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Foreword

A third-millennium academic cliché worth repeating is that the questions we pose and
the problems we now attempt to solve seem to have the effect of blurring the lines that
demarcate the traditional disciplines. This is true not only among the sciences, in which
universities now routinely offer interdepartmental courses in biophysics, neuropsychol-
ogy, and astrogeology, but also across the traditional academic divisions of science, social
science, and the humanities. The study of ancient astronomies is a perfect example of
the latter case. Once partitioned into the traditional history of astronomy, which dealt
exclusively with the underpinnings of Western scientific astronomy, and its upstart
adopted child archaeoastronomy, which treated all other world cultures, it has now been
subsumed by cultural astronomy, which, in addition, envelops the astronomical practices
of living cultures.

The problems treated in Exploring Ancient Skies are as follows: What did ancient
people see in the sky that mattered to them? How did they interpret what they saw?
Precisely what knowledge did they acquire from looking at the sky, and to what ends
did they employ this knowledge? In short, what were they up to and why?

You hold in your hand a weighty tome, the product of an enduring collaboration
between a pair of seasoned veterans: one an observational astronomer of great exper-
tise, and the other an archaeologist/epigrapher, well known among his Mesoamerican
colleagues for his significant contributions to the problem of decipherment of ancient
Maya script. What an ideal blend of expertise to produce a true interdisciplinary syn-
thesis that treats the problems posed by these engaging and complex questions! Explor-
ing Ancient Skies combines a deep and thorough treatment of relevant empirical
naked-eye astronomy with sweeping cultural coverage from peoples of the Arctic to
Oceania, from the unwritten astronomy encoded in ancient standing stones to what
would become the platform on which Western astronomical tradition yet rests.

Daring in the presentation of some of its hypotheses and somewhat unorthodox in
the treatment of certain long-standing problems, Exploring Ancient Skies may cause
some scholars to bristle, for example, at the readings of certain pages of the Maya
codices, the treatment of the calendar correlation problem, the universality of world
ages, and the diffusion of astronomical ideas and concepts both north-south and east-
west. But a foreword is not a review. Let any reader’s reactions not diminish an appre-
ciation of the way Kelley and Milone have delivered fresh knowledge and created a
challenging synthetic approach that can only derive from years of experience in a variety
of related fields.

Will Exploring Ancient Skies help solve our problems? Only time will tell. Seminal
progress in the development of all fields of scholarship depends on our capacity to listen
and to learn the lesson of history.

Hamilton, New York Anthony F. Aveni
Russell B. Colgate Professor of
Astronomy and Anthropology



Preface

Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy brings the per-
spectives of the modern sciences to bear on the practices of pretelescopic astronomy in
cultures around the world. In doing so, it traces the path of development of modern
society and sheds light on the timeless questions: “Who are we?” and “How did we get
here?”

Few previous works have attempted to cover the entire scientific, geographical, and
historical spectrum of the subject, and for good reason. The present work has taken a
quarter century to prepare as we have struggled to keep up with the voluminous and
growing scholarship in this field. As we progress into the third millennium, it is time for
such a comprehensive work on the broad spectrum of ancient astronomy to appear, even
if, inevitably, incomplete.

This work is intended foremost as a textbook. It arose out of a need to develop a
cogent body of scholarly materials and of practical knowledge for undergraduates in our
course, Archaeoastronomy, at the University of Calgary, which we have taught, off and
on, since 1976. The course has had no specific prerequisites, but has always been rec-
ommended for students beyond their first year of study. In most years, the class has been
composed about equally of students with some background in archaeology or astron-
omy and those who have neither. In addition, Exploring Ancient Skies is intended to be
areasonably concise source and guide to a large and growing body of literature. A special
feature is the somewhat more detailed chapter on Mesoamerica. There are several
reasons for this: First, Mesoamerica is the only New World area from which we have
written records; second, it is one of the few areas anywhere for which literary evidence
is linked to astronomical alignments and to light and shadow phenomena; third, it has
possibly the largest range of astronomically related phenomena recorded in literature,
architecture, and building and site placements; and finally, it is an area that had been rel-
atively neglected in most books on the treatment of ancient astronomy when we began,
with the notable exception of Anthony F. Aveni’s work. The abundance of scholarly
material on the cultures of the Mediterranean precluded an exhaustive treatment by us,
but because it provides antecedents of our present technological world, we have dis-
cussed what we feel to be the most representative and significant details. In dealing with
areas and cultures that have already received a great deal of attention, we try to provide
sufficient links to previous writings to convey the vitality of the scholarship and to
encourage further examination.

The present text now represents more than 25 years of effort. Some areas in which
we provide interpretation had been relatively unexplored when these sections were first
drafted but have now been reached by the rising tide of scholarship. EFM originally
wrote the first five chapters with the help of a Killam Resident Fellowship at the Uni-
versity of Calgary in the academic year 1988-1989, but we have revised them continu-
ally ever since. The bulk of the bibliography dates to about 1996, when we stopped trying
to systematically update it in order to bring this extensive project to a close; yet critical
references to work we knew about continued to be added through 2000.

We mentioned that we intend Exploring Ancient Skies to be a textbook. It is, however,
not a standard textbook in certain ways because much interpretation is still, of neces-
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sity in this field, controversial, and judgments about content and value must be made.
Nonetheless, the book must contain basic data on astronomical phenomena and must
put archaeoastronomical materials in a cultural and archaeological context. The judg-
ments that are made must be justified and hence must contain more scholarly appara-
tus than is usually presented in an introductory text. Relationship to mythology must
be considered, but this makes both astronomers and mythologists uneasy. Many
astronomers think that mythology, in and of itself, deals with “nonscientific” matters, and
in the present context, it is probably related to the contemptible belief system of astrol-
ogy. Mythologists may think that a “reductionist” bias is introduced, phrased in esoteric
formulas that no proper humanist should have to consider. We have no doubt that our
own presuppositions have entered in and influenced both what we write about and how
we write about it. This can scarcely be avoided, but where we are conscious of it, we
have tried to discuss alternative standpoints or interpretations. Having said this, we now
review the details of the book’s structure and indicate why we present the material that
we have.

Pedagogically, there are two books here. Chapter 1 is a general introduction to the
field and applies to both parts. Part I consists of Chapters 2 to 5, which emphasize the
astronomy and are illustrated with examples of astronomical practices of other times
and places. Part II consists of Chapters 6 to 14, which emphasize the varieties of pre-
telescopic astronomy as practiced by cultures around the world, with references to the
fundamental principles of Part I. Chapter 15 underscores parallels and differences in
astronomical thought among world cultures and offers possible explanations.

Abundant cross-references make it possible to skim the early chapters to see what
is there, and to use them as technical resources for the cultural chapters. For general-
interest readers, and for classes to be taught over only a single term, whose need for the
underlying astronomical principles may not be paramount, a concentration on Part II
may be a suitable approach. For anyone planning to do field work in archaeoastronomy,
but who may have some acquaintance with archaeology, ethnology, or other closely allied
fields, initial concentration on Chapters 1 to 5 may prove the more useful strategy. For
physical science students, close study of the early chapters is essential; we believe they
will provide the necessary physical underpinning for further work in most of the areas
discussed in the second part. In Astronomy 301 at the University of Calgary, we have
usually gone through all chapters in sequence, spending about one-third (or more) of a
semester on the first five chapters and two-thirds (or less) on the culture areas. We have
tried alternative procedures, but this procedure has been received best by the students,
although it requires a strenuous pace. A year would be about right, but at the Univer-
sity of Calgary, we have never had that option. In this broadly interdisciplinary course,
however, a wide mix and choice of questions on examinations can make the lives of stu-
dents much easier than if they are required to master a fixed set of topics. The impor-
tant point is that every student should master a significant corpus of material in order
to do well. In the interest of fairness, what constitutes a significant corpus is a question
that an instructor must weigh carefully.

Now we briefly review the contents of each chapter.

Chapter 1 defines the field and discusses its development, its significance, and its rela-
tionship to other disciplines.

Chapter 2 provides an overview of the naked-eye objects in the sky and of the phe-
nomena with which they are connected. The basic motions of objects on the sky, the
coordinate systems by which their locations are specified, and the means to transform
from one coordinate system to another are treated in detail. Chapter 2 begins with an
exposition of very basic positional astronomyj; this is not the stuff of bestsellers, but it is
the heart of practical astronomy, ancient or modern. Consequently, we provide more
examples in the text here than in any other chapter. We go on to discuss each of the
basic classes of astronomical objects and their motions.

Chapter 3 deals with the observation of these objects, providing the reader with the
vocabulary to discuss the brightness and colors, and the variation in position due to pre-
cession and proper motion. The important corrections to altitude and azimuth mea-
surements of objects due to refraction, dip, and parallax are described. We discuss the
conditions affecting the light and color of astronomical objects, and how these can
change for various intrinsic and extrinsic reasons. The effects of the Earth’s atmosphere
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are among the extrinsic reasons. Aside from the obvious need to reduce and standard-
ize astronomical data, such an exposition is needed to apply corrections in reverse to
reveal what might have been seen in ancient contexts. The implicit basic question in this
chapter is, “Was it visible?” We provide the principles with which such a question may
be approached. Recent scholarship has indicated some promising directions for an even
more quantitative approach to visibility, and we try to highlight the work in this area
without committing to a rigid approach to observational questions.

Chapter 4 is given over to an exposition of time and its measurement, the historical
and present-day units of time and time intervals, and the whole concept of scientific
dating of artifacts and structures. Calendrics requires such an exposition. In particular,
this material, along with that of §§2 and 3, should provide useful background on the
astronomical dating of events and monuments.

Chapter 5 describes transient phenomena of the air and the sky, and explores the
underlying physical principles. It deals with the characteristics of transient phenomena
such as auroras and other upper and lower atmospheric phenomena, eclipses, comets,
meteors and meteorites, novae, supernovae, and other variable stars. Here is where we
treat such mysteries as the “missing Pleiad,” the color of Sirius, the apparent deficiency
of European records of observations of the supernova event of 1054 A.p., and the craters
of Wabar. Additionally, the value of eclipses for historical dating and the use of ancient
eclipse records to explore the deceleration of the Earth’s rotation (and the acceleration
of the Moon) are explored. This chapter completes the basic astronomical exposition.

Part II starts by defining the spacial and temporal roots of cultural interest in astron-
omy. Frequent cross-references throughout attempt to refer the reader back to funda-
mentals in the first five chapters, and from these chapters, to the cultural contexts in
which they apply. Chapter 6 begins with what can be said about the Palaeolithic, goes
through the Neolithic, and ends with the medicine wheels and similar constructs of North
America.

Chapter 7 treats the antecedents of the modern Western world: Mesopotamia and
Greece, and subsequent developments down to pretelescopic Europe. It emphasizes the
background of Western astronomy and helps to explain the origins of the scientific
method and, therefore, of our current understanding of the universe. We briefly discuss
the attacks on the integrity of Claudius Ptolemy in the context of modern investigations
of his work. The observations of particular cometary and eclipse observations are dis-
cussed (as they are in each cultural group in which records of such phenomena are
recorded). We also discuss relevant cosmological aspects of the mystery religions,
Judaism, Islam, and Christianity.

In Chapter 8, we begin with ancient Egypt, spring from there to the rest of Africa, and
from there to native astronomy around the world. The Dogon “Sirius mystery” is
described and discussed here.

Chapter 9 treats India and the cosmological aspects of Buddhism, Jainism, and
Hinduism. The extent of the influences of these religions on other areas is discussed,
as well as the migration of astronomical ideas between India and the Middle East.
We also describe the cosmological aspects of other Near Eastern religions, such as
Zoroastrianism.

Chapter 10 deals with China, Korea, and Japan and the development of astro-
nomical ideas in the context of the Chinese sensibility to harmony in Heaven and on
Earth. The continuing importance of early astronomical records from this region is
emphasized.

Chapter 11 deals with the cultures of the Pacific, beginning with the Dream Time of
Australia. The techniques used by the native navigators and their “voyaging stars” are
highlighted, and the use of astronomy to understand the terms and legends of the islands
is described.

The next three chapters cover the early astronomy of the Western Hemisphere. In
Chapter 12, we discuss the extensive details known about Mesoamerica, to which we
have already referred, but discuss new aspects of the relationships between the gods and
the planets. Astronomy north of Mexico is discussed region by region in Chapter 13, and
the burgeoning material of South America is treated in Chapter 14. Alignments of struc-
tures again appear as important topics in these discussions, as well as ethnoastronomy
among many groups.

ix
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Finally, universal aspects are touched on in Chapter 15. Here, we deal with the ulti-
mate purposes in the cultures of astronomy, and discuss the evidence for the indepen-
dent development of ideas or, in some cases, the derived development through diffusion
of ideas. We conclude with a summary of what we regard as the main purposes of ancient
astronomy: astrology, navigation, calendar regulation, and that ultimate goal of so much
of human activity—to know and to reach harmony with the forces that control the
universe.

Calgary, Alberta, Canada David H. Kelley
Eugene F. Milone
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1

Historical Perspectives

1.1. Perpectives of Ancient Astronomy

We deal in this book with the broad and burgeoning subject
of pretelescopic astronomy. People around the world have
been deeply interested in the sun, moon, and stars for mil-
lennia. Of central interest to historians are answers to the
questions, “What did they know and when did they know
it?” In this section, we discuss why we want to know the
answers to these questions, and the means by which schol-
ars have attempted to provide the answers.

What we know of ancient cultures stems from their
writings, artifacts, representations, monuments, tombs, and
even the organization of their cities. In one way or another,
each of these cultural expressions demonstrates interest in
an aspect of the heavens. The deciphering of Babylonian
cuneiform and of Egyptian hieroglyphic writing and the
decoding and interpretation of astronomical texts and tables
are long-standing scholarly activities. The newer science of
archaeoastronomy deals mainly with astronomical discover-
ies outside of the writings.

As a discipline, archaeoastronomy stems from the publi-
cation of JN. Lockyer’s Dawn of Astronomy in 1894.
Working with little regard to the findings of archaeology,
Lockyer attempted to date structures by purely astronomi-
cal criteria. With this approach, he at once illumined a fresh
path for scientific exploration and incited such criticism that
few dared to venture on that path again for more than half
a century. The renaissance of the subject is more than a little
due to the publication in 1968 of Stonehenge Decoded by
Gerald Hawkins. This helped to draw popular attention to
the astronomical practices of earlier cultures, and interest
has continued to grow. As a science, where successful, it has
had to be open to the contributions of many disciplines, as
diverse as ancient poetry and quantitative mathematics.

An aspect of ancient astronomical study deals with trying
to find solutions to astronomical and astrophysical problems
from early data. Thus, the discovery that the bright star
Sirius was once described as red, when it is now clearly

white, may light up formerly obscure paths of stellar evolu-
tion. Early descriptions of the “seven sisters” may help us to
find out something about long-term variability among the
Pleiades star cluster, because the normal unaided human
eye now detects only six stars. Records of ancient eclipses
provide evidence of the length of the month (and the chang-
ing distance of the Moon) on the one hand, and of the length
of the day (and the slowing of the Earth’s rotation) on the
other. Records of ancient supernovae provide dates of initial
explosions, and thus ages, and when coupled with current
measures of the angular sizes and rates of expansion,
provide distances, and luminosities of these objects. Because
supernovae are among the brightest single stars known, they
provide “standard candles” for the determination of dis-
tances to remote galaxies, thus, aiding the determination of
the size and age of the universe.

A branch of ancient astronomy, called “astroarchaeology”
by Hawkins, deals with the application of astronomy to
archaeological problems. The term has not achieved wide
currency, but the aspect of archaeoastronomy it represents
has not been ignored. The astronomical dating of structures
(or complexes of structures) that may have incorporated
astronomical alignments is an example of such application.
The success of any such enterprise, depends, therefore, on
the genuine astronomical intent of the builders. This ques-
tion is still moot in many cases, but in others, the evidence
for intent appears to be strong.

Most contemporary practitioners of archaeoastronomy
seem to be interested in the subject for itself, in order to
understand the astronomical activities of ancient cultures.
Investigations of the use to which astronomy is put in
the religious and social contexts of particular groups has
produced still another area of contemporary study:
ethnoastronomy.

It is difficult enough to work in a field such as the history
of mathematical astronomy, as exemplified by the prolific
work of the late great scholar Otto Neugebauer, in which
the scholarly materials required to understand completely
the ideas and workings of a culture are still undiscovered in



the debris of destroyed cities or in caches of forgotten caves.
It is even more difficult to recover ancient astronomy prac-
tices from the remnants of cultures that were systematically
destroyed, as in post-Columbian Mesoamerica, or from cul-
tures for which no written material at all is known, as in
Stone Age Britain. Mesoamerican scholars and astronomers
have long had mutual interest in studying eclipses and cal-
endars, among other phenomena in which the Mayans and
other peoples of the region had remarkably strong interest.
Multidisciplinary scholars such as Anthony Aveni have
done much to demonstrate astronomical alignments at
Mesoamerican and South American sites. The study of
megalithic Britain by the survey-engineer Alexander Thom
and his son Archibald has helped to reveal the capabilities
of the megalith builders. More recent archaeoastronomy has
been characterized by close scrutiny of the uncertainties in
the observational data and a strong emphasis on the limita-
tions of measurements in the field due to various effects,
such as parallax shifts, or the bending and dimming effects
of the Earth’s atmosphere, or the intrinsic motions of the
stars. Much greater attention also is being paid to the
archaeological and cultural contexts of the cultures. Mea-
surements of great accuracy, investigations of the precision
and accuracy of those measurements, and attention to
context are in large part what distinguishes archaeoastron-
omy from Lockyer’s (1894/1973) early efforts. If we know,
for example, that a certain group of people was interested
in the “ dark constellations” of the Milky Way, we should not
limit our study of potential astronomical alignments of their
geoglyphs or structures to the brightest objects in the sky
or even to the brightest stars. As it continues to mature,
archaeoastronomy can be regarded as an increasingly
important component of ancient astronomy.

Whatever the emphasis, the end result of attention to
detail of any of these approaches is a richer appreciation of
the cultures that provide the data and of the advance of the
arts and sciences that are needed to complete the study. In
the present work, we try to consider evidence from all the
approaches to ancient astronomy.

Aside from purely scholarly reasons for studying the
subject, to seek an understanding of ancient astronomy is to
encounter deep well-springs of religion, life-energizing
forces of sex and eroticism, and, frequently, cosmic aspects
of games and sports. In discovering the astronomy of the
ancients, we also discover much about their cultures and
their intellectual capabilities, accomplishments, and limita-
tions, and in discovering these things, we discover much
about ourselves.

1.2. Archaeological, Anthropological,
and Historical Contexts

People behave in ways that reflect cultural patterns, includ-
ing belief systems. These may include naive or sophisticated
ideas of the real or imagined influences of astronomical
events on human affairs. The regulation of daily and sea-
sonal activities by the relative positions of earth and sun is
an obvious reality, conditioning a great deal of human
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behavior. Likewise, the movements of the moon affect the
tides, which are a major factor in the lives of coastal dwellers
throughout the world, and the changing phases that produce
dark nights or moonlit nights have affected most of
humankind until very recently. In many cultures, people pos-
tulate a tremendous range of astrological effects and par-
tially pattern their behavior to conform to or to modify the
postulated influences. To the extent that this behavioral
response to the astronomical environment involves
structural patterns or objects that may be recognized or
recovered archaeologically, we are dealing with
archaeoastronomy. The structural patterns may take the
form of alignments and layouts of tombs, monuments, build-
ings, or cities, in cosmological patterns that may also be
incorporated in calendrical tables or in other artifacts.

Where belief in the importance of astronomical influences
on human affairs was important, people made more precise
observations, and it is now often possible to find and recog-
nize observational instruments and structures. A less direct,
but culturally more important, process is the patterning of
many facets of life because of presumed associations or
causal connections between astronomy and daily life. An
example of such a patterning is the development of the
astrologically based 7-day week. Human behavior may be
governed by a belief that life on earth is a model of celes-
tial happenings, or that individual or collective behavior is
determined by celestial happenings. The cosmological
pattern of a particular group was normally constructed in
terms of human activities and beliefs so that the stars and
planets, individually or in groups, may be identified as
humans, animals, deities, souls of the dead, artifacts, or
natural phenomena. The relative movements of the heav-
enly bodies were often thought of as interrelationships
comparable to human activities, and humans frequently
responded appropriately by prayers, offerings, ceremonial
drunkenness, ritual abstinence, and so on. The alignment of
burials is one practice that can be recognized archaeologi-
cally and may throw some light on cosmological beliefs and
astronomical interests, although it is seldom of high astro-
nomical precision. Temples are frequently regarded as
partial models of the universe constructed to embody cos-
mological beliefs. Alignments to the rising of the sun at spec-
ified days of the year, or to the heliacal rising of some star
are apt to be the most obvious astronomical features, but
they may be much less important in the local cosmology.
Where alignments are found, their purpose was often to
cause some particular effect. In Mesoamerica, Motolinia
(quoted by Long 1948) said that the sun was supposed to
rise at the vernal equinox, at a certain festival, between the
two temples of the great pyramid in Tenochtitlan and that
Montezuma wanted to pull down the temples because the
line was not quite straight. Wriggling serpents at the corners
of the temple of Kukulcan at Chichen Itza are observed
in a spectacular hierophany of light and shade at the
equinoxes.

The widespread interest in astronomy among the peoples
of the historic world has its roots in ancient times. There is
some evidence for calendar keeping in the Palaeolithic,
perhaps as far back as 50,000 years or more, and in the
Megalithic, such evidence is strong. In the fifth millennium
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B.C., we find evidence for archaeologically recognizable cul-
tures in which astronomy played an important role.

In Alberta, on the western Canadian prairie, we find the
earliest of the large rings and cairns of stone known as
medicine wheels. Later constructs are found both east and
south of Alberta. Interpretation of these “wheels” has been
diverse: memorials to dead leaders, markers for trails, reli-
gious or ceremonial, or astronomical markers.

Wheels showing at least some structural similarity con-
tinued to be built into the last century, and some seem to be
aligned on the equinoxes and solstices. One of the most
notable of the recent structures is the Big Horn Medicine
Wheel in Wyoming. Jack Eddy’s (1974) study suggested that
the spokes were aligned on particular prominent stars, the
first rising of which before sunrise would provide calendar
markers. At Moose Mountain in Saskatchewan, a similar
wheel seems to show spoke alignments to the same stars, but
at an earlier date, in accord with the precession of the
equinoxes. If these two wheels, separated by nearly 2000
years represent a common tradition, it is surprising that
other wheels resembling these two more closely are not (at
present) known.

In Europe, a somewhat similar tradition is assigned to the
megalithic cultures. Here, the consistency of some align-
ments created by placing large stones in lines or circles or
making tomb chambers is considerable. Few scholars
dispute alignments on the solstices and equinoxes, but com-
petent scholars disagree on the extent to which lunar and
stellar alignments are deliberately incorporated into these
structures. The distribution of monuments of the megalithic
culture seems to be suggestive of sea-farers, but this is far
from certain. One of the earliest structures anywhere in the
world that shows a solstitial alignment is the Brugh-na-
boinne ( Newgrange) in Ireland. This site is alleged in Irish
mythology of a much later time to be the burial place of
Aongus mac nOg ( Aongus, the ever young), usually identi-
fied as a sun god. Many later cultures identify the winter sol-
stice as the point of the annual death and rebirth of the Sun.
A shaft of sunlight penetrates into the inner chamber of
Brugh-na-boinne at winter solstice sunrise, in fitting tribute
to such a belief. The best-known megalithic monument is
undoubtedly Stonehenge, in southern England. Hawkins
(1963, 1965a) has argued that a series of holes associated
with the monument was used to predict eclipses, and cer-
tainly someone with a modern knowledge of eclipses could
have used Stonehenge for such a purpose. Indeed, Schlosser,
Schmidt-Kaler, and Milone (1991/1994) have included this
exercise among their astronomical laboratory challenges. Of
all the megalithic monuments, that which most suggests
a working observatory is an array of stones in northern
Scotland called Hill a’ Many Stanes. Here, the stones are
small enough to be easily moved and so could have been
adjusted to achieve a precision alignment. The Thoms have
argued that the site was used to study movements of the
Moon. No serious attempts have been made to relate these
megalithic monuments to later or modern myths or stories,
although there seem to be some folk-beliefs and practices of
possible relevance.

A third tradition that began about the same time is that
of Mesopotamia. Here, urban civilization and writing appear

for the first time. This gives us direct evidence of gods
and myths. We know that the Mesopotamian gods of later
periods were directly identified with the planets. Recorded
myths let us see the interaction of gods in a heavenly frame-
work, which strongly suggests the creation of constellations
as a sort of geographic backdrop for the movements of the
gods. Although Mesopotamian scholars have been reluctant
to regard the earliest myths as astronomically patterned,
recent work by Hostetter (1982), Adamson (1988), and
Tuman (1984) generically support such a view. Adamson
(1988) presents evidence that the goddess Inanna or Ishtar
was associated with the planet Venus in the earliest texts.
Hostetter (1982) presents a convincing argument that the
entire structure of the early myth is astronomical. Tuman
(1984) argues that deity and symbolic representations cor-
responding to planets and constellations arise substantially
earlier than has usually been believed.

The Mesopotamian system of constellations, planetary
gods, and accompanying myths spread to the Greeks prob-
ably before 1400 B.c. and later reached the Romans, with
substantial modifications in both cultures. Eventually, a
further modified system dominated the Mediterranean
and then spread north and west throughout Europe (see
Figure 1.1). A late Babylonian form, somewhat modified by
Egyptian ideas and mythology, spread into India in the early
centuries A.D., where it came into contact with a local
Indian tradition. A mixed set of astronomical practices inti-
mately tied to cosmology still bears this Egypto-Babylonian
imprint, as does much of the Greco-Babylonian technical
astronomy, in much of southeast Asia. The astronomical
content of the Hindu, Jain, and Buddhist religions of India
resulted in the carrying of that astronomy into China, Korea,
and Japan with Buddhism.

A tradition that started only slightly later than the
Mesopotamian but that was markedly distinct was that of
Egypt. Here, constellations were envisaged that depicted
animals that lived on the fertile lands adjacent to the
Nile and in the desert beyond. Mesopotamian boats, archi-
tecture, textiles, ceramics, other trade goods, and ideas stim-
ulated changes and further developments in the Nile valley.
A local writing system appeared. Curiously, the later Greeks
claimed to derive great knowledge of technical astronomy
from the Egyptians, a conclusion that currently available
evidence certainly does not support. There is, however,
much evidence for the use of astronomy at less technical
levels. The great stone pyramids, which were funeral
monuments, were aligned to the cardinal points, even if
this alignment did not require tremendously sophisticated
astronomy. The great temples dedicated to the Sun god
have both texts and alignments to show astronomical asso-
ciations. Egyptian culture was carried south to Meroe, in
current day Sudan, where a temple was built with an
entrance aligned on the winter solstice sunrise. In calendri-
cal studies, the Egyptians put a great deal of emphasis on
the heliacal rising of the star Sirius (which they called
Sopdet) that was for a long period of time associated with
the annual flooding of the Nile, upon which Egyptian agri-
culture depended.

The Egyptians recognized a series of stars (decans is the
Greek term) whose first rising before dawn marked periods
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This figure is only visible in the printed book because of limited copyright.

FIGURE 1.1. The Northern and Southern Celestial Hemispheres
((a) and (b), respectively) as rendered by the great Renaissance
and Reformation artist Albrecht Diirer. Many representations
of the sky by post-Renaissance Europe derive from Diirer’s
rendition of 1515, in which the star positions from Ptolemy’s
catalogue were set down by the Niirnberg mathematician
Heinvogel. The positions were subsequently improved and

more stars added, but the woodcut figures of Diirer essentially
remained the same through the charts of Bayer (1603),
Flamsteed (1729), and Argelander (1843). Note the lack of stars
near the SCP. Black-and-white prints from the Rosenwald Col-
lection, Photograph © 2001 Board of Trustees, National Gallery
of Art, Washington [1954.12.233.(B-21421)/PR (Meder 260) and
1954.12.234.(B-21422)/PR]. Reproduced here with permission.
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Ficure 1.1. Continued.

of approximately ten days, so that there were 36 stars or
asterisms in the series. As will be explained later, this leads
directly to a concept of a 24-hour day, which had been devel-
oped in Egypt by about the XII dynasty (about 2000 B.c.).
The series of decans was taken by Hellenistic astrologers
and used in India, so that they became a regular feature of

later astrology as practiced from Britain to the Malay penin-
sula, well into the Middle Ages. The 24-hour day also spread
widely, and the Egyptian year of 365 days, without leap year
adjustments, was called the “astronomers’ year” by medieval
Europeans, because of the relative ease with which period-
icity calculations could be made with it.




Another major component in Eurasian astronomy and
calendrics was the system of 28 asterisms known as the lunar
mansions, because the Moon is among a different group of
stars each night. Internal evidence suggests that the system
may have originated about 2500 B.c. It is directly attested in
India at about the 8th century B.c., and at about the same
date in China, from which it traveled to Korea and Japan. It
was supposed by the scholars of the pan-Babylonismus
school to have originated in Mesopotamia, but there is no
trace of such a system in Sumer, Babylon, or Assyria. The
28 asterisms were, however, known to the Arabs before the
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writing of the Koran, and a Greco-Coptic series is known
from a manuscript of the 5th century aA.p. It was spread
through Jewish scholars into medieval Europe. The Arab
version was spread wherever Islam penetrated, including
mid-Africa. Finally, it will be argued that it is likely that ele-
ments of this system were incorporated in the ancient
Mesoamerican calendar.

Now we begin with an exposition of the basic astronomy
required to understand the perceptions and knowledge of
the ancients. In Chapter 6, we again take up the cultural con-
texts of astronomy.



Part 1

Astronomical Background
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Principal Features of the Sky

2.1. Star Patterns: Asterisms
and Constellations

2.1.1. Stellar Pattern Recognition

About 15,000 stars are detectable by the human eye, most
of them near the limit of visibility. At any one time, we may
be able to see a few thousand stars in a dark sky, but we tend
to remember only striking patterns of them—asterisms
such as the Big Dipper or whole constellations such as Ursa
Major (the Big Bear) or Orion (the name of a mythological
hunter)—and so it has been for millennia. Today, the entire
sky has been divided into constellations; they are not defined
according to appearance alone but according to location,
and there are no boundary disputes. The modern names and
locations are more or less those of Argelander (1799-1875)
for the Northern Hemisphere and John Herschel
(1824-1896) for the Southern, but the present divisions of
the constellations' were adopted by the International Astro-
nomical Union (IAU), the chief authority on such matters
as astronomical nomenclature, in 1930. The IAU has estab-
lished 88 constellations in the sky; many reflecting an ancient
heritage.

The names of the constellations recognized in antiquity
were based on

* Mythological figures

¢ Animals or inanimate objects as perceived in the sky

e Geographical or political analogues

e Associations with seasonal phenomena, or some other
basis

As we will show in later chapters, non-Western traditions
have perceived a rich variety of star patterns; some include

! Boundaries are along coordinates of right ascension and declination
referred to the equinox of 1875.0. See sections below for explanations
of these terms.

the absence of stars, the “dark constellations.”> Chinese con-
stellations were different from and far more numerous than
were those of the Mediterranean area. As far as we are
aware, the oldest extant Chinese star chart on paper is con-
tained in a 10th-century manuscript from Dunhuang, but
there is far older evidence for sky charting from this area of
the world (see §10 and §2.2.3); a compilation by Chhien Lu-
Chih listed 284 constellations containing a total of 1464 stars
and is said to be based on a Han catalogue (see §10.1.2.3;
and Yi, Kistemaker, and Yang (1986) for new maps and a
review of historical Chinese star catalogues).

Western constellations in current use largely derive from
ancient Mediterranean sources, mainly the Near East and
Greece, as we show in §7. The earliest surviving detailed
description of the Greek constellations is in the poem
Phaenomena by the Greek poet Aratos (Aratus in the
Roman sources), ~250 B.c. (Whitfield 1995, p. 23). The con-
stellations portrayed in the poem derive from a work also
called Phaenomena, which has not survived, by the Greek
astronomer Eudoxos (or Eudoxus) (4th century B.c.). One
of the later sources that discusses this work is that of the sole
remaining manuscript of Hipparchos (~150 B.c.), one of the
greatest astronomers of antiquity. Many of the constellations
can be seen as raised images on the Farnese Globe, the
oldest extant celestial globe, dated to the 2nd century B.cC.,
but representing a copy of an older work. Aratos mentioned
47 constellations, whereas Claudius Ptolemy (~150 A.p.),
the source of much of our knowledge about Hipparchos,
referred to 48 in the major astronomical work that we know
today as the Almagest.

In ancient Greek usage, the constellations were the
figures. For example, in the constellation of Cassiopeia,
the star { Cassiopeiae (abbreviated { Cas) is described as
“the star on the head”; o Cas, as “the star in the breast”; and

> See §14.2.5, for a Peruvian example.
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n Cas as “the star over the throne, just over the thighs.” In
Perseus, the variable star Algol (B Per) is described as the
“bright one” in the “Gorgon’s head.” Not all naked eye stars
fitted neatly into these groupings, so many stars were
omitted from the constellations. Those outside the accepted
figures were referred to as “unformed” (cpdpdwrot; our
word “amorphous” derives from a related word), or “scat-
tered” (omopddec, related to the Greek word for seed,
onopd, broadcast during sowing, and our cognate word,
“sporadic”). The TAU reorganization created constellation
“homes” for these “unformed” stars.

2.1.2. Star Charts

The depictions of the Greco-Roman constellations as they
were known in Ptolemy’s time (~150 A.p.) were preserved
in Arabic sources, one of the best known being that of the
astronomer al-Suf1 (10th century). R.H. Allen (1963) states
that the sky representations of post-Renaissance Europe
derive from those of Albrecht Diirer (1471-1528) of 1515
(Figure 1.1), in which the star positions from Ptolemy’s
catalogue were set down by another resident of Niirnberg
(Nuremberg), a mathematician named Heinvogel. The posi-
tions were subsequently improved and more stars added,
but the figures of Diirer essentially remained the same
through the charts of Bayer (1603), Flamsteed (1729), and
Argelander (1843). More details about star charts from 1500
to 1800 can be found in Warner (1979), and an even wider
range of charts is found in Stott (1991/1995) and Whitfield
(1995).

The representations of the more obvious asterisms dif-
fered widely from culture to culture. A familiar example is
the Big Dipper, still known in England as the plough, and
in Germany and Scandinavia as the Wagen (wagon). In the
Roman republic, it was the plow oxen. On many pre-19th-
century maps and star charts, the term Septentrion or some
variety of this term appears. The expression became syn-
onymous with the North, or northern regions, but originally
meant the seven plow oxen. R.H. Allen (1963) says that the
Big Dipper was known as a coffin in parts of the Mideast,
a wagon or bear in Greece, and a bull’s thigh in pre-
Hellenistic Egypt. Systematic attempts were made to
rename the constellations at various times. Giordano Bruno
(1548-1600) sought to invest the sky with figures represent-
ing Moral Virtues. Julius Schiller of Augsburg produced the
most widely known type of Bible-inspired charts in 1627.
R.H. Allen’s (1963) encyclopedic search into the origins of
star names and constellations reveals several other Euro-
pean attempts to recast the constellations, although the
various sources used by him are not always treated critically.

2.1.3. Modern Nomenclature

Today, constellations refer to specified areas on the celestial
sphere, whereas an asferism is any apparent grouping of
stars. Indeed, one could be forgiven for describing the
ancient “constellations” as asterisms. With some exceptions,
in modern usage, an asterism is usually smaller than a con-
stellation; for example, the Little Dipper asterism is in the

2. Principal Features of the Sky

constellation of Ursa Minor, the Little Bear, and the
Pleiades is a well-known asterism in the constellation
Taurus, the Bull. An exception is the Summer Triangle, com-
posed of the bright stars Vega, Deneb, and Altair in the con-
stellations Lyra, Cygnus, and Aquila, respectively. Even a
single star may constitute an asterism. The star Spica, for
example, the brightest star in the constellation of Virgo, has
been envisaged as a spike of wheat.

Modern common names of naked eye stars, derive from
European and Arabic usage, as well as proper names
devised by Johann Bayer in 1603. The Bayer designations
use lower-case Greek letters and, after these are exhausted,
small Roman letters, to identify stars in a given constella-
tion, for example, u Herculis or i Bootis. When these were
exhausted, capital Roman letters were used. The lettered
type of designation was later extended to the Southern
Hemisphere by Nicolas Louis de Lacaille (1763) and John
Herschel (1847). The Greek letters are universally accepted,
but an alternative designation to the Bayer letters for the
fainter stars is that of the Flamsteed numbers (Flamsteed
1725, Vol. 3), as, for example, 44 Bootis = i Bootis. Giuseppe
Piazzi (1803) also published star catalogues in 1803 and 1814
(see Piazzi/Fodera Serio 1990). The Flamsteed numbers
increase with right ascension, a coordinate that increases
from west to east (see §2.2.3). Many catalogues of stars and
other objects use positional or sequence numbers, usually
increasing with right ascension. The best known star catalog
of this kind is the Bright Star Catalog (Hoffleit 1982), which
uses the positional sequence numbers of the Harvard
Revised Photometry Catalog (Pickering 1908); thus, BS
7001 = HR 7001 = o Lyrae.

Usually, the Greek letter designates the relative bright-
ness of the star within the constellation, but occasionally
they were assigned to a positional sequence, as in Ursa
Major. In the list of modern constellations, Table 2.1, the star
names are in Latin, with the historically earliest names refer-
ring to Latin forms of Greek originals. The columns contain
both nominative and possessive® cases of the names, English
equivalents, notable stars and other objects, and both
modern and ancient asterisms that are within the modern
boundaries. Only objects that can be seen unaided under
clear and dark sky circumstances are included.

“Double stars” are stars that appear close to each other
in the sky; sometimes they are indeed physically close to
each other and interact gravitationally, but not always. The
pair of stars Mizar and Alcor ({ Ursae Majoris and 80 Ursae
Majoris, respectively), in the handle of the Big Dipper, is an
example of a naked-eye double.

Types of “variable stars” are named after their prototypes,
such as delta Cephei or RR Lyrae. In the Bayer designations,
no visible star had been assigned a letter later in the alpha-
bet than Q; consequently, Argelander suggested that desig-
nations of R and later would be used solely for variable stars.
This scheme has been followed dogmatically to a logical
conclusion ever since. When designations to Z became

* The possessive or genitive case is used in formal star names, e.g., o
Canis Majoris, B Scorpii, B Lyrae, or S Doradus, literally, the stars
labeled o of the constellation Canis Major, B of Scorpius, and so on.
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TaBLE 2.1. Modern constellations.
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Name Meaning Possessive® Asterisms/features

Andromeda Mythological figure (chained lady) Andromedae Spiral galaxy M31.

Antlia Air pump Antliae

Apus Bird of paradise Apodis (Aps)

Aquarius Water bearer Aquarii (Aqr) Planetary nebula NGC 7293.

Aquila Eagle Aquilae (Aql) Vultur volans (a + B + v Aql); Altair = o0 Aql
part of the “summer triangle”.

Ara Altar Arae

Argo® Jason’s ship

Aries Ram Arietis

Auriga Charioteer Aurigae Goat and kids; Capella = o Aur, goat star,

Bootes Herdsman Bootis Arcturus = oo Boo, bear keeper, Job’s star.

Caelum Sculptor’s chisel Caeli

Camelopardalis Giraffe Camelopardalis

Cancer Crab Cancri (Cnc) M44 = the bechive, open star cluster.

Canes Venatici Hunting dogs Canum Venaticorum (CVn)

Canis Major Big dog Canis Majoris Sirius = oo CMa, dog star, Isis; M41 open star
cluster.

Canis Minor Small dog Canis Minoris Procyon = oo CMi.

Capricornus Ibex/goat-fish Capricorni

Carina Argo’s keel Carinae Eta Car, unstable variable star & nebula; NGC
2516, I1C 2602 star clusters.

Cassiopeia Mythological figure (lady in the chair, Cassiopeiae The “W.” Tycho’s supernova.

mother of Andromeda)
Centaurus Centaur Centauri o Cen globular cluster.
Cepheus Mythological figure (king, husband of Cephei § Cephei variable star.
Cassiopeia)

Cetus Whale Ceti Mira = o Ceti, variable star.

Chamaeleon Chamaeleon Chamaeleontis

Circinus Pair of compasses Circini

Columba Dove Columbae

Coma Berenices

Corona Australis

Corona Borealis
Corvus

Crater

Crux

Cygnus

Delphinus
Dorado

Draco
Equuleus
Eridanus
Fornax
Gemini
Grus
Hercules
Horologium
Hydra
Hydrus
Indus
Lacerta

Leo

Leo Minor
Lepus

Libra

Lupus

Lynx

Lyra

Mensa
Microscopium
Monoceros
Musca (Apis)

Berenices’s hair
Southern crown
Northern crown
Raven

Cup

Cross

Swan, Orpheus

Dolphin
Doradus fish

Dragon

Foal

Mythological river Po River
Furnace

Twins

Crane

Mythological figure (kneeler, son of Zeus)
Clock

Water snake

Small water snake
North American Indian
Lizard

Lion

Small lion

Hare

Balance scale

Wolf

Lynx, tiger

Lyre, harp of Orpheus
Table

Microscope

Unicorn

Fly (bee)

Comae Berenices
Coronae Australis (CrA)
Coronae Borealis (CrB)
Corvi (Crv)

Crateris (Crt)

Crucis

Cygni

Delphini
Doradus

Draconis
Equulei
Eridani
Fornacis
Geminorum
Gruis
Herculis
Horologii
Hydrae (Hya)
Hydri (Hyi)
Indi
Lacertae
Leonis
Leonis Minoris (LMi)
Leporis
Librae

Lupi

Lyncis
Lyrae
Mensae
Microscopii
Monocerotis
Muscae

Melotte 111, cluster.

Coal Sack (dark nebula); Southern Cross.
Northern Cross; “great rift” (dark nebulae);
Deneb = o Cyg, part of “summer triangle.”

Large Magellanic Cloud; 30 Dor = Tarantula
Nebula.

Castor = a0 Gem, Pollux = § Gem.

“keystone”; M13, globular cluster.

Regulus = o Leo regal (kingly) star.

Vega = o Lyr, part of “summer triangle.”
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TaBLE 2.1. Continued.

2. Principal Features of the Sky

Name Meaning Possessive* Asterisms/features

Norma Level, rule Normae

Octans Octant Octantis South Celestial Pole.

Ophiuchus Snake bearer Ophiuchi Kepler’s supernova.

Orion Myth. figure (giant hunter) Orionis Great Nebula (M42); belt stars; Betelgeuse = o
Ori, red, variable.

Pavo Peacock Pavonis

Pegasus Winged horse Pegasi The Great Square.

Perseus Mythological figure Persei (rescuer of Andromeda) x h Persei Double
cluster; Algol = 8 Per, var. star = head of
Medusa, Gorgona.

Phoenix Myth. bird Phoenicis (Phe)

Pictor Easel Pictoris

Pisces Fishes Piscium (Psc)

Piscis Australis Southern fish Piscis (PsA) Australis (or Fomalhaut = o PsA.

(or Austrinus)

Austrini)

Puppis Argo’s stern Puppis
Pyxis Argo’s compass Pyxidis
Reticulum Net Reticuli
Sagitta Arrow Sagittae (Sge)
Sagittarius Archer Sagittarii
Scorpius (or Scorpion Scorpii
Scorpio)
Sculptor Sculptor’s studio Sculptoris (Scl)
Scutum Shield Scuti (Sct)
Serpens Serpent Serpentis
Sextans Sextant Sextantis
Taurus Bull Tauri
Telescopium Telescope Telescopii
Triangulum Triangle Trianguli
Triangulum Southern triangle Trianguli Australis (TrA)
Australe
Tucana Toucan Tucanae
Ursa Major Big bear Ursae Majoris (UMa)
Ursa Minor Small bear Ursae Minoris (UMi)
Vela Argo’s sails Velorum
Virgo Young girl Virginis
Volans Flying fish Volantis
Vulpecula Fox Vulpeculae

M47 open star cluster.

Teapot; M25 open star cluster; M8 nebula; M17
nebula & star cluster.

Antares = o. Sco; M7, NGC 6231 open star
clusters.

Q Nebula; star clouds.

Hyades, Pleiades star clusters; supernova
remnant, Crab Nebula near { Tau.

Spiral galaxy M33.

Small Magellanic Cloud; 47 Tuc globular
cluster.

Big Dipper; horse and rider = { + 80 UMa.

Little Dipper; North Star = Pole Star = Polaris
=o UMi.

IC 2391 open star cluster.

Spica = o Vir.

* The standard abbreviations are the first three letters; where this is not the case, the abbreviation is given.
® Ancient but now defunct constellation, sometimes called Argo Navis, now divided into Carina, Puppis, Pyxis, and Vela.

exhausted, the sequence began again with RR, and pro-
ceeded through the sequences, RS,RT, ... ,RZ,SS,...,SZ,
272, AA, ..., AZ,...,..., QZ. At this point, the
naming scheme switches to V335, V336, ..., and so on. See
§5.8 for a discussion of the various types of variable stars.
Some asterisms are “nebulae” (clouds) because of their
diffuse appearance. A nebula may be a real dust or gas cloud
(in space!), a star cluster, or a distant galaxy. Gas and dust
clouds, usually illuminated by bright stars embedded in
them, are also represented among the asterisms. Examples
include the Orion Nebula (M42) and the n Carinae nebula.
“Star clusters” are families of stars that were born near the
same location in space, travel on parallel orbits around the

Galaxy, and generally have similar chemical compositions.
There are two types of star clusters: open (also called “galac-
tic”) and globular clusters. Open clusters, typically, are
located in or near the Milky Way, are irregular in shape,
and are composed of hundreds of stars. Examples are the
Pleiades and the Hyades clusters in Taurus and the
“Beehive” cluster (also called Praesepe or M44) in Cancer.
Globular clusters are more widely distributed around the
sky, appear spherical in shape, and are composed of hun-
dreds of thousands of stars. Examples are M13 in Hercules,
and 47 Tucanae. Finally, there are the galaxies beyond the
Milky Way that can be perceived by the naked eye and thus
could be considered asterisms, such as “M31” in Andromeda
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and the Large and Small Magellanic Clouds. The “M” des-
ignations in some of our examples are entries in the Messier
Catalogue, a collection of nonstellar objects compiled by
Charles Messier (1730-1817), a noted comet discoverer of
his time. The purpose of the compilation was to avoid false
identifications of new comets with diffuse-looking objects
in the sky, with which they could be confused in small
telescopes.

Figures B.1 and B.2 in Appendix B place the modern
constellations and asterisms on the sky in a coordinate
framework, provided for general reference. Figure B.1 are
bisected by the celestial equator into northern and southern
halves. The chart is a Mercator projection* of a variant of the
equatorial system, one way of viewing the celestial sphere
independently of the observer. Figure B.2 provides views of
the regions around the north and south celestial poles.

Star charts, regardless of the superimposed constellation
and asterism associations, are most useful when they permit
identification of precise positions in the sky. Stott
(1991/1995, p. 9) informs us that the first (Western) star atlas
with sets of (modern) stellar coordinates was that of Paolo
Galluci (from 1588). In this case, the coordinates were with
respect to the path of the Sun, the ecliptic (see §2.3.3 for a
discussion of this system of coordinates). Chinese atlases
and charts used measurements somewhat akin to hour
angles measured from the beginnings of xius (lunar man-
sions), and polar distance angles much earlier than this
(Needham/Ronan 1981 = Needham 1981a, p. 116). Even in
the Almagest, Ptolemy gives a position of a star in a kind of
ecliptic coordinate; referring to the beginning of the first
point of a zodiacal sign, he also gives an ecliptic latitude.
Moreover, Ptolemy describes a device (see §3.3) with which
some coordinates can be measured, and the existence of
some kind of spherical coordinates is implied by relatively
accurate placements of stars on the external surface of a
sphere, such as the Farnese globe (§2.1.1). Yet when Galileo
noticed a faint object while studying the satellites of Jupiter,
he was unable to track and follow the object because his
telescope mounting lacked coordinates to record and redis-
cover it once Jupiter’s relatively large motion had moved
away from the field. The faint object was not knowingly dis-
covered until after calculations by John Couch Adams
(1819-1892) and Urbain Jean Joseph Leverrier (1811-1877)
in the 19th century. The object was the planet Neptune. If
Galileo had obtained access to some of the classic instru-
ments of antiquity, he could have replaced a sighting tube
with his telescope and been able to record positions relative
to the nearby stars.

In the following sections, we will show how coordinate
systems enable us to find objects on the celestial sphere, in
catalogues, and in the sky.

* This is a projection of spherical coordinates onto a cylinder in such a
way that lines of latitude and longitude remain perpendicular. It has the
property that longitude lines farther from the equator enclose larger
areas. The projection is credited to the Flemish -cartographer,
Gerhardus Mercator (1512-1594).

13

2.2. The Sphere of the Sky

2.2.1. Daily Sky Motions

Time exposure photography of the sky readily reveals the
movement of the sky. Uniform exposures (say, one hour
each) under a cloudless sky at each of the cardinal facings
will confirm the impression of the unaided eye—that the
stars wheel about a hub at constant angular rate. Figure 2.1
shows typical diurnal (daily) arcs traced out by stars during
such exposures. Traced with a stylus on a graphics tablet, the
arc lengths can be shown to be systematically larger with
increased angular distance from the center of motion—the
celestial pole. The longest arcs are 90° from the celestial
pole—on what is called the celestial equator, which divides
the sky into northern and southern halves.

The apparent direction of turning is counterclockwise—as
we view the North Celestial Pole. It is clockwise for South-
ern hemisphere observers viewing the South Celestial pole.
The motions are consistent. As one faces North, the stars
rise in arcs from one’s right hand and set at one’s left hand.
Facing South, they rise at the left hand and set at the right
hand. The observations imply that either the sky is rotating
from East to West above the earth or that the earth is rotat-
ing from West to East below the sky.

In antiquity, which condition was true was the subject of
much discussion and, in the end, could not be determined
definitively. In the absence of a knowledge of the correct
physics, misinterpretations of common experience gave
many writers the idea that a rotating earth would force
unanchored objects to be thrown off (see Chapter 7, espe-
cially §7.2).

Although the sense of the turning sky is the same all over
the earth, the diurnal arcs have a different character for
observers at the equator compared to those nearer the poles.
For an observer on the equator, the North and South Celes-
tial poles are on opposite sides of the sky; all stars rise at
right angles to the horizon and move across the sky in semi-
circles, spending half the time above, and half the time
below, the horizon. For observers elsewhere, stars that have
diurnal circles between the pole and the horizon do not rise
or set. They are called circumpolar stars. Stars equally
distant from the opposite pole never appear above the
horizon. In modern parlance, these two regions are called
the north and south circumpolar zones, respectively. The
diurnal arcs of stars that rise and set make acute angles
(<90°) with the horizon, and this angle becomes smaller with
the observer’s proximity to the pole. At the North and South
Poles, this angle becomes 0°, as the stars move in circles that
are concentric with the horizon and are circumpolar. At the
equator, it is 90° for all stars, and none are circumpolar.

The notion that the heavens constitute a great sphere sur-
rounding the observer is an ancient one. It seems likely to
have been present among the early Pythagoreans. It is asso-
ciated with the Ionian Greeks, especially Eudoxos of Cnidus
who lived in the 4th century B.c. It was known in China by
the 2nd century B.c. The heavens were sometimes depicted
as an external sphere, such as that shown in the Etruscan
depiction of Atlas holding up the sky sphere. Not every
culture, however, depicted the sky as a hemispherical bowl;
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in ancient Egypt, the sky was pictured as the body of the
goddess Nut, for example. The shape of the sky as we per-
ceive it depends on several factors: physiological, psycho-
logical, and cultural. We can even measure the perceived
shape (see Schlosser et al. 1991/1994, pp. 1-3). For the pur-
poses of locating objects on the sky, however, we use, even
today, the concept of the celestial sphere.

2.2.2. The Horizon or “Arabic” System

The image of an Earth surrounded by pure and perfect crys-
talline spheres® was emphasized by Aristotle, among others.
Astronomers have made continual use of this image for
more than two millennia; we refer to a celestial sphere, on
which all objects in the sky appear, at any given instant, to
be fixed. It does not matter in the slightest that such a sphere
is borne of perception only, or that it exists only in our
imagination. Everything that undergoes diurnal motion is
assumed to lie on this sphere; the consequence is that they
are assumed to be at the same distance from the observer.
This is not strictly true, of course, but for locating very
distant objects on the celestial sphere, it is a reasonable
approximation. To the naked eye, the Moon is the only one
of all the permanent bodies in the sky that seems to shift
position among the stars as an observer shifts from one place

> Indeed, ancient Greek astronomers held that the motions of “wan-
dering stars” or planets could be explained with the turnings of many
such transparent spheres. See §7.2.3.
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FiGure 2.1. Diurnal arcs traced out
by stars during a time exposure near
the North Celestial Pole. Trails
further from the pole appear
straighter because the radii of cur-
vature of their diurnal circles is
larger. Photo courtesy of T.A.
Clark.

on Earth to another.® For nearer objects, such as the Sun,
Moon, and planets, relative motions on the sky can be
studied and the predicted positions tabulated for each day,
as, for example, in Babylon and Ur (see §7.1). This means
that only two coordinates suffice to describe the position of
an object on the surface of such a sphere.

On the celestial sphere, we will place the markings of the
horizon system. We also refer to this system as the Arab
system, because it was in wide use in the Arab world during
the European Dark Ages. Not all the terms currently used
in the English description of it stem directly from the Arabic
language. Its salient features are indicated and labeled in
Figure 2.2, which also includes relevant elements of the
equatorial system which is described in §2.2.3.

The highest point, directly overhead, is the zenith, a name
that reaches us through Spain (zenif) and the Arab world
of the Middle Ages (samt ar-ra’s, road (over) the head).
Directly below, unseen, is the nadir (Arabic nazir as-samt,
opposite the zenith). The zenith and the nadir mark the poles
of the horizon system. The horizon, which comes from a
Greek word meaning to separate, basically divides the earth
from the sky. We adopt the modern definition here: The
astronomical horizon is the intersection with the celestial
sphere of a plane through the observer and perpendicular

® From the place where the Moon appears overhead to the place where
it appears on the horizon, the Moon appears to shift by about 1° with
respect to the stars. The shift is called the horizontal parallax. Parallax
shifts are very important in astronomy and are a primary means of
determining astronomical distances.
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Z /zenith

celestial meridian

FiGure 2.2. The horizon system: The main features of the
horizon system of spherical astronomical coordinates. (a) The
outside-the-sphere view. The azimuth coordinate, A, is repre-
sented as a polar angle measured at the zenith; A is measured
eastward or clockwise (looking down from outside the sphere)
from the north point of the horizon. An observer facing any
direction on the horizon sees the azimuth increasing to the
right. The north point is defined as the intersection of the ver-
tical circle through the north celestial pole, NCP, and the
horizon. The zenith distance, z, is shown as an arc length mea-

to the line between the observer and the zenith. A family of
circles (vertical circles) may be drawn through the zenith and
the nadir. The centers of these circles must be the sphere’s
center, where the observer is located (for the time being, we
ignore the distinction between the center of the Earth and
the observer, i.e., the difference between what modern
astronomers call the geocentric and the topocentric systems,
respectively). Degrees of altitude are measured up from the
horizon toward the zenith along a vertical circle to the
object. This gives us one of the two coordinates needed to
establish a position on the celestial sphere. The other coor-
dinate is called the azimuth, a term derived from the Arabic
as-sumut, “the ways.” It is related to the bearing of celestial
navigation (such as 22°5 east of North for NNE). Through-
out this book, we will use the convention of measuring
degrees of azimuth from the North point of the horizon east-
ward around the horizon to the vertical circle that passes
through the star whose position is to be measured.” From
the use of azimuth and altitude, the horizon system is some-
times called the altazimuth system. We will use A for
azimuth and # for altitude in formulae, and occasionally, we
will refer to the system in terms of this pair of coordinates:
(A, h).

The North Point of the horizon is defined as the point of
intersection of the horizon with the vertical circle through
the North Celestial Pole (NCP), the point about which the

7 An alternative convention is to measure the azimuth from the South
point of the horizon westward.
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sured down from the zenith along a vertical circle through the
star; z may be measured also as an angle at the center of the
sphere. An alternative coordinate is the altitude, 4, measured
up from the horizon along the vertical circle. (b) The observer’s
view. The azimuth also can be measured as an arc along the
horizon; it is equivalent to the angle measured at the center of
the sphere between the North point of the horizon and the
intersection of the horizon and a vertical circle through the star.
Drawings by E.F. Milone.

stars in the sky appear to turn. The opposite point on the
celestial sphere defines the South Point. For southern hemi-
sphere observers, the South Point of the horizon is defined
analogously with respect to the SCP. The visible portion of
the vertical circle through the NCP (or SCP) has a special
name: It is the celestial meridian or simply the observer’s
meridian. It has the property of dividing the sky into east
and west halves. Objects reach their highest altitude (culmi-
nate) as they cross the celestial meridian in the normal
course of their daily motions. Circumpolar objects may cul-
minate below as well as above the pole. At lower culmina-
tions, the altitudes are lowest, and at upper culminations,
they are highest. If neither upper or lower is indicated, the
upper is intended in most usages. Another important verti-
cal circle is perpendicular to the celestial meridian. It inter-
sects the horizon at the east and west points. Therefore, a
star that is located at the midpoint of a vertical circle arc
between the east point of the horizon and the zenith has an
azimuth of 90° and an altitude of 45°. Note that no altitude
can exceed 90° or be less than —90°, and that the azimuth
may take any value between 0° and 360°.

The azimuth coordinate may be considered in any of three
ways:

(1) The angle subtended at the center of the celestial sphere
between the North point of the horizon and the inter-
section of the vertical circle through the object and the
horizon

(2) The arc length along the horizon subtended by the angle
at the center (the observer)
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Ficure 2.3. The equatorial or “Chinese” System of spherical
astronomical coordinates: (a) The outside-the-sphere view.
Note that the right ascension (o or RA) is measured eastward
(counterclockwise as viewed from above the north celestial
pole) from the vernal equinox. The declination, §, is measured

(3) The polar angle at the zenith, between the vertical
circles through the North point and that through the
object

The altitude coordinate may be considered in either of
two ways:

(1) The angle at the center of the sphere between the inter-
section of the vertical circle through the object and the
horizon

(2) The arc length along the vertical subtended by the angle

This second way of considering the altitude, together with
the third way of considering the azimuth, permit transfor-
mations to be performed between this system and an equa-
torial system, which we describe below.

The horizon system depends on the observer’s location, in
the sense that observers at different sites will measure dif-
ferent azimuth and altitude coordinates for the same sky
object. One can, however, envisage the sky independent of
the observer, so that the stars are fixed in a framework and
can be assigned coordinates that may be tabulated for future
use. The equatorial and ecliptic systems are examples of such
systems.

2.2.3. The Equatorial or “Chinese” System

In ancient China, another system was in use that is similar
to the modern equatorial system. The modern equatorial
system enables a transient object to be located precisely
among the stars at a particular time. The reference great
circle in this system (illustrated and labeled in Figure 2.3) is
the celestial equator, the sky analog of the Earth’s equator.
It is midway between the poles of the equatorial system, the
north and south celestial poles, the sky analogs of the North
and South Poles of Earth. This is the system that is traced
out by the stars’ diurnal circles, which are concentric with
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from the celestial equator along the hour circle through the star.
(b) The observer’s view. A south-facing observer sees the right
ascension increasing along the celestial equator to the left from
the Vernal equinox. This is the (RA, ) version of the equator-
ial system. Drawings by E.F. Milone.

the celestial equator. The angular distance away from the
celestial equator and toward the poles is called declination
(from the Latin declinatio or “bending away”) and originally
referred to the distance from the celestial equator of a point
on the ecliptic, the Sun’s apparent annual path in the sky.
The declination is marked in degrees. The small circles
through the object and concentric with the celestial equator
are called declination circles because each point on such a
circle has the same declination. These small circles for all
practical purposes trace out the diurnal motions; only the
infinitesimally small intrinsic motions of objects on the plane
of the sky during their diurnal motions makes this an inexact
statement. The centers of all the declination circles lie along
the polar axis, and the radius of each declination circle can
be shown to be R cos 8, where R is the radius of the celes-
tial equator (and the celestial sphere), taken as unity, and &
is the declination in degrees of arc. The declination is one of
the two coordinates of the equatoral system. It is the analog
of terrestrial latitude, which similarly increases from 0° at
the equator to £90° at the poles. Declinations are negative
for stars south of the celestial equator. The analog relation-
ship is such that a star with a declination equal to the
observer’s latitude will pass through the zenith sometime
during a 24-hour day.

Great circles that go through the poles in the equatorial
system are called hour circles. They intercept the celestial
equator at right angles and are carried westward by the
diurnal motions. The celestial equator rises at the east point
of the horizon (and sets at the west point), so that succes-
sive hour circles intersecting the celestial equator rise later
and later from the east point. A coordinate value may be
assigned to each hour circle—indeed, if, as is usually the
case, the term is interpreted loosely, there are an infinite
number of such “hour” circles, rather than merely 24, each
with a slightly different time unit attached. An hour circle
can be numbered, as the name suggests, in hours, minutes,
and seconds of time in such a way that the number increases,
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moment by moment, at a given point in the sky, other than
exactly at a pole. At any one instant, an hour circle at the
celestial meridian will have an associated number 6 hours
different than that at the east point, or at the west point. The
second coordinate of the equatorial system makes use of the
hour circles. There are two varieties of this second coordi-
nate. One variety is called the right ascension, and the other
is the hour angle.

In modern terms and usage, the right ascension is mea-
sured from a point called the vernal equinox® eastward along
the celestial equator to the hour circle through the object.
The Sun is at the vernal equinox on the first day of spring
(in the Northern Hemisphere); from here, the Sun moves
eastward (so that its right ascension increases), and for the
next three months, it moves northward (so that its declina-
tion increases). The term right ascension derives from the
Latin ascensio and from the Greek avodopo (anaphora), a
rising or ascension from the horizon. It originally described
the time required for a certain arc on the ecliptic (like a zodi-
acal sign) to rise above the horizon. The time was reckoned
by the rising of the corresponding arc of the celestial
equator. At most latitudes, in classic phrasing, the risings or
ascensions of stars were said to be “oblique” because an
angle with the horizon made by a rising star’s diurnal arc is
not perpendicular to the horizon; but, at the equator, where
all objects rise along paths perpendicular to the horizon, the
celestial sphere becomes a “right sphere” (sphaera recta) and
the ascension a “right” one.

The right ascension increases to the east (counterclock-
wise around the celestial equator when viewed from above
the north celestial pole), starting from the vernal equinox.
Objects at greater right ascensions rise later. The analog of
the right ascension in the terrestrial system is the longitude,
which may also be expressed in units of time, but may also
be given in angular units. The analogy here is imperfect
because terrestrial longitude is measured E or W from the
Greenwich meridian, but right ascension is measured only
eastward from the vernal equinox.

As for the azimuth coordinate in the horizon system, the
right ascension can be considered in any of three ways:

(1) As the angle measured at the center of the sphere
between the points of intersection with the celestial
equator of the hour circle through the vernal equinox
and the hour circle through the star

8 The terms vernal equinox and autumnal equinox derive from the times
of year (in the Northern Hemisphere) when the Sun crosses the celes-
tial equator. “Equinox” is from the Latin aequinoctium, or “equal
night.” The actual point in the sky was called punctum aequinoctialis. In
modern usage, “equinox” applies to both the time and the point.
References to the times of year are more appropriately given as
“March” and “September” equinoxes, and “June” and “December” sol-
stices, at least at the current epoch and in the present calendar. In the
distant past, this usage could be confusing because historically civil cal-
endars have not been well synchronized with the seasons, and given
sufficient time, the month in which the equinox or solstice occurs will
change (see §4). We will use the terms as defined for the Northern
Hemisphere in their positional meanings generally and in their seasonal
meanings only to avoid ambiguity in the distant past.
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(2) As the arc along the celestial equator between the hour
circles through the vernal equinox and that through the
star

(3) Asthe polar angle at the celestial pole between the hour
circles

Similarly, as for the altitude coordinate in the horizon
system, the declination can be considered in either of two
ways:

(1) As the angle measured at the center of the sphere
between the celestial equator and the star

(2) As the arc length, along the hour circle through the star,
between the celestial equator and the star. This second
way of considering the declination and the third way of
considering right ascensions permit transformations
among the equatorial and other coordinate systems to
be made.

The declination is always given in angular measure (degrees,
minutes of arc, and seconds of arc). The symbols for right
ascension and declination are o and 9, but the abbreviations
RA and Dec are often used.

The celestial equator has a special significance because
objects on it are above the horizon for as long a time as
they are below the horizon. The word equator derives from
aequare, which means equate. When the Sun is on the celes-
tial equator, therefore, day and night are of nearly equal
length.

The equatorial system just outlined is completely inde-
pendent of the observer—it is not directly tied to the horizon
system, but there is another equatorial system that has such
a connection. Figure 2.4 shows this observer-related equa-
torial system. In the ancient world, at least some separations
of objects on the sky were measured by differences in their
rise times. The modern system that derives from this is iden-
tical to the first equatorial system except for the longitudi-
nal coordinate and the reference point. Instead of right
ascension, it uses the hour angle, an angular distance mea-
sured along the celestial equator westward from the celestial
meridian. The hour angle can be symbolized by H, or HA
(we reserve h for the altitude) and usually is also expressed
in units of time. It indicates the number of hours, minutes,
and seconds since an object was on the celestial meridian. It
therefore varies from 0 to 24 hours, but for convenience, it
is often taken positive if west of the meridian and negative
if east. The connection between the right ascension and the
hour angle is the sidereal time (see §4).

Analogously with the azimuth, and the right ascension,
the hour angle can be considered in any of three ways. The
use of the polar angle between the celestial meridian and the
hour circle through the star permits transformations
between the horizon and the (H, ) equatorial system (recall
that we sometimes refer to a coordinate system by its coor-
dinates expressed in this way). The transformation equations
and procedures are described and illustrated in the next
section.

The hour angle is also an analog of terrestrial longitude,
in that it is measured along the celestial equator, but, again,
the analogy is limited—in this case, because the hour angle
is measured only from a local celestial meridian, whereas
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FiGure 2.4. A variant equatorial system, in which the
observer’s hour angle, H, is used instead of the right ascension:
(a) The outside-the-sphere view. Note that H is measured west-
ward from the celestial meridian. The declination is defined as
in the (RA, 3) system. Note that the altitude of the north celes-

terrestrial longitude is measured from the Prime Meridian,
at Greenwich, England.

Note that the connection between the horizon and (H, )
systems is the celestial meridian, where H = 0. Figure 2.4a
illustrates how the hour angle and the declination are
defined, and how the “declination limit” of circumpolar stars
for a given latitude, ¢, can be determined.

Chinese star maps were commonly laid out in the (o, J)
manner of an equatorial system. Such a chart can be seen,
for example, in Needham 1959, Fig. 104, p. 277). In this chart,
a horizontal line though the chart represented the celestial
equator. A hand-drawn curve arcing above the celestial
equator represents the ecliptic or path of the Sun between
the vernal equinox and the autumnal equinox. Everything
on this chart represents a two-dimensional mapping of the
interior of a celestial sphere onto a two-dimensional surface.
Such charts have been found from as early as the 4th century
A.D.1n China. The data in them are older still; polar distances
(90° — §) found in Chinese catalogues have been used to date
the catalogues themselves. The coordinates are a kind of
hour angle, measured with respect to the edge of a xiu or
lunar mansion, and a polar angle, a kind of anti-declination
(Needham/Ronan 1981, p. 116). It is possible to date such
catalogues and charts because the right ascensions and dec-
linations of a star change with time, a phenomenon arising
mainly from the precession of the equinoxes (see §3.1.6).
According to Needham (1981a, p. 115ff), the chart has a
probable date of ~70 B.c.

The equatorial system became widespread in Europe only
after the Renaissance. Figure B.2 shows the polar views of
the equatorial system, looking outward toward the north
and south celestial poles. The sky centered on the north
celestial pole is also depicted in one of the most famous of
all historical star charts: the Suchow star chart of 1193 A.p.
(Figure 10.7). The circle about halfway from the center is
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tial pole is equal to the latitude, and the limiting (minimum)
declination for circumpolar objects is 90 — ¢. (b) The observer’s
view. A south-facing observer sees the hour angle increasing to
the right. This is the (HA, ) system. Drawings by E.F. Milone.

the celestial equator, which the inscription that accompanies
the chart calls the “Red Road.” It “encircles the heart of
Heaven....”

2.2.4. Transformations Between Horizon and
Equatorial Systems

All students of archaeoastronomy should know how to
transform coordinates between systems. It is easy to get
equatorial system (H, 8) coordinates from horizon system
(A, h) coordinates, given the observer’s latitude and some
knowledge of spherical trigonometry. Using the “sine law”
and the “cosine law” of spherical trigonometry, that are
described and illustrated in Schlosser et al. (1991/1994,
Appendix A) and basic trigonometric definitions and iden-
tities also given there, we depict the appropriate spherical
triangle, the “astronomical triangle,” in Figure 2.5.
The resulting transformation equations are

sin 8 =sin ¢-sin A+ cos ¢-cos h-cos A (2.1)
from application of the cosine law, and
sin = —<08 h-sin A (2.2)
cos &

from application of the sine law.
Suppose at a latitude, ¢ = 30°, the altitude of a certain star,
h =20°, and the azimuth, A = 150°. From (2.1),
sin § = sin(30°) - sin(20°) + cos(30°) - cos(20°) - cos(150°)
=0.50000 - 0.34202 + 0.86603 - 0.93969 - (—0.86603)
=-0.53376

so that & = —322260.
Substituting this value into (2.2), we find that
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north celestial pole
The a:rrronomical

horizon plane

south celestial pole celestial equator

(@)

FIGURE 2.5. (a) The horizon system and the hour-angle variant
of the equatorial system superposed. The definition of the astro-
nomical triangle for a risen star is illustrated. (b) The equator-
ial and horizon systems, but now seen from the western side of

—c0s(20°) - sin(150°)
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the celestial sphere and for a slightly different point of view, for
a star at the western horizon. (c¢) The astronomical triangle
extracted from its context on the celestial sphere. Drawings by
E.F. Milone.

TaBLE 2.2. Sine and cosine quadrants.

sin(H) = = - : -
COS(—32‘ 260) Quadrant Sign (sin) Sign (cos)
— . 1 + +
_ 0.93969 - 0.50000 = 055562 ) ' !
0.84563 3 N _
so that H = —33°753 or —33.753/15°/h= —02" 15™ = 02" 15™ 4
east.
These values make sense because of the location of the
star, low in the southern part of the sky. Because the sine
function is double valued, i.e., two angles have the same
function value: sin® = sin(180 — ©), there is another math- S .
ematical solution for H, however. In the above example, sin /1= sin ¢ - sin 8+cos ¢ cos §- cos H, (23)
therefore, a possible solution is H = 180° — (-332753) = ) —cos &-sin H
2132753, but this second solution does not make sense phys- sin A = T cosh (24)

ically. The angle is equivalent to 14" 15™ west or (noting that

213°753 — 360° = —146°247), —9" 45™, nearly ten hours east of
the meridian. It is not possible for a visible star so near the
southern horizon to be so far from the celestial meridian at
this latitude. So the alternative solution can be ruled out “by
inspection” in this case. As a rule, however, the other quad-
rant solution cannot be dismissed without further calcula-
tion. To resolve the question of quadrant, cos H may be
computed from (2.5); the actual value need not even be cal-
culated (although a numerical check is always a good idea)
because the sign of cos H alone can resolve the ambiguity.
The cosine function is double valued because, cos © =
cos(360 — ©) = cos(—0), where O is a given angle, but exam-
ination of sin©® resolves the ambiguity. The sine function is
non-negative in both the first (0° to 90°) and the second (90°
to 180°) quadrants, whereas the cosine function is non-
—360°). In quad-
270°), both are negative. Therefore, the
quadrant can be determined by the signs of both functions

negative in quadrants one and four (270°
rant three (180° —

(see Table 2.2).

From the same spherical triangle and trigonometric rules,
it is possible to express the transformation from the equa-

torial to the horizon system:

Solving (2.3) for cos H, we can test our solution:

sin A —sin ¢ - sin &

cos H = (2.5)

cos ¢ - cos &
_0.34202 - 0.50000 - (~0.53376)
B 0.86603 - 0.84563
~ 0.60890
0.73234

Note that sin H <0 and cos H > 0, a condition that holds only
in the 4th quadrant (between 270° and 360°, which is equiv-
alent to being between —90° and 0°). Therefore, H = —33°753
=—02" 15™ is the correct answer.

The quadrant ambiguity also arises in computing the
azimuth A from (2.4). The quantity cos A may be computed
from (2.1), and the signs of sin A and of cos A from Table
2.2 will decide the quadrant. The numerical values of A
computed from (2.1) and (2.4) should agree, and computing
them both provides a check on the calculation. A difference
between the two values indicates either a miscalculation or
lack of precision (insufficient number of digits) used in the
calculations. The basic point, however, is that the signs of the

=0.83144.
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sine and cosine functions are sufficient to resolve the quad-
rant question of both H and A. The same remarks hold for
any longitudinal-type coordinate that can range from 0° to
360°.

Consider the reverse of our earlier example. Now we are
given the latitude, ¢ = 30°, the declination, 8 = —32.263°, and
the hour angle, H = —33.753°. Then, from (2.3), we find the
altitude, A:

sin A = sin(30) - sin(-=32.260°) + cos(30°)
- c0s(=32.260) - cos(—33.753°)
=0.50000 - (—0.53376)+ 0.86603 - 0.84563 - 0.83114
=0.34202,

from which we get 4 =20.000°.
Solving (2.4), we can also recover the azimuth:

—c0s(—32.260°) - sin(—33.753°)

c0s(20.000)

_ —0.84563 - (-0.55561)
B 0.93969

sin A =

= 0.50000,

from which we get either A = 30.000° or (180° — 30.000°) =
150.000°.

In the present case, we know that the star is near the
southern horizon, because the star is south of the equator
and more than 2 hours east of the celestial meridian. There-
fore, the second answer is correct, A = 150°. Many cases are
less easy to decide by inspection. Equation (2.1) can be
solved for cos A, and the correct quadrant then be deter-
mined. This is left to the student as a recommended exercise
to gain experience in spherical astronomy! In the chapters
to come (especially Chapter 6), we will make frequent use
of the transformation relations to explore the possibilities of
deliberate astronomical alignments of monuments.

Ju ;;iter

Circular deferents

2. Principal Features of the Sky

2.3. Basic Motions of
the Sun and Moon

2.3.1. The Sun, the Year, and the Seasons

Now we must separate the diurnal motion shared by all
objects in the sky from the additional motions of seven dis-
tinctive objects known in antiquity: the Sun, Moon, and
naked-eye planets. We take for granted that the diurnal
motion of everything in the sky is due to the rotation of the
earth on which we stand. In the ancient world, this was a
radical view, and few astronomers held it. Diurnal motion is
perceived moment by moment, whereas the effects of the
relative movement of the Sun, Moon and planets with
respect to the stars are far more gradual. This made diurnal
motion of the fixed stars far more intuitive than any other
motion. Nevertheless, an unmoving Earth was not the only
option, and ancient astronomers knew it.

Figure 2.6 provides the alternative frameworks for under-
standing the motions: the Earth-centered and Sun-centered
systems. The geocentric perspective has been historically
dominant in human cultures, and yet the heliocentric view-
point leads to a far more economical model to account for
the relative motion of the Sun, Moon, and planets in the sky.
Prior to the Copernican revolution, and indeed throughout
most of known history, the geocentric universe was the
accepted cosmic model notwithstanding that the Greek
scholar Aristarchus (~320 B.c.) argued for a heliocentric uni-
verse and the medieval Islamic scholar al-Beruni (~11th
century) said that all known phenomena could be explained
either way. Both the constellation backdrop and the direc-
tion of the Sun’s apparent motion are predictably the same
in the two world systems, as Figure 2.6 reveals. In both
models, the Sun’s annual motion (as viewed from the north
celestial pole region) is counterclockwise. We have known

(@)

(b)

FIGURE 2.6. The classic cosmological frameworks: (a) Earth-centered and (b) Sun-centered views of the solar system. Drawings by

E.F. Milone.
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since Newton’s time that a less massive object like the Earth
is accelerated by the Sun more quickly than a more massive
body like the Sun is accelerated by the Earth.’ Neither the
true physical natures of the planets nor the physical princi-
ples that ruled their motions were known in the ancient
world." The ancient models were designed specifically to
predict these apparent motions and were basic to ancient
Greek astronomy. The successes and failures of ancient
models can be gauged precisely and accurately only if their
predictions can be compared with those of modern methods.
We start with the most familiar case, the Sun, which under-
goes reflexive motions in the sky as the Earth moves.

From the geocentric perspective, that the earth’s rotation
axis is tilted by 23°5 with respect to its axis of revolution
about the Sun, and that the direction of the rotation axis is
fixed" while the Earth revolves about the Sun is equivalent
to saying that the Sun’s path is inclined to the celestial
equator by the same 23°5 angle, so that the Sun’s declina-
tion varies by about 47° during the year. Except possibly in
deep caves and on ocean floors, the effects of the Sun’s
annual movement are dramatic for life everywhere on
Earth. In fact, the large annual variation in declination has
profoundly affected development and evolution of life on
Earth (especially, if, as is sometimes speculated, the angle of
tilt has changed greatly over the age of the Earth).

The obvious diurnal westward movement of the Sun is
shared by the Moon, planets, and stars. However, the diurnal
westward motions of the Sun, Moon, and planets are differ-
ent from those of the stars and from each other. The Sun
and Moon always move eastward relative to the stars, so that
the angular rates of their westward diurnal motions are
always less than that of the stars. The planets’ apparent
motions are more complex, sometimes halting their east-
ward motions and briefly moving westward before resuming
eastward motion. Thus, their diurnal motions are usually
slower but sometimes slightly faster than are those of the
stars.

To describe the Sun’s behavior, we can say that the diurnal
motion of the Sun is accomplished in a day and is very nearly
parallel to the celestial equator; relative to the stars, the Sun
has a slow average motion, ~360°/365%,d = 1°/d eastward,
and it requires a year to complete a circuit. Moreover,
except for two instants during the year, the Sun’s annual
motion is not strictly parallel to the celestial equator. We can

¢ Isaac Newton (1642-1727) embodied this idea in the second of his
three laws of motion in the Philosophiae Naturalis Principia Mathe-
matica (1687). His first law states that an object in motion (or at rest)
maintains that state unless acted on by an external force. The second
law more fully states that the acceleration of a body is directly propor-
tional to the force acting on it and is inversely proportional to its mass.
The third law states that every force exerted by one body on another is
matched by a force by the second on the first.

19 Tt goes almost without saying, however, that this circumstance does
not relieve dedicated students of ancient astronomy from an obligation
to obtain at least a rudimentary understanding of the nature and true
motions of planetary bodies, so that their relative motions with respect
to the Earth can be understood.

! Ignoring the long-term phenomena of precession (q.v. §3.1.6) and the
variation of the obliquity (see §2.3.3 and §4.4, respectively).
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elaborate this motion and then find an explanation for it, or,
as the Greeks would put it, “save the phenomenon.”

The Sun’s eastward motion is easily tracked on the celes-
tial sphere. Figure B1 illustrates the annual path of the Sun
(the ecliptic) as it appears on an equatorial star chart. The
sinusoid shape is the consequence of mapping the path onto
a Mercator projection of the equatorial system. The process
can be visualized by imagining the celestial sphere cut in two
along an hour circle and opened outward. In this projection,
in which all hour circles become parallel vertical lines, great
circles that intersect the celestial equator at an acute angle
appear as sinusoids. The Sun’s most northern declination
(+23°5 at present) occurs at the positive maximum of this
curve, the June solstice (the northern hemisphere’s summer
solstice), at o = 6", and its most southern declination (-23°5
at present) at the December solstice (the Northern hemi-
sphere’s winter, and the Southern hemisphere’s summer sol-
stice), at o, = 18", Like the term equinox, solstice also has two
meanings. It is a positional point on the ecliptic and an
instant of time when the Sun “stands still” (the literal
meaning of the Latin). A solstice, therefore, marks a N/S
turning point. At the equinoxes, where (and when) it crosses
the celestial equator, the Sun rises at the east point of the
horizon, and sets at the west point. The azimuth of rise (or
set) of the Sun on any given day depends both on its decli-
nation and on the observer’s latitude. Solving Eqn. (2.1) for
COS A,

sin & — (sin ¢ - sin /)

cos A= (2.6)
cosd-cos h
and on the horizon,? h = 0, so that
€OS Arisefset = ﬂ (2.7)
cos O

At d=0° cosA =0,sothat A =90° and 270°, the azimuths
of the east and west points of the horizon, respectively.
Beginning at (Northern Hemisphere) winter solstice, the
Sun rises further to the North each day, with decreasing
azimuth, until it reaches summer solstice. At that mid-
summer" date, it has the smallest azimuth of rise (i.e., most
northern). It stops decreasing and thereafter rises at greater

2 There is a slight complication in the statement that 4 = 0 indicates an
object on the horizon. This is true of the astronomical definition of alti-
tude and of the horizon, but the Earth’s atmosphere acts as a lens, the
refractive properties of which raise both the horizon and the object
toward the zenith by an amount that depends on the true altitude and
that varies with the temperature and pressure of the atmosphere along
the path to the object. Because the light from the object travels a greater
path length through the atmosphere, it is lifted higher than the horizon,
sometimes dramatically so. Thus, the apparent altitude at the astro-
nomical instant of rise is greater than zero; a common value is ~0%5. See
§3.1.3 for further discussion. For the time being, we ignore the effects
of atmospheric refraction.

3 Technically, modern astronomy assigns the beginning of the season
to the date of solstices and equinoxes, but the older usage is still
common. “Midsummer’s eve” is the night before the sunrise of the
summer solstice. When the terms “midwinter” and “midsummer” are
used here, they refer to the dates of the solstices.
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azimuths (i.e., more and more to the south). It continues to
rise further South each day until it reaches winter solstice
again. In the Southern Hemisphere, the Sun rises further to
the South each day, its azimuth increasing until summer
solstice, and thereafter decreasing again (this follows if the
azimuth keeps the same definition we have adopted for the
Northern Hemisphere).

Near the equinoxes, the solar declination changes rapidly
from day to day so that the points on the horizon marking
sunrise and sunset also vary most quickly at those times; at
the solstices, the change in declination from day to day is
very small, and so is the azimuth change."

The oscillation of its rising (and setting) azimuth on the
horizon is one clearly observable effect of the Sun’s variable
declination during the year. Half of the total amount of
oscillation, the largest difference (N or S) from the east
point, is called the amplitude.” We will designate it AA. Note
that the amplitude of rise is also the amplitude of set. The
amplitude depends on the latitude [see Eqn (2.7)]. At the
equator, ¢ = 0° and AA =23.5°. At any latitude, ¢, at rise,

sin &
cos O

AA = arc cos -90°.

(2.8)

Note that the Sun’s motion along the ecliptic includes a
north/south component that changes its declination, which
has been shown to vary the sunrise and sunset azimuth.
Because the changing declination of the Sun causes the
seasons, the azimuth variation can be used to mark them; a
good case can be made that this was done in the Megalithic
(886.2, 6.3).

The seasonal change in declination also changes the time
interval the Sun is above the horizon. This day-time interval
is twice the hour angle of rise or set (ignoring, again, the
effect of refraction and other physical effects described in
§3); so the Sun is above the horizon longer in summer than
in winter at all latitudes except the equator. Solving Eqn
(2.5) when h =0°, we get

€0 H ige/see = —tan ¢ - tand. (2.9)

At the equinoxes, when & = 0°, Hsee = 90° and 270°,
equivalent to 6" and 18" (—6"), the hour angles of set and rise,

4 This can be seen by taking the rate of change of azimuth due to a
change in declination, in Equation 2.7:

—cos 8- dd
cos 0

-dA =

rise/set

sin A

rise/set

so that

dArise/sel = LSS -dd.
cos ¢ -sin A

Tise/set

Near the equinoxes, 8 = 0, so that cosd = 1 and near the solstices,
§ = $23%, so that cosd = 0.9. Moreover, when cos¢ is small, sin A4 is
large and vice versa, so that dA changes proportionally with d§, but
with opposite sign, at all times of year. Near the solstices, when dd = 0,
dA = 0 also, so that the Sun is at a standstill, roughly keeping the same
azimuth from night to night for several nights.

1> Not to be confused with the term as used in variable star astronomy,
where amplitude refers to the range of brightness variation. See §5.8.
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respectively. At such a time, the Sun is above the horizon
half the day, so that the numbers of daylight and night-time
hours are about equal, hence, the Latin aequinoctium,
whence equinox. At winter solstice, the Sun spends the
smallest fraction of the day above the horizon; and its noon
altitude (its altitude on the celestial meridian, where H = 0)
is the lowest of the year. At summer solstice, the Sun spends
the largest fraction of the day above the horizon and its noon
altitude is the highest of the year. The symmetry in the last
two sentences mimics the symmetry of the Sun’s movements
over the year. The larger fraction of the Sun’s diurnal path
that is below the horizon at winter solstice is the same frac-
tion that is above the horizon at summer solstice. That the
ancient Greeks worked with chords subtended at the centers
of circles rather than with sines and cosines did not deter
them from discovering and making use of these wonderful
symmetries, as we show in §7.3.

A high declination object has a larger diurnal arc above
the horizon than below it, and by a difference that increases
with latitude (see Figure 2.7). The result of the low altitude
of the winter Sun means that each square centimeter of the
ground receives less solar energy per second than at any
other time of the year, as Figure 2.8 illustrates, resulting in
lower equilibrium temperatures. In practice, the situation is
complicated by weather systems, but the seasonal insolation
of the Sun, as the rate of delivery of solar energy to a unit
area is called, is usually the dominant seasonal factor. The
effects of seasonal variations and the association of these
changes with the visibility of certain asterisms (especially
those near the horizon at sunrise or sunset) was noticed
early. This association may have been a crucial factor in the
development of ideas of stellar influences on the Earth. The
changing visibility, ultimately due to the orbital motion of
the Earth, shows up in the reflexive motion of the Sun in the
sky. The Sun’s motion among the stars means that succes-
sive constellations fade as the Sun nears them and become
visible again as it passes east of them.

References to seasonal phenomena are common in the
ancient world. From Whiston’s Josephus,'® writing about
the followers of the high priest John Hyrcanus, who was
besieged by the Seleucid king Antiochus VII:

[T]hey were once in want of water, which yet they were delivered
from by a large shower of rain, which fell at the setting of the
Pleiades. The Antiquities of the Jews, Book XIII, Ch. VIII, para-
graph 2, p. 278.

Whiston’s footnote to the line ending with the “Pleiades”
reads:

This helical setting of the Pleiades was, in the days of Hyrcanus and
Josephus, early in the spring, about February, the time of the latter
rain in Judea; and this is the only astronomical character of time,
besides one eclipse of the moon in the reign of Herod, that we meet
with in all Josephus.

The “helical” (heliacal) setting (see §2.4.3) indicates a
time when the Pleiades set just after the Sun. Due to the
phenomenon of precession (see §3.1.6), the right ascension
of the Pleiades in the time of John Hyrcanus, ~132 B.c.,

' More properly, “The Works of Flavius Josephus.”
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Diurnal arcs, 0 < ¢ < 90° cases

Celestial meridian

6 =90° case
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Rising arcs, 0 <¢$ <90° and 0°cases

diurnal path for object with 8 > ¢

E Horizon 5 w

(a) (b)

FiGure 2.7. Horizon sky views of diurnal arcs as a function of
declination and latitude (a) as seen at intermediate northern
latitudes, looking south; (b) at the North Pole; (c) as seen at
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Ficure 2.8. The effects of solar altitude on ground warming.
Note that a given cross-section of sunlit area is spread out on
the ground by a factor that increases with solar zenith distance.
Drawing by E.F. Milone.

would have been ~01"45™, which is ~2 hours smaller than
today, and its declination would have placed it further south,
at 8 = 15° compared with about 24° today. Thus, the Sun
would need to be east of the vernal equinox and just west
of the Pleiades for the Pleiades to be seen setting just after
the Sun. As a rule of thumb, stars as faint as the Pleiades are
required to be ~5° or more above the horizon to be seen
clearly by the naked eye in an otherwise dark sky because
of the dimming of star light by the long sightline through the
atmosphere of an object near the horizon. The Sun must be
sufficiently below the horizon (~10°) for these relatively
faint naked eye stars to be seen above the twilight. See §3.1
for discussions of the visibility of astronomical objects and
particularly §3.1.2.2 on atmospheric extinction and §3.1.2.5
on sky brightness and visibility. A simulation of the sky
(Figure 2.9) shows that these conditions would last apply in
early-to-mid-April, and thus early spring, as indicated by
Whiston, but not in February!

From Hesiod’s Works and Days, (8th century B.c.), we find
the use of seasonal signs among the stars:

Horizon (just south of Celestial Equator)

Celestial equator

N

N N
) E
Horizons

()

intermediate northern latitudes (left) and at the equator (right),
looking east. Drawings by E.F. Milone.

When first the Pleiades,
Children of Atlas,
arise,
begin your harvest;
plough,
when they quit the skies,

In West’s (1978) translation. We can see that these verses
provide calendrical references: the visibility of well-known
asterisms at important times of day, typically sunup or
sundown. Two and a half millennia ago, the Pleiades had a
right ascension, o = 1" 15™, nearly two and a half hours less
than it has today. However, we must ask what Hesiod meant
by the first rising of the Pleiades. If they were seen to rise as
the Sun set, an “acronychal rising” as we call this phenome-
non,"” the Sun must have been almost opposite in the sky or
at o = 13-14h, and this implies the time of year—about a
month past the Autumnal equinox, a suitable enough time
for harvesting, one might think. Then when the Sun
approached the Pleiades so closely that they were no longer
visible, and they disappeared before the end of evening twi-
light (“heliacal” or “acronychal setting”), the Sun’s RA must
have been ~1-2 hours; so the time of year must have been
early spring, not an unsuitable time for planting. If a helia-
cal rising is intended, then the Sun must be least 10-20
minutes further east than the Pleiades, and so at o = 2"; this
places the time of year a month after vernal equinox, in late
April or early May. However, a contrary reading of the
“begin your harvest” passage is possible and turns out to be
more likely (see Pannekoek 1961/1989, p. 95; and Evans
1998, pp. 4-5), viz, that the heliacal rising of the Pleiades sig-
nifies the season for harvesting a winter wheat crop. More-
over, if “plough when they quit the skies” implies that the
Pleiades set as the Sun rises, the autumn planting of a winter
wheat crop would have been implied. It is well known that

17 See §2.4.3 for a full discussion of the terms “heliacal” (referring to a
rise/set close to the Sun), “acronychal” (associated with the setting sun),
and “cosmic” (connected with the rising Sun).
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Taurus

FiGure 2.9. The heliacal setting of the Pleiades in Jerusalem in
132 B.c. would have occurred no later than ~April 10, accord-
ing to the Red Shift planetarium software package (Maris,

winter wheat was grown in the ancient world, even though
at some point summer wheat was also (see, e.g., Pareti,
Brezzi, and Petech 1965, p. 385). Hesiod instructs his
brother, “Plough also in the Spring,” and in a later passage,
he cautions against waiting until the Sun reaches its “winter
turning point,” thus resolving the issue for the main plant-
ing time.

Another passage from the same work,” indicates an
important late-winter/early-spring activity:

When from the Tropic, or the winter’s sun,
Thrice twenty days and nights their course have run;
And when Arcturus leaves the main, to rise
A star shining bright in the evening skies;
Then prune the vine.

Here, the season and time are delineated, and we can inter-
pret the comment directly. The Sun has now and had then a

'8 Translation by T. Cooke, cited in R.H. Allen 1963 ed., p. 95.
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Triangulum
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London). The simulation sky map of that date shows the
Pleiades to be 4° to 5° above and the Sun ~9° below the western
horizon at ~6:40 p.m., Local Time.

right ascension of ~18h at winter solstice, and moves ~2h
east each month; thus, 60 days after the solstice, oo = 22h.
As the Sun sets, Arcturus (currently o = 14" 16™, § = +19°2;
2500 years ago, o = ~12" 18™, § = ~+31°3) rose in the east; in
the Mediterranean region, it could well have arisen from the
sea. Here, Arcturus’s higher declination in the past would
have caused it to rise earlier than it does today at a site with
the same latitude.

A late-night talk-show host in the 1990s garnered a
number of laughs by showing through interviews how few
students understood the astronomical cause of the seasons
(hopefully they were not astronomy students!). Most
thought that the varying distance of the Earth from the Sun
was the primary cause. Had they lived in the Southern hemi-
sphere, they could have been forgiven for this incorrect view,
because the Earth is closest to the Sun in January, but they
still would have been wrong. The varying distance does have
an effect on the seasons, but it is a secondary one (it would
have a greater effect if the Earth’s orbit were more eccen-
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Sun at apogee

P Orbital center

o
Stationary Earth

Sun at perigee

Ficure 2.10. The off-center circle Hipparchos model for the
eccentric solar orbit.

tric than it is). The main cause is that the Sun does not travel
along the celestial equator but along the ecliptic. Its decli-
nation changes with season and, consequently, so do the
mid-day altitude and the length of time spent above the
horizon and so does the insolation, as we have shown. The
distance of the Sun from the Earth does indeed vary around
the year, but at the present time the Earth’s passage through
perihelion, or nearest point to the Sun, occurs during the
Northern Hemisphere winter.

The primary and secondary causes for seasonal effects
were understood in antiquity. Ptolemy correctly defines the
equinoxes and solstices with respect to the relations between
the ecliptic and the celestial equator. He also states
(Almagest, Toomer tr., 1984, p. 258) that both Sun and Moon
vary in distance, and he proceeds to calculate their paral-
laxes (shift in position as viewed, for example, by observers
at different places on Earth). That the Sun’s motion on the
ecliptic is not uniform throughout the year was also known,
and this was modeled in terms of the varying distance of the
Sun from Earth. Hipparchos detected the inequality of the
seasons and deduced that the Sun moves slower in some
parts of its path than it does in others. Because in keeping
with all ancient Greek astronomers he believed that plane-
tary bodies moved on circular paths, he had to devise a way
to explain why the rate should be different from season to
season. His explanation was that the Earth did not lie at the
center of the Sun’s orbit. As viewed from the Earth, there-
fore, the Sun’s orbit, although circular, appeared eccentric.
Such an orbit was referred to as an eccentre (or sometimes
by the adjective form, eccentric). The model is illustrated
in Figure 2.10. Hipparchos’s observation was correct,
and his explanation was a reasonable approximation for his
time.

The lengths of the seasons vary slightly from year to year
as the Earth’s orbit slowly rotates. Meeus (1983b) has tabu-
lated the lengths of the seasons for each millennium year
beginning with —3000 (3001 B.c.), when autumn was the
shortest season, and notes that winter has been the shortest
only since the year 1245. The lengths of the (Northern Hemi-
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TasLE 2.3. Changes in lengths of the seasons over millennia.

Date Spring  Summer  Autumn  Winter  Year length®
2001 B.C 94429 90477 88939 91980 365.25
1B.C. 93497 92945 88969 90414 365.25
2000 A.D. 9276 9395 8984 88999 365.24

* The year lasts slightly more than 365 civil days (the numbers of days
as recorded by civil authorities), requiring the inclusion of an extra day
almost every 4 years to keep the calendar in step with the astronomi-
cal seasons.

sphere) seasons for three important epochs among others
tabulated by Meeus (1983b) are shown in Table 2.3.

Now we can tie in the motions of the Sun to the seasonal
visibility of asterisms. Because the Sun must cover 360° in
the course of a year, it must move eastward at slightly less
than 1°/day on average. As a consequence, the groups of
stars that can be seen during the night, change slowly from
night to night, amounting to an angular displacement of
about 1/12 of the sky’s circumference or 30° in a month.
Suppose a particular group of stars on the celestial equator
will be seen to rise at sunset; 10 days later, another group of
stars about 10° to the east will appear to rise at that time. In
the same interval, the stars in the westernmost 10° will dis-
appear in the evening twilight. Figure 2.11 compares the
constellations on the meridian at evening twilight, but two
months apart. Over the course of a year, Hesiod’s seasonal
signs follow. The Egyptians used asterisms to keep track of
hours, days, months, and, indeed, years! (See §4.) These
decans' were about 10° apart.

The seasonal variation of the Sun in both right ascension
and declination creates an interesting pattern in the sky over
the course of the year. The Sun’s eastward motion, combined
with its apparent northern motion from winter to summer
(and southern motion from summer to winter), appears to
spiral through the sky; some cultures saw the weaving of a
pattern. With sufficient patience and endurance, it can be
demonstrated! A camera recording the noon position of the
Sun a regular number of days apart over the course of a year
will produce a figure-eight pattern called an analemma. This
figure marks the variation in the Sun’s instant of arrival at
the meridian and its variation in declination, and so it is a
marker of the seasons and of solar time. It will be discussed
in later chapters (e.g., §4.1.1.2) for both reasons. For many
cultures, from Britain to Egypt, the return of the Sun from
its winter quarters and its return from darkness every
morning were direct analogs of an endless cycle of death and
rebirth. As such, they became mystical, religious events to
be observed and celebrated and, in the highest plane of the
human spirit, appropriated.

1 The decans were depicted as two-legged beings, sentries guarding the
portals of the night. From the tomb of Seti I (~1350 B.c.) (Neugebauer
and Parker, 1969, plate 3).
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Figure 2.11. Simulation of constellations centered on the
meridian at the same mean solar time in the evening (2100
MST), but two months apart: (a) Jan. 24, 1985, (b) Mar. 24,
1985, as seen from Calgary, Alberta. The equatorial grid is
shown with the solid line, with declinations indicated on the
extreme right and a few right ascensions at the bottom. The

2.3.2. The Zodiac

The Sun’s annual journey involves visits to successive areas
of the sky. Twelve constellations follow one another in a
band around the sky. They straddle the ecliptic, the path of
the Sun during its annual journey among the stars. The band
of constellations is called the zodiac, from the Greek
Codlakog kvKAog (zodiacos kuklos), “circle of the

[ Fornax—

=4
"]

00h 23h

(a)

ecliptic is shown arching across the field. The horizon grid is
shown with a lightly broken line, with altitudes indicated on the
extreme left and a pair of azimuths marked on the vertical circle
arcs radiating from the zenith. Produced by E.F. Milone with
TheSky software package (Software Bisque, Golden, CO).

animals”). The naming of most of the zodiacal constellations
took place in Mesopotamia. According to Neugebauer
(1969, p. 102ff), the subsequent assignment of the zodiacal
constellation names to a series of 30° segments of the sky
along the ecliptic was probably first carried out in the 4th
century B.c. (for alternative views, see §7.1.2.3). The uniform
lengths of exactly 30° each created a longitude-like coordi-
nate by which positions could be assigned to the stars. These
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Ficure 2.11. Continued.

12 constellations were thus turned into signs.”® The Greco-
Roman zodiac (with the symbol for each sign) is shown with
the Mesopotamian and Indian equivalents in Table 2.4, in
the order in which they are visited by the Sun during the
year. This is also the order in which the constellations rise
and the order of increasing right ascension. The series starts

2 A similar shift from 28 (sometimes 27) zodiacal asterisms (repre-
senting lunar “houses,” “lodges,” or “mansions,” that is, places for the
Moon to “stay” among the stars during its monthly sojourn around the
Earth), to 27 signs, beginning with the vernal equinox, occurred in
India.

(b)

with Aries and progresses eastward. Although the attested
date of the zodiac’s origin is late, the fact that the spring
equinox was actually in Aries between 2000 and 100 B.c. pro-
vides evidence for a much earlier, if undocumented, usage.
The boundaries of the modern zodiacal constellations as
established by the International Astronomical Union are
not uniform in extent, but the boundaries of the zo
diacal signs are. Each zodiacal sign is 18° high, centered
on the ecliptic. The Greeks fixed the widths of each of
the signs at 30°. The zodiac had an important mathematical
use in the ancient world: The number of degrees from
the beginning of each sign was used to record planetary
positions. This measurement scheme, in use in Ptolemy’s
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TaBLE 2.4. Zodiacal constellations.

Celestial/
Latin ecliptic
(Ptolemaic) Babylonian Indian Symbol longitude®
Aries LUHUN.GA Mesa Y 0°
Taurus MUL Vrsabha g 30°
Gemini MASH Mithuna g 60°
Cancer NANGAR Karka 69 90°
Leo UR.A Simha Q 120°
Virgo AB.SIN Kanya mp 150°
Libra zi-ba-ni-tu Tula Fas 180°
Scorpio GIR.TAB Vrscika m, 210°
Sagittarius PA Dhanus v 240°
Capricorn SUHUR Makara AN 270°
Aquarius GU Kumbha o 300°
Pisces zib Mina )2l 330°

* In ancient use, (celestial) longitude was measured according to place-
ment within each sign, although the 0° longitude origin was not always
taken at the western edge (or “first point”) of the signs because of the
westward shift of the vernal equinox over time, with respect to the stars.

time,” was used in star catalogues well into the 19th century.
Subsequently, this expanded into the celestial longitude
system,” which we discuss next.

2.3.3. The Ecliptic or “Greek” System

The path of the Sun, the ecliptic, is the reference great circle
for this coordinate system. The ecliptic is the sinusoid cross-
ing the celestial equator in Figure B.1, and in Figure 10.7, it
can be seen as the off-center circle crossing the celestial
sphere. In ancient China, the ecliptic was known as the
“Yellow Road.”

The word “ecliptic” (from Latin, “of an eclipse”) can be
traced back to Greece. It is the path on which eclipses can
and do occur, because it is the path of the Sun, and the Moon
intercepts this path in two places. Curiously, for the Sun’s
path, Ptolemy does not use the term ékAeintikog (“eclipti-
cos”—he reserves this term to mean exclusively “having to
do with eclipses”), but the phrase “6 A0&og Ko dLa UEGOV
v Lodiwv kvKAoc” (“ho loxos kay dhia menon ton zodion
kuklos”; “the inclined circle through the middle of the zodi-
acal signs”) (Toomer 1984, p. 20). Figure 2.12 illustrates the

! Thus, in the Almagest (described in §7.3.2), the longitude of o Ori
(Betelgeuse), “The bright, reddish star on the right shoulder” with mag-
nitude “<1,” is given as “II [Gemini]” 2°, and its latitude is given as
—17°; that of B Ori (Rigel), “The bright star in the left foot, ...” with
magnitude “1,” is given as & [Taurus] 19%°, and its latitude —31';°; and
that of o CMa (Sirius), “The star in the mouth, the brightest, which is
called ‘the dog’ and is reddish”, of magnitude “1,” is given as II [Gemini]
17%°, and its latitude as —39%°.

2 The Berliner Jahrbuch changed usage in 1829, the British Nautical
Almanac and the French Connaissance de Temps in 1833, to the modern
ecliptic system of continuous degrees of celestial longitude from the
vernal (March) equinox.
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north ecliptic pole

celestial
latitude ()

ecliptic

ecliptic plane
(plane of Earth’s orbit)

south ecliptic pole

FiGure 2.12. The ecliptic or “Greek” system of celestial co-
ordinates. The ecliptic is the reference circle, representing the
annual path of the Sun. The poles are the north and south eclip-
tic poles, from which longitude circles radiate. The origin of the
coordinates is the vernal equinox, from which the celestial (or
ecliptic) longitude increases to the east. The celestial (or eclip-
tic) latitude is measured positive north and negative south of
the ecliptic. Drawing by E.F. Milone.

system, showing the north and south ecliptic poles, the
secondary circles, called celestial longitude circles, and the
coordinates, celestial longitude (A) and latitude (B).

Celestial longitude is measured in degrees from the vernal
equinox, eastward, along the ecliptic, i.e., counterclockwise
as viewed from outside the sphere looking down on the
north ecliptic pole. Celestial latitude is measured in degrees
north (+) or south (-) of the ecliptic. The terms “longitude”
and “latitude” (from the Latin longitudo, “length,” and lati-
tudo, “width”) ultimately derive from the Greeks, but
Ptolemy uses the term nAdtog (“breadth”) for any vertical
direction, i.e., declination as well as celestial latitude
(Toomer 1984, p. 21). The use of the modern qualifier “celes-
tial” is to avoid confusion with the unrelated terrestrial
system, which has a closer counterpart in the equatorial
system; “ecliptic longitude” and “ecliptic latitude” are also
in current use. Circles parallel to the ecliptic are called celes-
tial latitude circles. They are “small” circles, parallel to, but
not concentric with, the ecliptic. An arc contained between
two celestial longitude circles is smaller than is the corre-
sponding arc on the ecliptic by the factor cosf. As for the
other coordinates we have discussed thus far, the quantity
celestial longitude can be considered in either of three ways,
including a polar angle measured at one of the ecliptic poles.
Similarly, the celestial latitude can be considered in either
of two ways, including the length of arc between the eclip-
tic and the object of interest along a longitude circle. With
them, we can now consider transformations to and from the
(RA) equatorial system. The link between them is the
“obliquity of the ecliptic.”

Figure B.1 illustrates the ecliptic as it is seen on an equa-
torial chart. The angle between the celestial equator and the
ecliptic is called the obliquity of the ecliptic. This is the cause
of the seasons, as we have noted above, because when
0 < 8¢ < +€, the Sun’s rays fall more directly on the north-
ern latitude zones, and when —¢ < §; < 0, they fall more
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FiGure 2.13. The equatorial and ecliptic systems (a) superposed on the celestial sphere and (b) the spherical triangle from which

the transformations are derived. Drawings by E.F. Milone.

directly on southern latitude zones. With spherical trigonom-
etry, it can be demonstrated that the maximum and
minimum declinations along the ecliptic are +& and —¢,
respectively. In the IAU 1976 System of Astronomical Con-
stants, the value of the obliquity of the equinox was € = 23°
26" 21.448” = 232439291 for the epoch 2000 A.p., but it varies
with time [cf. §4.4, (4.22) for the rate of variation of €].

Figure 2.13 shows both equatorial and ecliptic systems
together and the spherical triangle used to transform the
coordinates of one system into the other.

The transformation equations may be obtained from
applications of the sine and cosine laws of spherical astron-
omy to yield

sinf3 =cos € -sin d+sin € - cos § - sin «, (2.10)
cosA=cosa- COSS, (2.11)
cos 3
sind=cose-sinf3+sine-cosP-sinA, (2.12)
cos oL = M (213)
cos 9

where o is the right ascension (here, expressed in angular
measure: 15° = 1"), § is the declination, B is the celestial lat-
itude, A is the celestial longitude, and € is the obliquity of the
ecliptic (see §2.4.5 for variations in this quantity over time).

The caution regarding quadrant determination that we
urged earlier (§2.2.4) is appropriate here too. Table 2.2
should resolve any ambiguities.

As an example, suppose we wish to find the ecliptic coor-
dinates of an object at o = 18"00™00° or 270°00000 and & =
+28°00°00” or 28°00000. At the current epoch, assuming a
value € = 23441047, from (2.6),

sin 3 =0.917470 - 0.469472 — 0.397805 - 0.882948 - (—1.000000)
=0.430726 +0.351241 = 0.781967,
so that

B = arcsin(0.781967) = 51°¢ 44103 or 180 ° —51°¢ 44103
=128°2 55897,

from the rules described in §2.2.4. It is obvious that the first
value is correct because B < 90° by definition. From (2.7),

_0.000000 - 0.882948
- 0.623320 -

Therefore, A = 90° or 270°.

Because the object is not too far from the celestial equator
and o = 18" 270° is the correct value. If the quadrant were
not so obvious, however, one could use (2.8) to resolve the
issue:

0S A

. sin 6 — cos € - sin
sin A = B

sin € - cos
_ 0.469472 - 0.917470 - 0.781967
B 0.397805 - 0.623320

:_1’

confirming that A =270°.

The use of celestial longitudes spread over 360° is a rela-
tively modern development. The Babylonians and Greeks
used degrees of the zodical sign, measuring from the western
edge. Ptolemy, for example, gives the position of the star €
UMa as “The first of the three stars on the tail next to the
place where it joins [the body]” as {2 [Leo] 12%° of longi-
tude, and +53'° of latitude (Toomer 1984, p. 34). The equiv-
alent value of celestial longitude is A = 132°10". Ptolemy’s
values differ from current values because of precession
(83.1.6) and the variation of the obliquity of the
ecliptic (§4.4), and possibly other factors (see §7.3.2 for an
extensive discussion of whose data were included in this
catalogue).

2.3.4. The Motions of the Moon

The Moon orbits the earth on a path close to, but not on,
the ecliptic, changing phase as it does so and basically repli-
cating the motion of the Sun but at a much faster rate, and
more variable celestial latitude. The Sun travels its path
in a year, and the Moon in a month. In Figure 2.14, the
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FiGURE 2.14. Lunar phases during the synodic month: (a) The synodic month as viewed geocentrically. (b) Lunar phases for a portion
of the month as the Moon-Earth system orbits the Sun. Drawings by E.F. Milone.

phase advancement of the Moon during its revolution is
chronicled.

Divided vertically, the figure differentiates crescent (less
than a quarter Moon) from gibbous phases (more than a
quarter Moon). Divided horizontally, it separates waxing
from waning phases. The diagram serves to demonstrate the
relative motion of the Moon with respect to the position of
the Sun in the sky; one full cycle is the synodic month, or the
month of phases.

As the Moon revolves around the earth, its declination
changes in the course of a month, and as it does so, its
diurnal arc across the sky changes, just as the Sun’s diurnal
arc changes over the course of a year. The full Moon,
because it is opposite the Sun, rides high across the (North-
ern Hemisphere) midwinter sky, and low across the mid-
summer sky. The diurnal arcs of the Moon at other phases
can be understood similarly. Although the Sun’s rise and set
points on the horizon vary slowly from day to day, those of
the Moon change much more rapidly from day to day. As
the Moon circuits the Earth, the Earth and Moon are cir-
cuiting the Sun; in a geocentric context, in the course of a
month, the Sun moves East among the stars by ~30°. This
means that the synodic month must be longer than the time
it takes for the Moon to encircle the Earth with respect to
a line to the distant stars. This affects lunar and solar calen-
dars (see §4.2, especially, §4.2.1), and the occurrence of
eclipses (§5.2).

The motion of the Moon is even more complex and inter-
esting than that described thus far. For one thing, the Moon’s
declination is sometimes less and sometimes more than is
the Sun’s extreme values (+23°5 at present). This means that
the amplitude of its azimuth variation over the month varies
from month to month, in an 18.6-year cycle. This fact is of
importance in studying alignments to the Moon, as we show
throughout §6. For another, the Moon’s distance changes
during the course of the month by about 10%, and this
affects its apparent (angular) size.” In addition, the place in

» The geometric expression is r 6 = D, where r is the distance of an
object, 0 its angular diameter in radian measure (= 6° x ©/180), and D

the orbit where the Moon achieves its closest point to orbit
shifts forward with time. These changes also affect eclipse
conditions. To appreciate the full complexity of its behavior
in the sky and the roles these play in calendar problems and
in eclipse prediction, the moon’s orbit must be examined.

2.3.5. Orbital Elements and the Lunar Orbit

In ancient Greece and indeed up to the time of Johannes
Kepler [1571-1630], all astronomers assumed the orbital
motions of Sun, Moon, planets, and stars either to be circu-
lar or a combination of circular motions. Modern astronomy
has removed the stars from orbiting Earth and has them
orbit the galactic center, which itself moves with respect to
other galaxies. The Sun’s motion is reflexive of the Earth’s
and comes close to that of a circle, but not quite. The orbits
of the other planets can be similarly described; two of them,
Mercury and Pluto, show wide departures and some aster-
oids and most comets, even more. The combination of a suf-
ficient number of circular terms can indeed approximate
the motions, but the physical orbits are more generally
elliptical.®*

One can show from a mathematical formulation of
Newton’s laws of motion and the gravitational law that in a
two-body system, an elliptical or hyperbolic orbit can be
expected. If the two objects are bound together (we discuss
what this means in §5), the orbit must be an ellipse. Such an
ellipse is characterized usually by six unique elements, which
we describe and discuss in the next section.

is its diameter in the same units as r. This can be called a “skinny angle
formula” because it is an approximation for relatively small values of
0. A more general expression would be D/2 = r sin(6/2).

* An ellipse can be described geometrically as the locus of all points
such that the sum of the distances from the two foci to a point on the
ellipse is constant. One may construct an ellipse by anchoring each end
of a length of string between two points and, with a pencil keeping the
string taut, tracing all around the two points, permitting the string to
slide past the pencil in doing so. In orbits, only one focus is occupied,
and the other focus and the center are empty.
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FiGure 2.15. The relationship between the angular speed of an
object and distance. Drawing by E.F. Milone.

As an object moves in an ellipse, its distance from a focus
changes. When nearer the Sun, the planets move faster than
they do when they are further away from it. These facts are
encapsulated in the first two “laws” (limited “descriptions,”
actually) of the planets’ behavior, first formulated by Kepler
in 1602. The speed variation arises because the line joining
planet to Sun sweeps out the area of the orbit in a uniform
way: The areal speed is constant. So the Earth moves faster
when it is closer to the Sun, and the Moon moves faster
when it is closest to Earth. And this is what seems to occur
in the sky: From the Earth, the Sun’s motion appears to
carry it to the east at a faster rate when it is closer to earth,
both because of Earth’s orbital motion and because the
angular speed of an object moving across our line of sight at
a given linear speed increases as the distance to it decreases.
The motion of the Moon is also more rapid near perigee.
Figure 2.15 illustrates the effect.

In the year 2000, the Earth was at perihelion (geocentri-
cally, the Sun was at perigee) on Jan. 3 and at aphelion (Sun
at apogee) on July 4. In the same year, the Moon was at
perigee 13 times: Jan. 19, Feb. 17, Mar. 15, Apr. 8, May 6,
June 3, July 1, July 30, Aug. 27, Sept. 24, Oct. 19, Nov. 14,
and Dec. 12; it was at apogee 14 times, starting on Jan. 4, and
ending on Dec. 28. The daily rate of motion of the Sun along
the ecliptic was ~1°1"10” in early January but only ~57'13',"
in early July compared with an average motion of
360°/365%24 = 59’873 (see Section C of the Astronomical
Almanac for the year 2000). The Moon’s motion is much
more rapid, and because the eccentricity is higher than for
the solar orbit, the difference in motion is greater from
perigee to apogee.

The orbital elements are illustrated in Figure 2.16:

(1) The semimajor axis, a, half the major axis, is the time-
averaged distance of the orbiter to the orbited. This element
defines the size of the orbit and depends on the
orbital energy; the smaller the distance, the greater the
energy that would have to be supplied for it to escape from
the Sun.

(2) The eccentricity, e, of the ellipse may be obtained from
taking the ratio of the separation of the foci to the major
axis, which is just the length of the line joining the perihe-
lion and aphelion. Although a scales the orbit, e defines its
shape. From Figure 2.16a, it can be seen that the perihelion
distance is a(1 — e) and the aphelion distance is a(1 + ¢). For
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the Earth’s orbit, e = 0.017, so that its distance from the Sun
varies from the mean by +0.017a or about 2,500,000 km.
The eccentricity of the Earth’s orbit is not so important a
factor in determining the climate as is the obliquity, but it
does cause a slight inequality in the lengths of the seasons,
as we noted earlier. The orbit of the moon is sufficiently
eccentric that its angular size varies sharply over the anom-
alistic month (the time for the Moon to go from perigee to
perigee; see below).

(3) The inclination, i or 1, the angle between the reference
plane—in the case of the Moon and planets, the ecliptic
plane—and that of the orbit, partially fixes the orbital plane
in space, but another is needed to finish the job (see Figures
2.16b and c).

(4) The longitude of the ascending node, Q, is measured
along the ecliptic from the vernal equinox to the point of
orbital crossover from below to above the ecliptic plane.
This element, with i, fixes the orientation of the plane in
space.

(5) The argument of perihelion (for the moon, perigee is
used), o, measured from the ascending node in the direction
of orbital motion. This element fixes the orientation of the
orbital ellipse within the orbital plane.

(6) The epoch, Ty, or T or sometimes E,, is the sixth
element. In order to predict where the object will be in
the future, a particular instant must be specified when the
body is at some particular point in its orbit. Such a point
may be the perihelion for planets (or perigee for the
Moon) or the ascending node, where the object moves
from south to north of the ecliptic plane; however, it may
be an instant when the object is at any well-determined
point in its orbit, such as the true longitude at a specified
instant.

(7) Sometimes a seventh element is mentioned—the side-
real period, Pgq, the time to complete a single revolution
with respect to a line to a distant reference point among the
stars.” Py, is not independent of a because the two quanti-
ties are related through Kepler’s third law,” but the Sun’s
mass dominates the mass of even giant Jupiter by more than
1000:1. For the high precision required of orbital calcula-
tions over long intervals, it is necessary to specify this or a
related element (the mean rate of motion).

» A sidereal period usually is not expressed in units of sidereal time;
mean solar time units such as the mean solar day (MSD) are used, in
general, and the designation is day (d, sometimes in superscript). This
need not be the same as the local civil day, i.e., the length of a day in
effect at a particular place. See §4.1 for the distinctions.

% The third law relates the period, P, to the semimajor axis, a. In
Kepler’s formulation, the relation was P2 = &, if P is in units of the
length of the sidereal period of Earth and a is in units of the Earth’s
semimajor axis. In astronomy generally, ag defines the astronomical
unit. From Newtonian physics, it can be shown that the constant of pro-
portionality is not 1 and is not even constant from planet to planet:
P? = (4r/[G(M + m)]} a°, where G is the gravitational constant,
6.67 107" (MKS units), and n1 and % are the masses of the smaller and
larger mass bodies, respectively.
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Figure 2.16. Elements and other properties of an elliptical orbit:
(a)“Plan” and (b) “elevation” views, respectively—The scale and
shape of the orbit are established by the semimajor axis, a, and
the eccentricity, e. The orientation of the orbital plane with
respect to the ecliptic is set by the inclination, 7, and the longitude
of the ascending node, €; the orientation of the orbit within the
plane is fixed by the argument of perihelion, ®. The in-
stant of the location of the planet at the perihelion, r = a(1 — e)
(or, when e = 0, at the ascending node), T,, is the sixth
element; the seventh, the period, P, is not an independent

The elements of the lunar orbit at a particular date are
shown in Table 2.4. Given the elements, one may find, in prin-
ciple, the position of an object in the orbit at any
later time. The angle swept out by the Sun-planet line is called
the true anomaly (v in Figure 2.16b). The position of the
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element since it is related to a by Kepler’s third law. (c) “Slant
view”—The position of the planet in Cartesian coordinates aids
the transformation from the orbit to the sky. The relationship
between the orbital and ecliptic coordinates are found by suc-
cessive rotations of the axes shown. (d) The relations between
the celestial longitude and latitude and the Cartesian ecliptic
coordinates—A further transformation to equatorial coordinates
can be carried out through spherical trigonometry or through a
transformation of Cartesian coordinates. See Schlosser et al.
(1991/1994) for further details. Drawings by E.F. Milone.

object in its orbit at any time ¢ since perihelion passage (7y)
can be specified through a quantity called the mean anomaly:

M =2—n(t—To).

- (2.14)
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This angle describes the position of a planet that would
move at the same average rate as the planet, but in a circu-
lar orbit. The mean anomaly is related to the true anomaly
by the approximation

1)—M:23—%e3 ~sinM+%e2 -sin 2M

+ B Ginama, (2.15)
12

This is merely the difference between the actual position of
the object in the orbit and the position it would have if it
moved at a constant rate. The elements Q, ®, and T, and are
sometimes combined with each other or with the true or
mean anomaly to produce longitudes. For example, the lon-
gitude of the perigee (or longitude of the perihelion),

d=Q+o, (2.16)

is a very curious angle because it is measured first in the
ecliptic, from the vernal equinox to the ascending node, and
then in the orbit, in the direction of orbital motion. Another
example is the mean longitude, € (called in the Astronomi-
cal Almanac, L),”

l=0+M=Q+0+nt-T), (2.18)

where n is the mean motion = 360°/P, and ¢ is the time of
observation or calculation. Therefore, the mean longitude of
the epoch, €, is merely the value of € when ¢ is T (the instant
that defines the epoch):

e=lt=TH=0 (2.19)

(Danby 1962, p. 156). Please note that this epsilon is not the
obliquity of the ecliptic. Another parameter that is some-
times mentioned is the argument of the latitude, u, the angle
between the ascending node and the object in its orbit, so
that we can also express the true longitude in terms of the
argument of latitude:

L=Q+u. (2.20)

The mean elements of the Moon’s orbit are given in Table
2.5. Only mean or average elements can be given because
they vary with time, usually both secularly (rate change with
constant sign, i.e., always increasing or always decreasing)
and periodically. Danby (1988, App. C, pp. 427-429) pro-
vides for higher order terms for the time variation of the
elements of the major planets. Now we are in a position to
discuss why the elements change with time.

We can approximate the orbits of the Moon or some
planet with a set of orbital elements for an instant of time
(for some planets, considerably longer), but the elements of
the ellipse vary over time because of perturbations of the
other bodies (and, especially in the case of the Earth-Moon
system, nonuniform mass distributions in the bodies them-
selves). The fly in the ointment is that the Earth-Moon is

¥ Danby uses L to define the “true longitude” of the planet:

L=0+v=Q+0+v. (2.17)
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TaBLE 2.5. Lunar orbit mean elements (2000.0).

Element Mean value Main variation

Semimajor axis (a) 384,400km +3cm/yr

Eccentricity (e) 0.054900489 +0.0117

Inclination® (1) 521453964 = 5°8'43” 19’

Longitude of 1252123953 —02052 953 76/day
ascending node® (Q)

Argument of perigee® (m) 837186346 +0°111 403 55/day*

Epoch (T,) 2000 Jan 19.9583

* With respect to the ecliptic; the inclination w.r.t. the celestial equator
varies from 18728 to 28°58. The period of the 9’ variation is 17¢33.
 The value and its variation are correct only for 2000; the current
Astronomical Almanac should be consulted for accurate calculation.
The major periodic variation of Q is +100".

¢ This also includes the motion of the ascending node and is thus the
variation of the longitude of perigee. The major periodic variation of ®
is £12°20".

4 An instant of perigee during the year 2000.

really an Earth-Moon-Sun system, a three-body system, for
which there is no complete general solution.

If an infinitesimally small but fully massive Moon moved
around an infinitesimally small but fully massive Earth (i.e.,
the mass of each body was fully concentrated at its center)
and if the effects of the Sun and all other planets could be
ignored, the Moon’s orbit would be a simple ellipse with the
Earth at one of the two focuses of the ellipse. These condi-
tions are not met, and as a consequence, the orbit is any-
thing but simple. Newton used to say that his head ached
when he thought about the Moon.

The perturbations on the Moon are particularly great
because it moves nearly on the ecliptic, but not exactly on
it. That the orbit should be near the ecliptic is curious,
because as a satellite of the Earth, we could expect it to
move near the plane of the earth’s equator, which is the case
for most of the other major satellites of the planets. Our
satellite is, however, far enough from the Earth at present
that its motion is effectively dominated by the Sun, so that
the Earth and Moon form a kind of double-planet system.
Even so, it is close enough to the Earth to undergo, as well
as cause, tidal effects that have slowed the Moon’s rotation
to equal its orbital period, and to result in an increasing dis-
tance from the Earth, and an increasing length of month.
Tidal effects on the Earth are resulting in a slowing down of
Earth’s rotation (see §4.5), which affects the timing of
ancient phenomena, such as eclipses (see §5.2, especially,
§5.2.1.3).

The solar system is an n-body system, and each object is
accelerated by all the other objects. Whereas for a three-
body system, a special solution is found for the circular orbit
case, when the third body has negligible mass, there is
no analytic solution for n > 3, and no general solution for
n > 2. By Newton’s gravitational law, the force acting on an
object depends on the mass of the perturber and on the
inverse square of the distance from the perturber. The accel-
eration depends on the size of that force and inversely on
the mass of the object undergoing the acceleration. The
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acceleration due to each perturber adds in vector fashion;
this means that the direction of each perturber must be
taken into account. The net acceleration of the body is
slightly different from that due to the Sun alone. In the next
instant, the acceleration causes a change in the speed and
direction of motion (together called the velocity, a vector).
In the next instant, the slightly altered velocity causes a
slight shift in position of the object, causing its orbit to
change. In this way, the orbit of each object is perturbed
away from the elements that characterize it at some partic-
ular epoch. In the Earth-Moon system, the Earth may be
considered a major perturber of the Moon’s orbit about the
Sun; the Earth’s slightly irregular mass distribution is an
additional source of perturbation. There are two types of
perturbation effects: those which cause an element to oscil-
late about a mean value over time, and those which cause a
variation of constant sign with time; these are called peri-
odic and secular variations, respectively. Table 2.5 gives both
types, although only the largest of the periodic variations are
shown. The perturbations must be taken into account in
lunar orbit calculations; without them, the results could be
wrong by several degrees.

The average variations in the elements (from Danby 1962,
p. 278; 1988, p. 371) are e: £.0117; 1: £9 arc min; Q (variation
about its average motion): 100 arc min; and ® (variation
about its average motion): 12°20". The average motion of the
ascending node is about —19°35/y and that of the perigee is
about +40°/y. The average rates given in Table 2.5 are appro-
priate only for the year 2000; for high-precision purposes,
data should be taken from the current almanac.

Even though they lacked an adequate physical theory to
understand the motions they observed, the astronomers
from ancient Greek times to those of the Copernican era
were capable of discerning the effects of the perturbations.
The variations in some of the elements of the Moon’s motion
are large enough to have been noticed in the ancient world.

The most important term in the difference between the
true and mean anomaly expressed in (2.15) is

2e sin M = (6°17") - sin M, (2.21)

but because of the perturbations in ® and e, an additional
term should be included to describe v — M adequately:

(1°16') - sin2® — 2Ae + Ayy), (2.22)

where Ao and Ay, are the celestial longitudes of the Sun and
Moon, respectively. The perturbations in e and in ® are
caused by the Sun’s position® at perigee and apogee. These
result in a large perturbation in the Moon’s celestial longi-
tude, with an amplitude of ~1°16” and a period of 31980747
(Brouwer and Clemence 1961, p. 329). The effect was noted
by Ptolemy on the basis of observations by himself and
Hipparchos (cf. Toomer 1984, p. 220) and is known as the
evection.

Another large effect on the Moon’s celestial longitude,
the variation, was discovered by the Danish astronomer

% The Sun takes ~205%9, not half a tropical year ~182% to move from
the longitude of lunar perigee to that at apogee because of the advance-
ment of the apsidal line of the Moon’s orbit.
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Tycho Brahe [1546-1601]. It has an amplitude of 39" and a
period of P,/2; it is maximum at the quadratures (quarter
Moon phases) and vanishes at oppositions and conjunctions
(full and new Moons) (Brouwer and Clemence 1961, p. 626).
The “variation” is large enough to have been detected in the
ancient world; yet there is no explicit mention of it by
Ptolemy. This has been attributed to the circumstance that
the Greeks were working mainly with eclipse data—and
therefore with data taken at oppositions (for lunar eclipses)
and conjunctions (solar eclipses). In any case, the possibil-
ity that Ptolemy discovered this effect has been discounted
(cf. Pedersen 1974, p. 198). It is interesting to note that
Ptolemy’s theory of the Moon’s motion predicted a varia-
tion in angular size of the Moon that was clearly contra-
dicted by observational data that must have been known to
him. See §7.3.2 for a further discussion. We also consider the
observability of the variation of the inclination by much
earlier observers (Megalithic!) in §6.2.

The month is a unit of time associated with the Moon, and
we will discuss the month in the context of time and time
intervals in §4.14, but there are actually several kinds of
months, which help to highlight aspects of the Moon’s
complex motions. With one exception, they are the periods
of the Moon in its orbit with respect to particular reference
points or directions:

(1) The sidereal month is the orbital or the sidereal
period; it is the period of revolution of the Moon around the
Earth with respect to a line to a distant star.

(2) The tropical month is the interval between successive
passages of the Moon through the vernal equinox. Due to
precession (from the long-term wobbling of the Earth, as the
Moon and Sun act to pull the equatorial bulge into the eclip-
tic plane; see §3.1.3), the vernal equinox is slowly moving
westward in the sky at a rate of about 50”/year. Therefore,
the tropical period is slightly shorter than the orbital or side-
real period.

(3) The draconitic, draconic, or nodal month is the inter-
val between successive lunar passages through the ascend-
ing node. Because the node is regressing at a relatively high
rate, the Moon meets it much sooner than it would a line to
a distant star. It is therefore much shorter than the sidereal
month. Figure 2.17 illustrates the changing appearance of
the lunar orbit with respect to the (a) horizon and (b) eclip-
tic because of the regression of the nodes, and the chang-
ing diurnal arcs during the month from major to minor
standstill.

(4) The anomalistic month, the period from perigee to
perigee. The argument of perigee, the angle between ascend-
ing node and the point of perigee in the orbit, is advancing,
i.e. moving eastward in the direction of the Moon’s orbital
motion, and so the anomalistic month has a longer length
than the sidereal month.

(5) The synodic month is the month of phases, the inter-
val from new Moon to new Moon. It is the period with
respect to a line between the Earth and the Sun. The Earth’s
motion around the Sun shows up in the eastward shift of
the Sun, that is, in the direction of the Moon’s orbital
motion. The Moon’s catching up to the Sun causes the
synodic month to be longer than the sidereal month.
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FiGure 2.17. The changing appearance of the lunar orbit with respect to (a) the horizon and (b) the ecliptic because of the regres-
sion of the nodes. For clarity, only the major standstill of the Moon is illustrated. Drawing by E.F. Milone.

TaBLE 2.6. Lengths of lunar months.

Type of month Length
Pga 279321 662 = 27907"43™1136
Pyop 279321 582 =27 07 43 04.7
Purac 279212 221 =27 05 05 35.9
Pinom 279554 550 =27 13 18 33.1
Py, 299530 589 =29 12 44 02.9

Because it is not an integral number of days, this has had
important consequences for calendars involving the moon.
When we mention the word lunation, we usually refer to the
synodic month.

(6) The civil month is the unit of month in use within a
certain political jurisdiction. The modern civil month has 28,
29, 30, or 31 integral days, depending on the particular
month and year. It evolved from the synodic month (see
§4.2).

The lengths of these various types of months are summa-
rized in Table 2.6; the synodic and civil months will be
further discussed in §4.1.4, whereas the implications of the
lunar motions for the azimuths of rise and set and the visi-
bility of the Moon will be discussed in §3.2 and for eclipses
in §5.2.

The Moon’s motions are difficult to follow, and it is to the
great credit of the ancient observers that they made as much
sense of these motions as they did. In addition, they were
able to find several examples of regularity in lunar motion.

It is sometimes said that the Moon “comes back to the
same place” after not one but 3 sidereal months. After one
sidereal month, the Moon is at the same position among the
stars; so if the phrase has meaning, it must refer to the loca-
tion in the sky of the observer. After one sidereal month,
the Moon will not be at the same hour angle because the
sidereal month interval is not an integral number of days.
Three sidereal months, however, amount to nearly an inte-

gral number of days. From Table 2.6, where the units for all
months are in mean solar days (MSDs),

3- Py = 81996499 = 81923"9™35",

Thus, the Moon will be about an hour east of the meridian
after three sidereal months at the same time of night—and
in the same constellation—but it will be at a different luna-
tion phase. An interval of three synodic months covers
88959177, at the end of which, the lunar phase is repeated,
so that the phase after three sidereal months will be earlier
by an angle of roughly

88959177 — 8169499
299530589

Thus, if the Moon was initially full, three sidereal months
later, it would be in a waxing gibbous phase, just after first
quarter, having slipped back not quite a quarter phase. For
every subsequent three-month interval, the Moon’s phase
will slip by an additional 0.234 lunation on average. In 12
sidereal months, [4 x (0.23355) = 0.9342], the phase repeats
more closely, but results in a slight phase shift for each such
12-sidereal-month interval.

The movement of the Moon among the stars requires that
the Moon traverse a different region each day for the
approximately 27 days of its sidereal period. In an anthro-
pomorphic sense, it spends each night in a different
“house.”” The perception and transmission of lunar man-
sions from one culture to another will be discussed through-
out §8§6-15 and in some detail in §§7 and 15.

The regression of the nodes of the Moon’s orbit has a
major consequence for the behavior of the Moon in our sky;
one that is spectacular at high latitude locations on Earth.
Over an 18.6-year period, the shifting node alters the range
in declination achieved by the Moon during the month: from
~*18'%,° to ~*28'°; this variation changes the azimuthal

AD =0.23355 lunation.

¥ Or “lodge” or “mansion.”
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TaBLE 2.7. The ancient planetary names.

2. Principal Features of the Sky

Modern Greek Babylonian Persian Indian Chinese

Sun Helios/Apollo Shamash Mithra Surya Thai Yang (Greater Yang)
Moon Selene Sin Mah Soma Thai Yin (Greater Yin)
Mercury ~ Hermes/Apollo utu Tira/Tir Budha Chhen hsing = Hour Star
Venus Aphrodite dili-pét Ishtar Anahita Sukra Thai pai = Great White One
Mars Ares/Herakles an, %sal-bat-a-ni Nergal Verethragna Karrtikeya Ying huo = Fitful Glitterer
Jupiter Zeus mul-babbar Marduk Ahura Mazda/Oromasdes Brhaspati Sui hsing = Year Star
Saturn Kronos/Chronos genna Zervan (Zurvan) Prajapati (Sanaiscara) Chen hsing = Exorcist

amplitude, resulting in a striking weaving movement of the
rise and set points of the Moon on the horizon over an 18.6-
year interval. The phenomenon bears strongly on the ques-
tion of megalithic lunar alignments discussed in §3.2.1 and
at length, in applications, in §6.

That there is a difference between the anomalistic and
sidereal periods implies the rotation of the orbit of the Moon
such that the line of apsides (the major axis) moves forward
(i.e., eastward, in the direction of the Moon’s motion in its
orbit). This motion was also known in ancient China, appar-
ently. Needham (1959, Fig. 180, p. 393) shows a diagram with
a series of overlapping orbits called “The Nine Roads of the
Moon,” which, he writes, are due to apsidal motion, as it was
understood in the Han.

The physical appearance of both Sun and Moon over time,
eclipse phenomena, and association of these bodies with
tides, we leave to later chapters; these phenomena too have
had profound effects on the history of astronomy and,
indeed, of civilization.

2.4. The Planets
2.4.1. Wanderers

Compared with the constellations and other relatively fixed
stars, some are “wandering stars,” the translation of
the Greek words (0oTépeg) TAOVNTOL OF TAGYNTEG GOTEPEG
(singular: TAoviTnG, sometimes TAAVNG, Or TAGVNTOC)
from which we derive our word planets. In Wagner’s opera
Die Walkiire, Wotan is called simply “the wanderer,” the still
powerful, but fatally limited, lord of the heavens. Because
they took certain liberties compared with the fixed stars, the
astral entities we know as planets appeared to have intelli-
gence. Moreover, they were far above the Earth, apparently
immune from local plagues and disasters and, therefore,
were of a higher order of being than was mankind. Because
they were evidently immortal beings, they were necessarily
gods.** We know the names of these gods. In the Greek world
of the 3rd century B.c., there were seven planetary gods:
Selene (the Moon), Hermes (Mercury), Aphrodite (Venus),

% DHK thinks it is truer to say that the characteristics of the planets
determined the nature of what came to be called “gods.” EFM thinks
the point is moot.

Helios (the Sun), Ares (Mars), Zeus (Jupiter), and Kronos
(Saturn).

In India, there were two dark, and therefore invisible, addi-
tional planets—the head and tail of the dragon, Rahu-head
and Rahu-tail, or Rahu and Ketu. These invisible planets were
later interpreted as the ascending and descending nodes of
the moon’s orbit respectively, which caused eclipses.

The planetary names given by the German tribes can be
found in several of the days of the week as expressed in
English and in several other languages. The days of the week
arise from a scheme for the order of the planetary orbits (cf.
§4.1.3). The names by which the planets, or their associated
gods (Ptolemy refers to each planet as “the star of...”)
were known to various cultures can be found in Table 2.7.
They include the Sun and Moon, which in antiquity were
considered among the planets, because they too wander
among the stars.

The Greek list is from late antiquity (after ~200 B.c.). A
Hellenistic list dating from the latter part of the 4th century
B.c. is given by Toomer (1984, p. 450 fn. 59): Stilbon
(ZuABov) for Hermes; Phosphorus (®oochwpwg) for
Aphrodite; Pyroeis (ITupoetg) for Ares; Phaethon (Poebwv)
for Zeus; and Phainon (®ouvwv) for Kronos, at least some-
times identified with Chronos (time) [van der Waerden
(1974, pp. 188-197)]. At still earlier times (and in Ptolemy’s
Almagest), they were called by their late antiquity sacred
names but with the prefix “star of.”

The Persian names are widely attested. The spelling used
here is from van der Waerden (1974). See Cumont (1960)
(and §§7.3.3 and 15) for further discussion of the role of
Mithras.

The Babylonian names, from Neugebauer (1955/1983)
and van der Waerden (1974), include both the names of their
cuneiform signs first, and, following, the names of the asso-
ciated gods. The name for Jupiter literally means “star
white.”

Yano (1987, p. 131) provides parallel lists of the planets
ordered in weekday order in Sogdian, and in Indian San-
skrit, from a Chinese text of the 8th century, entitled Hsiu-
yao Ching. In addition to the known planets, The Book of
Master Chi Ni (Chi Ni Tzu) names an invisible “counter
Jupiter,” Thai Yin (Needham/Ronan 1981, p. 190), which had
primarily astrological purposes. The Moon was given this
name by the 1st century (Needham/Ronan 1981, pp. 89, 90),
but apparently has nothing to do with the invisible
planet.
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The wandering of the planets is primarily eastward among
the stars, although the eastward motion is less dominant for
Mercury and Venus, as those planets pass between the Earth
and the Sun moving rapidly westward. The eastward motion
is called direct motion. The average eastward motion is
slower as one descends Table 2.7. For any planet, there are
times when the motion is westward, or retrograde. In order
to accomplish this result, the planet must slow its eastward
motion and stop, thereby displaying variable speed across
the sky. This behavior was carefully noted by the Babylon-
ian astronomers, and later, by others. The motion of Mercury
relative to the ecliptic is depicted as a circle in the Thu Shu
Chi Chhéng of 1726, as described by Needham/Ronan (1981,
p. 189).

An example of retrograde motion for an exterior planet,
Mars, is shown in Figure 2.18. The positions of Mars
over a 4.5-month interval are shown along with its location
at opposition and a few of the stars in the vicinity. The
explanation of this motion in the geocentric framework that
dominated attention in antiquity required extensive geo-
metrical modeling. Combinations of circular motion suc-
ceeded, to various degrees, with the developments of
concentric spheres (§7.2.3) and eccentric circles and
epicyles. The latter marked the climax of Ptolemy’s astron-
omy (§7.3.2).

2.4.2. Morning and Evening Stars

Any object that rises within a few hours before sunrise will
be seen in the eastern, morning sky. Such an object, partic-
ularly a bright object, can be called a morning star. Similarly,

any object setting within a few hours following sunset,
and therefore visible in the western, evening sky, can be
called an evening star. Planets are among the brightest
objects in the sky and, because of their wanderings, will
noticeably appear and disappear in both roles. Venus is par-
ticularly dominant as an evening or a morning star: It can
be the brightest object in the sky after the Sun and Moon.
Venus can cast shadows in an otherwise dark sky, and it can
be seen by a sharp eye sometimes even in daylight. In a twi-
light sky, it can dominate all other celestial objects. Often in
popular and classical literature, and in the arts, “the evening
star” refers solely to Venus. In Figure 2.19, the brilliance of
Venus in evening twilight shows us why.

In Wagner’s epic opera Tannhduser, the goddess of love
makes an onstage appearance. Curiously, though, the
evening star is not equated with the divine sexpot, but rather
with the pure and noble Elisabeth, her opposite pole. The
dichotomy is between the beauty and inspiration of the
evening star and the lusty Venus of Venusberg, the cause of
Tannhéduser’s downfall, as it were. For similar reasons, “the
morning star” may indicate Venus alone of all potential
dawn twilight candidates.

The Greek world identified the two appearances of
(Aphrodite): As evening star, it was Hesperus, to which
our word “vespers” (evensong) is related. In its morning star
role, it was known as Phosphorus, “bearer of light.” It may
be startling to some to realize that its Latin counterpart is
Lucifer, “bringer of light.”*

3 Among others, Gray (1969/1982, pp. 132-133) traces the concept of
Lucifer as fallen angel (that of Milton’s Paradise Lost) to Isaiah
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(©)

Galileo (1610) first observed that “the mother of loves
emulates Cynthia” (the Moon) on the basis of his telescopic
studies. Venus undergoes changes of phase, angular size
and distance, seen by the unaided eye as a waxing and
waning of its brightness—like the fortunes of love

(14:12-20): “?*How art thou fallen from heaven, O Lucifer, son of the
morning! how art thou cut down to the ground, which didst weaken the
nations! "*For thou hast said in thine heart, I will ascend into heaven, I
will exalt my throne above the stars of God” (King James version).
According to Gray, this is not a direct reference to Satan, but to the king
of Babylon (most likely Sargon II or Sennacherib); Isaiah is referring to

FIGURE 2.19. At maximum brightness, Venus is the brightest
object in the sky after the Sun and the Moon: (a) Venus as an
evening star, shown here with the Moon and Mars in a 1-second,
210-mm exposure, Calgary, Jan. 24, 1985. (b) Venus at dusk at
the European Southern Observatory, Chile, Jan. 1977. Photos
by E.F. Milone. (c) A telescopic (41-cm) view of Venus taken at
the RAO at elongation, from the archives (no other details
recorded).

(see Figure 2.19c). The planet was considered the visible
manifestation of the goddess in the Mediterranean region
(Roman Venus, Greek Aphrodite, Babylonian Ishtar, etc.)
(van der Waerden, 1974, p. 57), but the depiction of Venus
as a female deity was not universal. Athar was the

a Babylonian myth that describes the attempt of Athar, the Venus god
among the Arabs, to take Baal’s place while the god was absent. We
think that a direct astronomical identification with Venus as evening
star becoming morning star is, however, likely here. The subsequent
Christian view of Lucifer derives partly from a definition of Satan in the
Council of Braga, 563 A.p. (Metzger and Coogan 1993, p. 679).
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name of the Semitic Venus god; it was not the only male
Venus god.

In Mesoamerica, which also had a male Venus god, the
growth of brilliance of Venus as evening star, its eventual
decline, and its return as a bright morning star were power-
ful symbols of struggle, death, and rebirth. There is a possi-
ble depiction of the Venus legend of Mesoamerica on the
wall of a ballcourt in El Tajin.** In Western culture, the
analogy between the morning star and resurrection is not as
widespread or explicit, but these references to the morning
star in the New Testament™ are metaphors for the second
coming;

For we did not follow cleverly devised myths when we made known
to you the power and coming of our Lord Jesus Christ, but we were
eye-witnesses of his majesty. For when he received honor and glory
from God the Father and the voice was borne to him by the Majes-
tic Glory, ‘This is my beloved Son, with whom I am well pleased,’
we heard this voice borne from heaven, for we were with him on
the holy mountain. And we have the prophetic word made more
sure. You will do well to pay attention to this as to a lamp shining
in a dark place, until the day dawns and the morning star rises in
your hearts. [2 Peter 1:16-19]

Behold, I am coming soon, bringing my recompense, to repay
every one for what he has done. I am the Alpha and the Omega,
the first and the last, the beginning and the end.

I Jesus have sent my angel to you with this testimony for the
churches. I am the root and the offspring of David, the bright
morning star. [Revelation 22:14, 16]

The passage from Revelation invokes the completion of a
cycle, and the “Morning Star” reference applies the
metaphor of the Venus cycle.

The visibility of an object in the evening or morning sky
depends mainly on its angular distance from the Sun, but
also on the observer’s latitude and the time of year. It is
reported that Venus was actually observed as an evening star
on one evening and as a morning star the next day by
observers on the Yucatan peninsula in Mexico. Although
unlikely under most circumstances, it does occur. If Venus
or Mercury are far north of node while they are passing
between the Earth and the Sun, thanks to the tilt of the Sun’s
diurnal path near the horizon, they can be seen to the north
of the Sun just after sundown, and again north of the Sun
the following morning. Figure 2.20 illustrates various orien-
tations of the ecliptic and celestial equator to the east and
west points of the horizon at the equator and at mid-latitude
sites for the important turning points of the seasons: the sol-
stices and the equinoxes. We deal with the related question
of the visibility of an object close to the Moon or Sun in
§3.1.2.5.

% DHK finds this interpretation by C. Cook de Leonard (1975) of the
ballcourt panels in this Gulf-coast city of ancient Mexico unconvincing.
¥ See also: Revelation 2:27, based on the Messianic symbolism based
on Numbers 24:17 (“A star shall come out of Jacob and a Sceptre shall
rise out of Israel”); Matthew 2:2 and 2:10; and our discussion of the Star
of Bethlehem in §15. All citations are from the Revised Standard
Version (Thomas Nelson and Sons: New York, Edinburgh), 1946.
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Ficure 2.20. The orientations of the ecliptic and celestial
equator to the horizon near the east and west points of the
horizon as seen from the equator and from mid-latitude sites
for the important turning points of the seasons: the solstices and
the equinoxes. These are views from inside the celestial sphere.
Drawn by E.F. Milone.
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TaBLE 2.8. Planetary phenomena.

Elongation® Phenomenon Symbol
0° Conjunction g
60° Sextile *
90° Quadrature O
120° Trine A
180° Opposition P

* Elongation from the Sun or relative separation between planets.

2.4.3. Planetary Phenomena

Morning and evening stars are only aspects of a more
general class of observed events collectively known as
planetary phenomena. The configurations that the planets
achieve with the Sun, stars, or with each other, enabled early
observers to keep track of the planets’ motions and, from
these, to discover periodicities. The phenomena were sum-
marized in terms of elongations or differences in celestial
longitude (see Table 2.8). Astrologers make use of all the
configurations, but the sextile and trine configurations are
not often referenced in modern astronomy. Among other
astrological terms that are used to refer to the positions
of planets in the sky are ascendancy (rising), descendancy
(setting), medium caelum or mid-heaven (where the object
traverses the celestial meridian),** and imum caelum or anti-
heaven (where the object traverses the portion of the celes-
tial meridian below the horizon). Figure 2.21 demonstrates
the geocentric planetary configurations, viewed from the
north ecliptic pole.

* For a circumpolar object, the “mid-heaven” refers to the upper of the
two meridian transits, namely, the upper culmination.
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Realm of the fixed stars

Ficure 2.21. The geocentric planetary configurations—and
cosmology—of antiquity. Drawing by E.F. Milone.

Note that an object at a conjunction will rise at the same
time as the Sun,” whereas an object at opposition will be
opposite the Sun in the sky and so will set as the Sun rises,
and rise as the Sun sets. Planetary phenomena may involve
another planet, the Moon, or a star, but in such cases, the
other object is always named. The Sun is intended implicitly
when no other object is stipulated. Several other terms that
depend on sky location are the sextile (separation of 60°),
quadrature (90°), and trine (120°). At quadrature, a planet
will rise ~6 hours before (if at eastern quadrature) or after
(if at western quadrature) the Sun. The sextile and trine are
little used in astronomy, but are frequently used by modern
astrologers and, more important for us, were extensively
used by ancient astrologers.

Several terms are used to describe the visibility of the an
object. When a star or planet formerly invisible due to prox-
imity to the Sun first becomes visible in the morning sky, it
is said to be at heliacal rising. When the object is last seen
to set in the west after the Sun in the evening sky, it is said
to be at heliacal setting. Two other pairs of terms are often
confused with heliacal risings and settings. Either the rising
or setting of a star in the evening, i.e., at or just after sunset,
is referred to as acronychal® and either the rising or setting
of a star at sunrise is said to be cosmical. Thus, a star that is
first seen to rise as the Sun sets is said to be at acronychal
rising, and if it sets with the Sun, acronychal setting; one that
sets as the Sun rises is at its cosmical setting, and if it rises
as the Sun rises, it is at cosmical rising. Astronomers do
not always follow these definitions strictly, however; so the
context must be used to understand what the terms are

% Or nearly so: Conjunction is sometimes taken to mean identical celes-
tial longitude, and sometimes, right ascension; in either case, if the dec-
lination of the two objects is not the same, they will almost certainly
rise at slightly different instants of time.

% Or acronycal. Additional spellings that have been used for this word
include acronical, achronical, and achronichal!
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intended to mean. Parker and Neugebauer (1960, pp. 55, 57,
72) unambiguously identify the term “acronychal setting” to
mean setting right after the Sun, i.e., seen in the west just
after sunset, in accord with the definitions. In Sky Watchers
of Ancient Mexico, Aveni (1980, p. 325, n. 16) correctly uses
the term “cosmic rising” to indicate rising at the same in-
stant as the Sun (and “cosmic setting” to indicate setting at
the instant that the Sun sets). However, he also defines
“achronic” to indicate rising when the Sun sets (in agree-
ment with the standard definition of “acronychal”) but also
a setting as the Sun rises (which disagrees). Elsewhere in Sky
Watchers, the applications of “heliacal rising” and “heliacal
setting” are consistent with both our and Aveni’s definitions
(e.g., pp- 87, 99, 109ff), except for one discussion in which
“heliacal setting” is used to describe a setting at sunrise in a
discussion of the behavior of the Pleiades at Teotihuacan
(Aveni 1980, p. 112). Indeed, many authors use this broader
usage of “heliacal” to encompass both the restricted sense
of the word and the acronychal definition (because they are
both, in a sense, heliacal phenomena). However, in the
current work, we try to be consistent with the stricter
definitions.

As we note in §3.1.5, the hour angle difference from the
Sun and the altitude of the object at first and last visibility
depend on its brightness and on sky conditions; it is more
difficult to see the light of most celestial objects when they
near the horizon because the light-scattering path through
the atmosphere is the longest at such times. The relationship
between the first and last visible phenomena and the true
instants when the star/planet and the Sun rise/set together
was the topic of a book in the ancient world written by
Autolycus of Pitane: On the Risings and Settings.

Because the Moon, Mercury, and Venus were considered
to be below the orbit of the Sun, they were called inferior
planets; those beyond the Sun were superior planets.
Heliocentrically, they are interior and exterior, respectively,
to Earth’s orbit. There are important differences between
the apparent motions of these two types of planets.

For Mercury and Venus, the elongation reaches maximum
values both east and west: the greatest eastern elongation
(GEE) and greatest western elongation (GWE), respectively.
When at eastern elongation, the planet is visible east of the
Sun, therefore, after sunset and in the western part of the
sky. At western elongation, the object is west of the Sun, and
there visible before sunrise, and in the eastern part of the
sky.

The geometry of the planetary configurations can be
understood from Figure 2.22, which, although presented in
a heliocentric framework, shows how the planetary config-
urations are generated relative to the earth.

It will be noticed that only interior planets go through an
inferior conjunction and only exterior planets can achieve
quadrature and opposition. Both types of planets can go
through superior conjunction, although in current usage,
superior planets are merely said to be at “conjunction” at
such times, because this is the only type of conjunction (with
the Sun) that they can achieve; i.e., they can never be at infe-
rior conjunction. Exterior planets move eastward through
the configurations: superior conjunction, eastern quadra-
ture, opposition, western quadrature, and superior conjunc-
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FiGure 2.22. Successive positions of exterior and interior helio-
centric planetary orbits, relative to an arbitrary position of the
Earth, and showing how they give rise to the planetary config-
urations. Drawn by E.F. Milone.

tion. Their motion is eastward all the time except during an
interval around opposition when they briefly appear to show
retrograde (westward) motion.” Interior planets may be in
conjunction with the Sun, but most of the time, they are at
some elongation less than GEE or GWE. Interior planets
move from superior conjunction through increasing eastern
elongations to GEE to decreasing elongations to inferior
conjunction to increasing westward elongations to GWE to
decreasing western elongations to superior conjunction.
Following maxiumum eastern elongation (when they are
evening stars), Venus and Mercury seem to fall toward the
Sun at an increasing rate, and then move rapidly into the
morning sky, where they continue westward at a decreasing
rate until maximum western elongation is reached. Fig-
ure 2.23 illustrates their motions in the western and eastern
skies and associated locations in a heliocentric sketch.

The order of the configurations over a synodic cycle, arbi-
trarily beginning at its heliacal rising, is as follows (with asso-
ciated phenomena shown below each configuration). For an
interior planet,

(1) First visibility in the morning sky (retrograde motion
continuing) (heliacal rising, morning star)

(2) Greatest western elongation (onset of prograde motion)
(morning star)

(3) Last visibility in the morning sky (prograde motion con-
tinuing) (morning star)

(4) Superior conjunction (prograde motion continuing)
(rises and sets with the Sun)

(5) First visibility in the evening sky (prograde motion con-
tinuing) (heliacal/achronical setting, evening star)

¥ Tt is important to note that in the ancient world, our “direct” or “pro-
grade” (eastward) and “retrograde” (westward) terms for these motions
were not in use. Ptolemy uses the term “gif ta éndpeva,” “toward the
rear,” to mean eastward motion. He uses the term “ei{ T o
nponyovuevo,” “toward the front,” to mean westward. To Ptolemy, the
“forward” direction was that of the diurnal motion. See Toomer (1984).
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Ficure 2.23. The motions of an interior planet in the
(a) eastern and western skies and (b) in a heliocentric frame of
reference. Note the ready explanation in the heliocentric system
for the apparent limitation in the motion of an inferior planet.
Drawn by E.F. Milone.

(6) Greatest eastern elongation (onset of retrograde
motion) (evening star)

(7) Last visibility in the evening sky (retrograde motion
continuing) (evening star)

(8) Inferior conjunction (retrograde motion continuing)
(rises and sets with the Sun)

(9) First visibility in the morning sky (retrograde motion
continuing) (heliacal rising, morning star)

so that the interior planet moves westward from its GEE
evening star appearance (through inferior conjunction) to
its GWE morning star appearance; and it moves eastward
from GWE (through superior conjunction) to GEE. For an
exterior planet, again from heliacal rising:

(1) First visibility in the morning sky (prograde motion con-
tinuing) (heliacal rising, morning star)

(2) Western quadrature (prograde motion continuing)
(morning star)

(3) First stationary point (beginning of retrograde motion)

(4) Opposition (acronychal rising)

(5) Second stationary point (end of retrograde motion)

(6) Eastern quadrature (prograde motion continuing)
(evening star)

(7) Last visibility in the evening sky (prograde motion con-
tinuing) (evening star, heliacal/acronychal setting)

(8) Superior conjunction (prograde motion continuing)
(rises and sets with the Sun)

(9) First visibility in the morning sky (prograde motion con-
tinuing) (heliacal rising, morning star)

Note that the average ecliptic motion of exterior planets
is less than that of the Sun and, consequently, get passed by
the Sun. The only retrograde motion that these planets
undergo is around opposition, when the Earth, in a faster,
interior orbit, passes these planets.
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The observations of specific configurations, especially of
first and last visibility in ancient Mesopotamia, will be elab-
orated in §7.1.2.1. See Aveni (1980, pp. 109-117) for a similar
treatment of configuration visibility in Mesoamerica. The
apparent path of a planet in the sky varies from cycle to cycle
because of the relative changes in ecliptic latitude as well as
in longitude due to orbital inclinations. Thus, for example,
the retrograde motion of an exterior planet may be a loop
of various degrees of flattening or a zigzag. The looping
pattern of an interior planet also varies during its pass
through inferior conjunction. The relative periods of motion
may be used to determine repetitions of these motion
patterns.

2.4.4. Periodicities, Cycles,
and Interrelationships

The periodicities in the motions of the planets were studied
intently by astronomers from many cultures. Detailed
records are available from Mesopotamia, India, China, and
Mesoamerica. According to Neugebauer (1969, p. 127), the
main interest of the Babylonian astronomers was the first
and last visibility of the planets due to their motions and
that of the Sun.*®® The earliest observational records from
Mesopotamia date from the middle of the second millenium
B.C.; from China, they are slightly later. See §§7.1.3 and
10.1.4 for further discussion of these sources.

There are two basic periods by which we characterize the
motion of a planet in the sky: the sidereal and the synodic
periods. The modern sidereal period is the time interval
between successive passages of the planet through a line
between a distant star and the Sun. The synodic period, on
the other hand, is the (average) time interval between suc-
cessive passages of the planet through a Sun-Earth line; it
is therefore a relative period. These periods are analogous
to the lunar sidereal and synodic months. The difference
between the two types of period arises, in the case of an inte-
rior planet, from the time required for the interior planet to
lap the earth as both revolve counterclockwise around the
Sun. In the case of an exterior planet, the Earth moves
faster, and the difference arises from the time required for
earth to lap the exterior planet. Calculation® of the relative
rate of motion of a planet in terms of orbital motions of
the planet and Earth gives the following expressions for the
synodic periods (Py,) of interior and exterior planets,
respectively:

Interior: L_1_ i, (2.23)
syn Psid P@

Exterior: 1 _1 1 ) (2.24)
syn P@ Psid

% The heliacal risings and settings of stars are analogous, but simpler
because, unlike planets, their annual changes in position are not
detectable to the naked eye.

¥ The difference between the mean angular rates Wplanee and 0 is the
relative rate: 0. Because o = 2n/P and P, = Py, we obtain equations
(2.23) and (2.24), after division by 2.
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where Py, is the planet’s sidereal period and Pg is that of the
earth. Note the reciprocal relations among the synodic and
sidereal periods. If the periods are taken in units of the
Earth’s sidereal period of revoution around the Sun, the
expressions simplify further.

Neugebauer (1969, p. 172) gives “synodic periods” of
Saturn and Jupiter: 28;26,40 and 10;51,40, in the sexigesimal
(base-60) notation of the Babylonians used by Neugebauer.
These quantities, 28'444 and 10?861 in decimal-based nota-
tion, are approximately equal to Pgq — 1; by setting Pg =1
in (2.24), one finds that this quantity is the ratio of the two
periods, viz., P4/ P,,, Wwhen they are expressed in units of the
Earth’s period of revolution. They are not, therefore, the
synodic periods as usually defined in astronomy. They are,
however, very interesting nevertheless.

In an ancient astronomy context, one can draw a distinc-
tion between the time interval for a planet to come to the
same configuration, e.g., from opposition to opposition, and
the time for it to reappear in the same asterism or at the
same celestial longitude. The former is the synodic period as
defined astronomically, whereas the latter is a kind of side-
real period, although the motion of the earth around the Sun
creates a moving platform and the observation therefore
suffers from parallax. Figure 2.24 illustrates the effect of par-
allax on the apparent direction to the planet in space.

Even with the complication of parallax, ancient astron-
omy was capable of giving relatively high precision in the
periodicities of the planets; the way they did this was to
make use of large numbers of cycles. The number of years
required for a planet to reach the same configuration, in the
same star field, had to be recorded. The number of times the
planet moved around the sky through a particular star field
provided an integer multiple of the sidereal period. The
number of years required for the planet to reach this point
in the sky and have the same configuration (with the Sun)
is a multiple of the synodic period. The relationship is one
of a ratio: mPgq = nPy, = N years. Hence, if m and n are
observed, the ratio of the two type of periods follows. For
Saturn, we have m =9, n = 256, N = 265y; whence, Pgd/ Py,
= 256/9 = 28.444. For Jupiter, m = 36, n = 391, N = 427y, so
that Pg4/Py, = 391/36 = 10.861. Given the total number of
years required for the same configuration to be observed®
at the same place among the stars, we can compute, in
theory, both Pgq and Py,. For instance, a complete cycle for
Saturn would take 265 years. Therefore, Pgq = N/9 = 265/9 =
29.444y, and Py, = N/256 = 265/256 = 1.0352y. These results
can be compared with the modern values, Py =29.458y and
Py, =1.0352y (see below). For Jupiter, Pyq = N/36 = 427/36
=11.8611y, and Py, = N/391 = 427/391 = 1.0921y, compared
with modern values, Pgq = 11.8622y and Py, = 1.0921y.

The results are excellent for the synodic periods, and the
derived sidereal periods are reasonable approximations, but
they are not exact. One of the reasons for deviations from
modern values is the effect of the shape of the orbit—the
orbital eccentricity (others include the accuracy and preci-

%" Or, as in Mesopotamia, calculated, based on the differences between
observed and exact ecliptic longitudes in near-repetitions of the
phenomena.
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sion of length of the year, and the use, exclusively, of the
ecliptic longitude and exclusion of the ecliptic latitude). The
time interval between repetition of celestial longitude coor-
dinate values (and the mean sidereal period) depends on the
traveled portion of the orbit of the planet involved: Near

Lo
exterior planet f&?)—'parallactic shift

to a common starfield
A A

Earth orbit

(a) (b)

Ficure 2.24. The effect of parallax on the apparent direction to
a planet: (a) The shift of an exterior planet against the starry
background. (b) Compensating motions of the planet and Earth
may reduce the parallax shift: The positions of alignment of
earth and planet to a distant star are not unique but may occur
at nearly any planetary configuration. The three positions of the
outer planet shown here place it in the same star field. See
Figure 2.18 for the positions of Mars near an opposition. Drawn
by E.F. Milone.

TaBLE 2.9. Planetary orbital parameters.®
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perihelion, the interval will be shorter than near aphelion.
It also depends on the change in position of the earth in its
orbit. The length of the synodic period that is specified in
most planetary tables is a period that a planet would have if
both it and the earth moved at constant, average rates of
motion in their respective orbits. The lap difference involves
different portions of the orbit and therefore different veloc-
ities, reflected in the change of angular motion of the planet
across the sky. Of course, the larger the number of cycles
that are involved, the smaller is the effect of the remaining
segment of the orbit. The ancients were interested in such
problems, and we consider the matter somewhat further in
§7. At this point, we need to discuss how to characterize
orbits.

Table 2.9 lists the mean sidereal and mean synodic periods
as well as other orbital parameters for the planets. The
sources of the data in Table 2.9 are the Astronomical
Almanac for the year 2000 and earlier editions and Allen’s
Astrophysical Quantities (Allen 1973, pp. 140-141; updated
by Cox 2000). The elements refer to the mean equinox and
ecliptic for the year 2000. The rates d€2/dt and dw/dt and the
values of the periods are long-term average values. The pre-
cision in the elements actually exceeds the number of
significant figures that are shown, but because of the gravi-
tational perturbations produced by the other planets, the
elements will vary with time. Following the modern plane-
tary names are the adopted symbols, the semimajor axis or
mean distance to the Sun in units of the astronomical unit,
a (and, below, the date of a recent passage through perihe-
lion Ty), the orbital eccentricity e (and, below it, the mean
longitude ¢), the orbital inclination, the longitude of the

®
a (AU) e Q dw/dt n <Pgs> <Pgyn>
Planet/element T 14 1 dQ/dt "ly) (°/d) (MSD) (MSD)
Mercury 0.38710 0.20563 720050 48933 29012 4.09235 879969 = 024085 11598775
(%) 2000 Feb 16 119237582 +42.67 45596
Venus 0.72333 0.00676 3.3946 76.68 55.19 1.60215 224.699 = 0¥61521 583.9214 = @ +219¢
(?) 2000 Jul 13 270.89740 +32.39 +50.10
Earth® 0.99999 0.01670 0.0001 143.9 319.04 0.98562 365.256363 = 1SY
(®) 2000 Jan 3.2 155.16587 +61.8 =0Y99997862]JY
=1.000038804TY

Mars 1.52376 0.09337 1.8498 49.56 286.54 0.52400 686.980 = 1Y8809 779.9361 = 2@ +49¢
(3) 1998 Jan 7 24.53534 +27.7 +66.26
Jupiter 5.20432 0.04879 1.3046 100.49 275.03 0.08305 4332.589 = 11Y8622 398.8840 =~ @ +34¢
a) 1987 Jul 10 38.98221 +36.39 +57.98
Saturn 9.58189 0.05587 2.4853 113.64 336.23 0.03323 10759.22 = 29¥4578 378.0919 = @ +13¢
(h) 1974 Jan 8 51.87716 +31.42 +70.50
Uranus® 19.22354 0.04466 0.7725 73.98 96.30 0.01169 30685.4 = 8470138 369.6560
) 1966 May 20 314.13799 +17.96 +54.
Neptune® 30.0917 0.01122 1.7681 131.79 267.67 0.00597 60189. = 164792 367.4867
(W) 1876 Sep 2 305.53768 +39.54  450.
Pluto® 39.2572 0.24459 17.1533 110.28 113.71 0.00401 90465. = 247Y685 366.7207
B) 1989 Sep 5 239.27437

* Heliocentric osculating orbital elements, referred to the mean ecliptic and equinox of J2000.0. 7} is a recent date of passage through perihelion.
® Elements are for the barycentre of the Earth-Moon system. SY, JY, and TY are Sidereal, Julian, and Tropical years, respectively, and are given
in units of mean solar days (cf. §4.1.2). A Julian year has a length of 365.25 days, exactly.

¢ Years of discovery for Uranus, Neptune, and Pluto, respectively: 1781, 1846, 1930.
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TaBLE 2.10. A selection of premodern planetary parameters.®

n
a To=A.D. 1/ [
Planet/element (AU) T, = A.D. 1549 e (°/d)
Sun 1. 0.985635 0.0417 65260
{Earth} 1. 0.985608 0.0369 211.32
Moon — 13.176382 0.8281 —
— 13.176356 0.0237 207.12
Mercury 3.106699 0.0500 188.63
0.3573 3.106730 0.0736 187.54
Venus 0.616509 0.0208 53.63
0.7193 0.616518 0.0164 48.33
Mars 0.524060 0.1000 114.13
1.5198 0.524032 0.0973 107.75
Jupiter 0.083122 0.0458 159.62
5.2192 0.083091 0.0458 154.06
Saturn 0.033489 0.0569 231.63
9.1743 0.033460 0.0570 225.00

* Ptolemaic values are in the top line and the Copernican on the lower
for each planetary entry.

ascending node, Q (and, below, its variation in arc-seconds
per year), the argument of perihelion, o (and, below, its vari-
ation in arc-seconds per year), the mean motion in degrees
per day, n, the average sidereal period in mean solar days,
and the average synodic period in mean solar days (and the
number of integral Earth sidereal years, ®, and remainder
in days). The mean motion is not independent of other ele-
ments, but it directly indicates the orbital motion of the
planet; so we include it here. As we have noted, a combina-
tion of angles, the longitude of perihelion (®) is sometimes
given in place of the argument of perihelion (®): ® = Q + .
The data for the telescopic planets Neptune and Pluto are
included only for completeness. Uranus is marginally visible
to the unaided eye. It is conceivable that the motion of
Uranus could have been noticed during an appulse or close
approach to a star, but its motion is so small, only 20 arc-
minutes per month, that this is unlikely to have been noticed
in antiquity. Whether it was or was not noticed by someone
(see Hertzog 1988), to the present day, no evidence for early
nontelescopic observations of Uranus has been found.

The data of Table 2.9 can be used to find the position of
a planet in its orbit at subsequent times and its position in
the ecliptic and equatorial systems. The mean longitude, ¢,
is related to the mean anomaly through the relation, M = €
—0=€—-0-Q[(2.16) to (2.18) in §2.3.5]. A full discussion
of the required procedures is beyond the scope of this book,
but is provided by several sources.*’ Appendix A provides
lists of published tables of planetary positions for the remote
past, as well as some of the currently available commercial
software packages for computing them.

Some of the elements of Table 2.9 may be compared with
those of Table 2.10, which lists planetary parameters as reck-

# For example, Brouwer and Clemence (1961), Danby (1962/1988), or
for less-critical determinations, Schlosser et al. (1991/1994, pp. 70-76
and Appendix E).
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oned by Ptolemy (2nd century) and by Copernicus (16th
century), extracted from values provided by Gingerich
(1993, p. 128, fn. 38; p. 214, Table 4). The Ptolemaic values
are on the top line, and the Copernican are on the lower, for
each planetary entry. The solar distance parameter a is given
in units of the average Earth-Sun distance and is tabulated
only for the heliocentric model; n, e, and o follow. The para-
meters that were used to characterize orbits in antiquity are
not always the same as the modern elements. All orbits were
circular, but a planet’s orbit was not centered on the Earth
(or, in the Copernican model, on the Sun), so that the
Copernican “eccentricity,” e, for instance, is the mean dis-
tance between the center of the orbit and the Sun and
expressed in units of a. In Copernicus’s model, this “eccen-
tricity” varies with time, because the center of the orbit
moves on a circle (the mean value is given in Table 2.10). As
a consequence, the argument of perihelion also varies and
adds to the perturbation-induced variation. Altogether, the
model of Copernicus required at least six parameters to
compute each planet’s longitude and five additional para-
meters to include the effects of his (incorrect) theory of pre-
cession (see §§3.1.6, 7.7).

The periodicities that were most noticable and most noted
by ancient astronomers were the synodic periods of the
planets and those that were commensurate with the solar
calendar or other calendars. The formulation of Kepler’s
Third Law, which relates the sidereal period to the semi-
major axis, had to await understanding of the difference
between the synodic and sidereal periods, correct planetary
distances from the Sun, and, of course, the heliocentric
perspective.

Finally, we supply positions of a planet at a particular con-
figuration. Table 2.11 (based on information provided by Jet
Propulsion Laboratory astronomer E. Myles Standish) is a
partial list* of dates of inferior conjunctions of Venus. The
dates indicated are Julian Day Numbers and decimals there-
of and Julian calendar (36,525 days in a century) dates and
hours; the uncertainty is about 3 hours. There is a cycle of
251 tropical years for Venus conjunction events. Purely bold-
faced dates indicate entries for one such series, and the
bold-italicized dates those for another; the latter is carried
forward into the 20th century at the end of the table. The
20th century dates, however, are given in the Gregorian cal-
endar (see §4.2.3). Note that the difference in JDN (an
accurate indication of the number of days between the
conjunctions) is only about 0.03%cycle.* Although they cer-
tainly did not use the Gregorian or Julian calendars, Mayan
astronomers were well aware of these sorts of periodicities
of Venus, and of the tropical year, and tied some of them
into their sacred calendar (see §12, where the repetitions
of Venus phenomena are discussed in the context of the
Mesoamerican calendar). Calendrical and iconographic
evidence strongly suggests that the complicated series of
motions of Venus in the sky over many years were observed
carefully. The motion of the perihelion of a planet means

# This is an updated version of part of a table from Spinden 1930, pp.
82-87.

% This can be seen as follows: 251 x 365.2422 = 91675.79, while
1955664.29 — 1863988.47 = 91675.82, for example.
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TaBLE 2.11. Venus inferior conjunctions.
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JDN Julian date JDN Julian date JDN Julian date
1863988.47 0391° APR 289 23" 1864572.51 0392Y DEC 03¢ 00" 1865154.11 0394 JUL 07¢ 14"
1865741.85 0396 FEB 15 08 1866321.64 0397 SEP 17 03 1866908.16 0399 APR 26 15
1867492.01 0400 NOV 30 12 1868073.78 0402 JUL 05 06 1868661.46 0404 FEB 12 22
1869241.20 0405 SEP 14 16 1869827.85 0407 APR 24 08 1870411.51 0408 NOV 28 00
1870993.46 0410 JUL 02 22 1871581.07 0412 FEB 10 13 1872160.77 0413 SEP 12 06
1872747.53 0415 APR 22 00 1873331.02 0416 NOV 25 12 1873913.12 0418 JUN 30 14
1874500.68 0420 FEB 08 04 1875080.34 0421 SEP 09 20 1875667.21 0423 APR 19 17
1876250.53 0424 NOV 23 00 1876832.80 0426 JUN 28 07 1877420.28 0428 FEB 05 18
1877999.92 0429 SEP 07 10 1878586.90 0431 APR 17 09 1879170.03 0432 NOV 20 12
1879752.47 0434 JUN 25 23 1880339.87 0436 FEB 03 08 1880919.50 0437 SEP 05 00
1881506.59 0439 APR 15 02 1882089.53 0440 NOV 18 00 1882672.14 0442 JUN 23 15
1883259.46 0444 JAN 3123 1883839.09 0445 SEP 02 14 1884426.26 0447 APR 12 18
1885009.03 0448 NOV 15 12 1885591.82 0450 JUN 21 07 1886179.05 0452 JAN 29 13
1886758.68 0453 AUG 31 04 1887345.95 0455 APR 10 10 1887928.53 0456 NOV 13 00
1888511.50 0458 JUN 18 23 1889098.63 0460 JAN 27 03 1889678.28 0461 AUG 28 18
1890265.63 0463 APR 08 03 1890848.03 0464 NOV 10 12 1891431.18 0466 JUN 16 16
1892018.21 0468 JAN 24 17 1892597.88 0469 AUG 26 09 1893185.30 0471 APR 05 19
1893767.53 0472 NOV 08 00 1894350.86 0474 JUN 14 08 1894937.79 0476 JAN 22 07
1895517.48 0477 AUG 23 23 1896104.98 0479 APR 03 11 1896687.04 0480 NOV 05 12
1897270.55 0482 JUN 12 01 1897857.36 0484 JAN 19 20 1898437.08 0485 AUG 21 13
1899024.65 0487 APR 01 03 1899606.54 0488 NOV 03 01 1900190.24 0490 JUN 09 17
1900776.92 0492 JAN 17 10 1901356.69 0493 AUG 19 04 1901944.31 0495 MAR 29 19
1902526.05 0496 OCT 31 13 1903109.91 0498 JUN 07 09 1903696.49 0500 JAN 14 23
1904276.30 0501 AUG 16 19 1904863.99 0503 MAR 27 11 1905445.56 0504 OCT 29 01
1906029.60 0506 JUN 05 02 1906616.03 0508 JAN 12 12 1907195.92 0509 AUG 14 10
1907783.65 0511 MAR 25 03 1908365.06 0512 OCT 26 13 1908949.28 0514 JUN 02 18
1909535.59 0516 JAN 10 02 1910115.55 0517 AUG 12 01 1910703.31 0519 MAR 22 19
1911284.58 0520 OCT 24 01 1911868.97 0522 MAY 31 11 1912455.15 0524 JAN 07 15
1913035.17 0525 AUG 09 16 1913622.97 0527 MAR 20 11 1914204.09 0528 OCT 21 14
1914788.65 0530 MAY 29 03 1915374.68 0532 JAN 05 04 1915954.79 0533 AUG 07 07
1916542.63 0535 MAR 18 03 1917123.60 0536 OCT 19 02 1917708.35 0538 MAY 26 20
1918294.22 0540 JAN 02 17 1918874.43 0541 AUG 04 22 1919462.28 0543 MAR 15 18
1920043.13 0544 OCT 16 15 1920628.03 0546 MAY 24 12 1921213.76 0547 DEC 31 06
1921794.06 0549 AUG 02 13 1922381.93 0551 MAR 13 10 1922962.65 0552 OCT 14 03
1923547.72 0554 MAY 22 05 1924133.29 0555 DEC 28 18 1924713.70 0557 JUL 31 04
1925301.58 0559 MAR 11 01 1925882.18 0560 OCT 11 16 1926467.41 0562 MAY 19 21
1927052.81 0563 DEC 26 07 1927633.34 0565 JUL 28 20 1928221.23 0567 MAR 08 17
1928801.71 0568 OCT 09 05 1929387.10 0570 MAY 17 14 1929972.35 0571 DEC 23 20
1930552.99 0573 JUL 26 11 1931140.88 0575 MAR 06 09 1931721.24 0576 OCT 06 17
1932306.78 0578 MAY 15 06 1932891.86 0579 DEC 21 08 1933472.63 0581 JUL 24 03
1934060.52 0583 MAR 04 00 1934640.77 0584 OCT 04 06 1935226.48 0586 MAY 12 23
1935811.39 0587 DEC 18 21 1936392.29 0589 JUL 21 18 1936980.15 0591 MAR 01 15
1937560.32 0592 OCT 01 19 1938146.17 0594 MAY 10 16 1938730.91 0595 DEC 16 09
1939311.93 0597 JUL 19 10 1939899.77 0599 FEB 27 06 1940479.87 0600 SEP 29 08
1941065.86 0602 MAY 08 08 1941650.42 0603 DEC 13 22 1942231.59 0605 JUL 17 02
1942819.40 0607 FEB 24 21 1943399.41 0608 SEP 26 21 1943985.55 0610 MAY 06 01
1944569.93 0611 DEC 11 10 1945151.25 0613 JUL 14 18 1945739.03 0615 FEB 22 12
1946318.97 0616 SEP 24 11 1946905.24 0618 MAY 03 17 1947489.44 0619 DEC 08 22
1948070.91 0621 JUL 12 09 1948658.65 0623 FEB 20 03 1949238.53 0624 SEP 22 00
1949824.92 0626 MAY 01 09 1950408.94 0627 DEC 06 10 1950990.58 0629 JUL 10 01
1951578.27 0631 FEB 17 18 1952158.08 0632 SEP 19 13 1952744.61 0634 APR 29 02
1953328.45 0635 DEC 03 22 1953910.25 0637 JUL 07 17 1954497.88 0639 FEB 15 09
1955077.65 0640 SEP 17 03 1955664.29 0642 APR 26 18 1956247.96 0643 DEC 01 10
1956829.91 0645 JUL 05 09 1957417.49 0647 FEB 12 23 1957997.22 0648 SEP 14 17
1958583.97 0650 APR 24 11 1959167.47 0651 NOV 28 23 1959749.58 0653 JUL 03 01
1960337.10 0655 FEB 10 14 1960916.79 0656 SEP 12 06 1961503.66 0658 APR 22 03
1962086.97 0659 NOV 26 11 1962669.25 0661 JUN 30 18 1963256.70 0663 FEB 08 04
1963836.37 0664 SEP 09 20 1964423.35 0666 APR 19 20 1965006.47 0667 NOV 23 23
1965588.92 0669 JUN 28 10 1966176.29 0671 FEB 05 18 1966755.96 0672 SEP 07 10
1967343.02 0674 APR 17 12 1967925.97 0675 NOV 21 11 1968508.60 0677 JUN 26 02
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TaBLE 2.11. Continued.
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JDN

Julian date

JDN

Julian date

JDN

Julian date

1969095.89
1970845.47
1972595.13
1974347.96
1976102.06
1977854.65
1979603.98
1981941.41
1983693.78
1985442.99

0679 FEB 03 09
0683 NOV 18 23
0688 SEP 02 15

0693 JUN 21 11
0698 APR 10 13
0703 JAN 27 03

0707 NOV 11 11
0714 APR 05 21
0719 JAN 22 06

0723 NOV 06 11

1969675.54
1971428.28
1973182.39
1974935.06
1976684.48
1978434.32
1980187.32
1982523.49
1984273.53
1986026.69

0680 SEP 05 01
0685 JUN 23 18
0690 APR 12 21
0695 JAN 29 13
0699 NOV 13 23
0704 AUG 28 19
0709 JUN 16 19
0715 NOV 08 23
0720 AUG 24 00
0725 JUN 12 04

1970262.71
1972015.47
1973764.97
1975514.73
1977267.64
1979021.74
1980774.21
1983107.01
1984861.08
1986613.35

0682 APR 15 04
0687 JAN 31 23
0691 NOV 16 11
0696 AUG 31 05
0701 JUN 19 03
0706 APR 08 05
0712 AUG 26 10
0717 JUN 14 12
0722 APR 03 14
0727 JAN 19 20

1987193.15
1988946.36
1990700.42
1992452.47
1994201.51
1995952.00
1997705.43
1999459.40
2001211.12
2002960.06

0728 AUG 21 15
0733 JUN 09 20
0738 MAR 29 22
0743 JAN 14 23
0747 OCT 30 00
0752 AUG 14 11
0757 JUN 02 22
0762 MAR 22 21
0767 JAN 07 14
0771 OCT 22 13

1987780.75
1989532.90
1991282.00
1993032.38
1994785.74
1996539.74
1998291.57
2000040.54
2001791.25
2003544.81

0730 APR 01 06
0735 JAN 17 09

0739 NOV 01 11
0744 AUG 16 21
0749 JUN 05 05

0754 MAR 25 05
0759 JAN 10 01

0763 OCT 25 00
0768 AUG 09 17
0773 MAY 29 07

1988362.49
1990112.76
1991866.06
1993620.08
1995372.03
1997121.02
1998871.62
2000625.12
2002379.05
2004130.65

0731 NOV 03 23
0736 AUG 19 06
0741 JUN 07 13
0746 MAR 27 13
0751 JAN 12 12

0755 OCT 27 12
0760 AUG 12 02
0765 MAY 31 14
0770 MAR 20 13
0775 JAN 05 03

2004710.88
2006464.49
2008218.37
2009969.72
2011718.63
2013469.80
2015223.55
2016977.30
2018728.31
2020477.23

0776 AUG 07 09
0781 MAY 26 23
0786 MAR 15 20
0790 DEC 31 05
0795 OCT 15 03

0800 JUL 31 07

0805 MAY 20 01
0810 MAR 08 19
0814 DEC 23 19
0819 OCT 07 17

2005298.71
2007050.19
2008799.10
2010550.16
2012303.86
2014057.65
2015808.78
2017557.69
2019309.09
2021062.93

0778 MAR 18 05
0783 JAN 02 16

0787 OCT 17 14
0792 AUG 02 15
0797 MAY 22 08
0802 MAR 11 03
0806 DEC 26 06
0811 OCT 10 04
0816 JUL 26 14

0821 MAY 15 10

2005879.58
2007630.51
2009384.18
2011138.01
2012889.25
2014638.15
2016389.44
2018143.24
2019896.93
2021647.82

0779 OCT 20 02
0784 AUG 05 00
0789 MAY 24 16
0794 MAR 13 12
0798 DEC 28 18
0803 OCT 12 15
0808 JUL 28 22

0813 MAY 17 17
0818 MAR 06 10
0822 DEC 21 07

2022228.74
2023982.62
2025736.20
2027486.85
2029235.86
2030987.71
2032741.68
2034495.08
2036245.39
2037994.53

0824 JUL 24 05
0829 MAY 13 02
0834 MAR 01 16
0838 DEC 16 08
0843 SEP 30 08
0848 JUL 17 04
0853 MAY 06 04
0858 FEB 22 13
0862 DEC 08 21
0867 SEP 23 00

2022816.57
2024567.34
2026316.32
2028068.05
2029821.99
2031575.45
2033325.88
2035074.97
2036827.03
2038581.06

0826 MAR 04 01
0830 DEC 18 20
0835 OCT 02 19
0840 JUL 19 13
0845 MAY 08 11
0850 FEB 24 22
0854 DEC 11 09
0859 SEP 25 11
0864 JUL 12 12
0869 MAY 01 13

2023396.77
2025148.39
2026902.31
2028655.83
2030406.36
2032155.41
2033907.37
2035661.37
2037414.69
2039164.89

0827 OCT 05 06
0832 JUL 21 21
0837 MAY 10 19
0842 FEB 27 07
0846 DEC 13 20
0851 SEP 27 21
0856 JUL 14 20
0861 MAY 03 20
0866 FEB 20 04
0870 DEC 06 09

2039746.70
2041500.74
2043253.91
2045003.91
2046753.24
2048505.71
2050259.79
2052012.72
2053762.41
2055511.99

0872 JUL 10 04
0877 APR 29 05
0882 FEB 15 09
0886 DEC 01 09
0891 SEP 15 17
0896 JUL 03 04
0901 APR 22 06
0906 FEB 08 05
0910 NOV 23 21
0915 SEP 08 11

2040334.30
2042084.41
2043833.67
2045586.04
2047340.11
2049093.12
2050842.91
2052592.40
2054345.06
2056099.15

0874 FEB 17 19
0878 DEC 03 21
0883 SEP 18 04
0888 JUL 05 12
0893 APR 24 14
0898 FEB 10 14
0902 NOV 26 09
0907 SEP 10 21
0912 JUN 28 13
0917 APR 17 15

2040914.10
2042666.36
2044420.42
2046173.52
2047923.40
2049672.83
2051425.39
2053179.46
2054932.31
2056681.92

0875 SEP 20 14
0880 JUL 07 20
0885 APR 26 22
0890 FEB 13 00
0894 NOV 28 21
0899 SEP 13 07
0904 JUN 30 21
0909 APR 19 23
0914 FEB 05 19
0918 NOV 21 09

2057264.74
2059018.82
2060771.48
2062520.92
2064270.77
2066023.78
2067777.85
2069530.20
2071279.43
2073029.60

0920 JUN 26 05
0925 APR 15 07
0930 JAN 31 23
0934 NOV 16 10
0939 SEP 01 06
0944 JUN 19 06
0949 APR 08 08
0954 JAN 24 16
0958 NOV 08 22
0963 AUG 25 02

2057851.90
2059601.42
2061351.17
2063104.10
2064858.18
2066610.63
2068359.93
2070109.99
2071863.14
2073617.19

0922 FEB 03 09
0926 NOV 18 22
0931 SEP 03 16

0936 JUN 21 14
0941 APR 10 16
0946 JAN 27 03

0950 NOV 11 10
0955 AUG 27 11
0960 JUN 14 15

0965 APR 03 16

2058431.58
2060184.42
2061938.50
2063691.06
2065440.42
2067190.38
2068943.46
2070697.52
2072449.77
2074198.94

0923 SEP 06 01

0928 JUN 23 22
0933 APR 13 00
0938 JAN 29 13

0942 NOV 13 22
0947 AUG 29 21
0952 JUN 16 22
0957 APR 06 00
0962 JAN 22 06

0966 NOV 06 10
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JDN Julian date JDN Julian date JDN Julian date
2074782.83 0968 JUN 12 07 2075369.34 0970 JAN 19 20 2075949.21 0971 AUG 22 16
2076536.85 0973 APR 01 08 2077118.45 0974 NOV 03 22 2077702.52 0976 JUN 10 00
2078288.89 0978 JAN 17 09 2078868.82 0979 AUG 20 07 2079456.51 0981 MAR 30 00
2080037.96 0982 NOV 01 11 2080622.20 0984 JUN 07 16 2081208.45 0986 JAN 14 22
2081788.44 0987 AUG 17 22 2082376.18 0989 MAR 27 16 2082957.48 0990 OCT 29 23
2083541.89 0992 JUN 05 09 2084127.99 0994 JAN 12 11 2084708.08 0995 AUG 1513
2085295.83 0997 MAR 25 07 2085876.99 0998 OCT 27 1
2415795.46 1902 FEB 14 22 2416375.38 1903 SEP 17 21 2416962.91 1905 APR 27 09
2417544.72 1906 NOV 30 05 2418128.65 1908 JUL 06 03 2418715.01 1910 FEB 12 12
2419295.00 1911 SEP 15 11 2419882.57 1913 APR 25 01 2420464.23 1914 NOV 27 17
2421048.33 1916 JUL 03 19 2421634.57 1918 FEB 10 01 2422214.62 1919 SEP 13 02
2422802.23 1921 APR 22 17 2423383.75 1922 NOV 25 06 2423968.02 1924 JUL 01 12
242455413 1926 FEB 07 15 2425134.25 1927 SEP 10 17 2425721.89 1929 APR 20 09
2426303.26 1930 NOV 22 18 2426887.69 1932 JUN 29 04 2427473.69 1934 FEB 05 04
2428053.87 1935 SEP 08 08 2428641.55 1937 APR 18 01 2429222.77 1938 NOV 20 06
2429807.38 1940 JUN 26 21 2430393.23 1942 FEB 02 17 2430973.50 1943 SEP 06 00
2431561.20 1945 APR 15 16 2432142.30 1946 NOV 17 19 2432727.07 1948 JUN 24 13
2433312.78 1950 JAN 31 06 2433893.13 1951 SEP 03 15 2434480.85 1953 APR 13 08
2435061.81 1954 NOV 15 07 2435646.76 1956 JUN 22 06 2436232.32 1958 JAN 28 19
2436812.77 1959 SEP 01 06 2437400.49 1961 APR 1023 2437981.34 1962 NOV 12 20
2438566.45 1964 JUN 19 22 2439151.86 1966 JAN 26 08 2439732.40 1967 AUG 29 21
2440320.13 1969 APR 08 15 2440900.86 1970 NOV 10 08 2441486.13 1972 JUN 17 15
2442071.39 1974 JAN 23 21 2442652.05 1975 AUG 27 13 2443239.77 1977 APR 06 06
2443820.40 1978 NOV 07 21 2444405.81 1980 JUN 15 07 2444990.92 1982 JAN 21 10
2445571.69 1983 AUG 25 04 2446159.42 1985 APR 03 21 2446739.93 1986 NOV 05 10
2447325.50 1988 JUN 12 23 2447910.45 1990 JAN 18 22 2448491.35 1991 AUG 22 20
2449079.05 1993 APR 01 13 2449659.46 1994 NOV 02 23 2450245.18 1996 JUN 10 16
2450829.97 1998 JAN 16 11 2451411.00 1999 AUG 20 11

that its anomalistic period will be different from that of its
sidereal period in the same way that the Moon’s anomalis-
tic period differs from its sidereal period. Similarly, planets
can be said to have “nodal” periods. When any of these are
multiples of the synodic periods, cyclic similarity in sky
movement patterns can be expected.

This concludes our discussion of the basic movements of
the sky and of the Sun, Moon, and planets. We now move to
the problems associated with the observation of these
objects and touch on such topics as the discernment
and measurement of their positions, motions, and
brightnesses.
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Observational Methods and Problems

In this chapter, we deal with the ways in which the objects
described in Chapter 2 can be observed and the conditions
affecting those observations.

The light of distant objects is perceived differently by each
individual, both physically and intellectually. Moreover, the
interpretations given them were (and maybe to a certain
extent still are) grounded in the observer’s cultural milieu.
These facts, well known to students of the humanities, must
have influenced what was considered important, and thus
recorded, by ancient astronomers. Here, we concentrate on
physical and physiological effects on perception, but we
must remain aware that physical perceptions are not easily
separated from what the mind’s eye perceives.

We begin with the effects of the transparency of the
atmosphere, first in the context of global climate variation,
and later in the specifics of atmospheric extinction and red-
dening, and refraction. These effects have consequences for
research into the stellar alignments of monuments, temples,
and pairs or lines of rocks or stones. In between, we describe
the intrinsic nature of the light, how we perceive it, and how
this changes from person to person. We also briefly discuss
other phenomena, such as precession that changes the
apparent locations of objects in the sky with respect to the
equinoxes and over time alters both the pole star and
the visibility of circumpolar objects. Finally, we describe the
particular ways in which observations were carried out. A
list of bright objects with their modern positions, measures
of brightnesses, and colors is also provided for reference.

3.1. Visibility of Phenomena

Modern astronomers attempt to find dark and clear skies.
Unless they are working on bright objects or have spe-
cial compensating devices of some kind,' modern-day

! For example, one could compare the observations of a variable star
to a star known not to vary, observed under identical circumstances, and

astronomers who work in urban centers must travel to
acquire their data. It seems reasonable to assume that at
least some ancient astronomers would have preferred to
carry out their observations far from the smoke of cooking
and hearth-warming fires that characterized life in popula-
tion centers in past millennia. Just as light pollution in indus-
trialized societies is a severe problem for modern astronomy,
the cooking fires and attendant smoke would have made
observations of faint objects difficult in the past. However,
although ancient cities were not good sites for observatories,
some observations of the Sun or Moon could be carried out
in all but the most extreme conditions. Ptolemy, for instance,
carried out his observations from Alexandria (Almagest,
Toomer trs., p. 247). Observations in late antiquity were
carried out from Athens, Alexandria, Rhodes, Seleucus (a
city on the Tigris River), and Sicily (see, for instance, Sarton
1970, 11, p. 54). Note that three of these sites were in/near
large cities, so that astronomers’ travel for observational
data was limited for reasons that may well have involved
resources, convenience, local duties, or even safety consid-
erations. We leave this question for future research projects!

Still, haze due to smoke is one problem, and cloud is
another.

3.1.1. Climate and Weather Conditions

What do we know about the climate in various regions of
the world over the past 6000 years? There is ample evidence
of changing conditions in most of the world over this period
of time. The evidence is in several forms:

at the same time. One such device is a two-star photometer, in which
automatic and precise measurements are taken of the two objects at the
same or nearly the same instant. The Rapid Alternate Detection System
(Milone et al. 1982) in use since the early 1980s at the Rothney Astro-
physical Observatory of the University of Calgary measures consecu-
tively the light of two stars and samples the sky near them as well,
permitting the measurement of relative brightness even through light
cloud, and sky measurements to correct the results for sky brightness.
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(1) Biological data in the form of pollen and other plant
spores in living sites

(2) Changes in the distribution of fauna known from
historical and archaeological sources

(3) Forest and other vegetation limits

(4) Stable isotope studies suggesting changes in precipita-
tion patterns, ice coverage, and ocean salinity

(5) Geophysical data such as widths of river beds and sea
level heights

(6) Geographical and historical data such as the absence of
ice on sailing routes

Results of climatic investigations by Lamb (1974) for the
Northern Hemisphere indicate a pattern of fluctuating wet
and dry periods that lasted many years but which accom-
panied global retreat from a glacial period and subsequent
stabilization about 5000 years ago. Although wet intervals
might have been more conducive to better agricultural
yields and increased populations, dry intervals would prob-
ably have permitted more systematic investigations of the
sky. The forest limits of 2000 B.c. compared with those of
today show that conditions appear to be slightly cooler at
present with both cooler and warmer intervals between
(Lamb 1974). As ingenious as such reconstructions are, we
do not have astronomical records in the normal sense of the
term (see §6.2). From Mesopotamia (§7.1), at a somewhat
later time, however, we have a rich store of such informa-
tion. In Babylonian “diaries,” cuneiform records on baked
mud bricks, we have detailed information about precisely
what objects were “observed,” although clouds were no
impediment because, in general, planetary positions were
computed using prescribed methods (see §7.1.4 for the
flavor of that work). The diaries functioned as a kind of daily
news report, including commodity prices, meteorological
phenomena, and historical occurences, as well as astronom-
ical phenomena. Coe (1962/1972) summarizes some of the
broader changes in pre-Columbian Mexico. It can be said
that sufficiently clear viewing opportunities, when extensive
series of astronomical observations could have been made,
did exist sometimes at sites in these areas. We next describe
the empirical properties of light from astronomical objects
before discussing the atmospheric effects.

3.1.2. Brightness and Color of
Astronomical Objects

The atmosphere of the Earth absorbs virtually all of the y-
rays, x-rays, and most of the ultraviolet and infrared radia-
tion, and the ionosphere reflects and scatters away much of
the radio frequencies from space. Even in the absence of
cloud, however, the atmosphere is an absorbing and scat-
tering medium for visible light. Atmospheric molecules
scatter blue light much more strongly than red light, result-
ing in a yellow or reddish sunset and a blue sky. This type of
scattering is called “Rayleigh scattering,” after Lord
Rayleigh (the title of John William Strutt, 1842-1919), who
first explained the phenomenon in 1871. The scattering is
inversely proportional to the fourth power of the wave-
length (i.e., we may write, ¢ « 1/A*). The moon and other

3. Observational Methods and Problems
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Ficure 3.1. The geometry of the plane-parallel atmosphere
approximation and the definition of air mass. Drawing by E.F.
Milone.

objects are similarly reddened, and the closer the object is
to the horizon, the longer the path length through the atmos-
phere and, thus, the greater the scattering and the redder the
object appears.

Dust and smoke also scatter light, but the ash created
by forest fires may sometimes cause different color effects
(there are reports of distant forest fires causing a literal
“blue moon” effect’—causing more scatter in the red region
of the spectrum, due to the large size of the scattering par-
ticles). Under normal circumstances, at sites near sea level,
it is not uncommon to find even a totally clear sky blocking
more than half the near-ultraviolet light from an object at
the zenith. At larger zenith distances, still more light is lost.
Astronomers use the term extinction to describe the diminu-
tion of light caused by its passage through the atmosphere
and discuss the extinction of starlight in terms of magnitudes
of extinction per air mass (magnitudes are defined below).
Air mass refers to the thickness of the column of atmosphere
through which the light passes compared with that at zenith.
Very roughly for low altitudes, but a good approximation for
higher altitudes (greater than ~45°), the extinction is pro-
portional to the inverse cosine (or the secant) of the zenith
distance (or 90-h). Figure 3.1 illustrates the basic geometry,
ignoring a correction for the curvature of the Earth’s atmos-
phere, which is important for objects near the horizon. The
dimming and reddening of starlight (and sunlight and moon-
light) has important consequences for the visibility and the
ancient descriptions of these objects. Schaefer (1993a, b)
summarizes and discusses the visibility of objects due to
various effects, and he may be the best source of infor-
mation about the class of problems that he calls “celestial
visibility.”

In dry, high-altitude sites, the total visual extinction in an
otherwise clear sky may amount to little more than 10%, but
at low, moist sites, it may exceed 30% to 40%. As a con-
sequence, Schaefer has challenged the capability of estab-
lishing precision alignment at such sites. In order to be
quantitative about these matters, and to be able to compare

2 Perhaps because this term connotes rarity, it has also been applied
recently to the second of two full moons within a civil calendar month.
Because there are either 30 or 31 days in all months but February, the
average 29°53 length of the Moon guarantees that it will occur when-
ever the full moon occurs on the first day of the month.
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observations from different observers and different times,
it is helpful to understand a few observational concepts.
The next few sections introduce these concepts. An excel-
lent general source for this material, and one that relates
general usage to astronomical photometry, is Sterken and
Manfroid (1992).

3.1.2.1. Magnitudes and Color Indices

Here, we define the brightness and color of a star. The tra-
ditional way to describe brightness is by magnitudes.
Astronomers in antiquity, and even much later, did not hes-
itate to refer to the brighter and fainter stars as “bigger” or
“smaller,” respectively. However, the word magnitude in
modern contexts has nothing to do with size, despite its ety-
mology’ and common usage, because the actual surface area
of a star other than the Sun cannot be resolved by the human
eye. Magnitude is an index of the faintness of light from an
astronomical source: The fainter the star, the bigger the
magnitude. The visual magnitude of the total collected light
of the Solar disk is ~—27, that of the star Sirius, —1.6, that of
Vega, ~0.0, and that of Barnard’s Star (invisible to the naked
eye), ~+10.

Systematic estimates of star brightness were first recorded
according to current knowledge by Hipparchos® [~146-~127
B.C.], who assigned a magnitude of 6 to the faintest stars
visible to the eye and I to some of the brightest. The
response of the eye can be modeled by a logarithmic func-
tion to changes in light; so the ratio of the brightest to the
faintest star represented by Hipparchos’s five magnitude dif-
ference is about 100. The present magnitude scale now
in use was suggested by Norman Pogson in 1856. It sets a
difference of 5 magnitudes exactly equivalent to a ratio of
100:1 in brightness. A difference of 2.5 magnitudes is then
equivalent to a ratio of 10:1, a 7.5 magnitude difference
equivalent to 1000:1, and so on.

The magnitude, m, is related to the detected light, € (its
units will be discussed below) by the following expression in
terms of base 10 logarithms:

m =-2.5log(¥) + constant. (3.1)

The relationship between the brightness of two objects is
expressible in the following equation:
l
nmy, —m; = —ZSIOgZ_ (32)
1
The quantities €; and €, represent energy in the form of light
received per second per unit area and in some passband, a
particular region of the color spectrum, from two astro-
nomical point-like sources.
Before the development of photography, the implied pass-
band was the entire range visible to the eye. These “visual

magnitudes” are commonly designated m,;;. Amateur orga-
nizations such as the American Association of Variable Star

* From the Latin magnus from the Greek megus, size; Ptolemy used the
related word megathos for magnitude.

* “Hipparchus” in its Latin form. See §7.2 for a discussion of
Hipparchos’s many other contributions to astronomy.
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Observers encourage observations of variable stars by pro-
viding observers with star charts with calibrated (standard
or constant) stars to assist in gauging the relative brightness
of variable stars, although amateur astronomers today
increasingly use detectors other than the eye to make such
observations. The measurement of the brightness of naked
eye variable stars such as Algol or B Lyrae (see §5.8.1) is
sometimes assigned by astronomy instructors as an exercise
in basic astronomical observing. Because the eye’s color and
sensitivity varies from person to person, a “personal equa-
tion” needs to be applied in combining observations from
different observers. Such an equation contains a “color
term” and a zero point, typically. We discuss this “trans-
formation” problem more generally below.

The use of photographic plates, beginning in the latter
part of the 19th century, permitted more restricted spectral
regions to be studied. The first one was essentially created
by the natural, somewhat bluer sensitivity of the emulsion
compared with the eye. Magnitudes in this system are
designated m,,. By means of special dyes added to the
emulsion, other regions could be defined. One of these was
the photovisual, replicating that of the eye: m,,.

The modern photoelectric photometer and, more re-
cently, the “charge coupled device” (CCD), provide higher
precision in the measurement of the energy in starlight.
A problem in comparing data from different observers is
that the data are typically obtained with different equipment
and under different observing conditions. To overcome the
uncertainties in interpretation of the results, modern
observers need to “standardize” their data. It is helpful to
bear this in mind when dealing with ancient observations
too. So, how do we do this?

Standarization requires measurements to be made in pre-
cisely defined passbands, which are defined by the spectral
sensitivity of the detection system (these days): the tele-
scope, detector, and color filters; or (throughout most of
human history) the eye, alone. One of the most widely used
modern systems is the UBV system of Johnson and Morgan
(1953). In the 1960s, the Johnson system was extended to
five passbands in the optical part of the spectrum: the ultra-
violet (U), blue (B), visual (V), red (R), and near infrared
(I) (Johnson 1966; Landolt 1983/1992). Johnson extended
his system to include infrared (>1pum) passbands also, but
these were badly placed with respect to the transparency
windows of the atmosphere,’ and they are difficult to stan-
dardize, especially at sites where the water vapor content
varies strongly with time. The passbands most important
for our purposes here are the B (centered at ~0.440pum or
4400 A wavelength) and V (~0.550um or 5500 A), because
of the large numbers of published observations in these
passbands, and in the closely related visual and photo-
graphic systems. The V band is calibrated to approximate the

5 Water vapor, carbon dioxide, ozone, and other atmospheric con-
stituents absorb light in the infrared, creating regions of high opacity
broken by regions of relative transparency—the atmospheric
“windows” in the infrared spectrum. See Milone (1989) for a discussion
of the problems of standardization in the infrared and Young, Milone,
and Stagg (1994) for solutions to some of them.
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old visual and photovisual magnitudes and is thus most rel-
evant for comparison to naked eye estimates. The B band
approximates photographic magnitudes. The difference
between magnitudes in two different passbands is called a
“color index.” In the Johnson system, B-V is a widely used
color index. The redder the star, the larger the color index;
thus, the color index can be considered a “redness index.”
For a blue star such as Spica, B-V = —0.2; for a white star
such as Vega, B-V = 0.0; for a yellow star such as the Sun,
B-V = +0.6; and for a very red star such as Antares, B-V =
+1.8.

The value of the constant in (3.1) depends on the wave-
length of the light under consideration, the width of the
passband, and the amount of light received from the stars
adopted as calibrating standards. The constant is thus the
luminous energy arriving in the vicinity of the earth, per
second, per unit area of the receiver, and per unit wave-
length interval, corresponding to a magnitude of zero. Note
that this quantity is not a direct measure of energy emitted
at the source. We use the definitions of Meyer-Arendt
(1972/1995), Sterken and Manfroid (1992), and Cohen and
Giacomo (1987) to draw the distinctions and provide defin-
itions. First, we note that energy expended per second (say,
in joules/second, abbreviated J/s, or in ergs/s) is called
power. A common unit of power is the watt,” abbreviated W
(1W =11J/s), equivalent to 107 erg/s.

The amount of energy radiated per second at the source
is called the radiant power or, sometimes, radiant flux (in
units of watts), or, considering only the power in a spectral
region centered around the wavelength 0.555um (micro-
meter or micron) equivalent to 555nm (nano-meters) or
5550 A (angstroms: 1 ~ 10"°m), which is the approximate
wavelength of peak sensitivity of the human eye in daylight,
luminous power. The unit of luminous power is, naturally
enough, the lumen (abbreviated Im), equivalent to about
1/680 W (see Meyer-Arendt 1995, p. 351, and remarks below;
the sensitivity of the human eye to different wavelengths
makes this conversion factor vary with wavelength and
bandwidth). Radiant (luminous for the visual region) exi-
tance is the power emitted per unit area in units of W/m?
(and in the visual, Im/m?); radiant (again, luminous for the
visual region) intensity is the amount of radiant (luminous)
power emitted into a solid angle cone of a certain solid
angle, Q, and has units of W/sr (for the visual, Im/sr). If a
source emitting monochromatic radiation at a frequency of
540 x 10" Hz (i.e., at a wavelength of 555nm) into a given
direction, has a radiant intensity of (1/683)W in that direc-
tion, the luminous intensity would be 11m/sr, a quantity also
called a candela (cd). Finally, the amount of radiation

® Named for James Watt (1736-1819), a Scottish engineer. The joule is
named after James Prescott Joule [1818-1889], a British scientist.

7 Angles are measured in degrees or radians (2x radians = 360°). Solid
angles are measured in square degrees or steradians (sr). Generally,
Q = area/(distance)’. The surface area of a sphere of radius R meters
is 4R’ square meters, so that from the center, Q = 4x steradians. A
1sr solid angle is that subtended by an area of one square meter at a
distance of 1m (N.B.: the area can be any shape). Also, 1sr = (180/r)*
= (57.296)* = 3282.8deg?, and the entire sphere subtends at the center
4msr = 41,252.88 square degrees.
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through a unit area and unit solid angle’ at the source is the
radiance; luminance refers to the visual component of
the radiance. Radiance and luminance are used to describe
the power emitted at different regions of the emitter’s
surface, and they are sometimes referred to as “brightness”
or “surface brightness.” They have units of Wm=sr™' for radi-
ance, and cd/m?, called nit (for the Latin nitere, “to shine™),
for luminance. Alternatively, the luminance is given in units
of lamberts (10*rcd/m?).

In contrast to the light produced at a source, the light that
we receive, incident on the surface of a telescope or of the
human eye, is the irradiance or the illuminance. The irradi-
ance is often called flux or flux density in astronomy; it has
units of Wm™. The irradiance in a small spectral region is
the spectral irradiance; the illuminance in a unit frequency
or wavelength interval is the monochromatic flux, with units
of Wm™?Hz"! or, for example, Wm™/um. In astronomy, mag-
nitudes may be used to describe a logarithmic form of an
irradiance; visual magnitudes may describe a logarithmic
form of an illuminance. We should emphasize that in the dis-
parate fields of radiometry, photometry, and astronomy (and
even among optical, radio, and infrared astronomy), the
names, symbols, usages, and units of the technical terms may
differ somewhat. For example, in radio astronomy, a
common unit of monochromatic flux is the Jansky (Jy) equal
to 107 Wm™= Hz ™.

For the V band, the constant of (3.1), in Systém Interna-
tional d’Unités (SI units), is

2.5-logip| 392 10° 21— 18517,
L m? - um |
and for B, it has the value
—2.5-logy| 72010 2% _ | _ 17857,
L m? - um |

when € in each case is expressed in the same units. Because
the Watt is a unit of power, energy per unit time, we are
talking about the amount of energy in the form of light
passing through an area of 1 square meter every second. The
amount of light is restricted by the passband, indicated by
the micron (um) unit. The zero point of the V magnitude
coincides approximately with that of the photovisual
magnitude, m,,, which in turn approximates that of m,;. That
of B is slightly displaced from that of m,,. Thus,

V= Mg,

B~ my, +0.11. (3.3)

Equations such as (3.3) are called transformation equations,
because they permit us to transform data from one system
(here, the photographic) into another (the UBV or Johnson
system).

For visual (naked eye) observations, of point (i.e., un-
resolved) sources, magnitudes are approximated by the

simple expression,
m, =-13.98 —2.51ogE, (3.4)

where FE is the illuminance, expressed in SI units of lux
(Im/m?). In these units, 1 foot-candle (fc) = 11m/ft? < 10.76
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lux & ~0.01576 W/m?), and 1 phot = 1lm/cm’ < 10*lux
(Allen 1973/1976, p. 26). A source for which m, = 0 (about
that of the star Vega) has an illuminance of ~2.54 x 10°lux
= 2.36 x 107fcs = 3.72 x 10°W/m% From (3.4), and C.W.
Allen (1973/1976, pp. 197), a star with an illuminance of 1
lux has a visual magnitude of —13.98. The values of the quan-
tities mentioned here apply outside the atmosphere. The
effect of the atmosphere will be considered in the next
section, but for now, we mention that it both dims and scat-
ters light, therefore, dimming, making redder, and obscur-
ing astronomical objects. Generally, such data need to be
“reduced” to outside the atmosphere. Note that by “visual,”
we imply that the light has been integrated (collected) over
the visual “bandpass,” i.e., the range of wavelengths equiva-
lent to the net sensitivity of the eye and centered near the
peak wavelength of this range. The range of wavelengths
to which the eye is sensitive differs with illumination level,
and it differs somewhat from person to person. Thus, this
type of formulation, although often helpful, needs to be
applied cautiously to ancient observations because it
requires that allowance can somehow be made for the
effects of the atmosphere, general lighting conditions, and
differences among observers. For example, someone study-
ing the brightness of the sky as viewed in the past needs to
consider that open fires, lamps, and torches were common
near cities and the spectrum of this illumination would have
varied from place to place, depending on population density
and the predominant fuels—the types of wood/peat/oil—
that were available. Except, possibly, for observations in
some parts of the third world, these conditions would be dif-
ferent from conditions almost anywhere in the world today
(where some degree of artificial lighting exists). The sky
background and the extinction due to the soot would be
more akin to observing conditions in the vicinity of local
fires, which are highly variable, as every photometrist who
has tried to observe under such conditions can attest. A
redder sky also means a different sensitivity level for the
eye as well. The photopic sensitivity level for a wavelength
of 600nm, for instance, is only ~63% that at 550 or
560nm, for an average individual (Meyer-Arendt 1995,
p. 352). See §3.1.4 for differences between day and night
vision, which have different color sensitivities. A full formal
discussion of the personal equation involved for the condi-
tions under which ancient photometric observations must
have been carried out needs to be made.

For extended objects, the situation is somewhat more
complicated. In dealing with extended sources, the radiance
or luminance must be considered. The perception of the
brightness differences from point to point of a nonuniform
source such as the Moon, or a limb- or spot-darkened Sun
(85.3.1), depends on the spatial resolution and brightness
and contrast sensitivity of the eye, which we take up in
§3.1.4. It is interesting, though, that the irradiance at a detec-
tor (the eye or a photometric instrument of some kind) of
an extended source such as a dense star cluster or galaxy is
in fact independent of distance. This is because the flux
density falls off with the inverse square of the distance, but
the image area at the detector depends on the solid angle of
the source, which has the same inverse square dependence
on the distance; hence, they cancel out. Distance sources
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with the same radiant power will appear smaller, and the
total radiation received from them will be less, but the
surfaces of those sources will look equally bright; i.e., the
irradiance of those sources at the detector will be the same.
Finally, we note that for uniformly bright, extended sources,
the irradiance (in astronomy, the flux or flux density), F, is
equal to the product of the radiance (in astronomy, the inten-
sity), I, and the solid angle, Q:

F=IxQ. (3.5)
Recall that 7 is in Wm™sr™', and F is in Wm™. At the mean
distance of Earth (1 “astronomical unit” = 1.5 x 10"'m),

the mean intensity of the Sun’s disk is 2.000 x 10’ Wm™sr™',
and the Sun occupies a solid angle of 6.8000 x 107sr,
so that F = 1360 Wm™. This quantity is in fact measured (the
“solar constant”) and is the flux of total radiation received
by the Earth at its mean distance from the Sun. When
F is multiplied by the area of a sphere at this distance, the
total radiant power (luminosity in astronomy) of the
Sun is 4ra’ F=2.8 X 10% m? x 1360 Wm™ =3.8 X 10** W. Schae-
fer (1993a, p. 319) gives a formula for the illuminance of an
extended source. It involves an integration over the solid
angle of the source. Rewriting this in terms of the illumi-
nance, F and mean luminance (surface brightness), <>,

F=295%x107 x <> x Q fcs, (3.6)

or, in terms of a visual magnitude, m, = —-16.57 — 2.51ogF,
where the constant applies for Schaefer’s units: B is given in
nanolamberts® Q in steradians, and F is in units of foot-
candles (Im/ft*) [= 10.76 lux]. Further discussion of extended
sources can be found in Schaefer (1993a).

An example of the importance of relating the energy to
the observed brightness will be seen in our discussion of the
visibility of meteoritic impacts on the Moon (§5.6). We now
discuss the correction of observations for extinction and the
standardization of photometric observations.

3.1.2.2. Correction for Atmospheric Extinction

As we noted earlier in this chapter, the brightness and color
of an object are affected by atmospheric transparency. This
section deals with the details of the extinction process.

The atmospheric extinction in magnitudes is usually
assumed to be linear with air mass. This is not strictly true,
but the approximation in the optical region of the spectrum
is not bad. That means that if the light of a star (or other
luminous object) traverses twice the thickness of the verti-
cal column of air, its extinction in magnitudes will be twice
as great. Equation (3.7) shows the commonly used relation
between observed magnitude, m, outside-atmosphere mag-
nitude, m,, and the air mass, X:

8 The lambert, named for the Swiss scientist Johann Heinrich Lambert
(1728-1777), is the brightness of a surface emitting (as for the Sun, or
reflecting, as for the Moon and planets in visible light) one lumen per
square centimeter. In SI units, 1 lambert = 10*lumen/m? so that one
nanolambert (= 10~ lambert) = 10~ lumen/m> For reflection cases, the
surface is assumed to be be fully diffusing. See modern optics texts such
as Meyer-Arendt (1972/1995) or Jenkins and White (1957) for further
discussion.
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my=m-k'X -k"”-Xc, (3.7)

where k' is called the first-order extinction coefficient and k”
is the second-order (or, more accurately, the color) coeffi-
cient, and c is the observed (and uncorrected) color-index of
the object. The quantity k" has a typical value at a sea-level
site of about 0.25 for visible light, and it is generally less at
higher altitude sites. Its value depends strongly on the wave-
length and weakly on the color index of the object observed.
The value of k£’ depends also on atmospheric conditions, so
that it varies from site to site, night to night, and often even
during a night at the same site. Because of the dependence
on the color of the observed object, a color-term is some-
times subtracted from the right side, as shown in (3.7). The
quantity k. usually has a value less than 0.01. The color
indices can be treated in a way similar to the magnitudes:

c=c—klX-k'Xc. (3.8)

Typical values for the B-V color coefficients at sites where
astronomical photometry is carried out are k. = 0.15; k7 =
—0.02. One might think that if atmospheric extinction were
due solely to molecular scattering effects, then the wave-
length-dependence of Rayleigh scattering could be used to
predict the extinction in one passband given the extinction
in another. This would be true if (1) there were no aerosol
(water vapor, dust), or specific absorber content to the
atmosphere (e.g., terpenes near forests, discrete chemicals
near smelter works, etc.), and (2) all photometry systems
were identical (i.e., with the same effective wavelength and
bandwidth). For clear air conditions and for one and the
same stable system, however, correlations of extinction in
the several passbands can be determined (see, for an
example in the infrared, Glass and Carter 1989). For the
naked eye, sensitivity to color varies widely, and because the
atmosphere strongly reddens light, the perception of bright-
ness of a star can be expected to vary from individual to
individual (even from eye to eye!). Careful and controlled
experimental work to establish or qualify this would be of
interest.

The air mass may be precisely computed for most obser-
vations. It is related to the zenith distance, z, or the altitude,
h, through the expression:

X =secant z = cosec h (3.9)

for relatively small values of z. For altitudes down to about
10°, an approximation for the curvature of the atmosphere
close to the horizon must be used. One such approximation
is given by Bemporad and reproduced by Hardie (1962):

X =sec z—a(sec z—1)—b(sec z—1)* —c(sec z — 1)3, (3.10)

where a = 0.0018167, b = 0.002875, and ¢ = 0.000808.

For objects even closer to the horizon, the extinction is
much more difficult to determine. Detailed modeling of the
scattering and absorption properties of the atmosphere are
needed on the night of the observations. For rising stars and
planets, an approximation that is in wide use is to assume
that the altitude in degrees at which an object can be first
observed with the naked eye (i.e., brighter than about visual
magnitude 6) is equal to its magnitude: a 4th magnitude star
would be first visible at an altitude of about 4°. This affects
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the measured bearing of the object and hence archeological
alignments that depend on it.
Atmospheric extinction in several forms:

(1) Selective absorption by atmospheric gases

(2) Continuous scattering by atmospheric molecules

(3) Scattering and absorption by suspended particles in the
air (aerosols)

Selective absorption removes radiation at certain specific
wavelengths. A star’s spectrum has features that originate in
its atmosphere, in the interstellar medium through which the
starlight travels, and, finally, in the Earth’s atmosphere. The
latter include water vapor bands at ~590nm (in the orange
region of the spectrum) and 650nm (in the red region), and
molecular oxygen bands at 627, 687, and 760nm. The near
infrared contains many features of water vapor and carbon
dioxide, among many other molecules. In the ultraviolet,
ozone is an important absorber.

The continuous scattering by atmospheric molecules
(mainly nitrogen and oxygen that together make up ~98%
of the Earth’s atmosphere by weight) removes the bluer
components of starlight relative to the redder. The radiation
is scattered into the night sky. Thus, sunlight is reddened and
the sky made blue during daylight hours.

Finally, there is the atmospheric aerosol content, the most
variable of the extinction components at low altitude sites.
Examples of aerosols are ocean spray, dust from deserts and
volcanoes, pollen from trees, and smoke. Aerosol particles,
which are generally much larger than the wavelength of
light, scatter light more or less equally at all wavelengths.

The very high air mass value near the horizon causes a
large uncertainty in the observed magnitude for even small
changes in the extinction coefficient. Suppose, for instance,
that the extinction coefficient varies by ~ £0.05magn. Then,
for X > ~20, the uncertainty in the extinction, Ak x X, will
vary by ~ £1 magnitude or more. For assumed values of
extinction, sky brightness, humidity, and for the altitude of
a site near the Big Horn Medicine Wheel, Wyoming, Schae-
fer (1993a, p. 343) calculates an extinction of 0.85magn. for
the star Aldebaran at the extinction angle, which he com-
putes as 0.6°. At the South pole, at an altitude of 3km, he
finds an average k, of 0.14 for both summer and winter,
whereas in a site in Athens, Greece (altitude 107 m), he finds
0.25 and 0.31 for summer and winter, respectively. Values for
some other sites are 0.22 and 0.28 for Tucson (770m alti-
tude), 0.18 to 0.28 for Jerusalem (775m), and 0.28 to 0.46 for
Los Angeles (100m). The fact that the setting sun may some-
times appear white with only a yellow tinge, a common sight
in a clean, dry, western site such as Alberta, for instance, and
sometimes a deep crimson, particularly at sea-level coastal
sites, shows that color coefficients may vary greatly.

For more detailed work in this area, Schaefer (1989)
provides a program to compute the air mass for relevant
atmospheric conditions and (Schaefer 1993a, pp. 315-319)
provides formulae and tables for X and extinction coeffi-
cient k computed from formulae for the Rayleigh scattering,
ozone absorption, and aerosol scattering contributors to
extinction.

The sensation of color varies from individual to individ-
ual, and in the same individual, it varies with light level and
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other variables. This is so apart from the variation in preci-
sion of language used to describe those sensations. The ques-
tion of the true color of astronomical objects arises in
ancient astronomy. For example, the dog star, Sirius, was
described by most ancient astronomers (except possibly the
Chinese) as some color in the range of yellow to red; yet
today it is clearly white. This discrepancy has resulted in
much discussion about whether the ancients were describ-
ing the true color of the star. Because there is a strong pos-
sibility that they were, serious questions about stellar
evolutionary time scales then arise. We discuss the Sirius
question in §5.8.4.

3.1.2.3. Standardization

Standardization of data can be thought to be a thoroughly
modern aspect of astronomy, primarily because we associ-
ate such an activity with the scientific method. Scientists try
to recreate the conditions of an experiment to test hypothe-
ses by varying one variable at a time. In astronomy, system-
atic observations of brightness require a further correction
for site-induced variation. Observed values of magnitudes
and color indices, even after correction for extinction, are
still not the same as catalogue values. Each telescope system
is different in its sensitivity to the brightness and colors of
the stars, and so the data have to be transformed to a stan-
dard system. Yet this too is relevant to a discussion of
ancient observations because observations made with the
human eye may require a “personal equation” to correct for
different sensitivies to brightness and color. The transfor-
mation equations usually have the form:

(3.11)
(3.12)

My =my+€ Cya+7Z,
Cstd = H - Co +Zc,

where € and  are called transformation coefficients, Z and
Z, are zero points, and m, and ¢, are the local system mag-
nitudes and color indices, as above. When mi, is V, the quan-
tity cyqin (3.11) and (3.12) is often B — V. The determination
of the extinction and transformation coefficients and zero
points is beyond the scope of our discussion, but the reader
is referred to one of many articles on the subject (such as
Hardie 1962 for the general idea, or Young 1974 for strong
qualifications and refinement of methods). As we note
below (§3.1.4), the color perception of the human eye
depends on three types of cone receptors that act rather like
the photographic or photoelectric detectors discussed above
and can detect color in sources if they are brighter than
~1500 nanolamberts. The spectral sensitivity of the three
types of cones varies with the individual, but normally peaks
in the regions 600, 550, and 450 nm, for the red-, green-, and
blue-sensitive cones, respectively, and the sensitivity curves
overlap. See Schaefer (1993a; 1993b, pp. 87-88) for a terse
summary and Cornsweet (1970) for detailed discussion. In
principle, one can try to transform data from one individual
to a “standard observer.” In practice, this is difficult to do,
partly because we have too little data about observing con-
ditions from observers in the remote past, so that important
complicating effects are not known, and partly because
few modern astronomers attempt to perform the time-
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consuming visual experiments needed to make such a study.
One of the exceptions to the latter is Art Upgren (1991),
who studied the effect of increasing light pollution on the
visibility of stars labeled “blue” and “red” over a 14-year
interval; in that study, however, no strong color-effect was
noted, and the detailed dependence of visibility on color
index was not investigated. More such studies are needed to
isolate the complicating effects of extinction and sky bright-
ness from observer color sensitivity.

3.1.2.4. Modern Star Data

In order to discuss the brightness changes of such objects as
the “lost Pleiad,” the brightness of Sirius, the pretelescopic
detection of variability of the demon star Algol, and so on
(cf. §5.6), it is useful to have a list of stars at their current
brightnesses. This is provided in Table 3.1, which lists the
positions of some of the brighter stars in right ascension and
declination coordinates with respect to the equinox of 2000
A.D. [a particular equinox must be specified because of the
precession of the equinoxes that changes these coordinates
with time (see §3.1.6)]. The brightnesses are expressed in V
magnitudes and B — V color indices. All stars of visual mag-
nitude ~3 or brighter, and a few that are fainter (like the
seven brightest stars of the Pleiades star cluster), are
included. The common names for the stars are given just
after their constellation designations; translations and alter-
natives may be found in C.W. Allen (1963) or in the Bright
Star Catalog (Hoffleit 1982). The spectral classification is
given in the column marked “Sp.” The spectral classification
is based on the features in visible spectrum of the star, and
these are primarily determined by the star’s surface tem-
perature. In order of decreasing surface temperature, the
major classes are O, B, A, F, G, K, and M. The lettered class
is followed by arabic numbers (0-9) that mark progression
within each spectral class. The designation of a Roman
numeral following the spectral class indicates the luminos-
ity of the star: V = dwarf (sometimes called a main sequence
star); IV = subgiant; 111 = giant; II = lesser luminosity super-
giant; and I = greater luminosity supergiant; gradations a
and b are applied to supergiants. Older designations of lumi-
nosity include “c” for supergiant, “g” for giant, and “d” for
dwarf. Other nuances of spectral classification include “p”
for peculiar and “e” for emission features. The star Y
Velorum is classified as “WCS,” which means it is a Wolf-
Rayet star, a very hot star thought to be the core of a lumi-
nous, evolved star that has lost its outer atmospheric
envelope. The Sun, a yellow star, has the spectral classifica-
tion G2V. As in other contexts, a color following an entry
such as the spectral class indicates uncertainty. Note the
relationship between spectral class and color index in Table
3.1. The bluest stars are O and B stars, and the reddest are
K and M stars, but color can be affected by interstellar red-
dening, even if the atmospheric reddening produced by the
extinction coefficient term kjy. has been corrected. Stars can
therefore show a color excess, defined as

Egy =(B-V)—-(B-V),, (3.13)

where (B — V) is the observed color index and (B — V), is
the intrinsic color index (at the source). If the star has been
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reddened by the interstellar medium, it has been dimmed as
well, by an amount of interstellar extinction, Ay = 3.1 X Epy.
The interstellar extinction is due to the additive contribu-
tions of individual dust clouds and averages about 1 magni-
tude per 1000 parsecs (3260 light years) of distance in the
galactic plane. Intrinsically blue stars that are very far away
may be reddened by interstellar matter, but their spectral
classification will not change. Such a cause is unlikely to
effect color changes of stars within millennia, but circum-
stellar matter can and does vary over much shorter time
scales. In an interacting binary star system, for instance,
matter from one star, expanding as it moves toward a red
giant phase, may stream around the companion. This may
dim the companion, and thus the system as a whole, as well
as redden it. No corrections for interstellar extinction or red-
dening have been applied in Table 3.1. Stars that are unre-
solved doubles (either a bound binary star system or merely
near each other in the apparent plane of the sky), are des-
ignated “D” in the “Comment” column; variable stars are
designated “Var.” Many of the stars marked “D” have only
very faint optical companions, which may not be gravita-
tionally bound to the naked eye star at all, but located at a
much different distance from us; the designation merely
serves as a warning that changes in color and brightness
recorded in pretelescopic times must be carefully examined
to ensure that the effect did not involve a companion star.
In those cases of double stars in which the components can
be resolved by small telescopes, and for which the compo-
nent magnitudes and colors are available, the magnitudes
and color indices of the combination, V¢ and (B — V), have
been computed. The formula is

Ve =V, —2.5 - log[1+ 1004012, (3.14)

A similar expression holds for B¢, and from these the dif-
ference, (B — V)¢ can be calculated. The B magnitudes are
obtained by adding V and (B - V).

Notice that in computing the combined brightness, mag-
nitudes are not additive: Two stars of magnitude 5 do not
have a combined brightness of 10 magnitudes, but of ~4.247.

The stars of Table 3.1 have been incorporated in the star
charts of the appendices. Table 3.2 lists the brightness in
magnitudes and the color in color indices of solar system
objects. In addition to the planets, four minor planets, some-
times called asteroids, are included: Ceres, the first discov-
ered,’ and Pallas, Juno, and Vesta. At their brightest, these
objects are just visible to the unaided eye. Included also in
Table 3.2 are the four brightest moons of the planet Jupiter
(Io, Europa, Ganymede, and Callisto); called the Medicean
moons by their discoverer, Galileo, they are today called the
Galilean satellites. Were they not so close to Jupiter, they
would be visible to the unaided eye. The magnitudes shown
are for mean opposition for the exterior planets and the
moons of Jupiter. Mean opposition refers to an opposition
when the object and the earth are at their average distances
from the sun. For the inferior planets and minor planets, the
brightest magnitudes that these objects can attain as seen

° The discovery was made on the first night of the 19th century, January
1, 1801, by the astronomer Giuseppe Piazzi, in Palermo, Sicily.
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from earth are tabulated. The solar and terrestrial distances
of each planet vary, and so its brightness varies, with the
inverse square of those distances. Moreover, the reflected
light may vary with phase angle (the angle between the
direction to Earth and the Sun as viewed from the planet).
The magnitudes corresponding to the configuration at which
a planet may be seen at any particular time may be calcu-
lated by formulae given by Harris (1961, p. 276ff). Greatest
brilliancy for the planet Venus occurs about 1.1 months after
greatest eastern elongation and before greatest western
elongation. At the present time, Pluto is near perihelion and
its opposition magnitude is about 13.7. One major mystery
is why Uranus was not observed in antiquity, a question first
raised by the 18th century astronomer J.E. Bode (1784, p.
217). See Hertzog (1988) for a response.

The B — V color index quantifies the redness of Mars
(compare it to the red stars in Table 3.1). The redness of
Mars is due to an iron oxide in the surface soil. The redness
of Mars, the yellowness of Saturn, and the relative whiteness
of Jupiter and Venus provide a kind of scale of color to
compare the colors of other objects, such as the stars Antares
(rival to Mars) or Sirius, the historical color of which has
been the source of much controversy. We will return to the
issue of the color of Sirius in §5.8.4. Here, we note only that
the present color of Sirius is white; yet, Seneca, writing ~25
A.D., commented that Sirius was redder than Mars (Brecher
1979, p. 97). See Bobrovnikoff (1984) for further discussion
of color descriptions of astronomical objects in antiquity.

3.1.2.5. Sky Brightness and Visibility

The usual limiting magnitude for naked eye detection is ~6,
but in practice this limit is too optimistic unless the site is
exceptionally dark and clear; of course, superior acuity
helps. Observations of astronomical objects are limited not
only by the atmospheric conditions (cloud, fogs and mists,
atmospheric Rayleigh scattering, and absorption), but they
are limited also by the brightness of the sky.

The brightness of the sky is the sum of several
contributions:

(1) Intrinsic brightness of the sky (the combined direct light
of faint stars and distant galaxies and starlight scattered
by the atmosphere)

(2) Sunlight (daylight or twilight)

(3) Moonlight (earthshine as well as solar reflection)

(4) Atmospheric emissions

(5) Artificial lighting

(6) Scattering efficiency of the atmosphere

The classic source for the effects of these sources on the visi-
bility of stars is Minnaert (1954), but more recent sources may
be more useful. Schaefer (1993a, p. 321) gives formulae for
the sky brightness in units of nanoLamberts (see fn 8,
§3.1.2.1) for each of these sources. Most practically, Upgren
(1991) provides empirical data of the altitudes at which stars
of particular magnitudes are visible. At high latitudes, both
north and south, the summer season is marked by increased
hours of sunlight; north of the Arctic Circle (south of the
Antarctic Circle), (the “land of the midnight Sun”), the Sun
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TaBLE 3.1. Positions, brightnesses, and colors of selected stars.

Name(s) o (2000) S v B-V Sp Comments
o And = Alpheratz, Sirrah 00°08™23° +29°0526” 2.06 -0.11 Alp D
=3 Peg (formerly)
B Cas = Caph 0009 11 +59 08 59 2.27 +0.34 KOIII D
o Phe 0026 17 -4218 22 2.39 +1.09 KOIII D
o Cas = Schedar 00 40 30 +56 32 15 2.23 +1.17 KOII-III D, Var
B Cet = Diphda 00 43 35 -1759 12 2.04 +1.02 KOIII
y Cas 00 56 42 +60 43 00 247 -0.15 BOIV D, Var
B And = Mirach, Mizar 01 09 44 +3537 14 2.06 +1.58 MOIII D
& Cas = Ruchbah 012549 +60 14 07 2.68 +0.13 ASV D, Var
o Eri = Achernar 013743 -5714 12 0.46 -0.16 BSIV
B Ari = Sheratan 01 54 38 +20 48 29 2.64 +0.13 A5V D
o Hyi 01 58 46 -61 3412 2.86 +0.28 FOV
¥ And 02 03 54 +42 19 47 2.26 +1.37 K211T D
¥ And 02 03 55 +42 19 51 4.84 +0.03 Alp D
Y' +v* And = Almak Ve=216, (B -V)c=+1.17
o Ari = Hamal 02 07 10 +23 27 45 2.00 +1.15 K2II1 D
B Tri 02 09 33 +3459 14 3.00 +0.14 ASIII D
o Cet = Mira 021921 —-02 58 39 2-10 +1.42 MSe-M9eV Var
o UMi = Polaris 023151 +89 15 51 2.02 +0.60 F5-81b D, Var
©' Eri = HR 897 02 58 16 -4018 17 324 +0.14 AAIII D
©” Eri = HR 898 0258 16 -40 18 16 4.35 +0.08 A1V
©'+ ©* Eri Ve=291, (B -V)c=+0.125
o Cet = Menkar 030217 +04 05 23 2.53 +1.64 M1.5111
y Per = Mekab, Menkar 03 04 48 +53 3023 293 +0.70 GSIII + A2V D
B Per = Algol 03 08 10 +40 57 21 212 -0.05 B8V D, Var (eclipsing binary)
o Per = Mirfak 032419 +49 51 41 1.80 +0.48 F5Ib
S Per 03 42 55 +47 47 15 3.01 -0.13 BSIII D, Var
17 Tau = Electra 03 44 53 +24 06 48 3.70 -0.11 B6III D, Pleiad
19 Tau = Taygeta 034512 +24 28 02 4.30 -0.11 BeIV D, Pleiad
20 Tau = Maia 03 45 50 +24 22 04 3.88 -0.07 B7111 D, Pleiad
23 Tau = Merope 03 46 20 +23 56 54 4.18 -0.06 B6IV Var?, Pleiad
1 Tau = Alcyone 03 47 29 +24 06 18 2.87 -0.09 B7IIL Pleiad
27 Tau = Atlas 0349 10 +24 03 12 3.63 -0.08 BSIII D, Pleiad
28 Tau = Pleione 034911 +24 08 12 5.09 -0.08 B8p D, Var (Shell star)
€ Per 03 54 08 +31 53 01 2.85 +0.12 Bl1Ib D
€ Per 03 57 51 +40 00 37 2.89 -0.18 BO.5II1 D
vy Eri 03 58 02 -13 30 31 2.95 +1.59 MO.511T D
o Tau = Aldebaran 04 3555 +16 30 33 0.85 +1.54 KSIIT D
U Aur 04 57 00 +33 09 58 2.69 +1.53 K3II
€ Aur 0501 58 +43 49 24 2.99 +0.54 FOIa D, Var (eclipsing binary)®
B Eri = Cursa 0507 51 -050511 2.79 +0.13 A3III D
B Ori = Rigel 051432 -08 12 06 0.12 -0.03 BS8Ia D
o Aur = Capella 0516 41 +4559 53 0.08 +0.80 G8III D
vy Ori = Bellatrix 052508 +06 20 59 1.64 -0.22 B2III D?
B Tau = Nath 052618 +28 36 27 1.65 -0.13 B7111 D
B Lep = Nihal 052815 —-2045 34 2.84 +0.82 G211 D
8 Ori = Mintaka 0532 00 -00 17 57 2.23 -0.22 09.511 B2V D, west Belt star of Orion
o Lep = Arneb 0532 44 -17 49 20 2.58 +0.21 FOIb D, Var?
t Ori = Nair al Saif 05 3526 —05 54 36 2.76 -0.23 O9III D, Sword star of Orion,
in nebulosity.
€ Ori = Alnilam 053613 -01 1201 1.70 -0.19 BOIa center Belt star
€ Tau 053739 +21 08 33 3.00 -0.19 B2IVp D, Var (Shell star)
o Col = Phakt 053939 -34 04 27 2.64 -0.12 B8Ve D
€ Ori 05 40 46 -01 56 34 2.05 -0.21 09.5V east Belt star.
=HR 1948 + HR 1949 05 40 46 -01 56 34 421 -0.2 BOIII D, Var
= Alnitak Vce=1.76,(B-V)c=-0.21
x Ori = Saiph 05 47 45 -09 40 11 2.06 -0.17 BO0.5Ia Right knee of Orion
o Ori = Betelgeuse 055510 +07 24 25 0.50 +1.85 M2Iab D, Var
B Aur = Menkalinan 0559 32 +44 56 51 1.90 +0.03 A2IV D, Var
O Aur 055943 +37 12 45 2.62 -0.08 A0p D, Var
€ CMa = Furud 062019 -3003 48 3.02 -0.19 B3V D
B CMa = Mirzam 0622 42 -17 5722 1.98 -0.23 BIII-1I1 D
w Gem = Pish Pai 0622 58 +22 30 49 2.88 +1.64 M3III D

o Car = Canopus 06 23 57 -52 41 44 -0.72 +0.15 FOIa
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Name(s) o (2000) d A\ B-V Sp Comments
vy Gem = Alhena 06 37 43 +16 23 57 1.93 +0.00 AQ0IV D
€ Gem = Mebsuta 06 43 56 +2507 52 2.98 +1.40 G8Ib D
o CMa = Sirius 06 45 09 —-16 42 58 -1.46 +0.00 A1V D (with Sirius B)"
T Pup 06 49 56 —5036 53 2.93 +1.20 KOIII D
€ CMa = Adara 06 58 38 —28 58 20 1.50 -0.21 B2II D
0’ CMa 07 03 01 —23 50 00 3.03 —-0.09 B3la D
8 CMa = Wezen 07 08 23 —262335 1.86 +0.65 F8la D, Var?
n Pup 07 17 09 —37 0551 2.70 +1.62 KS5III D
n CMa = Aludra 07 24 06 291811 2.44 -0.07 BSIa D
B CMi = Gomeisa 07 27 09 +08 17 21 2.90 —-0.09 B8V D
o Gem 07 34 36 +3153 18 2.88 +0.04 A1V D¢
=HR 2890 + HR 2891 07 34 36 +315318 1.98 +0.03 A5Vm D, Var
= Castor, Apollo Ve=1.59, (B - V)c=+0.03
o CMi = Procyon 0739 18 +05 13 30 0.38 +0.42 FSIV-vV D
B Gem = Pollux 07 4519 +28 01 34 1.14 +1.00 KOIII D
¢ Pup 08 03 35 —40 00 11 2.25 -0.26 051
p Pup 08 07 33 241815 2.81 +0.43 FsII D, Var
v Vel 08 09 29 —47 20 44 427 -0.23 B1IV D, Var?
v Vel 08 09 32 —472012 1.78 -0.22 wC8 D, Var
Y + v Vel Ve=171,(B-V)c=-022
€ Car = Avior 08 22 31 -5930 34 1.86 +1.28 KOII D, Var?
& Vel 08 44 42 —54 42 30 1.96 +0.04 A0V D
A Vel = Alsuhail 09 08 00 -432557 221 +1.66 KS5Ib D
B Car 0913 12 —-69 43 02 1.68 0.00 AlIll
1 Car = Turais 09 17 05 -5916 31 2.25 +0.18 A9Ib
K Vel 09 22 07 -5500 38 2.50 —0.18 B2IV-V D
o Hya = Alphard 0927 35 —08 39 31 1.98 +1.44 K3III D
© UMa 093251 +51 40 38 3.17 +0.46 F6Iv D
€ Leo = Algenubi 09 4551 +23 46 27 2.98 +0.80 G111
v Car 09 47 06 —65 04 18 297 +0.27 A8Ib D
R Leo 09 47 33 +112543 4-10 +1.4 M7e Var
o Leo = Regulus 10 08 22 +11 58 02 1.35 -0.11 B7V D
v Leo = HR 4057 10 19 58 +19 50 30 222 +1.15 KOIIp D, Var?
¥ Leo = HR 4058 1019 59 +19 50 25 3.47 +1.10 G711
Y + 7 Leo = Algieba V=192, (B-V)c=1.14
u UMa 1022 20 +41 29 58 3.05 +1.59 MOIII D
© Car 10 42 57 —64 23 40 2.76 —-0.23 B0.5V D
u Vel 10 46 46 —492512 2.69 +0.90 GS5III D
B UMa = Merak 11 01 50 +56 22 56 2.37 —0.02 AlIV-V D, Big Dipper (pointer)
o UMa = Dubhe 11 03 44 +61 45 03 1.79 +1.07 KOIII D, Big Dipper (pointer)
Y UMa 11 09 40 +44 29 54 3.01 +1.14 K111I
d Leo 11 14 06 +20 31 25 2.56 +0.12 A4V D
B Leo = Denebola 11 49 04 +14 34 19 2.14 +0.09 A3V D
Y UMa = Phecda 11 53 50 +53 41 41 2.44 0.00 A0V D, Big Dipper (bowl)
d Cen 12 08 22 —-50 43 20 2.60 -0.12 B2V D
e Crv 1210 07 223711 3.00 +1.33 K2111
8 Cru 12 1509 —58 44 56 2.80 -0.23 B2IV Var, Southern Cross star
8 UMa = Megrez 121526 +57 01 57 331 +0.08 A3V D, Big Dipper (bowl)
Y Crv = Gienah 1215 48 -17 3231 2.59 -0.11 BSIII D
o' Cru = HR 4730 12 26 36 —63 05 56 1.33 —0.24 BO0.5IV D
o? Cru = HR 4731 12 26 37 —63 05 58 1.75 —0.26 B3n/B0.5Vn D
ol + o? Cru = Acrux V=076, (B —V)c=-0.24 “Pointer” star to SCP
8 Crv = Algorab 1229 52 —-16 30 56 2.95 —0.05 B9V
v Cru 12 31 10 —57 06 47 1.63 +1.59 M3III D, Southern Cross star
B Crv 123423 —232348 2.65 +0.89 G511
o Mus 123711 —69 08 07 2.69 -0.20 B3IV D
v Cen 12 41 31 —48 57 34 217 —-0.01 AOIII D
Y Vir 12 41 40 —01 26 58 3.65 +0.36 Fov D
= HR 4825 + HR 4826 12 41 40 —0126 58 3.68 +0.36: Fov
= Porrima V=291, (B-V)c=+0.36
B Cru 1247 43 -594119 1.25 -0.23 BOIII Southern Cross star
e UMa = Alioth 12 54 02 +5557 35 1.77 —-0.02 AOp D?, Big Dipper (handle)
o? Cvn = Cor Caroli 12 56 02 +38 19 06 2.90 -0.12 A0V D, Var
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Name(s) o (2000) S v B-V Sp Comments
¢ Vir = Vindemiatrix 1302 11 +10 57 33 2.83 +0.94 GOIII D
Y Hya 131855 -231018 3.00 +0.92 GSIII D
t Cen 1320 36 —36 42 44 2.75 +0.04 A2V
£ UMa 13 23 56 +54 55 31 2.27 +0.03 AlVp D, Big Dipper (handle)
=HR 5054 + HR 5055 1323 56 +54 5518 3.95 +0.13 Alm D
= Mizar Ve =2.06, (B -V)c=+0.05 “Horse” to Alcor’s “rider”
o Vir = Spica, Azimech 132512 -11 09 41 0.97 -0.24 B1V D, Var
80UMa = Alcor 132513 +54 59 17 4.01 +0.16 A5V D, +double with { UMa
€ Cen 133953 -532759 2.30 -0.22 B1V D
n UMa = Alkaid 1347 32 +49 18 48 1.86 -0.19 B3V D, Big Dipper (handle)
u Cen 13 49 37 —42 28 26 3.04 -0.17 B3Ve D, Var
n Boo = Muphrid 13 54 41 +18 23 52 2.68 +0.58 GOIV D
¢ Cen 135532 —4717 18 2.55 -0.22 B2IV D
B Cen 14 03 49 —60 2222 0.61 -0.23 B1II D
o Dra = Thuban 14 04 23 +64 22 33 3.65 -0.05 AOIII D, former pole star
© Cen = Menkent 14 06 41 -3622 12 2.06 +1.01 KOIII-1V
o Boo = Arcturus 141540 +19 10 57 -0.04 +1.23 K2IIIp
vy Boo = Seginus 14 32 05 +38 18 30 3.03 +0.19 AT Var
n Cen 14 35 30 —42 09 28 231 -0.19 B3I1I D
o Cen = HR 5460 1439 35 -60 50 13 -0.01 +0.71 K1v D, Nearest star system?
o! Cen = HR 5459 14 39 37 —60 50 02 1.33 +0.88 G2V
o' + o Cen = Rigel Kent Ve=-0.28,(B-V)c=+0.75
“Lup 14 41 56 —47 2317 2.30 -0.20 B1III D
€ BooA + 14 44 59 +27 04 27 2.70 KOIT-IIT D
€ BooB 14 44 59 +27 04 30 5.12 A2V
A + B = Izar = Mirach = V=259, (B-V)c=+0.97 BSC gives Vc = 2.37
Mizar = Pulcherrima
o! Lib = HR 5530 14 50 41 -1559 50 5.15 +0.41 F51V Var
o? Lib = HR 5531 14 50 53 -16 02 31 275 +0.15 Am D
o! + o2 Lib = Zuben el Genubi Ve=2.64,(B-V)c=+0.17
B UMi = Kocab 14 50 42 +74 09 20 2.08 +1.47 K4I11 D
B Lup 14 58 32 —43 08 02 2.68 -0.22 B2V D
B Lib = Zuben el Chamali 1517 00 —09 22 59 2.61 -0.11 B8V D, Var
yTrA 151855 —68 40 46 2.89 +0.00 A0V
o CrB = Alphecca, Gemma 15 34 41 +26 42 53 2.23 -0.02 A0V D, Var
vy Lup 153508 —41 10 00 2.78 -0.20 B3V D
o Ser = Unukalhay, Cor 1544 16 +06 25 32 2.65 +1.17 K211 D
Serpentis
B TrA 155508 —63 2550 2.85 +0.29 F2v
7 Sco 1558 51 —26 06 51 2.89 -0.19 B1V D
T CrB 1559 30 +25 5513 2-11 +1.4 M3II + p Var
8 Sco = Dschubba 16 00 20 223718 2.32 -0.12 BOV D
B' Sco = HR 5984 16 05 26 -1948 19 2.62 -0.07 B0.5V D
B? Sco = HR 5985 16 05 26 -19 48 07 4.92 -0.02 B2V
B' + B* Sco = Acrab, Graffias V=250, (B -V)c=-007
8 Oph = Yed Prior 16 14 21 —-03 41 40 2.74 +1.58 MIIIT D
6 Sco = Al Niyat 1621 11 -253534 2.89 +0.13 B1III D, Var
N Dra 16 23 59 +61 30 51 2.74 +0.91 GS8III D?
o Sco = Antares 16 29 24 —26 2555 0.96 +1.83 M1Ib D, Var
B Her = Kornephoros 16 30 13 +21 2922 2.77 +0.94 G8IIIL D
T Sco 163553 —28 1258 2.82 -0.25 BOV
¢ Oph 16 37 09 -10 34 02 2.56 +0.02 09.5V
{ Her 16 41 17 +31 36 10 2.81 +0.65 GOIvV D
o TrA 16 48 40 —-69 01 40 1.92 +1.44 K2III
€ Sco 16 50 10 -3417 36 2.29 +1.15 K2I11
u! Sco 16 51 52 -38 02 51 3.08 -0.20 B1.5V D
C Ara 16 58 37 -555924 3.13 +1.60 K5IIT
1 Oph = Sabik 171023 -154329 243 +0.06 A2V
o' Her = HR 6406 17 14 39 +14 23 25 3.48: MSIb-11 D, Var
= Ras Algethi 17 14 39 +14 23 24 5.39 GSIII D
+ o Her = HR 6407 Ve=3.08,(B-V)c=+1.44
B Ara 172518 —5531 47 2.85 +1.46 K3Ib
B Dra = Rastaban 17 30 26 +52 18 05 2.79 +0.98 G211 D
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Name(s) o (2000) d A\ B-V Sp Comments
v Sco = Lesath 17 30 46 —37 1745 2.69 -0.22 B3Ib D

o Ara 17 31 50 —49 52 34 2.95 —-0.17 B3V D

A Sco = Shaula 17 33 36 -37 06 13 1.63 -0.22 B21V D, Var
o Oph = Ras Alhague 17 34 56 +12 33 36 2.08 +0.15 ASIIT D?

O Sco 17 37 19 —42 5952 1.87 +0.40 FOI-1I

K Sco 17 42 29 -39 01 48 2.41 -0.22 B2IV D

B Oph = Cebalrai 17 43 28 +04 34 02 2.77 +1.16 K2111

t Sco 17 47 35 —40 07 37 3.03 +0.51 F2la D

v Dra = Rastaban, Eltanin 17 56 36 +51 29 20 2.23 +1.52 KSIIT D

v Sgr = Al Nasl 18 05 48 -302527 2.99 +1.00 KOIII D, Var
€ Sgr = Kaus Australis 1824 10 -34 2305 1.85 -0.03 AO0II

A Sgr = Kaus Borealis 18 27 58 -252518 2.81 +1.04 K21I11

o Lyr = Vega 18 36 56 +38 47 01 0.03 0.00 A0V D, Var?
B Lyr = Sheliak 18 50 05 +33 21 46 3.45 0.00 B7V +p D, Var (eclipsing binary)
o Sgr = Nunki 185516 —2617 48 2.02 -0.22 B2.5V

€ Sgr = Ascella 19 02 37 —29 5249 2.60 +0.08 A2IV-V D

{ Aql = Deneb 19 05 25 +13 51 48 2.99 +0.01 B9V D, Var?
n Sgr 19 09 46 —21 0125 2.89 +0.35 F211 D, Var?
8 Dra = Alsafi 191233 +67 39 42 3.07 +1.00 GIIII D

B' Cyg = HR 7417 193043 +27 57 35 3.08 +1.13 K311 D

B? Cyg = HR 7418 193045 +27 57 35 5.11 -0.10 B8V D

B! + B* Cyg = Albireo Ve=292,(B-V)c=0.87

3 Cyg 19 44 58 +45 07 51 2.87 —-0.03 AOQIII D

v Aql = Tarazed 19 46 15 +10 36 48 2.72 +1.52 K311 D

o Aql = Altair 19 50 47 +08 52 06 0.77 +0.22 ATV

B Cap = Dabih 202101 —14 46 53 3.08 +0.79 F8vV D

v Cyg = Sadr 202214 +40 15 24 2.20 +0.68 F8Ib D

o Pav 202539 —56 44 07 1.94 -0.20 B3IV D

o Ind 2037 34 —47 17 29 311 +1.00 KOIII D

o Cyg = Deneb 20 41 26 +45 16 49 1.25 +0.09 A2la D

¢ Cyg = Gienah 204613 +33 5813 2.46 +1.03 KOIII D

o Cep = Alderamin 211835 +62 35 08 2.44 +0.22 ATIV-V D, Var?
B Aqr = Sadalsuud 213133 —05 34 16 291 +0.83 GOIb D

¢ Peg = Enif 214411 +09 52 30 2.39 +1.53 K2Ib D, Var
8 Capl = Deneb Algiedi 2147 02 —-16 07 38 2.87 +0.29 Am D, Var
v Gru 21 53 56 -3721 54 3.01 -0.12 BSIII

o Aqr = Sadalmelik 22 05 47 -0019 11 2.96 +0.98 G2Ib D

o Gru 2208 14 —46 57 40 1.74 -0.13 B5V D

o Tuc 221830 —60 15 35 2.86 +1.39 K311 D

B Gru 2242 40 —46 53 05 211 +1.62 M3II

M Peg 22 43 00 +30 13 17 2.94 +0.86 G2I1-111 D

o PsA = Fomalhaut 22 5739 —293720 1.16 +0.09 A3V

B Peg = Scheat 23 03 46 +28 04 58 2.42 +1.67 M2II-IIT D

o Peg = Markab 2304 46 +1512 19 2.49 —0.04 B9V D

* The cooler star in this system is one of the largest known stars, as large as the orbit of Mars.

" The fainter component in this system is a white dwarf star, about the size of the Earth.

¢ There are altogether six stars in the Castor system; a faint visual component, Castor C, is an eclipsing binary of which both components are flare stars.
4 The third component of this system is Proxima Centauri, a faint red dwarf and flare star.

will not set at all for an interval of time lasting from about one
day near the circles to slightly more than six months at the
poles. The interval of twilight (the time between sunrise and
when the Sun is a specified number of degrees below the
horizon) is lengthy at high-latitude sites. There are three types
of twilight:

(1) Civil twilight, for terrestrial visibility purposes, occurs
when hg,, = —-6°, i.e., when the Sun is 6° or less below the
horizon

(2) Nautical twilight, when hg,, > —12°

(3) Astronomical twilight, when hg,, > —18°

Note that the inequalities are algebraic so that the solar
altitude must be less negative than the limit shown for a
given category of twilight to apply. At any particular lati-
tude, the length of time of twilight depends on the latitude
of the observer and the declination of the Sun. The duration
of twilight can be calculated with applications of (2.5). The
hour angle of the Sun at the beginning (or end) of twilight
can be compared with the time of sunrise (or sunset), and
the difference in hour angle, in time measure, is the dura-
tion of twilight. Glare, or the scattering of light of a bright
object, reduces the visibility of a fainter object in its vicinity
still further. The full moon makes naked eye observations of
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TaBLE 3.2. Brightness and color in the solar system.

Object V max B-V
Moon -12.7 0.92
Sun -26.7 0.63
Mercury -1.5 0.93
Venus -4.6 0.82
Mars -1.5 1.36
Ceres 7.5 0.72
Pallas 7.6 0.65
Juno 11.0 0.82
Vesta 7.1 0.78
Jupiter 2.7 0.83
To 5.0 1.17
Europa 53 0.87
Ganymede 4.6 0.83
Callisto 5.7 0.86
Saturn 0.7 1.04
Uranus 5.5 0.56
Neptune 7.8 0.41
Pluto 15.1 0.80

all but the brightest stars difficult; even at large angular dis-
tances, scattered moonlight usually precludes direct obser-
vation of objects fainter than about 4th magnitude, and if
there is any haze or high cloud, the situation is worse.
Because the moonlight is widely scattered, a cloud tem-
porarily hiding the Moon is insufficient to reveal the stars
(Minnaert 1954, pp. 103-104). The mechanism that renders
starlight invisible to the naked eye in the daytime and
dimmed in moonlight is almost certainly what Minnaert
(1954, pp. 102-103) refers to as the “veil effect.” The eye’s
sensitivity adjusts to the brightest object it sees, whether
direct or scattered, and the loss of sensitivity renders the
much fainter stars invisible.

In addition to twilight, zodiacal light, airglow and aurorae
(all described in §5), starlight, and the Milky Way, all con-
tribute to sky brightness on moonless nights. Given other-
wise dark conditions, the intrinsic background light can
be surprisingly revealing. William Keel (1992) describes
seeing from Mt. Pastukhov the snow-capped peaks of the
Caucasus illuminated solely by starlight.

3.1.3. Effects of Refraction, Dip, and Parallax

The atmosphere not only affects the amount of light trans-
mitted to the eye, but it also changes the position in the sky
at which objects can be seen. The bending of light in an
optical medium like air is known as refraction. The phe-
nomenon has been known for centuries. It is mentioned by
the Greek astronomer Cleomedes (1st century A.D.), and
Ptolemy (~150 a.p.) independently describes the effect
of refraction on starlight in his book Optics. Augustine
(~340 A.p.) mentions the apparent bending of a stick in
water as evidence of the deception of the senses—an argu-
ment that was still being made by traditionalists to discredit
the telescope findings of Galileo in the 17th century.
Atmospheric refraction causes the altitudes of distant ter-
restrial and astronomical objects to appear higher than they
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Ficure 3.2. The geometry of atmospheric refraction. Drawing
by E.F. Milone.

FiGure 3.3. Snell’s law: Refraction changes with medium. The
relations between the angles of incidence, i, and refraction, r,
and the indices of refraction, #, in the two media are n,sini =
n,sinr for the incoming ray, and n,sini’ = n;sin# for the out-
going ray. Note that if the incoming and outgoing surfaces are
not parallel, neither will be the entering and exiting rays.
Drawing by E.F. Milone.

would if viewed from an airless world (see Figure 3.2). It is
a consequence of the behavior of light in optical media:
Light travels slower through a medium other than vacuum.
The ratio of the speed in vacuum to that in the medium is
called the index of refraction, n. Snell’s law summarizes the
bending of light as it passes from a medium of index n, into
a medium of index n,. If o, is the angle with respect to the
surface normal of the light incident at the boundary between
the two media, and o, is the angle with respect to the same
normal inside medium 2, the relation between the two
angles is

n, sinoy, = n, sindl,. (3.15)

The relationship is illustrated in Figure 3.3.

If the atmosphere were a plane-parallel layer, and the
optical density of the atmosphere were uniform, this ex-
pression could be used directly to obtain the refraction.
The index of refraction of airless space, n; = 1, and the
index of refraction of air is slightly greater than 1.00, the
exact amount depending on temperature and air pressure.
Thus, o, < o4, and the ray bends toward the normal as it
enters the atmosphere. The difference between the two
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angles, for values of o, < 45° (see Tricker 1970, pp. 11-13),
is

Aol =0y — 0l = (1, —1)- tan o,. (3.16)

By comparing the refraction at many successive levels of
the atmosphere, one may arrive at a slightly more general
result. For relatively small zenith distances, or large alti-
tudes, an approximate correction to the zenith distance for
refraction is given by Woolard and Clemence (1966, p. 84):

Az =60.29” tan z — 0.06688tan’ z. (3.17)

Expressed as a change in altitude, Ah = —Az. For STP (stan-
dard temperature and pressure conditions, 7 = 0°C and
sea-level pressure of 1000 mbars), it amounts to about 1 arc-
minute at 45° altitude. For substantially higher zenith dis-
tances, or lower altitudes, the Pulkovo Observatory tables,
first published in 1870, have often been used, but the results
are strongly dependent on ambient weather conditions, par-
ticularly water vapor content. Garfinkel (1944) published a
theoretical treatment that is valid to z > 90° (i.e., below the
horizon) but was not easily applied; this work was extended,
and a table of extinction at large zenith distances was pro-
vided in Garfinkel (1967). Schaefer (1993a, p. 314) cites for
the refraction down to the horizon two formulae given by
Saemundsson (1986) that contain the true and refracted alti-
tudes, respectively, but contain no explicit terms for tem-
perature or pressure. Thom (1971/1978) measured current
values in the British isles and concluded that the refraction
varies widely enough to provide a slight but measurable
uncertainty in the hour angle and azimuth of rise of objects
on the horizon. In §6.2.12, we describe Thom’s use of an
assumed value of the refraction to determine the date when
certain assumed alignments were in use. Thus, refraction
affects our interpretation of archeological alignments.

The refraction nominally amounts to ~34” or 0°57 at the
horizon, but sometimes can greatly exceed this value. This
means that at first gleam, the moment when the upper limb
of a rising Sun or Moon is first seen, it is still a full diame-
ter below the horizon; even when it appears fully risen with
the lower limb on the horizon, the unrefracted Sun is still
below the horizon. The effect of refraction causes the Sun
to appear slightly oblate at the horizon. Refraction is slightly
greater for the lower limb (~35arcmin) than for the upper
(by ~29arcmin); hence, the vertical dimension of the Sun
will be smaller than its width (~20%). It does not, however,
cause the Sun to appear larger at the horizon than at the
zenith. Theoretically, the angular width of the disk diameter
at sunrise is slightly smaller due to a slightly greater topocen-
tric distance at the horizon compared with the meridian, the
diameter being largest for a zenith Sun. In practice, refrac-
tion is important in naked eye astronomy only for the
Moon, for which the geocentric parallax amounts to ~1°.
Measurements consistently confirm this expectation.
Refraction phenomena of rising or setting objects can be
complicated, however, by the presence of temperature
inversions in the atmosphere. Because this commonly occurs
along coastlines, particularly in desert areas, unusual shapes
and colors sometimes result. See Greenler (1980, Plates
7-10, 7-11, and pp. 160-162) for a series of illustrations of
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the appearance of the setting Sun under differing refractive
conditions and for the refractive effects of differences
between air and ground/water temperatures leading to
mirages. Greenler (1980, pp. 158-159) notes that inferior
mirages, which occur when the air temperture is lower than
the ground, are best known as desert mirages but are seen
as well in much colder climates over bodies of water. Anom-
alously high atmospheric refraction has been reported for
observations in the high arctic, again attributed to an inver-
sion layer. This optical ducting phenomenon is called the
Novaya Zemlya effect, after observations of the midnight
Sun from the south coast of Novaya Zemlya (¢ = 76°5) were
reported by an expedition led by Willem Barentsz in 1597.
The Sun should have been below the horizon at the expedi-
tion’s location on the dates reported, and this subsequently
aroused controversy. Subsequent observations of the effect
were reported by Shackleton (1920), Liljequist (1964), and
Lehn and German (1981), among others. On May 16, 1979,
at Tuktoyaktuk in the Canadian arctic, Lehn and German
(1981) found a distorted image of the Sun above the horizon
when it should have been 94 arc-minutes below the horizon!
They were able to model the observations by means of a
temperature inversion layer, which creates a kind of light
pipe over the altitude range of rapid temperature rise and
the horizon. Images of the Sun that show the effect and dis-
tortions in solar appearance are reproduced in Figure 3.4.

The common perception that the Moon appears to be
larger at the horizon has been attributed (Pernter and Exner
1922) to the human impression that the horizon seems
further away from the observer than is the zenith, so that
objects of the same angular size will appear larger. Kaufman
and Rock (1962a,b) discuss in detail a series of experiments
on the Moon illusion and show that the effect disappears
when the terrain is blocked from view. The 2nd century A.D.
(Han period) Chinese astronomer Chang Héng attributed
the phenomenon to an optical atmospheric effect. Rees
(1986) summarizes the explanations for the illusion, but
there is no consensus for which, if any, is the cause. The
current view is that several causes may contribute to the illu-
sion (Schaefer 1993a, p. 340). In so far as physical explana-
tions apply, it is curious that we have seen no reference to a
“big Sun” effect; perhaps this in itself lends weight to the
psychological explanation for the “big Moon” effect.

The index of refraction is wavelength dependent, which
means that it changes with light of different wavelength.
Most media bend blue light more strongly than red. This dis-
persive effect gives rise to a wealth of phenomena, includ-
ing prism-produced spectra. “Wedge refraction,” as the
dispersive effect of the Earth’s atmosphere is known, causes
low-altitude star images to take on the appearance of tiny
spectra, with the blue end of the spectrum shifted higher,
toward the zenith. This phenomenon can be seen through
even small telescopes. Woolard and Clemence state that the
red and green images are separated by 272 at z = 75°. The
dispersive effects of parcels of air on sunrise or sunset
images may give rise to a “green flash” (§5.1.2), in which the
blue-green components left in the Sun’s light are momen-
tarily visible to the observer. Dispersive refraction effects
also play a role in the colors of rainbows, which involve
refraction in water droplets, and of sundogs, which involve
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(b) ()

FiIGURE 3.4. Refracted images of the
setting Sun as seen at Tuktoyaktuk, in
Canada’s Northwest Territories, on May
16, 1979, that demonstrate the Novaya
Zemlya Effect. Shown are the Sun’s
appearances at (a) 1:34 a.m., MDT, 4 =
-35%; (b) 1:41:30, h = —46.5; (c) 1:49, h =
=57’ (d) 2:06, h = =75"; and (e) 2:44, h =
—94’. The altitude, A, refers to the center
of the Sun’s disk. Photos courtesy of Pro-
fessor W. Lehn.

_____ » . Jevel horizon

FiGure 3.5. The effect on the altitude
of the horizon of the combination of
dip and refraction. Drawing by E.F.

apparent sun

Milone.

ice crystal refraction. More thorough discussions of these
effects can be found in Minnaert (1954), Meinel and Meinel
(1983), and Greenler (1980).

In addition to corrections for refraction, observations
need to be corrected for dip and for parallax. The higher we
are, the more we can see “over” a level horizon. Observa-
tions of objects on the horizon made from a mountain top
or from a high shipboard mast must be corrected for the
depressed horizon, but dip is already appreciable for an
observer standing at the shoreline. Figure 3.5 shows the
effect on the altitude of the horizon of the combination of
dip and refraction, but without the curvature of the Earth.

A commonly used expression for the dip correction to the
observed altitude is

Ah(arc-mins) = k x v /(feet), (3.18)
where € is the height of the eye above sea level, examining
a sea-level horizon. The constant k, which depends on
refraction and indirectly on €, because the degree of refrac-
tion depends on €, would be 1.07 in the absence of refrac-

true sun

tion; for € < ~250ft, k = 1. If the observation is being made
for navigational purposes, the correction, which is negative,
is made to the observed altitude, which is too large. If the
observer is depressed below the true, level horizon, the cor-
rection is positive. The dip correction is a compensation for
a non-level observational horizon and it is strongly affected
by, and so must be corrected for, refraction. A classic refer-
ence to this treatment is Helmert (1884).

According to Young (1998, private communication), a
more correct expression for the dip is

h 1/2
Ah= [(—) + oaAT] s
Re

where AT = T (at the observer) — T (at the horizon). Note
that in this expression, the temperature correction may be
negative, and although Eqn (3.19) holds only for Ah = 0,
in fact, elevations of several arcminutes may occur. The
observed azimuth and altitude must be corrected for dip and
refraction, before being used to compute the declination of

(3.19)
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topocentric

geocentric

FiGure 3.6. Topocentric versus geocentric coordinate systems,
and the geocentric parallax of the Moon. Drawing by E.F.
Milone.

the object [see (2.1)]. There is one more correction to apply,
however, for observations of the nearest of the heavenly
bodies, the Moon.

The effect of parallax is a familiar one in everyday life: As
we blink first one eye then the other, close objects appear
to shift against more distant objects. If one moves sideways,
the angular shift is larger. It is also larger for the nearer
objects. The amount of parallax observed therefore depends
both on the distance of the object and on the size of the
observer’s baseline. In the astronomical context, observa-
tions are normally reduced to the center of the Earth
because the catalogued positions of objects are given in geo-
centric coordinates, whereas the observer measures topocen-
tric coordinates in the local (topocentric) coordinate system
(see Figure 3.6).

If an observed altitude has been corrected for dip and
refraction, the parallax correction to be applied is

Ah=cos hx Re/d, (3.20)

where Rg is the radius of the earth at the observer and d is
the geocentric distance at the moment of observation. The
effect of the parallax is to lower the observed altitude com-
pared with that seen by a hypothetical geocentric observer.
At the place on the Earth directly under the Moon (the sub-
lunar point), the zenith distance of the Moon is zero. At all
other locations from which the Moon is visible, the zenith
distance must be greater; therefore, the Moon’s altitude is
smaller at all of those locations. Therefore, the correction to
the observed parallax is positive in all cases. The geocentric
parallax of the Moon is larger than that of any other natural
object: The average equatorial horizontal parallax (i.e., the
parallax at rising or setting for an observer on the equator,
at average lunar distance) is about 57 arc-minutes. The solar
horizontal equatorial parallax is ~8.8 arc-seconds. For some
configurations of the inner planets, Mars, and several aster-
oids, the parallax is intermediate. Equation (3.20) can be
used to calculate the parallax for those cases. Stellar paral-
laxes are measured with respect to the semimajor axis of
Earth’s orbit and are less than 1 arc-second."

The final correction we mention here is that of the semi-
diameter. Tabulated positions of the Sun and moon are given
(in modern catalogues anyway) for the centers of the disks.
If we are interested in the upper limb (edge), the corrected

10 That of o Centauri, the closest star system, is only 0.76 arc-sec.
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angular radius (or semidiameter as it is called in some cata-
logues) must be subtracted from the observed altitude to
reduce the observation to disk center.

To apply the corrections we have discussed correctly,
remember that we have described corrections to observa-
tional data. If one is correcting values of the altitude, say,
calculated from catalogue positions with the purpose of
reproducing observational data, the corrections indicated
must all be applied in the opposite sense. Finally, we note
that although the corrections noted here suffice for most
purposes, the occasional need for greater precision may
require more rigorous treatment. Finer corrections for the
effects we discuss here as well as other effects can be found
in Woolard and Clemence (1966), for example, among other
works on positional and practical astronomy.

An empirical study of refraction at the horizon through
timings of risings and settings of the Sun, Moon, and Venus
and unpublished sextant observations was reported by
Schaefer and Liller (1990), who showed that significant vari-
ations from the expected shift due to local temperature and
pressure conditions can be seen. They correct for the semi-
diameter and use a dip correction: D = arccos[1/(1 +
A/6378)], where A is the altitude of the site above sea level,
in kilometers. They compute the measured refraction: R, =
Z,—90° — D. On the basis of 144 measurements from seven
sites, Hawaii; Vifla del Mar, La Serena, and Cerro Tololo
(Chile); Nag’s Head and Kitty Hawk (North Carolina);
and O’Neill, Nebraska, they report (their Fig. 2, and pp.
802-803) an average R, value of 0°551 over a total range of
0°234 to 1°678, an overall uncertainty figure of £0°16, and
that 97% of their measurements fall within a range of 0°64,
and only 4 measurements are outside of the range 0°23 to
0°87. Although the larger-than-expected variations are
attributable to a variety of observing circumstances (timing
errors, effects of clouds, etc.), they conclude that differences
in the atmospheric temperature profile are responsible. They
use these results to argue against the validity of the preci-
sion measurements of lunar declination claimed by Thom
(cf. §6), even though their results are not based on any mea-
surements made in the British Isles or, of course, necessar-
ily appropriate to atmospheric conditions present in the
Megalithic.

3.1.4. Limitations of Vision
3.1.4.1. The Sensitivity and Acuity of the Eye

The human eye is the detector of ancient astronomy, and it
is a powerful instrument. It has high sensitivity when fully
dark-adapted and has a tremendous dynamic range, coping
with a range in brightness of many powers of ten. Prior to
the development of the photomultiplier tube in the 20th
century, it was the most sensitive detector of optical light
that was known. The sensitivity of a detection device is
usually measured in terms of quantum efficiency: The per-
centage of light incident on the detector that is actually seen
or detected. In the case of the eye, in the visible part of the
spectrum, this quantity is about 10%—a value similar to that
for many photomultipliers but a factor of ten more sensitive
than photographic emulsions. The flux of sunlight at the
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Earth’s distance from the Sun is ~1.36 x 10"Wm™ and even
less at the surface because of atmospheric extinction. For a
pupil size of 2mm, this amounts to less than 43 W of total
power entering the eye. Of this amount, less than 35W is in
the visible part of the spectrum. These values are the rough
equivalent of looking at a 100 W light bulb from a distance
of ~6 inches.!" Although we do not advocate even a blinked
squint at the sun, this level of brightness is clearly within, if
near the limit of, the eye’s capability. Although these aspects
of human vision are excellent, the diameter of the pupil
determines the total light that it can collect; the light energy
collected is proportional to the square of the diameter.
Assuming a dark-adapted pupil of about Smm diameter, a
50-mm telescope lens can gather 100 times more light than
can the eye, to reveal objects about five magnitudes fainter.
This is, of course, why modern astronomers demand larger
and larger telescopes. Nocturnal animals, with larger eyes
than humans, are better adapted for night vision. Humans
have two different types of detectors in their retinas: cones
and rods. The cones are numerous and are found on the
optic axis of the lens, the fovea centralis (or fovea).”* They
provide photopic or day vision. The rods are more sensitive,
but they are concentrated on the periphery and are absent
on the optical axis of the lens. These detectors provide sco-
topic or night vision. In attempting to detect a very faint
object like a nebula, “averted vision,” looking directly at
some other object close enough to the target to still see the
latter, can be used effectively. This vision, however, has
lower acuity or sharpness because there are fewer rods than
cones in the retina. The rods’ placement at the margins gives
rise to our averted vision. The rods have little color dis-
crimination, but are somewhat more sensitive to blue light
than are the cones. The latter property makes them useful
in twilight, when scattered violet-blue sunlight dominates
the ambient light.

3.1.4.2. Color Sensitivity of the Eye

Color vision arises from photopic vision. The cones have
three types of photopigments, analogous to passbands
of the Johnson UBVRI system (Schaefer 1993a,
pp- 329-331). The long-wavelength-sensitive pigments
appear to be the most numerous, and the short-wavelength
the least numerous; they are not uniformly distributed. The
perceived or effective brightness in each may be written as

R =const.- [f(A)- EQ\) - dA, (3.21)

where f(A) is the wavelength-dependent sensitivity function
of the photopigment and E()) is the wavelength-dependent
brightness of the source. If E is expressed in CGS units of
ergs/(cm’-s-A), the const. is 6.80 lumens x s/erg. We leave

W N.B., There is a difference in the retinal illumination for the two
cases, because the image of the light bulb is much larger, and so the
radiant power is spread over a larger area in the case of the light bulb.
Assuming a focal length of 16mm for the human eye, the image of
the solar disk on the retina is only 0.15mm across. Not surprisingly,
therefore, staring at a solar image can produce at least temporary
impairment.

2 cf. Wyburn et al. 1964, p. 911f.
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the conversion to SI units as an exercise. The integral sign
shows that the combination of these two functions must be
summed over all wavelengths to give the total amount of
perceived light. The three types of photopigments have peak
sensitivities at ~6000, 5500, and 4500A, corresponding to
red, yellow, and blue, respectively. Because each person’s
eyes are different in sensitivity and color perception, there
are personal brightness and color equations, similar to that
discussed for photoelectric instruments in §3.1.2.3, the coef-
ficients and zero points of which vary with light level, and
the physiological conditions of the various components of
the eye.

Related to acuity is the ability of the lens of the eye to
resolve fine detail. The smallest angular feature that can be
resolved, the resolving power, is proportional to the wave-
length and inversely proportional to the iris diameter."” For
a perfect eye, assuming blue-green light at 500nm (5000 A
or 0.500um), and a large dark-adapted diameter of 10mm,
this quantity is about 10 seconds of arc (hereafter, arcsec),
about 0.2 arc-minutes (hereafter, arcmin). In practice, there
are few perfect eye lenses and 1 to 2 arcmin is typical
(although there are reports of remarkable acuity; see
Bobrovnikoff 1984, pp. 2-7). The largest craters on the near-
side of the moon have angular diameters of the order
1 arcmin, but they are very difficult to discern without
optical aid. The maximum angular size of any of the planets
is about 60 arcsec (for Venus, at inferior conjunction). For
Mars, Jupiter, and Saturn, it is 18, 47, and 19 arcsec, respec-
tively, at opposition. For Mercury, at inferior conjunction, it
is 11 arcsec. It is conceivable that Venus can be seen tran-
siting (crossing in front of) the disk of the Sun, when the Sun
is close to the horizon and suffering sufficient extinction to
lower the contrast greatly. The event is rare, however, and
no observations have been recorded explicitly in the prete-
lescopic era, to our knowledge.

3.1.5. Visibility of Planetary Phenomena

In addition to the limitations of the eye, the observability of
phenomena is determined to some degree by the longitude
and latitude of the observer, time of night, time of month,
and time of year. Most astronomical phenomena cannot be
observed when the Sun is in the sky, eclipses and most lunar
phenomena excepted. There are occasions when the brighter
planets and even the brightest stars can be seen, even in
competition with the full light of the Sun. The daytime visi-
bility of objects is best where the scattered sunlight is least—
at a high-altitude site on a clear day. Even under the best
conditions, and at large elongations, daytime sightings are
difficult, except perhaps for Venus. Thus, the long days of
high-latitude summers are unfavorable to observations of
objects other than the Sun and Moon. Twilight observations
of the brighter planets, Venus and Jupiter, on the other hand,
are not particularly difficult at any site or time of year. One
measure of the visibility of objects at twilight is the arcus
visionis, or arc of vision. It is the sun’s altitude below the

3 When a telescope is used, the diameter of the primary mirror (for a
reflecting telescope) or objective lens (refracting telescope) is used.
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horizon at which an object such as a star or planet can just
be seen rising before sunrise (or setting after sunset). van
der Waerden (1974, p. 19) states that this is 9° or 10° for
bright stars such as Sirius, under favorable weather condi-
tions. For a planet such as Venus moving through inferior
conjunction, it can be smaller, and observers have claimed
to have seen it as an evening star on one evening and a
morning star the next morning. The Maya used an interval
of eight days for the invisibility of Venus at inferior con-
junction, a mean value with which most modern observers
agree. The actual values of this interval of invisibility vary
between 1 and 20 days.

The celestial equator rises from the east and west points
of the horizon at an angle that depends on the latitude: At
the equator, this angle is 90°; at the poles, it is 0°. At low-
latitude sites like Yucatan (~20° N), the ecliptic, and plane-
tary paths, may be inclined to the horizon at a large angle,
facilitating planetary observations. Mercury can not be seen
more than about an hour before sunrise nor more than
about an hour after sunset, at the best of sites. The limited
ranges of inner planet elongations are due to the apparent
size of the orbit as seen from Earth (see Figure 2.24). The
ability to account for such phenomena was perhaps the
Copernican revolution’s greatest triumph.

Mercury is particularly difficult to see at high latitudes
because of the generally low arc of the ecliptic with respect
to the horizon. Copernicus is supposed never to have seen
this planet. One of us has seen Mercury several times, even
at high latitude sites (see Figure 3.7), but it is not particu-
larly easy under most circumstances. Clear skies down to a
level or sublevel horizon, without fog, but perhaps with
some cloud below the horizon to dim the scattered light of
the sun and improve contrast could aid the resighting of a
planet.

Venus is more easily seen than is Mercury, not only
because it is often brighter but because its maximum elon-
gation is greater. As we will see (§§12.7, 12.10), however, the
Maya recorded the intervals of the Venus synodic cycle quite
differently from the actual values, except for the period of
invisibility at inferior conjunction. Also among the Maya, it
was recognized that there are additional periodicities in the
apparent motions of Venus in both its evening and morning
forms. An eight-year cycle in the movement of Venus among
the stars was incorporated into aspects of the calendar (see
§12.7).

3.1.6. Effects of Precession

The westward shift of the equinoxes among the stars due to
the wobbling of the Earth’s axis is known as precession. This
top-like motion is caused by several factors, the main one
being the pull of the Sun and Moon on the equatorial bulge
around the Earth’s equator,' and we discuss its effects first.
There are three main results of this luni-solar precession.

!4 The equatorial bulge is caused by the rotation of the Earth, which
results in a slightly weaker gravitational pull on objects at the equator
than at the poles.
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FiGure 3.7. The planet Mercury along with other bright planets
in the twilight sky of Calgary on February 28, 1999. Courtesy,
Roland Dechesne, RASC, Calgary Centre. The photo shows
Venus, Jupiter, and, closest to the horizon, Mercury.

First, the shifting position of the equinox causes stellar
coordinates to change with time. The celestial longitude
increases by 50.2 arc-seconds/year, as the equinox shifts
westward along the ecliptic. Because this point is also the
origin for one of the two equatorial systems of coordinates,
the right ascensions and declinations of objects in the sky
change also. By differencing the transformation equations
between the equatorial and ecliptic systems (§2.3.3) and
ignoring the change in the slow change in €, one may find
the formulae for the basic changes in declination and right
ascension to be

dd = d\ x sin € xXcos o, (3.22)

dou = d\ X (cos € +sin € X sin o X tan J), (3.23)

where dA = (5072) x dt, do. and dd are the changes (in arc-
seconds) in right ascension and declination coordinates,
respectively, and dA is the change in celestial longitude due
to precession over the interval df in years. Figure 3.8 illus-
trates the effect of precession on the right ascension and dec-
lination coordinates.
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Ficure 3.8. The effects of precession: The motion of vernal
equinox and the changing right ascension and declination coor-
dinates. Drawing by E.F. Milone.

The coordinates on the right-hand sides of (3.22) and
(3.23) should be mean values, but these are not known
before the calculation; so an iteration must be performed.
The initial values of the right ascension and declination are
assumed, and the changes Aa. and AS are computed; the new
(but not quite correct) values are found, mean values of o
and 6 computed and inserted in the right-hand sides of (3.22)
and (3.23), and the whole process repeated until the last two
sets of iterated values are in agreement. To be more accu-
rate still, the value of € should be computed for the initial
and final dates as well. The process can be lengthy if the time
interval between dates is substantial. The right ascension
and declination for a date in the remote past may be com-
puted more directly by means of rigorous formulae from the
Astronomical Almanac':

sin(a — z)cos & = sin(o + {)cos J, (3.24)

cos(o — z)cos & = cos(y + £)cos Bcos §, — sin O sind,
and

sin & = cos(0 + {)sin Bcos §; +cos O sin &y,  (3.25)

respectively, where o and o refer to the date of interest, o
and §, refer to the initial epoch, and the auxiliary quantities
z, 0, and £ (which fix the location of the equinox and equator
of date with respect to that at the initial date). For an initial
equinox at 2000.0, they may be computed as follows:

z=[(0.0000051-7 +0.0003041)- T +0.6406161]- T,  (3.26)
6 =[(-0.0000116 - T —0.0001185)- T +0.55675301- T, (3.27)
€ =[(0.0000050- T +0.0000839)- T +0.6406161]- T,  (3.28)

where 7 is the number of centuries, measured positively
after 2000.0 A.p. If ¢ is the calendar date of interest and JDN
the Julian day number (and decimal thereof) of that date of
interest, 7' = (¢ — 2000.0)/100 = (/DN — 245 1545.0)/36525.

5 In the section, “Reduction of Celestial Coordinates”; in the Astro-
nomical Almanac of recent years (e.g., 2000), these formulae are located
on p. B18.
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For most alignment purposes, the declination is the impor-
tant quantity because it and not the right ascension deter-
mines the azimuth of rise or set.

The precession also produces a change in the direction of
the north celestial pole (NCP) in space. The annual 5072
motion of the equinox results in a complete revolution in
about 25,800 years. The shift in the NCP in half that period
is 2<e>,where <e> is the mean obliquity of the ecliptic (see
§2.3.3). The precessional circle around the north ecliptic
pole is seen in Figure 3.9.

Note the motion of the NCP from the vicinity of the star
Polaris over an interval of just a few hundred years. At
around 2500 B.c., about when the largest of the Pyramids
was constructed in Egypt, Polaris was nowhere near the
pole. The pole star at that time was o Draconis (Thuban).
This star may have played a role in the alignments of narrow
shafts discovered between the royal burial chambers of the
pyramid of Khufu to the northern face of the pyramid (see
§8.1): The angle made by the shaft with the horizontal (~31°)
approximates the latitude of the site and thus the altitude of
the NCP (29°59’). In the Southern Hemisphere, there is no
bright pole star at present, although there is a “pointer,” the
Southern Cross. Two thousand years ago, the southern pole
star was a bright star, f Hyi. Figure 3.10 illustrates the polar
motion of the north and south celestial poles, respectively.
The sky of 2500 B.c. is shown for the northern hemisphere.
That of 1 A.D. is shown for the southern hemisphere.

Finally, as the pole shifts among the stars, the circumpo-
lar constellations change. Some stars that formerly rose
and set now remain above the horizon. Some constellations
toward the opposite pole that formerly never appeared
above the horizon become visible, whereas constellations (at
celestial longitudes 180° away) that formerly rose for a time
above the horizon now remain invisible. Note the disap-
pearance of the Southern Cross below the southern horizon
at the latitude of Jerusalem between 6 B.c. and 1994 A.D. in
Figure 3.11.

The effects that have been discussed are for the basic luni-
solar precession only. Because the Moon is not on the eclip-
tic, there is an additional variation in the vernal equinox
position. It undergoes a small oscillation that causes the
celestial latitude as well as longitude to vary. It also has an
additional small affect on o and 8. The NCP will appear to
undergo an additional wobble with half-amplitude of 9.2
arc-seconds in an 18.6-year period. The effect, discovered by
James Bradley in the 19th century, is known as nutation.
There are still smaller effects due to the perturbations of the
other planets, principally those on the plane of the Earth’s
orbit; thus, the ecliptic is slowly varying also, although the
ecliptic pole variation has an amplitude much less than that
of the celestial pole. The combination of luni-solar and this
planetary precession is called the general precession. The dis-
covery and treatment of precession will be described further
in §7.

3.1.7. Stellar Proper Motions

All of the stars in the sky have intrinsic motions both in the
line of sight (radial velocities) and on the plane of the sky
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(transverse velocities). The transverse velocities contribute
to continuous and nonperiodic (or secular) changes in posi-
tion of the stars over centuries. It is only their great distances
from us that make these motions imperceptible to the
unaided eye over shorter intervals. The change of position
on the sky with time is called the proper motion and is
expressed in arc-seconds/year. The proper motion, U, is
related to the distance r, and the transverse velocity, V7, by
the expression

Vi =474ur, (3.29)

where Vris in km/s, L in arc-seconds/year, and r is in parsecs,
a unit of distance'® equal to ~3.26 light-years. The proper

1 A parsec is the distance at which the mean trigonometric parallax of
the star is exactly 1 arc-second. This parallax uses the astronomical unit
as the baseline; the parallax is therefore identical to the angular semi-
major axis of Earth’s orbit as viewed from the star. Thus, r = 1/p. In
general, the measured parallax varies in size and direction during the
year. Although both are small angular changes that grow smaller as
stellar distances increase, the observed parallactic shift is periodic but
the effect of proper motion grows with time.
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Ficure 3.10. The NCP and SCP motion with respect to the
north and south ecliptic poles, respectively, as photographed
from the sky monitor of the Digistar planetarium projection
system of the Calgary Science Centre: (a) The region of the sky
near the NCP of 2500 B.c. (left) is compared with that of 2000

(b)

A.D. (right). (b) The SCP region of 1 A.p. (left) is compared with
that of 2000 A.p. (right). Note the bright star (f Hydri) at the
southern pole at the dawn of the Christian era. Photos by E.F.
Milone with the cooperation of the Calgary Science Centre and
Sid Lee.
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Ficure 3.11. Changing views of the southern horizon at
Jerusalem between 6 B.c. and 1994 A.p. Note the disappearance
of the Southern Cross below the southern horizon at the lati-

motion is measured and usually expressed in equatorial
coordinates,

W, =15p,cosdand pu, = ys, (3.30)

where L, is expressed in seconds of time per year and s in
arc-seconds per year. The largest proper motion is that of
Barnard’s Star with . = 10”/year, amounting to the diameter
of the Moon in 180 years, but this star is far too faint to be
seen with the naked eye. Table 3.3 lists the visible stars with
the largest proper motions.

The shift in positions of a few stars in a portion of the sky
over a 6000 year interval (4000 B.c. to 2000 A.D.) can be seen
in Figures 3.12. Perhaps some of the myths involving Sirius
depicted as the point of an arrow or spear, for example, may
have been dependent on a different placement of the stars
than we see at present.

In Europe, proper motions were discovered by Edmund
Halley [1656-1742], but prior credit perhaps should be given

tude of Jerusalem between 6 B.c. and 1994 A.p. Produced
by Bryan Wells with the Voyager software package (Carina
Software).

TaBLE 3.3. Bright stars with large proper motions.

Star u (arc secly)
o Cen 3.68
o CMa 1.32
€ Eri 0.97
61 Cyg 522
e Ind 4.73
o CMi 1.25
T Cet 1.92

to the medieval Chinese astronomer (§10.1.6) I Hsing
[682-747]. Recent studies of Palaeolithic pictographs have
used proper motions to help to argue the case for alleged
depictions of asterisms (see §6.1).
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FiGure 3.11. Continued.

3.2. Types of Ancient Observations

Solar, lunar, planetary, and stellar observations were all
carried out by pretelescopic societies for a variety of
reasons: the Sun for time reckoning, seasonal calendars for
agricultural purposes and associated rituals; the Moon for
its illumination to assist travel at night, and perhaps for tide
predictions and eclipse warnings; the planets for astrologi-
cal and religious reasons; the stars for navigational purposes.
Our goal in this section must be to explore how an ancient
astronomer with eye, hand, foot, and a few simple tools
could do the job.

3.2.1. Solar and Lunar Observations

Observations of the Sun are needed for seasonal calenders
and for solar time, and they can be used for navigation as
well. The overwhelming importance of the Sun to life on
Earth and the powerful symbolism inherent in its daily and
annual rebirths have made it the most favored object of

ancient astronomical study. The Sun is also the most easily
studied, because being the brightest of all the objects in the
sky, it casts strong shadows behind opaque objects. The
shadows are not very sharp because of the Sun’s finite
angular size, but they are sharp enough to enable an hour
angle to be read off a sundial. In its most basic form, a
sundial is a stick (the gnomon or stylus), the direction of the
shadow of which provides the time of day and the shortest
length of the shadow—when the Sun is on the celestial
meridian—indicates, with some ambiguity because it is a
double-valued function except at the solstices, the time of
year. These are relatively simple observations that could
have been, and were, made in antiquity. An Egyptian
“shadow clock” from the reign of Thutmose III (1490-1436
B.C.), for instance, measured the passage of the Sun for a 12-
hour period (Parker 1974).

An even more obvious indication of season than the
length of the Sun’s shadow is the Sun’s rising point on the
horizon. On clear days when the Sun’s rising can be
observed, the rising location of the Sun on the horizon can
be perceived to change day by day near the equinoxes, and
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FiGure 3.12. Proper Motion simulation: The sky as it would
have appeared from a specific latitude in the years 4000 B.c.
(top) and 2000 A.p. (bottom). The cumulative proper motions
of all the visible stars in this region of sky are illustrated over
this interval. Note the large motions of Sirius, Procyon, and
Pollux. The photographs were taken from the monitor of the
Digistar planetarium projector of the Calgary Science Centre
by E.F. Milone, with the cooperation of the CSC and Sid Lee.

to vary very little near the solstices, as Figure 3.13
illustrates.

Twice a year, at its approach toward and at its recession
from one of the solstices, the Sun would appear to rise at the
same horizon location. The azimuth of rise is given by the
expression, easily derivable from the astronomical triangle
with & = 0°:

sin &
cos A=

s (3.31)

For example, for 8 = 23.5°, the declination of the Sun
at summer solstice for the Northern Hemisphere ¢ = 51°,

3. Observational Methods and Problems

Spring equinox Fall equinox

horizon

Ficure 3.13. The day-to-day azimuth changes in the rising (and
setting) Sun reach maximum near the equinoxes and minimum
near the solstices. Drawing by E.F. Milone.

cos A =0.63362. Therefore, A = 50.68°. For 6 =-23.5°, at the
same latitude, A = 129.32°.

At any given place, the azimuth of rise or set depends on
the declination of the object. Therefore, objects such as the
Sun, Moon, and planets over sufficiently long periods of
time, which alternate between positive and negative values
of the same maximum declination, undergo standstills (for
the Sun: solstice) on the horizon as the declination reaches
an extreme. The result is an oscillation of azimuth over
the period of the declination variation. The amplitude, as
Lockyer (1894) referred to the maximum difference of
azimuth from the east point of the horizon (where & = 0 and
A =90°), is half the total range of any object’s azimuthal
variation. The amplitude has been the key to understanding
the astronomy of ancient Europe. In the above example, the
amplitude is 39.32°. It should be noted that the value of the
solar declination given in this example is not what it would
have been in Megalithic times, because of the variation of
the obliquity, the angle between the ecliptic and the celes-
tial equator (see §4.4). The value at ~2500 B.c. was ~24°.
Figure 3.14 illustrates the solar amplitude for sites at lati-
tudes 0° and 51°, respectively.

Among the oldest known examples of structures bearing
solar alignments are passage graves in Ireland and Brittany.
A well-known example is that of a tomb at Brugh-na-Boinne
or Newgrange in Ireland. The box-like shaft has the azimuth
of winter solstice sunrise (see Figure 3.15). This monument
and the complex of which it is part are discussed at length
in §6.2.6.

Alexander Thom found large numbers of possible solar
and lunar site-lines in the British Isles and in France. Such
site-lines used distant foresights, such as hills with notches,
and relatively close backsights involving large stones (mega-
liths). Two well-known sites are the possible solar site Bal-
lochroy near Jura and the possible lunar site Temple Wood,
near Argyllshire, both in western Scotland. These sites and
their possible uses as observatories are discussed in detail in
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Ficure 3.14. The amplitude of the azimuth variation of sunrise
over the year. The amplitude or swing from one solstice to the
other grows larger with latitude. Drawing by E.F. Milone.

Ficure 3.15. The shaft of the passage grave at Newgrange, seen
from inside the tomb. This is one of the earliest known indica-
tors of interest in astronomical alignments. See also Figures 6.6
to 6.8. Photo by E.F. Milone.
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§6.2. The basic idea is that the declination and the latitude
of the observer determine the azimuth of rise/set (modified
by refraction and dip considerations). In the analysis of
megalithic monuments, Thom (1971) argued that he was
able to detect the effects of three contributions to the vari-
ation of the declination of the Moon:

(1) The variation of the declination due to the motion of
the Moon in its orbit with mean orbital period 27¢32; at
present, £28°5.

(2) A modulation of the monthly variation due to the
regression of the nodes of the Moon’s orbit. The Moon’s
inclination, i = 5°8’43”. Consequently, the celestial (ecliptic)
latitude of the Moon varies between *i over a sidereal
month. However, as the Moon’s orbit regresses, the celestial
longitudes at which the extremes of celestial latitude occur
also slip westward. This change is reflected in changes in the
declination of the Moon over the nodal regression period of
18Y61. The lunar declination in the course of a month thus
varies from +€ + i to —€ — i at major standstill and +& — i to
—€ + i at minor standstill.

(3) A variation in the inclination, which again contributes
not quite fully to the declination variation in that it acts to
change the celestial latitude. The period of Ai (Thom called
the corresponding change in declination, A) is 173¢3 over a
range 9’. See §6.2.15 for Thom’s suggested method by
which such measurements could have been carried out in
megalithic times.

Examples of solar alignments of monuments are the
Temple of Amon-Re at Karnak in Egypt; the columns at
Persepolis; Ha’amonga-a-Maui on the Pacific island of
Tonga; and at various temples, dating over a wide range, in
the Mediterranean area. Alignments of buildings, and
perhaps of whole cities, is a likely explanation for many ori-
entations found in pre-Columbian America. One of the prin-
cipal axes of the largest city of the ancient new world,
Teotihuacan, was apparently aligned on the direction of the
setting of the Pleiades, a notion reinforced by the presence
of two well-separated pecked crosses, aligned in the same
direction. There are many instances of astronomically
aligned buildings in Mayan and other Mesoamerican
cultures.

At sunwatcher stations, the North American Anasazi
observed the turning of the Sun at the solstices, and some
medicine wheels may have been constructed by other Native
Americans to mark the azimuthal travel of the Sun and the
rising points of certain stars. In the Incan capital city of
Cuzco, there are a large number of ceques or lines of direc-
tion, radiating from a central location, the temple of the Sun,
Coricancha. Some of the ceques may have marked the posi-
tion of the horizon Sun during the year. Taken as a whole,
all this evidence, although circumstantial and incomplete in
many cases, demonstrates that the rise and set of astronom-
ical objects was of profound interest to ancient humanity.
Returning to our first example, the gnomon, we can easily
show that with it, the directions of rise and set of the Sun
during the year can be readily noted; however, the length of
the noon shadow alone gives important information about
the time of year also (see Figure 3.16). When the directions
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Ficure 3.16. The use of the gnomon in solar measurements.
The length of the noon shadow alone gives important informa-
tion about the time of year. Drawing by E.F. Milone.

of rise and set are in the same line, the dates of the equinoxes
and the east-west cardinal directions are simultaneously
determined. This demonstrates that the skill involved in the
alignment of the pyramids, although praiseworthy, did not
require superhuman effort, merely the careful systematic
observations of calendrical astronomers (see Neugebauer
1980, 1983).

The measurement of hour angles was probably not so
widely carried out, but it was done. The Egyptian star clocks
that relied on roughly equally spaced stellar asterisms called
decans are examples of very early usage of the concept of
hour angles. Sundials are another example, as we have
already noted. The hour angle of rise may be found from
(2.2) and (2.3):

(3.32)

cos H =—tan ¢ x tan d. (3.33)

The hour angle of set is equal to the hour angle of rise except
for the sign, which is always negative for a rising object.

For example, what are the hour angle and the azimuth of
rise of the Sun on the day of the winter solstice at latitude
+53°? On this date, & = —23°5. Therefore, by (3.33), cos H =
—tan(+53°) x tan(-23°5) = -1.32704 x (—0.43481) = +0.57702
from which, H = +54°759 = +3"6506. An object on the celes-
tial equator must rise at the east point with an hour angle
H = —6", here, H = —03" 39™. Consequently, rearranging
(3.32) and substituting, we have

sin A =—sin H x cos § =—-0.81673 x 0.91706 = 0.74899,

so that A = 482503 or (180° — 48°503). Because the azimuth
of the east point (where the celestial equator intercepts the
horizon) is 90°, A > 90°. Therefore, A = 131°497. The con-
struction and use of sundials was carried out for obvious
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practical purposes. Neugebauer (1948) has argued that the
study of the theory of the sundial may well have led to the
discovery of the conic section and, thus, serendipitously, to
the scientific revolution that continues today. Not everyone
agrees with this interpretation, however.

Solar observations have been used for navigation. For
naked eye navigation, the Sun is almost the only visible
astronomical object when it is above the horizon. The
Moon’s more complicated motion must have made it less
desirable for such a purpose, but if tides or illumination were
concerns, the behavior of the Moon may have been studied
sufficiently to make it of use (see §6.2). The declination of
the Sun and the observer’s latitude together determine the
Sun’s azimuth of rise and its altitude at culmination, when
it crosses the celestial meridian at apparent noon. Therefore,
given the time of year, and the circumstance of sunrise,
sunset, or local noon, the latitude can be determined by the
altitude of the Sun. This is demonstrated for the instant of
apparent solar noon in Figure 3.17 and can be summarized
in the relation among the true altitude of the Sun, 4, its dec-
lination, 9, and the latitude, ¢:

h=0O90-)+39,
so that
®=3+(90-h). (3.34)

The true altitude is determined from the observed altitude
and corrected for refraction; unless the Sun is very low,
however, the error due to neglect of this quantity will not be
great. A very low winter Sun is a characteristic of high-
latitude sites (December solstice in the Northern Hemi-
sphere and June solstice in the Southern), but in the
Southern Mediterranean region, at latitudes of <20°, the
error in the altitude of the noon Sun due to refraction does
not much exceed about 1 arc-min.

The astronomical determination of relative longitude
requires a measure of the time at some other place than the
site from which the observations are being made, however.
Aside from dead reckoning, where the rate of travel and the
time interval are multiplied, east-west distances could not be
determined across large sea distances before the invention
of the chronometer. These comments hold also for stellar
navigation, discussed below and in §11.3.

The determination of bearing was another matter, and any
rising or setting astronomical objects could be used, if the
azimuth of rise were known for particular sites. The deter-
mination of bearing in the ancient world sometimes required
ingenious methods. Viking sagas mention a solarstein, liter-
ally “sun stone,” alleged to have been used for navigation.
Viking navigators may have used naturally occuring crystals
of Icelandic spar to detect polarized, scattered sunlight to
determine the direction of the Sun even under cloudy skies."”

17 Atmospheric scattering produces a maximum polarization 90° from
the Sun; Icelandic spar polarizes light and therefore acts as an analyzer.
The direction normal to the Sun can be found by rotating the crystal while
peering through it and repeating the process in many directions. A dark
minimum will be seen in the direction of strongest atmospheric polariza-
tion. The reader can carry out the experiment with polarized sunglasses.
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FiGure 3.17. The measurement of the altitude of the noon Sun reveals the observer’s latitude: (a) Horizon view at the four quar-
ters of the year. (b) The general view on the celestial sphere of solar meridian crossing. Drawings by E.F. Milone.

Under certain circumstances and in certain individuals, the
dichroic property of the retina may be developed to detect
polarized sunlight from the sky. The cross-like image is
called Haidinger’s brush (or bundle). See Minnaert (1954,
pp- 254-257) or Schlosser et al. (1991/1994, pp. 104-105).

Among Islamic astronomers, observing the first visibility
of the lunar crescent was an important task. In the Islamic
calendar, a new day begins at sundown, and the onset of a
new month occurs at the first sighting of the crescent. In par-
ticular, the end of the month Ramadan marks the end of the
fasting period. In clear skies, the crescent can usually be
spotted a day after conjunction, but on occasion, it can be
seen less than one day afterward. In the event of cloudy
skies, the month can be assumed to be 30 days long. An
important classic source for understanding the visibility of
the crescent was The Handbook of Astronomy by al-Battani
[850-920], who cited “ancient opinion” as well as methods
for determining visibility. The geometry is straightforward,
but the brightness of the background twilight sky, as well as
the arc of vision, is involved. See Bruin (1977) for an expo-
sition of the problem and useful translations of important
sources.

3.2.2. Planet and Star Observations

Planetary observations were carried out in Mesopotamia as
early as the reign of King Ammisaduqga. Venus observations
are recorded in the 63rd tablet of an extensive series enti-
tled Enuma Anu Enlil, a list of omens, which Neugebauer
(1969, p. 101) likens to papal bulls of the Middle Ages. A
more detailed list of observations of the Moon, planets, and
stars from Babylonia from ~700 B.c. (the ™APIN) is dis-
cussed in §7.1. These observations were probably for royal
astrological purposes—to study and prognosticate the
impact of planetary influences on kings and kingdoms. The
quantities that were historically measured were a celestial

longitude and latitude. The equivalent of celestial longitude
(see §2.3.3) was expressed in degrees of the zodiacal signs;
e.g., d 12°% indicates that Mars is 12° east of the beginning
of the sign of I, Taurus, or 42° from the first point of Aries,
Y. See §7.1.4 for the usage of this notation on the baked
brick cuneiform tablets of ancient Babylon. The celestial lat-
itude was measured more directly, with an armillary sphere
or similar device (see §3.3).

The rise and set points of stars do not change periodically
during the year like the risings of the Sun, nor on other short
time scales like those of the Moon or planets. But, preces-
sion (see §3.1.6) changes the right ascensions and declina-
tions of the stars, and the changing declinations cause
secular changes (actually very long-term periodic changes)
in their rise and set azimuths. The purely secular variation
of the stars’ proper motions change the right ascension and
declination and, thus, the rise and set azimuths. The useful-
ness of pointing to the locations of star positions arises only
because the visibility of the stars varies with season. One
type of important date marker is the heliacal rising, when an
object is visible for the first time in the dawn sky following
(solar) conjunction. Others are heliacal setting, marking the
last visibility before conjunction; acronychal rising, when an
object is seen to rise at sunset; and acronychal setting, when
an object is seen to set at dusk for the last time (thereafter
it will be in conjunction with the Sun, and, later, rise helia-
cally). Some of these phenomena are illustrated in Figure
3.18.

Such phenomena apply to any object in the sky, of course,
but early skywatchers may have used a more convenient
stellar marker in case of hazy or cloudy conditions or gen-
erally when the object is intrinsically difficult to observe. A
paranatellon is a bright star undergoing the same phenome-
non (literally, to rise or appear beside) as a fainter star or
asterism. An example of such use is suggested in §14, in rela-
tion to a celestial marker (Vega) for a “dark constellation,”
the “Dark Cloud Llama.”
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Ficure 3.18. Horizon views of heliacal, cosmical, and acrony-
chal risings and settings. Heliacal or cosmical rising is the occa-
sion when an object is visible for the first time in the dawn sky
following (solar) conjunction, and heliacal or achronychal
setting is when it is last seen just after sundown. In the context
of risings and settings, “cosmical” and “achronychal” refer to
phemomena associated with sunrise and sunset, repectively.
Drawn by E.F. Milone.

The Big Horn Medicine Wheel in Wyoming (Figures
0.38c—e) may contain terrestrial markers for heliacal risings
of several bright stars (Eddy 1974, 1977; Robinson 1980).
The azimuths of the stars correspond to declinations at
~1250 A.p., and underlying features of the site suggest even
greater antiquity (Fries 1980). Other medicine wheels have
had relatively few alignments, suggesting that they were
not always constructed with accurate sky measurements in
mind, at least in the same way.

A well-known use of the stars through the ages has been
for navigation. The requirements for astronomical naviga-
tion are implicit in the discussions of spherical astronomy.
The latitude can be determined from the altitude of the
north celestial pole, and to within about 2°, with the altitude
of Polaris, at the present epoch. It can also be determined
by the declination of a star passing through the zenith, or
which just skims the northern or southern horizon. For the
longitude, one needs the instant of transit, or rise or set of
a given star, bearing in mind the dimming that accompanies
very low altitudes. The local time at sunset is readily
obtained by the stars that rise heliacally or acronychally; at
any time of night, the local sidereal time is obtained by
observing the right ascension of stars that transit the celes-
tial meridian. The difficulty is that to determine the longi-
tude, one needs the time at some other meridian—a
meridian whose longitude is known. The best one can do
without a chronometer that records the time at that distant
meridian is dead reckoning. The direction of travel can be
determined, and by estimating the rate of travel, one can
compute the distance traveled. There is ample evidence that
the Polynesian travelers used just such methods, and their
methods are discussed in §11.3.

The type of observations we have described thus far
involve systematic study of the Sun, Moon, and the other
planets of antiquity. The observational records of ancient
Mesopotamia and China also contain references to transient
phenomena such as eclipses, comets, novae, meteors, and
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atmospheric conditions. These are particularly valuable to
modern science, and they will be discussed more extensively,
beginning in §5.

3.3. Instruments and Observatories

The oldest observatories involved backsites and foresites
and appear to be nearly as numerous in ancient Britain in
megalithic times as town square clocks are in Europe today.
This, at least, is the impression gained from a plot of the
locations of those sites (Figure 6.1). The builders were con-
cerned with the solar and lunar rising and/or setting
azimuths. We will show in a later chapter that these types of
observations could have been made for calendric purposes
but also possibly for eclipse prediction.

Among the instruments used by astronomers in ancient
Egypt (88.1) were sighting instruments, shadow boards, and
other types of shadow clocks, some very elaborate. The
boards were leveled by plumb-bobs. Sundials were created
with gnomons, and with a leveling device known as a
merkhet. Essentially a string-supported plumb-bob, the
device served as a portable sundial, the string of which pro-
vided the shadow. Instructions for constructing a shadow
clock are provided in the funerary text on a cenotaph of the
pharaoh Seti I in Abydos. The benben pillars, including later
obelisks, were associated with the sun and could have been
used as large gnomons or sighting devices. Unfortunately,
we have no descriptive evidence suggesting such a use.
Water clocks, of both “inflow” and “outflow” types, were
used by astronomers and frequently have constellation
designs. The so-called Ramesside star clocks show transit
stars “measured” relative to a figure of a seated individual
against a grid of 8 x 13 squares. These show a clear concept
of a gridded star map, but the use of the grid seems crude
and never seems to have been extended to the whole sky.

For an observer responsible for the measurement of time,
a decan must have functioned as a star almanac entry,
indicating the appropriate time of night in a given season
when a particular asterism arose. Star clock tables from the
tombs of Rameses VI, VII, and IX, kings of the 20th dynasty
(~1500 B.c.), seem to use a scheme different from the suc-
cessive risings implied by the decans (Neugebauer and
Parker 1969, Vol. 11, p. 74). Each table is associated with a
seated man; vertical lines traversing the figure apparently
mark the time that a star passes by that point. These star
clock tables could not have been very precise: The refer-
ences are to “on the shoulder,” “on the Right (or left) ear,”
“opposite the heart” (the origin, which Neugebauer and
Parker envisage to be on the celestial meridian), “on the
right (or left) eye,” apparent references to the seated figure
who had to remain motionless for the entire night. If the
figure was a statue, such a scheme would still not be very
precise because a sentient observer had to mark the hours!
Nor could this reckoning be very accurate, given the march
of the seasons. Neugebauer and Parker (1969, Vol. 1, pp.
107-113) find evidence of attempts to repair the decan
scheme (in the asterisms that operated in the five epagom-
enal days) as the errors of the calender accumulated.
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Nevertheless, as Neugebauer and Parker remark, the
scheme was impressive enough to the ancient Egyptians to
be enshrined forever in the Ramesside tombs. The purpose
of including such depictions on the wall of a sealed tomb can
only have had meaning for the soul of the pharaoh. The
telling of the hours of the night must have been a necessary
part of the dealing with the dangers of the underworld
before being reborn at dawn with the rising sun. See §8.1 for
detailed discussion of the background for, and the astron-
omy of, ancient Egypt.

Ptolemy mentions several instruments in the Almagest
(cf. Toomer 1984, 61ff). He describes the construction of a
meridian circle with which the noon zenith distance can be
measured. He cites writings of Hipparchus, who mentioned
a bronze ring located in the “Square Stoa” section of
Alexandria. With this ring, which was accurately aligned in
the plane of the celestial equator, Hipparchus said that it
was possible to indicate the dates of the equinoxes by notic-
ing when the face that is illuminated by the Sun changes
from top to bottom (Fall) or bottom to top (Spring).
Ptolemy describes the construction of what he calls an
“astrolabon” instrument. The object Ptolemy describes
resembles what we would call an armillary sphere, a series
of nested, graduated rings, one set in the ecliptic, another in
the equatorial plane (and perhaps a third in the plane of the
horizon). The result is a means to measure the position of
a heavenly object in any of several coordinate systems.
The ecliptic longitude and latitude could be read off the
graduated rings directly. What we today would call an
astrolabe would have been referred to as a “small astrolabe,”
in Ptolemy’s day, according to Theon of Alexandria
(~375 a.D.).

The astrolabe, like our modern planisphere, was a two-
dimensional representation of the celestial sphere, with the
ecliptic projected onto it, and retaining a circular shape. By
selecting the date, the time of night was then revealed by
what stars were visible on the meridian; it served also as an
instrument for the observation of both the Sun and the stars.
It was equipped with a rotatable marker (called an alidade)
that was fitted with sights. A measurement of the solar alti-
tude could give the time from meridian passage for a given
latitude (once the date had been dialed in). The measure-
ment of the altitude of a star could be used similarly; alter-
natively, measurement of the altitude of the Sun or that of
a known star when on the celestial meridian could reveal the
latitude of the observer [refer to (3.34)]. A filigree metal star
chart called a rete was included on the face of the astrolabe,
and beneath this, visible through the filigree, was one of
several plates (which could be interchanged for locales of
different latitudes) marked with projections of altitude
circles (almucantars or almucanturs), as well as the equator
and tropics, and sometimes other circles as well. The almu-
cantars are circles of equal altitude that are projected
stereoscopically® onto to a plane parallel to the equator.

'8 The focus of the projection is the south celestial pole. Thus, each pro-
jected point is the intercept of the equatorial plane with the line joining
the SCP and the point of interest on the celestial sphere.
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The almucantars remain circles (this is a characteristic of
stereoscopic projection), but their centers shift along the
line joining the projection of the north celestial pole and the
zenith. The separation of the zenith and NCP depends on
the latitude, and so the family of almucantars differs in
placement with latitude also; hence, the need for more than
one plate, if the user of the astrolabe was given to travel.

After a sighting on the Sun, the refe would be rotated until
the Sun’s position coincided with the appropriate altitude
circle, and the hour of the day could then be read off. Its
small size made the astrolabe popular among travelers, and
it was used up to the mid-18th century when it was replaced
by a forerunner of the modern sextant. Figure 3.19 illus-
trates a German astrolabe, constructed in 1537 by George
Hartman.

There were four plates, each inscribed on both sides with
the stereographically projected altitude circles appropriate
for a particular latitude: 39°, 42°, 45°, 48°, 51°, and 54° are
explicitly marked. The center of the astrolabe represents the
NCP, and the tropics of Cancer and Capricorn flank the
equator with which they are concentric. Around the outside
of the body are the Latin names of the winds. Within these
are the 24 equinoctial hours, in Roman numerals of 1 to 12,
repeated; and a ring of four sets of altitudes in 1° intervals
over the range 0° to 90°. The refe contains the ecliptic,
marked with the zodiacal signs and subdivisions of 5°, and
the locations of particular stars marked by perforated point-
ers. The index arm that pivots about the center (the NCP
projection) marks off the location of the Sun on the ecliptic
for a particular time of year. The intersection of this arm
with the body of the astrolabe indicates the hour of the day
(the Roman numerals). The arm is inscribed with degrees of
declination, north and south of the celestial equator. The
back view shows the alidade with collapsible sighting plates.
On the body, proceeding from the rim inward, are altitudes,
degrees (in Roman numerals) of the zodiacal signs, and the
days of the months. The dates corresponding to the bound-
aries of the signs indicate that the first point of Aries
occurred on March 10. Even more elaborate astrolabes
are known. See, for example, Gibbs and Saliba (1984)
for several interesting examples.

Ptolemy’s description of the large “astrolabe” is in the
context of his discussion of the lunar “anomalies”; i.e., the
Moon’s departures from Ptolemy’s model. He was using
the device to measure the longitude of the Moon relative
to the Sun. One of the difficulties in measuring the position
of the Moon is the presence of a large amount of parallax
(see Figure 3.6). For this reason, Ptolemy built what he
called a “parallactic instrument” (Toomer 1984, Fig. G, pp.
2441f),"” with which he measured the zenith distance of the
center of the Moon’s disk at meridian passage.

First, he established the actual celestial latitude variation
of the Moon by observing it when it was at its highest above
the ecliptic (at such time it would have been close to the

1 According to Toomer, during the Middle Ages, this instrument was
called a triquetrum, because it consisted essentially of three main com-
ponents (see Figure 3.20).
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FiGURE 3.19. An astrolabe: (a) Front and (b) back views of a
German 16th-century astrolabe, No. 262 [Smithsonian Catalog
No. 33617] discussed by Gibbs and Saliba (1984). Such devices
were two-dimensional representations of the celestial sphere
that provided a practical method of navigation, or, alternatively,
local date and time determination. Like the modern plani-
sphere, it is a two-dimensional representation of the celestial
sphere, with which the time of night on a given date is revealed
by what stars are visible on the meridian. In addition, it per-
mitted observations of the altitudes of the Sun and stars with a
rotatable alidade, which was equipped with sights. The solar alti-

zenith at Alexandria) and subtracted z = 2'/;° from the lati-
tude, 6 = 30797 to get d,.x = 2885, and, with € = 23285, found
i=5%0. He then measured the Moon’s lowest z at the oppo-
site solstice?” and found the parallactic shift (z, = 50792 vs.

% These conditions are referred to as major and minor standstills,
respectively, from the effect that the celestial latitude variations has on
the declination variations of the Moon during the month and conse-
quently on the amplitude of lunar rise and set azimuths. The evidence
for the megalithic studies of the Moon is mainly from alignments to
distant foresights allegedly marking the standstills (see §6.2).

3. Observational Methods and Problems

tude provided the time of day (given the date), and the altitude
of a star on the celestial meridian revealed the latitude of the
observer. Beneath the filigree metal star chart (rete) on the face
of the astrolabe is a site-specific plate on which altitude circles
(almucantars) are marked. After a sighting on the Sun, the rete
would be rotated until the Sun’s position coincided with the
appropriate altitude circle, and the hour of the day could then
be read off. From Gibbs and Saliba [1984, Figure 12, pages 9,
and 97, page 148, Smithsonian Prints #79-1769 and #82-8299]
and reproduced here by permission of the Smithsonian Institu-
tion, Washington, D.C.

2e + 7, = 49°83). Ptolemy thus deduced a lunar parallax of
~1°07’, not too different from the modern value (57). See
Toomer (1984, pp 246-251) for more detail.

Graduated scales on quadrants were in use for centuries,
culminating in the work of Tycho Brahe. This great 16th-
century observer used massive instruments at the royal
observatory on the island of Hveen in Denmark to measure
the precise relative positions of the planets. He used a clever
vernier scheme to read the scales: transversals, lines of ten
uniformly spaced dots, were placed along lines angled
upward from each side of every other base scale tick mark,
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FiGure 3.20. A rough sketch of the triguetrum, as it was called
in the Middle Ages, consisted essentially of three main compo-
nents; it is closely similar to the instrument described by
Ptolemy as a “parallactic instrument,” which was used to
measure the meridian zenith distance of the Moon at each sol-
stice (Toomer 1984, Fig. G, p. 245). The rod anchored at the top
of the vertical rod was lined up with the object in the sky, and
the position on the lower rod read off; in combination with the
vertical length, it yielded the equivalent of the zenith angle.
Drawing by E.F. Milone, after Pannekoek (1961/1989, pp. 154,
181).

forming a rough triangle with the base. A line-of-sight indi-
cator extended into the triangle region would intersect the
line of dots at the decimal fraction of the distance between
the base marks. The leverage thus gained created an
improved precision of angular measurement (Thurston
1994, Fig. 10.7, p. 215). Thurston (1994, p. 215) notes that the
inventer of this scheme was not Tycho Brahe but Johann
Hommel [1518-1562]; but Brahe used it to great effect.

In addition to the astrolabe, another instrument in wide-
spread use for measuring angles was the cross-staff, some-
times called a Jacob’s staff in the Middle Ages. Basically, this
simple hand-held instrument consisted of two perpendicular
sticks, both graduated, with the cross piece able to slide
along the main shaft so that the angular extension of the
cross-piece (or some part of it) could be made to match the
angular separation of objects. Thus, the separation between
a planet and a star could be measured, and from these, with
the help of spherical trigonometry, the differential right
ascension and declination could be obtained. It can also be
used to find the altitude of an object. The construction and
operation of the cross-staff is described in Schlosser et al.
(1991, Appendix C, Ch. 1). The angle to be determined, o,
can be obtained from the expression

w=2x Ztan%, (3.35)
where w is the width of the cross piece that spans the angular
distance in question and € is the distance from the cross
piece to the eye. A finely elaborated version, with several
cross pieces can be found in the David M. Stewart Museum
Collection in Montreal, a photograph of which has been
published by Levy (1990, p. 120). See §7.6 for further dis-
cussion of astronomy in the Middle Ages.
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In Mesoamerica, there are certain sites from which align-
ment observations could have been made. The Caracol in
the Mayan city of Chichen Itza on the Yucatan peninsula is
partially in ruins today, but from the existing windows on the
upper floor of the remaining part of the structure, the inner
and outer edges of the window casements define narrow
slitted areas through which the amplitudes of the Moon and
of Venus could have been observed (see §12.22). Venus and
the Moon are both tied into a calendrical system that was
used in Mesoamerica during the period of time in which
Chichen Itza flourished. The city also contains a pyramid
named for the god Kukulcan, and called by the Spaniards,
El Castillo. A bas relief of a ruler who was named after the
god and may have been regarded as identical with him is
depicted inside a room at the top of the pyramid. Kukulcan
has been associated with Venus, although Kelley (§12.6) has
argued for an identification with Mercury. Solar alignments
have also been claimed for certain window casement struc-
tures in North America, principally, at Casa Grande in
Arizona and at Casa Rinconada in New Mexico, although it
is less clear that the latter structures were exclusively used
as observatories (§13.1).

In Asia, we have some of the oldest observatories still
standing (cf. §10.2). The oldest structure known at the
time of writing is the Chomsongdae or Star Tower (see
Figure 10.9) at Kyungju (Chhing-Chow) in the ancient Silla
kingdom (now part of South Korea) during the reign of
Queen Sondok (632 to 647 a.p.). It has a single window
facing south and could have supported a platform on the
top holding an armillary sphere. The armillary sphere is a
device that recreates the basic frame of the celestial sphere.
Typically, it contained the celestial equator, the celestial
meridian, the horizon, and perhaps the ecliptic. With it,
observations could be made of the altitudes of celestial
objects on the celestial meridian, as well as at other
azimuths, and of declinations. If the ecliptic was included,
ecliptic coordinates could be obtained. Azimuths and hour
angles could have been measured also with such devices,
with, however, limited precision. There are many existing
armillary spheres and other devices, such as quadrants, that
were used for altitudes and declinations, in China. See
Figure 3.21. A 15th-century version of an equatorial armilla
said to be designed by Kuo Shou-Ching (~1276) is now
located in the courtyard of the Old Beijing Observatory
(Figure 3.21a). A horizon circle is supported by dragons; the
celestial equator and ecliptic can also be seen. Hour circles
permit the measurement of angles around the celestial
equator. An “abridged armilla” also from the 15th century,
and also located in the courtyard, is seen in Figure 3.21b.
Notice that this instrument is actually a collection
of instruments, including a sundial, horizon and azimuth
circles, and an equatorial circle. See §2 for details on the
coordinates and how they are measured.

The tower of Chou Kung at Kao-chhéng near the impor-
tant ancient imperial site of Loyang permitted measurement
of the length of the Sun’s shadow as it transited the merid-
ian (Needham 1959, pp. 296-297, Figs. 115-117 from Tung
Tso-Pin et al. 1939). This was therefore an observatory for
the study of time and solar date (attested), and it was an
ancient analog of such institutions as the Royal Greenwich
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FiGure 3.21. Chinese armillary spheres said to be from the 4th
year of the reign of the Ming emperor Zhengtou, ~1439 A.p.,
and now located in the “Old Beijing Observatory,” Beijing,

Observatory and the U.S. Naval Observatory. Figure 3.22 is
a sketch of the structure of the tower with an opening pro-
viding a clear view of a graduated shadow scale 28 ft (8',m)
below, on which the length of the shadow cast by a 40-ft
(~12m) high gnomon indicated a solar calendar date.
Rooms in this structure contained an armillary sphere and
a water clock.

The Old Beijing Observatory houses a copy of an instru-
ment known as a chien i, “simplified instrument,” and appar-
ently a basic type of equatorial torquetum, designed by
Kuo Shou-Ching. A torquetum is a device equipped with
graduated disks in both ecliptic and equatorial coordinates
to facilitate conversion between the systems. The torquetum
was probably invented by the astronomer Jabir ibn Aflah
(b. ~1130; Spain) and possibly brought to China from the
Maragha Observatory in Persia by Jamal al Din ibn
Muhammed al-Najjari in 1267 (Needham 1959, Fig. 164;
Needham/Ronan 1981, Figs. 106-109, pp. 174-178). Kuo
Shou-Ching’s device, however, lacks the ecliptic disks, and
it would have been used only to measure stars’ right ascen-
sion positions relative to the Xiu, which are marked on the
equatorial circle along with 12 double hours, and declina-
tions (graduated in degrees and minutes of arc); Needham
describes it as “the precursor of all equatorial telescope
mountings” (Needham/Ronan, Fig. 107).

The Mongol prince Ulugh Beg [1394-1449], grandson of
Tamerlane, was a gifted mathematician who founded an
observatory at Samarkand, now part of Uzbekistan, in 1424.
Much of the instrumentation was copied from Maragha, an
older, Persian observatory, but it included the largest instru-
ment of the day, a meridian circle of 40-m radius. Piini (1986)
discusses how the instrument could have been used and
illustrates another instrument from this observatory, a par-
allactic ruler. Figure 3.23 shows the site and part of the now
entombed meridian circle.

3. Observational Methods and Problems

(b)

China: (a) Based on the equatorial armilla of Kuo Shou-Ching
(~1276) and (b) the “abridged armilla.” Photos by E.F. Milone.

Chou Kung Tower
upper edge

£ .
lower edge openng

stairway

shadow scale (low wall)

end of low wall
View from end of shadow scale

Ficurk 3.22. The tower of Chou Kung at Kao-chhéng near the
important ancient imperial site of Loyang: View from the north
end of the “Sky Measuring Scale,” a 120-ft (36.5m) low wall on
which graduations permitted the shadow length cast by the
noon Sun to be read off. Drawing by E.F. Milone, after
Needham (1959, Plate XXXII, Fig. 116, p. 296).

References to early Indian instruments are cited by Sub-
barayappa and Sarma (1985). The earliest reference to such
instruments is in the work of the astronomer Aryabhata
(b. 476) and concerns various kinds of shadow clocks, water
clocks, vertical circles (for solar altitude measurements), and
a device using a plumb-bob and a water level to establish
the horizon and zenith. More elaborate instruments include
an armillary sphere, described by Lalla (b. 768) and in the
Suryasiddhanta (cf. Sen 1966). Subbarayappa and Sarma
mention an observatory at Mahodayapuram in the state of
Kerala, dating from 860. The 18th-century observatories of
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Ficure 3.23. The meridian circle now partially entombed at
the site of Ulugh Begh’s observatory at Samarkand: (a) and

(b) Exterior housing. (c) Graduated quadrant. Courtesy of
Dietrich Wegener.
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Maharaja Jai Singh [1699-1743] at Jaipur and at Delhi are
well known to most of the world, because many of the instru-
ments are still in place and tours are frequently conducted
to them. They represent a recreated heritage—an attempt to
build classic instruments to demonstrate the way observa-
tions were likely made in ancient India. At the Jantar
Mantar in Delhi, there were four kinds of instruments,
one of which is alleged to have had four purposes (Nath,
undated, <1986):

(1) Samrat Yantra, a large triangular structure and two
quadrantal arcs, acted as a giant sundial, which was
used to measure hour angles and declinations of the
Sun.

(2) Rama Yantra, two large circular structures, was used to
measure altitudes and azimuths. According to Nath
(undated), this instrument (as well as the Dakshinobhitti
described below) may have required strings as site lines.

(3) Jayaprakash Yantra, two hemispherical bowls, to mea-
sure altitudes, azimuths, hour angles and declinations.

(4) Misra Yantra, an inverted heart-shaped structure, which
was composed of
(a) a Samrat Yantra;

(b) Niyat Chakra Yantra, four semicircular arcs, onto
which a gnomon could cast a shadow—with this
structure, the declination of the Sun could be mea-
sured at four specified times of day, corresponding
to noon at each of four observatories spread around
the world;*!

(c) Dakshinobhitti with which meridian altitude or
zenith distances could be measured; and

(d) Kark Rashivala, which provided the zodiacal sign.

At least some of these instruments can be seen in Fig-
ure 3.24, which shows the Jaipur site as it looked in
November 1985. See Figure 9.10 for details of the instruments
at Jaipur and at the Majarajah’s other observatory, the Jantar
Mantar in Delhi. These instruments are hardly “ancient,” but
they are naked-eye instruments and provide us with valuable
insight into how data could be obtained with precision by
practitioners in early times (cf. §9.1.5).

3.4. Possibilities of Optical Aids

The limitations of normal human visual acuity would seem
to preclude naked-eye discovery of such phenomena as
Jupiter’s moons. Yet Bobrovnikoff (1984) cites cases of indi-
viduals who were capable of such feats, and of one individual
(“eagle-eyed Dawson”) who actually claimed to have dis-
cerned both the disk of Jupiter and its Galilean satellites.”
Presumably, individuals with this degree of acuity and the

! These were the observatories at Greenwich, Zurich, Notke (Japan),
and Saritchen on Pik Island in the Pacific.

2 Dawes’ limit for the spatial resolution of two stellar discs is
~1.22-M/D, where A is the wavelength of light and D is the diameter of
the instrument; in the case of the sky, the latter is the diameter of the
dark-adapted pupil, between 5 and 10mm. Taking 6mm as a typical

3. Observational Methods and Problems

FiGURE 3.24. A selection of astronomical instruments at the
Jaipur observatory of the Majarajah Jai Singh: Notice especially
the Samrat Yantras that could be used to determine the moment
of noon at each of several observatories around the world. The
instruments would have been rotated to the hour angles equal
to the longitude differences from the local observatory so that
the different solar hour angles apply to the meridians of those
places simultaneously. This is the equivalent of a wall of clocks
registering the local times of different places in the world.
Although the Jai Singh observatories were constructed in the
18th century, the instruments were built according to traditional
specifications and thus represent classic Indian astronomical
tradition. See Figure 9.10 for close-ups of the instruments at
Jaipur and at the Majarajah’s other observatory, the Jantar
Mantar in Delhi. Photo by E.F. Milone.

ability to record their discoveries were rare in ancient soci-
eties, because, as far as we know, no records were made of
what we would describe as telescopic appearances, notwith-

value, and yellow light, for which A = 0.0006 mm, this limit is 0.0001
radians or ~20 arc-sec. The disk of Jupiter approaches 60 arc-sec.; hence,
the discernment of the Jovian disk is theoretically possible.
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standing extraordinary claims made for the Dogons of central
Africa (§8.4).

The lack of telescopes is puzzling because several ancient
cultures certainly had the technology to produce them.
They did produce mirrors, and some knew about lenses as
well.

Carlson (1976) describes the obsidian mirrors made and
used by the Olmecs who lived on or near the Gulf coast of
Mexico ~900-500 B.c. (Weaver 1981) and concludes that
they had a symbolic rather than an astronomical value. A
priest, wearing such a mirror, would appear to embody the
Sun, especially because it could be used to reflect and focus
sunlight, causing smoke, if not fire. In later Aztec times, the
god Tezcatlipoca (“Smoking Mirror” from Tezcatl, “mirror,”
and poca, “smoking”), was able to divine events with the
help of his “smoking mirror.” His role as a Sun god is dis-
cussed in §12.15. The Maya also used mirrors, and Carlson
says that the Chinese used mirrors similarly for shamanistic
purposes and to provide a harmony between the inner soul
(as reflected in the face) and the universe. It is reported that
the Kogi (§14.1) of Colombia, who have a lengthy archaeas-
tronomical history, currently use obsidian mirrors for astro-
nomical observations.

One of the oldest references to mirrors in China is to one
of bronze, ca. 627 B.c. (Needham 1981, p. 353). Although an
important usage for Chinese mirrors was to start fires from
focused sunlight, documents exist that indicate that the
properties of concave mirrors were well known by the
Chinese at a very early date. Mo Ching, written in the 4th
century B.C. indicates that the magnification and reduction
of an image were carefully observed (Needham 1981, pp.
350-352).

Refraction properties of materials had also been noted.
By the 3rd century A.p., mention is made of round balls of
ice and of pearl, which could be used to focus sunlight for
burning (Needham 1981, pp. 358-361). Yet, as far as we
know, eyeglasses did not appear in China earlier than in
Europe.

The earliest extant European writing on mirrors is by
Heron of Alexandria (ca. 100 A.p.). Ptolemy’s Optics (ca.
130) deals substantively with both reflection and refraction.
Ptolemy even discusses the refractive effects of the Earth’s
atmosphere and the corrections to the apparent positions of
stars because of it. In Europe, the first recorded astronomi-
cal use of the telescope was by Galileo (1610). The devices
he constructed were refracting telescopes, each of which
consisted of two lenses: an objective lens (at the far end of
a long tube) and an eyepiece lens, together giving a magni-
fication of a few times. With experience, he constructed
better telescopes, and noted that the “Medicean stars,” as he
called the moons of Jupiter, could be seen only with 20-30
power.

A device that the Chinese certainly possessed was the
image-producing camera obscura, also mentioned in the Mo
Ching. This is essentially a pinhole camera, the Latin name
indicating the “darkened chamber” in which the image
had to be viewed. The principle was certainly known to
Aristotle; in his book Problems (Section xv, Ch. 5), a round
image of the Sun is shown after traversing a rectangular
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Ficure 3.25. The “man in the moon” depends on the inability
of the human eye to discern features smaller than the maria on
the Moon’s surface.

aperture. He also mentions that the image of an eclipsed Sun
can be seen through foliage or lattice. The frst clear descrip-
tion of the device appears in the Book of Optics of Alhazen
[Islamic astronomer, d. Egypt, 1038], reproduced by Vitello
[Polish philosopher, b. 1230] in his own work on optics.
Roger Bacon [Franciscan scientist, b. ~1214] also discusses
it in his Perspectiva (1614), in combination with a “specula.”
Maurolycus [mathematician, Messina, ~1521] applied it to
observational study of the Sun. On a large scale, light from
an illuminated scene may be passed through a narrow aper-
ture into a darkened room where it may fall on a far wall
and appear magnified in the process. The result can be spec-
tacular. In a large congress hall in New Delhi in 1985, EFM
witnessed scenes of the brightly lit lobby projected onto a
large white screen at the front of the darkened hall when-
ever the door was just opened or had nearly shut. In Edin-
burgh, Scotland, near the top of the Royal Mile, there is a
camera obsura projecting a magnificent view. It has been
suggested that similar means was used to create a
Jaguar (the Pleiades) map on the floor of a building at
Teotihuacan in Mesoamerica in the early centuries A.D.
(see §12.22), but experimental verification is desirable,
because the greater the magnification, the lower the
surface brightness of the image. If a lens is inserted at the
aperture, magnification and a brighter image can be
achieved. The camera Ilucida, a device that employs prisms
to reproduce a virtual image superposed on a draughtsman’s
field of view, was not invented until the 19th century (by
W.H. Wollaston).

We conclude this chapter with a question, previously
raised by Schlosser et al. (1991/1993, p. 116). The influences
on the pace of technological development of human soci-
eties have been the topics of many learned discussions. What
would have been the consequences for such development if
our eyes had just slightly better acuity ? (See Figure 3.25 for
a deresolved photo of the Moon, to match normal human
vision.) Perhaps Megalithic observers would have noticed
such phenomena as the disks of some of planets—and the
Venerian crescent, lunar mountains, and the brightest
moons of Jupiter. Perhaps a scientific age would have
dawned not merely centuries ago but several millenia before
that. Or would it have?

From the spatial domain of human perception, we now
proceed to the temporal.
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Time and the Calendar

Time, like an ever-rolling stream,
Bears all its sons away;

They fly forgotten, as a dream
Dies at the opening day.'

4.1. The Perception and
Measurement of Time

Time carries us along, willing or not, into, through, and out
of the world relentlessly, without “time-out” to recover our
breaths, wits, or fortunes. The perceived arrow of time points
always in one direction, from the past to the possible, from
the known to the unknown. This implicit nature of time is
characterized in many different ways in different languages:
Some recognize the past, present, and futures with condi-
tional and subjunctive, preterite, and pluperfect nuances. On
the other hand, among the Hopi, for example, the important
distinction is between “near” and “far” time, whether past,
present, or future. The perception of the meaning of time
has changed much through history and across cultures, but
the experience of time as an enslaving tyranny is common
to many. Whatever its ultimate meaning or importance, the
measurement of time has practical importance for many
areas of human endeavor, enabling individuals and groups
to coordinate their activities and thereby keep their societies
functioning. This was fully recognized among ancient cul-
tures too.

Our 24-hour day, sexagesimal system of measuring
seconds and minutes, and our use of decimal fractions of
seconds, record a curious blend of heritage from ancient civ-
ilizations, specifically, Egypt and Mesopotamia. The 24-hour
day, we now believe, originated in Egypt, with the use of the
decans (Neugebauer 1955, 1969 p. 81ff): During the shorter
summer nights, a total of only about 12 decans (each roughly

! St. Anne’s, 5th verse; Isaac Watts [1674-1748].

10° apart on the ecliptic; see §3.3) could be seen. As each
decan appeared at the southeastern horizon, it could serve
as a marker of time. The scheme may have been extended
to the winter nights and then to the days as well, resulting
in the two 12-hour periods that characterize day and night,
a derivative form of which is our ante- and post-meridian
time-keeping.

Time units shorter than a day were mentioned in the
Babylonian diaries (Sachs and Hunger 1988): the US (pro-
nounced ‘oosh’ and meaning ‘length’) or the “time degree,”
which measured the time for the sky to turn through 1° in
right ascension; and the NINDA, 1/60 of an US. The US
therefore marked four minutes of our time, and the NINDA,
corresponding to a minute of arc, marked four seconds of
time. According to Neugebauer (1941, 1983, p. 16), the US
had its origin as 1/30 of a unit of length, the danna, equiva-
lent to about seven miles, and which was in use in
Mesopotamia as early as 2400 B.c. The usage of a time-
equivalent distance—a distance equivalent to the time it
takes to travel this distance—is not unfamiliar today.” The
danna was equivalent to a time interval of two hours, some-
times called a “double hour.” The equivalence is, then, 12
double hours = 360 US = 1 day. These units from ancient
Babylon, then, are the origin of our “degrees” of angle, and
of the astronomical usage of time units to measure distance
on the celestial sphere. The base 60, and the use of sexages-
imal fractions, used both for our minutes and seconds of
time as well as for minutes and seconds of arc, has also a
Babylonian origin. The 24"/d, 60™/h, and 60%/m combination
was in use by Hellenistic times.

Time could be measured by the length of equatorial arc
(i.e., the length of arc along the equator as delineated by two

% For example, we say that such a place is 10 minutes away by car. Time
is usually a more important quantity than is distance for many travel-
ers, so that the time to travel may be more meaningful for a given set
of traveling conditions (traffic, road/track quality, weather, etc.) of a
region.
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or more stars) that had traversed a particular spot in the
observer’s horizon system. The spot could be on the merid-
ian or at the east or west points of the horizon. Such mea-
surements yielded what were called equatorial times (ypovot
ionuepwvoti), and the unit was the “time-degree,” 1/15 of an
hour or four minutes of time. This measure of time is directly
analogous to our sidereal time, which marks the passage of
stars across the celestial meridian and is defined formally as
the hour angle of the vernal equinox:

LST = HAY, (4.1)

where LST is the local sidereal time because the meridian
is different for each observer. This is equivalent to the sum
of the hour angle and the right ascension of any object in
the sky; i.e.,

LST = HA* + RA™. (4.2)

When time was to be expressed explicitly in hours in the
ancient world, solar times were used. As we discuss below,
the Sun’s motion is not constant during the year, but a
uniform measure was sometimes used: Astronomers of
antiquity used equinoctial hours as the Greek term ((Z)pou
tonuepvad) is translated (Toomer 1984, p. 23). The equinoc-
tial hour was 1/24 of the length of a solar day. It was roughly
the equivalent of one of our hours of mean solar time, but
not exactly the same, because the modern definition involves
the mean rate of the Sun averaged over the year. The
measure of time that we use is traditionally defined as the
hour angle of a fictitious “mean sun” traveling on the celes-
tial equator at average rate plus 12 hours:

LMSolT = HAMS +12", (4.3)

where LMSolT is the local mean solar time and HAMS is
the hour angle of the mean sun. The 12" in (4.3) is arbitrary.
It is a convenience for the modern world to have the day
start at midnight rather than at noon. In ancient
Mesopotamia, the day started at sundown.

In more common use in the ancient world were seasonal
hours (in Greek, @pon koupikot) or civil hours (Toomer
1984, p. 23). Each such hour was 1/12 of the actual length of
daylight at a given place and, therefore, varied in length with
the season. They were obtained from the motion of the
actual Sun, usually by means of a sundial. Ptolemy’s
Almagest (cf. Toomer 1984, p. 104ff and Appendix A) con-
tains instructions for the conversion of equinoctial hours
into seasonal hours and vice versa. Because the number of
hours of daylight varies with latitude every day of the year
except at the equinoxes, so did the length of a seasonal hour.

In the ancient world, time was local and immediate, and
reckoned exclusively either by hour angle (of the Sun) or by
reference to horizon phenomena or celestial meridian
passage (of the Sun or stars). Ptolemy (Almagest, Book 1I,
§9; Toomer 1984, p. 104) gives instructions for converting
from one type to another. To convert from seasonal to
equinoctial hours, multiply the time interval in seasonal
hours by the length in time-degrees and divide by 15. For
example (taken from the Almagest, Appendix A; Toomer
1984, p. 650), if the length of a seasonal hour at a given date
and site is, say, 18;7 time-degrees, 5%, seasonal hours is
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5% x 18;7/15 = 6;38 equinoctial hours.* To convert from
equinoctial hours to seasonal hours, multiply by 15 and
divide by the length of the hour of the relevant time inter-
val in time-degrees. For example (p. 649), given the longi-
tude of the Sun as ~28;18° (that is, 28°18” in the sign of
Sagittarius) and a site with the terrestrial latitude of Rhodes
(14;30), find the length of a seasonal hour in the night. To
do this, Ptolemy uses a look-up table of rising times (Book
II, §8) that gives the time-degrees corresponding to 10°
intervals on the ecliptic and totals accumulated since Y 0°.

For Rhodes, the accumulated rise time for <20 is 277;29°
and that for its opposite (in the night sky), J120°, is 94;18°.
The arc for a 10° stretch on the ecliptic is 11;16° between
220° and <30°, and 10;34° between I120° and I130°. The
interval 8;18° is 0.833 of the 10° of zodiacal sign or 0.833 of
these intervals, or 9;21,5 and 8;46,13 respectively. Adding
these to the accumulated rise times at 20° and I[20°, we
get 286;50,5 and 69;27,13, respectively. The difference, A,
between these values, corresponding to exactly one half-day,
is 217;22,52. Dividing A by 12, we get the length of a sea-
sonal hour, 217.3811/12 = 18.115 = 18;7. Dividing A by 15,
we get the length of the night in equinoctial hours:
217.3811/15 = 14.492 = 14;29. Further division of the latter
by 12 gives the length of one seasonal hour in equinoctial
hours at Rhodes when the Sun is near the end of the sign of
Sagittarius: 1.2077 = 1;12,28.

4.1.1. Time and Time Intervals
4.1.1.1. Sundials

We have already mentioned the gnomon, essentially a rod,
the permanent placement of which permits calibration of its
shadow direction to time of day. A gnomon placed perpen-
dicular in level ground must have constituted the first
sundial, and there is indeed a very early “shadow-clock”
from Egypt, which seems to be precisely this. It measures in
projection the hour angle of the Sun. Many examples exist
of horizontal sundials, although, according to Gibbs (1976,
pp. 4, 78), Greek and Roman sundial makers preferred
rounded surfaces. Of 256 sundials from the Greco-Roman
world, of the 3rd century B.Cc. to the 4th century A.D.,
described by Gibbs, only 15 are flat and horizontal and only
25 vertical. There are conical, cylindrical, and spherical
shapes in abundance. Among the most ingenious (op. cit.,
p- 23) are the “roofed” sundials, which had a notch or a small
carefully drilled hole on the midline of the roof that would
act as a tip of a gnomon. Other sundials used the tip of a
small pyramid-shaped metal gnomon, and not the side of the
gnomon shadow, as in most modern sundials, to mark the
hours (see Figure 4.1).

* 18;7° = 18 + Ty = 18.11667°. Multiplied by 5'%, this yields 99.64167°,
and divided by 15 degrees/hour, the result is 6.64278hrs. = 6" + (60 x
0.64278 = 38.57) mins. = 6;38,34 or about 6;38. Apparently, Ptolemy is
rounding off. The rate, 15°/hour, is from the equivalence between 360°
and 24",
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FiGure 4.1. A modern cyclindrical sundial with a pyramidal
stylus, from a private home in Calgary. Photo by Dr. T.A. Clark.

Much of the description of these sundials comes from
Vitruvius’s De architectura, which dates from about 80 B.c.
The largest in this collection are the vertical sundials on the
eight facings of the “Tower of the Winds” in the Plaka dis-
trict, of Athens, below the Acropolis. This structure, still
visible today (see Figure 4.2), was known in the first century
B.C. as the Horologium of Andronikos (from Kyrrhos in
Macedonia) or Andronicus Cyrrestes in Latin sources; we
discuss this structure and its place in the culture of its time
in §7 and report the informed speculation concerning a
water clock in the structure in §4.1.1.3.

Figure 4.3 shows a 15th-century horizontal sundial now
located in the courtyard of the “Old Beijing Observatory”
in Beijing, China. A modern vertical sundial in Lucerne,
Switzerland can be seen in Figure 4.4. A small vertical
sundial dating from the Greco-Roman period was found in
Luxor (Figure 4.5).

A stone sundial in a courtyard in the Forbidden City in
Beijing, China is shown in Figure 4.6. In the latter case, the
distortion due to the projection of the hour angle is avoided,
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because the dial is set in the plane of the equator, and the
cursor is a narrow rod projecting through the center onto
both faces. This type of sundial has an added advantage:
Between the equinoxes, the Sun will illuminate only one of
the two faces. At an equinox, the cursor shadow will appear
on both faces equally, and thereafter, only one of the sur-
faces will be fully illuminated.

Sundials were among the elaborate reconstructions of
astronomical instruments at Delhi and Jaipur (Figures 3.24
and 9.10) by the Maharajah of Jaipur in the 18th century (see
Figure 4.7). Sundials came in an array of geometric styles,
including the cylindrical (see Figure 4.1).

The sundial was widely used in the ancient Mediterranean
world. Properly used,* it could be read to a few minutes or
better, perhaps to one minute. Precision is ultimately limited
by the lack of sharpness of the shadow because of the finite
size of the solar disk, a shortcoming of which Ptolemy was
well aware (Almagest, Book 11, §5; Toomer 1984, p. 80).

The use of the shadow of a gnomon as an indicator of time
requires in principle at least empirical knowledge of the alti-
tudes of the Sun at particular times of day and seasons of
the year. Where projections are involved, as in flat sundials,
the effect at the latitude of the intended site must be known.
Finally, the markings should be long enough to extend over
the annual range of shadow length at each hour. As we noted
in the previous section, the Greco-Roman world did not use
mean solar time, and their hours were usually not of uniform
length but literally varied over time scales of days. Seasonal
hours divided the daylight interval into 12 hours, regardless
of the season. This meant that a winter day had shorter sea-
sonal hours than did a summer day. Moreover, at the same
time of year, the seasonal hour had a different length as one
traveled to a location with a different latitude. Table 4.1 lists
the lengths of daylight (2Heyisese¢) and length of the seasonal
hour for seasonal extremes at selected sites. Note that the
ratio of the lengths of the longest to shortest days is a strong
indication of the latitude of the site. The accuracy of a
sundial reading depended on the time of year, and the suit-
ability of the sundial for the latitude and maybe longitude
of a particular place (the noon meridian of the sundial
should have agreed with the celestial meridian of the site).
In the ancient Mediterranean world, the establishment of
the length of daylight was an important function of astron-
omy. Neugebauer (1957/1969, pp. 158ff.) shows that this was
carried out by studying the “ascensions” of the zodiacal signs
during the course of the night. For Alexandria, the night
lasted about 10 hours in the summer (thus the day lasted
14 hours), and in the winter, the night lasted 14 hours (and
thus the day, 10 hours). This ratio, 7:5, was determined in
antiquity.

Table 4.1 contains no correction for atmospheric refrac-
tion, which lifts the Sun by slightly more than its diameter,
on average (see §3 for a discussion of both the mean refrac-
tion and its variation from the mean value). Because the Sun

4 Gibbs (1976) relates that a case is known of a sundial that was
designed for use in Catania in Sicily but used quite happily in Rome for
a considerable interval of time, although the markings were no longer
quite right for the site.
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FiGure 4.2. Views of the Horologion designed by Andronicus
Cyrrestes, in Athens: The upper parts of the eight external sides
of this structure were vertical sundial faces from which projecting
rods provided the gnomons. (a)—(b) six of the eight faces; (c) Notos,
the South wind; (d) Lips, the SW wind; (e) the interior, showing
evidence of water works. Photo (a) by Andrew Kyrgousious for E.F.
Milone. Photos (b)—(e) taken on an early August afternoon in 1982
by E.F. Milone.
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Ficure 4.3. A 15th-century copy of a Chinese horizontal
sundial from a design by Guo Fhoujing, Yuan Dynasty,
1279-1368; now located in the courtyard of the Old Beijing
Observatory in Beijing, China. Photo by E.F. Milone.

FIGURE 4.4. An example of a
modern (1968) vertical sundial in
Lucerne, Switzerland: The zodiacal
constellations are prominent.
Photo by E.F. Milone.
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rises earlier and sets later than it would on an airless world,
a correction must be made to increase the computed hour
angle. With an assumed refraction correction of 34 arc-
minutes, the range of effects on H for the sites given in Table
4.11s 0.110 hour for Site 1, to 0.041 hour at the equator and
+0.046 hours at the tropics of Cancer and Capricorn. An
additional correction should be taken for the radius (the
“semidiameter”) of the solar disk, because daylight may
be reckoned from the first gleam of the Sun, rather than
the appearance on the horizon of the center of the disk. The
total correction to the HA of rise is dH = 1.5 X
(34/3437.7)/(cos ¢ - cos 8o -sin H,), which, by symmetry, in-
creases the setting hour angle by the same amount. Thus,
the correction is added to both summer and winter HA
values before the ratio is taken. The resulting corrected
ratios are 2.875 for Callanish (Site 1), 1.511 for Rhodes,
1.404 for Alexandria, 1.272 for the tropics, and 1 for the
equator.

The interval of time between the rising of a sequence of
the zodiacal signs permits the number of hours of the night
and, thus, the number of hours of daylight to be obtained.
The correlation of the ratio of daylight to night hours with
latitude permitted the ratio, or, alternatively, the number of
degree-hours to be used to specify the latitude band or
“climate” in which a site was located. There were tradition-
ally seven “clima” (Greek xAipo). Babylon had a ratio of
longest to shortest day lengths of 3:2, and methods were
devised (“System A” and “System B”) to determine this
ratio. Although the inventor of the interval ratio as a lati-
tude indicator is unknown (Neugebauer 1975/1969, pp.
184-185), these ideas were being applied in Alexandria by
Hypsicles in the 2nd century B.c. At this time, Alexandria
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FiGURE 4.5. The style of a vertical sundial from Greco-Roman
Egypt, found at Luxor. Drawing by Sharon Hanna, after
Borchardt (1917).

was in the first clima, “3,30” (= 14" 00™ for the summer
maximum of sunlit hours)’ and other zones were defined by
adding multiples of 4°, the second at 3,34, and so on, to 3,54.
In this scheme, Babylon was squeezed out of the “clima,”
but another scheme existed in parallel in which Babylon
appeared in the second clima, with 3,32, with the third clima
at 3,36, the fourth at 3,40, and soon to the seventh at 3,52.
Several centuries later, Ptolemy (Almagest, Book II),
describes 20 parallels of geographic latitude beyond the
equator, separated by quarter-hour intervals. He tabulates
10 of these zones (Book II, §13) in half-degree intervals. The
10 zones are designated according to the maximum hours of

5 “330” is to be read (3 x 60) + 30° = 210° (or 210/15 = 14 hours).
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FIGURE 4.6. A stone equatorial sundial in the Forbidden City in
Beijing, China: The dial disk lies in the plane of the celestial
equator and thus faces the north celestial pole. Photo by E.F.
Milone.

FiGure 4.7. A sundial at the Jaipur observatory of Maharajah
Jai Singh, dating from the 18th century. Photo by E.F. Milone.

sunlight and are separated by multiples of a half-hour. The
first zone beyond the equator was 12,30, the second 13,00,
to a maximum of 17". Within this scheme, the first “climate”
is at Meroe, near modern Asuan, with 13". There is no
mention of a refraction or semidiameter correction in Book
II of the Almagest. Toomer (1984, p. 421, fn. 8) says that the
only reference to the effect of refraction (if that is what
Ptolemy is talking about) is given in Book IX, §2, where,
referring to the times of visibility or invisibility of planets,
Ptolemy says, “but the times too can be in error, both
because of atmospherical differences and because of the dif-
ferences in the [sharpness of] vision of the observers” (the
bracket is Toomer’s). In addition to timings and arcs of the
celestial equator, however, Ptolemy refers to the use of a
gnomon to establish shadow lengths and uses the ratio of the
meridian shadow length at winter solstice to that at the
equinox (Book II, §5; Toomer 1984, pp. 80-82).
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TaBLE 4.1. Seasonal variation of day length at various sites.
Latitude® Length of day (2Hceys) Seasonal hour length Max/min

Site +N, =S Winter Summer Winter Summer ratio
1. Callanish 58.3 6.033 17.967 0.503 1.497 2.978
2. Stonehenge 51.2 7.635 16.365 0.636 1.364 2.143
3. Rome 41.9 8.938 15.062 0.745 1.255 1.685
4. Samarkand 39.6 9.189 14.811 0.766 1.234 1.612
5. Athens 38.0 9.352 14.648 0.779 1.221 1.566
6. Nemrud Dag 38.0 9.352 14.648 0.779 1.221 1.566
7. Akragas 37.3 9.421 14.579 0.785 1.215 1.548
8. Rhodes 36.2 9.526 14.474 0.794 1.206 1.519
9. Ninevah 354 9.600 14.400 0.800 1.200 1.500
10. Kaifeng 34.8 9.655 14.345 0.805 1.195 1.486
11. Babylon 32.5 9.856 14.144 0.821 1.179 1.435
12. Jerusalem 31.9 9.906 14.094 0.826 1.174 1.423
13. Uruk 314 9.948 14.052 0.829 1.171 1.413
14. Alexandria 31.3 9.956 14.044 0.830 1.170 1.411
15. Giza 30.0 10.061 13.939 0.838 1.161 1.385
16. Luxor 25.7 10.389 13.611 0.866 1.134 1.310
17. Ujjain 23.2 10.568 13.432 0.881 1.119 1.271
18. Teotihuacan 19.7 10.806 13.194 0.900 1.100 1.221
19. Equator 00.0 12.000 12.000 1.000 1.000 1.000
20. Cusco -13.5 12.799 11.201 1.067 0.933 0.875

* Latitudes are approximate, and for illustrative purposes only. The data shown do not contain corrections for refraction or for the radius of the
Sun’s disk (assuming daylight to be from first gleam to last gleam), both of which extend the time of daylight. See the text for details of these effects.

4.1.1.2. Types of Solar Time

The modern sundial provides an indication of apparent solar
time:

AST = HA, +12", (4.4)

where HAo is the hour angle of the Sun. Twelve hours are
added because most communities prefer to start the day at
midnight rather than at noon, when the hour angle is zero.
Apparent solar time is not uniform throughout the year,
however: As we indicate later in this section, the arrival
times of the Sun at the celestial meridian may differ by up
to about half an hour in the course of the year. Its progress
is retarded or advanced by two effects: First, because it
moves on the ecliptic (not on the celestial equator), and
second, because it moves on the ecliptic at a variable rate.
The last is a consequence of the eccentric orbit of the Earth
around the Sun, discussed in §2.4.4.

To understand the significance of the first (more impor-
tant) effect, consider the appearance of the celestial equator
where it crosses the celestial meridian. Its orientation is con-
stant from hour to hour and from day to day, and an object
moving along the celestial equator, would, in a circular orbit
(like the ancient view of the sphere of the fixed stars), move
at a constant rate. On the other hand, the orientation of the
ecliptic where it crosses the celestial meridian varies with
time of day and year. The diurnal motion of objects in the
sky, caused by the rotation of the Earth beneath them, is
westward. The annual motion of the Sun, which is caused by
the revolution of the Earth, and is eastward, effectively
slows the diurnal motion, if ever so slightly. But the Sun’s
annual motion is along the ecliptic, not along the celestial
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FiGure 4.8. The ecliptic movement of the Sun resolved into
N-S (declination) and E-W (right ascension) motions. Drawing
by E.F. Milone.

equator. The small arc represented by the eastward angular
motion on the ecliptic in the course of one day can be
resolved into components along declination and hour circles.
So, even if the motion along the ecliptic were uniform, there
would be an apparent northward or southward component
to the annual motion for all times of the year (except pre-
cisely at the solstices), and the remaining eastward motion
would be variable from day-to-day (see Figure 4.8). The
eastward component is greater at the solstices than it is at
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the equinoxes, because the motion is then exclusively east-
ward, without a N-S component; at those times of year, it is
also greater than the average speed of the Sun, because that
motion is along a small circle of declination.

The second effect—the Sun’s variable motion along the
ecliptic—results from the Earth’s orbital motion (see §2.3.5
and Figure 2.16 for definitions of the orbital elements)® and
Table 2.9 for a list of the orbital elements of the Earth and
planets.

The Earth moves most rapidly along its orbit in early
January, and most slowly in early July; this effect is reflected

® The Earth’s velocity around the Sun averages 30 Km/sec. However,
the eccentricity of its orbit causes a variation in this velocity, which can
be expressed as

y= \/{G[M@ M, ]x [%—ﬂ} (4.5)

where the gravitational constant, G = 6.67 x 107" m’Kg™'s?, M, is the
mass of the Sun, Mg is the mass of the Earth-Moon system, r is the
instantaneous distance to the Sun, and a is the semimajor axis. The dis-
tance varies with location in the orbit:

_a(l-e?)
1+e,cosv’

(4.6)

where e is the orbital eccentricity and v, the true anomaly, is the angular
distance of the Earth from perihelion. At perihelion, therefore, v = 0,
so that

r=ax(l-e)
and
= |[CMo+Melx1te 4.7)
P ax(l-e)
At aphelion, v =,
r=ax(l+e)

and

b= w’ (4.8)
“ a(l+e)

so that the ratio of these two extremes, v,/v,, is (1 + e)/(1 — e) = 1.034,
because the Earth’s orbital eccentricity is 0.0167. The variation in
Earth’s speed is therefore about £1.67% of the average speed, and the
Sun’s annual motion reflects this variation. The variation in the observed
angular rate of the Sun, d©/dt, is related to the velocity v and the dis-
tance r from the Earth-bound observer, over a short arc of the orbit by
the expression:

do)dt = % (4.9)
Therefore, at perihelion,
dejdi = —r (4.10)
ax(l-e)
and at aphelion,
de/dt = —Ye (4.11)
ax(l+e)

and the ratio of these angular speeds is [(1 + e)/(1 — e)]* = 1.069, so that
the angular speed of the Sun along the ecliptic varies by about +3.34%
from the mean.

4. Time and the Calendar
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FiGUre 4.9. The equation of time: Apparent — mean time or
HAo — HAMS. Drawing by E.F. Milone from a Lotus 1-2-3
spreadsheet (Lotus Development Corporation, an IBM
company, Cambridge, Massachusetts).

in the apparent eastward motion of the Sun along the eclip-
tic and causes the “inequality of the seasons,” described in
§2.3.1 and in the context of Mediterranean cultures in §7.

In addition to the Sun’s varying rate of eastward motion
across the sky, there is another reason for the difference
between Apparent Solar Time [as defined by (4.4)] (AST)
and our modern Mean Solar Time (MST).” This reason is
that AST is a local time; it is defined by the local hour angle
of the Sun plus that concession to daylight chauvinism, 12".
Modern time pieces carry a form of MST defined in terms
of the hour angle of an imaginary body called the Mean Sun,
which travels at the average angular rate on the celestial
equator:

MST = HAMS +12". (4.12)

The difference between instantaneous or apparent solar
time and mean solar time is called the equation of time:

E=AST - MST = HA, - HAMS. (4.13)

Here, HAMS is the hour angle of the Mean Sun. When E is
plotted against time, a double-peaked curve is obtained, as
shown in Figure 4.9. Because hour angle is measured posi-
tive to the west, when E >0, HAc > HAMS so that the appar-
ent Sun is running faster than the mean Sun. When
E <0, HAo < HAMS, in which case, the apparent Sun is
running slower than the Mean Sun.

A plot of the Sun’s declination against the equation of
time produces a figure 8 design, called the analemma (Figure
4.10a, from the same spreadsheet as in Figure 4.9). Its shape
can be seen on the gnomon of a sundial that was designed
for the University of Calgary’s Rothney Astrophysical
Observatory (RAO) by Prof. T.A. Clark and T. Kirkham.
See Figure 4.10b.

7 Mountain Standard Time, defined as the mean solar time on the the
7th-hour meridian west from Greenwich, is also abbreviated MST. The
context usually determines which is meant.
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FiGure 4.10. (a) The analemma for 2000 A.p. (b) A
modern sundial incorporating the analemma on its
stylus. Courtesy, Dr. T.A. Clark, who along with T.
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Kirkham, supervised its design and construction for Analemma
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The time on our watches is not a local time, in general,
but is related to the Mean Solar Time at a particular merid-
ian or longitude circle. By general agreement, most civic
entities around the world assign the Mean Solar Time at par-
ticular meridians to zones surrounding those meridians. The
difference between Local Mean Solar Time and the Local
Civil Time (i.e., the time in effect at that place) is the time
interval required for the Mean Sun to move through the lon-
gitude difference between the standard meridian and the
local meridian. If the standard meridian is east of the
observer, the standard time will be later than the observer’s
apparent time, and if it is west, the standard time will be
earlier. The Mean Solar Time at the Greenwich meridian is
called Universal Time (UT),}® or, Greenwich Mean Time
(GMT); it is related to the MST at any other meridian
through the longitude, A, of that meridian:

LMST =UT +A, (4.14)

where the positive sign applies for a site east of the Green-
wich meridian, and the negative, west.

8 There are three varieties of Universal Time in use: UT0, UT1, and
UTC. Which “UT” is intended must be decided by context. The motion
of the Earth’s geographic pole causes a slight variation in the location of
an observer’s celestial meridian. UTO is determined directly from stellar
observations and takes into account neither the nonuniform rotation of
the Earth nor the effect of polar motion; UTO is therefore an approxi-
mation to the “true” UT, at a particular meridian, only. UT1 is the result
of correcting UTO for the effect of polar motion; UT1 is commonly used
in navigation, and in, for example, tables of the Astronomical Almanac.
Coordinated Universal Time (UTC) is the time that is broadcast as time
signals around the world (cf. the preceding section). (UTC) is based on
International Atomic Time (TAI) and differs from it by an integral
number of seconds, which varies with time. The difference varies with
time because UTC is kept within 0:9 of UT1 by the introduction of leap
seconds when necessary, normally at the end of either December or June.
AUT1=UT1-UTC s transmitted in code on the broadcast time signals.

5 10 15 20
Eqn of Time (m)

(a) (b)

The actual source of UT is not the position of the Mean
Sun, which, after all, can not be observed; it is taken from
the positions of the “fixed” stars (fixed, that is, at a particu-
lar equinox and epoch). The basic relationship between
Local Mean Solar Time and Local Sidereal Time is

LST = HAMS + RAMS = LMST —12" + RAMS, (4.15)

where HAMS and RAMS are the hour angle and right
ascension of the Mean Sun, respectively. The relationship
between the sidereal and mean solar time at Greenwich is
tabulated in the Astronomical Almanac (see Appendix A).
Greenwich Mean Sidereal Time is, or rather has been,
derived from automated transit observations of stars. Cor-
rections for the variation of the geographic pole (which lead
to slight variations in the observer’s meridian) are also
derived from observations. At present, Very Long Baseline
Interferometry techniques are used to determine precise
positions in the sky of quasars and other effective point
sources. The annual editions of the Astronomical Almanac
provide other details regarding time corrections and should
be consulted for further information in critical cases. See
Woolard and Clemence (1966) for underlying principles of
time-keeping, Green (1986, Ch. 10), Stephenson (1997), Cox
(2000), the current year’s edition of the Astronomical
Almanac,’ and the Reports and Transactions of the most

® The projected modern system of time for many purposes is the
Barycentric Dynamical Time or 7D B, the French acronym. It is referred
to as a dynamical time scale, but the gravitational theory on which such
a time would depend is yet to be adopted. At the moment, the Terres-
trial Dynamic Time (TDT), now more generally called “Terrestrial
Time” (TT), based on the SI second, is in effect. TT differs from UT by
At =TT — UT. We discuss this difference at the end of this chapter and
in §5 because it affects the times and locations at which eclipses are
visible.
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recent General Assembly of the International Astronomical
Union (IAU) for further details about what times scales are
currently applied.

Modern sundials usually contain a correction for the
equation of time and for the difference in longitude between
the standard time zone boundary and the local site, in the
form of an inscribed table. An additional, seasonal correc-
tion of +1" must be made in most places in North America
and many places around the world for daylight savings time.
The value for E can be read off Figure 4.9, or it can be found
on the analemma, the figure 8§ curve frequently found on ter-
restrial globes (see also §2.3.1). It indicates both E and the
declination of the Sun as a function of date; it is also inde-
pendent of latitude or longitude and is therefore appropri-
ate for anywhere on Earth. The Greek astronomers of the
2nd century were fully aware of the nonuniform character
of the Sun’s movement due to the obliquity of the ecliptic
and to the Sun’s variable rate'® on the ecliptic, and they
made use of a correction analogous to our Equation of Time.
The analemma and thus the Equation of Time as well as the
annual declination variation of the Sun are illustrated in a
sundial constructed by Prof. T.A. Clark for the opening cer-
emony of the Rothney Astrophysical Observatory on
January 7, 1972.

4.1.1.3. Mechanical Devices

The sundial was and still is useful for keeping track of the
time on a sunny day. Before the development of the mag-
nificently elaborate town clocks of Europe, what was used
for telling time on a cloudy day, or during the evening? The
tower of Chou Kung (Needham 1981, p. 136) and the Tower
of Winds (Robinson 1943; Noble and de Solla Price 1968;
Bromley and Wright 1989; Kienanst 1993) likely held clep-
sydras or water clocks. Water clocks made use of regulated
dripping of water from a large reservoir into a container, the
weight of which increased as the water level in it rose. The
container could be permitted to pull a rope downward or
contain a float that would permit a different operation. The
action would ultimately cause the rotation of a wheel or of
an indicator. A water clock could be calibrated with the
sundial when conditions permitted, so that timely business
could be carried on as usual. For short intervals of time,
hourglasses, filled with sand, could be used.

4.1.1.4. Uniform Time Intervals

Ways of reckoning time have changed greatly since ancient
times. Although the rotation of the Earth is still the basis for
civil time, we use atomic standards to measure precise inter-
vals of time, because, compared with a perfect clock, the
Earth runs “slow,” as we discuss later. The most precisely
determined time scale currently in use for astronomical pur-
poses is called “International atomic time” or Temps Atom-
ique Internationale (TAI), and the fundamental unit is the
SI second (in the international system of units). By interna-

' Called by Ptolemy (Toomer 1984, p. 170) the Sun’s “apparent
anomaly.”
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tional agreement, it is equal to the interval of time that is
measured by 9,192,631,770 oscillations of the radiation
emitted by an atomic transition of the element Cesium 133.
However, civil time-keeping is still tied to the rotation of the
Earth.

The rotation of the Earth is not uniform, but varies
randomly, periodically, and secularly. Short-term variations
arise because of mass displacements caused by tidal defor-
mations, ocean and atmospheric tides, and geophysical
effects; the rotation of the Earth is slowing (the secular vari-
ation) because of tidal friction, although other causes may
contribute also. The existence of uniform time intervals, by
which we can measure the passage of time with precision
and accuracy, permits us to correct our clocks for the
nonuniform time-keeping provided by the Earth. The cor-
rections are not applied to the observationally based
Universal Time (UT1), however, but to a time based on
International Atomic Time (TAI the French acronym) (see
fn. 6), namely, the Coordinated Universal Time (UTC).
UTC is kept within 09 of UT1 by adding a “leap second”
when needed, usually at the end of December or of June.
UTC is broadcast on selected short-wave frequencies by
national time regulation agencies. In §4.5 and §5.2.1.3, we
discuss the observational evidence for the gradual slowing
of Earth’s rotation.

4.1.2. Solar Date Determination

By “solar date” we mean the location of the Sun along the
ecliptic, its annual path. The celestial longitude of the Sun
will increase from day to day, although, as noted in §3.1.1,
the rate varies over the course of the year. Differing posi-
tions on the ecliptic (i.e., different celestial longitudes) cor-
respond to differing declinations as well as differing right
ascensions. The variation in declination means that the Sun’s
meridian altitude—its altitude when it crosses the celestial
meridian—will vary also during the year. Figure 3.17 shows
that the meridian altitude of an object, the declination of
which is known, can provide the latitude of the observer, by
the expression

By =90° — (0 — ), (4.16)

where ¢ is the latitude of the observer and 6 is the declina-
tion of the Sun. In this equation, § carries its own sign so
that when the Sun is at southern (i.e., negative) declinations,
h,, = 90° — (0 + 13l). To derive (4.16), consult Figure 3.17a
and b.

The tower of Chou Kung, near Loyang, China, contains a
12-m gnomon that casts its noon shadow along a horizontal
stone terrace that was marked by a scale (Needham 1981,
Figs. 80-82). Such a device constitutes a solar calendar,
capable of marking the passage of the days of the year, at
the same time that it provides the instant of local noon.

Indeed, not only at noon, but at any given time of day, the
altitude will change from one day to the next. The altitude
of the Sun determines the length of the shadow. An historic
example of the use of shadow lengths at particular times of
day can be seen on the faces of the Tower of Winds (Figure
4.3; §7.3). Twice a year (except at each solstice) the Sun will



4.1. The Perception and Measurement of Time

95

TaBLE 4.2. Solar year lengths for the epoch 1900.0.

Type of year Length (mean solar days) Variation
Anomalistic 365925964134 = 3650613530 0/00000304-T
Sidereal 365.25636556 = 365 06 09 09.98 0.00000011-T
Tropical 365.24219878 = 365 05 48 45.97 0.00000616-T
Eclipse 346.620031 = 346 14 52 50.7 0.000032-T

have the same length of shadow at the same apparent solar
time.

The ancient Mesopotamians produced ephemerides or
tables of the position and motion of the Sun for each day.
There were essentially two methods of computing the
ephemerides of the Sun: Systems A and B. System A used a
step function for the solar speed (i.e., its change in position
per day): one value for the first half of the year, and another
value for the second half. System B used different values for
each month in first increasing and then decreasing series.
The effect is what Neugebauer (1983, p. 28) has referred to
as a linear zig-zag function. See Figure 7.14 for an illustra-
tion. A table of the solar longitude is, in effect, a solar cal-
endar, and although Mesopotamians used a lunar calendar,
tabulation of the progress of the seasons with their chang-
ing temperatures and rainfall is an important concern of any
civilization. The development of a mechanism by which the
lunar calendar could be regularly coordinated with the solar
calendar was an important result. Systems A and B were
used also to obtain the length of daylight throughout the
year. Their main utility seems to have been to regulate the
beginning of the month and to predict eclipses. Van der
Waerden (1974) thinks that these clever systems were most
likely created between ~540 and 440 B.c. They are discussed
further in §7.1.

Even more ancient are the megalithic solar observatories,
the alignments of which indicate solar calendar activity. The
mechanism here is the variation of azimuth of rise or set of
the Sun as the solar declination changes over the year. A
similar kind of calendrics is seen in at least some of the Med-
icine Wheels of North America (§6.3), some of which may
have been used for a much more extensive interval of time
(that at Majorville for more than 4000 years). In addition to
Medicine Wheels, spirals carved or painted on rock in the
southwestern United States, and elsewhere, are seen to be
so placed that a dagger of sunlight created by the passage of
sunlight through crevices in intervening rocks, marked crit-
ical solsticial and/or equinoctial times of the year. The oldest
known astronomically aligned sites are passage graves, such
as those at Newgrange, County Meath, Ireland. Some of the
monuments at this site and the site of Gav’rinis have spiral
engravings, and sunlight at midwinter sunrise illuminated
them (see §6 for an extensive discussion of Megalithic sites).
Again in the New World, marked sunwatchers’ stations are
places from which observers studied the December solsticial
Sun for indications that it was returning northward again to
renew and warm the earth.

Related to the determination of solar dates is the deter-
mination of the length of the tropical year: the time for the
Sun to reappear at the same celestial longitude (e.g., to
return again to the vernal equinox). In the Almagest,

Ptolemy gives the value obtained by Hipparchos'': 365 + 14
— 1300 = 365.24667 mean solar days."> Compared with the
correct value for his time, 365.2422 days, his result was too
long by a little under 6.5 minutes. Ptolemy repeated the cal-
culation using the same data and added his own recent
observations with the same result. Pedersen (1974, p. 131)
attributes the difference from the modern value (365924219)
to instrumental error and refraction.

There is more than one way to talk about the length of
the year. Table 4.2 lists four lengths of the year according to
different criteria. The value is for the epoch 1900.0, and the
variation term is the change in days/century, with 7 given in
Julian centuries from 1900. Note that 7 is negative for dates
prior to 1900. The anomalistic year is the time for the Sun to
return to perigee (i.e., for the Earth to return to perihelion),
the sidereal year is the time for the Sun to return to a line
to a particular distant star, and the eclipse year is the period
for the Sun to return to the same node of the Moon’s orbit.
Note that the sidereal period is the true period of revolution
of the Earth around the Sun, with respect to a line to a
distant star. The tropical year, measured from successive pas-
sages of the Sun through the vernal equinox, is shorter than
the sidereal year because of the westward precession of the
equinoxes, whereas the anomalistic year is longer than the
sidereal year because of the advance (eastward motion) of
the major axis of the orbital ellipse. The eclipse year is very
much shorter than is the sidereal year because of the rapid
regression (westward) of the lunar nodes (see §1.3.4 and
§5.2).

Many cultures have used a 365 civil year, and some, like
our own, have modified it by strategic, well-planned inter-
calation, to keep the civil calendar in step with the tropical
year. Intercalation has not been a universal concern,
however, and for particular purposes, different units were
adopted. Egypt and Mesoamerica both had a 365" year that
cycled through the seasons. The simplicity of such a scheme
was, and still is, important in the calculation of the number
of days between, say, two New Year’s days N years apart. In
this calendar, it is merely N x 365¢, with no worries about
which intervening years had intercalations. For this reason,
the Egyptian 365" year was called the “astronomers’ year,”
and Ptolemy among others used it. Neugebauer (1957/1969,

' Whose own discussions of the length of the year were contained in
two books, now both lost: On the Length of the Year, and On Intercalary
Months and Days.

2 When we write a “d” following a number or in superscript above a
decimal point, it can be understood to indicate units of the mean solar
day, the time interval between two successive tranits by the mean sun.
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p. 140) states that in Babylonian texts, the term “year”
always refers to a sidereal year. He also notes that Ptolemy
is the first to define the “year” as the tropical year. The term
“year” has had other interpretations also: The Book of
Enoch, known from Ethiopic sources and the Dead Sea
Scrolls, cites a 364 year, called the “year of Enoch.” The
number 7 divides evenly into such a year; so it is useful in
finding the day of the week corresponding to a particular
date. Modern scientists use Julian day numbers to solve both
types of problems for which the Egyptian and Ethiopic years
provided solutions. See §8.1 and §8.3 for further discussion
of time measurement and the astronomy of these cultures.

A tie-in between the civil date and the equinoxes is pro-
vided by the stars. The heliacal rising of a particular star, e.g.,
Sirius was sufficient to tell ancient Egyptians what season it
was, regardless of the date of the local calendar, and thus
when to expect such seasonally linked occurrences as the
flooding of the Nile. Ultimately, there are very nearly 366
sidereal days to each 365 solar-day year."

4.1.3. The Days and Length of the Week

The week in some cultures did not always have seven named
days in it. In Java, there was a five-day week, in mainland
Asia, a nine-day week. A 3rd-century Hindu book shows
both seven- and nine-day weeks. Parker (1974) writes of an
early Egyptian 10-day week. In the Roman republic, there
was an eight-day week (nine by their inclusive counting
technique), the last day of which was a market day. See
§15.4.4 for further discussion of the spread of the seven and
nine-day weeks.

Although the days of the planetary week, in use in much
of the world, are not older than the 1Ist century B.c., they
have their roots in the seven planets of antiquity. By the time
that Christianity became the state religion of the Roman
Empire, the planetary week was so firmly entrenched that it
defied all attempts to change it. The scheme is based on geo-
centric cosmology that places the spheres of the planets in
the following order from Earth: Moon, Mercury, Venus, Sun,
Mars, Jupiter, and, in the “seventh heaven,” Saturn. Each
hour was associated with and held to be ruled by a plane-
tary god. Proceeding in descending order through the
heavens, in endlessly repeated cycles, Saturn would rule the
first hour, Jupiter the second, Saturn the eighth hour, and so
on. A day belonged to the god that ruled the first hour of
that day. The ruler of the 25th hour became the ruler of the
first hour of the next day. Thus, beginning with Saturn, we
have first Saturday, next Sunday, and so on. Figure 4.11 illus-
trates the progression.

The planetary seven-day week became widespread. It was
in China by the 3rd century A.D., in Ireland with Christian-

1> This is because the Sun moves on average 1/365 of its annual motion
each day, so this is the rate by which any mean solar time interval differs
from its sidereal counterpart. More precisely, in a full tropical year, the
number of sidereal revolutions of the Earth is 366.25639 (i.e.,
365.25636/0.9972696). The quantity 0.9972696 is the ratio of an interval
of mean solar time to the same interval in analogous units (seconds, for
example) of sidereal time.

4. Time and the Calendar

Cosmic Order and the Planetary Week

SATURN 18 15 22 5 12 19 2 9 16 23
JUPITER (THOR) 2 9 16 23 6 13 20 3 10 17 24
MARS (T1w) 3 10 17 24 7 14 21 4 11 18 1
SUN 4 11 18 1 8 15 22 5 12 19 2
VENUS (FREYA) S 12 19 2 9 16 23 6 13 20 3
MERCURY (WOTAN) 6 13 20 3 10 17 24 7 14 21 4
MOON 7 14 21 4 11 18 1 8 15 22 5.

Ficurk 4.11. The cosmological scheme from which the ordered
name days of the week derive: A planet rules each hour, and
the planet that rules the first hour rules the day. In this tabular
example, Saturn rules the first day. From it, count down through
the rows (and then in successive columns to the right) until the
24th hour is reached. The Sun rules the first hour of the second
day, the Moon the third, and so on. Diagram by E.F. Milone.

ity, and deep into Africa with Islam. The order of the names
is the same as for the Mediterranean order, beginning with
the Sun. It should be pointed out that not every culture has
retained the planetary names, which were maintained in the
Latin, western half of the Roman empire; in the eastern half,
the days were called first, second, and so on, with the sixth
(Sabbath) and seventh (Kvpioki, Kyriake: Lord’s Day)
accorded special status. The latter usage continues, but
differs slightly from country to country.

4.1.4. The Month

The month as a practical unit of time derives naturally from
the cycle of phases of the Moon, the synodic period or
synodic month. In §2.3.5, the several different periods of the
Moon or months were defined. The two calendrical months
were the sidereal and synodic months.

Sidereal months were used in a number of cultures, from
India to California, but for various purposes and in differ-
ent ways. The passage of the Moon through a particular
asterism marks the length of a sidereal month. Sidereal
intervals were used across Micronesia and Polynesia and in
the southwestern United States. In India, the usage was in
connection with the nakshatras, or lunar mansions, a series
of 28 asterisms (sometimes 27, due to the omission of
Abhijit, Vega). The purpose of the nakshatra system was to
reconcile sidereal and lunar motions. The interval of 13 side-
real months, each of an assumed length of 28, gave a 364¢
year in Southeast Asia.

The use of synodic months was much more widespread.
There is evidence of the measurement of days using lunar
phases from early human history. Marshack (1972a) has
cited an elaborate serpentine pattern of crescent-like mark-
ings on the Blanchard bone as the earliest example of human
notation and has argued that it seems to record the chang-
ing phases of the Moon over a two-month period during an
Ice Age, more than 25,000-30,000 years ago. The reindeer
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bone was excavated in 1911 from the Blanchard rock shelter
near the southwestern French village of Les Eyzies, central
among the known sites of Cro-Magnon man. Marshack has
suggested several other possible Ice Age examples as well
(see §6.1).

A much more recent possible record is that on a well-
crafted pyrite mosaic excavated from an Olmec site at Las
Bocas, Mexico, and dated ~1000 B.c. Marshack (1975) has
argued that the mosaic patterns themselves constitute a
(basically lunar) calendar, but the argument is not complete
because part of the pendant is apparently missing. This is
unfortunate because the pyrite is relatively well preserved.
Although the Olmec heartland, including the major sites of
La Venta and San Lorenzo, was in the northern half of the
Isthmus of Mexico, this site is in western Puebla in central
Mexico. The mosaic may have been worn on the chest as a
pendant or pectoral, as were the pectoral mirrors of later
Mesoamerican groups. More recently, Spackman (1996) has
attempted a much more complex mathematical, calendrical,
and astronomical analysis of the pendant, comparing it with
other Olmec artifacts and with Mesoamerican mythology.
Spackman argues that the ornament was designed for a
headdress rather than a pectoral and that it was prepared
for a particular ceremony of 21 March 1083 B.c. (JDN
1325947). The date is reached by an amplification of
Marshack’s techniques but rests on a substantial number of
additional premises. At present, Spackman’s analysis seems
untestable.

Lunar calendars were widely used in the ancient world. In
Mesopotamia, the civil calendar was lunar. Each month
began with the first sighting of the waxing crescent. Accord-
ing to Neugebauer (1983, p. 1), the main goal of Babylonian
lunar theory was the accurate prediction of the dates of such
occurrences. To this end, ephemerides or tables of the lunar
positions, much like those in the Astronomical Almanac of
today, were produced. An example is shown in Figure 7.4
and Table 7.11. The tables contained such information as the
year (in the Seleucid era'*) and the month, the longitude (in
zodiacal signs and degrees) and latitude (in units of barley-
corns = 1/72 degree) of the Moon, the daily motion of the
Moon (in °/d), the date and time of new or full Moons, and
sometimes, the time between settings of the Sun and Moon
at the start of the month and the time between risings of the
Moon and Sun on the last day of the month. The tables also
contained information related to eclipses, the duration of
daylight, the previous month’s duration, and corrections to
the latter to permit a calculation of the current month’s
duration. See Table 7.3 for a list of Babylonian months. An
average day-length, 1/30 of a mean synodic month, was also
used.

Unlike the Babylonian months, the Egyptian months were
not strictly lunar. There were 12 months, each of exactly 30
days, with 5 extra or “epagomenal” days added to make up
a year of exactly 365" (the Egyptian Year). It is clear that

4 A year y in the Seleucid era is (to within a year) y — 311 in the Gre-
gorian calendar. Because most relevant dates taken with respect to this
era base are before Christ, we may also write the equation: B.c. date =
312 —y (see §4.1.5). A precise equivalent from Neugebauer (1955/1983,
I, p.7)is 188 B.c. July 17 = S. E. 12411128, where “II1” is the third month.
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with such a fixed length, these months are no longer closely
tied to any astronomical phenomenon. Because of the ease
of use in calculation, Ptolemy used the Egyptian months to
describe the dates of his observations, even the very old
ones. The Egyptian months appear on a part of the
Antikythera mechanism and were widely used throughout
the Mediterranean world. The names of the months are
given in Table 8.2. Even in the Middle Ages, the Egyptian
year was called the Astronomers’ Year, and it served the
purpose of calculating intervals between astronomical
events. In this respect, it provided a function similar to the
current Julian Day Numbers.

Among the Yuman groups of the southwestern United
States and adjacent Mexico, a combination of synodic lunar
months and sidereal intervals approximating a month was in
use. The six summer months were true lunations, whereas
the six winter months, which repeated the summer month
names, each began with the heliacal rising of stars. The stars
were so selected that the heliacal rising intervals approxi-
mated the length of a lunar month. Further details about cal-
endars can be found in Kelley and Stewart (in preparation).

4.1.5. Era Bases and Day Numbers

For keeping track of time over intervals longer than a year,
era bases are used. They permit the reckoning of the number
of days (as do the Julian Day Numbers of our present era)
or the number of years from a particular event in the past.
The year of the accession of a king was one traditional way
of maintaining records. Thus, in Mesopotamia, the era of
Nabonassar began on Feb. 26, 747 B.c., which had been back-
calculated as the beginning of the first year of the reign of
Nabonassar. Ptolemy used the Nabonassar era base because
that was the era from which his oldest observational data
came. The Greeks and other Near-Eastern cultures used the
date of the royal accession of Seleukos Nikator, one of
Alexander’s generals, as year 1; in the case of Seleukos,
however, this became the base of an era count that contin-
ued into the medieval period, and even later. Year 1 of the
Seleucid era base begins at 312 B.c. The dynasty itself lasted
from 312 to 64 B.c.

An important era base was that used by the Roman
Empire—the founding of the city of Rome (753 B.c., accord-
ing to a calculation of the birth of Christ by Dionysius
Exiguus, writing in the 6th century)—a date adopted by the
Synod of Whitby in 664 A.p. The use of this era base is iden-
tified by the phrase ab urbe condita (“from the founding of
the city”) or AUC.

The modern era base is also derived from the medieval
calculation of the birth of Christ, hence, the designation for
subsequent years, Anno Domini (now often referred to as
the “Christian era” or “Common era,” either abbreviated
CE). In a later section, when we discuss the nature of the
star of Bethlehem, we will review the evidence concerning
the historicity and dating of that event. The base of the
Christian era is the year 1 A.D. (or A.D. 1). The year before
1 A.p. is 1 B.c. Thus, the year 1 B.c. is 753 AUC, and the year
1 A.p. is 754 AUC. Many calendricists and astronomers, to
maintain a mathematically continuous flow of time, refer to
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the year 1 B.c. as year 0. The year 2 B.c. is thus the year —1,
and so on. Although this is not normal practice among his-
torians, calculations are much easier when no discontinuity
occurs in the middle of the count. Regardless of which tech-
nique is used, the relationship is given by

x=y+1, (4.17)

where y = lyl, is the absolute value of the negative date and
x is the B.c. date.

Another important era base is the Kaliyuga (also Kali
Yuga or Kalyuga) era base used in India. The word “yuga”
means cycle, but it now has another, more specific meaning
as a particular interval of length: 4,320,000 years."” It is one
of about 20 time divisions, the smallest of which is the time
for a sharp needle to pierce the petal of a lotus flower
[~1/10,000 of the “twinkling of an eye” to “100 years of
Brahma”, i.e., Brahma’s lifetime (an interval of time
amounting to ~3.135-10" years)]. This cycle length exceeds
by more than 15,000 times the modern scientific determina-
tion of the age of the known universe. The present Yuga is
called “Kali.” The Kaliyuga was supposed to begin when the
Sun, Moon, and planets were at the vernal equinox. Ginzel
(1906, p. 338) gives this date as either JDN 588 465 or
588 466, actually midnight, Thursday, February 17, 3102 B.c.,
or sunrise, Friday, February 18, 3102 B.c., at the meridian of
Ujjain (see below for the definition of JDN). It appears that
Ginzel applied the difference between Julian and Gregorian
calendar dates in the wrong direction, however. The correct
corresponding dates for the vernal equinox in 3102 B.c.,
would be April 16 and 17, in the Julian calendar. Unfortu-
nately, it appears that a mass conjunction did not take place
at either set of dates, but a broadly-defined “conjunction”
occurring at other times in the year cannot be excluded. Of
course, if the event were purely back-calculated, the actual
occurrence is not critical to any astronomical or historical
purpose. The Kaliyuga era base was used also as the start of
a count of days (comparable to a Julian Day Number) by all
Indian astronomers after Aryabhata (see §9).

The Astronomical Almanac lists the chronological eras
and cycles in various historical calendars. In addition to
announcing the start of the new year from the different era
bases, it notes also the ecclesiastical parameters that are
used to regulate some church calendars, for example, The
“Dominical Letter (the letters A to G represent the first day
of the year that falls on a Sunday; e.g., if January 2, the
Dominical Letter is B),” the “Epacts (a set of numbers, indi-
cating the Moon’s age at the beginning of the year),” and the
“Golden Number (year in a 19-year cycle)” of lunar cycles.
Further discussion of these topics we leave to Ginzel (1906)
and others.

One era base used by present-day astronomers is that
from which the Julian Day Numbers (JDN) are measured:
January 1, 4713 B.c. (Julian calendar). The JDN system was
invented by Julius Caesar Scaliger (1484-1558). The JDN
begins at noon, U.T., on the day beginning at the preceding
midnight. Noon of the date December 31, 1949, was the
onset of JDN 2,433,282, and on noon, December 31, 2050,

!5 The earliest use of the term yuga was for an eight-year period.
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the JDN will be 2,469,807; the difference in numbers of days
between these two dates is exactly 36,525%. This scheme is
extremely useful in computations that involve large intervals
of time. Note that the JDN is not strictly speaking a calen-
dar date; it is a tally of days. Despite widespread usage
among astronomers of the term “Julian Date” for JDN (for
example, in the Astronomical Almanac, in the 2000 edition
on p. K4), under no circumstances should it be confused with
the Julian Calendar. An interesting byproduct is that the
integer remainder after division by seven yields the day of
the week on which the JDN begins: 0 = Monday, 1 =Tuesday,
..., 6 = Sunday. For example, on noon of January 1, 2000,
JDN = 2451545.0000, which modulo 7 (an operation that is
equivalent to dividing by seven and multiplying the decimal
portion of the quotient by seven), the JDN remainder is five,
and thus indicates a Saturday, which a glance at a calendar
will confirm. In addition to the Astronomical Almanac, the
Handbook of the Royal Astronomical Society of Canada also
lists the JDNs for the various Gregorian calendar dates for
the year of publication (but unlike the AA, only for a few
other years). Formulae given by Muller (1975) and repro-
duced by Stephenson (1997) relate the JDN to Gregorian
and Julian Calendar dates (expressed in Y year, M month,
and D day number format) by the following approximation:

Y + M-9
Y+(M+9) T 41
JDN = (367 xY) -7 x 412 3% 10‘31
M
+ 275 % ?+D+ 1721029 (4.18)

for any A.p. Gregorian calendar date [with a correction, pro-
vided by E.M. Standish (private correspondence to EFM)
and we note that adding 1 to the answer gives a closer
approximation near Oct. 15, 1582, and for the past century],
and
y +5001+ =2
JDN =(367xY)-7x 2

+275x% % + D +1729777

(4.19)

Here, subtracting 1 gives a closer result over much of the
range for any Julian calendar date. See Van Flandern and
Pulkkinen (1979) for a Fortran version (which needs updat-
ing). Montenbruck (1989, p. 34) gives a more general
formula for calculating JDN, which makes use of auxiliary
parameters that are computed from the Y, M, and D
numbers and are different for the Gregorian and Julian cal-
endar dates. Such equations provide useful checks on calcu-
lations of intervals between events. As an example, consider
January 1, 4713 B.c. (Julian calendar'®):

' The Julian calendar is usually applied up to and including the date
Oct. 4, 1582, the day before the Gregorian calendar was first introduced
(in some countries). The latter day was Oct. 5, 1582, in the Julian cal-
endar but Oct. 15, 1582, in the Gregorian. Formally, the Julian calendar
came into effect on Jan. 1, 45 B.c. However, back-calculations of both
Gregorian and Julian calendar dates are frequently done.
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—4712 +5001 + %

4
+275 % é+ 1+1729777 =~0.8

JDN =(-4712x367)-7

D = ¢ gives JDN = 0.2, closer to the correct value, —0.5.
Montenbruck (1989, pp. 34-35) in addition provides a
formula to compute the calendar date from a JDN. For pre-
cision work, tables are recommended.

4.2. The Bases and Functions
of Calendars

In preceding chapters and sections, the bases of most calen-
dars are the motions of the Sun and Moon, even if there are
some calendars that are based primarily on the seasonal
appearances of stars. The reason for using the Sun is fairly
clear: The seasonal variations of climate, involving temper-
ature changes in higher latitudes and mainly precipitation
changes in lower latitudes, lead to changes in vegetation and
in wildlife behavior. Such changes are usually seasonal, i.e.,
connected to the tropical year. With these variations, there
are changes in the stellar asterisms that are visible at any
particular time of night, hence, “the rainy Pleiades,” which
rose as the Sun set at the beginning of the rainy season. The
Moon has played a strong calendrical role due to the obvious
changes in phase and the useful light provided by a gibbous
or full Moon and its tidal effects. There are also ample
cultural connections between the Moon and rain, and
between the Moon and woman (the approximation of the
synodic month to the menstrual cycle). Its early (perhaps
Ice Age) use may be surrounded by magic and cultural
associations.

European calendars—from Julius Caesar’s time to the
present—are solar calendars, retaining the use of intervals
called months, but paying no attention (in a calendrical
sense) to the phases of the Moon at which the month begins.
Caesar’s reform was introduced on Jan 1, 45 B.c. and marked
a clear departure from the luni-solar calendar in place until
that time. As the inheritors of the European calendar, North
Americans have also foregone the lunar calendar. The reli-
gious calendar of Islam, which is also the civil calendar in
certain Moslem countries, is a pure lunar calendar. The year
ends on the 12th lunar month so that the Feast of Ramadan
cycles through the solar year. A lunar calendar that has been
the subject of recent studies is the calendar of the Borana
people of Ethiopia (Ruggles 1987).

4.2.1. The Reconciliation of Solar and
Lunar Calendars

In this section, we deal with the attempts in Europe and the
Near East to reconcile the motions of the Sun and Moon.
The Mayan Calendar and its Mesoamerican variants, which
dealt with the problem in an entirely different way, will be
discussed in §12.
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The basic calendar problem in this context is the fact that
the tropical year'” is not an integral multiple of the synodic
month: 365.24219878/29.530589 = 12.36826664. The remain-
der, 09368266, . . . , is not easily dealt with. If we approximate
the length of the synodic month by 2995, however, the
problem is more easily grasped. In this case, the following
solution arises: 12 months x 29¢5/month = 3549, This is 11¢
short of a year whose length is only 365 (such a year wa