered as MALDI‐TOF MS 
moves into applications beyond microbial identification.

10.4 MALDI‐TOF MS Detection Based upon 
Changes in Antibiotic Structure due to Bacterial 
Degradation Enzymes

In spite of the accuracy of real‐time methods such as the PSM peptide for MRSA or 
the 11,109 Da peak for the KPC plasmid, these are useful surrogate markers but not 
direct evidence for antibiotic degradation or modification. Two groups in Europe 
developed a very similar assay at the same time independently using a simple bio-
chemical calculation of the degradation process. When a ß‐lactam ring in an antibi-
otic substrate is degraded by a ß‐lactamase, the ring is hydrolyzed, so water is added 
to it to give an additional mass of 18 Da. In the next step (at least for carbapenemases), 
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this unstable molecule is decarboxylated, resulting in a loss of 44 Da. So the total mass 
of the inactivated ß‐lactam antibiotic is 26 Da lower than that of the base product. 
This mass difference can be measured in a MALDI‐TOF mass spectrometer. 
Burckhardt and colleagues used ertapenem as a test substrate, because it is consid-
ered to be the most sensitive carbapenem to detect resistant phenotypes and is one of 
the most stable carbapenems (Burckhardt and Zimmermann, 2011). The ß‐lactam 
was incubated with multi‐resistant gram‐negative rods harbouring carbapenemase 
enzymes such as NDM‐1. At various timed intervals, bacteria were centrifuged, and 
the supernatant (with the carbapenem) was spotted onto a standard steel target and 
analyzed in a Bruker Microflex™ mass spectrometer. Ertapenem, with a molecular 
mass of 476 Da, is used for treatment as a sodium salt. The mass spectrometer depicts 
not only the pure substance at 476 Da, but also two sodium salts at 499 and 522 Da. 
After a short incubation period of only 1 h, the three mass peaks of ertapenem were 
degraded, and a degradation peak at 450 Da (minus 26 Da) was visible (Figure 10.3). 
This assay delivers rapid results for a number of carbapenemases in different bacteria 
(enterobacteriaceae, Pseudomonas, other gram‐negative nonfermentative rods). 
Hrabak et al. (2011) simultaneously investigated 124 strains, including 30 carbapen-
emase producers, using meropenem as a carbapenem target. Both groups stated that 
the described method of carbapenem resistance detection has many advantages com-
pared to agar‐based methods or PCR. First, depending on the type of carbapenemase, 
results can be available within 1 h from the start of incubation. This is especially use-
ful during an outbreak situation where the carbapenemase is already identified. 
Second, this method is comparatively easy to perform. Only readily available reagents 
are used, and because MALDI‐TOF MS is increasingly used in routine microbiology 
laboratories for identification of bacterial strains, the hardware is already present in 
many laboratories. Third, the cost per determination is very low, less than 1 € per 
reaction. As the assay results are available in less than 3 h, this test can be imple-
mented in infection control procedures identifying patients with CRE rapidly. In 
 former years, rectal swabs or other CRE screening samples were streaked manually 
onto agar plates and incubated overnight. Overnight biochemical‐based identifica-
tion and conventional resistance screening (e.g. in an automated VITEK II instru-
ment) was performed. If a CRE isolate was detected, it was necessary to confirm 
this by other manual tests, such as the modified Hodge test, which took another day. 
Thus, successful screening for multi‐resistant microorganisms took 3 to 4 d in the 
laboratory, whereas today screening samples could be streaked with automatic devices 
on the first day.

10.5 Optimization of the Carbapenemase MALDI‐TOF 
MS‐Based Assay to Minimize the Time‐to‐Result

Suspicious colonies can be identified in less than an hour by mass spectrometry, and 
their carbapenem‐degrading activity can be revealed in less than two additional hours, 
shortening the workflow to less than 24 h (Figure 10.4). Hrabak et al. (2014) suggested 
a similar workflow for the detection of life‐threatening carbapenemases in his review 
concerning the usefulness of this promising technology in 2014. A major drawback in 
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the beginning was the low sensitivity of the carbapenem hydrolysis assay. The main 
reason was the low degrading activity of carbapenemases of the OXA class with the 
buffer solutions used at the beginning. OXA‐48 is the most common carbapenemase in 
Germany, which limited its routine use. Hrabak’s laboratory optimized the assay condi-
tions by adding ammonium hydrogen carbonate (NH4HCO3) and increasing the pH of 
the buffer (Hrabak et al., 2014). This resulted in a significant increase of the carbapen-
emase activity, allowing standard assay times of less than 3 h and a sensitivity of up to 
100% in the tested sample collection (Papagiannitsis et al., 2015).
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10.6 Detection of Other Bacterial Enzymic Modifications 
to Antibiotic Structures

The principle of degradation product monitoring can be applied to other enzymatic 
resistance mechanisms. Green et  al. (2010) provided evidence that not only can 
the degradation of ß‐lactam antibiotics be depicted by mass spectrometry, but also 
enzymatic modifications resulting in resistance to aminoglycosides was feasible. 
Acetyltransferases transferring N‐acylate amines to aminoglycosides are the most 
frequent resistance mechanisms for the inactivation of this antibiotic class. All 
 clinically relevant aminoglycosides (gentamicin, tobramycin and amikacin) can be 
inactivated by N‐acylate transfer in the presence of coenzyme A (CoA). 
Aminoglycoside‐6′N acyetyltransferase (AAC6) from Escherichia coli was used to 
transfer N‐propionyl to neomycin. This resistance‐conferring modification could be 
visualized by a shift of the mass peak of neomycin from 615 to 671 Da (Green et al., 
2010). Variations in the usage of N‐acylate‐CoA already allowed a form of specificity 
for different aminoglycosides. Other groups confirmed these findings, i.e., that the 
acetyltransferase‐based resistance against aminoglycosides can be detected in a 
rapid assay in a few hours by mass spectrometry (Burckhardt et  al., 2013). Both 
groups used electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF 
MS) to demonstrate the modification of the antibiotic substrate, as aminoglycosides 
and their exact mass profile could not be sufficiently delineated with MALDI‐TOF 
MS (see Chapter 15).
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ID by mass spec

MS Carba Assay

Carba NP Assay

PCR

<24 h

1– 3 h

14 – 20 h
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Figure 10.4 Workflow for conventional infection control screening for CRE (left panel) and with 
automated streaking and ID/AST determination by mass spectrometry (right panel).
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A few months after Hrabak and Burckhardt (2014) had published the hydrolysis 
assays focusing on carbapenems, Sparbier et  al. (2012) overcame this limitation 
by offering a valid protocol for detecting the action of different ß‐lactam molecules 
including penicillinases and cephalosporinases. They developed a method for the 
detection of ampicillin, piperacillin, cefotaxime, ceftazidime, ertapenem and mero-
penem and analyzed the different degradation products and sodium or potassium 
salt variants. This led to protocols for all groups of ß‐lactam antibiotics now being 
available (Figure  10.5). A restriction of these new assays was that they could only 
detect degrading enzymes, but not other molecular mechanisms of bacterial resist-
ance such as target modifications, efflux pumps or porin loss. Despite this fact, 
MALDI‐TOF MS is a relevant tool for the detection of antibiotic resistance, but the 
application cannot replace standard susceptibility testing owing to these limitations 
(Hrabak et al., 2013).

10.7 Isotopic Detection using MALDI‐TOF MS

Jung and Kostrzewa (2014) recently described a new assay overcoming these limita-
tions. The basic idea is to grow intact microorganisms in drug‐containing stable iso-
tope‐labelled media and acquire mass spectra from these microorganisms. These 
spectra are compared with the mass spectra of the intact microorganism grown in non‐
labelled media without the drug present. Drug resistance is detected by characteristic 
mass shifts of one or more biomarker peaks. The method essentially is based on a pub-
lication by Demirev et al. (2013), who used a commercially available medium where 
almost all of the C atoms are 13C and grew the bacteria in a medium in the presence of 
an antibiotic which provided evidence of its resistance against this drug. This evidence 
is visualized by peak shifts caused by the 13C incorporation into the biomarkers. With 
this method, resistance detection by MALDI‐TOF mass spectrometry can be expanded 
to antibiotics also, which show no enzymatic degradation. A disadvantage is that the 
completely labelled medium is costly. Sparbier et al. (2013) grew their bacteria in  normal 
medium where only one lysine molecule was labelled with 13C6 15N2‐L‐Lysine, which is 
more cost‐effective. In this supplemented media, they grew Klebsiella pneumoniae 
strains with or without meropenem. After 2 h of incubation, the spectrum acquired 
from the resistant bacterium in the labelled medium with antibiotic was nearly identical 
to the spectrum from the organism grown in labelled medium without meropenem. In 
contrast, as the growth and thereby protein synthesis of the susceptible strain is inhib-
ited, its spectrum after incubation in the labelled and antibiotic‐containing medium is 
still similar to the “normal” spectrum (Jung et al., 2014). Sparbier et al. (2013) used the 
new approach to distinguish MSSA strains from resistant MRSA strains. Cefoxitin and 
Oxacillin were used to investigate 20 Staph. aureus strains for their resistance pheno-
type by mass spectrometry, and the results were compared to conventional culture‐
based methods and PCR. Nineteen out of the 20 strains showed excellent correlation 
within 3 h. The strains were inoculated in three different broths: one with a non‐labelled 
medium without antibiotics, one with antibiotics without heavy lysine and one with 
antibiotics and heavy‐lysine‐containing medium [MS‐Resist™; Figure  10.6]. After the 
incubation period, the mass spectrum of susceptible strains showed a high similarity 
between the unlabelled medium and the labelled medium with antibiotic. As the strains 
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cannot grow in the presence of oxacillin, no main changes in the mass spectra occurred. 
MRSA strains showed no growth inhibition with cefoxitin or oxacillin; the peaks were 
similar between the heavy isotope medium and the heavy isotope antibiotic approach. 
The time‐to‐result for a conventional antibiotic susceptibility test is at least 8–10 h, so 
less than one third of the time is needed with the new assay. As already mentioned, 
rapid testing is the precondition for appropriate therapy and effective antibiotic stew-
ardship (Perez et al., 2013).

10.8 Multi‐Resistant Pseudomonas aeruginosa

Trecarichi and Tumbarello (2014) recently emphasized the important role of 
Pseudomonas aeruginosa, especially multi‐resistant strains, in neutropenic patients. 
Pseudomonas spp. is the second most common isolated microbe in these patients and is 
linked to high mortality, especially when bloodstream infections occur. Jung et  al. 
(2014) investigated the resistance of Pseudomonas aeruginosa using the new and rapid 
mass spectrometry technique based on stable isotopes. They were able to test 30 different 
pseudomonad strains with three different key antibiotics: ciprofloxacin, tobramycin 
and meropenem. All the strains showed good correspondence between the susceptibility 
interpretation of conventional test methods and the MS‐Resist protocol. Kostrzewa 
et al. (2013) used a similar approach for the rapid detection of carbapenem resistance in 
Enterobacteriaceae. Heavy‐lysine‐labelled and ‐unlabelled Klebsiella pneumoniae 
strains were exposed to meropenem for only 2 h. The following mass spectrometry 
analysis could clearly differentiate between susceptible strains and CREs. Therefore, 
this new assay seems to be a promising tool for a multiplicity of antibiotic substances, 
providing both rapid and reliable results.

10.9 MALDI Biotyper Antibiotic Susceptibility 
Test Rapid Assay (MBT‐ASTRA™)

A slight disadvantage of the MS‐Resist assay is the high cost of the labelled lysine 
 containing incubation broth and the relatively long hands‐on‐time. Therefore, the 
inventers of this test searched for a simpler and cheaper MS‐based antibiotic suscepti-
bility test. The new approach, the MALDI Biotyper antibiotic susceptibility test rapid 
assay (MBT‐ASTRA), does not use stable amino acids but a quantitative MALDI‐TOF 
MS approach. A standard broth (e.g. brain heart infusion broth) can be used, and some 
bacterial taxa only require 1 h incubation time. The cells are spiked with an internal 
standard, lysed and prepared for the mass spectrometer. The sample was normalized to 
the highest peak of the standard and the amount of peptides and proteins detected 
by the MALDI correlated with the bacterial growth. If the tested bacteria are resistant 
to the antibiotic of choice, the mass peaks are similar to the growth control. If they 
are susceptible, none or only a few peaks are seen. Lange et al. (2014) demonstrated 
this with different Klebsiella strains, focusing on meropenem as the antibiotic target 
(Figure  10.7). With this assay, antibiotic susceptibility testing by mass spectrometry 
reached a turning point, because now not only could the terms susceptible and resistant 
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be predicted, but a minimal inhibitory concentration could be determined. The method 
also worked directly from positive blood cultures with reliable and accurate results. 
One of the studies, which had proved the direct identification of bacteria and yeast by 
MALDI‐TOF MS, demonstrated, in addition, that a significant percentage of blood cul-
tures in septicaemia turned positive within 12 h and more than 90% of the relevant 
samples became positive within a day (Klein et al., 2011). Using mass spectrometry in 
sepsis diagnostics implies that identification and antibiotic susceptibility results could 
be obtained in less than a day. Today no sepsis study has been published using these new 
promising methods. Taking into account Kumar’s well‐known septicaemia study 
(Kumar et al., 2009) concerning the importance of early and appropriate antibiotic ther-
apy in combination with the benefits that Perez et al. (2013) could demonstrate with the 
Sepsityper™ approach, it can be predicted that a significant improvement of clinical 
outcomes in septicaemia cases will be achieved in the near future. To reach this goal, it 
is necessary to show that not only can carbapenem susceptibility be determined but also 
other antibiotic classes of choice. Sparbier and her team recently demonstrated that all 
groups of beta‐lactams (penicillins, cephalosporins and carbapenems), fluoroquinolones 
and aminoglycosides can be used with accurate and reliable results in this MALDI 
Biotyper antibiotic susceptibility test rapid assay (MBT‐ASTRA). Preliminary results 
suggest slight advantages for bacteriostatic antibiotics when using the MS‐Resist 
technology, whereas bactericidal antimicrobials give clearer results in the MBT‐ASTRA 
(personal communication).

10.10 The Potential Use of Mass Spectrometry 
for Antibiotic Testing in Yeast

Yeasts are a major cause of septicaemia with 8% to 10% of nosocomial bloodstream 
infections being attributable to Candida, with candidemia increasing mortality rates 
between 20% and 49% (Koehler et al., 2014). Direct identification of yeasts from positive 
blood culture by mass spectrometry was already described in 2010 (Ferroni et al., 2010; 
see Chapter 9).

Marinach analyzed the response of Candida albicans to fluconazole and demon-
strated significant alterations in the mass spectra that are dependent on the concentra-
tion. He defined the minimal profile change concentration (MPCC) as an endpoint for 
his determination of a yeast strain collection. Comparison of the MPCCs with an MIC 
determination according to the CLSI method revealed a 94% concordance (within +/− 1 
drug dilution values), indicating accurate results (Marinach et al., 2009). Echinocandins 
are currently the drug of choice for Candida bloodstream infection. Vella et al. (2013) 
investigated a MALDI‐based method for the antifungal susceptibility test (AFST) to 
caspofungin, the most common drug of this class. He demonstrated reliable agreement 
with the CLSI reference method within 6 h assay time compared to a 20–24 h incuba-
tion of the conventional test. Kostrzewa et al. (2013) confirmed both results, highlight-
ing the speed of these analyses, but also had some reservations, i.e., that the 
reproducibility and robustness of this method still needs to be proved under routine 
conditions in different laboratories.

The detection of antimicrobial resistances in bacteria and yeasts is a hallmark of clini-
cal microbiological diagnostics. Though time consuming, culture‐based methods for 
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antibiotic resistance testing are still the gold standard in diagnostic laboratories around 
the world. The introduction of MALDI‐TOF MS in medical microbiology has already 
dramatically changed the approach to the identification of bacteria and fungi. Now that 
these first steps have been taken to exploit MALDI‐TOF MS for the rapid detection 
of antibiotic resistances, this will no doubt encourage further imminent developments 
in the field.
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11.1 Introduction

Identification of bacteria by matrix‐assisted laser desorption/ionization time‐of‐flight mass 
spectrometry (MADLI‐TOF MS) has revolutionized bacterial diagnostics for several rea-
sons (Seng et al., 2009). The technique is rapid, high‐throughput, sample costs are low and 
the information content of a spectrum is high. In addition, samples can be prepared from 
inactivated organisms and, therefore, tube testing with living pathogens can be avoided. As 
with the introduction of any new technology, the  question is, how well can ‘MALDI identi-
fication’ (MI) perform in areas that are problematic. In a number of studies, MI of bacteria 
has been compared with classical bacteriological methods to demonstrate its usefulness as 
a diagnostic tool in clinical environments. Usually, the ability of MI to identify species with 
high accuracy has been confirmed. However, in cases where closely related species were to 
be discriminated, or subspecies‐level discrimination was attempted, misidentification rates 
were higher or variations of the standard procedures were necessary to improve the accu-
racy of diagnosis. In the following, strategies to enable or to improve MALDI‐TOF‐MS‐
based identification of closely related organisms will be discussed.

11.2 Principles of MALDI‐TOF MS‐Based 
Identification of Bacteria

One of the main features of MI is simplicity. The standard procedure is very straightfor-
ward and comprises only a few steps. The bacterium is cultured on a solid medium to the 
size of a visible colony which, in the most simple variation of the workflow, is directly 
deposited onto a MALDI sample target (Bizzini et al., 2010; McElvania et al., 2013), over-
laid with matrix and the spectrum is acquired. In most studies, however, the sample is 
prepared from the colony with a simple extraction protocol that improves the quality of 
the spectra (Alatoom et al., 2011; Christner et al., 2014). In a frequently used protocol 
(Sauer et al., 2008), bacteria are precipitated from an aqueous suspension by addition of 
ethanol and then extracted with formic acid/acetonitrile. Extraction can also be  performed 
on‐target to simplify the protocol (Matsuda et al., 2012; McElvania et al., 2013; Schmitt 
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et  al., 2013). After addition of a MALDI matrix, usually α‐Cyano‐4‐hydroxycinnamic 
acid (HCCA), spectra are acquired in a mass range between 2,000 and 20,000 Da in the 
linear mode. Simple MALDI‐TOF mass spectrometers offer sufficient resolution in this 
mass range so that there is no need for highly sophisticated and costly equipment. The 
species of the unknown sample is then identified by comparison of the spectrum with a 
library of reference spectra by statistical means. Similarity between the sample and refer-
ence spectra are calculated by pattern matching approaches (Jarman and Wahl, 2005) that 
are based on the whole spectrum or on extracted peak lists, using metric or non‐metric 
distances measures, correlation coefficients or empirical similarity scores. The reference 
spectrum that is most similar to the sample spectrum will be taken as the result of the 
identification procedure. Most notably, there is no need for any prior information on the 
sample such as a tentative taxonomic classification. Moreover, MI does not require any 
sample‐specific reagents such as antibodies, PCR primers or nucleic acid probes, but will 
be practicable in any laboratory that has access to a MALDI‐TOF mass spectrometer and 
to a reference database that includes the spectrum of the organism of interest.

The usefulness of MI for genus and species identification has been proved in numer-
ous studies in which the performance of MI in routine microbiological laboratories was 
investigated (Bizzini et al., 2010; Luo et al., 2015; Martiny et al., 2014; Patel, 2013; Seng 
et al., 2013). This is the basis for the implementation of MI in diagnostic laboratories 
worldwide and the increasing acceptance of this technology.

11.3 Generality versus Specificity

The properties of a MALDI‐TOF mass spectrum, for example, of an unknown  bacterium, 
will depend on a large number of parameters. Several factors such as  culture conditions 
(Anderson et al., 2012; Balazova et al., 2014; Karger et al., 2013; Sedo et al., 2013; Veloo 
et al., 2014), the extraction protocol (Alatoom et al., 2011; Fournier et al., 2012; Khot 
et al., 2012; Meetani and Voorhees, 2005; Schulthess et al., 2013; Veloo et al., 2014), the 
use of different matrices (Dieckmann et al., 2008; Meetani and Voorhees, 2005; Paauw 
et al., 2014), and so on, have a noticeable influence on the reproducibility of the mass 
spectrum. As MI relies on pattern recognition algorithms, the experimental conditions 
for the construction of the reference databases must be tightly controlled and must 
match the protocols that are used for the preparation of the unknown samples (Wilen 
et al., 2015). This is even more important with respect to the discrimination of closely 
related organisms, which may rely on very subtle differences between the spectra.

Although it is desirable to restrict the number of ‘standard’ preparation protocols, a 
certain degree of variation is inevitable in order to meet the requirements of the differ-
ent bacteria. Not all bacteria will grow to sufficiently large colonies on the same medium 
within the same time, and some, such as mycobacteria, have to be extracted with special 
protocols in order to obtain spectra of sufficient quality (Mather et  al., 2014; Wilen 
et al., 2015, see Chapter 4).

If standard procedures fail to resolve spectra from closely related organisms, it is 
straightforward to take advantage of the flexibility MALDI‐TOF MS and to optimize 
the experimental conditions with respect to the properties of the samples. In this way, 
discrimination of problematic organisms can often be improved or achieved in the first 
place, albeit at a certain cost. Highly sample‐specific experimental conditions may 
require dedicated databases and the implementation of tailor‐made algorithms for the 
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identification procedure, which may reduce the portability of the approach to other 
laboratories. Thus, the higher discriminatory power, to a certain extent, is traded in for 
simplicity and velocity, which are two hallmarks of MI.

In numerous studies, more or less drastic variations of the ‘standard’ sample prepara-
tion protocols were introduced to improve identification of closely related organisms by 
MALDI‐TOF MS. For example, Schmidt et al. (2009) devised a workflow termed ‘shot-
gun mass mapping’ (SMM) for the discrimination of Lactobacillus subspecies. The 
major change in comparison to conventional protocols was that the bacterial colonies 
were digested with trypsin, and the resulting peptide mixture was measured with a 
MALDI‐TOF mass spectrometer that was operated in the reflector mode. In this way, 
the low mass range (900–4000 Da) could be analyzed with high precision, and the appli-
cation of a similarity search approach allowed the discrimination of Lactobacillus sub-
species with excellent resolution. Krasny et al. (2014) have applied trypsin digestion for 
the differentiation of Cronobacter subspecies, albeit by analysis of a preparation of 
cytoplasmic proteins, using the linear mode of the instrument in a mass range from 1 to 
15 kDa and MALDI Biotyper (Bruker) for the evaluation. Likewise, extension of the 
mass range to higher values has been shown to be useful, if appropriate matrices such 
as ferulic acid or Sinapinic acid were used. This approach was successful, for example, 
for the discrimination of differentially pathogenic Vibrio cholera strains (Paauw et al., 
2014), or for the identification of Salmonella subspecies (Dieckmann et  al., 2008). 
Combining ferulic acid with nonionic detergents, Meetani and Voorhees (2005) were 
able to expand the useful mass range up to 140 kDa. These examples demonstrate the 
versatility of MALDI‐TOF‐MS‐based identification of bacteria and the excellent ana-
lytical performance that can be achieved by adaptation of the experimental conditions.

On the other hand, a number of studies have shown that subspecies‐level identifica-
tion can also be accomplished on the basis of spectra that resulted from conventional 
MI procedures if only the statistical evaluation was refined. This approach seems 
equally attractive, as the final identification of the sample is attempted by additional 
calculations which are appended to the routine procedure for MS‐based diagnosis. In 
this way, spectra of a first‐line diagnosis can be used for further evaluations, and delays 
due to an additional round of culturing, extraction and spectrum acquisition are 
avoided. Available general‐purpose databases can be used, for example, to select appro-
priate sets of reference spectra, and, vice versa, new spectra of field isolates can be read-
ily be integrated into existing reference databases.

In the following, successful approaches for the identification of closely related organ-
isms by refined statistical analysis of their MALDI‐TOF mass spectra will be described 
and discussed. The emphasis will be on the discrimination of select organisms such as 
subspecies of Francisella tularensis, different species of the Brucella genus, Burkholderia 
mallei and Burkholderia pseudomallei and Shiga‐toxin‐producing serotypes of 
Escherichia coli.

11.4 Shigatoxin‐Producing and Enterohemorrhagic 
Escherichia coli (STEC and EHEC)

STEC are a group of zoonotic enteric pathogens that occur in some serotypes of E. coli 
(Nataro and Kaper, 1998). Infections of humans with certain STEC strains can lead to 
hemorrhagic diarrhoea, hence the designation EHEC for this subgroup. In more severe 
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infections, a haemolytic‐uremic syndrome (HUS) can evolve which is potentially life‐
threatening. In May 2011, occurrences of illness with HUS and bloody diarrhoea were 
reported in Germany that was caused by an infection with EHEC of the serotype 
O104:H4. Before the source of the pathogen was clearly identified, the disease had 
spread from its origin in Hamburg to nearly all other German federal states and to 
France. Overall, 3842 cases of illness were reported (855 cases of HUS and 2987 cases of 
acute gastroenteritis), and 53 patients died of the infection (Robert‐Koch‐Institut, 2011).

Isolates that had been collected from affected individuals in the course of this  outbreak 
were analyzed in a thorough study by Christner et al. (Christ, 2014). Protein profiles of 
outbreak‐related isolates were compared to E. coli isolates that had been collected 
before the 2011 EHEC outbreak. By statistical analysis, two marker ions could be derived 
that allowed the reliable discrimination of spectra from outbreak‐related and pre‐
outbreak isolates. On the basis of these masses, the classification into outbreak and 
non‐outbreak strains was correct for 99.7% of all samples that had been prepared by 
formic acid extraction. Remarkably, classification that was based on spectra measured 
after direct deposition of the sample on the target was only slightly less accurate (99%), 
demonstrating the robustness of MI and its potential in an epidemic scenario.

The authors also evaluated the classification results that were obtained on the basis of 
whole spectrum comparison, which is a more likely procedure for ad‐hoc diagnosis in 
the case of an acute epidemic when serotype‐specific or strain‐specific markers may not 
have been developed yet. With accuracies of up to 98%, classification was still very good 
if binary distance measures had been used for the calculation of the similarity of the 
spectra. Rates of correct identifications slightly dropped if unweighted metric distance 
measures, for example, the Euclidean distance, were used. This study is not only an 
excellent example for the potential usefulness of MI in a scenario of an acute outbreak, 
but also demonstrates the high precision that can be achieved for the subspecies‐level 
differentiation of E. coli isolates if MI is used together with a dedicated identification 
algorithm that is based on reliable marker ions.

Unfortunately, prominent and reliable group‐specific markers do not occur in every 
serotype of E. coli, and the search for specific markers and the implementation of clas-
sification algorithms will become more complicated as more different serotypes are to 
be differentiated, and more markers may have to be considered. Much work has focused 
on the discrimination of other serotypes that are associated with human disease, namely, 
O157, O26, O103, O91, O145, O128 and O111. Of these, O157 is considered the most 
virulent serotype aside from O104 (Preussel, Hohle, Stark, & Werber, 2013).

In an early study, Bright and colleagues (Bright et al., 2002) had already observed that 
the O157 antigen had a strong influence on the MALDI‐TOF spectra. Analysis of the 
spectrum‐based distances showed that the O157 isolates separated well from a panel of 
E. coli strains carrying other O‐antigens. In a screen for O157:H7 serotype‐specific fea-
tures of MALDI‐TOF mass spectra, Mazzeo et al. (2006) could specify a mass of 9060 Da 
as a negative marker for this serotype. The protein behind the mass was later identified 
as the acid stress chaperone‐like protein (HdeB) (Fagerquist et al., 2010). In a recent 
publication, Ojima‐Kato and colleagues have presented an algorithm for the discrimi-
nation of O157, O26 and O111 serotypes which is based on four markers that were 
identified as the ribosomal proteins S15 and L25, the DNA‐binding protein H‐NS and 
HdeB (Ojima‐Kato et al., 2014). The classification scheme, a simple decision tree, accu-
rately predicted the serotypes of 83 strains that were blind‐tested to validate the model.
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Data reduction by feature selection has also been a powerful strategy to improve the 
differentiation of E. coli serotypes O26, O156 and O165 (Karger et  al., 2011). These 
serotypes are less frequently associated with human disease than, for example, O157:H7 
(Bielaszewska et al., 2007; Mellmann et al., 2008), but can still cause severe infections in 
humans. Ruminants, especially beef herds, are large reservoirs for EHEC isolates of 
these serotypes and therefore, their identification and discrimination are of interest not 
only in veterinary medicine. As the search for single serotype‐identifying markers failed 
for these serotypes, more sophisticated algorithms for the classification had to be devel-
oped. In this case, feature selection was performed by systematic exclusion of masses 
that were either not reliably detected within one serotype or that did not contribute to 
group discrimination as they were equally present in all three groups. The first param-
eter was expressed by the relative frequency of occurrence of a mass within a group, the 
second as the p‐value of a Fisher’s t‐test that was performed for every mass across the 
serotypes. After gradual removal of masses that were not highly reproducible or did not 
contribute to group discrimination, the remaining masses were used to calculate syn-
thetic ‘prototype’ spectra, which were then used for classification. Under optimized 
conditions, the accuracy of the classification was 99.3%, compared to only 69% when no 
mass selection had been performed for the construction of the prototype spectrum. 
Interestingly, very stringent removal of masses that were not highly reproducible or not 
highly group‐specific was shown to be counterproductive, as the misclassification rate 
increased under these conditions. An attempt to use the described approach to 
 discriminate smaller clusters of genetically related isolates within the given serotypes 
(Geue et al., 2006; Geue et al., 2009; Geue et al., 2010) failed, indicating that group‐
specific markers or mass signatures may be difficult to find below the serotype level.

11.5 Francisella tularensis

Tularemia is a zoonotic disease caused by the bacterium Francisella tularensis. Four 
subspecies have been characterized that differ in virulence and in geographic distribu-
tion. Most infections in humans and in animals (frequently hares) are caused by two 
subspecies, the highly virulent F. tularensis ssp. tularensis (also designated as type A), 
which is endemic in North America, and the less virulent F. tularensis ssp. holarctica 
(type B), which is found predominantly in Europe. For the discrimination of F. tularensis 
subspecies, PCR‐based tests are available that target genetic markers like the variable 
number of tandem repeats (Johansson et al., 2004) or single‐nucleotide polymorphisms 
(Vogler et al., 2009).

Due to its high virulence, the low infection doses and the possible transmission by 
aerosol, F. tularensis has been listed as a potential ‘category A’ bioterrorism agent by the 
Centers for Disease Control and Prevention (CDC) (http://www.bt.cdc.gov/agent/
agentlist‐category.asp). As in any case of an intended or unintended release of highly 
hazardous pathogens, there is an urgent need for quick and reliable identification, and 
MI of select organisms such as F. tularensis and others has been studied intensively. In 
this context, inactivation of the sample is, of course, of paramount importance (Couderc 
et al., 2012; Cunningham and Patel, 2015; Drevinek et al., 2012; Lasch et al., 2008; Lasch 
et al., 2015; Tracz et al., 2013). The dilemma with inactivation is that, on one hand, it 
must be absolute so that any exposure of laboratory personnel can be excluded. On the 

http://www.bt.cdc.gov/agent/agentlist-category.asp
http://www.bt.cdc.gov/agent/agentlist-category.asp
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other hand, chemical or physical damage or modification of the sample must be avoided 
as far as possible in order to allow the acquisition of high‐quality spectra that 
are required for reliable identification. Lasch et al. (2015) have shown that gamma‐
irradiation reliably inactivated samples of F. tularensis and a broad panel of other highly 
pathogenic microorganisms. After gamma inactivation, the samples could readily be 
used for successful MI. However, when spectra of irradiated and trifluoro acidic acid‐
inactivated (Lasch et  al., 2008) samples were compared, a slight loss of quality was 
observed which came with irradiation, confirming an earlier publication (Tracz et al., 
2013). Also, use of oxidizing agents such as NaOCl was shown to cause satellite peaks 
of +16 Da, most likely induced by the oxidation of amino acids. These results indicate 
that different inactivation protocols may have subtle and differential effects on the 
 spectra which should be taken into account if reference databases of highly pathogenic 
microorganisms are constructed.

The potential of mass spectrometry to discriminate subspecies of F. tularensis was 
first demonstrated by Lundquist et  al. (2005) using SELDI (surface‐enhanced laser 
 desorption ionization) MS, an MS technique that is related to MALDI. The SELDI MS 
approach was elaborated by Seibold et al. (2007), who applied ‘classification and regres-
sion tree’ (CART) analysis (Breiman et al., 1984) to the spectra of F. philomiragia and 
the four subspecies of F. tularensis. CART is a recursive partitioning tool that uses deci-
sion rules to predict an outcome of a classification experiment. In this case, decision 
rules were based on the intensities of only three masses but still allowed the correct 
classification of all samples.

The positive results that were obtained with SELDI MS were confirmed in a large 
MALDI‐TOF MS study of francisellae that were analyzed with MALDI Biotyper 
 software (Seibold et al., 2010). The reference library was extended by spectra of F. philo-
miragia and the subspecies of F. tularensis (F. tularensis ssp. tularensis, F. tularensis ssp. 
holarctica, F. tularensis ssp. mediasiatica and Francisella tularensis ssp. novicida), and 
the identification experiments were then carried out with blinded samples of 45 field 
and reference strains. Results were 100% accurate using the scoring algorithm of the 
MALDI Biotyper software, although cluster analysis did not fully reproduce the phylo-
genetic relationships of the samples. Additional experiments aimed to challenge the 
robustness of the identification procedure. Biological replicates were as well tested as 
different growth media and cultivation periods, and one isolate was passaged 30 times 
before measurement, but still the species and subspecies identification was correct, 
underlining the power and robustness of MI for the discrimination of F. tularensis sub-
species. However, to my knowledge, MI has not been successfully used to characterize 
F. tularensis isolates below the subspecies level. In a phylogeographic study with 
52 F.  tularensis ssp. holarctica strains that had been isolated from European brown 
hares in Germany (Muller et  al., 2013), genetic and biochemical traits were used to 
analyze spatial and temporal relations of these isolates. In parallel, MALDI spectra 
were measured with the aim to correlate spectral features with genetic or biochemical 
markers. Within F. tularensis ssp. holarctica, the discrimination of clades B.I and B.II 
was of greatest interest, as these differed in erythromycin resistance and were spatially 
separated roughly into the eastern and western half of Germany. But all efforts to cor-
relate spectral features with erythromycin resistance or any of the 14 genetic markers 
that had been assessed failed, and, therefore, remained unpublished. However, the 
authors confirmed the MALDI‐TOF‐MS‐based separation of F. tularensis subspecies.
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11.6 The Genus Brucella

The genus Brucella is composed of the six classical species B. abortus, B. melitensis, 
B. suis, B. canis, B. ovis and B. neotomae (Corbel and Brinley‐Morgan, 1984), and the 
four more recently described species B. pinnipedialis, B. ceti, B. microti and B. inopi-
nata (Foster et al., 2007; Scholz et al., 2008; Scholz et al., 2010). Brucellosis is a fre-
quent zoonotic infection worldwide (Pappas et al., 2006), and brucellae are classified 
as ‘category B’ agents by the CDC (http://www.bt.cdc.gov/agent/agentlist‐category.asp). 
Thus, the prompt diagnosis of brucellosis is highly desirable. At the same time, the 
high numbers of laboratory infections with brucellae (Yagupsky and Baron, 2005) 
also suggest that the substitution of conventional microbiological tube testing by a 
technique that carries less risk for the laboratory staff may be of great benefit. As only 
four of the Brucella species cause human disease (B. abortus, B. melitensis, B. canis 
and B. suis), the reliable identification of the species is of great importance. If an 
 infection with B. suis has been diagnosed, the differentiation of the five known biovars 
is additionally of interest as they show differential pathogenicity for humans (Godfroid 
et al., 2011).

Due to the high homologies between the genomes of the brucellae (Verger et al., 
1985), the organization of the Brucella genus is being discussed (Moreno et al., 2002; 
Verger et al., 1985; Whatmore, 2009). Thus, it was not surprising that the investigation 
of the spectral phenotypes of the ten Brucella species, including different biovars of 
B.  abortus, B. melitensis and B. suis, revealed major disagreements between the 
 spectrum‐based distances and the current taxonomic organization of the Brucella 
genus (Karger et  al., 2013). In this study, reference spectra of 104 field isolates and 
33 reference and vaccine strains were generated and evaluated with MALDI Biotyper 
software. Although the overall rate of accurate species identifications was high (90% 
and 95% in the two participating laboratories), misidentifications accumulated within 
certain groups of species. Specifically, erroneous identifications occurred between 
B. abortus and B. melitensis, between the species from marine mammals, B. ceti and 
B. pinnipedialis, and between B. ceti and B. canis. Individual isolates of B. suis were 
misidentified as B. canis, B. abortus and as B. melitensis. These results could be partly 
explained by cluster analysis of the spectra on the basis of their Euclidean distances. 
The spectrum‐based distances between some established species were only small (e.g. 
between B. canis and B. ovis), and for B. abortus and B. melitensis a continuum of 
 spectral phenotypes was observed rather than two separate clusters. Surprisingly, 
spectrum‐based distances between the B. suis biovars were larger than the distances 
between some established Brucella species (e.g. B. abortus and B. melitensis or B. canis 
and B. ovis). Moreover, B. suis biovars 3 and 4 were closer to B. ovis and B. canis than 
to any of the other B. suis biovars 1, 2 or 5. Nevertheless, it was possible to establish 
statistical models using ClinProTools software (Bruker), which resolved most of the 
misidentifications. Thus, a two‐step procedure was required to achieve reliable identi-
fication of Brucella species and B. suis biovars. First, analysis with MALDI Biotyper 
allowed the unambiguous identification of B. microti, B. inopinata and of B. suis 
 biovars 1 and 5 (including the identification of the biovar). For MALDI Biotyper results 
indicating B. abortus, B. melitensis, B. canis, B. ovis and B. suis biovars 2, 3 and 4, an 
additional evaluation on the basis of the developed statistical models ensured a correct 
identification.

http://www.bt.cdc.gov/agent/agentlist-category.asp
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The finding that spectrum‐based clustering did not reflect the current taxonomy is not 
only interesting with respect to the organization of the genus Brucella (Moreno et al., 
2002; Whatmore, 2009), but it may also explain why the authors failed to find single 
species‐identifying markers for each of the species within this genus. Spectra of some of 
the species (e.g. B. canis and B. ovis) probably were too similar to identify species‐specific 
masses, whereas the biovars within B. suis might have been too heterogeneous to find a 
joint peak that would at the same time not be found in any of the other species.

Lista and colleagues (Lista et  al., 2011) have refined the MI of species from the 
Brucella genus by the construction of a MALDI Biotyper reference database that was 
based on the results of multilocus variable‐number tandem repeat analysis (MLVA). 
A large set of Brucella isolates was genetically characterized by MLVA, cluster analysis 
was performed on basis of the data and for each of the seventeen MVLA clusters one or 
two representative isolates were selected to serve as references for the analysis with 
MALDI Biotyper software. In a test with spectra from 152 Brucella isolates of mostly 
clinical origin, this reference spectra set was shown to allow highly accurate species 
identification, as only one of the isolates was misidentified. Thus, careful selection of 
reference spectra can be useful to improve MI, as will be also shown in the following 
section on Burkholderia.

11.7 The Genus Burkholderia

Burkholderia mallei and B. pseudomallei are closely related zoonotic pathogens that 
cause glanders and melioidosis, respectively. Both species represent pathovars of a single 
genomospecies which was divided in two separate species due to their clinical impact 
and host tropism. Together with another closely related species which exhibits markedly 
lower pathogenicity, B. thailandensis, B. mallei and B. pseudomallei form the so‐called 
‘Pseudomallei complex’. Aside from the differentiation of the Pseudomallei complex, the 
discrimination of B. pseudomallei from species of the Burkholderia cepacia complex, 
which are frequently isolated from cystic fibrose patients, is of high clinical relevance. 
As species differentiation within the burkholderiae with other methods remains difficult 
(Ho et al., 2011; Lowe et al., 2013), the identification of members of this genus by MALDI‐
TOF MS has been investigated in a number of studies (Degand et al., 2008; Desai et al., 
2012; Fehlberg et al., 2013; Fernandez‐Olmos et al., 2012; Inglis, Healy et al.,2012; Karger 
et al., 2012; Lambiase et al., 2013; Miñán et al., 2009; Vanlaere et al., 2008).

It has been noted in the literature that the unequivocal identification of species from 
the Pseudomallei complex strongly depends on the availability of appropriate reference 
spectra. Lau and colleagues (Lau et al., 2012) had observed that samples of B. thailan-
densis had been recognized as B. pseudomallei using a reference database with only one 
B. thailandensis isolate. Addition of another isolate of B. thailandensis to the reference 
set solved the problem, indicating that the intraspecies variation of B. thailandensis 
may require an adequate representation in the reference database for successful identi-
fication. Cunningham and Patel (2013) reported that two B. pseudomallei isolates that 
were analyzed with MALDI Biotyper and a database that lacks B. pseudomallei refer-
ences produced maximum scores of 1.954 and 1.962, respectively, with a B. thailandensis 
reference spectrum. As score values below 2.000 must be interpreted as correct genus 
identification, but not as correct species identification, the result of the query was 
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 correct, but still the species was not identified for lack of an appropriate reference. 
Supplementation of the reference database with spectra from B. pseudomallei and 
B. mallei resulted in scores above the level for species identification; however, the scores 
that were obtained with reference spectra from both species were so similar that an 
unambiguous identification was still not possible. Similar observations had been made 
in a study that focused on the potential of MI to discriminate B. mallei and B. pseu-
domallei isolates (Karger et al., 2012). Here, MALDI Biotyper was used with a custom 
reference spectrum set of 10 B. mallei and 17 B. pseudomallei isolates. It was noticed 
that the B. pseudomallei isolates exhibited a broader variation of spectral phenotypes 
than B. mallei, which is in agreement with genetic data (Godoy et al., 2003). Within the 
constructed reference database, correct species identification of all B. mallei and 
B. pseudomallei isolates was possible, but the highest score values that some B. pseu-
domallei isolates produced with other representatives of their own species only very 
slightly exceeded the maximum score values they produced with representatives of 
B. mallei. Moreover, all B. pseudomallei isolates produced scores with B. mallei isolates 
that well exceeded the cut‐off value of 2.000 that is recommended for reliable species 
identification, and vice versa, underlining again the close relatedness of these species

When the custom reference database was challenged with isolates that had been pre-
pared in a second laboratory, some misidentifications occurred. Analyzing the MALDI 
Biotyper results in detail showed that misidentifications were caused by a restricted 
number of reference spectra. Systematic variation of the reference database allowed the 
definition of a smaller set of references with only two B. mallei and three B. pseudomal-
lei isolates which produced correct results for the set of isolates that was tested. It is 
noteworthy that one of the type strains, B. pseudomallei ATCC23343, reproducibly 
exhibited two striking peak series with mass increments of 14 Da that were found in no 
other Burkholderia isolate and most likely represented proteins that had been modified 
by extensive methylation. Spectrum‐based cluster analysis showed that B. pseudomallei 
ATCC23343 was an outlier in its own species and, therefore, not included in the reduced 
reference set.

In this study, two single masses were identified that are useful for the discrimination 
of certain groups within the Burkholderia genus. Specifically, a marker at 9713 Da was 
present in all isolates of the Pseudomallei complex (B. mallei, B. pseudomallei and 
B. thailandensis) but absent in the six other Burkholderia species (B. ambifaria, B. cenoce-
pacia, B. dolosa, B. glathei, B. multivorans and B. stabilis) that had been analyzed in 
parallel. A mass of 6551 Da discriminated B. mallei and B. pseudomallei isolates from all 
other species, including B. thailandensis. Both masses have recently been confirmed in 
an independent study (Niyompanich et  al., 2014). Systematic qualitative differences 
between the spectra of B. mallei and B. pseudomallei were not observed. However, 
intensities of masses 5794 and 7553 differed significantly between both species and thus 
can be used for discrimination.

11.8 Studying Closely Related Organisms by MALDI‐TOF MS

There is no general guide to the successful implementation of a procedure for the 
 discrimination of closely related organisms on basis of MALDI‐TOF MS. The success 
of any discrimination procedure will always depend on the specific conditions like the 
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presence of prominent group‐specific features, the number of isolates that is available, 
the number of groups that are to be discriminated in parallel, the quality of the spectra, 
and more factors. The following considerations are neither meant to give comprehensive 
and detailed guidance, nor to replace a textbook on statistics, but rather to summarize 
our experience and the experiences of others in this field over the past years and to 
indicate some pitfalls that we have encountered.

11.8.1 Sample Selection

As with the design of any diagnostic test, some basic preconditions must be met before 
a MALDI‐TOF MS study with closely related organisms can be considered. For the 
statistical evaluation, a sufficient number of isolates within every group (e.g. subspecies, 
biovar, serotype) is required. All samples that are included in the study should have 
been assigned to one of the groups using an accepted method. Isolates should be 
selected with respect to relevant features like genetic markers, origin, date of isolation, 
host species and other factors in order to ensure that the natural variation of the isolates 
within a group is represented in the study in a balanced way. It must be kept in mind 
that MI relies on pattern recognition, so that even excellent algorithms will not find 
what is not in the database. Also, other available data and metadata should be at hand 
as they can help explain unexpected clustering behaviour of the mass spectra in the 
course of the cluster analysis.

11.8.2 Spectrum Processing

Raw spectra are usually transformed into peak lists by three main steps. The raw 
 spectrum is smoothed in order to reduce noise, the baseline is corrected and finally 
the peaks that meet the minimum quality parameters of the peak search algorithm are 
annotated. As spectra from closely related organisms may differ only slightly, it is 
important to adjust the spectrum processing parameters with care. Standard settings 
may not be suitable. Less intense peaks may be lost if too rigid smoothing is performed 
or if too stringent values for the minimum intensity or the minimum signal‐to‐noise 
(S/N) ratio of valid peaks are chosen. On the other hand, too permissive conditions for 
the peak search must be avoided in order to exclude noise from the peak list.

But, fortunately, the fact that all samples are very similar can also be taken as a mass‐
spectrometric advantage. If, for example, the spectra of two subspecies within a species 
are studied, it most certainly will be possible to establish species‐specific marker ions 
which can be used for the internal mass calibration of spectra from both subspecies. 
Internal mass calibration significantly improves the mass accuracy and, therefore, smaller 
m/z tolerances can be applied for calculations like the peak alignments, or the search for 
group‐specific markers. This is of great importance for subspecies‐level classification, as 
it may rely on very subtle differences between the spectra. Choosing unnecessarily large 
m/z tolerances may lead to the loss of markers with only small mass shifts.

11.8.3 Choosing Software for Statistical Calculations

Manufacturers of hardware offer software tools for the refined analysis of MS data, 
which are designed for non‐statisticians. Although these usually will be the tools of 
choice for reasons of convenience, the transfer of the peak lists to independent software 
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packages like the statistical programming languages MatlabR (MathWorks) or R  
(R_Development_Core_Team 2011) may be considered. R is freely available and offers a 
number of very powerful options, for example, for multivariate data analysis. Additional 
packages are available to expand the base package with, for example, implementations 
of algorithms for discriminant analysis (Sanchez, 2013) or with tools for the processing 
of MALDI‐TOF mass spectra (Gibb and Strimmer, 2012).

11.8.4 Search for Taxon‐Specific Markers

Irrespective of the environment that is used, the search for group‐specific markers is a 
consequent next step. Under favourable conditions, one or more reliable, qualitative 
group‐specific markers may be found, and an easy classification can be set up based on 
the presence or absence of these mass peaks. In this case, however, the parameters that 
rule peak detection (see above) are of great importance and must be chosen with care.

11.8.5 Spectrum‐Based Cluster Analysis

If reliable qualitative taxon‐identifying marker peaks cannot be identified, it is helpful 
to perform a cluster analysis and to visualize the distance relations between the indi-
vidual isolates and the groups. Towards this end, spectrum‐based distances between all 
isolates can be calculated and represented, for example, in a dendrogram, or, after mul-
tidimensional scaling, as a scatterplot (Sammon, 1969). Alternatively, principal compo-
nent analysis (PCA) can be performed. Visual inspection of the resulting graphs will 
give a first impression of how well the different groups are separated on basis of the 
spectra as they are. Graphical representations of the spectrum‐based distances will also 
give a hint on the homogeneity of the isolates within the groups, which is also an impor-
tant point. If unexpected clusters within a group occur, it should be verified if these 
coincide with certain features of the samples (e.g. provenience, host species or a genetic 
marker) or could be related to a technical problem that affected a part of the samples. 
Also, the presence of singletons (‘outliers’) should be examined. Interestingly, we have 
observed in two studies that reference or type strains were indeed outliers in their own 
groups and, therefore, inappropriate as references for the MS‐based identification of 
field strains (Karger et al., 2012; Schafer et al., 2014).

11.8.6 Statistical Models for Classification

If the graphical representations of the distances between the isolates or of the PCA have 
not displayed at least a rudimental separation of the different groups, but rather resulted 
in a random distribution of all isolates, it will be difficult or even impossible to achieve 
group separation. If further analysis seems promising, multivariate data analysis offers 
a wealth of different approaches that can be used for the analysis of mass spectra and 
the implementation of classification algorithms, that is, procedures that allow the pre-
diction of the classes (e.g. subspecies) of unknown samples on basis of statistical models 
that have been derived from spectra of samples with known classes. A discussion of 
multivariate data analysis in the context of mass spectrometry would be beyond the 
scope of this review, but, to mention a few examples, artificial neural networks (ANNs) 
have been successfully applied for the characterization of Yersinia (Lasch et al., 2010) 
and Bacillus subtilis (Lasch et al., 2009) strains, but also for the tracing of methicillin 
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resistance in Staphylococcus aureus (Shah et al., 2011). The support vector machine 
(SVM) algorithm has been useful to improve the identification of, among others, spe-
cies from the Bacillus and Brevibacillus genera (AlMasoud et al., 2014).

As for the design of any other diagnostic test, it is important at this stage that the clas-
sification algorithms are cross‐validated in order to assess the prediction error and the 
influence of sample selection. Cross‐validation is usually achieved by the implementa-
tion of ‘leave‐one‐out’ strategies or by repeated random sub‐sampling of isolates from 
each group, which are then used to classify the remaining isolates on the basis of the 
statistical model. It is a common pitfall to add too many parameters (i.e. masses, in the 
case of mass spectrometry) to a statistical model in an attempt to optimize the perfor-
mance, as very complex models are likely to fail with independent samples due to an 
‘overfitting’ effect.

11.8.7 External Validation

Finally, once a procedure for the classification of closely related isolates has been estab-
lished, it is advisable to test the performance with independent sample spectra from a 
second laboratory, especially if the workflow is intended to be transferred to other 
laboratories.

11.9 Conclusion

MALDI‐TOF MS has become a routine technology for the species identification of 
 bacteria in microbiological laboratories. Commercial solutions like the MALDI Biotyper 
(Bruker) and the Vitek MS (bioMérieux) systems have been shown to be very reliable 
for the identification of the genus and the species of unknown samples. However, 
already at the species level, some bacteria remain difficult to differentiate, like some 
species of the Brucella and of the Burkholderia genus that have been mentioned above. 
In contrast to that, the successful discrimination of subspecies of Francisella tularensis 
or biovars of Brucella suis using MALDI Biotyper demonstrates that the capability of 
established MI procedures to reliably discriminate related bacteria is not generally 
restricted to organisms above a certain taxonomic rank.

For the further development of MS‐based identification of bacteria, two main 
 strategies seem to develop. On the one hand, new experimental variants of MI or even 
completely different experimental setups like the proteotyping approach have been 
introduced. On the other hand, the conventional procedures for the MALDI‐TOF‐MS‐
based identification of bacteria can be markedly improved by refined statistical analysis. 
This has been shown for the differentiation of several E. coli serotypes including sero-
types that can cause severe human disease like the serotypes O157:H7 and O104:H4. 
Essential improvements of the MS‐based diagnosis of select organisms have been 
described, for example, for the discrimination of Burkholderia mallei, Burkholderia 
pseudomallei and Burkholderia thailandensis, and for the identification of Brucella 
 species and the biovars of Brucella suis. Yet, we have also experienced limitations of 
MALDI‐TOF MS for the discrimination of genetically defined groups of isolates below 
the level of subspecies, like the clusters of isolates with common genetic markers within 
Francisella tularensis ssp. holarctica or within E. coli serotypes.



Discrimination of Burkholderia Species, Brucella Biovars, Francisella tularensis 261

References

Alatoom, A. A., Cunningham, S. A., Ihde, S. M., Mandrekar, J., & Patel, R. (2011). 
Comparison of direct colony method versus extraction method for identification of 
gram‐positive cocci by use of Bruker Biotyper matrix‐assisted laser desorption 
ionization‐time of flight mass spectrometry. J Clin Microbiol, 49(8), 2868–2873. 
doi: 10.1128/jcm.00506‐11

AlMasoud, N., Xu, Y., Nicolaou, N., & Goodacre, R. (2014). Optimization of matrix assisted 
desorption/ionization time of flight mass spectrometry (MALDI‐TOF‐MS) for the 
characterization of Bacillus and Brevibacillus species. Anal Chim Acta, 840, 49–57. 
doi: 10.1016/j.aca.2014.06.032

Anderson, N. W., Buchan, B. W., Riebe, K. M., Parsons, L. N., Gnacinski, S., & 
Ledeboer, N. A. (2012). Effects of solid‐medium type on routine identification of 
bacterial isolates by use of matrix‐assisted laser desorption ionization‐time of flight 
mass spectrometry. J Clin Microbiol, 50(3), 1008–1013. doi: 10.1128/jcm.05209‐11

Balazova, T., Makovcova, J., Sedo, O., Slany, M., Faldyna, M., & Zdrahal, Z. (2014). 
The influence of culture conditions on the identification of Mycobacterium species 
by MALDI‐TOF MS profiling. FEMS Microbiol Lett, 353(1), 77–84. 
doi: 10.1111/1574‐6968.12408

Bielaszewska, M., Köck, R., Friedrich, A. W., von Eiff, C., Zimmerhackl, L. B., Karch, H., & 
Mellmann, A. (2007). Shiga toxin‐mediated hemolytic uremic syndrome: Time to change 
the diagnostic paradigm? PLoS ONE, 2(10). doi: 10.1371/journal.pone.0001024

Bizzini, A., Durussel, C., Bille, J., Greub, G., & Prod’hom, G. (2010). Performance of 
matrix‐assisted laser desorption ionization‐time of flight mass spectrometry for 
identification of bacterial strains routinely isolated in a clinical microbiology laboratory. 
J Clin Microbiol, 48(5), 1549–1554. doi: 10.1128/jcm.01794‐09

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and 
regression trees. Wadsworth. Belmont, CA.

Bright, J. J., Claydon, M. A., Soufian, M., & Gordon, D. B. (2002). Rapid typing of bacteria 
using matrix‐assisted laser desorption ionisation time‐of‐flight mass spectrometry and 
pattern recognition software. J Microbiol Methods, 48(2–3), 127–138.

Christner, M., Trusch, M., Rohde, H., Kwiatkowski, M., Schluter, H., Wolters, M.,…
Hentschke, M. (2014). Rapid MALDI‐TOF mass spectrometry strain typing during a 
large outbreak of Shiga‐Toxigenic Escherichia coli. PLoS ONE, 9(7), e101924. 
doi: 10.1371/journal.pone.0101924

Corbel, M. J., & Brinley‐Morgan, W. J. (1984). Genus Brucella Meyer and Shaw 1920, 
173AL. Bergey’s Manual of Systematic Bacteriology, 1, 377–388.

Couderc, C., Nappez, C., & Drancourt, M. (2012). Comparing inactivation protocols of 
Yersinia organisms for identification with matrix‐assisted laser desorption/ionization 
time‐of‐flight mass spectrometry. Rapid Commun Mass Spectrom, 26(6), 710–714. 
doi: 10.1002/rcm.6152

Cunningham, S. A., & Patel, R. (2013). Importance of using Bruker’s security‐relevant 
library for Biotyper identification of Burkholderia pseudomallei, Brucella species, and 
Francisella tularensis. J Clin Microbiol, 51(5), 1639–1640. doi: 10.1128/jcm.00267‐13

Cunningham, S. A., & Patel, R. (2015). Standard matrix‐assisted laser desorption 
ionization‐time of flight mass spectrometry reagents may inactivate potentially 
hazardous bacteria. J Clin Microbiol, 53(8), 2788–2789. doi: 10.1128/jcm.00957‐15



MALDI-TOF Mass Spectrometry262

Degand, N., Carbonnelle, E., Dauphin, B., Beretti, J. L., Le Bourgeois, M., Sermet‐Gaudelus, I.,… 
Ferroni, A. (2008). Matrix‐assisted laser desorption ionization‐time of flight mass 
spectrometry for identification of nonfermenting gram‐negative bacilli isolated from 
cystic fibrosis patients. J Clin Microbiol, 46(10), 3361–3367. doi: 10.1128/jcm.00569‐08

Desai, A. P., Stanley, T., Atuan, M., McKey, J., Lipuma, J. J., Rogers, B., & Jerris, R. (2012). 
Use of matrix assisted laser desorption ionisation‐time of flight mass spectrometry in a 
paediatric clinical laboratory for identification of bacteria commonly isolated from cystic 
fibrosis patients. J Clin Pathol, 65(9), 835–838. doi: 10.1136/jclinpath‐2012‐200772

Dieckmann, R., Helmuth, R., Erhard, M., & Malorny, B. (2008). Rapid classification and 
identification of salmonellae at the species and subspecies levels by whole‐cell matrix‐
assisted laser desorption ionization‐time of flight mass spectrometry. Appl Environ 
Microbiol, 74(24), 7767–7778. doi: 10.1128/aem.01402‐08

Drevinek, M., Dresler, J., Klimentova, J., Pisa, L., & Hubalek, M. (2012). Evaluation of 
sample preparation methods for MALDI‐TOF MS identification of highly dangerous 
bacteria. Lett Appl Microbiol, 55(1), 40–46. doi: 10.1111/j.1472‐765X.2012.03255.x

Fagerquist, C. K., Garbus, B. R., Miller, W. G., Williams, K. E., Yee, E., Bates, A. H.,…
Mandrell, R. E. (2010). Rapid identification of protein biomarkers of Escherichia coli 
O157:H7 by matrix‐assisted laser desorption ionization‐time‐of‐flight‐time‐of‐flight 
mass spectrometry and top‐down proteomics. Anal Chem, 82(7), 2717–2725. 
doi: 10.1021/ac902455d

Fehlberg, L. C., Andrade, L. H., Assis, D. M., Pereira, R. H., Gales, A. C., & Marques, E. A. 
(2013). Performance of MALDI‐ToF MS for species identification of Burkholderia 
cepacia complex clinical isolates. Diagn Microbiol Infect Dis, 77(2), 126–128. 
doi: 10.1016/j.diagmicrobio.2013.06.011

Fernandez‐Olmos, A., Garcia‐Castillo, M., Morosini, M. I., Lamas, A., Maiz, L., & Canton, 
R. (2012). MALDI‐TOF MS improves routine identification of non‐fermenting Gram 
negative isolates from cystic fibrosis patients. J Cyst Fibros, 11(1), 59–62. doi: 10.1016/j.
jcf.2011.09.001

Foster, G., Osterman, B. S., Godfroid, J., Jacques, I., & Cloeckert, A. (2007). Brucella ceti 
sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as 
their preferred hosts. International Journal of Systematic and Evolutionary Microbiology, 
57(11), 2688–2693. doi: 10.1099/ijs.0.65269‐0

Fournier, R., Wallet, F., Grandbastien, B., Dubreuil, L., Courcol, R., Neut, C., & Dessein, R. 
(2012). Chemical extraction versus direct smear for MALDI‐TOF mass spectrometry 
identification of anaerobic bacteria. Anaerobe, 18(3), 294–297. doi: 10.1016/j.
anaerobe.2012.03.008

Geue, L., Klare, S., Schnick, C., Mintel, B., Meyer, K., & Conraths, F. J. (2009). Analysis of 
the clonal relationship of serotype O26:H11 enterohemorrhagic Escherichia coli isolates 
from cattle. Appl Environ Microbiol, 75(21), 6947–6953. doi: 10.1128/AEM.00605‐09

Geue, L., Schares, S., Mintel, B., Conraths, F. J., Müller, E., & Ehricht, R. (2010). Rapid 
microarray‐based genotyping of enterohemorrhagic Escherichia coli serotype 
O156:H25/H‐/Hnt isolates from cattle and clonal relationship analysis. Appl Environ 
Microbiol, 76(16), 5510–5519. doi: 10.1128/AEM.00743‐10

Geue, L., Selhorst, T., Schnick, C., Mintel, B., & Conraths, F. J. (2006). Analysis of the clonal 
relationship of Shiga toxin‐producing Escherichia coli serogroup O165:H25 isolated 
from cattle. Appl Environ Microbiol, 72(3), 2254–2259. doi: 10.1128/
AEM.72.3.2254‐2259.2006



Discrimination of Burkholderia Species, Brucella Biovars, Francisella tularensis 263

Gibb, S., & Strimmer, K. (2012). MALDIquant: A versatile R package for the analysis of 
mass spectrometry data. Bioinformatics, 28(17), 2270–2271. doi: 10.1093/
bioinformatics/bts447

Godfroid, J., Scholz, H. C., Barbier, T., Nicolas, C., Wattiau, P., Fretin, D.,…Letesson, J. J. 
(2011). Brucellosis at the animal/ecosystem/human interface at the beginning of the 
21st century. Prev Vet Med, 102(2), 118–131. doi: 10.1016/j.prevetmed.2011.04.007

Godoy, D., Randle, G., Simpson, A. J., Aanensen, D. M., Pitt, T. L., Kinoshita, R., & 
Spratt, B. G. (2003). Multilocus sequence typing and evolutionary relationships among 
the causative agents of melioidosis and glanders, Burkholderia pseudomallei and 
Burkholderia mallei. J Clin Microbiol, 41(5), 2068–2079.

Ho, C. C., Lau, C. C., Martelli, P., Chan, S. Y., Tse, C. W., Wu, A. K.,…Woo, P. C. (2011). 
Novel pan‐genomic analysis approach in target selection for multiplex PCR 
identification and detection of Burkholderia pseudomallei, Burkholderia thailandensis, 
and Burkholderia cepacia complex species: A proof‐of‐concept study. J Clin Microbiol, 
49(3), 814–821. doi: 10.1128/jcm.01702‐10

Inglis, T. J., Healy, P. E., Fremlin, L. J., & Golledge, C. L. (2012). Use of matrix‐assisted laser 
desorption/ionization time‐of‐flight mass spectrometry analysis for rapid confirmation 
of Burkholderia pseudomallei in septicemic melioidosis. Am J Trop Med Hyg, 86(6), 
1039–1042. doi: 10.4269/ajtmh.2012.11‐0454

Jarman, K. H., & Wahl, K. L. (2005). Development of spectral pattern‐matching approaches 
to matrix‐assisted laser desorption/ionization mass spectrometry for bacterial 
identification. In C. L. Wilkins & J. O. Lay (Eds.), Identification of Microorganisms by 
Mass Spectrometry (pp. 153–160): Wiley.

Johansson, A., Farlow, J., Larsson, P., Dukerich, M., Chambers, E., Bystrom, M.,…Keim, P. 
(2004). Worldwide genetic relationships among Francisella tularensis isolates 
determined by multiple‐locus variable‐number tandem repeat analysis. J Bacteriol, 
186(17), 5808–5818. doi: 10.1128/jb.186.17.5808‐5818.2004

Karger, A., Melzer, F., Timke, M., Bettin, B., Kostrzewa, M., Nockler, K.,…Al Dahouk, S. 
(2013). Interlaboratory comparison of intact‐cell matrix‐assisted laser desorption 
ionization‐time of flight mass spectrometry results for identification and differentiation 
of Brucella spp. J Clin Microbiol, 51(9), 3123–3126. doi: 10.1128/jcm.01720‐13

Karger, A., Stock, R., Ziller, M., Elschner, M. C., Bettin, B., Melzer, F.,…Tomaso, H. (2012). 
Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell 
Matrix‐assisted Laser Desorption/Ionisation mass spectrometric typing. BMC 
Microbiol, 12, 229. doi: 10.1186/1471‐2180‐12‐229

Karger, A., Ziller, M., Bettin, B., Mintel, B., Schares, S., & Geue, L. (2011). Determination of 
serotypes of Shiga toxin‐producing Escherichia coli isolates by intact cell matrix‐assisted 
laser desorption ionization‐time of flight mass spectrometry. Appl Environ Microbiol, 
77(3), 896–905. doi: 10.1128/AEM.01686‐10

Khot, P. D., Couturier, M. R., Wilson, A., Croft, A., & Fisher, M. A. (2012). Optimization 
of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry 
analysis for bacterial identification. J Clin Microbiol, 50(12), 3845–3852. doi: 10.1128/
jcm.00626‐12

Krasny, L., Rohlova, E., Ruzickova, H., Santrucek, J., Hynek, R., & Hochel, I. (2014). 
Differentiation of Cronobacter spp. by tryptic digestion of the cell suspension followed 
by MALDI‐TOF MS analysis. J Microbiol Methods, 98, 105–113. doi: 10.1016/j.
mimet.2014.01.008



MALDI-TOF Mass Spectrometry264

Lambiase, A., Del Pezzo, M., Cerbone, D., Raia, V., Rossano, F., & Catania, M. R. (2013). 
Rapid identification of Burkholderia cepacia complex species recovered from cystic 
fibrosis patients using matrix‐assisted laser desorption ionization time‐of‐flight mass 
spectrometry. J Microbiol Methods, 92(2), 145–149. doi: 10.1016/j.mimet.2012.11.010

Lasch, P., Beyer, W., Nattermann, H., Stämmler, M., Siegbrecht, E., Grunow, R., & 
Naumann, D. (2009). Identification of Bacillus anthracis by using matrix‐assisted laser 
desorption ionization‐time of flight mass spectrometry and artificial neural networks. 
Appl Environ Microbiol, 75(22), 7229–7242. doi: 10.1128/aem.00857‐09

Lasch, P., Drevinek, M., Nattermann, H., Grunow, R., Stammler, M., Dieckmann, R.,…
Naumann, D. (2010). Characterization of Yersinia using MALDI‐TOF mass 
spectrometry and chemometrics. Anal Chem, 82(20), 8464–8475.  
doi: 10.1021/ac101036s

Lasch, P., Nattermann, H., Erhard, M., Stämmler, M., Grunow, R., Bannert, N.,…Naumann, D. 
(2008). MALDI‐TOF mass spectrometry compatible inactivation method for highly 
pathogenic microbial cells and spores. Anal Chem, 80(6), 2026–2034. doi: 10.1021/
ac701822j

Lasch, P., Wahab, T., Weil, S., Palyi, B., Tomaso, H., Zange, S.,…Jacob, D. (2015). 
Identification of Highly pathogenic microorganisms using MALDI‐TOF mass 
spectrometry – results of an inter‐laboratory ring trial. J Clin Microbiol. doi: 10.1128/
jcm.00813‐15

Lau, S. K., Tang, B. S., Curreem, S. O., Chan, T. M., Martelli, P., Tse, C. W.,…Woo, P. C. 
(2012). Matrix‐assisted laser desorption ionization‐time of flight mass spectrometry for 
rapid identification of Burkholderia pseudomallei: Importance of expanding databases 
with pathogens endemic to different localities. J Clin Microbiol, 50(9), 3142–3143. doi: 
10.1128/jcm.01349‐12

Lista, F., Reubsaet, F. A., De Santis, R., Parchen, R. R., de Jong, A. L., Kieboom, J.,…Paauw, A. 
(2011). Reliable identification at the species level of Brucella isolates with MALDI‐
TOF‐MS. BMC Microbiol, 11, 267. doi: 10.1186/1471‐2180‐11‐267

Lowe, W., March, J. K., Bunnell, A. J., O’Neill, K. L., & Robison, R. A. (2013). PCR‐based 
Methodologies Used to detect and differentiate the Burkholderia pseudomallei 
complex: B. pseudomallei, B. mallei, and B. thailandensis. Curr Issues Mol Biol, 16(2), 
23–54.

Lundquist, M., Caspersen, M. B., Wikstrom, P., & Forsman, M. (2005). Discrimination of 
Francisella tularensis subspecies using surface enhanced laser desorption ionization 
mass spectrometry and multivariate data analysis. FEMS Microbiol Lett, 243(1),  
303–310. doi: 10.1016/j.femsle.2004.12.020

Luo, Y., Siu, G. K., Yeung, A. S., Chen, J. H., Ho, P. L., Leung, K. W.,…Yam, W. C. (2015). 
Performance of the VITEK MS matrix‐assisted laser desorption ionization‐time of flight 
mass spectrometry system for rapid bacterial identification in two diagnostic centres in 
China. J Med Microbiol, 64(Pt 1), 18–24. doi: 10.1099/jmm.0.080317‐0

Martiny, D., Cremagnani, P., Gaillard, A., Miendje Deyi, V. Y., Mascart, G., Ebraert, A.,… 
Vandenberg, O. (2014). Feasibility of matrix‐assisted laser desorption/ionisation 
time‐of‐flight mass spectrometry (MALDI‐TOF MS) networking in university hospitals 
in Brussels. Eur J Clin Microbiol Infect Dis, 33(5), 745–754. doi: 10.1007/
s10096‐0132006‐6

Mather, C. A., Rivera, S. F., & Butler‐Wu, S. M. (2014). Comparison of the Bruker Biotyper 
and Vitek MS matrix‐assisted laser desorption ionization‐time of flight mass 



Discrimination of Burkholderia Species, Brucella Biovars, Francisella tularensis 265

spectrometry systems for identification of mycobacteria using simplified protein 
extraction protocols. J Clin Microbiol, 52(1), 130–138. doi: 10.1128/jcm.01996‐13

Matsuda, N., Matsuda, M., Notake, S., Yokokawa, H., Kawamura, Y., Hiramatsu, K., & 
Kikuchi, K. (2012). Evaluation of a simple protein extraction method for species 
identification of clinically relevant staphylococci by matrix‐assisted laser desorption 
ionization‐time of flight mass spectrometry. J Clin Microbiol, 50(12), 3862–3866. 
doi: 10.1128/jcm.01512‐12

Mazzeo, M. F., Sorrentino, A., Gaita, M., Cacace, G., Di Stasio, M., Facchiano, A.,…
Siciliano, R. A. (2006). Matrix‐assisted laser desorption ionization‐time of flight mass 
spectrometry for the discrimination of food‐borne microorganisms. Appl Environ 
Microbiol, 72(2), 1180–1189. doi: 10.1128/aem.72.2.1180‐1189.2006

McElvania Tekippe, E., Shuey, S., Winkler, D. W., Butler, M. A., & Burnham, C. A. (2013). 
Optimizing identification of clinically relevant Gram‐positive organisms by use of the 
Bruker Biotyper matrix‐assisted laser desorption ionization‐time of flight mass 
spectrometry system. J Clin Microbiol, 51(5), 1421–1427. doi: 10.1128/jcm.02680‐12

Meetani, M. A., & Voorhees, K. J. (2005). MALDI mass spectrometry analysis of high 
molecular weight proteins from whole bacterial cells: Pretreatment of samples with 
surfactants. J Am Soc Mass Spectrom, 16(9), 1422–1426. doi: 10.1016/j.jasms.2005.04.004

Mellmann, A., Bielaszewska, M., Köck, R., Friedrich, A. W., Fruth, A., Middendorf, B.,… 
Karch, H. (2008). Analysis of collection of hemolytic uremic syndrome‐associated 
enterohemorrhagic Escherichia coli. Emerg Infect Dis, 14(8), 1287–1290. doi: 10.3201/
eid1408.071082

Miñán, A., Bosch, A., Lasch, P., Stämmler, M., Serra, D. O., Degrossi, J.,…Naumann, D. 
(2009). Rapid identification of Burkholderia cepacia complex species including strains 
of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI‐ToF 
mass spectrometry. Analyst, 134(6), 1138–1148. doi: 10.1039/b822669e

Moreno, E., Cloeckaert, A., & Moriyon, I. (2002). Brucella evolution and taxonomy. 
Vet Microbiol, 90(1–4), 209–227.

Muller, W., Hotzel, H., Otto, P., Karger, A., Bettin, B., Bocklisch, H.,…Tomaso, H. (2013). 
German Francisella tularensis isolates from European brown hares (Lepus europaeus) 
reveal genetic and phenotypic diversity. BMC Microbiol, 13, 61. 
doi: 10.1186/1471‐2180‐13‐61

Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clin Microbiol Rev, 
11(1), 142–201.

Niyompanich, S., Jaresitthikunchai, J., Srisanga, K., Roytrakul, S., & Tungpradabkul, S. 
(2014). Source‐identifying biomarker ions between environmental and clinical 
Burkholderia pseudomallei using whole‐cell matrix‐assisted laser desorption/ionization 
time‐of‐flight mass spectrometry (MALDI‐TOF MS). PLoS ONE, 9(6), e99160. doi: 
10.1371/journal.pone.0099160

Ojima‐Kato, T., Yamamoto, N., Suzuki, M., Fukunaga, T., & Tamura, H. (2014). 
Discrimination of Escherichia coli O157, O26 and O111 from other serovars by MALDI‐
TOF MS based on the S10‐GERMS method. PLoS ONE, 9(11), e113458. doi: 10.1371/
journal.pone.0113458

Paauw, A., Trip, H., Niemcewicz, M., Sellek, R., Heng, J. M., Mars‐Groenendijk, R. H.,…
Tsivtsivadze, E. (2014). OmpU as a biomarker for rapid discrimination between toxigenic 
and epidemic Vibrio cholerae O1/O139 and non‐epidemic Vibrio cholerae in a modified 
MALDI‐TOF MS assay. BMC Microbiol, 14, 158. doi: 10.1186/1471‐2180‐14‐158



MALDI-TOF Mass Spectrometry266

Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L., & Tsianos, E. V. (2006). The new 
global map of human brucellosis. Lancet Infect Dis, 6(2), 91–99. doi: 10.1016/
S1473‐3099(06)70382‐6

Patel, R. (2013). Matrix‐assisted laser desorption ionization‐time of flight mass 
spectrometry in clinical microbiology. Clin Infect Dis, 57(4), 564–572.  
doi: 10.1093/cid/cit247

Preussel, K., Hohle, M., Stark, K., & Werber, D. (2013). Shiga toxin‐producing Escherichia 
coli O157 is more likely to lead to hospitalization and death than non‐O157 
serogroups – except O104. PLoS ONE, 8(11), e78180. doi: 10.1371/journal.pone.0078180

Robert‐Koch‐Institut. (2011). Bericht: Abschließende Darstellung und Bewertung der 
epidemiologischen Erkenntnisse im EHEC O104:H4 Ausbruch, Deutschland 2011.

Sammon, J. (1969). A non‐linear mapping for data structure analysis. IEEE Trans Comp C, 
18, 401–409.

Sanchez, G. (2013). DiscriMiner: Tools of the Trade for Discriminant Analysis. R package 
version 0.1–29.

Sauer, S., Freiwald, A., Maier, T., Kube, M., Reinhardt, R., Kostrzewa, M., & Geider, K. 
(2008). Classification and identification of bacteria by mass spectrometry and 
computational analysis. PLoS ONE, 3(7). doi: 10.1371/journal.pone.0002843

Schäfer, M. O., Genersch, E., Funfhaus, A., Poppinga, L., Formella, N., Bettin, B., & Karger, A. 
(2014). Rapid identification of differentially virulent genotypes of Paenibacillus larvae, the 
causative organism of American foulbrood of honey bees, by whole cell MALDI‐TOF mass 
spectrometry. Vet Microbiol, 170(3–4), 291–297. doi: 10.1016/j.vetmic.2014.02.006

Schmidt, F., Fiege, T., Hustoft, H. K., Kneist, S., & Thiede, B. (2009). Shotgun mass 
mapping of Lactobacillus species and subspecies from caries related isolates by MALDI‐
MS. Proteomics, 9(7), 1994–2003. doi: 10.1002/pmic.200701028

Schmitt, B. H., Cunningham, S. A., Dailey, A. L., Gustafson, D. R., & Patel, R. (2013). 
Identification of anaerobic bacteria by Bruker Biotyper matrix‐assisted laser desorption 
ionization‐time of flight mass spectrometry with on‐plate formic acid preparation. J Clin 
Microbiol, 51(3), 782–786. doi: 10.1128/jcm.02420‐12

Scholz, H. C., Hubalek, Z., Sedláček, I., Vergnaud, G., Tomaso, H., Al Dahouk, S.,…
Nöckler, K. (2008). Brucella microti sp. nov., isolated from the common vole Microtus 
arvalis. Int J Syst Evol Microbiol, 58(2), 375–382. doi: 10.1099/ijs.0.65356‐0

Scholz, H. C., Nöckler, K., Llner, C. G., Bahn, P., Vergnaud, G., Tomaso, H.,…De, B. K. 
(2010). Brucella inopinata sp. nov., isolated from a breast implant infection. 
International Journal of Systematic and Evolutionary Microbiology, 60(4), 801–808. 
doi: 10.1099/ijs.0.011148‐0

Schulthess, B., Brodner, K., Bloemberg, G. V., Zbinden, R., Bottger, E. C., & Hombach, M. 
(2013). Identification of Gram‐positive cocci by use of matrix‐assisted laser desorption 
ionization‐time of flight mass spectrometry: Comparison of different preparation 
methods and implementation of a practical algorithm for routine diagnostics. J Clin 
Microbiol, 51(6), 1834–1840. doi: 10.1128/jcm.02654‐12

Sedo, O., Vavrova, A., Vad’urova, M., Tvrzova, L., & Zdrahal, Z. (2013). The influence 
of growth conditions on strain differentiation within the Lactobacillus acidophilus 
group using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry 
profiling. Rapid Commun Mass Spectrom, 27(24), 2729–2736. doi: 10.1002/rcm.6741

Seibold, E., Bogumil, R., Vorderwulbecke, S., Al Dahouk, S., Buckendahl, A., Tomaso, H., & 
Splettstoesser, W. (2007). Optimized application of surface‐enhanced laser desorption/



Discrimination of Burkholderia Species, Brucella Biovars, Francisella tularensis 267

ionization time‐of‐flight MS to differentiate Francisella tularensis at the level of 
subspecies and individual strains. FEMS Immunol Med Microbiol, 49(3), 364–373. 
doi: 10.1111/j.1574‐695X.2007.00216.x

Seibold, E., Maier, T., Kostrzewa, M., Zeman, E., & Splettstoesser, W. (2010). Identification 
of Francisella tularensis by whole‐cell matrix‐assisted laser desorption ionization‐time 
of flight mass spectrometry: Fast, reliable, robust, and cost‐effective differentiation 
on species and subspecies levels. J Clin Microbiol, 48(4), 1061–1069.  
doi: 10.1128/jcm.01953‐09

Seng, P., Abat, C., Rolain, J. M., Colson, P., Lagier, J. C., Gouriet, F.,…Raoult, D. (2013). 
Identification of rare pathogenic bacteria in a clinical microbiology laboratory: Impact 
of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry. 
J Clin Microbiol, 51(7), 2182–2194. doi: 10.1128/jcm.00492‐13

Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P. E., Rolain, J. M., & Raoult, D. 
(2009). Ongoing revolution in bacteriology: Routine identification of bacteria by matrix‐
assisted laser desorption ionization time‐of‐flight mass spectrometry. Clin Infect Dis, 
49(4), 543–551. doi: 10.1086/600885

Shah, H. N., Rajakaruna, L., Ball, G., Misra, R., Al‐Shahib, A., Fang, M., & Gharbia, S. E. 
(2011). Tracing the transition of methicillin resistance in sub‐populations of 
Staphylococcus aureus, using SELDI‐TOF mass spectrometry and artificial neural 
network analysis. Syst Appl Microbiol, 34(1), 81–86. doi: 10.1016/j.syapm.2010.11.002

Tracz, D. M., McCorrister, S. J., Westmacott, G. R., & Corbett, C. R. (2013). Effect of 
gamma radiation on the identification of bacterial pathogens by MALDI‐TOF MS. 
J Microbiol Methods, 92(2), 132–134. doi: 10.1016/j.mimet.2012.11.013

Vanlaere, E., Sergeant, K., Dawyndt, P., Kallow, W., Erhard, M., Sutton, H.,…Vandamme, P. 
(2008). Matrix‐assisted laser desorption ionisation‐time‐of of‐flight mass spectrometry 
of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol 
Methods, 75(2), 279–286. doi: 10.1016/j.mimet.2008.06.016

Veloo, A. C., Elgersma, P. E., Friedrich, A. W., Nagy, E., & van Winkelhoff, A. J. (2014). The 
influence of incubation time, sample preparation and exposure to oxygen on the quality 
of the MALDI‐TOF MS spectrum of anaerobic bacteria. Clin Microbiol Infect, 20(12), 
O1091–1097. doi: 10.1111/1469‐0691.12644

Verger, J. M., Grimont, F., Grimont, P. A. D., & Grayon, M. (1985). Brucella, a monospecific 
genus as shown by deoxyribonucleic acid hybridization. International Journal of 
Systematic Bacteriology, 35(3), 292–295.

Vogler, A. J., Birdsell, D., Price, L. B., Bowers, J. R., Beckstrom‐Sternberg, S. M., Auerbach, 
R. K.,…Keim, P. (2009). Phylogeography of Francisella tularensis: Global expansion of a 
highly fit clone. J Bacteriol, 191(8), 2474–2484. doi: 10.1128/jb.01786‐08

Whatmore, A. M. (2009). Current understanding of the genetic diversity of Brucella, an 
expanding genus of zoonotic pathogens. Infect Genet Evol, 9(6), 1168–1184. 
doi: 10.1016/j.meegid.2009.07.001

Wilen, C. B., McMullen, A. R., & Burnham, C. A. (2015). Comparison of sample 
preparation methods, instrumentation platforms, and contemporary commercial 
databases for identification of clinically relevant mycobacteria by matrix‐assisted laser 
desorption ionization‐time of flight mass spectrometry. J Clin Microbiol, 53(7),  
2308–2315. doi: 10.1128/JCM.00567‐15

Yagupsky, P., & Baron, E. J. (2005). Laboratory exposures to brucellae and implications for 
bioterrorism. Emerg Infect Dis, 11(8), 1180–1185.



269

MALDI-TOF and Tandem MS for Clinical Microbiology, First Edition.  
Edited by Haroun N. Shah and Saheer E. Gharbia. 
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

12

MALDI‐TOF‐MS Based on Ribosomal Protein Coding 
in S10‐spc‐alpha Operons for Proteotyping
Hiroto Tamura

Laboratory of Environmental Microbiology, Department of Environmental Bioscience, Meijo University, Nagoya, Japan

12.1 Introduction

Over the last 20 years, 16S rRNA gene sequencing has been used widely for  identification 
of bacteria. Due to the improvement in the accuracy of 16S rRNA gene sequencing 
techniques, an isolate, which shares less than 98.7%–99% similarity based on 16S rRNA 
gene sequencing, is assigned as a novel species [1]. However, in some cases, the isolate 
with greater than 99% similarity of 16S rRNA gene sequencing exhibits less than the 
DNA–DNA hybridization value of 70% [2,3]. Therefore, the usage of the 16S rRNA 
gene sequencing technique is still limited from family to species and is not applicable to 
discrimination at the strain level. On the other hand, unique signatures for bacterial 
characterization were observed by mass spectrometry (MS) obtained from bacterial 
extracts in 1975 [4] and low molecular biomarkers such as lipids were analyzed for 
 bacterial profiling [5]. As a result of development of a robust MS approach for the rapid 
and cost‐effective identification of microorganisms, matrix‐assisted laser desorption/
ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) analysis of whole cells 
by soft ionization has been successfully applied to identify not only clinically important 
microorganisms in diagnostic laboratories [6–8] but also Archaea [9], fungi and yeast 
[10–13], and even viruses [14]. Furthermore, MALDI‐TOF MS showed better potential 
to discriminate bacteria at the subspecies level than 16S rRNA gene sequencing, whose 
similarity is 99%–100% [15], by using the statistical coefficient of correlation and per-
mitted the typing of microbial isolates at the strain or serovar level using discriminating 
peaks [16–18]. The technique most utilized in the bacterial identification by MALDI‐
TOF MS is the fingerprint method, which is the comparison of the mass spectra of 
target isolates with those of known reference strains in well‐characterized commer-
cially available databases, because the fingerprint method is easier, more rapid, and has 
a higher throughput and a lower cost than conventional techniques [19–24]. Although 
this fingerprint method has become increasingly popular in stable and robust bacterial 
identification at the species level independent of culture conditions and operator skill 
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[25,26], culture conditions and experimental factors still affect both the quality and 
reproducibility of the obtained mass spectra [27–29]. Therefore, the fingerprint method 
has one major drawback as a result of not specifying and identifying any peaks by 
MALDI‐TOF MS analysis. Although the resulting mass spectra of closely related 
strains, in particular below the species level, gives us very similar mass spectra or mass 
spectra with subtle differences among them, the fact that the fingerprint method may 
lead to unreliable identification necessitates a considerable effort to address the opti-
mization of reliable routine bacterial identification by using statistical algorithmic 
methods [30–33].

The most informative observed MALDI‐TOF MS spectra consist of peaks derived 
mostly from ribosomal and other housekeeping proteins because of their following 
characteristics: significant amount of protein expression, appropriate molecular weight 
range (m/z: 4000–15000), and higher pI [34–40].

The bacterial ribosome consists of a 50S large subunit with 34 proteins (L1–L34), a 
30S small subunit with 21 proteins (S1–S21), and 16S rRNA. Although high‐throughput 
sequencing of the 16S rRNA genes using next‐generation sequencer provides a power-
ful approach for the taxonomic classification of bacteria and characterization of bacte-
rial community profiling [41], this genetic identification reflects the information only 
from a single gene with about 1600 bp, suggesting considerable concern regarding the 
phylogenetic relationship. Contrary to the 16S rRNA gene sequence, the advantage of 
using ribosomal proteins as biomarkers is the reflection of more information from 55 
types of ribosomal subunit proteins, implying proteomic identification based on diverse 
and multiple genetic information similar to multilocus sequence typing (MLST) analy-
sis, which is generally performed according to the seven‐loci schemes for the target 
bacteria (Figure 12.1).

Because the masses of identified peaks of ribosomal proteins are deduced on the basis 
of their corresponding amino acids sequences associated with the target genes, the 
 bioinformatics‐based approach has been developed for a highly reliable advanced 
 discrimination method at the strain level with a validation procedure [6,38–40,42–44].

Although the advancement in whole genome sequencing technology will allow the 
use of MALDI‐TOF MS for the bioinformatics‐based approach, the organization of 
operons coding many ribosomal proteins does not follow the promoter‐structural gene‐
terminator paradigm [45]. Furthermore, even though the gene order is conserved in 
closely related taxa, it rapidly becomes less conserved with evolutionary distance 
[46,47]. These facts mean that researchers have to search a huge data bank of informa-
tion for the target ribosomal proteins. In addition, the post‐translational modifications 
and incorrect annotations in the sequenced genomes in the databases may cause differ-
ences between the calculated and observed masses of the ribosomal proteins as bio-
markers [48–51]. Therefore, researchers may have no clue about how to search for the 
genes coding the target ribosomal proteins scattered around the bacterial genomes.

To overcome those problems, it is essential to establish and standardize a simple and 
reliable construction method for a ribosomal proteins database. Therefore, the S10‐spc‐
alpha operon is selected for biomarker mines. The standardized MALDI‐TOF MS 
method that combines genomics and proteomics is designated the S10‐GERMS (S10‐
spc‐alpha operon gene‐encoded ribosomal protein mass spectrum) method. The S10‐
GERMS method offers an accurate method to construct a database by comparing the 
experimentally observed mass‐to‐ion ratio (m/z) values of the selected biomarkers with 
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their theoretically calculated m/z values and has been employed as a typing method for 
various taxa.

In this chapter, the construction procedures of a working database for MALDI‐TOF 
MS analysis is illustrated as follows: first, MALDI‐TOF MS analysis of the genome‐
sequenced strains is performed to obtain the observed m/z values. Second, the theoreti-
cal m/z values of ribosomal proteins in this operon are calculated by sequence data 
from the NCBI databank for genome‐sequenced strains or determination of the DNA 
sequence by using designed primers against the consensus DNA sequences, and then 
the candidate biomarkers are selected by comparison with the theoretical m/z values of 
each ribosomal protein in silico. Third, the reliable m/z values of candidate biomarkers 
are corrected by comparing the observed m/z values of the candidate biomarkers with 
their in silico–calculated m/z values (working database).

As the S10‐GERMS method reflects different evolutionary lineages for ribosomal 
proteins backed by multi‐gene sequence information, the S10‐GERMS method, similar 
to MLST, provides an accurate means of discriminating the bacteria below the species 
level across the microbial kingdom with reproducibility.

Then, the following pages introduce the use of the standardized S10‐GERMS method 
successfully to discriminate Pseudomonas putida at the strain level, Pseudomonas 
syringae at the pathovar level, the genera Bacillus and Sphingopyxis despite only two 
and one base differences in the 16S rRNA gene sequence, Lactobacillus casei at the 
(sub)species level, and the enterohemorrhagic Escherichia coli (EHEC) O157, O26, and 
O111 serovars with a high level of confidence.

<Genetic ID by 16S rRNA gene>
Based upon the information from
single gene with ca. 1,600 bp

5S rRNA

23S rRNA

Ribosomal large subunit
proteins L1 – L34

Ribosomal small subunit
proteins S1- S21

16S rRNA

Constituents of ribosome

Similar to MLST
Reflecton of more information of
55 types of ribosomal proteins

50S

MW 1,600,000

30S

MW 900,000

70S

MW 2,500,000
Ribosome

<Proteomic ID by ribosomal proteins MS>
Based upon the information from diverse and multiple genes
Phenotipic and phylogenetic classification

Figure 12.1 Advantage of using ribosomal proteins in comparison with 16S rRNA.
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Finally, development of computer‐aided proteotyping of bacteria in combination with 
genomics based on the S10‐GERMS method is discussed.

12.2 S10‐GERMS Method

12.2.1 Background of Proteotyping

Although the usefulness of MALDI‐TOF MS for bacterial identification is recognized 
in the fields of clinical and environmental microbiology, the food industry and safety, 
molecular epidemiology and counterterrorism, the technique most utilized in microbe 
identification by MALDI‐TOF MS, fingerprinting [20,21,52] without specifying and 
identifying any observed peaks, does not reflect the microbial evolutionary relatedness, 
because those peaks in fingerprinting have no direct relation with genetic markers like 
the 16S rRNA gene sequence for taxonomic classification [36,37,53]. In particular, many 
isolated bacteria in clinical laboratories are very closely related, and their detail profil-
ing is required at the strain and/or pathovar level. Therefore, extending the application 
to the bacterial discrimination at the strain level has been one of the expectations for 
MALDI‐TOF MS analysis.

Because most of the ribosomal proteins could be observed by MALDI‐TOF MS 
analysis, the bioinformatics‐based approach has been proposed using ribosomal 
 proteins as biomarkers for rapid identification of bacteria [6,38,42–44] because of 
their following characteristics: significant amount of protein expression, appropriate 
molecular weight range, higher pI, moderate sequence conservation, fewer post‐
translational modifications without N‐terminal methionine loss, and database 
 accessibility [38–40,49].

Although the complete microbial genome sequencing project has been advanced by 
next generation pyrosequencing, it is still essential for user‐friendliness to establish 
simple and reliable construction procedures for a ribosomal proteins database by the 
conventional DNA sequencer.

To establish a standardized method, the technological requirements are as follows: 
(1) functionally related genes tend to be located at the same locus, (2) the organization 
of gene order is conserved, and (3) the genome size is readable by a conventional 
sequencer. Because the S10‐spc‐alpha operon encodes more than half of the ribosomal 
proteins and a number of housekeeping genes, is highly conserved among bacterial and 
archaeal genomes, and has a genome size of approximately 15–18 kb [54–58], this 
operon provides strong support for the concept. Moreover, the sequences of ribosomal 
proteins in this operon suggest that horizontal gene transfer may have played a signifi-
cant role in the evolution of this operon [57]. Therefore, the S10‐spc‐alpha operon is 
selected for biomarker mines. Using this operon in silico, strain‐specific candidate bio-
markers can be predicted by in silico–calculated masses (m/z) calculated on the basis 
of the DNA sequence information coded in this operon prior to MALDI‐TOF MS 
measurement. In the case of non‐genome‐sequenced strains, the DNA sequence of the 
ribosomal proteins encoded in the S10‐spc‐alpha operon can be analyzed by using 
primers designed against the consensus DNA sequences among the target genus and/
or species of the bacteria.
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12.2.2 Construction Procedures of the Working  
Database for MALDI‐TOF MS Analysis

The theoretical masses (m/z) of the ribosomal proteins can be calculated by the 
sequence information in S10‐spc‐alpha operon of the genome‐sequenced type strains. 
There is an important advantage of the S10‐GERMS method, which means that some 
errors found in the in silico–calculated masses (m/z), including incorrect annotation 
and post‐translational modification like N‐terminal methionine loss, methylation, and 
acetylation in a few case [11,40,49,59], are easily corrected by a comparison with the 
corresponding experimentally observed masses by whole cell MALDI‐TOF MS analysis 
(WC‐MS). Thus, the selected biomarker proteins have a role in rapid bacterial discrimi-
nation at the strain level with reliability and reproducibility. A concrete workflow of 
S10‐GERMS method is as follows (Figure 12.2).

Step 1: MALDI‐TOF MS analysis of the genome‐sequenced type strain or non‐ genome‐
sequenced type strain (observed data); mass calibration of whole cells of P. putida 
KT2440 was carried out by external calibration using two peaks of myoglobin 
([M + H]+, m/z 16952.6, and [M + H]2+, m/z 8476.8), followed by self‐calibration using 
four moderately strong peaks assigned to ribosomal subunit proteins L36 ([M + H]+, 
m/z 4435.3), L29 ([M + H]+, m/z 7173.3), S10 ([M + H]+, m/z 10753.6), and L15 
([M + H]+, m/z 15190.4) as internal references. Mass calibration of the other samples 
was performed by external calibration using the mass spectra observed for the whole 
cell of the KT2440 strain. Either bacterial colonies grown on agar plate or bacteria 
harvested from liquid culture by centrifugation are available for the conventional 
MALDI‐TOF MS analysis. MALDI‐TOF mass spectra in the range of m/z 4000–
20000 are observed in the positive linear mode, and sinapinic acid is preferably used 
as a matrix reagent because it is found to be better for the detection of a higher range 
of m/z than α(alpha)‐cyano‐4‐hydroxycinnamic acid.

Step 2: Design of primers to sequence the genes encoded in S10‐spc‐alpha operon: The 
sequencing primers are designed against the consensus nucleotide sequences in the 
S10‐spc‐alpha operon by using the sequence information of the genome read type 
strain and/or some genome‐sequenced strains of the same genus obtained from the 
NCBInr database (http://www.ncbi.nlm.nih.gov/). If genome sequence information 
of the target strains is not available in the NCBInr database, the S10‐spc‐alpha operon 
of the target strains will be sequenced by the designed primers. The respective regions 
of ribosomal protein‐encoding genes (≈5 kbp) are sequenced by conventional meth-
ods. The unregistered ribosomal proteins and missing annotations of the start codon 
could also be confirmed by sequencing the genes.

Step 3: Calculation of the theoretical ionized mass (m/z) of respective ribosomal pro-
tein and construction of in silico–calculated m/z database: The gene sequences 
obtained at step 2 are translated into the corresponding amino acids sequences. The 
theoretical ionized mass (m/z) of each protein is calculated on the basis of the trans-
lated amino acids sequence using a Compute pI/Mw tool on the ExPASy proteomics 
server (http://web.expasy.org/compute_pi/).

As a post‐translational modification, N‐terminal methionine is selectively cleaved 
by amino peptidase when the size of neighbor amino acid branches such as glycine, 
alanine, serine, proline, valine, threonine, and cysteine is less than 1.29 angstrom, i.e. “ the 

http://www.ncbi.nlm.nih.gov
http://web.expasy.org/compute_pi/


Figure 12.2 Construction procedures of the working database for MALDI‐TOF MS analysis based on the S10‐GERMS method.

Step 2 : Design of primers to sequence the genes encoded in S10-spc-alpha operon
              Point: Consensus DNA sequences encoded in S10-spc-alpha operon of genome read
              type strains. Designed primers in this chapter are listed in Table xx.

Step 1 : Measurement of samples by MALDI-TOF MS (WC or IC MS)

S17  MAEAEKTVRT…………RAVEV
S19  MPRSLKKGPF………………KKAKR
L23  MNQERVFKVL……………………………SSSAE
S14  MAKKSMKNRE…………………………………VKASW
L24  MQKIRRDDEI……………………………………KAVDA
S10  MQNQQIRIRL……………………………………………QISLG
L22  MEVAAKLSGA…………………………………………………KVADK
L18  MTDKKVIRLR………………………………………………………………GGLEF
S13  MARIAGVNIP……………………………………………………………………………KPIRK 
S11  MAKPAARPRK……………………………………………………………………………………KKRRV
S08  MSMQDPLADM…………………………………………………………………………………………LCTVF

Step3 : Calculation of the theoretical ionized mass (m/z) of respective ribosomal protein
             and construction of in silico-calculated m/z database

Translation respective ribosomal protein

P.putida

L22
L23

S
10

sp
c

al
p

h
a

L29
S10
S17
S19

L14
L18
L24
L30
L36
S08
S14

S11
S13

13410.9
12497.4
11330.2
6334.5
4435.4

13845.1
11259.3

13396.8
12561.4
11340.3
6278.3
4407.3

13951.3
11394.3

13410.9
12512.4
11345.3
6395.6
4435.4

13973.3
11274.2

13410.9
12457.3
11344.3
6448.5
4435.4

13914.2
11385.3

13436.9
12477.3
11413.4
6463.6
4421.4

13869.1
11326.2

13396.8
12413.3
11344.3
6363.5
4435.4

13928.2
11359.2

13410.9
12485.4
11330.2
6292.5
4435.4

13861.1
11288.3

13410.9
12512.4
11336.3
6395.6
4435.4

13920.2
11304.3

13412.9
12531.4
11471.5
6347.4
4435.4

14040.4
11435.3

13410.9
12556.4
11336.3
6395.6
4435.4

13962.3
11304.3

13529.5
13126.3

13517.5
13177.4

13513.5
13239.4

13493.4
13058.3

13527.5
13176.4

13531.5
13118.3

13543.5
13140.3

13499.4
13164.5

13513.5
13135.2

13485.4
13210.4

11912.0

14164 14160
P.f luorescens P.alcaligenes P.aeruginosa P. asotoformans P.chlororaphis P.f. ulva P.mendocina P.straminea P.stutseri

10900.7
7173.3

11753.6
9902.5

10218.1

11912.0
10945.7
7173.3

11753.6
9966.6

10246.1

14159

11893.9
10955.6
7215.4

11783.6
9957.6

10186.0

12689

11912.0
10950.7
7202.4
11767.6
9955.6

10227.1

12693 3904

11912.0
10945.7
7173.3

11753.6
9966.6

10189.1

11912.0
10945.7
7173.3

11753.6
9984.6

10204.0

16637

11912.0
10900.7
7173.3

11753.6
9902.5

10218.1

14162

11912.0
11015.7
7205.4

11783.6
9974.6

10176.0

16665

11912.0
11085.8
7215.4

11755.6
10014.7
10190.0

14165

11897.9
10920.6

7274.4
11753.6
9973.6

10163.0
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P.putida P.fulva P.fluorescens P.azotoformans P.chlororaphis P.aeruginosa P.mendocina P.straminea P.stutzeri P.alcaligenes

NBRC 14164 NBRC 16637 NBRC 14160 NBRC 12693 NBRC 3904 NBRC 12689 NBRC 14162 NBRC 16665 NBRC 14165 NBRC 14159

L22 11911.95 11911.95 11911.95 11911.95 11911.95 11911.95 11911.95 11911.95 11897.92 11893.91

L23 10900.65 10900.65 10945.74 10945.74 10945.74 10950.71 11015.74 11085.83 10920.64 10955.60

L29 7173.31 7173.31 7173.31 7173.31 7173.31 7202.35 7205.35 7215.39 7274.42 7215.44

S10 11753.58 11753.58 11753.58 11753.58 11753.58 11767.61 11783.61 11755.55 11753.58 11783.61

S17 9902.53 9902.53 9966.58 9966.58 9984.61 9955.60 9974.55 10014.66 9973.57 9957.61

S19 10218.07 10218.07 10246.12 10189.07 10204.04 10227.08 10175.98 10190.01 10162.99 10186.01

L18 12497.41 12485.36 12556.43 12512.38 12512.38 12531.43 12413.29 12457.30 12477.34 12561.35

L24 11330.24 11330.24 11336.25 11336.25 11345.26 11471.46 11344.27 11344.27 11413.37 11340.32

L30 6334.54 6292.46 6395.60 6395.60 6395.60 6347.44 6363.48 6448.54 6463.62 6278.33

L36 4435.39 4435.39 4435.39 4435.39 4435.39 4435.39 4435.39 4435.39 4421.36 4407.34

S08 13845.12 13861.12 13962.26 13920.23 13973.29 14040.42 13928.16 13914.18 13869.10 13951.25

S14 11259.27 11288.27 11304.32 11304.32 11274.24 11435.25 11359.15 11385.32 11326.23 11394.33

S11 13529.50 13529.50 13485.44 13485.44 13499.47 13499.47 13517.48 13479.39 13513.50 13503.46

S13 13126.31 13140.34 13210.43 13164.45 13239.43 13135.23 13118.33 13058.28 13176.42 13177.40

Observed m/z data from step 1
In silico-calculated m/z data from step 3

Construction of biomarkers list with accurate m/z (working database)

S
10

sp
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al
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h
a

P.putida P.fluorescens P.alcaligenes P.aeruginosa P.azotoformans P.chlororaphis P.fulva P.mendocina P.straminea P.stutzeri

14164 14160 14159 12689 12693 3904 16637 14162 16665 14165

L22 11912.0 11912.0 11893.9 11912.0 11912.0 11912.0 11912.0 11912.0 11912.0 11897.9

L23 10900.7 10945.7 10955.6 10950.7 10945.7 10945.7 10900.7 11015.7 11085.8 10920.6
L29 7173.3 7173.3 7215.4 7202.4 7173.3 7173.3 7173.3 7205.4 7215.4 7274.4
S10 11753.6 11753.6 11783.6 11767.6 11753.6 11753.6 11753.6 11783.6 11755.6 11753.6
S17 9902.5 9966.6 9957.6 9955.6 9966.6 9984.6 9902.5 9974.6 10014.7 9973.6
S19 10218.1 10246.1 10186.0 10227.1 10189.1 10204.0 10218.1 10176.0 10190.0 10163.0

L14 13410.9 13410.9 13396.8 13412.9 13410.9 13410.9 13410.9 13396.8 13410.9 13436.9
L18 12497.4 12556.4 12561.4 12531.4 12512.4 12512.4 12485.4 12413.3 12457.3 12477.3
L24 11330.2 11336.3 11340.3 11471.5 11336.3 11345.3 11330.2 11344.3 11344.3 11413.4
L30 6334.5 6395.6 6278.3 6347.4 6395.6 6395.6 6292.5 6363.5 6448.5 6463.6
L36 4435.4 4435.4 4407.3 4435.4 4435.4 4435.4 4435.4 4435.4 4435.4 4421.4
S08 13845.1 13962.3 13951.3 14040.4 13920.2 13973.3 13861.1 13928.2 13914.2 13869.1
S14 11259.3 11304.3 11394.3 11435.3 11304.3 11274.2 11288.3 11359.2 11385.3 11326.2

S11 13529.5 13485.4 13517.5 13513.5 13499.4 13513.5 13543.5 13531.5 13493.4 13527.5
S13 13126.3 13210.4 13177.4 13135.2 13164.5 13239.4 13140.3 13118.3 13058.3 13176.4

Correction

Step 4: Construction of accurate database by comparison of theoretical vs. observed data

Figure 12.2 (Continued)
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N‐end rule” [60,61]. According to this rule, therefore, the theoretical mass is  calculated 
by deducing the mass of methionine (m/z = 131.19) from the calculated ionized mass 
(m/z) of any relevant ribosomal protein (Figure  12.3). In some cases, methylation 
and/or acetylation of amino acid are considered as possible post‐translational 
 modifications. After each in silico–calculated m/z of the respective ribosomal  protein 
is completed by the information of amino acid sequences, the candidate biomarkers 
are selected on the basis of the in silico–calculated m/z database.

Step 4: Construction of accurate database, working database, by a comparative analysis 
of in silico–calculated m/z and observed m/z and confirmation of reliable biomarker 
proteins: The in silico–calculated m/z of the candidate biomakers is confirmed and 
corrected by the comparison with the corresponding observed m/z by the MALDI‐
TOF MS analysis. The accurate m/z values of the confirmed biomarkers are tabulated 
as the working database.

Step 5: Typing of isolates based on the selected biomarkers: The working database  consists 
of the confirmed biomarkers that are used as reliable and reproducible biomarkers for 
the discrimination of the target bacteria, regardless of the sample conditions. The pro-
teotyping of isolates is performed by the results of mass matching profiles of the selected 
biomarkers using the working database.

In particular, the theoretically supported information of “absence of the selected 
 biomarker m/z” plays a useful role in typing of bacteria because sequence analysis of the 
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Step 5: Typing of isolates based on the selected biomarkers.

P.putida P.fulva P.fluorescens P.azotoformans P.chlororaphis P.aeruginosa P.mendocina P.straminea P.stutzeri P.alcaligenes

NBRC 14164 NBRC 16637 NBRC 14160 NBRC 12693 NBRC 3904 NBRC 12689 NBRC 14162 NBRC 16665 NBRC 14165 NBRC 14159

L22 11911.95 11911.95 11911.95 11911.95 11911.95 11911.95 11911.95 11911.95 11897.92 11893.91

L23 10900.65 10900.65 10945.74 10945.74 10945.74 10950.71 11015.74 11085.83 10920.64 10955.60

L29 7173.31 7173.31 7173.31 7173.31 7173.31 7202.35 7205.35 7215.39 7274.42 7215.44

S10 11753.58 11753.58 11753.58 11753.58 11753.58 11767.61 11783.61 11755.55 11753.58 11783.61

S17 9902.53 9902.53 9966.58 9966.58 9984.61 9955.60 9974.55 10014.66 9973.57 9957.61

S19 10218.07 10218.07 10246.12 10189.07 10204.04 10227.08 10175.98 10190.01 10162.99 10186.01

L18 12497.41 12485.36 12556.43 12512.38 12512.38 12531.43 12413.29 12457.30 12477.34 12561.35

L24 11330.24 11330.24 11336.25 11336.25 11345.26 11471.46 11344.27 11344.27 11413.37 11340.32

L30 6334.54 6292.46 6395.60 6395.60 6395.60 6347.44 6363.48 6448.54 6463.62 6278.33

L36 4435.39 4435.39 4435.39 4435.39 4435.39 4435.39 4435.39 4435.39 4421.36 4407.34

S08 13845.12 13861.12 13962.26 13920.23 13973.29 14040.42 13928.16 13914.18 13869.10 13951.25

S14 11259.27 11288.27 11304.32 11304.32 11274.24 11435.25 11359.15 11385.32 11326.23 11394.33

S11 13529.50 13529.50 13485.44 13485.44 13499.47 13499.47 13517.48 13479.39 13513.50 13503.46

S13 13126.31 13140.34 13210.43 13164.45 13239.43 13135.23 13118.33 13058.28 13176.42 13177.40

Typing at 
strain level

Observed biomarkers m/z
of isolate

Check

Figure 12.2 (Continued)
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biomarker gene can confirm a missing biomarker gene sequence or a point mutation of 
a putative start codon, such as from ATG to ATA [62].

Therefore, the S10‐GERMS method clearly explains the rationale for the presence or 
absence of information on the selected biomarker masses that play a key role in the 
bacterial discrimination of isolated strains. Not only are their data imported into the 
available software like PAST (http://folk.uio.no/ohammer/past/, Natural History 
Museum, Oslo University, Norway) to calculate distance matrices using the neighbor‐
joining method with the Kimura algorithm, but a phylogenetic tree is also constructed 
using software like FigTree ver. 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/) [63].

12.2.3 Application of Standardized S10‐GERMS Method to Bacterial Typing

12.2.3.1 Classification of Genus Pseudomonas [64,65]
The bacteria of genus Pseudomonas, which are gram‐negative rod‐shaped saprotrophic 
soil bacteria, occupy an important ecological position in the life‐cycle assessment of 
chemicals because they possess diverse metabolic abilities to assimilate a wide variety 
of organic compounds and are ubiquitous in nature. Our previous studies showed that 
some strain of P. putida degrade alkylphenol polyethoxylates to estrogenic and antian-
drogenic metabolites [66,67]. Although MALDI‐TOF MS has been applied especially in 
clinical laboratories, it was hard to discriminate P. putida at the strain level, and little 
information on the genome‐sequenced strain of P. putida was available.

To evaluate the usefulness of the S10‐GERMS method, it was applied for discrimina-
tion and classification of P. putida at the strain level. Because 17 genome‐sequenced 
strains of genus Pseudomonas were available, specific primers were designed on the 

Bacterium: Pseudomonas putida KT2440 strain

Protein: 50S ribosomal protein L35

Aminno acid sequnce:

MPKMKTKSGAAKRFLKTASGFKHKHAFKSHILTKMSTKRKRQLRGA
SLLHPSDVAKVERMLRVR

Candidate amino acids:
alanine (A), cysteine (C), gycine (G),
proline (P), serine (S), threonine (T),
valine (V)

Second amino acid 
is proline (P)

As protonated [M+H]:

7213.69 + 1.01 = 7214.7

Free software is available to calculate m/z. i.e. Compute pI/Mw tool in ExPASy proteomics server
= The obtained theoretical m/z of L35 is suspected  to m/z 7344.88.

1) Get amino acids sequence by  translation of gene sequence encoded in the operon.

2) Calculate theoretical mass of target proteins based on the obtained sequence.

<example>

As following end rule:
7344.88 –131.19 (Met) =
7213.69

Observed m/z should be

3) Check modification after translation, like methionine loss.

N-terminal end rule: N-terminal methionine is selectively cleaved by amino peptidase
when the size of branch of neighbor amino acid is less than 1.29 Å.

<example>

Then

Figure 12.3 Calculation procedure of theoretical masses of ribosomal protein processed by  
N‐terminal methionine loss.
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basis of the consensus nucleotide sequences of S10‐spc‐alpha operon against 17 
genome‐sequenced strains. After sequencing the genes of ribosomal proteins coded in 
S10‐spc‐alpha operon of 10 type strains of genus Pseudomonas and following the pro-
cedure for the construction of a database in Section 12.2.2, the 14 ribosomal proteins 
with an m/z value lower than 15,000, L18, L22, L23, L24, L29, L30, L36, S08, S10, S11, 
S13, S14, S17, and S19 were selected as useful biomarkers for phylogenetic classification 
at the species level among 26 ribosomal proteins coded in the S10‐spc‐alpha operon, 
because the mass spectra of 14 ribosomal proteins had the reproducibility and the sen-
sitivity of masses based on the S/N level by MALDI‐TOF MS analysis (Figure 12.4).
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Figure 12.4 Representative MALDI‐TOF mass spectra of ribosomal proteins of type strains of genus 
Pseudomonas encoded in S10‐spc‐alpha operon: (A) P. putida NBRC 14164T, (B) P. alcaligenes NBRC 
14159T, (C) P.chlororaphis NBRC 3904T, (D) P. syringae NBRC 14083.
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Phylogenetic analysis based on the amino acid sequence of 14 biomarkers was com-
pared with that based on gyrB sequences because the result of gyrB sequence analysis 
correlated very well with DNA–DNA reassociation values determined by DNA hybridi-
zation experiments [68,69]. The basic topologies of phylogenetic trees obtained, both of 
gyrB sequences and amino acid sequences of 14 biomarkers, were similar, except for the 
shift of the phylogenetic position of P. mendocina NBRC 14162T, suggesting that the 
selected 14 biomarkers were sufficient for bacterial identification by MALDI‐TOF MS 
analysis, and the reclassification of P. mendocina species might be required. Because 
those 14 reliable and reproducible biomarkers were useful for bacterial identification at 
species levels, the proteotyping and phylogenetic classification of P. putida strains 
whose values of 16S rRNA sequence similarity are more than 99% were carried out 
using the same 14 biomarkers. The numerator and denominator of the fractions show 
the number of identical biomarkers and the number of total biomarkers, respectively, 
indicating the possibility of proteotyping of those closely related strains of P. putida 
(Table 12.1). Because among 14 biomarkers the mass values of S14, S13, and L24 are 
different in the strains of P. putida, those three biomarkers (S14 with m/z: 11259.3, 
11273.3, and 11289.3; L24 with m/z: 11315.2 and 11330.2; S13 with m/z: 13096.3, 
13112.3, and 13126.3) played a key role in the discrimination of P. putida at the strain 
level (Figure 12.5). The phylogenetic analysis based on the 14 biomarkers gave almost 
the same results as the phylogenetic trees based on the gyrB sequences (Figure 12.6), 
showing that the S10‐GERMS method combining genomic and proteomic approaches 
proved to be a highly reliable and reproducible classification method at the strain level 
with the capability of validating the obtained results based on the valid masses.

Some species or strains of genus Pseudomonas are also important pathogens of ani-
mals and plants. Phytopathogenic bacteria, Pseudomonas syringae, cause serious dam-
age to crops and remain a crop protection burden because of their variety of pathovars 
that consist of closely related strains. Therefore, the proteotyping of P. syringae at the 
pathovar level represents a challenging case study to evaluate the usefulness of the 
S10‐GERMS method. The difference in the in silico–calculated masses of 5 biomarkers 
(L24, L30, S10, S14, and S19) out of the 14 selected biomarkers demonstrated that 12 
genome‐sequenced strains could be discriminated at the pathover level (Table 12.2; 
JASMS) [65]. Each m/z of the candidate theoretical biomarkers was compared with the 
corresponding m/z obtained by MALDI‐TOF MS analysis using seven commercially 
available strains (Table 12.2) [65]. In particular, the ribosomal protein S17 emerged as 

Table 12.1 Comparison of the similarities of Pseudomonas putida at strain level.

P. putida strains NBRC 14671 NBRC 15366 NBRC 100988 JCM 13061

NBRC 14671 — 99.5a 99.6 99.5
NBRC 15366 9/14 — 99.7 99.0
NBRC 100988 11/14b 10/14 — 99.2
JCM 13061 11/14 8/14 10/14 —

a Values obtained by 16S rRNA sequencing similarities.
b The numerator and denominator of fractions show the number of identical biomarkers and the total 
number of biomarkers, respectively.
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a useful biomarker for discrimination of the strain of P. syringae though there was no 
mass difference in 12 genome‐sequenced strains. Moreover, MALDI‐TOF MS analysis 
found the additional two ribosomal proteins, S12 and S16, which were not encoded in 
the S10‐spc‐alpha operon, to be very effective for the discrimination of the strains of P. 
syringae (Table 12.2), which underscores the importance of the comparative verifica-
tion of the in silico–calculated m/z by peak assignment using MALDI‐TOF MS 
analysis.

To process a cluster analysis and/or generate a phylogenetic tree by using the bio-
markers, the presence or absence of the mass ions (m/z) of the biomarkers was indi-
cated by 1 and 0, respectively, as a binary peak matching profile, especially in 
fingerprinting analysis. In this case, however, identical ribosomal proteins like L24 had 
three different masses – for example, m/z: 11288.2, 11306.2, 11274.2 – making signifi-
cantly useful biomarkers for the further typing of P. syringae at the pathovar level.

Therefore, when there was a mass difference among the biomarkers, they were cate-
gorized as types from I to III based on their corresponding m/z. As a rule, type I was 
first allocated to the ribosomal proteins of the type strain. If the mass of the biomarkers 
of other strains differed from type I, type II and III were then respectively allocated to 
the biomarkers. As for L26, type I was for m/z 11288.2, type II for m/z 11306.2, and type 
III for m/z 11274.2.
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Figure 12.5 MALDI‐TOF mass spectra of important biomarkers, S14, L24, and S13 for discrimination of 
P. Putida at the strain level.



MALDI-TOF-MS Based on Ribosomal Protein Coding in S10-spc-alpha Operons for Proteotyping 281

According to the selected eight biomarkers (L24, L30, S10, S14, S17, S19, S12, and 
S16), the seven commercially available strains were classified into five clusters as 
 follows (Table 12.2): (1) NBRC 3310, (2) NBRC 3508 and NBRC 12656, (3) NBRC 12655, 
(4) NBRC 14053 and NBRC 14083, and (5) NBRC 14084.

Further, identical pathovars like P. syringae pv. Mori may be divided into subgroups 
using pathovar‐specific biomarkers like S17, suggesting the strong possibility of future 
application of the S10‐GERMS method to this problem.
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Figure 12.6 Phylogenetic analysis of 12 strains of P. putida: (A) phylogenetic analysis of gyrB 
sequences, (B) phylogenetic analysis based on the S10‐GERMS method.



Table 12.2 Ribosomal protein profiling table of P. syringae strains.

Pathover Strain

Ribosomal protein types

L36 L30 L29 S17 S19 L23 L24 S14 S10 L22 L18 S13 S11 S08 S16 S12

Genome‐sequenced strains
Aesculi 2250 I I I I I I I I I I I I I I I I
Aesculi NCPPB3681 I I I I I I I I I I I I I I I I
Phaseolicola 1448A I I I I I I I II III I I I I I I I
Tabaci ATCC 1 1528 I I I I I I I II II I I I I I I I
Syringae B728a I I I I I I II III II I I I I I I I
Syringae 642 I II I I I I II II II I I I I I I I
Oryzae 1_6 I I I I I I III II II I I I I I ‐ I
Tomato K 40 I I I I II I I II II I I I I I I II
Tomato Max 13 I I I I II I I II II I I I I I II I
Tomato NCPPB 1 108 I I I I II I I II II I I I I I II I
Tomato DC3000 I I I I II I I II II I I I I I II I
Tomato T1 I III I I II I I II II I - I I I II I
Sample strains
Coronafaciens NBRC3310 I I I I I I III II I I I I I I II I
Tabaci NBRC3508 I I I I I I I II I I I I I I I I
Aptata NBRC12655 I I I I I I II II I I I I I I I I
Phaseolicola NBRC12656 I I I I I I I II I I I I I I I I
Mori NBRC14053 I I I I I I I II I I I I I I II III
Mori NBRC14083 I I I I I I I II I I I I I I II III
Mori NBRC14084 I I I II I I I II I I I I I I II I
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Those biomarkers become relevant to the proteotyping of bacteria only if genomic 
data are combined with proteomic data by MALDI‐TOF MA analysis.

Because the S10‐GERMS method illustrates the rapid discrimination of P. syringae at 
the pathovar level, it may be a powerful tool for plant disease diagnosis caused by not 
only P. syringae but also by other plant pathogenic bacteria to overcome the burden of 
crop protection.

12.2.3.2 Classification of Genus Sphingomonaceae [70]
The biodegraded products of organic compounds may have a direct deleterious effect 
on wildlife when they have significant toxicity. Therefore, identification of bacteria is 
particularly important in understanding the dynamic relationship between microbial 
diversity and the microbial capacity for the biodegradation of organic compounds 
in  the environment. The genus Sphingomonas, which consists of strictly aerobic, 
 chemoheterotrophic, yellow‐pigmented, gram‐negative, rod‐shaped bacteria [71], was 
reclassified into four genera: Sphingomonas, Sphingobium, Novosphingobium, and 
Sphingopyxis [72].

Although it has been reported that sphingomonad species can degrade a wide range 
of aromatic hydrocarbons [73], only one strain of the genus Sphingopyxis had been 
completely sequenced by December 1, 2011. Therefore, the S10‐GERMS method was 
applied for the discrimination of strains of Sphingomonadaceae by using the consensus 
nucleotide sequences of S10 and spc operons from seven genome‐sequenced strains of 
Sphingomonaceae [70], which provide useful information for the design of specific 
primers. The ribosomal protein database was constructed by both sequencing the oper-
ons and MALDI‐TOF MS analysis of 16 available type strains of Sphingomonadaceae 
following the procedures in Section 12.2.2.

The nine selected ribosomal proteins as biomarkers coded in the S10‐spc operon, 
L18, L22, L24, L29, L30, S08, S14, S17, and S19, were significantly useful for bacterial 
classification to identify APEOn‐degrading bacteria (Table 12.3). Although there was no 
significant difference in the relatedness of the phylogenetic trees based on the S10‐
GERMS method and the 16S rRNA gene sequences, which formed four genera clusters 
of the Sphingomonadaceae, respectively, minor difference between two phylogenetic 
trees could be observed in the phylogenetic position of Sphingomonas jaspsi NBRC 
102120T and Sphingomonas wittichii NBRC 105917T (Figure 12.7A, B). In the case of 16S 
rRNA gene sequences, Sphingomonas wittichii NBRC 105917T was closely clustered 
into the genus Sphingobium and not the genus Sphingomonas, suggesting that more 
research into the Sphingomonadaceae may be required.

Nonionic surfactant alkylphenol polyethoxylates (APEOn) were degraded to 
 endocrine disruptors in the environment [74–76]. In the life‐cycle impact assessment of 
synthetic chemicals, bacteria play a key role in their biodegradation. Seven strains of the 
genus Sphingopyxis and one strain of the genus Sphingobium identified on the basis of 
the 16S rRNA gene sequence were isolated as APEOn‐degrading bacteria in our 
 laboratory. Because the S10‐GERMS method was proved to be efficacious for the 
 discrimination of the strains of Sphingomonadaceae, nine selected biomarkers were 
applied for the typing of the APEOn ‐degrading isolates.

The 16S rRNA sequence identity between the APEOn‐degrading bacteria strain 
BSN20 and Sphingopyxis terrae NBRC 15098T was 99.9%, meaning that the difference 
in the 16S rRNA gene sequence was only one base among about 1500 bp; however, the 



Table 12.3 Theoretical masses of nine selected ribosomal subunit proteins of Sphingomonacecae.

Strains

Subunit No.

L30 L29 S19 S17 L24 S14 L18 L22 SO 8

Genus Sphingopyxis
BSN11 6789.2 7536.5 9978.6 10434.2 11085.8 11545.6 12393.2 13701.9 14577.7
NBRC 15033 6789.2 7536.5 9978.6 10434.2 11085.8 11545.6 12393.2 13701.9 14577.7
BSN51 6770.1 7536.5 9978.6 10505.2 11058.8 11545.6 12377.2 13701.9 14566.7
JCM 11457 6789.2 7461.5 9978.6 10205.9 10990.7 11540.6 12377.2 13700.8 14607.8
BSN54 6743.0 7445.5 9978.6 10405.2 11072.8 11545.6 12333.2 13701.9 14607.8
JCM 14844 6741.1 7514.6 9978.6 10834.6 10976.7 11527.6 12329.2 13715.9 14591.8
BSN22 6784.1 7523.5 9978.6 10565.2 11072.8 11513.6 12393.2 13715.9 14577.7
BSN48 6784.1 7523.5 9978.6 10565.2 11072.8 11513.6 12393.2 13715.9 14577.7
BSN53 6869.2 7487.5 9948.5 10269.9 11056.8 11499.6 12422.2 13701.9 14593.7
JCM 15910 6869.2 7459.5 9948.5 10269.9 11056.8 11499.6 12309.0 13701.9 14579.7
BSN20 6846.2 7471.5 9948.5 9833.5 10962.7 11527.6 12403.2 13779.9 14621.8
NBRC 15098 6846.2 7471.5 9948.5 9833.5 10962.7 11513.6 12403.2 13779.9 14621.8
JCM 14161 6565.8 8726.9 10054.5 11326.0 11330.2 11645.7 12320.2 13697.8 14231.2
Genus Novosphingobium
NBRC 16086 6213.5 7665.6 10013.5 9893.6 11179.9 11408.3 12270.1 13440.7 14062.2
Genus Sphingobium
NBRC 16172 6224.5 7629.6 10048.6 9838.4 11030.8 11502.5 12510.4 13793.0 14266.4
NBRC 16415 6395.7 7587.6 10064.6 9838.4 10972.8 11502.5 12219.1 13774.9 14192.3
NBRC 102517 6841.2 7601.6 9963.5 9865.4 11004.8 11532.5 12440.3 13778.9 14206.3



Strains

Subunit No.

L30 L29 S19 S17 L24 S14 L18 L22 SO 8

NBRC 15102 6425.8 7601.6 10161.8 9824.3 10984.8 11529.6 12460.3 13744.9 14194.3
NBRC 105917 6751.9 7381.5 9997.5 9837.3 11025.8 11571.5 12490.2 13605.9 14264.2
Genus Sphingomonas
NBRC 102120 6354.5 7698.8 9993.7 9777.3 11185.0 11653.7 12113.0 13590.8 14439.5
NBRC 15742 6495.7 8140.3 10095.7 10145.7 10887.7 11447.4 12702.5 13281.5 14233.3
NBRC 16722 6411.5 7590.5 9970.6 10201.7 11022.8 11650.8 12316.1 13228.4 14225.3
NBRC 15099 6508.7 7317.2 9927.5 10056.6 11002.8 11401.4 12268.0 13297.4 14244.3



Figure 12.7 Phylogenetic trees of APEOn‐degrading bacteria and type strain of genus Sphingomonas 
based on (A) 16S rRNA gene sequences and on (B) the S10‐GERMS method, and (C) MALDI mass 
spectra of ribosomal protein S14 of Sphingopyxis terrae: NBRC 15098T, APEOn‐degrading bacterium 
strain BSN20, NBRC 15593, NBRC 15598, and NBRC 15599, respectively.
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MALDI mass spectra revealed that there was a mass difference, especially in the selected 
biomarker S14, whose m/z was 11513.6 or 11527.6, respectively (Figure 12.7C). By using 
this m/z difference, Sphingopyxis terrae NBRC 15098T and the APEOn‐degrading bac-
teria strain BSN20 could be successfully distinguished despite only one base difference 
in the 16S rRNA gene sequence between them.

Moreover, although the strain NBRC 15593 isolated as polyethylene glycol (PEG)‐
degrading bacteria is registered as Sphingopyxis macrogoltabidus in NBRC, the MALDI 
mass spectra of the strain NBRC 15593 was not that of the type strain, Sphingopyxis 
macrogoltabidus NBRC 15033T, but was that of the strain of BSN20. This result was also 
supported by the 16S rRNA gene sequence analysis, suggesting that the strain NBRC 
15593 might be registered as Sphingopyxis terrae and not Sphingopyxis macrogoltabidus 
(Figure 12.7C).

The S10‐GERMS method may become a potent way to type isolates with insufficient 
genomic information and managing bacterial strains in culture collections.
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12.2.3.3 Classification of Genus Bacillus [77]
In the gram‐positive bacteria of genus Bacillus, B. subtilis, B. amyloliquefaciens, 
B.  pumilus, and B. licheniformis are used for food processing of fermented soybean 
foods because of their capability to produce polyglutamic acid (PGA) [78]. Meanwhile, 
B. anthracis, B. subtilis, B. mycoides, B. licheniformis, B. megaterium, and B. cereus raise 
conflicting issues for human pathogens and food spoilage [79–81]. The whole genome 
sequences of 20 strains belonging to Bacillus anthracis, B. atrophaeus, B. cereus, 
B. licheniformis, B. macerans, B. megaterium, B. mycoides, and B. subtilis are now avail-
able [82]. However, because the genus Bacillus is genetically and physiologically diverse, 
the proteotyping of the whole cell analysis using the S10‐GERMS method might be of 
significant value in the management of the genus Bacillus. Because the ribosomal pro-
teins of gram‐positive bacteria with a rigid cell wall are hard to analyze by MALDI‐TOF 
MS [39], the acid extraction treatment was applied to the genus Bacillus for the disrup-
tion of the cell walls as usual. In this study, the best signal quality with MALDI‐TOF MS 
analysis was observed for the 30% (v/v) formic acid (FA) treatment rather than for trif-
luoroacetic acid treatment (Figure 12.8). Due to the FA treatment, in particular, high‐
molecular‐weight ribosomal proteins with masses exceeding an m/z of 11,000, such as 
L18, L22, and S10, coded in S10 and spc operons, were detected with high sensitivity. 
However, because both S11 and S13 ribosomal proteins coded in alpha operon were 
not found, the PCR primers and sequencing primers were designed on the basis of 
consensus nucleotide sequences of S10 and spc operons from 13 genome‐sequenced 
strains. The unregistered ribosomal proteins and registration errors of genome‐
sequenced type strains were corrected by a comparison with in silico–calculated m/z 
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Figure 12.8 MALDI mass spectra of B. subtilis subsp. subtilis NBRC 13719T using acid extraction: 
(A) TFA1.0%, (B) TFA2.5, (C) FA30%.
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and the observed m/z by MALDI‐TOF MS, for example, misannotation of the start 
codon of L22 and L32 and sequence error of L29 proteins in B. cereus NBRC 15305T; 
the presence of unregistered L22, L32, L34, S14, S15, and S18 proteins in B. pumilus 
NBRC 12092T; misannotation of the start codons of L29 and S20 proteins and the pres-
ence of an unregistered L24 protein in B. thuringiensis NBRC 101235T; and misannota-
tion of the start codons of L29, S14, and S18 and sequence errors of L22 and S20 
proteins, and the presence of an unregistered L24 protein in B. mycoides NBRC 101228T. 
Although Lauber et al. reported that the error of ribosomal protein masses of B. subtilis 
subsp. subtilis NBRC 13719T was not easily accounted for by post‐translational modifi-
cations [83], ribosomal proteins of B. subtilis subsp. subtilis NBRC 13719T considering 
N‐terminal methionine loss only as a post‐translational modification could be assigned 
by MALDI‐TOF MS analysis.

The eight ribosomal subunit proteins, L18, L22, L24, L29, L30, S10, S14, and S19 in 
S10‐spc operon, were selected as biomarkers because their mass spectra had mass 
reproducibility and sensitivity based on the S/N level. Although there was no significant 
difference in the relatedness of the phylogenetic trees based on the S10‐GERMS method 
and 16S rRNA gene sequences which formed two clusters, cluster I for the B. subtilis 
group and cluster II for the B. cereus group, respectively (Figure 12.9), minor difference 
between two phylogenetic trees could be observed in the phylogenetic position of 
B. vietnamensis NBRC 101237T.

In the S10‐GERMS method, B. vietnamensis NBRC 101237T formed a cluster with 
B. badius NBRC 15713T and B. megaterium NBRC 15308T, whose position was linked 
to the B. subtilis group, whereas the phylogenetic position of B. vietnamensis NBRC 
101237T in the 16S rRNA gene sequences was included in cluster I.

Noguchi et al. also reported that B. vietnamensis formed a cluster with B. aquimaris 
and B. marisflavi, whose cluster was linked to the B. subtilis group [84]. However, the 
phylogenetic tree constructed by Cerritos et al. clearly separated them [85]. Therefore, 
the discussion of the phylogenetic position of B. vietnamensis NBRC 101237T may 
require more information on the species of genus Bacillus.

Although three subspecies are known in B. subtilis: B. subtilis subsp. subtilis, B. subti-
lis subsp. spizizenii, and B. subtilis subsp. inaquosorum [86,87], the 16S rRNA gene 
sequence identity between B. subtilis subsp. subtilis NBRC 13719T and B. subtilis subsp. 
spizizenii NBRC 101239T is 99.8% (1473/1475 bases), which shows 63% and 67% of 
DNA–DNA relatedness value [86]. Although this two‐base difference in the 16S rRNA 
gene sequence makes it difficult to discriminate B. subtilis at the subspecies level, in the 
S10‐GERMS method, the difference in the masses of eight biomarkers indicated the 
possibility of discriminating B. subtilis at the subspecies level, according to the binary 
peak matching profile (Table 12.4).

In particular, biomarker L29 played a pivotal role in typing between B. subtilis subsp. 
subtilis NBRC 13719T and B. subtilis subsp. spizizenii NBRC 101239T. Moreover, both 
ribosomal proteins of L18 and L22 were useful biomarkers for discrimination of B. sub-
tilis at the strain level. The results of the phylogenetic trees of B. subtilis based on eight 
ribosomal proteins by the NJ method using B. subtilis subsp. subtilis NBRC 13719T as a 
reference strain indicated the clear discrimination of B. subtilis at the subspecies and 
strain levels rather than 16S rRNA gene analysis (Figure  12.10). As a consequence, 
despite the fact that identification of the isolated bacteria on the basis of the fingerprint 
is only possible inside the frame of the available reference database, only eight selected 
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reliable and reproducible biomarkers were significantly useful for rapid bacterial 
 classification of genus Bacillus strains at the species and strain levels with the  
S10‐GERMS method.

12.2.3.4 Characterization of the Lactobacillus casei Group [88]
Although the accumulating scientific knowledge on lactic acid bacteria (LAB) has been 
accelerating the development of probiotic functional foods even in pharmaceuticals, 
the phylogenetic similarity and controversial nomenclatural status of lactobacillus 
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Figure 12.9 Phylogenetic trees of type strains of genus Bacillus strains: phylogenetic tree based on 
amino acid sequences of eight selected ribosomal proteins in (A) S10‐spc operon, (B) phylogenetic 
tree based on 16S rRNA gene sequence.



Table 12.4 Binary peak matching profile of B. subtilis strains.

Strains Reference peaks

NBRC No. L36 L34 L30 L32 L28 S14 L35 L29 S18 S20 S16 S15 S19 L24 S10 L22 L18 L20 S09 S12

13719 T 1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14415 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14474 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101588 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101246 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 0
13722 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1
101239 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1
104440 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0

a Present peaks are denoted by 1 and absent peaks by 0. Bold: Eight ribosomal subunit proteins selected for non‐genome‐sequenced genus Bacillus.
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 probiotic are responsible for the complicated taxonomy of Lactobacillus casei and 
related organisms (the L. casei group) [89,90]. This is because the current taxonomy of 
the L. casei group is still based on the proposal by Collins et al. in 1989 that L. casei 
comprises three species: L. casei (containing ATCC 393 as the type strain), L. paracasei 
with two subspecies (subsp. paracasei and subsp. tolerans), and L. rhamnosus [91].

Because there were no genome‐sequenced type strains of the L. casei group with a 
finalized status, ribosomal protein genes were sequenced by using specific primers 
designed on the basis of consensus nucleotide sequences of S10‐spc‐alpha operons from 
28 genome‐sequenced strains, and a set of theoretical masses was calculated and 
 corrected for the ribosomal protein database by using the construction procedure 
(Section 12.2.2). For MALDI‐TOF MS analysis to characterize 33 strains of the L. casei 
group, each bacterial culture was mashed with a Mini Bead‐Beater 8 (Biospec, Bartleville, 
OK, USA), and the resulting lysate was mixed with the matrix solution at a concentration 
of 10 mg/ml sinapinic acid in 50% acetonitrile with 1% trifluoroacetic acid solution.

Only four ribosomal proteins (L22, L36, S11, and S19) were common to the L. casei 
group, and these were identical only within the L. casei group strains by the results of 
a BLASTp search, making them potentially useful biomarkers for categorizing the 
L. casei group.
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Figure 12.10 Phylogenetic trees of B. subtilis strains based on ribosomal protein profile matching 
using ribosomal protein of B. subtilis subsp. subtilis NBRC 13719T as a reference strain: (A) phylogenetic 
tree based on eight ribosomal protein biomarkers, (B) phylogenetic tree based on 20 ribosomal 
protein biomarkers.



MALDI-TOF-MS Based on Ribosomal Protein Coding in S10-spc-alpha Operons for Proteotyping 293

Fourteen ribosomal proteins, L14, L18, L22, L23, L24, L29, L30, L36, S8, S11, S13, S14, 
S17, and S19, were used as biomarkers to construct a phylogenetic tree of the L. casei 
group. When identical ribosomal protein had a different m/z, it was categorized into five 
types (types I to V) based on their own m/z to characterize ribosomal protein as the bio-
marker; for example, in the case of L23: type I for 11564.4, type II for 11561.4, type III for 
11589.5, and type IV for 11533.4 (Table 12.5). The result of the UPGMA cluster analysis 
based on ribosomal protein profiling by the S10‐GERMS method could classify the 
strains of the L.casei group into four major clusters that had each type strain in the clus-
ters (Figure 12.11). Cluster 1 contained the type strain of L.casei JCM 1134T. Due to a 
significant contribution of L23‐IV, L24‐IV, and S14‐IV to the discrimination of the spe-
cies L. rhamnosus, all strains of L. rhamnosus formed a single group as cluster 2, which 
is also supported by the result of ribotyping [92]. Cluster 3 reflected the history of the 
L. casei group because it contained almost all the strains of L. paracasei subsp. paracasei 
(except for JCM 1172), six strains of L. casei, and one strain of L. acidophilus JCM 20315. 
The results of the S10‐GERMS method suggested that strains of JCM 20024, JCM 20304, 
and JCM 20315 should be correctly reidentified as L. paracasei subsp. paracasei as well 
as ATCC 334 and four strains of L. casei, BD‐II [93], BL23 [94], LC2W [95], and Zhang 
[96], which have sequences that are nearly identical with ATCC 334. Cluster 4, defined by 
the two biomarkers L23‐III and L24‐III, had two strains: L. paracasei subsp. tolerans JCM 
1171T and L. paracasei subsp. paracasei JCM 1172. Because the phylogenetic position of 
L. paracasei subsp. paracasei JCM 1172 was also supported by the result of ribotyping 
and PCR fingerprint [92,97], L. paracasei subsp. paracasei JCM 1172 should be revised to 
L. paracasei subsp. tolerans on the basis of the cumulative scientific evidence.

The S10‐GERMS method may shed new light on and help resolve the controversy 
arising from the nomenclatural status of the L. casei group that has persisted since 1989.

12.2.3.5 Characterization of Enterohemorrhagic Escherichia coli [98]
Shiga toxin‐producing Escherichia coli, known as enterohemorrhagic E. coli (EHEC), is 
an important pathogen that causes life‐threatening infection in humans worldwide. In 
particular, E. coli serotype O157:H7 is the most commonly reported EHEC serotype 
responsible for a large number of outbreaks.

Because MALDI‐TOF MS is a rapid, cost‐effective, and robust approach for the iden-
tification of microorganisms, this method has been rapidly developed and successfully 
applied for the diagnosis of infectious bacteria, especially in clinical microbiology.

Although MALDI‐TOF MS has been used to classify EHEC serotypes, the results 
obtained by the fingerprinting method are not very reliable because of the high  similarity 
of their spectra from isolates and less reproducible spectra depending on experimental 
factors like sample preparation and/or culture conditions [99]. To respond to the 
 growing expectations for a specific diagnostic demand, the parameters need to be 
 customized in an optimal way when using commercially available software like BioTyper 
software (Burker Daltonics, Germany) [30,100].

Although the identification of specific biomarkers for EHEC serotypes has emerged 
as a formidable challenge to overcome the limitation of application of MALDI‐TOF 
MS, E. coli O157:H7‐specific biomarkers HdeA, HdeB, CspC, YbgS, YjbJ, and YbgO 
were identified using MALDI‐TOF/TOF‐MS/MS [101], providing a precious clue to 
the typing of EHEC serotypes. Therefore, an effort was made to apply the S10‐GERMS 
method for the proteotyping of EHEC serotypes.



Table 12.5 Peak pattern of selected biomarkers for the L. casei group.

Protein
name

Coded
operon

Biomarker types a and theoretical masses as [M + H]+

L. casei
JCM 1134T

L. paracasei subsp. paracasei
JCM 8130T

L. paracasei subsp. tolerans
JCM 1171T

L. rhamnosus
JCM 1136T

‘L. zeae’
JCM11302

L22 S10 I (12599.5) I (12599.5) I (12599.5) I (12599.5) I (12599.5)
L23 S10 I (11564.4) II (11561.4) III (11589.5) IV (11533.4) I (11564.4)
L29 S10 I (7578.9) II (7479.7) II (7479.7) I (7578.9) I (7578.9)
S17 S10 I (9985.5) II (10071.7) II (10071.7) I (9985.5) I (9985.5)
S19 S10 I (10447.0) I (10447.0) I (10447.0) I (10447.0) I (10447.0)
L14 spc I (13031.2) II (13036.2) II (13036.2) II (13036.2) I (13031.2)
L18 spc I (13015.8) II (13001.8) II (13001.8) I (13015.8) I (13015.8)
L24 spc I (11231.1) I (11231.1) III (11203.0) IV (11247.1) I (11231.1)
L30 spc I (6661.8) II (6618.8) II (6618.8) I (6661.8) I (6661.8)
S08 spc I (14676.1) II (14644.0) II (14644.0) II (14644.0) I (14676.1)
S14 spc I (6992.3) I (6992.3) I (6992.3) IV (7006.4) I (6992.3)
L36 alpha I (4449.5) I (4449.5) I (4449.5) I (4449.5) I (4449.5)
S11 alpha I (13641.6) I (13641.6) I (13641.6) I (13641.6) I (13641.6)
S13 alpha I (13426.6) b II (13360.5) II (13360.5) I (13426.6) b V (13412.6)

a Type I was first allocated to the ribosomal proteins of L. casei JCM 1134T. If the mass of the biomarkers of
L. paracasei subsp. paracasei JCM 8130T differed from type I, type II was then allocated to the biomarker.
In this way, types III to V were respectively allocated to the characteristic ribosomal proteins of L. paracasei subsp. tolerans JCM 1171T,
L. rhamnosus JCM 1136T, and L. casei (‘L. zeae’) JCM 11302.
b Amino acid sequences of S13 of L. casei JCM 1134T and L. rhamnosus JCM 1136T are different, but have the same mass.
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Figure 12.11 The UPGMA cluster analysis of the L. casei group based on ribosomal protein biomarkers. Underlined strains are 
genome‐sequenced. Clusters were divided at a similarity of 80%. The result of ribotyping reported by Ryu et al. [92] is used as a 
reference.
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The in silico–calculated masses of ribosomal proteins encoded by the S10‐spc‐alpha 
operon were calculated on the basis of sequence analysis and were corrected by the 
actual analytical results of MALDI‐TOF MS (Table 12.6).

The masses of the S10‐spc‐alpha operon‐encoded ribosomal proteins, namely, S10, 
L3, L4, L23, L2, S19, L22, S3, L16, L29, S17, L14, L5, S14, S8, L6, L18, S5, L30, L36, S13, 
S11, S4, and L17, were all identical respectively in all of the E. coli strains used for data-
base construction, making them potentially useful biomarkers for categorizing E. coli.

Because the candidate biomarkers like L24, S5, and S13 encoded in the S10‐spc‐alpha 
operon gave unclear peaks because of small differences in masses or high molecular 
weights, in the case of E. coli, strain typing or serotyping using ribosomal proteins 
encoded in the S10‐spc‐alpha operon appears to be unsuitable for biomarker mines 
because of a lower diversity of masses. However, the ribosomal proteins S15 and L25 
gave unique and clear mass shifts specific in E. coli O157 compared with the other 
E. coli serotypes (Figure 12.12 and Table 12.6).

Sequence analysis revealed that the O157‐specific point mutation A239G on riboso-
mal protein S15 and G150A on ribosomal protein L25 was responsible for an amino 
acid substitution Q80R and M50I residue, which led to a mass shift of m/z 10138.6 to 
10166.6 and m/z 10694.4 to 10676.4, respectively. Moreover, the peak intensity and 
sharpness for proteins S15 and L25 in O157 serovars were sufficient to distinguish them 
from other E. coli serovars (Figure 12.12). Out of more than thousands of E. coli strains 
available in the NCBI database, the theoretical masses of ribosomal protein S15 and 
L25 in all non‐O157 E. coli strains were calculated as m/z 10138.6 and 10694.4, 
respectively.

Although the mass spectrum at m/z 9066.2 [M + H]+ was identified as the acid stress 
chaperone HdeB in non‐EHEC strains [101], no peak was observed in all EHEC  serotype 
O157 used in this study with complete reproducibility, as supported by the evidence of 
Carter et al. [62] (Figure 12.12 and Table 12.6). Sequence analysis of the hdeB gene also 
confirmed that the start codon, ATG, had a point mutation (ATA) in all EHEC serotype 
O157 strains, whereas in all other E. coli strains, including other EHEC serotypes, the 
start codon, ATG, was held in a normal position in the sequence of the hdeB gene. This 
strongly supported the suggestion that this mutation correlates to the lack of the HdeB 
peak only in the E. coli serotype O157 [62].

EHEC serotypes O26 and O111, which are also responsible for a large number of 
EHEC outbreaks, could be distinguished from other E. coli strains by the peak at m/z 
15425.4 [M + H]+ (Table 12.6 and Figure 12.12). Because a previous study reported that 
the protein corresponding to m/z 15409.4 [M + H]+ in E. coli K‐12 strain (accession 
number P0ACF8) may be the DNA‐binding protein H‐NS [102], sequence analysis con-
firmed that an amino acid substitution (A81S) in the DNA‐binding protein H‐NS in 
strains O26 and O111 led to a mass shift of m/z 15409.4 to 15425.4, implying conclusive 
biomarker specificity for EHEC serotypes O26 and O111 in MALDI‐TOF MS analysis.

Although the peak at m/z 6040 has been reported as a biomarker specifically present 
in EHEC serotype O157 [99], in our study, the intensity of the peak at m/z 6040 was too 
low to detect or the peak was absent in some cases, suggesting that the presence or 
absence of suspicious biomarker proteins with low intensity is insufficient for use as a 
biomarker for discrimination at the strain or serotype level.

Although the expression levels of ribosomal protein S15 and L25 were not affected by 
any growth medium, in accordance with the previous report that the impact of growth 



Table 12.6 Peak pattern of selected biomarkers for E. coli discrimination.

Biomarkers

Group of mass pattern

A B C D E F G H I J K L M N O P

L23 1 (11200.1) 1 1 1 1 1 2 (11147.1) 1 1 1 1 1 1 1 1 1
L24 1 (11186.0) 1 1 1 1 1 1 1 2 (11216.0) 1 1 1 1 1 1 2
S14 1 (11450.3) 1 1 1 1 1 1 1 1 1 1 1 1 2 (11464.3) 1 1
L15 1 (14967.4) 1 1 1 1 1 2 (14981.4) 3 (14945.0) 1 2 2 1 2 1 1 1
S11 + Me 1 (13728.8) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 (13756.8)
YdaQ 1 (8325.6) 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0
S15 2 (10166.6) 2 1 (10138.6) 1 1 1 1 1 1 1 1 1 1 1 1 1
HdeB 0 0 0 1 (9066.2) 1 1 1 1 1 1 1 1 1 1 1 1
H‐NS 1 (15409.4) 1 1 2 (15425.4) 2 1 1 1 1 1 3 (15882.0) 1 1 1 1 1
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conditions on ribosomal proteins is minimal [103], HdeB in some strains of serotypes 
O111 and O26 were less detectable when grown on chromagar X‐gal or VRBL. 
Therefore, to ensure the discrimination of O157, O26, and O111 from the others in 
colony‐directed MALDI‐TOF MS analysis, in this case, the normal growth media, 
 desoxycholate agar or CT‐SMAC, will be recommended for the pre‐selection of E. coli. 
Either sinapic acid or CHCA as the matrix reagent is available whether the sample is a 
colony or a liquid extracted with FA.

Our discrimination approach was verified by performing blind tests using 57 E. coli 
strains including O157, O26, O111, and O121 isolated as wild types. The mass shifts of 
S15 (m/z 10166.6) and L25 (m/z10676.4), combined with the absence of an HdeB peak 
at m/z 9066.2, could be universally applied for the discrimination of E. coli serotype 
O157. Similarly, E. coli serotypes O26 and O111 were correctly classified on the basis of 
the specific masses of H‐NS (Table 12.6 and Figure 12.13).

The S10‐GERMS‐based discrimination method established a possible strategy for the 
effective discrimination of E. coli serotypes O157, O26, and O111 using four specific 
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Figure 12.12 Typical MALDI mass spectra of four biomarker proteins in E. coli: HdeB (m/z 9066.2 
[M + H]+), S15 (m/z 10138.6/10166.6 [M + H]+), L25 (m/z 10676.4/10694.4 [M + H]+), and H‐NS (m/z 
15409.4/15425.4 [M + H]+) for strains O 157, O26, O111, and other E. coli (non‐O157).
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biomarkers by MALDI‐TOF MS as shown in Figure 12.14. In an E. coli study, the 
S10‐GERMS‐based discrimination method stretched the concept of the original 
S10‐GERMS method, which uses the information encoded in the S10‐spc‐alpha operon.

In fact, the theoretically selected masses can play a key role as biomarkers in typing of 
bacteria at the strain level when their masses are confirmed by both genomic and prot-
eomic approaches.

Therefore, to overcome the limitation of the MALDI‐TOF MS fingerprint method for 
distinguishing mixtures containing the same strains of bacteria, the functionality of the 
S10‐GERMS method can be expanded from isolated bacterial discrimination at the 
strain level to discrimination of mixtures consisting of two different types of E. coli 
strains, that is, the O157 strain and the K12 strain as a non‐O157 representative, because 
they are usually identified as “E. coli” with the conventional fingerprinting method.

In this case, the theoretically supported m/z of biomarkers S15 (10138) and L25 
(10694) in the E. coli K 12 strain is sufficiently different from the corresponding m/z of 
S15 (10166) and L25 (10676) in the E. coli O157 strain. The experimentally mixed sam-
ple was successfully discriminated by the S10‐GERMS method using those biomarkers, 
which were detected as double peaks at the corresponding values of m/z (Figure 12.15).

This scientific rationale of the S10‐GERMS method will open a new window in moni-
toring contaminations with similar bacteria in the fields of diagnostics, food safety, and 
public culture collections that deal with multiple related bacterial samples.

Because the S10‐GERMS method reflects different evolutionary lineages for bio-
markers backed by multi‐gene sequence information (Figure 12.1), the concept of the 
S10‐GERMS method is a significantly useful tool for bacterial typing below the species 
level across the microbial kingdom, including clinical, environmental, and food‐related 
fields. Thus, the higher bacterial discrimination performance of MALDI‐TOF MS anal-
ysis will be achieved in combination with conventional MALDI‐TOF MS fingerprinting 
and the S10‐GERMS method as an integrated system in future.
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Figure 12.13 Cluster analysis for E. coli strains with selected biomarkers. Phylogenetic tree is made 
based on Table 12.6. A to P indicate the E. coli groups classified in Table 12.6.
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Figure 12.15 Discriminating mixtures of two different types of E. coli strains. Strains of K12 and O157 
were used as non‐O157 representative and O157, respectively. The m/z values of the biomarkers are 
S15 (10138) and L25 (10694) in E. coli K 12, and S15 (10166) and L25 (10676) in E. coli O157 strain, 
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Reference 105.
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Figure 12.14 Strategy for MALDI‐TOF MS proteotyping between E. coli strains O157, O26, O111, and 
the others using four biomarkers.
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12.3 Conclusion: Computer‐Aided Proteotyping 
of Bacteria Based on the S10‐GERMS Method

It is well known that the experimental procedure of MALDI‐TOF MS analysis is signifi-
cantly simpler and faster than that of the genome‐based method, which requires time‐
consuming procedures such as DNA extraction and amplification, gel electrophoresis, 
and DNA sequencing. In particular, making the ribosomal proteins encoded in the S10‐
spc‐alpha operon a target, the S10‐GERMS method was developed as a more highly 
reliable, advanced method for phylogenetic analysis at the strain level with a validation 
procedure than conventional MALDI‐TOF MS fingerprinting and achieved the desired 
object (standing goal) of reducing the influence of culture condition. Because the S10‐
GERMS method, based on a combination of genomics and proteomics, reflects  different 
evolutionary lineages for ribosomal proteins backed by multi‐gene sequence informa-
tion (Figure 12.1), the proteopyping using the S10‐GERMS method may take bacterial 
identification to the next generation. The main difference between the S10‐GERMS 
method and every other conventional method is shown in Figure 12.16. The cutting 
edge of the S10‐GERMS method is that it focuses on “the differences” of  characteristic 
biomarkers based on the biological rationale for their m/z, whereas other conventional 
methods, including 16S rRNA sequencing and MS fingerprint methods, search their 
database systematically for “the similarities.”

STATE-OF-THE-ART DISCRIMINATION
-FROM IDENTIFICATION TO PROTEOTYPING-

Proteotyping opens new door for standardization of bacterial typing based upon the
bio-rationale for the biomarker’s m/z

Typing at from subspecies level to strain level

Discrimination of mixed bacteria and/or horizontal distribution using species
and/or strain specific biomarkers

Identification of specific bacteria using resistance biomarkers etc

< Characteristics of conventional methods >

Searching the “similarities”
< Characteristics of Proteotyping>

Searching the “differences”

Identification Typing

Genus Species Subspecis Serovor Strain
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Figure 12.16 The main differences between the S10‐GERMS method and other conventional 
methods.
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Figure 12.17 Concept of the automatic proteotyping system combining conventional MALDI‐TOF MS fingerprinting with the S10‐
GERMS method.
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Therefore, automated processing and clustering of the data generated by the S10‐
GERMS method is desired. To implement a solution, a combination of the conventional 
MALDI‐TOF MS fingerprinting with the S10‐GERMS method as an integrated system 
will provide higher performance of bacterial discrimination by MALDI‐TOF MS analy-
sis, that is, ease of use, cost performance, accuracy, reproducibility, high throughput, 
and data portability.

In addition, the standardized S10‐GERMS method also has the potential to develop 
into a new method for the characterization of a bacterial mixture based on the informa-
tion of biomarkers with their own molecular weight information, because the m/z val-
ues of the observed ions are specific for the corresponding species or strains, despite the 
fact that the new approach of automatic identification of mixed bacterial species has 
been developed on the basis of fingerprints [104].

The concept of automated processing and clustering of the data generated by the 
S10‐GERMS method is shown in Figure 12.17. The automated system will result in the 
following features [105]:

 ● Discrimination of genetically similar bacteria that are difficult to differentiate by16S 
rRNA gene sequencing

 ● Phylogenetic analysis at strain and serotype level
 ● Identification of mixed bacterial species

Moreover, when anyone deposits isolated bacteria in the culture collection with their 
MALDI‐TOF MS spectra, for example, Spectra Bank [106], in the future, establishment 
of a useful search engine for computer‐aided proteotyping based on the standardized 
S10‐GERMS method will open new avenues in the field of bacterial discrimination.
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This chapter will demonstrate through worked examples the clinical utility of tandem 
mass spectrometry. Part A uses a model of the challenging family Enterobacteriaceae, 
ultimately showing how proteomics, combined with genomics, can be used to identify 
and characterize a recent outbreak strain of Escherichia coli, strain type 0104:H4. Part B 
demonstrates the utility of proteomics as a biomarker discovery and validation platform 
for the identification of protein and genomic features, for the delineation of high‐profile, 
highly pathogenic biothreat agents.

Part A

13.1 Introduction

The family Enterobacteriaceae is a large heterogeneous group of bacteria comprising a 
diverse range of organisms inhabiting a wide range of ecological environments, including 
the intestinal flora of man and animals. Phylogenetic studies indicate that many of the 
genera within the Enterobacteriaceae are monophyletic, sharing a common ancestor, 
from which a conserved core of gene sequences can be used to infer phylogeny, for 
example, 16S rRNA, gyrB or rpoB (Dauga, 2002). However, unlike DNA hybridization 
and phenotypic studies, molecular approaches based on single genes fail to resolve some 
species or even genera into monophyletic groups. Consequently, both at the generic and 
species levels, some taxa merge, even between strains from different species, resulting in 
ill‐defined boundaries (Delmas et  al., 2006; Paradis et  al., 2005; Pham et  al., 2007; 
Stecher et al., 2012). Among these, Escherichia coli is the most studied; there are strains 
that are pathogenic, causing a wide range of diseases affecting the respiratory and 
urinary tracts, the bloodstream, and intestinal infections that can be fatal if not treated 
(Kaper et al., 2004). On the basis of the virulence factors present and the host clinical 
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symptoms, pathogenic E. coli strains can be categorized into one or more pathogenic 
groups, ‘pathotypes’ such as Enteroaggregrative E. coli (EAEC), Enterohemorrhagic 
E. coli (EHEC), Uropathogenic E. coli (UPEC) and Enteropathogenic E. coli (EPEC) 
(Kaper et al., 2004).

Virulence factors in E. coli comprise a broad range of protein products, which allow 
pathogens to successfully inhabit and persist in a host. They include, but are not limited 
to, proteins associated with adhesion, antimicrobial resistance, toxicity and motility (Chen 
et al., 2012). Ideally, to characterize enteric pathogens, the ability to identify virulence‐
associated features, coupled with the correct species/strain identification, offers a more 
comprehensive and clinically relevant description of a pathogen. Recently, molecular 
approaches such as multilocus sequence typing (MLST), pulsed‐field gel electrophoresis 
(PFGE), amplified fragment length polymorphism (AFLP), random amplified polymorphic 
DNA (RAPD), variable number tandem repeats (VNTRs), optical mapping and whole 
genome sequencing (WGS) have been used to resolve many species within the family 
Enterobacteriaceae (Sabat et al., 2013). However, molecular typing methods currently in 
use are unable to constantly mirror the pathovars or highlight key virulence factors which 
can be used to characterize E. coli strains (Rasko et al., 2008).

Species identification methods vary and have evolved greatly over the decades. 
Traditionally, morphological and biochemical phenotypic tests characterized a bacte‑
rium into distinct taxonomic groups, which are still required for formal species 
descriptions today. Subsequently, chemotaxonomic analyses (e.g. lipid components, 
peptidoglycan composition), and later molecular approaches such as moles % G + C 
content and DNA‐DNA hybridization were used to help define a species and consoli‑
date taxonomic divisions (Schleifer, 2009). Comparative 16S rRNA provided the first 
molecular phylogenetic basis for microbial classification, changing the taxonomic 
and clinical diagnostic landscape, and has been referred to as the benchmark for 
species classification (Schleifer, 2009). Despite the huge impact 16S rRNA sequencing 
has had, the correct identification of many closely related species, such as those 
belonging to the Enterobacteriaceae, remains challenging and some – for example, 
E. coli and the genus Shigella – are routinely mistaken.

Following more than a decade of concerted research, mass spectrometry (MS)‐based 
identification has been successfully introduced into the clinical laboratory. MS tech‑
niques have been previously used to analyze components and products of organisms, 
such as fatty acids and respiratory molecules (Corina & Sesardic, 1980; Mayberry, 1981; 
Shah & Collins, 1983). The development of ‘soft’ ionization techniques such as matrix‐
assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) permitted 
the analysis of larger, intact biological molecules (Karas & Hillenkamp, 1988). The 
primary MS method currently used for microbial identification utilizes ‘soft’ ionization 
techniques, in particular MALDI sources coupled with a mass analyzer such as time of 
flight (TOF) (van Belkum et al., 2013; Dingle & Butler‐Wu, 2013). The current imple‑
mentation of MALDI‐TOF MS for bacterial identification primarily utilizes a single 
mass TOF analyzer, which generates mass spectral profiles which are statistically matched 
to a database. We established a robust method (Shah et al., 2000; Shah et al., 2002) and 
reported the first MALDI‐TOF MS microbial database using type and reference strains 
held in the National Collection of Type Collections (Keys et al., 2004, see Chapter 1). 
In its current guise, the ionized masses of proteins are collated from a range of bacterial 
species and used to construct a database, against which genus‐ or species‐specific 
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masses can be identified (Dingle & Butler‐Wu, 2013). Experimentally determined masses 
are statistically compared against the database to obtain identifications.

MALDI‐TOF MS has ushered in a new era in clinical diagnostics, resulting in greatly 
reduced costs and rapid species identification (Carbonnelle et al., 2011; Fournier et al., 
2013). It is now routinely used for the identification of species, profiling mainly ribosomal 
proteins, but generally excludes expressed virulence factors. However, there are some 
species which consistently remain unresolved by both 16S rRNA and MALDI‐TOF, for 
example, species from the genera Escherichia and Shigella. Although through manual 
peak classification and using the software package ClinProTools, it may be possible to 
resolve some strains of E. coli below the species (Everley et al., 2008), the method is 
highly cumbersome and remains outside the realm of routine use in clinical laborato‑
ries. Even more challenging is accurate subspecies identification, which requires the 
identification of a greater number of markers with greater discriminatory power than 
those currently being used.

The identification of more proteins/peptides, apart from capturing a more complete 
profile of an organism’s proteome, increases the likelihood of discovering high‐resolution 
markers for bacterial identification. MADLI‐TOF has made MS accessible to clinical 
scientists, paving the way for alternative MS approaches to be used, such as nano‐liquid 
chromatography coupled with high‐resolution MS/MS instruments (nano‐LC‐MS/
MS). Nano‐LC‐MS/MS can be used to profile a greater number of proteins/peptides. 
Although not as simple to use as current MALDI‐TOF methods, they have greater 
resolution and can identify proteins over a greater mass range (as well as other chemicals 
in a sample). This enables the identification of more proteins and allows for a more 
complete characterization of an organism’s proteome, from which features used for iden‑
tification, as well as those associated with virulence factors, can be resolved and used for 
high‐resolution bacterial identification (Al‐Shahib et al., 2010; Misra et al., 2012).

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS‐PAGE) has been 
used for decades to proteotype bacterial species (Costas, 1990). The development of 
protein digestion, such as trypsin, which generates peptide fragments amenable for MS, 
enabled SDS‐PAGE‐separated proteins to be identified. This technique is now referred 
to as GeLC‐MS/MS, that is, SDS‐PAGE coupled with LC‐MS/MS methods, for example, 
nano‐LC‐MS/MS. Previous studies have demonstrated the power of GeLC‐MS/MS for 
the characterization of proteins as well as for the identification of bacteria (Al‐Shahib 
et al., 2010; Ho & Reddy, 2010; Misra et al., 2012). To profile a bacterial proteome using 
nano‐LC‐MS/MS, the most common method is to lyse the cells from a bacterial culture, 
releasing all of the cell contents, including the majority of soluble proteins localized in 
the cytoplasm and periplasm (gram‐negative bacterium). Some membrane proteins are 
also released, but those embedded in the membrane tend to be more hydrophobic and 
thus rely on more in‐depth analysis to capture them. Assuming the lysis methods were 
successful, the proteins ideally should be enriched, removing any potential contaminants 
which may conflict with analysis via nano‐LC‐MS/MS, for example, cell wall debris, 
lipids, nucleic acids and detergents (if used during lysis). Following protein enrichment, 
analysis can still be challenging due to the huge variability of protein properties, both 
chemical and morphological, which can impact their ‘suitability’ for nano‐LC‐MS/MS 
analysis. Therefore, to better profile proteins, somewhat counter‐intuitively, the sample 
is made more complex in terms of the number of detectable features, whereby the 
thousands of enriched proteins are enzymatically fragmented into tens of thousands 
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of peptides. It is these peptides that are analyzed via nano‐LC‐MS/MS and identified 
using database matching algorithms, which map the peptides to their parent proteins, 
thus enabling for the proteins to be identified. Using this approach, the proteome of any 
bacterium can be profiled, and far more proteins and peptides are identified, providing 
the pool from which higher‐resolution markers can be identified

To better describe the resolution and detection limits of 16S rRNA, MALDI‐TOF 
and  nano‐LC‐MS/MS, a selection of challenging bacteria belonging to the family 
Enterobacteriaceae were analyzed and the results compared.

13.2 Methods

For 16S rRNA analysis, each of the annotated strains was grown for 24 h, on CBA plates at 
37 °C, under aerobic conditions. DNA was extracted using the PrepMan Ultra reagent 
(Applied Biosystems, UK) by suspending 1 μl loop of cells in 60 μl of the reagent. The 
extracts were then placed on a heating block at 99 °C for 10 min and centrifuged at 10,000 g 
for 3 min. The supernatant was recovered and used for DNA amplification. The PCR mix 
contained 1 μl of template, 10 nmol forward primer (ANT1F: 5′ AGA GTT TGA TCC 
TGG CTC AG3′), 10 nmol reverse primer (1392R: 5′ ACG GGC GGT GTG TAC AAG 3′), 
25 μl PCR ready mix (Promega) and 22 μl water. PCR cycling conditions were as follows: 
initial activation at 95 °C for 2 min, followed by 35 cycles of 95 °C for 45 s, 56 °C for 45 s and 
72 °C for 1 min. The final extension step was at 72 °C for 5 min. The size and intensity of the 
PCR products were confirmed by agarose gel electrophoresis, using 2% E‐gels (Invitrogen, 
UK). The PCR products were cleaned using AMPure XP® PCR Purification Magnetic Bead 
Kit, and samples were eluted in 50 μl sterile water. Sequencing was performed using 
forward primer (357 F: 5′ CTC CTA CGG GAG GCA GCA G 3′) and reverse primer 
(3R: 5′ GTT GCG CTC GTT GCG GGA CT 3′) with the BigDye Terminator v3.1 Cycle 
Sequencing Kit (Applied Biosystems, UK), using the ABI 3730 sequencer.

The sequences generated were taken and searched against the publicly available, 
curated 16S rRNA resource, ‘The Ribosomal Database Project’. It is important to note, 
as with all identification methods where a database is used for matching, that the 
database is of high quality. With regard to 16S rRNA, there are 10,000 s of sequences 
which have been deposited in various databases such as the NCBI and EBI; however, 
curation and quality control are performed by the depositor. This can lead to spurious 
matches, which can greatly impact any inferences made. To resolve this, while ensuring 
access to 16S rRNA data, databases such as RDP and SILVA were created with the aim 
of providing a curated repository of 16S rRNA sequences including quality metrics and 
well‐annotated taxonomies. To determine the species for the samples in this study, the 
16S rRNA sequence data generated in this study were taken and searched against the 
RDP 16S rRNA database using RDP SeqMatch. Matches were given a ‘similarity score’ 
and ‘seqmatch score’ and used to assign a genus and/or species to the sample, and the 
highest ranked scores were taken.

As with the 16S rRNA comparisons, the same annotated sample set was taken and ana‑
lyzed using the Bruker Biotyper MALDI‐TOF identification system. Rather than trying to 
extract, amplify, sequence and annotate the samples, as with the 16S rRNA approach 
above, the samples were grown aerobically overnight at 37 °C on CBA plates, from which 
single colonies were recovered with a toothpick and directly spotted in duplicate onto an 
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Table 13.1 The strains used in this example are listed below, where * = type strain, D = strains used 
to construct the database and T = strains used to test blindly whether they can be identified using 
the workflow presented in this study.

Species Strain accession

Citrobacter freundii NCTC09750*,D

Enterobacter aerogenes NCTC10006*,D;NCTC10336D

Enterobacter cloacae NCTC10005*,D,T;NCTC11570D;NCTC11571D

Escherichia coli NCTC10538D;NCTC09001*D,T;NCTC10964D;NCTC11151D

NCTC13128D;NCTC8621D;H112160280T;H112160540T

H112160541T;E99518T;EDL933T;H10302T;NCTC12900T

Escherichia fergusonii DSM13698*,D

Escherichia vulneris NCTC12130D

Klebsiella pneumoniae NCTC05050*,D;NCTC12463D;NCTC5056D;NCTC9633*,D

Morganella morganii NCTC235*,D,T;NCTC12286D;NCTC12287D

Proteus mirabilis NCTC11938*,D;NCTC10374D;NCTC9559D

Proteus vulgaris NCTC10020D,T;NCTC10740D;NCTC4175D

Providencia alcalifaciens NCTC10286*,D

Providencia rettgeri NCTC11801*,D,T;NCTC7475D;NCTC7477D;NCTC7480D

Providencia stuartii NCTC11800*,D;NCTC12254D;NCTC12256D

Serratia marcescens NCTC10211D;NCTC1377D;NCTC2446D

Shigella boydii NCTC12985D,T;NCTC9327D

Shigella flexneri NCTC08192D

Shigella sonnei DSM5570*,D

Yersinia pseudotuberculosis NCTC10275*,D,T;NCTC10278D;NCTC12718D

Campylobacter coli NCTC11366*,D

Campylobacter fetus NCTC10842*,D

Campylobacter hyointestinalis NCTC11608*,D

Campylobacter jejuni NCTC11351*,D

Campylobacter upsaliensis NCTC11541D

Enterobacter gergoviae NCTC11434D

Cronobacter sakazakii NCTC11467*,D;NCTC8155D;NCTC9238D

Escherichia hermannii NCTC12129D

Hafnia alvei NCTC8105*,D;NCTC6578D;NCTC8535D

Klebsiella aerogenes NCTC8172D;NCTC9527D;NCTC9499D

Proteus penneri NCTC11972D;NCTC12737D

Salmonella enterica subsp. 
Enterica

NCTC04444*,D,T;NCTC00074D

Yersinia enterolitica NCTC10460D;NCTC10938D;NCTC11174D
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MSP 96 target plate (Bruker Daltonics, UK). Each spot was overlaid with 1 μl of matrix 
(saturated solution of α‐cyano‐4‐hydroxycinnaminic acid CHCA in 50% acetonitrile and 
2.5% trifluoroacetic acid (Bruker Daltonics, UK)). The samples were air‐dried to 
 co‐crystallize the sample and matrix, and the target plate was then processed using a 
Microflex LT mass spectrometer (Bruker Daltonics, UK). Data collection was done in 
 ‘automatic mode’ by collecting 240 laser shots from six different positions within the spot, 
and MALDI measurements were recorded in a positive linear mode with a mass range of 
2–20 kDa. Sample identification was far more automated; using the Bruker Biotyper iden‑
tification algorithms, for every match a Biotyper score was given which describes how 
good a match was. Strains were identified with a score ≥2, where scores of n ≥ 2 were con‑
sidered confident species identifications; scores of 1.7–2 were used to confidently assign a 
strain to the genus identification; and scores of ≤1.7 gave no confident identification.

Unlike the 16S rRNA and MALDI‐TOF identification methods, nano‐LC‐MS/MS‐
based identification is still very much in the research and development phase. As such, 
the methods are comparatively laborious and cumbersome. Despite this, the potentially 
higher‐resolution identification and clinical characterization of strains warrants the 
investigation of nano‐LC‐MS/MS as a possible future alternative to MALDI‐TOF.

A typical nano‐LC‐MS/MS method relies, as mentioned earlier, on extracting proteins 
from a culture, possibly separating the proteins into smaller batches and enzymatically 
digesting them into peptide fragments. It is these peptides which are separated via LC, ion‑
ized and analyzed using MS. Taking the strains in this study as an example, a more detailed 
method is as follows. Using the same aerobic cultures used for the MALDI workflow, that 
is, bacterial cells grown aerobically on CBA plates, overnight at 37 °C, rather than taking a 
single colony, a plate full of cells was taken and suspended in 1 ml of a lysis buffer. There are 
many buffers to choose from, but when choosing lysis reagents, not all are compatible with 
LC‐MS systems, such as some salts, detergents, lipids and polyethylene glycols. The lysis 
buffer used in this study was nano‐LC‐MS/MS compatible and consisted of 7 M urea and 
2 M thiourea (GE Healthcare, UK), 4% 3‐[(3‐cholamidopropyl) dimethylammonio]‐1‐pro‑
panesulfonate (CHAPS  –  Melford, Ipswich, UK) and 40 mM dithiothreitol (DTT). The 
culture–lysis suspension was mixed thoroughly, to which 300 μl of glass beads were added, 
and the cells were mechanically disrupted using a FastPrep homogenizer (MP Biomedicals, 
USA). The combination of the lysis buffer and mechanical disruption greatly increases the 
likelihood of breaking open bacterial cells and releasing their contents, including proteins. 
The FastPrep, as the name suggests, is a quick method to break cells; the suspension was 
pulsed for 3 cycles of 20 s at a speed of 4 m/s, followed by a 20 s cooling‐down period. The 
resulting mixture is referred to as the crude extract, and to clarify the extract – that is, 
remove the glass beads and large cell debris – the crude extract was centrifuged for 30 min 
at 21,000 g at 4 °C. The supernatant, which contains the protein extract, was removed, 
quantified using the Bradford assay and stored at −20 °C until required.

To simplify the protein extracts and increase the proteome coverage, the extracts 
were separated by one‐dimensional SDS‐PAGE (1D‐SDS‐PAGE). 10 μg of protein 
extract was loaded and separated using pre‐made MES running buffer (Invitrogen, UK), 
in accordance with the manufacturer’s instructions. The MES buffer is made up of 
50 mM MES, 50 mM Tris Base, 0.1% SDS and 1 mM EDTA, pH 7.3. It is the SDS, an 
anionic detergent which disrupts the non‐covalent bonds in a protein, resulting in 
denatured proteins, which have lost their native shape and applies a negative charge to 
the denatured proteins, proportional to its mass. This when used in conjunction with 
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polyacrylamide gels such as the NuPAGE® Novex 4–12% Bis‐Tris gels (1.0 mm, 12 well, 
Invitrogen, UK), enables proteins to be separated according to their mass, into distinct 
bands, whereby each band will contain one or more proteins. The proteins bands were 
visualized by staining with InstantBlue (Expedeon Ltd., UK) and each sample lane was 
cut into 24 pieces and subjected to in‐gel tryptic digestion as described below.

Protein digestion is the enzymatic process by which proteins are fragmented into 
peptides, and it is these peptides which are ultimately used as the ‘sample’ for nano‐LC‐
MS/MS analysis. Protein extracts (30 μg in 100 mM NH4HCO3) were reduced with 
DTT (5 μl, 200 mM in 100 mM NH4HCO3) at 60 °C for 45 min, followed by sulfhydryl 
alkylation with iodoacetamide (4 μl, 1 M iodoacetamide in 100 mM NH4HCO3) at room 
temperature for 45 min in the dark. Alkylation was stopped by adding DTT (20.0 μl, 
200 mM in 100 mM NH4HCO3) to neutralize the remaining iodoacetamide and incu‑
bated for 45 min at room temperature. Overnight digestion was carried out using trypsin 
with an enzyme:protein ratio of 1:30 at 37 °C. The digestion was then stopped by adding 
concentrated glacial acetic acid (4 μl).

The peptide mixture, that is, the ‘sample’, was separated and analyzed using online 
nano‐LC‐MS/MS. In this study, tryptic peptide mixtures from in‐gel trypsin digestion 
were separated using an Ultimate 3000 Dionex nano/capillary HPLC system and 
analyzed on an LTQ Orbitrap Classic mass spectrometer. HPLC systems, such as the 
Dionex nano‐LC, rely on a stationary phase and an aqueous, mobile phase. The station‑
ary phase captures/attracts the peptides of interest based on one or more properties, 
for example, charge, size and so on. To release the captured peptides in a controlled 
manner, that is, to slowly releasing the peptides, the mobile phase is washed over the 
stationary phase, which in turn carries the peptides for downstream analysis. When a 
single mobile phase is added, that is, the composition remains static over a period of 
time, it is referred to as isocratic flow, which is useful for ‘simple’ samples when separat‑
ing a few compounds. However, for more complex samples, such as peptide mixtures, 
two or more mobile phases are used and mixed in different ratios over time, and the 
changing composition over time is referred to as gradient flow. All of the ‘samples’ in 
this study were very complex, comprising 10,000 s of peptides; therefore, a gradient flow 
was used. The mobile phase in this study comprised Buffer A (2% CH3CN/0.1% formic 
acid in water) and Buffer B (10% water/0.1% formic acid in CH3CN), mixed in different 
ratios, where the ratio influences the rate at which peptides are released from the 
stationary phase. Peptide mixtures (10 μl) were initially trapped and desalted in a reversed‐
phase trap column (Acclaim PepMap C18, 300 μm i.d. × 3 mm, Dionex Ltd., UK) using 
Buffer A at a flow rate of 25 μl/min and further separated, on the stationary phase, using 
an analytical C18 reversed‐phase (RP) nano‐column (75 μm i.d. × 15 cm, 3 μm particles, 
Dionex Ltd., UK) at 35 °C. The peptides were separated, that is, released over a 60‐min 
gradient: from 10% to 45% solvent B over 45 min, followed by 45% to 90% solvent B over 
0.5 min, maintained at 90% B for an additional 5 min and then returned to 10% B over 
0.5 min at a flow rate of 300 nl/min. The total run time was 60 min.

When coupled with MS, the separated peptides are passed directly into the MS system for 
analysis. MS/MS refers to the way in which peptides, that is, the precursor ions, are 
selected and fragmented for further analysis in the MS. Using the samples in this study as 
the example, the peptides eluted from the LC gradient are injected into the MS, where a 
first round of ion selection is performed (MS1), referred to as ‘precursor ion selection’. 
The precursor ions are then fragmented with high‐pressure gas, resulting in ‘daughter 
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ions’, which are analyzed in MS2. For the LTQ Orbitrap Classic, the mass spectrometer 
was operated in positive ion mode, and a top six method was used. The precursor ion scan 
(m/z 440–2000) was acquired in the Orbitrap with a resolution R = 60,000 at m/z 400. The 
six most abundant peptide precursor ions detected in the survey scan were dynamically 
selected and subjected to collision‐induced dissociation (CID) in the linear ion trap to 
generate MS/MS spectra. General mass spectrometric conditions were set as follows: 
spray voltage at 1.6 kV, capillary voltage at 38 V, capillary temperature at 200 °C and tube 
lens at 125 V. Helium was used as collision gas but no sheath or auxiliary gas was 
applied. Tandem MS (MS/MS) data was acquired in data‐dependent mode with auto‑
matic switching between MS and MS/MS modes. A normalized collision energy of 35%, 
an activation of q = 0.25 and activation time of 30 ms were applied for ion trap CID in MS/
MS acquisition. The lock mass option was enabled using the polydimethylcyclosiloxane 
ion generated in the electrospray process from ambient air, and protonated (Si(CH3)2O)6 
at m/z 445.120025 was used for internal recalibration in real time to enable accurate mass 
measurement. Samples were analyzed as technical triplicates.

A huge amount of data is generated by MS instruments, presented in the form of 
MS profiles, ‘spectra’. To interpret the spectra and use them to characterize a protein 
would be impossible manually; instead, there are many software algorithms (MS 
search engines) that can be used. In this study, the MS search engine Mascot (version 
2.2 – Matrix Sciences) was used, although there are many alternative free programs that 
can be used, for example, MS Amanda, Tide, Morpheus, Comet, X!Tandem, OMMSSA, 
to name a few. The algorithms employed in each of these programs differ, although 
they all follow the same basic procedure: identifying good‐quality spectra, creating a 
reference database comprised of in silico–generated spectra, based on a database of 
sequences against which the experimental spectra are compared. Although the closest 
match is considered the most likely, these approaches are greatly dependent on the 
database, and a variety of quality control methods are applied to determine how good a 
match is and the chances of getting a false match. One commonly used quality metric is 
the false discovery rate (FDR), which tells us the likelihood that a spectral match was by 
chance. This does not explicitly tell you which one is wrong, just the likelihood and 
therefore lowering the FDR cut‐off increases the accuracy. There are other metrics, 
many of which are algorithm dependent, which can be used to increase the accuracy of 
a match. In parallel, there are algorithms whose sole purpose is to validate MS data 
matches, such as Peptide/Protein Prophet. Mascot searches were set up using the 
following parameters: fragment ion (daughter ion) tolerance of 0.50 Da and a parent ion 
(precursor ion) tolerance of 10.0 ppm. During enzymatic digestion and preparation for 
nano‐LC‐MS/MS analysis, the chemicals used could modify the peptides; therefore, to 
account for this, the following modifications were included: oxidation of methionine 
and the iodoacetamide derivative of cysteine, as well as deamidation of asparagine. 
Protein identifications were accepted where >1 peptide was matched, the charge state 
was 2+ and was present in all replicates. To further validate the peptides and parent 
proteins identified, a commercial program, Scaffold (version 3.2, Proteome Software), 
was used which normalizes the mass spectra and using the search engines match statis‑
tics, for example, Mascot ion and identity scores, generates a probability score, referred 
to as a Discriminant score. It is this Discriminant score which is used to determine 
cut‐offs between good‐ and bad‐quality spectra and subsequent matches. As with the 
search algorithms, there are many other validation tools that can be used, the most 
popular being Peptide/Protein Prophet, Percolator and PepDistiller. Using Scaffold 
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and its proprietary algorithms, probability scores were automatically adjusted to be 
equivalent to the more conventional FDR, whereby an FDR of 2% was used to filter out 
the weakest matches.

As stated earlier, one of the primary variables influencing spectral matching to a 
protein sequence is the search database used. For this study, the NCBInr database was 
used, which comprises a non‐redundant list of all annotated proteins made available 
through the web resource NCBI (alternatives include EBI/UniProt and DDJB).

13.3 Results

13.3.1 16S rRNA Identification

The current gold standard for microbial identification against which identification 
methods are benchmarked against is the molecular technique, 16S rRNA sequencing. The 
strains used in this study were characterized using partial 16S rRNA sequencing, 
whereby 800 bases were sequenced, ensuring a base quality of > Q20. This dataset was 
used as the ‘benchmark’ against which other methods such as MALDI‐TOF MS and 
LC‐MS/MS can be compared.

Seventy isolates, representative of clinically relevant Enterobacteriaceae that are 
encountered in most clinical laboratories, were tested. The RDP taxonomic identifica‑
tions, which are listed in Table 13.2, demonstrated great variability between what was 
expected and what was observed, as well as limits of taxonomic resolution. As shown in 
Table 13.2, the RDP identifications to the genus and species level were approximately 
78% and 51%, respectively. The resolution varied greatly, and species identification was 
particularly challenging among the genera Proteus, Yersinia, Enterobacter, Providencia, 
Klebsiella, Escherichia and Shigella. For example, P. rettgeri (NCTC7477) was misidentified 
as P. sp/P. vermicola, E. aerogenes (NCTC9735) could only be resolved to the genera 
Enterobacter or Kluyvera, K. aerogenes (NCTC8172) was identified as K. pneumonia, 
K. aerogenes (NCTC9527) was identified as Raotella sp., E. coli and S. flexnerii was identi‑
fied as Escherichia/Shigella. Strains NCTC11608 (C. hyointestinalis) and NCTC8155 
(C. sakazakii) could not be identified owing to low‐quality sequence products.

13.3.2 MALDI‐TOF MS Identification

MALDI‐TOF MS identification was performed using the Biotyper method (Bruker) as 
described in Section 13.2. Strains were identified using the scores as follows: ≥2 (where 
n ≥ 2) was considered to give a confident species identification; scores in the range 
1.7–2, genus identification; whereas scores ≤1.7 were considered poor and could not 
be identified. On the basis of these criteria, 91.5% of the isolates (64/70) were identified 
to the genus level, whereas 88.6% (62/70) matched the expected species identification. 
The genus Salmonella could not be resolved to the species level and was identi‑
fied as Salmonella sp. only. Similar to the 16S rRNA result, Escherichia coli could 
not  be  resolved to the correct genus or species and was consistently identified as 
Escherichia/Shigella. The resulting spectrum of each isolate was compiled to generate 
a dendrogram (see Figure 13.1). The bacterial strains used to construct the dendro‑
gram are listed in Table 13.2 with their MALDI‐TOF‐MS‐assigned identifications. 
The dendrogram is based on MALDI‐TOF MS spectra and can be used to assign taxo‑
nomic boundaries, for example, distinct species clusters. Strains that fall outside of 
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Table 13.2 Comparison of identifications generated by 16S rRNA (RDP) and MALDI‐TOF (Biotyper). 
No ID = unable to determine genus or species. Bold highlighted = incorrectly identified species when 
compared to the NCTC designation.

Accession Strain name (*type strain) 16S rRNA id (RDP) Biotyper id

NCTC09750 Citrobacter freundii* C. freundii C. freundii
NCTC10006 Enterobacter aerogenes* E. aerogenes E. aerogenes
NCTC10336 Enterobacter aerogenes E. aerogenes E. aerogenes
NCTC10005 Enterobacter cloacae* E. cloacae E. cloacae
NCTC11570 Enterobacter cloacae Enterobacter E. cloacae
NCTC11571 Enterobacter cloacae Enterobacter E. cloacae
NCTC10538 Escherichia coli Escherichia/Shigella Escherichia/Shigella
NCTC09001 Escherichia coli* Escherichia/Shigella Escherichia/Shigella
NCTC10964 Escherichia coli Escherichia/Shigella Escherichia/Shigella
NCTC11151 Escherichia coli Escherichia/Shigella Escherichia/Shigella
NCTC13128 Escherichia coli Escherichia/Shigella Escherichia/Shigella
NCTC8621 Escherichia coli Escherichia/Shigella Escherichia/Shigella
DSM13698 Escherichia fergusonii* Escherichia/Shigella E. fergusonii
NCTC12130 Escherichia vulneris E. vulneris E. vulneris
NCTC05050 Klebsiella pneumonia subsp. 

ozaenae*
K. pneumoniae K. pneumoniae

NCTC1246 Klebsiella pneumonia K. granulomatis/
K. pneumonia

K. pneumoniae

NCTC5056 Klebsiella pneumonia K. granulomatis
/K. pneumonia

K. pneumoniae

NCTC12286 Morganella morganii M. morganii M. morganii
NCTC10374 Proteus mirabilis P. mirabilis P. mirabilis
NCTC11938 Proteus mirabilis* P. mirabilis P. mirabilis
NCTC9559 Proteus mirabilis P. mirabilis P. mirabilis
NCTC10020 Proteus vulgaris P. penneri/P. vulgaris P. vulgaris
NCTC10740 Proteus vulgaris P. vulgaris P. vulgaris
NCTC4175 Proteus vulgaris P. vulgaris/P. hauseri P. vulgaris
NCTC10286 Providencia alcalifaciens* P. alcalifaciens/

P. rustigianii
P. alcalifaciens

NCTC11801 Providencia rettgeri* P. rettgeri/P. vermicola P. rettgeri
NCTC7475 Providencia rettgeri P. rettgeri P. rettgeri
NCTC7477 Providencia rettgeri P. sp./P. vermicola P. rettgeri
NCTC7480 Providencia rettgeri P. rettgeri/P. vermicola P. rettgeri
NCTC11800 Providencia stuartii* P. stuartii P. stuartii
NCTC12254 Providencia stuartii P. stuartii P. stuartii
NCTC12256 Providencia stuartii P. stuartii P. stuartii
NCTC10211 Serratia marcescens S. marcescens S. marcescens



Table 13.2 (Continued)

Accession Strain name (*type strain) 16S rRNA id (RDP) Biotyper id

NCTC1377 Serratia marcescens Serratia S. marcescens
NCTC2446 Serratia marcescens Serratia S. marcescens
NCTC12985 Shigella boydii Escherichia/Shigella S. boydii
NCTC9327 Shigella boydii S. boydii S. boydii
NCTC08192 Shigella flexneri Escherichia/Shigella S. flexneri
DSM5570 Shigella sonnei* Escherichia/Shigella S. sonnei
NCTC10275 Yersinia pseudotuberculosis* Yersinia Y. pseudotuberculosis
NCTC10278 Yersinia pseudotuberculosis Yersinia Y. pseudotuberculosis
NCTC12718 Yersinia pseudotuberculosis Yersinia Y. pseudotuberculosis
NCTC11366 Campylobacter coli* C. coli C. coli
NCTC10842 Campylobacter fetus* C. fetus C. fetus
NCTC11608 Campylobacter hyointestinalis* No ID C. hyointestinalis
NCTC11351 Campylobacter jejuni* C. jejuni C. jejuni
NCTC11541 Campylobacter upsaliensis C. upsaliensis C. upsaliensis
NCTC9735 Enterobacte raerogenes Enterobacter/Kluyvera E. aerogenes
NCTC11434 Enterobacter gergoviae* D. acidovorans E. gergoviae
NCTC11467 Cronobacter sakazakii* C. sakazakii C. sakazakii
NCTC8155 Cronobacter sakazakii No ID C. sakazakii
NCTC9238 Cronobacter sakazakii C. sakazakii C. sakazakii
NCTC12129 Escherichia hermannii E. hermannii E. hermannii
NCTC6578 Hafnia alvei H. alvei H. alvei
NCTC8105 Hafnia alvei* H. alvei H. alvei
NCTC8535 Hafnia alvei H. alvei H. alvei
NCTC8172 Klebsiella aerogenes K. pneumoniae K. aerogenes
NCTC9499 Klebsiella aerogenes Klebsiella. sp. K. aerogenes
NCTC9527 Klebsiella aerogenes Raotella sp. K. aerogenes
NCTC5050 Klebsiella pneumonia* K. pneumonia K. pneumonia
NCTC9633 Klebsiella pneumonia* K. pneumonia K. pneumonia
NCTC12287 Morganella morganii M. morganii M. morganii
NCTC235 Morganella morganii* M. morganii M. morganii
NCTC11972 Proteus penneri P. penneri/P. vulgaris P. penneri
NCTC12737 Proteus penneri P. penneri/P. vulgaris P. penneri
NCTC04444 Salmonella enterica subsp. 

enterica*
S. enterica Salmonella sp.

NCTC00074 Salmonella enterica subsp. 
Enterica

S. enterica Salmonella sp.

NCTC10460 Yersinia enterolitica Y. enterolitica Y. enterolitica
NCTC10938 Yersinia enterolitica Y. enterolitica Y. enterolitica
NCTC11174 Yersinia enterolitica Y. enterolitica Y. enterolitica



P. alcalifaciens NCTC
Y. enterocolitica NCTC
Y. enterocolitica NCTC
Y. enterocolitica NCTC 10938
C. sakazakii NCTC 8155
C. sakazakii NCTC 11467
E. hermanii 12129

S. marcescens NCTC 2446
S. marcescens NCTC 1377
S. marcescens NCTC 10211

H. alvei NCTC 8535
H. alvei NCTC 6578
H. alvei NCTC 8105
C. sakazakii NCTC 9238
K. aerogenes NCTC 9499
K. pneumoniae NCTC 5051
K. pneumoniae NCTC 9633
K. pneumoniae NCTC 5056
K. pneumoniae NCTC 5050
K. pneumoniae NCTC 5052
K. pneumoniae NCTC 12463
K. aerogenes NCTC 8172
K. aerogenes NCTC 9527
E. cloacea NCTC 11571
E. cloacea NCTC 11570
S. enterica NCTC74
S. enterica NCTC4444
S. enterica NCTC4777
S. enterica NCTC4776
S. enterica NCTC12484
S. enterica NCTC12023
E. gergoviae 11434
E. cloacea NCTC 10005
E. aerogenes NCTC9735
E. aerogenes NCTC10336
E. aerogenes NCTC10006
P. mirabilis NCTC9559
P. mirabilis NCTC10374
P. mirabilis NCTC11938
E. vulneris NCTC12130
C. freundii NCTC9750
P. vulgaris NCTC10740
P. vulgaris NCTC4175
P. penneri NCTC11972
P. vulgaris NCTC10020
P. penneri NCTC12737
P. stuartii NCTC12254
P. stuartii NCTC12256
P. stuartii NCTC11800
P. rettgeri NCTC7475
M. morganii NCTC12286
M. morganii NCTC12287
M. morganii NCTC235
P. rettgeri NCTC11801
P. rettgeri NCTC7480
P. rettgeri NCTC7477
Y. pseudotuberculosis NCTC12718
Y. pseudotuberculosis
Y. pseudotuberculosis
C. jejuni NCTC11351

C. coli NCTC11366
C. upsaliensis NCTC11541
C. hyointestinalis NCTC11608
S. sonnei DSM5570
E. coli NCTC 8621
S. flexneri NCTC8192
S. flexneri NCTC164624
S. flexneri NCTC164182
S. boydii NCTC164664
S. boydii NCTC12985
E. fergusonii DSM13698
E. coli NCTC9001
E. coli NCTC13128
E. coli NCTC10538
S. boydii NCTC9327

S. boydii NCTC154962
E. coli NCTC10964

C. fetus NCTC10842
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Figure 13.1 Dendrogram describing MALDI spectra similarity between isolates in the Enterobacteriaceae database.
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these distinct species clusters may be indicative of species outliers, highlighting possible 
misidentifications or ill‐defined species clusters. The dendrogram (Figure 13.1) shows 
that whereas many species were grouped together, for example, Klebsiella sp., Hafnia 
sp. and Salmonella sp., species of Shigella, Escherichia and Enterobacter were present in 
different clusters across the dendrogram.

13.4 Candidate Biomarker Discovery: Shotgun Sampling 
of Enterobacteriaceae Proteomes by GeLC‐MS/MS

To generate the GeLC‐MS/MS database, a total of 32 species (70 strains) designated ‘D’ in 
Table 13.2 were analyzed. In all, ~1 × 106 non‐redundant peptides were identified from the 
70 strains investigated in this study, with an average of approximately 600 proteins (groups) 
per strain. Following the established marker selection methods (Al‐Shahib et  al., 2010; 
Misra et al., 2012), this list was filtered to remove false positives, that is, peptide sequences 
that were not specific for a designated species. The resultant database comprised peptides 
from a non‐redundant list of 20,678 protein sequences, from all the strains in this study. 
When investigating candidate genus/species markers, it is important to be able to character‑
ize as much of the proteome as possible, irrespective of subcellular location or function. 
Analysis of parent protein functions and subcellular locations demonstrate that the identi‑
fied proteins varied greatly in relation to function and subcellular location (Figures 13.2 
and 13.3). The majority of proteins were from the cytoplasm (61%), but many proteins were 
characterized as from the cytoplasmic membrane (19.1%), outer membrane (1.8%), periplasm 
(2.8%) or extracellular (1.6%) subcellular locations. The remainder could not be localized to 
any one subcellular location and were designated unknown.

13.4.1 Database Optimization and Testing

A test panel of strains was created, whereby following the GeLC‐MS/MS methodology, 
eight isolates (Table 13.1, labelled ‘T’) were analyzed. These were strains from Escherichia 
coli, Citrobacter freundii, Enterobacter cloacae, Salmonella enterica, Morganella morga-
nii, Yersinia pseudotuberculosis and Proteus vulgaris. All of the ‘T’ strains were reliably 
identified; however, some of the database matches appeared to be false positives, that is, 
database markers matching incorrect species. On the basis of the ‘T’ strains, the number 
of known false positives ranged from 0.29% (7/2424 markers) to 7.7% (955/12447 markers) 
per strain. Removal of known false positive markers and re‐searching the ‘T’ strains 
against the new optimized database (DB‐FP) resulted in 100% correct identifications and 
0% FDR, thus creating a more reliable database of markers (Table 13.3). To challenge 
the refined database DB‐FP, a further seven E. coli isolates, including clinical isolates 
H112160280, H112160540, H112160541, E99518, EDL933, H10302 and NCTC12900 
were analyzed. All seven were identified as E. coli with an FDR of 0% (Table 13.3). The 
number of matches ranged from 30 to 52 DB‐FP matches, with a mean of 42 matches.

13.4.2 Demonstrating Capability to Delineate Pathotypes  
using E. coli 0104:H4 as an Exemplar

Using the proteomics approach described in this study, a wide range of proteins were identi‑
fied, some of which could be used as markers for bacterial identification. To determine 
whether subspecies resolution, specifically E. coli pathovars, could be achieved using the 
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nano‐LC‐MS/MS described in this study, clinical and reference isolates of E. coli 
were selected. Seven strains, including three isolates from the 2011 outbreak in Germany 
(Brzuszkiewicz et al., 2011; Mellmann et al., 2011; Rasko et al., 2011) designated H112160280, 
H112160540 and H112160541, as well as four strains representing well‐characterized 
pathovars, E99518 (EAEC), EDL933 (EHEC), H10302 (EHEC) and NCTC12900 (non‐
toxigenic, shiga‐like toxin (SLT) negative, EHEC), were investigated. All of these isolates, as 
previously described, could be identified to the species level with 0% FDR.
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Figure 13.2 The distribution of COG functional categories, for all parent proteins, in the 
Enterobacteriaceae database, where: J = translation, ribosomal structure and biogenesis, A = RNA 
processing and modification, K = transcription, L = replication, recombination and repair, D = cell cycle 
control, cell division and chromosome partitioning, V = defence mechanisms, T = signal transduction 
mechanisms, M = cell wall/membrane, N = cell motility, W = extracellular structures, U = intracellular 
trafficking, secretion and vesicular transport, O = post‐translational modifications, C = energy 
production and conversion, G = carbohydrate transport and metabolism, E = amino acid transport and 
metabolism, F = nucleotide transport and metabolism, H = coenzyme transport and metabolism, 
I = lipid transport and metabolism, P = inorganic ion transport and metabolism, Q = secondary 
metabolites biosynthesis, transport and catabolism and RS = poorly characterized/uncharacterized.
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Figure 13.3 Percentage distribution of predicted subcellular locations for all parent proteins in the 
Enterobacteriaceae database (blue) versus E. coli K12 MG1655 (red).

Table 13.3 Comparison of identification methods: 16S rRNA, Biotyper and the DB‐FP database. Poorly 
resolved identifications are in bold.

Accession:Strain name 16S rRNA id (RDP) Biotyper id DB‐FP

NCTC10005: E. cloacae E. cloacae E. cloacae E. cloacae
NCTC9001: E. coli Escherichia/Shigella Escherichia/Shigella E. coli
H112160280: E.coli Escherichia/Shigella Escherichia/Shigella E. coli
H112160540: E.coli Escherichia/Shigella Escherichia/Shigella E. coli
H112160541: E.coli Escherichia/Shigella Escherichia/Shigella E. coli
E99518: E. coli Escherichia/Shigella Escherichia/Shigella E. coli
EDL933: E. coli Escherichia/Shigella Escherichia/Shigella E. coli
H10302: E. coli Escherichia/Shigella Escherichia/Shigella E. coli
NCTC12900: E. coli Escherichia/Shigella Escherichia/Shigella E. coli
NCTC235: M. morganii M. morganii M. morganii M. morganii
NCTC10020: P. vulgaris P. penneri/P. vulgaris P. vulgaris P. vulgaris
NCTC11801: P. rettgeri P. rettgeri/P. vermicola P. rettgeri P. rettgeri
NCTC12985: S. boydii Escherichia/Shigella S. boydii S. boydii
NCTC10275: Y. 
pseudotuberculsis

Yersinia Y. pseudotuberculosis Y. pseudotuberculosis

NCTC04444: S. enterica 
subsp. Enterica

S. enterica Salmonella sp. S. enterica
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Proteomic characterization of these isolates resulted in the identification of approxi‑
mately 2000 proteins, ≥1 peptide (n ≥ 2 technical replicates) and FDR <1%. Comparing 
the list to the VFDB compilation of virulence factors (VFs), virulence‐related proteins 
were selected (Table 13.4). A total of 71 VFs were identified including SLT, serine 
proteases, intimin, aggregative proteins and resistance‐associated proteins (antibiotic 
and heavy metal). Virulence‐related proteins according to pathotype (Table 13.4), that 
is, EHEC, EAEC, EHEC and EAEC, in addition to outbreak (OB)‐specific VFs, revealed 

Table 13.4 Clustering of protein identifications identified by each sample cohort, where 
outbreak = OB strain, EHEC and EAEC represent OB strain‐related pathovars. Numbers = unique 
peptide identifications per parent protein (white background = 0, pink = 1 and red = ≥ 2 peptides 
identified per parent protein).

Outbreak 
strains’ prefix 
H112160 EAEC EHEC

Identified proteins 280 540 541 E99518 EDL933 H10302 NCTC12900

Per‐activated serine protease 
autotransporter enterotoxin EspC

77 81 73 49 1 1 0

Uncharacterized membrane 
lipoprotein clustered with Tellurite 
resistance proteins TehA/TehB

54 39 44 26 0 1 1

Tellurium resistance protein TerD 24 24 20 11 9 7 4
Serine protease pic 
autotransporter

24 24 23 18 12 12 13

Outer membrane stress sensor 
protease DegQ, serine protease

22 21 20 10 5 7 8

Tellurium resistance protein TerD 16 13 13 13 6 5 5
21 kDa hemolysin precursor 16 15 9 14 10 13 0
Tellurium resistance protein 15 7 7 10 9 7 9
P pilus assembly/Cpx signalling 
pathway, periplasmic inhibitor/ 
zinc‐ resistance‐associated protein

14 11 10 10 0 1 0

Tellurium resistance protein TerA 12 5 5 9 5 4 3
Tellurite resistance protein TehB 11 11 8 7 6 5 6
Membrane fusion protein of RND 
family multidrug efflux pump

11 9 8 7 3 4 5

Type III restriction enzyme 
domain protein

10 4 5 4 0 1 3

ABC‐type multidrug transport 
system, ATPase component

7 10 8 4 3 2 3

Lactam utilization protein LamB 4 7 4 6 0 2 0
Beta‐lactamase 3 1 1 1 2 2 2
Polymyxin resistance protein 3 2 0 1 2 1 1
Polymyxin resistance protein PmrJ 0 13 14 11 6 7 8

Sh
ar

ed



Outer membrane usher protein 0 0 0 11 0 0 0
Chaperone protein Agg3D 0 0 0 2 0 0 0
Enterohemolysin 0 0 0 2 0 0 0
StcE 0 0 0 0 12 9 16
Translocatedintimin receptor Tir 0 0 0 0 9 0 12
Intimin (fragment) 0 0 0 0 7 0 0
Outer membrane usher protein FimD 0 0 0 0 4 4 0
Type III restriction enzyme 0 0 0 0 3 0 14
Fimbrial protein 0 0 0 0 3 1 4
Tir chaperone 0 0 0 0 3 1 1
Non‐LEE‐encoded type III 
secreted effector

0 0 0 0 2 0 4

EspM3 protein 0 0 0 0 2 1 2
SLT 1A subunit (fragment) 0 0 0 0 2 2 0
EspA 0 0 0 0 2 2 0
EspB 0 0 0 0 2 1 0
Beta‐lactamase 0 0 0 0 1 1 4
Non‐LEE‐encoded type III 
secreted effector

0 0 0 0 1 1 2

Porcine attaching‐effacing 
associated protein

0 0 0 0 0 0 0

EspD 0 0 0 0 0 18 0
Hemolysin 0 0 0 0 0 0 0
Non‐LEE‐encoded type III 
secreted effector

0 0 0 0 0 0 2

Outer membrane usher protein AggC 27 13 17 0 0 0 0
Beta‐lactamase 21 22 20 0 0 0 0
IncI1 plasmid pilus assembly 
protein PilP

5 3 3 0 0 0 0

Mercuric resistance operon 
regulatory protein

3 2 2 0 0 0 0

Tellurite resistance protein TerB 2 1 1 0 0 0 0
Beta‐lactamase (fragment) 2 1 0 0 0 0 0
AatC ATB binding protein of ABC 
transporter

2 3 1 0 0 0 0

Chaperone protein AggD precursor 2 0 0 0 0 0 0
Sulfonamide resistance protein 
(Fragment)

1 2 0 0 0 0 0

Chaperone protein FimC 0 1 0 0 0 0 0
Beta‐lactamase 35 24 20 0 0 0 0

EA
 E

C
EH

 E
C

OB

(Continued)

Table 13.4 (Continued)

Outbreak 
strains’ prefix 
H112160 EAEC EHEC

Identified proteins 280 540 541 E99518 EDL933 H10302 NCTC12900
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pathovar‐specific groups. Eighteen VFs were present in all pathotypes, three were 
EAEC specific, 18 VFs were EHEC specific, the OB strains shared 14 with EAEC, four 
with EHEC and 11 were OB specific.

To further assess the resolution and accuracy for the identification of clinically rele‑
vant targets, the SLT was selected for analyses. The SLTs produced by some E. coli 
strains can lead to the severe, life‐threatening disease haemolytic‐uremic syndrome 
(HUS), which is characteristic of the pathotype EHEC (Kaper et al., 2004). To determine 
whether the approaches described in this study can be used to differentiate E. coli strains 
on the basis of the presence or absence of SLTs, the SLT‐negative strain NCTC12900 and 
the SLT‐positive strains EDL933 and H10302 were analyzed. We were able to correctly 

Type III restriction‐modification 
enzyme helicase subunit

20 18 12 10 0 0

14 kDa aggregative adherence 
fimbriae I protein

17 11 11 1 0 0 0

Zinc resistance‐associated 17 5 4 7 0 0 0
Beta‐lactamase class C and other 
penicillin‐binding proteins

16 8 9 11 0 0 0

Multiple antibiotic resistance 
protein MarR

12 11 12 4 0 0 0

AatB 12 10 11 10 0 0 0
Arsenical resistance operon repressor 6 0 2 1 0 0 0
Chaperone protein AggD 4 4 2 4 0 0 0
Tellurium resistance protein TerX 3 2 3 4 0 0 0
putative phage inhibition, colicin 
resistance and tellurite resistance 
protein

2 1 1 3 0 0 0

Copper resistance protein C 2 1 0 1 0 0 0
Type III restriction‐modification 
system methylation subunit

2 2 0 4 0 0 0

Putative tellurium resistance protein 2 1 1 1 0 0 0
Metal‐dependent hydrolases of the 
beta‐lactamase superfamily I; 
PhnP protein

0 1 1 1 0 0 0

Per‐activated serine protease 
autotransporter enterotoxin EspC

22 36 36 0 0 0 1

SLT II subunit A precursor 6 5 6 0 1 2 0
SLT II subunit B precursor 3 3 4 0 1 1 0
Chaperone FimC 0 2 1 0 1 0 1

O
B 

&
 E

A
EC

O
B 

&
 E

H
EC

Table 13.4 (Continued)

Outbreak 
strains’ prefix 
H112160 EAEC EHEC

Identified proteins 280 540 541 E99518 EDL933 H10302 NCTC12900
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resolve the strains into SLT‐positive and SLT‐negative groups, whereby zero SLT‐
associated peptides were identified for strain NCTC12900, whereas four SLT‐associated 
peptides were identified for strain EDL933 and five for H10302 (Table 13.4).

13.5 Discussion

Identification of isolates using partial 16S rRNA sequencing and MALDI‐TOF MS varied 
in identification coverage. Using 16S rRNA sequencing, 78% of isolates resolved to 
the expected genus level and 51% to species identification. Over the last decade, 
most clinical laboratories have utilized 16S rRNA as its benchmark for species identifi‑
cation, successfully employing the PCR products used here for clinical diagnostics. 
However, in accordance with current investigations (Charnot‐Katsikas et  al., 2014; 
Schulthess et al., 2014), the present study reports a similar trend of greater accuracy of 
species identification using MALDI‐TOF MS and places this technology at the fore‑
front of microbial diagnostics. Furthermore, its speed of analysis, significantly lower 
cost, negligible sample preparation, minimal biomass required and automation to result 
compared to 16S rRNA is transforming the workflow in clinical laboratories.

One reason for the improved accuracy is that MALDI‐TOF databases are well curated 
and rigorously controlled, particularly those provided by the vendors, and represent 
several thousands of spectra and multiple profiles for each species (see Chapter 2). By 
contrast, 16S rRNA databases, particularly public repositories such as NCBI, can be prone 
to error, in terms of sequence quality and annotation. To compensate, alternative specialist 
16S rRNA databases have been implemented which are well curated and present 
sequence quality information, for example, RDP, SILVA and GreenGenes (Cole et al., 2014; 
DeSantis et al., 2006; Yilmaz et al., 2014). Because MALDI‐TOF MS largely targets the 
stable ribosomal complement of the cell’s proteins and are in high copy number, most 
clinical samples can be analyzed directly without the need for prior protein extraction.

However, some taxa where 16S rRNA cannot delineate species also remain unresolved 
using MALDI‐TOF MS, and higher‐resolution techniques are required (Table  13.2 and 
Figure  13.1). In addition to low subspecies resolution, the current MALDI‐TOF MS 
approaches and 16S rRNA identification approaches do not provide information regarding 
the pathogenic potential of a strain. As a result, additional tests are often needed to fill this 
gap, relying on a battery of molecular and phenotypic assays to supplement a taxonomic 
identification to better characterize an isolate. Characterization of pathogens is essential, 
that is, information relating to VFs such as toxin production or antimicrobial resistance. This 
in parallel with taxonomic identification dictates prognosis. Proteomics has the potential to 
consolidate many tests into a single assay, to identify an organism and characterize VFs, in 
addition to revealing the subtle mechanistic changes associated with the phenotype.

High‐resolution mass spectrometers were used to perform GeLC‐MS/MS analysis of 
the proteome of strains listed in Table 13.1. Protein mixtures were fractionated by SDS‐
PAGE followed by protein digestion using trypsin for nano‐LC‐MS/MS. Accurate 
determination of the peptide mass from MS1 spectra and amino acid sequence infor‑
mation from MS/MS spectra is used to better describe the peptide and thus the protein, 
enabling more accurate annotation of the proteome. Biases towards a specific subcellular 
location or functional category were shown to be minimal, demonstrating the potential 
to identify a wide range of proteins. As shown in Figures 13.2 and 13.3, this approach is 
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capable of identifying a much greater number of functional categories and is not limited 
to one subcellular location.

In this study, high‐resolution MS platforms were used to profile and determine a list of 
potential species‐specific markers, with specific emphasis on E. coli. Analysis of the test 
strains, using the DB‐FP, demonstrated 100% correct identification (0% FDR) of the test 
E. coli strains (Table 13.4). Mirroring WGS, whole proteome profiling goes beyond the 
protein mass fingerprint employed by current MALDI‐TOF MS identification systems. 
Tandem MS enables characterization of protein sequences, as well as increasing proteome 
coverage. The genome sequence of isolates from the E. coli serovar O104:H4 from an 
outbreak in Germany, 2011, were sequenced in depth using various platforms and anno‑
tated (Brzuszkiewicz et al., 2011; Mellmann et al., 2011; Rasko et al., 2011). Comparative 
genomic studies highlighted VFs indicative of the outbreak strain, for example, serine 
proteases, SLT, heavy metal and antimicrobial resistance features (Loman et al., 2012). 
Following the proteomic workflow in this study, we were able to corroborate it with 
comparative genomic analyses, identifying the same outbreak‐specific features. In paral‑
lel, we characterized pathogenic strains of E. coli to the similar functional resolution as 
WGS, resolving pathovar‐specific features, enabling subspecies resolution (pathotyping) 
of pathogenic E. coli. Although protein identifications varied between strains, proteins 
expected to be present in the outbreaks strains, EAEC and EHEC groups, were observed. 
The strain variations (Table 13.4) highlight the need to prioritize proteins/peptides which 
are conserved across each group for identification purposes, but for strain profiling 
demonstrates the need for further work to better characterize protein expression in these 
individual strains. In this study, the LC‐MS/MS analyses took approximately 13 h per 
strain, which is comparable to current sequencing run times of 4 h to11 days. LC‐MS/MS 
can be optimized to be gel free, greatly reducing the overall analysis time from 13 h to < 4 h 
per strain while maintaining similar protein numbers (Nagaraj et al., 2011).

It is clear that proteomic characterization of microbial pathogens is comprehensive 
and with optimization can be performed in similar run times as WGS. This presents an 
exciting opportunity to integrate the proteome with the genome, which is ushering in a 
new field of proteogenomics for high‐resolution characterizing of human pathogens. 
Confirming that the protein is present, expressed and mapped to a predicted gene 
provides key information on expression of virulence. Importantly, it also demonstrates 
that proteomics is able to mirror genomics and characterize outbreak strains in real 
time and highlight virulence‐associated proteins. Protein quantitation, such as label‐free 
approaches, can be performed and introduces a new dynamic to characterizing out‑
break strains in real time, raising the possibility of a tandem taxonomic identification 
and a quantifiable phenotypic assay for the characterization of bacteria.

The iterative improvements to the database demonstrate the importance of optimization 
to ensure the greatest likelihood of identifying taxonomic and VF markers. Utilizing high‐
throughput genomic data integrated with proteomic datasets enabled a novel method to 
optimize proteomic marker databases. For future database optimization, it would be prudent 
to follow the MALDI‐TOF MS approach that encompasses more replicates and more clinical 
strains to create MS/MS‐specific curated database for identification and strain characteriza‑
tion. Although a limited dataset, bacterial identification was resolved to the subspecies of 
pathogenic E. coli, specifically ‘pathotyping’, and the proteomic datasets described in this 
study corroborate with the genomic studies performed during the outbreak (Brzuszkiewicz 
et al., 2011; Mellmann et al., 2011; Rasko et al., 2011), but with the distinct advantage of 
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characterizing expressed features related to the observed phenotype. This greatly reduces 
the caveats associated with phenotypic predictions based solely on the genome sequence.

Part B

13.6 Highly Pathogenic Biothreat Agents

In 2001, the dispersal of letters spiked with B. anthracis spores through the US mail 
system highlighted the pressing need for rapid, robust and highly sensitive assays 
for the detection of high‐risk pathogens such as B. anthracis, Y. pestis, F. tularensis, 
B. pseudomallei, B. mallei and the toxin‐producing organism C. botulinum. These organ‑
isms are among the most dangerous and are classified as potential biological weapons 
due to their high mortality rate, impact on public health and ease of dissemination.

For example, F. tularensis poses a serious concern as a biological weapon mainly 
because it is one of the most infectious pathogenic bacteria known. Inhalation of as 
little as 10 organisms is sufficient to cause serious illness and death. An aerosol release 
of F. tularensis in a populated area would be expected to result in the abrupt onset of 
large numbers of cases of acute, non‐specific respiratory febrile illness which would 
begin 3 to 5 days after exposure. In 1970, the World Health Organization (WHO) expert 
committee reported that if 50 kg of virulent F. tularensis was dispersed as an aerosol 
over a metropolitan area with a population of 5 million, there would be an estimated 
250,000 incapacitating casualties, including 19,000 deaths.

It is important that suitable systems are in place for monitoring and detecting the 
deliberate release of high‐risk pathogens (e.g. contaminated water or food) and for early 
detection in exposed individuals. At present, many assays (mainly PCR based) exist, but 
these are often highly specific to a particular organism rather than targeting a range of 
biothreat agents. In addition, many of these high‐risk pathogens share close genetic rela‑
tionships with other bacteria. For example, B. anthracis is closely related to B. thuringiensis 
(an insect pathogen), and it is difficult to clearly distinguish between them.

A good detection system requires specific targets for various organisms of interest 
that are derived from stable markers with specificity to multiple strains and the ability 
to distinguish them from closely related species.

A common feature of biothreat agents is that they contain proteins/peptides; even the 
potent neurotoxin (BoNT) produced by C. botulinum is a protein. Proteomics coupled with 
MS has emerged as a rapid technique for sensitive characterization of peptides and proteins 
in complex mixtures. Proteomics coupled with MS provides a robust strategy for biomarker 
discovery by allowing a more diverse range of samples to be tested and does not necessarily 
require microbial samples to be cultured. It enables a large proportion of the proteome to 
be screened, from which unique peptides (biomarkers) can be identified for the species of 
interest based on the presence or absence of the peptide in closely related organisms. 
Due to its sensitivity, MS‐based methods have been demonstrated to detect organisms 
in a complex background, needing only 104 cells to be present, translating to attomoles of 
marker material. Although MS‐based proteomic analyses enable a large proportion of the 
proteome to be screened, it is dependent on expression of the protein. Unique biomarkers 
may appear specific to a particular organism due to their absence in closely related strains, 
but they may be encoded on the genome at the DNA and not expressed.
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Targeted nanoLC‐MS/MS methods to rapidly quantify peptide/protein markers have 
emerged as a valuable tool to bridge the gap between biomarker discovery and verification. 
The specificity and sensitivity of this approach have been enhanced by the introduction 
of stable isotope‐labelled peptide internal standards to compensate for variation in 
sample preparation, such as recovery and the influence of differential matrix effects. 
Because fragmentation patterns and retention times of the native tryptic peptide are 
identical to its isotope‐labelled counterpart, and the absolute amount of internal standard 
is known, not only can the selected peptides be identified from protein extracts, but also 
their precise abundances.

Although MS‐based proteomic analyses enable a large proportion of the proteome to be 
screened, the resultant markers are restricted to those that are expressed and of sufficient 
abundance. Complementary molecular approaches can be applied utilizing whole genome 
sequence data and direct sequencing of specific targets. The integration of both method‑
ologies for marker discovery improves the robustness of identifying and characterizing 
candidate biomarkers, ensuring species specificity independent of gene expression.

Bioinformatic analysis aided by scripts helps deal with the large amount of data gener‑
ated by MS and for comparisons between large numbers of samples. In addition, the vast 
amount of genome sequence data now available means that any potential biomarker can 
be validated by in silico analysis and compared to the genome sequences of the species 
of interest as well as closely related species to ensure that the predicted marker is unique.

Due to the impact of genetic diversity, it is essential to provide a second, confirmatory 
identification for the detection of a high‐risk pathogen within a sample. Complementation 
with molecular assays such as PCR and direct sequencing of the target region can 
provide the confirmation needed to confidently determine the presence of a particular 
organism with stable genetic markers, providing a more robust target for molecular assays.

Taking each high‐priority biothreat agent in turn, B. anthracis, Y. pestis, F. tuarensis, 
C. botulinum, B. pseudomallei and B. mallei each had to be grown in conditions favourable 
for high yields of both genetic and protein material. Therefore, a good understanding of 
the organism and its taxonomy is needed to ensure (1) successful growth of the organ‑
ism and that (2) representative strains are chosen which enable discovery and validation 
of the range of markers specific to the species.
Please note that these organisms are highly pathogenic, and suitable specialist facilities 
are needed to grow and handle them safely.

13.7 Bacillus anthracis

The genus Bacillus comprises a heterogeneous collection of gram‐positive, rod‐shaped 
bacteria that share the ability to form endospores under aerobic or facultative anaerobic 
conditions. Bacillus anthracis is an endospore‐forming, toxin‐producing bacterium and is 
the causative agent of anthrax, an acute and often fatal disease in humans and other mammals. 
Its spore‐forming capability and highly pathogenic nature, particularly inhalation anthrax, 
has made it one of the most likely biological warfare agents. Although there are phenotypic 
assays which can assist in differentiating B. anthracis from other bacilli, due to the high 
genetic relatedness with other species, mainly species collectively known as the B. cereus 
group, it has proved a challenge to do so rapidly and consistently (Misra et al., 2012).
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13.7.1 Methods: Strain Panel

Eight Bacillus anthracis strains (NCTC 109, NCTC 1328, NCTC 2620, NCTC 5444, 
NCTC 7752, NCTC 7753, NCTC 8234 and NCTC 10340) and seven reference strains 
representing the B. cereus group of species (B. cereus NCTC 11143, NCTC 11145, 
ATCC 10987; B. thuringiensis DSM 6029, DSM 2046; B. weihenstephanensis DSM 
11821 and B. mycoides NCTC 7586) were used.

13.7.2 Whole Cell Protein Extraction

All strains were cultured on nutrient agar plates overnight at 37 °C for 18 h. After this, 
the cells were suspended in 10 ml of nutrient broth to an OD600 of approximately 1.0. 
15 μl of this was used to inoculate 30 ml of broth in a sterile 50 ml centrifuge tube. 
The tubes containing broth cultures were sealed and incubated with shaking at 
150 rpm for 18 h at room temperature.

30 ml of culture was centrifuged at 12,000 g for 20 min at 4 °C to harvest cells. Broth 
supernatant was removed by repeated aspiration with a 5 ml pipette, and the pellet and 
remaining broth were transferred to a 1.5 ml microcentrifuge tube. The cells within the 
microcentrifuge tubes were centrifuged at 12,000 g for 10 min at 4 °C to re‐pellet cells. 
Excess broth was removed by aspiration with a 1 ml pipette. 1 ml of 10 mM Tris‐HCl, 
pH 8.0, containing 1 mM EDTA and 1 mM PMSF, was added to the microcentrifuge 
tube, and the cells were washed using a 1 ml pipette. The cells were pelleted by centrifu‑
gation at 12,000 g for 10 min at 4 °C.

The washed, pelleted cells were re‐suspended in a lysis solution comprising 500 μl 
of sucrose buffer (0.5 M sucrose, 20 mM maleic acid/KOH, pH 6.5, 20 mM MgCl2) 
containing 6 μg/μl lysozyme and 1 mM PMSF. Enzymatic lysis was done for 1 h at 37 °C. 
After lysis, the resultant cell mixture was pelleted and washed as follows: centrifugation 
at 3000 g for 10 min at 4 °C and one wash in 1 ml of 0.5 M sucrose, 20 mM maleic acid/
KOH, pH 6.5, 20 mM MgCl2 and 1 mM PMSF. The washed cell mixture was collected by 
centrifugation at 3000 g for 10 min at 4 °C. The resultant pellet was re‐suspended in 
100 μl of a solubilization cocktail of 30 mM Tris‐Cl pH 8.5, 7 M Urea, 2 M Thiourea, 
4% CHAPS and 40 mM DTT (60 mg/ml) and left at room temperature for 30 min. The 
solubilized suspension was clarified by centrifugation at 21,000 g for 30 min at 21 °C, 
and the supernatant was filtered through 0.2 um anopore vectra spin filters at 8000 g. 
The supernatant containing cellular proteins (‘protein extracts’) was removed and 
placed in 1.5 ml tubes and stored at −20 °C.

As highlighted above, B. anthracis is pathogenic and before the extracts could be 
safely handled outside of specialist containment laboratory (C.L.3), they had to 
be proved to be ‘non‐viable’.

Viability studies were performed on B. anthracis extracts. 15 μl of protein extract 
was re‐suspended in 15 ml nutrient broth and on nutrient agar and incubated at 
37 °C for 7 days. 15 μl of broth was plated onto nutrient agar and incubated at 37 °C 
for 48 h. All plates and broths were examined for growth that resembles that of 
B. anthracis. Only samples that show negative growth were transferred out of the 
C.L.3 laboratory.
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13.7.3 One‐Dimensional SDS‐PAGE and In‐Gel Digestion of Bacterial Proteins

Note: Four biological replicates were prepared for 1D SDS‐PAGE analysis.
The protein concentration for each extract was determined by the Bradford assay 

using BSA as a standard.
On the basis of the Bradford quantitation, 10 μg of total protein was taken from each 

extract and separated on a 10% Bis‐Tris gel using 2‐(N‐morpholino)‐ethanesulfonic 
acid or 3‐(N‐morpholino)‐propanesulfonic acid SDS running buffer in accordance with 
the manufacturer’s instructions and stained with colloidal Coomassie. Each gel lane was 
cut into 10 equal pieces and destained with 50% (w/v) methanol for 3 × 20 min, dehydrated 
using 100% acetonitrile for 10 min and dried for 5 min. Gel pieces were rehydrated and 
proteins reduced by addition of 10 mM DTT and subsequently alkylated by addition 
of 55 mM iodoacetamide. In‐gel digestion of proteins was performed with 10 ng μl−1 
porcine trypsin overnight at 37 °C. Tryptic peptides were extracted with 2% acetonitrile/0.1% 
trifluoroacetic acid (TFA) for 1 h with gentle agitation. The resultant peptide mixture 
was stored at −80 °C until needed.

13.7.4 In‐Solution Protein Digestion Directly from Protein Extracts

By Bradford quantitation, 20 μg of total protein was precipitated with 100% ice‐cold 
acetone and kept overnight at −20 °C. The precipitates were pelleted by centrifugation 
at 21,000 g at 4 °C, washed three times with ice‐cold 90% methanol for 5 min, and 
re‐pelleted at 21,000 g at 4 °C. The washed pellets were re‐suspended in 50% TFA/50% 
50 mM ammonium bicarbonate containing 10 mM DTT and incubated at 60 °C for 
30 min. Each washed pellet was treated with 55 mM iodoacetamide for 45 min at room 
temperature in the dark. The resultant protein mixtures were diluted fivefold with 
25 mM ammonium bicarbonate and digested with sequence grade‐modified trypsin 
at a sample‐to‐protease ratio of 50:1 overnight at 37 °C. Proteolysis was quenched by 
addition of TFA to a final concentration of 0.1%.

Note: For internal standardization and validation of these procedures, 5 ng of horse 
myoglobin was spiked into each sample directly after quantitation.

13.7.5 1‐D Nanoflow LC‐MS/MS, Data‐Dependent and Targeted MS Analysis

Peptides were separated online by RP HPLC on an Ultimate 3000 (Dionex, UK). All LC‐
MS/MS experiments were performed on a Thermo Finnigan LTQ Orbitrap equipped with 
a nanoelectrospray ion source and nano‐LC pico‐tip (20 um ID 10 um tip diameter).

Peptides were loaded and desalted on a RP trap column (C18, 300 um i.d. × 3 mm) 
with a flow rate of 25 μl min−1 using 2% acetonitrile, 0.1% formic acid normal phase 
solvent. Analytical separation was achieved on a RP nano‐column C18, 75 um i.d. × 15 cm 
at a flow rate of 0.3 μl min−1 and mobile phase gradient of 2%–30% acetonitrile for 
60 min and 30%–50% for a further 30 min. Data was acquired in data‐dependent mode 
using the Thermo Finnigan Xcalibur software (version 2.0.6). The precursor ion scan 
MS spectra (m/z 450‐1600) were acquired in the Orbitrap with a resolution R = 60,000 
at m/z 400, with the number of accumulated ions being 5 × 105. The six most intense 
ions were isolated and fragmented and detected in the linear ion trap (number of 
accumulated ions: 3 × 104). Use of data‐dependent LC‐MS/MS methodology dynamic 
exclusion was set to a duration of 30 s. Initially, angiotensin was spiked into each 
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tryptic digest, providing an internal standard for the analytical platform. A peptide 
mixture consisting of five tryptically digested yeast proteins was used to ensure that 
sampling efficiency was reproducible over the course of the entire analysis. The lock 
mass option was enabled for accurate mass measurements in MS mode. Three poly‑
dimethylcyclosiloxane ions generated in the electrospray process from ambient air 
(protonated (Si(CH3)2O)6, m/z 445.120025, were used for internal recalibration in 
real time (providing mass stability of less than 2 ppm throughout the entire analysis 
without the need to stop and recalibrate the instrument midway). Only mass tags, 
produced using Thermo Electron Protein calculator software, were generated for 
peptides of interest. These peptide sequences were entered into the program, and 
masses corresponding to their 2+ and 3+ charge states were calculated, accounting 
for variable oxidation of methionine and deamidation of asparagine and static modi‑
fication of cysteine by carboxyamidomethylation.

Note: Five technical replicates were performed using LC‐MS/MS.

13.7.6 Bioinformatic Workflow for Biomarker Detection

13.7.6.1 In‐House Protein Database Setup
The UniProt database was supplemented with additional Bacillus sequences from unfin‑
ished genomes submitted to the NCBI database (Accession numbers: NZ_AAEK00000000, 
NZ_ABQK00000000, NZ_ABQL00000000, NZ_ABQM00000000, NZ_ABQN00000000, 
NZ_AAOX00000000, NZ_AAAC00000000, NZ_ACMW00000000, NZ_ABLT00000000, 
NZ_ABLH00000000, NZ_ABKF00000000, NZ_ABDM00000000, NZ_ABDN00000000, 
NZ_ABDM00000000, NZ_ABCZ00000000, NZ_ABCF00000000, NZ_AAJM00000000, 
NZ_AAES00000000, NZ_AAEN00000000, NZ_AAEO00000000, NZ_AAEP00000000, 
NZ_AAER00000000 and NZ_AAEQ00000000). Redundancy in the NCBInr database and 
UniProt/Swiss‐Prot databases was removed using the program CD‐HIT (version 3.1.2).

13.7.7 Protein/Peptide Marker Identification

DTA files were generated from tandem mass spectra, with charge states assigned using 
BioWorks version 3.3. De‐isotoping was not performed. MS/MS samples were analyzed 
using Sequest to search an in‐house version of the UniProt/Swiss‐Prot database and 
NCBInr database. In silico trypsin digestion of protein sequences in the database was 
implemented in Sequest. Sequest search parameters were set to a fragment ion mass 
tolerance of 0.50 Da and a parent ion tolerance of 10.0 ppm. Oxidation of methionine 
and the iodoacetamide derivative of cysteine plus de‐amidation of asparagine were 
specified as variable modifications. Peptide identifications were accepted if they could 
be established at less than 0.01 probability value as specified by the BioWorks browser 
(version 3.3.1 SP 1) and Xcorr values of 1.5, 2.0 and 2.5 for charge states 1, 2 and 3, 
respectively. Protein identifications were accepted with at least one identified peptide. 
The data generated from the Sequest searches from each strain was collated and parsed 
in to a PostgreSQL (version 8.1.18) database, using in‐house Perl scripts. Unique 
Bacillus anthracis–specific peptides were initially identified in silico, through NCBI 
BlastP analysis (parameters adjusted for short sequences) against the non‐redundant 
NCBI database (release 161), supplemented with in‐house short‐length peptide 
sequences derived from LC‐MS/MS analysis. The program Scaffold (version 2.6) was 
used to compare the data from the strains analyzed in this study, to validate the spectral 
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quality of protein/peptide identifications and compare LC‐MS/MS datasets from each 
sample. This approach provides an experimentally verified list of candidate peptide 
markers that can accurately identify the species of interest was determined. This list of 
candidate peptide markers were further validated using molecular approaches (below).

13.7.8 Procedure for DNA Extraction

Strains were prepared similar to the protein preparation methods, but there were slight 
differences which helped increase the yield of high‐quality DNA. The growth, prepara‑
tion and extraction of DNA was performed as follows.

Strains of Bacillus were initially cultured on nutrient agar overnight at 37 °C for 18 h. 
From this plate, cells were suspended in 10 ml of nutrient broth to give an OD600 of around 
1. 30 μl of this was used to inoculate 30 ml of nutrient broth. These were grown for 24 h with 
shaking at 30 °C.The OD600 was checked, and if it was between 0.7 and 1, DNA extraction 
was performed. 30 ml of culture was centrifuged at 10,000 g for 10 min at 4 °C to harvest 
cells, and the supernatant was removed. The cell pellet was washed 3 times with 1 ml 1 × TE 
buffer containing 1 mM PMSF, followed by centrifugation at 8000 g for 10 min at 4 °C. The 
cell pellet was re‐suspended in 300 μl 1 × TE and 300 μl lysozyme at 50 mg/ml. The suspen‑
sion was incubated for 1 h at 37 °C followed by centrifugation at 3000 g for 10 min, and the 
supernatant was removed. The pellet was re‐suspended in 750 μl 1 × TE, 90 μl 10% SDS and 
15 μl proteinase K and incubated at 37 °C for 2 h. Extracts were clarified by centrifugation 
at 21,000 g for 30 min at 21 °C, and the supernatant was collected.

Viability studies were performed on B. anthracis extracts. 15 μl of the supernatant was 
re‐suspended in 15 ml nutrient broth and on nutrient agar and incubated at 37 °C for 
7 days. 15 μl of broth was plated onto nutrient agar and incubated at 37 °C for 48 h. All 
plates and broths were examined for growth that resembled that of B. anthracis. Only 
samples that showed negative growth were transferred out of the C.L.3 laboratory.

13.7.9 DNA Extraction

CTAB/NaCl was heated at 65 °C for 30 min. Next, 300 μl of 5 M NaCl was added to the 
supernatant and mixed well, followed by the addition of 240 μl of the preheated CTAB 
NaCl to each lysate. The samples were mixed thoroughly and incubated at 65 °C for 
10 min. 800 μl of chloroform/iso‐amyl alcohol (24:1v:v) was added and the sample vor‑
texed and centrifuged for 10 min at 12,000 g. The upper layer of extract was removed 
and placed in a clean Eppendorf tube. An equal volume of Tris‐buffered phenol chloro‑
form was added and the sample centrifuged for 10 min at 12,000 g, and the upper part 
of the extract was again removed and placed in a clean Eppendorf tube. An equal vol‑
ume of isopropanol was added and mixed on a shaker for 10 min until the DNA was 
visible. The sample was centrifuged at 13,000 g for 1 min to pellet the DNA and the 
supernatant removed. The pellet was washed twice with 70% ethanol, followed by cen‑
trifugation at 13,000 g for 1 min and the supernatant removed. The DNA was left to 
air‐dry and then re‐suspended in 50–100 μl of molecular‐grade water.

13.7.10 Genetic Validation of Candidate Peptide Biomarkers

For each candidate peptide the nucleotide sequence of the marker was obtained from 
the fully sequenced B. anthracis str. Ames ancestor genome (Genbank Accession 
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AE017334.2) in FASTA format. In addition, for each candidate peptide, nucleotide 
sequences of the corresponding protein were obtained from publicly available 
genome sequences for members of the B. cereus group in FASTA format (AE017334.2, 
AE016879.1, CP001598.1, AE017225.1, AE017194.1, AE016877.1, CP000001.1, 
CP000227.1, CP001186.1, NC_005957.1, NC_008600.1 and NC_010184.1). Nucleotide 
sequences were translated into their corresponding amino acid sequence in Bioedit 
v7.0.4.1 software. The peptide biomarker was aligned with the protein sequences using 
the multiple alignment algorithm clustalW as implemented in Bioedit v7.0.4.1 software 
(Figure 13.1). The aligned protein sequences were back‐translated to the corresponding 
nucleotide sequence, and the consensus sequence of the alignment was determined. 
Using the consensus sequence determined for each marker, PCR primers were designed 
with a Tm between 45 °C and 60 °C and G + C content between 30% and 60% within areas 
of sequence conservation flanking the biomarker region. The program Oligoanalyzer 
3.0 was used to ensure that the Tm and G + C content of the primer sequences fell within 
the above criteria and that primers did not form homo/heterodimers. Target biomarker 
regions were amplified using a 50 μl reaction volume containing 25 μl GoTaq® Green 
Master Mix, 10 pmol each of the forward and reverse primer for the target of interest 
(target‐specific primer sequences are listed in Table 13.1), 1 μl template DNA and the 
volume made up to 50 μl using nuclease‐free water. PCR amplification was performed 
using a touchdown PCR protocol with the following cycling conditions: 1 cycle of 94 °C 
for 2 min; 10 cycles of 94 °C for 1 min, 60 °C for 1 min decreasing by 1 °C to 50 °C for 
each cycle, 72 °C for 2 min; 25 cycles of 94 °C for 1 min, 50 °C for 1 min, 72 °C for 2 min; 
and 1 cycle of 72 °C for 10 min and held at 4 °C. Amplified samples were run on precast 
1.2% agarose E‐gels following the manufacturer’s instructions and visualized using a 
UV transilluminator to check for the presence of a PCR product and verify that the 
product was of the predicted size by comparison with a 100 bp DNA ladder. PCR prod‑
ucts were purified using the AMPure system following the manufacturer’s instructions 
on the Biomek NxP robot.

Cleaned PCR products and target‐specific PCR primers listed in Table 13.1 were used 
for sequencing with the ABI Big Dye Terminator Kit v3.1. DNA sequencing reactions 
were purified with the CleanSeq magnetic beads on the Biomek NxP robot. Automated 
sequence detection was performed on a 48‐capillary ABI 3730 genetic analyzer. 
Sequence trace files for each strain were acquired in.abi format and the forward and 
reverse sequences assembled using Bionumerics v4.01 software. The nucleotide 
sequence data obtained was aligned against the corresponding biomarker nucleotide 
sequence as described previously. The resulting alignment was manually analyzed in 
nucleotide and amino acid sequence format to determine if:

1) The peptide biomarkers were unique to the species of interest.
2) The biomarkers were genetically stable (e.g. the DNA sequence of the biomarker 

contains no silent mutations in the species of interest; see Figure 13.4).

Eight Bacillus anthracis strains (NCTC 109, NCTC 1328, NCTC 2620, NCTC 5444, 
NCTC 7752, NCTC 7753, NCTC 8234 and NCTC 10340) and seven reference strains 
representing the B. cereus group of species (B. cereus NCTC 11143, NCTC 11145, 
ATCC 10987; B. thuringiensis DSM 6029, DSM 2046; B. weihenstephanensis DSM 
11821 and B. mycoides NCTC 7586) were used.
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Figure 13.4 An example of a peptide biomarker, from the protein YP_017248 (boxed in red) aligned 
against amino acid sequences for a selection of members from the B. cereus group.

Table 13.5 Primer sequences used for PCR amplification and DNA sequencing of each target 
biomarker region.

Target 
biomarker

Approximate 
amplicon size 
(bp) Primer sequences

YP_016767 730 YP_016767_R 5′‐TGACGAAATCAATGGAATTTCT‐3′
YP_016767_R 5′‐TCATGTCCTTGCTCAACTCCTT‐3′

YP_020743 780 YP_020743_F 5′‐CAACTAGAGTTCAAGAGTCAAAGTT‐3′
YP_020743_R 5′‐CTTTTAATCCAGCTGCCCTT‐3′

YP_016916 770 YP_016916_F 5′‐TACAAACAACGAACGGACCACT‐3′
YP_016916_R 5′‐TCTCATAGTCTTTTTCGAATGACA‐3′

YP_017487 930 YP_017487_F 5′‐ATGGGCTGATGAGCTCGTAAA‐3′
YP_017487_R 5′‐AAATGGCTCTTCCCAAGCAA‐3′

YP_020804 490 YP_020804_F 5′‐CCAAAAGTATTTATGGATTACGAAA‐3′
YP_020804_R 5′‐TTCAATGAGTAAGTCACCCGTT‐3′

YP_019807 300 YP_019807_F 5′‐AACGYAGTTCAATGAACTCTTGG‐3′
YP_019807_R 5′‐GCCRTGYACCATAGTATATGC‐3′

YP_021007 450 YP_021007_F 5′‐TTGGWCCATCAAGTTCACATACAGC‐3′
YP_021007_F 5′‐ATTGARGCTACHGCTGCWATAGC‐3′

YP_020576 500 YP_020576_F 5′‐ATGAAGCCTTTTCTATCAGC‐3′
YP_020576_R 5′‐TTGATAAATAGCCGTAATGATAGACC‐3′

YP_019000 1000 YP_019000_F 5′‐ATTGTAACHGAGCGTACRAARTGG‐3′
YP_019000_R 5′‐ATGTGTTTTTCGTAGCCATTGC‐3′

YP_016771 1470 YP_016771_F 5′‐TTGATAGTGATGTGCCGTGTCC‐3′
YP_016771_R 5′‐GTTTGCAGGTAGTTTGGCAGTACG‐3′

YP_018907 300 YP_018907_F 5′‐TTAGAAGGGATGACAGATGC‐3′
YP_018907_R 5′‐CGAGTTACAGAACCTATAGAACG‐3′

YP_021350 980 YP_021350_F 5′‐TTCTCGTATATCCAACGATGG‐3′
YP_021350_R 5′‐GAATTCGTTAACTTCTGTACMGC‐3′
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Target 
biomarker

Approximate 
amplicon size 
(bp) Primer sequences

YP_018345 830 YP_018345_F 5′‐ACAAACATTAACAGCATGCGT‐3′
YP_018345_R 5′‐ACCATTTGTGGAGTTTGGTTT‐3′

YP_020375 580 YP_020375_F 5′‐TTGGAGYGGRAAGAWTTGTCC‐3′
YP_020375_R 5′‐AATTCACCACGTGTYACAAGRCG‐3′

YP_018337 870 YP_018337_F 5′‐GCATCATTAATTGAAAAAGGTGC‐3′
YP_018337_R 5′‐CGAATTTTCGAATGTAATTCTTCC‐3′

YP_017248 500 YP_017248_F 5′‐ATACACCTCATACATTGCWGAAGG‐3′
YP_017248_R 
5′‐TAATTCATCACTAACTCAGCTGTGAGC‐3′

YP_019177 600 YP_019177_F 5′‐GAGCAATTCCAACTTCYACHTTAGG‐3′
YP_019177_R 5′‐ATCATRAAGRTGTCCTTCVTCC‐3′

YP_022460 870 YP_022460_F 5′‐AATGATGTTGCGTACTCACC‐3′
YP_022460_R 5′‐AGTGCAGGATGTGTATAACC‐3′

YP_020399 600 YP_020399_F 5′‐TTATGCTACAAAGGCTCTCG‐3′
YP_020399_R 
5′‐ATGACCTAAAYGATAATACTCACACGCC‐3′

YP_020336 500 YP_020336_F 5′‐TGTWGCWATCGGTTATTCAAATGG‐3′
YP_020336_R 
5′‐AGGTACRATCGTTGAYATTCARYTACC‐3′

YP_018595 200 YP_018595_F 5′‐GCTACATTGCARCATTACAATCC‐3′
YP_018595_R 5′‐CAGRTTRTATYYCTGTTCACC‐3′

YP_022433 290 YP_022433_F 5′‐AACGAAGGTAAACGGATTACG‐3′
YP_022433_R 5′‐CGATGGAGTTAAACCATAAGG‐3′

YP_016683 530 YP_016683_F 
5′‐AAGTTCATCTTTGYGAGCAATGTGC‐3′
YP_016683_R 5′‐CTTCATCCATGGACTAATYGC‐3′

YP_022180 1010 YP_022180_F 5′‐AAGGTACAAGCAATTCTTACGG‐3′
YP_022180_F 5′‐TGGTAATCTACATGATAAGCAGC‐3′

YP_021575 200 YP_021575_F 5′‐AGTACGACATGYCCRATTAGTCAYGG‐3′
YP_021575_R 
5′‐TTCCARTGMGAYGTATKCCATACTACC‐3′

YP_020435 1000 YP_020435_F 5′‐ATGTACCGAAGGATATTCCAATGG‐3′
YP_020435_F 
5′‐TACGGCATTAGGATTGTTACCAATGG‐3′

YP_020438 Part 1: 1310 YP_020438_1F 5′‐CCAAGAAAATGAACATGTTAAACC‐3′
YP_020438_1R 5′‐CCTTCATCATATGCCTCAATTTGG‐3′

Part 2: 1140 YP_020438_2F 5′‐ATGCGAAGGTTATTAAAGTTGCATGC‐3′
YP_020438_2R 5′‐AGTTTGTATAGTCTTCGGAGTTCC‐3′

Table 13.5 (Continued)
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13.8 Summary of Results

Table 13.6 Functional categorization of B. anthracis–specific peptide markers (* = peptide derived 
from B. anthracis unique proteins, § = plasmid origin, † = no suitable primer region found 
and ‡ = possessed a silent mutation).

Locus tag Peptide biomarker DNA biomarker Protein function

YP_016767 LLVSENIIR TTACTAGTTTCTGAAAAT 
ATTATTCGC

Gluconate operon 
transcriptional 
repressor

YP_020743* EANEGLTVLEK GAAGCTAATGAAGGGTTA 
ACAGTTCTTGAGAAG

Hypothetical protein

YP_016916 DIDHIGINR GATATCGATCACATTGGT 
ATTAATCGT

ATP‐dependent DNA 
helicase PcrA

YP_019173† DWEAVHEYTSD 
SDVMK

GATTGGGAAGCTGTTCAT 
GAGTATACATCAGATAGC 
GATGTTATGAAA

Acetyltransferase, 
GNAT family

YP_017487 SADLVQGLVDD 
AVEK

TCTGCTGACTTGGTTCAA 
GGCTTAGTTGACGACGCT 
GTTGAAAAA

NADP‐dependent 
glyceraldehyde‐3‐
phosphate dehydrogenase

YP_020804 LVSIGELQPDGNR CTAGTATCAATCGGAGAGCTT 
CAGCCAGATGGAAATCGT

Pyruvate carboxylase

YP_019807 DTYDAAMEIVK GACACTTATGATGCTGCA 
ATGGAGATTGTAAAG

Isochorismatase family 
protein

YP_021007‡ MGQVACQLFR ATGGGGCAAGTTGCTTG 
TCAGCTGTTTCGT

L‐serine dehydratase, 
iron‐sulfur‐dependent, 
beta subunit

YP_020576* AIHEQLEAVEGGLR GCTATTCATGAGCAATTGGAA 
GCAGTGGAAGGGGGACTAAGA

Aspartate kinase I

YP_019000 QLSDVAEEDVNR CAGTTAAGTGATGTTGCA 
GAAGAAGATGTAAATCGG

3‐hydroxyisobutyryl‐
CoA hydrolase

YP_016771 MENLQIGVVGV 
GVMGK

ATGGAAAATTTACAAATT 
GGAGTTGTTGGTGTGGGC 
GTTATGGGAAAA

6‐phosphogluconate 
dehydrogenase

YP_018907 PMNMDIFK CCGATGAACATGGATAT 
TTTTAAA

Heat shock protein, 
Hsp20 family

YP_021350 LVDLIASHLPIK TTAGTGGATTTAATTGCTT 
CTCACTTGCCAATTAAA

ATP‐dependent 
protease La 1

YP_018345 EFAELQEQIDYIAK GAATTTGCAGAATTACAAGAAC 
AAATTGATTACATTGCTAAA

Flagellin

ASQNTQDGMSLIR GCTTCACAAAATACACAAGACG 
GGATGTCATTAATCCGT

YP_020375 DDITGGWYEAAIR GATGATATAACGGGTGGTTGG 
TACGAAGCAGCCATTCGT

N‐acetylmuramoyl‐L‐
alanine amidase

YP_018337* SEDLPVSAEIR TCAGAAGATCTTCCTGTT 
AGTGCAGAGATTAGA

TPR/glycosyl 
transferase domain 
proteinASEATVLLLIVG 

PGEK
GCTTCCGAAGCAACTGTA 
CTATTGTTAATAGTTGGA 
CCAGGAGAAAAA



Locus tag Peptide biomarker DNA biomarker Protein function

YP_017248 MTTDMLVK ATGACAACGGACATGT 
TGGTTAAG

NAD‐dependent 
epimerase/dehydratase

YP_019177 DGESFASGHIEK GATGGAGAGAGTTTTGCT 
TCTGGTCACATCGAGAAA

Hydroxyacylglutathione 
hydrolase

YP_022460§ SEITDLIGIR TCAGAGATTACAGATTTA 
ATTGGAATTAGA

RelA/SpoT domain‐
containing protein

NPDYYIDVNNYK AATCCTGATTATTACATCG 
ACGTTAATAATTATAAA

NNDLFNFK AATAATGATTTATTTAAT 
TTCAAG

AGEQFVIDFK GCCGGCGAACAATTTG 
TTATTGATTTTAAA

YP_017265† QGVEAELDFLR CAAGGGGTAGAGGCTGA 
ACTAGATTTTTTACGA

Hypothetical protein

YP_020399* DIQIYTELLAGK GACATTCAAATTTATACC 
GAACTACTAGCAGGGAAA

Prophage LambdaBa01 
TPR domain‐
containing protein

YP_020336 AKEWYENTVL GCAAAAGAATGGTATGA 
AAATACAGTACTA

Phospholipase/
carboxylesterase family 
protein

YP_018595 EFQPLENCVK GAATTCCAACCATTAGAA 
AACTGTGTGAAA

Nitroreductase family 
protein

YP_022433§ LYSTADLAEE
LEMTK

TTATATTCAACTGCTGATTTA 
GCAGAGGAATTAGAGATGAC 
AAAG

ImpB/MucB/SamB 
family protein

YP_016683 NLENQLSEYR AATCTTGAAAATCAGCTTAGT 
GAGTATAGA

Unknown

YP_022180* ALLTYASYFK GCGCTACTTACTTATGCATCG 
TATTTTAAA

Hypothetical protein

YP_021575 AVPAYCLYVQDAR GCAGTGCCAGCGTATTGCTTAT 
ACGTACAAGATGCGAGA

Putative cytoplasmic 
protein

YP_020435* DPFDVYEEIR GATCCTTTTGATGTATAT 
GAAGAGATAAGA

Hypothetical protein

QIEDSLLSDDG 
EFHLK

CAAATTGAAGATTCATTACTAT 
CTGATGATGGTGAGTTTCAT 
TTGAAA

YP_020438* LMLSILGAQGT 
EEDLNK

CTTATGTTATCAATTTTAGGAG 
CTCAAGGAACAGAAGAAG 
ATTTAAATAAA

Prophage LambdaBa01, 
acyltransferase, 
putative

QIIIIPGIMGSK CAAATAATAATTATACCTG 
GAATAATGGGAAGTAAA

DWFPVMMSAEK GATTGGTTTCCAGTTATG 
ATGTCTGCAGAGAAA

NVLNVFSTDSAG 
NAEATK

AATGTATTGAATGTATTTTCA 
ACGGATAGTGCTGGAAAT 
GCAGAAGCTACTAAA

YP_018571† DSSTSVNVYLGK GACTCTAGTACTAGTGTA 
AATGTTTATCTTGGAAAA

Putative S‐layer protein

Table 13.6 (Continued)
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13.9 Yersinia pestis

The genus Yersinia encompasses a group of gram‐negative, rod‐shaped bacteria that 
are facultative anaerobes. The genus Yersinia contains three pathogenic species: 
Y. pestis, the causative agent of plague, and the enteric food‐ and water‐borne pathogens 
Y. pseudotuberculosis and Y. enterocolitica. DNA–DNA hybridization studies and 16S 
rRNA sequence comparisons indicate that Y. pestis is highly related to Y. pseudotuber-
culosis. Y. pestis is described as being a clone that evolved from Y. pseudotuberculosis 
1,500 to 20,000 years ago and has been subdivided into three biovars (Antiqua, 
Medievalis and Orientalis).

Y. pestis is primarily a disease of rodents or other wild mammals that is usually trans‑
mitted by fleas. Y. pestis, the etiologic agent of plague, exists in three forms: bubonic, 
septicaemic and pneumonic, and is considered to be a potential bioweapon because 
it is relatively easy to acquire from the environment and can be effectively dried and 
dispersed in an aerosol form.

13.10 Method: Strain Panel

Eight Y. pestis strains (NCTC 5924, NCTC 5923, NCTC 10029, NCTC 10030, NCTC 
144, NCTC 10329, NCTC 2868 and NCTC 2028) and eight reference strains represent‑
ing closely related species Y. enterocolitica (NCTC 11598 and 11600), Y. frederiksenii 
(NCTC 11470), Y. intermedia (NCTC 11469), Y. kristensenii (NCTC 11471) and 
Y. pseudotuberculosis (NCTC 10275, 8315 and 8487) were used.

13.10.1 Procedure for Whole Cell Protein Extraction

Strains were grown on Columbia blood agar for 24 h. A 1 × 10 μl loop of cells was  
re‐suspended in 1 ml of L6 lysis buffer (guanidium isothiocyanate boom extraction 
buffer) in a microcentrifuge tube. The tube was vortexed to ensure an even suspen‑
sion and incubated at room temperature for 45 min.

Viability studies were performed on Y. pestis extracts. 100 μL of the extract was 
plated onto Columbia blood agar, incubated at 37 °C and checked for growth at 24 
and 48 h.

The cell suspensions were centrifuged at 6000 rpm for 30 min, and the supernatant 
collected and stored at −80 °C for further analysis. The supernatant was treated with the 
GE 2D clean‐up kit following the manufacturer’s instructions. Three biological repli‑
cates were prepared for 1D PAGE analysis

13.10.2 One‐Dimensional SDS‐PAGE and In‐Gel Digestion of Bacterial Proteins

The procedure is the same as that described for B. anthracis.

13.10.3 One‐Dimensional Nanoflow LC‐MS/MS, Data‐Dependent  
and Targeted MS Analysis

The procedure is the same as that described for B. anthracis.
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13.10.4 Bioinformatic Workflow for Biomarker Detection

The identification of Y. pestis–specific biomarkers was carried out as described for B. 
anthracis. However, the UniProt database was supplemented with additional Yersinia 
sequences from unfinished genomes submitted to the NCBI database (Accession numbers: 
NZ_ABCD00000000, NZ_ABAT00000000, NZ_AAYV00000000, NZ_AAYU00000000, 
NZ_AAYT00000000, NZ_AAYS00000000, NZ_AAYR00000000, NZ_AAUB00000000, 
NZ_AAOS00000000, NZ_AALF00000000, NZ_AALE00000000, NZ_AALC00000000, 
NZ_AALD00000000, NC_004839, NC_004836, NC_009139, NC_006323, NC_002120, 
NC_012208, NC_004837, NZ_ADDC00000000, NC_010377, NC_005570, NC_005017, 
NC_002144, NC_004835, NC_004564 and NC_011759).

13.10.5 Genetic Validation of Peptide Biomarkers

In silico genetic validation was performed on all Y. Pestis–specific biomarkers. For 
candidate peptide, the nucleotide sequence of the marker was obtained from the fully 
sequenced Y. pestis biovar Antiqua genome (Genbank Accession CP000308.1) in FASTA 
format. For each candidate peptide, nucleotide sequences of the corresponding protein 
were obtained from publicly available genome sequences for members of the species 
Y. pestis and closely related species Y. enterocolitica and Y. pseudotuberculosis in FASTA 
format (Genbank Accession: AM286415.1, CP000901.1,CP000308.1, AL590842.1, 
CP001585, CP001589, AE009952.1, CP000305.1, CP000668.1, CP001593.1, CP001608, 
AE017042.1, CP000720.1, BX936398.1, CP001048.1 and CP000950.1).

Nucleotide sequences of the proteins and the peptide biomarker were translated into 
their corresponding amino acid sequence in Bioedit v7.0.4.1 software. The peptide 
biomarker was aligned with the protein sequences using the multiple alignment algo‑
rithm clustalW as implemented in Bioedit v7.0.4.1 software. The resulting alignment 
was manually analyzed in nucleotide and amino acid sequence format to determine if:

1) The peptide biomarkers were unique to the species of interest.
2) The biomarkers were genetically stable (e.g. the DNA sequence of the biomarker 

contains no silent mutations in the species of interest).

13.11 Summary of Results

Table 13.7 Summary of Y. pestis–specific peptides. In silico genetic validation of the biomarkers found 
all markers to be genetically stable.

Locus tag Peptide biomarker DNA biomarker Protein function

YP_650749 TDKEGVFHT 
EWMA

ACAGATAAAGAAGGTGTATT 
CCACACTGAGTGGATGGCG

6‐phosphogluconate 
dehydrogenase

YP_652810 QIDALLEEAA 
AQLLR

CAGATTGACGCACTGTTGG 
AAGAGGCGGCAGCGCAG 
CTACTCCGT

Pantoate beta‐
alanine ligase

YP_652827 AEAAPAAAGGGL 
PGILPWPK

GCCGAAGCTGCACCAGCAGCG 
GCTGGCGGCGGCCTGCCGGG 
CATATTGCCTTGGCCAAAA

Dihydrolipoamide 
acetyltransferase
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13.12 Fransicella tularensis

The genus Francisella encompasses a group of pathogenic gram‐negative, strictly 
aerobic bacteria that are facultative intracellular parasites of macrophages. F. tula-
rensis is the causative agent of tularaemia, a serious disease that presents in two 
main forms: pneumonic and ulceroglandular. As one of the most infectious patho‑
genic bacteria known, it poses a serious concern as a biological weapon due to its 
high virulence and ease of spread by aerosol (inhalation of as few as 10 organisms 
can cause disease). Currently, four known subspecies of F. tularensis that differ 
in  virulence and geographical distribution are recognized: F. t. tularensis (type A), 
F. t.  holarctica (type B), F. t. mediasiatica, and F. t. novicida, with B. tularensis subsp. 
tularensis being the most virulent.

13.13 Method

13.13.1 Strain Panel

Two clinical strains of F. tularensis and one reference strain of F. philomiragia subsp. 
philomiragia (DSMZ 7535) were used.

13.13.2 Procedure for Whole Cell Protein Extraction

Francisella tularensis was initially cultured on Columbia blood agar, at 37 °C for 
48 h. From this plate, 1 × 10 μl loop of cells was re‐suspended in 20 ml of nutrient 
broth. The OD600 was adjusted to approximately 0.1–0.2, and the starting broth 
culture was incubated for 18 h at 37 °C with constant shaking. After ~18 h, when the 
OD600 was measured to be ~1.0, a purity plate was prepared and incubated for 48 h 
at 37 °C. 20 ml of culture was centrifuged at 10,000 g for 10 min at 4 °C to harvest cells. 
Broth supernatant was removed and the pellet washed once with 1× TE buffer 
containing 1 mM PMSF. Cells were centrifuged at 10,000 g for 10 min at 4 °C to  
re‐pellet them. The cell pellets were re‐suspended in 1.5 ml of 1× TE buffer contain‑
ing 6 μg/μl lysozyme and 1 mM PMSF and incubated for 1 h at 37 °C. Cells were 
 collected by centrifugation at 3000 g for 10 min at 4 °C. The cell pellets were washed 
twice in 1 ml 1× TE buffer containing 1 mM PMSF. Cells were collected by centrifu‑
gation at 3000 g for 10 min at 4 °C. Cells were frozen at −20 °C until the purity of the 
culture was confirmed.

The cell pellet was re‐suspended in 100 μl of a solubilization cocktail (30 mM 
Tris‐Cl pH 8.5, 7 M Urea, 2 M Thiorurea, 4% CHAPS and 70 mM DTT) by recip‑
rocation with a pipette. The suspension was incubated for 30 min at room 
 temperature and clarified by centrifugation at 21,000 g for 30 min at 21 °C. The 
supernatant was filtered through 0.2 μm Anopore vectra spin filters at 8000 g until 
the filtrate ran through. The supernatant containing cellular proteins was removed 
and placed in 1.5 ml tubes. Extracts were stored at −20 °C until completion of the 
viability study.
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Viability studies were performed on F. tularensis strains. 50 μl of protein extract 
was re‐suspended in 20 ml nutrient broth, spotted on a CBA plate and incubated at 
37 °C for 48 h. All plates and broths were examined for growth that resembles that 
of  F. tularensis. Only samples that showed negative growth were used for further 
analysis.

Three biological replicates were prepared for 1D PAGE analysis.

13.13.3 One‐Dimensional SDS‐PAGE and In‐Gel Digestion of Bacterial Proteins

The procedure is the same as that described for B. anthracis.

13.13.4 One‐Dimensional Nanoflow LC‐MS/MS, Data‐Dependent  
and Targeted MS Analysis

The procedure is the same as that described for B. anthracis.

13.13.5 Bioinformatic Workflow for Biomarker Detection

The identification of F. tularensis–specific biomarkers was carried out as described 
for B. anthracis. However, the UniProt database was supplemented with additional 
Francisella sequences from unfinished genomes submitted to the NCBI database 
(Accessions numbers: NZ_ABYY00000000, NZ_ABXZ00000000, NZ_ABRI00000000, 
NZ_ABAH00000000, NZ_AAYF00000000, NZ_AAYE00000000, NZ_AAYD00000000, 
NZ_AAUD00000000, NZ_AASP00000000 and NZ_ABSS00000000).

13.13.6 Genetic Validation of Peptide Biomarkers

In silico genetic validation was performed on all F. tularensis–specific biomarkers.
For each candidate peptide, the nucleotide sequence of the marker was obtained 

from the fully sequenced F. tularensis subsp. tularensis FSC198 genome (Genbank 
Accession AM286280.1) in FASTA format. For each candidate peptide, nucleotide 
sequences of the corresponding protein were obtained from publicly available 
genome sequences for members of the species F. tularensis including the subspe‑
cies tularensis, holarctica, mediasiatica and novicida and closely related species 
F. philomiragia in FASTA format (Genbank Accession: CP000439.1,CP000937.1, 
CP000803.1, AM233362.1, CP000437.1, CP000915.1, AM286280.1, CP001633, 
AJ749949.2 and CP000608.1). Nucleotide sequences of the proteins and the peptide 
biomarker were translated into their corresponding amino acid sequence in Bioedit 
v7.0.4.1 software. The peptide biomarker was aligned with the protein sequences 
using the multiple alignment algorithm clustalW as implemented in Bioedit v7.0.4.1 
software.

The resulting alignment was manually analyzed in nucleotide and amino acid 
sequence format to determine if:

1) The peptide biomarkers were unique to the species of interest.
2) The biomarkers were genetically stable (e.g. the DNA sequence of the biomarker 

contains no silent mutations in the species of interest).
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13.14 Summary of Results

Table 13.8 Summary of F. tularensis–specific peptides and subspecies‐specific peptides. In silico 
genetic validation of the biomarkers found that all markers were genetically stable.

Locus tag Peptide biomarker DNA biomarker Protein function Specificity

YP_666502 ATINQLVNNPR GCAACTATAAATC 
AGTTGGTGAACA 
ACCCTCGC

30S ribosomal 
protein S12

Specific to all 
subspecies

YP_666528 AQQICQTCN 
VDPTVK

GCGCAACAAATTT 
GCCAAACTTGCA 
ATGTAGATCCAAC 
TGTCAAA

30S ribosomal 
protein S13

Specific to all 
subspecies

IKDLSEEQ 
VESLR

ATTAAAGATTTATC 
AGAAGAACAAGT 
TGAATCTTTAAGA

ZP_02274832 EMGGLPDAIV 
VIDGNK

GAAATGGGCGGT 
TTACCTGATGCAA 
TCGTTGTTATTGA 
TGGCAACAAA

30S ribosomal 
protein S2

Specific 
F. tularensis 
subsp. 
holarctica

YP_666530 GNTGATLL 
ELLESR

GGTAATACCGGTG 
CTACATTGTTAGA 
GCTATTAGAAT 
CAAGA

30S ribosomal 
protein S4

Specific to all 
subspecies

RMYGILEGQFK CGTATGTATGGTA 
TTTTAGAAGGTC 
AATTTAAA

YP_169371 VAAEILEAVEGR GTGGCTGCTGAA 
ATTCTCGAAGCT 
GTAGAGGGTAGA

30S ribosomal 
protein S7

Specific to all 
subspecies

ALESVSPMVEVK GCGTTGGAAAGT 
GTTAGCCCAATG 
GTGGAAGTTAAG

YP_666760 ITVNDESAAA 
AVPEIVK

ATTACAGTTAATGA 
TGAGTCAGCTGCT 
GCTGCTGTACCTG 
AGATTGTTAAA

4‐hydroxy‐3‐
methylbut‐2‐en‐1‐yl 
diphosphate 
synthase

Specific to all 
subspecies

YP_514377 EEALATLLNIMQ 
APVTK

GAAGAGGCACTTG 
CTACATTACTTAAT 
ATTATGCAAGCAC 
CAGTTACTAAG

50S ribosomal 
protein L10

Specific 
F. tularensis 
subsp. 
holarctica

GLTVNQMTSLR GGTTTGACTGTT 
AATCAAATGAC 
TTCATTAAGA

YP_666506 GGIPGSVGGDII 
VTPAVK

GGTGGTATTCCTG 
GTTCAGTTGGTGG 
AGATATTATCGTT 
ACTCCAGCTGT 
GAAA

50S ribosomal 
protein L3

Specific to all 
subspecies



Locus tag Peptide biomarker DNA biomarker Protein function Specificity

YP_513727 LFGSVGIAEV 
AEAVSNQSGK

CTATTTGGTTCTG 
TAGGTATAGCTGA 
AGTTGCTGAAGCT 
GTTTCTAACCAAT 
CTGGCAAA

50S ribosomal 
protein L9

Specific 
F. tularensis 
subsp. 
holarctica

YP_667260 VSQDIFDQLNK GTGTCTCAGGAT 
ATTTTTGATCA 
GCTTAATAAA

Adenylate kinase Specific to all 
subspecies

YP_666636 MNIENYLS 
ETLAK

ATGAATATAGAAAA 
TTATTTATCAGAAA 
CTCTTGCAAAG

Arginyl‐tRNA 
synthetase

Specific to all 
subspecies

YP_512829 EDDLLFFGAGK GAGGATGATTTAT 
TATTCTTTGGTG 
CTGGTAAG

Aspartyl‐tRNA 
synthetase

Specific 
F. tularensis 
subsp. holarctica

YP_667062 SIPINTLIPIK AGTATTCCTATCAA 
TACATTAATACCT 
ATTAAA

Biotin synthase Specific 
F. tularensis 
subsp. tularensis

YP_666215 EDEEYSFGLPLK GAAGATGAGGAAT 
ACTCTTTTGGTTT 
ACCGTTAAAA

Chromosomal 
replication initiator 
protein DnaA

Specific to all 
subspecies

YP_514346 SAGGIILTGN 
AQEKPSQGEVVA 
VGNGK

TCTGCTGGTGGAAT 
TATCTTAACTGGTAA 
TGCTCAAGAGAAAC 
CTAGCCAAGGTGA 
GGTTGTTGCTGTT 
GGTAATGG TAAA

Co‐chaperonin 
GroES

Specific 
F. tularensis 
subsp. 
holarctica

YP_514179 EIAESEITSEQILR GAAATTGCTGAGTC 
AGAAATTACCTCAG 
AACAAATTTTAAGA

DNA‐directed 
RNA polymerase 
omega subunit

Specific 
F. tularensis 
subsp. holarctica

ZP_02274323 LIPAGTGLAVR TTAATACCAGCAG 
GTACTGGTCTAG 
CAGTAAGA

DNA‐directed 
RNA polymerase, 
beta subunit

Specific 
F. tularensis 
subsp. holarctica

YP_666504 FVDEVVGG 
VVPK

TTTGTTGATGAGG 
TTGTTGGTGGTGT 
AGTTCCTAAA

Elongation  
factor G

Specific to all 
subspecies

GVQAVLDGVVR GGTGTTCAAGCAG 
TTCTTGATGGTGT 
GGTTAGA

FEPLDEVDE 
NGEAK

TTTGAGCCTTTGGA 
TGAAGTTGATGAGA 
ACGGTGAAGCTAAA

MEMIEAAAEA 
SEELMEK

ATGGAGATGATCG 
AGGCGGCTGCAG 
AAGCTTCAGAAGA 
GCTTATGGAGAAA

YLEGGELSEDEI 
HQGLR

TATCTTGAGGGTG 
GTGAACTTTCTGA 
AGATGAGATTCAT 
CAAGGTCTGCGT

Table 13.8 (Continued)

(Continued)
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13.15 Clostridium botulinum

The genus Clostridium comprises a heterogeneous collection of gram‐positive, anaerobic, 
rod‐shaped bacteria that share the ability to form endospores. C. botulinum, the causa‑
tive agent of the paralytic illness botulism, is defined by its ability to produce a potent 
neurotoxin, of which seven toxin types exist (A–G). Defining C. botulinum on the basis 
of this single phenotypic trait has resulted in phenotypic and genotypic heterogeneity 
within the species. Strains of C. botulinum can be subdivided into four distinct phenotypic 
groups, as also confirmed by phylogenetic analysis of the 16S rRNA gene. In addition to 

Locus tag Peptide biomarker DNA biomarker Protein function Specificity

YP_666268 GEVATDLTSPIEK GGTGAAGTGGCAAC 
TGATTTAACTTCAC 
CTATCGAAAAA

F0F1 ATP synthase 
subunit alpha

Specific to all 
subspecies

YP_667055 IAVNTFVDLGK ATTGCAGTAAATAC 
ATTTGTAGATTTAG 
GCAAA

Glutamate‐1‐
semialdehyde‐2, 
1‐aminomutase

Specific to all  
subspecies

ISQPGFFDELGAK ATCTCACAACCAGG 
GTTCTTTGATGAGC 
TTGGAGCTAAA

YP_666536 YSDCINTSIQMK TACTCAGATTGTAT 
CAATACATCAATTC 
AGATGAAG

Heat shock  
protein 90

Specific 
F. tularensis 
subsp. tularensis

YP_513194 ATVYTAYNNNP 
QGSVR

GCAACTGTATATAC 
AGCATACAATAATA 
ACCCACAAGGAAG 
TGTAAGA

Lipoprotein Specific 
F. tularensis 
subsp. 
holarctica

YP_667413 AICAAIDNAIK GCAATCTGTGCAG 
CTATTGACAATG 
CAATCAAA

Phospho‑ 
glyceromutase

Specific 
F. tularensis 
subsp. tularensis

YP_666911 SDFMIELDLQK TCTGACTTTATGAT 
TGAGCTTGATCTA 
CAGAAG

Preprotein 
translocase subunit 
SecA

Specific to all 
subspecies

TPLIISGASDDR ACACCACTTATCAT 
ATCAGGTGCCTCA 
GATGATAGA

Specific 
F. tularensis 
subsp. tularensis

YP_666257 LASATITEVDLSK CTAGCTAGTGCAA 
CTATTACAGAAGT 
GGATCTTTCTAAG

Ribosome‐binding 
factor A

Specific to all 
subspecies

YP_513533 EREVISEILAEK GAAAGAGAAGTAA 
TTTCTGAGATTTT 
AGCTGAAAAA

Shikimate kinase I Specific 
F. tularensis 
subsp. holarctica

YP_763652 ISGIDALEIAEK ATATCTGGGATAGA 
TGCTCTAGAAATA 
GCTGAGAAA

tRNA modification 
GTPase TrmE

Specific 
F. tularensis 
subsp. holarctica

Table 13.8 (Continued)



Tandem Mass Spectrometry Analysis as an Approach to Delineate Genetically Related Taxa 351

this heterogeneity, a number of the other Clostridium species share a close genetic 
relationship with each of these groups, and strains of species other than C. botulinum 
have been found to express the neurotoxin (e.g. C. barati, C. butyricum) (Al‐Shahib 
et al., 2010). The grouping of C. botulinum strains is summarized below.

Properties Group I Group II Group III Group IV

Toxin types A,B,F B,E,F C,D G
Disease host Human Human Animal/fish Unknown
Phenotype Proteolytic Non‐ proteolytic Non‐ proteolytic Proteolytic
Phylogenetically 
related species

C. sporogenes
C. tetani

C. butyricum
C. barati
C. beijerinkii
C. perfringens

C. novyi
C. haemolyticum

C. subterminale

13.16 Method

13.16.1 Strain Panel

Eight C. botulinum strains belonging to group 1 (Toxin A: NCTC 13319, NCTC 2916, 
NCTC 7272 and A HO6506; Toxin B: NCTC 751, NCTC 3807 and NCTC7273; Toxin 
F: NCTC 10281), one C. botulinum strain belonging to group 2 (Toxin E: NCTC 82660) 
and five C. botulinum strains belonging to group 3(Toxin C: NCTC 3723, MPRL 3493, 
NCTC 8549 and MPRL 4240 and Toxin D: NCTC 8265) were used. Thirteen non–C. 
botulinum strain (C. sporogenes: NCTC 275, NCTC 533 and NCTC 534; C. difficile: 
NCTC 630; C. butyricum: NCTC 7423; C. perfringens: NCTC 8238 and NCTC 3110; C. 
tetani: NCTC 5405; C. beijerinkii: NCTC 11920; C. hylemonae: DSM 15053; C. nexile: 
DSM 1787; C. subterminale: DSM 6970; C. ramosum: DSM 1402) were included.

13.16.2 Procedure for Whole Cell Protein Extraction

C. botulinum strains were cultured on C. botulinum isolation agar under anaerobic 
conditions at 37 °C for 48 h, whereas non–C. botulinum strains were grown under the 
same conditions but on fastidious anaerobic agar. From each culture, 1 × 10 μl of cells was 
inoculated into a 20 ml of Trypticase‐Peptone‐Glucose‐Yeast Extract Broth. The turbid‑
ity of the starting culture was adjusted to give an OD600 of approximately 0.3 before 
incubation under anaerobic conditions at 37 °C for 24 h. After ~24 h, when the OD600 
was measured to be ~ 2–2.5, 20 ml of culture was centrifuged at 10,000 g for 10 min at 
4 °C to harvest the cells. Broth supernatant was removed, and the cell pellets were 
washed with 1 ml 1× TE buffer containing a 1× protease inhibitor cocktail. The cells 
were centrifuged at 10,000 g for 10 min at 4 °C to re‐pellet the cells and the supernatant 
removed. The wash step was repeated twice. The cell pellets were treated with 1 ml of 
1× TE buffer containing 6 μg/μl lysozyme and a 1× protease inhibitor cocktail and incu‑
bated for 1 h at 37 °C on a heating block. Cells were collected by centrifugation at 8000 g 
for 10 min at 4 °C and the supernatant removed. The cell pellets were washed with 1 ml 
1× TE buffer containing a 1× protease inhibitor cocktail. The cells were centrifuged at 
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10,000 g for 10 min at 4 °C to re‐pellet the cells and the supernatant removed. The wash 
step was repeated twice. The pellet was re‐suspended in 100 μl of a solubilization 
cocktail (30 mM Tris‐Cl pH 8.5, 7 M Urea, 2 M Thiorurea, 4% CHAPS and 70 mM DTT), 
and solubilization allowed to occur for 30 min at room temperature. The suspension 
was clarified by centrifugation at 21,000 g for 30 min at 21 °C. Extracts were filtered 
through 0.2 μm anopore vectra spin filters by centrifugation at 8000 g and 4 °C, and the 
filtrate was transferred to fresh 1.5 ml tubes.

Viability studies were performed on all C. botulinum extracts. 15 μl of protein extract 
was re‐suspended in 15 ml nutrient broth and on nutrient agar and incubated at 37 °C 
for 7 days. 15 μl of broth was plated onto nutrient agar and incubated at 37 °C for 48 h. 
All plates and broths were examined for growth that resembles that of C. botulinum. 
Only samples that show negative growth were analyzed by 1D PAGE.

Three biological replicates were prepared for 1D PAGE analysis.

13.16.3 One‐Dimensional SDS‐PAGE and In‐Gel Digestion of Bacterial Proteins

The procedure was as described for B. anthracis with the following deviation: 10 μg of 
protein extract was run on a 4%–12% Bis‐Tris gel, and each lane was cut into 12 bands 
that were in‐gel digested with trypsin as described.

13.16.4 1‐D Nanoflow LC‐MS/MS, Data‐Dependent and Targeted MS Analysis

Digested peptides were separated online by RP HPLC on an Ultimate 3000 (Dionex, UK). 
All LC‐MS/MS experiments were performed on a Thermo Finnigan LTQ Orbitrap equipped 
with a nanoelectrospray ion source and nano‐LC pico‐tip (20 um ID 10 um tip diameter).

Separations were performed on a nano analytical C18 column (75 μm id × 15 cm, 3 μm) 
using a 45‐min linear gradient of 5% to 45% solvent B (90% CH3CN/0.1% formic acid) 
versus solvent A (2% CH3CN/0.1% formic acid), then to 90% B for an additional 5 min. 
Data was acquired in data‐dependent mode using the Thermo Finnigan Xcalibur soft‑
ware (version 2.0.6). The precursor ion scan MS spectra (m/z 440–2000) were acquired in 
the Orbitrap with a resolution R = 60000 at m/z 400 with the number of accumulated ions 
being 5 × 105. The six most intense ions detected in the preceding survey scan were dynam‑
ically selected and subjected to CID in the linear ion trap to generate MS/MS spectra.

13.16.5 Bioinformatic Workflow for Biomarker Detection

MS data was generated in the form of.RAW files which contain all the spectra detected 
from the LC‐MS/MS analysis for each sample were used. Each replicate was examined 
separately. The database search algorithms Mascot and Sequest Bioworks version 3.3 
were used. The same parameters were applied for both algorithms and used to search 
against the NCBInr database. In silico trypsin digestion of protein sequences in the 
database was implemented in Mascot and Sequest. Search parameters were set for 
carbamidomethylation of cystine, oxidation of methionine, missed cleavage sites = 2 
and a peptide mass tolerance ± 10 ppm. When using Mascot, sequences that had the 
specific Mascot score >20 were reported. A decoy database was used to calculate the 
FDR in both Mascot and Sequest. The decoy and target databases were concatenated, 
and the FDR was then calculated on the basis of the true and false positive identifications. 
The output from each algorithm was analyzed, scripts were used to remove duplicate 
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peptides from each replicate, and the data converted to the FASTA format. For each 
replicate, BLASTp in WU‐BLAST 2.0 was adjusted for short sequences and used to 
identify specific markers. For each BLASTp output, if the description states C. botulinum, 
the script looks for 100% sequence identity to the query sequence. If this is satisfied, 
then the length of the query sequence is determined, and an exact match in the alignment 
is searched. A search for any match in output is then made, and if there are no conflicts, 
the results indicate the presence of a biomarker. Peptides identified from each replicate 
were compared to find the peptides conserved among all three replicates. To ensure 
that the peptides are unique to C. botulinum and not any other species, a comparison of 
peptides was made between C. botulinum and non–C. botulinum species. The peptides 
that were shared with these strains were eliminated, and a refined list of markers was 
produced. A consensus of toxin‐specific and group‐specific peptides was produced by 
comparing the biomarkers identified by both search algorithms.

13.16.6 Procedure for DNA Extraction

Additional strains were included in the DNA panel (C. barati, C. haemolyticum, 
C. subterminale and C. novyi). For these and the non–C. botulinum strains listed in the 
strain panel, DNA extracts were prepared using the ZYMO Bacterial/Fungal DNA 
extraction kit following the manufacturer’s instructions.

For C. botulinum strains in the strain panel, the following steps were performed. 
Broth cultures were prepared as described for the whole cell protein extraction. 1 ml of 
the broth culture was taken and transferred to a 1.5 ml microcentrifuge tube. The tube 
was centrifuged at 8000 g for 10 min and the supernatant removed. DNA extraction 
was performed on the cell pellets using the Maxwell® 16 system. Viability studies were 
performed on the DNA extract as described for the whole cell protein extract.

13.16.7 Genetic Validation of Peptide Biomarkers

Candidate biomarkers for various C. botulinum strains were split into three groups 
depending on which phenotypic/phylogenetic cluster they were found to correspond to 
on the basis of the BLASTp output:

Group 1: Proteolytic C. botulium toxin types A, B and F
Group 2: Non‐proteolytic C. botulium toxin types B, E and F
Group 3: C. botulium toxin types C and D

Due to the broad genetic diversity within the genus Clostridia and the diversity 
between C. botulinum strains derived from different phylogenetic clusters, strains in 
the test panel were divided into different PCR groups for genetic validation studies. 
These PCR groups were based on the phylogenetic cluster the C. botulinum strains in 
the test panel were derived from and the non‐ C. botulinum strains that were most 
closely related to them (see Table 13.9).

These PCR groups were as follows:

PCR group 1: Group 1 C. botulinum strains, C. sporogenes and C. tetani
PCR group 2: Group 2 C. botulinum strains, C. perfringens, C. butyricum, C. barati and 

C. beijerinkii
PCR group 3: Group 3 C. botulinum strains, C. novyi and C. haemolyticum



Table 13.9 Primer sequences used for group‐specific PCR amplification and DNA sequencing of each target biomarker region.

Target 
biomarker

Approximate 
amplicon size (bp) Primer sequences

PCR group 1
YP_001255947 490 YP_001255947_F 5′‐ ACT WCC ART AGC TAT MCC WAA TGG ‐3′

YP_001255947_R 5′‐ CCW GTY TTR CCT TCC TTA CG ‐3′
YP_002805802 150 YP_002805802_F 5′‐ CTA CAG TAA GAC CTG GTG TTA TGG ‐3′

YP_002805802_R 5′‐ CCA CCA GAT ACR ATA AAG TCT GC ‐3′
YP_002802667 140 YP_002802667_F 5′‐ CAG CTA TAG GAG TAG GAC CTG G ‐3′

YP_002802667_R 5′‐ CAA TTA CTG ATT GYT CYG AKG C ‐3′
YP_002863717 680 YP_002863717_F 5′‐ AGA TGA YGC WGC AGG ATT AGC ‐3′

YP_002863717_R 5′‐ GTT WGC TTG WGC AAG CAT WGC ‐3′

PCR group 2
YP_001922388 570 YP_001922388_F 5′‐ ACA AGC TGG TWT AGC TGG AGC ‐3′

YP_001922388_R 5′‐ TTC CAC CTA CTG CTG TRA ATT CTC C ‐3′
YP_001307555 750 YP_001307555_F 5′‐ AGA VGT AGT TAT WGY AAG YGC ‐3′

YP_001307555_R 5′‐ ATW CCT GAW GCA TTA CCW GC ‐3′
YP_001922189 220 YP_001922189_F 5′‐ ATW GCT TAY GAA CCA ATC TGG ‐3′

YP_001922189_R 5′‐ AGC TCC ACC AAC TAA WGC ‐3′

PCR group 3
ZP_02620662 520 ZP_02620662_F 5′‐ GGA TGT MGK GAA AAR CCT AGA GG ‐3′

ZP_02620662_R 5′‐ CWA CAT TYC CAC AWC YAA ATA TTC C ‐3′
YP_878395 350 YP_878395_F 5′‐ AGA TTT CAA AGG CGT TTG GGT ATT CG ‐3′

YP_878395_R 5′‐ CCA GTK TGT AAT CTW GCW GC ‐3′
ZP_04863386 470 ZP_04863386_F 5′‐ CAG GAC TTG GWG CTA TWG G ‐3′

ZP_04863386_R 5′‐ CTC ATA GCT GCA TAA ACW CC ‐3′
ZP_04863198 560 ZP_04863198_F 5′‐ ATG TCT TAG CCA AAA ATG GAA GG ‐3′

ZP_04863198_R 5′‐ AGC ACA TCC GTC AAA TTS TTG C ‐3′
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For each candidate peptide, the nucleotide sequence of a group 1 marker was obtained 
from the fully sequenced C. botulinum toxin type A. (ATCC 3502) genome (Genbank 
Accession AM412317.1) in FASTA format. For group 2, the fully sequenced C. botuli-
num E3 str. Alaska E43 and C. botulinum B str. Eklund 17B genomes (Genbank Accession 
CP001078.1 and CP001056.1, respectively) were used. For group 3, the fully sequenced 
genomes C. botulinum C str. Eklund and C. botulinum D str. 1873 (Genbank Accession 
ABDQ00000000 and ACSJ00000000, respectively) were used. For each candidate pep‑
tide, nucleotide sequences of the corresponding protein were obtained from publicly 
available genome sequences for members of each PCR group (described above) in 
FASTA format (Genbank Accession: Group 1: CP000726.1, AM412317.1, CP000727.1, 
CP001581.1, CP000962.1, CP000939.1, CP001083.1, CP002011 and CP000728.1; 
Group 2: CP001056.1 and CP001078.1; Group 3: ABDQ00000000, ACSJ00000000, 
ACSC00000000, ABDO00000000, CP000721.1, AM180355.1, CP000382.1, CP000246.1, 
CP000312.1, BA000016.3, AE015927.1, ABDT00000000, ACOM00000000 and ABKW‑ 
00000000). Nucleotide sequences were translated into their corresponding amino acid 
sequence in Bioedit v7.0.4.1 software. The peptide biomarker was aligned with the 
protein sequences using the multiple alignment algorithm clustalW as implemented in 
Bioedit v7.0.4.1 software. The aligned protein sequences were back‐translated to the 
corresponding nucleotide sequence and the consensus sequence of the alignment 
determined. PCR primers were designed as described for B. anthracis. PCR and direct 
sequencing were performed as described for B. anthracis using the primers listed in 
Tables  13.5, 13.6). Sequences trace files were analyzed and alignments for each bio‑
marker produced as described for B. anthracis.

The resulting alignments were manually analyzed in nucleotide and amino acid 
sequence format to determine if:

1) The peptide biomarkers were unique to a specific toxin type or phylogenetic 
group.

2) The biomarkers were genetically stable (e.g. the DNA sequence of the biomarker 
contains no silent mutations in the species of interest).

13.17 Summary of Results

Group 1: 6 group‐specific peptide biomarkers (1 biomarker specific to toxin type A)
Group 2: 153 group‐specific peptide biomarkers (53 biomarkers specific to toxin 

type E)
Group 3: 3 group‐specific peptide biomarkers (43 specific to toxin type D and 1 specific 

to toxin type C) (Table 13.10).

13.18 Burkholderia pseudomallei and B. mallei

The genus Burkholderia refers to a group of virtually ubiquitous gram‐negative, motile, 
obligately aerobic rod‐shaped bacteria. B. pseudomallei, an environmental saprophyte, 
is endemic to southeast Asia and northern Australia and the causative agent of the fatal 



Table 13.10 A summary of C. botulinum toxin‐specific and group‐specific markers that were genetically validated by PCR and direct sequencing (* = no suitable primer 
region found, § = experimentally validated stable marker, † = genetically stable by in silico analysis, ◊ = silent mutations present, ‡ = PCR amplification/sequencing not 
achieved for all relevant C. botulinum strains).

Locus tag Peptide biomarker DNA biomarker Protein function Specificity

Group 1
YP_001255947§ ALVNNMVTGVNEGYVK GCTTTAGTAAACAACATGGTAACA 

GGAGTTAATGAAGGATACGTTAAA
Ribosomal protein L6 Specific to toxin type A

YP_002805802†‡ VALSEDEIR GTAGCATTAAGTGAAGATG 
AGATTAGA

Electron transfer flavoprotein, 
alpha subunit/FixB family protein

Specific to group 1

YP_002802667†‡ MAVSSVVLSK ATGGCTGTAAGCTCAGTGGTA 
CTTTCTAAA

Aldehyde‐alcohol dehydrogenase Specific to group1

YP_002863717 ◊ LEHTIANLDNSAENL 
QAAESR

TTAGAACACACAATAGCAAACT 
TAGATAATTCAGCTGAAAACTTA 
CAAGCAGCGGAATCAAGA

Flagellin Specific to group 1

Group 2
YP_001922388§ LTADSITTLDGIK TTAACAGCGGATTCAATAACAAC 

ACTTGATGGAATAAAA
Cell wall binding repeat protein Specific to toxin type E

YP_001307555§ FKDEIVPVMIPQR TTTAAAGATGAAATAGTTCCAGT 
TATGATTCCACAAAGA

acetyl‐CoA acetyltransferase Specific to group 2

YP_001922189§ QANETILAIR CAAGCTAATGAAACAATATTA 
GCAATCAGA

Triosephosphate isomerase Specific to group 2

Group 3
ZP_02620662‡ DIVILGSGDVALLMAR GATATAGTTATTTTAGGTTCGGGTG 

ATGTGGCACTGCTTATGGCACGA
Sarcosine oxidase alpha subunit Specific to toxin type C

ZP_04863386‡ LVIGTLQGR TTAGTTATAGGAACATTAC 
AAGGAAGA

Purine nucleoside phosphorylase 
I, inosine and guanosine‐specific

Specific to toxin type D

ZP_04863198‡◊ IDVPEGTDPLYR ATTGACGTTCCAGAAGGAACAGA 
TCCATTATATAGA

(R)‐2‐hydroxyglutaryl‐CoA 
dehydratase subunit beta

Specific to group 3

YP_878395‡◊ LGVELTAVLLGNK CTAGGAGTAGAATTAACTGCAGT 
TTTACTTGGAAATAAG

Electron transfer flavoprotein Specific to group 3
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human and animal disease melioidosis. Unlike B. pseudomallei, the closely related 
species B. mallei is not an environmental pathogen, and its ability to survive in the 
environment is limited. B. mallei is the causative agent of glanders, a disease most 
commonly affecting equids. B. pseudomallei and B. mallei are genetically very similar, 
sharing more than 99% 16S rRNA sequence identity and can be difficult to distinguish. 
Both species are characterized by the United States Centres for Disease Control as a 
category B biowarfare agent. These organisms are less familiar to medical and labora‑
tory personnel compared to other biothreat agents such as Yersinia pestis, Bacillus 
anthracis and Francisella tularensis, and both organisms have many features that 
make them attractive candidates for bioterrorism such as their ability to enter via the 
inhalation route, severity of disease and the fact that there is no vaccine available. 
B. thailandensis is a non‐virulent closely related species to B. pseudomallei, sharing 
similar biochemical profiles.

13.19 Method

13.19.1 Strain Panel

Four B. pseudomallei strains NCTC 4845, 1688 and wild‐type 204, one B. mallei 
strain NCTC 12938, one B. thailandensis strain DSM 13276 and representatives of the 
B. cepacia complex (B. cepacia LMG 2161, B. multivorans LMG 13010, B. cenocepacia 
LMG 18863, LMG 16604, LMG 212161, B. stabilis LMG 14294, B. vietnamiensis LMG 
10929, B. dolosa LMG 18941, B. ambifaria LMG 11351, B. anthina LMG 20983, 
B. pyrrocinia LMG 14191 and B. gladiola NCTC 12378) were used.

13.19.2 Procedure for Whole Cell Protein Extraction

Isolates were grown on nutrient agar plates for 48 h at 30 °C. 2 × 10 μl loops of cells were 
re‐suspended in 100 μl of distilled water. Samples were boiled for 1 h in a water bath and 
cooled to room temperature.

Viability was determined for boiled extracts of B. pseudomallei and B. mallei by 
taking 10 μl of the extract, plating onto nutrient agar, and inoculating 20 ml of nutrient 
broth with 10 μl of boiled extract. Broths and agar were incubated at 30 °C for 48 h and 
observed for growth. 10 μl of the incubated broths was plated onto nutrient agar and 
incubated at 30 °C for 48 h. Samples were stored at −20 °C until the viability test was 
confirmed as negative.

Cells were harvested from boiled extracts by centrifugation at 8000 g for 10 min at 
4 °C. Supernatant was removed, and the cell pellets were washed with 500 μl 1× TE 
containing 1× protease inhibitor cocktail. Cells were harvested by centrifugation at 
8000 g for 10 min at 4 °C. The cell pellets were re‐suspended in 500 μl 1× TE containing 
1× protease inhibitor cocktail and 6 mg/ml lysozyme and incubated at 37 °C for 1 h. 
Cells were harvested by centrifugation at 8000 g for 10 min at 4 °C and the supernatant 
removed. The pelleted cells were washed using 500 μl 1× TE containing 1× protease 
inhibitor cocktail and the cells collected by centrifugation at 8000 g for 10 min at 4 °C. 
Supernatant was removed, and the wash step was repeated twice. 500 μl of lysis solution 
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(7 M urea, 2 M thiourea, 4% CHAPS, 20 mM Tris, 70 mM DTT) was used to re‐suspend 
the cell pellet, and glass beads were added to approximately a third of the volume. The 
cells were lysed for 60 s using the Fast Prep system. Unbroken cells were collected by 
centrifugation at 21,000 g for 30 min at 21 °C, and the supernatant was collected and 
transferred to fresh 1.5 ml tubes.

13.19.3 One‐Dimensional SDS‐PAGE and In‐Gel Digestion of Bacterial Proteins

The procedure was as described for C. botulinum.

13.19.4 One‐Dimensional Nanoflow LC‐MS/MS, Data‐Dependent  
and Targeted MS Analysis

The procedure was the same as that described for C. botulinum.

13.19.5 Bioinformatic Workflow for Biomarker Detection

The procedure was the same as that described for C. botulinum.

13.19.6 Procedure for DNA Extraction

DNA extracts were prepared using the ZYMO Bacterial/Fungal DNA extraction kit 
following the manufacturer’s instructions. Strains belonging to B. mallei and B. pseu-
domallei were boiled, and viability studies were performed as described for the whole 
cell protein extraction before carrying out a DNA extraction on the cell pellet.

13.19.7 Genetic Validation of Peptide Biomarkers

The procedure was as described for B. anthracis, with the following exceptions:

1) The fully sequenced genome B. pseudomallei 668 and B. mallei ATCC 23344 
(Genbank Accession: CP000570.1and CP000011.1, respectively) was used for 
obtaining the nucleotide sequence of the peptide biomarker for B. mallei and 
B. pseudomallei, respectively.

2) Nucleotide sequences of the corresponding protein sequences were taken 
from fully sequenced genomes belonging to B. ambifaria (Genbank Accession: 
CP000440.1 and CP001025.1), B. cenocepacia (CP000378.1, CP000458.1, 
AM747720.1 and CP000958.1), B. mallei (Genbank Accession: CP000011.1, 
CP000545.1, CP000547.1 and CP000525.1), B. multivorans (Genbank Accession: 
CP000869.1 and AP009387.1), B. pseudomallei (Genbank Accession: CP000572.1, 
CP000124.1, CP000570.1 and BX571965.1), B. thailandensis (Genbank Accession: 
CP000085.1) and B. vietnamensis (Genbank Accession: CP000616.1) (See 
‘Summary of Results’, Table 13.11 and Table 13.12).

3) The procedure for PCR and direct sequencing was performed as described for 
B. anthracis using the primers listed in Table 13.7 and DNA from strains belonging 
to the Burkholderia strain panel.



Table 13.11 Primer sequences used for PCR amplification and DNA sequencing of each target biomarker region.

B. mallei

Locus tag
Approximate 
amplicon size (bp) Primer sequences

YP_103702 310 YP_103702_F
YP_103702_R

5′‐ GAA CAT CCC GAC CTA CCT GAT ‐3′
5′‐ GTS GCG AGC TTC AGC TTG AA ‐3′

YP_104460 330 YP_104460_F
YP_104460_R

5′‐ GCG AAT ACG ARC ACA TYT CG ‐3′
5′‐ CTT CTG GTT GAT GAT CGY GTC G ‐3′

YP_104003 400 YP_104003_F
YP_104003_R

5′‐ ATG AAG ATT GCG ATT GCY GG ‐3′
5′‐ ARC TTC AKC GTG ACG TTS ACG ‐3′

B. pseudomallei
YP_001066449 160 YP_001066449F

YP_001066449R
5′‐ GGR CAT GCT GTT CTT CAC C ‐3′
5′‐ TCG TSG CGT ACY GRT ACA GG ‐3′

YP_001075630 170 YP_001075630F
YP_001075630R

5′‐ GTC GCT CGA CAA GGT GAT GG ‐3′
5′‐ TTC AGG TAA TAS AGA TAC TCS GC ‐3′

YP_001061921 400 YP_001061921F
YP_001061921R

5′‐ GCS ATC AAC GGC TAY GCG ATG G ‐3′
5′‐ AAC AGR TCG ACG AAG CGY TCG ‐3′

YP_001061919 550 YP_001061919F
YP_001061919R

5′‐ ATG ATG GGY GCG AAG AAY CAY GC ‐3′
5′‐ ATC GGR ATG TTG ATS CCR ACC TGG ‐3′

YP_001074630 210 YP_001074630F
YP_001074630R

5′‐ TAC GAR ATC TAC ATG GTB KCS GAC G ‐3′
5′‐ TTG TGV ASC ATC GTG TAC G ‐3′

YP_001060796 410 YP_001060796F
YP_001060796R

5′‐ ATC GCG RSG AAY CTG CTG AAG G ‐3′
5′‐ TCY TCT GRC CGA TCG CRT CG ‐3′
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13.20 Summary of Results

Table 13.12 Summary of B. mallei– and B. pseudomallei–specific peptides subjected to PCR and direct 
sequencing (* = no suitable primer region found, § = genetically stable marker, † = genetically stable by 
in silico analysis, ‡ = amplification not achieved for all B. pseudomallei strains). Markers were not found 
to contain any silent mutations by in silico analysis.

B. mallei

Locus tag Peptide biomarker DNA biomarker Protein function

YP_103702§ SIINDPIVNIAR TCGATCATCAACGATC 
CGATCGTCAACATCG 
CGCGC

Bifunctional glucokinase/
RpiR family 
transcriptional regulator

YP_104460§ VLDALGNPIDGK GTGCTCGACGCGCT 
CGGCAATCCGATCG 
ACGGCAAG

ATP synthase subunit 
alpha

YP_104003§ TGSSQLGQDA 
GAFLGK

ACGGGCTCGTCGCA 
GCTCGGCCAGGACG 
CGGGCGCGTTCCTC 
GGCAAG

Dihydrodipicolinate 
reductase

B. pseudomallei
YP_001075502* AAAAQPVLTVR GCGGCGGCGGCGCA 

GCCGGTGCTGACCG 
TTCGC

Hypothetical protein

YP_001064058* AFADAILQAAHL GCGTTCGCCGACGCG 
ATCCTGCAGGCCGCG 
CACCTG

Alpha/beta hydrolase 
family protein

YP_001066449§ DNLGQAVVG 
GIVTGR

GACAATCTGGGGCAG 
GCCGTGGTGGGCGG 
GATCGTCACCGGTCGG

Hypothetical protein

YP_001075630‡ IDLGLAPTPPR ATCGACCTCGGGCTC 
GCGCCCACGCCGC 
CGCGC

Hypothetical protein

YP_001075510* IDPVAIEAAIGR ATCGATCCGGTCGC 
GATCGAAGCCGCGAT 
CGGCCGT

Putative nucleoside 
2‐deoxyribosyltransferase

YP_001061921‡ IGLVEEVVDAGR ATCGGCCTCGTCGAG 
GAGGTGGTCGACGC 
CGGCCGC

Enoyl‐CoA hydratase

YP_001061919‡ VNAGAEAGTD 
VGPLVSR

GTCAACGCGGGCGCG 
GAAGCGGGCACCGAC 
GTCGGCCCCCTG 
GTGTCGCGC

Methylmalonate‐
semialdehyde 
dehydrogenase

VLGLIETGEQEGAR GTGCTCGGCCTCATC 
GAGACCGGCGAACA 
GGAAGGCGCGAGG

YP_106976* VLVVIDTAYIR GTGCTGGTGGTTATC 
GACACGGCTTACAT 
CAGG

Hypothetical protein



Tandem Mass Spectrometry Analysis as an Approach to Delineate Genetically Related Taxa 361

13.21 Biomarker Detection Sensitivity and Quantification

Using B. anthracis as a model, peptide biomarkers were verified and their absolute 
quantifications were obtained using their corresponding stable isotope‐labelled 
peptides as internal standards. It was expected that the retention time and fragmen‑
tation pattern of the native peptide would be identical to that of the corresponding 
stable isotope‐labelled standard peptide producing highly specific and highly sensi‑
tive analysis.

13.22 Method

Four peptide markers from the panel of Bacillus anthracis–specific peptide biomarkers 
were selected for further verification and quantification and are shown below:

 ● SADLVQGL[C13N15]VDDAVEK
 – SADLVQGLVDDAVEK

 ● MDVDML[C13N15]SNR
 – MDVDMLSNR

 ● AIGAEL[C13N15]DQLVK
 – AIGAELDQLVK

 ● LVSIGEL[C13N15]QPDGNR
 – LVSIGELQPDGNR

YP_001074630§ DTYDAVMTLVK GACACGTACGACGCG 
GTGATGACGCTCG 
TGAAG

Hydrolase, 
isochorismatase family

YP_001060796‡ DVFDAALLEQAPR GACGTGTTCGACGCG 
GCCCTCCTCGAGCA 
AGCGCCGCGC

Dehydrogenase

YP_001075559* LTPIPLLLVHGPNA CTCACGCCGATTCCG 
TTGCTGCTCGTGCAT 
GGGCCGAACGCC

Universal stress family 
protein

VLFATDGSPIAAR GTGCTGTTCGCGACC 
GACGGCAGCCCGATC 
GCCGCGCGC

WVEGSVSEPLLAR TGGGTCGAGGGCAG 
CGTGTCCGAGCCGCT 
GCTCGCGCGG

YP_001062606* VDVTVETAIVDLAK GTCGACGTGACCGTC 
GAAACGGCGATCGTC 
GATCTCGCGAAG

Universal stress family 
protein

Locus tag Peptide biomarker DNA biomarker Protein function

Table 13.12 (Continued)
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Five B. anthracis strains (NCTC 109, NCTC 2620, NCTC 5444, NCTC 7752 and 
NCTC 7753) and four reference strains representing the B. cereus group of species 
(B. cereus NCTC 11143, B. thuringiensis DSM 2046, B. weihenstephanensis DSM 11821 
and B. mycoides NCTC 7586) were used for assessing the sensitivity and specificity of 
biomarker detection.

13.22.1 Preparation of Stable Isotope‐Labelled Peptides

Stable isotope‐labelled internal standard peptides were commercially synthesized 
and supplied >95% pure in 5 × 1 nmol quantities and kept at −80 °C until use. 
A 5 pmol/μl stock solution was prepared by dissolving in 20 μl of 10% (v/v) aqueous 
formic acid to which 180 μl of 0.1% (v/v) aqueous formic acid was then added and 
gently swirled to mix. A working solution containing 1 pmol/μl of each internal 
standard peptide was prepared by combining the stock solutions and diluted using 
0.1% aqueous formic acid.

13.22.2 Preparation of Samples for Absolute Quantification

Protein concentration for extracts was determined by the Bradford assay using BSA 
as a standard. Protein extracts (10 μg) were separated on 4%–12% SDS/PAGE gels 
and stained with Coomassie blue. Each gel lane was excised into 12 pieces and 
destained with 50% (v/v) methanol for 3 × 20 min, dehydrated using 100% acetoni‑
trile for 10 min and dried for 5 min. Gel pieces were rehydrated and proteins reduced 
by addition of 10 mM DTT and subsequently alkylated by addition of 55 mM 
iodoacetamide. In‐gel digestion of proteins was performed with 50 μl (10 ng μl−1) of 
porcine trypsin containing isotope‐labelled internal standards (60 fmol μl−1) over‑
night at 37 °C. Tryptic peptides were extracted with aqueous TFA (0.1%, v/v, 50 μl) 
for 1 h with gentle agitation. The TFA (0.1%, 50 μl) extraction step was repeated. 
Extracts from the two TFA (0.1%) extractions were combined and stored at −80 °C 
until further analysis.

13.22.3 One‐Dimensional Nanoflow LC‐MS/MS, Data‐Dependent MS Analysis

NanoLC‐MS/MS analysis was performed in triplicate using the method described 
 previously. However, the following deviations were used:

1) Analytical separation was achieved on a RP nano‐column C18, 75 um i.d. × 15 cm at 
a flow rate of 0.3 μl min−1 as described previously, but with a gradient of 10%–40% 
acetonitrile in 45 min, increased to 90% acetonitrile and held for 7 min before it 
returned to the initial condition of 10% acetonitrile.

2) The precursor ion scan was acquired (m/z 440–2000).

13.22.4 Data Analysis

The native peptide and its corresponding isotope‐labelled internal standard were 
observed in the extracted ion chromatograms as peak doublets with the same retention 
(Figure 13.2) time but separated by a mass of ∆m = 3.5 (doubly charged product ions; 
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Table 13.13). Quantification was done manually from nanoLC‐MS/MS data after inte‑
grating the pair of peaks for the isotope‐labelled internal standard and its native coun‑
terpart in an extracted ion chromatogram (see Figure 13.5). Baselines were manually 
and carefully adjusted to obtain the most accurate area under the peak. The extracted 
ion chromatogram can be obtained by extraction of a specific mass. Native peptide 
levels were subsequently quantified by multiplying the ratios of the areas under the 
curve for each respective peak doublet by the known amounts of isotope‐labelled pep‑
tide standards added (Table 13.14).

13.23 Summary of Results

Sensitivity testing was also performed for C. botulinum. Two peptide biomarkers spe‑
cific to Group I Clostridium botulinum strains (Type A, B and F) were used:

 ● EAEYIF[C13N15]GNFGK
 – EAEYIFGNFGK

 ● YANIADYL[C13N15]SLGGK
 – YANIADYLSLGGK

In addition, three Clostridium botulinum strains (toxin type A: NCTC 13319; toxin 
type B: NCTC 3807; toxin type C NCTC 2510) and three non‐botulinum Clostridium 
strains (C. sporogenes: NCTC 275; C. difficile: NCTC 630; C. tetani: NCTC 5405) were 
also included (Table 13.15).

Samples were processed and analyzed as previously described for B. anthracis. 
However, the native peptide and its corresponding isotope‐labelled internal stand‑
ard were observed in the extracted ion chromatograms as a peak doublets with the 
same retention time but separated by a mass of ∆m = 3.5 for the peptide pair 
YANIADYL[C13N15]SLGGK and YANIADYLSLGGK and ∆m = 5.0 for the peptide 
pair EAEYIF[C13N15]GNFGK and EAEYIFGNFGK.

Table 13.13 Selected peptides, their corresponding stable isotope‐labelled standard peptides 
and retention time.

Peptide
Monoisotopic mass 
of the peptide

Product ion 
[M + 2H]2+ (m/z)

Retention 
Time (min)

MDVDMLSNR 1080.5 540.8 16.8
MDVDML*SNR 1087.5 544.2
AIGAELDQLVK 1156.7 578.8 22.2
AIGAEL*DQLVK 1163.7 582.3
LVSIGELQPDGNR 1397.7 699.4 18.4
LVSIGEL*QPDGNR 1404.7 702.9
SADLVQGLVDDAVEK 1558.8 779.9 27.4
SADLVQGL*VDDAVEK 1565.8 783.4

* 13C and 15N labelled amino acid leucine (L*). Mass increase 7 Da (e.g., six 13C plus one 15N) in comparison 
with standard amino acid.
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Figure 13.5 Four extracted ion chromatograms and MS/MS product ions of selected native peptides (in red) and the 
corresponding stable isotope‐labelled standard peptides (in black) detected in B. anthracis protein extract. (A) Peptides 
MDVDMLSNR and MDVDML*SNR, (B) peptides AIGAELDQLVK and AIGAEL*DQLVK, (C) peptides LVSIGELQPDGNR and 
LVSIGEL*QPDGNR, and (D) peptides SADLVQGLVDDAVEK and SADLVQGL*VDDAVEK.
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13.24 Assay Sensitivity in Relation  
to Bacterial Cell Numbers

The capture and lysis of low‐abundant cells was investigated to determine if proteins 
could be detected from samples with lower cell counts. Water represents a possible 
contamination source for many of these high‐risk pathogens and was used as a back‑
ground matrix for preliminary studies.

13.24.1 Method

C. sporogenes NCTC 275 was used as a test organism for developing and optimizing the assay.

13.24.2 Preparation of Cell Dilutions

C. sporogenes NCTC 275 was grown as described previously for C. botulinum.
The number of cells in 20 ml of broth with an OD600 2–2.5 was determined by diluting 

1 ml broth 1000‐fold and determining the number of cells in 10 μl using a haemocytome‑
ter. An OD600 range 2–2.5 was calculated as corresponding to ~1.3 × 1010–1.86 × 1010 C. 
sporogenes cells in a 20 ml broth. Cells were pelleted by centrifugation at 8000 g for 10 min 
and washed with distilled water three times to remove broth. Te pelleted cells were re‐sus‑
pended in 1 ml distilled water to be used as the background matrix (the total number of 
cells ranged from 1.3 × 1010 to 1.86 × 1010 as shown above, which was calculated to pro‑
duce ~299 μg of protein material based on a Bradford assay of whole cell extracts of this 
strain). A serial dilution of re‐suspended cells: 10−1–10−10 (100 μl in 1 ml) was prepared.

13.24.3 Cell Lysis Procedure

Four different approaches were investigated:

1) Boiling method: Samples boiled for 1 h 30 min.
2) Freeze/thawing: Freeze for 2 min, and thaw for 5 min for 3 cycles.

Table 13.14 Abundance of target peptides in selected B. anthracis strains. Each value is the mean 
value ± S.E. of three technical replicates.

B. anthracis strains

NCTC109 NCTC2620 NCTC5444 NCTC7752 NCTC7753

Abundance of selected peptides (pg) in 10 μg of protein extract

MDVDMLSNR 4.50 ± 0.23 8.24 ± 0.65 10.80 ± 1.05 12.65 ± 0.82 5.30 ± 0.11
AIGAELDQLVK 15.20 ± 0.24 47.44 ± 0.29 38.50 ± 0.52 77.12 ± 2.75 44.10 ± 1.01
LVSIGELQPDGNR 173.8 ± 6.85 423.3 ± 14.20 391.6 ± 27.89 548.4 ± 17.83 247.7 ± 4.45
SADLVQGLVDDAVEK 185.3 ± 40.65 210.6 ± 8.92 358.4 ± 2.63 307.6 ± 25.92 110.7 ± 8.43



Table 13.15 Selected peptides, their corresponding stable isotope‐labelled standard peptides, retention time and abundance of target peptides in selected 
Clostridium botulinum strains.

Peptide
Monoisotopic mass of the 
peptide Production [M + 2H]2+ (m/z)

Retention 
time (min)

C. botulinum strains

NCTC13319 NCTC3807

Abundance of selected peptides (pg) in 10 μg of 
protein extract

EAEYIFGNFGK 1273.6 637.8 22.7 37.8 ± 7.47 26.3 ± 7.77
EAEYIFΔGNFGK 1283.6 642.8
YANIADYLSLGGK 1383.7 692.9 26.2 1160.9 ± 5.62 623.8 ± 48.90
YANIADYL*SLGGK 1390.7 696.4

13C and 15N labelled amino acid leucine (L*). Mass increase 7 Da (e.g., six 13C plus one 15N) in comparison with standard amino acid. ∆ 13C and 15N labelled amino acid 
phenylalanine (FΔ). Mass increase 10 Da (e.g., nine 13C plus one 15N) in comparison with standard amino acid.
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3) Sonication: Six cycles of probe sonication for 30 s on and 30 s off at maximum power.
4) Pressure Cycling Technology (PCT) Barocycler treatment: PCT was conducted at 

35,000 psi for a total of 30 cycles, where each cycle consisted of 15 s at 35,000 psi and 
15 s at ambient pressure.

13.24.4 Capture of Cells and Protein Material

Samples were spun through Amicon Ultra 0.5 ml centrifugal filters with a molecular 
weight cut‐off of 3 kDa at 10,000 g to retain proteins and whole cells, and the filtrate 
was discarded. The filter column was treated with 500 μl standard lysis solution 
(SLS) for 30 min at room temperature and spun at 10,000 g until the solution ran 
through (SLS: 30 mM Tris‐Cl pH 8.5, 7 M Urea, 2 M Thiorurea, 4% CHAPS and 
70 mM DTT). The filter was washed with 100 μl SLS at 10,000 g until the solution 
ran through.

13.24.5 Trypsin Digestion on Filters

To remove salts and detergents, proteins captured were washed three times using 
ammonium bicarbonate buffer (100 mM, 500 μl × 3). Following each wash, the bicar‑
bonate buffer was removed by centrifugation (14,000 g, ~30 min × 3). To perform 
disulfide reduction, reducing buffer (200 μl) containing 100 mM dithiothreitol (DTT) 
in the ammonium bicarbonate buffer (100 mM) was added into to each filter column. 
Reduction was carried out at 60 °C for 1 h. Reduction was stopped by removing excess 
DTT by centrifugation (14,000 g, ~30 min). Sulfhydryl alkylation was performed by 
adding alkylation buffer (200 μl) containing iodoaceamide (100 mM) in the ammo‑
nium bicarbonate buffer (100 mM) to the filter column. Alkylation was carried out at 
room temperature, in the dark for 1 h. To stop the alkylation, excess of iodoaceamide 
was removed by centrifugation (14,800 g, ~30 min), which was followed by washing 
steps using the ammonium bicarbonate buffer (500 μl × 3, ~30 × 3 min). Digestion 
buffer containing trypsin (10 ng/μl) in the ammonium bicarbonate buffer containing 
acetonitrile (80:20, v/v) was freshly prepared prior to trypsin digestion. To each filter 
column, 30 μl of digestion buffer was added. Trypsin digestion was carried out in a 
37 °C incubator overnight. The filter columns were centrifuged at 14,000 g for ~30 min 
to collect tryptic peptides. Peptide samples were kept at −80 °C until nanoLC‐MS/MS 
analysis. Analytical separation was achieved on a RP nano‐column C18, 75 um i.d. × 
15 cm at a flow rate of 0.3 μl min−1 as described previously, but with a gradient of 
0%–25% acetonitrile in 54 min, increased to 50% acetonitrile in 37 min, then to 90% 
acetonitrile and held for 5 min before a return to the initial condition of 0% 
acetonitrile.

13.25 Summary of Results

So far, 10−6 to 10−10 dilution yielded no spectra from peptides derived from C. sporogenes, 
which could be due to too low cell numbers. 10−4–10−5 dilution yielded reasonably good‐
quality spectra from peptides derived from C. sporogenes. All lysis methods investigated 
yielded C. sporogenes proteins that were detected in the 10−5 dilution, which equates 
to ~105 cells. The results indicate that the sensitivity assay described is able to detect 
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peptides from ~105 cells in a matrix of water. On the basis of the protein concentration 
calculations for the whole cell extracts of C. sporogenes NCTC 275, 105 cells equates 
to ~2.99 ng of protein.

13.26 Spiked Samples

The specificity and sensitivity of the selected peptide markers were assessed by a spik‑
ing experiment using a serial dilution of a protein extract from the organism of interest 
spiked into a mixture of protein extracts from closely related members. This was tested 
with (1) B. anthracis and (2) C. botulinum samples.

13.27 Method

Protein extracts (10 μg) containing a serial dilution of B. anthracis NCTC 109 (2.0, 1.5, 
1.0, 0.75, 0.5, 0.25, 0.1 and 0.0 μg) in a background of B. cereus containing B. cereus, B. 
thuringiensis, B. weihenstephanensis and B. mycoides (1:1:1:1, w/w/w/w) were separated 
on 4%–12% SDS/PAGE gels, and in‐gel trypsin digestion was performed in the presence 
of isotope‐labelled internal standards (60 fmol μl−1) overnight at 37 °C, as described 
previously.

Protein extracts (10 μg) containing a serial dilution of C. botulinum type A strain 
NCTC 13319 (2.0, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1 and 0.0 μg) in a background of C. sporo-
genes and C. difficle were separated on 4%–12% SDS/PAGE, gels and in‐gel trypsin 
digestion was performed in the presence of isotope‐labelled internal standards (120 
fmol μl−1) overnight at 37 °C, as described in the previous section.

1‐D nanoflow LC‐MS/MS, data‐dependent MS analysis and data analysis were per‑
formed as described previously.

13.28 Summary of Results

For B. anthracis, none of the selected peptides was detected from the background 
protein mixture. Peptides LVSIGELQPDGNR and SADLVQGLVDDAVEK were 
detected when 0.1 μg of protein extract from B. anthracis NCTC109 was spiked into 
9.90 μg of B. cereus protein extracts with signal‐to‐noise ratios of 75 and 16, respec‑
tively (Figure  13.6). Peptides MDVDMLSNR and AIGAELDQLVK gave signal‐to‐
noises of 12 and 22, respectively, when 1.25 μg and 0.75 μg of protein extracts of B. 
anthracis NCTC109 were spiked into 8.75 μg and 9.25 μg of B. cereus protein extracts, 
respectively.

For C. botulinum, none of the selected peptides was detected from the background 
protein mixture. Peptide YANIADYLSLGGK was detected when 0.1 μg of protein 
extract from C. botulinum A NCTC13319 was spiked into 9.90 μg of C. sporogenes and 
C. difficle protein extracts with signal‐to‐noise ratios of 32. Peptide EAEYIFGNFGK 
gave a signal‐to‐noise ratio of 10 when 2.0 μg of protein extract from C. botulinum A 
NCTC13319 was spiked into a protein background containing 8.0 μg of protein extract 
from C. sporogenes and C. difficle (Table 13.18).
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Figure 13.6 Detection of peptide LVSIGELQPDGNR from 0.1 μg of protein extract from B. anthracis 
NCTC109 spiked into a background of 9.90 μg of protein extract from B. cereus (B. cereus, 
B. thuringiensis, B. weihenstephanensis and B. mycoides). (A) No selected peptide (LVSIGELQPDGNR) is 
detected in background of B. cereus; (B) Peptide LVSIGELQPDGNR is detected with a signal‐to‐noise 
ratio of 75; and (C) MS spectrum of peptide LVSIGELQPDGNR and its corresponding stable isotope‐
labelled peptide internal standard LVSIGEL*QPDGNR; and inset (D) is the extracted ion chromatogram 
of the internal standard peptide.
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13.29 Spiked Cells

Spiked cell samples were prepared in water using a 1 in 10 serial dilution (100 μl in 1 ml) 
of C. botulinum NCTC 13319 cells (starting material of ~108 cells) in a fixed back‑
ground of C. sporogenes NCTC 275 (1010 cells). These cell numbers equate to ~157 μg 
and 299 μg of protein material, respectively, based on previous calculations of the pro‑
tein concentration of whole cell extracts using a Bradford assay.

13.30 Method

1) Proteins were extracted using the procedure for whole cell protein extraction 
described for C. botulinum.

2) Protein extracts (10 μg) were separated on a 4%–12% Bis‐Tris gel, and in‐gel trypsin 
digestion was carried out in the presence of the internal standards described 
previously.

3) Data‐dependent MS/MS was performed using an exclusion list containing 500 
C. sporogenes peptides, in order to reduce the interference from C. sporogenes 
peptides.

13.31 Summary of Results

Peptide YANIADYLSLGGK was detected from the 10−2 dilution (~106 C. botulinum 
NCTC 13319 cells in the background of 1010 C. sporogenes NCTC 275 cells), which 
equated to ~1.57 μg of C. botulinum proteins in a total of ~1074 μg of protein material.

Peptide EAEYIFGNFGK was detected when 108 cells of C. botulinum NCTC 13319 
cells were spiked into a background of 1010 C. sporogenes NCTC 275 cells), which 
equated to ~157 μg of C. botulinum proteins against a background of 744 μg total 
protein content.

13.32 B. anthracis Spore Analysis

Purified heat‐inactivated spores were obtained for analysis of the spore proteome and 
detection of B. anthracis biomarkers.

13.33 Method

1) Protein extraction was performed using the PCT system under the same conditions 
described previously.

2) 10 μg of protein extract from the spores was separated on a 4%–12% Bis‐Tris gel, and 
in‐gel trypsin digestion was performed as described previously.
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13.34 Summary of Results

Overall, 113 Bacillus‐specific proteins (269 peptides) were identified. Of the 113, 10 
proteins (23 peptides) were identified as B. anthracis specific (Table 13.8 and Table 13.16).

13.35 Assay Sensitivity in Relation  
to Bacterial Spore Numbers

13.36 Method

1) Serial dilutions of spores in water (starting material ~109 spores, which was found to pro‑
duce ~375 μg of protein material) containing 108, 107, 106 and 105 spores were prepared.

2) Cell lysis was carried out using the PCT system as previously described.

Table 13.16 Summary of B. anthracis–specific peptides.

Protein names Peptide sequence

Inosine‐uridine preferring nucleoside 
hydrolase family protein [Bacillus anthracis 
str. A0488]

ATSNAAYLLQLAGR

Small, acid‐soluble spore protein B [Bacillus 
anthracis str. Ames]

LAVPGAESALDQMK
LVSLAEQQLGGFQK
YEIAQEFGVQLGADATAR

Hypothetical protein BA_1237 [Bacillus 
anthracis str. Ames]

AAALTVAQIS
FFLSLGTPANIIPGSGTAVR
IVPVELIGTVDIR
MFSSDCEFTK
SNVIGTGEVDVSSGVILINLNPGDLIR

Spore coat protein Z [Bacillus anthracis str. Ames] AGAPFEAFAPSANLTSCR
VESVDDDSCAVLR

Hypothetical protein BA_1173 [Bacillus 
anthracis str. Ames]

FIQQGADAVMK

30S ribosomal protein S7 [Bacillus anthracis 
str. Ames]

LANEILDAANNAGASVK

Hypothetical protein pxo1_137 [Bacillus anthracis] VPGIIIAVDK
Hypothetical protein BA_4189 [Bacillus 
anthracis str. Ames]

ANADLTLAEIV
VLYLEATSEK

Ribosome‐binding factor A [Bacillus anthracis 
str. Ames]

IDTLLHEINK
VGFVTVTDVQVSR

Hypothetical protein BAH_2616 [Bacillus 
anthracis str. A0442]

IEAIEALLT
ITTGSNNYAGTVSSVTCDVVK
LANSAGVVTVIISVCK

Hydrolase, alpha/beta fold family protein 
[Bacillus anthracis str. A1055]

ILQAAANEDVTK
LVLVDAVSPSFVK
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3) B. anthracis spores and proteins were captured using Amicon Ultra 0.5 ml centrifugal 
filters, and trypsin digestion was performed on filters as described previously.

4) Data‐dependent MS/MS was performed using two inclusive lists:
a) 269 Bacillus‐specific peptides
b) 24 B. anthracis–specific peptides

13.37 Summary of Results

A total six Bacillus‐specific proteins were identified from peptides derived from 105 B. 
anthracis spores (Table 13.17). On the basis of the protein content of an extract from 
~109 spores, 105 spores equates to ~37.5 ng of spore protein.

13.38 Summary of Results for Biomarker 
Detection Sensitivity

It is vital that any biomarker detection assay has high specificity and sensitivity as well 
as the ability to detect biomarkers from a range of sample types.

The table below (Table 13.18) summarizes the preliminary data for biomarker detec‑
tion in two model organisms (B. anthracis and C. botulinum). Various aspects were 

Table 13.17 Summary of B. anthracis–specific proteins and peptides that were detected from 105 
B. anthracis spores.

Protein names Peptide sequence

Hypothetical protein BAM_2606 [Bacillus 
anthracis str. A0465]

ITTGSNNYAGTVSSVTCDVVK

S‐layer protein EA1 [Bacillus anthracis str. 
Ames]

ADLYDTLTTK
AEAAQFIALTDK
ASAAVIFTK
DNAQAYVTDVK
INIGTVLELEK
LDLNVSTTVEYQLSK
LGDVTVSQTSDSALPNFK
LSADDVTLEGDK
TGVVAEGGLDVVTTDSGSIGTK
VYSDPENLEGYEVESK

Spore coat protein B [Bacillus thuringiensis str. 
Al Hakam]

VEGILQDVSCDFVTLIVK

Spore coat protein B [Bacillus cereus W] VGELVSLGK
Spore coat protein Z [Bacillus anthracis str. 
Ames]

VESVDDDSCAVLR

Hypothetical protein bthur0005_37820 
[Bacillus thuringiensis serovar pakistani str. 
T13001]

EVKPQQPAVCNVLASISVGTELSLLSVK



Table 13.18 Summary of results for biomarker detection sensitivity and quantification.

Results

Pathogen (strain) Biomarker Amount of protein from target organism (μg)
Biomarker abundance (pg) 
in 10 μg of protein

Bi
om

ar
ke

r d
et

ec
tio

n

B. anthracis (NCTC 109, NCTC 2620, 
NCTC 5444, NCTC 7752, NCTC 7753)

MDVDMLSNR 10 4.5–12.65
SADLVQGLVDDAVEK 10 15–77
AIGAELDQLVK 10 173–548
LVSIGELQPDGNR 10 110–358

C. botulinum group 1 (NCTC 13319 
toxin A, NCTC 3807 toxin B)

EAEYIFGNFGK 10 26–38
YANIADYLSLGGK 10 623–1161

Minimum ratio of whole cell protein extract 
(organism of interest/total protein) (μg) for 
biomarker detection

Biomarker detection  
limit (fg)

B. cereus group spiked with B. anthracis 
(NCTC 109) (protein extracts)

MDVDMLSNR 1.25/10 165
SADLVQGLVDDAVEK 0.1/10 107
AIGAELDQLVK 0.75/10 224
LVSIGELQPDGNR 0.1/10 198

C. sporogenes/difficile spiked with C. 
botulinum NCTC 13319 (protein 
extracts)

EAEYIFGNFGK 0.1/10 201
YANIADYLSLGGK 2/10 251

Minimum no. of cells required for biomarker 
detection

C. botulinum total protein 
abundance (μg) in spiked 
sample

C. sporogenes spiked with C. botulinum 
NCTC 13319 (cells)

EAEYIFGNFGK 108 157 μg
YANIADYLSLGGK 106 1.57 μg

(Continued )



Results

Pathogen (strain) Biomarker Amount of protein from target organism (μg)
Biomarker abundance (pg) 
in 10 μg of protein

D
et

ec
tio

n 
se

ns
iti

vi
ty Minimum no. of cells required for detection 

of peptides from organism of interest
Minimum amount of protein 
required for detection of any 
peptide from organism of 
interest (ng)

C. sporogenes cells (NCTC 275) in water N/A 105 2.99
B. anthracis spores in water N/A 105 37.5

Table 13.18 (Continued)
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investigated such as the detection sensitivity of particular biomarkers, protein 
extractions from low‐abundant cells and the analysis of spiked samples as well as the 
analysis of spores and cells in water (a possible source of contamination).

The data summarized in Table 13.18 highlights the sensitivity of biomarker detection. 
Detection limits vary for different markers due to the difference in their expression and 
therefore their abundance in the sample. The results show that detection is possible 
down to femtogram amounts and is also possible in spiked samples when other closely 
related species are present. The detection limits when analyzing diluted protein sam‑
ples and spiked protein extracts was far more sensitive than when analyzing protein 
extracts from spiked cells and diluted cells. For example, detection of the EAEYIFGNFGK 
C. botulinum biomarker was achieved in a protein dilution that contained only 0.1 μg of 
C. botulinum proteins in a total of 10 μg of protein material from closely related species. 
In contrast, spiked cells of C. botulinum (108) in non–C. botulinum (1010) that was cal‑
culated to equate to ~157 μg of C. botulinum in a total of 901 μg (1.7 μg in a 10 μg total 
used for SDS‐PAGE) was the detection limit achieved. This differs by a factor of ~10, 
which indicates that the limitation on the sensitivity achieved may be due to the effi‑
ciency of the lysis method, and further optimization is required.
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14.1 Introduction

Clostridium difficile is a gram‐positive, spore‐forming anaerobic bacillus, and is the 
major infective agent of antibiotic‐associated diarrhoea. C. difficile infection (CDI) is 
particularly problematic for hospitalized elderly populations, and can produce a variety 
of symptoms ranging from mild, self‐limiting diarrhoea, to pseudomembraneous colitis 
and toxic megacolon. Since the association between antibiotic administration and 
C. difficile was first established (Chang, 1978; Larson et al., 1978), CDI has emerged as 
an important nosocomial infection, in part due to the spread of highly epidemic strains. 
In particular, strains designated as PCR ribotype 027 caused large outbreaks in Quebec 
in the 2000s (Pepin et al., 2004; McDonald et al., 2005), and Stoke Mandeville in the 
United Kingdom in 2004/2005 (Smith, 2005). More recently, PCR ribotype 078 strains 
have caused clinical outbreaks, and have been associated with higher mortality than 
other PCR ribotypes (Walker et al., 2013). Factors responsible for the epidemic poten-
tial of certain strains are poorly understood, and C. difficile continues to place a major 
burden on healthcare facilities worldwide. It has been estimated that the incremental 
costs associated with CDI range from £4577 to £8843 across Europe (Wiegand et al., 
2012) and from US$4846 to US$8570 in the United States (Ghantoji et al., 2010).

This chapter will explore the use of genomics and proteomics to investigate factors 
responsible for the varying virulence of different C. difficile strains. We use our recent 
analysis of a range of C. difficile strains (Chilton et al., 2014) as an example to demon-
strate the power of combining these technologies in order to achieve a more complete 
picture of virulence determinants.
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14.2 Virulence of Clostridium difficile

14.2.1 Virulence Factors

At first glance, the virulence of Clostridium difficile is a simple process, in that disease 
is mediated by two large clostridial toxins, toxin A and toxin B. These toxins are glyco-
syltransferases that disrupt the cytoskeleton and tight junctions of the cells, resulting in 
apoptosis (Just and Gerhard, 2004) and leading to diarrhoea, inflammation and epithe-
lial tissue damage. Without these toxins, C. difficile does not cause disease. However, 
CDI outbreaks tend to be associated with certain highly epidemic strains (such as those 
of PCR ribotype 027), which by and large produce the same toxins as the non‐epidemic 
strains. The relative role of toxin A and toxin B in the disease‐causing process has been 
disputed (Lyras et al., 2009; Kuehne et al., 2010; Kuehne et al., 2014), and toxin B posi-
tive, A negative strains have been responsible for CDI outbreaks (Alfa et al., 2000). In 
addition, the role of an additional binary toxin produced by some strains remains 
ambiguous (Gerding et al., 2014; Kuehne et al., 2014), and the potential strain‐to‐strain 
differences in toxin regulation and amounts produced in vivo (Warny et  al., 2005; 
Freeman et al., 2007; Dupuy et al., 2008; Deneve et al., 2009; Vohra and Poxton, 2011) 
remain unclear. The large variation in the toxinotypes of pathogenic C. difficile 
strains (Rupnik, 2008) indicates that factors other than toxin production contribute to 
pathogenicity and associated virulence.

The identity and role of other C. difficile virulence factors are less well understood. 
Adhesion to epithelial tissue may be a key early event in colonization, and is mediated 
by cell surface proteins. This has led to the identification of a number of surface 
 proteins postulated to have a link to virulence, including adhesins, S‐layer proteins, cell 
wall proteins and the flagella proteins (Faulds‐Pain et al., 2014) as well as a number 
of S‐layer protein paralogs (Wright et al., 2005). Other factors, such as antimicrobial 
susceptibility and resistance, may also affect the success and spread (hence epidemic 
potential) of a particular strain.

14.2.2 Variation between Strains

Clostridium difficile is an ubiquitous organism, present in the environment as well as 
the mammalian gastrointestinal tract. An enormous number of different strain types 
have been identified, although many of them are not associated with clinical disease. 
Interest in CDI was driven by the huge increase in cases seen in the mid 2000s (Pepin 
et al., 2004; McDonald et al., 2005; Smith, 2005). This rise in disease was associated 
with the emergence of highly epidemic clonal C. difficile strains, the most notorious 
being strains of PCR ribotype 027. Various reports have suggested that these strains 
may be associated with greater disease severity and mortality (Loo et al., 2005), as well 
as increased levels of toxin production (Warny et al., 2005), although whether these 
strains deserve the ‘hypervirulent’ label has been disputed. Ribotype 027 strains con-
tinue to dominate in the United States and Eastern Europe, whereas the United 
Kingdom and Western Europe have seen a decrease in infections due to these strains 
(Valiente et al., 2014). More recently, strains of PCR ribotype 078 have caused serious 
outbreaks in the United Kingdom (Walker et al., 2013), and have been associated with 
more severe infection. Ultimately, although many suggestions have been raised, a 
definitive reason for the epidemic potential and widespread dissemination of ribotype 
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027 (and to a lesser extent other epidemic strains) has not been identified, nor have 
any strain‐specific virulence factors that may explain observed differences in disease 
severity of different strains.

14.3 Current Genomic and Proteomic Data

In recent years, genomic data has widely been used to identify differences between strains, 
and the huge increase in the availability of sequencing technologies has facilitated this. 
The genomes of different C. difficile strains from different isolates spanning the last four 
decades have been sequenced, including strain 630 (Sebaihia et al., 2006), which has more 
recently been updated (Monot et al., 2011) and two PCR 027 isolates, a recent, epidemic 
isolate R20291 and a ‘historic’ non‐epidemic isolate, CD196 (Stabler et al., 2009). These 
have respectively enabled genomic comparison studies of multiple isolates (Stabler et al., 
2006; He et al., 2010; Dingle et al., 2013), confirming the huge genomic variation of this 
pathogen. Epidemic PCR ribotype 027 strains have been shown to cluster into a tight 
clade (Stabler et al., 2009). However, disease‐associated isolates belong to multiple lineages, 
indicating that certain genetic elements may underlie virulence, and as a consequence 
of the highly dynamic nature of the genome, that these elements may be transferable by 
horizontal gene transfer and recombination (He et al., 2010; Dingle et al., 2013).

However, there remains a paucity of proteomic data for C. difficile. Studies have 
looked at cell surface proteins (Wright et al., 2005), spore proteins (Lawley et al., 2009), 
and the insoluble proteome (Jain et al., 2010) of the 630 reference strain. Changes over 
time (Janvilisri et  al., 2012), and in response to antimicrobial peptides (McQuade 
et al., 2012), have been reported for single strains, as has investigation of metronidazole 
resistance mechanisms (Chong et al., 2014). A comparative analysis of the C. difficile 
secretome (Boetzkes et  al., 2012) has recently been reported; however, only one 
 comparative analysis of proteomic differences between historic and recently emerged 
C. difficile isolates has so far beer described (Chen et al., 2013), and this does not include 
a low‐virulence strain. Crucially, detailed biological characterization data are rarely 
available in conjunction with genomic and proteomic analysis.

14.4 Comparison of Strains of Varying Virulence

In order to maximize the power of genomic and proteomic data in the elucidation of factors 
responsible for C. difficile virulence, we performed tandem genomic and proteomic 
analysis on C. difficile strains exhibiting different virulence profiles. We then compared the 
genomic and proteomic profiles to known phenotypic data for these strains in an attempt 
to identify factors that could explain the differences in virulence. Three strains were used in 
this study, designated B‐1, Tra 5/5 and 027 SM. Comparative analysis of C. difficile strains 
in the hamster model of disease (Borriello et al., 1987) has shown that strain B‐1 is highly 
virulent, but strain Tra 5/5 is of lower virulence (demonstrated by the number of animals 
dying after challenge with C. difficile). The virulence of strain 027 SM has not been tested 
in the hamster model, but many studies have characterized epidemic, PCR ribotype 027 
outbreak strains, and some studies have linked these strains to increased disease severity.
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14.5 Genomic Analysis of Clostridium difficile

In general, current whole genome sequencing methods, such as the so‐called ‘next 
 generation sequencing (NGS)’ approaches, generate many short‐length assembled 
sequences, referred to as contiguous sequences or ‘contigs’. It is not unusual for bacte-
rial genomes such as C. difficile to generate 10s or even 100s of contigs; the number 
of contigs may indicate the complexity of the genome. For example, when recon-
structing the genome from many shorter sequencing reads, genomes that contain 
many repeat regions may lead to a higher number of contigs from a single sequencing 
run. Repeat regions vary in length. Some, such as rDNA, can be >5 kb, far longer than 
many of the current read lengths achieved by NGS approaches. In parallel with the 
read length, sequencing accuracy is vital if one is to faithfully capture the original 
genome sequence. At present, base calling accuracy can drop due to a variety of rea-
sons, some of which are platform specific; for example, accurate base calling over long 
homopolymer regions has proved a challenge for Roche/454‐ and PGM‐based 
sequencers, more so for Roche/454. The Illumina systems are not immune to error 
biases; although greatly improved, Illumina datasets were shown to suffer from higher 
(compared to other Roche and PGM) substitution error rates and an issue referred to 
as ‘phasing’, which leads to sequence quality deterioration towards the end of a read. 
One way to compensate for these error types is by sequencing many reads across the 
genome or loci of interest, i.e. generate a high read depth, from which a consensus 
sequence can be generated. Most current NGS methods rely on amplifying a popula-
tion of cells, and the consensus  represents the ‘average’ or most dominant sequence 
present in that population.

14.5.1 Using Roche’s Flx and Junior

The three C. difficile strains (027 SM, B‐1 and Tra 5/5) were sequenced by Roche, using 
the Roche FLX platform (raw reads are available in EMBL‐ENA; ERP002519 (027 SM), 
ERP002520 (B‐1) and ERP002521 (Tra 5/5)). The Roche (FLX and Junior) sequencing 
method, in brief, relies on fragmenting DNA, ligating adaptors and attaching the adap-
tor‐ligated DNA fragments to DNA capture beads. The DNA‐attached beads (DaB) are 
added to a water–oil emulsion, in which the DNA is amplified directly on the beads, via 
a process referred to as emulsion PCR. Each amplified DaB is placed into individual 
wells, in a PicoTitrePlate (PTP). The PTP serves as the sequencing platform to which 
the enzymes DNA polymerase, ATP sulfurylase and luciferase are added and used to 
sequence the DNA on each DaB. The PTP with enzymes are placed in to the sequencer 
(FLX or Junior) and using a series of microfluidics, nucleotides are washed over the PTP 
in a set order, via a process referred to as pyrosequencing. As the name suggests, it is 
light based, whereby every time a nucleotide is incorporated, a flash of light is gener-
ated. The on‐board CCD camera records the flashes of light in the order the bases are 
incorporated, translating them into a nucleotide sequence.

The Roche FLX system can generate reads >700 bases in length and can achieve an 
average quality (Q40) of >99%. The raw reads were assembled for annotation using the 
Roche Newbler v2.5 analysis package, and a summary of the assembly metrics is pre-
sented in Table 14.1. The complete genomes of each strain were compared using the 
Mauve progressive algorithm (Darling et al., 2010).
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14.5.2 PacBio Genomic Analysis

Ideally, when performing whole genome sequencing, a single complete contig per 
genomic feature which faithfully recreates the original genome, such as a chromosome, 
plasmid or phage, is sought. Although a challenge for short read sequencers, long read 
sequencing technologies such as the PacBio© (Pacific Biosystems) can generate reads 
>20 kb in length, enabling long length repeat regions to be captured by a single read, 
thus greatly reducing the number of contigs. The PacBio© sequencing method is based 
on single‐molecule, real‐time (SMRT®) technology, which is built upon the implemen-
tation of Zero‐Mode Waveguides (ZMWs) and an immobilized DNA polymerase. A 
single strand of DNA acts as a template, interacting with the DNA immobilized DNA 
polymerase, to which phospholinked nucleotides are added, all within a ZMW ‘well’, 
where a number of ZMW wells are created in a single sequencing cell, referred to as an 
SMRT © cell. The bottom of the well is illuminated, and a pulse of light is observed with 
the addition of a nucleotide. In addition to capturing the nucleotide incorporation and 
thus the template sequence, the polymerase kinetics, that is, the interaction dynamics 
between the added nucleotide, template and polymerase allowed for the direct detection 
of DNA base modifications.

Using the three Roche sequenced strains, 027 SM, B‐1 and Tra5/5, PacBio© sequenc-
ing was also performed. A minimum of 10 μg of high‐quality DNA, where the extracted 
DNA ideally should be enriched for >60 kb in length, to help ensure an average of 
around 20 kb read lengths could be achieved. Post DNA extraction, the samples were 
prepared for sequencing, and the resultant read datasets, including modifications, were 
used to piece together the genome sequence via an in silico process referred to as ‘de 
novo assembly’; that is, the genome is assembled independent of a reference sequence. 
The assembler used was the HGAP long‐read assembler, which after using three SMRT 
cells worth of data, could assemble the chromosome for each of the three strains into a 
single contig, with no gaps. Due to the large volume of data generated, a >100 average 
fold coverage across the genome could be achieved, from which the consensus sequence 
had a quality (phred) score of >Q60, the equivalent of a possible error every 1,000,000 
bases. In the context of the C. difficile genome (chromosome), which is approximately 

Table 14.1 Roche assembly metrics. A comparable number of open reading frames (ORFs) were 
identified in strains 027 SM (3896) and Tra 5/5 (3840), similar to the number identified in the 630 
strain. However, a larger number of ORFs (4061) were identified in strain B‐1. Extra‐chromosomal data 
were generated for three plasmids in strain B‐1, and one plasmid in strain Tra 5/5.

Strain 027 SM Tra5/5 B‐1
Coverage 56x 42x 37x
Number of assembled reads 1,578,926 840,932 674,628
Number of paired‐end reads 454,956 66,174 102,750
Number of contigs (large/all) 131/235 169/1026 148/294
Number of scaffolds (bp) 11 12 17
Average scaffold length/largest 
scaffold (bp)

376,652/1,971,874 342,691/1,818,314 260,750/1,938,015

% of bases >Q40 99.93 99.78 99.87
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four megabases in length, the error rate would be equivalent to four possible errors 
across the entire chromosome. The ability to generate complete, highly accurate 
genomes provides a strong foundation for downstream studies such as proteomics.

The genomes were annotated, and the results are summarized in Table 14.2.

14.6 Proteomic Analysis of Clostridium difficile

For proteomic analysis, the whole‐cell soluble proteome was extracted from C. difficile 
cultures grown on Columbia Blood agar for 64 h. Three different proteomic approaches 
were used to maximize coverage.

14.6.1 Two‐Dimensional Reference Mapping

Two‐dimensional gel electrophoresis (2D GE) separates mixtures of proteins by both 
isoelectric point and size, thereby achieving adequate separation of highly complex 
protein mixtures to allow visualization and identification of individual protein spots 
(Figure 14.1). In this study, a pH gradient of 4–7 was used for separation in the first 
dimension, and proteins were equilibrated with DTT and iodoacetamide before separa-
tion in the second dimension through a 10% acrylamide gel. Gels were stained with 
SYPRO® Ruby Protein Gel stain (BioRad) and Sigma Brilliant Blue G‐colloidal (Sigma), 
allowing individual protein spots to be excised from the gel and subject to trypsin diges-
tion. Digested peptides were then extracted and analyzed by MALDI‐TOF mass spec-
trometry (reflection mode) to give an individual peptide mass fingerprint for each 
protein spot. These were compared to protein sequence data from the NCBI database 
using MASCOT to generate protein identifications. Large numbers of proteins from a 
complex protein extraction can be visualized and identified using this technique. Here, 
107, 126 and 158 protein spots were identified for strains 027 SM, B‐1 and Tra5/5, 
respectively, and 2D proteome reference maps could be created for each strain. An 
example reference map is shown in Figure 14.1.

One advantage of 2D GE is that it allows visualization of post‐translational modifica-
tions. Cleavage or chemical modification (glycosylation/phosphorylation) following the 
translation process can generate proteins of different molecular weights or isoelectric 
points, leading to differential migration during the 2D separation process. In C. difficile, the 

Table 14.2 PacBio sequencing metrics.

Strain
Genome size 
(bases)

Chromosome 
contigs

Plasmid/Phage 
contigs

Average 
coverage Genes rRNA

Signal 
peptides tRNA

A027 4,199,633 1 >100 3824 33 177 87
Tra5/5 4,128,151 1 >100 3741 35 169 90
Tra5/5 45,012 1 >100 67 3
B‐1 4,388,148 1 >100 4096 29 181 87
B‐1 46,764 1 >100 74 3
B‐1 41,090 1 >100
B‐1 12,488 1 >100 2
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S‐layer protein (SlpA), is post‐translationally cleaved to give high‐molecular‐weight‐and 
low‐molecular‐weight protein subunits, which together form the S‐layer protein lattice. 
This leads to two distinct, highly abundant spots on the 2D reference map, both identified 
as SlpA (Figure 14.1). Post‐translational glycosylation of flagellin can also be visualized on 
the 2D reference map, where the glycosylation process creates a series of spots with a 
characteristic migration pattern, also reported for other organisms (Figure 14.1).

14.6.2 Differential In‐Gel Electrophoresis (DIGE)

Coupled with the 2D GE reference mapping, this study utilized fluorescence labelling of 
protein extracts to perform DIGE, allowing a comparison of protein expression levels 
between different strains. DIGE allows three differently labelled protein samples to 
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Figure 14.1 Spots picked for in‐gel digestion and identification on the strain 027 SM reference map. 
Surface and virulence proteins are highlighted in red. The two spots corresponding to the S‐layer 
protein (SlpA) are boxed (spots A1 and F6). A post‐translational cleavage event creates separate 
high‐molecular‐weight and low‐molecular‐weight S‐layer proteins. The series of spots corresponding 
to flagellin are also boxed (M2‐M7). Here, post‐translational glycosylation of flagellin leads to a series 
of protein spots which migrate differently.
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be run together on the same gel, thereby removing gel‐to‐gel variation, and allowing 
accurate quantitative comparison of proteins between different samples. Typically, 
DIGE experiments are set up with a protein standard (a mix of all protein extracts com-
pared in the experiment) run alongside two separately labelled protein samples. Each 
protein extract can then be compared to the standard to compare spot intensity (and 
hence expression levels) between samples. Following scanning at the relevant fluores-
cent wavelengths, differences between differently labelled samples can be clearly seen in 
different colours. In this study, DIGE identified a number of clear protein spot differ-
ences between different strains, as highlighted below for strains 027 SM and strain B‐1 
(Figure 14.2). Differences can be due to proteins present in one strain but not in another 
(Figure 14.2, box 1 and 2), or differences in the migration of proteins from different 
strains due to inherent variation in the molecular weight or isoelectric point arising 
either from the amino acid sequence (Figure 14.2, box 4), or from differences in post‐
translational modifications (Figure 14.2, box 3).

Figure 14.2 A DIGE gel image of strain 027 SM (Cy5, red) compared to strain B‐1 (Cy3, green). The Cy2 
channel (blue) is the internal standard containing a mix of protein extracts from all strains. The yellow 
boxes 1 and 2 highlight protein spots corresponding to surface proteins (Cwp2, SlpA) present in strain 
027 SM but not strain B‐1. Yellow box 3 highlights a series of spots identified as the same protein 
(flagellin) but modified post‐translationally. The series of Cy3 and Cy5 labelled proteins are clearly 
visible as separate spots which have migrated differently within the gel, due to differences in the 
post‐translational modification of this protein between the different strains. Yellow box 4 highlights 
the SlpA high‐molecular‐weight (HMW) protein, which shows differential migration between the 
strains. (Chilton et al., 2014.)
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Using specialist software, DIGE gels can be matched using the protein standards (run 
on each gel), enabling identification of protein spots with different intensities (expres-
sion levels) in different strains. Moreover, the DIGE gels can be matched to picking gels 
or reference maps to allow identification of these proteins of interest (Figure 14.3).

In this study, SameSpots software (progenesis) matched 453 proteins across the 
standards of all six DIGE gels, and identified 112 spots with a greater than twofold 
expression difference (ANOVA p < 0.05) between strains. By correlating these spots to 
the reference maps, five, ten and eight proteins showing significantly higher expression 
in strains 027 SM, B‐1 and Tra 5/5 were identified (Figure 14.3).

14.6.3 One‐Dimensional Gel Electrophoresis Coupled with LC‐MS/MS

Although 2D reference mapping allows visual comparison of protein extracts and has 
the added bonus of enabling comparison of post‐translational modifications, it can only 
be used to compare relatively abundant proteins. Lower‐abundance proteins, which are 
not visible as individual spots on the gels, cannot be compared. Using higher‐throughput 
techniques alongside reference mapping can greatly improve proteome coverage. 

Figure 14.3 Proteins spots with significantly higher concentration in strain 027 SM. The proteins 
identified as up‐regulated in strain 027 SM by correlation analysis were matched to the ‘picking gel’ 
used to create the strain A reference map. The numbers indicate the rank of the protein, with protein 1 
showing the greatest difference between the strains.



Tandem MS/MS-Based Approaches to Microbial Characterization388

In this study, we used one‐dimensional electrophoresis followed by LC‐MS/MS using 
an LTQ Orbitrap (thermo‐fisher) to increase protein detection. Protein extracts were 
separated by 1D gel electrophoresis (separation by mass only) on 10% acrylamide gels. 
Each lane was cut into sections of approximately 1 cm, and each gel section subject to 
trypsin digestion as with the 2D gel spots. Peptide mixtures were separated by HPLC 
using an Ultimate 3000 Dionex nano/capillary system coupled with a thermo LTQ 
Orbitrap, and protein identifications made by matching peptides to the non‐redundant 
C. difficile database.

The 1D Gel electrophoresis LC‐MS/MS workflow identified a total of 862 proteins, 
734 (85%) of which had not been identified from the 2D reference maps. Only 332 (38%) 
of these were detected in all three strains. A total of 132 proteins (17%) were detected 
only in strain A, 161 (19%) were detected only in strain B‐1 and 45 (5%) were detected 
only in strain Tra5/5.

14.7 Mapping the Proteogenome of Clostridium difficile 
to Phenotypic Profiles

Using the described range of genomic and proteomic analysis techniques, this study 
enabled mapping of phenotypic, genetic and expression data to investigate in detail 
individual aspects of virulence. Below we will discuss some aspects of virulence and 
how proteogenome mapping has highlighted strain‐to‐strain differences and given 
some insight into how these differences may be linked to virulence.

14.7.1 Toxin Expression

The two toxins, toxin A and toxin B, remain the most characterized and understood 
virulence factors for C. difficile. Toxin production is required for symptomatic disease, 
and consequently toxin levels have been used as a measure of virulence. Borriello et al. 
(1987) demonstrated that in vitro, the highly virulent strain B‐1 produces significantly 
greater levels of toxin A than strain Tra 5/5, but the same maximum titre of toxin B 
(Borriello et al., 1987). Many studies have characterized epidemic, PCR ribotype 027 
outbreak strains and suggested that they may produce higher levels of toxin in vitro 
(Warny et al., 2005). We used the gold‐standard vero cell cytotoxicity assay to show that 
strain 027 and B‐1 produced comparable levels of toxin in vitro and >10 times greater 
amounts of toxin that strain Tra 5/5 (Chilton et  al., 2014). This method does not 
 distinguish between toxin A and toxin B, however.

Both toxins are encoded within the pathogenicity locus (PaLoc) along with three 
other ORFs postulated to encode transcription regulators and a holin‐like protein 
(Figure 14.4). Genomic analysis confirmed that all three strains possess an intact patho-
genicity locus, indicating the potential to produce both toxins A and B. Notably, genomic 
analysis also revealed that strain 027 SM contains an 18 bp deletion in the TcdC gene, 
absent in the other two strains. This deletion has been widely reported in ribotype 027 
strains (Barbut et al., 2007). It has been suggested that TcdC acts a negative regulator of 
toxin production, and that this deletion may lead to increased toxin production by 
ribotype 027 strains (Carter et  al., 2011). However, strain B‐1 does not contain this 
 deletion, yet produces comparable levels of toxin in vitro (Chilton et  al., 2014). 
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Strains B‐1 and Tra 5/5 were genetically very similar in the PaLoc, yet showed ~10‐fold 
difference in the toxin levels produced, suggesting that toxin production may be 
 additionally controlled by factors outside of the PaLoc region. This is supported by 
recent work disputing the role of TcdC as a negative regulator of toxin production 
(Cartman et al., 2012).

No toxins were identified on the 2D reference maps, probably due to the large size of 
these proteins hampering separation. However, using the 1D LC‐MS/MS approach, 
toxin A was detected in all three strains, whereas toxin B was detected in strains 027 SM 
and B‐1, but not strain Tra 5/5. The relative roles of toxin A and toxin B in the disease‐
causing process is not fully understood, but the apparent lower levels of toxin B pro-
duced by strain Tra 5/5 may contribute to the reported lower virulence of this strain, 
although the molecular reasons for reduced toxin production remain unclear.

14.7.2 Mucosal Adherence

Adherence of C. difficile to the intestinal mucosa locates the toxin‐producing organism 
to the site of toxin action (intestinal epithelial cells), and so factors involved in mucosal 
adherence are often considered virulence factors, although the role adhesion plays in 
virulence is still not fully understood. Some studies have demonstrated that C. difficile 
strains showing variation in their ability to colonize and adhere to the gastrointestinal 
tract exhibit corresponding variation in virulence in the hamster model. Borriello et al. 
(1988) demonstrated that strain B‐1 has a high level of adherence, and greater virulence 
compared to other strains. A number of cell surface proteins coordinating adhesion of 
the bacterial cell to the gut wall have been identified, although the full mechanism has 
not been elucidated.

S‐layer (Surface layer) proteins have been linked to adhesion (Calabi et al., 2002) and 
shown to be essential for virulence in some bacterial pathogens including Aeromonas 
salmonicida and Campylobacter fetus (Sara and Sleytr, 2000), and so S‐layer proteins 
and their homologues were investigated in some detail during this study.

The S‐layer of C. difficile is made up of two protein subunits, a HMW protein and a 
low‐molecular‐weight (LMW) protein, which are derived from a single gene, slpA 
(Calabi et al., 2001) and cleaved post‐translationally. During our analysis, SlpA protein 
was identified in all three strains and clearly identified on reference maps (Figures 14.1 
and 14.2). The predicted pI and molecular weight of this protein was determined from 
the genetic sequence of SlpA, and showed variation between the strains (predicted  
pI = 4.83, 4.76 and 4.79, and predicted masses = 80,428 Da, 64,703 Da and 79,922 Da for 
strains 027 SM, B‐1 and Tra 5/5, respectively). This variation is confirmed by differen-
tial migration of this protein during 2D DIGE (Figure 14.1, box 4). SlpA was present as 

TcdR TcdE TcdA TcdCTcdB

PaLoc (19kb)

Figure 14.4 The Clostrdium difficile pathogenicity locus containing the two toxin genes (TcdB and 
TcdA), a σ‐factor (TcdR) thought to positively regulate transcription of the toxin genes, a possible holin 
(TcdE) and a potential negative transcription regulator TcdC.
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two separate spots on the reference maps of strain 027 SM and Tra 5/5, corresponding 
to the HMW and LMW mature proteins. Interestingly, however, only one SlpA protein 
subunit was observed on the B‐1 reference map (Figure 14.1, boxes 2 and 4). Another 
major difference in the surface proteins of strain B‐1 compared to the other two strains 
was in the lack of detection of SlpA homologue Cwp2 in this strain (Figure 14.2, box 1). 
To investigate the genetic basis for the differences in the expressed surface proteins of 
strain B‐1, we compared the genetic organization of the SlpA containing operon using 
the online progressive Mauve algorithm (Darling et al., 2010).

The C. difficile genome contains a number of SlpA homologues. Many of these ORFs 
cluster near SlpA in a locus containing 17 open reading frames thought to form an 
operon (Savariau‐Lacomme et  al., 2003). We showed that the organization of this 
operon was very similar in strains 027 SM and Tra 5/5, but markedly different in strain 
B‐1, which has undergone genetic rearrangement in this area, with an insertion of 
approximately 58 kb (Figure 14.5). This insertion has replaced the open reading frame 
encoding the S‐layer homologue Cwp2, removing this gene from the B‐1 genome, and 
thus providing a genetic reason for the lack of detection of this protein in this strain. 
The presence of this insertion, however, does not seem to block the transcription of 
downstream ORFs, with expression being confirmed by protein detection in many 
cases (SecA and Cwp84 were detected in all strains). A similar insertion into this 
genetic locus has recently been described in a number of strains by Dingle et  al. 
(Dingle et al., 2013).

This study highlighted genetic variation in the S‐layer operon on strain B‐1 data and 
indicates that strains containing this genetic variation may show corresponding varia-
tion in surface layer protein expression. A similar lack of LMW SLP protein has been 
identified in a strain designated 167 by Calabi and Fairweather (Calabi and Fairweather, 
2002) The un‐cleaved pre‐protein of this strain had a predicted molecular mass of 
62,312 Da, lower than that of other isolates, but similar to the predicted mass for strain 
B‐1 (64,703Da). The authors proposed that the lack of LMW SLP in strain 167 could 
be due to rapid degradation of this subunit, and showed that this did not affect the 
pathogenicity or cellular viability of the strain. The differences in S‐layer profiles, 
 however, do not obviously correspond with virulence, as the two highly virulent strains 
B‐1 and 027 SM show marked differences in S‐layer expression profiles, whereas the 
lower‐virulence Tra 5/5 strains show high homology with the 027 SM strain. These 
results correlate with many published analysis (Dingle et  al., 2013; Spigaglia et  al., 
2011), and suggest that the relationship between expression of S‐layer proteins and 
virulence is highly complex.

14.7.3 Flagella

Flagella proteins have been shown to contribute to bacterial virulence in a number of 
ways (Ramos et al., 2004). They confer motility, allowing access of bacteria to mucosal 
tissues, and as with other cell surface structures, they can act as adhesins. Aflagellate 
strains have been reported to associate with caecal tissue at a slower rate than flagellate 
strains (Tasteyre et al., 2001), which in turn may affect strain virulence. In addition, it 
has been suggested that flagella can play a role in sensing environmental conditions 
such as ‘wetness’ (Wang et al., 2005) and hence may control expression of genes and 
virulence factors under certain conditions (Boin et al., 2004).



Figure 14.5 Mauve analysis comparing the organization of the SlpA operon for strains 027 SM, B‐1, Tra5/5 and the 630 reference 
strain. Yellow bars represent areas of genetic homology between the strains, with the height of the bar representing the level of 
homology and ORFs being designated by bars and arrows below. The SlpA gene is shown in red in all strains, and highlighted in 
green in strain 630, and the gene encoding Cwp2 is shown in orange. Hypothetical or putative ORFs are shown in grey. Arrows 
above the genes show the direction of transcription; blue arrows indicate that the corresponding protein was detected in this 
analysis. CSP denotes genes encoding cell surface proteins (Slp homologues). In strain B‐1, this genetic locus shows considerable 
differences from the other three genomes, with an insertion of approximately 58 kb. This insertion contains 50 ORFs, the majority of 
being putative and uncharacterized.

Strain 027 SM

CSP CSP CSP CSP CSP CSP CSP CSPCwp84 Cwp66 Cwp2 SecA SlpA

3460000 3462000 3464000 3466000 3468000 3470000 3472000 3474000 3476000 3478000 3480000 3482000 3484000 3486000 3488000 3490000 3492000 3494000

Strain 630

CSP CSP CSP CSP CSP CSP CSP CSPCwp84 Cwp66 Cwp2 SecA SlpA

3236000 3238000 3240000 3242000 3244000 3246000 3248000 3250000 3252000 3254000 3256000 3258000 3260000 3262000 3264000 3266000 3268000 3270000



Strain Tra 5/5

CSP CSP CSP CSP CSP CSP CSP CSPCwp84 Cwp66 Cwp2 SecA SlpA

3032000 3034000 3036000 3038000 3040000 3042000 3044000 3046000 3048000 3050000 3052000 3054000 3056000 3058000 3060000 3062000 3064000 3066000

Strain B-1

CSP CSP CSP CSP CSP CSP CSP CSPCwp84 Cwp66 SecA SlpA

3180000 3182000 3184000 3186000 3188000

3190000 3195000 3200000 3205000 3210000 3215000 3220000 3225000 3230000 3235000 3240000 3245000 3250000

3190000
32480000 3254000 3256000 3258000 3260000 3262000 2364000 3266000 3326800032520003250000

58 kb insert

Figure 14.5 (Continued)
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During this study, there was some variation in flagella proteins identified between the 
three strains. Flagellin (CD0239) was identified in all three strains, whereas the flagellar 
hook protein (CD0255) was identified in strains B‐1 and 027 SM, but was not detected 
in strain Tra 5/5. The genes encoding both proteins were present in the genomes of all 
three strains, however, demonstrating that a lack of the corresponding gene is not the 
reason for lack of the flagella hook protein in strain Tra 5/5. Flagellin was identified as 
multiple distinct spots following two‐dimensional gel electrophoresis (Figure 14.1), a 
phenomenon associated with post‐translational modifications. Moreover, the pattern 
of these spots was different in different strains, as highlighted by DIGE analysis. 
Glycosylation of flagellin in C. difficile has been described (Twine et al., 2009; Faulds‐
Pain et al., 2014), and this glycosylation process has been shown to be important in 
many bacterial species, affecting motility, adhesion and pathogenesis (Logan, 2006). 
Differences in the flagellar‐associated glycosyl transferases have been shown between 
epidemic 027 ribotypes and non‐epidemic strains (Stabler et al., 2006), and it has been 
confirmed that flagellin‐linked glycans show divergence between different strains 
(Twine et al., 2009). Variations in flagellin migration have been seen in Campylobacter 
jejuni, correlating with introduction of flagellar glycosyltransferase knock‐out 
mutations(van Alphen et  al., 2008), raising the interesting suggestion that flagellin 
 glycosylation could vary between the three strains investigated during this study. This 
in turn could affect structure and function of the flagella, altering the role played in 
motility and adhesion.

The putative flagellar glycan biosynthesis locus reported by Twine et al. (2009) was 
compared in detail using the progressive Mauve algorithm, and found to be conserved 
between the three strains, indicating that genetic variation in this region does not 
explain the differential migration patterns. Interestingly, the 15 kb insert into the B‐1 
S‐layer operon described above has been linked with possible glycosylation functions 
(Dingle et al., 2013), and therefore may play a role.

Strain B‐1 has shown evidence of flagella and motility (Tasteyre et al., 2000), and epi-
demic 027 ribotype strains have been shown to be motile (Stabler et al., 2009), although 
the presence of flagella was not confirmed microscopically. Strain Tra 5/5, however, 
tested negative for motility (Chilton et al., 2014), indicating that this strain may not pos-
sess functioning flagella. Previous comparative genomic assays have indicated that fla-
gella production and motility may not be a common feature for C. difficile isolates, and 
that flagella gene loci are not necessarily conserved among virulent strains (Stabler 
et al., 2006), although they appear to be conserved for the three strains investigated 
here. It has been reported by RT‐PCR that flagellin is expressed in both flagellate and 
aflagellate strains (Tasteyre et al., 2000), so it is possible that strain Tra 5/5 is aflagellate, 
despite the detection of flagellin. This would correlate with the observed lack of motility 
of this strain, and the lack of detection of the flagellar hook protein. Dingle et al. have 
shown that disruption of flagellin genes leads to lack of flagella expression and motility, 
but does not affect adherence to Caco‐2 cells, or virulence in the hamster model (as 
determined by percentage survival) (Dingle et al., 2011), suggesting that if Tra 5/5 is 
aflagellate, this would not explain an apparent reduced virulence. However, recent work 
by Aubry et al. indicates that some flagellar mutants exhibit reduced toxin production, 
indicating that the flagellar regulon modulates toxin production (Aubry et al., 2012). 
This raises the interesting possibility that the lack of flagella detection in strain Tra 5/5 
may be linked to the lack of toxin detection.
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14.8 Antibiotic Resistance

C. difficile is notorious for being multidrug resistant, and CDI is closely associated 
with antibiotic use. During the 1970s, increases in CDI were attributed to clindamy-
cin use, in the 1980s to cephalosporins and penicillins while in the 2000s fluoroqui-
nolones have been implicated (10). Careful antimicrobial stewardship has been used 
to limit CDI risk. Therapeutic options for CDI treatment remain limited to metroni-
dazole and vancomycin, with the recent addition of fidaxomicin. However, reports of 
reduced metronidazole efficacy, especially for severe cases, and reduced metronida-
zole susceptibility of clinical isolates raise questions about treatment efficacy. Genetic 
markers for certain antibiotic resistances have been collated into curate databases, 
which contain information on specific antimicrobial resistance determinants, based 
on years of integrated phenotypic and molecular studies. However, predicting antibi-
otic resistance from the genome or proteome remains a contentious area, not just for 
C. difficile but in clinical microbiology as a whole. This controversy is due to the 
complexity of resistance, as it is not simply an ‘on or off ’ process but one with many 
potential ‘states’ of resistance, based on the many potential permutations of gene and 
gene expression of resistance determinants, which denote the resistance phenotype. 
The challenge lies with capturing this complexity, with the aim of informing the 
 clinician whether an isolate is resistant to an antibiotic and if so how resistant. Today, 
the current gold standards remain phenotypic, such as minimum inhibitory concen-
tration (MIC) testing. The MIC is the lowest concentration at which an antimicrobial 
inhibits the growth of a microorganism after overnight incubation, and the resultant 
data indicates both whether an isolate is resistant and if so, how resistant (see 
Table 14.3).

To determine the antibiotic resistance profiles for the three C. difficile strains, 
MIC tests were performed, and the profile is given below, where: Met = Metronidazole, 
Vanc = Vancomycin, Fidax = Fidaxomicin, Rif = Rifampicin, Moxi = Moxifloxacin, 
Clinda = Clindamycin, Imi = Imipenem, Chlor = Chlorophenicol and Tige = 
Tigecycline.

Table 14.3 To determine whether, based on MIC profiles like those above, an isolate is resistant or 
sensitive to a particular antibiotic, external bodies such as the British Society for Antimicrobial 
Chemotherapy (BSAC) offer guidance notes on MIC cut‐offs, referred to as ‘MIC break points’. 
For example, the MIC breakpoints for the commonly prescribed (for C. difficile infections) antibiotics, 
metronidazole and vancomycin, are ‘sensitive ≤2 mg/l and resistant >2 mg/l’. In the context 
of the three described strains, A027, B‐1 and Tra5/5, all three are sensitive and thus treatable using 
either metronidazole or vancomycin.

Minimum inhibitory concentration of antimicrobial (mg/l)

Strain Met Vanc Fidax Rif Moxi Clinda Imi Chlor Tige

A027 2 1 0.125 0.004 16 1 4 4 0.03
B‐1 1 2 0.015 <0.001 2 >64 2 8 0.03
Tra5/5 <0.125 1 0.03 0.002 2 2 2 4 0.03
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14.9 Conclusion

As is true of many bacterial pathogens, the virulence of C. difficile is a truly multifactorial 
process, with many different factors and pathways contributing to the epidemic poten-
tial of different strains. The recent advances in genomic technologies have greatly 
increased our understanding of the genetic variation of this organism; however, in order 
to fully understand strain‐to‐strain variation, genetic analysis alone is insufficient. 
Proteomic analysis allows comparison of gene expression and variations in protein 
modification, which may be key in determining virulence potential. Other technologies 
not discussed here, such as transcriptomics and metabolomics can add additional 
important information to strain comparisons. In  short, studies using combinations 
of  the growing range of ‘omics’ technologies can  gain greater insight into bacterial 
 variations than those employing single  technologies only.
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15.1 Antibiotic Resistance Mechanisms

Antibiotic resistance is a rising health care problem. The significant surge in total 
number of bacterial pathogens that show multiple drug resistance in recent years has 
been vast. Several disease prevention and control bodies, including the World Health 
Organization (WHO), are seeing the infections by antibiotic resistant pathogens as a 
key global health threat which will have a major impact in global health management. 
With the introduction of every new class of antibacterial agents into the clinic, resistance 
follows. Initially the antibiotic is effective, but with time and as a result of selective pres
sures, a small population of organisms acquires or develops resistance to the antibacterial 
agent (Table 15.1). Resistance can occur regardless of exposure to an antibacterial agent, 
as a result of either mutations or the absorption of mobile genetic elements which  harbour 
resistant genes. However, the increase in proportion and number of microorganisms that 
are resistant to antibiotics has been aided by abuse and misuse of antibiotics in both clinic 
and in livestock farming and the discharge of these agents into the environment. 
Furthermore, the spread of these resistant organisms has been facilitated by the speed and 
increase in the amount of intercontinental travel.

There are several different mechanisms that bacteria use to resist the action of antibi
otics. They produce enzymes that hydrolyze or modify antibiotics to render them inac
tive (Bush, 1999; Shakil et al., 2008; Smith and Baker, 2002); produce efflux pumps that 
transport antibiotics out of the organism (Blair et al., 2014); reduce the permeability of 
the outer membrane, which restricts antibiotic access (Sutterlin et al., 2014); mutations 
in genes coding for penicillin binding proteins (PBPs) reduce the binding affinity of 
antibiotics to the active site (Sun et al., 2014); and they alter metabolism (Zapun et al., 
2008). Classic methods of antibiotic sensitivity testing such as the disk diffusion assay 
provide a means of classifying the organism as susceptible, intermediately susceptible 
or resistant. However, this test does not reveal the minimum inhibitory concentration 
(MIC) required; it simply provides a qualitative measurement. On the other hand, the 
E‐strip test is a quantitative method used for measuring antibiotic resistance. The major 
drawback of this technique is that a separate strip is required for each antibiotic, and 

Determination of Antimicrobial Resistance using 
Tandem Mass Spectrometry
Ajit J. Shah1, Vlad Serafim1, Zhen Xu2, Hermine V. Mkrtchyan2 and Haroun N. Shah1

1 Department of Natural Sciences, Middlesex University, London, UK
2 School of Biological and Chemical Sciences, Queen Mary University of London, London, UK



Table 15.1 Timeline of the discovery, introduction and first observed resistance of antibiotics.

Antibiotic
Year of 
discovery

Year of 
introduction

Year resistance 
observed Mechanism of action Activity or target species

β‐lactams 1928 1936 1942 Inhibition of cell wall biosynthesis Broad‐spectrum activity

Sulphonamides 1932 1936 1942 Inhibition of dihydropteroate 
synthetase

Gram‐positive bacteria

Aminoglycosides 1943 1946 1946 Binding of 30s ribosomal subunit Broad spectrum
Tetracyclines 1944 1952 1950 Binding of 30s ribosomal unit Broad spectrum
Cephalosporins 1948 1964 1966 Inhibition of cell wall biosynthesis Broad spectrum
Pleuromutilins 1950 1979 1982 Binding of 50s ribosomal unit Gram positive
Macrolides 1948 1951 1955 Binding of 50s ribosomal unit Broad spectrum
Streptogramins 1953 1998 1956 Binding of 50s ribosomal unit Gram positive
Glycopeptides 1953 1958 1960 Inhibition of cell wall biosynthesis Gram positive
Quinolones 1961 1968 1968 Inhibition of DNA synthesis Broad spectrum
Monocarboxylic acids 
(mupirocin)

1971 1985 1987 Binds to isoleucyl tRNA synthetase Gram positive

Carbapenems 1976 1985 1985 Inhibition of cell wall biosynthesis Broad spectrum
Oxazolidinones 1978 2000 2001 Binding of 50s ribosomal unit Gram positive bacteria
Monobactams 1979 1986 1981 Inhibition of cell wall synthesis Gram‐negative
Lipopeptides 1986 2003 1987 Depolarization of cell membrane Gram positive
Diarylquinolines 1997 2012 2006 Inhibition of ATP synthetase Mycobacterium tuberculosis
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thus the cost of analysis can be high. Although the cost is one factor that is used in any 
treatment regime, it may be more important to provide a rapid method for determining 
the resistant mechanism and thus formulate a treatment regime. Methods based on 
PCR are used for the detection of β‐lactamases in clinical samples. However, with the 
spectrum of β‐lactamases that have been identified, it would be a challenge to develop 
a ubiquitous primer that could be employed for detection of all β‐lactamases. Methods 
based on spectrophotometric detection have been reported (Barlam and Neu, 1984). In 
these methods, a chromogenic cephalosporin is incubated with bacterial extract, and 
the absorbance is measured at 486 nm. The hydrolysis of the peptide bond results in a 
rise in absorbance. The main drawback of this assay is that it is time consuming and 
cannot be used for routine analysis.

15.2 Detection of β‐lactamase Activity

One way to react to increasing antibiotic resistance is to use rapid methods for identifi
cation of microorganisms to aid not only prescription of the most cost‐effective treat
ment strategy, but also transmission reduction. The decline in hospital‐acquired 
incidence of methicillin‐resistant Staphylococcus aureus (MRSA) is attributable to the 
implementation of suitable screening procedures (Huttner et al., 2013). The rapid rise 
in use of mass spectrometry for bacterial identification and biotyping over the last few 
years, especially matrix‐assisted laser desorption time‐of‐flight mass spectrometry 
(MALDI‐TOF MS), has placed pressure to broaden the applicability of the technique in 
clinical microbiology. One application which is increasingly being utilized is detection 
of antibiotic resistance, especially that towards the β‐lactams.

β‐lactams are the most commonly prescribed class of antibacterial drugs that show a 
broad spectrum of antibacterial activity. This class of drugs have a common structural 
feature, the β‐lactam ring. Their mode of action is inhibition of bacterial cell wall bio
synthesis. Their widespread use and abuse in both clinic and livestock has culminated 
in an increase in resistance to this class of antibacterial agents. The principal resistant 
mechanism to β‐lactams is the hydrolysis of the β‐lactam ring by β‐lactamases. Some 
β‐lactams undergo further degradation in which decarboxylation takes place. The 
resulting products are inactive and lower in molecular weight than the parent molecule 
(Figure 15.1).

Two methods have been reported for the classification of β‐lactamases (Bush and 
Jacoby, 2010). One of these is the molecular classification system. This is based on the 
primary amino acid sequence of enzymes that have a serine residue in the active site 
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Figure 15.1 Peptide mass fingerprint of protein band corresponding to molecular weight of 29 kDa 
on SDS PAGE extracted from an ampicillin‐resistant E. coli.
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(classes A, C and D) which is involved in the hydrolysis of the β‐lactams and 
the metallo‐enzymes (class B) which require zinc ions for hydrolysis of β‐lactams. The 
other method is based on functional classification which takes into account both 
the  β‐lactam and enzyme inhibitor profiles to place the enzymes into different 
groups. Cephalosporinases (group 1); broad‐spectrum, inhibitor‐resistant, and extended‐ 
spectrum β‐lactamases and serine carbapenemases (group 2); and metallo‐β‐lactamase 
(group 3). Of these, carbapenemases are the most versatile, having a wide spectrum of 
activity; they hydrolyze most β‐lactams and are resistant to most inhibitors. Resistance 
to carbapenems is now widespread. Detection of organisms producing the New Delhi 
metallo‐β‐lactamase‐1 is now worldwide and has raised concerns. The most clinically 
common carbapenemases are KPC, VIM, IMP, NDM‐1 and OXA 48 (Nordmann et al., 
2011). An assay that has been utilized clinically for detection of carbapenemase activity 
is the Hodge test (Girlich et al., 2012), which measures growth of organisms in the presence 
of a carbapenem. It has very good sensitivity for detection of KPC and OXA‐48 carbapen
emases. However, its sensitivity for NDM‐1 is lower. Furthermore, the specificity of this 
assay is low and the throughput is poor.

One approach that is becoming increasingly popular for the detection of β‐lactamase 
activity and in particular carbapenemase is MALDI‐TOF MS (Hrabák et  al., 2011; 
Lange et al., 2013; Sauget et al., 2014) (Chapter 10). The methods are based on the detec
tion of bacteria‐induced hydrolysis of β‐lactam antibiotics. The method is relatively 
straightforward. A fresh bacterial culture is suspended in buffer and centrifuged, and 
the resulting pellet is incubated with a solution of the antibiotic for 1–3 h at 35 °C. The 
sample is then centrifuged or filtered combined with a matrix and then analyzed using 
MALDI‐TOF MS. The sensitivity and resistance pattern are confirmed by analyzing the 
mass spectra for hydrolyzed and non‐hydrolyzed forms of the β‐lactam. For example, 
incubation of meropenem with an organism that is carbapenemase results in a spec
trum with peaks attributable to molecular ions of meropenem [M + H]+ at m/z 384.5 Da 
and its corresponding sodium adducts [M+ Na]+ at m/z 406.5 Da and [M + 2Na]+ at m/z 
428.5 Da. Following incubation of meropenem with a carbapenemase‐resistant strain, it 
has been shown that peaks assigned to the non‐hydrolyzed form of the antibiotic 
decrease in signal intensity and can be detected (Sparbier et al., 2012). However, no 
signals corresponding to hydrolysis products were detected. Recently, it has been shown 
that by including 0.01 % sodium dodecyl sulphate in the reaction buffer, degradation 
decarboxylated [M‐CO2]+ at m/z 358 Da and its sodium adduct [M‐CO2 + Na]+ at m/z 
380.5 Da can be detected. To address any degradation due to spontaneous hydrolysis, 
the assay is normally performed with a negative control, and the organism is incubated 
with antibiotic in the presence of an inhibitor 3‐aminophenylboronic acid. The method 
is suitable for detection of different classes of β‐lactamases. The hydrolysis of the  
β‐lactam ring gives rise to a new peak at +18 Da, which is a significant shift for mass 
spectrometric detection. In the case of some antibiotics, for example, piperacillin, 
decarboxylation of the hydrolyzed β‐lactam gives a further mass shift of −44 Da. 
Additional peaks attributable to salt adducts of degradation products, usually sodium, 
may also be detected. One of the issues that has been highlighted with using MALDI‐
TOF MS for detection of antibiotic resistance is that both the intact antibiotic, degrada
tion products and adducts are < 1000 Da and thus may be prone to interference from 
matrix ions (Hoff et al., 2012). α‐Cyano‐4‐hydroxycinnamic acid (CHCA) is a matrix 
that is normally used at mg/ml concentration in these types of analyses, and it has been 
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found that the dimer of this matrix with an m/z of 380 Da can interfere with the 
meropenem having an m/z of 384.5 Da. Also, detection of β‐lactamase activity in the 
presence of other mechanisms of resistance such as efflux pumps, which have been 
observed in species of Pseudomonas, can be problematic. These prevent entry of 
antibiotic into the cell and thus interaction of the β‐lactam with enzyme. One way to 
address this issue is to lyse the cells and incubate the extract with the antibiotic. 
A method reported by Hrabák et al. showed that addition of 0.1% sodium dodecyl 
 sulphate to the incubation buffer increases the permeability of the outer membrane 
to antibiotics, thus allowing the interaction to take place.

MALDI‐TOF MS is a valuable tool for detection of β‐lactamases. The detection of 
β‐lactamase‐producing microorganisms using MALDI‐TOF MS would benefit enor
mously from application software that would provide a means for automatic acquisition 
and interpretation of results. In 2014, Bruker Daltonics launched Microbial Biotyping 
Star BL®, which provides a rapid means of analyzing mass spectra of β‐lactamase‐
producing microorganisms incubated with β‐lactam antibiotics.

15.3 Other MALDI‐TOF MS Methods

Resistance to aminoglycosides is facilitated by a range of mechanisms that include 
altered cell permeability and modification of the binding site of aminoglycoside to ribo
some (Magnet and Blanchard, 2005). Gram‐negative bacteria acquire resistance to most 
clinically useful aminoglycosides by methylation of 16S rRNA, which is accomplished 
by S‐adenosyl‐L‐methionine (SAM)‐dependent rRNA resistance methyltransferases 
(MTs) (Lioy et  al., 2014). This leads to a decrease or loss of affinity for antibiotic. 
Resistance to aminoglycoside antibiotics as a result of methylation of 16S rRNA has 
been observed in a wide range of gram‐negative organisms (Liou et al., 2006). Savic 
et al. (2009) purified methyl‐free and in vivo methylated 16S rRNA from E. coli 30S 
ribosomal subunits; these were digested with specific RNase, and the digests were ana
lyzed using MALDI‐TOF MS. These authors observed differences in spectra for two 
sets of samples that were attributed to the non‐methylated and methylated forms of 
RNA. Although this is a valuable diagnostic approach to detect methyltransferase 
resistance, the procedure may not be suitable for routine operation in a diagnostic 
laboratory.

MALDI‐TOF MS has been utilized for the detection of β‐lactamase itself from strains 
of ampicillin‐resistant E. coli (Camara and Hays, 2007). These authors extracted the 
enzyme from broths that had and had not been supplemented with ampicillin. Analysis 
of the extracts using MALDI‐TOF MS showed that the supplemented broth contained 
a peak at approximately 29 kDa. Separation of bacterial cell extracts using SDS‐PAGE, 
followed by in‐gel digestion with trypsin and analysis of the tryptic digests using liquid 
chromatography with mass spectrometric detection, confirmed a peak at ~29 kDa in 
the supplemented broth that can be attributed to β‐lactamase. In a study carried out in 
our laboratory, E. coli was grown in broth supplemented with ampicillin. A sample of 
the broth was centrifuged, and the resulting pellet was treated with 70% formic acid and 
acetonitrile. The cell extract was separated using SDS PAGE electrophoresis. A band at 
around 29 kDa was detected. The band was excised and de‐stained by repeated washing 
with mixture of acetonitrile and water (50:50, v/v). Following rehydration, the gel was 
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treated with DTT, followed by iodoactemadie and then incubated with trypsin for 12 h. 
MALDI‐TOF MS analysis of the tryptic digest and subsequent analysis of the peptide 
mass fingerprint (Figure  15.2) using Mascot revealed the protein to be β‐lactamase. 
There is very little report on the use of this type of direct approach. It is low throughput 
and may not be sensitive enough to detect a low level of expression.

15.4 Liquid Chromatography Coupled with MS

The application of liquid chromatography (LC) with mass spectrometry (MS) for analy
sis of small to macromolecules has become a routine technique in many clinical labora
tories. The combination of a reverse‐phase liquid chromatography (RPLC) which offers 
high selectivity and efficiency with mass spectrometric detection which gives additional 
selectivity and structural information provides a powerful means of analysis. Sensitivity 
is another benefit of MS, and this allows analytes to be measured at picomoles to atto
mole levels. MS has also used in combination with other separation techniques like 
capillary electrophoresis (CE). Techniques like CE provide an alternative mechanism of 
separation and a significantly lower amount of sample that is required for analysis. In 
CE of small molecules, a high electric field is used to resolve analytes on the basis of 
differences in charge or hydrophobic properties. Although CE offers very high efficien
cies, the low concentration sensitivity and issues with reproducibility of migration times 
have limited its use. When surveying the literature, it can be seen that the main method 
used for ionizing molecules in MS is electrospray ionization (ESI). This is a ‘soft’ ioniza
tion technique, which is preferred as there is minimal fragmentation of the molecule of 
interest. However, there are numerous other ionization methods that are used, which 
include atmospheric pressure chemical ionization (APCI) and atmospheric photoioni
zation (APPI). Analysis of small molecules, peptides and proteins using MALDI results 
in analytes with a single charge. In the case of proteins and peptides, it imparts a +1 
charge (sometimes +2 or +3, as well). At the same time, this simplifies and complicates 
downstream analysis. It is relatively straightforward to identify a protein with a +1 
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charge. However, this also makes it more difficult to analyze intact proteins, as their 
large size pushes their m/z values up, which gives both poor resolution and mass accu
racy. Ions with +1 charge are difficult to fragment, says Kelleher, thus making MALDI a 
tougher ionization source for use in tandem MS applications such as post‐translational 
modification analysis and peptide sequencing. In contrast, ESI produces a range of 
charged species for each molecule: +2, +3, +4 and so on. That large set of ions produced 
complicates mass analysis but makes it easier to perform tandem mass spectrometric 
analysis. Furthermore, because ESI is compatible with the chromatographic separa
tions, it is often used for analysis of a wide range of compounds using ultrahigh pressure 
liquid chromatography (UPLC) to nano LC. Also, ESI can be used with a wide range of 
mass analysers. In addition, MALDI‐TOF MS is not well suited for analysis of mole
cules in the lower mass range due to interference from fragment ions and matrix ions. 
Although MALDI‐TOF MS has been used to detect carbapenemase activity in positive 
blood cultures, an enrichment step may be required to detect the enzyme in other 
 samples such as swabs, urine cultures and wound specimens (Sparbier et  al., 2012). 
Furthermore, it cannot be used for quantitative analysis. In contrast, LC‐MS remains 
the gold standard for both detection and quantitation of small molecules.

A study to evaluate MALDI‐TOF MS and LC‐MS for detection of carapenemase 
activity among SPM‐1, GIM‐1 and GES‐5 producing Pseudomonas aeruginosa; 
OXA‐143, IMP‐10 and OXA‐58 producing Acinetobacter baumannii; and KPC‐2, 
NDM‐1 ESBL/ΔOmppK36 producing Klebsiella pneumonia was reported by Carvalhaes 
et al. (2014). In their study, fresh bacterial cultures were incubated with two different 
concentrations of ertapenem in buffer (20 mM Tris‐HCl, pH 6.8) for 2 and 4 h. Following 
centrifugation, an aliquot (1 µl) were analyzed using a Microflex LT instrument oper
ated in linear positive ion mode and an LC‐MS equipped with electrospray ionisation 
probe operated in positive ion mode. MALDI‐TOF MS spectra of organisms that were 
sensitive to ertapenem showed no peak for molecular ion (m/z 475) and monosodium 
salt (m/z 497). The same interpretative criteria were used for LC‐MS results. The 
authors demonstrated that class A (KPC‐2, GES‐5) and class B (SPM‐1, IMP‐1, IMP‐10 
and GIM‐1) carbapenemase activity could be detected. A longer incubation period of 
4 h was required for detection of class D carbapenemase activity. The results obtained 
using MALDI‐TOF MS and LC‐MS were in good agreement, and the former provided 
an easy, rapid and cheap method for detection of carbapenemase activity. One key 
advantage of using a single quadrupole instrument over MALDI‐TOF MS is that it can 
be used to quantify the carbapenem and therefore the level of enzyme activity. In quad
rupole mass analysers, an electric field is utilized to separate the ions according to their 
mass‐to‐charge ratio as they travel along a central axis of four parallel rods that have 
fixed and alternating voltage applied to them. The magnitude of this voltage can be set 
such that only ions of a certain m/z can pass through to the detector, while other ions 
are deflected into trajectories which cause them to collide with the rods and then pass 
out of the analyzer. This type of spectral analysis, called selected ion monitoring 
(SIM), gives excellent sensitivity. A quadrupole instrument can also be used to scan 
over a mass range. This is useful for both tuning the instrument and to record a total 
ion chromatogram. The sensitivity is significantly enhanced by monitoring the abun
dance of a single or few ions as a function of time. Inclusion of a stable isotope as an 
internal standard can be used to account for any errors in sample preparation and 
analysis and matrix effects.
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A number of methods for detecting carbapenemase activity have been reported using 
high performance liquid chromatography (HPLC) in combination with tandem MS 
such as a triple quadrupole instrument. This is made up a linear series of three quadru
poles (Figure 15.3). In this type of analyzer, the molecular ion is selected for tandem MS 
in the first quadrupole in a similar way to SIM. The molecular ion is then activated in 
the collision cell by collision with a gas like nitrogen. This is the so‐called collision‐
induced dissociation (CID), which results in a range of product ions. Of these one or 
more characteristic fragment ion(s) are selected to pass through the third quadrupole 
to the detector. This type of monitoring is called single reaction monitoring. There is no 
scanning, and thus high sensitivity is achieved. The quadrupole analyzers can be rapidly 
switched between several reactions, which can be fragments of a single molecular ion 
or products of several different compounds, to detect them with high sensitivity. This is 
known as multiple reaction monitoring (MRM). Like SIM, MRM is well suited to quan
titative analysis of compounds. One major advantage of MRM over SIM is that the 
selectivity is enhanced, and this can lead to a significant improvement in sensitivity. 
Usually two fragment ions are selected for detection, which gives greater confidence in 
the results. Other combinations of mass analyzers such as quadrupole with TOF and 
ion trap with TOF are available, but these are more suited to qualitative analysis. Grundt 
and co‐workers (2012) reported a rapid RPLC‐MS/MS method for fast detection of 
ampicillin resistance in E. coli. Their method is based on incubating bacteria with ampi
cillin and quantifying ampicillin and ampicillin penicilloic acid within the supernatant 
following RPLC and CID. The transition used for ampicillin and ampicillin penicilloic 
acid were 350 to 160 m/z and 368 to 324 m/z, respectively. The HPLC‐peak area ratio of 
ampicillin to ampicillin penicilloic acid was used to differentiate between ampicillin‐
resistant and susceptible strains. The authors reported that the resistance of E. coli to 
ampicillin can be determined within 90 min. This type of analysis can be utilized for 
detection of intact and hydrolysis product of any antibiotic providing that the molecular 
ion can be ionized. The rise in carbapenemase‐producing bacteria poses a major threat 
in the management of antibiotic therapies for patients. Bacterial resistance to carbapen
ems is usually carried out using susceptibility and phenotypic methods like 
RAPIDEC®CARBANP test (Poirel and Nordmann, 2015) and Hodge test (Kim et al., 
2015). The RAPIDEC®CARBANP test is based on detecting a change in pH of the incu
bation medium and may be poor with respect to both sensitivity and specificity. 
Methods based on PCR (Naas et al., 2013) are thought to be the gold standard for detec
tion of carbapenemases. However, the range of genes coding for this enzyme means that 
a PCR method targeting each gene must be developed. Recently, LC‐MS/MS methods 
have been reported for the detection of carbapenemase activity. Wang et al. (2013) used 
nano LC with a hybrid triple quadrupole/linear ion trap for detecting hydrolysis of 
meropenem by bacteria expressing carbapenemase activity. In their work, bacteria were 
grown in Luria Broth medium containing 50 µgml−1 meropenem. Following incubation 
at 37 °C for 2 h, the broth was centrifuged, and an aliquot of the supernatant was diluted, 
mixed with internal standard and analyzed using the nano‐LC‐MS/MS. Multiple frag
ment ions were chosen for single reaction monitoring (SRM), and these were selected 
on the basis of ion intensity, stability and matrix effects. For meropenem, precursor/
product ion transitions were 402/122, 402/175, 402/216, 402/220 and 402/358, whereas 
the corresponding pairs in 18O‐labelled meropenem were 404/122, 404/175, 404/218, 
404/222 and 404/360. The concentration of unlabelled meropenem hydrolyzed was 
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Figure 15.3 MRM chromatograms of mixture of ampicillin (10 mg/ml), cefotaxime (0.5 mg/ml), 
meropenem (0.5 mg/ml) and oxacillin (0.5 mg/ml) incubated at 37°C for 2 h (A) in phosphate buffer 
(B) after incubation with cell lysate of P. aeruginosa. The samples were diluted 1:22 times prior to 
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calculated using the peak area ratio of unlabelled versus the labelled internal standard. 
The concentration obtained from all five transitions was averaged. The authors showed 
that the concentration of meropenem after hydrolysis could be directly correlated with 
carbapenemase activity. Furthermore, the SRM/MRM capability of triple quadrupole 
instruments means that the method can be adopted to detect different β‐lactamases in 
a single run. Thus, antibiotic resistance can be measured rapidly and with a high level of 
sensitivity. A UPLC‐MS/MS method was reported by Carricajo et  al. (2014) for the 
detection of carbapenemase activity in Enterobacteriaceae, Pseudomonas aeruginosa 
and Acinetobacter baumannii. The method here was based on incubating bacterial sus
pension with 5 mgml − 1 of meropenem or ertapenem for 3 to 4 h at 36 °C. Following 
centrifugation and addition of an internal standard (meropenem d6), the concentration 
of ertapenem and meropenem were measured using a tandem quadrupole instrument 
operated in positive ion mode. The transitions used for ertapenem, meropenem and the 
internal standard were 476 to 114 m/z, 383.9 to 254.1 m/z and 390.1 to 147.1 m/z, 
respectively. The rate of hydrolysis was determined by dividing the carbapenem con
centration after incubation by the pre‐incubation concentration of carbapenem. The 
study showed that hydrolysis of carbapenem occurred within 3 h for NDM‐1 and KPC‐
producing enterobacteria, whereas a longer incubation period of 4 h was required for 
some CHDL‐, VIM‐ and OXA‐48‐producing strains. The authors found that unlike 
molecular methods, the UPLC‐MS/MS procedure did not allow identification of the 
carbapenemase enzyme and therefore failed to give molecular epidemiological infor
mation. The authors also concluded that initial cost of implementing a UPLC‐MS/MS 
system is high in comparison to PCR. However, laboratories where this type of technol
ogy is already available can easily adopt this type of methodology. Furthermore, carbap
enemase activity can be detected irrespective of the enzyme type. Kulkarnni et al. (2014) 
reported a rapid and sensitive LC‐MS/MS method for detection of carbapenemase 
activity for Enterobacteriaceae and non‐Enterobacteriaceae‐expressing IMP, VIM, 
KPC, NDM and or OXA using ertapenem, imipenem and meropenem. In their assay, 
ertapenem or imipenem or meropenem was added to a final concentration of 4 µgml−1 
to a bacterial suspension and the mixture incubated at 37 °C for 1 h. Following protein 
precipitation and centrifugation, an aliquot of the supernatant was diluted with deion
ized water for LC‐MS/MS analysis in MRM mode. The MRM transitions used for 
detection of meropenem and imipenem were 384.1 to 68 m/z and 300.1 to 142.1 m/z, 
respectively. The primary hydrolysis products of meropenem and imipenem were 
detected using product/precursor ion transition of 402 to 358 m/z and 318.1 to 103 m/z, 
respectively. The MRM transitions for ertapenem and its hydrolysis product were not 
reported. A ratio of peak area of the intact drug to hydrolyzed product was used to 
determine carabapenemase activity. The authors found the hydrolysis ratio ranged from 
0.00 to >100 for meropenem and from 0.02 to >100 for ertapenem and imipenem. The 
authors investigated the effects of matrix on ion suppression using a blank matrix. 
Although no matrix effects were observed using this approach, for the method to be 
more widely accepted it would be necessary to add a stable isotope of the carbapenem 
to every sample just prior to injection onto the HPLC column because ion suppression 
may vary from sample to sample. We recently developed a rapid LC‐MS/MS platform 
to measure the hydrolyzing capability of microorganisms towards several β‐lactams in 
a single analysis. In this assay, bacteria were cultured in Columbia blood agar and 
a 1.0 ml suspension prepared. An aliquot (100 µl) was used to determine the protein 
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 concentration using the Bradford method. The remainder of the culture (100 µl) was 
incubated with 10 µl of a mixture of amoxicillin (0.25 mg/ml), cefotaxime (0.5 mg/ml), 
meropenem (0.5 mg/ml) and oxacillin (0.5 mg/ml) at 37 °C for 2 h. Two‐hundred micro
litres of cold acetonitrile was then added to precipitate proteins. The resulting precipi
tate was separated by centrifugation at 15,000 g for 5 min. The supernatant was carefully 
transferred to an HPLC vial and mixed with 300 µl of water and an aliquot was loaded 
onto a 5 × 2.1 mm i.d. C18 2.7 µm Ascentis Express column. The analytes were separated 
using a binary gradient elution profile composed of ‘A’‐0.1% formic acid in water and 
‘B’‐0.1% formic acid acetonitrile. The elution profile was as follows: 0–10 min 5% to 75% 
B, down to 5% B 10–11 min and hold 11–15 min. Eluates were detected using an API3000 
triple quadrupole mass spectrometer operated in positive ion mode.

The mass spectrometric parameters were optimized to generate the maximum level 
of the protonated form of β‐lactams. The source‐dependent parameters for the analytes 
consisted of collision gas, curtain gas, ion spray gas 1 and 2, ionspray voltage and the 
temperature of the heater gas, with optimum values of 4, 10, 60, 10, 4.5 kV and 450 °C, 
respectively. The analyte‐dependent parameters were also tuned to obtain the maxi
mum detector response. The ion spray voltage was set at 4.5 kV and the source tempera
ture at 450 °C. The mass spectrometer was operated at unit mass resolution for both Q1 
and Q3 in molecular reaction monitoring (MRM) mode. The precursor‐to‐product 
transitions of m/z 366 → 114 for amoxicillin, m/z 456 → 124 for cefotaxime, m/z 
384 → 68 for meropenem and m/z 424 → 182 for oxacillin were monitored. Figure 15.3 
shows MRM chromatograms of a control, mixture of β‐lactams prior to incubation with 
bacterial culture and following 2 h incubation. The difference between the pre‐incubation 
and post‐incubation concentrations of β‐lactam together with the protein concent
ration was used to express β‐lactamase activity per minute per milligram of protein. 
The control served to account for any spontaneous hydrolysis that may occur.

The use of MALDI‐TOF MS for detection of β‐lactams and their hydrolysis products 
is unexpected given the interference that can occur from matrix ions. In comparison, 
LC with mass spectrometric detection is ideally suited for selective detection of small 
molecules like β‐lactams in complex matrices. It has been reported that to achieve the 
level of sensitivity for carabapenemase activity achieved using LC with mass spectrom
etry with MALDI‐TOF MS, a much higher bacterial inocula and β‐lactam concentra
tion in simple matrix is required. However, it has been shown that MALDI‐TOF can be 
used effectively for detection of β‐lactamase activity in isolated colonies. Detection of 
β‐lactamases like carbapenemases using mass‐spectrometry‐based methods may not 
suitable for detection of other mechanisms used by bacteria for resistance to antibiotics, 
and it may be necessary to resort to traditional phenotypic antimicrobial susceptibility 
testing to account for all the different mechanisms of resistance.

15.5 Proteomics Approaches for Detection 
of Antibiotic Resistance

The MS approaches described thus far are based on detection of β‐lactamase activity 
and therefore limited to detection of one type of antibiotic‐resistant mechanism. 
A more global approach to studying antibiotic‐resistant mechanisms in bacteria is use 
of comparative proteomics. This kind of strategy provides a means of understanding the 
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mechanisms of antibiotic resistance in more detail. Furthermore, it offers a means of 
identifying new mechanisms of resistance and may lead to uncovering secondary muta
tions that are associated with resistant phenotypes. In these approaches, bacteria are 
cultured under identical conditions, the cells harvested and then lysed and proteins are 
extracted and then separated using 2D‐GE. Visual comparison of the gel is used to iden
tify differences in protein profiles between the gels. Bands of interest are excised and 
subjected to reduction, alkylation followed by enzymatic digestion. The resulting pep
tides are extracted and analyzed using either MALDI‐TOF MS or LC‐MS/MS to iden
tify the protein. The complexity of the protein profile can be reduced by using a 
combination of cellular pre‐fractionation to determine cellular location and pathway 
predictions. This strategy was used to study penicillin resistance in Streptococcus 
pneumonia (Soualhine et al., 2005). Both resistant and susceptible strains were  studied. 
Following initial in vitro studies, strains that were penicillin resistant and susceptible 
were chosen. Comparative proteomics of these strains showed a number of differen
tially expressed proteins that included a PstS, which is a subunit of phosphate ABC 
transporter. The level of this protein was higher in resistant strains of S. pneumonia, 
and this was in parallel with RNA expression of the entire ABC transporter operon. 
Inactivation of the pstS gene led to greater susceptibility to penicillin in the wild‐
type strain.

In another study conducted by Hu et al. (2007), a reduction in susceptibility to ceftriax
one in Salmonella enterica serovar Typhimurium strain was associated with transposon 
insertion in the yjeH gene, a putative transporter gene. Proteomic analysis of outer mem
brane proteins of the mutant and the parent R200 showed that expression of porin OmpD 
was raised and putative outer membrane proteins STM1530, STM3031, heat shock 
 protein MopA and a subunit of the proton pumping oxidoreductase NuoB was reduced. 
The authors suggested that these proteins are associated with ceftriaxone resistance, 
which is influenced by the change in expression of the putative transporter gene yjeH.

The occurrence of organisms that are resistant to third‐generation β‐lactams is 
becoming a major health issue. In relation to this, Liu et  al. (2012) identified a 
Stenotrophomonas maltophilia DCPS‐01 that was resistant to all β‐lactams. Proteomic 
analysis of this microorganism demonstrated that in the presence of imipenem, 
DCPS‐01 differentially expressed several proteins in comparison to their control strain, 
K279a. This included L1 MBL, stress proteins, elongation‐related proteins and proteins 
that are associated with metabolism. Van Oudenhove et al. (2012) conducted a prot
eomic study in the same organism using 2D GE of cytoplasmic and membrane protein 
followed by Isobaric Tags for Relative and Absolute Quantitation ITRAQ® differential 
labelling and 2‐D LC with tandem MS. The results showed that expression of 73 pro
teins was altered when the organism was challenged with imipenem. In addition to a 
rise in production of β‐lactamase, an increase in other metabolic enzymes was also 
observed. The study showed the adaptation of the organism following exposure to imi
penem. The inner membrane proteome of the carbapenemase strain of Acinetobacter 
baumannii was analyzed by Tiwari et al. (2012) using differential in‐gel electrophoresis 
(DIGE) followed by LC‐MS/MS analysis. The authors found 19 overexpressed and four 
down‐regulated proteins in the resistant strain compared to the reference strain. Some 
of the up‐regulated proteins were Amp‐C and OXA‐51, which metabolize carbapen
ems, and other proteins were enzymes involved in metabolism such as ATP synthase, 
malate dehydrogenase, which increases energy production required for survival.
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Glycopeptide antibiotics like teicoplanin and vancomycin are widely used in treatment 
of infections caused by gram‐positive bacteria like staphylococci. Vancomycin antibacte
rial mechanism of action is by way of preventing cross‐linking of the peptidoglycan cell 
wall. Organisms that are resistant to vancomycin synthesize altered cell wall precursors 
which have a reduced affinity for this glycopeptide antibiotic. Pieper et al. (2006) carried 
out comparative proteomic studies of a subcellular fraction of the S. aureus isolate VP32. 
The authors used 2‐DE and analyzed the separated proteins using MALDI‐TOF/TOF 
MS and LC‐MS/MS and found 65 proteins that were differentially expressed. Several 
enzymes involved in the biosynthesis of purines were up‐regulated in VP32 relative to 
P100 and HIP5827. Furthermore, other proteins like peptidoglycan hydrolase and peni
cillin binding protein were significantly elevated in VP32. These proteins are involved in 
the biosynthesis of the cell wall peptidoglycan. The authors suggest that the altered level 
of these proteins may be responsible for a change in the cell wall turnover rate and an 
altered peptidoglycan structure. It has been shown that the vancomycin‐intermediate 
S. aureus (VISA) is formed when this glycopeptide is used to treat infections caused by 
methicillin‐resistant S. aureus (MRSA). To identify biomarkers of resistance to the glyco
peptides, Drummelsmith et al. (2007) carried out comparative proteomics studies. The 
authors used high‐resolution 2 DE with iTRAQ® mass tagging to identify differentially 
expressed proteins between clinical MRSA and VISA strains of the same multilocus 
sequence type (MLST). The results showed that 93 proteins were differentially expressed, 
and of these lytic transglycosylase SAV2095 was chosen for its higher abundance in all 
VISA strains relative to MRSA strains as well as several heterogeneous VISA strains that 
were found to be vancomycin sensitive using standard susceptibility testing methods. 
The occurrence of vancomycin resistance in enterococci has also been rising slowly and 
poses a serious health threat. Ramos et  al. (2015) carried out proteomics studies to 
understand the mechanism of resistance to glycopeptide in Enterococcus faecium SU18 
strain treated with and without vancomycin. The results showed that 14 proteins were dif
ferentially expressed in SU18: half were up‐regulated and the other half down‐regulated. 
The expression of proteins that are involved in vancomycin resistance, like VanA protein, 
VanA ligase, VanR and D‐Ala‐D‐Ala dipeptidase, was raised whereas those involved in 
metabolism were down‐regulated. The authors proposed that the level of SAV2095 could 
be used as a biomarker for rapid detection of VISA strains.

The antimicrobial daptomycin is a cyclic lipopeptide that is used clinically in treat
ment of infections caused by both susceptible and resistant strains of S. aureus that 
include bacteraemia, endocarditis and skin and soft tissue infections. Daptomycin 
works by inserting itself into the cell membrane and forming aggregates. This leads to 
damage of the membrane, which results in leakage of ions and depolarization. These 
events lead to inhibition of protein synthesis and result in bacterial cell death. Fischer 
et al. (2011) conducted comparative transcriptomics and proteomics studies of isogenic 
daptomycin‐resistant (DAPR) and daptomycin‐sensitive strains (DAPS) obtained from a 
patient with relapsing endocarditis during daptomycin treatment. The authors found 
that were significant differences in proteins expressed that included cell wall and bio
film forming proteins.

Tetracyclines are used for treatment of a wide variety of infections because they have 
a broad spectrum of activity and do not cause major side effects. The rise in identifica
tion of tetracycline‐resistant organisms has resulted in a fall in clinical use of these 
antimicrobial agents. Several resistant mechanisms to tetracycline have been identified, 
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and these include efflux pumps, formation of ribosomal protection proteins and modifi
cation of the antibiotic to render it inactive (Speer et al., 1992). Lee et al. (2014) carried 
out proteomic analysis using nano LC with a linear quadrupole ion trap Fourier transform 
mass spectrometer of Acinetobacter baumannii DU202 isolated from a sputum sample 
from a patient admitted to hospital. High level of expression of β‐lactamases, a multidrug 
resistance efflux pump and resistance–nodulation–cell division (RND)  multidrug efflux 
proteins was found in this organism. Peng et al. (2005) conducted a proteomic study of 
sarcosine‐insoluble outer membrane fraction of P. aeruginosa resistant to ampicillin, kan
amycin and tetracycline using 2‐DE and MALDI‐TOF MS. In addition to the known pro
teins associated with antibiotic resistance, the authors also found five new proteins. The 
authors concluded that the results of their work will provide a better understanding of 
antibiotic resistance between different species of bacteria.

A year later, Xu et al. (2006) carried out proteomics studies of the outer membrane 
proteins of ampicillin‐ and tetracycline‐resistant strains of E. coli K‐12 using 2‐DE and 
MALDI‐TOF MS. The organism was cultured in the presence of ampicillin or tetracy
cline at MIC and their respective controls. The authors found three proteins that are 
known to be associated with antibiotic‐resistant (TolC, OmpC and YhiU) together with 
six new antibiotic‐resistance‐related proteins (FimD precursor, LamB, Tsx, YfiO, 
OmpW and NlpB). Comparative proteomics was undertaken of a Coxiella burnetii ref
erence strain grown under tetracycline stress conditions and compared against a con
trol investigated using fractional diagonal chromatography (COFRADIC) with MS. 
This approach was developed by Gevaert et al. (2005), who state that it overcomes the 
major limitation of peptide‐centric proteomic approach, where an enormous number 
of peptides are analyzed using tandem MS. Furthermore, the limited capacity of current 
mass spectrometers is insufficient for a large number of peptides to be identified. In 
comparison, COFRADIC is a gel‐free method that isolates a set of preselected peptides 
for LC‐MS/MS analysis. Methods for isolating cysteinyl, methionyl, amino terminal 
and phosphorylated peptides have been reported. Using this strategy, Vranakis and co‐
workers (2012) in their work found five proteins were up‐regulated that are involved in 
biosynthesis and metabolism. Of the proteins identified, 19 were down‐regulated.

Aminoglycosides are potent broad‐spectrum antibiotics that bring about their action 
by inhibiting protein synthesis. A number of different resistance mechanisms have been 
described for aminoglycosides that include efflux pumps and drug‐modifying enzymes 
(Mingeot‐Leclercq et al., 1999). In a proteomic study by Sharma et al. (2010), whole cell 
extracts from Mycobacterium tuberculosis clinical isolates susceptible and resistant to 
streptomycin using 2DE and MALDI‐TOF MS nine protein were overexpressed in SM‐
resistant isolates in comparison to sensitive isolates. These proteins were identified as 
DnaK, 60 kDa chaperonin2, malate dehydrogenase, oxidoreductase, electron transfer 
flavoprotein subunit alpha, antigen 84, 14 kDa antigen and two hypothetical proteins. 
Streptomycin is known to interact with amino acid residues in the active site of malate 
dehydrogenase, and this may be the reason why the level of this enzyme is altered.

Chloramphenicol is a broad‐spectrum antibiotic that was first derived from the bac
terium Streptomyces venezuelae. It is used to treat a range of infections that include 
meningitis, cholera and typhoid fever. Resistance to chloroamphenicol is due to reduced 
membrane permeability, mutation of the 50S ribosomal subunit and acetylation of the 
antibiotic by chloroamphenicol acetyltransferase. Biot et al. (2011) studied Burkholderia 
thailandensis using SDS‐PAGE and nano LC with tandem MS. The authors showed that 



Tandem MS/MS-Based Approaches to Microbial Characterization414

in the chloroamphenicol‐induced resistant strains, two different efflux pumps were 
overexpressed. These efflux pumps were able to expel several classes of antibiotics that 
included fluoroquinolones and tetracyclines. Resistance to fluoroquinolones has also 
been studies using proteomic‐based approaches. This group belong to the quinolone 
family of antibiotics. These are broad‐spectrum antibiotics that produce their antibac
terial action by inhibiting enzymes involved in DNA replication, namely, DNA gyrase 
and DNA topoisomerase IV. Coldham et  al. (2006) conducted a proteomic study of 
Salmonella enterica serovar Typhimurium grown in the presence of the fluoroquinolone 
antibiotics ciprofloxacin and enrofloxacin. Proteins were separated using 2D‐GE, and 
following in‐gel digests of protein spots, 2D‐LC strong cation exchange with reverse 
phase was used to separate the tryptic digests. The authors showed that basal expres
sion of the AcrAB/TolC efflux pump was raised in the MAR mutant compared with 
the untreated wild type. In addition, the expression of 43 other proteins was elevated, 
which was attributed to the physiological response to the fluoroquinolones.

Recently, Rees et al. (2015) reported a method that exploits the specificity and physi
ology of the staphylococci bacteriophage K to identify Staphylococcus aureus and deter
mine its susceptibility to clindamycin and cefoxitin. The method utilized MS to monitor 
the replication of the bacteriophage prior to infecting samples thought to contain 
S.  aureus. Peptides of a 51 kDal capsid protein of bacteriophage K were used as 
 biomarkers to search for resistance in samples containing S. aureus, the rationale being 
that the bacteriophage K will amplify in the presence of a suitable host. If bacteriophage 
amplification is detected in samples containing the antibiotics clindamycin or cefoxitin, 
the sample is considered to be resistant to these antibiotics because this will only occur 
in a viable host. Consequently, the method allows the susceptibility to clindamycin and 
cefoxitin in S. aureus to be determined in a single protocol.

Proteomic approaches show that antibiotic resistance mechanisms are more complex 
than originally thought, and reliance solely on genome sequence data will not provide a 
definitive method for their detection. Proteomic signatures have revealed a significant 
number of expressed proteins that are involved in a variety of metabolic processes 
involved in antimicrobial resistance. However, proteogenomic approaches enable 
potential genes to be mapped initially, from which putative proteins may be detected by 
MS/MS‐based methods. Chong et al. (2014) demonstrated such an approach for clini
cal isolates of Clostridium difficile and complex antimicrobial resistance profiles that 
can occur within single species (see also Chapter 14).

15.6 Conclusion

It is evident from Table 15.2 that both MALDI‐TOF MS and LC‐MS are comparable 
with respect to resolving power, mass accuracy and mass range. Note that the m/z range 
shown for MALDI‐TOF is valid only for the linear mode and is restricted to around 
100,000 or less for the reflectron mode. Although the resolution indicated for both 
techniques is similar, for MALDI‐TOF MS a significantly higher resolution is obtained 
in reflectron mode. One of the key advantages of LC‐MS over MALDI‐TOF MS is that 
it can be used for quantitative analysis with a high level of sensitivity and reproducibility. 
Furthermore, analysis of small molecules, like antibiotics and their hydrolysis products, 
using MALDI‐TOF MS can be prone to interference from matrix ions.
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16.1 Introduction

Rapid and accurate species identification and diagnosis of infectious diseases are of 
great importance in clinical settings, especially for patients suffering from infections 
that could lead to life‐threatening situations. There is also an increasing need for 
 diagnostic methods that provide information about the phenotypes associated with 
antibiotic resistance and virulence. However, the specific traits of the infectious patho-
gen, including antibiotic resistance and virulence, are often associated with strain‐level 
differences rather than species‐level differences, and methods with higher resolution 
capable of strain‐level typing are therefore increasingly necessary. The terms microbial 
typing and microbial type are used in microbiology in different contexts, referring to 
various characteristic delineations, for example, biotype, phenotype, genotype, 
sequence‐type, serotype, pathotype, and ecotype (van Belkum, Durand et al., 2013). In 
the broadest sense, the typing of microorganisms refers simply to the categorization of 
individual organisms, based upon specified criteria or methods of analyses. However, in 
practice, the terms also are often used to designate subspecies‐level designations 
(Figure 16.1).

The implementation of matrix‐assisted laser desorption/ionization‐time‐of‐flight 
(MALDI‐TOF) mass spectrometry (MS) protocols for the identification of species and 
diagnostics of infectious diseases has been a great success. However, recognized limita-
tions of MALDI‐TOF MS identification of microorganisms encourage further develop-
ment of the implemented protocols as well as development of approaches based on 
tandem MS (LC‐MS/MS). The ever‐evolving analytical instruments for MS together 
with advances in bioinformatics and constantly expanding genomic and proteomic 
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databases will generate corresponding progress in proteotyping, that is, the use of 
 proteomics for microbial analysis and characterization.

16.2 MS and Proteomics

Microbial proteomics‐based analyses comprise the study of the expression of genes and 
the structure and function of the resulting cellular proteins. The developments of prot-
eomics have relied on recent advances in MS instrumentation and MS‐based analyses. 
The earliest attempts to apply MS for analyzing biological samples were limited to rela-
tively small‐molecular‐weight compounds (Anhalt, 1975). The development of soft 
ionization techniques, such as matrix‐assisted laser desorption/ionization (MALDI) 
(Hillenkamp, 2000) and electrospray ionization (ESI) (Whitehouse, Dreyer et al., 1985; 
Fenn, Mann et  al., 1989) were major advances, preserving the integrities of larger‐
molecular‐weight compounds such as proteins and protein complexes (Dreisewerd, 
2003). Briefly, in the case of MALDI MS, analyses are performed by placing samples 
onto a target plate with a matrix solution. A laser pulse is ‘shot’ against the target spot, 
whereby the sample analytes and matrix molecules are ionized and desorbed from the 
target plate, and the charged analytes are accelerated into a mass analyzer. In the case of 
ESI, a solution is eluted continuously from a capillary tip, and a voltage is applied 
between the tip of the outlet and the MS analyzer inlet, creating an aerosol of droplets. 
By using a heated capillary or a heated sheath gas, the droplets evaporate, and the 
charged analytes enter the mass analyzer (Banks, 2014). Four types of mass analyzers 

IDENTIFICATION AND TYPING OF MICROORGANISMS

IDENTIFICATION

Search for common properties
assignment to a species

Search for discriminating properties
assignment to a species sub-group

TYPING

Genus Species Sub-species Strain Clone

Species sub-groups 
defined by different criteria
and methods of analyses

Sub-specific typing differentiated by:

phenotype: observable physical properties
morphotype: cell and colony morphology
chemotype: chemical characteristics
proteotype: expressed proteins
serotype: antigenic reactions
pathotype: host pathogenicity
ecotype: adaptation to ecosystem
genotype: genetic composition

Figure 16.1 Illustration showing the distinction between microbial “identification” and “typing”, that 
is, what levels of resolution are needed for which levels of taxonomy. Also shown are different 
commonly used terms for different subgroup types.
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are commonly used for proteomics applications: quadrupole ion trap (QIT); linear ion 
trap (LIT) or linear trap‐quadropole (LTQ), TOF or Fourier transform ion cyclotron 
resonance (FTICR) (Yates, Ruse et al., 2009). MALDI is commonly used as an ioniza-
tion source, together with the so‐called scanning MS analyzers, such as the TOF (i.e. 
measuring the flight time of the analytes, which corresponds to their masses and 
charges), with the analysis commonly done in a pulsed mode. ESI is used in a continu-
ous mode of analysis, with the analytes continuously eluted from a sample separation 
step, such as liquid chromatography (LC), prior to entering the MS instrument (Fenn, 
Mann et al., 1989; Banks, 2014). In this setup, ESI is usually combined with ion beam 
MS analyzers, such as the quadrupole (which separates ions according to the stability of 
the mass/charge ratio), and the trapping MS analyzers, such as the ion trap, Orbitrap 
and ion cyclotron resonance (ICR) analyzer (which separates ions according to their 
m/z resonance frequency) (Yates, Ruse, et al., 2009).

Hybrid mass spectrometers combining different mass analyzers have been created to 
make use of the different strengths and performances of the individual analyzers, 
including triple quadrupole (TQ), quadrupole‐LIT (Q‐LIT), quadrupole‐TOF (Q‐TOF) 
and linear ion trap–FTICR (LTQ‐FTICR) (Yates, Ruse et al., 2009); currently, one of the 
most popular types of mass spectrometers is the Orbitrap (Makarov, 1999; Hu, Noll 
et al., 2005), and recently, a hybrid instrument, the LTQ‐Orbitrap, demonstrating high 
resolution, high mass accuracy and good dynamic range, became available commer-
cially. Table 16.1 shows an overview of the different mass analyzers and their analytical 
performances.

Mass spectrometers imparting high resolution, high mass accuracies, high sensi-
tivities, large dynamic ranges and high scan rates are necessary for MS‐based studies 
of the proteome of a microorganism, such as a bacterium (Dworzanski, Deshpande 
et al., 2006; Armengaud, 2013; Karlsson, Gonzales‐Siles et al., 2015). The proteome is 
the compilation of the entire set of proteins produced by a given microbial cell, an 

Table 16.1 Overview of different mass analyzers and their analytical performance.

Instrument Resolution
Mass accuracy 
(ppm) Sensitivity

Dynamic 
range

Scan rate 
(spectra/time 
unit)

LIT (LTQ) 2,000 100 Femtomole 1 × 104 fast
TQ (TSQ) 2,000 100 Attomole 1 × 106 moderate
Q‐LIT 2,000 100 Attomole 1 × 106 moderate, fast
Q‐TOF/IT‐TOF 10,000 2–5 Attomole I × 106 moderate/fast
LTQ‐FTICR/Q‐FTICR 500,000 <2 Femtomole 1 × 104 slow/slow
LTQ‐Orbitrap 100,000 2 Femtomole 1 × 104 moderate

The resolution, mass accuracy, sensitivity, dynamic range and scan rates are indicated for commonly used 
instruments such as the linear ion trap – LIT (LTQ), triple quadrupole – TQ (TSQ), quadrupole‐linear ion 
trap – Q‐LIT, quadrupole‐time‐of‐flight – Q‐TOF, ion trap‐time‐of‐flight – IT‐TOF, Fourier transform ion 
cyclotron resonance – FTICR and Orbitraps (Adapted from Karlsson, R., L. Gonzales‐Siles, F. Boulund, L. 
Svensson‐Stadler, S. Skovbjerg, A. Karlsson, M. Davidson, S. Hulth, E. Kristiansson and E. R. Moore (2015). 
“Proteotyping: Proteomic characterization, classification and identification of microorganisms – A 
prospectus.” Syst Appl Microbiol 38(4): 246–257).
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organism or a biological system of different organisms. High scan rates and high 
 sensitivities enable the detection of more peptides per unit time during the front‐end 
separation (LC), features that are critical for successful analyses of complex samples, 
including whole‐cell lysates or clinical samples containing mixtures of target 
 molecules from different microbial species. High resolution and mass accuracy ena-
ble accurate identifications of peptides, which are essential features for performing 
proteomic analyses of closely related species or strains. A key improvement of MS 
instruments has been in the increased dynamic range, that is, the range of sample 
concentrations that a mass analyzer can handle at each time point (Armengaud, 
2013). If the range of concentrations of peptides or proteins entering the mass 
 analyzer at the same time is very large, only the most abundant ones will be detected. 
Injecting more or less sample will not solve the problem. However, modification of 
the sample preparation strategies might be implemented in order to reduce the sam-
ple complexity prior to analysis (Armengaud, 2013). The issue of poor dynamic range 
is important to keep in mind when performing metaproteomics (Chao and Hansmeier, 
2012), wherein the abundance of individual members will vary within the microbial 
population structure. However, the dynamic range of MS instruments is also impor-
tant for proteomic analyses when highly abundant proteins, such as ribosomal pro-
teins, might mask proteins of lower abundance, such as outer‐membrane proteins or 
virulence factors.

16.3 MALDI TOF MS

Since its invention in the late 1980s, MALDI‐TOF MS has been used for a wide range of 
analytical applications in the life sciences (Hillenkamp F., 2000). Whole‐cell MALDI‐
TOF MS, generating proteomic mass patterns (i.e. mass spectra profiles; Figure 16.2) 
for the identification of microorganisms, has been a major breakthrough for microbial 
characterization and identification (Kallow, Erhard et  al., 2010; Welker and Moore, 
2011), particularly in clinical laboratories, where the combination of relatively simple 
sample preparations, rapid analysis times and low cost are essential for processing large 
numbers of samples (Bizzini, Jaton et al., 2011). MALDI‐TOF MS typically targets ribo-
somal proteins, other housekeeping proteins and other structural proteins that are 
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Figure 16.2 An example of a typical spectra obtained by MALDI‐TOF‐MS analysis of Staphylococcus 
aureus. The intensities of the peaks are normalized according to the highest peak (100%), and the 
mass‐to‐charge ratio (m/z) is indicated at the major peaks.
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abundant in the cell, relatively independent of growth state or external stimuli and are 
usually in the mass range of 2,000 to 20,000 Da (Welker, 2011). The level of resolution to 
be expected from whole‐cell MALDI‐TOF MS analyses of microorganisms is generally 
limited to species‐level differentiation and identification as shown in Figure 16.3 for 
Staphylococcus spp. This is due to the limitations of MS technology, where a limited 
number of data points (mass spectra peaks) are derived from the preferential ionization 
and detection of abundant proteins for any sample analyzed. However, MALDI‐TOF 
MS has the potential for uses other than species identification, which is demonstrated 
in Figure 16.4. Using the standard protocol, whole‐cell MALDI‐TOF MS could discrim-
inate between different pulse‐field gel electrophoresis (PFGE) subtypes of S. aureus, 
indicating a capacity for strain differentiation using MALDI‐TOF MS.

The use of MALDI‐TOF MS for applications other than species‐level identification, 
such as subspecies‐level differentiation for epidemiological typing or detection of 
 particular functional activities (e.g. antibiotic resistance, virulence), generally requires 
specialized cell preparatory protocols, before MS analyses, optimized to enhance the 
levels of resolution that can be attained. The optimizations needed to perform such 
analyses may include the use of particular matrix solutions, adjusting the mass range 
and laser power and exploiting more extensive sample preparations, for example, cell 
fractionation. Additionally, as demonstrated by Månsson et al. (Månsson, Resman et al., 
2015) in a study differentiating capsulated and non‐capsulated H. influenza, the par-
ticular classification algorithm used for defining subgroups may be significant. A major 
limitation of MALDI‐TOF MS, in the way that it is used today, is the same as for all 
methods dependent on database searches and comparisons, that is, the reference data-
base. No matter how extensively the database develops, it will never be complete. This 
may result in some cases of non‐identification or, even worse, misidentification of 
microorganisms. The establishment of species ‘super‐spectra’, comprising compilations 
of the spectra of representative strains of a given species, provides reliable, comprehen-
sive references for the comparison of spectra from individual isolates and strains 
(Welker and Moore, 2011).

Protocols required for subspecies‐level differentiation and typing are dependent on 
the features that are being investigated and will need to be optimized for each particular 
taxon. One example is the analysis of serotypes of the food‐borne pathogen, Listeria 
monocytogenes, for which a whole‐cell MALDI‐TOF MS method was developed and 
applied to track the origins of L. monocytogenes strains, grouping them according to 
their serotypes (Jadhav, Gulati et al., 2015). The results obtained with MALDI‐TOF MS 
corresponded well to the commonly used PFGE typing of bacterial serotypes.

Attempts to find specific biomarkers for strains of methicillin‐resistant Staphylococcus 
aureus (MRSA) have been made, for example, using the presence of a mass peak at m/z 
2415 as an indicator of MRSA strains in the CC5 MLST clonal complex. However, 
strains lacking this peak could be an MRSA or MSSA (methicillin‐sensitive Staphylococcus 
aureus) strain (Josten, Dischinger et al., 2014). Additionally, biomarkers for S. aureus 
lineages have been proposed (Josten, Reif et al., 2013), although the specificities of these 
markers have been questioned (Lasch, Fleige et al., 2014). Methicillin sensitivity in S. 
aureus has been analyzed by MALDI‐TOF‐MS, using the weak cation exchange 
ProteinChip Array (CM10) (designated SELDI‐TOF‐MS) (Shah, Rajakaruna et  al., 
2011). Strain profile data generated were analyzed, using artificial neutral networks 
(ANNs), and seven key ions were found that were predictive of MRSA and MSSA. The 
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vast majority of all strains were identified correctly, demonstrating the potential for sub-
species‐level characterizations. Expanding the mass range for the detection of m/z 
peaks outside the standard 2–20 kDa range that is used for accredited clinical diagnostic 
analyses is one approach to increase the resolution of MALDI‐TOF MS. This approach 
has been applied successfully in the case of epidemiological typing of Clostridium diffi-
cile (Rizzardi and Akerlund, 2015), wherein the discriminatory peaks most useful for 
delineating species ribotypes were detected in the 30–50 kDa region of the spectra. It 
should be noted that this analytical modification was developed with whole‐cell MALDI‐
TOF MS, and no extensive preparation protocol was used. The strains defined by the 
so‐called high‐molecular‐weight (HMW)‐typing corresponded well to the delineation 
of C. difficile strains by the accepted standard for C. difficile strain typing, that is, hybrid-
ization probe‐based ribotyping, although not all HMW types corresponded to individ-
ual ribotypes. However, HMW‐MALDI‐TOF typing offers a rapid and cost‐effective 
way to screen an outbreak, wherein turnover times of analyses are critical. In addition to 
C. difficile typing, expanding the mass range was also shown to be an effective method 
to detect the loss of the OmpK36 porin in Klebsiella spp. (Cai, Hu et al., 2012). In that 
study, the outer‐membrane proteins (OMPs) were extracted prior to MALDI‐TOF MS 
analysis and then analyzed in the 15–80 kDa range. The results corresponded well to the 
results obtained by the commonly used SDS‐PAGE method (Cai, Hu et al., 2012).
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Figure 16.4 A dendrogram derived from MALDI‐TOF MS spectra of the relative similarities of S. aureus 
strains. The subtypes identified by pulsed‐field gel eletrophoresis (PFGE) are discriminated in the 
separate subclusters, indicating a high correlation between the different approaches. This shows that 
MALDI‐TOF MS protocols have potential for strain‐level differentiation in S. aureus.
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Another approach to use MALDI‐TOF MS for subspecies‐level analyses has been 
applied by Durighello et al. (Durighello, Bellanger et al., 2014), combining whole‐cell 
MALDI‐TOF MS analysis with nano‐LC‐MS/MS, to define the biomarkers for strain‐
typing Francisella spp. As some Francisella spp. are highly virulent, a rapid method for 
distinguishing between virulent and non‐virulent strains was required. In the study, 
whole‐cell MALDI‐TOF MS was performed, identifying the 100 most intense m/z 
peaks, which were converted into theoretical masses. Nano‐LC‐MS/MS was used to 
analyze the 3–20 kDa proteome of the Francisella spp., and the theoretical masses 
obtained with MALDI‐TOF MS were compared with the proteome data, detecting 
three specific biomarkers. The different patterns of these three biomarkers could be 
recognized using whole‐cell MALDI‐TOF MS, and were applied for defining specific 
strains of the Francisella spp.

The most successful approach for subspecies‐level analyses may be the identification 
and exploitation of specific biomarkers or sets of biomarkers for differentiating between 
different strains. However, biomarkers presumed to be specific for given subsets of 
strains often lose their specificities when more strains are introduced into the analyses 
(Spinali, van Belkum et al., 2015).

MALDI‐TOF MS may lack the resolution that can be obtained by other molecular 
methods for microbial subspecies‐level analyses. In most cases, MALDI‐TOF MS is 
limited in its ability to perform such analyses. Metabolic features, including virulence 
and antibiotic resistance factors, usually cannot be detected using standard protocols. 
Furthermore, MALDI‐TOF‐MS identification requires, in most cases, cultivation and 
isolation of the microorganisms prior to analyses and will not be applicable to direct 
analyses of clinical samples or mixtures of bacteria, even though attempts are being 
made to develop protocols for such analyses. However, MALDI‐TOF MS may prove to 
serve important roles as a screening tool, for example, for rapid epidemiological typing, 
to track outbreaks of pathogens, especially in local settings.

16.4 Tandem MS Shotgun Proteomic Analyses

MS‐based shotgun proteomics (McDonald and Yates, 2003) analyses offer more detailed 
and comprehensive analyses of microorganisms. Two approaches may be applied: the 
so‐called top‐down and bottom‐up proteomics (Meyer, Papasotiriou et al., 2011). In 
short, the top‐down approach relies on the analysis of intact proteins, whereas the bot-
tom‐up approaches include digestion (enzymatic or chemical) of the intact proteins 
into peptides, prior to the MS analysis (Figure 16.5).

16.5 Top‐Down Proteomics

When performing top‐down proteomics, intact proteins are partitioned by a separation 
technique (typically, LC), ionized to a highly charged state (~ + 15) and then analyzed by 
the mass analyzer (McLafferty, Breuker et  al., 2007; Gault, Malosse et  al., 2014). 
Following mass measurements, the intact proteins are fragmented, for example, by 
using collision‐induced dissociation (CID), higher‐energy collisional dissociation 
(HCD) or electron transfer dissociation (ETD), and the fragments are measured to 
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Figure 16.5 Top‐down and bottom‐up approaches employed for proteotyping. In top‐down 
approaches (left part of the figure), the intact proteins are separated by liquid chromatography without 
prior digestion. Note the highly charged states of the intact proteins after ionization. Here, the 
generated tandem MS spectra reflect the mass differences of intact peptides. In bottom‐up approaches 
(right part of the figure), the proteins are first digested into peptides (for example, using a digestive 
enzyme, such as trypsin), whereby the peptides subsequently are separated by LC and ionized prior to 
mass analysis. Here, the tandem MS spectra reflect the mass differences of amino acids.
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 create a mass spectrum. Tandem MS/MS is employed to infer the amino acid sequences 
of proteins, wherein the differences in the peaks correspond to peptides (McLafferty, 
Breuker et al., 2007). The MS/MS spectra are matched against reference spectra in data-
bases containing the spectra of known proteins. Intact proteins of masses greater than 
6 kDa often carry a large amount of charge (protons); to be able to observe the molecular 
masses with LITs (up to 2000 Da), they must be analyzed in high‐charged states. In order 
to perform top‐down proteomics, high‐resolution mass spectrometers (including 
FTICR and Orbitrap) must be used, because the mass analyzers must resolve similar 
mass peaks of the highly charged states, enabling discrimination of isotopic peaks and 
also the fragment ions (Wynne, Edwards et al., 2010). Top‐down proteomics has been 
used for the identification of microorganisms (Fagerquist, Bates et al., 2006; see Chapters 
18 and 20), including species lacking a reference genome sequence (Wynne, Edwards 
et al., 2010). By matching the MS/MS spectra to known proteins in the databases and 
simultaneously characterizing the mass differences between the known proteins in the 
database and unknown proteins of the analyzed sample, it was possible to place the bac-
terium in the correct phylogenetic position (Wynne, Edwards et al., 2010). Additionally, 
one of the major benefits of top‐down proteomics is the ability to observe different 
protein isoforms, or proteoforms (www.topdownproteomics.org), together with their 
post‐translational modifications (PTMs) (Williams, Monday et al., 2005). For example, 
in a study of Neisseria meningitidis, top‐down proteomics was able to reveal four differ-
ent proteoforms of a particular type of pili, based on different glycosylation patterns 
(Gault, Malosse et al., 2014). Further benefits of the top‐down approaches include high 
sequence coverage of proteins and the possibility of discovering protein PTMs (Williams, 
Monday et  al., 2005), as well as possible protein–protein interactions. As the intact 
 proteins are analyzed, the quantification of individual proteins is also more accurate, 
compared to bottom‐up approaches (Swaney, Wenger et  al., 2010; Tran, Zamdborg 
et al., 2011). Drawbacks include limitations in the ion charge state and sensitivity issues 
(Yates, Ruse et  al., 2009). There are also potential problems concerning ionization, 
because the ionization efficiency can differ substantially between proteins and because 
the diversity of proteins is much more varied compared to the shorter peptide species. 
Another major drawback is the more difficult front‐end separation of intact proteins 
compared to the separation of peptides (Yates, Ruse et  al., 2009), which can reduce 
 considerably the number of biomarkers that are elucidated and the throughput of the 
number of samples. Previously, top‐down proteomics approaches have predominantly 
been used for analyzing individual proteins or simple protein mixtures. However, recent 
developments in MS instrumentation have improved the success of top‐down 
approaches for proteomics applications (Macek, Waanders et al., 2006; Chi, Bai et al., 
2007). For example, multidimensional separation using strong cation exchange chroma-
tography in combination with reversed phase has been demonstrated to routinely detect 
as many as 4000 proteoforms from the proteome of E. coli (Whitelegge, 2013).

16.6 Bottom‐Up Proteomics

Bottom‐up proteomics refers to the analyses of peptides derived from proteins. Two 
protocols may be applied, following ‘sort‐then‐break’ and ‘break‐then‐sort’ strategies. 
In the sort‐then‐break approach, proteins are first separated, using electrophoresis or 

http://www.topdownproteomics.org


Proteotyping 429

LC, and then digested into peptides, which are analyzed using LC‐MS (Henzel, Billeci 
et  al., 1993; Ogorzalek Loo, Hayes et  al., 2005). In the break‐then‐sort approach, 
 peptides are generated from the digestions of protein mixtures and then sorted. Success 
in a bottom‐up proteomics approach, particularly considering the break‐then‐sort 
approach, is dependent on the efficacy of separation of the peptides prior to MS analy-
ses. In order to recover as many peptides as possible for MS analysis, several different 
types of peptide separation protocols can be used, including reversed‐phase chroma-
tography, ion‐exchange chromatography, size exclusion, isoelectric focusing or combi-
nations of these protocols (Issaq, Chan et al., 2005; Fournier, Gilmore et al., 2007).

The break‐then‐sort bottom‐up strategy, in combination with a peptide separation 
protocol such as LC, coupled to an MS analyzer, is commonly referred to as ‘shotgun’ 
proteomics (McDonald and Yates, 2003). Using LC‐MS/MS, the procedure for prot-
eomics analyses of microorganisms is to determine as many mass spectra as possible for 
a sample (i.e. a pure culture microbial strain or a sample comprising a mixture of 
strains). Automated database search software enables rapid, high‐throughput analyses 
of complex samples. The search software compares the mass spectra from each indi-
vidual peptide, generated from the enzymatic digestion of proteins, in sizes between 5 
and 30 amino acids long (Banks, 2014), to reference mass spectra having similar precur-
sor ion mass and charge ratios.

Bottom‐up proteomics relies on the use of proteolytic digestion, most commonly 
using the endoproteinase trypsin. Trypsin catalyzes the hydrolysis of peptide bonds, 
predominantly at the carboxyl termini of arginine and lysine residues (Olsen, Ong et al., 
2004), creating positively charged peptides with a low charge state and a high mass‐to‐
charge ratio (m/z) that generate easily interpretable mass spectra (Thelen and Miernyk, 
2012). Trypsin digestion of a cell lysate will yield a complex mixture of peptides, from 
low to high concentrations, to be analyzed. This exerts a demand on the dynamic range 
of the MS instrument when analyzing complex mixtures. This issue of dynamic range 
has always been a key issue for expanding the range of the peptides that can be detected; 
progress in this area is ever evolving, and today´s MS instruments are performing con-
sistently better (Armengaud, 2013). As mentioned previously, closely related strains 
display only subtle differences in their genomes and, consequently, in their proteomes. 
When bottom‐up approaches are employed, the digestion step is influenced by the 
quality of the sample or protein; poor digestion may lead to low sequence coverage of 
proteins, which will lead to difficulties when trying to discriminate similar proteins and, 
consequently, closely related microorganisms. A bottom‐up approach has the advan-
tage of higher throughput, compared to top‐down approaches, and features high sensi-
tivities and the ability to analyze highly complex samples. The drawbacks include the 
loss of some information of the intact protein, that is, information about any PTMs.

In order to reduce sample complexity, thus enabling detection of more peptides, 
 different sample preparation strategies, including cell fractionation protocols, may be 
employed (Backert, Kwok et al., 2005; Lopez‐Campistrous, Semchuk et al., 2005; Dumas, 
Desvaux et al., 2009; Solis and Cordwell, 2011; Karlsson, Davidson et al.‚ 2012; Hebraud‚ 
2014; Olaya‐Abril, Jimenez‐Munguia et  al.‚ 2014). A reduced sample  complexity will 
result in improved separation and ionization efficiencies, which will enhance the 
 detection of low‐abundance peptides. Sample preparation strategies may include the 
targeting of a specific sub‐proteome, such as the cell wall (Solis and Cordwell, 2011). As 
microorganisms interact with their surroundings, particularly in the cases of  pathogen–host 



Tandem MS/MS-Based Approaches to Microbial Characterization430

interactions, the surface‐exposed proteins, including OMPs, are the first to experience 
changes in their surrounding environment. As such, OMPs are most likely to be the first 
to respond to adaptive changes by the microorganism in order to survive and thrive in 
new environmental conditions (Lin, Huang et al.‚ 2002). Corroborating this hypothesis 
is evidence that a microorganism displays various degrees of allele heterogeneity, 
wherein the genes for OMPs are observed to exhibit the highest levels of sequence vari-
ation (Yahara, Kawai et al.‚ 2012). Other genes, comprising the ‘core’ genome, are con-
served among all strains of a microbial taxon, with lower levels of sequence variation. 
Consequently, this has led to strategies of targeting certain parts of the proteome of a 
microorganism by studying and analyzing the parts that are most discriminatory 
between strains, including the OMPs. For example, it has been shown that analyses of 
OMP extracts from Yersenia pestis and Escherichia coli offer improved strain differen-
tiations, compared to whole‐cell lysates, when performing proteomics‐based charac-
terizations of strains of these species (Jabbour, Wade et  al.‚ 2010). Methods have, 
therefore, been developed for cell‐wall isolations and digestions, cell‐surface ‘shaving’, 
using protease treatments of intact microorganisms, or cell‐surface labelling protocols, 
followed by isolations and digestions (Solis and Cordwell‚ 2011). Importantly, advances 
in bioinformatics have further lead to better predictions for the localization of surface‐
exposed proteins. Surface‐shaving approaches or ‘surfaceomics’ have been developed as 
well, and one of the strategies employed is the lipid‐based protein immobilization (LPI) 
approach, wherein intact microorganisms are immobilized, on the surfaces inside a 
FlowCell™ and exposed to protease digestions (Chooneea, Karlsson et al.‚ 2010; Karlsson‚ 
Chooneea et  al., 2010; Karlsson, Davidson et  al.‚ 2012). This approach was used for 
 analyzing H. pylori strains; intact cells of H. pylori strains J99 and ATCC 26695 were 
digested in an LPI FlowCell™ to produce peptides for LC‐MS/MS analysis. Following 
matching of the tandem mass spectra against databases containing whole‐genome 
sequences of the bacteria, strain‐unique peptides were identified, and ranking was per-
formed for discriminating and identifying the strains (Karlsson, Davidson et al.‚ 2012). 
Figure  16.6 below shows examples of unique peptides originating from the protein 
thioredoxin reductase and how the peptides match sequences of thioredoxin reductase 
for the strains H. pylori ATCC 26695 and H. pylori J99.

16.7 Proteotyping

Proteotyping is the comprehensive characterization, classification and identification of 
microorganisms, using high‐resolution MS and proteomic analysis. The term proteotyping 
has been used for the analysis of the expressed genes of the influenza virus (Ha and 
Downard‚ 2011), but recently the term has been expanded to include the shotgun prot-
eomic analyses of microorganisms (Karlsson, Davidson et al.‚ 2012; Penzlin, Lindner et al.‚ 
2014; Karlsson, Gonzales‐Siles et al.‚ 2015). The principle underlying proteotyping relies on 
the variation of amino acid sequences of proteins, as the corresponding genes vary through 
mutation events. The analyses of the expressed genes and the resulting proteins of a micro-
organism can thus be viewed as a ‘snapshot’ of the encoded part of its genome. Theoretically, 
as long as the differences in target proteins are detectable, proteomics approaches should 
be able to be applied to the analyses of microbial features and, thus, utilized for the 
 characterization, classification and identification of microorganisms.
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Figure 16.6 Workflow of proteotyping. The Helicobacter pylori strain ATCC 26695 was analyzed with the bottom‐up proteotyping 
approach. Step 1 shows sample preparation protocols involving cell fractionation protocols, or methods for keeping cells intact are 
employed. Step 2 is the digestion of the sample proteins into peptides. Step 3 represents the analysis of the generated peptides, 
using LC‐MS/MS. An example of nine peptides coming from the protein thioredoxin reductase of H. pylori is shown. In Step 4, the 
peptides are aligned against available genomes in databases, here exemplified by two sequences for the thioredoxin reductase, one 
from the strain H. pylori ATCC 26695 and one from the strain H. pylori J99. The green‐shaded areas represent the identified peptides. 
The yellow‐marked amino acids show where the amino acid sequences differ between the two strains. The red arrows show where 
the identified peptides contain these amino acid differences, thus enabling identification of the correct strain, as these are unique 
for the particular analyzed strain, H. pylori ATCC 26695.
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Proteotyping, as an analytical method, is intimately correlated with genotypic or 
genomic data and offers an alternative approach for a holistic characterization of micro-
organisms. In particular, proteotyping offers the advantage of elucidating expressed 
taxonomic biomarkers for antibiotic resistance and virulence, as well as catabolic and 
anabolic pathways of cell metabolism, with implications for medical, biotechnological 
and environmental applications. Apart from these aspects, proteotyping also provides 
the means to obtain insight into microbial activities, that is, from isolated individual 
organisms and from more complex samples comprising multiple microorganisms (i.e. 
metaproteomics) (Chao and Hansmeier‚ 2012).

When using proteotyping for characterizing microorganisms, it should be recognized 
that species that are not highly similar are easily discernible using genotypic or pheno-
typic tools, whereas microorganisms that are phylogenetically closely related, that is, 
closely related species or strains of a microbial species, present particular requirements 
for the methodologies used. This is because closely related microbes display only subtle 
differences in their genomes and, consequently, in their proteomes. Therefore, these 
differences may be identified only by analyzing a comprehensive fraction of the pro-
teome expressed by the microorganism. Furthermore, the overall proteomic expression 
of a microbial genome will depend on factors such as age, growth and environmental 
conditions. Therefore, proteomic expression may vary depending on the state of the 
microorganism as well as responses to different types and degrees of various stresses. 
This motivates the ultimate aim of detecting and characterizing all proteins potentially 
expressed by microorganisms to obtain high discriminatory levels of analysis (Meyer, 
Papasotiriou et al., 2011). One important step towards achieving this goal is to analyze 
microorganisms under different nutrient and cultivation conditions and different 
stresses (Lopez‐Campistrous, Semchuk et  al.‚ 2005; Pieper, Huang et  al.‚ 2009). The 
halophile Halobacterium salinarum was subjected to approximately 30 growth condi-
tions, and each of the different conditions was analyzed for genomic expression (Klein, 
Aivaliotis et al.‚ 2007). Approximately 35% of the theoretical proteome could be detected 
through this approach. The importance of using non‐standard growth conditions was 
also demonstrated with Ruegeria pomeroyi under varying conditions, thus reaching 
identifications of approximately 50% of the theoretical proteome (Christie‐Oleza, 
Fernandez et al.‚ 2012; Armengaud, 2013). This type of work will lead to new types of 
guidelines on how to process microorganisms to achieve the most comprehensive cov-
erage of the proteome and the highest discriminatory level of proteotyping through, for 
example, various sample preparations and growth conditions. And, as the breadth and 
depth of genome sequence data for microbial species increases and annotation of deter-
mined genome sequences improves, the proteome coverage will likely be seen to 
improve dramatically.

Bioinformatics is vital for the analysis of the data generated by shotgun proteomics. 
In proteotyping, the overall aim of the bioinformatics analysis is to determine the 
microbial composition in a sample by accurately estimating the relative abundance of 
the present microorganisms. A general approach to this problem is assigning the meas-
ured peptides to their correct affiliation in the taxonomic tree and, based on their dis-
tribution, deducing the taxonomic composition of the sample. However, the peptides 
generated by shotgun proteomics are short and only cover a part of the proteome, and 
only a few will thus have the ability to distinguish between closely related species. A 
central step is therefore to identify which of the peptides that are ‘discriminative’, that is, 
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find the subset of peptides that provide information on the organisms present in the 
sample. A common way to identify the discriminative peptides is to align each individ-
ual peptide to a comprehensive database containing reference proteomes. The align-
ment can be made either directly to selected reference proteins or to all genes in the 
reference genomes by translating the genes in the genomes into protein sequences. 
Typically, peptides that uniquely match a reference at the given taxonomic level (strain, 
species, genus, etc.) are then classified as discriminative. The taxonomic composition in 
a sample can then be statistically estimated from the relative abundance of discriminate 
peptides, and for samples containing multiple microbial organisms, each type will have 
its own set of discriminate peptides, which can be used to calculate the complete taxo-
nomic composition.

The complete bioinformatics workflow necessary for proteotyping is described in 
Figure 16.7. The workflow takes as input a collection of mass spectra. The four main 
computational steps – identifying the peptides, map them to the reference genomes, 
provide filtering of non‐informative matches and identifying which peptides are 
 discriminatory – are marked by a dashed box. The end result produced by the workflow 
is an estimate of the taxonomic identity of the microorganism or mixture of microor-
ganisms in the sample. In the following sections, the workflow will be described in more 
detail, and the challenges at each stage and the considerations that must be made when 
dealing with them will be discussed.

Start
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Figure 16.7 A general overview of the proteotyping workflow. The process starts in the top‐left 
corner with sample preparation and finishes with the proteotyping results in the lower‐right 
corner. Each box represents a specific experimental or analytical stage of the workflow. The three 
cylinders correspond to reference databases that are essential for the analysis, including a 
comprehensive protein database, a set of reference genomes and their association with the 
taxonomic tree. Four fundamental bioinformatics stages are highlighted by the dashed rectangle 
in the centre of the graph. The final proteotyping result is an estimate of the taxonomic 
composition of the sample.
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16.8 Matching MS Spectra to Peptides

In the first step after MS, the spectra must be converted to peptide sequence informa-
tion for further ‘downstream’ analysis. This is typically done by matching the generated 
spectra to a database of reference peptide sequences. Several implementations of differ-
ent algorithmic approaches are available, both commercial (e.g. Mascot (Perkins, Pappin 
et  al.‚ 1999), SEQUEST (Eng, McCormack et  al.‚ 1994)) and free, open‐source (e.g. 
X!Tandem (Craig and Beavis, 2004), MyriMatch (Tabb, Fernando et al.‚ 2007)). These 
types of algorithms are often referred to as MS ‘search engines’, because they use MS 
data to search for suitable matches to peptide sequence databases. In essence, most 
algorithms operate by comparing the molecular weights of the peptides recorded in the 
mass spectra to the expected molecular weights of peptides in a reference database. An 
early and well‐known example of such an algorithm for probabilistic molecular weight 
search is MOWSE (Pappin, Hojrup et al.‚ 1993), which formed the basis of the widely 
used commercial search engine Mascot (Perkins, Pappin et al.‚ 1999). It should be noted 
that the matching of spectra is a computationally costly process. The accuracy of the 
matching is also highly dependent on the size of the reference database. To enable 
matching to databases containing as many proteins as possible, optimized implementa-
tion using multithreading and/or the ability to be distributed over computer clusters 
and clouds are often required.

Another approach to produce peptide sequences from spectra attempts to derive the 
peptide de novo from the spectral patterns themselves, without the use of a reference 
database. Examples of such algorithms include commercial alternatives (e.g. PEAKS 
(Ma, Zhang et al.‚ 2003)) and free, open‐source implementations, for example, Lutefisk 
(Taylor and Johnson, 1997), PepNovo (Frank and Pevzner, 2005), NovoHMM (Fischer, 
Roth et al.‚ 2005)). Accuracies of de novo approaches are generally not comparable with 
the previously mentioned reference‐based methods (Hernandez, Muller et al.‚ 2006). 
However, recent advances have seen an increase in the number of tools that combine 
the results produced by the two different approaches, for example, PEAKS‐DB (Zhang, 
Xin et al.‚ 2012) to achieve higher accuracy.

Most methods for proteotyping directly utilize the results from a database search algo-
rithm to provide the information used to estimate the taxonomic composition of sam-
ples (Dworzanski, Snyder et al.‚ 2004; Jabbour, Deshpande et al.‚ 2010; Tracz, McCorrister 
et al.‚ 2013; Penzlin, Lindner et al.‚ 2014). In doing so, such methods rely on the assump-
tion that the peptides identified by the mass spectrum search engine are also suitable for 
calculating an accurate estimate of the taxonomic affiliation of the peptide. However, 
just as in the case of de novo peptide sequencing, where it is impossible to deduce the 
most likely affiliation of the peptides without additional database searches, there are 
arguments to separate the matching of the spectra to peptide sequences from the assign-
ment of their taxonomic origin. The matching of the spectra is highly dependent on a 
large reference database containing as many protein variants as possible. If the number 
of different proteins and protein variants available in the reference database is too lim-
ited, a substantial proportion of the spectra from the sample will be satisfactorily match 
and will thus be discarded. Using too limited a reference database may also introduce a 
bias towards proteins that are highly conserved between organisms and thus lower the 
potential for discriminating between microbial types (Dotsch, Klawonn et  al.‚ 2010). 
This can negatively affect the downstream analysis. When the taxonomic assignment is 
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removed from the matching of spectra, the reference protein database can be optimized 
on the basis of comprehensiveness. The accuracy of the matching of spectra can there-
fore be substantially increased by including proteins from sources with less reliable taxo-
nomic information, such as open reading frames predicted from genomes with draft 
assemblies and even metagenomes (Markowitz, Chen et al.‚ 2015). Another important 
advantage is that the assignment of taxonomic affiliation, as a separate step, can be done 
directly to references organisms. By using translated alignments, each peptide can be 
aligned to the entire genomes, thereby making this process almost completely annota-
tion agnostic. This makes the entire analysis less susceptible to errors introduced by 
errors in the annotation, such as missed and falsely predicted gene models.

16.9 Mapping Peptides to Reference Sequences

The second step of the workflow aims to identify the taxonomic affiliation of the  peptide 
sequences by comparing them to the genome of a set of reference organisms. In order 
to capture all biological variability in the sample, this step needs to be performed with 
sensitive peptide‐to‐nucleotide aligners. Indeed, a single amino acid substitution in one 
peptide is enough to make it discriminative between two closely related species or 
strains. Mapping the peptides to reference sequences in nucleotide format requires an 
alignment algorithm capable of performing translated mapping. In translated mapping, 
the reference genome sequences are translated into all six possible reading frames, and 
the alignment is made between the peptides from the sample and the resulting amino 
acid sequences from the reference genomes database. Depending on the desired quality 
of alignment, several different algorithms can be considered. Examples of two com-
monly used algorithms that can perform translated mapping are TBLASTN (Altschul, 
Madden et al.‚ 1997) or The BLAST‐Like Alignment Tool (BLAT) (Kent, 2002). BLAT 
is particularly well suited to perform this type of alignment because it is optimized to 
map large sets of DNA or protein sequences into a reference database containing (rela-
tively) few but long sequences, for example, bacterial chromosomes. It should be noted 
that it is also possible to apply peptide alignment algorithms that lacks translated map-
ping functionality via an alternative approach. Reference genomes can, a priori, be 
translated into amino acid sequences in all six possible reading frames and compared to 
the peptides using a standard protein alignment algorithm (e.g. BLASTP).

It is crucial that the reference database used at this stage exclusively contains 
sequences of the highest possible quality. In particular, each reference genome sequence 
has to have a correct taxonomic assignment, preferably down to the strain level. 
Furthermore, gaps, low‐quality regions, and sequencing errors can result in missed or, 
in the worst case, wrongly aligned peptide fragments. This can, in turn, introduce 
 substantial levels of noise into the data, which may lead to erroneous results. The pro-
teotyping analysis workflow is also sensitive to the presence of sequence regions that 
are horizontally transferred between species, such as conjugative elements (e.g. plas-
mids), phage sequences, and transposons. These elements often show a high conserva-
tion and may appear in evolutionary distant species. Peptide fragments mapping to 
genes in such regions may, therefore, appear to be erroneously unique. Because high 
plasticity is a natural property of many bacterial genomes, the reference sequences must 
be  carefully curated to minimize the presence of such sequences.
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The alignment of peptides against the reference database will result in zero, one or 
several matches for each peptide. Because these alignments differ in quality and rele-
vance, it is important to apply suitable filters to minimize the risk of including incorrect 
or suboptimal matches in the downstream analysis. In particular, peptide fragments 
matching several different reference sequences need to be examined further before they 
can be assigned a taxonomic position in the next stage of the workflow. Filtering matches 
is essential to maintain high accuracy in the taxonomic assignment. The filtering pro-
cess can been divided into two consecutive parts, here termed absolute and relative fil-
tering. The absolute filtering step aims to remove alignments that have a too poor 
informational value, that is, matches that are too distantly related to the sequence that 
the peptide fragment originates from. It uses a cut‐off criterion and removes any matches 
that do not fulfil the criterion. Peptide alignments passing this cut‐off are thus deemed 
to be of sufficiently high quality to be used for the typing. This cut‐off is typically set to 
an absolute, fixed value for all fragments, regardless of their length and sequence char-
acteristics. The cut‐off is often based on one or multiple features, for example, sequence 
similarity over the aligned region, the overall peptide fragment length and the fraction 
of peptide fragment covered by the alignment. Note that the absolute filtering step dis-
cards peptides without any matches passing the absolute filtering criteria. Such frag-
ments are thus removed and not passed on to the subsequent steps of the analysis.

The relative filtering step aims to further narrow down the set of matches for each 
peptide fragment. In particular, the majority of the peptides have typically two or more 
similar matches to reference sequences that pass the absolute filtering. For each pep-
tide, this filtering step compares all the matches relative its best matches, and those that 
are deemed to be of substantially lower quality are removed. Thus, the relative filtering 
removes non‐informative matching with the aim of increasing the number of discrimi-
native peptides. Typically, the relative filtering step is realized by examining the quality 
of the alignment, and the matches with a sequence similarity lower than a fixed percent-
age unit below the best match are removed. This will thus remove matches to closely 
related reference sequences that have high enough scores to pass the absolute filtering 
step, although, if included, would negatively impact the ability to correctly assign the 
peptide fragment to a taxonomic unit. A suitable value for the relative filtering param-
eter is, in our experience, somewhere in the range of 2%–5% sequence similarity (com-
pared to the best hit) depending on the quality of the data and the species studied. Note 
that the relative filtering step will never completely remove a peptide from further anal-
ysis, as all comparisons in this step are made relative to the best match in the set of 
matches for each peptide, and one match will still remain for each peptide.

16.10 Taxonomic Assignment of Protein Sequences

After applying the absolute and relative filtering step and thereby removing incorrect 
and non‐informative matches, the remaining peptide fragments are used to infer the 
taxonomic composition of the sample. This is done by assigning the peptides to posi-
tions in the taxonomic tree on the basis of their matches to the reference sequences. 
Because each peptide typically matches multiple reference genomes annotated at vary-
ing taxonomic levels, this processes is not straightforward and needs to be done with 
respect to the structure of the taxonomic tree. For example, some genomes have a clear 
annotation at the strain level, whereas others may have been associated only with the 
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species or even the genus level. These discrepancies can be overcome by applying the 
lowest common ancestor (LCA) algorithm (Figure 16.8) (Aho, Hopcroft et al., 1973). 
The LCA algorithm maximizes the information captured for each peptide and then 
infers its most likely affiliation in the taxonomic tree. This is also the taxonomic level 
where the peptide is discriminative, that is, where it affiliates uniquely with one or sev-
eral reference genomes. Figure 16.8 shows three examples of how peptide matches can 
be used to infer the taxonomic assignment of a peptide with matches to reference 
genomes located at different levels in the taxonomic tree.

After the peptides have been assigned to the taxonomic tree, the taxonomic composi-
tion can be derived. This is typically done by counting the discriminative peptides found 
at each node at a given level in the taxonomic tree (e.g. species level). The relative abun-
dance, calculated by relating the number of discriminative peptides at each node to the 
total number of discriminative peptides, provides an estimate of the composition of 
organisms in the sample. It should be emphasized that this approach can be applied to 
pure cultures as well as complex mixtures of microorganisms commonly encountered 
in clinical samples.

16.11 Challenges Assigning Fragments to Lower 
Taxonomic Levels

Typing microorganisms at lower taxonomic levels (e.g. species and subspecies level) 
presents a number of challenges. At the lower taxonomic levels, the discrepancies 
between proteomes from different microbial organisms will decrease and, as a result, 

Genus

Species 1 1 1

2

3

2

2

Subspecies

(A) (B) (C)

Figure 16.8 The lowest common ancestor (LCA) algorithm. The figure shows three examples (A, B, C) 
of peptides with matches to reference genomes at different levels in the taxonomic tree. (A) A single 
peptide has matched nodes 1 and 2. These nodes have a lowest common ancestor on the genus level, 
which means that this peptide is discriminative on the genus level, but not on any lower level. 
(B) A single peptide has matched nodes 1 and 2, leading to a lowest common ancestor above the 
genus level. Such a peptide contains very little useful information for proteotyping on species and 
subspecies levels. (C) Three different peptide have matched nodes 1, 2 and 3. There is no lowest 
common ancestor; each peptide is discriminative on its own at the level it matched (species, 
subspecies and genus, respectively).
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there will be fewer discriminative peptides that can be used in the proteotyping. For 
example, the proportion of discriminative peptides drops rapidly from family to genus 
and then even further at the species level. This is demonstrated in Figure 16.9, which 
shows these effects for samples of pure cultures from three common pathogens: E. coli, 
S. aureus and S. pneumoniae. The number of discriminative peptides drops substan-
tially for E. coli and S. pneumoniae and, at the species level, only 10%–20% of the 
 peptides were discriminative at the family level. The reduction of peptides for S. aureus 
is small, where more than 50% of the peptides that are discriminative on the family level 
are also discriminative on the species level. Another example is the subspecies analysis 
of H. pylori. In this study, two H.pylori strains (i.e. J99 and ATCC 26695) were mixed in 
various ratios, ranging from 1:9 to 9:1 (Karlsson, Davidson et al.‚ 2012). Prototyping 
identified fewer than 100 discriminative peptides at this taxonomic level. This corre-
sponded to only ~10% of the total identified peptides, but it was enough to accurately 
estimate the relative abundance of the strains in the mixtures (Figure 16.10). The rapid 
drop of discriminative fragments at the lower taxonomic level will, in many cases, nega-
tively affect the accuracy in the estimation of the species composition and thereby 
reduce the overall performance. Proteotyping at the strain and species level is therefore 
requires higher number of discriminative peptides. This further emphasizes the need 
for comprehensive reference databases for matching of spectra and assigning the 
 taxonomic affiliations.
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Figure 16.9 The number of discriminative peptides decreases rapidly at lower taxonomic levels. This 
figure shows the number of discriminative fragments and the family, genus and species levels for the 
bacteria, E. coli, S. aureus and S. pneumoniae. The drop in discriminative fragments for each taxonomic 
level differs between species and is dependent on the comprehensiveness of the reference databases 
and the similarity of the proteome of the closest relative. The numbers were calculated on the basis of 
an implementation of the workflow using X!! Tandem (Bjornson et al., 2008) together with a reference 
databases composed of NCBI GenBank non‐redundant proteins (Benson et al., 1999) and the Human 
Microbiome Project (HMP) reference proteomes (Turnbaugh et al., 2007). Alignment of peptides were 
done using BLAT (Kent, 2002) against a manually curated version of NCBI RefSeq (Pruitt, Tatusova, and 
Maglott, 2007) and HMP reference genomes (Turnbaugh et al., 2007).
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16.12 Proteotyping for Diagnosing Infectious Diseases

Fast and efficient diagnostics is vital for the efficient treatment of patients with severe 
infections, such as sepsis, pneumonia and acute meningitis. Immunocompromised 
patients are susceptible to infections from commensals and other opportunistic bac-
teria, which makes reliable species identification crucial. These patients are depend-
ent on diagnostics tools that can discriminate between harmless colonizers and the 
disease‐causing microorganisms. The rapidly growing prevalence of infections 
caused by bacteria that resist antibiotic treatment has increased the need for faster 
and more reliable determination of antibiotic resistance profiles (Organization‚ 
2014). DNA‐based approaches, such as targeted PCR and whole‐genome sequencing, 
can be used to efficiently detect the presence of genes or genetic alterations linked to 
virulence and decreased susceptibility to antibiotics. Proteotyping provides the 
means to identify and quantify the actual expression patterns of proteins and their 
associated pathways, which provides a more accurate picture of infectious agents and 
their pathogenic potential. Cheaper methods that are both less labour intensive and 
less time consuming are, however, needed before high‐resolution proteomic charac-
terization and discrimination of infectious microorganisms can be adapted in routine 
clinical settings.

An important consideration for any new method used in the clinical diagnostics of 
infectious diseases is the potential for analyzing clinical samples directly, that is,  without 

0

10

20

30

40

50

60

70

80

90

9 : 1 7 : 3 1 : 1 3 : 7 1 : 9

S
tr

ai
n

 s
p

ec
ifi

c 
p

ep
ti

d
es

 

Ratio J99 to 26695

H. pylori J99

H. pylori 26695

Figure 16.10 Numbers of strain‐specific peptides from different mixtures of two H. pylori strains (J99 
and ATCC 26695). The x‐axis shows the how the strains were mixed, ranking from 9:1 to 1:9. 
Proteotyping analysis revealed that <100 peptides were discriminative, which corresponds to ~10% of 
the total identified peptides (Adapted from Karlsson, R., L. Gonzales‐Siles, F. Boulund, L. Svensson‐
Stadler, S. Skovbjerg, A. Karlsson, M. Davidson, S. Hulth, E. Kristiansson and E. R. Moore (2015). 
“Proteotyping: Proteomic characterization, classification and identification of microorganisms – A 
prospectus.” Syst Appl Microbiol 38(4): 246–257).
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any cultivation steps, which may require 24 h to several weeks, depending on the 
 relevant infectious microorganisms. One advantage of shotgun proteotyping is the 
 possibility of analyzing the generated peptides directly from clinical samples, without 
culturing, targeting biomarkers that characterize infectious microbial species. However, 
the effective detection and identification of infectious bacteria in clinical samples 
requires, besides sensitivity for detecting typically low numbers of bacterial cells, 
reductions in the amount of interfering human proteins that are in the samples. Using 
proteotyping workflows (Karlsson, Davidson et al.‚ 2012), the correct infective micro-
bial species of positive samples (as confirmed by accredited methods, including 
MALDI‐TOF‐MS) could be detected and identified by direct analysis of nasopharyn-
geal samples (Figure 16.11).

16%

Moraxella catarrhalis

Staphylococcus aureus

Others

Sample positive for Moraxella catarrhalis

Staphylococcus aureus

Rhodococcus erythropolis

(B)

(A)

Sample positive for staphylococcus aureus

7%
(3 unique
peptides)

7%
(2 unique
peptides)

77%
(34 unique
peptides)

93%
(26 unique
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Figure 16.11 Proteotyping protocol implemented directly on nasopharyngeal samples. (A) A clinical 
sample identified as positive for Moraxella catarrhalis, by culture and MALDI‐TOF‐MS identification 
analysis. The proteotyping workflow found 34 unique peptides for M. catarrhalis and showed that this 
was the dominant species in the sample. (B) Sample identified as positive for Staphylococcus aureus by 
culture and MALDI‐TOF‐MS identification analysis. The proteotyping workflow found 26 unique 
peptides for S. aureus as the dominant species in the sample.
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16.13 Outlook

Microbiology has evolved from the days when the characterizations of microbial iso-
lates were limited to descriptions of morphologic and metabolic features. Phylogeny 
has been adopted as the basis of microbial taxonomy, and genome sequences are recog-
nized to be the ultimate references for determining phylogeny (Wayne‚ Brenner et al., 
1987). In turn, phylogeny and microbial taxonomy provide the basis for the diagnostics 
of infectious diseases. Evolutionary genetics provides the rationale for adopting DNA 
sequence data for analyzing microbial diversity (Palys, Nakamura et al.‚ 1997). Microbial 
sequence types evolve into bacterial lineages in different ecosystems, wherein sequence 
divergence between the lineages will be greater than that within them, resulting in 
monophyletic ‘ecotypes’ (Cohan‚ 2002). Although the ‘units’ of microbial systematics 
are most commonly the genus and species designations, it could be argued that subspe-
cies‐level delineations may sometimes provide the more practical perspective, with 
respect to applications in the treatment of disease, the study of ecology and biotechno-
logical exploitation (Moore, Mihaylova et  al.‚ 2010). It is often at the strain level or, 
perhaps, more precisely, at the ecotype level, that applications involving microbiologi-
cal processes are realized. Thus, the ability to detect and characterize microorganisms 
at the subspecies, as well as at the species level, according to comprehensive expression 
profiles, will become increasingly relevant for microbial systematics. The comprehen-
sive characterization of microorganisms for classification and identification historically 
has required a range of methodologies to cover the diversity of newly discovered micro-
organisms and their increasingly complex taxonomy (Figure 16.12).

In recent years, the development of new methodologies for the systematic analyses of 
microorganisms has been changing towards methods that provide a holistic organismal 
‘blueprint’, rather than applying combinations of different methods that target selected 
microbial features with limited resolution (Figure 16.12).

Newly developed genomics‐based approaches for microbial characterization, includ-
ing next generation sequencing (NGS) and approaches involving mass‐spectrometry‐
based proteotyping (exploiting indirect measures of genome sequence data) enable 
microbial characterization across the entire taxonomic range of microorganisms. NGS 
technologies offer superior sequencing depth, and the entire genome of a bacterium can 
today be fully characterized and assembled rapidly and at low cost. Thus, whole‐genome 
sequencing has been suggested as a new and versatile tool to be adapted for the routine 
diagnostics of bacteria and other microorganisms. However, DNA‐based technologies 
measure only the presence of gene sequences and their variation, representing the 
potential of genome expression. Phenotypes associated with the over‐ and under‐expres-
sion of chromosomal genes may be difficult to detect. For example, altered expression of 
ampC, porins and efflux pumps are commonly associated with resistance phenotypes in, 
for example, E. coli, A. baumannii and P. aeruginosa (Strateva and Yordanov‚ 2009; 
Rumbo, Gato et al.‚ 2013). Although genomics‐based approaches offer the potential for 
detecting the relevant genes encoding for increased virulence risk and decreased antibi-
otic susceptibility, proteotyping offers the means to determine clinical patterns that are 
actually expressed, which is relevant for the optimal treatment of infectious disease. 
Shotgun proteotyping of microorganisms has huge potential, given a sufficient number 
of determined peptide fragments, to achieve comprehensive, high‐resolution, species‐ 
and subspecies‐level identifications. The use of discriminative  peptide fragments creates 
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an analysis method that adapts to the sample, requires no a priori information of suitable 
target genes and can be applied directly to clinical samples without prior cultivation. In 
one analysis, proteotyping can perform microbial species detection and identification 
and simultaneous characterization of metabolic and pathogenic features (Charretier, 
Dauwalder et al.‚ 2015; Charretier, Kohler et al.‚ 2015).

There are, however, a number of challenges related to the analysis of generated prot-
eomic data. The random sampling of expressed proteins, in combination with limited 
genome sequence depth, often results in low degrees of overlap of detected peptides in 
replicate samples and low reproducibility. The most serious issue concerning the use of 
proteotyping is that it is still highly dependent on comprehensive sets of high‐quality 
reference whole‐genome sequences. Indeed, erroneous or missing reference data may 
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result in false matching and misidentification of peptides from the generated spectra or 
peptides with incorrect taxonomic affiliations. Such errors will introduce unwanted 
variation, that is, ‘noise’, which can result in substantial reductions in overall perfor-
mance. The current reference databases, such as NCBI Genomes and PATRIC (Fricke 
and Rasko‚ 2014), are heavily biased towards known pathogens, whereas many closely 
related commensal species are underrepresented. Such biases have the potential to 
induce confusion for the reliable detection and identification of important pathogens. 
Ultimately, reference genomes from all bacteria typically encountered in clinical sam-
ples are necessary to ensure high sensitivity and specificity. Expanding the current ref-
erence databases by targeted sequencing of underrepresented species and strains is, 
therefore, an important task. Fortunately, the introduction of new NGS technologies is 
resulting in rapid decreases in the cost of sequencing of bacterial genomes; the genome 
reference databases are, therefore, expected to grow dramatically in the immediate 
future, greatly benefiting proteotyping applications and making the technique applica-
ble to a larger set of clinically relevant species.

In addition to their comprehensiveness, the reference genome sequence databases 
need to contain data and metadata of as high quality as possible. Microorganisms with 
low‐coverage draft genomes and incomplete assemblies can fail to include important 
coding sequence regions, thereby reducing the number of identified peptides. 
Proteotyping is also highly reliant on the existing taxonomic annotation, and errors in 
the metadata can propagate into the analysis and result in misclassifications. A related 
problem in correct microbial systematics and diagnostics is the relevance of mobile 
genetic elements (MGEs), such as plasmids, phages, conjugative elements and transpo-
sons, which may be transferred horizontally between evolutionarily distant organisms 
(Juhas‚ 2015; Soucy, Huang et al.‚ 2015). MGEs are common in the genomes currently 
present in the reference databases. Thus, peptides from expressed genes on MGEs 
potentially can result in decreases in the total number of discriminative peptides and, in 
the worst case, can result in false classifications and reduced overall performance. The 
public repositories are known to contain an unsatisfactory level of errors; to reach the 
full potential of proteotyping, novel databases that apply stricter quality assessment 
criteria may need to be developed, such that high‐quality genome sequences of an effec-
tive number of strains from a comprehensive range of relevant species are included.

In order to bypass the issues with database‐dependent peptide matching, it has been 
shown that strain‐level bacterial differentiation is possible, using tandem mass spectra 
(raw data), instead of matching the spectra to existing databases, for analyzing E. coli 
isolates (Shao, Ma et al.‚ 2015).

16.14 Conclusion

Proteotyping provides important advantages, with the potential to be applied as a 
 cultivation‐independent method that simultaneously can perform microbial species 
detections and identifications, as well as characterization of metabolic and pathogenic 
features. It is foreseen that a major driver for the development and use of tandem MS 
and proteotyping in clinical settings will be the rapidly growing databases of whole‐
genome reference sequences, which will refine microbial phylogeny and provide a 
 foundation for proteomics‐based identification.
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17.1 Introduction: Pseudomonas aeruginosa as a Clinically 
Important Pathogen

P. aeruginosa is a gram‐negative gamma‐proteobacterium which is found in varying 
environmental conditions, ranging from soil, marine habitats, plants and animals. It has 
a relatively large genome size of 6.3 Mb, with a significantly high proportion of genes 
dedicated to regulatory genes that allow it to survival in changing environments [1].

However, its metabolic versatility enables it to become an opportunistic pathogen to 
infect human tissues [2]. P. aeruginosa can attach and thrive on most surfaces, which 
enables it to inhabit medical instruments such as catheters and surgical tools, resulting 
in a prevalent rate of nosocomial infections in hospital settings [3, 4].

P. aeruginosa has been known to cause acute and chronic infections in humans. Acute 
infections are usually inflammatory and septic when P. aeruginosa infects damaged 
 tissues, especially in burn wounds [5], cornea infections [6], septicaemia [7] and 
 meningitis [8]. On the other hand, chronic P. aeruginosa infections tend to affect 
patients with compromised immunity [9] and cystic fibrosis (CF) patients [10, 11].

Moreover, P. aeruginosa contains multi‐drug‐resistant efflux pumps and beta‐ 
lactamase, which accounts for its intrinsic resistance to most antibiotics. Hence, 
P.   aeruginosa was declared one of the six ‘top priority dangerous, drug‐resistant 
microbes’ by the Infectious Diseases Society of America [12].
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17.2 CF and Pathophysiology

CF is a genetic disorder which is autosomal recessive, caused by mutations in the cystic 
fibrosis transmembrane conductor regulator (CFTR) gene [13]. This is especially 
 common in the Caucasian population, affecting 1 in 2500 [14]. It is characterized by 
abnormal flow of chloride ions and water across cell membranes, resulting in the 
 production of thick and sticky mucus [15,16]. This is also clinically relevant in the lungs 
as mucus clogs up the airway to the lungs and reduces lung function, often leading 
to premature death [17].

17.3 CF Infections

The accumulation of mucus and poor clearance can result in the retention of inhaled 
bacteria. Infection and inflammation of the airways are highly common in CF patients, 
thereby exacerbating breathing difficulties and eventual lung failure. Hence, the lifespan 
of an average CF patient undergoing the right treatment is around 40 years [18].

Together with Staphylococcus aureus, Burkholderia cepacia and Haemophilus influ-
enza, P. aeruginosa is one of the most common pathogens in CF patients (Figure 17.1) 
[19]. However, while the rest are predominant in early‐stage CF infections, P. aeruginosa 
tends to become the major pathogen in late‐stage CF infections [20,21]. The capacity 
of P. aeruginosa to cause long‐term chronic infections can be attributed to its ability to 
form robust biofilms in the CF lung [3,22]. This raises the question of how P. aeruginosa 
adapts to the host environment during the CF infections. An overview of the adaptation 
and pathogenesis of P. aeruginosa in the CF lung will be explained in the following 
sections.
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Figure 17.1 Cystic fibrosis lung infections caused by different species of pathogens. Whereas S. aureus 
is predominant in the early stages of infections, P. aeruginosa is the most dominant pathogen in late 
stages of infections. Figure adapted from the 2009 Patient Registry Report, issued by the Cystic 
Fibrosis Foundation, with permission [23].
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17.4 Biofilm Formation in P. aeruginosa

Bacterial cells are able to form surface‐attached biofilms consisting of microcolonies 
and their secreted extracellular polymeric substances (EPSs). EPSs mainly include 
exopolysaccharide, adhesion proteins and extracellular DNA (eDNA), which serves as a 
physical shield to protect cells in biofilms. The development of biofilm lifestyle is crucial 
in the adaptation of P. aeruginosa in the CF lung infections [24]. Whereas P. aeruginosa 
commonly produces Pel and Psl exopolysaccharides during biofilm formation in early 
acute infections, alginate plays a more significant role in the biofilm formation in 
chronic persistent infections in the CF lung. Mucoid clinical isolates from the sputum 
of most CF patients over‐produce alginate, which acts as a virulence factor selected for 
long‐term inhabitation of the CF lung [25].

There are several conditions that are proposed to promote the evolution of mucoidy 
and biofilm formation of P. aeruginosa in CF lung infections, as stated below:

1) Oxidative stress: The production of reactive oxygen species (ROS) and reactive nitro-
gen intermediates (RNI) by the host immune system, such as polymorphonuclear 
leukocytes (PMNs) [26], causes high levels of oxidative stress that the bacteria cannot 
withstand, resulting in damage to the DNA and proteins [27]. The DNA damage can 
easily result in higher rates of genome mutation and select for variants that can sur-
vive better in this environment. Alginate produced by the mucoid strains was shown 
to chelate ROS, further protecting the bacterial cells from oxidative  damage [28].

2) Immune system: Alginate can protect bacterial cells from phagocytosis by 
 phagocytes  such as macrophages and neutrophils by enveloping the bacterial 
cells  [29]. It can also inhibit the activation of complements [30]. In addition, the 
P.  aeruginosa biofilms are able to activate a rhamnolipid ‘shield’ that is highly 
 cytotoxic to the immune cells [31].

3) Antibiotic treatment: Antibiotic resistance and tolerance are common as CF patients 
are often treated with large amounts of antibiotics throughout their lives [32]. 
P.  aeruginosa evolves and adapts to various classes of antibiotics such as 
 antimicrobial peptides [33], aminoglycosides [34] and beta‐lactams [35]. EPS (e.g. 
alginate) from the biofilms acts as a physical barrier that prevents the effective dose 
of antibiotics from reaching the bacterial cells [36,37]. The high phenotypic diversity 
of a biofilm also ensured the presence of dormant persisters with low metabolic 
activity while maintaining a high level of antibiotic tolerance [38].

Conversion to mucoidy occurs when the mucA gene, which encodes a negative regu-
lator of alginate synthesis, is mutated [39]. As an anti‐sigma factor, MucA is able to 
inhibit AlgU, a sigma factor required for the expression of the algD operon that synthe-
sizes alginate [40]. AlgU is also instrumental in controlling the expression of virulence 
and motility genes that are important in biofilm formation [41]. Mutation of the mucA 
gene is highly common in CF clinical isolates, with up to 80% of patients possessing 
strains of such traits [42].

Hence, with EPS acting as a barrier, biofilms are much more tolerant to antimicrobial 
agents and host immune systems as compared to planktonic cells [43]. The poor antibi-
otic penetration [44] and presence of slow growing cells [45] and phenotypic varied cells 
[46] all contribute to the positive selection of biofilm phenotypes during long‐term 
 survival of P. aeruginosa in the CF lung.



Tandem MS/MS-Based Approaches to Microbial Characterization454

17.5 Virulence of P. aeruginosa

Other than forming biofilms to withstand stressful host conditions, P. aeruginosa 
also produces a plethora of virulence factors that target the host cells. P. aeruginosa’s 
virulence depends on various secreted and cell‐surface‐associated factors and can be 
utilized differently in acute and chronic infections. The virulence factors are controlled 
by several regulatory systems, including the quorum sensing (QS) systems and two‐
component sensor kinases [47].

QS is an important cell‐to‐cell communication mechanism used by most bacterial 
species to respond to population density and synchronize their group behaviour [48]. 
This is mediated by autoinducers (QS signal molecules) produced by bacteria and accu-
mulated as the population density increases [48]. Upon reaching the threshold, autoin-
ducers bind to their specific receptors, allowing the coordination of expression of a 
large set of genes at the transcriptional level [49]. There are three QS systems in P. aer-
uginosa: las, rhl and pqs (Figure 17.2). Both las and rhl systems are N‐acyl homoserine 
lactone [50] based, whereas the pqs system is 2‐alkyl‐4‐quinolone based [51]. The las 
system positively regulates downstream rhl and pqs systems [50,52,53]. However, the 
rhl system regulates the pqs system negatively [53]. The pqs system also regulates both 
the las and rhl QS systems [54].

During acute infections, QS activates the expression of virulence factors, allowing the 
P. aeruginosa cells to overwhelm the host defences. The las QS‐regulated elastase is a 
peptidase that can cause proteolytic damage to host tissues and disrupt tight junctions 
between cells [55,56]. The rhl QS‐regulated rhamnolipids are highly cytotoxic to host 
cells because they disrupt the cell membrane and cause cytosol leakage [31]. The pqs 
QS‐regulated pyocyanin can generate free radicals that damage host cells, allowing the 
bacteria to persist in the CF airways [57–61].

QS systems regulate motility to P. aeruginosa, allowing it to cause acute infections 
[62]. P. aeruginosa possesses a single polar flagellum for swimming and swarming 
motility, and type IV pili for twitching motility [63,64]. The polymeric flagellum is 
made up of monomers of flagellin (FliC), and there are many gene products involved in 
flagellar formation and function [65]. Flagella can confer resistance to antimicrobial 
proteins such as pulmonary surfactant protein A in lungs [66]. Flagellin is pro‐inflam-
matory, and thus can stimulate inflammation and mucus secretion [67], while impair-
ment of mucus secretion in CF patients results in retention of bacteria and further 
infection [68].

The QS systems are also involved in the progression to chronic infections in CF air-
ways, with QS molecules being detected in the sputum [24]. QS regulates the formation 
of biofilms and secretion of virulence factors involved in chronic infections, such as 
pyoverdine and pyochelin, which are important siderophores in iron uptake [69,70], 
and the type VI secretion system (T6SS) [71]. The upregulation of T6SS (hcp operon) in 
biofilms enables P. aeruginosa cells to kill other bacterial species and host cells via the 
secretion of Tse1‐3 and Tse2 [72,73].

The two‐component sensor kinases control the expression of virulence factors in 
acute and chronic infections post‐transcriptionally via the alteration of mRNA [74]. 
Examples of such kinases are the GacS, RetS (regulator of exopolysaccharides and T3SS) 
[75] and LadS (loss adherence sensor) [76], with the GacS/GacA two‐component 
 system (TCS) being central to the pathway.
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The GacS/GacA TCS is instrumental in controlling T3SS and T6SS expression, and 
exopolysaccharide production [75,77–79]. It represses T3SS and motility, but upregulates 
T6SS and polysaccharide genes expression, to induce biofilm formation [75]. When acti-
vated, the GacA induced the expression of RsmY and RsmZ sRNAs [80]. In turn, RsmY and 
RsmZ sequester the RsmA protein at high affinity [81], allowing the induction of T6SS and 
EPS, and repression of T3SS and motility. These genes are also QS‐related as they posi-
tively induced the production of QS autoinducers, pyocyanin, cyanide and lipase [82–84].

In the ever‐changing CF lung environment, P. aeruginosa has to respond by altering 
its gene expression and downstream protein expression. Hence, it is imperative to study 
the global gene and protein expressions, which can reveal a ‘glimpse’ of the response at 
a specific time and condition. This can help to determine the specific genes/proteins 
important to the chronic adaptation and persistence. Genomics and proteomics are 
now widely used by researchers to elucidate the global gene/protein expression and 
adaptive evolution of P. aeruginosa in the CF lung.

17.6 Genomics to Study Bacterial Pathogenesis

Technological advances in whole genome sequencing in terms of depth and resolution 
greatly facilitate the research of bacterial evolution and virulence, which further pro-
vides information for identifying new drug targets, modifying clinical practices and 
health policies. Past approaches were merely based on sequencing small fragments such 
as loci of the bacterial genome and could only tell part of a story on virulence [85]. 
However, high‐throughput genome sequencing and population genomics are gaining 
traction in recent years to study population evolution and dynamics, due to higher 
 sensitivity, real‐time performance and speed. This enables the genomes to be compared 
at the single‐nucleotide level.

Bacterial genome sequence reads and assemblies cannot be easily generated with the 
use of various sequencing platforms, such as Illumina, 454 and IonTorrent [86–88]. 
This allowed the lining of overlapping short sequences together into contiguous 
sequences, named contigs [89]. The assembled contigs were ordered against a reference 
genome of a bacterial species, so that the draft genes can be annotated to various 
 functional classes [90]. Finally, pairwise comparative genome analysis can be employed 
to compare sequences between genomes, for identification of genes that could be 
important in virulence or antibiotic resistance [91].

Genomics studies conducted on different bacterial species include the comparison 
between wild‐type, mutant and clinical isolates [92]; the study of evolution and spread 
of antibiotics resistance [93]; and the investigation of epidemics [94,95].

By sequencing entire populations across their genome, the following can be 
investigated:

1) Evolution within host: To study the evolution dynamics via genetic variation and 
mutations in the pathogenic bacteria. It also shows how determining factors in the 
host drive bacteria evolution

2) Transmission of disease: To understand the spread of pathogens in an epidemic and 
the virulence factors important in transmission

3) Population dynamics: To study the changes in the genomes of all microorganisms in 
the infection site in real time.
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17.7 Proteomics to Study Bacterial Pathogenesis

Although genome analysis can provide valuable insights into gene expressions and 
mutations, proteomics can provide information on protein expression, dynamics and 
abundance on a global level. Proteomics is important because genomics does not give 
a clear indication of whether the mRNA encoded by a gene can be translated into a 
functional protein. For instance, high mRNA levels may not necessarily correspond 
to high protein production due to post‐transcriptional modification by small non‐cod-
ing RNAs. Genes subjected to alternative splicing and other modifications further con-
tribute to the complexity of proteomic analysis.

Early studies of proteomics often rely on two‐dimensional gel electrophoresis (2‐DE) 
to separate proteins into individual spots and their subsequent identification by mass 
spectrometry [96]. This is usually limited by the depth of coverage and abundance of 
proteins. However, with the advent of shotgun mass‐spectrometry‐based proteomics, 
important techniques such as matrix‐ assisted laser desorption/ionization time‐of‐
flight (MALDI‐TOF) [97] and isobaric tag for relative and absolute quantification 
(iTRAQ) [98] have been developed to increase sensitivity, resolution, robustness and 
data processing.

Hence, increased quality of data from proteomics can be used to integrate genomic 
analysis via bioinformatics, as genome databases can be used as a reference for protein 
functions and characteristics. Such complementation of both technologies is important 
in the field of systems biology, acting as a useful tool for data‐driven hypothesis. Up to 
now, many bacterial proteomes have been analyzed [99–101]. However, proteomics 
would not be possible without the complete mapping of the bacterial genome, which 
provided the basis of possible gene products (proteins). The availability of the relatively 
large but complete genome sequences of P. aeruginosa allows large‐scale proteomic 
studies to be carried out to study its wide variety of virulence factors and adaptability to 
different host environments.

Genomics analysis indicated that many open reading frames (ORFs) and hypo-
thetical genes had yet to be characterized in P. aeruginosa [102]. Proteomics can be 
used to confirm that the existence of those proteins is no longer hypothetical [103]. 
Proteins with hypothetical functions can also be predicted to be associated with cer-
tain subcellular locations, pathways and function classes on the basis of their homol-
ogy of gene sequences from other species, thus providing clues about their true 
functions [103].

Proteomics has the additional advantage over genomics in its ability to characterize 
proteins from various localized factions, such as secreted proteins and membrane pro-
teins [104]. These two classes of proteins are important in bacterial pathogenesis, as 
they are mostly involved in export of virulence factors and EPS, adherence and motility. 
Proteomics can also be used to study the turnover and degradation rate of proteins. 
A high turnover rate of a protein might suggest it can only function for a short period, 
even if it is highly expressed.

In the study of how P. aeruginosa adapts to its host environment or become resist-
ant to antibiotics, proteomics can usually be used to show response to changes in 
environment, such as antibiotic treatment and survival in the host. Proteins that 
respond and change in abundance can be identified for downstream molecular and 
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functional studies. Over‐expression or knockouts of genes can then be used concur-
rently with functional assays such as motility, cytotoxicity and toxicity studies for 
validation of proteomic findings.

However, there are certain limitations in proteomics which make the complementary 
support of genomics or transcriptomics necessary. Information on non‐coding genes 
or  small RNAs (sRNAs) that do not encode for any protein but with important 
 physiological functions will be lost by proteomics. For instance, information on RsmY 
and RsmZ sRNAs, which are important in biofilm formation and dispersal [105], 
 cannot be captured by proteomics. Hence, combining genomics or transcriptomics can 
provide hints to changes in downstream proteins in proteomics.

Unlike genes, which can be amplified by polymerase chain reaction (PCR), the 
absence of any amplification technique will require larger samples of proteins to be 
extracted. Fortunately, with the success of MS techniques, lower concentrations of 
 proteins were required, and low copy proteins could be detected [106,107].

In the following text, we will discuss how both genomic and proteomic approaches 
can be utilized in studying the pathogenesis of P. aeruginosa in CF infections.

17.8 Genomics of P. aeruginosa in CF Infections

The first complete genome sequence of P. aeruginosa is the genome of the PAO1 strain, a 
wound isolate [1], which now serves as the major reference strain for most studies on P. 
aeruginosa [103]. On top of its core genome, which is highly conserved, P. aeruginosa also 
has accessory genomes of various magnitudes which are not conserved across strains 
[108]. The accessory genome consists of plasmids and genomic islands inserted into the 
chromosome at various locations by horizontal gene transfer (HGT). These accessory 
genomes are also termed as regions of high plasticity as they are unique to individual 
strains and contain at least four contiguous ORFs [108]. Ranges of accessory genomes 
could vary from PAO1 that merely contains small inserts of maximum 14 kbp [108] to the 
LESB58 clinical isolate that possesses multiple large genomic islands and prophages [109].

Hence, it is interesting to note that the P. aeruginosa retains its core genome and cus-
tomizes its accessory genome to adapt to specific environments. This is unlike other 
species of pathogenic bacteria that usually undergo genomic reduction to fit its habitat 
[108].Other bacteria such as gamma‐proteobacteria usually acquire each genomic island 
by HGT [110]. The addition of new genetic sequences of each strain will increase the 
pool of genes for P. aeruginosa. The total gene pool represents the pangenome of P. aer-
uginosa, which consists of the core genome that is indispensable in all P. aeruginosa strains 
and ‘dispensable’ ones that are found in two or more strains and ‘unique’ ones that can 
only be found in one strain [111]. This implies that P. aeruginosa has a large access to the 
gene pools of different species of bacteria, allowing it to adapt to varying environments.

Other than acquisition of new genomic islands, there are other factors, such as 
 inversions [112,113], deletions [114] of genes that affect the plasticity of the genome. 
Single‐nucleotide substitutions can occur [115] and are classified into two types: 
 synonymous (replacement of a nucleotide does not change the amino acid being coded) 
or non‐synonymous (replacement of one nucleotide changes the amino acid being 
translated and potentially changes the protein function). One study compared the 
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genomes of same P. aeruginosa PA14 clonal complex from different habitats showed 
that most single‐nucleotide polymorphisms (SNPs) did not occur randomly and were 
found in the accessory genome instead of in the core genome [115].

17.9 Interclonal Genome Diversity

Genome sequencing of clinical isolates of different clonal complexes had shown that 
their genetic variation ranged approximately 0.5% in their core genomes [116]. A clonal 
complex refers to a group of isolates that are different from one another at one locus out 
of seven being tested by multi‐locus sequence typing (MLST) analysis [117]. This indi-
cated that the core genomes are highly conserved with low sequence diversity. However, 
as the accessory genome is highly variable, it accounted for the majority of the varia-
tions in the genome. The genomic islands that undergo most variations are involved in 
the biosynthesis of pyoverdine, an iron siderophore, and flagellar motility [116]. This 
confers specific phenotypes that offer survival advantage in certain environments. For 
example, mutation in the rpoN gene is often found during different clonal lineages of 
P.  aeruginosa around the world [118,119], which results in deficiency of flagellum 
expression and escape of P. aeruginosa from phagocytosis [120].

Although it is well established that there is high interclonal diversity in P. aeruginosa, 
a study of 240 strains obtained from different environmental habitats and patients 
pointed to the fact that most strains belonged a few dominant clones, implying the 
prevalence of those clones in the environment and disease [121]. The P. aeruginosa 
PA14 clone is found to be the most widespread linage in both environment and disease 
settings, with a high expression level of ExoU, a T3SS‐secreted cytotoxin [121,122]. 
Other common clonal lineages include Clone C [123] and M [124]. Although each clone 
has a certain ‘preference’ for different accessory segments, there are certain segments 
that are more likely to be varied, resulting in interclonal diversity.

17.10 Intraclonal Genome Diversity

Intraclonal genome diversities of strains within the same clonal complex and/or  isolated 
within the same patient are also studied by using comparative genomic approaches. For 
instance, the intraclonal genomes between isolates from the P. aeruginosa clonal com-
plex PA14 over 20 years were compared by parallel sequencing in the Hanover CF clinic 
[125]. It was observed that the PA14 in one patient had diversified into three different 
clades in the first five years of infection in the patient, but only one of them continued 
to accumulate changes in genome sequence such as deletions over time [125]. This 
implied that high diversity can still occur in the same clone from the same patient.

On the other hand, comparison between isolates from two CF patients infected with 
P. aeruginosa clone TB in the same local outbreak showed subtle differences in the 
genome, with one isolate possessing an additional genomic island from other bacterial 
species, thus providing the evidence for microevolution [126]. Moreover, transcrip-
tomic and metabolomic profiling proved a huge difference between both isolates in 
various phenotypes important in the response to host environment [126]. Surprisingly, 
it was found that one isolate was more susceptible to immune killing than the other.
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A high level of within‐the‐population diversity can also be observed in evolution 
experiments, regardless of the ancestor, environment and time span, with stable pheno-
types emerging over time [127]. Hence, the ability of the species to diversify is an innate 
ability to promote survival in the harsh and ever‐changing environments.

17.11 Clonal Spread of P. aeruginosa in CF Patients

With extensive microevolution and genetic adaptations, isolates that are highly success-
ful in the survival and colonization in the CF lungs, are eventually selected. Interestingly, 
clones that are highly transmissible among CF patients with long‐term chronic infec-
tions and aggressive within the lungs appeared [128–131]. Although it was previously 
thought that most CF patients got P. aeruginosa infections from the environment 
[132–134], genomic sequencing of different clinical isolates had instead suggested the 
existence of epidemics. One important example of clinical relevance is the Liverpool 
epidemic strain (LES) [135], which spread to many countries in Europe as well as the 
United States and Canada [136].

The P. aeruginosa LES strains were highly resistant to most antibiotics, further 
 implicating treatment selects for dominant clones [137]. Comparative transcriptomic 
analysis of LES isolates revealed mutations in efflux pump genes and upregulation of 
AmpC beta‐lactamase [138].

In accordance with the fact that patients infected with LES strains were found to have 
poor prognosis with a higher risk of death and lung transplantation, it was shown that 
LES isolates were more virulent than the non‐epidemic isolates [139]. Although the LES 
clone transmitted across patient populations, intraclonal diversity still existed between 
isolates of same patients, as they could exhibit varied virulence to host cells [138,140]. 
Some of the LES isolates produced higher levels of QS‐regulated virulence factors, such 
as pyocyanin and LasA protease, which were extremely toxic to host immune and 
 epithelial cells of the airway [141]. Although LES was usually found to be non‐motile 
[138], motile variants could still be isolated [142].

A recent comprehensive comparative genomics study of various LES strains from 
 different patients of different geographic origin had shown high variability in the 
prophage and genomic islands in accessory genome among isolates [142]. With most 
LES isolates being non‐mucoid and virulent [143], the LES clonal complex is indeed 
unique from the isolates that follow the traditional route of becoming mucoid and 
 avirulent in chronic infections. Hence, one has to be careful in studying genomics 
from clinical isolates, with variations between and within clonal complexes possibly 
obfuscating data interpretation and delaying suitable treatments.

17.12 Parallel Evolution

Parallel evolution involves the independent evolution of replicate lineages to possess 
similar traits when grown in similar environments [144]. During the chronic CF lung 
infections, even with high interclonal and intraclonal genome diversities, the evolu-
tion of P. aeruginosa usually follows a predictable and distinct pattern. Via genotyp-
ing, the initial stages of CF lung infections were characterized by recurrent acute 
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infections which can be treated easily with antibiotics. However, microevolution of 
P. aeruginosa resulted in a chronic infection state, featuring mucoidy and antibiotic 
resistance. It is interesting to note that similar changes in gene expression can be 
observed in the transition from early clinical isolates to isolates from chronic infec-
tions [119,145].To study the differences in genotype of P. aeruginosa, SNP genotyping 
with AT biochips (Clondiag Chip Technologies, Germany), based on selected genes 
from highly conserved regions, and genome sequencing were often used. Other methods 
are described in Chapter 21C.

17.13 Mutations in Early‐Stage CF P. aeruginosa Isolates

Despite having parallel evolution in the genetic changes among clinical isolates, high 
levels of phenotypic variation of P. aeruginosa still exist in each patient’s sputum, as 
each isolate still possess different colony morphologies [146]. There are various the-
ories explaining such genetic diversity in P. aeruginosa CF populations. Firstly, 
‘cheaters’ that do not produce ‘public goods’ are often evolved and selected from the 
P. aeruginosa populations. Public goods can include QS signal molecules and sidero-
phores [147,148]. Social cheaters with loss‐of‐function mutations in QS regulator 
lasR and production of QS autoinducers were found to be prevalent in acute and 
chronic infections, allowing them to take advantage of the rest of the group [149,150].

Hypermutator strains also contribute to the high phenotypic diversity of P. aeruginosa 
CF isolates, due to their enhanced and spontaneous mutation rates [151,152]. Mutations 
in DNA mismatch repair and error prevention genes such as mutS, mutL and mutY often 
contribute to the appearance of hypermutators, which accelerate evolution and shape a 
distinct evolutionary path in CF infections [153,154]. Hence, despite the capabilities of 
genomic sequencing to identify parallel evolution in phenotypes among clinical isolates, 
it is emphasized that one must take into consideration of the high  levels of genotypic and 
phenotypic diversity in the same patient. It is essential to sample multiple isolates from 
the sample time point of a patient when studying P. aeruginosa CF adaptation.

Although it is known that chronic P. aeruginosa CF isolates possessed parallel evolved 
phenotypes, the evolutionary path taken by P. aeruginosa from early to late infections 
were not well understood. Tracking of genomic evolution of isolates over time from 
the same patients serves as the key approach to elucidate which genes will be subjected 
to mutational changes first under the CF environment. Smith et  al. had tracked the 
evolution of a P. aeruginosa clonal complex in a single patient over eight years, sampling 
and sequencing the isolates longitudinally [118]. This allowed the identification of 
mutations of genes accumulated in the late isolate, as compared to the early isolate.

One of the earliest and most common mutations of P. aeruginosa CF isolates occurs 
in the LasR, the important transcriptional regulator of QS, which can even be found in 
clinical isolates from two‐year‐old CF patients [155]. This is also confirmed with phe-
notypic analyses showing that these isolates are deficient in QS autoinducer production 
[156]. Other than being important in social cheating, loss of function in LasR confers a 
growth advantage in the presence of specific amino acids, especially phenylalanine, as 
CbrB, a catabolism regulator, is upregulated in lasR mutant [157]. The CbrA/CbrB is a 
TCS that balances carbon and nitrogen metabolism, and prevent excess ammonia 
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build‐up from nitrogen assimilation [158]. A similar observation is also reported 
showing that P. aeruginosa lasR mutant grows better than wild type in rich medium at 
stationary phase [159], implying the catabolic advantage of lasR mutants in enhancing 
viability. When an experimental P. aeruginosa PA14 strain was grown in CF sputum, 
amino acid synthesis, degradation and transport genes were induced [160]. Hence, it is 
highly likely that amino acid metabolism can drive lasR mutations.

Furthermore, P. aeruginosa lasR mutant downregulates the pqs QS system, which is 
required for autolysis and DNA release [161]. The sputum from CF patients was found 
to contain high concentrations of amino acids, notably phenylalanine and leucine [162], 
which was reported to activate pqsQS [163] and might cause autolysis of a  substantial 
amount of cells with functional LasR but not in cells with lasR mutations. Other studies 
suggest that LasR‐regulated virulence factors such as elastase are selected against by the 
immune system in the CF lung, resulting in attenuated  virulence in LasR mutants [164].

Mutations in the alternative sigma factor RpoN and PvdS also happen in early‐stage 
CF P. aeruginosa isolates, and it is often these mutations are maintained during long‐
term CF adaptation [118,165]. Mutations in the rpoN gene downregulate P. aeruginosa 
motility [166] and have pleiotropic effects on its central metabolism and QS [167]. 
RpoN mutants are deficient in surface pili, flagella, and nonpilus adhesins and are thus 
resistant to ingestion by both macrophages and neutrophils [168]. Mutations in PvdS 
as  well as other genes involved in P. aeruginosa iron siderophore production are 
highly selected in early‐stage CF isolates [119]. A recent study showed that mutation in 
P. aeruginosa siderophore‐mediated iron uptake can maintain its mucoid phenotype 
due to alginate overproduction [169].

17.14 Mutations in Late‐Stage CF P. aeruginosa Isolates

Other mutations tend to appear in late‐stage P. aeruginosa CF infections. The multi‐
drug efflux‐associated mexZ gene was found to be a common target for mutagenesis 
[118,170]. MexZ is the negative regulator of MexX and MexY, which together with 
OprM porin form the MexXY‐OprM multi‐drug efflux porin [171]. The mutation of 
mexZ de‐inhibits both mexX and mexY genes, leading to their increased expressions 
and antibiotic resistance [172]. Other patients had also been found to possess iso-
lates with increased expression of MexX and MexY instead [173]. As CF patients are 
 frequently treated with antibiotics, such as tobramycin, the selection pressure for 
 antibiotic‐resistant genes can be considered to be far greater than other genes [173].

Another gene with high mutation frequency from late‐stage CF P. aeruginosa isolates 
is mucA, with up to 60% of 38 isolates from 26 CF patients possessing mucA mutations 
[170]. Genetic sequencing of the mucA gene in most clinical isolates found that the loss 
of function is a result of premature termination of the mucA coding sequence [39]. 
Hence, mucA is a highly preferential gene for conversion to mucoidy in the CF lung, 
providing a protective barrier against immune clearance in the lungs. Other than algi-
nate production, additional downstream genes had been identified to possess promoter 
sites for potential AlgU binding [174]. For instance, lipoproteins (IptA and IptB) which 
can activate inflammatory pathways in macrophages were identified to be dependent 
on AlgU binding [174].
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It had been proposed that the mutations stated above had already started to occur 
in the early colonization of airways, especially at the paranasal sinuses in young CF 
patients [175]. The paranasal sinuses were observed to serve as important reservoirs 
by P. aeruginosa in the early infections, thus subjecting the lungs to intermittent seed-
ing by P. aeruginosa and leading to the eventual chronic lung infection in the future.

17.15 Transcriptomics of P. aeruginosa 
in Chronic CF Infections

Other than comparative genomics, transcriptomic analyses are widely used to com-
pare the physiology and adaptation of multiple CF P. aeruginosa isolates. In our 
previous work, mRNAs extracted from logarithmic phase cultures of CF P. aerugi-
nosa isolates from the DK2 clonal lineages were used for microarray‐based tran-
scriptomic analysis [165]. The P. aeruginosa isolates used in this study includes 
early‐ and late‐stage CF isolates from the same patients as well as isolates from 
newborn CF children (Figure  17.2). Even though these CF isolates had different 
adaptation backgrounds, unsupervised  bioinformatics analysis (hierarchical clus-
tering) was able to clearly classify the transcriptomes into three groups (early‐stage, 
late‐stage and mucoid isolates) (Figure 17.3). In accordance with the comparative 
genomics, independent component analysis was also able to reveal the importance 
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of losing QS and gain mucoidy and antibiotic  resistance in the adaptation of P. aer-
uginosa in the CF lung [165].

RNA sequencing was also employed in the study of important genes in the adaptation 
of P. aeruginosa in the CF lung. Clonal P. aeruginosa isolates were sequentially collected 
from different patients ranging from months to years, and their transcriptomes were 
compared by using RNA sequencing to study the adaptive traits [176]. Twenty‐four 
common genes, such as the type IV pilus biosynthesis genes, were identified as showing 
similar changes among three clonal lineages, suggesting they play an important role in 
CF P. aeruginosa adaptation and highlighting the parallel evolution trait of P. aeruginosa 
in the CF lung [176].

Transcriptomic analysis of sequential isolates from patients over three to five years 
showed that, in addition to the QS, pili and antibiotic‐resistant genes, metabolic 
 pathways important in the P. aeruginosa adaptation in the lungs were also affected. 
Increased expression of genes important in anaerobic (e.g. anr) and microaerobic 
 respiration (e.g. cytochrome oxidase cbb3) was found in the late CF P. aeruginosa 
 isolates compared to early isolates from a hypermutable linage [177]. This observation 
showed that P. aeruginosa persisted in the hypoxic or anaerobic conditions of mucus in 
the lungs [178–180].

17.16 Proteomics of P. aeruginosa in Chronic CF Infections

Although genomics and transcriptomics had helped in answering how clinical isolates 
from CF patients evolve over time, comparative proteomics of CF P. aeruginosa isolates 
and defined laboratory strains can reveal the functionality of the metabolic pathways as 
well as biomarkers of CF infectious stages.

17.17 Applications of Proteomics 
to P. aeruginosa Characterization

Because transcriptomes provide changes at the gene level only, which may not lead to 
changes in metabolic pathways and phenotypes, proteomics is being used to provide 
phenotype evidence and biomarkers for pathogenesis of P. aeruginosa CF lung  infections. 
It is essential to have physiologically relevant in vitro and in vivo models to perform 
proteomics so that the proteomic analysis can reflect true disease‐causing mechanisms 
of P. aeruginosa. Initial studies mainly used 2‐DE combined with mass spectrometry to 
identify proteins and compare proteins spots between samples [181]. With the advent 
of quantitative proteomics by isobaric tag for relative and absolute quantification 
(iTRAQ), proteome data of higher sensitivity and accuracy had been obtained to study 
the relative proportions of certain peptides between differentially labelled samples [182].

Comparative proteomics are used in but not limited to the following models for 
 characterizing P. aeruginosa infections: (1) comparing non‐mucoid and mucoid CF 
P.  aeruginosa isolates to understand the physiological impact of mucoidy [183]; 
(2)   comparing laboratory strains and their mutants with CF‐like phenotypic traits to 
identify regulation of the CF phenotypes [184]; (3) comparing drug‐treated and ‐
untreated P. aeruginosa isolates to study their resistant mechanisms [185]; revealing 
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the stress response of P. aeruginosa isolates towards ROS to identify the factors required 
for survival during host immune response [186]; (5) comparing P. aeruginosa isolates 
cultivated under CF‐like physiological conditions to laboratory conditions to reveal 
their metabolic adaptation during infections [187,188]; (6) comparing planktonic and 
biofilm cells to identify factors contributing to biofilm formation and factors required 
specifically for acute and chronic infections [189]; and (7) comparing subcellular 
 proteomes to identify membrane‐associated and secreted virulence factors [190,191].

Here we give examples of the application of comparative proteomics to reveal the 
physiology of P. aeruginosa strains with CF‐like phenotypes.

17.18 Comparative Proteomic Investigation of Bis‐(3′‐5′)‐
Cyclic‐Dimeric‐GMP (C‐Di‐GMP) Regulation in P. aeruginosa

C‐di‐GMP is a global secondary messenger employed by many species of bacteria 
for regulating biofilm formation and dispersal [192]. The diguanylatecyclases (DGCs) 
catalyze c‐di‐GMP formation, whereas phosphodiesterases (PDEs) cause the degrada-
tion of c‐di‐GMP; thus, bacteria can adjust the intracellular concentration of c‐di‐GMP 
according to the changes in environment [193]. Increased concentration of c‐di‐GMP 
will promote EPS production and reduce motility for enhancing biofilm formation 
[194,195]. Reducing c‐di‐GMP content will cause biofilm dispersal and induce virulence 
factors for acute infections [105,196,197].

The rugose small‐colony variants (RSCV) are often observed in late‐stage CF P. aer-
uginosa isolates, and they possess high intracellular c‐di‐GMP content [198]. RSCV 
isolates produce large amounts of biofilms with the help of Pel and Psl exopolysaccha-
rides compared to other CF isolates. These phenotypes are caused by enhanced intra-
cellular c‐di‐GMP content via the wsp operon. Mutation in the wspF regulator gene can 
cause the constitutive activation of WspR, a DGC, resulting in high intracellular accu-
mulation of c‐di‐GMP and formation of RSCV [161,194]. We have compared the pro-
teomes of a wspF mutant (with high intracellular c‐di‐GMP content) and a wild‐type 
strain containing pYhjH, which encodes a constitutively expressing PDE and thus 
degrades intracellular c‐di‐GMP [184]. Very interestingly, our data showed that high 
intracellular c‐di‐GMP not only induces synthesis of Pel and Psl exopolysaccharides, 
but also enhances the production of iron siderophore pyoverdine [184], which is an 
important factor for virulence and biofilm formation in P. aeruginosa [199]. Comparative 
proteomics of RSCV isolates with wild‐type P. aeruginosa strains by other groups 
showed that drug efflux pumps such as MexAB, MexXY and OprM had been  upregulated 
by RSCV strains, suggesting that c‐di‐GMP plays a role in antibiotic  resistance [200].

Comparing the proteomes of a wspF mutant and the pYhjH‐containing strain also 
showed that c‐di‐GMP positively regulates alginate synthesis [184]. This data is in 
accordance with a previous finding showing that mucR, an important regulator in the 
alginate synthesis, acts as a membrane‐localized DGC [201].The ∆mucR mutant is defi-
cient in alginate production, while its over‐expression enhanced alginate synthesis and 
secretion. Proteomic analysis also revealed that MucR altered the outer membrane profile, 
especially by increasing the expression of AlgE. AlgE is an outer membrane protein, 
important in the export of alginate out of bacterial cells [202]. C‐di‐GMP produced by 
MucR was shown to bind specifically to its receptor Alg44 via its PilZ domain [203].
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17.19 Comparative Proteomics of Mucoid  
and Non‐Mucoid P. aeruginosa Strains

As mucoidy is the most important and most studied phenotype in CF P. aeruginosa 
isolates [183,190,204–208], it will be highly desirable to study the proteomes of mucoid 
strains and discover proteins important for mucoidy. Comparative proteomic analysis 
of mucoid and non‐mucoid CF isolates showed that AmrZ (alginate motility regulator 
Z) and alginate biosynthesis proteins such as AlgC were upregulated in mucoid strains 
[183]. AmrZ was also found to be upregulated transcriptionally in the same mucoid 
strain and was a DNA‐binding protein that enhances AlgD expression [209–211]. AlgC 
was a phosphomannomutase that is important in alginate and LPS synthesis [212,213]. 
A periplasmic porin, OprF, was also found to be induced in mucoid strains in many 
proteomic studies [191,204,206], implying a possible function in secretion of small mol-
ecules relating to alginate biosynthesis.

Proteins downregulated in mucoid strains compared to non‐mucoid strains include 
many motility related proteins, resulting in absence of flagellar motility [183,214]. AlgU 
(AlgT, σ22) was able to suppress expression of flagella via FleQ inhibition [214]. This 
caused the initially motile strains to convert to non‐motile ones as infections progressed 
from acute to chronic. Loss of motility was essential to evade the host immune response 
as flagella can elicit an immunogenic response [215].

Interestingly, expression of type VI secretion system (T6SS) was also observed to be 
reduced in mucoid strains by comparative proteomics [183], which was corroborated 
with transcriptomic data that T6SS genes such as hcp1, tssB1 and tssC1 were downregu-
lated in mucoid CF isolates [145,214]. It was hypothesized that T6SS was important in 
early clinical non‐mucoid isolates for competing against other bacteria, but it was not 
necessary later when chronic infection by mucoidy had been established [72,183].
The  above studies about mucoidy show that proteomics and transcriptomics could 
complement and correlate with each other very well.

17.20 Proteogenomics Reveal Shifting in Iron 
Uptake of CF P. aeruginosa

Another good example of combining genomics, transcriptomics and proteomics for 
investigation of CF P. aeruginosa adaptation is the examination of its iron uptake path-
ways. Iron is essential for growth of bacterial pathogens. Bacteria have evolved multiple 
specific iron scavenge systems to obtain iron from nature and host infection sites. Most 
iron in the human body is locked in hemoglobin and lactoferritin produced by the 
immune system that can sequester iron away from pathogens [216,217]. These factors 
might create a selection pressure on pathogens during chronic infections, allowing 
them to adapt their iron uptake systems.

P. aeruginosa is able to utilize two types of well‐established systems, siderophore 
based and heme acquisition based, to scavenge iron from the environment (Figure17.4). 
The siderophores, namely pyoverdine [218] and pyochelin [219], are low‐molecular‐
weight compounds that can chelate iron at very high affinities from the milieu and 
return to bacterial cells after binding to specific surface receptors for iron absorption. 
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Similarly, heme‐sequestering carriers are usually proteins that chelate and transport 
heme across bacterial membrane after binding with specific bacterial surface receptors 
(Figure 17.4).

Pyoverdine and pyochelin are required in the pathogenesis of various animal infec-
tion models as they scavenge Fe3+ from host cells during infections [218,225,226]. When 
pyoverdine binds to the FpvA membrane receptor, it activates downstream virulence 
genes via PvdS, allowing the production of ExoA [227] and an endoprotease PrpL [228]. 
While pyoverdine is important in acute infections for iron uptake and regulation of 
virulence factors, genomic and transcriptomic analyses suggested that the siderophore‐
mediated iron uptake seemed to play a less major role in CF infections [165]. Several 
studies showed that siderophore‐mediated iron uptake genes were still expressed in 
most clinical samples [229,230], but with samples having low levels [229] or gaining 
mutations in pyoverdine genes over time [231,232], this implies that the late‐stage CF 
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Figure 17.4 Iron acquisition systems employed by P. aeruginosa. Siderophore‐based systems 
including pvd [220,221] (A) and pch [222] (B) are both involved in Fe3+ uptake; phz (C) is involved in 
Fe2+ uptake [223]; heme‐acquisition‐based systems including phu (D) and has (E), are involved in 
uptake of hemeproteins.
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P. aeruginosa isolates either have high concentrations of free iron or utilize alternative 
iron uptake systems.

A recent work used comparative genomics and transcriptomics to show that loss of 
siderophore production coincides with increased expression of the phu heme uptake 
system [233]. Genomic analysis of CF P. aeruginosa isolates revealed a 38‐fold higher 
frequency of mutations in the promoters of the PhuR receptor than would occur by 
chance, resulting in high expression level of phuR in late‐stage CF isolates [233]. 
Furthermore, CF isolates from different patients but from the same lineage showed 
convergent evolution towards upregulation of phuR, implying that the heme system is 
subjected to evolutionary adaptation [233]. Our recent studies showed that the PhuR 
protein is one of the highest expressed proteins in late‐stage CF isolates, and its expres-
sion level is very low in the early‐stage ancestor strain of this isolate from the same CF 
patient (data not shown). Hence, it is very likely that heme‐sequestering systems are 
employed by P. aeruginosa isolates during the late‐stage infections in CF patients 
[231,233]. This might confer the late‐stage isolates advantages over early‐stage isolates 
when growing in the presence hemoglobin, whose bioavailability in the CF lung is high 
due to micro‐bleeding [234] and abundance in alveolar epithelial cells [235].

Loss‐of‐function mutations of siderophore synthesis and receptor genes were also 
found to lead to induction of an alginate synthesis gene algD [169]. Moreover, growing 
mucoid strains in simple iron sources such as iron (III) citrate and iron (III) chloride 
abrogated alginate production, whereas heme sources allowed isolates to retain 
mucoidy, suggesting that the use of heme as an iron source has less repressive effects on 
alginate production than the use of other iron sources [169]. Hence, shifts in iron uptake 
pathways can influence alginate production and might allow better survival of P. aerugi-
nosa in the CF lung in response to immune clearance. Targeting the heme uptake path-
ways in late‐stage CF infections might be an alternative approach to control P. aeruginosa 
infections.

Although most studies investigate the uptake of ferric (Fe3+), few studies showed the 
role of ferrous iron (Fe2+) in CF P. aeruginosa isolates. As infections progressed, Fe2+ 
was also recently found to be abundant in the mucus of CF lungs [236]. Interestingly, 
P. aeruginosa could also uptake Fe2+ using phenazines via the FeoB receptor [229,237].

Because mucoidy was shown to link with differential iron utilization systems, the 
underline mechanisms between mucoidy and iron uptake remain unclear. It is possible 
that heme utilization accumulates intracellular ROS after being uptaken by P. aeruginosa 
[238]. This can select for mucoidy, as mucoidy was shown to protect P. aeruginosa from 
oxidative damage [239]. Further studies are required to be conducted to prove the links 
for such complex relationships.

17.21 Conclusion and Future Perspectives

The application of genomic, transcriptomic and proteomic technologies has vastly 
improved our understanding of the adaptation and evolution of P. aeruginosa at the 
single‐nucleotide, gene and protein expression levels, respectively. This information 
helped provide important targets for future therapeutic interventions. These tech-
niques can identify important biomarkers in the transition from early‐ to late‐stage CF 
infections. This knowledge allows us to target relevant genes and proteins at the early 
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stage, when there is a better chance to eradicate P. aeruginosa infections before the 
 disease progresses to the chronic phase.

Nonetheless, there is still room for improvement in the depth, resolution and sensi-
tivity of genomic sequencing platforms and mass‐spectrometry‐based proteomic plat-
forms. Future sequencing platforms (such as PacBio RS II) will provide high‐resolution 
sequences with fewer gaps and other nucleotide modification (e.g. DNA methylation) 
information than the current sequencing platform, and allow more accurate genome 
organization and SNP analyses than what is available today. More sensitive mass spec-
trometers will enable us to detect low‐abundant proteins from proteomic samples.

Despite the large number of studies carried for CF P. aeruginosa infections, current 
research still presents a simplistic view of the infection itself. Most infections are 
 polymicrobial, with the CF airway containing a complex microbiome [240,241], which 
consists of more than 20 genera such as Streptococcus, Staphylococcus and 
Achromobacter. It was further observed that patients with disease progression pos-
sessed higher microbiome diversity as compared to patients with stable chronic disease 
[240]. Predictably, the declining diversity of bacterial communities was attributed to 
antibiotics treatment [240]. The interactions of those species are highly complex and 
diverse; thus, it is important not to neglect the other species and focus on P. aeruginosa 
alone. Investigation of interspecies interactions will further elucidate the mechanisms 
of P. aeruginosa CF adaptation [242].

Most proteogenomic studies only applied to a single genome, and mass spectrometry 
data was limited to a single proteome. The complexity of the CF microbiome has raised 
the need to study microbial communities holistically by using meta‐proteogenomics. 
With the increased quantity and quality of metagenomic data, and the increased accu-
racy and sensitivity of mass spectrometers, it is possible to quantify and identify pro-
teins expressed in the microbiome. To study protein abundance and function, 
metaproteomic data from MS will be searched against the metagenome database. As 
metagenomics cannot decide which species or gene is important in carrying out a cer-
tain function, protein identification and quantification can show its active role in real 
time. Such techniques have been applied in studying other diseases, for example, in the 
case of gut microbiota in Crohn’s disease [243]. Hence, meta‐proteogenomics can lead 
to improved annotations of genomes for gene function and classification [244].

To further complicate the study of CF infections, the human airway consists of differ-
ent anatomical areas, including the nasal cavities, bronchi and lungs. Such a differenti-
ated spatial organization will favour different specialized microbiota to reside in [245]. 
This is partly due to the varied environments along the airways, favouring differential 
growth of bacteria [179,246]. Most sampling methods had been restricted to getting 
sputum expectorated from patients [247] and fluid from bronchoalveolar lavage (BAL) 
[248]. Hence, it is important to take into account that the CF infections are polymicro-
bial and multi‐factorial [249,250], requiring customized treatments for different areas 
of infections. If not, antibiotic treatment of certain microbial species may be effective 
only in certain regions of the airways.

Other than collecting isolates from human samples, both genomics and proteomics 
should also be used in defined chronic animal infection models to study the adaptations 
of P. aeruginosa to CF‐like conditions. As there were large variations across patient 
demographics, treatment and disease progression, laboratory‐based experiments 
should be employed to confirm results from the clinical samples. This will confer 
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 control and reproducibility to the study of P. aeruginosa evolution, and provide a means 
of testing new drugs or varied conditions. Animal models including the pig [68,251] and 
sheep [252] will also provide suitable replacements in studying P. aeruginosa–mediated 
lung infections, given their resemblance in airway anatomy and genetics to humans.
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18.1 Introduction

Top‐down proteomics is an emerging technology based on the analysis of intact  proteins 
using high‐resolution mass spectrometry.1,2 This is in contrast to the better‐established 
bottom‐up strategy, which relies on the analysis of peptide fragments obtained after 
enzymatic digestion.

A great advantage of top‐down proteomics is its ability to address and characterize 
protein variations such as alternative splicing, allelic variation, or posttranslational 
modification (PTM) that are essential for proper protein function, but are not directly 
encoded in the genome.3 By examining intact proteins directly, top‐down proteomics 
provides a bird’s eye view of all protein species (proteoforms) and thus reveals infor-
mation that may be closely connected to complex disease phenotypes.4 By studying 
intact proteins rather than peptides, top‐down proteomics also neatly sidesteps the 
so‐called “inference problem” that is inherent in the bottom‐up proteomics workflow 
(the same peptide can be shared by several proteins, which can lead to ambiguous 
identification); (see comparison, Figure 18.1).

Two distinct analysis strategies exist in top‐down proteomics (Figure 18.2). Choosing 
which is the most appropriate generally depends on the sample complexity.

The first strategy – targeted mode (or offline) – addresses the analysis of purified pro-
teins or simple mixtures of several proteins and/or proteoforms. Proteins are intro-
duced into the mass spectrometer by direct infusion nanoelectrospray (nanoESI). The 
use of the chip‐based infusion technology developed by Advion (Triversa Nanomate)5 
is a very good option to obtain an nESI spray that is both readily reproducible and 
allows the measurement of samples for the long scan times required to obtain high‐
quality data. An MS profiling experiment is first performed. This MS‐level characteri-
zation provides an accurate mass for all proteoforms present in the sample. Following 
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this measurement, the different proteoforms are individually selected inside the mass 
spectrometer and fragmented to reveal further structural information. In most cases, 
a combination of several complementary fragmentation techniques (collision activated 
dissociation or CAD, electron transfer dissociation or ETD, electron capture dissocia-
tion or ECD, etc.) can be employed to maximize sequence coverage of the target proteo-
form.6 CAD (as well as HCD, high collision energy dissociation) leads to the formation 
of b/y ions, whereas ETD and ECD give rise to c/z fragments. A high sequence coverage 
is required to confidently localize potential modifications. This is particularly useful 
when there are multiple combinations of modifications at different sites on the protein 

Bottom-upTop-down

Peptides

Digestion
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Figure 18.1 Bottom‐up versus top‐down proteomics.
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Figure 18.2 Targeted versus discovery mode in top‐down proteomics.
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backbone that give rise to several proteoforms of the same mass. For data analysis, 
 various software packages exist for matching spectral ions to a sequence and pinpoint-
ing known PTMs. There is to date no software capable of automatically assigning 
unknown PTMs in protein sequences associated with a score, and in most of these cases 
a semi‐manual fragment ion assignment must be performed. Unfortunately, this can be 
very time consuming.

The second acquisition strategy is discovery mode (or on‐line). In this case, the objec-
tive is to perform a large‐scale analysis of many proteins present in a “complex” sample, 
ideally a whole proteome, using an LC‐MS/MS strategy. This mode, which mimics 
 bottom‐up proteomics, requires on‐line chromatographic separation of proteins prior 
to MS/MS and their subsequent identification by database searching. A possible way to 
increase the dynamic range in top‐down proteomics is to include one or several pre‐
fractionation steps, using SCX or SAX (strong cation/anion exchange chromatography), 
or iso‐electric focusing.7 The on‐line separation of intact proteins in conditions 
 compatible with mass spectrometry (neither salt nor detergent) is not an easy task.8 The 
usual C18 capillary columns used for the separation of peptides in shotgun proteomics 
are not suitable for the separation of intact proteins, and other types of separation are 
required. Among the different materials that have been tested, the most suitable appears 
to be the monolithic columns that emerged at the end of the 1980s. Monolithic columns 
are formed of a single piece of porous solid, rather than the particulate matter that is 
usually used in most reverse phase columns. Monoliths possess the advantages of both 
polymeric phases (low pressure drop and ease of handling) and conventional columns 
(high efficiency and resolution).9 Because of the requirement for good chromatographic 
separation at reasonable gradient times (a few hours at the most), peak widths, and thus 
the time available for proteoform fragmentation, are usually less than 1 min. One cannot 
therefore expect sequence coverage as high as in targeted mode, where acquisitions may 
last much longer. However, this on‐line approach allows for the analysis of much more 
complex samples, up to entire proteomes, and is complementary to the bottom‐up 
approach as it provides protein‐level information on proteoforms that would otherwise 
be lost in classical peptide‐centric methods. Just as in bottom‐up proteomics, specialized 
methods can be tailored to optimize fragmentation and thus sequence coverage of 
specific species if required.

An important step in the process is also data analysis, which requires the use of appro-
priate software allowing database searching to identify both proteins and proteoforms. 
To date, the most advanced software packages include ProSight10, MS‐Align + 11, 
MASH,12 and pTop.13 These software packages have become increasingly capable of 
processing the complex spectra data generated from fragmentation of entire protein 
species and matching spectral peaks’ theoretical ions to achieve protein identification. 
However, there is still much room for improvement in the bioinformatics analysis of 
top‐down proteomics data, and robust statistics are still required to attach appropriate 
confidence metrics or “scores” to identified proteoforms and for their quantification 
(p‐Score, c‐Score).14 This is particularly important when the sample is very complex or 
data are sparse, and multiple assignments are possible. In such cases, manual validation 
of individual spectra often remains necessary.

In the field of microbiology, several papers have already demonstrated the strength of 
top‐down approaches to study proteins involved in bacterial virulence. A summary 
of these studies, as well as future trends, is presented in this chapter.
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18.2 Top‐Down Analysis of Modified Bacterial Proteins 
in Targeted Mode

PTM in the bacterial world is becoming recognized as an important, yet still poorly 
understood method by which pathogens mediate interactions with their host. Because 
bacterial proteins present an average mass around 30 kDa and are available in large 
quantities, they represent ideal targets for top‐down proteomics. Several studies have 
focused on the analysis of pilin proteins that are the major components of type IV pili. 
Type IV pili (Figure  18.3) are extracellular filamentous virulence factors frequently 
expressed by bacterial pathogens.

They play roles in a myriad of life processes such as DNA uptake, motility, host cell 
adhesion, and bacterial aggregation. The ability of pili from different bacteria to aggre-
gate or bundle helps colonies stay together and resist external pressures such as shear 
stress.15 The initial top‐down study of the major pilin PilE, purified from Neisseria men-
ingitidis NM8013 reference strain, led to the characterization of a previously unre-
ported sugar called GATDH (glyceramidoacetamidotrideoxyhexose) that was found to 
be present in half of clinical isolates.16 It was then demonstrated, using a combination 
of bottom‐up and top‐down approaches, that bacterial dissemination, a key step in vir-
ulence, is triggered by the addition of a single phosphoglycerol group (PG) on PilE, a 
PTM regulated upon cell contact. This PG group added to Ser93 introduces a negative 
charge in a patch of positively charged amino acids on the pilus surface and completely 
destabilizes the pilus–pilus interaction. This destabilization favors the detachment of 
single bacteria from the colony, their dissemination within the host and, crucially, their 
migration through the epithelial layer. These results shed new light on N. meningitidis 

(A)

(B)

(D)
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Figure 18.3 (A) Neisseria meningitidis colonies on an epithelial cell, (B) N. meningitidis bacterium and 
its type IV pili, (C) modeling of a type IV pilus, (D) PilE protein: the major component of type IV pili.*

* The authors thank Guillaume Dumenil (Unit of Pathogenesis of Vascular Infections at the Institut 
Pasteur), Gérard Péhau‐Arnaudet (CNRS UMR3528 and Institut Pasteur Ultrapole) for providing the EM 
images of Figure 18.3 and M. Nilges (Structural Bioinformatics Unit, Institut Pasteur) for modeling of the 
fiber (Figure 18.3).
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pathogenicity and show the added value that top‐down approaches can bring to the 
analysis of PTMs.17

Following this study, all PTMs carried by the two major proteoforms of PilE from 
reference strain NM8013 were comprehensively mapped for the first time. The meth-
odology used was a combination of mass profiling (intact mass measurement of the 
proteoforms) and tandem mass spectrometry on intact proteoforms (targeted mode 
top‐down analysis). The modifications found include a processed and methylated  
N‐terminus, disulfide bridge, glycosylation, and glycerophosphorylation at two  different 
sites (Figure 18.4).18

In order to shed new light on the enigmatic link between PTMs and virulence, the 
analysis of PilE was recently extended to previously uncharacterized hypervirulent 
N. meningitidis strains collected in a hospital from patients with evidence of meningitis. 
N. meningitidis strains can be classified into two groups. The strains expressing class I 
pilins contain a genetic recombination system that promotes variation of the pilin 
sequence and is thought to aid immune escape.19 However, numerous hypervirulent 
clinical isolates (such as the ones collected in this study) lack this property and express 
pilins belonging to a second class (class II) with an invariable primary structure. This 
raised the question of how strains expressing class II pilins evade immunity targeting 
type IV pili? Although class I pilins carry a single glycan, it was unexpectedly found, 
using dedicated top‐down approaches, that class II pilins display up to five glycosylation 
sites. The combination of these results with molecular modeling led to a new model 
where strains expressing class II pilins evade the immune system by changing the chem-
ical composition of the sugar rather than the pilin primary structure. These results 
highlight the fact that bacterial glycans can have extensive functional and immunological 
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Figure 18.4 High‐resolution FT‐ICR mass profile of PilE alongside a model showing all PTMs (orange) 
on the protein structure. Once all PTMs are taken into account, the experimental spectrum (black) 
correlates very well with a theoretically generated isotope pattern (red).18
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consequences and that top‐down approaches are particularly suitable when more than 
two proteoforms are present in a single sample.20,21

A similar top‐down study was performed on ComGC, which is the major pilin of the 
first type IV pilus ever described for a gram‐positive bacterium (in Streptococcus pneu-
monia). In that case, the top‐down analysis only revealed a processed and methylated 
N‐terminus and no further PTM.22,23

All these results have been obtained on purified proteins, using direct infusion of 
samples, exemplifying the fact that a targeted approach is suitable for purified pro-
teins or very simple mixtures but not for large‐scale analysis. To improve throughput 
and move from the analysis of intact proteins to intact proteomes, on‐line LC‐MS/
MS is required.

18.3 Top‐Down Analysis of Bacterial Proteins 
in Discovery Mode

The first study describing the large‐scale analysis of bacterial proteins using LC‐MS 
dates back to 2008 and concerns the analysis of the soluble fraction of an Escherichia 
coli lysate.24 Strong anion exchange (SAX) chromatography was used to fractionate the 
sample into 36 fractions that were further analyzed by LC‐MS/MS with ETD. The 
experiments were undertaken on a linear ion trap mass spectrometer using a C4 separa-
tion. Using a dedicated data processing pipeline, 174 proteins, corresponding to 322 
proteoforms, could be identified with an FDR < 1%. Among these proteins, 43 of the 53 
ribosomal subunits were identified, representing 141 proteoforms. The majority of the 
species observed had some degree of processing when compared to the protein expected 
from the genome. N‐terminal methionine excision, which is a common PTM for 
prokaryotes, was observed in 47 proteins. Thiolation as well as signal peptide removal 
were also observed for several proteins. In this study, 20 μg of protein was injected into 
the mass spectrometer, and data collection was completed in two days.

Similar numbers (154 proteins, 201 proteoforms) were obtained in 2009 by Tsai 
et  al.23 for the analysis of Salmonella typhimurium outer membrane extract. In that 
case, an LTQ‐Orbitrap instrument was used with a C4 chromatographic separation. 
Data were obtained using CAD on the most abundant precursor ions selected over 
seven different ranges in the ion trap (gas phase fractionation) with detection of frag-
ments in the Orbitrap. In this paper, the authors developed a precursor ion independent 
algorithm (called PIITA) to process their data. Compared to a bottom‐up analysis per-
formed on the same sample, 73 proteins were identified exclusively using the top‐down 
approach. As with the top‐down characterization of the E. coli soluble proteome, the 
most frequently found PTM was methionine excision (for 71 proteins). Acetylation, 
methylation, and thiolation were also observed and confirmed previous findings.

More recently an LTQ‐Orbitrap was also used for the study of the periplasmic 
Novosphingobium aromaticivorans proteome.25 These gram‐negative bacteria are known 
for their ability to degrade aromatic hydrocarbons. The genome of Novosphingobium 
aromaticivorans comprises 3917 proteins, with 30% annotated as “hypothetical.” The 
single‐dimension LC‐MS/MS analysis of the sample, using a (80 cm × 75 μm) column 
packed with C5 particles led to the confident identification of 55 proteins, compared 



Top‐Down Proteomics in the Study of Microbial Pathogenicity 499

with 87 proteins by a bottom‐up approach. Most of the proteins were found to be 
 modified, mostly by N‐terminal methionine excision or signal peptide removal. Some 
of  these modifications were identified exclusively by top‐down analysis, as the 
 corresponding peptides were not retrieved in the bottom‐up analysis.

An interesting paper on the analysis of Salmonella typhimurium proteome was 
 published by the same group shortly after, using the same setup (single‐dimension 
LC‐MS/MS on LTQ‐Orbitrap Velos).26 In that case, 563 proteins, corresponding to 
1655 proteoforms, were identified (the largest microbial top‐down dataset reported so 
far). Of particular interest, the authors reported the differential utilization of protein 
S‐thiolation forms in Salmonella in response to growth under infection‐like conditions. 
Under infection‐like conditions, Salmonella preferentially uses S‐cysteinylation as a 
mechanism of thiol protection and/or environmental sensing, whereas under basal 
 conditions the pathogen preferentially uses S‐gluthationylation. These data are cor-
roborated both by bottom‐up proteomics analysis and transcriptomics data. Most of 
the proteins were found expressed as one or two proteoforms, but interestingly one 
protein was present as more than 50 different proteoforms.

These studies demonstrate that top‐down proteomics has recently achieved an 
important milestone and can now be employed to characterize bacterial proteins or 
proteomes in a large‐scale manner. Therefore, one may think of using this approach in 
clinical microbiology to characterize bacterial pathogens.

18.4 Top‐Down Proteomics: The Next Step 
in Clinical Microbiology?

The true pioneer of the use of mass spectrometry for bacterial identification is 
undoubtedly Catherine Fenselau. In 1975, long before the first published description 
of MALDI‐TOF MS, she combined pyrolysis and mass spectrometry to characterize 
pathogenic gram‐negative bacteria based on the analysis of small molecules such as 
phospholipids or ubiquinones.27 The soft ionization techniques developed in the late 
1980s then made it possible to analyze large biomolecules such as intact proteins. In 
1996, two different papers demonstrated that it was possible to obtain MALDI‐TOF 
spectral profiles from whole bacterial cells.28,29 Since then, multiple studies have 
reported the utility of MALDI‐TOF MS for the routine identification of microorgan-
isms in clinical microbiology laboratories. Many hospitals worldwide are equipped 
with this technology, which has been broadly adopted for routine diagnostics.30 In 
MALDI‐TOF MS, a cultured colony is directly spotted onto the MALDI plate and 
overlaid with the matrix solution (alpha‐cyano‐4‐hydroxycinnamic acid).31 The plate 
is air‐dried and inserted into the mass spectrometer for automated measurement. The 
desorption/ionization of the most abundant proteins (mostly ribosomal proteins) from 
the colony leads to a spectral profile (MS profile), which is recorded in the 2,000–
20,000 Da range. The commercial systems are equipped with time‐of‐flight analyzers 
having a resolution that is deliberately reduced to allow the measurement of a unique 
average molecular mass per protein, even for proteins with very low molecular weights. 
The spectral profile is then compared to a library of spectra previously recorded under 
the same conditions for known microorganisms. A score ranging between 0 and 3 is 
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attributed to the pathogen identification and reflects the match between the 
 experimental profile and reference spectra.

It is worth noting that the pathogen identification is done without any information 
on the identity of the proteins used to create the spectral profile. Overall, confident 
identification (at the genus or species level) is obtained for only 90% of the samples, 
which means that 10% remain highly problematic and require additional experiments. 
This important limitation is due either to the absence of reference spectra in the data-
base or an inability to identify very closely related species with very similar MS profiles 
(a typical example includes the failure to discriminate between E. coli and Shigella). 
Another important limitation of MALDI‐TOF MS is its poor discriminatory power, 
which is insufficient for reliably differentiating subspecies within species, or clones 
within subspecies, which would be very useful for early identification of epidemics. 
More importantly, virulence or resistance determinants cannot be characterized with 
MALDI‐TOF MS, which is a severe obstacle for appropriate patient care and prescrip-
tion of antibiotics in hospitals. Thus, new approaches allowing more precise identifica-
tion of bacterial strains are strongly needed, if possible with sample analysis performed 
very rapidly after sample collection.32 Currently, genomic methods (either targeted or 
large scale) are widely used for this purpose but have substantial drawbacks. Most sig-
nificant is the intrinsic, and thus intractable problem, that some proteins may not actu-
ally be expressed although the corresponding gene is present. Therefore, proteomic 
approaches, that directly target expressed proteins (gene products rather than genes) 
are closer to phenotypes and can provide more relevant information. A few studies 
have demonstrated that bottom‐up approaches can make a contribution to achieving 
this goal.33,34 However, similar to MALDI‐TOF MS, the recent development of robust 
top‐down approaches offers a neat alternative targeting strategy, enabling access to a 
unique “proteoform fingerprint” that could provide a signature of a particular genus, 
species, or phenotype.

To illustrate such an experiment, a top‐down LC‐MS/MS analysis of intact proteins 
extracted from total cell lysates of E. coli and Shigella sonnei performed on an Orbitrap 
Fusion mass spectrometer is shown in Figure 18.5. It is important to note that these two 
species are indistinguishable using MALDI‐TOF MS.

In both cases, more than 200 proteins and 500 proteoforms could be identified. An 
example of the excellent sequence coverage typically obtained for a ribosomal protein is 
shown in Figure 18.6. Processing of the initiation methionine and acetylation of N‐ter-
minal serine could easily be evidenced.

In both lysates, specific proteins (marked with an asterisk in Figure 18.4) with unique 
masses and retention times could be identified. These particular “protein markers” in 
the proteome profiles can serve to unambiguously identify each bacterial species. This 
brief example shows that top‐down proteomics is capable of going beyond MALDI‐
TOF for the accurate characterization of bacterial pathogens.

Although this and other examples35,36 show the added value of top‐down proteomics 
in the field of clinical microbiology, every aspect of the technology has not yet matured 
sufficiently to the point that it can be routinely used for the deep characterization of 
clinical samples. To be largely embraced by a wider community of microbiologists and 
clinicians, the method will have to prove as cheap and simple to use as MALDI‐TOF 
MS, which will be a major, but achievable challenge in the near future.
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19

19.1 Introduction

19.1.1 Scope

We are all colonized by a massive microbiome, a complex set of microbes that interact 
actively with our body, constantly influencing our health and well‐being. Over a thou-
sand different bacterial species constitute the highly complex ecosystem in the human 
intestine. High‐throughput sequencing approaches have recently provided large data-
sets of metagenomic information but are limited in the ability to draw conclusions 
about the functionality of the intestinal microbiome. Rapid development of high‐accu-
racy mass spectrometers with deep resolving power, together with enhanced protein 
separation technology, have promoted the field of metaproteomics, that is, the study of 
the collective proteome of microbial communities. We review here the technological 
development of high‐resolution tandem mass spectrometry and its capability in analy-
sis of complex microbial systems, particularly in the human gastrointestinal tract, and 
we present two relevant examples of the metaproteomic approach.

19.1.2 Strategies to Study Intestinal Microbiome

Microbiology is a constantly developing area of science with an extremely wide field of 
research, one of the biggest among different sciences. Our planet is estimated to accom-
modate an astronomical number of microorganisms, including more than 1030 prokary-
otes, namely, bacteria and archaea [1]. We humans provide an excellent environment 
for microbes in our own body. Among scientists and physicians, there is an increasing 
awareness of the impact of our colonized microbiome on our health [2]. A significant 
amount of microbes can be found in the oral cavity, stomach, as well as in the vagina, 
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but the most diverse spectrum of microorganisms can be found in our gastrointestinal 
(GI) tract. The GI microbiota of healthy subjects contributes to the control of nutrient 
intake, immune homeostasis, as well as gut development, while an unbalanced gut 
microbiota is often associated with pathogenic conditions, such as infectious diarrhea, 
inflammatory bowel diseases, obesity, diabetes, and colon cancer [3, 4]. The human GI 
microbiota may amount to approximately 1014 microbes, mainly bacteria and archaea, 
which are derived from several thousands of species or species‐like taxa, most of which 
have not yet been cultured [4, 5]. The majority of the intestinal microbiota belong to the 
limited set of phyla such as Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, 
and Verrucomicrobia [5, 6]. However, it is already well established that each human has 
a unique microbial community living in his or her GI tract [4–7]. Most of the initial 
 studies of the human GI microbiota included culture‐based approaches [4, 5]. Although 
a first insight into the GI ecosystem could be obtained using this technology, it became 
rapidly apparent that the human intestinal microbiota was far too complex to be 
 analyzed using these methods of classical microbiology. Moreover, many of the GI 
microbes are strict anaerobes that are hard to culture [5, 8].

Revolutionary progress in high‐throughput technologies has brought new tools for 
studying the complex GI microbiota. These mainly nucleotide‐based approaches are 
culture independent and can be performed in parallel with high efficiency and rapid 
computation [3, 4]. These tools include quantitative polymerase chain reaction (Q‐
PCR) analysis, PCR‐based DNA profiling techniques, phylogenetic microarray and 
sequencing studies, flow cytometry, and next‐generation DNA sequencing techniques 
[3]. All of these methods are associated with novel bioinformatics platforms. Notably, 
the next‐generation sequencing platforms have allowed for a dramatically increased 
dataset; a first baseline study of the collective genomes of the human GI microbiota, the 
metagenome, provided over 3 M unique genes [9] and has been used as a starting point 
for further developments (see below).

The next step after generating the inventory of the GI metagenome is to determine 
which genes are expressed at what time in the human body [4]. This is an important 
step as phylogenetic and metagenomic approaches may reveal candidate species and 
genes that may be important in health or disease. However, they do not provide  evidence 
on the actual involvement of these species or genes. Hence, functional approaches are 
needed that aim to identify the active species and molecules. These also provide 
 information on interactions between the microbes and the host, which are extremely 
relevant for the health impact. The experimental approaches to address microbial func-
tions, however, are more challenging than collecting metagenomic data. The first 
 possibility of the omics‐based approach is transcriptomics, where mRNA expression 
levels are studied to reveal the functionality of selected genes [10]. Metatranscriptomics 
studies have turned out to generate only limited meaningful information, mainly due to 
the instability of the prokaryotic mRNA, which requires rapid sampling and processing. 
Another possible approach for community‐level analysis is metabolomics, where the 
functionality of microbial species can be seen in metabolic products of different 
 biological processes [11]. Metabolite analysis is quite challenging and needs high‐
throughput instruments as well as advanced data analysis tools. Moreover, metabolites 
produced by the GI microbiota are often very quickly absorbed, and thus their analysis 
does not fully correlate with the dynamic information of the ecosystem. Metaproteomics 
does not suffer so much from these problems as it addresses relatively stable proteins 
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and hence is currently considered a powerful alternative for analyzing the functionality 
of the complex GI microbiota as will be described here.

Proteomics is a term of the “omics” era, describing methods to analyze the proteome, 
that is, a set of proteins expressed by a genome in a given time and under certain condi-
tions. The methodology development has been rapid, and both the development of 
 protein separation technology as well as high‐throughput mass spectrometry (MS) has 
stimulated the field of metaproteomics, the analysis of all proteins present in an ecosys-
tem. Proteins are rather stable molecules, compared to RNA or metabolites, and they 
are related directly to the genetic code, thus making proteomics a template‐driven 
 technology. Therefore, metaproteomics has gained enormously from the rapidly grow-
ing metagenomic databases. Here, the simplicity of prokaryotic proteomes, which is 
limited in post‐translational processing, is an advantage. During the last decade, only a 
few metaproteomic studies on the GI microbiota have been executed [12–14]. This 
 renders metaproteomics a rapidly developing research field with high potential [8, 15]. 
Here, we present an update on the development of the MS technology that has been 
instrumental in advancing the field of GI metaproteomics. Furthermore, we introduce 
studies that apply this state‐of‐the‐art methodology.

19.2 MS in Microbiology

The development of gentle ionization methods enabled MS of biological macromole-
cules three decades ago. Protein MS became possible due to the rather simultaneous 
inventions of matrix‐assisted laser desorption/ionization (MALDI) and electrospray 
ionization (ESI) and is now adopted as a widely used tool in identification as well as 
characterization of microbiota [16]. The importance of these inventions is illustrated 
by  the Nobel Prize in Chemistry in 2002 awarded to Koichi Tanaka [17] and John 
Fenn [18]. These innovations lead to the fast development of proteomics [19] and raised 
 tremendous expectations for the clinical application of proteomic research.

Despite the increased attention on protein research and the over thousand articles 
published every year about plausible protein biomarker candidates [20], clinical imple-
mentation remains limited. By the year 2009, the FDA had approved only 109 protein 
biomarkers for clinical use, of which more than 80% was validated long before protein 
MS was even possible. Today only one or two protein biomarkers get FDA clearance 
annually [20]. The obstacles for clinical utility of protein biomarkers are diverse. They 
include complex sample matrices, a wide dynamic range of peptide/protein analytes, 
plausible preanalytical modifications of the analyte, and persistent challenges in 
 quantitation. The enormous number of possible biomarker candidates limits further 
progress because their validation is a tedious and time‐consuming process [20]. Hence, 
the high expectations set for protein biomarker clinical MS are currently not met.

For the majority of proteomic scientists, it may have come as a surprise to see protein 
MS having the first wide clinical use in the field of microbiology. Microbial identifica-
tion has for long been time consuming and a laborious effort mainly relying on cultur-
ing and biochemical methods. In the past decade, nucleotide‐based detection and 
identification systems have entered the field of clinical microbiology but still require 
significant time and investments [16]. Therefore, the entry of MS‐based diagnostics 
with low cost, fast performance, and robustness has been very much welcomed. The 
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first MS‐based identification of gram‐negative bacteria was reported already in 1975 
[21]. After development of soft ionization methods, the possibility of identifying 
microbes on the basis of their protein profiles became evident, as detailed elsewhere 
[22–24]. MALDI has widely been shown to enable protein ionization from intact micro-
bial cells, and the time‐of‐flight (TOF) mass analyzer is capable of providing m/z infor-
mation usable in pattern matching leading to microbial identification [24]. The 
MALDI‐TOF technology utilized in clinical microbiology laboratories today relies 
mostly on the analysis of ribosomal proteins that are present under all growth condi-
tions, as testified by comprehensive interlaboratory evaluations [25]. MALDI‐based 
microbial identification has rapidly gained an important position in clinical microbiol-
ogy laboratories due to commercially available MALDI‐TOF systems and proprietary 
microbial databases [24]. One of the most appreciated properties of current MALDI‐
TOF technology is its ease of use. The biggest limitation is the limited amount of infor-
mation obtained; that is, with MALDI‐TOF technology there is no possibility of 
targeting specific protein biomarkers, such as resistance markers and virulence factors, 
or handling complex microbial samples.

Although MALDI‐based MS has in recent decades become an established technology 
in the management and control of infectious diseases, tandem MS has become increas-
ingly utilized in attempts to understand and unravel complex microbial systems. The 
LC ESI–based tandem MS setup is currently the leading technology in the microbio-
logical research field, whereas MALDI has occupied the clinical market. Here, the main 
determining factor is sample complexity (see Table 19.1). Although MALDI can still 
retain a portion of microbial proteomic research owing to the low complexity of micro-
bial cells and the gel‐based sample preparation workflow, the scientific community has 
an increasing interest in microbial ecosystems having enormous complexity. Here, 
MALDI‐based technology evidently loses its resolving capability, whereas ESI tandem 
MS can provide better sensitivity, increased dynamic range and thus resolving power, 
wider proteome coverage, and the possibility of analyzing challenging proteins, such as 
hydrophobic as well as glycosylated and phosphorylated proteins. An impressive illus-
tration of the power of tandem MS in microbial proteome coverage has been provided 
by Haroun Shah in determining the pathotypes and toxin levels during the Escherichia 
coli O104:H4 outbreak in Europe through the summer of 2011 [26]. The analytical 

Table 19.1 Items determining decision making when selecting either 
MALDI‐ or tandem‐MS‐based technology.

MALDI Tandem MS

+ Ease of use − Challenging usability
+ Speed − Slow gradient in LC‐MS
+ Low operational cost − Moderate operational cost
− Limited information amount + High information amount
− Pattern matching approach + Protein sequencing capability
−Limited protein detection + Targeted protein analysis
− Simple sample + Complex sample
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power in microbial surface protein characterization has also been demonstrated in 
multiple other studies. For Staphylococcus aureus, the proteomic study of the cell sur-
face adhesions has clearly demonstrated the protein expression correlation to adher-
ence phenotypes [27]. In a proteomic study of Listeria monocytogenes cell wall 
components, novel information was obtained from the cell wall remodeling process 
[28]. The study of Tannerella forsythia S‐layer protein illustrated the challenging analyt-
ics of glycosylated proteoforms [29]. Proteogenomic studies of secreted proteins, the 
so‐called exoproteomes, have also been performed. One excellent example can be found 
for the marine bacteria Roseobacter spp. [30]. All of the mentioned cases represent tan-
dem mass spectrometric examples in the field of extremely diverse microbiology. The 
main obstacle in further development of the microbial proteomic technology is the 
dependence of sequence‐based proteomics on genomic information. Even though the 
amount of genomic data is currently growing at an extraordinary rate, it is still far from 
enabling analysis of the complete coding capacity of the microbial biodiversity. However, 
microbial proteomics clearly benefits of the ongoing technical developments. Mass 
spectrometers and LC‐based separation techniques are being advanced continuously, 
and sample preparation protocols are being standardized and automated. These devel-
opments are steadily increasing the user‐friendliness of this technology and will finally 
promote applications in a clinical setting.

The development of high‐resolution MS technology is one of the key issues in future 
implementation of tandem MS both in microbiological research as well as in clinical 
practice. Improvements in MS technology have indeed been enormous during the last 
two decades, and these have enabled all the time deepening analysis of complex pro-
teomes. The entry of Orbitrap technology [31, 32] in the MS analyzer market ten years 
ago, following that of ion traps, quadrupole mass filters, and TOF mass analyzers, can 
be considered a remarkable milestone. As excellent Orbitrap performance can be 
achieved within a timeframe compatible with modern nano‐LC instrumentation, the 
technology has already shown promising results in complex microbial studies. Very 
low‐ppm mass accuracy has proved to be one of the main issues related to the resolving 
power of complex protein mixtures [33, 34]. The other critical factor here is the high 
resolution of the Orbitrap analyzer [35]. For fragmentation purposes, the Orbitrap can 
be linked to another mass analyzer, thus generating a hybrid tandem MS. The first 
Orbitrap tandem MS instrument in the market introduced a linear ion trap linked to the 
Orbitrap analyzer [36, 37]. The LTQ Orbitrap platform available for 10 years has become 
a globally widespread instrument, and the majority of published tandem mass spectro-
metric studies on microbes have been performed with this instrument [26–28, 30, 38]. 
Later, a modified release of the originally developed instrument called LTQ Orbitrap 
Velos was introduced [39]. This instrument possesses improved ion transmission, a 
dual linear ion trap, as well as a more efficient collision cell, and its power has also been 
demonstrated in challenging microbial proteomic setups [29]. We have utilized the 
LTQ Orbitrap in our analyses of complex gut microbiota, as shown in the two case stud-
ies in this chapter [14]. The newcomer in the Orbitrap family is a high‐performance 
benchtop instrument, where a quadrupole mass filter is coupled to an Orbitrap analyzer 
[40]. This Q Exactive instrument has been on the market for about four years now, and 
it has been received very well, both in the general bioscientific community as well as by 
microbiological researchers [41]. This is likely due to the high performance coupled to 
a small size. The schematic representation of the instrument can be seen in Figure 19.1. 
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The main parts of the instrument are the S‐lens for ion transmission, a mass selective 
quadrupole, a collision cell directly facing the C‐trap and, finally, the high‐resolution 
Orbitrap analyzer. In the Q Exactive MS family, two modified models with improved 
performance have been introduced [42].

One option that high‐resolution MS brings to the field of microbiology is top‐down 
proteomics [43], namely, analyzing and identifying intact proteins instead of digested 
fragments, as is done in the bottom‐up approach [44]. The top‐down technology 
incorporates several critical features into the field of proteomics. These are speed and 
the possibility of accurately characterizing post‐translational modifications (PTMs) of 
proteins. The speed is achieved because no time‐consuming proteolytic digestion is 
needed to perform bottom‐up proteomics. As top‐down proteomics has already been 
used in the field of microbiology [45], we also demonstrated the resolving capability of 
the top‐down approach for microbial proteomics [46]. Even in the chromatographi-
cally unresolved Escherichia coli extract, 66 unique proteoforms could be identified. 
When preanalytical LC was performed using 5, 15, 30, and 60 min gradients, the num-
ber of proteoforms identified was 722, 996, 1395, and 1964, respectively. The study 
was performed on a Q Exactive HF instrument, and its 1.7‐fold increased resolving 
power was revealed in discriminative proteomic analysis of Escherichia coli and 
Schigella sonnei species, which are of clinical relevance. The capability of top‐down 
proteomics in the analysis of protein PTMs has been demonstrated earlier [47], but 
lately also in the field of microbiology. In recent studies by Chamot‐Rooke, it was 
shown for another relevant clinical bacterium, Neisseria meningitides, that protein 
modifications of the pilin, an important pathogenicity factor,can be revealed using 
top‐down MS technology [48, 49]. Even though top‐down proteomics has been shown 
to be a very powerful tool, it is not widely used. This is likely due to the need for an 
extremely high‐resolution MS instrument, although an Orbitrap analyzer has been 
shown to perform well in top‐down analyses [50]. Another reason for the limited use 
of the top‐down approach is the lack of fully optimized tools for the process, both pre‐ 
and post‐analytical. The former requires further development of intact protein LC 
methodology, and further development is also required for nanoscale use, which is 
actively under way among many suppliers. However, the latter issue has still not been 
clearly resolved. Despite the huge progress made in the field of bioinformatics [51], 
there is currently only one commercially available software tool for top‐down prot-
eomic data analysis [52]. Some noncommercial software packages are available, and it 
is likely that these and other tools will be of further use in high‐resolution top‐down 
proteomics.

Although proteomics in general is, and has been for more than a decade, in a transi-
tion state from simple MALDI‐based technology to more advanced tandem MS, 
novel “state‐of‐the‐art” strategies still appear in the field of microbial proteomics. 
One of the most outstanding ones is that of metaproteomics, where the focus of stud-
ies is put on microbial communities that can be extremely complex such as those 
found in the human GI tract (see above). Hence, here we describe complementary 
approaches focusing on this highly relevant ecosystem. First, a review on studies 
addressing all the proteins in fecal samples is provided. Second, a more targeted 
approach is described that focuses on surface proteins found in intestinal 
microbiomes.



Tandem MS/MS-Based Approaches to Microbial Characterization512

19.3 Intestinal Metaproteomics Addressing All Proteins

As for gut metagenomics, the routine sample for studying the human intestinal micro-
biota has been fecal material (Table 19.2), which is rich in host, microbial, and diet‐
derived components. Hence, analyzing their proteins all together in a metaproteomics 
approach will provide functional information on the entire ecosystem. As in classical 
proteomics, various solutions are available for each of the steps of a metaproteomics 
experiment. When reviewing the first studies on fecal metaproteomics, a critical evalu-
ation of these solutions has been reported [8]. However, direct comparisons of different 
methods and their combinations cannot be made, as the number of studies is limited. 
Hence, we provide here a summary of the pros and cons, while highlighting recently 
published work.

19.3.1 Preprocessing of the Sample

To analyze the proteins present in feces, two main approaches have been followed: (1) 
extracting proteins from fecal material without prior fractionation, or (2) preparing a 
bacterial pellet either by density gradient or differential centrifugation [6, 14, 53]. A 
recent study compared differential centrifugation to protein extraction of unfraction-
ated material and found more microbial proteins covered by the separation approach 
but an underrepresentation of proteins from Bacteroidaceae, which may have been lost 
in the centrifugation step as they were bound to food particles in the spin‐down pellets 
[54]. A decision on the planned sample fractionation, therefore, depends not only on 
the expected identification coverage but also on the available analysis time. The use of 
only fecal water, the liquid phase of feces, has been described as well and was claimed to 
be an adequate strategy to identify human proteins [55]. However, the number of 

Table 19.2 Overview of fecal metaproteomic studies in humans.

Study subjects
Subject No./sample 
no. per subject Analysis platform Reference

Healthy twins and twins with CD 12/1 SCX‐LC‐MS/MS [53, 64, 78]
Lean subjects 2/1 1D PAGE 

LC‐MS/MS
[6]

Healthy subjects 3/2 1D PAGE 
LC‐MS/MS

[14]

Subject at baseline, during 
antibiotic treatment, and afterward

1/6 1D PAGE 
LC‐MS/MS

[79]

Lean and obese adolescent 2/1 1D PAGE 
LC‐MS/MS

[56]

Healthy subjects 16/3 1D PAGE 
LC‐MS/MS

[56]

Non‐obese and obese subjects 29/1 1D PAGE 
LC‐MS/MS

[60]

Healthy subjects and CD patients 12/1 2D‐DIGE [59]
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 identified proteins was not found to be critically higher than when using the unfraction-
ated approach for protein extraction and amounted to approximately 10%–15% of the 
total spectral counts in adults [56]. Human mucosal biopsies may provide important 
information on microbes associated with this site, but these samples biopsies have not 
been used for untargeted metaproteomics.

19.3.2 Protein Extraction

Protein extraction has been performed by bead beating with either phosphate buffered 
saline (PBS, mimicking body fluids) or buffers containing detergents [8, 56]. The use of 
a detergent buffer in combination with sonication has also been applied [53]. While a 
direct comparison of these methods is not available, and spectra are processed in a dif-
ferent way and results have been reported in diverse ways, it appeared that the major 
functional proteins were not found to differ too much, suggesting that no direct bias 
emerges from the protein extraction. In other application fields of metaproteomics, 
such as the soil ecosystem, protein extraction methods have been directly compared to 
each other. A recent study found that a method yielding the most total protein amount 
may not guarantee the highest protein coverage [57].

19.3.3 Protein Digestion

For enzymatic digestion of proteins into peptides for LC‐MSMS measurements, in‐gel 
digestion has been used most widely, as also in‐solution digestion [53] and filter‐aided 
digestion have found application [58]. The latter two approaches might be more suitable 
for bacterial pellets, which contain less interfering substances than crude fecal material.

19.3.4 Peptide Fractionation

Due to the obvious complexity of fecal proteins, protein or peptide fractionation is required 
prior to LC‐MSMS. Molecular‐weight‐based fractionation by 1D gel electrophoresis has 
been commonly used. This has the advantage of simultaneous sample cleaning. One 
research group used the MudPit approach, that is, separating the peptides via ion‐exchange 
chromatography prior to reverse phase (RP) LC‐MSMS [53]. Another group used long 
gradients on the RP chromatography for sample fractionation [58]. Finally, 2D‐DIGE has 
been described, but this application is rather complex with respect to sample preparation 
and biased toward proteins getting separated by the two dimensions [59].

A common problem when analyzing a complex proteome is finding a balance between 
analysis time and analysis depth. We developed a reductionist approach that is applica-
ble to several dozens to hundreds of samples; we focused on the ~40–80 kDa sized pro-
teins which contained more than 80% of proteins detected over the whole range when 
separating a sample by 1D PAGE; we have demonstrated the reproducibility of this 
approach and applied it to over 50 biological samples [14, 56, 60].

19.4 LC‐MSMS Analysis

The least variation in fecal metaproteomics studies is seen in the combination of LC 
and MS. Usually, peptides are separated by nano‐LC, ionized by ESI, and measured by 
tandem MS. Gradient lengths varied from 50 min for each of the 20 fractions of a fecal 
sample [6], over 8 h for a single whole lysate [58], to 22 h for SCX fractions [53].
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19.5 Data Analysis

One very crucial part of a metaproteomic experiment, which recently received consid-
erable attention, is converting the measured mass‐to‐charge ratios into peptide 
sequences. There are three well‐described options: de novo sequencing, spectral library 
analysis, and peptide spectral matching (PSM); nowadays, the latter is routinely used in 
most studies, and de novo sequencing has only been used in explorative studies of fecal 
metaproteomics but holds great promise [60]. Hence, we focus here on PSM and de 
novo sequencing.

19.5.1 Peptide Spectral Matching

The challenge in applying PSM in fecal metaproteomics comes from the large theoreti-
cal amount of proteins present in the sample. Whereas a protein sequence database in 
a classical proteomics experiment is as large as approximately 10,000 protein sequence 
entries, the fecal metaproteome is much more complex, and following the baseline 
report of over 3 M genes [9], currently already 10 M microbial genes have been identi-
fied in the fecal metagenome of adults [61]. It has been shown recently that these large 
sequence spaces challenge the search algorithms and the false discovery rate (FDR) 
approaches based on decoy searches, which is routinely applied for hit validation. To 
point to this problem, a simple Pyrococcus proteomic data was searched in a Pyrococcus 
dedicated database (with 10,000 proteins) and in our intestinal metagenomic database, 
which at that moment coded for approximately 6 M proteins. By applying the same 
stringent FDR, many hits were lost in the intestinal metagenome‐based sequence data-
base due to an over‐estimation of the false positives [60]. Less stringent search param-
eters, like a higher number of allowed sequences or semi‐specific enzyme settings, 
showed the same trend. To circumvent the loss of peptide identifications due to the 
large search space, several solutions have been proposed. The first was a so‐called itera-
tive workflow: a first search is performed against a collection of bacterial genomes 
called the synthetic metagenome [6]. These hits are used for a BLAST search against a 
large metagenome sequence database, and the hits from the BLAST search are used to 
create a second database. This second database is used for the final search. In a similar 
approach, first a large metagenome database was used for PSM, then all the hits from 
the first search were used to build a second database, which was then searched and a 
strict filter was applied on the results [62]. The caveats of this approach have been dis-
cussed recently [60]. Whereas the FDR is overestimated when the search space becomes 
too large, it becomes underestimated when there is an overrepresentation of very likely 
hits. Another proposed solution is having several protein sequence databases instead of 
one and searching them separately [63]. There is still an evident need for increasing the 
sensitivity and accuracy in metaproteomics PSM and for sophisticated software to help 
with this.

19.5.2 De Novo Sequencing

Due to the obvious obstacles encountered in applying PSM to metaproteomic data, de 
novo sequencing appears as welcome alternative. There are two application examples 
[60, 64]: the first used de novo sequencing as an exploratory approach and contrasted 
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the number of identified peptides to those obtained by PSM, and the latter matched the 
de novo sequencing hits with those obtained by PSM and cross‐matched these with the 
original database used for PSM. A critical amount of de novo sequencing peptides was 
missed by the database searches but could be mapped to the in‐silico digest of the 
 protein sequence database used for PSM [60].

19.5.3 Protein Quantification

Most protein quantifications in metaproteomics are based on counting the identified 
peptides per protein, functional, or taxonomic group. Both protein‐normalized and 
protein‐non‐normalized approaches have been applied [14, 53]. In addition, MS‐based 
data have been used for quantification but less frequently than MSMS‐based quantifi-
cation. For a successful MS‐based quantification, there are three requirements: (1) reli-
able software for normalization and aligning, (2) resolving the problem of protein 
inference, and (3) good computer power. Both the noncommercial Maxquant [56] as 
well as the commercial software Progenesis LC‐MS have been used for this task [14].

19.5.4 Metaproteomic Pipelines

To streamline the complex metaproteomic data analysis, pipelines offering solutions for 
several steps at once are convenient. One such example is the MetaProteomeAnalyzer 
(MPA), which provides a platform for PSM with up to four search algorithms [60]. In 
the case of Uniprot headers contained in the used protein sequence database, taxo-
nomic and functional analysis of the data is provided [60]. Another option is Maxquant, 
not specifically designed for metaproteomics but having been used in metaproteomics, 
which includes PSM‐ and MS‐based quantification. Maxquant‐derived data can be sta-
tistically analyzed with the software Perseus, developed in conjunction with Maxquant.

19.5.5 Data Storage

Nowadays metaproteomics mass spectrometric data are increasingly deposited in 
data repositories such as PRIDE and MASSive. The idea behind this deposition is to 
allow reanalysis with advanced databases or software. However, as even a single study 
containing dozens of samples can already be very complex, it is to be questioned who 
is taking the effort to reanalyze previous data; this is only possible when several 
issues, like optimizing the peptide identification rates and resolving the protein infer-
ence problem, are improved and metaproteomic data analysis becomes more straight-
forward than it is today.

19.6 Data Output and Interpretation

As with classical proteomics and other omics methods, a large variety of data utilization 
and interpretation possibilities are available. Both MS and MSMS profiles have been 
used for between‐sample comparisons. For example, MS profiles have been compared 
on the basis of Pearson correlation coefficients, and subject specificity of the human 
intestinal fecal metaproteome was found; a similar result was obtained when applying 
the Jaccard Similarity Index on peptide identifications (MSMS data) [56].



Tandem MS/MS-Based Approaches to Microbial Characterization516

In most studies, peptide identifications have been used as data output. Both  functional 
and taxonomic information have been attributed to fecal proteins. To identify the major 
functionalities, the orthological databases KEGG [65], COG [66] and, recently eggNOG 
[67] have been used. After over 10 years, COG was updated in 2014, and therefore 
 functional annotation is again a possibility. In the studies reporting a ratio for spectra 
with functional assignment, a study applying eggNOG reported the highest coverage 
(90% vs. 70%) [60].

Although metaproteomics is not the method of choice for describing the microbial 
composition, assigning a taxonomic unit to a peptide has been popular. With knowl-
edge of its caveats, and excluding household proteins that are highly conserved between 
bacteria, phylogenetic studies of peptides can be informative. Simple approaches have 
reported taxonomic information based on the species origin of protein hits. One 
 peptide can easily be derived from several dozen and up to even thousands of different 
proteins. For example, the COG database for glutamate dehydrogenase includes over 
10,000 sequences, but the majority of COG protein entries contains only some dozens. 
Because not all of these options are routinely reported by search algorithms, this 
approach may produce erroneous results.

Recently, the lowest common ancestor analysis (LCA), which assigns the lowest 
 taxonomic level on which all matches agree to the peptide, based on complete peptide 
matching, has been applied widely. In fecal metaproteomics studies, this was first 
applied with the help of Python‐based in‐house scripts; today the low‐threshold web 
application Unipept is used [68]. This system is now also available as an application 
programming interface (API) for integration into other software. However, for this 
approach also, it has to be kept in mind that the databases used for the mapping are far 
from complete, and peptides with only a single amino acid difference will not obtain a 
taxonomic assignment.

19.7 Development of Surface Metaproteomics 
for Intestinal Microbiota

The vast number of proteins in complex microbial communities, such as intestinal 
microbiota, are a challenge in metaproteomics approaches. Methods that focus on spe-
cific fractions of proteomes, instead of total proteomes, could be easier to perform and 
provide improved sensitivity. Bacterial interactions with the host are often mediated by 
bacterial surface structures. Methods that focus on bacterial surface proteins could 
thus give important host–bacterial‐interaction‐targeted information on the functional-
ity of microbial communities. So far, studies on bacterial surface proteomes have con-
centrated on analysis of single‐species preparations. We demonstrated profiling of 
surface proteomes of complex microbial populations, represented by intestinal 
microbes in a fecal sample. The profiling protocol includes (1) separation of intact bac-
teria from a fecal sample, (2) enrichment of bacterial surface proteins, (3) identification 
of the proteins by MS, and (4) data analysis.

The surface profiling protocol showed promise as a proteomic tool in analysis of 
 samples from healthy individuals. In the future, the goal is to utilize the protocol in 
studies of intestinal disorders also. Microbial surface proteome profiles as such could be 
useful in the diagnostics of intestinal inflammation. The protocol could also be used as 
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a discovery tool for identification of novel biomarkers for diagnostics and monitoring of 
intestinal disorders and their response to therapy.

19.7.1 Isolation of Bacteria from Fecal Samples

Separation of intact bacterial cells from fecal material was performed by the differential 
centrifugation method developed by Apajalahti et al. [69]. Fecal samples were diluted in 
a detergent‐containing buffer, rotated thoroughly, and centrifuged. The pellet was 
resuspended in buffer, and the process was repeated three times. The recovery rate of 
bacterial cells, estimated by microscopic counting before and after the treatment,  varied 
from 42% to 47% in different experiments. As indicated above, this separation may 
introduce some bias, but for the proof‐of‐concept approach described here, this was 
not further studied.

19.7.2 Enrichment of the Surface Proteome from Fecal Bacterial Extract

For the enrichment of surface proteins from the separated fecal bacteria, the methodology 
that we have set up for studying surface proteomes of single‐species bacterial prepara-
tions [Lähteenmäki manuscript in preparation] was applied. Fecal bacteria were labeled 
with biotin and lysed by repeated bead beating. A bacterial lysate was centrifuged and 
the supernatant containing the whole‐cell protein lysate collected. Biotinylated  proteins, 
that is, the proteins expected to have originally been located on the cell surface, were 
isolated with streptavidin‐conjugated magnetic beads. Gel electrophoresis analysis 
showed that protein profiles in the biotin‐enriched fraction and the whole‐cell protein 
lysate differed, and enrichment of specific proteins in the biotin‐treated fraction could 
be detected (Figure 19.2A).

The reproducibility of the method was tested by extracting surface proteins from 
three replicate samples from three individual donors. From one donor, an additional 
sample was collected after one month to study temporal effects on the fecal bacterial 
surface protein profile. As estimated by 1D gel electrophoresis, replicate samples from 
each individual had a similar major protein profile, there were some differences in the 
protein profiles in samples from different individuals, and the protein profile seemed to 
remain constant over the one‐month time period (Figure 19.2B). Thus, the biotin‐based 
extraction method seems to reproducibly enrich specific proteins from a complex fecal‐
derived microbial matrix.

19.7.3 Detection of Surface Proteins by LC‐MSMS

The proteins in biotin‐enriched surface preparations were identified by RP‐LC tandem 
MS. We compared two sample pretreatment method: (1) in‐gel reduction, alkylation, 
and trypsin digestion after resolving the sample by 1D gel electrophoresis and (2) in‐
solution digestion. The digested peptides were loaded onto a precolumn and separated 
in an analytical column with a linear gradient of acetonitrile and a flow rate of 300 nl/
min. Eluted peptides were introduced to an LTQ Orbitrap XL mass spectrometer 
(Thermo Fisher Scientific Inc.) via an ESI Chip interface (Advion BioSciences Inc.) in 
positive‐ion mode. On the basis of a full MS scan acquired on the Orbitrap detector, six 
data‐dependent MSMS scans were acquired on the LTQ. Data files from the mass spec-
trometer were processed with Mascot Distiller (Matrix Science Ltd., version 2.2.1.0) 



Tandem MS/MS-Based Approaches to Microbial Characterization518

and searched against an in‐house compiled database and the UNIProt KB database 
using Mascot Server (Matrix Science Ltd., version 2.2.04). The in‐house database con-
sisted of 490 intestinal bacterial genomes, the human genome, as well as selected 
genomes of eukaryotic species commonly present in food particles. Protein identifica-
tions were exported to ProteinCenter Software (Thermo Fisher Scientific Inc., version 
3.7) for further analysis. For quantitative comparison of datasets, data files were pre-
processed with Progenesis LC‐MS software (Nonlinear Dynamics). Proteins having two 
or more peptide hits were included in the analysis.

The results showed that over 80% of the proteins detected after either in‐gel or in‐
solution trypsin digestion originated from bacterial cells (Figure 19.3). The proportion 
of detected eukaryotic proteins was 15%–16%. Most of these probably originated from 
food particles, as only 2% of the proteins were estimated to be of human origin. This 
confirmed that the used centrifugation approach is not without bias. The detected bac-
terial proteins originated from bacterial taxa representing common fecal bacteria. 
Proteins from taxa including Eubacterium, Faecalibacterium, Ruminococcus, 
Clostridium, Coprococcus, Bifidobacterium, Roseburia, Subdoligranulum, Dorea, 
Bacteroides, and Prevotella were detected by both pretreatment methods. Thus, our 
surface protein profiling method seems suitable for detection of bacterial proteins.
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Figure 19.2 SDS‐PAGE analysis of biotin‐enriched surface proteins from fecal bacterial populations. 
(A) Comparison of biotin‐enriched surface proteins and proteins in a whole‐cell lysate of bacterial cells 
separated from a fecal sample by differential centrifugation. (B) Comparison of biotin‐enriched surface 
proteins of bacteria from fecal samples collected from three healthy individuals (1–3). From donor 1, a 
sample (1*) was also collected one month after the first sample. For each sample, one example of 
three technical replicates treated separately is shown. Molecular weights (kDa) of standard proteins 
are indicated.
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In total, we detected 533 bacterial proteins in the in‐gel digested sample and 231 bac-
terial proteins in the in‐solution digested sample. As expected, the gel‐based separation 
of the proteins before MS‐analysis yielded significantly more protein identifications by 
increasing the LC‐MS/MS time spent by the sample. Only 14% the proteins were identi-
fied in both samples. However, the samples shared a considerably higher number (47%) 
of proteins with a high Mascot score (over 150 in the in‐solution digested sample). 
This suggests that the most common proteins can be detected by both pretreatment 
methods, making the less laborious approach with in‐solution digestion applicable for 
studies focusing on the dominant fraction of bacterial surface proteomes.

The proteins having significant amino acid homology (over 80% or 95%, in different 
experiments) with each other were clustered together in order to group the closely 
related proteins from different organisms. The 10 protein clusters with the highest 
Mascot scores are shown in Table 19.3. With the exception of the chaperonin GroEL, 
which was detected only in the sample resolved by SDS‐PAGE, the most common pro-
tein clusters were detected in both samples irrespective of the pretreatment method. 
Characteristically for microbial samples, a relatively high amount of hypothetical pro-
teins (22% in the in‐gel digested and 26% in the in‐solution digested sample) were 
detected, and 7%/14% of the protein clusters were yet unannotated. When cellular 
localization of the proteins was studied using the ProteinCenter database, only 36%/28% 
of the proteins were categorized as cell surface or extracellular proteins. However, the 
majority of the most commonly detected proteins were predicted to have membrane 
localization (Table  19.3). In the GO‐ontology‐based classification of biological pro-
cesses and molecular functions, most of the detected proteins were classified to the 
categories of metabolic process (75%/89%) and catalytic activity (65%/84%). It should be 
noted that determination of the localization of bacterial proteins is not straightforward, 
because the location of many proteins is yet unknown. The ProteinCenter database 
information of protein localization is based on the presence of specific anchoring 
motifs, signal peptides, or transmembrane domains in the amino acid sequence. Many 
bacterial proteins found to be surface‐localized have no such consensus motifs [70]. 
Furthermore, bacteria contain various “moonlighting proteins,” which have an intracel-
lular function but also can be localized on the cell surface [71]. Many moonlighting 
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Figure 19.3 Origin of the proteins detected by the cell surface protein profiling method in a fecal 
sample. Ratios of proteins from bacteria, eukaryotes, viruses, and archaea detected after (A) in‐gel 
trypsin digestion or (B) in‐solution trypsin digestion are shown.



Table 19.3 The 10 bacterial protein clusters detected with highest Mascot scores in biotin‐enriched surface preparations of fecal bacteria. The proteins 
with over 80% homology with each other were clustered together. Mascot score shown is the maximal score of the proteins within a cluster. Cluster size 
indicates number of proteins clustered together.

Cluster 
size Description

MASCOT 
score Molecular functions Cellular components Biological processes

5 Transaldolase 1718 Catalytic activity Cytoplasm/membrane Metabolic process
23 Phosphoenolpyruvate carboxykinase* 1483 Catalytic activity/

Nucleotide binding
Cytoplasm/membrane Metabolic process

5 Phosphoglycerate kinase 1400 Catalytic activity/
Nucleotide binding

Cytoplasm Metabolic process

2 Hypothetical protein BIFADO_00189/
BIFPSEUDO_04022

1308 Catalytic activity Membrane Metabolic process

7 Glutamate dehydrogenase (NADP+)a 1260 Catalytic activity Membrane Metabolic process
6 Glucose‐6‐phosphate isomerasea 1249 Catalytic activity Cytoplasm/membrane Metabolic process
4 Chaperonin GroELa 1215 Nucleotide binding

/Protein binding
Cytoplasm/membrane Metabolic process

3 Fructose‐6‐phosphate phosphoketolasea 1173 Catalytic activity Unknownb Metabolic process
4 Carbohydrate ABC transporter substrate 

binding protein/Tat pathway signal sequence
1114 Unknown (Transport 

activity)**
Unknownb Unknown 

(Transport)**
3 Carbohydrate ABC transporter sustrate binding 

protein (CUT 1.1 family)
1090 Transport activity Membrane Transport

a Included also hypothetical proteins from one or more organisms.
b Reported unknown in ProteinCenter (information from other sources included when available).



Tandem Mass Spectrometry in Resolving Complex Gut Microbiota Functions 521

proteins are metabolic enzymes or molecular chaperonins, and when localized on the 
cell surface, they often act in an adhesive capacity. Examples of moonlighting proteins 
that we identified with our surface metaproteomics protocol are phosphoglycerate 
kinase, glucose‐6‐phosphate isomerase, and the chaperonin GroEL (Table 19.3). These 
proteins have previously been reported in surface proteomic analysis of single species 
of lactic acid bacteria [72, 73], similar to various ABC transporter‐associated proteins 
[73], which formed one group of proteins that are also enriched in our metaproteomic 
samples. Transaldolase, which also appeared in our samples with a high Mascot score, 
has been described as a surface protein in a proteomic analysis of a Staphylococcus 
 species [74]. These results suggest that enrichment of surface proteomes of complex 
bacterial populations can be achieved with our protocol.

Reproducibility of the protocol was studied with three or more replicate fecal samples 
from three different individuals. The samples were analyzed by RP‐LC‐MSMS after 
in‐solution trypsin digestion. Preliminary analysis showed that approximately 20% of 
the detected proteins were shared in samples from all three individuals. This is not con-
siderably less than in replicate samples from each individual, in which also only 22%, 
29%, or 31% of the detected proteins were shared. The high variation in replicate 
 samples seems to result from a load of variable minor proteins. Importantly, principal 
component analysis (PCA) showed that replicate samples from each individual  clustered 
together (Figure  19.4). PCA also indicated that there were significant differences 
between samples from different individuals (Figure 19.4). Thus, the results suggest that 
the surface metaproteomics method can detect individual differences in the dominant 
fraction of surface proteins in intestinal bacteria.

We developed the method by using fecal samples from healthy individuals. Future 
work is required to find out if the protocol can detect variation in bacterial surface 
 proteomes between samples from healthy individuals and patients with intestinal 
inflammation. It is known that bacterial proteomes can be altered by contact with 
tumor epithelial cells in vitro [75] or in host intestine after experimental infection in 
vivo [76]. As surface proteins are critical for bacteria in functions such as host tissue 
adhesion and invasion, it may be that profiling of surface proteomes could give 
 information on pathologic conditions in the intestine. Further development of the fecal 
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Figure 19.4 Principal component analysis of surface protein profiles of fecal bacteria. The bacteria 
were isolated from three or more replicate samples collected from three different individuals (1, black 
circles; 2, gray circles; 3, black squares). Biotin‐enriched proteins were analyzed by RP‐LC‐MSMS as 
three technical replicates.
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bacterial surface protein profiling would show how the protocol can detect possible 
proteomic signatures or changes characteristic of intestinal disorders.

19.8 Conclusions

Technological development in the field of MS has been dramatic in the past two dec-
ades. Included here is the ever‐growing number of MS applications with biomolecules, 
mostly proteins. Life‐science‐associated MS has become more or less a field by itself in 
analytics, raising expectations regarding clinical implementations of protein biomark-
ers. Although not all of these expectations have been fully met, there is a wide range of 
studies showing that progress is in the offing.

The first widely deployed clinical application of protein MS occurred in the field of 
microbiology. MALDI‐based microbial protein identification is a common practice 
in clinical microbiology laboratories all over the word, when a microbial species is to 
be identified. However, MALDI performance fails fast when the analyzable microbial 
sample contains multiple different species, not to mention extremely complex micro-
bial ecosystems. Here, high‐resolution and high‐accuracy tandem MS has brought 
extremely usable tools to study complex microbiomes, such as the one colonized in 
human gut.

Analytical challenges in studying extremely complex set of microbes, the majority of 
which are probably still unknown, are immense. This explains the low number of GI 
proteomics studies reported so far, despite the large attention on the intestinal micro-
biota in human health and disease. The very first metaproteomic study on human 
intestinal microbiota focused on fecal samples from two infants, less than 10 years ago 
[12]. Similarly, the first human metagenomic data set [77] was utilized to mine the first 
adult intestinal metaproteome deriving from two Scandinavian individuals [53]. Here, 
more than 1000 different proteins could be identified, 30% of which were of human 
origin. To date, less than a dozen human intestinal metaproteomic studies have been 
published. We have presented here an overview of the possibilities and challenges when 
studying the metaproteome of the intestinal microbiota in its entire complexity as well 
as development of a technology for characterization of surface proteins in intestinal 
microbial populations, which extremely relevant when studying microbial–host 
interactions.

Even though the advancement of MS technology has been rapid and extremely prom-
ising, there are still many challenges to overcome in exclusive microbial ecosystem ana-
lytics. MS is only one part of the complex workflow, where many soft spots still exist. 
Sample preparation methodology is not straightforward, and special attention needs to 
be addressed here when analyzing the data acquired. Bioinformatic analysis tools need 
to be further developed, because human microbiome samples are of extreme complex-
ity. Also, serious validation of the analytical reproducibility has not yet been widely 
addressed. The tandem MS methodology produces an enormous amount of data, and 
often only a limited set of information is highlighted, leaving most of the data unexam-
ined. In order to process acquired data further and draw microbiological conclusions, 
both statistical and taxonomic tools need to be further improved.

Tandem MS enabling metaproteomics is likely to reinforce translational medi-
cine associated with complex intestinal microbiota and its effect in human health. 
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 High‐resolution MS brings with it the secret promise of a comprehensive  diagnostic 
tool in clinical microbiology, if not today, in the near future. Here, automated 
 sample preparation, top‐down proteomics, and advanced dynamic data analysis 
tools have the most potential for further development.
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20.1 Introduction

Molecular characterization of pathogens and their detection has been drastically 
improved with the advent of next‐generation sequencing of nucleic acids and compara-
tive genomics, and later on, with the arrival of next‐generation proteomics. High‐
throughput discovery proteomics is currently based on the shotgun bottom‐up 
approach, where all the proteins of the sample are first proteolyzed with trypsin into 
peptides amenable to tandem mass spectrometry. These are then resolved by reverse‐
phase chromatography, their molecular weights analyzed by a first m/z ratio measure-
ment by the mass spectrometer, fragmented, and then the MS/MS characteristics of the 
peptide fragments analyzed by means of a second m/z analysis. For interpreting the 
MS/MS spectrum of each peptide, the bioinformatics pipeline works best when a spe-
cific protein sequence database is available. Another strategy relies on the analysis of 
intact proteins by top‐down proteomics such as what is done in whole‐cell MALDI‐
TOF (Lavigne et al., 2013), but to go further in their characterization, fragmentation of 
entire proteins should be performed. For this, novel tandem mass spectrometers and 
bioinformatics tools are required. Profiling of pathogens with such proteomics‐based 
approaches has shown great potential for identifying numerous pathogens. The meth-
odology is based on recording in the same experimental conditions the MS profile of 
proteins from thousands of microorganisms for compiling a comprehensive database 
and then, for a given pathogen, recording its specific profile and comparing it with the 
database. It is also possible to take advantage of the interpretation of peptide sequences 
generated by a bottom‐up approach as demonstrated with the discrimination of Bacillus 
anthracis, Bacillus cereus, and Bacillus thuringiensis strains (see Chapter 13; Dworzanski 
et al., 2010). The application of this methodology to identification at the species level of 
non‐genome sequenced bacteria shows great potential (Jabbour et al., 2010; Karlsson 
et  al., 2012), opening a new era of accurate proteotyping in microbiology (Karlsson 
et al., 2015). For characterizing the proteome of a given microorganism, sequencing of 
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the peptides is required, which depends on the availability of the appropriate protein 
sequence database; thus, proteomics relies heavily on genomics. The “proteogenomics” 
concept merges expertise and both pieces of information to gain higher insights into 
a given biological system. This chapter explains the concept and describes some of 
its applications that changed our views on what has been considered until now as 
non‐model organisms.

20.2 The “Proteogenomics” Concept

The current avalanche of genome sequences is resulting in an exceptional amount of 
molecular information for numerous taxa. Because of the enormous number of genome 
sequences produced, automatic gene annotation with software applying consensual 
transcription and translation rules is mandatory. However, numerous errors can be 
generated during this annotation, especially when no already annotated closely phylo-
genetically related genome is available that could serve as template (Armengaud, 2009). 
Indeed, many genes are just missed if annotation parameters are too stringent, whereas 
open reading frames (ORFs) are frequently overcalled in poorly characterized phyla. It 
is noteworthy that identifying the correct translational initiation codons is far from 
trivial; in some bacteria, up to 20% of the polypeptides have been wrongly predicted in 
terms of N‐terminus. For some organisms, the most used initiation codon is not ATG, 
leading to great difficulties in assessing the correct protein sequences. For example, the 
archaeon Aeropyrum pernix K1 exhibits an atypical start codon preference with the 
codon TTG being the most preferred translational initiation codon far behind ATG and 
GTG (Yamazaki et al., 2006). Experimental biochemical data on proteins acquired by 
shotgun proteomics can be exploited to better define the structural annotation of the 
corresponding genes. This new field of proteomics was called proteogenomics as the 
peptides certified by tandem mass spectrometry are mapped onto the nucleotide 
sequence before validating the corresponding gene structure. In this sense, proteomics 
expertise and genomics knowledge should be intimately linked. Figure 20.1 shows this 

Gene validation

Gene discovery

Translation start
definition

Frameshift
validation

Translation reversal

Figure 20.1 Proteogenomics map. The previously annotated genes are indicated with arrows, 
whereas the peptides established by tandem mass spectrometry are indicated with vertical bars. 
These peptides are mapped onto the nucleotide sequences. The different outcomes in terms of 
re‐annotation of the genome are indicated.
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proteogenomics mapping and the possible outcome in terms of genome re‐annotation. 
Interpretation of MS/MS spectrum datasets is done against a database corresponding 
to a six‐frame translation of the nucleotide sequences (Hernandez et al., 2014). Peptide‐
to‐spectrum assignment allows discriminating the correct ORFs from the whole list of 
all possible ORFs of this database.

Numerous studies have illustrated the power of proteogenomics for improving 
genome annotation as reported in recent reviews (Renuse et  al., 2011; Armengaud 
et al., 2013; Kucharova and Wiker, 2014; Nesvizhskii et al., 2014). However, a perfect 
annotation has still not been achieved, as proteomics is not yet comprehensive enough, 
especially for complex organisms such as eukaryotes for which the greater proteome 
dynamic range is the main difficulty (Armengaud, 2010). Many specific concepts and 
methodologies have been developed in the broad field of proteogenomics. For example, 
comparative proteogenomics relies on the use of proteomics data from several repre-
sentatives of a given group of organisms in order to obtain a consensus for gene predic-
tions of this specific group (Gupta et  al., 2008). In terms of methodology, labeling 
approaches allow tagging the N‐termini of proteins and enriching them prior to mass 
spectral characterization (Bland et al., 2014a; 2014b; Hartmann and Armengaud, 2014). 
With such a strategy, several studies conducted on the Deinococcus deserti bacterium 
led to unexpected results such as (1) the finding that reversal of gene sequences by auto-
matic annotation pipelines is frequent, (2) the use of non‐canonical start codons for 
translation is not only found in atypical viruses but also found in bacteria, and (3) a large 
amount of mRNAs in Deinococcus are leaderless (de Groot et al., 2009, 2014; Baudet 
et al., 2010; Bouthier de la Tour et al., 2015). Figure 20.2 shows the specific MS/MS 
spectrum corresponding to the SQEIWADVLGYVR peptide corresponding to the N‐
terminus of the DnaA protein, involved in the initiation of chromosome replication. 
This peptide labeled with a specific reagent allows establishing that an ATC codon is the 
true translation initiation codon of the corresponding gene. This specific and unusual 
start is conserved in other Deinococcus genomes, namely, Deinococcus radiodurans and 
Deinococcus geothermalis.

20.3 Applications to Non‐model Organisms: From 
Bacteria to Parasites

Besides the annotation or re‐annotation of protein‐coding nucleic acid sequences based 
on the empirical observation of their gene products, proteogenomics has expanded and 
now includes the use of draft genome sequences and RNA‐seq nucleotide sequences to 
generate a six‐frame database for proteomics data interpretation (Armengaud et  al., 
2014). In this case, the objective per se is not genome annotation but rather proteomics 
interpretation to highlight the most interesting molecular features. These are then 
functionally annotated and subjected to further characterization or validation once dis-
covered. For example, the newly isolated alpha‐proteobacterium Tistlia consotensis has 
been subjected to a proteogenomics analysis in order to understand its halotolerance 
properties (Rubiano‐Labrador et  al., 2014, 2015). Figure  20.3 shows the strategy to 
highlight the main molecular players by means of differential proteogenomics. First, its 
draft genome was established and obtained as a set of 2377 contigs totaling 5.7 Mb. 
These contigs were translated into all the possible ORFs for generating an extensive 
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Figure 20.2 Re‐annotation of the translation initiation codon for the dnaA gene in Deinococcus 
deserti genome. The MS/MS spectrum corresponding to the SQEIWADVLGYVR peptide labeled with 
the TMPP reagent has been recorded with an LTQ‐Orbitrap XL instrument (Thermo Scientific). This 
spectrum enables this peptide to be established as the N‐terminus of the matured protein. It can be 
explained by a translation start at the ATC initiation codon highlighted in bold red in the genome 
sequence. The corresponding polypeptide sequence and the previous annotations are shown in red 
and black, respectively, for three different Deinococcus genomes.
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Figure 20.3 Proteogenomics strategy using a draft genome sequence applied to the Tistlia consotensis bacterium. Tistlia 
consotensis cells were grown in three different media differing in sodium chloride concentration. For each condition, three 
biological replicates were carried out. Cells were collected by centrifugation and subjected to whole‐cell shotgun proteomics. To 
interpret the tandem mass spectrometry results, the genome was sequenced, resulting in a draft genome comprising 2377 
contigs. These were translated in the six possible ways to establish a comprehensive database of 52,246 open reading frames 
(ORFs). The interpretation resulted in the identification of 4686 unique peptides and the abundance comparison of 872 proteins.
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database, comprising 52,246 putative polypeptide sequences. Proteomics data were 
 collected and then interpreted against this database, giving quantitative insights into 
4686 unique peptide sequences and 872 MS/MS certified proteins. The comparison of 
protein quantities in different physiological conditions was straightforward with such a 
approach. The proteogenomics strategy was used to study the amphipod Gammarus 
fossarum and is illustrative of the application of proteogenomics on more complex non‐
model organisms (Trapp et al., 2014, 2015c). This crustacean is used as the sentinel 
species to assess the quality of freshwater ecosystems, despite the absence of genome 
sequence data. A polypeptide sequence database was first generated on the basis of 
RNA‐seq information. This allowed the interpretation of several proteomics datasets 
aimed at discovering the proteins involved in reproductive processes or proteins that 
could be interesting biomarkers of intoxication in the future. Further studies on related 
organisms took advantage of the same RNAseq‐derived polypeptide sequence database 
(Trapp et  al., 2015a, 2015b). Molecular characterization of pathogens by means of 
 proteogenomics strategies has been illustrated in several studies: for example, the 
enterobacteria, Yersinia pestis (Payne et al., 2010; Schrimpe‐Rutledge et al., 2012) and 
Shigella flexneri (Zhao et al., 2011), the firmicutes, Bacillus anthracis and Streptococcus 
pyogenes (Venter et al., 2011), the epsilon proteobacterium, Helicobacter pylori (Muller 
et al., 2013), the fungi Cryptococcus neoformans (Nagarajha et al., 2014) and Candida 
glabrata (Prasad et al., 2012), the complex protozoan parasites Leishmania donovani 
(Jamdhade et  al., 2015), Toxoplasma gondii, and Neospora caninum (Krishna et  al., 
2015). This list continues to expand and shows the potential of proteogenomics in the 
field of infectious diseases.

20.4 Embracing Complexity with Metaproteogenomics

The proteogenomic methodology has been so refined in the last five years and tandem 
mass spectrometry throughput has increased so much with the advent of a new genera-
tion of mass analyzers adapted to biological molecules, that even complex mixtures of 
microorganisms can be analyzed (Armengaud, 2013). Indeed, meta‐proteomics has 
already shown its great potential for analyzing human microbiomes and gaining new 
insights into their effects on Health (Jagtap et al., 2015a; see Chapter 19, this book). For 
example, Young et al. (2015) have shown the different stages of microbial colonization 
of the gut of a preterm infant. They revealed the functional shifts between the observ-
able proteins originating from the evolving microbiota and those from human epithelial 
cells. A work on oral biofilms from healthy and caries‐bearing individuals has shown 
the abundance of actinobacteria (Actinomyces, Corynebacterium, Rothia) and firmi-
cutes (Streptococcus) in such microbiomes, as well as the specificities of the protein 
repertoire of human dental plaque (Belda‐Ferre et al., 2015). A recent trend is emerging 
with metaproteogenomics carried out in order to get the most of both metagenomics 
and metaproteomics data acquired on the same sample. Although restricted until now 
to environmental samples, this methodology will have soon greatly impact the medical 
field. A sulfate‐reducing enriched culture with m‐xylene as the sole source of carbon 
and energy was subjected to metaproteogenomics in order to reveal the key enzymes of 
a Desulfobacteraceae representative involved in organic compound mineralization 
(Bozinovski et al., 2014). The long‐term adaptation of bacterial communities found in 
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metal‐contaminated sediments from freshwater polluted sites revealed the prominent 
role of beta‐proteobacteria (Gillan et  al. 2015). Although efforts have been made to 
improve the bioinformatics tools for analyzing large metaproteogenomics datasets, 
annotating genomic sequences in terms of function with proteomics data and connect-
ing these annotations to metabolic functions in microbiomes is still a difficult and time‐
consuming task (Seifert et al., 2013; Jagtap, 2015b). These high‐throughput approaches 
rely on genome information, protein sequence data, and taxonomic characteristics that 
are available from public repositories. Unfortunately, the quality of these databases is 
currently still not reliable (Pible et al., 2014), with many errors and cross‐contamination 
being evident. As recently discussed (Pible and Armengaud, 2015), their quality should 
be improved, which would leapfrog proteogenomics into the meta‐omics 2.0 era and 
help move it to the frontline of diagnostics.
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21A

21A.1 Introduction

Typing methods aim at distinguishing isolates within the same species. The earliest 
 typing systems were purely phenotypic in nature (serotypes, phagetypes, biochemical 
characteristics, antibiograms). However, with easier access to DNA technology, more 
and more methods have been developed on a genetic and molecular level. The first 
method to be used routinely on a larger scale for typing of isolates relevant to public 
health was pulsed field gel electrophoresis (PFGE), a technology used for the separation 
of long DNA fragments obtained after the digestion of high‐molecular‐weight DNA by 
rare cutting restriction enzymes. This technique was developed in 1984 by Schwartz 
and Cantor (Schwartz and Cantor, 1984). The comparison of profiles between different 
gels was difficult and very often subjective. In the early 1990s, the software GelCompar 
was developed and widely used to support a more objective computer‐aided normaliza-
tion and comparison of electrophoresis profiles, obtained from DNA or proteins 
(Vauterin and Vauterin, 1992). Later this software evolved to GelCompar II and 
BioNumerics. The increased level of standardization allowed the integration of PFGE 
technology in the public health arena and following the PulseNet initiative of the 
American CDC in 1996 (Swaminathan, Barrett, Hunter, Tauxe, and CDC Pulsenet Task 
Force, 2001), the technology started to be used almost worldwide (http://www.
pulsenetinternational.org/protocols).

Many more typing methods have since been developed, including among others 
AFLP (amplified fragment length polymorphism), RAPD (rapid amplification of poly-
morphic DNA), ERIC or REP‐ PCR (enterobacterial repetitive intergenic consensus or 
repetitive extragenic palindromic sequence polymerase chain reaction), MLVA or 
VNTR (multilocus variant analysis or variable number tandem repeat analysis), MLST 
or MLSA (multilocus sequence typing or multilocus sequence analysis), and more 
recently whole genome sequencing (WGS). The choice of the technique to be used will 
depend on the desired speed, cost, reproducibility, available infrastructure, and 
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 resolution. A detailed discussion of these techniques is beyond the scope of this chapter, 
though, and can be found in Sabat et al. (2013).

The above‐mentioned software BioNumerics supports polyphasic analysis of all these 
typing methods. It consists of 10 compatible software modules, which each add specific 
functionality to the software suit. Five data modules deal with the import, processing, 
and storage of biological data types (one‐dimensional fingerprints; binary, numerical or 
categorical data; Sanger or NGS sequences; trend curves, and whole genome restriction 
maps). An additional four modules offer analysis possibilities for the creation of trees and 
dendrograms, statistical outputs and visualizations, identification projects and WGS 
comparison, and annotation projects. There is also an audit trail module for recording 
and versioning of database activities, as required by the FDA 21 CFR Part 11 regulation. 
Individually installable plugins provide additional functionality to the software and assist 
in setting up the correct conditions for typing efforts that require consultation of for 
example, external database sources (spa‐typing, MIRU‐VNTR, MLST online).

Modules can be combined in order to allow for the import, storage, and analysis of 
experimental and metadata from different sources and experiments. The underlying 
relational database facilitates the discovery of correlations between metadata and 
experimental data or between phenotype and genotype. By using a well‐selected set of 
data, new typing methods can easily be compared with golden standard methods for 
validation or other purposes.

21A.2 Typing with MALDI‐TOF MS

The use of MALDI‐TOF MS as a typing method is becoming more and more common 
in clinical microbiology. Currently, identification of an isolate to the species level is the 
most prevalent application in for example, a hospital or reference center, but there have 
been reports that discrimination at the subspecies level or below is also within reach 
(Spinali et al., 2014).

The analysis of MALDI‐TOF MS spectra has also been integrated in the BioNumerics 
software. Depending on the data output of the hardware used, BioNumerics accepts 
both raw and processed data. In this chapter, we will further discuss the different 
 algorithms available for processing the raw spectra. We will discuss how to handle 
 technical and biological replicates and illustrate the statistical analysis of the spectra 
using cluster analysis and peak mining approaches. The analysis therefore includes both 
the comparison of different profiles as well as the detection of biomarkers. It is not 
within the scope of this chapter to discuss in detail the mathematical background of the 
algorithms. The aim is to aid the biologist in understanding the concepts of the algo-
rithms so that an informed decision on an analysis workflow can be made.

21A.3 Preprocessing of Raw MALDI‐TOF MS Data

Preprocessing of raw data from a mass spectrometer is necessary in order to ensure that 
the profiles are comparable. Preprocessing aims at removing differences between 
 profiles that are the result of technical variation, while preserving the true biological 
variation. For a more mathematical background on the methods described in this 
 session, we refer the reader to Monchamp et al. (2007) and Yang et al. (2009).
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21A.4 Downsampling

In general, the first step in preprocessing is the resampling (most often downsampling) 
of the spectra, making it possible to use more computationally intensive algorithms 
later on. Rescaling is also useful to create a constant m/z scale, which makes it possible 
to more easily compare MALDI‐TOF MS profiles among one another. The profiles 
used for typing or identification purposes typically have a higher sampling rate than 
the peak resolution of the mass spectrometer. Therefore, a resampling is generally a 
downsampling, which will reduce the size of the profile, but will retain peak informa-
tion (Figure 21A.1). Although the resampled profile is constructed with much fewer 
points than the original profile, both the position and the height of the peaks are main-
tained and are well within the normal variation on the measurement. Clearly, a too 
aggressive downsampling procedure will turn high‐frequency signals into low‐fre-
quency events transforming multiple peaks into one single large peak after resampling 
(Figure 21A.2).

In BioNumerics, two resampling methods are available: linear and fitted. Using linear 
resampling, the user can define a fixed distance between the resampled points. The fit-
ted resampling will automatically fit the resampled curve with the original curve, using 
a quadratic or linear function to determine the distance between the resampled points 
in such a way that the distance is as high as possible, while retaining the shape of the 

(A)

(B)

Figure 21A.1 Example of effect of downsampling on part of a spectral profile. The original profile with 
all sampled points is seen in (A). After downsampling, fewer points remain (B) while maintaining the 
shape of the peak.
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original curve. Because the m/z value is determined on the mass spectrometer as a 
quadratic function of the time of flight, the resolution of the mass spectrometer will 
decrease with increasing m/z. Therefore, the distance between resampled points can 
also be increased with increasing m/z. A quadratic increase is most suitable as it cap-
tures the quadratic nature of the m/z output of the time‐of‐flight detection. In the pipe-
line applied to the examples in this chapter, we chose to use a fitted resampling using a 
quadratic function.

21A.5 Baseline Subtraction

Once the data have been resampled, they are ready for the next step in preprocessing. 
Spectral profiles very often have a varying baseline, caused by technical variation during 
the experiment. Typical causes are differences in laser intensity and minor variations in 
the composition of the matrix. It is advisable to remove this background before analysis 
in order to ensure that the spectral profiles are quantitatively comparable, though it is 
not necessary for all analysis methods. During baseline processing, the baseline is deter-
mined and subtracted from the entire spectral profile. The baseline is considered to be 
the signal created by an empty sample (containing only the matrix). Unfortunately, this 
signal cannot be measured on the same sample spot, and the results obtained from a 
true empty sample cannot simply be extrapolated to the rest of the run. Therefore, a 
baseline needs to be estimated or calculated for each profile separately. Again, there are 

(A)

(B)

Figure 21A.2 Demonstration of too aggressive downsampling setting. The original profiles in 
(A) contains three peaks. After downsampling, the profile in (B) only contains one peak.
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different methods to calculate the most likely baseline. The results of these different 
methods are demonstrated in Figure 21A.3.

In the Binned Baseline, the m/z axis is divided into a number of bins. The distribution 
of the intensity is evaluated for each bin. If this does not meet certain statistical criteria 
(mean value, kurtosis, and skewness), the bin is discarded. Bins that fail these criteria 
are typically the bins that contain a peak or part of a peak. For bins that are retained, the 
minimum intensity value is placed at the center of the bin, and these points are then 
connected to give the complete baseline.

The monotone minimum baseline algorithm will consider the intensity at the lowest 
m/z point. It starts at the lowest m/z point; the intensity at this point is the first mini-
mum. If the intensity at the next m/z point is lower, then at this point, the lower value is 
used. If it is higher, the previous intensity is considered the baseline. As a result, each 
time the intensity increases, the previous minimum intensity encountered in the spec-
tra is used as the baseline.

The moving bar method is actually a moving local minimum method. It works like a 
horizontal bar that is moving up from the lower intensities of the spectrum, and moving 
as high as possible, until it touches the profile. The intensity at this position is consid-
ered to be the baseline at the middle of the bar.

The rolling disk algorithm works conceptually as though one is rolling a disk at the 
basis of the profile, retaining the intensity value at which the highest point of the disk 
touches the profile.

Although the first two methods are relatively simple, they do not always result in a 
satisfactory baseline subtraction. As seen with the examples in Figure 21A.3, the base 
of the peaks is still at a substantially higher intensity compared to the results of the 
moving bar or rolling disk methods. Furthermore, even though the binned baseline is 
a simple algorithm, there are quite some parameters that can be adapted and that are 
not always easy to interpret. The moving bar and rolling disk have the benefit of sim-
plicity and are considerably better at pulling the base of the peak down to an intensity 
of zero. The only input they require is the size of the bar and the diameter of the disk, 
respectively. In most cases, the appropriate parameters can easily be deducted from 
the spectral profile itself. A good choice for a satisfactory baseline is to use twice the 
width of an average peak at its base as the width of the moving bar, or as the diagonal 
of the rolling disk.

21A.6 Curve Smoothing

Spectral profiles may contain many small spikes that do not correspond with a biologi-
cal signal, but should be considered noise. A smoothing algorithm can reduce or elimi-
nate this noise, making it easier to detect real peaks afterward. Examples of the effect of 
the different algorithms discussed here are shown in Figure 21A.4.

The Savitzky–Golay smoothing algorithm is based on a least square filtering. The 
smoothing is performed by fitting a local polynomial regression to a set of consecutive 
points of a user‐defined sliding window, in order to determine the smoothed value at 
the center of the window. This smoothing preserves the shape and height of the peaks, 
but is not always efficient at removing all noise (Schafer, 2011). The size of the moving 
window is a critical parameter. When it is too small, not all noise may be removed, and 
when it is too big, neighboring peaks risk being merged.



Figure 21A.3 The result of different baseline subtraction algorithms: (A) the binned baseline, (B) the monotone minimum, 
(C) the moving bar, and (D) the rolling disk. The top green curve is the raw profile, and the bottom red curve is after 
background subtraction.
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Figure 21A.4 Result of the different curve smoothing algorithms: (A) Savitsky–Golay, (B) Gaussian, (C) moving average, 
and (D) Kaiser. All algorithms were applied to the profile after background subtraction with a moving disk algorithm. 
The top green profile is the raw profile, and the bottom blue is the smoothed profile.
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A very similar smoothing algorithm is the moving average algorithm. Here, each 
y‐value is replaced by a local average value. The size of the window to be used for deter-
mining the average value can be adjusted. A larger window size results in more aggressive 
smoothing and vice versa. This smoothing does not entirely retain the shape of the peak.

Smoothing can also be performed by fitting a Gaussian curve through each point. 
This typically results in a more aggressive smoothing where the shape of the original 
peaks is not guaranteed.

A filter that is very popular in signal processing is the Kaiser window. It is a powerful 
smoothing algorithm that is very efficient with regard to calculation effort and smooth-
ing result and retains the shape of the original peaks very well. Moreover, by adjusting 
the parameters, the aggressiveness of the smoothing can easily be varied (Kaiser, 1966).

With this wealth of algorithms the choice of the “best” algorithm to be used becomes 
difficult. When deciding, it might be a good idea to consider the algorithm for peak 
detection that will be used in the next step in the analysis of the MALDI‐TOF MS spec-
tra (see below). For some peak detection algorithms, the retention of the shape of the 
peak is important, whereas for others it is not. These considerations might clearly influ-
ence the decision of which smoothing algorithm to use. Also, it is good practice to visu-
ally inspect the impact of a chosen set of parameters and algorithms on the resulting 
spectra. The BioNumerics software allows you to change the analysis pipeline and visu-
alize the result after each preprocessing step.

21A.7 Peak Detection

A very robust peak finding algorithm is the local maxima algorithm, which marks 
maxima in a given local window as peaks. When this algorithm is used, preliminary 
filtering is essential, as noise peaks also tend to give rise to local maxima, as well as 
imperfections in the shape of a peak. Smoothing algorithms that do not completely 
retain the shape of a peak are therefore more suitable to use before this peak finding 
algorithm is applied.

The continuous wavelet transform (CWT) is a complex algorithm that performs very 
well for the detection of relevant peaks. The input spectrum is convolved with a window 
function for a number of different window sizes. This means that we check for peaks of 
various widths, from small to large. Real peaks will typically fit both small and large peak 
templates. Only peaks that are present for a number of widths are retained, thus remov-
ing noise. A signal‐to‐noise threshold is also applied, using the CWT to calculate the 
noise before smoothing. If only one window size is used, with a signal‐to‐noise thresh-
old, the algorithms reduce to a single CWT. This algorithm performs best with smoothed 
spectra for which the shape of the peaks is retained. For a more in‐depth understanding 
of this algorithm, we refer to the specialized literature (Du, Kibbe, and Lin, 2006).

21A.8 Biological and Technical Replicates

There is a rich literature available on the mathematics of the above algorithms that goes 
into great detail on the different performances and specificities of the different 
approaches. In most cases, one is interested in detecting peaks that represent a true 
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biological signal, for example, a protein or peptide expressed by the isolate. A good way 
to check this is to run different technical replicates of the same strain. The term techni-
cal replicate is used here to signify spectra spotted on the same MALDI plate and origi-
nating from a single colony. The term biological replicate is used for repeated 
experiments in which the organism is grown repeatedly (or independently).

The set of technical replicates used for the comparison presented here, contained ten 
isolates from five different species (two gram‐negative, two gram‐positive, and one fun-
gus); for each isolate, ten technical replicates were available. The spectra were obtained 
using complete protein extracts from colonies measured between 2,000 and 20,000 m/z. 
We choose two preprocessing workflows for comparison (see Table  21A.1 and 
Figure 21A.5).

A good preprocessing workflow should generate highly similar spectra for technical 
replicates, preferably with the same peaks detected in all spectra. We therefore com-
pared several parameters of the technical replicates for both workflows 1 and 2. All 
parameters were compared between workflow 1 and 2 using a paired t‐test with a sig-
nificance level set at 0.05.

The overall similarity between spectra from technical replicates was determined on 
the complete spectrum after background subtraction and smoothing. For this purpose, 
an average spectrum was created, and the similarity between each replicate and the 
average was calculated using the Pearson correlation coefficient. The Pearson correla-
tion of the replicates was significantly higher for workflow 1 compared to workflow 2. 
The standard deviation on this correlation was lower for workflow 1, albeit not 
significant.

The reproducibility of the peak detection was determined by calculating the peak 
detection rate (PDR) for each peak detected in one of the replicates, as well as the pro-
portion of peaks with a PDR of 100%. Both these parameters were significantly higher 
for workflow 1.

We therefore conclude that the more advanced algorithms indeed give better results, 
and workflow 1 is more suitable than workflow 2 to eliminate technical variation in the 
profiles. Workflow 1 was therefore used throughout this chapter and has been 
 implemented as default workflow in BioNumerics. For different types of spectra, other 
workflows may be more suitable.

Table 21A.1 Description of the two workflows used for comparative data analysis of the different 
preprocessing algorithms.

Preprocessing step Workflow 1 Workflow 2

Background subtraction Rolling disk Rolling disk
Noise computation CWT noise MAD noise
Smoothing Kaiser window Moving average
Peak detection CWT with S/N threshold 1 Local maxima
Peak filtering Relative intensity 1%

Double peaks
S/N threshold 1
Relative intensity 1%
Double peaks
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Figure 21A.5 The results of two different preprocessing workflows: (A) a moving average followed by 
peak detection with local maxima and (B) a Kaiser window smoothing followed by a CWT peak 
analysis. The top green profile is the original profile, and the bottom orange is the smoothed profile. 
Small circles on the bottom curve indicate the presence of a peak.
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In order to further improve the quality of the analysis and gain confidence in the 
 relevance of, for example, discriminating peaks, spectra can be determined repeatedly, 
including the process of repeated culturing. This may be important as MALDI‐TOF 
MS analysis is a phenotypic technology that inevitably will yield results that depend on 
the interactions with the environment (growth medium, growth time, growth 
 temperature, etc.).

21A.9 Averaging of Replicates

If replicates are available, technical or biological, they can be used to further reduce 
variation by creating an average spectrum of the replicates that will only retain the 
peaks with a sufficiently high peak detection ratio. Additional filters can thus be applied, 
depending on the number of replicates available.

From three or more replicates on, a similarity filter can be added that will compare 
the full spectral profile of the replicates with the calculated average profile, using a 
Pearson correlation coefficient. Preferably, the profiles should have correlations higher 
than 95% for technical replicates and 90 % for biological replicates. Lower numbers 
could indicate a problem with the profile, such as contamination of the matrix or the 
sample or differences in matrix composition or in sample preparation protocols. When 
applying a similarity filter, profiles that not reach the set threshold will be removed from 
the final average (Figure 21A.6).
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Figure 21A.6 Average spectral profile (red) derived from the member profiles (gray). Peaks are only 
retained if they are detected in the majority of members. Adjacent peaks are marked with different 
colored lines.
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Other filters that can be applied are the minimal intensity filter that will remove  profiles 
with an overall low intensity or filters on the minimum or maximum number of peaks 
detected. In a low‐intensity profile, the signal‐to‐noise ratio of the peaks is lower than in 
comparable spectra with normal intensity. As a result, many of the smaller peaks will not 
reach the signal‐to‐noise threshold, even though they are reliably found in  biological 
replicates of higher intensity and thus can be considered a true biological signal.

21A.10 Spectrum Analysis

Spectral profiles can yield very complicated signals, typically with 100–300 peaks per 
isolate. This can complicate the comparison of profiles, especially as many, also non‐
relevant factors can and will influence the absence/presence of a peak and its ampli-
tude. Depending on the underlying question, unsupervised and supervised learning 
methods can be used to analyze MALDI‐TOF MS data. Unsupervised methods, such 
as a hierarchical clustering or principal components analysis (PCA), require no prior 
knowledge on the dataset used. Supervised methods, such as linear discriminant 
analysis (LDA) and classifying algorithms, are based on prior knowledge of some 
characteristics of the dataset.

21A.11 Hierarchical Clustering

A cluster analysis will group highly similar profiles together, making it easier to detect 
and delineate clusters of highly related strains. In a first step, a similarity coefficient is 
calculated for each pair of spectra, depicted in a similarity matrix. The latter, although 
it contains very valuable information, is not organized, and clusters cannot be easily 
detected. Therefore, in the second step, the pairwise similarity matrix will be submitted 
to a clustering algorithm, resulting in reorganization of the similarity matrix and the 
presentation of a dendrogram that will group highly related profiles. As both steps are 
independent of each other, we will discuss them separately. In this chapter, we discuss 
only the characteristics of the coefficients and the possible consequences this can have 
on an analysis. For the exact formulas of the coefficients, we refer the reader to the spe-
cialized literature (Press, Teukolsky, Vetterling, and Flannery, 2007).

To calculate a pairwise similarity of MALDI‐TOF MS profiles, there are two major 
approaches: curve‐based and peak‐based. The latter approach only takes into account 
the presence or absence of a peak detected during preprocessing. In a pairwise com-
parison, typically X out of Y peaks will match, resulting in a lower or higher similarity 
level. With a curve‐based approach, the complete spectral profile of the isolates will be 
used for similarity estimation.

The curve‐based similarity coefficients implemented in BioNumerics are the Pearson 
coefficient, the cosine coefficient, and the ranked Pearson coefficient (Vauterin and 
Vauterin, 2006). The Pearson and ranked Pearson have characteristics that make them 
very suitable for typing purposes. As the complete profile is compared, the intensity of 
the peaks is used to obtain the similarity between the two profiles. As the Pearson coef-
ficient contains an average intensity correction, it is insensitive to global differences in 
background and intensity (see Figure 21A.7). All three profiles in Figure 21A.7(A) have 
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very great similarities with the Pearson correlation coefficient. This means it is 
 unnecessary to perform an intensity‐based normalization before calculating the coef-
ficient. Pearson correlation is, however, very sensitive to local differences in intensity. 
The profiles in Figure 21A.7(B) contain the same peaks, but the middle peak is present 
at different intensities. This has a considerable effect on the similarity calculated with 
the Pearson correlation, and these three profiles will share a much lower similarity than 
the profiles in Figure 21A.7(A).

The cosine correlation coefficient is sensitive to differences in background and overall 
intensity and is therefore less suitable for our purposes. It should only be used on back-
ground‐subtracted and intensity‐normalized spectra. On these spectra, it has the same 
characteristics as the Pearson correlation coefficient.

The ranked Pearson correlation coefficient is calculated using the same formula as 
the Pearson correlation coefficient, but it does not use the absolute intensity value, but 
the rank of the intensity. As a result, the high‐intensity peaks have a lower impact when 
using a ranked Pearson coefficient as compared to a regular Pearson correlation, 
whereas the low peaks have a higher impact. It might therefore be an interesting coef-
ficient to use on profiles of the same species, as the high‐intensity peaks correspond 
mainly to ribosomal proteins, which show little variation within a species. By increasing 
the importance of the lower peaks, we therefore increase the signals that differentiate 
strains within a species.

(A)

(B)

Figure 21A.7 Examples of profiles yielding (A) high and (B) very low pairwise similarity values using 
the Pearson correlation coefficient while containing the same peaks.
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In contrast to the above‐discussed correlation coefficients, peak‐based coefficients 
are typically binary coefficients that only take into account the absence or presence of a 
peak. The most used binary coefficients are the Jaccard and Dice coefficients, which 
count the number of peaks in common, relevant to the total number of peaks present in 
both profiles. In Figure 21A.8, all three profiles have the rightmost and leftmost peak in 
common. The middle peak has a high intensity in profile 1, a low intensity in 2, and is 
absent in profile 3. According to Dice and Jaccard profiles, 1 and 2 are considered a 
100% match, whereas profile 3 for that part of the profile would account for 66% similar-
ity only. However, using a Pearson correlation coefficient, profiles 2 and 3 would be 
considered more similar, as the intensity difference at the position of the middle peak is 
smaller between these two.

It is obvious from the above that the intensity or signal‐to‐noise threshold that was 
used to detect the peaks can have a considerable impact on the similarity calculation 
results using the Jaccard or Dice coefficient. In Figure  21A.8, the two horizontal 
lines represent two different thresholds. With the lower threshold, profiles 1 and 2 
make a 100% match, but considering the higher threshold, it is profiles 2 and 3 that 
match at 100%.

Binary coefficients have another disadvantage. To determine whether two profiles 
have a peak in common, we need to consider a peak position tolerance. If a peak is pre-
sent at 4508.2 Dalton on one profile, and at 4508.1 Dalton on another profile, it is clear 
that the position difference falls within the technical variation of the MALDI‐TOF MS 
measurement, and both peaks should therefore be considered matching. In BioNumerics, 
the position tolerance is defined as a linear function of m/z, thus taking into account the 
higher variation at the higher‐mass region. The constant and linear variation factors of 
the function are user defined. Typical values for the linear factor are between 300 and 
500 ppm, and the constant factor is generally between 0.5 and 1.5 m/z, though the exact 
values depend on the resolution of the mass spectrometer used. If two peaks are within 
the position tolerance of each other, they are considered to be in common (matching) 
between both profiles. In Figure 21A.9, whether the middle peak is considered to be in 
common between both profiles depends on the settings of the position tolerance.

1
2
3

Figure 21A.8 Examples of profiles which are affected by a different choice of intensity threshold for 
peak detection when using a binary coefficient and which also score differently with binary versus 
curve‐based coefficients.
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From the above examples, it is clear that both peak detection and position tolerance 
settings have a high impact on the similarity calculated with a binary similarity 
 coefficient. Choosing inappropriate parameters could potentially result in incorrect 
estimation of the relatedness of strains. It is therefore advisable to take care when defin-
ing the parameters and preferably validate the parameters on a set of biological repli-
cates before performing this analysis on a set of strains with unknown relationships.

A last coefficient to be discussed uses peaks as the basis for similarity estimation, but 
it is not a binary coefficient. As some profiles can have much higher noise levels than 
others, this might affect the Pearson correlation coefficient results obtained between 
these profiles. The solution to this is to use a Pearson correlation coefficient that is 
applied not to the raw curve, but instead to a synthetic curve. The synthetic curve is 
constructed by fitting a Gaussian curve at all positions where a peak was detected with 
the height of the Gaussian curve corresponding to the original intensity. As the peak 
detection procedure considers the signal‐to‐noise ratio, this means that the synthetic 
curve is much cleaner than the raw curve. In return, results will also largely depend on 
the choice of appropriate thresholds for the peak detection.

Once the similarity has been determined between all profiles in our sample set, the 
obtained similarity matrix should be rearranged in order to group the more similar sam-
ples together. Therefore, a cluster algorithm is generally used, resulting in a dendrogram 
accompanied by a structured similarity matrix. Cluster algorithms will locate the most 
similar pair in the similarity matrix and merge them together. The similarity matrix is 
therefore reduced by one element, and the similarity values of the remaining samples with 
the new pair needs to be recalculated. How the matrix is updated varies between different 
clustering algorithms. In the UPGMA algorithm (unweighted pair group method using 
averages), the average of both similarities is calculated; in a single linkage or neighbor 
joining approach, the maximum similarity will be used; and in a complete linkage or 
 furthest neighbor clustering, the minimum similarity is taken (Figure 21A.10).

These steps are then repeated in the updated matrix until the complete dataset is 
ordered.

A clustering algorithm is always true to its name: it will always cluster the data, even 
random data. However, because of the random way in which high similarity values are 
picked up, the resulting dendrogram is often only one of the many possible dendro-
grams that can be constructed on the basis of a given similarity matrix (Kettenring, 

Figure 21A.9 Illustration of the importance of the position tolerance settings when using a binary 
similarity measure. The middle peaks will be considered as matching only when the position tolerance 
will be substantially increased.
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2006). The main cause is the appearance of identical similarity values in a given similar-
ity matrix. The choice of the two samples to be merged first is then arbitrarily made by 
the algorithm, giving rise to degeneracies in the resulting dendrogram.

In practice, because UPGMA, single linkage, and complete linkage are pair group 
methods, the clustering algorithm will simply pick the first pair it encounters. In the 
resulting dendrogram, the complexity of the relationships is therefore not fully inferred. 
There are several strategies to assess degeneracy or to indicate the significance or reli-
ability of a branch in a dendrogram. An error flag can be calculated that is based on the 
standard deviation of the similarity values that contribute to the similarity that repre-
sents a branch. Another method, the cophenetic correlation, compares the reconsti-
tuted similarity matrix derived from the similarity levels in the resulting dendrogram 
with the original matrix using a Pearson correlation. Finally, one can change the order 
in which data are considered by the algorithm, either by varying the order of the strains 
(degeneracy handling), or by permuting the peak classes (bootstrap analysis). In the lat-
ter case, a peak matching table is required, in which absence and presence of peaks are 
scored for each peak class found in the total set of profiles included in the cluster analy-
sis. The different dendrograms obtained from these variations are compared, and for 
each branching point, the percentage of dendrograms that contains the same branching 
members is calculated.

21A.12 Alternatives to Cluster Analysis

Although a dendrogram will generally yield a very good picture of the relatedness of 
complete profiles, one may be interested in specific parts of the profile, for example, 
subsets of peak changes introduced by differences in culture conditions, variations in 
growth media or temperature, or differences in sample preparation protocols. Although 
it is easy to visualize the presence of the different subgroups on a dendrogram (e.g., by 
using different colors), the underlying peaks that are responsible for this grouping 
 cannot easily be discovered with a dendrogram.
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Figure 21A.10 An illustration of the differences of the different cluster algorithms: on top, the original 
similarity matrix; (A) the averaged UPGMA reduction; (B) the single linkage approach, and (C) the 
complete linkage method. All methods yield a slightly different merged similarity matrix. The cells on 
which the merged matrix is based are marked with the same color in the original and merged matrix 
for entry C.



Analysis of MALDI-TOF MS Spectra using the BioNumerics Software 555

More advanced techniques are available for this, including PCA and LDA. These 
algorithms will reduce the complexity of the data to make visual interpretation easier. 
The visualization generally is composed of two plots that represent on the one hand the 
position of the samples and on the other hand the position of the peaks. Both windows 
are linked, as similar positions in the plots support positive links (Figure 21A.11).

Both PCA and LDA start from a closed set of numerical or binary data. To obtain this 
data from spectral profiles, a peak matching needs to be performed. As explained above, 
peak matching analysis will determine the absence or presence (and optionally ampli-
tude) for each peak class detected in the total set of profiles included in the cluster 
analysis. Peak classes will be searched for using a user‐defined position tolerance and 
will be positioned at the average position of all peaks belonging to the class. The result 
of this analysis can be a binary peak matching table, with absence or presence informa-
tion for all peak classes, or can be a peak table with numerical values that represent the 
intensity of the peaks. An example of a peak matching analysis and the resulting binary 
peak matching table can be found in Figure 21A.12.

The number of dimensions in our dataset corresponds to the number of peak classes, 
and so lies typically between 100 and 300 dimensions. PCA and LDA reduce the num-
ber of dimensions in the dataset, and if the dimensions are reduced to 2 or 3, this allows 
for visualizations that can be interpreted by eye.

To illustrate the principle of PCA, a typical example is to take a picture of a teapot (Li, 
2009). The process of taking a picture reduces the dimensions of an object from 3 to 2. 
In order to describe the teapot reliably when starting from the picture, the picture needs 
to be taken at an angle that optimally shows the different elements of the teapot. In all 
probability, this will not be a picture from the front, where you can only see the spout. 
It will not be from below or above, where only the bottom or lid will be visible. It will 
also not be from the back, as this will only show a projection of the handle. Instead, the 

Figure 21A.11 Dual two‐dimensional plot of a PCA analysis. Left: a plot of the samples, and right: 
a plot of the corresponding peak classes (see text for further explanation). The color of the samples 
is based on the genus.



8500 9000

+++ +

(A) (B)

83
26

.3
4

83
96

.7
8

83
71

.0
7

90
61

.8
6

M
al

dR
aw

83
26

.3
4

M
al

dR
aw

83
71

.0
7

M
al

dR
aw

83
96

.7
8

M
al

dR
aw

90
61

.8
6

M
al

dR
aw

92
27

.6
0

M
al

dR
aw

92
40

.1
3

M
al

dR
aw

95
04

.1
7

M
al

dR
aw

95
37

.4
8

M
al

dR
aw

95
55

.3
4

M
al

dR
aw

95
79

.0
2

M
al

dR
aw

97
53

.5
3

9500

+ +

92
40

.1
3

92
27

.6
0

+ + + +

95
79

.0
2

95
55

.3
4

95
37

.4
8

95
04

.1
7

+
97

53
.5

3

Figure 21A.12 (A) Details of a peak matching analysis with (B) the resulting peak matching table.
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side of the teapot is most appropriate, as this captures all elements –  lid, spout, and 
handle – quite well. A similar process happens with PCA, where we will construct new 
components to describe the dataset that are linear recombinations of the existing 
dimensions. The first component is constructed in such a way that it will capture as 
much of the variation in the dataset as possible (the highest standard deviation). The 
second component will capture the second highest variation, and so on, until the  dataset 
is completely separated or the maximum number of components specified by the user 
has been reached. The data can now be visualized in a two‐ or three‐dimensional space, 
using the first component as the X‐axis, the second component as the Y‐axis, and 
optionally the third component as the Z‐axis. If the cumulative variation of the first two 
or three components is sufficiently high, the resulting image can be used as a reliable 
representation of the groups of profiles that are most closely linked and thus can be 
considered related (Figure 21A.13).

As mentioned above, PCA‐like approaches do not allow only visualization of the 
samples included in the analysis, but the peak classes can also be shown in the same 
space. Interestingly, the positions of the peak classes in the plot can be compared to 
the  positions of the samples in the neighboring plot (Figure  21A.11). Peak classes 
appearing in the same location of the plot as a cluster of samples will have a higher 
chance of being present (or present at a higher intensity) in this group of samples. In 
contrast to cluster analysis, PCA‐like analyses can therefore be used to identify 
 potential biomarkers.
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Figure 21A.13 An example of a three‐dimensional PCA plot. Samples are colored as in Figure 12.
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In order now to illustrate the difference between a PCA and an LDA analysis, we can 
return to the example of the teapot. Having several teapots that need to be classified, it is 
likely that the shape of the spout, handle, and lid will help determine which teapots are 
most similar. Performing a PCA analysis will allow one to create groups of teapots with 
similar spouts, handles, and lids. However, consider the case of a group of teapots that are 
highly similar, but half of them are expensive antique teapots while the other half are cheap 
reproductions of the same antiques. In this case, a PCA will not really be helpful in distin-
guishing fake from real. To help us find the components that distinguish the real from the 
fake teapots, an LDA will be very useful. An LDA analysis is similar to PCA, but instead of 
looking for components that capture the maximum variation of the complete dataset, it 
constructs components that maximize the difference between predefined groups in the 
dataset, while minimizing the difference within these groups. In the example of the 
 teapots, this could result in a picture of the bottom of the teapots, where there is a mark 
distinguishing a fake teapot from a real teapot. By just looking at pictures from the side of 
the teapots, we never would have been able to distinguish a real teapot from a fake one.

Similar to PCA, we can visualize the dataset and the peak classes with the first, 
 second, and, optionally, the third component as axes (Figure 21A.14). Again, if a peak 
class is in a similar location as a group of profiles, it is a likely candidate biomarker for 
this group. If the LDA of the profiles results in a cloud of points with no clear  separation, 
this means that there is no information in our profiles that is able to clearly distinguish 
between the defined groups (Figure 21A.15).
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Figure 21A.14 Result of an LDA analysis, presented as a three‐dimensional plot. Colors represent 
groups that were the bases of the LDA analysis (same as Figure 12). Here, the groups were quite well 
separated.
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21A.13 Classifying Algorithms

The objective of an LDA is to identify potential biomarkers and determine whether 
predefined groups can be distinguished using the available data. This requires prior 
knowledge of the groups the user wishes to distinguish. With classifying algorithms, we 
can go even further and use the dataset of which we have this prior knowledge as a ref-
erence set to then identify unknown samples. There are several algorithms to do this, 
such as naïve Bayesian statistics or support vector machines. Other techniques are 
based on similarities (Ressom et al., 2007; De Bruyne et al., 2011).

Similarity‐based algorithms work by assigning the unknown profile to the group it 
has the highest similarity to. The similarity can be calculated with the same coefficients 
as is used for hierarchical clustering. To assign an unknown profile to a group, the aver-
age, maximum, or minimum similarity can be used, though more advanced similarity 
algorithms also exist, such as balanced and weighted similarity. A balanced similarity 
takes both the maximum and minimum similarity into account, whereas the weighted 
similarity increases the weight of highly similar profiles in the reference set while 
decreasing the weight for profiles further away.

The naïve Bayesian and SVM algorithms work on the peak matching table. The full 
peak matching table can be used, as well as subsets. This way, the identification can be 
based on just those peaks that were identified as potential biomarkers using LDA or any 
other statistical analysis (e.g., MANOVA), generally speeding up the analysis and in 
some cases avoiding an overfitting effect. This occurs if the number of data points used 
for identification (peak classes in this case) is much larger than the number of profiles 
in each group. More advanced algorithms will very often find specific rules to assign 
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Figure 21A.15 Result of an LDA analysis, presented as a three‐dimensional plot. Colors represent 
groups that were the bases of the LDA analysis. Here, the groups were difficult to separate on the basis 
of the underlying dataset.
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this small reference set in the correct class, but these rules are often based more on 
chance and are not applicable to larger sets. The SVM is most prone to overfitting and 
should therefore not be used if the sample sets are very small. The naïve Bayesian 
approach, however, makes the assumption that the different peak classes are independ-
ent of each other, which seems an oversimplification in the case of MALDI‐TOF MS 
profiles.

Again, the proof of the pudding is in the eating. BioNumerics allows one to perform 
an internal validation of the identification performance, based on the reference set. 
Each profile in the reference set is removed one by one, treated as unknown, and identi-
fied using a chosen algorithm. The results are then compared to the true group to get an 
idea of the amount of correct and false classifications. This allows one to compare dif-
ferent algorithms. However, this approach is influenced by the reference set used and is 
only reliable if performed on a reference set that is representative of the population of 
unknown samples to be studied.

For all datasets used further in this chapter, we constructed identification projects 
and performed the classification based on maximum, average, and balanced similarity, 
using a Pearson correlation coefficient to calculate the similarity, as well as a naïve 
Bayesian and support vector machine approach. The precision and recall was deter-
mined for each classification. For the dataset used in Part B (dataset B), the species 
assignment was used to construct groups. Any species with fewer than four reference 
profiles was excluded from the analysis. This dataset was considered “easy” to identify 
as these species are known to be readily distinguishable with MALDI‐TOF. The dataset 
used in Part C (dataset C) was identified to a VNTR clonal complex. As mentioned in 
more detail in Part C, no correlation was seen between the MALDI‐TOF MS profiles 
and the VNTR type. This dataset was therefore considered difficult (or even impossi-
ble) to identify. Two further datasets were added that contain spectra of species difficult 
to separate with MALDI‐TOF: one dataset containing several Listeria species (dataset 
1) and another containing E. coli and several closely related Shigella species (dataset 2). 
These two datasets were also considered difficult to identify (Mahé et al., 2013). The 
detailed results can be found in Table 21A.2.

For dataset B, all algorithms performed very well and were able to identify the species 
correctly in the internal validation for the majority of profiles. There was a slightly 
 better performance for the naïve Bayesian and SVM, but the differences were marginal. 

Table 21A.2 Results (P for precision, R for recall) of the comparison of five different classifying 
algorithms on four different datasets.

Dataset B Dataset C Dataset 1 Dataset 2

P R P R P R P R

Maximum similarity 98.95% 98.89% 17.25% 10.87% 70.49% 70.00% 62.86% 61.70%
Average similarity 97.16% 96.31% 8.50% 15.22% 70.16% 70.00% 61.29% 42.55%
Balanced similarity 99.64% 90.41% 11.66% 17.39% 71.98% 71.67% 66.00% 62.41%
Naïve Bayesian 98.95% 98.89% 21.15% 15.22% 60.00% 60.00% 59.45% 44.68%
SVM 98.92% 98.89% 39.49% 30.43% 86.86% 86.67% 70.84% 70.21%
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For dataset C, none of the algorithms performed well, though the SVM did outperform 
the other algorithms, though not to a degree that we could consider as a reliable identi-
fication. For Datasets 1 and 2, the SVM outperforms all other algorithms, leading to a 
decent number of correct identifications. We therefore consider the SVM to be the 
preferred algorithm for the identification of this type of data.

21A.14 Conclusion

MALDI‐TOF MS profiles generated from whole proteomes of bacterial isolates can 
be readily used for species identification. However, the use for subtyping is not as 
straightforward and requires more optimization and validation of the complete proto-
col, from sample preparation to computational analysis. It is not feasible to use 
MALDI‐TOF MS to subtype each and every dataset to the degree that matches other 
typing technologies, but the possibility is often worth investigating. The methods dis-
cussed here can help make the call regarding whether subtyping can be performed to 
a satisfactory degree. In many cases, the ability to perform a subtyping with MALDI‐
TOF, even if it is not perfect, can vastly decrease the time to make a (preliminary) 
clinical decision.
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21B

21B.1 Introduction

Mass spectral data of microorganisms derived from a linear MALDI‐TOF instrument 
are subject to variation in resolution depending on the method of sample preparation 
and the parameters used for analysis. For clinical applications, highly consistent and 
reproducible spectra between different analytical runs and between various instru-
ments are essential and, over the years, staphylococci have been used widely as test 
organisms to help optimize sample analysis. For example, fast atomic bombardment 
mass spectrometry was used initially to study the taxonomy of staphylococci based on 
their polar lipid profiles (Drucker and Abdullah, 1995). With the arrival MALDI‐TOF 
MS, attention turned towards the analysis of proteins, and unique m/z values were 
reported for staphylococci derived from their cell wall moieties (Claydon et al., 1996). 
Methods at this time varied between laboratories, and recognizing the potential of the 
technique, attempts were made to develop a universal method in which S. aureus was 
again one of the reference species (Shah et al., 2000). Subsequently, this method was 
used to assemble the first microbial MALDI‐TOF MS database in which members of 
the genus Staphylococcus were a fundamental component (Keys et al., 2004).

To field‐test the method, a random selection of 95 hospital isolates and 39 from a 
Staphylococcal Reference Unit (PHE, London) were analyzed by MALDI‐TOF MS 
using the first dedicated microbiology bench‐top instrument, a Micromass/Waters M@
LDI‐MS with the company’s bespoke MicrobeLynx software to facilitate the identifica-
tion of species. The identity of each isolate was confirmed separately using 16S rRNA 
sequence analysis and showed excellent concordance. These and other studies 
(Carbonnelle et al., 2007; Etienne et al., 2011; Stoltenberg and Nag, 2010; Seng et al., 
2010) provided proof of concept that MALDI‐TOF MS could be used for the routine 
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identification of members of the genus Staphylococcus. Attention then turned to 
 investigating the potential of MALDI‐TOF MS to subtype strains, particularly for 
S. aureus, where genetic typing methods such as pulsed‐field gel electrophoresis (PFGE), 
spa typing, or multilocus sequence typing (MLST) were revealing immense intra‐spe-
cies diversity (Monecke et  al., 2014). These methods are, however, time consuming, 
costly and cumbersome; consequently, MALDI‐TOF MS, by virtue of its simplicity and 
cost‐effectiveness, prompted intensive investigations.

The impetus for these studies was largely driven by concerns over the emergence of 
methicillin resistance (MRSA) and the high rates of mortality and morbidity occurring 
globally (Oliveira and Tomasz, 2002). To implement infection control measures, 
 epidemiological relatedness of clinical isolates is essential. Subtle variation in mass 
intensity and m/z values (most likely due to post‐translational modifications) give rise 
to a plethora of mass spectral profiles that reflect the diversity within a species. 
Although the ‘core’ component of the spectrum could be exploited to derive reliable 
species identification, investigators began exploiting minor variation in m/z values to 
develop methods to use as epidemiological tools. The latter is largely dependent on 
complex data analysis, and several methods such as principal component analysis, 
artificial neural networks, or software packages such as ClinProTools have been used 
(Lancashire et al., 2005; Shah et al., 2011; see Chapter 6). Here we assess the potential 
of BioNumerics (version, 7.5, Applied Maths, Belgium), as a hierarchical clustering 
tool to analyze MALDI‐TOF MS data from staphylococcal isolates from the environ-
ment to help trace possible transmission between sites and to discern intra‐ and inter‐
species relationships.

21B.2 Sample Collection

In a recent study conducted between 2013 and 2015, 411 isolates of staphylococci 
recovered from the hands of volunteers (n = 107), handbags (n = 10), different sites in 
hotel rooms (n = 53) and from air (n = 5), libraries (n = 25), restaurants (n = 67), super-
markets (n = 59), baby care facilities (n = 33) and public transport systems (n = 52) in 
London, United Kingdom, were collected. Staphylococci were provisionally identified 
using selective media (Mannitol Salt Agar, Oxoid Ltd, Basingstoke, UK) and were addi-
tionally characterized using the Prolex™ Staph Xtra Latex Kit (Prolab Diagnostics, 
Neston, South Wirral, UK).

21B.3 MALDI‐TOF Mass Spectrometry

Staphylococci samples were prepared as described previously (Sogawa et al., 2012) and 
identified using matrix‐assisted laser desorption/ionization time‐of‐flight mass 
 spectroscopy (Bruker Microflex LT, MALDI‐TOF‐MS; Public Health England, London) 
in positive linear mode (2,000 to 20,000 m/z range). The resulting spectra for each cul-
ture was analyzed by MALDI Biotyper 3.1 software (Bruker Daltonics, Coventry, UK). 
E. coli DH5 α (Bruker Daltonics, Coventry, UK) was used as a standard for calibration 
and quality control (Samb‐Ba et al., 2014).
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21B.4 Cluster Analysis of Environmental Staphylococci

BioNumerics 7.5 (Applied Maths, Belgium) was employed for cluster analysis based on 
the mass spectral data.

MALDI‐TOF MS spectra of isolates recovered from different sites were analyzed 
using the BioNumeric software package (BioNumeric Version 7.5) described above 
(see Section 21A). In order to differentiate each sample’s collection site, different  colours 
were used to indicate each site. Furthermore, the spectrum of different isolates was 
compared using the Pearson correlation coefficient, after background subtraction and 
noise removal. The interrelationship between strains was derived using the UPGMA 
method, and the 3D images were constructed using the multidimensional scaling 
method described in the BioNumerics manual. All selected isolates were additionally 
grouped based on their antibiotic susceptibility profiles. In these groups, the red colour 
was selected to demonstrate the presence of multiple‐resistant staphylococci, and the 
green colour was used to indicate susceptible staphylococci isolates.

21B.5 Antibiotic Susceptibility Test

Isolates were screened for their susceptibility against 12 antibiotics using the disc diffu-
sion method (BSAC disc diffusion method) (Andrews and Howe, 2011). The antibiotics 
tested included oxacillin (1 μg); vancomycin (5 μg) (VAN); gentamicin (10 μg); mupi-
rocin (20 μg) (MUP); amoxicillin (10 μg); erythromycin (15 μg) (ERY); tetracycline 
(10 μg) (TET); streptomycin (10 μg); cefepime (30 μg) (CEP); fusidic acid (10 μg) (FC); 
penicillin (1 unit) and chloramphenicol (30 μg) (CHL) (Andrews and Howe, 2011). The 
categories susceptible, intermediate or resistant were assigned on the basis of the break-
points recommended by the BSAC standardized disc susceptibility test method (ver-
sion 10) (Andrews and Howe, 2011). The MICs for oxacillin were additionally evaluated 
using M.I.C. evaluators, antimicrobial gradient strips designed for accurate minimum 
inhibitory concentration (MIC) values (Oxoid Ltd., Basingstoke, UK) (Andrews and 
Howe, 2011).

A total of 411 isolates recovered from the general public and different environmental 
sites were analyzed using MALDI‐TOF MS. For simplicity, these are abbreviated as 
 follows: different sites in hotels (DSH); hotel air samples (HAS); human hands (HH); 
different sites in a supermarket (DSS); handbags (HB); baby care facilities (BCF); differ-
ent sites in library (DSL); different sites in transportation (DST) and different sites in 
restaurant (DSR).

Nineteen species of staphylococci were identified, most of which were coagulase‐
negative staphylococci. Eleven out of all isolates identified were Staphylococcus 
aureus. Six out of 19 species identified were not systematically analyzed in 
BioNumerics, as the identification scores generated by the Biotyper 3.0 software were 
below 2.000. Using MALDI‐TOF MS, coagulase‐negative staphylococci were classi-
fied into 12 species, including S. epidermidis (n = 123), S. hominis (n = 111), S. warneri 
(n = 35), S. capitis (n = 50), S. haemolyticus (n = 42), S. pasteuri (n = 21), S. saprophyti-
cus (n = 9), S. simiae (n = 4), S. cohnii (n = 2), S. caprae (n = 1), S. lugdunensis (n = 1) and 
S. simulans (n = 1).
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Analogous to phylogenetic analysis, nine major clusters, of staphylococci were identi-
fied, namely, S. hominis, S. haemolyticus, S. epidermidis, S. pasteuri, S. warneri, S. aureus, 
S. saprophyticus, S. capitis and S. simiae. The hierarchical interrelationships derived 
using BioNumerics 7.5 are shown in Figure 21B.1.

21B.6 Cluster Analysis of Staphylococcus spp. Recovered 
from Different Sites

The presence of staphylococcal species differed between sites. The most common spe-
cies isolated from DSL were S. epidermidis and S. haemolyticus, whereas S. epidermidis 
was predominant among the isolates recovered from DST and HB. Moreover, S. epider-
midis together with S. hominis were predominant among the isolates recovered from 
the HH, DSS and DSR. S. haemolyticus and S. hominis were predominant among the 
isolates recovered from the DSH. In addition, S. haemolyticus was predominant among 
the isolates recovered from HAS. The common species isolated from BCF included 
S. hominis, S. epidermidis and S. saprophyticus. Interestingly, S. aureus was not the 
 predominant species in any site tested. Instead, S. epidermidis was the major compo-
nent of the flora in all samples except those associated with hotels. It is interesting to 
note that Harris et  al. (2010) utilized the same system, namely, Bruker Daltonics 
Microflex MALDI‐TOF/MS with MALDI Biotyper software to identify 158 

S. hominis

S. simiae

S. warneri

S. pasteuri

S. epidermidisS. saprophyticus

S. capitis

S. aureus

S. haemolyticus

Figure 21B.1 Unrooted cluster analysis of staphylococci species using MALDI‐TOF‐MS. The 
 intra‐species diversity of each taxon (within each circle) is clearly apparent.
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 characterized staphylococcal isolates from prosthetic joint infections, but did not 
achieve the same level of confidence of species identification. Although they confidently 
separated Staphylococcus aureus from coagulase‐negative staphylococci, nearly 25% 
Staphylococcus epidermidis achieved very low confidence scores and may reflect the 
great strides made in the last five years in increasing the level of confidence of identifi-
cation to the species level.

Three‐dimensional scaling was performed to demonstrate the overall relationship 
between the 411 staphylococcal isolates (Figure 21B.2). On the basis of the MALDI‐
TOF MS data, all isolates were distributed into four groups. Groups 1, 2 and 3 lacked 
extensive diversity compared to the fourth group (Figure 21B.2).

21B.7 Correlation of Staphylococci Recovered 
from Different Sites

Staphylococcal isolates recovered from different sites were closely related. Interestingly, 
Staphylococcus spp. recovered from HH were related to those isolated from DSS, DSR, 
HH, DSH, HB, BCF, DSL and HAS (Figure  21B.3A), whereas staphylococci isolates 
recovered from BCF were related to those recovered from DSS, DST, DSL, HH, DSH 
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Figure 21B.2 Three‐dimensional (3D) scatter plot of 411 staphylococci recovered from nine sites. 
DSS  ; DSR  ; DST  ; DSL  ; HH  ; DSH  ; HB  ; BCF  ; HAS  . X: −0.4 to 0.4; Y: −0.2 to 0.4; 
Z: −0.2 to 0.4.
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and BCF (Figure 21B.3B). In addition, staphylococci isolated from DSS were related to 
staphylococci isolated from DSR, DST, HH, DSH, BCF and DSS itself. Staphylococci 
recovered from DST were related to staphylococci recovered from DSS, DSR, HH, BCF 
and DST. Staphylococci recovered from DSH were related to those recovered from DSS, 
HH, BCF, HAS and DSH. Whereas staphylococci isolated from DSR were related to 
isolates recovered from DST and HH, the staphylococci recovered from DSL were 
related to those isolated from HH and BCF. In addition, staphylococci recovered from 
HB were related to HH and BCF.

In addition to analyzing all staphylococcal species, cluster analysis was applied to 
each staphylococcal spp. Here, S. epidermidis and S. aureus were selected to explore 
their correlation with different sites.

21B.8 Cluster Analysis of S. epidermidis Isolated 
from Different Sites

Isolates of S. epidermidis recovered from DSH, BCF, DSR, DSS, HH, HB, DSL and DST 
were shown to be closely related. In addition, these isolates were organized into nine 
large clusters (Figure 21B.1). S. epidermidis recovered from HH, DSR, DSS, DSL and 
DST were in the same cluster as S. epidermidis recovered from HH, DSR, DSS, DSL and 
DST. In addition, these results showed that S. epidermidis isolates recovered from DST 
were located in the same cluster as these isolated from BCF, indicating their close rela-
tionship. In addition, S. epidermidis isolates recovered from HH and DSH, HH and 
DSR, HH and DST, HH and DSS, HH and BCF, HH and HB, DSS and DSL, DSS and 
BCF, DSS and DSR, DSS and DSH, HB and DSR, HB and BCF, and DSR and DST were 
also located in same cluster (Figure 21B.4).
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Figure 21B.3A and 21B.3B Staphylococcal species recovered from different sites. Abbreviations: 
DSH = different sites in hotels; HAS = hotel air samples; HH = human hands, DSS = different sites in a 
supermarket; HB = handbags; BCF = baby care facilities; DSL = different sites from library; 
DST = different sites in public transportation, DSR = different sites in a restaurant.
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21B.9 Cluster Analysis of S. aureus Isolated 
from Different Sites

Eleven S. aureus isolates were analyzed in this study. Isolates that were recovered from 
six different sites (DSS, DSR, HB, HH, DSH and BCF) formed two major clades. Two  
S. aureus isolates recovered from DSR were found in the same clade. Two S. aureus 
 isolates recovered from DSR were closely related to those recovered from DSS. Apart 
from this, two S. aureus isolates (one recovered from DSH and the other from HH) were 
found to be located in same cluster, indicating a close relationship (Figure 21B.5).

21B.10 Cluster Analysis of Staphylococcus spp. Combined 
with Antibiotic Susceptibility

An antibiotic susceptibility test was performed for all isolates, and 336 (82%) out of 411 
staphylococci were resistant against two or more antibiotics. Others varied in their 
resistance profiles. Of all isolates tested, 22 were susceptible to all antibiotics tested.

Staphylococci resistant to more than two antibiotics were considered to be multiple 
antibiotic resistant, whereas susceptible isolates were those that demonstrated resist-
ance to one antibiotic or none. The distribution of antibiotic resistance patterns in 
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Figure 21B.4 Three‐dimensional (3D) scatter plot of S. epidermidis isolated from DSS, DSR, DST, DSL, 
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staphylococcal isolates was analyzed using BioNumerics. It was found that susceptible 
and multiple‐resistant isolates were related (Figure 21B.6), and 30 multidrug resistant 
isolates were closely related to 30 susceptible isolates, respectively, indicating that these 
might belong to the same genotype of the parent strain.

21B.11 Antibiotic Resistance Patterns  
of Closely Related S. epidermidis

Eighty‐five (69%) multiple‐resistant and 38 (31%) susceptible S. epidermidis were ana-
lyzed. The pattern was again similar, with 14 multiple‐antibiotic‐resistant S. epider-
midis being closely related to 14 susceptible S. epidermidis (Figure 21B.7).

21B.12 Antibiotic Resistance Patterns  
of Closely Related S. aureus

In this study, there were 10 multiple‐resistant and 1 susceptible S. aureus strains. The 
multiple resistant S. aureus were not related to this susceptible S. aureus, but the  number 
of strains analyzed was too small to (Figure 21B.8).
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21B.13 Variations of Antibiotic Susceptibility  
of Closely Related S. epidermidis

In order to identify antibiotic susceptibility variations of closely related S. epidermidis, 
two representative isolates recovered from different sites as well as from the same sites 
were selected from each cluster.

For S. epidermidis, 34 closely related clusters were identified. Twenty‐three of these 
clusters were formed by isolates recovered from different sites. No antibiotic sensitivity 
difference was detected in any one cluster but instead were widely distributed. In 2 out 
of 11 clusters, there was no antibiotic susceptibility variation, but other clusters 
 contained a mixture of susceptibility patterns.

21B.14 Percentage of Multiple‐Resistant Staphylococci 
Recovered from Each Site

A total of 325 (80%) of all staphylococci isolates were multiple resistant, and 86 were 
susceptible. All five staphylococci isolates recovered from HAS were multiple antibiotic 
resistant. Thirty‐one (94%) of all isolates recovered from BCF were multiple‐resistant 
staphylococci, and 2 (6%) were susceptible. More than 80% of staphylococci isolates 
recovered from DSH (46), DSS (51), HH (86) and DSL (22) were also multiple resistant. 
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Forty‐eight (72%) of 67 isolates recovered from DSR were multiple resistant. In  addition, 
6 (60%) and 30 (58%) of staphylococci isolates recovered from HB and DST, respec-
tively, were also multiple resistant.

21B.15 Conclusion

MALDI‐TOF MS was used to examine the distribution of members of the genus 
Staphylococcus in multiple sites within one city and utilized to investigate its capacity to 
identify such diverse environmental isolates. The data was subjected to analysis using 
BioNumerics to study species diversity and antibiotic sensitivity patterns of different 
staphylococci species. It has long been suggested that the human hand is a reservoir of 
one of the major causes of cross‐contamination and antibiotic resistance transmission 
in health care facilities (Pratt et al., 2001), and this is supported by the above study, in 
which isolates recovered from hands were related to DSH, DSS, DSR, DSL, DST, HB, 
BCF, HAS and HH itself. Thus, the majority of isolates here were recovered from inani-
mate objects regularly touched by hands. This finding also aids our understanding of 
antibiotic resistance transmission and dissemination, which has also been discussed by 
others (Simões et al., 2011). De Neeling et al. (2007) reported the isolation of MRSA 
from slaughterhouse air samples, and demonstrated the transmission of MRSA via aer-
osol. Here, air isolates were recovered from hotel environments, and there was good 
correlation between isolates recovered from air and different sites in the same hotels.

The relationship between antibiotic susceptibility and genotype has been widely 
reported (Thouverez et al., 2003). Here, MALDI‐TOF MS analysis showed that closely 
related antibiotic‐resistant staphylococci were recovered from different sites, indicating 
their wide dissemination in the environment. Up to nine antibiotic susceptibility varia-
tions were observed in two closely related staphylococci, which were recovered from 
same site, and up to eight antibiotic susceptibility variations were found in two other 
related staphylococci recovered from different sites.

Though staphylococci are residents of human skin, S. aureus and many coagulase‐
negative staphylococci may act as potential human pathogens and cause life‐threaten-
ing infections (Schafer, 1979; Otto, 2009; Meers et al., 1975; Lowy, 1998; Ma et al., 2005; 
Diekema et  al., 2001). Twelve out of 13 species identified were coagulase‐negative 
staphylococci. S. aureus isolates were recovered from all sites but not from public trans-
portation. Other authors reported different staphylococci spp. isolated from soil, water 
and food (Kamal et al., 2013; Normanno et al., 2007). Interestingly, S. simiae (Pantucek, 
2005) has been shown to be associated with monkeys in South Africa.

Sexton et al. (2006) reported that the environment may play an important role in the 
dissemination of antibiotic resistance. The results obtained here are consistent with 
these findings as multiple‐antibiotic‐resistant staphylococci were isolated from differ-
ent sites, and 325 of 411 (80%) staphylococcal isolates were resistant to two or more 
antibiotics. Coagulase‐negative staphylococci are considered to be less virulent than 
S. aureus (Livermore, 2000); however, the isolation of a wide range of multiple‐antibiotic‐
resistant coagulase‐negative staphylococci in the current study gives cause for concern. 
There was no correlation between individual species and antibiotic resistance patterns; 
however, it was noticeable that more than 60% of staphylococci isolates showed 
 resistance to penicillin and fusidic acid. In addition, 30 multiple‐antibiotic‐resistant 
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staphylococci were closely related to 30 susceptible staphylococci, respectively, indicat-
ing that these might belong to the same clone. Kraemer and Iandolo (1990) reported the 
transfer of antibiotic‐resistant genes between species or inter‐species, which may be a 
contributory factor in the development of different antibiotic resistance patterns in 
closely related isolates.

The studies reported here add credibility to the capacity of MALDI‐TOF MS to 
delineate staphylococcal isolates derived from a wide range of environmental sites to 
the species level. Library‐ and bioinformatics‐based approaches have been developed 
for MALDI‐TOF MS microbial profiling. MASCOT and MATLAB are among the 
early developments that have been used to aid protein identification by MALDI‐TOF 
(Lasch et al., 2010; Fagerquist et al., 2006). Access to various algorithms and data anal-
ysis software has enabled more in‐depth analysis of MALDI‐TOF data of various 
staphylococcal subpopulations, particularly in relation to methicillin resistance, multi-
ple antibiotic resistance or toxin‐producing strains. Artificial neural network (ANN) 
analysis has been used to trace the transition of methicillin resistance in subpopulation 
of S. aureus using a variation of MALDI‐TOF MS involving pre‐capture of proteins 
(Shah et al., 2011).

Unlike species identification, where the entire mass spectrum may be used to char-
acterize a particular taxon, methods aimed at distinguishing specific genotypes often 
rely on one or two low‐abundance mass ions that may vary between laboratories and 
may therefore produce conflicting outcomes. The ability to distinguish MRSA from 
MSSA using MALDI‐TOF MS, combined with simple statistical analysis has been 
widely reported but still remain divisive (Edwards‐Jones et al., 2000; Du et al., 2002). 
The latter worked on the premise that the MALDI‐TOF spectral profile between 
MRSA and MSSA differed from each other. Du et al. (2002) developed a database com-
prising the combined spectra of each test group, using the nuc‐based PCR test to vali-
date the method. Despite some discrepancies, the authors concluded that MALDI‐TOF 
MS spectral profiles of each provide a simple and rapid method for identification and 
antibiotic susceptibility analysis of S. aureus. At a more subtle level, isogenic strains of 
Staphylococcus aureus differing in their expression of resistance to methicillin or teico-
planin were analyzed by MALDI‐TOF MS. The study reported greater differences 
among strains differing in methicillin than in teicoplanin resistance (Majcherczyk 
et al., 2006).

Data analysis software such as BioNumerics enables deeper insight to be obtained 
into species diversity and its potential to follow the transmission of isolates (Stephanie 
et  al., 2012). Similarly, Bruker’s ClinProTools is being used more frequently now for 
studying diversity within species and typing (see Chapter 6). Wang et al. (2013) set out 
to establish a MALDI‐TOF MS method to differentiate MRSA from MSSA in a manner 
similar to the those reported previously (Edwards‐Jones et al., 2000; Du et al., 2002) but 
using ClinProTools to analyze the data. Although the majority of strains were separated 
into two groups, there was an overlap of strains between the groups. In a later study, 
Wolters et  al. (2011) utilized Staphylococcus aureus strain type USA300 to create a 
model using ClinProTools software based on three mass ions 5932, 6423 and 6592. The 
model was found to be discriminatory between MRSA and MSSA strains and, although 
perfect differentiation was not achieved, it showed a high degree of specificity.

It is clear that the differences between the mass spectra of MRSA and MSSA are so 
small that when studies are expanded to include large numbers of clinical isolates, the 
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results are never clear‐cut. In an attempt to resolve this, Josten et al. (2013) utilized 
MALDI‐TOF MS to investigate the epidemic lineages of S. aureus. It was shown ele-
gantly that unique mass signals were derived mainly from stress and ribosomal pro-
teins. Peak shifts that differentiated the main S. aureus clonal complexes CC5, CC22, 
CC8, CC45, CC30 and CC1 correlated with point mutations in the relevant genes. It 
was therefore possible to differentiate unrelated MSSA, MRSA and borderline resistant 
S. aureus strains isolated from health care workers.

Despite the resourcefulness and refinement of current software in discriminating 
minor differences in mass ions of different spectra, results to date would suggest that 
linear MALDI‐TOF MS does not have sufficient resolution to provide comprehensive 
intra‐species maps of staphylococci and at best would be better served by addressing 
very specific problems. For example, Fadi et  al. (2009) investigated the detection of 
Panton–Valentine leukocidin (PVL) versus non‐PVL‐producing S. aureus using 
MALDI‐TOF MS. The study identified a unique mass ion at 4448 Da and used this to 
differentiate between toxin and non‐toxin producers of S. aureus. The method was 
cross‐validated with a success of 77% and enabled cases of PVL‐producing strains to be 
detected within a few minutes. The authors were able to perform this in real time using 
ClinProTools™ 2.0 and were sufficiently confident to offer this as a point‐of‐care method. 
Similarly, Decristophoris et  al. (2011) focussed specifically on resolving the 
Staphylococcus intermedius group that includes S. intermedius, S. pseudintermedius 
and S. delphini, coagulase‐positive bacteria commonly isolated from animals and for 
which members of the group are identified using molecular methods such as hsp60 
gene sequencing. MALDI‐TOF MS clearly differentiated members of the group and 
showed good congruence with hsp60 gene sequencing. By contrast, Lasch et al. (2014) 
utilized manual peak inspection with pseudo‐gel views, unsupervised hierarchical 
 cluster analysis and supervised ANN analysis and were unable to unequivocally differ-
entiate phylogenetic lineages, clonal complexes or sequence types for S. aureus and 
attributed it to ‘insufficient discriminatory power of MALDI‐TOF mass spectrometry’. 
New developments in MALDI‐TOF MS, TOF/TOF and others such as top‐down 
 proteomics are on the horizon, and perhaps S. aureus may again be used to help develop 
new mass spectral approaches that can be unequivocally applied for typing strains.
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21C

21C.1 The Emergence of Pseudomonas aeruginosa as Key 
Component of the Cystic Fibrosis Lung Flora

Pseudomonas aeruginosa is not a normal component of the human microflora but 
instead is ubiquitously found in the environment. Perhaps because of accessibility and 
predisposition for the CF lung, P. aeruginosa has emerged today as the primary CF 
pathogen among the polymicrobial flora and affects up to 75% of adults (see Chapter 
17; Lipuma et al., 2012; Lynch and Bruce, 2013; Rogers et al., 2010). A recent study by 
Fodor et  al. (2012) revealed that samples from patients who had Pseudomonas, 
Burkholderia or neither as the primary pathogen could be categorized into three dis-
tinct groups. However, when the primary pathogen was removed from the analysis, 
the samples merged into a single group. Indirectly, this has been attributed to the 
dependence of the underlying microbial community on the primary pathogen to 
shape the microbiome of an individual. A search for inflammatory markers to the CF 
microbiome profiles of 21 patients showed significant correlation with lower FEV1, 
serum C‐reactive protein and neutrophil elastase in sputum, again supporting the 
view for a primary role of P. aeruginosa in CF airways (Zemanick et al., 2013). In a 
series of elegant experiments, culture‐enriched molecular profiling assessed low‐
abundant species for their virulence and antibiotic susceptibilities, microbial commu-
nities were assembled in vitro or in animal models, and measurement of polymicrobial 
interactions was performed. The results showed that many species that would nor-
mally be considered benign had the capacity to heighten the pathogenicity of P. aer-
uginosa (Sibley et al., 2011). In patients where there was no change in the bacterial 
load of P. aeruginosa, such polymicrobial interactions may explain the observed exac-
erbation of disease. Such indirect but compelling evidence suggests a prominent role 
for P. aeruginosa in the aetiology of cystic fibrosis.
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21C.2 Diversity and Rational for Proteotyping

Found naturally in soil and aquatic environments, P. aeruginosa is also an important 
opportunistic pathogen for humans, animals and plants (Spiers et  al., 2000). It can 
 produce severe infections in immunocompromised hosts and is the major factor for 
morbidity and mortality in cystic fibrosis patients (Govan and Deretic, 1996). Its 
remarkable metabolic versatility has been attributed to its ecological diversity. It is 
believed that the major pathogenic determinants of P. aeruginosa stems from the 
 presence of several cell‐associated and secreted virulence factors, such as elastase, 
 exotoxin A, phospholipase and alkaline protease, among others (Döring et al., 1987). 
A key step in the cytotoxic and invasion processes is its use of a type III secretion system 
to directly deliver several effector proteins into the cytoplasm of the host cell (Holder 
et al., 2001; Yahr et al., 1997). Interestingly, the genes encoding its virulence factors are 
dispersed on the bacterial chromosome unlike most species, in which they are clustered 
in pathogenicity islands (Stover et al., 2000).

Among many opportunistic pathogens, particular subtypes often correspond to 
 specific disease sites and ecological niches within the human body. Clonal types exhibit 
a range of traits that are monitored in epidemiological studies to identify particular 
virulent clones. Extensive studies on P. aeruginosa over the last 15 years, using some of 
the most powerful molecular techniques, have consistently failed to demonstrate any 
specific ecotypes that are preferentially transmitted from the environment. Thus, 
strains isolated from the environment are indistinguishable from clinical isolates in 
terms of several genotypic, taxonomic or metabolic properties (Alonso et  al., 1999; 
Cabrol et al., 2003; Foght, et al., 1996). The complete genome sequence of P. aeruginosa 
PA01 was reported in 2000, and a number of unique properties were revealed (Stover 
et al., 2000). Analysis of further strain types have revealed a high degree of gene conser-
vation even among its most pronounced virulence factors. Thus, strain‐specific genes 
within a set of 18 strains isolated from clinical and nonclinical habitats revealed no cor-
relation between genome content and infection type (Wolfgang et al., 2003). However, 
once within the host, clonal types are selected, and these can be traced though 
 epidemiological studies (Armstrong et al., 2003).

To date, diversity has been studied mostly by DNA‐based approaches. In a species 
such as P. aeruginosa that thrives in such varied ecosystems, protein expression is likely 
to play a key role as it traverses new habitats. This may be reflected in the selection of 
new proteotypes. The present study is part of larger study on the proteome of a broad 
selection of isolates of P. aeruginosa and seeks to shed light on the basis of pathogenicity 
of this species.

21C.3 Selecting Representative Strains for Profiling

The ubiquitous and resilient nature of P. aeruginosa, together with its huge intra‐species 
diversity, may contribute to the selection of specific variants in various nosocomial 
infections. Accurate typing of the organism is critical for identification and monitoring 
sources of infection, chains of transmission as well as reservoirs for proliferation 
(Grundmann et  al., 1995) The gradual decline in lung function described above 
results in patients with CF becoming colonized by a variety P. aeruginosa strain types. 
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Most worthy of note are the Liverpool, Midlands, Manchester and Clone C strains – all 
 associated with increased resistance and cross‐infection (Fothergill et al., 2012). The 
term transmissible has been applied to strains with increased prevalence among CF 
patients (Armstrong et al., 2003). The ability of transmissible strains to survive outside 
the CF patient reservoir intensifies the need for informative and practical typing meth-
ods. Any such typing scheme must allow for large number of samples to be analyzed at 
a low cost, while accommodating inter‐laboratory reporting and communication 
(Armstrong et al., 2003; Fothergill et al., 2012).

21C.4 Selection of Strains against a Background of Their 
Variable Number Tandem Repeat (VNTR) Designation

Bacterial genomes contain DNA sequence regions that vary in size, location, complex-
ity and repeat mode that may be used for bacterial typing (Rogers and Döring, 2015). 
One such repeat unit, often from non‐coding regions, contains enough discriminatory 
information to differentiate between isolates (Roring et al., 2002). These are referred to 
as VNTRs. The preference for typing P. aeruginosa at the Antimicrobial Resistance and 
Healthcare Associated Infections (AMRHAI) Labs, PHE, is VNTR analysis (Turton 
et al., 2010). The scheme characterizes isolates by the number of repeats at each locus 
and is a widely used typing method for a variety of pathogenic bacteria (Vu‐Thien et al., 
2007). Over the last decade, the scheme has been reviewed and fine‐tuned to deliver 
robust, reliable results (Lindstedt et  al., 2012). VNTR assays are dependent on PCR 
amplification for a number of loci, a process termed multiple‐locus VNTR analysis 
(MVLA). The results for each strain are described by their confirmation for a number 
of repeats at each selected locus, which allows for further downstream analysis and cor-
roboration (Vu‐Thien et al., 2007). The initial setup of the scheme at AMRHAI was 
constructed on 12 VNTR loci (ms61, ms77, ms142, ms172, ms207, ms209, ms211, 
ms212, ms213, ms214, ms217 and ms222) as described by Onteniente et al. (2003) and 
Vu‐Thien et al. (2007), but reduced to 8 by Turton et al. (2010) with no loss of discrimi-
nation. Consequently, a scheme involving these loci (ms61, ms172, ms207, ms209, 
ms211, ms214, ms217 and ms222) was adopted, with the inclusion of a single extra 
locus (ms213). The ability of VNTR to discriminate between P. aeruginosa isolates that 
have identical PFGE profiles (Turton et al., 2010) demonstrates the rationale for imple-
menting the scheme for subtyping: suitability for online sharing and storage of data. 
The system is less cumbersome, more rapid and reproducible and has therefore super-
seded PFGE (Turton et  al., 2010). However, despite these advantages, the scheme is 
nevertheless complex, mostly restricted to the specialist’s reference laboratory and 
would benefit from a more simple, accessible method of subtyping.

21C.5 Potential to Type P. aeruginosa using MALDI‐TOF MS

Although MALDI‐TOF MS is now a well‐established method for microbial species 
identification, its use as a typing method has been restricted to few taxa. It has been 
investigated as a typing method for several species such as Listeria spp., enterococci, 
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Acinetobacter baumannii, Klebsiella pneumonia (see, e.g., Barbuddhe et  al., 2008; 
Berrazeg et al., 2013; Griffin et al., 2012) and Escherichia coli clonal groups (Matsumura 
et al., 2014). In general, spectral profiles, using, for example, Bruker’s Biotyper, are often 
represented by spatial diagrams derived by principal component analysis or hierarchi-
cal clustering based on dendrograms. Here, we assess the potential of the technique to 
type strains of Pseudomonas aeruginosa that were previously subtyped using VNTRs. 
The sample set of 53 clinical isolates included transmissible strain sets, as well as those 
with resistance to antibiotics. The VNTR analysis was performed and provided by 
AMRHAI according to the scheme reported by Turton et al. (2009) and Jane Turton 
(pers. comm.). The selection represented geographical distribution, as well as being 
both CF and non‐CF in origin. Each sample was unique to a person, with patient age 
varying across all age groups, including infants. For MALDI‐TOF MS (Bruker), all sam-
ples were grown overnight at 37 °C on Muller‐Hinton agar and spectra generated on the 
Bruker Autoflex MALDI‐TOF MS instrument (Bruker Daltonics), and recorded in the 
linear mode. The laser frequency was 20 Hz, and mass ions between 2,000 and 20,000 Da 
were collected. Calibration was performed using Escherichia coli DH5 alpha standard 
peaks in the form of a bacterial test standard. Only the peaks with a signal/noise 
ratio ≥ 2.0 were accepted and converted to a log (score) from 0 (no spectra) to 3 (abso-
lute match). The log (score) values were acquired by comparing to the matches in the 
database entries on the MALDI Biotyper Library (MBL). The cut‐off scores were at 2.0 
and above to qualify a sample as a positive species‐level identification. The consensus 
for a dendrogram generation revolves around peak profiling, and for this, the window 
for spectra analysis was reduced to m/z 3,000–15,000 Da in order to exclude abundant, 
non‐discriminatory peaks outside those values.

21C.6 Data Processing: Analyzing Data using BioNumerics 7

After executing the automated Biotyping process, raw data was exported from the 
Autoflex instrument as text files. These files retained the signal intensity for each 
0.5 m/z value. A Data Import Script (Applied Maths, Belgium) was used to import peak 
lists of each of the samples from one spot set, to separate text files, which were used as 
input files for the BioNumerics 7 software package (Applied Maths, Belgium; see 
Section 21A above). Post import, the data pre‐processing involved an initial baseline 
subtraction, consecutive continuous wavelet transform (CWT) noise estimation and 
baseline subtraction using a rolling‐disc algorithm (with the size of 200 points). Each 
peak with a signal‐to‐noise (S/N) ratio (minimum 10) and absolute intensity was anno-
tated. The data patterns were saved in the form of (characteristic patterns) peak list and 
sizes as well as signal‐to‐noise ratios. For each replicate, both technical and biological 
replicates were combined into a single summary spectral profile. A peak‐matching 
analysis was conducted with constant and linearly varying tolerance values of 1 m/z and 
800 ppm, respectively. The minimum peak detection rate was set at 100%, meaning that 
each summary peak occurred in each individual spectrum of the technical and biologi-
cal replicates. The use of the 100% peak detection rate during this summarizing proce-
dure excluded any technical or biological variation from the analysis. The signal 
intensity for each data point in the Super Spectrum was calculated by averaging the 
respective signal intensities in the  technical and biological replicates. The species 
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 identification by MALDI‐TOF MS performed by the extraction method (as opposed to 
the direct colony approach) was significantly higher (data not shown).

Dendrograms of MALDI‐TOF MS and VNTR are shown in Figures 21C.1 and 21C.2, 
and their discordance is shown in Figure 21C.3. Assuming a cut‐off value at 50% for 
comparing the clustering on the congruence chart, it is evident that there is no equiva-
lence between geographical groups (represented using different colours for each hospi-
tal sample) as well as the overall distribution of each strain type. The Spearman rank 
correlation coefficient was calculated at 0.135 (P < 0.001) between VNTR and the 
MALDI‐TOF MS dendrogram, indicating a very weak correlation. A measurement of 
closeness was not performed because no real significance between both methods could 
be demonstrated, nullifying the need to further query the depth of an absent 
relationship.

21C.7 Discussion and Data Interpretation

The rationale for exploring MALDI‐TOF MS as a tool for typing is logical because it 
seeks to take advantage of data already generated from microbial identification of a 
strain. Various studies have justified comparative approaches with varying degrees of 
success (Ayyadurai et al., 2010; Stephan et al., 2011; Shitikov et al., 2012; Bader, 2013; 
Berrazeg et al., 2013; Matsumura et al., 2014), and several pipelines have been reported 
to interrogate MALDI‐TOF MS data using, for example, Clin ProTools (Bruker – see 
Chapter 6) or MS/MS data (see, e.g., Al‐Shahib et al., 2010). Here the primary aim was 
to incorporate the BioNumerics software into existing workflows. It was anticipated 
that the high resolution of DNA‐based methods such as VNTRs would not corroborate 
data derived from MALDI‐TOF MS because the former depends on variation of loci, 
whereas MALDI‐TOF MS relies on the conserved, high‐abundance ribosomal proteins. 
However, the comparison was made to access the relative intra‐species diversity that 
would be revealed by MALDI‐TOF MS against that of VNTR as a reference. Figure 21C.1 
shows that at an arbitrarily taken level of 50%, eight clusters were derived that increased 
threefold at a 90% similarity level, indicating that this method is about 30% as efficient 
as VNTR analysis in terms of revealing intra‐species diversity.

Figure 21C.4, demonstrates the steps involved in the MALDI‐TOF MS workflow as a 
hierarchical‐free approach. Instead of building up a set of heavily queried reference 
spectra, acquired from in‐house commands or manual acquisition, the approach here 
was to maintain the integrity of recommended MSP acquisition (Bruker MSP genera-
tion) to ensure that the translational value of the findings would be maintained, and 
Figure 21C.1 shows that this could be reliably achieved and integrated into the current 
workflow. In similar studies, Berrazeg et al. (2013) succeeded in phenotypically differ-
entiating the geographical distribution of isolates as opposed to assessing the credibility 
of MALDI‐TOF MS typing against other sequencing techniques, while Matsumura 
et  al. (2014) distinguished the clonality of Escherichia coli strains associated with 
increased virulence using multi locus sequences typing (MLST) as a reference.

The major obstacle to incorporating spectra from the Biotyper output relates to the 
spectral intensity (Gekenidis et  al., 2014). By design, a spectral matching software 
(Biotyper) is built around the concept of turnaround times; once sufficient spectral 
integrity is accumulated, the instrument moves onto the next target because an  adequate 
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Figure 21C.1 MALDI‐TOF MS dendrogram showing the similarity and relationship between 53 strains 
of P. aeruginosa from both CF and non‐CF patients. The 33 coloured nodes are representative of 
geographical distribution from which the samples were sourced. With a cut‐off value of 50%, the 
results show eight clusters with no geographical relationship between isolate groupings.
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Figure 21C.2 VNTR dendrogram based on nine loci which also assess the similarity and distancing 
between 53 CF and non‐CF strains of P. eruginosa. As in Figure 21C.1, the 33 coloured nodes represent 
geographical distribution from which the samples were sourced. The results show 18 clusters also 
cut‐off at 50%, with no geographical relationship between isolate groupings.



Tandem MS/MS-Based Approaches to Microbial Characterization586

10

20

30

40

50

60

70

80

90

100

68

98

91

81

84

98
73

98

53

48

10
0

84

97
72

87

75

92

94

91

67

66

70

58

61

53

59
99

67

78

74

99 68

72

96

97

10

0

20

30

40

50

60

70

80

90

100

Q
U

E
E

11

C
A

R
D

P
0

LE
W

I2
6

K
IN

G
55

N
O

T
T

P

R
B

R
O

03

Q
U

E
E

13

W
Y

T
H

02

U
C

LH
00

C
A

M
B

P

B
R

IG
P

0

C
H

E
LP

R
G

R
O

01

S
O

U
T

P
0

S
T

H
O

04

B
A

N
G

P
0

LU
TO

P

R
LI

V
07

G
LO

U
05

F
R

E
E

10

G
R

E
A

14

M
A

N
C

P
1

N
T

E
E

03

R
S

H
R

00

P
O

O
LP

0

P
LY

M
P

C
E

N
T

P

S
G

E
O

07

R
IN

F
00

F
U

R
N

04

FA
R

N
01

P
O

R
T

P

B
LA

C
23

_H
14

23
40

66
6

_H
14

20
80

58
6

_H
14

23
20

31
5

_H
14

35
60

02
3

_H
14

24
00

37
8

_H
14

26
00

28
8

_H
14

38
20

54
9

_H
14

24
60

26
8

_H
14

34
20

55
9

_H
14

34
80

34
5

_H
14

37
20

57
4

_H
14

35
80

52
9

_H
14

37
20

56
1

_H
14

27
60

12
9

_H
14

40
00

41
3

_H
14

33
20

74
6

_H
14

27
20

26
3

_H
14

27
20

25
4

_H
14

20
60

19
4

_H
14

31
60

42
9

_H
14

27
60

08
0

_H
14

31
40

31
4

_H
14

24
00

53
3

_H
14

31
00

27
0

_H
14

29
80

59
7

_H
14

29
40

48
6

_H
14

24
00

36
9

_H
14

28
40

34
0

_H
14

26
20

12
1

_H
14

23
40

55
5

_H
14

23
00

37
7

_H
14

23
20

28
5

_H
14

35
60

00
4

_H
14

33
20

75
9

_H
14

32
40

54
3

_H
14

28
40

49
3

_H
14

23
20

30
8

_H
14

26
00

29
7

_H
14

23
00

54
7

_H
14

20
80

36
7

_H
14

20
40

34
8

_H
14

25
20

82
0

_H
14

34
20

54
6

_H
14

21
20

30
9

_H
14

33
60

59
1

_H
14

21
20

43
8

_H
14

21
00

60
0

_H
14

35
60

01
4

_H
14

33
40

35
9

_H
14

33
60

58
8

_H
14

33
60

57
8

_H
14

32
20

24
9

_H
14

32
40

54
4

P
ae

ru
gi

no
sa

_H
14

27
60

08
0

P
ae

ru
gi

no
sa

_H
14

35
80

52
9

P
ae

ru
gi

no
sa

_H
14

23
20

30
8

P
ae

ru
gi

no
sa

_H
14

33
40

35
9

P
ae

ru
gi

no
sa

_H
14

33
20

75
9

P
ae

ru
gi

no
sa

_H
14

26
00

29
7

P
ae

ru
gi

no
sa

_H
14

21
20

30
9

P
ae

ru
gi

no
sa

_H
14

27
20

26
3

P
ae

ru
gi

no
sa

_H
14

33
20

74
6

P
ae

ru
gi

no
sa

_H
14

34
20

55
9

P
ae

ru
gi

no
sa

_H
14

23
20

31
5

P
ae

ru
gi

no
sa

_H
14

23
20

28
5

P
ae

ru
gi

no
sa

_H
14

35
60

01
4

P
ae

ru
gi

no
sa

_H
14

20
80

58
6

P
ae

ru
gi

no
sa

_H
14

32
40

54
4

P
ae

ru
gi

no
sa

_H
14

32
40

54
3

P
ae

ru
gi

no
sa

_H
14

32
20

24
9

P
ae

ru
gi

no
sa

_H
14

40
00

41
3

P
ae

ru
gi

no
sa

_H
14

31
00

27
0

P
ae

ru
gi

no
sa

_H
14

23
00

54
7

P
ae

ru
gi

no
sa

_H
14

35
60

00
4

P
ae

ru
gi

no
sa

_H
14

31
40

31
4

P
ae

ru
gi

no
sa

_H
14

24
60

26
8

P
ae

ru
gi

no
sa

_H
14

21
20

43
8

P
ae

ru
gi

no
sa

_H
14

34
80

34
5

P
ae

ru
gi

no
sa

_H
14

33
60

57
8

P
ae

ru
gi

no
sa

_H
14

23
00

37
7

P
ae

ru
gi

no
sa

_H
14

20
80

36
7

P
ae

ru
gi

no
sa

_H
14

28
40

49
3

P
ae

ru
gi

no
sa

_H
14

20
40

34
8

P
ae

ru
gi

no
sa

_H
14

35
60

02
3

P
ae

ru
gi

no
sa

_H
14

31
60

42
9

P
ae

ru
gi

no
sa

_H
14

27
20

25
4

P
ae

ru
gi

no
sa

_H
14

20
60

19
4

P
ae

ru
gi

no
sa

_H
14

38
20

54
9

P
ae

ru
gi

no
sa

_H
14

37
20

56
1

P
ae

ru
gi

no
sa

_H
14

29
80

59
7

P
ae

ru
gi

no
sa

_H
14

29
40

48
6

P
ae

ru
gi

no
sa

_H
14

21
00

60
0

P
ae

ru
gi

no
sa

_H
14

33
60

59
1

P
ae

ru
gi

no
sa

_H
14

37
20

57
4

P
ae

ru
gi

no
sa

_H
14

33
60

58
8

P
ae

ru
gi

no
sa

_H
14

24
00

37
8

P
ae

ru
gi

no
sa

_H
14

24
00

53
3

P
ae

ru
gi

no
sa

_H
14

34
20

54
6

P
ae

ru
gi

no
sa

_H
14

23
40

66
6

P
ae

ru
gi

no
sa

_H
14

26
00

28
8

P
ae

ru
gi

no
sa

_H
14

25
20

82
0

P
ae

ru
gi

no
sa

_H
14

24
00

36
9

P
ae

ru
gi

no
sa

_H
14

23
40

55
5

P
ae

ru
gi

no
sa

_H
14

28
40

34
0

P
ae

ru
gi

no
sa

_H
14

26
20

12
1

P
ae

ru
gi

no
sa

_H
14

27
60

12
9

Figure 21C.3 Congruence chart. Comparison between the MALDI‐TOF MS dendrogram (left) and 
VNTR (right). Coloured lines that match geographical groups are used to assess the equivalence 
between nodes. This chart is combines both MALDI‐TOF MS (Figure 21C.1) and VNTR dendrograms 
(Figure 21C.2). The cut‐off value of 50% demonstrates no equivalence. The Spearman rank correlation 
coefficient between the two approaches was calculated at 0.135 (P<0.001). The congruence between 
clade distributions also fails to demonstrate any meaningful relationship within the overall grouping 
of samples.
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match criterion has been satisfied. For a phyloproteomic approach as reported by 
Galzitskaya and Lobanov (2015), the conceptual methodology is at variance with this 
because spectra need to be accumulated with significant intensity as well as the number 
of acquisitions in order to fully explore minor differences between closely related 
 species (Starostin et al., 2015). The ability to distinguish closely related species is tied to 
dependency upon the physiological status of the cell such as environmental stress, 
growth phase, nutrients, and so on, because such parameters alter protein levels and 
post‐translational modifications (Keys et  al., 2004; Chierico et  al., 2014). Protocols 
therefore need to be rigorously standardized to minimize noise introduced into the 
data, suggesting that samples processed for typing require more rigor than those used 
for identification.

21C.8 Going Forward – Reproducibility  
the Salient Determinant

Studies are now under way to undertake ‘blind analysis’ to confirm that the minor com-
ponents of MALDI‐TOF MS spectral data are robust and reproducible for typing. The 
overall approach is to assess the potential of BioNumerics to flag errors and establish 
confidence levels. Instead of peak list, raw data is being used to ensure there is no bias 
in the procedure. In the first instance, unsupervised analysis is being used across a range 
of datasets. If this can be established, it will provide more flexibility to the system.

In most published work, supervised learning techniques have been used to analyze 
MALDI‐TOF MS data based on known phenotypes in which specific biomarkers can be 
discerned. These are then used to train a classifying algorithm, after which unknown 
isolates can be interrogated. This has been highly successful for SELDI‐TOF MS because 
a larger range of biomarkers is available for analysis (see, e.g., Lancashire et al., 2005; 
Schmid et al., 2005; Lundquist et al., 2005; Lasch et al., 2009; Shah et al., 2011). Any 

Extended 
Extraction

Computational 
Analysis

Mass
Spectrometry

Bacterial
Sample

Figure 21C.4 Outline of MALDI‐TOF MS workflow. The bacterial sample is prepared for analysis 
using a protein extraction method prior to analysis on the mass spectrometry platform (Bruker 
autoflex). Post analysis, the spectra generated is compared to a database (Biotyper), where pattern 
matching allows for rapid species‐level identification.
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attempt to develop a phyloproteomic database for typing organisms needs to provide 
confident (Christner et al., 2014), translational data where another laboratory running 
the same set of strains demonstrates identical typing (Del Chierico et al., 2014). Singhal 
et al. (2015) summarized numerous studies where bacterial typing has been reported. 
The ability to reproducibly challenge phenotypic patterns will be the essential require-
ment on any proposed typing system. Starostin et al. (2015) applied a computational 
analysis model to identify Bacillus pumilus from their MALDI spectra and showed how 
geometric distancing can be used to create mathematical algorithms to define profiles 
and calculate spectral similarity. The authors propose an algorithm for representing 
mass spectra as vectors in a multidimensional Euclidean space. The issue of reproduc-
ibility is resolved by constructing an open access database. By profiling proteins on an 
open platform, new data can be added; to overcome the limitation of lockdown data-
bases managed by instrument manufacturers (Christner et al., 2014; Gekenidis et al., 
2014). The translational maxim of these algorithms to profile mutable organisms such 
as Pseudomonas aeruginosa which has the ability to switch proteomes (seasile state to 
biolfilm), if achieved, will have a major impact on MALDI‐TOF‐based typing. Zautner 
et  al. (2015) demonstrated the accomplishment of mass‐spectrometry‐based 
PhyloProteomics (MSPP) by calculating allelic isoforms from genome sequences of ref-
erence spectra. The authors identified masses of proteins to be used as biomarkers by 
calculating amino acid sequence list of allelic isoforms caused by non‐synonymous 
mutations in biomarker genes to detect these as mass shifts in an overlay of calibrated 
MALDI‐TOF spectra. This approach is of particular interest because the translational 
issues are overcome by anchoring biomarkers from a DNA‐based technique. The limi-
tation of dealing with samples without genome sequences is clearly an issue, but with 
rapid whole genome sequencing being carried out by a variety of laboratories, this may 
not be a problem in the future (Land et al., 2015).

The full prowess of MS tied to computational biology is beginning to be realized. The 
case for using MALDI‐TOF MS in‐house databases, translated to open access plat-
forms, warrants further study but may require higher‐resolution mass spectrometers. 
The mass spectral profiles produced by a linear MALDI‐TOF MS are very limited for 
typing and require such a high degree of rigour that this would be difficult to correlate 
between laboratories. MALDI‐TOF MS is very much operator dependent, and signifi-
cant differences have been reported even among just a few laboratories performing ring 
tests (see Chapter 5). It is our view that MALDI‐TOF MS typing may be useful for some 
taxa where the diversity is low and there are discernible biomarkers. We have shown 
that it is possible to mirror phyletic lineages among Propionibacterium acnes with such 
confidence that MALDI‐TOF MS data was used recently for the first time to propose 
new subspecies (Dekio et al., 2015; Chapter 5). However, for the majority of species, 
there is considerable evidence to show that this may not be possible (see review by 
Singhal et al., 2015) and MS/MS‐based approaches will be necessary.
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