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Preface 

This book is intended to present bifurcation and continuation based com­
putational techniques for voltage stability assessment and control. 

Chapters 1 and 2 provide background material for this book. Chapter 2 re­
views various aspects of bifurcation phenomena and includes numerical 
techniques that can detect the bifurcation points. Chapter 3 discusses the 
application of continuation methods to power system voltage stability and 
provides extensive coverage on continuation power flow. Chapter 4 pre­
sents general sensitivity techniques available in the literature that includes 
margin sensitivity. Chapter 5 introduces voltage stability margin boundary 
tracing. This chapter also discusses application of continuation power flow 
for ATC. Chapter 6 finally presents time domain techniques that can cap­
ture short as well as long term time scales involved in voltage stability. 
Decoupled time domain simulation is introduced in this chapter. Basic 
steps involved in various methods in each chapter are first demonstrated 
through a two bus example for better understanding of these techniques. 

I am grateful to Prof Pai, the series editor, who encouraged me and helped 
me to write this book. 

I would like to acknowledge the help from my previous and current gradu­
ate students who helped me directly or indirectly in many ways to organize 
this book. In general would like to thank Srinivasu Battula, Qin Wang, 
Zheng Zhou, Gang Shen, Cheng Luo and Ashutosh Tiwari. In particular , I 
would like to acknowledge contributions of Colin Christy (for chapter 3) , 
Byongjun Lee (for chapter2) , Bo Long (for chapters 2,3 and 4) , Yuan 
Zhou (for chapters 3 and 5), Geng Wang (for chapter 5) and Dan Yang (for 
chapter 6). 

I would also like to acknowledge IEEE and Sadhana for some of the fig­
ures and material I borrowed from my papers in these journals. 

Finally I thank my wife Uma for her continued support and encourage­
ment. 



1 Introduction 

1.1 What is voltage stability? 

Recently lEEE/CIGRE task force [1] proposed various definitions related 
to power system stability including voltage stability. Fig. 1.1 summarizes 
these definitions. 

In general terms, voltage stability is defined as the ability of a power sys­
tem to maintain steady voltages at all the buses in the system after being 
subjected to a disturbance from a given initial operating condition. It de­
pends on the ability to maintain/restore equilibrium between load demand 
and load supply from the power system. Instability that may result appears 
in the form of a progressive fall or rise of voltages of some buses. A possi­
ble outcome of voltage instability is loss of load in an area, or tripping of 
transmission lines and the other elements by their protection leading to 
cascading outages that in turn may lead to loss of synchronism of some 
generators. 

This task force further classified the voltage stability into four categories: 
large disturbance voltage stability, small disturbance voltage stability, 
short-term voltage stability and long-term voltage stability. A short 
summary of these classifications is given below. 

Large-disturbance voltage stability refers to the system's ability to main­
tain steady voltages following large disturbances such as system faults, 
loss of generation, or circuit contingencies. This ability is determined by 
the system and load characteristics, and the interactions of both continuous 
and discrete controls and protections. The study period of interest may ex­
tend from a few seconds to tens of minutes. 
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Power System 
Stability 

Rotor Angle 
Stability 

Frequency 
Stability 

Small-Disturbance 
Angle Stability 

Transient 
Stability 

Short Term 

Voltage 
Stability 

Large-Disturbance 
Voltage Stability 

Small-Disturbance 
Voltage Stability 

Short Term 
I 

Long Term 

Short Term Long Term 

Fig.1.1 Classification of power System stability [1] 

Small-disturbance voltage stability refers to the system's ability to main­
tain steady voltages when subjected to small perturbations such as incre­
mental changes in system load. This form of stability is influenced by the 
characteristics of loads, continuous controls, and discrete controls at a 
given instant of time. 

Short-term voltage stability involves dynamics of fast acting load com­
ponents such as induction motors, electronically controlled loads and 
HVDC converters. The study period of interest is in the order of several 
seconds, and analysis requires solution of appropriate system differential 
equations. 

Long-term voltage stability involves slower acting equipment such as 
tap-changing transformers, thermostatically controlled loads and generator 
current limiters. The study period of interest may extend to several or 
many minutes, and long-term simulations are required for analysis of sys­
tem dynamic performance. Instability is due to the loss of long-term equi­
librium, post-disturbance steady-state operating point being small-
disturbance unstable, or a lack of attraction towards the stable post-
disturbance equilibrium. The disturbance could also be a sustained load 
buildup. 
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Voltage instability may be caused by various system aspects. Generators, 
transmission lines and loads are among the most important components. 

Generators play an important role for providing enough reactive powder 
support for the powder systems. The maximum generator reactive powder 
output is limited by field current limit and armature current limit. Even 
though reactive power plays an important role in voltage stability, the in­
stability can involve a strong coupling betw^een active and reactive power. 
When generator reactive capability is constrained by field current limit, the 
reactive output becomes voltage dependent. The maximum load power is 
severely reduced when the field current of the local generator becomes 
limited. Generator limits may also cause limit-induced bifurcation when 
voltage collapses occur right after the generator limits are reached [2]. 

Transmission networks are other important constraints for voltage stability. 
The maximum deliverable power is limited by the transmission network 
eventually. Power beyond the transmission capacity determined by thermal 
or stability considerations cannot be delivered. 

The third major factor that influences voltage instability is system loads. 
There are several individual load models due to variety of load devices. 
Static load models and dynamic load models are two main categories for 
load modeling. Constant power, constant current and constant impedance 
load models are representatives of static load models; while dynamic load 
models are usually represented by differential equations [3]. The common 
static load models include polynomial or constant impedance, constant 
current or constant power known as ZIP models. Induction motor is a typi­
cal dynamic load model. In real power systems, loads are aggregates of 
many different devices and thus parameters of load models may be the 
composite among individual load parameters. Another important load as­
pect is the Load Tap Changing (LTC) transformer which is one of the key 
mechanisms in load restoration. During the load recovery process, LTC 
tends to maintain constant voltage level at the low voltage end. Therefore, 
load behavior observed at high voltage level is close to constant power 
which may exacerbate voltage instability. 
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1.2 Voltage Collapse Incidents 

Carson Taylor [4] in his book reported voltage collapse incidents up to the 
year 1987 (Table 1). Since then there have been additional incidents that 
are related to voltage collapse. On July 2"̂  1996 the western region 
(WECC) of the United States experienced voltage collapse. The details of 
this incident are given in the reference [5]. During May, 1997 the Chilean 
power system experienced blackout due to voltage collapse that resulted in 
a loss of 80% of its load. The Chilean power system is mainly radial with 
prevalent power flows in south north direction. The system configuration 
is ideal for voltage stability related problems [6]. On July 12, 2004 Ath­
ens experienced a voltage collapse that resulted in the blackout of the en­
tire Athens and Peloponnese peninsula [7]. The Hellenic system comprises 
of generation facilities in the North and West of Greece with most of its 
load concentrated near the Athens metropolitan region. This system has 
been prone to voltage stability problems due to the large electrical distance 
between the generation in the north and load in the Athens region [7]. 
Greece was then preparing for the Olympic Games that were to be held in 
Athens. A lot of upgrades and maintenance was scheduled for the system. 
Unfortunately, most of the planned upgrades were not in place when the 
event happened. The details of the event and the study are reported by 
Voumas in the reference [8]. 

Table 1.1 Voltage Collapse incidents [4] 

Date 
^ „ . . ^ ^ ^ ^ ^ ^ ^ _ . ^ 

5/17/85 
8/22/87 
12/27/83 
9/22/77 
9/02/82 
11/26/82 
12/28/82 
12/30/82 
12/09/65 
11/20/76 
8/04/82 
1/12/87 
7/23/87 
12/19/78 
8/22/70 
12/01/87 

Location 
SE Brazil, Paraguay 

South Florida 
Westem Tennessee 

Sweden 
Jacksonville, Florida 

Florida 
Florida 
Florida 
Florida 

Brittany, France 
Brittany, France 

Belgium 
Westem France 

Tokyo 
France 
Japan 

..v...v.....„...v...v;„:v„v...v;.v.;...l 

Time Frame _ 
2 Seconds 
4 Seconds 
10 Seconds 
50 Seconds 

Few minutes 
1-3 Minutes 
1-3 Minutes 
1-3 Minutes 
2 Mintues 

? 
? 

4.5 Minutes 
4-6 Minutes 
20 Minutes 
26 Minutes 
30 Minutes 

7 
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There is an extensive literature available covering various aspects of volt­
age stability. There are excellent text books [4, 9-10], Bulk Power System 
Voltage Security workshop proceedings [11-16] and IEEE working group 
publications [17-20] that provide wealth of information that is related to 
voltage stability. Bibliography related to voltage stability up to 1997 is 
published in reference [21]. A web based voltage stability search engine 
is maintained at Iowa state university [22]. 

The next section provides basic concepts that relate to maximum power 
transfer through a simple two bus example. 

1.3 Two Bus Example 

Consider a generator connected to a load bus through a lossless - transmis­
sion line as show in Fig. 1.2. If both voltages (E and V) are kept con­
stant then the maximum power transfer occurs at an angle (6) of 90^. The 
relation between G and the power transfer (P) through the transmission line 
is shown in Fig. 1.3. 

EZ(f VZO' 

& rrm. 1 

Fig.1.2 A simple two bus system 
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Fig. 1.3 The relationship between P and 9 

Now consider the same generator with constant terminal voltage being 
connected to a load bus whose voltage is no longer constant. Then the rela­
tion between the load bus voltage and the power transfer through the 
transmission line is shown in Fig. 1.4. 

Acceptable 

Fig.1.4 Variation load bus voltage with P 
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With increase in load the voltage at the load bus decreases and reaches a 
critical value that corresponds to the maximum power transfer. In gen­
eral this maximum power transfer is related to voltage instabihty if the 
load is constant power type. Beyond this point there is no equilibrium. 
However if the load is other than constant power then the system can oper­
ate below this critical voltage, but draws higher current for the same 
amount of power transfer. 

1.3.1 Derivation for critical voltage and critical power 

For this simple example, a closed form solution both for the critical volt­
age and corresponding maximum power can be derived. From Fig. 1.2 

V = E-jXI 

S = P-hjQ = VI* = V\ 
fE-V] = V 

[ -JX J 
= VZ6- = s i n ^ + /( cos^ ) 

-jX X X X 

Separating real and imaginary parts 

VF 
P = -—sm0 

X 

Q = cos (9 
X X 

From Eqs. 1.1 and 1.2 

sin ^ = -
PX 

EV 

cos 6* = 
^QX + V^^^ 

V EV 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

We know: sin^ 6 + cos^ 6 = \ 

Use Eq.1.5 to combine Eqs. 1.3 and 1.4 into 

(1.5) 
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EV EV 
= 1 

The above expression can be put into the following form 

— + — (2QX-E')-^—(P'+Q')^0 
(1.6) 

V PX ^ S ^ , r. , . , 
Let v = —, p = , and q = —j-, then Eq.1.6 becomes (where 

E E^ E 
V, p and q are normalized quantities.) 

v^+v\2q-\) + p^+q^ =0 (1.7) 

Let ^ be the power factor angle of the load, substitute q = ptantp in 
Eq. 1.7 and simphfy 

v" + v^(2ptan^-1) + p^ sec^ ̂  = 0 

Eq.1.8 is quadratic equation in v̂ , where 

v̂  =-(2;.tan^-l)±^^(2Z^^EiZHiZ^ 

(1.8) 

(1.9) 

V has four solutions out of which two are physically meaningful. These 
two physical solutions correspond to high voltage and low voltage solution 
as shown in Fig. 1.5. For example from Eq. 1.9, at p =0, v = 0 or 1. 
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Fig. 1.5 Variation of v with respect to p 

^~ E 
1.2 

0.8 

0.6 

0.4 

0.2 

1 1 1 1 1 1 

PF = -0.25 

' ^ 2 

J / A/^^^^^^^PP = ̂ ^ 
//y^y>C^^^^--^^^^ PF = 0.75 

//X^^^--^^^rr^^--^~~^ PF = 0.5 
JO^^^^ ^^^^^^-^-.^^^ PF = 0.25 

^ ^ 1 1 1 1 1 1 

1 1 

PF = -0.5 

/ 
7 

^^ 'y 

1 1 

1 1 

PF = -0.75 

-iL 

1 1 

-

-

~ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Fig. 1.6 P vs. V curves 

PX 

At the maximum power point the term inside the square root in equation 
Eq.1.9 is zero. With this condition, we can show 
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cos^ (1.10) 

V . 

2(1 +sin ^) 

1 (1.11) 

V2*7l + sin(z) 

At unity power factor ^ = 0.0 ; p^^^ = — = 0.5 ; v̂ .̂̂  = —j= = 0.707 . 
2 -\/2 

The relationship between 0 and ^ at the maximum power condition 

can be derived as follows. We know 

c o s ' ^ - 1 - s i n ' ^ (1-12) 

From Eq.1.1, at the maximum power conditions, ^^^0 =-p^^^/v^^.^. 

Substituting sin^ in Eq.1.12 with p^^^ from Eq.1.10 and v̂ .̂̂  from 

Eq.1.11. 

1 (1.13) 
cos^ = ^1 + sin ^ 

2v 
crit 

Table 1.2 Values of various variables at the critical point 

Jrcrit 

0.5 
0.288 
0.207 
0.1339 

0 
0.866 
1.206 
1.86 

V . 

0.707 
0.577 
0.541 
0.5175 

0.5 
1 

1.306 
1.93 

1 
0 

0.166 
0.207 
0.232 
-0.25 
-0.5 

-1.206 
-3.22 

<^ 
0 
30 
45 
60 
90 
-30 
-45 
60 

0 
45 
30 

22.49 
15 
0 

60 
67.48 

75 
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1.3.2 Q-V curves 

Similar to PV curves one can also obtain QV curves. For each PV curve 
the power factor is constant, whereas for each QV curve the p is kept con­
stant. From Eq. 1.7 

(1.14) 
v ^ = . 

•(2q-l)±^(2q-lf-4(p'+q') 

If we keep p constant in Eq. 1.14, then for each p the relation between 

q and v is shown in Fig. 1.7. 

QX 

0.4 

0.2 

0 

-0.13 
-0.2 

-0.4 

-0.6 

-0.8 

-1 

^y^^^'''"^"\^ -^Ili^^Vs^ 

I / ^ ^ ' \ ^ ^ PX 
1 >v Vv P-—r 
/ ^ V ^ v 

' / ' ^ v ^ \ ^P--^ 
' ' 1 \ Wi--^"^^^=^^^ 

1 \ \\''̂ ^^^^ " ̂  ̂  
' i \ T^T^^^"^^^ 
\ \ .̂-—.̂  \^vC^^"^^ 

1 \ 1 1 1 1 L_ \ \ \ \ 1 \ 

Fig. 1.7 q vs. v curves 

We can get q^^.^ by equating the term inside the square root sign to zero in 

equation Eq. 1.14. Then 

1 2 
^crU = - - P 

(1.15) 

and 
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at /? = 0 ^ ^,„, = 0.25 ; v , , , - 0 . 5 . 

(1.16) 

Similar to p vs. v curves one can generate q vs. v curves for a given p. In 
the above formulation, we assumed q to be positive for inductive reactive 
power. However, if we assume q as negative for inductive reactive 
power, then q vs. v curves can be shown in Fig. 1.8. In general in power 
system literature q is negative for inductive reactive power. 

0.6 

0.4 

0.2 
0.1$̂  

-0.2 

-0.4 

- ' ' V yd^<'-
— / ) U ^ \ \ ^'' 

//f\\ P'-
/ / / \ ^ P--

\ / / / ^'' 

^ . ^ ; / 

1 1 I I I 1 1 1 1 

1 

= 0 

= 0.25 

= 0.5 

= 0.75 

= 1.0 

P--
PX 

1 

-

-

-

0.2 0.4 0.6 0.700.8 1 1.2 1.4 1.6 1.8 2 V 
^ v = — 

E 

Fig. 1.8 Relationship between voltage and the reactive power 

1.3.3 Discussion on PV and QV Curves 

PV curves: As mentioned before p vs. v curves can be obtained from 
Eq.1.7. These curves are shown in Fig. 1.6. Each curve corresponds to a 
particular power factor. There is a maximum transferable power. For 
any given value of "p" there are two possible voltages (higher voltage with 
lower current or lower voltage with higher current). The normal opera­
tion corresponds to high voltage solution. With capacitor compensation 
(leading power factor) the maximum power increases. However the cor-
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responding critical voltage also increases. From Fig. 1.6, one can see that 
with highly compensated transmission line, normal voltages become criti­
cal voltages. 

QV curves: These curves give the relation between q and v for a given real 
power transfer p. They provide reactive requirement at a given bus to 
maintain a certain voltage. For example in Fig. 1.7 or Fig. 1.8 in the 
p=0.5curve,to maintain the voltage at 1.0 p.u., a capacitive reactive power 
injection of q=0.13 p.u. is needed. If this reactive power injection is lost, 
the voltage will be decreased to 0.707p.u. which is a critical value (the q= 
0 axis just touches the q vs. v curve corresponding to p=0.5). For p=0.5 
there is no solution if the net injection is inductive reactive power and this 
may result in voltage instability. For critical buses, QV curves can be gen­
erated from power flow. 

Power through transmission lines introduces both real and reactive power 
loss. These losses strongly depend on the amount of power through the 
line. Transmission lines are mainly dominated by inductive and capaci­
tive characteristics of the line. 

At light loads it acts like a capacitor (supply reactive power to the system). 
At heavy loads it acts like an inductor (absorb reactive power). The load­
ing at which the inductive and capacitive affects cancel each other is called 
surge-impedance loading "SIL." "SIL" = approximately 40% to 50% of 
the line's thermal capacity. 

Fig. 1.9 [23] shows the relation between line loading and losses. 
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From Fig. 1.9 at full line loading reactive losses are 5 times greater than 
real loss for 230kV line and 9 times greater than real loss for 345kV line. 

Fig. 1.10 shows the relation between transmission line capacity and the 
length of the transmission line. Limitations for short, medium and long 
transmission lines are thermal, voltage drop and stability limits respec­
tively. The above limitations are without any control. 

1.3.4 Maximum power and power flow Jacobian 

For the two bus example, the power flow equations are: 

The Jacobian (J): 

J = 
—- cos^ 5/, 

de 
df2 
de 

5/,] 
dv 
5/2 

dv\ 

= X 
EV 

X 
s in^ 

— s in^ 
X 

-E . IV 
cos 6' + — 

X X. 
-E^V lEV^ 

The determinant of this Jacobian is —I ;—cos^. 
X' 

Equating this determinant to zero, we get 
1 

X' 

cos 6 = 

\ ^ . 

2v 

This corresponds to the condition of the critical voltage derived in previous 
section (Eq. 1.13). 

In general the power system Jacobian becomes singular at the maximum 
power point. This may leads to convergence problems if one applies the 
traditional Newton-Raphson method to solve power flow equations. 

In this book, computational techniques based on bifurcation and continua­
tion methods will be described to avoid singularities and convergence 
problems. 
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2 Numerical Bifurcation Techniques 

2.1 Various Types of Bifurcation 

Nonlinear phenomena relate to the processes that involve physical vari­
ables which are governed by nonlinear equations. The models which are 
described by these equations have been obtained by some approximate 
projection rationale from presumably more fundamental microscopic dy­
namics of the system. In some cases a reasonable projection may yield 
simple linear equations in some approximations. 

To demonstrate the basic concepts of nonlinear dynamical systems, we 
consider a pair of first order coupled ordinary autonomous differential 
equations. The bases of the classification of these equations are well 
known and have received much attention in many text books on ordinary 
differential equations [1,2]. 

^ _ . . . (2.1) 

at 

The equilibrium points are given by / i = 0 and /2 = 0 . Perturb the 

equilibrium point by AXj and l^^ > expand the resulting equations in the 

Taylor Series, and linearize the equations near this equilibrium point. The 

solutions of Axj and Ax:2 are then given by 

/^,=C,e'^' + C,e'^' (2.3) 

Ax^^C^e^^+Qe-^^ (2.4) 
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The constants Cj, C2, C3, C4 are determined by the initial conditions. The 

exponents X\ and X2 are the eigenvalues of the Jacobian matrix 
[a b 

J = \ 
\_c d_ 

and can be obtained by solving | J - A/ |= 0 (where a, b, c, d are the par­
tial derivatives of/i a n d ^ evaluated w.r.t. xi and xi at the equilibrium 
point). 

Tr{J) ^a^d\^^ discriminant = Tr{jf - 4det(J) 

There are a number of possibilities for the sign and character of Ai and X2, 
depending on the signs and relative magnitudes of Tr{J) and det{J) . Dif­
ferent possible cases are briefly described below: 

Case (i): Tr{J^ < 0 , det(J) > 0 , A > 0: for these conditions Xi and X2 
are both real and negative. The stationary state is stable and the perturba­
tions decay. It belongs to stable node. 

Case (ii): Tr(J) > 0 , det(J) > 0 , A > 0: Xi and X2 are both real and posi­
tive. The exponential terms in Eqs.2.3 and 2.4 increase monotonically with 
time. The perturbations grow exponentially. It belongs to unstable node. 

Case (iii): Tr(J) < 0 , det(J) > 0 , A < 0 : Xi and X2 are complex and 

the real part of X\ and X2 is negative. For this case the perturbations are 
given by 

Ax = c,e^'^^'^ cos(Im(AO + 0,) (2.3a) 

Ay = c^e^<^'^ cos(Im(;iO + 6^) (2.4a) 

The decaying terms ensure a return to the original stationary state because 
of the cosine functions. This is a damped oscillatory motion. It belongs to 
stable focus. 

Case (iv): Tr{J) > 0 , det(J) > 0 , A < 0: here X\ and X2 are complex and 
the real part of X\ and X2 is positive. The perturbations grow in a diver­
gent oscillatory manner. It is an unstable focus. 
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Case (v): Tr{J) >or<0 , d e t ( / ) < 0 , A > 0 : 2i and X2 are real. 
Aj = -i-ve and A2 = -ve. One of the exponential term in each of AXj 
and AX2 decrease exponentially. The other with the positive root will in­
crease with time. The growing term will eventually dominate and the sys­
tem will move away from the stationary state. It leads to saddle point be­
havior. 

SPECIAL CASES 
Case (vi): det(J) - 0 : here /li and X2 are both real. 

Ai>0 

For Tr(7) > 0 

^2 = 0 

A, = 0 
For Tr(J) < 0 

h<0 

This leads to saddle node bifurcation or fold. To capture the true system 
behavior, we have to consider nonlinear terms. 

Case (vii):rr(J) = 0 ,de t (J ) > 0 , A < 0 : here A 1 and A2 are both 

complex and the real part of these eigenvalues is zero. For this case also, to 
capture true system behavior, we have to consider the nonlinear terms. 
This may lead to Hopf bifurcation. 

Except for three critical cases: (vi) det(j) = 0; (vii) Tr(J) =0; det(J) >0; 
and a special case where both det(J) =0; Tr{J)=0\ the integral curves of the 
nonlinear system have the same behavior as those of linearized systems in 
the neighborhood of the equilibrium. These results are summarized with 
the values of the trace and determinant of the corresponding Jacobian ma­
trix as shown in the phase diagram (Fig.2.1). For linear systems in 7?̂  [3] 
make sound classification and arrangement of phase portraits. 

However, in the three critical cases mentioned before, the structure of or­
bits in the state space will change qualitatively. Such a qualitative change 
in called a bifurcation. This bifurcation may be due to variation of certain 
parameters in the system. The critical value of the parameter where the bi­
furcation occurs is the bifurcation value of the parameter. 
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The chapter is organized as follows: Section 2.2 describes the general 
principles involved in the study of bifurcation behavior of an n dimen­
sional dynamical system. Sections 2.3, 2.4 and 2.5 discuss the continuation 
based numerical techniques that can be effectively used to identify various 
bifurcation points. 

saddle 
point 

saddle 
point 

nonlinearity governs 
the stability 

Fig.2.1 Phase diagram [4] 

2.2 Bifurcation of Dynamical Systems 

Consider a dynamical model of a system [5] described by autonomous dif­
ferential equations of the vector form in n-dimensional space 
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X = F{X,X),XGR\X^R' (2.5) 

Here x denotes the state variables. For power system models these are: 
generator angles, generator angular velocities, load voltage magnitudes, or 
angles etc. A is a vector of time invariant scalar parameters. At an equilib­
rium point (XO,/IQ) , the left hand term x of equation becomes zero, i.e., 
the steady state solution of Eq.2.5 satisfies the set of nonlinear algebraic 
equations F (XQ, / IQ) = 0. If the eigenvalues of the Jacobian dFldx be­
come non-zero, then according to implicit function theorem the equilibria 
of Eq.2.5 can be expressed as the smooth function oix = x(X). The func­
tion x(X) is called the branch of equilibria. However if the Jacobian has an 
eigenvalue with zero real part occurring at some A, say Ac, the system 
X = F(x^,^^) is structurally unstable and several branches of x = x(A) 

can come together at (x^^X^) in 7?"^^ . The parameter set Xc where the 

system loses its stability is called a bifurcation set. The point (x^^A^) is 

called bifurcation point. (In general, in engineering systems a one-
parameter family with k-l relations between the parameters jui, jU2, ju^,. . . . 
can be represented as a curve, 1, in the ^-dimensional parameter space.) 
Thus the principle of linear stability differentiates between two categories 
of equilibrium solutions. For the hyperbolic fixed points (where the eigen­
values have non-zero real parts), linear stability analysis suffices com­
pletely. For non-hyperbolic fixed points (the points where at least one ei­
genvalue has zero real part), a linear stability analysis is not applicable and 
a full nonlinear analysis has to be carried out. There are techniques avail­
able to simpHfy, without any significant loss of information, the represen­
tation of the flow in the nonlinear dynamical systems in the neighborhood 
of non-hyperbohc points. One of these techniques is the center manifold 
theory. This theory closes the gap left by Hartman-Grobman theorem 
(HGT). According to HOT, if the Jacobian dF/dx has no eigenvalues with 
zero real part, then the family of trajectories near an equilibrium point 
(XQ,/IQ) of a nonlinear system x= F(x, A), and those of the locally lin­
earized system have the same topological structure, which means that in 
the neighborhood of (XQ , X^) there exist homeomorphic mappings which 

map trajectories of the nonlinear system into trajectories of the linear sys­
tem. Should, however, an eigenvalue with a zero real part exist, the open 
question arises how this effects the flow in the neighborhood of the equi-
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librium point. It is this gap left open by HGT that is closed by the center 
manifold theory. 

2.2.1 Center manifold [6] 

Let (XQ , AQ ) be the equilibrium point ofF(x, X), and E^, E' and E^ the cor­
responding generalized eigenspaces of the Jacobian matrix dFldx \ xo, 
where the real part of the eigenvalues (//) defines the eigenspaces, 

Re(//) = 

Then there exist stable W, unstable W^' and center manifold W, 
which are tangential to Ef, E^, E^ respectively at (XQ , /IQ ) . If one is inter­
ested in the long term behavior (i.e., /=> oo) the overall dynamics in the 
neighborhood of an equilibrium point are reproduced by the flow on the 
center manifold W^. This reduction of the dynamics to those in the W^ 
subspace is the subject of center manifold theory. In order to calculate the 

flow of the reduced dynamics on W^, the nonlinear vector field can be 
transformed to the following form. We can assume that unstable manifold 
W* is empty. This makes the presentation simple, without loss of gener­
ality. 

K-Ax.^fix,,xy,X^^R- (2.6) 

K=A\-^gi^c^^sy^X^eR- (2.7) 

The matrix Adfic, n^ contains ric, eigenvalues with zero real parts. As, ma­
trix {fis, Us) contains Us eigenvalues with negative real parts. The nonhnear 
functions / and g should be continuously differentiable at least twice and 
vanish together with their first derivatives at the equilibrium point. Xc cor­
respond to center manifold and are sometimes called active variables. Xs 
correspond to stable manifold and are called passive variables. Due to 
nonlinear couplings the influence of x̂  in the equation for Xc cannot be ig­
nored. Hence the correct way of analysis is to compute the center mani­
fold. 
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x^-Kx^) (2.8) 

by expressing the dependence of x̂  on Xc from Eq.2.8 and then to eliminate 
from Eq.2.6 to obtain the bifurcation equation 

K = A\+fi^cMxJ) (2-9) 

Then the equivalence theorem [5] states that for r=> oo, the dynamics of 
Eq.2.9 in the neighborhood of the equilibrium point is equivalent to the 
dynamics of the initial system x = F{x, X) with X fixed at the value X. In 
order to solve Eq.2.9, one has to know the function h{x^. This can be ob­
tained as follows 

ck^ _ dhjxj _ dh dx (2.10) 

dt dt dx„ dt 

from Eqs.2.6 and 2.7, Eq.2.10 can be written as 

AKXc) + g{x^MXc)) 
'dh^ 

v^^cy 
[A^x^+f(x^,h(x^))] (2.11) 

or 
^ dh] 

The functions h and (dh/dxc) are zero at the equilibrium point. Eq.2.11 is in 
general a partial differential equation which cannot be solved exactly in 
most cases. But its solution can sometimes be approximated by a series 
expansion near the equilibrium point. The aforementioned reduction tech­
nique of the center manifold theory is similar to its physical counterpart in 
the slaving principle associated with the synergetic approach proposed by 
the physicist Herman Haken in the early seventies [7]. 

In summary, if x is non-hyperbolic then there exist invariant center mani­
folds tangential to the center subspace and its dimension is equal to the 
number of eigenvalues of the Jacobian matrix having zero real parts. Then 
the practically interesting local stability behavior is completely governed 
by the flow on the center manifold. 

Effect of small perturbations of the critical parameters around the bifurca­
tion point can also be studied by unfolding the center manifold. This can 
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be achieved via the method of normal forms [8, 9]. Normal forms play an 
essential role in bifurcation theory because they provide the simplest sys­
tem of equations that describe the dynamics of the original system close to 
the bifurcation points. Even away from the bifurcation point Poincare's 
theory of normal forms reduces the initial nonlinear equations into the 
simplest possible forms without distorting the dynamic behavior in the 
neighborhood of fixed points or periodic solutions. The transformations, 
which yield to a reduction to normal forms, can be generated by develop­
ing the deviations from a state of equilibrium or from periodic motion into 
power series. Symbolic manipulation packages like MACSYMA, and 
MAPLE, are helpful in the development of normal forms. Application of 
normal form away form the bifurcation points to power system examples is 
given by [10, 11] and examples of the application of center-manifold the­
ory to power systems are given by [12, 13, 14]. 

The number of possible types of bifurcation increases rapidly with increas­
ing dimension of the parameter space. The bifurcations are organized hier­
archically with increasing co-dimension, where co-dimension is the lowest 
dimension of a parameter space which is necessary to observe a given bi­
furcation phenomenon. In this book we discuss only the dynamical system 
with a single parameter variation. Changing this parameter may drive the 
system into a critical state at which (i) a real eigenvalue becomes zero or 
(ii) a pair of complex conjugate eigenvalues becomes imaginary. In case 
(i) new branches of stationary solutions usually arise and are called static 
bifurcations. (Typical static bifurcations are (i) saddle node or fold, (ii) 
trans-critical, and (iii) pitchfork.) Case (ii) may lead to the birth of a 
branch of periodic solutions called dynamic bifurcations. Typical dynami­
cal bifurcation is Hopf. 

In many practical engineering problems, identification of these bifurca­
tions is important. For example, buckling load of elastic structures [15] and 
voltage collapse in power systems [12, 13, 16, and 17] is related to saddle-
node bifurcations. Hopf bifurcation and bifurcation of periodic solutions 
are observed in chemical engineering [18], mechanical engineering [19, 
20] and electrical engineering [21, 22, and 50] to name a few. The next 
section concentrates on the numerical identification of these bifurcations. 
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2.3 Detection of Bifurcation Points 

2.3.1 Static bifurcations 

The problem of determining the roots of nonhnear equations is of frequent 
occurrence in scientific work. Such equations arise typically in connec­
tion with equilibrium problems. When describing a real life problem, the 
nonlinear equations usually involve one or more parameters. Denoting 
one such parameter by 2, the nonlinear equations read: 

F(x,Z) = 0 (2.12) 

where F: R^xR -^ R^ is a, mapping which is assumed smooth. In 
Eq.2.12, X=0 usually corresponds to the base case solution. If a priori 
knowledge concerning zero points of F is available, it is advisable to cal­
culate X via a Newton type algorithm defined by an iteration formula such 
as: 

= X, A7'F{x.fi) / - O , 1,. . .^ (2.13) 

where Af is some reasonable approximation of the Jacobian F^ixfi). 
However, if an adequate starting value for a Newton type iteration method 
is not available, we must seek other remedies. In Section 2.3.2, we will in­
troduce how the lack of knowledge for an initial guess can be tackled by 
the homotopy method. 

Because the systems F(x, X) =0 depends on X, we speak of a family of 
nonlinear equations. Solutions now depend on the parameter 2, i.e., x(X). 
Upon varying the parameter 2, we will get a series of solutions. This is 
often called a solution curve. At each point corresponding to a certain Xk, 
if we keep solving F(x, X) =0 via the conventional Newton type iteration, 
i.e. by formula (2.13), we may run into difficulty due to the singularity of 
the Jacobian Fx(x, X^). The singularity occurs at a so-called turning point 
(or it is also identified with fold and saddle node) and when the equation is 
parameterized with respect to X. In the subsequent sections, we will dis­
cuss the interesting topic of curve tracing via the continuations method. 
We will show how the problem of singularity of the Jacobian can be 
solved, namely, by switching the continuation parameter. 
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2.3.2 Homotopy Method 

We center our discussion on obtaining a solution to a system of n nonlinear 
equations in n variables described by Eq.2.12 when /I is at a fixed value. 
Homotopy method (also some times called embedding method) first de­
fines an easy problem for which a solution is known. Then it defines a path 
between the easy problem and the problem we actually want to solve. The 
easy problem, with which the homotopy method starts, is gradually trans­
formed to the solution of the hard problem. Mathematically, this means 
that one has to define a homotopy or deformation: R^xR-^ R^ such that 

H(x,0) = g(x), H(x,l) = F(x) (2.14) 

where g is a trivial smooth map having known zero points and H is also 
smooth. Typically one may choose a convex homotopy such as 

H(x,t) = (1 - t)g(x) + tF(x) (2.15) 

The problem H(x,t)=^0 is then solved for values of t between 0 and 1. 

This is equivalent to tracing an implicitly defined curve c(s) E:H~\0) 

(i.e. H(c(s))=0) for a starting point (XQ ,0) to a solution point (Xn,l). Under 

certain conditions, c(s) can be defined as (see Fig2.2): 

x(t) = -(H,(t,x(tW'H,(t,x{t)) (2.16) 

If this succeeds, then a zero point of F is obtained, i.e. H(x,l) = F(x). How­
ever, the reader may suspect that this is an unnatural approach, since 
Eq.2.16 seems to be a more compHcated problem than to solve H(c(s))=0 
as a stabilizer. This is the general idea in the continuation methods with a 
predictor and corrector tracing scheme. 
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t = l 

Fig.2,2 Homotopy solution 

The relationship Eq.2.15, which embeds the original problem in a family 
of problems, gives an example of a homotopy that connects the two func­
tions F and g. In general a homotopy can be any continuous connection 
between F and g. If such a map H exists, we say that F is homotropic to 
g. A simple two-dimensional nonlinear problem is given here to illustrate 
how the homotopy method works. The details of this method are given in 
[23]. 

Numerical example 1 .[24] 

Fix) 
/2W 

;cf-3x2+3 

X^X2 + 6 

Define the homotopy function as: 

H{x,t) = tF(x) + (1 - t)g(x) 

^tF(x) + (l-t)F(x)-F(xo) 

= F(x) + (t-l)F(x) 

Then we get a curve (from Eq.2.5) defined by: 
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]_ 

"A 2x A -x^ 

42x2 

14x 

where A=2xiV6x2^, with Xo= (1,1). After tracing the implicitly defined 
curve via some continuation method, we arrive at a solution when t = I: 
x*= (-2.961, 1.978). A real root of F is (-3, 2). Reasonably we can ex­
pect that Newton's method would work well with x* as the initial guess. 
After one step of Newton-Raphson iteration, we getxi= (-3.0003, 2.0003). 

However, if we start the Newton's methods directly with the initial guess 
xo= (1, 1), it takes more than 5 iterations to get the answer x\. For a more 
complicated practical nonlinear problem, the conventional Newton's 
method might not work at all due to the poor selection of the initial values. 

Whether or not the tracing of a curve can succeed depends on the continua­
tion strategy employed. If the curve can be parameterized with respect to 
the parameter t, then the classical embedding algorithm [23] can be ap­
plied. In the following sections, we will discuss how a parameterization 
is done and how vital this procedure is in the continuation, or say the curve 
tracing process. Particularly, we will show how the continuation is car­
ried on even when the curve is not parameterizeable with respect to a cer­
tain parameter. 

2.3.3 Continuation methods 

General description of different aspects of continuation methods with 
minimum mathematical details in curve tracing is given below. For de­
tailed explanation and mathematical proofs of these methods, please refer 
to the mathematical references provided in this section. Brief but more per­
tinent exploration of applying the methodology to power system studies is 
given in Chapter 3. The system of nonlinear equations in the form of equa­
tion Eq.2.12 serves as a basis for discussion. One note to make here is that, 
for the tracing of a curve defined by Eq.2.15, the discussion is the same as 
for the curve defined by Eq.2.12. Here, x denotes an /^-dimensional vec­
tor. 

Continuation methods usually consist of the following [25]: predictor, 
parameterization strategy, corrector and step length control. Assume that at 
least one solution of equation Eq.2.12 has been calculated, for instance, by 
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the homotopy method. For the tracing of a curve defined by Eq.2.15, this 

corresponds to the assumption that g has a known zero point. The f 

continuation step starts from a solution (x^+i ,/ly) of Eq.2.12 and attempts 

to calculate the next solution {Xj^^.Xj^^), for the next 2, namely/L^.^j. 

With a predictor-corrector method, the stepy to step 7+1 is split into two 

parts, with (Xj^^, Xj) produced in between by the prediction. In general, 

the predictor merely provides an initial guess for the corrector iterations 
that home in a solution of equations Eq.2.12. The distance between two 
consecutive solutions is called the step size. In addition to equation 
Eq.2.12, a relation that identifies the location of a solution on the branch is 
needed. This identification is closely related to the kind of parameteriza­
tion strategy chosen to trace the curve. 

In the curve tracing process, at some critical points (e.g. turning or fold 
points), the singularity of the Jacobian matrix Fx often causes trouble either 
in the prediction or in the correction process. This means that the current 
continuation parameter has become ill-suited for parameterizing the curve. 
One way of overcoming this difficulty at turning points is to parameterize 
the curve by arc length. The augmented Jacobian can be nonsingular 
throughout the tracing process. However, in practical power system 
analysis, we always want to get as much useful information as possible 
during the continuation process. The arc length usually has a geometrical 
rather than physical meaning, therefore we are often more interested in an­
other important ODE-based predictor, i.e., the tangent parameterized at 
each step. This is deferred to Section 2.3.4. 
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A^ 

Homotopy 

H(x,t) = 0 

F(x,0) = 0 
Curve of original 

/interest 

F(x,a)\0 
Apply continuation 
method 

^ 

Fig.2.3 Homotopy vs. continuation 

Fig.2.3 provides a conceptual VIQW point of homotopy in combination w îth 
continuation. Homotopy can be used to get an initial point on the curve of 
original interest. Continuation method can use this solution to further trace 
the curve of original interest. As mentioned before homotopy method uses 
artificial parameter (/ in Fig.2.3) to get a solution on the curve of original 
interest. Continuation method in general uses a natural or physical parame­
ter for the continuation. The efficiency in curve tracing is closely related to 
the step length control strategy. It is not difficult to choose a w^orkable step 
size in practice, though some trial and error is often required before the 
appropriate step size can be found. Step control can often be based on the 
estimated of the convergence quality of the corrector iteration. In [25] se­
lects step size according to the number of corrector iterations. In general, 
the step length control scheme is problem dependent. 

In practical situations, such as in powder systems, saddle node bifurcation, 
to w^hich out attention w îll mainly be given, are generic with the collapse 
type voltage problems. However, in some other situations, other bifurca­
tions might occur more frequently and thus will be of greater interest. 
For instance, the type of bifurcation that connects equilibria with periodic 
motion, i.e., Hopf bifurcation, is also generic. Readers interested in prob­
lems, such as how to locate Hopf bifiircation point on the traced branch 
and the related topics are referred to reference [25]. 
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2.3.4 Curve Tracing 

Davidenko in his seminal paper [26] proposed that the solving equation 
Eq.2.12 is equivalent to solving the following differential equation. 

F^ {x, X) dxl dk~ -F^ {x, X) (2.17a) 

With the initial conditions x{X) = xo, where F(xo, Ao) = 0. One can generate 
a sequence of solutions for changing X by numerically solving the differen­
tial Eq.2.17b with an appropriate initial value. 

dx 

dX 
= -[F.VF, 

(2.17b) 

However, here, the singularity ofFx creates numerical problems. Continua­
tion methods can well alleviate this problem. 

The continuation algorithm starts from a known solution and uses a predic­
tor-corrector scheme to find subsequent solutions at different 1 values. 

The Eq.2.17a can be rearranged in the following form 

F^ (x, /l)dx + F^ (x, A)d/l = 0 

dx 

(2.17c) 

[F^(X,A) F,(xa)] 
dX 

= 0 

Let T=[dx d XY, where T is a n+\ dimensional vector with Tn+i = 
X. T is tangent to the solution branch of Eq.2.17c. Eq.2.17c consists oin 
equations and («+l) unknowns. To get a unique solution a normalization 
of T is needed. For this one can fix one of the elements of T at particular 
value. For example one can use ej T = Tt =1.0, where Ck is {n+\) dimen­
sional unit vector with Z:̂^ element equals to unity [25] 
The tangent Tis the solution of the linear system: 

FF (2.18) 
z = e n+\ 
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Provided the full rank condition rank (F^,F;^) = n holds along the whole 

branch, the above equation has a unique solution at any point on the 
branch (k may have to be changed to select a different continuation pa­
rameter at a particular step, especially at or near the turning point). Once 
the tangent vector has been found, the prediction can be easily made. If we 
define Y= (x, X), then: 

where a*. designates the step size. 

(2.19a) 

Parameterization and the corrector: Now that a prediction has been made, a 
method of correcting the approximate solution is needed. Actually the best 
way to present this corrector is to expand on parameterization, which is vi­
tal to the process. Various parameterization techniques are proposed in the 
mathematical literature. Local parameterization proposed by [27, 28] looks 
promising and is described here. In local parameterization, the local 
original set of equations is augmented by one equation that specifies the 
value of one of the state variables or L In local parameterization one can 

fix Yf^ = r/ (I < k < n-^l). Then we have to solve the following set of 

equations: 

F(Y) = 0 

7,-77 = 0 
(2.19b) 

Selection of the continuation parameter corresponds to the variable that 

has the largest tangent vector component. Therefore 7, at a particular 

step is the maximum of (| Tj \,\T2 |, • • • | T^^^ \). Now, once a suitable index 

k and value of rj are chosen, a slightly modified Newton-Raphson iterative 
process can be used to solve the above set of equations. The general form 
of the iterative corrector process at the/^ step is: 

' ' 0 
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The corrector Jacobian can be seen to have the same form as the predicted 
Jacobian. Actually the index k used in the corrector is the same as that of 

used in the predictor and rj will be equal to 7^ , the predicted value Yk. In 

the predictor it is made to have a non zero differential change (J 7^ = Tk 

= ±1) and in the corrector its value is specified so that the values of other 
variables can be found. 

The step length in Eq.2.19a can be determined by various approaches. The 
simplest one is by keeping the step length constant. However if we choose 
very small step length the number of steps needed may be vary large. On 
the other hand large step lengths may lead to convergence problems. [25] 
proposed a simple approach for step length selection. Based on this ap­
proach the new step length is given by: 

i^j)ne.=i^j)oldNoptl^j 

where Nopt= optimal number of corrector iterations (this number is 6 for an 
error tolerance of lO""̂ ) and Â  = Number of iterations needed to approxi­
mate the previous continuation step. 

With this the F̂  value tj in Eq.2.19 can be calculated as: 

For most of the cases X is the ideal parameter to choose for tracing. How­
ever this parameter creates problems near the fold points. Near the fold 
point the tangent is normal to the parameter axis. However with local 
parameterization, near the fold point one can choose the parameter other 
than X to avoid these singularity problems. The identification of critical 
point can be realized by observing the sign change oidX, 

A one dimensional nonlinear problem is used here to show the basic steps 
involved in continuation (see Fig.2.4): 

Numerical example 2: Consider the following simple example with a sin­
gle unknown x 

F{x,X) = x^ - 3 x + /l = 0 (2.21a) 
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The Jacobian is 

dx dX 
= [ ( 2 x - 3 ) 1] 

Let the base solution (JCQ, XQ) be (3, 0). Then the series of solutions (xi, X\), 
{x2,X'2), can be found using predictor-corrector continuation as below: 

Continuation step 1: 

Predictor 

To start with, let X be the continuation parameter. Calculate the tangent 
vector as below: (here the index k is equal to 2). 

"(2xo-3) 1 

0 1 

=> 
3 iir 

0 lj[ 

ir^ici 
J \jdA,\ 

dx 

dX 
n: 

lo 

1 1 

0' 

1 

dx = — and dX-X 
3 

Predict the next solution by solving: 

X^ 

K 
Z=. 

XQ 

K 
+ 0" 

dx 

dX 

where cr is a scalar designating step size (say 0.5). Thus the predicted so­

lution (Xi,Ij) becomes (2.8333, 0.5). 

Continuation step ^ 
Corrector 

2: 

Correct the predicted solution by solving: 

= > -

"(23c,-3) 1" 

0 1 

[2.6666 1] 

0 1 

TAX 

[A/1_ 

[ A X I 

AA 
= 

r/(x„;i,)1 

L 0 J 
"0.0277768 

0 

Ax = -0.0104165 and A;1 = 0 
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Repeat these correction iterations until reasonable accuracy is obtained 

(say 6* =0.0001). Now, max{Ax,AX}>8 . So update x\ and X\ and repeat 

the corrector iteration. 
x , „ , ,=Xi+Ax = 2.8229164 

\ . e . = ^ + A ; i = o.5 

Continuation step 3: 
Corrector iteration: 

0 

• 3 ) 1 Ax 

AA 0 

=> Ax =-0.00004075 and A;1 = 0 

Now, max|Ax,AX,}<8. So stop the corrector iterations. After the first 

continuation step, the point (xî Ai) is equal to (2.8228757, 0.5). Repeat the 
entire process until we reach the critical point. For this example, the criti­
cal point it (1.5, 2.25). 

A versus x curve for the example is shown in the Fig.2.4. For the pre­
dicted solutions at points (1) and (2), we can choose X as the continuation 
parameter (i.e., fix X at that particular value) and converge on to the curve 
with corrector iterations. But at (3), A can not be a continuation parame­
ter, as there is no solution for that value of/I. At this point (i.e. when we 
are close to the critical point), we use local parameterization technique and 
choose X as the continuation parameter and solve for the system. This 
can be clearly observed in the example we considered. We know the so­
lution at the fold point as (1.5, 2.25). Consider the augmented Jacobian of 
the continuation process 

72x-3) r 
0 1 

-^aug -

At X = 1.5, det{Jaug} =0. So the method diverges near the critical point, if 
1 is the continuation parameter. If we fix the value of x, instead of A, then 

^aug -

(2JC-3) 1 

1 0 

det{Jaug} "^ 0. Then we can solve for the system. 
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Fig.2,4 Illustration of predictor-corrector scheme 

2.3.5 Direct method in computing the Saddle node bifurcation 
point: a one step continuation 

In Section 2.3.4, discussion has been given to show that the tracing of a 
curve can be done via continuation. We've noticed that, on the traced 
curve, a particular point, namely, the critical point, or sometimes called the 
fold point (also related to saddle node bifurcation), is often of greater in­
terest. If we are only interested in locating this point with respect to Ac, or 
say, we are interested in the maxim allowable variation ofX where the cor­
responding linearization (Jacobian) is singular, we have yet another ap­
proach available, i.e., the direct method. 

When the Jacobian becomes singular, F(x, X) =0 can not be solved by regu­
lar Newton-Raphson method in the present form. To avoid this singularity 
several methods have been published in the mathematical literature [29, 
30, 31]. In these references the authors cleverly augmented the original 
system of equations in such a way that that for this enlarged system, the 
fold point becomes regular. If the fold point is mathematically character-
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ized by the steady state Jacobian F^ having a simple and unique zero ei­
genvalue, with nonzero right eigenvector h and left eigenvector w, then 

G(Y) = 

F(x,A) ' (2.21b) 

= 0 

where {xc, Xc) is a fold point oiF^Xc, X) = 0. This procedure basically aug­
ments the original equations oiF(x, X) =0 by Fx(x, X)h =0, with hk= I. This 
augmentation makes the Jacobian G^ of enlarged system G{Y) non-singular 
and guarantees a solution. The proof can be found in [32]. This approach 
has some drawbacks. The dimension of the nonlinear set of equations to be 
solved is twice that of the original number. The approach requires a good 
estimate for the vector h. However, convergence of the direct method is 
very fast if the initial operating point is close to the turning point. The 
enlarged system can be solved in such a way that it requires the solution of 
nxn (n is the dimension of the Jacobian Fx(x, X)) linear systems, each 
with the same matrix. This method needs only one LU decomposition. At 
this turning point, rank F^ix, X)=nA and F^ (Xc, Xc) 8 range Fx(xc, Xc), that 
is rank F^ (Xc, Xc)/ Fx (x^ Xc) = n. These are called transversality conditions. 
Depending on the type of transversality condition, different types of static 
bifurcations can occur. Fold or saddle node is generic or the most com­
monly occurring static bifurcation. Table 2.1 summarizes the type of static 
bifurcation and corresponding transversahty condition for a one-
dimensional scalar system. Details can be found in Wiggins book [33]. The 
application of this method to power system voltage stability is reported by 
[34, 35]. 

Table 2.1 Static bifurcation types 

Bifurcation Transversality Con- Prototype Bifurcation Dia-
Type 
Fold 

Transcriti-
cal 

dition 

dF ^ d^F ^ 

dX dx" 

Equation 
X-x^ =0 

A x - x ^ = 0 

gram 
X 

d?^x dx' 
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Unstable mode Stable mode 

Numerical example 3: In Eq.2.21b, the original system of equations is 
augmented in such a way that for the enlarged system, the turning point 
becomes regular. Solving for Eq.2.21b will yield the desired fold point. 
Related to numerical example 2 given above, the enlarged system of equa­
tions is: 

x^-3x + A = 0 r . (2-22) 

2 x - 3 = 0 = 

Solving the above two equations, we directly get the critical point (xc, l^^'' 
= (1.5,2.25/^ 

Advantages: 

The direct method can find the critical point where the Jacobian is singular 
by solving the enlarged system of power flow equations in one step. The 
left and right eigenvectors produced in the direct approach carry very im­
portant information. For instance, it was shown that, at saddle node bifur­
cations, the right eigenvector corresponding to the zero eigenvalue gives 
the trajectory of the system state variables [16]. The left eigenvector can be 
used to construct a normal vector [17, 36, 37, 38] at the bifurcations hyper-
surface. 

Limitations: 

In the direct approach, for a successful convergence, a good initial guess is 
needed. This method basically doubles the number of equations to be 
solved. However, some of these shortcomings can be overcome by fol­
lowing the approach proposed in reference [30]. In that paper, the authors 
explored the structure of equation Eq.2.21b. It's shown that the whole sys­
tem can be resolved into four linear subsystems with the same coefficient 
matrix. Reference [34] applied this method to power system voltage stabil­
ity studies. 
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When one is beset with the lack of good starting points for the Newton 
type iterative methods in solving nonlinear equations, or when one needs 
to lead a parameter study of nonlinear system equilibrium problems, it 
would probably be advisable to turn homotopy and continuation methods. 
Examples shown in this section manifests the applicabihty of the technique 
to engineering problems. This review does not present and exhaustive sur­
vey but a compact text on continuation methods. Readers interested in con­
tinuation, bifurcation, and related numerical methods may find the follow­
ing references [25, 27, 39, 40] very helpful. 

2.4 Hopf Bifurcation 

2.4.1 Existence of Hopf bifurcation point 

If (i) F (Xc, Ac) = 0, (ii) the Jacobian matrix (dF/dx) has a simple pair of 
purely imaginary eigenvalues, ju(Xc) = ^jw, (iii) d(RQ(ju(kc)))/dk ^ 0. 
(Marsden & McCracken [41], Hassard et al [42].) 

Then there is a birth or death of limit cycles at {Xc, Ac) depending on the 
sign of derivative in (iii). Xc is the value of the parameter at which Hopf bi­
furcation occurs. Requirement (iii) guarantees there is a transversal cross­
ing of the imaginary axis by the pair of complex conjugate eigenvalues. 
Numerical determination of the Hopf bifurcation point involves estimation 
of the point {xc, Ac)- A costly way of identifying the point is to evaluate all 
the eigenvalues of the Jacobian matrix. However, as in the static approach 
there are efficient ways of identifying the Hopf point by direct methods as 
well as by indirect methods. 

2A.1.1 Direct methods 

Direct methods [40] calculate the Hopf point by solving one single suitably 
chosen equation. At the Hopf point, one pair of complex eigenvalues 
crosses the imaginary axis. Let this pair be: 

with 
«(4) = 0; ^(AJ = 0; da(AJ/dA = 0 
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For an eigenvalue // of the Jacobian matrix F^ [= dF I dx\, the follow­

ing equation is valid 

FJV^juW (2.23) 

where W = u ^jv is an eigenvector corresponding to the eigenvalue//. 

Since oc{X^) = 0, Eq.2.23 can be written as 

^.(^ + 7v) = (+7/?)(i/ + 7v) 

F^v + J3u = 0 (2.24) 

F^v-J3u = 0 (2.25) 

where u and v are vectors of dimension n. We have in fact 3n nonlinear al­

gebraic Eqs.2.24 and 2.25 and F(x,X)^0 with 3^+2 unknowns (Xj,X2,---, 

v.,V2,"',v ,A,j3). However the other two unknowns 

can be obtained by putting two normalizing conditions that force W to be 
non-zero. This means that practically we can choose two components of 
the vectors u and v arbitrarily. The Newton iterations method can be effec­
tively used to solve this 3n by the 3n system to get the Hopf point. An effi­
cient algorithm based on the direct approach is provided by [43]. The ap­
plication of the boundary value problem for direct computation of the Hopf 
points was proposed by Seydel [25]. 

2.4.1.2 Indirect methods 

The Hopf bifurcation point (x^,X^) can also be located by an indirect ap­
proach. This can be achieved by obtaining the information collected during 
any continuation method described before, i.e., an iteration technique is 
used to solve the algebraic equation Re(//(/l)) = 0 by means of the secant 

method. A change of sign of the real part a(Z) indicates that/l^ has 
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been passed. Therefore the check (x(Xj) a{Xj -1) <0 should be per­

formed after each continuation step Xj_^ -^ Xj. 

A good comparison of various methods of computing Hopf bifurcating 
points is given by [44]. AppHcation of Hopf bifurcation to power system 
problems can be found in [12, 14, 22, 45]. 

2.5 Complex Bifurcation 

Further variation of the parameter beyond the Hopf point may lead to other 
complex phenomena; basically one has to trace the monodromy matrix of a 
periodic orbit for different values of the parameter. The stability of peri­
odic solution is determined by Floquet multipliers which are the eigenval­
ues of the monodromy matrix. For a particular value of A, the monodromy 
matrix has w-Floquet multipliers. The magnitude of one of them is always 
equal to unity. The other n-\ Floquet multipliers determine (local) stabihty 
by the following rule [25, 46]. 

• x{i) is stable if | jUj \< 1, fory =1,..., n-\\ 

• x{i) is unstable if | jUj \> 1, for somey. 

On the stable periodic orbit, the nA multipliers are always inside the unit 
circle. The multipliers are the functions of the parameter under considera­
tion. When we vary the parameter, some of the multipliers may cross the 
unit circle. The multiplier crossing the unit circle is called the critical mul­
tiplier. Different types of branching occur depending on where a critical 
multiplier or pair of complex conjugate multipliers leaves the unit circle. 
Three associated types of branching are (i) the critical multiplier goes out­
side the unit circle along the positive real axis, with| ju^p^) |= 1, (ii) the 
multiplier goes outside the unit circle along the negative real axis with 
I M(PC) | - ~ 1 ^^d (iii) a pair of complex conjugate multipliers crosses the 
unit circle with a non-zero imaginary part. All these types refer to a loss of 
stability when 2 passes through X^. (On the other hand, if a critical multi­
plier enters the unit circle, the system gains stability.) In the case (i) typi­
cally, turning points of the periodic orbit occur with a gain or loss of stabil­
ity. Transcritical or pitchfork type bifurcations in periodic orbits are also 
possible for this case. In the case (ii), the system oscillates with period 
two. In the case (iii), the phenomenon of bifiircation into a torus occurs. 
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which is also called secondary Hopf bifurcation, or generalized Hopf bi­
furcation. The period doubling bifurcation often occurs repeatedly which 
generally leads to chaos. Lyapunov exponents are generally used to iden­
tify the chaos [47]. The exponential serves as a measure for exponential 
divergence or contraction of nearby trajectories. Chaos is characterized by 
at least one positive Lyapunov exponent, which reflects a stretching into 
one or more directions. In general, chaos has the following ingredients 
[47]: (i) the underlying dynamics is deterministic, (ii) no external noise has 
been introduced, (iii) seemingly erratic behavior of individual trajectories 
depends sensitively on small changes of initial conditions; (iv) in contrast 
to a single trajectory, some global characteristics are obtained by averaging 
over many trajectories or over a long time (e.g., a positive Lyapunov ex­
ponent) that do not depend on initial conditions; (v) when a parameter is 
tuned, the erratic state is reached via a sequence of events, including the 
appearance of one or more sub-harmonics. In the last few years, a great 
number of conferences and workshops devoted to chaotic dynamics have 
been organized. In most of them, papers by researchers from various 
branches of science and engineering have been presented. Research in 
chaos is well documented by [47]. Numerical methods to identify chaos 
can be found in [48]. Observations of chaos in power systems are reported 
in [12, 13, 49]. Fig2.5 gives the overall possible bifurcation scenario. 

statjonary 
point 

static 
saddle node 
transcfitjcQl 
pitchfork 

•ii-homocUntc* 
«p4:onjs -chaos 

^period doubting 

Fig. 2.5 List of possible bifurcations 
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3 Continuation Power Flow 

3.1 Introduction 

As mentioned in the previous chapter, the continuation method is a 
mathematical path-following methodology used to solve systems of 
nonlinear equations. The numerical derivation of this method is shown in 
[1]. Using the continuation method, we can track a solution branch around 
the turning point without difficulty. This makes the continuation method 
quite attractive in approximations of the critical point in a power system. 
The continuation power flow captures this path-following feature by 
means of a predictor-corrector scheme that adopts locally parameterized 
continuation techniques to trace the power flow solution paths. The next 
sections explain the principles of continuation power flow. 

3.2 Locally Parameterized Continuation 

A parameterization is a mathematical means of identifying each solution 
on the branch, a kind of measure along the branch. When we say "branch," 
we refer to a curve consisting of points joined together in n + l dimen­
sional space that are solutions of the nonlinear equations 

F(jc,;i) = 0 (3.1) 

This equation is obtained by introducing a load parameter,/I, into the 
original system of nonlinear equations, F(x) = 0. For a range of values 

of >i, it is quite possible to identify each solution on the branch in a 
mathematical way [2]. But not every branch can be parameterized by an 
arbitrary parameter. The solution of Eq.3.1 along a given path can be 
found for each value of A, although problems arise when a solution does 
not exist for some maximum possible X value. At this point, one of the 
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state variables, x^, can be used effectively as the parameter to be varied, 

choice of which is determined locally at each continuation step. Thus, the 
method is designated as the locally parameterized continuation. In sum­
mary, local parameterization allows not only the added load parameter A, 
but also the state variables to be used as continuation parameters. 

3.3 Formulation of Power Flow Equations 

To apply locally parameterized continuation techniques to the power flow 
problem, the power flow equations must be reformulated to include a load 
parameter, A. This reformulation can be accomplished by expressing the 
load and the generation at a bus as a function of the load parameter, A. 
Thus, the general forms of the new equations for each bus i are 

A / ^ . = P ^ , . ( ; i ) - P , , ( / l ) - P , , = 0 (3.2) 

^Q<=QGt-QLM)-Qn-o (3.3) 

where 

and 0 < A < A^f.ificai • A = 0 corresponds to the base case, and 

/i = A^f.ificai t^ ^^^ critical case. The subscripts!., G and T respectively 

denote bus load, generation, and injection. The voltage at bus / is V.ZS., 

and yy^Yij is the {i^jy element of the system admittance matrix 

[yBus^-

To simulate different load change scenarios, the P^. and Q^^ can be modi­

fied as 

Pu(^) = Pu. •^A.KuS^.sE cos(^,)] (3.4) 

QuW = Quo +^[K,,S^,sE sm(?^,)] (3-5) 
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where S^^SE COS(^ , ) = Pj,,, and ^L/O = ^ABASE sin(^,) 

LQIQ^.Q = Pj^.Q tan(^.) , then Eqs.3.4 and 3.5 can be rewritten as 

QuW-PaoimC¥i)[l + ^KJ 
where 

• Pj^.Q 5 Qj^.Q = original load at bus / , active and reactive respectively; 

• K^. = multiplier designating the rate of load change at bus / as X 

changes; 

• y/. = power factor angle of load change at bus / ; 

• S^^s^ = apparent power, which is chosen to provide appropriate scal­

ing of / I . 

The active power generation can be modified to 

PaM) = PG>oa + ^a>) (3.6) 

where 

• ^Gio "̂  active generation at bus / in the base case; 

• KQ- = constant specifying the rate of change in generation as A, var­

ies. 

Now if F is used to denote the entire set of equations, then the problem 
can be expressed as a set of nonlinear algebraic equation represented by 

Eq.3.1, with x = [S^^V] . The predictor corrector continuation process 

can then be applied to these equations. 

3.4 The Predictor-corrector Process 

The first task in the predictor process is to calculate the tangent vector. 
This can be obtained from 
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[£..Zv.£J dV 

dX 

= 0 

On the left side of the equation is a matrix of partial derivatives multi­
plied by the vectors of differentials. The former is the conventional power 
flow Jacobian augmented by one column (F^ ), whereas the latter 

T = [dS^,dV_,dXf^ is the tangent vector being sought. Normalization 

must be imposed to give t_ a nonzero length. One can use, for example 

where ^^ is an appropriately dimensioned row vector with all elements 

equal to zero except the k^^, which is equal to one. If the index k is 
chosen properly, letting tj^ = ±1.0 imposes a nonzero norm on the tan­
gent vector and guarantees that the augmented Jacobian will be nonsingu-
lar at the point of maximum possible system load [3]. Thus, the tangent 
vector is determined as the solution of the linear system 

(3.7) F, 
e. 

P I 
[£] = 

0 
±1 

Once the tangent vector has been found by solving Eq.3.7, the prediction 
can be made as 

V 
r 
X 

-

's' 
V 

_A_ 
+ <7 

'dS' 

dV_ 
_dX_ 

where '* ' denotes the predicted solution, and cr is a scalar designat­
ing step size. 

After the prediction is made, the next step is to correct the predicted so­
lution. As mentioned in Chapter 2, the technique used here is local 
parameterization, whereby the original set of equations is augmented by 
one equation specifying the value of one of the state variables. In equation 
form, this relation is expressed as 



3.4 The Predictor-corrector Process 53 

0, 

where rj is an appropriate value for the k^^ element of x . Once a suit­

able index k and the value of 7] are specified, a slightly modified N-R 

power flow method (altered only by one additions equation and one addi­
tional state variable) can be used to solve the set of equations. This proce­
dure provides the corrector needed to modify the predicted solution found 
in the previous section. 

3.4.1 Selecting the continuation parameter 

The best method of selecting the correct continuation parameter at each 
step is to select the state variable (change the underlined to variable) with 
the largest tangent vector component. In short, we select the state variable 
(change the underlined to variable) evidencing the maximum rate of 
change near a given solution. To begin with, /I is a good choice, and 
subsequent continuation parameters can be evaluated as: 

x,:\t,\=max{\t,l\t,l'-,\tj} (3.8) 

Here, t_ is the tangent vector. After the continuation parameter is se­

lected, the proper value of either +1 or -1 should be assigned to tj^ in the 

tangent vector calculation. 

3.4.2 Identifying the critical point 

To find the stopping criterion for the continuation power flow, we must de­
termine whether the critical point has been reached. This can be done eas­
ily because the critical point is the point at which maximum loading (and 
hence maximum A) occurs before decreasing. For this reason, at the criti­
cal point, the tangent vector component corresponding to X (which 
is dZ) is zero and becomes negative once it passes the critical point. Thus, 
the sign of the dX component tells us whether the critical point has been 
passed or not. 

The previous paragraphs summarize the basic continuation power flow. 
More details can be found in [4]. 
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3.5 Examples 

Two bus example: constant power load: the above approach is first dem­
onstrated through a simple two bus example as shown in Fig.3.1. 

V, = 1Z0° V^ = V,ZS 
yo.i 

-P-jQ 

Fig.3.1 Two bus system 

For this two bus example, the power flow equation at bus 2 can be for­
mulated as: 

Suppose 

• The voltage at the generator bus is: V^ = IZO 

• The voltage at the load bus is: F2 ~ ^ 2 ^ ^ 

• The load is: P + y g , so the injected power is: -P-jQ 

• The load power factor keeps constant. 

By introducing parameters X and K, we can represent load increase sce­

nario at bus 2 as follows: 

where Q^^ P^"^ tan(^^) and is the constant load changing factors speci­

fied for bus 2. 
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Then we get two equations corresponding to real power and reactive 
power: 

0 = Po *(l + ̂ ^ ) + ^2/2 cos(0^,-S) + Y^^V^^ cos(^22) = fiiS,V^,X) (3.9) 

0 = a * a + ̂ ^)-^2i^2sin(^2i-^)-i^22^2'sin(^J = /2(^,F,,A) (3.10) 

Now the original Jacobin matrix can be expressed as follows: 

Jo = 

e/i 5/i 
dS dV^ 

dS dK 

Y^y^ cos(^2, -d) -7^, sin(^2, -5)-lY^y^sinC^'^^) 

In the example, the system parameters are given as follows: ^ = 1.0, 

P o = 0 . 1 , cos(5^)=1.0, };2=^22=10' ^12=90% 2̂2 = - 9 0 " . 

Suppose we start from the following initial point: 

^2 =1.004, J = 0.075°, A = 0 

Using the initial guess of V^,?i prediction of the next solution can be 
made by taking an appropriately sized step in a tangent direction to the so­
lution path. The tangent vector can be calculated using the augmented 
Jacobin matrix: 

"^Aug -

J ^ 

5/i a/i 
dd dV^ 

df2 df. 

dS dK 

Po*K 

Qo*K (3.11) 

where e^ is an appropriately dimensioned row rector with all elements 

equal to zero except the A:̂ ,̂ which equals one. If the index k is chosen 
correctly, the augmented matrix is nonsingular. In the beginning, A: = 3 is 
chosen which corresponds to the parameter / I . So J^^^ is 
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•^/f«g -

10.0392 0.13 0.1 

0.1305 10.0808 0 

0 0 1 

Define the tangent vector as: 

t = [dS dV^ dXf 

During the prediction process, we have: 

•/.„,*^=[0 0 I f 

In the beginning the tangent vector is 

^ = [-0.01 0.0001 i f 

With this tangent vector, we get the predicted solution: 

(3.12) 

r^ .̂i -

F/^' 

U*̂ ' 
= 

> " 

F/ 

A' 

+ a 

'dd'' 

dV^ 

dA' 

where cr is a specified step length (we start at an initial step length a of 
0.3. Subsequent step lengths can be determined according to the procedure 
described in Chapter 2). So we have 

's'' 
^2 

r 
= 

's'' 

/ 

+ (T 

'dS'' 

dV^ 

dX' 
= 

'0.013" 

1.004 

0 

+ 0.3* 

' -0.01 ' 

-0.0001 

1 
= 

'o.or 
1.004 

0.3 _ 

Now that a prediction has been achieved, we can use this predicted solu­
tion as an initial guess for the corrector. We use the local parameterization 
method. Substituting these values into Eqs.3.9 and 3.10, we get the mis­
match: A/|^,A/2'^. Here we let ?i be constant and apply the same aug­
mented Jacobin matrix, to obtain the corrector: 
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AS''' 

2 
_ r - l * 

-^ Aug A// 

0 

So the corrected solution is: 

's'''' 
vl^' 
x'^' 

= 

-gk.x -

yk.X 

X'^' 

+ 0-

'^5'''' 

AVt' 

AX'^' 

The final converged solution for a given tolerance (10" )̂ is 

[S' V^ X'Y = [ - 0 . 0 1 2 9 1.0002 0 . 3 ] ^ Then we can use this 

value as the starting point for the predictor and start the next step and so 

on. 

After we get the tangent vector, we need to verify whether the system 
has reached the critical point. The sign of the product dVdX provides 
the information related to the critical point (dX=0 corresponds to the criti­
cal point. If the sign of the product dvdX is positive then the critical point 
has been passed). 

The tracing process based on continuation method includes the follow­
ing three situations: 

a) Tracing the upper part of the PV curve 
b) Tracing near the critical point 
c) Tracing the lower part of the PV curve 



58 Continuation Power Flow 

1 

A , " ^ 

• " 

-

-

-

i 1 

. Real value 

\ > - ^ . . ^ ^ ^ 

^̂ O 
\ 

1 

1 1 

Predictor 

--^^ A^ Corrector 

BX^^ 

1 ! 

1 

" 

-

-

Nv 

N X 

V 
0.985 

0.98 

0.975 

0.97 

0.965 

0.96 

0.955 

0.95 

0.945 

0.18 0.2 0.22 0.24 0.26 0.28 0.3 p 

Fig.3,2 Tracing the upper part of the PV curve 

a) Tracing the upper part of the PV curve: 

As shown in Fig.3.2, suppose the predictor begins at Aj (0.1750, 

0.9841) {p- PX/E^). At point Aj , the augmented Jacobian matrix is 

^Aug -

9.6837 -1.7783 0.1 

-1.75 9.8406 0 

0 0 1 

So the tangent vector is 

[dd dV^ JAf =[-0.0107 -0.0019 i f 

The estimated step length a at this point is 7.68. Then the predictor 
becomes 

^ . . 1 

' 1 

P̂ ' 
= 

5' 

V' 

A' 

+ a 

dS' 

dV^ 

dX" 
= 

"-0.1788' 

0.9841 

16.5 

+ 7.68* 

"-0.0107" 

-0.0019 

1 
= 

"-0.2608" 

0.9695 

24.18 
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which corresponds to the point A^ (0.2518, 0.9695) in Fig.3.2. With 

same augmented Jacobian, one can perform corrector iterations using Aj 

as initial guess for Newton method. After checking for proper convergence 
tolerance, the final solution is: 

\gk.X 

F/^' 

;i^ '̂ 

= 

gk.X 

F/^' 

P̂ ' 
+ 

^^'^' 

AVl^' 

AA'"' 

= 

'-0.2639" 

0.9654 

24.18 

which is the point 6^(0.2518, 0.9654). Then we can begin the next pre­

dictor. 

b) Tracing near the critical point 

0.72 

0.715 

0.71 

0.705 

0.7 

0.695 

0.69 

1 1 

^ ^ - ^ . 

-

^ ^ - ' T ' ' 

1 ! 

i 1 

"̂ \. 

Critical point 

^.-^ 

' X ^ 

1 1 

1 1 1 1 

-

-

Y^2 
\ Predictor 

/ / Corrector 

M 
Real value 

-

0.4995 0.4996 0.4997 0.4998 0.4999 0.5 0.5001 0.5002 0.5003 

Fig. 3.3 Tracing near the critical point 
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As shown in Fig.3.3, suppose the predictor begins at A^CO.S, 0.709) 

which is close to the critical point. At point A2, the augmented Jacobian 

matrix is 

"5.0264 -7.0524 O.l" 

-4.9999 7.0897 0 

0 0 1 

J Aug -

So the tangent vector is 

[dd dV^ j ; i f =[-1.893 -1.335 i f 

which corresponds to the point A2 (0.5, 0.7057) in Fig.3.3. It should be 
noted here that the absolute value of dX is less than the other tangent vector 
absolute values, so we changed the continuation parameter from X to V2 for 
the corrector. For the corrector convergence, the step length a is reduced to 
0.0025. 

The final corrected solution: 

gk.X 

vt' 
/l*^' 

= 

gk.X 

f/̂ ' 
P '̂ 

+ 

A^*"' 

Ar/"' 
AA*̂ ' 

= 

•-0.7874' 

0.7057 

48.9996_ 

which is the point B2 (0.5, 0.7057). 

Actually the real critical point of the system is (0.5, 0.7071), which is 
very close to B2. 

c) Tracing belov^ the critical point 
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V 

0.42 

0.4 

0.38 

0.36 

0.34 

0.32 

Real value 

Predictor 

A3 Corrector 

0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 p 

Fig. 3.4 Tracing below the critical 

In Fig.3.4, suppose the predictor begins at A3 (0.3774, 0.4147). At 

point A3, the augmented Jacobian matrix is 

J Aug 

1.72 -9.0995 0.1 

-3.7738 4.1473 0 

0 0 1 

So the tangent vector is 

[d5 dV^ J l f =[-0.0152 -0.0139 1]' 

The predictor then becomes (cr = 5.154) 

- ^ . . 1 -

F/̂ ' 

P*' 
= 
P'l 
F/ 
X' 

+ a 
'dS'' 
dV^ 
dA' 

= 

"-1.1432" 

0.4147 

36.7379 

+ 5.154* 

"-0.0152' 

-0.0139 

-1 

= 

"-1.2217' 

0.3432 

31.5839 
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which to the point A3 (0.3258, 0.3432) in Fig.3.4. With same aug­

mented Jacobian, one can perform corrector iterations using A3 as initial 

guess for Newton method. After checking for proper convergence toler­
ance, the final solution is: 

^-1.2159 

0.3475 

31.5839 

which is the point 83(0.3258, 0.3475). Then we can begin the next pre­

dictor. 

Finally, the whole tracing trajectory is shown in Fig.3.5. Compared with 
the PV curve for the example in Chapter 1, we can see that the results are 
identical. The PV curve in Fig.3.5 corresponds to unity power factor case 
of Fig. 1.6 in Chapter 1. 

- ^ . . 1 -

r/̂ ' 
x'^' 

— 

-^k.x-

r/̂ ' 
p̂ ' 

+ 

'^s'^'' 
AF/"' 

A/l'^' 

= 

0.2 0.3 0.4 0.5 

Fig. 3.5 The tracing trajectory 
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Two bus example: Nonlinear load: 

The above two bus example is based on a constant power load model, and 
load is independent of voltage. Thus, load is made to vary in direct propor­
tion to any change in A. But in a nonlinear load model, the response of the 
load to a change in voltage magnitude must be considered, and in such 
load model, the load is not in direct proportion to change in Jl. We can 
represent load increase scenario at bus 2 with nonlinear model as follows: 

In the above equation, V2Q is the initial voltage magnitude and parameter 

KPV and KPQ can be used to represent different load models. For QX-

?implQ, KPV = 0 , KQV = 0 is constant power model; KPV = \ , 

KQV = 1 is constant current model; KPV = 2, KQV = 2 is constant 
impedance model. With nonlinear load model, we can get new equations 
for real and reactive power: 

We use constant current and constant impedance load model to demon­
strate the effect of different load model on critical point with 2 bus system. 
In the simulation, the system parameters are given as follows: A'= 1.0, 

Po=OA4, cost^=1.0, 1̂2 =^22 = 1 0 ' ^12=90% ^ 2 2 ^ - 9 0 ' ^o 

Figs 3.6, 3.7 and 3.8 show PV curve, P-/1, and V-/lfor constant current 
load model. As parameter Z increases, power consumption first increases 
and reaches maximum and then decreases. Here Xmax does not correspond 
to Pmax. Here X can be interpreted as connected load as opposed to actual 
load. 
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Fig. 3.6 V vs. P curve for constant current load 

Fig. 3.7 V vs. A. curve for constant current load 



3.5 Examples 65 

0.55 

0.5 

0.45 

0.4 
• D 
CO 
q 
l i 0.35 
CO 
"S 
•" 0.3 

0.25 

0.2 

0.15 

n 1 

-

-

-

-

-

/ 

. 
/ / 

/ / 

/ / 

/ 
/ 

t 

/̂'''"' 

• ^ 

..-- -

\ 
\ 

-

-

\ " 
\ \ 

\ \ 
v 

~ 

-

-

0.5 1.5 

Fig. 3.8 P vs. X, for constant current load 

Figs. 3.9, 3.10 and 3.11 show PV curve, P- /1 , and V-/lfor constant im­
pedance load. 

Fig. 3.9 V vs. P curve for constant impedance load 
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Fig. 3.10 V vs. A. curve for constant current load 
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Fig. 3.11 P vs. X for constant current load 
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For example if it is purely a resistive load then X represents the number of 
parallel resistors connected at bus2. As we can see form the Fig. 3.11, Pmax 
occurs when the reactance of the transmission line( here we neglected the 
resistance of the transmission line) equals the total resistance connected at 
bus2. As the number of resistors increase beyond the one correspond to the 
maximum power, net load power decreases. The voltage at bus 2 also de­
creases with X as shown in Fig. 3.10. 

39 bus New England test system example 

The data related to this test system is given in Appendix A: three scenarios 
are considered to demonstrate the capability of the continuation power 
flow. 

Scenario 1 

In the scenario 1, loads at 8 buses are increased, while the increased load is 
picked up by 9 generators. These load buses are bus 7, 8, 15, 16, 18, 20, 
21, 23, and the load is increased proportional to their initial load levels. 
Scheduled generator buses are generators 30, 31, 32, 33, 34, 35, 36, 37, 38. 
The generator output is also increased proportional to their initial genera­
tions. Among these 9 generators, generator 31 is chosen as the slack bus. 
Besides scheduled generation output increment, generator 31 is also re­
sponsible for the load balance of the network. 

For the load, the load increment is defined as: 

e „ ( A ) = P, ,o tan(^0[ l + ^ ^ . J 

The initial total load {Pjotaii)) ^^ 6141MW with/I = 0 , and in the next step, 

the total load is 6783MW with>^ = (6783-6141)/6141 = 0.104548. 

The total load increment is 642MW which is distributed among 8 load 
buses proportional to their initial bus load. The following Table 3.1 shows 
the initial bus load level, the coefficients K^, bus load increment, new load 
level and the power factor at each bus: 
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Table 3.1 Scenario 1 for load variation 

Bus 

7 

8 

15 

16 

18 

20 

21 

23 

Initial Load 
(MW) 
233.8 

522 

320 

329.4 

158 

680 

274 

247.5 

K 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

2.221326 

Load Increment 
(MW) 

54.15286 

120.9059 

74.11854 

76.29577 

36.59603 

157.5019 

63.464 

57.32606 

New Load Level 
(MW) 

287.9529 

642.9059 

394.1185 

405.6958 

194.596 

837.5019 

337.464 

304.8261 

Power Factor 

0.94 Lagging 

0.95 Lagging 

0.90 Lagging 

0.93 Lagging 

0.98 Lagging 

0.99 Lagging 

0.92 Lagging 

0.95 Lagging 

For the generator 
P,,=P,Jl + XK,,) 

K. Gi 

GiO 

GiO 

The following Table 3.2 shows the initial generator output, the coeffi­
cients KQ , generation increment and new generation level: 

Generators 

30 

31 

32 

33 

34 

35 

36 

37 

38 

Table 3.2 

Initial 
Generation 

(MW) 
230 

722.53 

630 

612 

488 

630 

540 

520 

810 

Scenario 1 for generation distribution 

KG 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

1.185 

Generation 
Increment (MW) 

28.41914 

89.27687 

77.84372 

75.61962 

60.29799 

77.84372 

66.72319 

64.25196 

100.0848 

New Generation 
(MW) 

258.4191 

811.8069 

707.8437 

687.6196 

548.298 

707.8437 

606.7232 

584.252 

910.0848 
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Because generator 31 is the slack bus, the actual output is 827MW instead 
of scheduled 81IMW, and the additional 16MW is for the load balance. 

Fig.3.12 shows the variation of individual generators real power with total 
system load. Fig.3.13 shows the variation of individual bus load with re­
spect to the total system load. Fig.3.14 presents PV curves at four critical 
load buses (these buses are based on the largest tangent vector elements 
corresponding to voltages at the critical point). Fig.3.15 shows the rela­
tionship between the bus voltage and the parameter X. For constant power 
loads X^^^ corresponds t oP ^,. However for nonlinear loads A^,, does 

nidx A iTidx mdx 

not correspond to P^^^ as shown in two bus example. 
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Fig,3.12 PG VS. P total 
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Scenario 2 

The only difference in this scenario compared to scenario 1 is that the 
loads at those 8 buses are increased equally. This means load increment is 
the same among all the load buses. All other conditions are same as in sce­
nario 1. 

Table 3.3 Scenario 2 for load variation 

Bus 

7 

8 

15 

16 

18 

20 

21 

23 

Initial Load 
(MW) 

233.8 

522 

320 

329.4 

158 

680 

274 

247.5 

K 

3.283136 

1.470493 

2.398741 

2.330289 

4.85821 

1.128819 

2.80145 

3.101403 

Load Increment 
(MW) 

79.16 

79.17 

79.16 

79.17 

79.16 

79.18 

79.17 

79.15 

New Load Level 
(MW) 

312.96 

601.17 

399.16 

408.57 

237.16 

759.18 

353.17 

326.65 

Figs.3.17 to 3.21 are similar to Fig.3.12 to 3.16 respectively. 

The initial total load is 6141MW with/I = 0 , and in the next step, the total 
load is 6774MW with A = (6774-6141) /6141-0 .103127 . The total 
load increment is 633MW which is distributed among 8 load buses 
equally. The following Table 3.3 shows the initial bus load level, the coef­
ficients K^, bus load increment and new bus load level. The power factor 
at each bus is same as in scenario 1. 
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3.6 Simultaneous Equilibria Tracing in Power Systems 

In power system analysis, it is frequently of interest to find solutions of the 
system at an equilibrium point. For instance, the solution of the power 
flow equations is needed in system planning and static security analysis. In 
stability analysis, a power flow is used to calculate the voltages and angles 
at all buses, and then the dynamic state variables are evaluated using the 
device equations. This procedure causes some problems as will be shown 
in the following sections. To overcome these problems, we will further ex­
tend the continuation technique to simultaneously trace the total system 
equlibria of the structure preserving power system model, which is de­
scribed by a set of nonlinear differential and algebraic equations (DAEs). 
Physical interpretations of the new approach will give insights into some 
issues which are important to a good understanding of the power system. 

Unlike in power flow analysis, a detailed dynamic representation of the 
power system is required to analyze the system's stability behavior. As a 
typical nonlinear dynamic system, with the multiple time-scale property, a 
set of nonlinear DAEs can be employed to describe the behavior of the 
power system, i.e.. 
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X = F(XJ,P) (3.13) 

0 = G(XJ,P) (3.14) 

where X includes the dynamic states, Y includes the algebraic state 
variables, and P consists of all parameters explicitly appearing in 
F andG . Some of these parameters can be control input settings. 

3.6.1 Total solution at an equilibrium 

A system equilibrium solution is needed for the evaluation of the stability, 
the solution XQ and YQ of Eqs.3.13 and 3.14 at steady state, i.e., when 

X = 0 , constitute the equilibrium point. Setting the differential to zero in­
dicates a state of equilibrium of the system. In small signal stability analy­
sis, the right hand side of the DAEs is first linearized, and then the system 
state matrix ^̂ ^̂  (where A^^^ = F^ -FyGy^G^ , see section 3.8.7) is 
evaluated at (XQ , ^Q ) • ^^^ eigenvalues give small signal stability informa­
tion of the current equilibrium point. In nonlinear time domain analysis, 
the equilibrium solution {X^, Y^) gives the initial conditions to start nu­
merical integration. In direct Lyapunov type stability analysis, this solution 
is also required. 

3.6.2 Traditional approach 

In Eq.3.14, G corresponds to the power balance equations at all buses in 
the system. Therefore its dimension is larger than that of the power flow. 
In power flow, it is assumed that the voltage at PV buses and vohage and 
angle at the slack bus(es) are known and constant. Consequently, for a net­
work of n buses, if there are m generators, m^ of which are desig­
nated as slack, then the number of equations in the power flow formulation 
will be 2n-m — m^ (for polar coordinates). For a constant generator 

terminal voltage, it is assumed that the static gain of the excitation system 
is infinite. No limitations on the slack bus generation can be enforced dur­
ing the solution process. Once a power flow is solved, together with the 
pre-specified generation and voltages for PV and slack buses, the X^ 
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values will be updated using Eq.3.13 at steady state. The control parameter 

settings in P corresponding to this X^ are then computed. This proce­

dure of solving for {X^, 7^, P^) is termed as the two-step approach. With 

this total system equilibrium solution, further stability analysis can then be 
conducted. 

The above procedure has some drawbacks. Firstly, if control limits are 
enforced, a solution (XQ,7Q,PQ) satisfying these limits may not exist. 

The slack bus generation might also exceed limits after the power flow. In 
this case, the state which is limited would need to be fixed at its limiting 
value and a corresponding new steady state equilibrium solution would 
have to be found. This would require a new power flow, for each specified 
value of PV bus generation or terminal voltage, or possibly generator reac­
tive power injection. For the last case, the generator voltage becomes part 
of the power flow solution. For a heavily loaded system, this trial and error 
procedure may have to be repeated several times, each time requiring a 
new power flow solution. Secondly, even after a set of (XQ , 7Q , P^ ) val­
ues satisfying all limits are found, there still exists another problem which 
is inevitable in using the power flow based two-step approach to produce 
equilibria solution for stability analysis. That is, the description of the gen­
erators in the power flow is very different from that in the dynamic re­
sponse. How the generators behave in a dynamic process depends on the 
dynamic characteristics of the synchronous machine and the control sys­
tems associated with them. These controls are not represented for the PV 
bus generators and the slack bus generators are simply left out in the power 
flow. Therefore, it may not be unusual that this discrepancy in representa­
tion leads to erroneous results. 

3.7 Power Flow Methodology and Assumptions 

Before introducing the simultaneous equilibria tracing technique, let us 
first have a closer look at the assumptions used in the power flow, particu­
larly the reasons why they are needed. With a clearer understanding of 
these assumptions, we will then be able to devise a procedure in which the 
problems encountered in the traditional approach can be avoided. 
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3.7.1 Nonlinearity in power flow 

In normal electrical network analysis, the voltages and/or currents of 
power sources are given as known quantities. In order to find the voltages 
at various nodes and currents in all branches, one simply needs to solve the 
network nodal equations which are linear. Correspondingly, for power 
network, this refers to the nodal representation, given in phasor notation as 

YV = 1 (3-15) 

where Y is the network admittance matrix, V is the vector of phasor 

voltages at all buses, and / is the nodal phasor injection currents. The 
conditions for Eq.3.15 to have a solution with a specified set of injection 

currents / are 

• 7 is nonsingular; 

• rank(Y \I) = rank(7) if Y is singular. 

Were the injection currents known, the power flow would have involved 
no nonlinear equations. However, in power system analysis, the nodal 
voltages and injection currents are both unknown before a power flow is 
solved. Instead, the generation and load powers are given as the known 
quantities. They are related to the nodal voltages and injection currents as 
shown below. 

Vi 

—* 
Vi 

The '*' sign indicates the complex conjugate. With the real and imaginary 
parts separated, Eq.3.15 is transformed into the following form 

^-PEi-Pu-Pn i = ̂ ,-n (316) 

(i-QEi-Qu-Qn i-^,-n (31V) 

where 
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Pn = ViY/kyik cos(^, - ^ , - r / J (3.18) 
k=\ 

n 

Qn = ^ Z^kytk sin(^/ -Oj,- /ik) (3.19) 
A : = l 

The two nonlinear Eqs.3.16 and 3.17 correspond to the algebraic part of 
the DAE formulation given in Eq.3.14. With the powers specified at the 
terminal buses, X variables are not of concern in the power flow equa­
tions. 

3.7.2 Slack bus assumption 

The unknowns in Eqs.3.16 and 3.17 a r e ( K , 0 , the number of which is 2 ^ . 
The underline sign is used to denote vectors. If we want o solve these un­
knowns directly using the Newton's method, we have to specify the gen­
erations and load powers at all buses. And most probably, with a starting 

point (V_ ,0_ ) close to normal operating conditions, this approach will 
lead to divergence. A closer look of the structure of the power balance 
equations will give more insight into the problem. Designating the genera­
tor at the n^^ bus as the slack, summing up the first n-l equations in 

Eqs.3.16 and 3.17 and then adding them to the n^^ and 2n^^ equations 
respectively will yield 

Pos = tPn+P>oss(V,i)-I.PE> (3.20) 

QOS=T,QU+QIOSS(V,0-I,QE> (3.21) 
i=\ i=\ 

Since we know that 

tPn = P:oss(K,0 
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These two equations can be put together with the first n-l equations 
from 3.16 and 3.17 respectively to represent the complete network. Eqs. 

3.20 and 3.21 show that, if a solution (V_ ,0 ) exists, for a possible suc­
cessful convergence, we must specify the generations subject to the con­
straints given in Eqs.3.20 and 3.21. Since the losses as a function of the 
network solution are unknown before the power flow is solved, it is practi­
cally impossible to do so. Therefore, it is very likely that, if we have to 
specify the power generations for all generators, constraints Eqs.3.20 and 
3.21 may be greatly violated, and correspondingly the staring point 

(F , ^ ) might be well out of the radius of convergence of the Newton's 
method. Also, there is a possibility that a real solution simply does not ex­
ist corresponding to this set of specified generations. (From algebraic 
equations theory, we know that a solution always exists if we also consider 
complex roots.) If one can devise a scheme so that there is freedom of ad­
justing the generation during the course of iteratively solving the power 
flow equations, then convergence performance might be much better. Re­
ferring to this, an immediate thought would be to eliminate Eqs.3.20 and 
3.21 altogether from the power flow iterations. Consequently, the slack bus 
generation need not be specified. To do so, we must remove two un­
knowns from ( F , 0 . This is no difficulty at all. Because the goal of a 
power flow is to give a dispatch of the generation so that the system load 
can be served with the bus voltages being close to normal operating condi­
tions, usually close to 1.0 p.u., we can reasonably assign 1.0 to V^ and 

0 to ^^, the latter of which is simply to set a reference for the angle 

measurement, and thus it is arbitrary. After the power flow converges, we 
then calculate the losses and assign all of them to the slack generators. 
This procedure makes sure that the loss-generation imbalance does not 
cause convergence trouble during iteration. And this imbalance is fixed 
only after the power flow is solved. The above discussion shows that the 
slack bus assumption is a mathematical requirement for possible/good 
convergence of the Newton's iterative algorithm. 

3.7.3 PV bus assumption 

In order to maintain the system voltage levels, the generators are equipped 
with automatic voltage regulators (AVR) so that terminal voltages are 
within limits during system load increase or other disturbances. With the 
power flow description of the system, the only way to reflect this fact is to 
force the terminal voltages at the generator buses as constant since AVR is 
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not represented. To achieve this, the reactive power balance equations for 
generator buses must be removed. As a consequence, Q^^ is no longer 

needs to be specified as input, it is released as a variable. Physically, this 
means that reactive support from generators helps maintain a relatively 
high and steady terminal voltage. Numerically, this possibly also leads to 
better convergence characteristics of the Newton-Raphson power flow al­
gorithm. 

After the above discussion, we are now ready to devise a strategy that 
eliminates the unreasonable assumptions used in the power flow. It solves 
for a reasonable set of (X,Y) values with control limits automatically 
implemented. This leads us to the topic of simultaneous equilibria tracing 
technique. 

3.8 Total Power System Equilibria Solutions 

From the discussion given in Section 3.7 , we can make two conclusions 
about the assumptions used in the power flow: 

• Slack bus methodology provides a means of "automatically" adjusting 
real and reactive power generation "during" the iteration, not at all 
buses, but only for the slack, so that at any iteration the losses are not 
causing the point to be too far away from the true solution, therefore 
making Newton's iterative method possible to converge. 

• The PV bus assumption is used to reflect the need of maintaining the 
system voltage levels by AVRs and it also possibly helps improve the 
convergence rate of the Newton-Raphson algorithm. 

In the following sections, we will study how these assumptions, which 
cause the problems mentioned in subsection 3.6.2 can be removed, while 
the goals they are made to achieve are not sacrificed. 

Before we introduce the simultaneous equilibria tracing technique, let us 
first give a detailed representation of the structure-preserving power sys­
tem model. 
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3.8.1 Formulation of power system DAE model 

A power system is assumed to have n buses and m generators. Each gen­
erator is assumed to be equipped with the same type of excitation control 
system and speed governor. The formulation of power system modeling is 
presented in this chapter. The commonly used power system notations are 
adopted here. 

3.8.1.1 Synchronous generators 

Without loss of generality, the rotor angle of the m^^ generator is chosen 
as the system angle reference. This choice of reference is different from 
the conventional slack bus selection. No assumptions are necessary for 
choosing such a reference. When stator transients are ignored, the two-axis 
model [5, 6] describing the synchronous machine dynamics can be given 
as: 

^qi ~ ^dOi l^fdi ^qi \^di ^di )^di J *̂ - 1?' * • 5 m 
(3.24) 

(3.25) 

where O)^ is the system frequency, O). is the machine frequency, 

namely, generator angular speed and co^ is the system rated frequency 

(377.0 rad/sec). I^. and I^. are direct axis and quadrature axis currents 

respectively; E'^. and E'^- are transient direct axis and quadrature axis 

EMF respectively; T^Q^ and T^^. are direct axis and quadrature axis 

open circuit time constants respectively; X'^. and X^ are direct axis and 

quadrature axis transient reactances and R^. are armature resistance of 



3.8 Total Power System Equilibria Solutions 83 

the machine; M. is inertia constant and Z). is the damping constant of 

the machine. All the quantities are in per unit except COQ . 

Interface voltage equations to the network are given as follows: 

^^, = F;. COS(J, -0,) + RJ^, + Z , , / , , (3.26) 

E,, = V, sin(̂ ,. - ^,) + RJ,, - X'J^, (3.27) 

where V. and 9.^ are bus voltage and angle respectively. 

The machine currents 7^. and 7 .̂ can be eliminated by solving the gen­

erator interface equations to the network. Hence, 

/„. = \RX^ + <,.X;, -R,V, siniS, -e;)- X\y, cos(^, - ^ J W (3.28) 

l,i = {RsiKi -^'^i^'-^i -Rsy> cos(J, -e,)- X,y, sin(^, -9 , ) ] ^ r ' (3.29) 

A.=R\^X'.X'. (3-30) 
I SI di qi 

Note that Eq.3.22 does not include the differential equation for S^, and 

all the angles here and henceforth are relative angles with respect to the 

m ̂ ^ generator' s rotor angle. 

3.8.1.2 Excitation Control system 

The simplified IEEE type DC-1 excitation system [5] as shown in Fig.3.22 
is used here. The corresponding mathematical model is 

V, -T^l-V.^-K^XVrefi-V^-Rfi)] i - \ - . m (3 32) 

If n̂,min ^ Vri ̂  K^m... ^pssi = ̂  (at Steady state), 
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^fi " ^/^"^Ji " ^^ei + ^ei i^fdi )\KfiEfdi / ^e/ + ^y.'^n ' ^ei (3.33) 

where V^^j- is the reference voltage of the automatic voltage regulator 

(AVR); V^. and 7?̂ ^ are the outputs of the AVR and exciter soft feed­

back; Ej^^. is the voltage applied to generator field winding; T^., T^. 

and Tjj are AVR, exciter and feedback time constants respectively ; Kah 

Kei and Kfi are gains of AVR, exciter and feedback respectively; V^. ^-^ 

and V^. ^^^ are the lower and upper limits of V^. respectively. 

3.8.1.3 Prime mover and speed governor 

Fig.3.23 shows the block diagram for a simplified prime mover and speed 
governor. Two differential equations are involved to describe the dynamics 
when no //. limit is hit. 

Pmi = K~h](Mi -Pmi) i = l'",m (3 34) 

Mi =^gi[Pgsi(^i -^ref)lRi -Mi] if/^/,min ^ Mi ^/^/,max (3.35) 

/ == 1, • • •, m 

where P^^. = P^^. (1 + K^.ju) is the designated real power generation; i^^. 

is its setting at base case; Kg^ is the generator load pick-up factor that 
could be determined by AGC, EDC or other system operating practice; 
P^. is the mechanical power of prime mover and jU. is the steam valve 

or water gate opening; R. is the governor regulation constant represent­

ing its inherent speed-droop characteristic; Q)^^y(=l.O) is the governor ref­

erence speed; T^^. and T^. are the time constants related to the prime 

mover and speed governor respectively; ju.^^-^ and //. ^^^ are the lower 

and upper limits of jU , where a parameter ju is introduced to designate 

the system operation scenario. At the base case, jU equals to zero. 
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Fig. 3.22 The IEEE DC-1 model 
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Fig. 3.23 The simplified speed governor and prime mover 

3.8.1 A Nonlinear load model 

The voltage and frequency dependent load can be modeled as follows: 

i = l,'-',m (3.36) 

where Ĵ .Q and QJ.Q are the active and reactive powers absorbed by the 

load at the nominal voltage V.and frequency 6;̂  (=1.0). The frequency 

dependent term is included to prevent the equilibrium computation from 
divergence in case all the generators reach their maximum real power lim-
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its due to load increase or generator outages. Here K^^j- and K^^j- are the 

load changing factors with respect to system frequency. 

3.8.1.5 LTC model 

Eqs.3.37 and 3.38 show the response of Load Tap Changer modeled as 
continuous. Assume the transformer is between bus / and busy, then 

Vj^rV, (3.37) 

T^r^Vf -Vj (3.38) 

where r is the tap ratio of an LTC; ^ / is the reference voltage at the 

LTC regulated busy; 7] is the time constant. 

3.8.1.6 Other Models 

Generic Dynamic Load Model: Ref [20] proposed a generic load model 
to capture nonlinear characteristics as well load recovery. This model in­
cludes both steady state and transient load characteristics. Ref [21] further 
classifies this model in term of multiplicative generic model and additive 
generic model based on how load state variables affect the transient load 
characteristic. For additive generic model the corresponding equations that 
represent relevant responses are [21]: 

Transient load response at particular bus /: 

PHr=PuA^Pi+i^r] (3.39) 

Qnr=Qn.[^Qi+i^Y'] (3-40) 
WO 
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Where the dyanmic state variables Zpj and ZQJ represented by the 
following equations: 

d Vi Vi 
r , , . ^ z , , . = - z , , + ( ^ r - ( ^ r (3.41) 

at r .Q y.Q 

TA,-a.=--.,H^y'-(^)'' (3.42) 

At steady state 

Vi 
P,.s=P,io(—r (3.43) 

Qns-Quoi^Y' (3.44) 
WO 

These models can be easily incorporated in general DAE formulation for 
equilibrium tracing or for time domain simulation. Time domain simula­
tions for short term and for long term are discussed in chapter 6. Ref [21] 
also includes one chapter that provides wide coverage of various load as­
pects including the induction motor for voltage stability studies. 

HVDC Models: 

HVDC can also be easily incorporated into power flow. References [5, 
7] provide a systematic presentation for power flow formulation for AC-
DC power systems. These references cover AC -DC power flow solution 
both for single converter and multiterminal DC systems. Basically, there 
are real and reactive power mismatches at the converter terminal bus bars 
similar to AC power mismatches at particular AC bus. At converter termi­
nal bus bar there are additional real and reactive power injections which 
are function of DC system variables and the converter AC terminal bus bar 
voltage. The variable corresponds to DC include: average DC voltage, 
converter DC current, firing angle of the converter, the converter trans­
former off- nominal tap ratio [7]. 
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Ref [23] specifically discusses the comparison between point of collapse 
methods and continuation methods for large scale AC/DC systems. The 
detailed modeling related to AC-DC dynamic systems for point of collapse 
methods is discussed in ref [24]. This reference included inverter and con­
verter control functions and showed voltage dependent current order limits 
affect the voltage stability margin of the system. This reference also ob­
served Hopf bifurcation. For Hopf bifurcation, voltage dependent current 
order limit also played an important role. 

In a recent paper [27] a single-infeed HVDC model is incorporated in 
combination with detailed synchronous machine modeling and excitation 
voltage control. The authors derived analytical expressions for 
power/voltage stability indices. 

FACTS Device Models: 

Reactive power plays an important role in voltage stability studies. Flexi­
ble AC Transmission Systems (FACTS), such as Static Var Compensator 
(SVC), Thyristor Controlled Series Capacitor (TCSC), Static Synchronous 
Compensator (STATCOM), and Unified Power Flow Controller (UPFC) 
can provide required fast control to improve voltage stability. 

Reference [8] came with a general FACTS device model that is flexible 
enough to represent any FACTS device including the ones mentioned 
above. Functional characteristics of various FACTS devices are derived 
from Voltage Source Converter (VSC) model. This model can be used 
both for power flow as well stability studies. Ref [28] provided steady state 
models for SVC and TCSC with controls for voltage stability analysis. 
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3.8.1.7 Network power equations 

Corresponding to the above models, the network equations can be written 
as: 

\0 = P^^-(\ + K,^A)P,-P, 

\0 = Q^,-il + K,,A)Q,-Q, 
i = l 

Where 

Pn=tlKVJ,COs(0,-0,-<p^,) 
k=\ i = l,"',n 

Q.=ZV>VJ,sm(0,-0^-<P,) 
k=\ 

And 

(3.45) 

(3.46) 

[ e , . - / . . ) ^ cos(^, -0,)-I^,V,sm{5, -e,) 
i = \,'",m (3.47) 

P^. and 2g/ ^̂ ^ the generator output powers, which are primarily deter­
mined by the inherent characteristics of the speed governor and the AVR 
regulations. They will change if real power generation rescheduling and 
secondary voltage control is applied. /J. and 2// ^̂ ^ the powers injected 

into the network at bus /. K^. is load changing factor specified for bus / 

as mentioned in Section 3.8.3. 
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3.8.1.8 Power system DAE model 

The above differential and algebraic equations are commonly known as a 
DAE representation of the power system. In a compact form, they can be 
simply represented by Eqs.3.13 and 3.14 as described in Section 3.6. 

The state vector X and algebraic vector 7 contain the following variables: 

Y = (V,0) 

The P in Eqs.3.13 and 3.14 can be further divided into control vector U 
and parameter vector Z 

U = (Ke,,P,s,-), Z = (P„Q,) (3.49) 

In short, X contains all the system state variables; Y includes the algebraic 
variables; U is the control vector, whereas Z characterizes system loading 
condition. 

3.8.2 Bifurcation modeling of power system dynamics 

As discussed in Chapter 3, for a dynamic system parameterized by a single 
or a set of static parameters, bifurcations occur when the character of equi­
librium changes within an arbitrary small local neighborhood of a critical 
parameter set. Those static parameters are defined as bifurcation parame­
ters. Note that the prerequisite condition of bifurcation parameters is that 
their derivatives always equal zero. That is, they are out of dynamic vari­
able set that characterize system state. 

An extensive power system literature is available for the application of bi­
furcation related approach to voltage stability [9]. 

In power system DAE model, the change of equilibrium character with re­
spect to bifurcation parameter is often effectively studied by analyzing 

changes of the eigenvalues of A^^^ (A) = F^ - Fy {GyY^ G^ in response 

to parameter variations. 

The various types of bifurcation points generally will form surfaces or 
manifold in the multidimensional parameter space. These surfaces serve in 
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the parameter space as boundaries separating regions where a certain type 
of system operation (as characterized by equihbria and trajectories) per­
sists. A point on such a surface can be identified by a single bifurcation pa­
rameter X-X^, These bifurcations are classified as codimension one. 
Only local codimension one bifurcations are discussed here. 

3.8.2.1 Saddle-node bifurcation 

Saddle-node bifiircation occurs when the Jacobian of the system A^^^ {X^) 

has a simple eigenvalue and there is no other eigenvalue on the imaginary 

axis. The equilibrium cease to exist when/I moves beyond AQ. Corre­

spondingly in the state space x, two equilibriums approach each other as 

X approaches X^; then at X^ they fuse in a nonhyperbolic equilibrium 

(with a zero eigenvalue). 

Under certain additional transversality (non-degenerate) conditions, the 
presence of the simple zero eigenvalue of the Jacobian essentially charac­
terizes this bifurcation. In second-order systems, this bifurcation corre­
sponds to the annihilation of a saddle point and a node, hence the name 
saddle-node bifurcation [10]. 

3.8.2.2 Hopf bifurcation 

When Hopf bifurcation occurs, the Jacobian A^^^ of the system has a sim­
ple pair of purely imaginary eigenvalues and there are no other eigenvalues 
on the imaginary axis. As the parameter changes, certain inequality condi­
tions need to hold that ensure that this pair of critical eigenvalues crosses 
the imaginary axis. They can be formulated as 

^Re[MA)]^0 

when Re(^) denotes the real part of the eigenvalue |i, which moves across 

the imaginary axis, and djdX denotes the derivative with respect to the 

bifurcation parameter X. 

Typically, this means that for X^ XQ the system has an equilibrium and a 

closed trajectory; a limit cycle exists near this equilibrium for one side of 
the parameters. This limit cycle can be unstable (or stable), that is, trajecto­
ries diverge (converge) from (to) it from both the inside and the outside. 
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The stable limit cycle corresponds to super critical Hopf bifurcation. The 
unstable Hmit cycle corresponds to sub critical Hopf bifurcation. The su­
percritical Hopf bifurcation corresponds to a transition in the system oper­
ating condition from a small-signal stable equilibrium point for/ l</l^, 

and a small-signal stable limit cycle for ŷ  > >^. That is, when the system 
undergoes a supercritical Hopf bifurcation at/l = /Ic, the system operating 
condition changes to sustained oscillation for /I > /Ic. This type of super­
critical Hopf bifurcation appears and played a fundamental role in the os­
cillating event experienced by Union Electric in 1992 [11, 12]. Ref [12] 
applied Hopf bifurcation analysis to large scale power system. The authors 
in this reference studied power system model in DAE form. Hopf related 
segments are traced by continuation based approaches. The critical eigen­
value is estimated either by power method or modified Amoldi method. 

3.8.3 Manifold models in power systems 

Mathematical models of many, practically important scientific and techni­
cal problems involve differentiable manifolds. Differentiable manifolds are 
implicitly defined as the solution sets of systems of nonlinear equations. 
The mathematical basis for manifold and its numerical treatment are well 
established in the mathematical literature [3,13,15]. Following sections 
provide brief summary based on these references. 

3,8.3.1 Manifold 

Assume a dynamic system is represented by: 

X = F{x,X) F:R"xR' -^R" (3.50) 

where F is a sufficiently smooth mapping, x G R" is a state variable vec­
tor, A e R"^ is a parameter vector. The computational study of equilibria 
leads to nonlinear equations of 3.51. 

F(x,A) = 0 (3.51) 
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As we see in the previous sections, it is of interest to determine the behav­
ior of the solution under variation of/I. Here /I is a vector of parameters. 

The zero set M = {(x,A) eR" xR"^ : F(x,Ji) = 0} has the structure of 

a submanifold of dimension d of the product R" xR"^ of state and pa­
rameter space. Computational techniques are well developed to find the 
critical point of interest on the manifold or any other dynamic behavior of 
interest. This approach can also be used in connection with equality con­
strained dynamical systems that are modeled by differential-algebraic 
equations (DAE) which are of interest to power system security analysis. 
Such DAE is known to be closely related to ordinary differential equations 
(ODE) on implicitly defined differentiable manifolds [13]. 

The basic computational problems arising in connection with any implic­
itly defined manifold is to come up with certain parameterizations. Finally 
it leads to solving certain set of nonlinear equations. 

3.8.3.2 Natural parameterization 

In many applications one can identify certain quantities that can be inde­
pendently changed (for example constant load power change in power sys­
tems). This can be identified as parameter. This means that we have an in­
trinsic splitting, which includes a d-dimensional parameter space A and 
a state space X of dimension n, 

X®A and dim(A) = d 
This is a natural parameter splitting of original variable space. One can use 
the parameter space A as the coordinate space of a local coordinate sys­
tem. 

For example for power system we can identified parameters involved in 
power flow type formulation as well DAE type formulation. For some 
cases, the natural parameterization may be not suitable to be a local 
parameterization, in which cases singularity is always encountered while 
solving for the solution of nonlinear equation system. 

3.8.3.3 Local parameterization 

Rheinboldt [13] described mathematics behind the local parameterization 
to trace the equilibrium curve. The local parameterization could avoid the 
singularity encountered by the natural parameterization. The procedure for 
one parameter problem is described here. Continuation methods produce a 
sequence of solutions for changing parameter. Local parameterization pro-
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vides a way to trace this path successfully. Local parameterization at a 

given step requires a nonzero vector e e R"" such that 

e ^ rangeDF {xY (3.52) 

Basically (3.52) implies e should not be normal vector of M at x. 

Then the local parameterization involves solving the following augmented 
system of equations for a given value of rj which is a scalar. 

( F(x) ^ fO^ 
H(x)^\ ' ' \ 

(3.53) 

^J 

The Jacobian 

DF(x) 
DH(x) = 

is nonsingular in an open neighborhood of x = x^[l3]. 

This general setting becomes background material for the continuation 
power flow discussed in section 3.4. Basically DH(x) can be related to 
the augmented jacobian Jaug. How to choose vector e and the scalar pa­
rameter r| are discussed in the predictor and corrector tracing process in the 
same section. 

This basic manifold approach can be exploited to identify and trace voltage 
stability boundaries 

Power system equilibrium manifold is defined in this chapter for power 
system equilibrium tracing. 
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Saddle node bifurcation related voltage stability margin boundary mani­
fold is defined in Chapter 5 for voltage stability margin boundary tracing. 

3.8.4 Equilibrium manifold Tracing of power systems 

Simultaneously solving forX and Y will enable us to avoid the as­
sumptions used in power flow. This leads us to the question whether it is 
possible to solve for X and Y directly and simultaneously from 
Eqs.3.13 and 3.14 at equilibrium, i.e., 

0 = F(XJ,U,Z) (3.54) 

0 = G(XJ,U,Z) (3.55) 

The immediate concern is whether the Newton's method would work with 
as good convergence as that in the power flow. 

As mentioned earlier, the release of slack bus generation is used in power 
flow so that network losses corresponding to a set of system voltages are 
not causing convergence trouble during iterations. In the complete descrip­
tion of the system at equilibrium state, this compensation becomes possible 
without the necessity of removing the slack bus power balance equations. 
With the description of the system at steady state by 3.54 and 3.55, genera­
tion at terminal interface to the network is now a function of system states 
(see Eqs.3.47). The governor frequency regulation together with the boiler 
valve control, as described by Eqs.3.35 and 3.34, interacts with the net­
work real power balance constraints, through mechanical power P^. 

(Eqs.3.23 and 3.34), to adjust the interface generation P^. so that real 

power losses are automatically compensated by regulating the system fre­

quency. Similarly, the automatic voltage regulator (described by Eqs.3.14 

and 3.16) interacts with the network reactive power balance constraints, 

through Ej^^. to adjust Q^. so that reactive power losses are compen­

sated by regulating terminal bus voltage V.. In regard to PV bus assump­

tion, it is not needed any more since AVR is actually represented. 

Based on the above analysis, it is possible to solver for X and Y si­
multaneously by directly applying Newton's method to Eqs.3.54 and 3.55. 
Further, in the following section, we will show how we can incorporate 
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this into continuation and apply the resultant simultaneous equilibria trac­
ing technique to voltage collapse identification. Overall solution method­
ology is given in the sequel. 

Eqs.3.54 and 3.55 define the equilibrium manifold of power system. The 
conventional power flow solution is simply a point on this manifold corre­
sponding to certain condition. It could be thought of as an intersection 
point of the equilibrium manifold and a cut line (or hyper-plane) defined 
by system condition. Naturally power system condition is parameterized 
by control variables U and loading condition Z that present in the power 
system DAE model. 

The equilibrium is the solution of a set of nonlinear equations which are 
introduced in the previous sections. It could be calculated by Gauss-Sedel 
method or Newton-Raphson method (or their derivatives). Newton-
Raphson type of method is widely used due to its super linear convergence 
rate. But when load stress on power system is increased, both methods can 
diverge however close the initial guess is. This is caused by singularity of 
the total system Jacobian of (Eqs.3.54 and 3.55). 

Similar approach to the continuation power flow presented in Section 3.4 
can be also applied to trace the total equilibrium as defined by (Eqs. 3.54 
and 3.55). 

To trace this equilibrium, first we need an initial starting point. Next sec­
tion provides details related to this initial condition. 

3.8.5 Initialization for power system equilibrium tracing 

To start power system equilibrium tracing, we need initial conditions that 

are defined by following variables at all buses S, co, E^, E^, Ej^ ,V^,Ry, 

I^.Iq ^V^6. Solution from power flow provides V^6 at all buses. The 

remaining values are obtained as shown as follows [6]. 

The first step in computing the initial conditions is to obtain the generator 
currents from Eq.3.55: 

T / Y . ^i ^Gj 
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and the relative machine rotor angels from manipulation of the stator and 
flux equations 

S, = angle of (V,e''' + (R, + jX^, )/^. e^'') (3-57) 

With these quantities, the remaining dynamic and algebraic states can be 
obtained by 

followed by Ef^ from the stator and flux equation 

^/.,. = ^ . / . , . + ^ . , + ^ . / . - (3.60) 

With this field voltage, R^, Vjj and V. can be found from the exciter 

equations as 

Kf^ (3.61) 

K,=(Ke^+S,^(EM))Ef,^ (3.62) 

V, (3.63) 

This initial value of E^. and E^i are then found from the flux equations: 

^ . , = - ( ^ , , - 0 / , , (3.65) 

This completes the computation of all dynamic state initial conditions. 
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3.8.6 Continuation method with local parametrization 

This section extends the apphcation of the continuation method described 
in Section 3.4 to the power system DAE formulation. The system equilib­
rium manifold defined by Eqs.3.54 and 3.55 could be traced, according to 
a scheduled scenario parameterized by X, from base case up to the point 
where voltage collapse associated with the saddle node bifurcation occurs. 

The same predictor and corrector process described in Section 3.4 can be 
applied here. Then the tangent vector is solved from 

Fv F^ A \dX~ 
\dY 

\dX 

— 

"0 " 
0 
±1 

(3.66) 

Once the prediction is made with the tangent vector, the following correc­
tion is performed to find the equilibrium point. 

(3.67) 
^ Y 

G. 

[AZ' 
A7 

[AA 
= -

'F~ 
G 
0 

where [dX^ ,dY^ ,dA.Y is the tangent vector, e^is a column unit vector 

with all the elements equal to zero except for the k^^ one, which corre­
sponds to the current continuation parameter. Since Fx and Gx can not be 
null vectors at the same time even at the base case (A =0), the singularity 
of the augmented Jacobian matrix can be easily avoided by appropriately 
selection of the continuation parameter. To speed up the computation, the 
same Jacobian can be used in Eqs.3.66 and 3.67. 

Since A is introduced to parameterize the system generation and load 
level, it increases monotonically to the maximum value. Hence dZ is 
positive before/I reaches its maximum, and negative afterwards. Null 
dJi indicates that the system total Jacobian matrix is singular. This can 
be clearly seen as follows. 



3.8 Total Power System Equilibria Solutions 99 

3.8.7 Linerization of power system DAE 

When the parameter in Eqs.3.13 and 3.14 is varied, the corresponding state 
vector X and the eigenvalues of the system matrix evaluated on this path 
change accordingly. 

Linearization of Eqs.3.13 and 3.14 at the equilibrium point with specified 
U and Z is presented as follows: 

(3.68) 
AX 
0 

= 
Px ^Y\ 

PAZ" 

[Ar_ ~ '^ total 

~bJC 

_A7_ 

Matrices Fx, Fy, Gx, and Gy contain first derivatives of F and G with re­
spect to Jf and 7, evaluated at the equilibrium point. 

Note that matrix Gy is an algebraic Jacobia matrix that contains the power 
flow Jacobian matrix. In the above equation, if det(Gr) does not equal zero 

AY = -Gy^Gj^AX 

Substituing in (3.68) results in 

AX = A AX 
sys 

(3.69) 

(3.70) 

Ays =^X-^YGY Gj^ (3.71) 

The essential small-disturbance dynamic characteristics of a structure-
preserving model are expressed in terms of eigen-properties of the reduced 
system matrix Asys. This matrix is called dynamic system state matrix. 

Eigenvalue analysis of ^5^ ,̂will give small signal stability information of 
the current equilibrium point under small disturbances. At voltage 
collapse, the system loses the ability to supply enough power to a heavily 
loaded network. At that point, the so-called saddle node bifurcation occurs 
which is described by the movement of one eigenvalue of A^ys on the real 
axis crossing the origin from the left half complex plane. Eigenvalue 
computation will help detect this movement, participation factor studies 
will show how bus voltages participate in this collapse mode, and 
sensitivity analysis will show the parameter influence on this critical 
situation [5]. 
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At saddle node bifurcation which leads to voltage collapse, one of the 
eigenvalue of Asys becomes zero. Equivalently, the determinant of Asys 
equal zero. From matrix theory, we know that, 

det( / , , , , ) = det 
Fx Fy 

det(F^ -FyG'yG^)det(Gy) 
(3.72) 

= de t (^ , , Jde t (G, ) 

So if Gy is nonsingular, the determinant of ^̂ ^̂  becomes zero if and only if 
the determinant of Jtotai is zero. This is the Schur formula. Jtotai is very 
sparse and thus allow efficient handling using sparse techniques. Therefor 
detection of the singularity of Asys is equivalent to the detection of the 
singularity of Jtotai-

3.8.8 Detection of Saddle Node Bifurcation with System Total 
Jacobian 

Proposition 1: When Gy^ exists and u^ ii^O , then the following 
equivalent condition is valid 

if and only if 

Ays^X = ^^X 

F^-M Fy 

where 

Gx Gy 

Uy = —Gy G j^U ^ 

= 0 

We define the extended eigenvector u — \u^ Uy \ 

Proof. 

1. Assume A^^^u^ - Xu^ , i.e., 

{F^-FyG~y^G^)u^=Xu^ 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

FromL.H.SofEq.3.74 
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F^-XI FyJu^' 

G^ Gyl_Uy_ 

\F^-XI) U^+F^Uy 

G^u^ •\-GYUY 

UF^-M)U^-F^G;'G^U^ 

I ^X^X-^Y^'Y 'G^ K^X 

\F,-F,G 

{3.11) 

X^Y ^XJ'^X ^^^X 

0 
- 0 

Substitution of Uy = -G'^G^u^ in the above equation verifies Eq.3.74. 
Or 

2. Assume 

F^-XI Fy 

Gy Gv Wv 

G^U^ + GyUy 

= 0 

= 0 

(3.78) 

(3.79) 

From the second item in Eq.3.79, Uy =-Gy'G;^u^- Substitute this into the 
first item 

(Fy - AI)Uj^ - F^Gy^G^u^ = 0 

After rearrangement, based on the definition of A^^^ 

Ays^x = ^X 

is obtained. This concludes the proof for proposition 1. 

From Eq.3.74, the total Jacobian matrix 

(3.80) 

(3.81) 

D 

Aolal ~ 
Fx Fy 

Gx Gy. 

can be used to detect either Saddle node or Hopf bifurcation. 

3.8.8.1 Detection of saddle-node bifurcation 

From proposition 1, the condition 

^X ^Y II ^X 

G^ Gy II Uy 
= 0 

(3.82) 
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can be utilized to detect Saddle node bifurcation, that is, to detect the sin­
gularity of the total Jacobian matrix. 

During the direct equilibrium tracing, the saddle node bifurcation point can 
be readily identified by utilizing a cut function, without computing eigen­
values [13,15]. 

A cut function for Saddle node related fold bifurcation can be implicitly 
defined as /SNB M in the following equation: 

Px 
G, 

4 

Fy 

Gy 

eJ 

oj 

\<] 
4 

[_/sNB 

+ 
'0' 
0 

1 

(3.83) 

= 0 

where we denote u" = [M° ulf • Or equivalently, 

Gx Gy 

Vx 

YSMB 

(3.84) 

= 0 

where we denote v^=[v^ v^f 

At the fold point, the cut set condition is satisfied, that is 

At each continuation step, y^^^^ is checked. If y^^^ changes sign. Saddle 

node bifurcation has just been passed. This y^^^ is nothing but J/l [16]. 

If null dX is detected at some step, then Eq.3.36 reduces to 

F. 

' X Gv 

dX 

dY 

(3.85) 

Since 

kl 
'dX' 
dY 
0 

= 

'0 " 
0 
±1 

(3.86) 



3.8 Total Power System Equilibria Solutions 103 

So one of the components of dX or dY is ±1, not a null vector, Eq.3.85 

hence implies the total system Jacobian J^^^^j singular. As mentioned be­

fore, from Eq.3.72, the singularity of /̂ ^̂ ^̂  coincides with the singularity 

of A^y^ if GY is nonsingular. 

The singularity of A^^^ implies it has a null eigenvalue at the current step. 

Therefore null dX exactly signifies a saddle node bifurcation. Thus it can 
readily identify the saddle node bifurcation point by equivalently detecting 
null dX during the direct equilibrium tracing, without formation of A^^^ 

and computing its eigenvalues. 

However, when system limits are considered, sometimes we could not cap­
ture the null dX point even using a very small step length. It most probably 
means an immediate voltage collapse encountered due to some generators 
hitting their limits [17]. On the other hand, in order to investigate the volt­
age collapse mechanisms or to develop an effective control strategy 
against voltage collapse, the critical eigenvalue responsible for the voltage 
collapse may be needed. 

In general, there is no simple way to capture the critical eigenvalue at an 
iimnediate voltage collapse point. However, this critical eigenvalue can 
readily be detected via simultaneous equilibrium tracing. That is, we can 
use the general tracing scheme illustrated in Fig.3.24 to locate the saddle 
node bifurcation point where the critical eigenvalue crosses the origin on 
the complex plane. 

First, we use a relatively large step size to trace the system equilibrium 
diagram BCim until the negative dX is detected at point C/ .̂ Then we should 
change the tracing direction and continue the process with a smaller step 
size up to the saddle node bifurcation point Csnb where null dX could be 
easily detected. If the traced equilibrium diagram is the same as depicted in 
Fig.3.24, we can conclude that the point C/̂  is the system immediate volt­
age collapse point. Otherwise, in case null dX is detected but the saddle 
node bifurcation point Csnb is sitting on the BCtm diagram, it means that the 
voltage collapse results from the saddle node bifurcation rather than the 
system limits. Note that the tracing process always stops at the saddle node 
bifurcation point. The solid curve with arrows indicates the tracing path 
and direction. 
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4 F 

\ ^Si 

Fig. 3,24 Illustration of direct equilibrium tracing process 

3.8.9 Limits implementation 

It is very important to reasonably represent the system limits when study­
ing voltage stability. In fact, voltage collapse occurs more than often as a 
consequence of limited local reactive power supply. When the system 
loses the ability to further meet the load demand in a heavily stressed net­
work, the cascaded hitting of limits usually leads to system collapse. There 
are basically two types of limits to be considered. One is the governor 
limit, and the other is the AVR output limit. For voltage stability, the latter 
usually plays a more important role. 

3.8.9.1 Governor limits 

The governor limits are implemented by regulating the real power genera­

tion/load settings. Those generators which hit P^^"" will then be forced to 

stay at maximum, and no longer allowed to further pick up the system load 
increase. 

3.8.9.2 AVR limits 

The automatic voltage regulator (AVR) controls the terminal voltage of the 
synchronous machine. It indirectly controls the reactive power output by 
regulating the AVR output voltage V^. In the new formulation, we are able 
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to directly implement the limits which are usually given to restrict the out­
put of the voltage regulator. Forcing the AVR output voltage at a particular 
value will directly control the rotor current to stay below limits and indi­
rectly control the reactive generation. This can be shown as follows. At an 
equilibrium state, the AVR output voltage is related to the synchronous 
machine rotor current as 

V,={K^,-^S,)Ef,, (3.87) 

where E^^ is the generator's internal induced quadrature axis voltage 

[18]. So if we ignore the saturation effect, the rotor current is proportional 

torK^., which verifies the first half of the above statement. A machine's re­

active power output can be written as: 

^ di ^ di ^ qi 

When V^. is fixed at a certain value, the reactive power will then be lim­
ited indirectly, at lease not increase exponentially when approaching volt­
age collapse. This shows the second half of the previous statement. 

Once the AVR of a generator hits the limit, it loses the ability to adjust 
V^. and thus 2 G / ^̂  vciQQi the load increase. The AVR has to be set so 

that F .̂ stays at the limiting value. Referring to Eq.3.32, the dynamic dif­
ferential equation will be dropped and will not be included for stability 
analysis. This is obvious if one recalls the definition of stabiUty from con­
trol theory. That is, the limited dynamic state will stay as a constant, and it 
no longer participates in the dynamic response of the system. If we solve 
the remaining equations which provide the DAE description of the system 
with the same control inputs, we may not be able to find a solution. This is 
because, when the system load further increases, in order to continuously 
keep F .̂ at the limiting value, the corresponding excitation reference 

voltage F̂ ŷ̂  may have to be reduced. The decrease of the exciter refer­
ence voltage reflects the inability of the generator to keep pace with the 
load increase. In the conventional two-step based equilibria tracing ap-
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preach, this would require a new power flow solution with a different set 
of generation and/or voltage specifications for the PV buses. After this, the 
X variables are then calculated and the control inputs including the exciter 
reference voltage will then be updated to a new smaller value in this case. 
As mentioned in the first section of this chapter, this causes the problem of 
inconsistent description of the generators. In the new formulation, when 
some new limits are hit, this update of control settings can be done auto­
matically during continuation. To do so, we include the following equa­
tion, which is nothing but the right hand side of Eq.3.32 with F .̂ at its 

maximum. 
1 

0 - — ( ~ C ^ ^ •^K^XVre.-Vi -R,))-fi 
AVR+ (3.89) 

If a new limit is found to be violated at the end of the current correction, 
the following Jacobian will then be used in the immediate correction to 
update the input exciter reference voltage. 

A iVR-¥ 
iX h AVR+ 

Y 

0 F, 

0 G, 
AVR+ 

J iVref 0 

r AT ' 
AF 

AF . 
refi 

|_ A« 

F 

G 
rAVR\ 

0 

(3.90) 

'•ArR+ where F = {F}-{fr} and X = {X}-{VJ and f^;;'=df; 

IdV^^j^^. After this, if no new limits are violated, the following equation 

will then be used for subsequent correctors: 

(3.91) 
> J 

G-, 
PAVR+ 

J ix 

Fy 

Gy 
PAVR+ 

JiY 

el 

0 

0 

10'^ 

FA 
GA 
0 

FAZ" 
A7 

\^v. 
\ n 
[AA_ 

~F~ 

G 

0 

0 

Once the limit is hit, the predictor equation from then on is changed to 
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\Fl 

Gj 
rAVR+ 

Jix 

Fy 

Gy 
rAVR+ 

JiY 

el 

0 

0 

10'̂  

^J 
GA 
0 

\ dX' 
dY 

dV, 

[dX_ 

~ 0 

0 

0 

±1 

(3.92) 

The large number is used to keep the size of the matrix unchanged which 
provides programming ease. And by using this Jacobian, we observe that 
neither the AVR output voltage nor the input exciter reference voltage is 
updated during the prediction process. This makes sure that we get the tan­
gent of the equilibrium curve corresponding to the current input settings 
while satisfying the limits already encountered. The above analysis is illus­
trated in Fig.3.25. 

When dX is zero, from Eq.3.92: 

And we have 

' F . 
det X 
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\^X 

det 
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Jx Jy \Jx 

r A VK->r r 

Jx / } 
AVR+ 

Y 
AVR+ 

0 

0 

lO'V 

0 

0 = 0 

= det 
yG, 'Y J 

(3.93) 

(3.94) 

det(10''/) 

Thus we observe that t//l = 0 again signifies saddle node bifurcation of 
the DAE model. 

The above derivation [19] provides the validity of using the iterative con­
tinuation of Jacobian (Eq.3.92) in simultaneous equilibria tracing to iden­
tify voltage collapse, both before and after hitting AVR limits. In Chapter 
4, we will see that the continuation Jacobian can also be used for studying 
the sensitivity of the saddle node bifurcation of the DAE model. 
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V Do not update input 

System load 

Fig. 3.25 Limits implementation during continuation 

3.9 Numerical examples for EQTP 

EQTP Scenario Description: 

In the EQTP simulation, the scenario is similar to scenario 1 in CPF. Loads 
at the same 8 buses are increased, while the increased load is picked up by 
the same 9 generators. And both load and generator are increased propor­
tionally by their initial load and generation levels. 

For this scenario the variations of load bus voltages, generator real powers, 
and reactive powers for changing load are shown in Figs. 3.26, 3.27, and 
3.28 respectively. 

As explained in the previous sections, the automatic voltage regulator 
regulates the generator terminal voltage and its reactive power output of 
the network. The speed governor adjusts the real power generation and 
frequency to meet load increase. Because all these devices are modeled in 
detail, we are able to observe how the synchronous machines interact with 
the network, both before and after hitting the limits. The inability of in­
definitely supplying power through the network to the load centers, as con­
sequence of control system or machine capacity limitations and network 
loadability restrictions, will ultimately lead to system voltage collapse. 
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For all the generators which hit their AVR output voltage limits, the termi­
nal voltage, AVR output voltage, reactive power generation, and exciter 
reference voltage have similar response profiles. Therefore we take the 
generator at bus 30 bus as the example for the explanation. 
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Fig. 3.26 V vs. Ptotai 
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Fig 3.29 shows that, before hitting its AVR output limit, the voltage regu­
lator can maintain a fairly high and steady terminal voltage. When the sys-
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tern total load exceeds 8845MW, AVR output voltage as shown in Fig. 
3.30 hits the maximum value and the terminal voltage experiences a no­
ticeable drop. 

Fig. 3.31 shows the profile of reactive power generation at bus 32. A sud­
den slowing down of the increase in the reactive power generation occurs 
when the AVR output limit is hit. From this point on, fixing the AVR out­
put voltage makes the terminal reactive power generation to decrease 
slightly. 

Figs. 3.30 and 3.32 are the AVR output and exciter reference voltages of 
the generator at bus 32. 
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Fig. 3.29 Voltage at Generator Bus 32 
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Fig. 3.31 Reactive power generation at bus 32 
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Fig. 3.32 Exciter reference voltage at bus 32 

The governor associated with generator at bus 30 is the first to reach its 
limit w ĥen the system loading level is 8523 MW. Fig. 3.33 shows the gov­
ernor setting value. At a system loading level of 8523 MW, when most of 
the governors hit their limits, the system frequency experiences sag as 
shown in Fig. 3.34. 
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Fig. 3.34 System Frequency Response 

As mentioned before various versions of continuation power flow methods 
are proposed in the Hterature [22-26]. These methods depend on the type 
of parameterization strategies. Continuation based approaches can also be 
used for critical eigenvalue tracing. References [12, 29, 30] discuss the ap­
plication of continuation based approaches for eigenvalue tracing. 
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4 Sensitivity Analysis for Voltage Stability 

4.1 introduction 

In power system voltage stability analysis, it is not enough to merely ob­
tain the critical point. It is important to know how this critical point is af­
fected by changing system conditions. One should get the information re­
lated to parameters and controls that may influence the system stability. 

The intention is to get a measure of the margin between the current point 
of operation and the point where the system becomes unstable, thereby 
providing early warning of a potentially critical condition. Sensitivity 
analysis becomes a major part in defining this measure. The attributes of 
this measure depends on various factors. This measure can be in the form 
of an index. The indices in use are very different and it is convenient to 
classify the indices into two main classes (given-state based and large de­
viation based indices) as suggested by [1]. Recent IEEE special publication 
on voltage stability [2] has an excellent and exhaustive description of vari­
ous indices. 

The DAE model together with the corresponding system state matrix 
A^y^ provides true dynamic stability information. A static power flow 

based analysis does not give true stability information. Keeping this in 
mind, one should be clear that, for instance, the minimum eigenvalue can 
be that of A^^^ and J^^ (power flow Jacobian). 

4.2 Given State Based Indices [1] 

These indices only use the information available at the current operating 
point. The operating point could be simulated for a desired power transfer 
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condition. From this information, the system characteristic is calculated 
and system operation is classified. 

• Reactive power reserve 

Automatically activated reactive power reserve at effective locations can 
serve as a simple, yet sensitive, voltage security index. And in addition to 
being a given state index, it can also serve as a large deviation index 
(MVAR distance to voltage collapse), with the assumption that instability 
occurs when the field current of a key generator reaches its limit or when a 
SVC reaches its boost limit. 

• Voltage drop 

These indices are based on the principle that the voltage drops as the sys­
tem is loaded. However this is sometimes masked by the effect of reactive 
power compensation devices and off-nominal tap setting of transformers. 

• MW/MVAR losses 

The losses increase exponentially when a system approaches voltage col­
lapse. The application of these losses used as indicators of voltage instabil­
ity has been given in the literature. 

• Incremental values 

These indices give information about the system state in the close vicinity 
of an operating point. Incremental values can provide a quantitative insight 
of weakness of a node. A ^ / A F , for example, is sometimes used for as­
sessing areas prone to voltage collapse. 

• Incremental steady state margin 

This is an indicator calculated from a determinant of a special formulation 
of the system power flow Jacobian. After normalization, the maximum in­
dex value will be 1.0 and will reach 0.0 at critical load conditions. The ear­
liest form of this index was proposed by Venikov [3]. 

• Minimum singular value or minimum eigenvalue 
Singular values have been employed in power systems because of the use­
ful orthogonal decomposition of the Jacobian matrices. The singular value 
decomposition is typically used to determine the rank of a matrix, which is 
equal to the number of non-zero singular values of the matrix. 

Consider a « x « real matrix A . The singular value decomposition (SVD) 
of A is written [4] 
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i=\ 

where S is an nxn diagonal matrix and Q and P are nxn or-

thonormal matrices. The diagonal elements of S are called singular val­

ues of A . The columns ^ i , ̂ 2 ? *" ? /̂? ^f Q ^^^ called the right singular 

vectors. The columns p^,p2,'",p„ of P are called the left singular 

vectors. By appropriate choice of Q a n d P , singular values can be ar­

ranged such that 6*1 > S2"-> s^ > 0 . 

For a real symmetric matrix A , the individual singular values are equal to 

the square root of the individual eigenvalues of A^A or AA^ [5]. 
Thus, for a real symmetric matrix, the absolute values of eigenvalues are 
equal to the singular values. Additionally, the smallest singular value of 
A is the 2-norm distance of A to the set of all rank-deficient matrices 
[5]. If the minimum singular values is zero (i.e.,^^ =0), then the matrix 
A is singular. 

Hence, its application to static voltage collapse analysis focuses on moni­
toring the smallest singular value up to the point where it becomes zero. 
Therefore it has been proposed as an index measuring stability [6, 7]. 

Thus, in voltage stability studies, the minimum singular value of the Jaco-
bian becoming zero corresponds to the critical mode of the system. In [6], 
the authors calculated the minimum singular value and the two corre­
sponding (left and right) singular vectors of the power flow Jacobian. They 
defined a voltage stability index as the minimum singular value of the 
power flow Jacobian, which indicates the distance between the studied op­
erating point and the steady-state voltage stability limit. Similarly, the 
minimum eigenvalue could also be used as an index because it also be­
comes zero at the same time as the minimum singular value does. 

When given state based indices are plotted against system load, most of 
their trajectories assume an exponential curvature. This makes it difficult 
to effectively predict voltage collapse using these indices [8]. 
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4.3 Large Deviation Based Indices [1] 

Large deviation based indices account for nonlinearities caused by larger 
disturbances or load increases. These indices are normally more computa­
tionally demanding than the given state indices, but are more reliable. The 
margin is usually given in terms of the maximum increase in MW or 
MVAR load, and can either be based on a smooth increase in load from the 
normal operating conditions, or the load increase can be combines with 
contingencies in the system. 

Methods based on large deviation indices in principle apply the same 
measure. How^ever, the approach for calculation is very different. Some 
main classes are: 

• Repeated power flows [1] 

• Continuation methods [9, 10,11, 12] 

• Optimization-based methods [13] 

• Direct methods or Point-of-coUapse methods [14, 15] 

• Closest distance to maximum transfer boundary [16] 

• Energy function methods [17] 

4.4 Stability Studies via Sensitivity Analysis 

As introduced in chapter 3, the dynamic properties of the power system are 
characterized by the eigenproperties of the system state matrix A^^^. In 

practical situations, obtaining stability results is only part of the work. It is 
important to identify the key factors which affect stability, either benefi­
cially or detrimentally. These factors can be described by the parameter in­
fluence on system performance and stability. The parameters can be opera­
tional or non-operational. A common approach in doing sensitivity 
analysis is to define a stability index and then study how the different pa­
rameters affect this index. By using sensitivity techniques, useful informa­
tion about the relationships between state, control, and dependent variables 
can established. These sensitivity signals are valid in the vicinity of the 
point of linearization. Sometimes the sensitivity might not be directly de­
fined with respect to a certain stability index, and is therefore referred to as 
parametric sensitivity. Since system performance degradation often leads 
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to loss of stability, parametric sensitivity is also used in sensitivity-based 
stability analysis. At a normal operating state, sensitivity analysis provides 
information about how different parameters influence stability. Certain 
control measures can be designed in order to prevent the system from in­
stability. Should the system be in an emergency state under disturbances, 
effective controls must be applied to pull the system back to a normal 
state. Sensitivity analysis is w êll suited for evaluating the effectiveness of 
the controls. 

4.4.1 Identification of critical elements 

Identifying critical elements involves locating the key components in a 
powder system (buses, branches, or generators) that are critical to maintain 
voltage stability. In other w^ords, one should find the v^eak areas in the sys­
tem. Different authors present different approaches for finding such areas. 

Near a given equilibrium solution (XQ , 7Q ) of the structure preserving 
power system model as given in chapter 3 (Eqs.3.54 and 3.55), the deriva­
tives dX I dP and dY I dP at P^ give a natural measure of the sensi­
tivity of the solution. Here, P is a vector which includes all parameters 
explicitly appearing in F and G . From these derivatives, sensitivities of 
the dependent variables can be easily found. For instance, bus voltage sen­
sitivity with respect to system load, can all be computed from dX I dP 
a n d 9 7 / 5 P . From such sensitivities, a proper direction for adjusting the 
system control variables can be found. 

4.4.2 Eigenvalue sensitivity 

As explained in Chapter 3, eigenvalue analysis gives information about 
small signal stability of the current operating point. Therefore the sensitiv­
ity of the critical eigenvalue(s) with respect to system parameters is often 
needed to design coordinated controls to prevent instability. Suppose X. 

is the critical eigenvalue of interest, its sensitivity with respect to any pa­
rameter p is [18]: 

5A ^i -BiT^i 

dp vfu, (4.1) 
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where u. and v- are the right and left eigenvectors of A^^^^ correspond­

ing to /I. respectively. Eigenvalue sensitivity can be applied to any ei­

genvalue of critical interest, therefore oscillatory as w êll as collapse type 

instability can all be addressed by this approach. For voltage collapse 

analysis, one can apply this to the minimum zero crossing eigenvalue 

min • 

4.4.3 Modal analysis 

Proposed by Gao et al. [19], modal analysis involves calculation of eigen­
values and eigenvectors of the power flow Jacobian. With a steady-state 
power system model, the authors computed a specified number of eigen­
values and the corresponding eigenvectors of the (reduced) Jacobian. As­
sume ^. and 77. are, respectively the right and left eigenvectors of the 

Jacobian corresponding to the eigenvalue/I.. Then the i^^ modal reactive 

power variation is 

where ^ f ^ _, <5y7 —1? î̂ d the corresponding f^ modal voltage varia­

tion is 

A. 

If AV^ is known, A(^^ can be calculated from the power flow equa­

tions. Different participations are defined as follows. 

• Bus participations: Participation of bus k to mode / is 

where cĴ . is the k^ element of the i^ column right eigenvector and 

77̂ . is the k^^ element of the f^ row left eigenvector. 

• Branch participations: The participation of branch ^'to mode i is 

P - ^ ^ 

where A|g^^^^. = max(A|g^^..) and Aig/,, is the linearized reactive loss 

variation across branch Ij . 
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• Generator participations: The participation of generator gk to mode / 

is 

p =• 

where Ag^^^^. = max(A2^^.) and AiQ^̂ . is the linearized reactive 

pov^er output variation at generator gk . 

In the three foregoing participations, the suffix / indicates a particular 
mode, / , corresponding to the eigenvalue A.. A component with higher 

participation indicates that this component's contribution to this mode is 
large. Reference [19] used these participations to identify the buses, 
branches, and generators contributing to a particular mode, for both a base 
and a critical case. 

The next section explains how the same participation information corre­
sponding to critical mode can be obtained and how a voltage stability in­
dex can be derived from the tangent vector of the continuation power flow. 

4.4.4 Sensitivity analysis via CPF 

In the continuation process described in Chapter 3, the tangent vector is 
useful because it describes the direction of the solution path at a corrected 
solution point. A step in the tangent direction is used to estimate the next 
solution. But if we examine the tangent vector elements as differential 
changes in bus voltage angles (dS.) and magnitudes (dV^) in response to 

a differential change in load connectivity {dX), the potential for meaning­
ful sensitivity analysis becomes evident. The next examples demonstrate 
how the tangent vector elements change for different load levels. The nu­
merical results that are presented in this chapter are from the New England 
39-bus system. The data and one line digram for this system are given in 
Appendix A. 

Figs.4.1 and 4.2 illustrate the tangent vector elements versus the element 
number for two cases with different load levels, i.e., base case (light load) 
and critical case (heavy load). It should be noted that the first half of the 
graphs (first 38 elements for 39-bus system) corresponds to voltage angle 
terms and that the next half (elements 39 to 67), corresponds to voltage 
magnitude terms. If we consider the first half of the graph (i.e., up to the 
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elements that correspond to voltage angle), the voltage angle terms are 
dominant for the light load condition than for the heavy load condition, 
Whereas the second half of the graph tells us that the voltage magnitudes 
are dominant for the heavy load condition than for the light load condition. 
These results are consistent with the conclusions reached by Lof et al. [6] 
by performing singular value decomposition of the powQY flow^ Jacobian. 

0.35 

0.25 

0.15 

0.05 

—I— Light Load 
- 0 - Heavy Load 

Fig. 4.1. Tangent vector elements for the two cases with different load levels - 39-
bus system 

4.4.5 Tangent vector, right eigenvector, and right singular 
vector of J 

Examining Eq.3.7 (chapter 3) from which the tangent vector is calcu­
lated, it can be shown that the tangent vector is the right eigenvector of the 
Jacobian corresponding to zero eigenvalue at the critical point. Addition­
ally, the right eigenvector is equal to the right singular vector because the 
Jacobian is real and (almost) symmetric. Thus, at the critical point, the tan­
gent vector is equal to the right eigenvector corresponding to the minimum 
eigenvalue and the right singular vector corresponding to the minimum 
singular value. This equivalence is evident from Fig.4.2, in which the tan-
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gent vector, the right eigenvector, and the right singular vector of the Jaco-
bian matrix near the critical point are plotted on the same graph for the 39 
bus system. This information from the tangent vector can be used to iden­
tify buses, branches, and generators that are critical to maintain voltage 
stability. The next section shows how a voltage stability index can be de­
rived from the tangent vector. 
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Fig. 4.2 Elements of tangent vector, right eigenvector, and right singular vectors 
near the critical point - 39-bus system 

4.4.6 Voltage stability index from the tangent vector 

Voltage stability index using tangent vector can be derived [9]. For this, 
we have to first find the weakest bus with respect to voltage stability. This 
is same as finding the bus with the greatest dVjdP^^^^^ value. Here 

dPf^^^j is the differential change in active load for the whole system and is 

given by 
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< . / = S < , = [^ABASEHK,^ cos(,/,)]dA = CdX (4.2) 

The weakest bus, j , is 

dVj 
max[| 

dV, dV. 
|] 

C J ; L ' ^'CdX^'CdX' ' CdX 
where y reaches its steady-state voltage stability limit, dX approaches 

zero, the ratio dVjICdX becomes infinite or equivalently the ratio 

CdXjdVj tends to zero. The ratio CdXjdVj , which is easier to handle 

numerically, can be defined as a voltage stability index for the entire sys­
tem. In [20] the minimum real part of the eigenvalue of the Jacobian and in 
[6], the minimum singular value of the Jacobian are defined as voltage sta-
bihty indexes. Fig.4.3 shows the variation of voltage stability index from 
the tangent vector. The next section explains how to calculate the sensi­
tivities of key components from the tangent vector. 
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Fig.4.3 Variation voltage stability index with load 
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4.4.7 Sensitivity analysis from the tangent vector 

We can derive an expression for the differential change in a scalar valued 
function h(x,X), v îth respect to differential change in/I. Here, h{x,X) 

is any power system operating constraint such as branch flow, reactive 
output of a generator, or bus voltage magnitude. Using the differential 
chain rule, we obtain 

dh _ dh dx dh 

dX dx dX dX + — (4.3) 

If we look closely at the Eq.4.3, for calculating -^ we need -^ (here 

X is the vector of voltage angles and magnitudes). This calculation in-
dx 

volves computing the inverse of the Jacobian ( — = "[^^1 ^ ^z) ^^^ ^^^^^ 
dX 

at the critical point, where the Jacobian is singular and the inverse does not 
exist. But this ^ is given directly by the tangent vector in the continua­
tion power flow. It can be substituted directly in Eq.4.3 to obtain the sensi­
tivity of any operating constraint. The next section derives operating con­
straint sensitivities corresponding to load buses, branches, and generators 
[21]. 

4.4.8 Bus sensitivities 

For bus sensitivities, the function h(x, X) can be either bus voltage mag­

nitude or angle at a particular bus / . From Eq.4.3 

dh ^ dV. dxj dV, dK dK ^ dK 
— = > — ' - — - + — '- = — ' -— ' - + 0^—'- (-44) 
dA, j:(dxj dX dX dV, dX dX ^ ' 

Similarly, if we take bus voltage angle as function/z, then 

dh _ dd, 

dX dX 
(4.5) 

Close observation of the right-hand sides of the above two equations indi­
cates that the numerators are nothing but the tangent vector elements. Be­
cause the value of dX is the same for each dV. or d5^ in a given tan­
gent vector, bus sensitivities are nothing but the tangent vector elements 
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themselves. Bus sensitivities indicate how weak a particular bus is near the 
critical point and help determine the areas close to voltage instability. The 
greater the bus sensitivity value, the weaker the bus is. Table 4.1 shows the 
bus sensitivities near the critical point, both according voltage angle and 
magnitude for the 39-bus test system. 

Table 4.1 Bus sensitivities for the first 10 buses near the critical point -
system 

39-bus 

According to voltage angle 
Bus 

number 
15 

20 

16 

18 

24 

8 
' 17 

9 
7 

39 

Tangent 
Vector Element 

-0.17056 

-0.17026 

-0.14893 

-0.14372 

-0.14315 

-0.14226 

-0.1394 
-0.13504 
-0.13373 

1 -0.13275 

Sensitivity 

1.0000 

0.99824 

0.87318 

0.84263 

0.83929 

0.83407 

0.81730 
0.79174 
0.78406 
0.77831 

According to voltage magnitude 
Bus 1 

number 
23 
22 
21 
19 
20 
24 
16 
15 
17 

1 IS 1 

Tangent Vector 
Element 

-1.0000 
-0.98764 
-0.96496 
-0.92202 
-0.90683 
-0.89993 
-0.86676 
-0.83222 
-0.71916 
-0.65405 

Sensitivity 

1.0000 
0.98764 
0.96496 
0.92202 
0.90683 
0.89993 
0.86676 
0.83222 
0.71916 
0.65405 
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4.4.9 Branch sensitivities 

Let us consider a branch, ij . Let V^ZS- and VjZ5j be the voltage at 

buses / and 7 , respectively, and let y^ZOy be the line admittance. 

Then the losses in the line ij , neglecting the shunt charging capacitance, 

can be derived as foUow ŝ. 

The current in the branch ij is 

Therefore, 

/ ; = [(F,. cos(^,) - Vj cos(Sj)) - j(V, sm(S,) - Vj sin( J , ) ) ] 

Then the total power flow in the branch ij from i to j is given by 

y'^loss)iJ ~ y-^lossJiJ '^ J\Qloss)ij ~ *^i-^ij 

Similarly, the total power flow from j to / is 

y^loss)ji ~ \^loss)ji '^ JyQloss) ji ~ ^j^ji 

= [Vj - V^Vj cosiSj - J,) - jV^Vj sm(Sj - 5,)\y,.Z - 9,. 

The power loss in the branch ij is the algebraic sum of the above two 

power flows which is 

P,oss + JQ,oss - Wl +V}- IVy^ cos(^. - 5,)]y,jZ - ^ , (4.10) 

Now differentiating the above loss function w.r.t. X, we obtain the sensi­
tivity equation as 

= [(2F,. - 2 F , cos(^, -S.))^ + {2Vj -2V, cos(<5, -5j))^ (4.11) 

P,oss + JQ,oss = IK' +Vj- 2Vyj cos(S, - 5j)]y,Z - G,. (4.12) 

dh_ 

dX 
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Defining this loss expression as function h , we obtain the sensitivity equa­
tion: 

^-[{2V, -2VjCos(S, -Sj))^ + (2V. -2V,cos(S, -Sj))- (4.13) 

+ i2V,V.siniS^ -3j))^-(2V^VjSin(S, Sj))^] 
a A a A 

Branch sensitivity indicates how^ important a particular branch is to voltage 

stability. Table 4.2 show ŝ the branch sensitivities obtained near the critical 

point by considering the Qi^^^^s in the branches for the 39-bus test sys­

tem. Fig.4.4 show ŝ total Qj^,,^, versus the real powder for ten participating 

branches (five most and five least). These are the five branches w îth the 

highest and the low^est sensitivities. The slope of the curve show îng the 

Qiosses i^ ^^^ ^1^^ ^^'^^ participating branches is steep, compared w îth that 

of the five least participating branches. Thus, the rate at which the Qj^^^ 

in a particular branch is changing is important. This relation can be ob­

served from the Qj^^^^^ and the sensitivities from Table 4.2. For exam­

ple, in Table 4.2, the Q^^^^ in branch 37 is greater than that in branch 46, 

but branch 46 has a higher sensitivity. 

Table 4.2 Branch sensitivities near the critical point for the 39-bus system 

Branch 
no. 

36 
46 
44 
37 
33 
45 
43 
3 
31 
40 

Bus i-Bus j 

6-31 
29-38 
23-36 
10-32 
26-29 
25-37 
22-35 
2-3 

26-27 
19-20 

Qlosses 

5.0039 
2.3526 
2.2039 
2.4342 
0.9644 
1.4208 
1.5627 
0.9236 
0.6612 
0.7395 

Sensitivity 

1.0000 
0.7013 
0.4128 
0.3643 
0.3340 
0.3012 
0.2655 
0.2516 
0.2359 
0.2343 
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These sensitivities can provide information for contingency selection. In 
the 39-bus test system, branch 36, which has the highest sensitivity, is the 
most critical branch. This can be verified by considering the outage of each 
branch separately. With the outage of branch 36, WQ could transfer less 
powQY than we could with the outage of either branch 46 or 44, a fact indi­
cating that branch 36 is more critical than branch 46 for voltage stability. 

14 

12 

10̂  

<y 

1 T p^ 

^^^-^^ 1 first fivQ lines 1 

J 1 L 
' last ^ive lines ' 

L /_!___ i 
6000 6500 7000 7500 8000 

Total active load in MW 

8500 

Fig.4.4 Qioss vs. Real power 

4.4.10 Generator sensitivities 

The reactive power at a generator can be defined as the function h. i.e., 

h{x.^) = Quo + ^[KuS^BASE sin(t^,)] + &.- (4.14) 

where 
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with the following definitions: 

• Qj^.Q: original reactive load 

• K^.: multiplier designating the rate of load change at bus i as X 

changes 
• I//.: power factor angle of load change at bus / 

• S^^^^ : apparent power chosen to provide appropriate scaling of A 

The sensitivity equation therefore becomes 

dh 

dX dxj dX 
Li^^BASE sin(t/,) (4.15) 

Table 4.3 shows the generator sensitivities calculated for the same 39-bus 
test system near the critical point. There are 9 generators in the 30-bus sys­
tem. Near the critical case only two generators are participating, and the 
other seven generators already have reached their ^j-^^.^^. Generator sensi­
tivities indicate those generators that are important in maintaining voltage 
stability near the critical point. Evidently, generators with high sensitivity 
are especially important. These generator sensitivities can be used to ob­
tain a better combination of generators to share the increase in load. Sensi­
tivity results can be verified with the finite difference approach. 

The sensitivities discussed in the above sections are useful not only for 
finding weak areas in the system, but also for diagnosing modeling defi­
ciencies. In [22], an analysis of voltage stability on the MAPP-MAIN 
transmission interface of Wisconsin used three different power flow mod­
els to determine voltage stability limits. They used bus and branch sensi­
tivities of CPF to assess and compare modeling deficiencies or strengths 
for three types of power flow models they used. They also used branch 
sensitivities to identify the most critical branches in the system, both for 
normal case and for some contingencies. 

Table 4.3 Generator sensitivities near the critical point for the 39-bus system 

Generator No. 
39 
37 
38 

Q generation 
4.6949 
2.7001 
4.6477 

Sensitivity 
1.0000 
0.9278 
0.7666 
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4.4.11 Qualitative vs. quantitative sensitivities 

Qualitative sensitivity refers to the fact that it only gives direction and rela­
tive magnitude of change of stability indices under parameter variations. 
Quantitative sensitivity can be used for the quantification of change of the 
stability index with respect to a change of some parameter. A good exam­
ple of qualitative sensitivity is eigenvalue sensitivity. At an operating 

point, dX. I dp gives qualitative information about the parameter's influ­
ence on the eigenvalue. Because the eigenvalue is a highly nonlinear func­
tion of system parameters, it is practically impossible to quantitatively es­
timate the change in the eigenvalue due to variations of some parameters. 

Similarly the sensitivities based on tangent vetor elements and modal 
analyses are also providing qualitative information. 

As mentioned in section 4.2, large deviation based indices account for the 
nonlinearities cased by larger disturbances. Since these indices are usually 
defined in the load powder space, they characterize the critical operating 
condition from a parameter space point of view. To get the qualitative as 
well as quantitative margin information, one should derive the sensitivity 
of the critical point for any given change of parameters. Next sections pro­
vide the details related to margin sensitivity. 

4.5 Margin Sensitivity 

As introduced in chapter 3, a scalar X denotes the system load/generation 
level is called the bifurcation parameter. The system reaches a state of 
voltage collapse, when X hits its maximum value (the turning point). For 
this reason, the system DAE model at equilibrium state is parameterized 
by this bifurcation parameter X. When system parameters are changed, the 
total transfer capability will probably increase or decrease. References [23, 
24] first derived this change of margin for changing parameters. The 
change of transfer margin can be determined if the change of X between 
two bifurcation points on the voltage collapse boundary Z is known. 
Since we are interested in estimating the loading margin when some arbi­
trary parameters are varied, we rewrite the DAE as follows to denote the 
parameter dependence of the system solution. 

X = F(X(A(P),P),YmP),PmP),P) (4.16) 
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0 = GiX(AiP), P), YiMP), P), Z(P), P) (4.17) 

At a saddle node bifurcation, which is also an equilibrium point (though 
not asymptotically stable), we take the partial differentiation of the above 
two equations with respect to the parameter vector P ; then 

^ dF/dX dA dX\ dF/dY dA dY\ dF dA dF 

dX^dAdP dP^ dY^dAdP dP^ dA dP dP ^^'^^^ 

0 = 
dG^dXdA dX\ dGfdYdA dY\ dG dA dG 

- • + - - +-dX^dAdP dP" dY^dAdP dP 

Simplifying the above expressions gives 

dA dP dP 

'Y J 

\f'dX dX I dX\ 
dX dP "^ dP 

dY dX I dY 
\dX dP'^ dP J 

+ 
da 
'dP • + 

\^pj 

= 0 

(4.19) 

(4.20) 

Premultiplying the above equation by (v^, v^) corresponding to the zero 

eigenvalue of A^^. 

For the zero eigenvalues of A 

(v;,v^) 
Fx FY 

\PX Gyj 
= [0 0] 

So the first term in Eq.4.20 will vanish. Then 

/ z 7 ^ 

iyiyd 
\^XJ 

dA , r j . \ 
= 0 (4.21) 

Therefore, the bifurcation parameter sensitivity is [23, 24]: 

dA_ 

dP 

(K,Vo) 
rj7 ^ 

\^p^ 
/ Z 7 \ 

(v;,v')i 
\^xj 

(4.22) 

Using vector notation (the underline sign), we can write the generation and 
load parameterization equations as 
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L{X)^{-P,X^)-Q,X^)y 

(4.23) 

(4.24) 

where 

y (4.25) 

(4.26) 

denotes the loading pattern. At saddle node bifurcation, the set of real 
powers form the voltage instability boundary in the load power space. Us­
ing these notations and noting that only L contains X, by the chain rule, 
the derivatives of F and G with respect to X can be written as 

K 

Substitution of (4.27) in (4.22) results in: 

fdF^ 

dG 
\dxj 

fdF\ 
dL 

dG 
KdLj 

(4.27) 

dX_ 

dP 

(v^.v^) 
F ^ 

iviyo) 
\^XJ 

ivl,vl)\ 
\^p^ 

(viyo) 
(PL 

K (4.28) 
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This margin sensitivity gives the first order partial derivative in the Taylor 
series expansion of /I as a nonlinear function of P , which describes the 
hypersurface Z . 

The bifurcation parameter sensitivity will allow us to know, when some 
parameters are varied, how the system will move along the hypersurface 
Z in the vicinity of the current instability point denoted by A*. 

Reference [25] explained margin sensitivity [23] in the framework of DAE 
formulation. Invariance subspace parametric sensitivity in the context of 
voltage stability is discussed in [26]. 

4.5.1 Transfer margin estimation 

Once dXjdP is computed, we will first get the bifurcation parameter es­

timation as 

^^^'dp'^ (4.29) 

where P contains all the parameters explicitly appearing in the DAE 
model including the load scenario parameters. If we are only interested in 
the real power transfer capability, then we define PLM{X^) as the total 
power of all the buses at voltage collapse before a parameter variation, and 
PLM(Jl^) as the total power of all the buses at voltage collapse after a 

parameter variation. In the case of a non-real-power-load related parame­
ter, we will get the margin change estimate as 

APLM = PLM(X.) - PLM(;i.) (4-30) 

/=i 

And, the new critical powers at all the buses, in vector notation, can be es­
timated as 

P^\^P^^^MK, (4.31) 



4.5 Margin Sensitivity 137 

The above discussion is conceptually illustrated in Fig.4.5 and Fig.4.6. 

In the case of a real power load related parameter {K^^^ andP^^Q) varia­

tion, the loading margin estimation for bus will be: 

dPr dP, 

where 

dK Lpi QPm 

dP, 

SK,,, 
— L-A^Pr. LiO 

^PL, 

dP, 
l + A,K 

LpO 

Lpi 

^m (4.32) 

(4.33) 

(4.34) 

V 

X,(p) A,\(p + Ap) 

Fig. 4.5 Transfer margin as shown on a PV curve 
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Transfer margin 

p /7 4-Ap 

Fig. 4.6 Transfer margin estimation 

Parameter 
• 

The total margin change estimation will then be modified to include two 
more terms 

N N Qp Qp 

APLM = 2 AP,, = A A X ^ « + S ^ I* ^ . . / + Z ^ (4.35) 
/=1 l^.5K ch Lpi t:fJPi LiO 

where I^^ denotes the set which includes all the buses under load pa­

rameter variations. When reactive power load parameters (K^^. and QJ^.Q ) 

are varied, the real power transfer margin estimation can still be calculated 
by using Eqs.4.30 and 4.31. The reactive power transfer margin estimation, 
however, should be made by using equations similar to Eqs.4.32 and 4.35 
for bus / and the total. 

4.5.2 Multi-parameter margin sensitivity 

In modem power system operation, coordinated controls are often used to 
optimize certain performance indices, for instance, to maximize the trans­
fer on a specified transmission interface if possible. Since a first order es­
timation can be linearly superimposed, we can study the combined pa­
rameter influence on stability margin variation by using 
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However, w ĥen more than one parameter is varied, the mixed partial de­
rivative term of higher orders also contributes to the margin variation. For 
instance, w ĥen both p. and Pj are varied, the mixed second order term 

•^;^Ap.Apj is also nonzero. Inaccuracy will result from ignoring this 

term in addition t o ^ r Ac f̂. 

4.5.3 Sensitivity formulas 

This subsection will provide the sensitivity formulas with respect to the pa­
rameters studied. 

• Sensitivity matrices -^ and •—• 

Excitation system parameters 

- Exciter gain K^r. 

Qf.,i 1 (4-37) 
rr, V refii ^i ^^ fi J 

where /^g. is the right hand side of Eq.3.32 

- Self excitation parameter K^.: 

dK,> TJfl 

(4.38) 

(4.39) 

where f^^. and f^^. are the right hand sides of Eqs.3.31 and 3.33 re­

spectively 
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Exciter reference voltage V^^j^: 

dV T 
^^ refi ^ai 

Governor parameters 

- Governor base case setting P^ .̂Q : 

where /^g, is the right hand side of Eq.3.35. 

Network parameters 

- Line susceptance By : 

d^P. __ dP„ 

(4.40) 

(4.41) 

dBy dBy 

= ViVjSm(-0,+0j) (4.42) 

gAg, _ dQ„ 
dBy dBy 

= -^(^S^*>^<v.sin(^,-^.-rJ) 

= V.VjCOs(0^-0j) (4.43) 

where A/^ and AQ. are from the real and reactive power mismatch 

equations as given in Eqs.3.16 and 3.17 . 

- Shunt capacitance 5,o : 
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55,0 55.0 

^•(^•Z^.X.sin(^.-^.-rJ) 
55,0 

= K' (4.44) 

(O A = l 

Load (scenario) parameters 

- Real power load increase speed parameter Kj^^.^: 

546. 1 
= i;rKGpAjo (4.45) 

^ ^ . . - ^.• 

5Ai'. 
- = -^Pm (4.46) 5 .̂,,-

- Reactive power load increase speed parameter Kj^^.: 

5Aa 
5 .̂„. 

"̂  - ^ 2 i / o (4.47) 

Base case real power load P^,(,: 

5/.6,- 1 
= ^ ^ ^ G , . ^ L « (4.48) 

dP T 
^^LjO ^ gi 

^^-(l + ZK,^,) (4.49) 

Base case reactive power load Qj^.^ 

5Aa 
;)n =~(^ + ^ ^ i ? ' ^ (4.50) 
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The above formulas are used to construct the sensitivity matrices 
dFldP and dG/dP. 

- Sensitivity matrices dFfdL and dGjdL: 

dAP. 

dP,M) 

dQuW 

= -1.0 

-1.0 

(4.51) 

(4.52) 

(4.53) 

4.6 Test System Studies 

In this section, the proposed sensitivity measure calculated at saddle node 
bifurcation is applied to estimate the voltage stability margin under system 
parameter variations. Physical interpretations are given following the test 
results. The method is demonstrated through two test system examples. 
First we provide a simple two bus example considered in previous chapters 
to demonstrate the steps involved in calculating these sensitivities. 

4.6.1 Two bus example: 

Consider the two bus example (Fig. 4.7) introduced previously: 

Vi 

jO.l 

Fig. 4.7 Two bus system 

-P-JQ 
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With two axis model, there are totally 9 states. The differential and alge­
braic equations describing the system are given below. 

Fpart: 

-{E:,+X'J^,)I,,] 

/,. =[^.1^;. -E',,x;, -i?,,F,cos(J, -^,)-^; .^,sin(^, - ^ , ) K ' 

^/ . ,=7;i 'Fw-[ '5e.(^/ . . )]^/ . . ] 

If VrXMn ^ Kx ^ ^H,max' ^;,..i = 0 (at Steady State), 

"m\ ~^ch\\M\ ~ "ml) 

A = T;![P,,^ - (O), - (a^,f)IR, - //,] i f >"l,mi„ ^ y"l ^ >"l,max 
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P^,,=P'(l + K.Z) gs\ gV 

G part: 

where, 

o=o-a2o(i+^^/,2)-a2 

•8\ 

\P,2 = ^2I^^2 C0S(^2 - ^, - ^21) + ^22^2' COS(̂ 22) 

[2/2 = -^2i^^2 sin(^2 - 1̂ - ^21) - ^22^2' sin(^22) 

ir^i 1=10,^2, =90°,^22 =-90° 

Parameters used in this example are given in Appendix A. 
Given the initial operating condition, 

P,^,^\Ap.u.,Q,^,=0,Plx ^l.4p.u.,A = 0,K^, ^l.0,K,^,^h0 

The Newton method is first used to reach a viable operating point. Then 

the EQTP program is used to get the critical point, where the left hand side 

of the F part equals to zero. 

From Eq.4.28, 

dP 

(^iyo)\ 
\^pj 

(viya) 
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Consider the margin sensitivity with respect to shunt capacitance B2Q at 

bus 2. Because ^20 ^̂  contained only in the power flow equations (Y22), 

Fp = -^ = 0 ,Gp = - ^ = V2 (for Gp vector all the elements are zero 

except one. For the Fp vector all the elements are zero). Hence 

(v;,v^) 
fF ^ 

[^pj 
= v^Gp=-0.13* 0.6634* 0.6634 = -0.0572 

Similarly 

rp ^ 
(v;,v^)| 

Then 
K^^J 

-vlF, +vlG, =vlT-lPl,K^, +vlK,,2Pno =0.2447 

dP 

(v;,v^)i 
/ Z 7 \ 

v^py 
/ zr ^ 

(v;,v^) 
V<^V 

-0.0572 
0.2447 

0.2338 

Suppose there is a 0.1 p.u. shunt capacitance change at bus 2, then from 

Eq.4.29 
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A;1 = — A 5 , „ = 0.2338*0.1 = 0.2338 p.u. 

tJ>LM = t^XY^Kp^ = 0.2338*1.4 = 0.03273j3.w. = 3.273MW 

At base case, the load is 140 MW. The critical point (with unit power fac­
tor load increase) occurs at 310.2743 MW. Hence, the estimated new 
loadability will be: 310.2743 + 3.273 = 313.5473 MW. The actual load-
ability with EQTP tracing is 313.7188 MW. 

The margin sensitivity method works quite well for this case. 

The P-V curve (the abscissa is the normalized value of real power, 
where/? = PXIE^) before and after the adding of shunt capacitance is 
shown inFig.4.8: 

No Shunt Capacitance 
Shunt Capacitance at bus 2 I 

.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 
Normz. p 

Fig.4.8 PV curve with and without shunt capacitance 
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If we consider only power flow formulation then this case corresponds to 
unity power factor and the corresponding margin will be 500MW for base 
case and 505 MW with an increase of 0.1 p.u shunt capacitance at bus2. 

Fig. 4.9 shows the linear rage of the margin sensitivity. 

370 r 

0.4 0.6 0.8 1 
Shunt capacitance at bus 2(p.u.; 

Fig.4.9 System loadabihty vs. shunt capacitance 

4.6.2 The New England system 

Scenario 1 setting in chapter 3 was used to locate the saddle node bifurca­
tion point. With the nominal parameter settings, the total real power trans­
fer margin between the base case and the critical point is approximately 
2738 MW. 

The following sections provide the margin sensitivity of various parame­
ters. 

4.6.2.1 Exciter parameters 

The automatic voltage regulator (Fig.4.10) of the generator at bus 39 af­
fects the voltage collapse limited transfer the most. Obviously, in calibra-
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tion (parameter estimation), K^^^ should be given first priority for better 

accuracy. Otherwise the voltage stability limited transfer evaluation might 
be in error. 
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Fig. 4.10 Loading margin vs. exciter gain 

The exciter reference voltage (Fig.4.11) is one of the control settings 
that can be used to control the generator terminal voltages. From Fig.4.11, 

v̂ e can see that V^^j^^ is very effective for the increase of the transfer. 
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Fig. 4.11 Margin vs. exciter reference voltage 

4.^.2.2 Network parameters 

One of the reasons for voltage instability is the lack of reactive power sup­
port at critical locations [9]. Supplying enough VARs (Fig.4.12) locally at 
or near heavily loaded buses, or at an intermediate point between genera­
tion and load centers usually increases the real power transfer capability. 
In this test case, according to the sensitivity, bus 10 is one of the best 
places to put some reactive power support. Bus 10 is linked to the genera­
tor bus 32 where this generator is at its Hmit. It is shown in Fig.4.12 that a 
0.25 p.u shunt capacitance installation will lead to an increase of approxi­
mately 44 MW in total real power transfer. The linear estimate is very ac­
curate over a wide range of shunt values. Selecting the best location for in­
stallation of SVC can be analyzed using the same information. 
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Line susceptance (Fig.4.13) is also a critical parameter in transfer capabil­
ity evaluation. One of the most sensitive lines indicated by margin sensi­
tivity is line 6-31. Since the generator at bus 31 is one of the remaining 
generation sources not hitting the limits, transfer capability can be in­
creased by reducing the reactance of that line. This will enable the network 
to receive more reactive power from the generator at bus 31. The margin 
curve becomes nonlinear when AS^_3, exceeds 3 p.u.(over 7% of its 

nominal value. Nominal value is 40 p.u.). Quantitative study of the influ­
ence of line susceptances on transmission capability can be extended to 
analyze the effectiveness of FACTs devices, such as that of TCSC (thyris-
ter controlled series capacitors). Line contingency could also be simulated 
through this [24]. 

4.6.2.3 Load (scenario) parameters 

The parameters Kj^^. and K^^. designate the rate of load increase at bus 

/ . If they are zero, the loads will remain at the base case value. By chang­
ing these load scenario parameters, the power factors will be varied. At the 
nominal case, we give 1.0 to both^^^.'s andA^^^/s. This will force the 

load to increase at a constant power factor. For the current scenario, mar­

gin sensitivity (Fig.4.14) indicates that ^^^20 ^̂  ̂ he most sensitive. Forc­

ing the load at bus 20 to remain unchanged (giving 0 to ̂ ^^20) ^^11 ^̂ " 

crease the loading margin of the remaining buses. However, since the load 
at bus 20 is very large, the overall margin will decrease. For the same rea­
son, when we increase the load at this bus at a faster rate by giving K^p2o 

a value larger than 1.0, the total margin does not increase significantly, 
rather saturation occurs. Therefore, the linear sensitivity does not work 
well in this case. 
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The base case real and reactive power loads at bus 16 are 329.4 MW and 
132.3 MVAR respectively. If we shed up to 1.0 p.u. load at a constant 
power factor, the resultant transfer margin (the difference between the base 
case and the critical point) will increase almost linearly to about 2825 
MW. The linear estimate (Fig.4.15) again works quite well near this re­
gion. But when more loads are shed, the margin curve becomes much 
nonlinear. 

4.6.2.4 Multiple-parameter variations 

Two parameters (shunt capacitance at bus 10 and exciter reference voltage 
at bus 39) are changed simultaneously. Eq.4.36 was used to predict the 
margin. In Fig. 4.16, the transfer margin is plotted against both of these 
two parameters. The linear prediction is very accurate over the range of pa­
rameter variations. 
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5 Voltage Stability Margin Boundary Tracing 

In Chapter 4 we discussed about various sensitivities that can be used to 
identify factors that may lead to voltage instability. In general these sensi­
tivities are valid within the narrow range of parameter variation. This 
chapter provides the methodologies that extend the range of these parame­
ter variations. The system load margin corresponding to any control con­
figuration can be determined without retracing the entire PV curve. 

5.1 Introduction 

Deregulation brings new challenges to operate the power system. Inde­
pendent System Operator (ISO) needs to monitor the system load margin 
in a real time and close the power transaction deals based on the available 
system stability margin as well as other considerations to meet the quickly 
varying energy demand. How to efficiently extend the system margin by 
the readjustment of the system control configuration becomes an important 
part of the overall operation of the power system. 

Contingency causes system margin to shrink and could endanger a system. 
Hence load margin variation with respect to specified contingency could 
be a security index that can be applied in contingency screening [1] and 
operation planning. 

Margin boundary can be obtained in a variety of ways. The trivial way to 
obtain a new margin point is to retrace the PV curve with changed system 
conditions. Obviously this method is time consuming and less informative. 

As discussed in chapter 4 the boundary change can be estimated based on 
linear or quadratic margin sensitivity. With this approach tracing of the PV 
curve for each parameter change can be avoided. This leads to fast esti­
mation of margin for changing conditions. But the prominent sources of 
inaccuracy inherently associated with margin sensitivity methods make a 
significant impact on the reliability of the margin estimation. In essence, 
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linear (or high order practically limited to no more than quadratic) sensitiv­
ity information is obtained by Taylor series expansion at the system mar­
gin point (critical point). Notice that the parameter change, sometimes due 
to contingency, may not be within a small range and hence higher nonlin-
earity could not be neglected [2]. Secondly, the effect of system limits may 
lead to discontinuous change in margin. 

This chapter provides methodologies that can be used to estimate the mar­
gin for larger change in parameter values. 

5.2 Natural Parameterization for Margin Boundary Tracing 

As discussed in Chapter 3, power systems can be represented as a Differ­
ential and Algebraic Equation (DAE) model and is repeated here. 

\X = F(XJ,U,Z) (51) 

[0 = G(XJ,U,Z) 

X contains all the system state variables; 7 includes the algebraic variables; 
Uis the control vector whereas Z consists of load variation at each bus. 

Therefore the equilibrium manifold of power system is defined by [3] 

(0 = F(XJ,U,Z) (5.2) 

[0 = G(XJ,U,Z) 

The solution set of above nonlinear equation system constructs a manifold, 
which could be parameterized by control parameters and disturbance pa­
rameters. Both X and Y indicate the state of the system, so they could be 
combined as state space. The parameter space is the combination of con­
trol parameters U and load parameters Z. There is a natural splitting in pa­
rameter space. 

Parameter space = control parameter space e load parameter space 

5.2.1 Load parameter space 

As shown in Chapter 3, based on loading scenario, the loading parameter 
space could be parameterized by scalar X to characterize the system load­
ing pattern and the corresponding generation change. 
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{Pu-(y + K,,X)P,,, (5-3) 

P,,=il + K^,A)P^,, (5.4) 

As mentioned in Chapter 3, Kg. is the generator load picking-up factor 

that could be determined by AGC, EDC or other system operating practice. 

5.2.1 Control parameter space 

Control parameter space can contain any type of control of interest. The 
following controls are studied in this chapter to demonstrate the concepts. 

• Shedding loads 
• Shunt capacitance 
• Generator secondly voltage control 

Control parameter space is parameterized by scalar J3 to characterize this 
space 

U,^U,,+pK,, (5.5) 

Where U^^ indicates the initial configuration of control /. 

Different combinations of control action can be achieved by assigning dif­

ferent ratio value to K^^. 

This parameterization leads to two parameter variations: X characterizing 
system loading condition with respect to a specified loading scenario and P 
characterizing control parameter with respect to a specified control sce­
nario. The equations of power system are reduced to 

Ui = F{XJ,X,P) (5.6) 

U) = G{X,Y,X,fi) 
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5.3 Formulation of Margin Boundary Tracing 

5.3.1 Margin boundary manifold of power system 

In the case of a multi-dimensional, implicitly defined manifold M, specific 
local parameterization needs to be constructed to trace a certain sub-
manifold with special property on M. Saddle node or Hopf bifurcation 
point forms a margin boundary sub-manifold corresponding to the change 
of control parameters along a specified control scenario. Therefore bifurca­
tion related stability margin boundary manifold could be traced by aug­
mentation of power system equilibrium with characterization equation. 

5.3.2 Characterization of margin boundary 

5.3.2.1 Characterization of saddle node bifurcation related 
margin boundary tracing 

Saddle node bifurcation of a dynamical system corresponds to co-
dimension 1 fold bifurcation. As discussed in Chapter 3, a cut function for 
Saddle node related fold bifurcation can be implicitly defined as y^^^^ in 
the following equation 

(5.7) 
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(5.8) 
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With the formulation of (5.7), the cut set condition 

Y^j^^ {X, Y,u) = Q impHes it is at the fold point. 

If r,^,{XJ,u) = 0,\\iQn 

'F, 

[G. 

whicl 

Fy] 
Gy\ 

["xl 
\_Uy J 

li implies 

= 0 ^^^ 
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\_Uy 

i^O 

^J J 

u^ 

Uy 

and 

^ 

'F, 

Px 

1 

Fy' 

Gy\ 

For this condition 

genvalue. Similarly 

genvalue. 

is singular. 

is the right eigenvector associated with zero ei-

is the left eigenvector associated with zero ei-

In principle, the indices k andy in (Eqs.5.7 and 5.8) may be kept fixed 
throughout the computation, but it is usually advantageous to update them 
occasionally by selecting new indices for the next step according to 
(Eqs.5.9 and 5.10) 

(5.9) 

(5.10) 

5.3.3 Margin boundary tracing 

5.3,3.1 Augmentation for bifurcation ctiaracterization 

A characterization of bifurcation can be formulated in the cut set form on 
the solution manifold [4]. Our aim is trace the solution that is on the fold 
manifold. Solving equation (5.11) with condition (5.12) implies the solu­
tion of (5.11) is fold point. 
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We have to trace the solution of (5.11) for changing values of the load 
parameter X and control parameter p. It becomes a two parameter varia­
tion problem 

B(X,Y,u,A,P) = 

F{XJ,X,/3) 

G{X,Y,X,P) = 0 

(5.11) 

rSNBi^J^'^) = Fx Fy 
G^ Gy 

(5.12) 

The following sections provide the basic approach to solve these set of 
equations using predictor and corrector continuation approach we dis­
cussed in chapter 3. 

5.3.3.2 Augmentation for local parameterization 

The total augmented equations for margin boundary tracing are 

irrvv ; m l B(X,Y,u,A,/3) 
H(X,Y,u,A,/3) = \r^ i 

l[X Y / / A J3\e^-7j 

[0] 

F(X,Y,u,A,/3) 

G{X,Y,u,X,P) 

rsNBix,Y,u) 
[X' Y' fi X p\,-rj_ 

=m 

(5.13) 

We can solve H(X,Y,uXP) = 0 by applying predictor and corrector ap­
proach to (5.13): 

The margin boundary predictor is: 
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dH(X,Y,u,X,j3) 

d{X,Y,u,X,fJ) 
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\_d/^\ 
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(5.14) 

(5.15) 

After solving (5.14) for a tangent vector, the predicted values of the un­
known variables can be obtained from (5.15). Where 5 is the step length 

(5.16) 
pre 
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This predicted value can be used to as an initial guess to converge upon the 
margin boundary by solving the non-linear algebraic equations (5.13) with 
the Newton-Raphson method 

Boundary corrector 

Newton method is employed to do the boundary correction as 
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~x' 
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J. 

new 
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'x~ 
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X 

_P^ 

(5.17) 

- ( • 

dH{XJ,u,X,/3) 
d{X,Y,u,X,p) 

YH{X,Y,UXP) 

Iterate until the mismatch is less than the tolerance. Finally one can obtain 
the solution which is the fold point corresponding to 

5.3.4 Basic Steps Involved in the Margin Boundary Tracing 

The following steps are involved in margin boundary tracing. 

1. Specify a loading scenario. 
2. Equilibrium Tracing Program (EQTP) starts at current operating point 

for the first boundary point under current fixed control configuration 
and specified loading scenario. 

3. Specify the control scenario that describes the change of control con­
figuration or contingencies. 

4. Predict the Boundary with Eq.5.16. 
5. Correct the Boundary with Eq.5.17. 
6. Go to step 4 unless some control variables hit limits, else stop. 

5.3.5 Practical implementation 

In the previous section saddle node bifurcation condition is explicitly in­
cluded in the set of nonlinear equations. So when you solve these equa­
tions for changing load and control parameters the solution is always on 
the boundary. This formulation needs the second order derivatives. An­
other way to trace these boundaries is by extending EQTP discussed in 
Chapter 3. This approach is briefly explained through Fig.5.1. 

For practical control variables range one may not encounter co-dimension 
2 bifurcation (where the rank of the system Jacobian is n-2). In that case, a 
reduced method with only a one-dimension augmentation (unfolding) can 
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be easily employed to effectively trace voltage stability margin boundary. 
Nevertheless, since only one-dimension augmentation (unfolding) is ap­
plied, theoretically the reduced tracing method has a limited tracing range 
and could diverge near a co-dimension 2 saddle node bifurcation. 

5.3.5.1 Implementation of reduced method 

As for the power system equilibrium manifold in Eq.5.6, at first we fix the 
control at base value (y?o). Then 

[0 = G(X,Y,A,J3,) 

When the system is not at a neighborhood of a co-dimension 2 saddle node 
bifurcation, the ek in the second augmentation in Eq.5.13 could be set so 
that it always select X as the continuation parameter. Then the problem 
turns into solving equation F, G, and cut function ysNB under different 
specified control conditions characterized by X, 

Notice that the previous margin boundary points are used as pivot (cut) 
condition to calculate the initial points of the part of equilibrium trajectory 
leading to the next margin boundary point defined by the new control pa­
rameter. Still the system load margin corresponding to a new control is de­
termined without retracing the entire PV curve. Therefore the reduced 
margin boundary tracing is also computationally efficient. The procedure 
is as follows. 

1. Under base control yffo, nse EQTP [5] and bifurcation identification con­
ditions to trace to the SNB and then the initial margin boundary point is 
obtained. 

(5.18) 
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Assume that the initial margin boundary point with load margin AQ under 

the base control PQ is obtained. 

Control parameter change 
Margin boundary (SNB) 
EQTP tracing 

Fig. 5.1 Illustration of reduced implementation of margin boundary Tracing 

2. Change the control parameter by a specified single step size 5. 

3. With the jth element of the previous margin boundary point solution 

vector \X^ Y^ XQY as the pivot (cut) condition, solve the following 

equations and use the solution as the initial point to trace the new equilib­
rium trajectory defined by the new control parameter. 

4. From the new initial point, use EQTP and bifurcation identification con­
ditions to trace the next SNB under the new control parameter yff/+i. 
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Predictor: 

Corrector: 

Fy F, 

Gy 

e] 

G, 
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±1^ 
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'AX' 

AY 

_AA_ 
= -

'pfii*'' 
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0 

(5.20) 

(5.21) 

Then a new boundary point with margin /l/+i under the new control pa­
rameter y5/+i is obtained (Note: the middle curve in the Fig.5.1 corresponds 
to the control yff/). 

5. Repeat step 2-4 to obtain the margin boundary points until the studied 
controls hit their limits. 

5.4 Examples 

Two bus example: 

For this example, the unity power factor is still used. Margin boundary 
tracing can be demonstrated with respect to shunt compensation and series 
compensation, respectively. The method described in section 5.3.3 is first 
utilized here to trace the margin boundary. Then, the method described in 
section 5.3.4 is applied for comparison. For simpUfication, only power 
flow equations are used. 

(1) Shunt compensation at bus 2 

The power flow equations of the 2-bus system are: 

G,(S,V^,h,X,j3) = IA(1 + A)-^lOV^sin(S) = 0 

where, ^ is the shunt capacitance at bus 2(p.u.). 

Singularity conditions are shown as follows: 
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G\S GiV2 

^IS ^ 2 ^ 2 J 

h^ =1.0 

p,l 
L^2 

lOF^cosC^) lOsin(^) 

IOF2 sin(^) (20 ~ 2/?)F2 ~lOcos(^) 

Since h2 is a constant, we can replace it with 1.0. 

1.4(1+ ;i) + 10F2sin(^) = 0 

-10F2Cos(c^) + (10-y5)F/ =0 

10F2Cos(^)/7i+10sin(^)-0 

IOF2 sin(^)/2i + [(20- Ipy^ -lOcos(^)] - 0 

[Note: For this simple 2-bus example, we can also use Eq.5.7 to get the cut 

function for the bifurcation boundary; it can be used to replace the last two 

equations of the above set. 

r(S, F2, ;i, /?) = 10 - (20 - 2J3)V^ cos(S) = 0 ] 

Hence, the H matrix can be expressed as: 

H: 

lOV^cosiS) \Osm(S) 0 1.4 

lOF^sinCJ) (20-2y^)F2-10cos((^) 0 0 

-lOV^sm(S)h,-]-\Ocos(S) \Ocos(S)h, lOF^cosC^) 0 

1OF2 cos(S)h, +10 sin(^) 10 sin(S)h, +20-2;^ 1OV̂  sm(S) 0 -2K 

Select J3 as the continuation parameter, then k=5. 

Tangent vector is: [dS (iF^ dh^ dX dpY 

Base case SNB point is (corresponding to P = 0 ,PQ =0.14, normalized 

value): 
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V^ = 0J01l,S = -0.7854,/l = 2.5714,//, = 1.4142,P,„. - 0.5 

Predictor step: 

[dd dV^ dh, dX d/3f 

= [0.0079 0.0763 -0.1302 0.3571 l.Of 

Taking step length <j = 0.1, then: 

^gpre ypre ^pre ^pre ^pre^ 

= [-0.7846 0.7147 1.4012 2.6071 O.lf 

Corrector step: 

i^d AFj A//, AA Ay ]̂̂  

= [-0.0008 -0.0005 -0.0012 0.0004 Of 

r Q^new jrnew Ij^^^ nnew nnewiT 

-[-0.7854 0.7142 1.40 2.6075 O.lf 

Hence, the new margin is: 

Po * (1 + ^"''^) = 0.14 * (1 + 2.6075) = 0.5051 

Applying the continuation Prediction-Correction method step by step, we 

can trace the saddle node bifurcation margin boundary with respect 

to J3 (shunt capacitance). 

Furthermore, if we use the normalized equation, the analytical expression 

for the margin for this simple system is given in the reference [6]: 

cos((p) 1 

Where, B^ is the shunt capacitance at bus 2(p.u.). 

The comparison results between analytical value and MBT approach with 

the intermediate steps are shown in table5.1 and fig5.2: 
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Table 5.1 Comparison results 

Shunt2 
(p.u.) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

1.1 
1.2 
1.3 

1.4 

1.5 

V2 
(p.u.) 

0.7071 

0.7142 

0.7215 

0.729 

0.7366 

0.7443 

0.7522 

0.7603 

0.7686 

0.777 

0.7857 

0.7945 

0.8035 

0.8128 

0.8222 

0.8319 

k 
1.4142 

1.4001 

1.3859 

1.3718 

1.3576 

1.3435 

1.3294 

1.3152 

1.3011 

1.2869 

1.2728 

1.2587 

1.2445 

1.2304 

1.2162 

1.2021 

Jl 

2.5714 

2.6075 

2.6443 

2.6819 

2.7202 

2.7594 

2.7994 

2.8402 

2.882 

2.9246 

2.9683 

3.0128 

3.0584 

3.1051 

3.1528 

3.2017 

MBT 
(normz.) 

0.5 

0.505 

0.5102 

0.5155 

0.5208 

0.5263 

0.5319 

0.5376 

0.5435 

0.5495 

0.5556 

0.5618 

0.5682 

0.5747 

0.5814 

0.5882 

Analytical 
(normz.) 

0.5 

0.50505 

0.5102 

0.51546 

0.52083 

0.52632 

0.53191 

0.53763 

0.54348 

0.54945 

0.55556 

0.5618 j 

0.56818 

0.57471 

0.5814 

0.58824 



5.4 Examples 171 

u.oc? 

0.58 

0.57 

0.56 

0.55 

0.54 

0.53 

0.52 

0.51 

0.51 

# 

1 

M 

# 

- m 

1 
1 

- + -

1 
1 

1 
1 

± 

1 
' 

1 
1 

; 

1 

# 
1 

- t- -
1 
1 
1 
1 

1 
1 
i 

1 

# 

# 

# 
- # -

# 

0 

1 
1 
1 

1 
- H 

1 
i 
1 

1 

1 

1 
1 

f 
1 

i 

1 

1 
1 

1 

1 

# 

# 

# 

Theoretical Value 

MBT 

# 

i 

- H 

— 

-] 

- H 

- H 

— 

0.5 1 

Shunt capacitance at bus 2(p.u.) 

1.5 

Fig. 5.2 System margin variation with shunt capacitance (analytical vs. 

MBT full) 

Figure 5.3 shows the margin variation obtained through reduced formula­

tion. These results are comparable. 
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Shunt capacitance at bus 2(p.u.) 

1.5 

Fig. 5.3 System margin variation with shunt capacitance (analytical vs. 

MBT reduced) 

(2) Series compensation between bus 1 and bus 2 

The formulation is same as before except here j3 is equivalent total se­

ries admittance 

G,(S,V^,X,j3) = lA(l + A) + j3V,sm(S) = 0 

G^ (S, V^ ,Ji,j3) = -J3V^ cos( S) + PV^ = 0 

Singularity conditions: 

GlS G^y^ 

yiS ^2^2 J 

h^ =1.0 

\h] 
kJ 

pV^cosiS) j3sm(S) 

PV^ sin(^) ipv^ - p cos{d) 

The total set of equations to be solved: 
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H--

1.4(1+ ;i) + y^F2sin(^)-0 

/^V^cos(S)h,+J3 sin(S) = 0 

J3V^ sm(S)h, + 2J3V^ -j3cos(S) = 0 

'j3V,cos(S) j3sm(S) 0 1.4 V,sm(S) 

fiV^siniS) 2j3V,-j3cos(S) 0 0 V,'-V^cos(S) 

- pV^ sm{d)h, + p cos{S) p cos{5)h, pV^ cos(^) 0 V^ cos(^)/?, + sin(^) 

pV^ cos(S)h, + p sm(S) P sm(S)h^ + ip pv, sm(S) 0 V, sm(S)h, +2V^- cos(S) 

Select /] as the continuation parameter, then k=5. 

Tangent vector is: [dS dV2 dh^ dX dfiY, 

Base case SNB point is (corresponding to yff = 10 , and PQ = 0.14 is nor-

mahzed value): 

V^ = 0J07\,S = -0.7854, A = 2.5714,/2i = 1.4142,P^^. = 0.5 

Applying the continuation Prediction-Correction method step by step as 

shown before one can trace the saddle node bifurcation margin boundary 

with respect to/? (series admittance). 

The analytical expression of the margin for series compensation as given 

in reference [6] is: 

^ cos(^) E ^ cosjcp) ^2Q 
max 1 + sin(^) 2X 2(1 + sin(^)) 

This relation shows that the margin changes linearly with respect to the 

change of equivalent total series admittance. 
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1.5 

> • 

. • • 

#• Theoretical Value 

O MBT 

10 15 20 25 30 
Admittance at bus 2(p.u.) 

35 40 

Fig.5.4 System margin variation with total equivalent series admittance 

(analytical vs. MBT) 

Meanwhile, the degree of compensation can be calculated by: 

X//o = ( l - ^ ) * 1 0 0 
R 

new 

If we use the X^ % as the parameter ^ instead, the power flow equa­

tions will be: 

G, (S, V„A,/3)^l .4(1 + Z) + J^22_ V, sm(S) - 0 
' ' 100-/? ' 

G^ (S, V^ ,X,J3) = — i - ^ ^ F, cos(^) + 
i00-j3 

"" '« .F,^=0 
100-;^ 
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And H changes into (using m = 
1000 1000 

:^^ 
100-/? (100-j3y 

to simplify): 

H = 

mV^cos(S) msm(S) 0 1.4 nV2sm(S) 

mV^siniS) mV^cos(S) 0 0 n(V^-V^cos(S)) 

- m ̂ 2/?! sm(S) + m cos(J) m cos(J)/Zi m V2 cos(^) 0 n[V2 cos{S)h^ + sin(^)] 

mV2 cos(J)//, + msm{S) msm{S)h^ +2m mV^ sm{S) 0 nlV^ sm{S)hy + IV^ - cos(^)] 

The figures.5 shows the change of system loading margin with respect to 

degree of compensation X^ % : 

30 40 50 
Degree of compensation(%) 

Fig.5.5 System margin variation with degree of compensation (analytical 

vs. MBT) 

New England 39-bus system: 

The following assumptions are made to demonstrate the boundary tracing 
on this test system 

• Constant power load model; 
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• The maximum real power limit, the field current and the armature cur­
rent limits are considered for each generator. 

• No generator is allowed to have terminal voltage higher than 1.1 p.u., 
when its secondary voltage control is utilized to increase system stabil­
ity margin; 

• The loading scenario is defined as that all the loads are increased wit 
constant power factor, and all the generators participate in the load pick­
up at the same rate. 

The margin boundaries can be traced with respect to any specified con­
trol scenario. 

5.4.1 Series compensation between bus 6 and bus 31 

The figures.6 shows the system loading margin change as the series admit­
tance between bus 6 and bus 31 varies. 

2800 

2700 

2500 

2400 

2300 

2200 

2100 

2000 

1 1 1 1 1 ^,,..---^^ 

1 1 j ^ ^ ^ _i -L 4-

1 / 1 - 1 -4 -L 4-

y 1 1 -i -1 -f t-

30 32 34 36 38 40 42 44 
Series admittance between bus 6 and bus 31 (p.u.) 

Fig. 5.6 System loading margin vs. series compensation 

5.4.2 Shunt Compensation 

Fig.5.7 shows the system loading margin change as shunt capacitance in­
creases at bus 10. 
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Fig. 5.7 System load margin vs. shunt capacitance at bus 10 

5.4.3 Multiple contingencies 

Voltage stability margin change due to single or multiple contingencies 
could also be traced by parameterizing the control parameter change in­
volved in the contingency. 

Let the Yy = Y^^\l-/]) and ^.. = 5.^^\i-/?). When the parameter J3 vary­

ing from zero to one, Y^j and B. will vary from their initial values of 

yj/̂ ^and J5./̂ t̂o zero. Therefore, Y matrix becomes the post-contingency 

value. 



178 Voltage Stability Margin Boundary Tracing 

2800 

2600 

^ 2400 

03 

E 

g 2200 

E 
o 

^ 2000 
B 

1800 

1600 

1 1 1 T----\ -i 1 T r 

[- • 1 -1 ^'''*''***"*>>^ r r 1 -1 T r 

L 1 -J 4 4- I- 1S»,^ _4 4 t-

r 1 n T 1 1 1 1 1 r \ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Double contingencies: line 8-9 and 7-8 outage 

0.9 

Fig. 5.8 System load margin vs. multiple contingencies: 
line 8-9 and line 7-8 outages 

Fig. 5.8 shows the margin change for line outages. Zero indicates both line 
are in and one indicates both lines are out. 

5.4.4 Boundary tracing with respect to generation control 
parameters 

The margin boundaries can be traced with respect to any specified control 
scenario. 

5.4.4.1 Load margin vs adjustment ofKa ofAVR system 

In Fig.5.9, voltage collapse (SNB related) margin boundary versus adjust­
ment of Ka around its base case operating value is depicted as the solid 
curve. 
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Fig. 5.9 margin boundary tracing vs. Ka adjustment 

5.4.4.2 Load margin versus adjustment of Vref ofAVR system 

Fig.5.10 shows the system voltage stability margin change with respect to 
the change of generator F̂ ^̂  at bus 39. 
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Fig. 5.10 System load margin vs. V^^^ adjustment at generator bus 39 

5.4.5 Control combination 

The control scenario could be any combination of control parameters. Fig. 
5.11 shows the variation of margin with simultaneous change in Vref, and 
shunt compensation(The Vref is increased from 1.084 p.u. to 1.092 p.u., and 
shunt capacitance is increased from 0 to 0.08 p.u.). 
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Fig. 5.11 System load margin vs. control combination steps: Vref39 (O.OOlpu), 
ClO(O.Olpu) 

5.4.6 Advantages of margin boundary tracing 

• Margin Boundary Tracing is accurate and reliable. 
• It is easy to take account of limit effects and other nonlinearities in Mar 

gin Boundary Tracing. 
• Margin boundary tracing dramatically saves CPU time compare to ob­

taining each neŵ  boundary point by exhaustively recomputing the 
whole PV curve. 

5.5 Formulation of Voltage Stability Limited ATC 

Deregulation in powder industries is promoting the open access of all 
transmission netv^orks. How êver, this may lead to the violation of transfer 
capability in the netw^orks. These aspects have motivated the development 
of methodologies to evaluate existing power transfer capabilities and 
transmission margins. The term "Available Transfer Capability" (ATC) [7] 
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is used to measure the transfer capability remaining in the physical trans­
mission network for further commercial activity over already committed 
uses. 

A key aspect in calculating ATC is the physical and operational limita­
tions [7, 8] of the transmission system, such as circuit ratings and bus volt­
age levels. In addition, as power system become more heavily loaded, 
voltage collapse is more likely to occur. 

To determine ATC is actually to determine TTC (Total Transfer Capabil­
ity), which is the most critical physical or operational limit to the net­
works. TTC on some portions of the transmission network shifts among 
thermal, voltage and stability limits as the network operating conditions 
change over time. Fig.5.12 shows one possible ATC scenario with the low 
voltage limit is the critical constraint while in Fig.5.13 the voltage stability 
limit is the critical constraint [9]. 

TTC 

Fig.5.12 Illustration of ATC with low voltage limit as the critical constraint 
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PcP,P. P, P 

Fig.5.13 Illustration of ATC with voltage stability limit as the critical constraint 

Vj: Low voltage W\\h respect to bus voltage limit; 

V^: Critical voltage ŵ ith respect to voltage collapse point; 

P^: Existing Transmission Commitments (including CBM); 

Pj: Low voltage limit; 

P^: Oscillatory stability or transient stability limit; 

P^: Thermal overload limit; 

P^: Voltage stability limit; 

TTC: mm(P„P^,P„PJ 

The continuation power flow and the margin boundary tracing techniques 
can be applied to obtain voltage stability limited transactions. 

For this we have to obtain scenario parameters that establish various trans­
actions including multi-area simultaneous transactions. Next section de­
scribes how to obtain scenario parameters to establish a particular transac­
tion. 
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5.6 Scenario Parameters 

Recall equilibrium tracing introduced in chapter 3 is along a fixed 
load/generation changing pattern from the base case up to voltage collapse 
point. The load/generation changing pattern at each bus in the system is 
reproduced here for the continuity. 

PLM) = Pm+^K,,P,,, (5.22) 

PoX^)-Po.o+K,^iPui^)-Pm) 
/=1 (5.24) 

i=\ 

Note that K^ s are not independent variables. They do not have any mean­

ing if they are not compared to each other since K^^ only reflects the 

relative load change speed at one specific bus. For instance, if a system has 

only two buses where the load will increase, the case with K^^ = 1 and 

Kj^2 - 2 equals to the case where Kj^^ = 2 and Kj^2 = 4 . In other 

words, it is the ratio between K^ s that determines the system active load 

increase scenario. 

K(^. reflects active generation dispatching pattern at each bus. When 

there is no generation increase at a particular bus /, the corresponding 

KQ- is zero. 

In summary, when the common X increases, the active load, reactive 
load, and generation at each bus will increase at the rate determined by 
Kj^ s, and Kg s, respectively. 

Keeping the essential meaning of K^ s, and K^ s in mind, we will see 

how they are extended in the following section to simulate the process of 
simultaneous multi-area transactions. 



5.7 Scenario According to Simultaneous Multi-area Transactions 185 

5.7 Scenario According to Simultaneous Multi-area 
Transactions 

As shown in Fig.5.14, there is more than one desired transaction between n 
areas, which will take place at the same time. Since the n areas are inter-
coimected, their performance will affect one another. 

Fig.5.14 Multi-area transactions 

In addition, one area may have several transactions with others at the same 
time either as seller or as buyer. For a highly meshed system, an explicit 
interface may not exist between areas. Thus choosing the interface flow to 
check whether these transactions are satisfied may not be reasonable. Al­
ternatively, we can set up a criterion for judgment by checking the seller's 
supply and buyer's load increase. That is, according to the transactions as­
sociated to each area (either seller or buyer), we can summarize the total 
demand for each seller and requirement of each buyer. If at one point, each 
seller reaches its total supply demand while at the same time each buyer 
reaches its total requirement, we claim these transactions are satisfied si­
multaneously no matter how the flows go through the network. This crite­
rion is also more suitable for studying voltage-stability-related problems 
since voltage stability is inherently related to system's load/generation pat-
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tern, it cannot simply be judged by the flow over the transmission line like 
what is done to study thermal constraint. 

Given the demand of each transaction between n areas (generalized in Ta­
ble 5.2), we can obtain the total desired load demand for each area as well 
as the total desired generation supply for each area according to the trans­
actions, which is shown in Table 5.3. For the sake of generality, we also 
consider transactions within the same area, e.g., i=j. Table 5.4 shows the 
total number of load increase buses and the total number of generation-
sharing buses of each area. 

Table 5.2 Transaction description 

Area # of seller 

/ 

/ 

Area # of buyer 

Aj ^ 0 
/ 

Desired transaction amount 
(MW) 

PT 
^ Til 

Table 5.3 Demand for each area's generation and load 

Area # 

1 

\ 

J 

n 

Demand for load 
(MW) 

2 J ; = I ^Ti\ 

• 

Lui^\ ^ Tij 

2ji=l ^Tin 

Demand for generation 
(MW) 

2 j M ^ n / 

• 

Y PT 
Lui=\ Tji 

* 

L^i=\-^Tm 

According to the information above, we need to determine the load pa­
rameters K^ s and generation parameters K^ s to simulate these transac­
tions. For one-area case, scenario parameters can be set only according to 
the demand of load and generation at each bus in this particular area, with­
out considering other area. So the load changing parameter, K^^ s and 

generation changing parameter, K^j s can be determined arbitrarily as 
long as the total generation and load in the area can be balanced. However, 
for simultaneous multi-area transactions, merely using such strategy may 
cause a mismatch between the seller's actual generation and the corre-
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spending buyer's demand. Now that each area's scenario is considered 
within a combined large system, we need to guarantee the simultaneous-
ness as well to match the seller's generation output to the corresponding 
buyer's load increase. 

Table 5.4 Area scenario 

Area # 

1 

i : 

J 
• 

n 

Table # of genera­
tion increase buses 

NG, 

\ 

NG, 

• 

NG„ 

Total # of load increase 
buses 

NL, 

I 1 

NL^. 

• 

NL„ 

5.7,1 Determination of K^. 

According to the definition of simultaneous transactions, each area will in­
crease its load in such a way that when it satisfies its own load demand ac­
cording to transactions, other areas will also exactly satisfy their own load 
demand according to the transactions requirement. Without the loss of 
generality, we can assume that all involved areas increase their loads in a 
simultaneous way. That is, we can determine the load increase scenario ac­
cording to the ratio of each area's load demand with respect to total load 
demand for the whole equilibria-tracing process from the base case, which 
guarantees the simultaneousness of a set of transactions. 

Note that the load demand for each area (in Table 5.4) can be regarded as 
the net load increase from the base case for that particular area correspond­
ing to the bifurcation parameter at that point, L Since we have defined the 
simultaneousness of the set of transactions, X is common for each area, 
which can be mathematically expressed with the following equation set 
(compared to Eq.5.22): 
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k=\ i=\ 

k=\ i=\ 

NL„ 

^S^lf^AI^S^r,. (5.25) 

where /^^^ refers to the existing load at bus k and the upper note (/) 

specifies the area in which that bus resides. 

By summarizing the left-hand-sides and right-hand sides of each equation 
in equation set 5.25, respectively, we have 

^S2^1f^//^=ZZ^r, (5.26) 
7=1 k=\ 7=1 /=1 

The right-hand-side of Eq.5.26 is nothing but the total transactions' de­
mand. We simply denote it as follows: 

n n 

PTOTAL ^YJUPTIJ (5.27) 
j=\ i=\ 

Taking one equation related to AREAy from Eq.5.25 and dividing it by 
Eq.5.26, we get 

j=\ 2Ljk=\ ^Lk ^LkO ^TOTAL 

We normalize K^^ s by letting 

YL^^^Piii=C (5.29) 
y=i k=\ 
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where C is an arbitrary constant in MW. Then Eq.5.28 is transformed to 

NL, 
_r^L^i=fi Y^K]!^pin^C^^ (5.30) 

k=\ ^TOTAL 

Eq.5.30 reflects when the total systems' load changes; each area's load 
changes according to the fraction determined by the transactions. 

The purpose of normalizing K^ s is mainly to keep bifurcation parameter 

X and system transfer (in MW) consistent and make these two have simple 
mathematical relationship. Choosing C is arbitrary because it affects only 
the value of Kj^ s but not their essence (see Section 5.6). 

To finally determine Kj^ s, we further need the load change relationship 

between each bus in a particular area, which can be given in the following 
form: 

^lf:.••:^l^•••:i^il^. =/.;>):...://;>) :...:y;) (5-31) 

where jul^ is a constant coefficient. By introducing a common variable 

for each areay, K[^\^SE ? ^^ ^^^ transform Eq.5.31 to 

^l{>=//(^-)^,(^> L BASE 

K'^^ - Mi^'Kl^' BASE 

^^L,NLj MNLJ-^L_BASE (5.32) 

Substituting Eq.5.32 into 5.30, we get 

K^\ASE = C^,,^\_^^^^-^^ (5.33) 
Z^k=\^^ ^kO ^ TOTAL 

Substituting Eq.5.33 into 5.32, we finally obtain Kj^ for each bus in each 

area as follows: 
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" - ^ Y^h U)pU) P^^^^ 
Z^k=\^^ LkQ TOTAL 

Through the above procedure, the obtained K^ s reflect the load change 
relationship between each bus strictly according to the transactions. 

5.7.2 Determination of K^^ 

According the principle of simultaneous transactions, each generation area 
needs to pick up the load demand associated with it. From the whole sys­
tem point of view, each generation area only picks up part of the total load 
demand. Thus we can assign the ratio of generation sharing for one par­
ticular area according to Table 5.3 as follows: 

NGj y« p 

YK[^=2^U1L (5.35) 
P 

k=\ ^ TOTAL 

Eq.5.35 shows that each generating area picks up part of total load accord­
ing to the transaction associated with it. To finally determine K^J"^ s, we 
further need the generation-sharing relationship between each bus in a par­
ticular area, which can be given in the following form: 

4f : . . . :^^>:- :^^>, ,^=7;^>: . . . : ;7 :^> :...:;;(;> (5-36) 

where //̂ ^̂  is a constant coefficient that reflects the relative generation-

pick up of one particular bus. By introducing a common variable for 

each areay, K^J\^SE ' ^^ ^^^ transform Eq.5.36 to 

^G\ Vl ^G_BASE 

^^Gk 'Ik ^^G_BASE 

^^G,NGj 'INGJ^G_BASE (5.37) 
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Substituting Eq.5.37 into 5.35, we get 

1 E:,^. K^J) - t ^ '=1 ^' (5.38) 
' TOTAL 

Substituting Eq.5.38 into 5.37, we finally obtain Kg for each bus in each 

area as follows: 

„(y) Y" p 

^Gk ^NGj n) p 
2 J ^ = 1 ^k ^TOTAL 

Furthermore, this methodology is also applicable to more general cases 
such as multiple transactions from one area or load and generation increase 
in the same area. 

5.8 Numerical Example 

The procedure described in Section 5.3 is implemented in the EQTP simu­
lation to show the effectiveness of direct ATC tracing. Various control sce­
narios have been traced for voltage stability related ATC margin boundary. 
Simultaneous multi-area transactions are defined in the simulation to show 
their impact on ATC margin for different areas. 

5.8.1 Description of the simulation system 

The numerical results are based on New England 39-bus system. As shown 
in Fig.5.15, New England 39-bus system is divided into four areas. The 
general coimection between them is shown in Fig.5.16. 
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Fig.5.15 New England 39-bus system 
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Fig.5,16 Illustration of area connection 

There are two ATC scenarios considered in the simulation: 

• One Transaction between AREA 1 (seller) and AREA 2 (buyer); 
• Two simultaneous transactions, one is between AREA 1 (seller) and 

AREA 2 (buyer), the other is between AREA 3 (seller) and AREA 
4(buyer). 

The load increase buses and generation sharing buses are listed in Table 
5.5. 

Table 5,5 Area scenario for New England 39-bus system 

AREA# 

1 

2 

3 

4 

Load Increase Bus 

None 

15,16,21,26,27,28 

None 

3,4,7,8,18 

Generation Sharing Bus 

33, 34, 35, 36, 38 

None 

30,31,32,37,39 

None 

In the above ATC scenarios, the seller's generation should match its as­
sociated buyer's load demand. In the case of two simultaneous transac­
tions, the amounts of transaction are proportional to the base case loads of 
corresponding areas. 

The initial operation conditions of the areas are as follows: 
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Area 1: 

Bus 

33 

34 

35 

1 36 

' 38 

Total Generation 

Initial Real Generation 
(XIOOMW) 

6.3 

6.12 

4.88 

6.3 

5.2 

Power Factor 

0.95 Leading 

0.91 Leading 

0.89 Leading 

0.95 Leading 

0.98 Leading 

2880MW 

Area 2: 

Bus 

15 

i ^̂  
21 

26 

27 

28 

Total Load 

Initial Real Load 
(XIOOMW) 

3.2 

3.294 

2.74 

1,39 

2.81 

2.06 

Power Factor 

0.90 Lagging 

0.93 Lagging 

0.92 Lagging i 

0.95 Lagging 

0.97 Lagging 

0.99 Lagging 

1549 MW 

Area 3: 

Bus 

30 

31 

32 

37 

39 

Total Generation 

Initial Real Generation 
(XIOOMW) 

2.3 

7.23 

6.3 

5.2 

10 

Power Factor 

0.71 Leading 

0.93 Leading 

0.92 Leading 

0.99 Leading 

0.99 Leading 

3103 MW 
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Area 4: 

Bus 

3 

4 

7 

8 

18 

Total Load 

Initial Real Load 
(XIOOMW) 

3.220 

5.000 

2.338 

5.220 

1.580 

Power Factor 

0.93 Lagging 

0.94 Lagging 

0.94 Lagging 

0.95 Lagging 

0.98 Lagging 

1736 MW 

Single Transaction: 

In the single transaction example below, we determine the coefficients 

Kj^j^ according to (5.34) 

K\2 = C-. Ml 
U) Y,,fi =l^TiJ 

In (5.34), ^"^^ Pj.j is the total load in Area 2, which has the value 1549 

MW; PTOTAL is the total system load of the New England system, which 

has the value 6141 MW. According to the definition, P^^QI^ the existing 

load at bus k. Thus in this case, we have 

^ i i 5 o = 3 2 0 P , , , „ = 329.4 P , , , „ = 274 

^ 2 6 O " - ^ - ^ ^ ^Lll 0 ~ ^ ^ ^ ^ 2 8 0 206 

Now the next job is to determine variable C and//^. Without loss of 

generality, we can define scalar C=1000. For variable//^, it defines load 

increment scenario in Area 2. And if the load is increased at various buses 
proportionally to their initial values, we have 

/^15 = /^16 =>^21 = / ^ 2 6 = / ^ 2 7 = / ^ 2 8 = 1 

Finally we can calculate all the AT̂^ in Area 2 with all these parameters: 
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•'^£15 '^Ue ^L2\ ~ ^L26 ~ ^Lll ~'^Lli 

1 1549 
= 1000x x - i : - ^ = 0.1628 

320 + 329.4 + 274 + 139 + 281 + 206 6141 

Similarly, we can also define KQ,^ according to (5.39). In (5.39), 

zli-\^Tji î  ^he total generation in Area 1, which has the value 3080 MW; 
and PTOTAL is the same, 6141 MW. For variable //̂  , it defines generation 
increment scenario in Area 1. And if the generation is increased at various 
buses proportionally to their initial values, we have 

^33 • ^iA '• ^35 • ^736 • ^38 

= p • p • p • p • p 
•* G33_0 • •* G34_0 • •* G35_0 • -* G36_0 •"' G38_0 

= 630 :612 :488 :630 :520 

= 0.2188:0.2125:0.1694:0.2188:0.1806 

Finally, the coefficients K^/^ in area 1 can be calculated as follows: 

0.2188 3080 ^,^^^ 
^„.. = X = 0.1097 
''̂  1 6141 
^ 0.2125 3080 .._, 
Kr-^A = X = 0.1066 
""'' 1 6141 

0.1694 3080 

1 ^6141 

0.2188 3080 

Kr,s = X = 0.0850 
°'' 1 6141 

^G36 = X = 0.1097 

""'' 1 6141 
^ 0.1806 3080 ...., 
Kr^s. = X = 0.0906 

"'' 1 6141 
After rescahng K^,^ to make the sum equal to 1, we finally get: 

ii:G33 =0.2187 ^C34 =0.2125 iiC ĵj =0.1695 

^C36 =0-2187 ^C38 =0.1806 
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In the single transaction, only area 1 and area 2 are involved. The load 
and generation conditions at the critical point are shown as follows: 

Area 1: 

Bus 

33 

34 
35 
36 

38 
Total 1 Generation near 

the critical point 
Initial total Genera­

tion 
Generation Increment 

Generation near the 
critical point 
(XIOOMW) 

7.766 

6.194 
7.995 
6.853 

10.278 

Power Factor 

0.92 Leading 

0.92 Leading 
0.92 Leading 
0.92 Leading 

0.96 Leading 

3909 MW 

3080 MW 

829 MW 

Area 2: 

Bus 

15 
16 
21 
26 
27 

28 

Total Load at the critical point 

Initial total Load 

Load Increment 

Critical Load 
(XIOOMW) 

4.879 
5.023 
4.178 
2.119 
4.285 

3.141 

Power Factor 

0.90 Lagging 
0.93 Lagging 
0.92 Lagging 
0.95 Lagging 
0.97 Lagging 

0.99 Lagging 

2363 MW 

1549MW 

814 MW 

Simultaneous Transactions: 

By the same way, we can also define the coefficients in simultaneous 
transactions. In this case, we still use (5.34) and (5.39) to determine these 
coefficients. And when applying (5.34) and (5.39) to determine Area 1 and 
Area 2 coefficients, we notice that all the parameters remain the same, thus 
we have the same coefficients of Area 1 and Area 2 as in the single trans­
action case. 



198 Voltage Stability Margin Boundary Tracing 

As for the Area 3 and Area 4, we only need to know area 4 load and 
area 3 generation to apply (5.34) and (5.39). In this case, the area 4 load to­
tal is 1736 MW, and the area 3 generation total is 3103 MW. Thus, we can 
calculate the coefficients as follows: 

For the load buses: 

= 1000x i x i ^ = 0.1628 
322 + 500 + 233.8 + 522 + 158 6141 

For the generator buses: 

^30 • ^731 • ^32 • ^737 • ^739 

= 230:723:630:520:1000 

= 0.074:0.233:0.203:0.168:0.322 

„ 0.074 3103 . . - _ 
A^,„ = X = 0.037 

""'' 1 6141 
0 233 3103 

0.203 2103 
1 ^6141 

0.168 3103 

^G32 = — - x — = 0.103 

K^., = - X = 0.085 
°^' 1 6141 

0.322 3103 ^ , ^ , 
A : ^ „ = X = 0.163 

°'' 1 6141 
After rescaling K^j^ to make the sum equal to 1, we finally get: 

^G3o = 0-073 ^C3i = 0.233 A:C32 = 0.204 

^C37 =0.168 ^039=0.322 

In the simultaneous transactions, all 4 areas are involved. The load and 
generation conditions at the critical point are shown as follows: 
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Area 1: 

Bus 

33 

34 

35 
36 

38 

Total Generation 
near the critical point 

Initial total Genera­
tion 

Generation Increment 

Generation near the 
critical point 
(XIOOMW) 

7.283 

5.809 

7.498 
6.428 
9.64 

Power Factor 

0.90 Leading 

0.91 Leading 

0.87 Leading 
0.93 Leading 
0.96 Leading 

3666 MW 

3080 MW 

586 MW 

Area 2: 

Bus 

15 
16 
21 
26 

27 

28 

Total critical Load 

Total Initial Load 

Load Increment 

Critical Load 
(lOOMW) 

4.371 
4.499 
3.742 
1.899 

3.838 

2.814 

Power Factor 

0.90 Lagging 
0.93 Lagging 
0.92 Lagging 
0.95 Lagging 

0.97 Lagging 

0.99 Lagging 

2116MW 

1549 MW 

567 MW 

Area 3: 

Bus 

30 

31 
32 

37 
39 

Total Generation near 
the critical point 
Total Generation 

Generation Increment 

Generation near the 
critical point 
(XIOOMW) 

2.785 

8.751 
7.626 

6.287 
12.107 

Power Factor 

0.88 Leading 

0.89 Leading 
0.89 Leading 

0.91 Leading 
0.96 Leading 

3756 MW 

3103 MW 

653 MW 1 
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Area 4: 

Bus 

3 
4 
7 
8 

18 

Total Critical Load 
Total Initial Load 

Load Increment 

Critical Load 
(XIOOMW) 

4.398 
6.829 
3.193 
7.130 

2.158 

Power Factor 

0.93 Lagging 
0.94 Lagging 
0.94 Lagging 
0.95 Lagging 

0.98 Lagging 

2371 MW 
1736 MW 
635 MW 

After ATC margin is calculated by the given scenarios, ATC margin 
change with respect to control resources can be calculated by the ATC 
tracing procedure described in Section 5.3. In the following numerical ex­
amples, the ATC margin change with respect to various control actions are 
given for both single transaction and simultaneous transactions. 

Steps involved in tracing ATC as limited by voltage stability is de­
scribed as follows: 

1. Specify a transfer scenario, and calculate scenario coefficients according 
to (5.34) and (5.39). 

2. Equilibrium Tracing Program (EQTP) starts at the current operating 
point for the initial ATC limit under fixed control configuration and 
specified transfer scenario. 

3. Specify the control scenario that describes the change of control con­
figuration or contingencies. 

4. Change control parameter to new value pi, find the new initial starting 
point as shown in Fig. 5.1. 

5. Use EQTP to trace the new ATC limit Xi starting from the initial starting 
point in step 4. 

6. Go to step 4 unless some control variables hit limits. 

In the following sections, several numerical examples are given to show 
the ATC tracing procedure with respect to various controls. Two transac­
tion scenarios; single and simultaneous transactions are considered. In 
the single transaction, power is transferred from area 1 to area 2, and the 
initial ATC limit is 814MW; while in the simultaneous transactions, power 
is transferred both from area 1 to area 2 and from area 3 to area 4, and the 
initial ATC limits are 567MW and 635MW respectively. Once the initial 
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ATC limit is calculated, control actions such as load relief, reactive power 
support, Fref change are appHed to directly trace the new ATC limit. The 
variations of ATC with respect to control actions are shown in the various 
figures below. 

5.8.2 Emergency transmission load relief 

In certain extreme conditions, transmission load relief (TLR) procedure is 
implemented to relieve overloading in the transmission system. Simulation 
has been done to find out the effectiveness of implementing TLR on cer­
tain buses. 

5.8.2.1 Single transaction case 

Fig.5.17 demonstrates the SNB related ATC margin change with TLR im­
plemented at bus 7. At the base case. The SNB related ATC margin be­
tween AREA 1 and AREA 2 is 814MW. The SNB related ATC margin be­
tween AREA 1 and AREA 2 reaches its maximum 864MW when 140MW 
load is shed. 
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Fig.5.17 ATC margin vs. TLR implemented at bus 7 (single transaction) 
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5.8.2.2 Simultaneous transaction case 

For the simultaneous transaction case, the amounts of power transfer for 
two transactions are proportional to each other according to the scenario 
setting. The seller's generation increase in AREA 1/AREA 3 matches the 
buyer's load increase in AREA 2/AREA 4 respectively. Fig.5.18 shows the 
voltage stability (SNB) related ATC margin change for both transactions. 
Along with the load shedding at bus 27, the SNB related ATC margin for 
both transactions increase from 567MW/635MW to 670MW/738MW re­
spectively. The margin tracing curve is smooth and close to linear. 
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Fig.5.18 SNB related ATC margin vs.TLR implemented at bus 27 (simultaneous 
transaction case) 

5.8.3 Reactive power Support 

5.8.3.1 Single transaction case 

Fig.5.19 shows the SNB related ATC margin change between AREA 1 and 
AREA 2 as shunt capacitance increases at bus 7. The ATC margin tracing 
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curves show the highly nonlinear characteristics and some "jumps" be­
cause of generators hitting their limits. 
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Fig.5.19 ATC margin vs. shunt capacitance at bus 7 (single transaction case) 

5,8.3.2 Simultaneous transaction case 

Fig.5.20 demonstrates the SNB related ATC margin change for simulta­
neous transactions as the shunt capacitance increases at bus 21. In 
Fig.5.20, the drop in stability margin at 300 MVAr shunt capacitance level 
is caused by generator 30 hitting its la and Vr limits. 
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Fig. 5.20 SNB related ATC margin vs. shunt capacitance at bus 21 (simultaneous 
transaction case) 

5.8.4 Control combination 

The control scenario could be any combination of control parameters. 
The direct ATC tracing method can trace margin boundary with respect to 
the multi-control parameter space. 

Fig.5.21 shows how the ATC margin changes with respect to a control 
scenario: At each step F̂ /̂of generator 39 increases by 0.001 p.u; shunt ca­
pacitance at bus 31 increases by 0.1 p.u. and load shedding at bus 4 by 0.1 
p.u. The control scenario simulates the total effect of secondary voltage 
regulation, as well as reactive power support and emergency TLR scheme. 
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Fig.5.21 SNB related ATC margin vs. control combination (simultaneous transac­
tion case) 

5.9 Conclusion 

In this chapter, the general framework of stability margin boundary tracing 
described in section 5.3 is reformulated to trace the voltage/oscillatory sta­
bility related ATC margin. The SNB related ATC margin boundary can be 
identified and traced along any control scenario combined with any given 
load/generation increase scenario. 

The aim here is to demonstrate the application of continuation based tech­
nique for transfer capability calculation. Literature related to transfer mar­
gin and ATC can be found in references [10-12]. Ref [13] provides an ex­
cellent tutorial introduction to ATC with examples. 
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6 Time Domain Simulation 

6.1 Introduction 

In the previous chapters the continuation based approaches to study steady 
state aspects of voltage stabihty are presented. We still need time domain 
simulations to capture the transient response and timing of control actions. 
The time domain response can capture the evolvement of the instability 
process to provide the timing issues of controls. To capture the transient 
response a set of differential and algebraic equations (DAE) are numeri­
cally solved. Power systems networks typically include a large number of 
dynamic and static components, where each individual component may 
need several differential and algebraic equations to represent, thus the total 
number of differential and algebraic equations of a real power system can 
be quite large. 

The time constants of these power system components vary in a large 
range and leads to stiffness in the system. The numerical methods for time 
domain simulations may produce wrong results for stiff systems due to er­
ror accumulation in the step-by-step numerical integration. A considerable 
amount of progress has been made in the power system literature [1-10] to 
solve large scale stiff power systems. This chapter describes a promising 
decoupled simulation method published in [22] to address the stiff prob­
lems in power systems. Sections 6.2 to 6.4 are based on this paper and 
some of the material in the paper is reproduced for continuity. Finally this 
chapter tries to provide information that is related to computational aspects 
of the short term and long-term time scales. 



208 Time Domain Simulation 

6.2 Explicit and Implicit Methods 

Time domain simulations are needed for numerical integration methods. 
These integration methods can be classified into two categories: explicit 
methods and implicit methods. The explicit methods involve fixed point it­
eration and can lead to faster solution. However the explicit methods have 
numerical stability problem when dealing with stiff problems. In contrast 
the implicit methods are stable but slow. 

Consider a general ODE system with a given initial condition as described 
by (6.1): 

\x - f{x) 

lx(0) = Xo ^'-'^ 

There is a well established mathematical literature to solve the above ini­
tial value problem (IVP) [11-15]. The following sections provide informa­
tion related to the most commonly used explicit and the implicit methods. 

6.2.1 Explicit method 

Explicit methods typically replace the ordinary differential equations by 
nonlinear recursive mappings 

^k^x'^Si^k) (6-2) 

For a given initial valueXQ, the states XpX2,*"are generated as long as 

they remain in the domain of definition of the mapping. 

Some of the methods under this category include: forward Euler, explicit 
Runge-Kutta methods, and Adams-Bashforth methods. 

The forward Euler method is formulated as: 

^k^\ =^k-^¥(h^^k) (6.3) 
The 4̂ -̂order Runge-Kutta method is formulated as: 
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K^ = f{t^ ^hl2,x^^hKJ2) (6.4) 

K,=f{t^+Kxj^-\-hK^) 

x^^^ = x,i-h(K,^2K^-h2K, +K,)/6 

As you can see from (6.3) and (6.4), the current solution is generated from 
previous results. Thus explicit methods are very efficient with fixed point 
iteration techniques. 

6.2.2 Implicit method 

Implicit methods need both the current state and past state to solve the ini­
tial value problem. 

Backward Euler method, Trapezoidal method, implicit Runge-Kutta 
method, Adams-Moulton methods, Backward Differential Formulae meth­
ods are part of the whole family of the implicit methods. 

The backward Euler method is formulated as: 

The Trapezoidal method is formulated as: 
^k^i =^k-^ h[f{t,, X J + f{t^^,, x^^,)] / 2 (6.6) 

As you can see from (6.5) and (6.6), implicit methods involve solving a set 
of nonlinear equations. Here the next state cannot be obtained directly, and 
Newton method is usually used to solve the nonlinear equations. How­
ever, the implicit methods have better numerical stability properties than 
explicit methods despite their slow computational performance. 

6.2.3 Stiffness and Numerical Stability 

In the introduction we mentioned the term stiffness. The stiffness in a sys­
tem can be due to the components with vastly different time scales. From 
the mathematical viewpoint the stiffness is associated with the existence of 
both large and small eigenvalues. The quotient of the largest and the 
smallest eigenvalues can be considered as the stiffness ratio to measure the 
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degree of stiffness [14]. 

Stiffness creates problems during the integration. This not only leads to 
convergence problems but also can produce the wrong outcome. We want 
the numerical method to correctly identify whether a particular system 
subject to some form of disturbance is stable or unstable. There is a possi­
bility that the numerical solution may indicate unstable behavior for the 
case where the actual system is stable and vice versa. We need some form 
of confidence in the quality of the numerical result. In the mathematical 
literature [15] [16], the step size needed to guarantee numerical stability is 
stated. In the case of explicit methods we may need a significant reduc­
tion of the step size to maintain numerical stability such that the step size 
is smaller than the step size needed to represent the solution accurately. 
The required step size for explicit methods to guarantee numerical stability 
may be too small for practical implementation [15] [16], However the step 
size control to maintain numerical stability for stiff systems can be 
achieved through the implicit methods. 

In [22] a simple example given in [14] is used to show the difference be­
tween explicit and implicit methods for stiff systems. The example is re­
peated here. It is a simple two variable example and can demonstrate the 
basic concepts. 

fi, =-100x, +^2 

We have chosen forward Euler and Trapezoidal methods as explicit and 
implicit methods respectively. 

The initial value is ( -3 , -1)^ , and the step size is chosen as 0.1. The eigen­
values of (6.7) by inspection are -100 and -0.1(as you can see there is a 
large difference between the eigenvalues indicating stiff system). Since the 
real parts are negative, the system trajectory converges to the origin as 
time goes to infinity. The results by forward Euler method and Trapezoidal 
methods are shown in Fig. 6.1a, b respectively. Forward Euler method 
(Fig. 6.1a) is providing wrong information, in contrast with the asymptotic 
behavior of the true solution. To capture the corrector behavior with For­
ward Euler, the step size should be reduced to below 0.02. Trapezoidal 
method (Fig. 6.1b) is providing proper stable behavior. 
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Fig. 6.1. The simulation results by explicit and implicit methods [22] 

In the mathematical literature [11-15], to study the stability of numerical 
methods the concepts of A-stability and stability domain are proposed. 
Stability Domain: Suppose that a given numerical method is applied with 
a step size /7>0 to the linear test system x' = Ax, the stability domain of the 
underlying numerical method is the set of all numbers hX such that Xn ap­
proach zero as «— ôo. In other words, the stability domain is the set of all 
hX for which the correct asymptotic behavior is recovered, provided that 
the linear system is stable. 

A -stability: A method is A-stable if x„ approach zero as n~^^ for all val­
ues of the step size h when this method is applied to the equation x' = /be 
for all X eC with Re(X)<0, Note that for this equation, the exact solution 
also goes to zero. In other words for Re(X)<Q the solution of corresponding 
differential equations should be stable for any positive value of A. It im­
plies that the stability domain includes the whole left half plane. Whether a 
method is A-stable or not can be judged from the stability domain. The 
stability domains of the forward Euler and Trapezoidal method are shown 
in Fig.6.2. The forward Euler method is not A-stable while Trapezoidal 
method is A-stable, It is proven that no explicit Runge-Kutta method may 
be A-stable [14]. In general, only implicit methods may be A-stable, 
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|1+z|<0 z=Ah Re(z)<0 z=Ah 

Forward Euler Method Trapezoidal Method 

Fig,6.2 Stability Domain of Forward Euler and Trapezoidal Methods 

The drawback of A-stability is that the stability domain may include part 
of the right half plane, thus the real unstable phenomena will be simulated 
as a stable one. The spurious damping is called hyper stability [1]. Hyper 
stability can be avoided by reducing the step size during the simulation on 
the basis of the experience of the end user or the evaluation of eigenvalues. 

The following section describes a time domain algorithm [22] which takes 
advantage of the desirable properties of implicit and explicit methods. 

6.3 Decoupled Time Domain Simulation [22] 

Since power systems are stiff problems, implicit methods are commonly 
used to simulate the dynamic behavior. Each integration step of a stiff 
equation involves the solution of a nonlinear equation which leads to a set 
of linear problems involving the Jacobian of the system. As a result, the 
methods for solving stiff systems spend most of the time solving systems 
of linear equations. The decoupled time domain simulation by Yang, in 
[22], aims to reduce computational burden of the traditionally implicit 
methods. In fact, the numerical stability properties of the time domain 
simulation algorithms are determined by the eigenvalues of the linearized 
matrix, and frequently the eigenvalues which cause stiff problems are only 
a small portion of the whole spectra. It seems inefficient to solve these 
problems only with implicit methods. If the problem can be partitioned 
into a stiff part and a non stiff part such as 

(6.8) 



6.3 Decoupled Time Domain Simulation [22] 213 

where x^, x^ are stiff and non stiff variables, and /^, /„ are stiff and non 

stiff equations, the system can be treated with an implicit method for the 
stiff components and an exphcit method for the non stiff parts [12]. 

For the numerical stability, it is required that eigenvalues are located inside 
the stability domain to yield convergence behavior. If some eigenvalues 
are outside the stability domain of explicit methods, numerical stability 
may not be revealed by dynamic simulation. However, the numerical 
results can be corrected by treating those outside eigenvalues differently. 
The decoupled method is based on the idea of separating stiff eigenvalues 
from the others. 

From the geometric viewpoint, the solutions of the ODE and DAE systems 
are points or vectors in the multi-dimension space. This space can be 
divided into two or more subspaces and the solution vectors can be 
decomposed into corresponding two or more sub-vectors in each 
subspaces. Thus, by decomposing the space into a number of small 
subspaces, the solution vectors can be divided into sub-vectors and the 
original ODE and DAE systems can be decoupled into several small 
dimension systems. 

Let P be the invariant subspace corresponding to the m eigenvalues which 
are outside the stability domain of an explicit method and let Zi be an 
orthonormal basis in P. Thus Zi is n x m matrix which satisfies the 
following conditions: 
AZ^ =ZjAj (6.9) 

Z(Z,=:I^ (6.10) 

where /^ is m x m identity matrix, and A^ is a square matrix with m 

eigenvalues which are outside the stability domain. 

Furthermore, there exists an orthogonal complement Q such that Q = P-'-. 
And let Z2 be the orthonormal basis in Q, then 

ZlZ,:=I„_^ (6.11) 

And since Q is an orthogonal complement, it follows that 

ZlZ^=0 Z [ Z j = 0 (6.12) 

Therefore, the space can be represented by the direct sum of P and Q 
where Z\ and Z2 are the corresponding basis respectively. Moreover, mxm 
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dimension matrix Z,Zj^ and (n-m)x(n-m) dimension matrix Z2Zj^ are the 

orthogonal projectors into the two subspaces according to the definition in 
[21]. 

Because Ẑ Ẑ ^ and Z2Z[are the orthogonal projectors, any vector in the 

full space can be projected into two subspaces by multiplying the 
projectors on the left. In other words, once the projections in these two 
subspaces are known, the original vector in the fiill space can be 
recovered. For each vector x in R" space, there exists a vector pe R^ and 
q G R"~^ such that x = Z^p + Z29 , and it can be proved by setting 

p = Z^x and q = Z2^x . 

Since the vector in the original n-dimension space can be decomposed into 
the sum of two small dimension vectors, the original system can be split 
into two sub systems according to [17] [18]: 

f\p,q) = Zjf{Z,p + Z,q) (6.13) 

fHp,q)^ZlJ\Z,p + Z^q) (6.14) 

And the ODE system equations can be decoupled into two systems 

P = /''{P^q) = ZlfiZ^p + Z^q) 
(6.15) 

q = fHp,g) = Zlf{Z,p + Z,q) 

By solving the above decoupled equations, p and q can be calculated 

separately, and the original states are given as x = Zj/? -f Z2q . 

For the decoupled systems, the second set of 

equations Zlf{Z^p + Z2^) has the derivative Zlf^Z^. It is desirable if the 

eigenvalues are still in the stability region of the explicit methods. 

Proposition 1: The matrix Z^f^Z^ has the remaining n-m 

eigenvaluesA,„^,,"-,A^. 

Proof is given in [ 17] [ 18]. D 

Equation (6.15) has the desired form as (6.8) and the all the eigenvalues of 
the second equation set are inside the stability domain. Therefore, an 
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explicit method can be applied to solve the second set of equations and an 
implicit method can be applied to solve the first set of equations. To 
eliminate the need for Z2, let v = Z^q, thus 

V = Z,Zlf{Z,p + V) = (/ - Z,Zj)f{Z,p + V) 

The new system is 

(6.16) 
( /~Z,Z,^)/(Z,/7 + v) 

Decoupled Method for DAE 

The simulation of Differential Algebraic Equation systems involves 
solving of a set of differential equations and a set of algebraic equations 
simultaneously. The solutions of differential equations and algebraic 
equations can be obtained either separately or simultaneously [19]. The 
decoupled method can be applied to DAE systems in the similar way to 
ODE systems. To demonstrate the approach, forward Euler method is 
chosen as an example of explicit method and Trapezoidal method as an 
example of the implicit method. Also we denote the number of differential 
equations as n, the number of the algebraic equations as 1, and the 
dimension of stiff invariant subspace P as m. 

Decoupled Forward Euler-Trapezoidal Method for DAE 

Similar to the ODE system, the DAE system 

\X =:F(XJ) 

\0 = G(XJ) 

can be decomposed into the following form 

^p = ZlF(Z,p + v) 

v^{I-Z,Zl)F{Z,p-Vv) (6.17) 

[ 0 = G ( A V , F ) 

The initial conditions are given as 
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X(0) = X, 

Ym = Y, 
(6.18) 

p(0) = Z^X, 

[v{()) = {I-Z,Zl)X, 

The decoupled forward Euler-Trapezoidal method is formulated as: 

p,^, = p, •^hZ\{F{Z,p,+v,)^F{Z,p,^, +v,,,)]/2 (6.19) 

The first set of equations can be solved via fixed point iteration, and the 
second and third sets of the equations actually are nonlinear and Nev^ton 
method is needed to solve them. The second and third equation sets are 
reformulated as: 

PM ~-hZ,F{Z,p,_^, + v,,̂ ) = p, ^-^hZ.FiZ.p.+v,) ^^ ̂ ^^ 

[g(p,^,.v,^,J,^,) = 0 

where the unknowns are p^^j and j ^ ^ ^ , . 

Compared with above, the full implicit method needs to solve the 
following nonlinear equation set: 

U,-hf(x,J/2 = x,+hf(x,)/2 

The dimension of the full implicit method is n+1 while the dimension of 
the decoupled system is m+1. Since m « n , the dimension of the nonlinear 
systems can be significantly reduced. 

Identification of Stiff Invariant Subspace Basis Z^ 

To identify the basis Zl of invariant subspace P, it is necessary to identify 
the eigenvectors of corresponding eigenvalues. As for the forward Euler 
method, the stability domain is a circle which has the center (-1/h, 0) and 
radius 1/h. Thus the stiff invariant subspace is associated with eigenvalues 
outside the circle. It is difficult to directly identify the invariant subspace if 
the center of the circle is not the origin. The remedy is to shift the original 
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eigenvalues to the right direction so that the origin becomes the center of 
the circle. One can show that if/lj,---,>l„ are eigenvalues of n-by-n matrix 

A, then /Ij +1 / /z, • • •, Â  +1 / /z are the eigenvalues of matrix A-V11 h 

(LetA., X.be the corresponding eigen-pair to matrix A, XhwsAx. = A.x.. 

Then Ax. + x. /h = X.x. +x./ h , that is {A-^I I h)x. = (A. -f-1 / h)x. . 

Therefore A.+l/his the eigenvalue ofA^IIh). 

Now the original problem is converted into the new problem to find out the 
eigenvalues outside a circle of the matrix A-V11 h , These eigenvalues can 
be computed efficiently by the Amoldi method. 

Major steps involved in the decoupled simulation: 

1. Calculate equilibrium 
2. Calculate linearized matrix A 
3. Obtain linear transformed matrix 
4. Identify transformed matrix stiff eigenvalues and eigenvectors 

with largest moduli by dominant eigenvalue algorithm 
5. Update non-stiff subsystem by forward Euler method 
6. Update stiff subsystem by Trapezoidal method 
7. Continue steps 5 and 6 until a specified simulation time is reached. 

6.4 Numerical Examples 

First a simple two bus example introduced in the previous chapters is used 
to demonstrate various steps involved in implementing the method. 

6.4.1 Two bus system 

Consider the two bus example introduced in the previous chapters at page 
54. With the two axis model, there are in total 9 states. The differential and 
algebraic equations describing the system are given below. 
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F part: 

4 = i^l -«m H 

,̂ = M"V„,-A(^, - «J - (̂ „ -X,4,y„ 
- (K. + </„V.,] 

^,1 = Lo\[Efdi - Eq\ - i^d\ - ^d\)^dA 

^1 = -̂ .1 + ^d\^<i\ 

If ^.,,.in ^ ^., ^ ^H,.ax > ^p.> = 0 (at Steady state), 

•S«l ~ •'c/il C M •%,! ) 

A = T^ll \.P,s^ - («1 - 0>.ef ) / ^1 - /'l ] if A.min ^ M ^ y"l, 
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^..=^(1+^..-^) 

Gpart: 

0 = ^ . 1 - ^ . 

where, 

[ e „ = / . , ^ cos(^, - ^ , ) - / „ ^ sin(^, -0,) 

\Pa = ^2i^^2 cos(6'2 - ^ , -^2i ) + ^22^2' cos(^22) 

IQ2 = -^2i^^2 sin(^2 - 1̂ -^21) - ^22^2' sin(^22) 

173,1=10,^,, =90%^,, =-90° 

Parameters used in this example are given in Appendix A. 

Given the initial operating condition: 

P,,,=L4p.u.,Q„,=0,Pl, =lAp.u.,Ql,=032,K^, =l.O,K,^,=LO 

In the time domain simulation, we simulate the system behavior under load 
increment. The load at bus 2 is increased by 0.5 percent per second during 
the initial 10 seconds, and then stops increasing for the duration of the 
simulation (20 seconds). Before simulation, we first calculate the invariant 
subspace Z\ which is the orthonormal transform of eigenvectors. In this 
case, the eigenvalues associated with stiff subspace are those outside the 
circle in the X plane. These eigenvalues are identified as: -0.1097 + 
3.16541, -0.1097 - 3.16541. The eigenvectors of the pair of complex eigen­
values are shown as: 
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0 0 
0.0000 + O.OOOOi 0.0000 - O.OOOOi 

-0.0183 + 0.00071 -0.0183 - 0.00071 
-0.0019 + 0.00531 -0.0019-0.00531 

0.1206-0.33021 0.1206 + 0.33021 
0.9359 0.9359 

0.0062 - 0.00801 0.0062 + 0.00801 
-0.0000 + 0.00001 -0.0000 - 0.00001 
-0.0000 - 0.00001 -0.0000 + 0.00001 

The orthonormal form of these two eigenvectors will give the basis of In­
variant subspace Zj, which Is: 

0 
-0.0000 

0.0193 

0.0023 

-0.1452 

-0.9892 

-0.0070 

0.0000 

0.0000 

0.0000 

-0.0000 

0.0007 

-0.0159 

0.9890 

-0.1454 

0.0235 

-0.0000 

0.0000 

Once Zi is known, we can solve the following equations to get the system 
behavior response subject to load increment. 

K.=n+K/-z,zr)F(z,/7,+v,) 
A., =P,+hZl[F{Z,p,+v,) + F{Z,p,^, +v,„)]/2 

The steps Involved are the following: 
1. Update the variable v̂ j.̂ , directly from the last step value 

V . . , = V , + / 2 ( / - Z , Z , 0 F ( Z , P , + V , ) 
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2. Once the variable v̂ ĵ is calculated from step 1, we can get the solu­

tion for the other two variables /7̂ ĵ and Yk+j by solving the following 

equations. 

Since it is a nonlinear equation set, Newton method can be used to find the 
solution for p^^j and l^^j. 

Now we show some intermediate steps of the time domain simulation re­
sults. Suppose we already got the solution at k = 19 (at the time of 0.475 
second), and we want to find the solution at k4-l= 20 (at the time of 0.5 
second). 

At step k=19, the initial values are: 

Y(k) = 

[ 0.9992 -0.0012 0.9891 -0.1436 ] 

X(k) = 

[ 0.8620 1.0000 0.9276 0.4056 2.6477 2.6617 

0.0001 1.4005 1.4032] 

v(k) = 
[ 0.8620 1.0000 0.9839 0.4479 0.0110 0.0191 

-0.0732 1.4005 1.4032] 

p(k) = 
[ -2.9986 2.2258] 

To get the next step(k+l=20) solution, we first solve the solution of v(k+l) 
from the previous step result v(k) and p(k). 
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The solution oiv(k+l) is: 

v(k+l)= 
[ 0.8620 1.0000 0.9840 0.4479 0.0110 0.0191 

-0.0732 1.4005 1.4034] 

After v(k+l) is solved, we can substitute it into the second and third equa­
tion sets to get p(k+l) and Y(k+1). Here v(k), v(k+l), p(k) are known 
variables, and p(k+l) and v(k+l) are unknowns. The results are shown be­
low: 

The solution of p(k+l) is: 

p(k+i)= 

[ -2.9996 2.2261] 

The solution of Y(k+1) is: 

[ 0.9992 -0.0013 0.9891 

X(k+1) = Zl*p(k+1) + v(k+l) 

[ 0.8620 1.0000 0.9276 
0.0001 1.4005 1.4034] 

-0.1 

0.4056 

0.1437 ] 

2.6482 2.6627 

The voltage of bus 2 during the simulation is plotted in Fig.6.3. 
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Fig.6.3 Voltage at bus 2 with respect to time (p.u.) 

6.4.2 New England 39-bus system 

The decoupled forward Euler-Trapezoidal method, full explicit forward 
Euler method, and full implicit Trapezoidal method are applied to New 
England system which has 39 buses and 10 generators [22], The generators 
are represented by two-axis model as in [19], and exciter and governor 
model are the same as in [20], There are 9 states for each generator, and 
the total number of differential states and algebraic states are 90 and 78 
respectively. The step size during the simulation is chosen as 0.025 
second. The stiff invariant subspace is calculated at the initial state with 
dimension as 19, thus the dimension of the nonlinear equation system is 97 
for the decoupled method, while the dimensions of the nonlinear systems 
are 78 and 168 for the explicit method and implicit method respectively. 

Time Domain Simulation with Line Trip Contingency 

The contingency is transmission line trip between bus 6 and bus 7 at 0.05 
second, and the simulation duration is 20 seconds. The actual post-
disturbance behavior is that the system stability can be maintained. The 
results of decoupled method and full implicit method yield stable cases; 
however, the full explicit method fails to give the correct answer. 
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Full explicit method (pure forward Euler method) diverges at about 1.1 
second as shown in Fig.6.4a. Before explicit method diverges, an 
oscillatory behavior can be observed t which is only due to numerical error 
instead of real system response. 
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Fig.6.4a. Simulation Result by Forward Euler Method [22] 

The simulation results of decoupled method and full implicit method give 
the stable system behaviors as shown in Fig.6.4b. Both methods give 
stable post disturbance behavior and the results from two methods match 
very well. 
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Fig.6.4b. Simulation Results by Decoupled and Full Implicit Methods [22] 
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The computational time of decoupled method, explicit method and full 
implicit method is shown in Table 1 (N/A means dynamic simulation 
cannot be finished due to numerical divergence). It shows that decoupled 
method requires much less time than implicit method to finish the dynamic 
simulation. 

Table 1 Computational Time for Line Trip [22] 

Methods 
Explicit 
Method 
Implicit 
Method 
Decoupled 
Method 

CPU Time (s) 

N/A 

745 

405 

Long-Term Time Domain Simulation for gradual increase of load 

System loads are increased from 6141MW by 0.5 percent per second to 
capture the long term system instability behavior. The simulation result is 
shown in Fig. 6.5. 

1.15 

— 1.1 
d. 

I 1.05 

5 1 

I 0.95 
CO 

w 

m 0.9 

0.85 

0.8 

1 1 1 1 1 1 1 1 1 1 

1 i i 1 r 1 r 1 r r 

1 r p . J- p p. p p p , — 1 

I. U- . \^ U U U \~ U U U -

15 20 25 30 35 40 45 50 
Time (s) 

Fig.6.5. Long-Term Simulation Result 

Reference [22] provides additional cases with 39 bus system as well IEEE 
118 bus system 
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The decoupled method [22] presented in this chapter can capture the short 
term as well as long term aspects of voltage instability. In this approach 
stiff and non stiff subspaces are separated with each other and are treated 
with different methods. As a result, the decoupled method combines the 
advantages of pure explicit and pure implicit methods to achieve both 
numerical stability and efficiency. However as with any time domain 
methods, it still takes a considerable amount of CPU time to capture the 
relevant system behavior, especially for long term simulation. To capture 
the long term voltage stability behavior other effective methods are 
presented in the literature to reduce the computational burden. The most 
widely used approach is Quasi Steady State (QSS) Simulation [23-26]. In 
the next section the QSS approach in the frame work of continuation based 
equilibrium tracing is presented. 

6.5 Quasi-Steady-State Simulation (QSS) 

Quasi-Steady-State (QSS) is the approximation to the system behavior 
under certain conditions. It assumes that: the fast subsystem is infinitely 
fast and can be replaced by its equilibrium equation when dealing with the 
slow subsystem. Conversely, the fast dynamics can be approximated by 
considering the slow variables as practically constant during the fast 
transients. This leads to a significantly simpler analysis of both subsystems 
[23-27]. 

To demonstrate the methodology, a scenario is first defined as follows: 

The post-contingency long-term load characteristic intersects the system 
PV curve as shown in Fig. 6.6, 

In this scenario (Fig.6.6), the short-term load characteristic is fully restored 
to the long-term load characteristic. At first, the system is at its pre-
contingency operating point A. Due to the short-term load characteristic, 
the system jumps to A' just after the contingency. Each point on the post-
contingency PV curve is the short-term equilibrium before the complete 
restoration (B) and the long-term equilibrium afterwards. Once the 
restoration is fully achieved, the load is increased to dominate the system's 
evolution. In Fig. 6.6, the long-term saddle node bifurcation point (SNB) C 
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needs to be identified during the equilibrium tracing in order to obtain the 
information of how much active power margin the system has from point 
B. 

Pre-contingency 

Fig. 6.6. Demonstration for defined Scenario 

6.5.1 Problem Formulation 

A general modeling relevant to voltage stability in different time scales is 
described from the following set of equations [23]: This includes 
differential, algebraic and discrete sets of equations. 

X = F(X,Y,z^,z„A) 
(6.22) 

0 = G(X,Y,z^,Zc,Ji) 

Zo(k^) = ho(x(k'),y(k'),z^(k'),Jl(k)) 

Z(,=hc{XJ,z^„Zc,X) 

(6.23) 

(6.24) 

(6.25) 

where F(-) in (6.22) describes the dynamics of synchronous machines, the 
excitation systems, the prime mover and speed governors, and G(0 in 
(6.23) represents the system network functions. (6.22) and (6.23) involve 
the transient state variables X and algebraic variables Y respectively. The 



228 Time Domain Simulation 

variable Y usually relates to network bus voltage magnitudes and angles. 
The long-term dynamics are captured by discrete and/or continuous-time 
time variables in (6.24) & (6.25), respectively, zo relates to discrete 
controls such as tap changers, zc represents continuous load recovery 
dynamics. Finally, \ in (6.22) - (6.25) denotes changes in demand and the 
corresponding generation rescheduling. For QSS simulation, (6.22) will be 
replaced by its equilibrium equation. 

Load model plays an important role in voltage stability analysis. 
Generally, the steady state load characteristics are: 

V r. (6.26) 

V^p, (6.27) a=e.=ao(Tr) 

Where, Pia and Qu, are the powers absorbed by the load at the nominal 
voltage VQ, And as and Ps are the steady-state load exponents. 

The tap changing logic at time instant 4 [24] is given as follows: 

(6.28) 

^ ^ . 1 = ^ 

r̂  +Ar 

r̂  -Ar 

if V^>V^-vd 

if V^<V^-d 

otherwise 

and 

and 
h ^ m̂ax 

h ^ m̂in 

where V2 is the controlled voltage after OLTC, V^ is the reference 

voltage, d is half the OLTC dead-band, and r^ax and rtnm are the upper and 
lower tap limits. 

6.5.2 Steps involved in QSS IVIethod [24] 

The basic QSS simulation methodology is outlined in Fig.6.7. Point A is 
the equilibrium before the disturbance. Point A' is the equilibrium of these 
equations after the disturbance. The continuous change from A' to B 
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results from the evolution of A. The transition from B to B' is from the 
discrete change of z^. Also, the load increase scenario (i.e., A(t) function) 
is known. 

(1) Point A(XO\YQ) is an equilibrium of Eqs. 6.23 and 6.22 with 

X = 0 before the disturbance. 
(2) Point A\Xo^,Yo^) is an equiUbrium of Eqs.6.23 and 6.22 with 

X = 0 after the disturbance. 
(3) At A\Xo^,Yo^), predict the next transition time s that is the shortest 

internal delays among the active OLTCs. 
(4) The continuous change from A^ to B results from the evolution of 

/I and zc. (Time integration may be required.) 
(5) The transition from B(X]\Y\') to BXX\'^,Yi^) is from the discrete 

change of z^. 

With initial guess (X]',Y]'), the solution of (X]^,Yi'^) can be 
obtained by solving the following equation: 

dF, 
dX, 
5G, 
dX^ 

dF., 

57, 
5G,. 

dY, 

y+0) _ yHj-\) 
. 1 ^l 

Wherey is the iteration count. 

XorY 

^(Xo-,Yo-) 

' (Xo ,̂Yo )̂ 
B(Xf,Yf) 

A changes |5'(Xi^Yi-^! 

< • ! < >H 

\4r 
ti^ S ti 

Fig. 6.7. Time evolution of anXand 7components [24] 
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To evaluate the system stability condition, reference [24] used the sensitiv­
ity of the total reactive power generation Qg to the various reactive de­
mands Q!^\ 

dQ dQ 
— | - > 0 indicates stable condition; — ~ < 0 indicates unstable condi-

tion. 

6.5.3 Implementation of the Continuation Method in QSS 

Continuation-based Quasi-Steady-State simulation (CQSS) [28] deals with 
the QSS using the continuation method which is already introduced in 
previous chapters. 

As mentioned before, QSS simulation has been widely used to speed up 
the long-term voltage stability calculations, which filters out the short-term 
transients. It deals with the long-term subsystem of the DAEs based on the 
assumption that the transient subsystem is infinitely fast and can be 
replaced by its equilibrium equations. Therefore in the QSS analysis, the 
short-term dynamics dX/dt in (6.22) is replaced with zero to obtain 
equilibrium points: 

0 = F ( X , r , z ^ , z ^ , A ) (6.29) 

CQSS solves both (6.29) and (6.23), with changing X, zp. In CQSS, A is 
parameterized to simulate the load restoration. 

If you considered the variation of X, then the continuation method traces 
the equilibrium defined by (6.29) and (6.23) for a fixed zp. The Jacobian 
matrix only involves the derivatives of F/G with respect to X/Y. 

6.5.4 Consideration of Load Change with respect to Time 

Similar to the original QSS, there is no time integration involved in CQSS 
analysis. However the time information is indirectly obtained during the 
equilibrium tracing. This time information is based on internal delays of 
discrete controls. The transition time step s =tf^^^ -tj^ is determined by the 
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shortest internal delay or sampling period of the long-term components 
(ZD). More specifically, in this time step, zp will be updated according to 
some control logic. Continuation method introduces parameter A to easily 
trace the equilibrium of the system under the step size control. During the 
process of the OLTC action, X also varies according to its time-
characteristics. Its time function is indicated as A(t) in the CQSS 

simulation. An approach should be found to appropriately consider how X 

changes in the determined time interval t,^^^ - /^, so as to meet its time 

function. 

In continuation method, from the starting point A\XQ^,YO^) as in Fig.7, the 
prediction and correction steps are given below: 

/̂V ^Y FA(dX\ (0^ 
Gx Gy G^ dY 

v±ly 

(6.30) 

^F^ Fy F;^YAX^ (F^ 

Gx Gy Gj, ^Y 

vOy 

(6.31) 

From (6.30) and (6.31), we can obtain the point B{^{,Y{) through 
equations (6.32) and (6.33): 

fer Y;:r K.^-W r; x^^aXdx dY jAr(6.32) 

Where the step size G^ is: 

dX 
(6.34) 

In (6.34), /l̂ ĵ and Xj^ should be known from its time function. If X is 
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taken as continuation parameter, then tS.X will be equal to zero in the 

correction stage. Then the step size a^ can be obtained as follows: 

K.X-K (6.35) 

dX 

At each time step, this step size should be re-calculated to fit the load 
variation in this period. It is noted that the Jacobian used in corrector stage 
depends on the state variables from the predictor stage. However, in order 
to get d^ and AX for the computation of the step size, at first, the same 
Jacobian as in predictor is also used in corrector. After the approximate 
step size is obtained, we update the Jacobian in the corrector, get the new 
bX by solving (6.31) and calculate the step size again by using (6.34). This 
procedure will be repeated until the error between the updated bX and the 
old one is within some tolerance. 

Note: Null dA. detects the singularity of J\y. 

The continuous variables zc, can also be considered in two ways: (i) an 
explicit integration scheme can be used to update ZQ (ii) Represent the 
continuous load dynamics by the continuous change of load exponent. 
References [29] and [30] solve the load restoration analytically for a step 
change in voltage. Based on this derivation, another way to consider the 
load restoration in the CQSS simulation can also be developed [31]. 

6.5.5 Numerical Results 

^.5.5A 2'bus system 

The 2-bus system has the same parameters as before. For this example the 
tap position is fixed. The load is increased by 0.5% per second until 10s to 
simulate the load restoration behavior. The A value can be directly related 
to time. The result is shown in Fig.6.8. For comparison, the decoupled time 
domain simulation result is also superimposed. We can see that as load 
stops increasing around ten seconds the time domain solution converges to 
the equilibrium which is identical to that of CQSS. 
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Fig.6.8. Simulation results after 10 seconds of slow load increments 

6.5.5,2 CQSS Simulation for New England 39'bus system 

The New England 39-bus system is employed here to demonstrate the 
efficacy of the CQSS method for analysis of long-term voltage instability. 
The main features of modeling and modification of the system in this 
simulation are as follows: 

• Each generator is represented with the two-axis dynamic model [33] at 
its equilibrium condition. It includes automatic voltage regulator 
(AVR), the speed governor, the field and armature current limits as 
well as the real power generation limit; 

The major long-term dynamic phenomena that will be taken into account 
are: (i) load restoration by on-load tap changer transformers (OLTCs) with 
fixed load parameter A (ii) load restoration simulation by directly relating 
the load parameter A to time with fixed taps. 
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Case 1: Load restoration through OLTCs with fixed A 

• 3 OLTCs are equipped at selected load buses (3-2, 16-19, 26-29) 
o Before full load recovery, all the loads at the distribution sides of 

the OLTCS are constant impedance. 
o Each OLTC has an operating range of 0.8-1.1; the step size of the 

tap ratio is set as 0.00625; and the time delay is 5 seconds. 

The contingency simulated in this case is outage of the line between bus 4 
and 5. It is applied to the base case mentioned above. Due to the voltage 
dependent short-term load characteristic, the system total real power load 
is 6,238 MW right after the contingency. 

During the load restoration: In this step, only tap dynamics are considered 
for restoring the system load to the pre-contingency level. The OLTCs 
begin their actions 5s after applying the contingency. The voltages at the 
distribution side buses of the OLTCs increase whereas voltages at the 
high-voltage buses decrease due to the load restoration. Fig.6.9 shows the 
change in voltage at bus 2 with respect to time. Note that this bus is 
selected from the high-voltage side. 

1.03 

=̂  1 0 2 5 

1.02 h 

1.015 

1.01 

Fig.6.9 Voltage change vs. time during the load restoration 

Case 2: Load increment with respect to time with fixed tap position 

For this system, to relate the load parameter to time, the OLTCs are fixed 
now. Constant power loads are used. All the loads are increased by 0.5% 
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per second simultaneously. The system will collapse after about 53 
seconds as shown in Fig.6.10. 
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Fig.6.10 Load change (A) with respect to time 

In the scenario, QSS simulation is very fast if one avoids refreshing the 
Jacobian matrix. However, the Jacobian has to be updated when some of 
the devices are hitting their limits. Although CQSS involves two Jacobian 
matrices in the predictor and the corrector, they could be the same for fast 
computation. Furthermore, the predictor is much less computationally 
demanding than the corrector. For the predictor we have to solve only once 
the equation (30). Corrector needs iterative solution similar to solving the 
equations in the original QSS simulation. Thus, the simulation time in 
CQSS is almost the same as QSS under light load conditions. 
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Appendix 

A. Data of 2-bus test system 

A1. One line diagram 

Vj 

yo.i 

-p-JQ 

A2. The IEEE format: Base case power flow data of the 2-bus 
system 

BUS DATA 

1 Olalpha 1 0 3 1.0000 0.00 0.00 0.00 210.00 
1.0000 0.00 0.00 0.0000 0.0000 0 1 
2 Olkappa 1 0 0 1.0000 0.00 140.00 0.00 0.00 
0.0000 0.00 0.00 0.0000 0.0000 0 2 
-999 

0.00 100.00 

0.00 100.00 

BRANCH DATA 
1 2 1 0 1 0 0.000000 0.100000 0.00000 
0.0 0.0 0.0 0.0 0.0 0.0 1 
-999 

0 0 0.0000 
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A3. The dynamic data of the 2-bus system 

^dl 

1.67 
M, 
52 
K„ 

1 0.03 

^tii 

1 
Dj 

5 

Tn 
1 

X'dl 
0.232 

Kel 

1 

Tchi 
9.79 

X'tii 
0.466 

Tel 
0.79 
T,j 

0.12 

Rsi 
0.0002 

Sel 

0 

Ri 
0.05 

T'doi 
5.4 
Kal 

30 

COref 

1 

T'qOl 

0.88 
T„i 

0.02 
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B. Data of New England test system 

B1. One line diagram 
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B2. The IEEE format: 
England system 

BUS DATA 
IBUSl 

0.00 0.0000 
2BUS2 

0.00 0.0000 
3BUS3 

0.00 0.0000 
4BUS4 

0.00 0.0000 
5 BUSS 

0.00 0.0000 
6BUS6 

0.00 0.0000 
7BUS7 

0.00 0.0000 
8 BUSS 

0.00 0.0000 
9BUS9 

0.00 0.0000 
lOBUSlO 

0.00 0.0000 
11 BUSH 

0.00 0.0000 
12BUS12 

0.00 0.0000 
13BUS13 

0.00 0.0000 
14BUS14 

0.00 0.0000 
15BUS15 

0.00 0.0000 
16BUS16 

0.00 0.0000 
17BUS17 

0.00 0.0000 
18BUS18 

0.00 0.0000 
19BUS19 

0.00 0.0000 
20 BUS20 

0.00 0.0000 
21 BUS21 

0.00 0.0000 
22 BUS22 

0.00 0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

1 1 
0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 
1 1 

0.0000 

Base 

0 1.0436 
0.0000 

0 1.0378 
0.0000 

0 1.0056 
0.0000 

0 0.9864 
0.0000 

0 0.9924 
0.0000 

0 0.9956 
0.0000 

0 0.9851 
0.0000 

0 0.9843 
0.0000 

0 1.0233 
0.0000 

0 1.0060 
0.0000 

0 1.0013 
0.0000 

0 0.9876 
0.0000 

0 1.0014 
0.0000 

0 0.9947 
0.0000 

0 0.9909 
0.0000 

0 1.0043 
0.0000 

0 1.0076 
0.0000 

0 1.0055 
0.0000 

0 1.0432 
0.0000 

0 0.9938 
0.0000 

0 1.0122 
0.0000 

0 1.0387 
0.0000 

case power flow data of the New 

-13.39 
0.0000 

-11.21 
0.0000 

-13.87 
0.0000 

-14.01 
0.0000 

-12.24 
0.0000 

-11.40 
0.0000 

-13.75 
0.0000 

-14.32 
0.0000 

-14.58 
0.0000 
-9.41 
0.0000 

-10.10 
0.0000 

-10.23 
0.0000 

-10.23 
0.0000 

-12.18 
0.0000 

-13.33 
0.0000 

-12.16 
0.0000 

-13.11 
0.0000 

-13.85 
0.0000 
-7.90 
0.0000 
-9.51 
0.0000 
-9.83 
0.0000 
-5.44 
0.0000 

0.00 0.00 
0 1 
0.00 0.00 
0 2 

322.00 122.40 
0 3 

500.00 184.00 
0 4 
0.00 0.00 
0 5 
0.00 0.00 
0 6 

233.80 84.00 
0 7 

522.00 176.00 
0 8 
0.00 0.00 
0 9 
0.00 0.00 
0 10 
0.00 0.00 
0 11 
8.50 88.00 
0 12 
0.00 0.00 
0 13 
0.00 0.00 
0 14 

320.00 153.00 
0 15 

329.40 132.30 
0 16 
0.00 0.00 
0 17 

158.00 30.00 
0 18 
0.00 0.00 
0 19 

680.00 103.00 
0 20 

274.00 115.00 
0 21 
0.00 0.00 
0 22 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 
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23BUS23 1 1 0 1.0322 -5.65 247.50 84.60 0.00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 23 

24BUS24 1 1 0 1.0029-12.07 308.60 92.20 0.00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 24 

25BUS25 1 1 0 1.0461-10.01 224.00 47.20 0,00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 25 

26BUS26 1 1 0 1.0299-11.38 139.00 47.00 0.00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 26 

27BUS27 1 1 0 1.0136-13.39 281.00 75.50 0.00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 27 

28BUS28 1 1 0 1.0308 -8.00 206.00 27.60 0.00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 28 

29BUS29 1 1 0 1.0318 -5.22 283.50 126.90 0.00 0.00 
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0 29 

30BUS30 1 1 2 1.0475 -8.96 0.00 0.00 230.00 206.87 
0.00 1.0475 380.00-100.00 0.0000 0.0000 0 30 

31BUS31 1 1 3 0.9820 0.00 0.00 0.00 722.53 274.61 
0.00 0.9820 600.00-300.00 0.0000 0.0000 0 31 

32BUS32 1 1 2 0.9831 -1.58 0.00 0.00 630.00 254.00 
0.00 0.9831 500.00-300.00 0.0000 0.0000 0 32 

33BUS33 1 1 2 0.9972 -2.84 0.00 0.00 612.00 152.86 
0.00 0.9972 500.00-300.00 0.0000 0.0000 0 33 

34BUS34 1 1 2 1.0123 -4.50 0.00 0.00 488.00 236.74 
0.00 1.0123 450.00-250.00 0.0000 0.0000 0 34 

35BUS35 1 1 2 1.0493 -0.58 0.00 0.00 630.00 290.62 
0.00 1.0493 600.00-250.00 0.0000 0.0000 0 35 

36BUS36 1 1 2 1.0635 2.00 0.00 0.00 540.00 148.33 
0.00 1.0635 500.00-220.00 0.0000 0.0000 0 36 

37BUS37 1 1 2 1.0278 -3.42 0.00 0.00 520.00 48.40 
0.00 1.0278 500.00-220.00 0.0000 0.0000 0 37 

38BUS38 1 1 2 1.0265 1.74 0.00 0.00 810.00 138.33 
0.00 1.0265 500.00-300.00 0.0000 0.0000 0 38 

39BUS39 1 1 2 1.0300-14.68 1104.00 250.00 1000.00 123.30 
0.00 1.0300 900.00-800.00 0.0000 0.0000 0 39 
-999 

BRANCH DATA 
1 2 1 110 0.003500 0.041100 0.69870 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 1 
1 39 1 1 1 0 0.002000 0.050000 0.37500 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 2 
1 39 1 120 0.002000 0.050000 0.37500 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 3 
2 3 1 1 1 0 0.001300 0.015100 0.25720 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 4 
2 25 1 1 1 0 0.007000 0.008600 0.14600 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 5 
3 4 1 110 0.001300 0.021300 0.22140 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 6 
3 18 1 110 0.001100 0.013300 0.21380 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 7 
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4 5 1 1 1 0 0.000800 0.012800 0.13420 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

4 14 1 1 1 0 0.000800 0.012900 0.13820 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

5 6 1 1 1 0 0.000200 0.002600 0.04340 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

5 8 1 1 1 0 0.000800 0.011200 0.14760 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

6 7 1 1 1 0 0.000600 0.009200 0.11300 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

6 11 1 1 1 0 0.000700 0.008200 0.13890 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

7 8 1 1 1 0 0.000400 0.004600 0.07800 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

8 9 1 1 1 0 0.002300 0.036300 0.38040 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

9 39 1 1 1 0 0.001000 0.025000 1.20000 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

10 11 1 1 1 0 0.000400 0.004300 0.07290 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

10 13 1 1 1 0 0.000400 0.004300 0.07290 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

13 14 1 1 1 0 0.000900 0.010100 0.17230 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

14 15 1 1 1 0 0.001800 0.021700 0.36600 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

15 16 1 1 1 0 0.000900 0.009400 0.17100 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

16 17 1 1 1 0 0.000700 0.008900 0.13420 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

16 19 1 1 1 0 0.001600 0.019500 0.30400 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

16 21 1 1 1 0 0.000800 0.013500 0.25480 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

16 24 1 1 1 0 0.000300 0.005900 0.06800 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

17 18 1 1 1 0 0.000700 0.008200 0.13190 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

17 27 1 1 1 0 0.001300 0.017300 0.32160 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

21 22 1 1 1 0 0.000800 0.014000 0.25650 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

22 23 1 1 1 0 0.000600 0.009600 0.18460 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

23 24 1 1 1 0 0.002200 0.035000 0.36100 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

25 26 1 1 1 0 0.003200 0.032300 0.51300 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

26 27 1 1 1 0 0.001400 0.014700 0.23960 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 
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26 28 1 1 1 0 0.004300 0.047400 0.78020 0. 0. 0. 0 0 
0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 33 
26 29 1 110 0.005700 0.062500 1.02900 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 34 
28 29 1 110 0.001400 0.015100 0.24900 0. 0. 0. 0 0 

0.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 35 
2 30 1 1 1 1 0.000000 0.018100 0.00000 0. 0. 0. 0 0 

1.0250 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 36 
6 31 1 1 1 1 0.000000 0.050000 0.00000 0. 0. 0. 0 0 

1.0700 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 37 
6 31 1 12 1 0.000000 0.050000 0,00000 0. 0. 0. 0 0 

1.0700 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 38 
10 32 1 1 1 1 0.000000 0.020000 0.00000 0. 0. 0. 0 0 

1.0700 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 39 
12 11 1 1 1 1 0.001600 0.043500 0.00000 0. 0. 0. 0 0 

1.0060 0.00 0.9200 1.0800 0.0000 0.9500 1.0500 40 
12 13 1 1 1 1 0.001600 0.043500 0.00000 0. 0. 0. 0 0 

1.0060 0.00 0.9200 1.0800 0.0000 0.9500 1.0500 41 
19 20 1 1 1 1 0.000700 0.013800 0.00000 0. 0. 0. 0 0 

1.0600 0.00 0.9200 1.0800 0.0000 0.9500 1.0500 42 
19 33 1 1 1 1 0.000700 0.014200 0.00000 0. 0. 0. 0 0 

1.0700 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 43 
20 34 1 1 1 1 0.000900 0.018000 0.00000 0. 0. 0. 0 0 

1.0250 0.00 0.8750 1.1250 0.0000 0.9500 1.0500 44 
22 35 1 1 1 1 0.000000 0.014300 0.00000 0. 0. 0. 0 0 

1.0250 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 45 
23 36 1 1 1 1 0.000500 0.027200 0.00000 0. 0. 0. 0 0 

1.0000 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 46 
25 37 1 1 1 1 0.000600 0.023200 0.00000 0. 0. 0. 0 0 

1.0250 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 47 
29 38 1 1 1 1 0.000800 0.015600 0.00000 0. 0. 0. 0 0 

1.0250 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 48 
-999 
LOSS ZONES 
-99 
INTERCHANGE DATA FOLLOWS 
-9 
TIE LINES FOLLOW 
- 9 9 9 

B3. The Dynamic Data of the New England System 

NEW_ENGLAND SYSTEM STABILITY RELATED PARAMETERS OF GENERATOR 
& EXCITATION & GOVERNOR & SVC & OLTC & DYNAMIC LOADS 
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Generator transient parameter follows 
1 2 3 4 5 6 7 

8 9 10 11 
1234567890123456789012345678901234567890123456789012345678901234567890123 
4567890123456789012345678901234567890 
Num Gen_name Xd Xq X'd X'q Rs T'do 
T'qo Mg Dg 

30BUS30 0.1000 0.0690 0.0310 0.0690 0.0002 10.2000 
0.010 84.000 5.000 

31BUS31 0.2590 0.2820 0.0700 0.1700 0.0002 6.5600 
1.5000 60.600 5.000 

32BUS32 0.2500 0.2370 0.0530 0.0880 0.0002 5.7000 
1.5000 71.600 5.000 

33BUS33 0.2620 0.2580 0.0440 0.1660 0.0002 5.6900 
1.5000 57.200 5.000 

34BUS34 0.6700 0.6200 0.1320 0.1660 0.0002 5.4000 
0.4400 52.000 5.000 

35BUS35 0.2540 0.2410 0.0500 0.0810 0.0002 7.3000 
0.4000 69.600 5.000 

36BUS36 0.2950 0.2920 0.0490 0.1860 0.0002 5.6600 
1.5000 52.800 5.000 

37BUS37 0.2900 0.2800 0.0570 0.0910 0.0010 6.7000 
0.4100 48.600 5.000 

38BUS38 0.2110 0.2050 0.0570 0.0590 0.0002 4.7900 
1.9600 69.000 5.000 

39BUS39 0.0200 0.0190 0.0060 0.0080 0.0002 7.0000 
0.7000 1000.000 10.000 
-999 

Generator control system (Exciter + AVR + governor) parameter 

Num Gen_name Ke Te Se Ka Ta Kf 
Tf Teh Tg Rg 

30BUS30 1.0000 0.2500 0.0000 20.0000 0.0600 0.0400 
1.0000 1.6000 0.2000 0.0500 

31 BUS31 1.0000 0.4100 0.0000 40.0000 0.0500 0.0600 
0.5000 54.1000 0.4500 0.0500 

32BUS32 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 
1.0000 10.0000 3.0000 0.0500 

33BUS33 1.0000 0.5000 0.0000 40.0000 0.0600 0.0800 
1.0000 10.1800 0.2400 0.0500 

34BUS34 1.0000 0.7900 0.0000 30.0000 0.0200 0.0300 
1.0000 9.7900 0.1200 0.0500 

35BUS35 1.0000 0.4700 0.0000 40.0000 0.0200 0.0800 
1.2500 10.0000 3.0000 0.0500 

36BUS36 1.0000 0.7300 0.0000 30.0000 0.0200 0.0300 
1.0000 7.6800 0.2000 0.0500 

37BUS37 1.0000 0.5300 0.0000 40.0000 0.0200 0.0900 
1.2600 7.0000 3.0000 0.0500 
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38BUS38 1.0000 1.4000 0.0000 20.0000 0.0200 0.0300 
1.0000 6.1000 0.3800 0.0500 

39BUS39 1.0000 1.0000 0.0000 20.0000 0.0200 0.0300 
1.0000 10.0000 2.0000 0.0500 
-999 
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