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Introduction 

This year marks the tenth anniversary of the algorithms Peter Shor wrote 
for factoring and computing discrete logarithms on a quantum computer. 
It is no understatement to say that those algorithms have revolutionized 
our thinking about information processing and computability. By show
ing that there are certain, meaningful problems that are better solved on 
a quantum computer than on a classical computer, they inspired us to 
try to tame the weird world of quantum phenomena in order to reap 
these revolutionary benefits. Spurred by the importance and promise of 
this fundamentally new form of information processing, worldwide inter
est in research related to quantum information processing has skyrocketed 
in the intervening years. One measure of the remarkable impact of Shor's 
algorithms is seen in the United States' investment in quantum informa
tion, which rose from under $5M in 1994 to more than $100M in 2004. 

Nevertheless, practical quantum computing still seems more than a 
decade away. Researchers have not even identified what the best physical 
implementation of a quantum bit will be. There is a real need in the sci
entific literature for a dialog on the topic of lessons learned and loom
ing roadblocks. In order to (1) highlight the lessons learned over the last 
10 years, and (2) outline the challenges we will face over the next 10 years, 
I have organized a special issue of the new journal Quantum Informa
tion Processing dedicated to the experimental aspects of quantum com
puting. The special issue includes a series of invited articles that discuss 
the most promising physical implementations of quantum computing. The 
invited articles were to draw grand conclusions about the past and specu
late about the future, not just report results from the present. Of particular 
interest were insights that are universal or practical in nature. To provide 
a unifying theme and structure to these invited articles, the authors were 
asked to address the following topics: 
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Historical Review 
A brief historical review is followed by an overview of current 

experimental approaches. By discussing relevant issues regarding materi
als, fabrication, control, measurements, analysis, phenomenology, etc, each 
article offers insight into the advantages offered and challenges faced by a 
given specific physical implementation. 

Lessons Learned 
Lessons learned and universal conclusions reached over the last 

10 years are summarized, both those that can be applied to a specific 
physical implementation and those that may apply to the entire quantum 
computing community. Of primary interest were lessons learned about fab
rication, control, and scalability, but authors were encouraged to make 
grander observations about trends and experimental truths. 

Future Research Goals 
Research roadblocks facing a specific physical implementation are 

listed, particularly those challenges regarding the control, fidelity, and sca
lability of quantum bit fabrication and logic operations. Authors were 
asked to identify research demonstrations that would be recognized as 
significant steps forward and to pose challenges to the experimental and 
theoretical communities. 

The invited articles are listed below: 

Progress in Quantum Algorithms, 
Peter W. Shor (MIT) 

Nuclear Magnetic Resonance Quantum Computing 
NMR Quantum Information Processing, Chandrasekhar Ramanathan, Nic
olas Boulant, Zhiying Chen, David G. Cory, Isaac Chuang, and Matthias 
Steflfen (MIT) 

Ion Trap Quantum Computing 
Quantum Computing with Trapped Ion Hyperfine Qubits, B. B. Blinov, 
D. Leibfried, C. Monroe, (University of Michigan), D. J. Wineland (NIST) 

Ion Trap Quantum Computing with Ca'^ Ions, R. Blatt, H. Haffner, C. F. 
Roos, C. Becher, F. Schmidt-Kaler (University of Innsbruck) 

Neutral Atom Quantum Computing 
Quantum Information Processing in Cavity-QED, S. J. van Enk, H. J. 
Kimble, and H. Mabuchi (CalTech) 
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Quantum Information Processing with Trapped Neutral Atoms, P. S. lessen 
(University of Arizona), I. H. Deutsch, and R. Stock (University of New 
Mexico) 

The Road to a Silicon Quantum Computer, J. R. Tucker (University of Illi
nois), and T.-C. Shen (Utah State University) 

Semiconductor Quantum Dot Quantum Computing 
Controlling Spin Qubits in Quantum Dots, Hans-Andreas Engel, (Uni
versity of Basel), L. R Kouwenhoven (Delft University of Technology), 
Daniel Loss (University of Basel), and C. M. Marcus (Harvard) 

Spin-based Quantum Dot Quantum Computing in Silicon, Mark A. Eriks
son, Mark Friesen, Susan N. Coppersmith, Robert Joynt, Levente J. Klein, 
Keith Slinker, Charles Tahan (University of Wisconsin), R M. Mooney, 
J. O. Chu, and S. J. Koester (IBM T. J. Watson Research Center) 

Optically Driven Quantum Computing Devices based on Semiconductor 
Quantum Dots, Xiaoqin Li, Duncan Steel (University of Michigan), 
Daniel Gammon (NRL), and L. J. Sham (UC-San Diego) 

Superconductor Quantum Computing 
Implementing Qubits with Superconducting Integrated Circuits, Michel H. 
Devoret (Yale) and John M. Martinis (NIST) 

Photonic Quantum Computing 
Towards Scalable Linear-Optical Quantum Computers, J. R Dowling (NASA, 
JPL), J. D. Franson (Johns Hopkins University), H. Lee (NASA, JPL), 
and G. J. Milburn (University of Queensland) 

Photonic Technologies for Quantum Information Processing, Prem Kumar 
(Northwestern University), Paul Kwiat (University of Illinois), Alan 
Migdall and Sae Woo Nam (NIST), Jelena Vuckovic (Stanford), Franco 
N C. Wong (MIT) 

In addition, several contributed articles were received in response to 
the call for the special issue. These contributed articles appear after the 
invited ones. 

It has been a pleasure and an honor to work with and support this 
community during these early years. The surprising finding has consis
tently been that roadblocks may be overcome with conceptual innovation, 
improved materials, clever designs, and high fidehty controls. It is with 



4 Henry Everitt 

great optimism for the future that this special issue series is presented, not 
only to stimulate new research but also to provide a look back on how far 
we have come in such a short time. 

Guest Editor 
Henry Everitt 

Senior Research Scientist 
U.S. Army Research Office 

and 
Physics Department 

Duke University 
May 12, 2004 



Progress in Quantum Algorithms 

Peter W. Shor' 

We discuss the progress (or lack of it) that has been made in discovering algo
rithms for computation on a quantum computer Some possible reasons are given 
for the paucity of quantum algorithms so far discovered, and a short survey is 
given of the state of the field. 

KEY WORDS: quantum algorithms; NP-complete. 

PACS: 03.67.Lx. 

1. INTRODUCTION 

It has now been 10 years since I discovered the quantum factoring algo-
rithm.̂ ^̂  This discovery caused great excitement; although some quantum 
algorithms had previously been discovered, this was the first algorithm 
that gave a substantial speedup over a classical algorithm for a well-stud
ied and interesting problem. Many people expected a succession of other 
interesting quantum algorithms to quickly follow. Lov Grover indeed dis
covered his quantum searching algorithm shortly thereafter/^^ but the pro
gress since has been disappointing, especially compared with the progress 
the rest of the field of quantum information processing has been making. 
Physicists have been proposing and experimenters have been exploring pos
sible physical implementations of quantum computers at a pace I believe is 
faster than what anybody, but the most optimistic people expected; these 
developments are covered in the rest of this issue. Quantum cryptography 
is coming of age, with several theoretical proofs of its security recently dis
covered, and commercial quantum cryptography systems now on the mar
ket. The field of quantum information theory and quantum computational 

^Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA. E-mail: shor@mit.edu 
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complexity have both been quite active, with a succession of interesting 
and important theoretical results. Meanwhile, the development of quantum 
algorithms appears to have lagged behind, with what seem like barely any 
significant new algorithms having been discovered. We will speculate on 
why more quantum algorithms have not been found, and survey the pro
gress that has been made. This is an expansion and update of my paper̂ ^^ 
which also discusses this issue. 

2. THOUGHTS ON QUANTUM ALGORITHMS 

One thing I am often asked is why so few new quantum algorithms 
for solving classical problems have been discovered. It has not been for 
lack of effort; people have looked quite hard for new quantum algorithms. 
I can think of two reasons that quantum algorithms might be difficult to 
discover. The first is that there might really be only a few problems for 
which quantum computers can offer a substantial speed-up over classical 
computers; in the most pessimistic scenario, we have already discovered 
most of the important algorithms. The second is that quantum computers 
operate in a manner so non-intuitive, and so different from classical com
puters, that all the experience of the last 50 years in discovering classical 
algorithms offers little insight into how to go about finding quantum algo
rithms, so that while efficient quantum algorithms for many more prob
lems exist, they are very hard to find. It appears impossible to tell which 
of these two cases is the actuality. 

Another thing that I am often asked is what kind of problems are 
susceptible to attack by a quantum computer. Unfortunately, even the 
classical analog of this question: What kind of problems are can be solved 
in polynomial time by a digital computer? does not have a satisfactory 
answer. Computer scientists have a plethora of techniques they can try 
to apply to a problem: linear programming, divide-and-conquer, dynamic 
programming, Monte Carlo methods, semidefinite programming, and so 
forth. However, deciding which of these methods is likely to work for a 
given problem, and how to apply it, remains more of an art than a science, 
and there is no good way known to characterize the class of problems 
having polynomial-time algorithms. Characterizing the class of problems 
having polynomial-time quantum algorithms appears equally, if not more, 
difficult, one of the main additional difficulties being that we have so far 
discovered very few algorithmic techniques. 

One of the things that has made it difficult to find new quantum algo
rithms that perform better than classical algorithms is the remarkable job 
that computer scientists have done over the last 50 years in finding good 
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classical algorithms for problems. For the most part, researchers have been 
looking for quantum algorithms that efficiently solve problems which are 
not known to be solvable classically in polynomial time. These would yield 
the most impressive advances, and are also very likely to be the first prob
lems for which, when and if quantum computers are developed, the quan
tum algorithms will give a practical advantage in the real world. To find 
such a problem, if we make the assumption that quantum computers can
not solve NP-complete problems in faster than exponential time, we would 
need to find a problem which is neither in P nor is NP-hard. Remarkably, 
in part because of the success of the classical theory of algorithms, there 
are relatively few natural problems which fit this criterion. 

I now give a brief digression on complexity theory. The complex
ity class P consists of those problems which can be solved using algo
rithms running in time bounded by a polynomial in the length of the 
input. The class of problems with probabiHstic polynomial-time algorithms 
is called BPP, and the class with quantum probabilitistic polynomial-time 
algorithms is called BQP (quantum algorithms are in general inherently 
probabilistic, and so the class BQP should most fairly be compared with 
the class BPP rather than P). Polynomial running times are considered 
to be efficient by theoretical computer scientists. This isn't strictly true— 
nobody would call an algorithm that runs in n^^^ steps efficient in prac
tice, where n is the length of the input, but this definition has proven to 
be a good compromise between theory and practice; it appears to be the 
case that most natural problems in P have algorithms with running time 
a relatively small power of n. The class NP consists of those problems for 
which a solution can be verified in polynomial time; this class contains P, 
and the containment is generally thought to be strict. 

Computer scientists have identified a subclass of NP comprising the 
hardest problems in NP; these are called NP-complete problems,̂ '̂̂ '̂ ^and 
a polynomial-time algorithm for any of these problems would imply a 
polynomial-time algorithm for all problems in NP, showing that P = NP. 
Remarkably, a large number of NP-complete problems have been identi-
fied.^^^ When theoretical computer scientists consider a new problem, one 
of their first goals is to either show that it is NP-complete, or to find a 
polynomial-time algorithm for it. While these are mutually exclusive out
comes, it is not guaranteed that a problem in NP will either be NP-com
plete or in P; remarkably, however, the vast majority of problems studied 
seem to fall in one of these two classes. 

Why might we suspect that quantum computers cannot solve NP-
complete problems? Let us consider the classical analog of that ques
tion: why do computer scientists beheve that classical computers cannot 
solve NP-complete problems efficiently? This is the celebrated P vs. NP 
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question. (See Ref. 8,7,9 for the history of this problem.) The class NP is 
the class of problems for which, once a solution has been found, it can 
be verified in polynomial time that it is indeed a solution. Mathematically 
speaking, NP is the set of languages for which there are polynomial length 
proofs that a string is in the language (although there are not necessarily 
short proofs that a string is not in the language). NP-complete problems 
are a subset of these NP problems which have the property that if any of 
these NP-complete problems is solvable by an efficient algorithm, then all 
NP problems are solvable by an efficient algorithm. 

There are essentially two lines of argument for why P should be 
different from NP. The first, which in my opinion is not terribly con
vincing, is that nobody has yet found a polynomial-time algorithm for 
solving NP-complete problems. While such an algorithm would generate 
a complete upheaval of our understanding of computational complexity, 
similar revolutions have occurred, albiet infrequently, in other branches 
of mathematics and science. The second argument is barely more rigor
ous than the first. It relates NP completeness to the difficulty of finding 
mathematical proofs. If, for instance, a quadratic algorithm was discov
ered for solving an NP complete problem, then a mathematician could use 
this algorithm to mechanically check whether a conjectured theorem had 
a proof of length n using computation time of crp- steps for some con
stant c. Now, let us assume that the primes are in some sense quasi-ran-
domly distributed, as is believed by many mathematicians (although many 
other quasi-randomly distributed objects could be used in this argument 
as well). It then seems that it should be very difficult to check the truth 
of a statement such as 

There are 17 primes in arithmetic progression between integers a and b. 

without testing a large fraction of the numbers between a and b for pri-
mality; here the relative sizes of a and b should be chosen so that the 
probability of the above statement is roughly j . On the other hand, if you 
are given 11 numbers, testing to see if these are indeed primes in arithme
tic progression can be done in time polynomial in the length of b. This 
problem is in the class NP, which means that it can be efficiently trans
lated into a 3SAT problem—a Boolean formula in conjuctive normal form 
with 3 variables per clause (this translation is essentially the proof of the 
NP-compleness result). However, this problem appears quite hard, and it 
is very likely not NP-complete (meaning the reverse translation cannot be 
done). If any NP-complete problem could be solved in polynomial time, 
then problems such as the above could be solved in polynomial time. Intu
itively, it seems as though it would be very difficult to prove the non-exis
tence of such an arithmetic progression of primes, especially if you believe 
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the distribution of prime numbers is quasi-random. Thus, this is some 
intuitive evidence towards the conjecture that P 7̂  NP. 

Could the use of a quantum computer help solve such problems in 
NP? In this new question, we now have lost the mathematical intuition 
that proofs can be much harder to discover than to check. The symmetry 
between checking and discovering the proof is now gone: we are allowed 
a quantum computer to discover these proofs, but only permitted a digital 
computer to check them. Although the argument is not as convincing, it 
still does not seem Hkely that quantum computers can solve NP complete 
problems in less than exponential time. There is more evidence in this 
direction, in that there is a proof that a quantum computer cannot search 
a space of size N in less than 0{\fN) time.̂ ^^^ This result shows that a 
quantum algorithm for solving NP-complete problems in sub-exponential 
time will have to use the structure of these problems, and this result can 
also be used to find an oracle with respect to which NP is not contained 
in BQP 

If quantum computers cannot indeed solve NP complete problems, 
then where should we be looking for problems to speed up using quan
tum algorithms? The obvious place to look is in problems neither known 
to be in P or to be NP-complete. There are only a few problems in this 
class. Those handful of these which appear to be related to periodicity, 
and thus possibly susceptible to attack using quantum Fourier transforms, 
have received substantial study from the quantum algorithms community. 
These include the two problems of graph isomorphism and of finding a 
short vector in a geometrical lattice. The problem of graph isomorphism 
is: given two graphs, is there a permutation of the nodes which renders 
them identical? The problem of finding a short vector in a lattice is: given 
a lattice in d dimensions—i.e., the integer combinations of a set of d inde
pendent basis vectors—is it possible to efficiently find a vector that is not 
much longer than the shortest vector in this lattice? This problem becomes 
hard for large d. Finding a vector with length within a constant factor of 
the length of the shortest vector is NP-hard, while the best classical poly
nomial-time algorithms known can only find a vector having length within 
a factor that is exponential in the dimension d. While neither of these can 
be solved efficiently by a quantum algorithm yet, the study of the lattice 
problem from a quantum point of view has led to a purely classical result 
that puts this problem (with certain parameters) in the complexity class 
NP n co-NP^ii> 

If we moderate our goals somewhat, and look also for quantum algo
rithms that speed problems up by a polynomial factor, then we have not 
only all the problems in P to consider, but also the NP-complete problems. 
Grover's algorithm can be applied to speed up the algorithms for many of 
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these problems by a quadratic factor, and it is conceivable that some of 
them can be sped up by a larger factor. In my paper/̂ ^ I suggested look
ing at trying to speed up the solutions of problems in P by quantum algo
rithms, and I still believe this is a good source of research problems. 

3. PROGRESS IN QUANTUM ALGORITHMS 

Despite the general lack of progress that appears to have been made 
on quantum algorithms, there have been a number of results which I con
sider to represent incremental progress which may eventually lead to new 
quantum algorithms. In my talks, I generally classify known quantum 
algorithms into three classes: those using periodicity finding, those using 
variants of Grover search, and those using quantum computers to simu
late quantum mechanics. There has been progress in all three areas of this 
classification, and a couple of new algorithmic techniques have been pro
posed which appear promising, although they have so far not resulted in 
any breakthroughs in the discovery of new algorithms. I will now describe 
some of this progress; I will not attempt to be comprehensive, but merely 
to give pointers to some papers which I think show the potential for sub
stantial progress. 

We first treat the progress in quantum algorithms that use the Fou
rier transform, the tool that let us perform periodicity finding. It did not 
take long after the paperŝ ^̂ '̂ ^̂  to realize that a natural generalization of 
the factoring and discrete logarithm algorithms was to the abelian hidden 
subgroup problem: the problem of finding a subgroup of an abelian group 
which is hidden in the values of a function. Fourier transforms on abe-
Han groups could be used to find periodicity and solve this problem in 
much the same way that the Fourier transform on the cyclic group was 
used to factor and find discrete logarithms (see, e.g., Ref 13). Hallgren̂ "̂*̂  
has recently shown that the Fourier transform can also be used to find the 
periodicity of functions with irrational periods, and that this is useful in 
solving certain number theory problems such as finding solutions to Pell's 
equation and finding class groups of number fields. There are other prop
erties of the Fourier transform which can be used for purposes other than 
finding periodicity. For instance, shifts of a periodic function transform 
nicely under the Fourier transform, and this fact can be used to solve cer
tain hidden shift problem.̂ ^̂ ^ The Fourier transform can also be defined 
over non-abelian groups. It is not known how to compute this efficiently 
for all these groups, but it can be computed for some of them, such as 
the symmetric group̂ ^̂ ^ and the dihedral group. ̂ ^̂^ Kuperberg has recently 
been able to give an algorithm solving the hidden subgroup problem over 
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the dihedral group in subexponential time by working directly with the 
representations returned by the Fourier transform/^^^ These results indi
cate at least that the Fourier transform can be used in ways that are more 
versatile and powerful than those previously considered. 

The second class of quantum algorithms I discuss are the general
ization of Grover's algorithm for searching a set of N things in time 
0(\/N)P^ Many of these are covered in the survey/^^^ The most impor
tant is probably that of amplitude amplification/^'^^^ which lets one 
ampUfy the probability of success of a quantum algorithm which has 
only a small probability of success with efficiency quadratically better 
than would be possible classically. Recently, there have been a num
ber of algorithms discovered that combine the techniques of Grover's 
algorithm with quantum walks to perform certain tasks faster than one 
can do classically. ̂ ^̂ "̂ '̂ ^ It was first shown that quantum random walks 
could be used to solve some problems faster than classical algorithms 
could in;̂ ^̂ ^ these problems, however, appeared fairly artificial. Ambai-
nis combined these with random walk techniques to give a near-opti
mal time quantum algorithm for testing whether two elements in a 
database are distinct.^^^^ These techniques have also been used to show 
that certain graphs with locality can be searched quickly by a quan
tum computer, where the computer program has the option either going 
from a vertex to a neighboring vertex or testing that vertex to see 
whether it is the "goal" vertex.̂ "̂*̂  A survey of these results appears 
in.(23) 

The third class of quantum algorithms are those simulating quantum 
mechanics. There are two recent papers showing that the simulation of 
quantum mechanical processes can be used to solve certain classical prob
lems faster than it is known how to do classically. One of these^^^^ uses 
the fact that a certain observable in topological quantum field theories has 
its expectation value equal to the value of the Jones polynomial evaluated 
at certain points. While the variance of this observable is too large for a 
quantum computer to compute the value of this Jones polynomial exactly 
in polynomial time, it can be approximated by a quantum computer much 
more efficiently than it is known how to do using a classical computer. 
Another paper along these lines shows how to approximate zeros of cer
tain finite field zeta functions by a quantum computer. ̂ ^̂ ^ Inspired by the 
spectral approach to the Riemann hypothesis, which attempts to relate 
the zeros of the Riemann zeta function to the eigenvalues of a (currently 
unknown) chaotic quantum system, van Dam shows that the zeros of cer
tain finite field zeta functions are given by the eigenvalues of a quantum 
circuit, and that this fact can be used to approximate them more efficiently 
on a quantum computer than it is known how to do classically. 
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Finally, I want to mention adiabatic quantum computation. This heu
ristic attempts to find the ground state of a Hamiltonian by tracking its 
evolution by a quantum computer as the Hamiltonian is evolved from one 
whose ground state is known to one whose ground state is the desired 
result of the quantum computation/^^^ The adiabatic theorem says that 
this approach is efficient if there exists a spectral gap of size at least recip
rocal polynomial for all the intermediate Hamiltonians in the evolution. 
Although this approach has not yet been shown to yield an algorithm 
for an interesting problem, it does appear to me to have promise. It has 
been shown recently that all polynomial time quantum computations can 
be translated so they can be solved by this adiabatic method.^^^^ 
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NMR Quantum Information Processing 

Chandrasekhar Ramanathan,̂  Nicolas Boulant,̂  Zhiying Chen,̂  
David G. Cory,̂  Isaac Chuang,̂  and Matthias Steffen^ 

Nuclear magnetic resonance (NMR) has provided a valuable experimental test-
bed for quantum information processing (QIP). Here, we briefly review the use 
of nuclear spins as qubits, and discuss the current status of NMR-QIP. Advances 
in the techniques available for control are described along with the various imple
mentations of quantum algorithms and quantum simulations that have been per
formed using NMR The recent application of NMR control techniques to other 
quantum computing systems are reviewed before concluding with a description of 
the efforts currently underway to transition to solid state NMR systems that hold 
promise for scalable architectures. 

KEY WORDS: quantum control; quantum simulation; quantum algorithms; 
solid-state quantum information processing. 

PACS: 03.67.-a, 03.67.Lx. 

1. INTRODUCTION 

Nuclear spins feature prominently in most condensed matter proposals for 
quantum computing/^"^^^ either directly being used as computational or 
storage qubits, or being important sources of decoherence. Fortunately, the 
coherent control of nuclear spins has a long and successful history driven 
in large part by the development of nuclear magnetic resonance (NMR) 
techniques in biology, chemistry, physics, and medicine.̂ ^̂ '̂ ^̂  The central 
feature of NMR that makes it amenable to quantum information process
ing (QIP) experiments is that, in general, the spin degrees of freedom are 
separable from the other degrees of freedom in the systems studied, both 

^Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA. E-mail: sekhar@mit.edu 

^MIT Center for Bits and Atoms & Department of Physics, Massachusetts Institute of 
Technology, Cambridge, MA 02139, USA. 

15 



16 Ramanathan et al 

in the liquid and solid state. We can therefore describe the Hamiltonian of 
the spin system quite accurately; there is an extensive literature on meth
ods to control nuclear spins, and the hardware to implement such control 
is quite precise. 

This readily accessible control of nuclear spins has led to liquid state 
NMR being used as a testbed for QIP, as well as to preliminary studies of 
potentially scalable approaches to QIP based on extensions of solid state 
NMR. The Hquid state NMR QIP testbed, although it is not scalable, has 
permitted studies of control and QIP in Hilbert spaces larger than are 
presently available with other modahties, and has helped to provide con
crete examples of QIP. Here we review what has been learnt in these ini
tial studies and how they can be extended to the solid state where scalable 
implementations of QIP appear to be possible. 

The DiVincenzo criteria^^^^ for quantum computation provide a natu
ral starting place to understand why NMR is such a good testbed for QIP, 
and in particular, for implementing quantum algorithms using liquid state 
NMR techniques. These criteria concern (1) the qubits, (2) the initial state 
preparation, (3) the coherence times, (4) the logic gates, and (5) the read
out mechanism. 

1.1. Quantum Bits 

Protons and neutrons are elementary particles which carry spin-1/2, 
meaning that in a magnetic field B, they have energy —jlB, where the 
magnetic moment jl = ii^I (I is the spin operator) is quantized into two 
energy states, 11) and 11> • These states have an energy scale determined 
by the nuclear Bohr magneton />6N = ^^/2mN^5.1 x 10""̂ ^ A/m^ (Table 1). 
Since spin is inherently a discrete quantum property which exists inside a 
finite Hilbert space, spin-1/2 systems are excellent quantum bits. 

Nuclear spins used in NMR QIP are typically the spin-1/2 nuclei of 
^H, ^^C, ^^F, ^^N, ^^P, or ^^Si atoms, but higher order spins such as 
spin-3/2 and 5/2 have also been experimentally investigated. In liquid-state 
NMR, these atoms are parts of molecules dissolved in a solvent, such 

Table 1. Atoms with spin-1/2 nuclei typically used in NMR, and their 
energy scales, expressed as a resonance frequency, [frequencies are given for 
|5 |~11.74 

i R 

500 MHz 

T.] 

19p 

470 MHz 

31p 

202 MHz 

''C 

125 MHz 

29Si 

99 MHz 

1 5 N 

50 MHz 
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that the system is typically extremely well approximated as being 0(10^^) 
independent molecules. Each molecule is an A/̂ -spin system, with N mag
netically distinct nuclei. Typically, this molecule sits in a strong, static 
magnetic field, BQ, oriented along the z-axis, such that the N spins precess 
about z. The spins interact with each other indirectly via inter-atomic elec
trons sharing a Fermi contact interaction with two (or more) nuclei. The 
connectivity of the chemical bonds thus determines which nuclei interact. 

Since the energy scale of the interactions is weak compared with typ
ical values of / ^NI^ I , qubits in molecules can be independently manipu
lated, and provide a natural tensor product Hilbert space structure. This 
structure is essential for quantum computing, and in particular, system 
scalability. 

1.2. Initial State Preparation 

The energy scale of a nuclear spin in typical magnetic fields is much 
smaller than that of room temperature fluctuations. As seen in Table 1, 
at 11.74 T the proton has an NMR resonance frequency of 500 MHz, 
whereas room temperature thermal fluctuations are kBT ^25 m e V ^ 6 THz, 
about 10^ times larger. As the Boltzmann distribution governs the thermal 
equilibrium state of the spins 

exp L k^T J 
(1) 

where Z is the partition function normalization factor, p^ 1 for k^T^ 
/XNI^I- Thus, the room temperature thermal equilibrium state is a very 
highly random distribution, with spins being in their 11) and 11> states 
with nearly equal probability. 

Such a highly mixed state is not ordinarily suitable for quantum 
computation, which ideally works with a system initialized to a fiducial 
state such as |00---0). It was the discovery of a set of procedures to 
circumvent this limitation, which made NMR quantum information pro
cessing feasible and interesting.^^^'^^^ The essential observation is that a 
computational procedure can be appHed to p, such that the only observed 
signal comes from the net excess population in the |00---0> state of the 
thermal ensemble. One class of such techniques averages away the signal 
from all other states. This averaging can be performed sequentially in time 
using sequences of pulses which symmetrically permute undesired states, 
spatially using magnetic field gradients which prepare spins differently in 
different parts of a single sample, or by selecting a special subset of spins 
depending on the logical state (|0) or |1)) of the unselected spins. These 
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techniques, known as temporal, spatial, and logical labeling, do not scale 
well, and only create a signal strength which decreases exponentially with 
the number of qubits realized.̂ ^^^ 

Another class of techniques is based on efficient compression,^^^^ and 
in contrast, the signal strength obtained is constant with increasing num
ber of qubits realized. Indeed, only 0(poly(n)) space and time resources 
are needed to initialize 0{n) spins using this method, which has now been 
experimentally demonstrated,^^^^ but there is a constant overhead factor 
which prevents it from being practical until n is large, or the initial tem
perature of the spins can be brought lower by several orders of magnitude. 

1.3. Coherence Times 

Nuclear spins couple very weakly with the external world, primarily 
due to their small magnetic moment, and the weakness of long-range mag
netic forces. Thus, typical nuclei in liquid-state molecules may have a T\ 
timescale for energy relaxation of between 1 and 30 seconds, and a 72 
timescale for phase randomization of between 0.1 and 10 seconds. Deco-
herence may occur due to the presence of quadrupolar nuclei such as ^^Cl 
and ^D, chemical shift anisotropics, fluctuating dipolar interactions, and 
other higher order effects. Though the coherence lifetimes are long, the 
number of gates that can be implemented is limited by the relatively weak 
strength of the qubit-qubit couplings (typically a few hundred Hertz at 
most). 

1.4. Logic Gates 

In order to perform arbitrary quantum computations only a finite set 
of logic gates is required, similar to arbitrary classical computations. One 
such set consists of arbitrary single qubit rotations and the two-qubit con-
trolled-NOT gate. We describe how each of these is implemented. 

The Hamiltonian describing a 2-spin system in an external field 5oz 
is (setting h=\) 

H = COAlzA-\-^BlzB-\-y^A,B • (2) 

Here, /^ is the spin angular momentum operator in the z direction, and 
oji = —yi(l —ai)Bo, where yt is the gyromagnetic ratio for spin /, which 
depends on the nuclear species, ai is the shielding constant, and HA,B is 
the spin-spin coupling. The shielding constant depends on the local chem
ical environment of the nuclei, which shields the magnetic field, resulting 
in a shift in frequency by an amount known as the chemical shift such 
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that spins of the same type (e.g. protons) can have different resonance fre
quencies. That spins have different resonance frequencies is an important 
requirement because it permits frequency-dependent addressing of single 
qubits. 

Spins are manipulated by applying a much smaller radio-frequency 
(RF) field, B\, in the x-y plane to excite the spins at their resonance 
frequencies cot. In the rotating frame, to good approximation, the spin 
evolves under an effective field B = B\ cos((t>)x -{- B\ sm((p)y (where 0 is the 
RF phase). The rotation angle and axis (in the transverse plane) can be 
controlled by varying 0, the magnitude of B\ and the duration of the RF. 
Since it is possible to generate arbitrary rotations about the z-axis using 
combinations of rotations about the x- and j-axis, it is possible to imple
ment arbitrary single-qubit rotations using RF pulses. 

Two-qubit gates, such as the controlled-NOx gate require spin-spin 
interactions. These occur through two dominant mechanisms; direct dipo
lar coupling, and indirect through-bond interactions. The dipolar coupHng 
between two spins is described by an interaction Hamiltonian of the form 

^A,B = ^ {lA'lB-XiA'flKiB'n)) , (3) 

where fi is the unit vector in the direction joining the two nuclei, and / is 
the magnetic moment vector. While dipolar interactions are rapidly aver
aged away in a liquid, they play a significant role in Hquid crystal^^ '̂̂ ^^ 
and solid state NMR QIP experiments. Through-bond electronic interac
tions are an indirect interaction, also known simply as the scalar coupling, 
and take on the form 

ni^B=27r J IA ' !B=27TJI,AIZB +7tJ {IA+IB- + IA-IB+) , (4) 

where / is the scalar coupling constant. This interaction is often resolved 
in liquids. For heteronuclear species (such that the matrix element of the 
IA-\-IB--\-IA-IB-]- term is small, when 2JTJ<^COA-COB)'> the scalar coupling 
reduces to 

^A,B^^^^hAhB' (5) 

Multiple-qubit interactions, such as the controlled-NOX (CNOT) opera
tion, may be performed by inserting waiting periods between pulses so 
that y-coupled evolution can occur. For the 7-coupled two-spin sys
tem, a CNOT can be implemented as a controlled phase shift preceded 
and followed by rotations, given by the sequence CAB = RyA(210 = 
-90)RzBRzA(-90)RzAB(^^0)RyA(90). This is shown schematically in 
Fig. 1. 
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Fig. 1. (a) A controUed-NOT gate acting on two qubits, (b) the controlled-NOT gates imple
mented by a controlled phase shift gate (specified by a unitary matrix with diagonal elements 
{1,1,1,-1}) preceded and followed by n/l rotations, and (c) the pulse sequence and spin 
orientations corresponding to the components in (b). Note that, unlike a conventional NMR 
selective population transfer sequence, extra refocusing is required to preserve the Bell basis 
exchange symmetry between A and B. The z rotations are implemented via x and j'-rota
tions, which are not explicitly shown. 

In summary, one and two-qubit gates are implemented by applying 
a sequence of RF pulses interlaced with waiting periods. In this sense, it 
is perhaps interesting to note that the sequence of elementary instructions 
(pulses and delay times) are the machine language of the NMR quantum 
information processor. 

1.5. Readout Mechanism 

Readout of the quantum state in NMR QIP is not the usual ideal 
projective von Neumann measurement. Instead, the system is continually 
read out by the weak coupling of the magnetic dipole moments to an 
external pickup coil, across the ends of which a voltage is produced by 
Faraday induction. This coil is usually the same coil as that used to pro
duce the strong RF pulses which control the spins, and thus it only detects 
magnetization in the x-y plane. The induced voltage, known as the free 
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induction decay, may be expressed as 

V(t) = -2Votv[ e i^^pe'^' O'/x+/,')] ^ (6) 

where H is the Hamiltonian for the spin system, /^ and ly operate only 
on the kth spin, and VQ is a constant factor dependent on coil geometry, 
quality factor, and maximum magnetic flux from the sample volume. 

The Fourier transform of V(t) is the NMR spectrum as shown in 
Fig. 2 for example. When properly calibrated, the NMR spectrum imme
diately reveals the logical state of qubits which are either |0) or |1). Spe
cifically, for example, if the initial state of a two-spin ^H-^^C system is 
described by a diagonal density matrix, 

P = 

aOOO-
ObOO 
OOcO 
000 J. 

(7) 

(where the states are 00, 01, 10, and 11, with proton on left and carbon on 
right and a, b, c, and d denote the occupation probabilities) then after a 
RX(7T/2) readout pulse, the integrals of the two proton peaks (in the pro
ton frequency spectrum) are given by a — c and b — d, and the integrals 
of the two carbon peaks are given hy a — b and c — d. Both the proton 
and carbon spectra contain two peaks because of the /-coupling interac
tion during the measurement period. 

Wv̂ v̂ ^M<VH'*«̂ W 

-50 50 

Fig. 2. Thermal equilibrium spectrum of a 5 spin molecule. Each peak corresponds to a 
certain logical state of the remaining four spins, which is indicated by the binary numbers. 
The real part of the spectrum is shown, in arbitrary units. Frequencies are given with respect 
to (Oi/ln, in Hertz.^^^^ 
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One important issue in the readout of QIP results from NMR arises 
because the system is an ensemble, rather than a single A'̂ -spin mole
cule. The problem is that the output of a typical quantum algorithm is 
a random number, whose distribution gives information which allows the 
problem to be solved. However, the average value of the random vari
able would give no relevant information, and this would be the output if 
the quantum algorithm were executed without modification on an NMR 
quantum computer. 

This problem may be resolved̂ ^̂ ^ by appending an additional 
computational step to the quantum algorithm to eliminate or reduce the 
randomness of its output. For example, the output of Shor's algorithm 
is a random rational number c/r, from which classical post-processing is 
usually employed to determine a number r, which is the period of the 
modular exponentiation function under examination. However, the post
processing can just as well be performed on the quantum computer itself, 
such that r is determined on each molecule separately. From r, the desired 
prime factors can also be found, and tested; only when successful does 
a molecule announce an answer, so that the ensemble average reveals the 
factors. Similar modifications can be made to enable proper functioning of 
all known exponentially fast quantum algorithmŝ ^̂ "-̂ "̂ ^ on an NMR quan
tum computer. 

2. QUANTUM CONTROL 

Implementing an algorithm on a quantum computer requires per
forming both unitary transformations and measurements. Errors in the 
control and the presence of noise can severely compromise the accuracy 
with which a unitary transform can be implemented. Quantum control 
techniques are used to maximize the accuracy with which such operations 
can be performed, given some model for the system's dynamics. NMR 
has provided valuable insight into the design of schemes to control quan
tum systems, as the task of applying pulse sequences to perform opera
tions that are selective, and also robust against experimental imperfections, 
has been the subject of extensive studies.̂ ^̂ '-̂ ^̂  A single, isolated quantum 
system will evolve unitarily under the Hamiltonian of the system. In an 
ensemble measurement (whether in space or time), an isolated system can 
also appear to undergo non-unitary dynamics, called incoherent evolution, 
due to a distribution of fields over the ensemble.̂ ^̂ '̂ ^̂  An open quantum 
system, interacting with an environment, will decohere if these interactions 
are not controlled. The study of quantum control using NMR can there
fore be separated into three different subsections: 
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• Coherent control, how can one design RF control schemes to imple
ment the correct unitary dynamics for a single, isolated quantum 
system? 

• Incoherent noise: how can coherent control be extended to an 
ensemble, given that the system Hamiltonian will vary across the 
ensemble? 

• Decoherent noise: how can one achieve the desired control, when 
coupling to the environment is taken into account? 

2.1. Coherent Control 

The density matrix of a closed system evolves according to the Liou-
ville-Von Neumann equation of motion: 

^ = - a W i n t + W e x t , p ] , (8) 
at 

where Hint is the internal Hamiltonian of the system of qubits, and TYext 
the externally applied control fields. More specifically, extending Eqs. (2) 
and (4), the internal Hamiltonian for a system of Â  spin-1/2 nuclei in a 
large external magnetic field 5o is 

N N N 

nint = J2-yka-otk)Bo(r)I^-^2jrJ2J2'fkjI^-I'. (9) 
k=\ j>kk=l 

where —y(l —ak)Bo{r) is the chemical shift of the kth spin. The corre
sponding experimentally controlled RF Hamiltonian is 

Hext = X ] - n / ( r ) 5 R F ( 0 ^ - ' " ^ ^ ^ ^ ' ' / > ^ ' ^ ^ ^ ^ ' s (10) 

where the time-dependent functions 5 R F ( 0 and 0 ( 0 specify the appHed 
RF control field, while f(r) reflects the distribution of RF field strengths 
over the sample. The spatial variation of the static and RF magnetic fields 
leads to incoherence.^^^^ We will return to this in the next section. 

If the total Hamiltonian is time-independent, possibly through trans
formation into a suitable interaction frame, the equation of motion can 
be integrated easily and yields a unitary evolution of the density matrix 
p(t) = U(t)p(0)U^(t). Given an internal Hamiltonian and some control 
resources, how can we implement a given propagator or prepare a given 
state? In QIP, it is necessary to implement the correct propagator, which 
requires designing gates that perform the desired operation regardless of 
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the input state. We will therefore focus our discussion on NMR control 
techniques that are universal, i.e. whose performance is essentially indepen
dent of the input state, although sequences whose performances are state 
dependent can also be useful for initialization purposes. Average Hamil-
tonian theory is a powerful tool for coherent control that was initially 
developed for NMR.^^^^ Waugh and Harberlen have provided a theoreti
cal framework to implement a desired effective Hamiltonian evolution of 
a spin system over some period of time. Such a tool fits well into the con
text of QIP since it aims to implement the correct propagator over the sys
tem Hilbert space while refocusing undesired qubit-qubit interactions. The 
basic idea is to apply a cyclic train of pulses P = {Pj}^^\ with Y\Pj= 1 to 
the system which, in its simplest form, are assumed to be infinitely short 
and equally spaced by Ar > 0. The net controlled evolution over the period 
T = MAt can then be expressed as 

M 
-iHT 

n ^ " ^ ' " ^ ' ' (11) 
^=0 

where the "toggling-frame" Hamiltonians Hk = UlHkUk are expressed in 
terms of the composite pulses Uk = Y\)=\ Pj^^ = 1' • • • ,M,Uo = l. Any 
average Hamiltonian (up to a scalar multiple) can be implemented in 
NMR systems of distinguishable spins.̂ ^^^ This work has been extended 
to correct for some experimental imperfections or uncertainties primar
ily using symmetry arguments. Composite pulses have also been used to 
design robust control sequences as they can be designed to be self-com
pensating for small experimental errors.̂ ^ '̂-̂ '̂̂ "̂-̂ ^^ 

Strong modulation of the spin system currently represents the state 
of the art in performing selective, controlled operations in large Hilbert 
spaces (up to 10 qubits). Strong modulation of the spins permits accurate 
selective rotations while refocusing the internal Hamiltonian during the 
RF irradiation of the spins.̂ ^^^ Figure 3 shows the dependence of the fidel
ities achievable on the available control resources, using this technique.^^^^ 
These are simulation results, assuming only unitary dynamics. The fideli
ties are seen to improve both with improved distinguishability of the spins 
(higher field strengths), and stronger modulation (increased RF power). 
The drawback of this technique is that it is not scalable, as the time neces
sary to find the numerical solutions grows exponentially with the number 
of qubits (seê ^̂ ^ for a review of other techniques). An alternative, scalable 
approach that relies on optimization over single and pairs of nuclei has 
been described,^^^^ though it does not appear to perform as well. 
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Maximum Fidelity Found for a Three Spin n/2r Pulse 

0.9999 1̂ 

0.999 

® 
T3 

0.99 

Maximum Pulse Power (Hz) 

Fig. 3. Maximum fidelity achievable versus external magnetic field strengths and maximum 
radio-frequency power available for strongly modulating pulses. The frequencies shown are 
the proton Larmor frequencies at different magnetic fields (300 MHz = 7 T, 500 MHz = 
11.7 T, 800 MHz = 18.8 T). 

Finally, there is a growing body of work in the area of optimal con
trol theory for quantum systems/̂ ^"^^^ which has also used NMR as an 
experimental testbed. It is foreseeable that it might be possible to com
bine the ideas presented in these studies with strong modulation and 
pulse-shaping techniques to design optimal control sequences, given some 
knowledge about the system decoherence and the control parameters. 

2.2. Incoherent Noise 

Incoherent noise arises from a spatial or temporal distribution of 
experimental parameters in an ensemble measurement/^^^ It is manifested 
in NMR in the spatial dependence of the Hamiltonian H. The density 
matrix at a given location in the sample still obeys the Liouville-Von Neu
mann equation where the internal and external Hamiltonian are now spa
tially dependent. Since it is the spatially averaged density matrix that is 
measured, the apparent evolution of the ensemble system is non-unitary 
and yields the following operator sum representation^^^^ of the superoper-
ator 

p(0- l ]A-^/(Op(0) t / / (0 , (12) 
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Fig. 4. Decay of the transverse magnetization of a nuclear spin in a liquid state sample 
with large BQ field inhomogeneities both with and without a Carr-Purcell (CP) sequence. 

where Ui is a unitary operator and pi represents the fraction of spins that 
experience a given Ui (Xl/ Pi = !)• This incoherent evolution can be coun
teracted using a different set of techniques than those used to deal with 
the decoherent errors to be discussed in the next section. 

Hahn's pioneering work showed that inhomogeneities in the 
Hamiltonian could be refocused during an experiment if an external 
control Hamiltonian orthogonal to the inhomogeneous Hamiltonian was 
availablê "̂ "*̂  (see Fig. 4). In the case of an inhomogeneous but static 
Hamiltonian, the correlation time of the noise is infinite. This work was 
extended by Carr and Purcell to counteract long, but not infinite, cor
relation time noise fluctuations due to molecular diffusion.̂ ^^^ Composite 
pulse sequences have also been used to counteract the effects of incoher
ent processes,^^^"^ '̂̂ '̂̂ ^^ but often assume specific input states, or still need 
to be proven effective over the full Hilbert space of multi-qubit systems. 
Spin decoupling fits into a similar framework, and provides a means of 
modulating the system in order to average out unwanted interactions with 
the environment. '̂*^^ It has inspired coherent approaches to other control 
problems for error correction purposes.̂ "*^"^^^ 

The use of strongly modulating pulses has been extended to 
incorporate incoherent effects, considering local unitary dynamics over the 
ensemble.̂ ^^^ A priori knowledge of the inhomogeneity of the external 
Hamiltonian was used to find robust pulse sequences yielding a higher 
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fidelity operation over the ensemble. This knowledge was easily obtained 
by spectroscopic NMR techniques. Though this work focused on counter
acting the main source of incoherent errors in an NMR experiment, i.e. 
RF inhomogeneity, it could easily be extended to compensate for exper
imental uncertainties such as the phase noise of the RF irradiation or 
static Bo field inhomogeneities. 

2.3. Decoherent Noise 

If the coupUng between the system and the environment is weak 
enough and the correlation time of the noise is short, the evolution of the 
system is Markovian and obeys the following master equation: 

d\p(r)) 
dt 

= - ( /H( r ) + r) |p(r)) , (13) 

where T is the Liouville space relaxation superoperator.̂ ^^^ This equation 
yields a non-unitary evolution of the density matrix so that pure states 
can evolve into mixed states. To understand and test models of decoher-
ence, methods based on quantum process tomography (QPT) were devel
oped to measure r,̂ ^̂ '̂ ^̂  so that the dynamics of the system could be 
simulated more accurately. The full model of the system including coher
ent, incoherent and decoherent dynamics, has been tested extensively with 
a three qubit QPT of the Quantum Fourier Transform superoperator.̂ "̂̂ ^ 
When knowledge about the noise operators is available, quantum error 
correction (QEC) schemes can in principle be designed to allow quantum 
computing in the presence of imperfect control. NMR has primarily been 
used to test the ideas of quantum error correction (QEC)̂ ^̂ ~̂ ^̂  and of 
fault-tolerant quantum computations.̂ ^^^ Experiments were carried out to 
investigate different QEC scenarios,̂ ^̂ "̂ ^̂  in addition to encoded opera
tions acting on logical qubits.̂ ^̂ ^ Schemes to implement logical encoded 
quantum operations while remaining in a protected subspace have also 
been investigated^^ ̂^ for a simple system made of two physical qubits and 
are still being studied for larger systems. 

3. QUANTUM ALGORITHMS 

Many quantum algorithms have now been implemented using liquid-
state NMR techniques. The first quantum algorithms implemented with 
NMR were Grover's algorithm^^ '̂̂ ^^ and the Deutsch-Jozsa 
algorithm^^ '̂̂ ^^ for two qubits. The quantum counting algorithm was 



28 Ramanathan et al 

implemented soon afterwards using two qubits/^^^ A variety of imple
mentations of Grover's algorithm and the Deutsch-Jozsa algorithm have 
subsequently been performed. The two-qubit Grover search was re-imple
mented using a subsystem of a three qubit system/^^^ demonstrating state 
preparation using logical labeling. A three qubit Grover search has been 
implemented, in which 28 Grover iterations were performed, involving 280 
two-qubit gates.̂ ^^^ A three-qubit Deutsch-Jozsa algorithm using transi
tion selective pulses,̂ ^^^ another more advanced version using SWAP gates 
to avoid small couplings,^^^^ and yet another implementation without SWAP 
gates.̂ ^^^ A subset of a five-qubit Deutsch-Jozsa algorithm has also been 
implemented.^^^^ 

The implementation of quantum algorithms reached a new level with 
the full implementation of a Shor-type algorithm using five qubits.̂ ^^^ 
This work involved the use of exponentiated permutations, combined with 
the quantum Fourier transform, which had been previously been imple-
mented.̂ ^^^ 

The most complex quantum algorithm realized to-date is the demon
stration of Shor's algorithm using Hquid-state NMR QIP methods: In this 
work,̂ ^^^ a seven-qubit molecular system was used to factor the number 
15 into its prime factors. This molecule, shown in Fig. 5, was specially 
chemically synthesized to give resolvable fluorine spectra, in which the two 
^^C nuclei, and the five ^^F nuclei, could each be addressed independently 
because of the spread of their resonant frequencies. The NMR spectra of 
this molecule are quite remarkable; for example, the thermal spectrum of 
^^F spin number 1 shows 64 lines, corresponding to the random states 
of the other 6 spins (Fig. 6). Several hundred pulses were appHed, with 
a wide variety of phases, and shapes, at seven different frequencies, in 
this demonstration of the factoring algorithm (Fig. 7). A comparison of 
the experimental results with numerical simulations suggests that decoher-
ence was the major source of error in the experiment rather than errors in 
the unitary control, which is remarkable considering the number of pulses 
applied. 

Most recently, among NMR implementations of quantum algorithms, 
has been the realization of a three-qubit adiabatic quantum optimiza
tion algorithm.^^^^ In this work, the ^H, ^^C, and ^^F nuclei in molecules 
of bromofluoromethane were used as qubits, and the solution to a com
binatorial problem, MAXCUT, was obtained, using an optimization algo
rithm proposed by Farhi and Goldstone^^^^ and Hogg.̂ ^^^ This algorithm 
is notable because it is fundamentally different in nature from Shor-type 
quantum algorithms, and may obtain useful speedups for a wide variety 
of optimization problems. 
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Fig. 5. The seven spin molecule used in the quantum factoring NMR experiment, show
ing its /-coupling constants, Ti and T2 relaxation times (in seconds), and chemical shifts (in 
Hertz) at 11.74 T. 

"200 -100 100 200 
Fig. 6. Experimentally measured thermal equilibrium spectra of the NMR spectrum of 
fluorine atom number 1, in the molecule of Fig. 5. The real part of the spectrum is shown, 
in arbitrary units. Frequencies are given with respect to (jOi/ln, in Hertz. 

3.1. Other Quantum Protocols 

The Greenberger-Horne-Zeilinger state and its derivative entangled 
states of three particles have been studied as well. First, an effective-pure GHZ 
state was prepared/^^^ and later a similar experiment was done with seven 
spins/^^^ The claim of having created entangled states was later refuted based 
on the fact that spins at room temperature are too mixed to be entangled/^^^ 
GHZ correlations have since been further studied on mixed states/^'*^ 



30 Ramanathan et al. 

j i l i l i i l ILliL._.l.liiJLLL LJ._J1-U 

ULJJJJ__iJ_i 1 I._.UI1I1I1I LJj 

iJilklklUL 

llMLlUi* 

IL_4l;JkLIJUUi_„...J M..Ll..l._IJ..LIJUUll4JliLM A 

.L 

ll.JiildllJllllJUIIILiiiM^^ 
J L llUJJII! 1 .LLIJl 11 

llJlJJl IMIJ IJ.JJ„I l_..JIIJ__i .IL Al 
1\% JJ1!IJJJLJ....1 li 1.1 

(0) (1) (2) (3) 

Fig. 7. Pulse sequence for implementing Shor's algorithm to factor Â  = 15 (for case a = 
7), using seven qubits. The four steps 0 through 3 correspond to different steps in Shor's 
algorithm. The tall lines represent 90° pulses selectively acting on one of the seven qubits 
(horizontal lines) about positive x (no cross), negative x (lower cross) and positive y (top 
cross). Note how single 90° pulses correspond to Hadamard gates and pairs of such pulses 
separated by delay times correspond to two-qubit gates. The smaller lines denote 180° selec
tive pulses used for refocusing, about positive (darker shade) and negative x (lighter shade). 
Rotations about z are denoted by even smaller and thicker lines and were implemented with 
frame-rotations. Time delays are not drawn to scale. The vertical dashed black lines visu
ally separate the steps of the algorithm; step (0) shows one of the 36 temporal averaging 
sequences. 

A quantum teleportation protocol was implemented using three 
qubits/^^^ Superdense coding has been realized/̂ ^^ and an approximate 
quantum cloning experiment has been implemented (an unknown quantum 
state cannot be perfectly copied; it can only be approximately cloned)/̂ ^^ 
The quantum Baker's map has also been implemented/^^^ 

Several experiments have been performed in an attempt to increase 
the thermal polarization of nuclear spins in liquid solution, as this poses 
a significant challenge for scaling NMR quantum computers to many 
qubits. An algorithm approach implementing the basic building block of 
the Schulman-Vazirani cooling scheme has been demonstrated/^^^ High 
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initial polarization of the proton and carbon in a chloroform molecule 
have been obtained by transfer from optically pumped rubidium, through 
hyperpolarized xenon, and a two-qubit Grover search implemented on this 
non-thermally polarized system/^^^ In a different approach^^^^ para-hydro-
gen was transformed into a suitable molecule leading to a polarization of 
10% which is much larger than the thermal polarization of 0(10""*). A 
quantum algorithm was subsequently performed on this molecule. Most 
recently, a two-spin system was initialized to an effective purity of 0.916 by 
chemically synthesizing a two-spin molecule using highly polarized para-
hydrogen.^^^^ 

4. QUANTUM SIMULATION 

In 1982, Feynman recognized that a quantum system could efficiently 
be simulated by a computer based on the principle of quantum mechanics 
rather than classical mechanics.^^^^ This is perhaps one of the most impor
tant short term apphcations of QIP. An efficient quantum simulator will 
also enable new approaches to the study of multibody dynamics and pro
vide a testbed for understanding decoherence. 

A general scheme of simulating one system by another is expressed in 
Fig. 8. The goal is to simulate the evolution of a quantum system S using 
a physical system P. The physical system is related to the simulated system 
via an invertible map 0 , which creates the correspondence of states and 
propagators between the two systems. In particular, the propagator U in 
the system S is mapped to V = (t)U(j)~^ . After the evolution of the physi
cal system from state p to pr, the inverse map brings it back to the final 
state s(T) of the simulated system. 

The first expHcit experimental NMR realization of such a scheme was 
the simulation of a truncated quantum harmonic oscillator (QHO).^^^^ The 

Simulated System (S) Physical System (P) 

is> i ^ lp> 

U = exp(-iHJ) 

ls(T)> -I lp(T)> 

Fig. 8. Correspondence between the simulated and physical system. The initial state s 
evolves to s(T) under the propagator U. This process is related to the evolution of state p 
in the physical system by an invertible map cp. 
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States of the truncated QHO were mapped onto a two-qubit system as 
follows 

|„ = 0) ^ |0)|0> = |00> 

|n = l ) ^ | 0 > | l > = |01) 

|« = 2>^|1>|0) = |10) 

|n = 3 > ^ | l > | l ) ^ | l l ) . 

The propagator of the truncated QHO 

C/ = exp - / ( -2,0>(0| + ^|1)(1| + ^|2>(2| + ^|3>(3| yr] 

(14) 

(15) 

(^ is the oscillator frequency) was mapped onto the following propagator 
of a two-spin system 

Vr =exp [/ (2/2 ( l + /^i) - 2 ) m (16) 

Implementing this propagator on the 2-spin system simulates the truncated 
QHO as shown in Fig. 9. 

Quantum simulation however is not restricted to unitary dyamics. It 
is sometimes possible to engineer the noise in a system to control the de-
coherence behavior and simulate non-unitary dynamics of the system/̂ "*^ 

0.4 0.6 0.8 
Period (nT/2n) 

Fig. 9. NMR signals demonstrate a quantum simulation of truncated harmonic oscillator. 
The solid lines are fits to theoretical expectations. Evolution of the different initial states are 
shown: (a) evolution of |0) v^ith no oscillation (b) evolution of |0)+/|2) , showing 2 ^ oscil
lations (c) evolution of |0) +|1) + |2) + |3), showing Q oscillation and (d) 3 ^ oscillations. 
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Simple models of decoherence have been shown using a controlled quan
tum environment in order to gain further understanding about decoher
ence mechanisms. In one model/̂ ^^ the environment is taken to be a large 
number of spins coupled to a single system spin so that the total Hamil-
tonian can be expressed as 

k=2 k=2 

(17) 

corresponding to the system, the environment, and the coupling between 
the system and the environment, respectively (the couplings within the 
environment were omitted here for simpHcity). Note that the form is iden
tical to the weak coupling Hamiltonian of a liquid state NMR sample pre
sented in the previous sections. However, the number of spins in a typical 
QIP NMR molecule is small, which makes the decoherence arising from 
the few "system-environment" couplings rather ineffective, as the recur
rence time due to a small environment is relatively short. This can be 
circumvented by using a second "classical" environment which interacts 
with a smaller quantum environment (see Fig. 10 for an illustration of the 
model).̂ ^ )̂ 

In this model, following the evolution of the system and the small 
quantum environment, a random phase kick was applied to the quantum 
environment. This has the effect of scrambling the system phase informa-

- Quantum 
Environment 

System 

Fig. 10. Basic model for the system, local quantum and classical environments. 
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Fig. 11. Simulation showing the dependence of the decay rate on the kick rate, and the 
onset of the decoupling limit. Beyond 900 kicks/ms the decay rate decreases. 

tion stored in the environment during the coupling interaction and there
fore emulates the loss of memory. When the kick angles are averaged over 
small angles, the decay induced by the kicks is exponential and the rate 
is linear in the number of the kicks/^^^ As the kick angles are completely 
randomized over the interval from 0 to 27r, a Zeno type effect is observed. 
Figure 11 shows the dependence of the decay rate on the kick frequency: 
the decay rate initially increases to reach a maximum and then decreases, 
thereby illustrating the motional narrowing^^^^ or decoupling^^^^ limit. This 
NMR-inspired model thus provides an implementation of controlled deco-
herence yielding both non-exponential and exponential decays (with some 
control over the decay rates), and can be extended to investigate other 
noise processes. 

A type-II quantum computer is a hybrid classical/quantum device that 
can potentially solve a class of classical computational problems.^^ '̂̂ ^^ It is 
essentially an array of small quantum information processors sharing infor
mation through classical channels. Such a lattice of parallel quantum infor
mation processors can be mapped onto a liquid state NMR system by map
ping the lattice sites of the quantum computer onto spatial positions in 
the nuclear spin ensembles. The implementation of a type-II quantum com
puter using NMR techniques has been demonstrated in solving the diffusion 
equation.^^^^ The experimental results show good agreement with both the 
analytical solutions and numerical NMR simulations. The spatial separa
tion of the different lattice sites in the ensemble allows one to address all 
the lattice sites simultaneously using frequency selective RF pulses and a 
magnetic field gradient. This yields a significant savings in time compared 
to schemes where the sites have to be addressed individually. 
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5. CONTRIBUTION TO OTHER QC SYSTEM 

NMR QIP studies have contributed significantly to enabling quan
tum computation with other physical systems. Fundamentally, this has 
been because of the exquisite level of control achievable in NMR, which 
remains unrivaled. Several of these contributions are briefly summarized 
below; a complete discussion is available in the literature.^^^^ 

5.1. Composite Pulses: Trapped Ions 

The use of composite pulses has been an important contribution of 
NMR to QIP. A single, imperfect pulse is replaced by a sequence of pulses 
which accompUshes the same operation with less error. Historically, in the 
art of NMR, such sequences were first invented to compensate for appa
ratus imperfections, such as frequency offsets and pulse ampHtude miscal-
ibrations. For example, the machine may perform rotations 

^^(^) = exp [- /(I + €)h • / ] , (18) 

where e is an unknown, systematic pulse amplitude error. Ideally, e is 
zero, but in practice, it may vary geometrically across a sample, or slowly, 
with time. Using average gate fidelity as an error metric, this pulse can 
be shown to have error which grows quadratically with e. In comparison, 
consider the sequence 

BB\e = R^(n)R3^(37t)R^(n)RA0), (19) 

where ^0(-) denotes a rotation about the axis [cos 0, sin 0,0], and the 
choice (1) = COS~^(—0/47T) is made. This sequence, introduced by Wimpe-
j.jg(i00) giyes average gate fidelity error '^ 2l7r^6^/16384, which is much 
better than the 0(6^) for the single pulse, even for relatively large values 
of 6. Generalizations and extensions of this technique can help correct not 
just systematic single qubit gate errors, but also coupled gate errors.̂ ^ '̂̂ ^^ 

NMR composite pulses have also recently been successfully employed 
in quantum computation with trapped ions. In an experiment with a sin
gle trapped "̂ ^Ca ion, a sequence of 0(10) laser pulses was performed 
using a variety of phases, to implement a proper swap operation between 
the internal atomic state and the motional state of the ion, and a con-
trolled-phase gate. These steps allowed the full two-qubit Deutsch-Jozsa 
algorithm to be implemented.^^^^^ Composite pulses have also been used 
in superconducting qubits demonstrating robustness against detuning in a 
quantronium circuit.̂ ^^^^ 
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5.2. Shaped Pulses: Superconducting Qubits 

NMR also widely employs shaped pulses to achieve desired con
trol excitations of the spins. Typically, this shaping is performed in the 
amplitude and phase domain. One goal of this method, for example, 
is to achieve narrow excitation bandwidths. To first order, the excited 
bandwidth is the Fourier transform of the temporal width of the pulse. 
However, because of the non-linear Block response of the spins to the 
RF excitation, the first order approximation rapidly breaks down for more 
than small tip angles. ̂ ^̂ ^̂  Thus, in order to achieve sharp excitation band-
widths for different tip angles, or uniform excitation of the spins over a 
certain frequency range, a panoply of pulse shapes, such as gaussians, her-
mite-gaussians,̂ ^^"^^ and fancifully named ones, including BURP and RE-
BURP^^^^^ have been designed. 

These NMR techniques are applicable to precise control of quantum 
systems other than NMR. Numerical optimization can be used to sculpt 
pulse shapes to provide desired unitary transformations,^^^^ and shaped 
pulses may be useful for controlling Josephson junction phase qubits.̂ ^^^^ 

6. TRANSITION TO SILID STATE NMR 

While the liquid state studies have allowed us to explore open system 
dynamics and to develop means and metrics for obtaining control in small 
quantum systems, these studies have generally been limited to less than 10 
qubits. Though the decoherence times are long (on the order of seconds), 
the strength of the spin-spin coupling (used to implement two-qubit gates) 
is small (about 100 Hz), limiting the number of operations that can be 
performed. In addition, at room temperature the density matrix character
izing the spin system is highly mixed and it is necessary to use pseudo-
pure states.̂ "̂̂ '̂ ^^ As the room temperature polarization of the sample is 
very small (<1 part in 10^) , the exponential loss in signal as the size of 
the spin system grows limits the number of qubits that can be observed. 
Another limitation to scaling liquid state NMR techniques is the use of 
chemistry for frequency-dependent addressing. As the number of qubits 
increases, the number of transitions that need to be individually addressed 
grows as well. These transitions all lie within a fixed (chemistry dependent) 
bandwidth, making it progressively harder to address a single transition 
without disturbing any other. While techniques such as algorithmic cool-
ing(̂ '7'i0'7) and cellular automata^^^^^ schemes have been proposed to over
come some of these limitations, their experimental feasibility has not been 
demonstrated to date. 
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Solid state NMR approaches allow us to obtain control over a much 
larger Hilbert space, and hold great promise for the study of many body 
dynamics and quantum simulations. The most important spin-spin inter
action is the through-space dipolar coupling, which is on the order of tens 
of kilohertz in typical dielectric crystals, so that it should be possible to 
implement a large number of operations (perhaps 10^) before the spins 
decohere. Moreover, in the solid state, the spins can be highly polarized 
by techniques such as polarization transfer from electronic spins.̂ ^^^ The 
increased polarization allows an exploration of systems with a larger num
ber of qubits, and also allows preparation of the system close to a pure 
state. While traditional solid state NMR techniques rely on chemistry for 
addressing, it is possible to introduce spatial addressing of the spins using 
extremely strong magnetic field gradients that produce distinguishable 
Larmor precession frequencies on the atomic scale, or via an auxiUary 
quantum system such as an electron spin, a quantum dot or even a super
conducting qubit that is coupled to the nuclear spin system. For instance, 
entanglement between an electron and nuclear spin in an ensemble has 
recently been demonstrated.^^^^^ 

A variety of architectures have been proposed for solid state NMR 
quantum computing, a few of which are enumerated below : 

1. Cory et al. proposed an ensemble solid state NMR quantum com
puter, using a large number of «-qubit quantum processor mole
cules embedded in a lattice. ̂ ^̂  The processors are sufficiently far 
apart that they only interact very weakly with each other. The bulk 
lattice is a deuterated version of the QIP molecule, with no other 
spins species present. Paramagnetic impurities in the lattice are 
used to dynamically polarize the deuterium spins, and this polar
ization can then be transferred to the QIP molecules using polari
zation transfer techniques. The addressing is based on the chemis
try of the processor molecule. 

2. Yamamoto and coworkers have proposed another ensemble NMR 
processor, using an isotopically engineered silicon substrate con
taining ^^Si spin chains in an ^^Si or ^^Si lattice.^ '̂̂ ^ The ^^Si has 
spin 1/2 while ^^Si and ^^Si have spin 0. A microfabricated (dys
prosium) ferromagnet is used to produce extremely strong mag
netic field gradients to create a variation of the nuclear spin Lar
mor frequencies at the atomic scale. Detection is performed using 
magnetic resonance force-microscopy. 

3. The use of an N-V defect center in diamond coupled to a clus
ter of ^^C spins as a quantum processor has been proposed by 
Wrachtrup et al.S^^ The hypefine coupling between the electron 
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spin in the defect and the carbon nuclei allows these carbon nuclei 
to be addressed individually. Using a combination of optically 
detected electron nuclear double resonance and single molecule 
spectroscopy techniques, they suggest that it should be possible 
to both prepare pure spin states of the system as well as directly 
detect the result of a computation by performing a single spin 
measurement. 

4. Suter and Lim propose an architecture based on endohedral fulle-
renes, encapsulating either a phosphorus or nitrogen atom, posi
tioned on a silicon surface.̂ ^^^ The Ceo cages form atom traps, and 
the decoherence time of the phosphorus or nitrogen nuclear spin 
is consequently very long. Switched magnetic field gradients that 
can produce observable electron Larmor frequency shifts on nano
meter length scales, in combination with frequency selective RF 
pulses are used to address the spins. Each site represents two phys
ical qubits, the electron spin of the fullerene and the nuclear spin 
of the trapped atom, and are used to create a single logical qubit. 
Two qubit gates between different fullerene molecules are mediated 
by the electron-electron dipolar coupling. 

While simple gates have been demonstrated in solid state NMR,̂ ^^^^ 
the fidelity of these gates is low, and significant experimental challenges 
remain. The decoherence mechanism in the solid state is primarily due 
to the indistinguishability of the chemically equivalent nuclear spins. The 
Hamiltonian of a homonuclear spin system iŝ ^̂ ^ 

w='^E'i+E^o(3/i//-/'/0 (20) 
/ i<j 

where the first term corresponds to the Zeeman energy and second term 
is the truncated dipolar Hamiltonian in strong magnetic fields. While 
the total dipolar Hamiltonian commutes with the total Zeeman Hamil
tonian, the Zeeman and dipolar terms do not commute on a term by 
term basis. The phase memory of the spins is scrambled as they undergo 
energy-conserving spin flips with other spins in the system. Control of the 
dipolar interaction is therefore an essential element of any NMR solid 
state proposal. An important example of the precision of control is the 
abiHty to effectively suppress all internal Hamiltonians and preserve quan
tum information. Figure 12(a) shows the measured free induction decays 
for a crystal of calcium fluoride at two different crystal orientations, while 
Fig. 12(b) shows the signal while refocusing the dipolar interaction. It is 
therefore possible to experimentally extend the coherence times of the ^^F 
spins in a single crystal of calcium fluoride from 100 /xs (no modulation). 
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Fig. 12. (a) Free induction decay of a single crystal of calcium fluoride, at two differ
ent crystal orientations (b) Decay of the ^^F signal while the dipolar coupling between the 
nuclear spins is decoupled. (The sequence was modified to show an oscillation, so the decou
pling is not optimal here.) 

to 2 ms using standard NMR techniques, and finally to 500 ms using 
recently developed methods/^ ̂ ^̂  This represents an increase by approxi
mately 4 orders of magnitude. In the limit of perfect coherent control of 
the dipolar couplings, it should be possible to significantly further extend 
the coherence time of the spins. In addition to improving coherent con
trol, such studies provide insight into the next important contribution to 
decoherence. 

The decay of the observed FID in Fig. 12(a) is due to the mutual 
dipolar couplings of the spins. These couplings produce correlated many 
spin states that are not directly observable using standard NMR tech
niques. However, using multiple quantum encoding techniques,^^^^^ it is 
possible to directly measure the growth of the spin system under the dipo
lar coupling. The truncated dipolar Hamiltonian shown above is a zero 
quantum Hamiltonian when examined in the basis of the quantizing Zee-
man Hamiltonian as expected. However, we can requantize the system in 
another basis (such as the x-basis for example) via a similarity transforma
tion, and explore the growth of multiple quantum coherences in this new 
basis. The dipolar Hamiltonian in the jc-basis is 

n = 

-\T.dij{iUiL+tLii-) 
KJ 

(21) 
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Fig. 13. Multiple quantum encoding, combined with evolution reversal sequences allow us 
to follow the growth of the correlated spin states during the course of a free induction decay. 
It is seen that even when the macroscopic signal appears to have decayed away, the spin sys
tem remains highly coherent, and states involving up to 20 correlated spins are observed. 

and is thus seen to contain both zero and double quantum terms. It 
is possible to directly observe the growth of these ;c-basis coherences. 
Figure 13 shows the results of this experiment, illustrating the growth in 
the number of the correlated spins from 1 to about 20 in the first 150 /xs 
following the application of a nil pulse. 

In an early demonstration of the capability to explore many body 
dynamics in spin systems, solid state NMR techniques have been used to 
directly measure the rate of spin diffusion of Zeeman and dipolar energy 
in a single crystal of calcium fluoride.^^^-^''^"^^ As seen from the Hamilto-
nian above, these are both constants of the motion and are independently 
conserved. Spin diffusion is a coherent process caused by the mutual spin 
flips induced by the dipolar coupling between spins, that appears diffusive 
in the long-time, long-wavelength limit.̂ ^^^^ It is estimated that up to 10^̂  
spins are involved at the long timescales explored in these experiments. It was 
found that while the measured diffusion coefficients for Zeeman order were 
in good agreement with theoretical predictions, the diffusion of dipolar order 
was observed to be significantly faster than previously predicted. While these 
experiments were performed in highly mixed thermal states, future experi
ments planned at low temperatures, and high polarizations should enable a 
more complete exploration of the large Hilbert space dynamics. 
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7. CONCLUSIONS 

NMR implementations of QIP have thus yielded a wealth of infor
mation by providing experimental realizations of a number of proposed 
schemes. This in turn has guided our understanding of the relevant issues 
involved in scaling these testbed systems up in size. The methodologies 
developed are relevant across most of the physical platforms that have 
been proposed for QIP, and manifestations of this "cross-fertilization" are 
beginning to appear in the literature. 

SoHd state NMR holds great promise for scalable QIP architectures. 
The efforts currently underway to characterize and control large spin sys
tems are essential to determining how the methodologies of control and 
system decoherence scale as a function of the system Hilbert space size. 

8. ACKNOWLEDGMENTS 

This work was supported by funds from ARDA/ARO, DARPA, the 
NSF and the Air Force Office of Sponsored Research. 

REFERENCES 

1. B. E. Kane, Nature 393, 133 (1998). 
2. G. Burkard, H.-A. Engel, and D. Loss, Fortschr. Phys. 48, 965 (2000). 
3. A. Imamoglu, Fortschr. Phys. 48, 987 (2000). 
4. V. Privman, I. D. Vagnet, and G. Kventsel, Phys. Lett. A 239, 146 (1998). 
5. D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. E Havel, N. Boulant, G. Boutis, E. For-

tunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G Teklemariam, Y. 
S. Weinstein, and W. H. Zurek, Fortschr Phys. 48, 875 (2000). 

6. J. Wrachtrup, S. Y. Kilin, and A. P Nizovtsev, Opt. Spectrosc+ 91, 429 (2001). 
7. G. P Berman, G W. Brown, M. E. Hawley, and V. L Tsifrinovich, Phys. Rev. Lett. 87, 

097902 (2001). 
8. T. D. Ladd, J. R. Goldman, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 89, 

017901 (2002). 
9. E. Abe, K. M. Itoh, T. D. Ladd, J. R. Goldman, F. Yamaguchi, and Y Yamamoto, 

/ Superconductivity 16, 175 (2003). 
10. D. Suter and K. Lim, Phys. Rev A 65, 052309 (2002). 
11. C. P. Slichter, Principles of Magnetic Resonance, 3rd Ed. (Springer-Verlag, Berlin, 1990). 
12. R. R. Ernst, G Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Reso

nance in One and Two Dimensions (Oxford University Press, Oxford, 1990). 
13. D. P DiVincenzo, Fortschr Physik 48, 771 (2000). 
14. D. G. Cory, A. F Fahmy, and T. F Havel, Proc. Natl. Acad Sci. USA 94, 1634 (1997). 
15. N. Gershenfeld and L L. Chuang, Science 275, 350 (1997). 
16. W. Warren, Science 111, 1688 (1997). 



42 Ramanathan et al, 

17. L. J. Schulman and U. Vazirani, arXive eprint quant-ph/9804060 (1998). 
18. D. Chang, L. Vandersypen, and M. Steffen, Chem. Phys. Lett. 338, 337 (2001). 
19. C. Yannoni, M. Sherwood, L. Vandersypen, M. Kubinec, D. Miller, and I. Chuang, 

Appl Phys. Lett. 75, 3563 (1999). 
20. M. Marjanska, I. Chuang, and M. Kubinec, J. Chem. Phys. 112, 5095 (2000). 
21. L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, R. Cleve, and I. L. Chuang, Phys. 

Rev. Lett. 85, 5452 (2000). 
22. D. Deutsch and R. Jozsa, Proc. R. Soc. Lond. A 439, 553 (1992). 
23. D. Simon, in booktitle Proc. 35th Annual Symposium on Foundations of Computer Science 

(IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 116-123. 
24. A. Y Kitaev, LANL E-print quant-ph/9511026 (1995). 
25. H. K. Cummins and J. Jones, New. J. Phys. 2, 6.1-6.12 (2000). 
26. J. Jones, arXive E-print quant-ph/0301019 (2003). 
27. M. A. Pravia, N. Boulant, J. Emerson, E. Fortunato, T. F. Havel, and D. G. Cory, 

/ Chem. Phys. 119, 9993 (2003). 
28. N. Boulant, S. Furuta, J. Emerson, T. F Havel and D. G. Cory, arXive E-print quant-

ph/0312116. 
29. U. Haeberlen and J. S. Waugh, Phys. Rev. 175, 453 (1968). 
30. S. J. Glaser, T. Schulte-Herbruggen, M. Sieveking, O. Schedletzky, N. C. Nielsen, O. W. 

Sorensen, and C. Griisigner, Science 280, 421 (1998). 
31. M. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61 (1986). 
32. A. Shaka and R. Freeman, J. Magn. Reson. 55, 487 (1983). 
33. X Baum, R. Tycko, and A. Pines, Phys. Rev A 32, 3435 (1985). 
34. M. S. Silver, R. L Joseph, and D. L Hoult, Phys. Rev A 31, 2753 (1985). 
35. H. Cummins, G. Llewellyn, and J. Jones, Phys. Rev A 67, 042308 (2003). 
36. R. Tycko, A. Pines, and J. Guckenherimer, J. Chem. Phys. 83, 2775 (1985). 
37. E. M. Fortunato, M. A. Pravia, N. Boulant, G Teklemariam, T. F Havel, and D. G. 

Cory, J. Chem. Phys. 116, 7599 (2002). 
38. L. Vandersypen and L L. Chuang, Rev Mod. Phys. Vol. 76 (2004) arXive E-print quant-

ph/0404064. 
39. E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng, Nature 404, 368 (2000). 
40. D. Stefanatos, N. Khaneja, and S. J. Glaser, Phys. Rev A 69, 022319 (2004). 
41. N. Khaneja, S. J. Glaser, and R. Brockett, Phys. Rev A 65, 032301 (2002). 
42. N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev A 63, 032308 (2001). 
43. K. Kraus, Ann. Phys. 64, 311 (1971). 
44. E. L. Hahn, Phys. Rev 80, 580 (1950). 
45. H. Y Carr and E. M. Purcell, Phys. Rev 93, 749 (1954). 
46. R. Tycko, H. M. Cho, E. Schneider, and A. Pines, J. Magn. Reson. A 61, 90 (1980). 
47. R. Tycko, Phys. Rev. Lett. 51, 775 (1983). 
48. J. S. Waugh, J. Mag Res. 50, 30 (1982). 
49. E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett. 84, 2525 (2000). 
50. L. Viola, E. Knill, and S. Lloyd, Phys. Rev Lett. 82, 2417 (1999). 
51. L. Viola and S. Lloyd, Phys. Rev A. 58, 2733 (1998). 
52. A. M. Childs, L L. Chuang, and D. W. Leung, Phys. Rev A 64, 012314 (2001). 
53. N. Boulant, T F Havel, M. A. Pravia, and D. G. Cory, Phys. Rev A 67, 042322 (2003). 
54. Y Weinstein, T. F Havel, J. Emerson, N. Boulant, M. Saraceno, S. Lloyd, and D. G. 

Cory, J. Chem. Phys., in press. 
55. P Shor, Phys. Rev. A 52, 2493 (1995). 
56. A. M. Steane, Phys. Rev Lett. 77, 793 (1996). 
57. J. Preskill, Proc. Roy Soc. London A 454, 385 (1998). 



NMR Quantum Information Processing 43 

58. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cam
bridge University Press, Cambridge, 2000). 

59. L. Viola, E. M. Fortunate, M. A. Pravia, E. Knill, R. Laflamme, and D. G. Cory, Sci
ence 293, 2059 (2001). 

60. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. R Havel, and 
S. S. Somaroo, Phys. Rev. Lett. 81, 2152 (1998). 

61. E. M. Fortunato, L. Viola, J. Hodges, G. Teklemariam, and D. G. Cory, New J. Phys. 4, 
5.1-5.20 (2002). 

62. N. Boulant, M. A. Pravia, E. M. Fortunato, T. F. Havel, and D. G Cory, QIP 1, 135 
(2002). 

63. E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, Phys. Rev. Lett. 86, 5811 
(2001). 

64. D. Leung, L. Vandersypen, X. Zhou, M. Sherwood, C. Yannoni, M. Kubinec, and L L. 
Chuang, Phys. Rev. A 60, 1924 (1999). 

65. J. E. Ollerenshaw, D. A. Lidar, and L. E. Kay, Phys. Rev Lett. 91, 217904 (2003). 
66. L L. Chuang, N. Gershenfeld, and M. Kubinec, Phys Rev Lett. 18, 3408 (1998). 
67. J. A. Jones, M. Mosca, and R. H. Hansen, Nature 393, 344 (1998), quant-ph/9805069. 
68. L L. Chuang, L. M. K. Vandersypen, X. L. Zhou, D. W. Leung, and S. Lloyd, Nature 

393, 143 (1998). 
69. J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648 (1998), arXive E-print quant-

ph/9801027. 
70. J. Jones and M. Mosca, Phys. Rev Lett. 83, 1050 (1999). 
71. L. M. K. Vandersypen, C. S. Yannoni, M. H. Sherwood, and L L. Chuang, Phys. Rev. 

Lett. 83, 3085 (1999). 
72. L. Vandersypen, M. Steffen, M. H. Sherwood, C. Yannoni, G. Breyta, and L L. Chuang, 

AppL Phys. Lett. 76, 646 (2000). 
73. N. Linden, H. Barjat, and R. Freeman, Chem. Phys. Lett 296, 61 (1998). 
74. D. Collins, N. Linden, and S. Popescu, arXive eprint quant'ph/0005102 (2000). 
75. H. Kim, J.-S. Lee, and S. Lee, Phys. Rev A 62, 022312 (2000). 
76. R. Marx, A. Fahmy, J. Myers, W. Bermel, and S. Glaser, Phys Rev A 62, 123310 (2000). 
77. Y Weinstein, M. Pravia, E. Fortunato, S. Lloyd, and D. Cory, Phys. Rev Lett. 86, 1889 

(2001). 
78. L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, R. Cleve, and L L. Chuang, Nature 

414, 883 (2001). 
79. M. Steffen, W. van Dam, T. Hogg, G. Breyta, and L Chuang, Phys. Rev Lett. 90, 

067903 (2003). 
80. E. Farhi and J. Goldstone, Science 292, 472 (2001). 
81. T. Hogg, Phys. Rev A 61, 052311 (2000). 
82. R. Laflamme, E. Knill, W. H. Zurek, P Catasti, and S. V. S. Mariappan, Phil. Trans. 

Roy Soa Lond. A 356, 1941 (1998), arXive E-print quant-ph/9709025. 
83. S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, Phys. 

Rev Lett. 83, 1054 (1999). 
84. R. Nelson, D. Cory, and S. Lloyd, Phys Rev A 61, 022106(5) (2000). 
85. M. A. Nielsen, E. Knill, and R. Laflamme, Nature 396, 52 (1998). 
86. X. Fang, X. Zhu, M. Feng, X. Mao, and F Du, Phys. Rev A 61, 022307(5) (2000). 
87. H. K. Cummins, G Llewellyn, and J. Jones, arXive eprint quant-ph/0208092 (2002). 
88. Y Weinstein, S. Lloyd, J. Emerson, and D. Cory, Phys. Rev Lett. 89, 157902 (2002). 
89. A. Verhulst, O. Liivak, H. Vieth, C. Yannoni, and L Chuang, AppL Phys. Lett. 79, 2480 

(2001).' 
90. P Hiibler, J. Bargon, and S. Glaser, J. Chem. Phys. 113, 2056 (2000). 



44 Ramanathan et al 

91. J. A. Jones, arXive E-print quant-phl0312014. 
92. R. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 
93. S. Somaroo, C. H. Tseng, T. F. Havel, R. Laflamme, and D. G. Cory, Phys. Rev. Lett. 82, 

5381 (1999). 
94. D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D.W. Leung, and X. L. Zhou, Phys. 

Rev. A 64, 062302 (2001). 
95. W. H. Zurek, Phys. Rev. D 26, 1862 (1982). 
96. G. Teklemariam, E. M. Fortunato, C. C. Lopez, J. Emerson, J. R Paz, T. F. Havel, and 

D. G Cory, Phys. Rev. A 67, 062316 (2003). 
97. J. Yepez, Int. J. Mod. Phys. C9, 1587 (1998). 
98. J. Yepez, Int. J. Mod. Phys. C12, 1285 (2001). 
99. M. A. Pravia, Z. Chen, J. Yepez, and D. G Cory, QIP 2, 97 (2003). 
100. S. Wimperis, / Magn. Reson. B 109, 221 (1994). 
101. S. Guide, M. Riebe, G Lancaster, C. Becher, J. Eschner, H. Haffner, F. Schmidt-Kaler, 

L Chuang, and R. Blatt, Nature 421, 48 (2003). 
102. E. Collin, G Ithier, A. Aasime, P. Joyez, D. Vion, and D. Esteve, LANL E-print cond-

mat/0404507. 
103. J. Pauly, P L. Roux, and D. Nishimura, IEEE Trans. Med Imag. 10, 53 (1991). 
104. W. Warren, J. Chem. Phys. 81, 5437 (1984). 
105. M. Green and R. Freeman, J. Magn. Reson. 93, 93 (1991). 
106. M. Steffen, J. Martinis, and L L. Chuang, Phys. Rev. B 68, 224518 (2003). 
107. P. O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, and R. Vrijen, Proc. Natl. Acad. Set 

USA 99, 3388 (2002). 
108. S. Lloyd, Science 261, 1569 (1993). 
109. M. Mehring, J. Mende, and W. Scherer, Phys. Rev. Lett. 90, 153001 (2003). 
110. G M. Leskowitz, N. Ghaderi, R. A. Olsen, and L. J. Mueller, J. Chem. Phys 119, 1643 

(2003). 
111. G S. Boutis, P. Cappellaro, H. Cho, C. Ramanathan, and D. G Cory, J. Magn. Reson. 

161, 132 (2003). 
112. C. Ramanathan, H. Cho, R Cappellaro, G S. Boutis, and D. G Cory, Chem. Phys. 

Lett. 369, 311 (2003). 
113. W. Zhang and D. G. Cory, Phys. Rev. Lett. 80, 1324 (1998). 
114. G S. Boutis, D. Greenbaum, H. Cho, D. G Cory, and C. Ramanathan, Phys Rev. Lett. 

92, 137201 (2004). 
115. N. Bloembergen, Physica (Amsterdam) 15, 386 (1949). 



Quantum Computing with Trapped Ion Hyperfine 
Qubits 

B. B. Blinov,!^ D. Leibfried,̂  C. Monroe,̂  and D. J. Wineland^ 

We discuss the basic aspects of quantum information processing with trapped 
ions, including the principles of ion trapping, preparation and detection of hyper
fine qubits, single-qubit operations and multi-qubit entanglement protocols. Recent 
experimental advances and future research directions are outlined. 

KEY WORDS: Ion trapping; hyperfine qubits; quantum gates; qubit detection; 
qubit initialization; entanglement. 

PACS: 03.67.Lx, 32.80.Pj, 32.80.Qk, 42.50.Vk. 

1. OVERVIEW 

Trapped atomic ions were first proposed as a viable quantum comput
ing candidate by Cirac and Zoller in 1995.̂ ^̂  Almost 10 years later, 
the trapped ion system remains one of the few candidates that satis
fies the general requirements for a quantum computer as outlined by 
DiVincenzo^^ :̂ (i) a scalable system of well-defined qubits, (ii) a method to 
reliably initialize the quantum system, (iii) long coherence times, (iv) exis
tence of universal gates, and (v) an efficient measurement scheme. Most 
of these requirements have been demonstrated experimentally with trapped 
ions, and there exist straightforward (albeit technically difficult) paths to 
solving the remaining problems. 

Experimental approaches in ion trap quantum computing can be 
divided by the type of qubit, in terms of the qubit level energy splitting. 
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and the couplings required to drive quantum logic gates between the qubit 
states. The two primary types of trapped ion qubit architectures are optical 
qubits derived from a ground state and an excited metastable state sepa
rated by an optical frequency, and hyperfine qubits derived from electronic 
ground-state hyperfine (HF) levels separated by a microwave frequency. 
In this paper, we highlight the latter case of HF qubits. For a review 
of optical qubits we refer to the paper by R. Blatt included in this vol
ume. More general accounts and various reviews are given in Refs. 3-16. 
Moreover, the Advanced Research and Development Activity (ARDA) has 
posted and updated a "roadmap" to highlight accomplishments and prob
lems with the various possible implementations of quantum information 
processing including those based on ion traps; various references can be 
found at this site (http://qist.lanl.gov). Many experimental groups world
wide have addressed various aspects of trapped-ion quantum information 
processing; these include groups at University of Aarhus, IBM-Almaden, 
NIST-Boulder, University of Hamburg, McMaster University, University 
of Innsbruck, Los Alamos, University of Michigan, Max Planck Inst.-
Garching, Oxford University, and NPL-Teddington. 

2. ION TRAPS 

Ion traps come in various formŝ ^̂ ;̂ for brevity, we restrict our 
discussion to the linear RF (Paul) trap shown schematically in Fig. 1. Lin
ear Paul traps with particular application to quantum information process
ing are discussed by various groups; see, for example, Refs. 3-16 and 18-
27. The linear trap is essentially a quadrupole mass filter plugged on the 
axis by superimposing a static electric potential well. In the x,y plane of 
the figure, ions are bound by a ponderomotive pseudopotential 

,2 . 2 v 2 

^ - ^ « = :d7; r<^^«) ^ TfTo^C-^ + / )> (1) 

where q is the ion's charge, m its mass, E is the RF electric field (resulting 
from a potential Vbcos(^rO applied to the dark electrodes of Fig. 1), r is 
the radial distance from the trap axis, and R is the distance between the 
trap axis and the nearest electrode surface. The oscillation frequency of an 
ion in this pseudopotential is given by 

'^x,y— rr^ T^' (^) 
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end view 

Fig. 1. Electrode configuration for a linear RF (Paul) trap. A common RF potential 
Vbcos(^rO is applied to the dark electrodes; the other electrodes are held at RF ground 
through capacitors (not shown) connected to ground. The lower-right portion of the figure 
shows the x,y electric fields from the applied RF potential at an instant when the RF 
potential is positive relative to ground. A static electric potential well is created (for positive 
ions) along the z-axis by applying a positive potential to the outer segments (grey) relative 
to the center segments (white). 

where we assume the pseudopotential approximation (cox,y <^QT) and 
assume that coz<^cox,y so that the static radial forces are much smaller 
than the pseudopotential forces. From the form of Eq. (1), we see that the 
ions seek the region of minimum |£'(r)|. As an example, for some typi
cal experiments using ^Be+ ions,̂ ^^^ qz=le,Vo = 500 V, QT/^TV C^ 100 MHz, 
and R = 200/Jim, so that coj^y/In 2:^24 MHz. 

For the purposes of quantum computing, to a good approximation, 
we can view the linear trap as providing a three-dimensional harmonic 
well for ion qubits, where the strength of the well in two directions (x and 
y in Fig. 1) is much stronger than in the third direction (z). When a small 
number of ions is trapped and cooled, each ion seeks the bottom of the 
trap well, but the mutual Coulomb repulsion between ions results in an 
equilibrium configuration in the form of a Hnear array, like beads on a 
string. To give an idea of array size, two ions in such a trap are spaced by 
2^/^^, and three ions are spaced by (5/4)^/^^ where s=q'^/(47t€om(Oz^y^^. 
Expressed equivalently, for singly charged ions, the spacing parameter in 
micrometers is 5(|JLm) = 15 .2(M(M)V^(MHZ))~^/^ , where the ion's mass is 
expressed in a.m.u. and the axial z frequency in MHz. For v^ = 5 MHz, 
two B̂e"*" ions are separated by 3.15|xm. 

Although simple gate operations among a few ion qubits have been 
demonstrated, a viable quantum computer architecture must accomodate 
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very large number of qubits. As the number of ions in a trap increases, 
several difficulties are encountered. For example, the addition of each ion 
adds three vibrational modes. It soon becomes nearly impossible to spec
trally select the desired vibrational mode unless the speed of operations is 
slowed to undesirable levels.̂ '̂̂ ^^ Furthermore, since error correction will 
most Hkely be incorporated into any large processor, it will be desirable to 
reset (or possibly measure) ancilla qubits without disturbing the coherence 
of logical qubits. Since ion qubits are typically reset by means of state-
dependent laser scattering, the scattered light from ancilla qubits held in 
a common trap may disturb the coherence of the logical qubits. 

For these and other reasons, it appears that a scalable ion-trap sys
tem must incorporate arrays of interconnected traps, each holding a small 
number of ions. The information carriers between traps might be pho-
tons,̂ ^ '̂̂ ^"^^^ or ions that are moved between traps in the array. In the 
latter case, a "head" ion held in a movable trap could carry the informa
tion by moving from site-to-site as in the proposal of Ref. 22. Similarly, 
as suggested in Refs. 4 and 26, qubit ions themselves could be shut
tled around in an array of interconnected traps. In this scheme, the idea 
is to move ions between nodes in the array by applying time-dependent 
potentials to "control" electrode segments. To perform logic operations 
between selected ions, these ions are transferred into an "accumulator" 
trap for the gate operation. Before the gate operation is performed, it may 
be necessary to sympathetically re-cool the qubit ions with "refrigerant" 
ions.̂ "*'-̂ '̂-̂ -̂ "̂ ^̂  Subsequently, these ions are moved to memory locations or 
other accumulators. This strategy always maintains a relatively small num
ber of motional modes that must be considered and minimizes the prob
lems of ion-laser-beam addressing using focused laser beams. Such arrays 
also enable highly parallel processing and ancilla qubit readout in a sepa
rate trapping region so that the logical ions are shielded from the scattered 
laser light. 

Most gate schemes for trapped ions have a speed that is limited to, 
or proportional to, the oscillation frequency of the ions in the trap. From 
Eq. 2, we therefore want to maximize VQ/^^- AS R becomes smaller it is 
more difficult to control the relative dimensions of the electrode structures. 
Refs. 3-16 and 18-27 discuss some approaches to making small traps with 
accurate dimensions. 

3. TRAPPED ION HYPERFINE QUBITS 

Ions can be confined for days in an ultra-high vacuum with minimal 
perturbations to their internal atomic structure, making particular internal 
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States ideal for representing quantum bits. Electric field perturbations are 
small, because localized ions experience a vanishing time-averaged electric 
field. Although magnetic field perturbations to internal structure can be 
important, the coherence between two internal levels can be made mag
netic field-insensitive (to lowest order) by operating near an extremum of 
the energy separation between the two levels with respect to the magnetic 
field. Qubit coherence in such atomic ground states has been observed 
for times exceeding 10 min in the context of trapped ion frequency stan-
dards.(^6'̂ '7) 

Qubits stored in metastable levels separated by optical frequencies 
(1,38) enjoy the simplicity of single-photon optical transitions, provided the 
radiative decay rate is sufficiently slow (some weakly allowed optical tran
sitions in atomic ions have lifetimes ^ 1 s) However, phase-stable narrow-
linewidth lasers are required in order to realize the full benefit of the long 
decay times.̂ ^ '̂̂ ^^ In addition. Stark shifts from coupling to non-resonant 
allowed transitions become important for these longer qubit Hfetimes since 
the laser intensity must be high for appreciable transition rates. ̂ ^̂ ^ 

Ground state hyperfine levels, or states of nuclear vs. electronic spin, 
typically separated by microwave frequencies, have extremely long radiative 
lifetimes. Trapped ion HF levels are arguably the most attractive choice for 
qubit states, and form the thesis of this paper. Figure 2 displays the lowest 
energy levels of the ^^^Cd+ ion, for concreteness (nuclear spin 7 = 1/2). We 
will be interested primarily in two electronic states, the '^S\/2{F =l,mf = 
0) and ^Si/2(F = 0,mf = 0) hyperfine ground states (denoted by | |) and 
It) respectively), separated by frequency O^HF (^^HF/^TT :^ 14.53 GHz for 
^^^Cd~ )̂. These long-lived spin states will form the basis for a quantum 
bit. Other candidate ions with similar HF structure (non-zero nuclear spin) 
include 9Be+, 25Mg+, 43ca+, ^^Sv^, ^^^BSL^, i^3Yb+, and i99Hg+. 

3.1. Qubit Initialization and Detection 

Standard optical pumping techniques allow the HF qubits to be ini
tialized into either ||> or If) states. Subsequent detection of the spin 
states can be accomplished using the technique of quantum jumps.̂ "̂ ^̂  For 
example, in ^^^Cd+, a circularly polarized laser beam resonant with the 
'^S\/2 —̂  P3/2 transition near k :^ 214.5 nm (Fig. 2) scatters many pho
tons if the atom is in the ||> spin state (a "cycHng" transition), but 
essentially no photons when the atom is in the |t) spin state. Even if 
a modest number of the scattered photons are detected, the efficiency 
of discrimination between these two states approaches 100%. In general, 
the HF qubit detection efficiency with such cycling transition is given by 
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3/2 

1/2 

214.5 nm 

'1/2 
©0= 14.53 GHz 

Fig. 2. Electronic (internal) energy levels (not to scale) of the ^^^Cd+ion. The 
'^S\/2{F = l,mF = 0) and ^S\/2{F — 0,mF = 0) hyperfine ground states (denoted by | | ) 
and It) respectively), separated in frequency by COHF/^TT ~ 14.53 GHz, and magnetic field 
insensitive to first order, form the basis of a quantum bit. Detection of the internal HF 
state is accomplished by illuminating the ion with a a+-polarized "detection" beam near 
>.Cc/—214.5 nm and observing the fluorescence from the cycling transitions between \i) and 
the ^P3/2\(F = 2,mF = 2)) state. The excited P state has radiative linewidth ye/27t2^47 MHz. 
Also drawn are a pair of a+-polarized Raman beams that are used for quantum logic gates. 

1 — (M/6phot)(/^/^HF)^. where M includes appropriate atomic branching 
ratios and is of order unity, and 6phot is the photon detection efficiency of 
the ion fluorescence. In Fig. 3, the number of photons scattered in 0.2 ms 
by a single ^^^Cd"^ion (net quantum-efficiency ^phot'^lO"^) is plotted for 
the "bright" (||)) and the "dark" ( | t» states. By placing the discriminator 
between two and three detected photons, a HF qubit detection efficiency 
of 99.7% is realized. 

3.2. HF Qubit Rotations: Single Qubit Gates 

Single-qubit rotations of HF states can be accomplished by either 
applying microwave radiation tuned to the energy splitting between the 
two levels O^HF. or by driving stimulated Raman transitions (SRT) with 
two laser fields that are properly detuned from an excited state and differ 
in frequency by CDHF-

When microwaves are used, it is necessary to efficiently couple radia
tion with '^cm wavelengths into a sub-millimeter size ion trap. Low gain 
microwave horns (with small opening angles) provide reasonable means of 
generating a strong beam of microwaves. Rabi frequencies approaching 100 
kHz have been achieved with modest microwave powers (<1W) applied 
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Fig. 3. Detection histograms of a single trapped ^̂ Ĉd"*" ion. The white bars correspond 
to the distribution of the number of fluorescence photons detected by a CCD camera for 
a ^^^Cd+ion prepared initially in the | |) state upon application of a a+-polarized detection 
laser for 0.2 ms. The black bars correspond to the photon distribution for the ion initially 
prepared in the |t) state under the same conditions. The very small overlap between the two 
distributions corresponds to a detection efficiency of >99.7%. 

through a horn within 10 cm of the ion. Microwave qubit rotations can 
easily be made very clean by using stable RF sources, and are useful for 
joint rotations of all qubits. However, individual addressing of trapped 
ions with microwaves is difficult, unless magnetically sensitive qubit states 
are employed and substantial magnetic field gradients are applied.̂ "*^^ 

In the case of ^5i/2 HF qubit rotations with SRT,̂ ^̂  two co-propagat
ing laser fields are appHed to the ion, each with a detuning A > ŷ  from 
an excited ^Pi/2 or ^^3/2 state, denoted by \e) with radiative linewidth y^. 
The difference frequency of the two fields is set to the HF qubit reso
nance, resulting in an effective field that coherently rotates the HF qubit 
similar to the microwave case, except because the SRT laser beams can 
be focussed, individual ions can be addressed. The SRT Rabi frequency 
is given by ^SRT = ^ i ^ 2 / ^ ' where gt are the resonant Rabi frequencies 
for the two laser beams respectively driving transitions to the excited state 
\e). The probabiHty of spontaneous emission from off-resonant excitation 
to the state \e) during a SRT :n:-pulse decreases with increasing A as 

However, A cannot be increased indefinitely. In order for SRT to 
eflfectivly couple HF states and effectively flip the state of electron + 
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nuclear spin, the excited state \e) must be populated for a sufficient time 
so that the spin-orbit interaction allows the spin to flip. In the case of 
S\/2 hyperfine ground state qubits coupled to excited atomic P\/2 or ^^3/2 
states, this time-scale is set by the inverse fine-structure spUtting l/Aps, 
and we find that the probabiHty of spontaneous emission in a given qubit-
dependent operation is roughly Pse — y^/Aps, which can be as low as 
10~^ in candidate ion species/^^^ 

3.3. Interactions Between HF Qubits: Entangling Qubit Gates 

Trapped ion qubits can be controllably coupled through their mutual 
Coulomb interaction. While the internal HF qubit states are essentially 
unaffected by the Coulomb interaction directly, external control fields can 
generate an effective coupling between qubits that relies on a qubit state-
dependent force. This external control field can thus entangle trapped ion 
qubits through the "data bus" represented by the Coulomb interaction. 

For a qubit stored in atomic 51/2 HF ground states | |) and |t>, the 
coupling to an ion's position x proceeds via a dipole coupUng of one (or 
both) qubit states to an excited atomic P\/2 or P3/2 state \e) having the 
form 

H/ = -(At,e + A4,e)-E(x). (3) 

Here, /is,e is the electric dipole operator between qubit state \S) and \e), 
and E(x) is the electric field of the laser as a function of the position of 
the ion x. This interaction can be sequentially or simultaneously applied 
to different trapped ion qubits in order to generate entanglement. While 
the ion position is thus used to entangle trapped ion qubits, successful 
gate schemes rely on the quantum state of position not becoming ulti
mately entangled with the qubit states following the gate. Below we discuss 
two of the most common methods for coupling the qubit and position 
of trapped ions: motion-sensitive stimulated Raman transitions, and qubit 
state-dependent forces. 

3.3.1. Motion-sensitive stimulated Raman transitions 

Optical stimulated Raman transitions are not only useful for sim
ple HF qubit rotation operations as discussed above, but can be critical 
for coupling qubit states to the external motional state of the ions. In 
this case, the two Raman beams are directed onto the ion(s) with a non
zero wavevector difference 5k along the relevant direction of motion to be 
coupled. For a single ion, the resulting coupling under the rotating wave 
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approximation^'*^ is 

where y; = (5k • XQ is the Lamb-Dicke parameter associated with the coor
dinate X and xo = (h/2moj)^^'^ is the 0-point spread of the ion wavepacket. 
The raising and lowering operators for the qubit (motion) are given by cr+ 
and a- (a' and a). The Lamb-Dicke parameter rj sets the scale for the 
coupHng between the light field and the position of the ion, related to the 
gradient of the light field experienced by the ion. 

We provide two specific examples of SRT couplings from Eq. 4 that 
can be exploited for entanghng the quantum state of a single ion with a 
collective mode of motion. Subsequently, similar operations can be appHed 
to other ions sharing the motion, resulting in a net entangling quan
tum gate between ion qubits. In the original Cirac-Zoller proposal,^^^ the 
difference frequency between the two stimulated Raman fields is tuned 
to a "motional sideband" at frequency ct>HF ± kco, where k is an inte
ger describing the sideband order. Raman sideband operations coherently 
rotate the HF qubit state while simultaneously affecting the quantum state 
of motion. The resulting coupling for the first lower sideband (^ = —1) 
takes the form of the classic Jaynes-Cummings Hamiltonian: 

i/_l = r]QsKT(cr^a -^-a'a^). (5) 

The above expression assumes that the ion is confined to within the 
Lamb-Dicke limit, although this is not essential. For a single trapped ion 
initially prepared in the vibrational ground state (|0)), this coupling results 
in the mapping of an arbitrary qubit state (a|>|.>+)S|t>)|0> to |4.)(Qf|0) + 
^|1)). This interaction is the basis for the Cirac-ZoUer^^^ and Molmer-
Sorensen^"^ '̂̂ ^^ quantum logic gate schemes. 

When a pair of non-copropagating Raman beams are tuned to the 
carrier transition, multi-qubit entangling gates can also be realized. In 
this case, we find that qubit transitions are driven without accompanying 
motional state transitions, although the qubit Rabi frequency acquires a 
dependence upon the motional state of the form 

Qn,n = r]QsRTe-'^'^^Ln(r]^). (6) 

where L„(X) is the Laguerre polynomial of order n. For the lowest three 
values of n, we have Loirj^) = 1, L\(ri^) = 1 — ^^, and L2 = 1 -2r;^ + rj^/2. 
This motion-dependent qubit rotation can be used to construct quantum 
logic gates^^ '̂̂ ^^ 
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3.3.2. Spin-dependent optical forces 

An alternative method for coupling hyperfine qubits with the ion 
motion is to use laser beams to generate a dipole force that depends upon 
the state of the qubit 15) through atomic selection rules and appropriate 
polarization of the light. As an example, we consider the case of an optical 
coupling between 51/2 and excited P\/2 states, with a nuclear spin 7 = 1/2. 
In this case, there are four ground states and four excited states, as depicted 
in Fig. 2. If the 51/2 qubit states are |t) and ||> states, then a a"^-polarized 
laser beam will couple the |t) to the excited state, with ||> decoupled. 

Such a "spin-dependent force" can take many forms. For instance, the 
ion can be placed in an intensity gradient of a laser beams through focus
ing or through application of a standing-wave.^^^^ Alternatively, off-reso
nant laser beams with a difference frequency near the trap frequency co 
can be applied to the ion (a "walking wave" field), resulting in a reso
nant (qubit state-dependent) displacement of the motional state in phase 
space.̂ ^ '̂̂ '̂̂ ^^ Spin-dependent optical forces underly the "push" gate of 
Ref 22 and the geometric phase gate discussed below^^^\ Finally, we 
note the possibility of applying pairs of counterpropagating light pulses of 
duration r ^ l / y ^ , that resonantly drive transitions from one qubit state to 
the excited P state and back down, accompanied by a 2hk impulse from 
the recoil of the absorption.^^^^ This is the basis for the fast gate scheme 
proposed by Garcia-Rippol et al..^^^^ 

3.3.3. Comparison of couplings 

The above two methods can be considered as formally equivalent, 
both involving a qubit state-dependent interaction with the ion coordinate 
that can be subsequently coupled to another ion through the Coulomb 
force. The original Cirac-Zoller coupling^ ̂ ^ requires the preparation of the 
quantum state of ion motion to the \n = 0) ground state, whereas most of 
the other couplings require preparation of the motion to within the Lamb-
Dicke regime, where ^^ (̂(n) + 1) < 1, where {n) is tha average number of 
(thermal) vibrational quanta in the ion motion. 

HF qubit gates based on SRT couplings allow the creation of entan
gling quantum gates that change the qubit state, such as the CNOT gate, 
whereas spin-dependent optical forces generally provide gates that do not 
change the qubit state, such as the phase gate. Therefore, spin-dependent 
optical force gates can provide better isolation from errors associated with 
qubit rotations such as the residual coupling to spectator atomic levels. In 
particular, this imples that the gate speed for this method can be higher 
than that of SRT-based gates.̂ "̂*̂  However, spin-dependent optical forces 
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appear to be applicable only to magnetically sensitive HF qubit states, 
thus the qubits in this case may be more susceptable to fluctuating mag
netic fields. Moreover, HF qubit rotations must ultimately be appUed in 
any case for universal quantum logic, so it is Hkely that both methods 
will be important in future work. As mentioned in the case of single qubit 
rotations based on stimulated Raman transitions, a common fundamental 
source of error in all coupling schemes is spontaneous emission from the 
excited state \e) (lifetime l/ye) during the laser-induced coupling. We find 
that the probability of spontaneous emission per entangling gate is roughly 
Pse — Ye/v^FS^ which cau be as low aslO""^ ^̂ ^̂  for certain ion candidates. 

4. GATE SCHEMES AND DEMONSTRATIONS 

The basic elements of the original Cirac-Zoller gate,̂ ^^ a CNOT gate 
between the motion and the internal state of a single trapped ion was 
implemented in 1995.̂ "̂ ^̂  The full Cirac-Zoller gate on two ions was 
implemented with about 70% fidelity in 2003.̂ ^^^ In 1999, Sorensen and 
Molmer^^ '̂̂ ^^ and also Solano et alS^^^ suggested an alternative gate 
scheme. Compared to the original Cirac and Zoller gate,̂ ^^ the latter pro
posal has the advantages that (i) laser-beam focusing (for individual ion 
addressing) is not required, (ii) it can be carried out in one step, (iii) it 
does not require use of an additional internal state, and (iv) it does not 
require precise control of the motional state (as long as the Lamb-Dicke 
limit is satisfied). Based on this approach, the NIST group realized a uni
versal gate between two spin qubits^^ '̂̂ ^^ that was also used to demon
strate a particular four-qubit gate.̂ "*̂ ^ 

A variation of the original Cirac-Zoller gate was demonstrated in 
2002, relying on Raman carrier operations as discussed above. Here, the 
Lamb-Dicke parameter r] was set so that the carrier operations depended 
upon the motional state in a particular way^^ '̂̂ ^ ,̂ resulting in a :7r-phase 
gate with a single pulse of light. Compared to the previously realized 
CNOT gate between motion and spin,̂ "̂ ^̂  this gate has the advantages that 
(i) it requires one step instead of three, (ii) it does not require an auxiliary 
internal state, and (iii) it is immune to Stark shifts caused by off-resonant 
sideband couplings. ̂ ^̂  

In 2003, the NIST group demonstrated a TT-phase gate between two 
trapped ion qubits^^^^ based on a qubit state-dependent force; with this 
gate a Bell state with 97% fidelity was generated. The gate realized the 
transformations: | ; ) | | ) - ^ | | ) | ; ) , | ; ) | | ) ->e i^ /2 | ; ) | t ) , l t> i ;>^ei^ /2 | t ) i ; ) , 
and l t ) l t )^^ l t ) l t ) - Combined with single bit rotations, this operation can 
yield either a TT-phase gate or the CNOT operation. 
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i )U)^l i) l i ) 
T>IT>^ lt>IT) 

->e^ mil m) 

-^e ' 
i7c/2 mi) 

Fig. 4. Schematic representation of the displacements of the axial stretch-mode 
amphtude in phase space for the four basis states of the two spin qubits. The 
detuning and amplitude of the displacements are chosen to give a 7r/2 phase shift 
on the | |>|t) and | t ) l l ) states while the ||>||> and lt>lt) states are unaffected 
because the optical dipole forces for these states do not couple to the stretch 
mode. 

The gate relies in part on properties of motional states as they are dis
placed in phase space. For a closed trajectory in phase space, the overall 
quantum state acquires an phase shift that depends on the area enclosed 
by the path. The second element required for the gate is to make the path 
area be spin-dependent. This is accomplished by making the displacement 
in phase space with a spin-dependent optical dipole force as was done in 
previous experiments.^^^'^^^ 

To implement this gate on two ions, the Raman transition beams were 
separated in frequency by ^/ixo^ + S, where V^co^ is the stretch-mode fre
quency for two ions and 5 is a small detuning (below). The separation of 
the ions was adjusted to be an integer multiple of Inj tsk so that the opti-
cal-dipole force (from the "walking" standing wave) on each ion was in 
the same direction if the ions were in the same spin state but, due to the 
choice of laser polarizations, in opposite directions if the spin states were 
different. This had the effect that the application of the laser beams to the 
II)It) and \\)\\) states caused excitation on the stretch mode but the | | 
) | | ) and It)! t ) states were unaffected. The detuning h and duration of the 
displacement pulses were chosen to make one complete (circular) path in 
phase space with an area that gave a phase shift of 7r/2 on the |>|.)lt) and 
It)II) states. This is shown schematically in Fig. 4. 

5. CONCLUSION 

The trapped ion system is arguably one of the most attractive can
didates for large-scale quantum computing. Here, we have concentrated 
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on the use of atomic hyperfine ground states as qubits, the most stable 
quantum bit known. With a rich variety of schemes for generating entan-
ghng quantum logic gates between HF qubits based on externally appHed 
laser fields, it appears that the scale up procedure is now limited by the 
fabrication of more complex trap arrays and the precise control of laser 
fields to produce high fidelity gates. 
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Ion Trap Quantum Computing with Ca Ions 

R. Blatt,!'̂  H. Haffner,! C. F. Roos/ C. Becher,!^ 
and F. Schmidt-Kaleri 

The scheme of an ion trap quantum computer is described and the implementation 
of quantum gate operations with trapped Ca'^ ions is discussed. Quantum infor
mation processing with Ca^ ions is exemplified with several recent experiments 
investigating entanglement of ions. 

KEY WORDS: Quantum computation; trapped ions; ion trap quantum com
puter; Bell states; entanglement; controUed-NOT gate; state tomography; laser 
cooling. 

PACS: 03.67.Lx; 03.67.Mn; 32.80.Pj. 

1. INTRODUCTION 

Quantum information processing was proposed and considered first by 
Feynman and Deutsch/^'^^ The requirements for a quantum processor are 
nowadays known as the DiVincenzo criteria/^^ Storing and processing quan
tum information requires: (i) scalable physical systems with well-defined 
qubits; which (ii) can be initialized; and have (iii) long lived quantum states 
in order to ensure long coherence times during the computational pro
cess. The necessity to coherently manipulate the stored quantum informa
tion requires: (iv) a set of universal gate operations between the qubits 
which must be implemented using controllable interactions of the quantum 
systems; and finally, to determine reliably the outcome of a quantum compu
tation (v) an efficient measurement procedure. In recent years, a large vari
ety of physical systems have been proposed and investigated for their use in 
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quantum information processing and are considered in other articles of this 
issue. 

In this paper, quantum information processing is discussed using 
trapped Ca+ ions where the qubit is encoded in long-Uved (ground and 
metastable) electronic states. A possible different approach for encoding 
qubits uses two hyperfine levels of hydrogen-Uke ions, e.g.. Be"*" ions (see 
article by Blinov et alS^"^ in this volume) or Cd+ ions.̂ ^^ 

This paper is organized as follows: after a brief introduction to the 
concept of the ion trap quantum computer in Sec. 2, some crucial details 
of the Ca"^-based approach are outlined in Sec. 3. Coherent manipulation 
of the ions is briefly described in Sec. 4 and the basic two-ion gate oper
ation is reviewed in Sec. 5. The preparation of two-qubit entangled states 
is summarized in Sec. 6 and future developments of a Ca"^-based ion trap 
computer are outhned in Sec. 7. 

2. CONCEPT OF THE ION TRAP QUANTUM COMPUTER 

Strings of trapped ions were proposed in 1995 for quantum computa
tion by Ignacio Cirac and Peter Zoller.̂ ^^ With such a system, all require
ments for a quantum information processor^^^ can be met. Using strings of 
trapped ions in a linear Paul trap, qubits can be realized employing either 
metastable excited states, long-lived hyperfine states or corresponding Zee-
man sub-states. A set of universal quantum gate operations is then given 
by: (i) single-qubit rotations (which are realized by Rabi oscillations of 
individual ions); (ii) the controlled-NOT (CNOT) operation between any 
two qubits. As a first step the entire ion string is cooled to the ground 
state of its harmonic motion in the ion trap. Since the mutual Coulomb 
repulsion spatially separates the ions, any induced motion couples to all 
ions equally. By applying a laser pulse to the controlling ion its internal 
excited state amphtude is mapped to a single phonon quantum motion of 
that ion. This phonon, however, is now carried by the entire string, and 
an operation on the target qubit which depends on whether or not there 
is motion in the string, allows one to realize the CNOT-gate operation. 

Any algorithm can be implemented using a series of such one- and 
two-qubit operations and therefore this set of instructions constitutes a 
universal quantum gate.̂ ^^ Thus, the realization of these quantum gates 
allows one to build and operate a quantum computer. Moreover, in prin
ciple, this concept provides a scalable approach towards quantum compu
tation and has therefore attracted quite some attention. 

During recent years, several other techniques have been proposed 
to implement gate operations with trapped ions. Sorensen and Molmer 
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^̂ '̂ ^ and, with a different formulation, Milburn^̂ ^̂  proposed a scheme 
for "hot" quantum gates, i.e., their procedures for gate operations do 
not require ground state cooUng of an ion string. Although successfully 
appUed to trapped Bê " ions,̂ ^̂ ^ with the trapping parameters currently 
available, these gate procedures are not easily applicable to Ca"̂  ions. 
Other gates based on ac Stark shifts have been suggested by Jonathan 
etalS^-^^ and holonomic quantum gates (using geometric phases) have been 
proposed by Duan et alS^^^ A different CNOT-gate operation also based 
on the ac Stark effect which does not require individual addressing and 
ground state cooUng has been realized with trapped Be"̂  ions.̂ "̂̂ ^ 

3. SPECTROSCOPY IN ION TRAPS 

Ions are considered to be trapped in a harmonic potential with fre
quency Vz, interacting with the travelling wave of a single mode laser 
tuned close to a transition that forms an effective two-level system. 

Internal state detection of a trapped ion is achieved using the electron 
shelving technique. For this, one of the internal states of the trapped atom 
is selectively excited to a third short-lived state thereby scattering many 
photons on that transition if the coupled internal state was occupied. If, 
on the other hand, the atom's electron resides in the uncoupled state of 
the qubit (i.e., the electron is shelved in that state) then no photons are 
scattered and thus the internal state can be detected with an efficiency of 
nearly 100%.̂ !̂ ) 

Figure 1 shows the relevant levels of the Ca+ ion which are populated 
in the experiment. The qubit is implemented using the narrow quadrupole 
transition at 729nm, i.e., \g) = \Si/2) and \e) = \Ds/2)' For optical cooling 
and state detection, resonance fluorescence on the S\/2-Pi/2 transition is 

393nm 

Fig. 1. Level scheme of ^^Ca+. The qubit is implemented using the narrow quadrupole 
transition. All states split up into the respective Zeeman sublevels. 
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scattered by excitation with 397 and 866 nm radiation. The laser at 854 nm 
is applied to repump the excited state \e), for example after a shelving 
operation. 

3.1. Laser Cooling of Ion Strings 

A prerequisite of the Cirac-ZoUer (CZ) scheme is that the initial state 
of the quantum register is prepared in its motional ground state, i.e., we 
require that the motional mode which carries the coupling between the 
qubits is initially in the ground state. 

Laser cooling of trapped ions is therefore one of the key techniques 
for an ion trap quantum computer.̂ ^ '̂̂ ^^ Usually so-called sideband cool-
ing(i'7'î ) is used to cool one mode of an ion string to its motional ground 
state. This is experimentally achieved using optical pumping schemes 
involving either Raman transitions^^^^ or coupled transitions.̂ ^ '̂̂ ^^ More 
elaborate cooling schemes using electromagnetic transparency^^ ̂ '̂ ^̂  or 
sympathetic coolinĝ -̂̂ '̂ ^̂  have been investigated and and can be employed 
for cooHng multiple vibrational modes simultaneously or cooling an ion 
string by addressing just one ion, respectively. 

3.2. Addressing of Individual Ions 

The implementation of the CZ CNOT-gate operation requires that 
individual ions can be addressed in order to rewrite internal informa
tion onto the vibrational ("phonon") mode using appropriate transitions. 
Therefore, the Innsbruck experiments were designed to operate in a regime 
where the minimum ion distance is on the order of a few /xm such that 
focussing a laser beam at 729 nm is feasible to individually address the sin
gle ions.̂ ^̂ ^ In the current setup, Ca"̂  ions are stored with axial trap fre
quencies of about 1-1.2 MHz and thus the inter-ion distance of two and 
three ions is approximately 5 ixva. The laser beam at 729 nm is focussed 
to a waist diameter of approximately 2.5/xm such that with the Gauss
ian beam profile neighboring ions are excited with less than 10~^ of 
the central intensity. Beam steering and individual addressing is achieved 
using electrooptic beam deflection which allows for fast switching ('^15/xs) 
between different ion positions.̂ ^^^ 

4. COHERENT MANIPULATION OF QUANTUM INFORMATION 

Quantum information processing requires that individual qubits are 
coherently manipulated. We realize single-qubit rotations by coherent 



Ion Trap Quantum Computing with Ca"*" Ions 65 

manipulation of the 5i/2(m =-1/2) ^Z)5/2(m =-1/2) transition in Ca+. 
Coupling of two qubits requires the precise control of the motional state 
of a single ion or a string of ions. Both operations can be performed by 
applying laser pulses at the carrier (i.e., not changing the vibrational quan
tum number, An̂  = 0) or at one of the sidebands of the S-D transition 
(i.e., laser detuned by ±y^, thus changing the vibrational quantum num
ber by An^ = ±l). 

All qubit transitions are described as rotations on a corresponding 
Bloch sphere and they are written as unitary operations R{0,^), R~{6,(j)), 
R'^{0,(j)) on the carrier, red sideband and blue sideband, respectively. 
The parameter 0 describes the angle of the rotation and depends on the 
strength and the duration of the appUed pulse. 0 denotes its phase, i.e., the 
relative phase between the optical field and the atomic polarization and 
determines the axis about which the Bloch vector rotates.̂ ^^^ Typical pulse 
durations for a TT-pulse range from about 1 to several 10/xs for the car
rier transition and 50-200/xs on the sideband transition, with the chosen 
time depending on the desired speed and precision of the operations. Such 
pulses are the primitives for quantum information processing with trapped 
ions. By concatenating pulses on the carrier and sidebands, gate operations 
and, eventually whole quantum algorithms, can be implemented.̂ ^^^ Even 
the simplest gate operations require several pulses, therefore it is impera
tive to control the relative optical phases of these pulses in a very precise 
manner or, at least, to keep track of them such that the required pulse 
sequences lead to the desired operations. This requires the precise consid
eration of all phases introduced by the light shifts of the exciting laser 
beams. ̂ ^̂^ 

5. CIRAC-ZOLLER CNOT-GATE OPERATION 

For the realization of the CZ CNOT-gate operation, two ions are 
loaded into the linear trap and, by means of an intensified CCD camera, 
the fluorescence is monitored separately for each ion.̂ ^̂ ^ If no information 
on a particular qubit is needed, the signal of a more sensitive photomulti-
plier tube is used to infer the overall state population and, thus, the expo
sure time can be reduced. 

As proposed by Cirac and ZoUer, the common vibration of an ion 
string is used to convey the information for a conditional operation (bus-
mode). ̂ ^̂  Accordingly, the gate operation can be achieved with a sequence 
of three steps after the ion string has been prepared in the ground state 
l̂ b = 0) of the bus-mode. First, the quantum information of the control 
ion is mapped onto this vibrational mode. As a result, the entire string of 
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ions is moving and thus the target ion participates in the common motion. 
Second, and conditional upon the motional state, the target ion's qubit is 
inverted. Finally, the state of the bus-mode is mapped back onto the con
trol ion. Note that this gate operation is not restricted to a two-ion crystal 
since the vibrational bus-mode can be used to interconnect any of the ions 
in a large crystal, independent of their position. 

We realize this gate operation^^^^ with the following sequence of laser 
pulses. A blue sideband TT-pulse, /?" (̂7r, 0), on the control ion transfers its 
quantum state to the bus-mode. Next, we apply the CNOT-gate operation 

R ( | . » ) (1) 

to the target ion. Finally, the bus-mode and the control ion are reset to 
their initial states by another TT-pulse /?+(7r, TT) on the blue sideband. The 
resulting gate fidelity of about 71-78% is well understood in terms of 
a collection of experimental imperfections.^^^^ Most important is dephas-
ing due to laser frequency noise and ambient magnetic field fluctuations 
that cause a Zeeman shift of the qubit levels.̂ '̂'̂  As quantum comput
ing might be understood as a multi-particle Ramsey interference experi
ment, a faster execution of the gate operation would help to overcome this 
type of dephasing errors. However, a different type of error increases with 
the gate speed: with higher Rabi frequencies, the off-resonant excitation 
of the nearby and strong carrier transition becomes increasingly impor-
tant,̂ ^^^ even if the corresponding phase shift is compensated. Additional, 
but minor, errors are due to the addressing imperfection, residual thermal 
excitation of the bus-mode and spectator modes as well as laser intensity 
fluctuations. 

If the qubits are initialized in the superposition state |control, tar
get) =|5H-Z), 5), the CNOT operation generates an entangled state |5, 5) + 
\D,D). Using local operations with varying phase then allows the prep
aration of arbitrary Bell states using the CNOT-gate operation^^^^ (see 
Fig. 2). 

6. BELL STATE GENERATION AND ENTANGLEMENT STUDIES 

Bell states are very important for an investigation of entanglement 
with the capabiHty to produce them at the push of a button is one of 
the major advantages of an ion trap quantum computer. However, while 
conceptually simple and straightforward. Bell states need not be generated 
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Fig. 2. Truth table of CZ CNOT-gate operation. The amplitude of the controlling ion (first 
entry of the state notation) controls the state of the target ion (second entry), i.e., when the 
controlling ion's amplitude is \S), the target ion's state remains the same, when it is \D), 
the target's ion state is flipped, (a) graphical representation; (b) numerical results as shown 
in (a).(29) 

using CNOT-gate operations. With trapped ions, there are simpler and 
more efficient procedures to produce and investigate these states. 

Using a string of two ions and the individual addressing capabiUty in 
the Innsbruck experiment, we create all Bell states by applying laser pulses 
to ions 1 and 2 on the blue sideband and on the carrier transition. To pro
duce the Bell state ^± = \/V2(\S, D) ± |D, S)) we use the pulse sequence 
f/̂ ^ = /?+(7r, ±71/I)' R2(7t, 7T/2) • R^(7t/2, -7t/2) applied to the \S, S) state. 
Here, the indices 1 (2) refer to pulses apphed to ions 1 and 2, respec
tively. The first pulse R^{n/2, —n/2) entangles the motional and the inter
nal degrees of freedom. The next two pulses /̂ 2 (̂7r, ±7t/2) • R2(7T, n/2) map 
the motional degree of freedom onto the internal state of ion 2. Append
ing another TT-pulse on the carrier transition, R2(n,0), to the sequence 
Uxif^ produces the state 0± . This entire pulse sequence takes less than 
200/xs and is much simpler than a full CZ CNOT-gate operation which 
takes about twice that time and is thus more sensitive to decoherence. 

Investigation of the prepared state and a characterization of the 
achieved entanglement then is obtained by a quantum state analysis 
using a tomographic procedure. Quantum state tomography allows the 
estimation of an unknown quantum state that is available in many 
identical copies. It has been experimentally demonstrated for a variety of 
physical systems, among them the quantum state of a Hght mode,̂ ^^^ the 
vibrational state of a single ion,̂ ^^^ and the wave packets of atoms of 
an atomic beam.̂ ^^^ Multi-particle states have been investigated in nuclear 
magnetic resonance experiments^^^^ as well as in experiments involving 
entangled photon pairs. Here, we apply this technique to entangled mas
sive particles of a quantum register for an investigation of entanglement 
and studies of decoherence. 
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Fig. 3. Real and imaginary part of the density matrix po+ that approximates 
1/V2(|5, 5) + |D,D)). The measured fidehty is F = (cD+|po+|0+) = 0.91. 

The tomographic method consists of individual single-qubit rotations, 
followed by a projective measurement. For the analysis of the data, we 
employ a maximum likelihood estimation of the density matrix follow
ing the procedure as suggested in Refs. 36 and 37 and implemented in 
experiments with pairs of entangled photons/^^^ As an example, Fig. 3 
shows the reconstructed density matrix p of one out of four Bell states. 
To monitor the evolution of these entangled states in time we introduce 
a waiting interval before performing state tomography. We expect that Bell 
states of the type ^^ = \S,D)-\-e^^\D,S) are immune against collective 
dephasing due to fluctuations of the qubit energy levels or the laser fre-
quency.̂ ^^^ However, a magnetic field gradient that gives rise to differ
ent Zeeman shifts on qubits 1 and 2 leads to a deterministic and linear 
time evolution of the relative phase e^^ between the |5, D) and the \D, S) 
component of the '^± states. Experimentally, we find that the lifetime of 
entangled states of this type is indeed no longer limited by the techni
cal constraints (i.e., magnetic field and laser frequency fluctuations) but 
is only limited by the spontaneous decay from the upper D5/2-level (Ufe-
time TD~\ S) of the qubit. Finally, we can specify the entanglement of the 
four Bell states, using the entanglement of formation,̂ '*^^ and find E{^-) — 
0.79(4), £(vI/+) = 0.75(5), £ (0+) =0.76(4) and £((!>_) = 0.72(5).(^i> 

7. FUTURE DEVELOPMENTS OF THE CA+ ION TRAP 
QUANTUM COMPUTER 

With the availability of one- and two-qubit operations, the individ
ual addressing and the near perfect readout features, a Ca+-based ion trap 
quantum computer can be envisioned. Currently, the techniques described 
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above are extended to work with three and more ions which already offer 
a vast variety of experimental possibiHties, ranging from the preparation 
and investigation of generalized 3-qubit entangled states to an implemen
tation of teleportation and rudimentary error correction protocols. 

While detection efficiencies and noise considerations are quite favor
able for an optical qubit transition, there are a number of technical lim
itations. Most of these limitations are not of a fundamental nature, but 
are rather given by technical shortcomings, such as the sensitivity of the 
qubit transition with respect to external magnetic fields and spurious laser 
frequency and intensity fluctuations. The only fundamental limitation is 
the lifetime of the pertaining qubit states, here in particular that of the 
Ds/2 state (1.16 s), which, however, is orders of magnitude larger than typ
ical gate operation times. The limitations discussed above might lead to 
reconsidering the use of ground state Zeeman and hyperfine splittings for 
encoding the quantum information. We illustrate here the specific pros and 
cons considering respective transitions in "̂ Ĉa"̂  and ^̂ Ca"̂  ions. Whereas 
the current experiments work with an optical qubit (i.e. |0> = 11)5/2,^7 = 
-1/2} and |1) = |5i/2,m/=-1/2), cf Fig. 1) in the even isotope "̂ ^Câ , 
an alternative implementation would work with the odd isotope -̂̂ Ca"̂  
(nuclear spin 7 = 7/2) and the hyperfine ground states |0) = |F = 4, mp^O) 
and |l) = |F = 3,mF = 0> (see Fig. 4). In the latter case, optical manipula
tion of the qubit would be achieved using Raman transitions. 

To a large extent the coherence properties of the qubits depend on the 
respective sensitivity on external field fluctuations, e.g., magnetic and laser 
field fluctuations. Therefore, in the optical case, a highly stabilized laser is 
required for the qubit transition whereas in the case of a Raman transi
tion, both Raman beams can be derived from the same laser source where 
the required stable relative phase relation can be achieved with only mod
est technical efforts. The large fine-structure spHtting of Avps = 6.7 THz 
between the P1/2 and P3/2 states allows a large detuning of the Raman 
light fields from the P-levels and thus high fidehty gate operations, as 
spontaneous emission processes are largely suppressed. The fine-structure 
spUtting of ^^Ca+ can be compared to that of other favorable qubit can
didates, e.g. ^Be+ with Avps = 0.2 THz and ^̂ ^Cd+ with Avps = 74 THz. 

Aside from these more technical constraints, encoding the qubit in 
the hyperfine ground states ensures that decay from spontaneous emis
sion is completely avoided and thus, very long coherence times (many sec
onds and even minutes have been demonstrated with trapped Be"̂  ions) 
may be potentially achieved. Furthermore, the qubits will, ideally, depend 
only in second order on the external magnetic field (Amp = 0 transi
tions, see Fig. 4). While many of these advantages are available already 
with Be+ and Cd'̂  ions, the ^^Ca+ ion offers additionally, a quadrupole 
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Fig. 4, Level scheme of the ^-^Ca^ isotope. A qubit can be encoded in the hyperfine ground 
states |0) = |F = 4,mF = 0) and |1) = |F = 3, mF = 0). 

transition that can be advantageously used for shelving and efficient detec
tion without the need for a technically advanced laser source. Therefore, 
the next generation of a Ca"^-based ion trap quantum computer will ide
ally combine the advantages of the ground state encoding of the qubit and 
the optical shelving and detection techniques. 

8. SUMMARY AND PERSPECTIVES 

On the road towards a scalable quantum processor^"*'̂  with ion traps, 
single-qubit rotations and universal two-qubit operations gate have been 
realized. With trapped Ca+ ions, we present an experimental setup which 
allows one to flexibly control a register of two qubits. With the uni
versal set of quantum gates all unitary operations can be implemented. 
Therefore, arbitrary two-qubit states can be synthesized with high fideUties 
and analyzed via state tomography. The currently available experiments 
demonstrate the operation of a small quantum computer and allow one to 
develop the basic tools of experimental quantum information processing. 
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One of the most striking features is that the ion trap quantum 
information processor is scalable in principle, i.e., adding more qubits is 
straightforward and at least up to about 10 qubits this should not pose 
insurmountable technical difficulties. Larger systems will require special 
architectures such as ion trap arrays,̂ ^^^ moving ions in structured ion 
trapŝ "̂ ^̂  or even interconnecting several small ion-trap quantum comput
ers using cavities and photons as a quantum channel.^^ '̂̂ ^^ While all these 
techniques require tremendous technical efforts, to the best of our cur
rent knowledge there are no principal limitations to scaling up an ion-trap 
quantum computer. 

The current experiments demonstrate that ion trap quantum 
information processors offer a realistic route towards the realization of 
large-scale quantum computing and they provide ideal means for the engi
neering of quantum objects and controlHng quantum processes at meso-
scopic and macroscopic scales. 
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Quantum Information Processing in Cavity-QED 

S. J. van Enk,*'2 H. J. Kimble,̂  and H. Mabuchi' 

We give a brief overview of cavity-QED and its roles in quantum information 
science. In particular, we discuss setups in optical cavity-QED, where either atoms 
serve as stationary qubits, or photons serve as flying qubits. 

KEY WORDS: Cavity QED; atom trapping & cooling; quantum computing; 
quantum communication. 

PACS: 42.50.Pq; 03.67.Lx; 03.67.Hk; 32.80.Pj. 

1. INTRODUCTION 

Cavity-QED provides an important paradigm for studying the controlled, 
coherent coupling of optical and atomic qubits. The central phenome
non of cavity-QED is strong coupling between the internal state of an 
atom and the state of a single mode of the electromagnetic field. In a 
high-finesse microcavity, atoms and photons interact much more strongly 
than they do in free space, and this enhancement can be used to imple
ment quantum logic. For example, with a sufficiently good cavity it 
becomes possible to observe nonlinear optical effects with just one pho
ton per mode, and this provides a mechanism for controlled phase gates 
between qubits encoded in the polarizations of single photon wave-pack-
ets.̂ ^̂  Likewise, conditional mappings of the quantum state of 'control' 
and 'target' atoms trapped inside a cavity should be realizable by vir
tue of their respective strong couplings to a common cavity eigenmode.̂ ^^ 
The direct atom-photon coupling itself enables quantum logic interactions 
between qubit representations with very different physical properties, sug
gesting applications in quantum communication where trapped atoms are 

^Bell Labs, Lucent Technologies and California Institute of Technology. 
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used for local storage of quantum information while photons are used for 
long-distance transmission/^^ In each of these scenarios, the key ingredi
ent is the use of a resonant cavity to enhance the coherent interaction of 
atoms with a single localized field mode over their dissipative coupHngs to 
the electromagnetic continuum (spontaneous emission). 

A discussion of the role of cavity-QED in quantum information pro
cessing divides naturally into two parts. Below we will first discuss schemes 
in which a single atom inside a cavity is used to mediate interactions 
between photonic qubits. We will then turn to proposals in which one 
or more atoms inside a cavity store qubits in their internal states, and 
a combination of external laser fields and the quantized cavity mode are 
used to perform 1-bit and 2-bit operations. Included among the latter 
are quantum state mapping operations in which an atom's internal state 
is 'read out' into the state of the intracavity field, which can then be 
coupled out from the cavity for transmission via free space or an opti
cal fiber. Flying qubits (i.e., photon wavepackets) could thus be used for 
long-distance transmission of quantum information or as intermediaries to 
perform quantum logic gates between atoms trapped at remote locations, 
as illustrated in Fig. 1. 

ii{~\)' 

Fig. 1. Illustration of the protocol of Ref 3. At Site A, an applied laser beam Q{t) trans
fers quantum information from the internal state of an atom in one cavity to a photon state 
1^), which travels along an optical fiber. At Site B, the photon enters a second cavity, and 
the information is transferred to an atom in that cavity. Nonlocal entanglement can be cre
ated among the atoms in the two cavities. By expanding from two cavities to a larger set 
interconnected by optical fiber, complex quantum networks can be realized. 
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From a practical perspective, photonic and atomic qubits each have 
inherent advantages and disadvantages. Photons are relatively easy to pro
duce and are perfect for the transmission of (quantum) information, but 
are hard to store. On the other hand, atoms can be trapped for long times 
with minimal dephasing of ground-state hyperfine or Zeeman coherences, 
but it is quite difficult to transport them over large distances, although 
encouraging advances have recently been made in experiments^"^^ that dem
onstrated coherent transport of ions within a segmented trap. While it is 
relatively straightforward to couple photons into or out of a microcavity 
with low insertion loss, it will Hkely prove challenging to preserve the spa
tial and spectral purity of optical wave-packets that are cascaded through 
many cavities in a row. It was a major recent advance to reaHze a trap
ping scheme that can confine atoms in a cavity in a state insensitive fash
ion that does not interfere with or otherwise preclude diverse protocols 
for quantum information processing.^^^ Indeed, by now multiple sequential 
operations per atom have been demonstrated.^^'^^ 

There are two very different parameter regimes in which strong cou
pling in cavity-QED has been achieved, namely for optical and microwave 
cavities as appropriate to the wave-length of the electromagnetic field that 
is resonantly coupled to the cavity. Each of these regimes has its own char
acteristic advantages and problems. For example, at room temperature a 
narrow-bandwidth optical cavity contains a completely negligible thermal 
field, whereas the large number of microwave photons from black-body 
radiation requires that a cavity operating at frequencies 10-50 GHz must 
be cooled to well below 1 K to eliminate thermal photons. Microwave pho
tons, therefore, cannot be readily employed for Quantum Communication 
or distributed Quantum Computation. On the other hand, the dimensions 
of optical cavities for strong coupling (1-100/xm) are quite small, and so it 
becomes difficult to trap and to address individually atoms inside an opti
cal cavity. 

In microwave cavity-QED experiments,^^'^^ it is the atoms that move 
in and out of the cavity, interact with the microwave photons, and that can 
be entangled and measured. Indeed, atoms have been entangled both with 
other atoms and with photons in microwave cavity-QED experiments.^^^^ 
In recent optical cavity-QED experiments, on the other hand, it is Hght 
that traverses the cavity and is being measured, after having interacted 
with a single atom trapped inside the cavity. 

Another difference between the two regimes of cavity-QED is the type 
of atomic transition resonant with the cavity. In the microwave regime, 
transitions between high-lying circular Rydberg states are used, with a 
large transition-dipole moment but a small spontaneous emission proba
bility. The disadvantage is that such atoms are difficult to prepare and 
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State measurements are not perfect, the error being in the 10% range. 
In the optical regime, dipole transitions between ground and electronic 
excited states are employed, and state detection is efficiently accomplished 
by way of variations on the 'quantum jump' or 'electron shelving' method 
as used in ion-trap experiments. 

In the remainder of this review we will focus on optical cavity-QED. 
In order nevertheless to give the reader some pointers to the literature 
on cavity-QED in general and microwave cavity-QED in particular, we 
first note there are numerous excellent reviews.̂ '̂̂ '̂ ^^ Moreover, there have 
been reviews of cavity-QED in the context of quantum information pro-
cessing,̂ ^^^ and reviews of optical cavity-QED.̂ ^- '̂̂ ^^ 

Before turning to specifics we would like to discuss some lessons 
learned from research in the area of quantum information processing 
in cavity-QED. When compared with approaches such as ion trap or 
ensemble NMR quantum computing, cavity-QED may seem to have made 
relatively modest progress towards large-scale demonstrations despite con
siderable effort for a number of years. Of course, it must not be forgotten 
that all three of these experimental paradigms today build upon decades of 
prior technical development motivated by goals quite distinct from quan
tum computing. To a large extent, the different rates of progress have 
reflected the relative state of advancement in these fields of achieving spa
tial (and temporal) localization of qubits relative to the structures utilized 
for implementing quantum logic gates. In optical cavity-QED, techniques 
have been developed for manipulating atomic motion in ways that do not 
interfere with the strong atom-cavity coupling that is essential for infor
mation processing.^^^ The time scale for these advances has been commen
surate with previous progress in other areas, such as trapped ions. The 
"learning ground" for these advances has been largely experiments in bulk 
Fabry-Perot cavities, which carry a large technical overhead and which 
clearly are not suited to brute-force scaling of experiments to encom
pass huge qubit registers. For many years, we have appreciated that the 
long-term prospects for quantum information processing with cavity QED 
are tied to the development of integrated hardware platforms that could 
exploit monolithic optical microcavities, photonic circuits and microfabri-
cated optical or magnetic traps for atom manipulation.^^^~^^^ While it is 
plausible that such a technical approach could alleviate most difficulties 
involved in scaling to large systems, it remains to be seen whether the low 
decoherence and fidelity of control required for quantum information pro
cessing can be achieved in such novel apparatus. 

Generally speaking it must be kept in mind that scaling from 
few-qubit demonstrations to complex processors will require not only 
favorable fabrication methods, but also a validated understanding of 
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decoherence mechanisms and their spatiotemporal correlation properties. 
Without such an understanding we must check our confidence in architec
tural strategies for fault tolerance. This is manifestly true for any imple
mentation scheme, but cavity-QED here benefits from a long history of 
close contact between experiments and modelling via the theory of open 
quantum systems.̂ ^^^ 

It also seems worth commenting that one obvious approach to solving 
the qubit localization problem would be to push solid state cavity-QED 
into the regime of strong coupling, e.g., with rare earth ions or quan
tum dots taking the place of gas-phase neutral atoms. So far there has 
not been a convincing demonstration that the requisite combination of 
coherence time and interaction strength can be achieved by this approach. 
Detailed quantitative modelling of decoherence effects is likely to be much 
more difficult than in the case of gas-phase atoms. As the implicit trapping 
mechanism of embedding qubits in a solid matrix seems inevitably to lead 
to relatively short coherence times, one feels pushed to investigate optical 
resonators with extremely low mode volume to maximize the speed of cav
ity enhanced radiative interactions. It is interesting to note that the very 
short (<0.1 ns) gate times that seem reachable with < 1 cubic wavelength 
optical resonators (such as photonic crystal defect cavities^^^^) compare 
quite favorably with the maximum processing speeds that can be contem
plated for implementations based on magnetic dipole coupHngs. This line 
of investigation has some potential finally to make good on early obser
vations that quantum logic gates based on the interaction of optical fields 
with systems of bound charges have a naturally high speed Hmit. 

An important legacy of theoretical research in cavity-QED is a set 
of novel proposals for exploiting a detailed understanding of decoherence 
mechanisms in the formulation of efficient schemes for error correction 
and robust quantum gates. Indeed, such work in cavity-QED has provided 
some of the eariiest illustrations of how general principles such as detec
tion/correction of syndromes^ '̂̂ ^^ and gate purification^^ ̂ ^ can be set in 
reaHstic physical models. Cavity-QED arguably provides the most natural 
experimental setting in which to study conditional (selective) evolution in 
quantum systems subject to indirect measurement, as in the experiments 
in Ref 22, which is a topic that has become quite central to quantum 
information theory. In this sense, cavity-QED highlights the essential phys
ics of quantum error correction. It is likewise clear that cavity-QED pro
vides a canonical paradigm for investigating how quantum information 
(and entanglement) can be mapped from intrinsically local representations 
(the internal states of bound systems of charges) to freely propagating 
fields, and vice versa. While the above issues are also at the heart of 
recent work on measurement induced atomic spin-squeezing^^ '̂̂ "^^ and the 
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Duan-Lukin-Cirac-Zoller scheme for quantum communication/^^^ it does 
not seem possible for such studies to compete with the extreme degree 
of ideaUty (and hence the transparency of modelling) achieved by cavity-
QED in the limit of one atom and one photon. 

From the perspective of the preceding paragraph it seems clear that 
experiments in cavity-QED will continue to play a key role in shed
ding Hght on the fundamental physics underlying quantum information 
science, even if it should slip from the vanguard in the race towards 
construction of full-scale quantum processors. Given its focus on elemen
tary atom-photon interactions, cavity-QED should naturally retain a lead
ing role in the growing fields of quantum communication and distributed 
quantum information processing, which seek more directly to explore the 
practical consequences of quantum nonlocality. The ability to generate and 
distribute entanglement over a quantum network could serve as a valuable 
adjunct to provide "quantum wiring" for large-scale quantum computers 
based upon diverse physical mechanisms other than interactions in cavity-
QED per se. The goals of implementing quantum state synthesis,̂ ^^^ quan
tum logic gates,̂ ^^ and quantum state mapping^^^ have in any case had a 
profoundly positive effect on the development of cavity-QED as evidenced 
by the remarkable experimental advances they have motivated. 

2. THE BASICS OF CAVITY-QED 

The whole concept of cavity-QED is based on the following. If one 
quantizes the electromagnetic field inside a conductor or between mirrors 
or inside a dielectric, one first expands the electric and magnetic fields in 
mode functions that satisfy the Maxwell equations with the appropriate 
boundary conditions. The energy of one photon (pxo) is given by the inte
gral over the mode volume V of the total (electric and magnetic) energy, 
which is quadratic in the electric field. The electric field per photon thus 
scales as {hco/V)^^'^. By making the volume V sufficiently small, one can 
make the electric field per photon in principle arbitrarily large. It can in 
fact be so large that just one photon suffices to saturate an optical transi
tion (which in free space typically requires a laser field of a few mW/cm^). 

The possibility to cause nonlinear optical effects at the single-photon 
level can be very useful for diverse tasks in quantum information science. 
Indeed, the very first cavity-QED experiment in quantum information used 
such an effect to perform a nonlinear gate between two different pho
tons.^ ̂ ^ That is, the presence or absence of a photon determines how an 
atom inside a cavity interacts with a second photon (distinguished from 
the first photon by polarization or frequency or both). We will return to 
this means of implementing quantum logic for quantum computing below. 
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Moreover, the photon inside a cavity is an excitation of a well-defined 
mode, with well-defined frequency, polarization, propagation direction and 
transverse mode profile, which makes it itself a good candidate for a qubit. 
Furthermore, it has been demonstrated that the cavity photon can be cou
pled out of the cavity and be transformed into a freely propagating single-
photon wave-packet, with well-defined spatiotemporal properties/^^ 

For now, let us define the most relevant cavity-QED parameters, with 
reference to Fig. 2. They can all be expressed as rates, from which two 
dimensionless ratios can be formed: the saturation photon number and the 
saturation atom number/^ ̂ ^ First, there is the rate g at which the atom 
couples to the electric field of a single-photon. In general, this quantity 
depends on the position of the atom. This position dependence can be 
exploited in various ways, but also may lead to potential problems, as 
detailed below. The rate K determines the cavity decay rate, half the rate at 
which photons escape through the mirrors of the cavity. Finally, the rate 
r describes the spontaneous emission rate of the relevant atomic excited 
level. In the optical regime, all rates are in the MHz range, with g in cur
rent experiments being an order of magnitude larger than both K and F 
(this is called the strong-coupHng regime). In the microwave regime the 
rates are in the kHz range, with g again being an order of magnitude 
larger than /c, and F much smaller than K. The critical photon and atom 
numbers, respectively, are defined as 

ÂO = ^ , (1) 

where y = T/2. Roughly speaking, no determines the number of photons 
inside the cavity needed to appreciably affect the atom. Conversely, the 
number Âo is the number of atoms needed to appreciably affect the cavity 
field. In optical cavity-QED, no can be as small as 10~^ and A^o^ 10~ .̂̂ ^^^ 

Fig. 2. Cartoon to illustrate a single atom coupled with interaction energy Kg to a single 
mode of a resonator, here an optical cavity formed by two spherical mirrors. Decay from this 
mode proceeds at rate /c, while the atom decays to modes of the electromagnetic field other 
than the privileged mode at rate y. 
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With these numbers being small, the coherent coupling (g) is much larger 
than the dissipative couplings (y, K). 

Another important set of quantities determined by the rates just 
given are the (generalized) eigenenergies or resonance frequencies (JL>± (here 
we consider only the transitions between the ground state and the two 
eigenstates states with one atom-cavity excitation; hence, there are two 
transition frequencies) of the combined atom-cavity system. In turn the 
resonance frequencies CJL>± determine the response of the system to light of 
arbitrary frequency w impinging upon the cavity. The eigenenergies are the 
roots of the quadratic equation 

{-co±-{-ojc-iK)(-oj±-i-coA-iy) = g^ (2) 

with coc and COA the bare cavity and atomic resonance frequencies, and 
with the imaginary part of co± describing decay, both due to spontaneous 
emission and cavity decay. In general, the real part of (JL>± will depend on 
g and thereby on the position of the atom. In particular, the resonance 
frequency depends on the presence (g ^ 0) or absence (g = 0) of the atom. 
Thus, the transmission or reflection of a probe beam depends on whether 
there an atom is coupled to the cavity or not. Both effects can be put to 
good use, as we will discuss later on. Finally, the quality factor 2 of a 
cavity is defined as the ratio between its resonance frequency COQ and its 
photon loss rate 2K. 

3. QUANTUM INFORMATION PROCESSING WITH CAVITY-QED 

We first discuss setups where the photons act as the qubits performing 
a quantum computation, with atoms inside cavities used to mediate inter
actions between photons, and thus to perform quantum logic gates. Subse
quently, we discuss the setups where atoms are the qubits and light is used 
to manipulate the atoms. 

3.1. Photons as Flying Qubits 

As we have just discussed, the atom-cavity coupling can be made so 
strong that nonlinear optical effects occur even in the presence of just a 
single photon, or more precisely, even if the average number of photons 
inside the cavity is much less than unity. This is possible when the satura
tion photon number no, defined above, is much less than unity. If the atom 
is near resonance with two different cavity modes, then the atom can be 
used to perform nonlinear gates on two photons from those two modes. 
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In particular, in Refs. 1 and 27 one finds an experimental demonstration 
of such a nonlinear effect. The two modes in that experiment differed 
both in frequency and polarization. Hence, there are two photonic qubits, 
one for each mode. The states of the qubits, \0)k and \l)k, correspond to 
the absence and presence, respectively, of a single photon in mode k. The 
states undergo phase shifts due to the atom-cavity interaction, but only the 
state |1)|1) undergoes a nonlinear phase shift. In words, the phase shift of 
one photon is conditioned upon the presence of the other photon. Thus 
a 2-bit entangling gate is performed, but the nonlinear phase shift in the 
experiment^ ̂ ^ was only 16°, with larger phase shifts bringing increased lev
els of dissipation. A new proposal^^^^ is much more promising in various 
respects: it is much easier to generate conditional phase shifts of n for 
photonic qubits, and the gate (i.e., the value of the nonlinear phase shift) 
is more or less independent of the atomic position. Rather than having 
the photons enter the cavity, the new proposal relies on the way photons 
are reflected from a single-sided cavity (i.e., a Fabry-Perot cavity with one 
high quality input mirror with reflectivity R^^ = l— e[^ and an output mir
ror with Rout = 1 — ôut? where 6in ~ 10~^ — 10~^ ^6out- If the incident light 
is resonant with the common frequency of the atom-cavity system (i.e., 
COQ=(JOC = COA), the field will be reflected from the input mirror without 
appreciable build-up in the cavity, since the atom-cavity system responds 
at the coupled frequencies a)± and not at the bare resonances (JOC,COA' In 
this case, the incident field is reflected with near unity efficiency and with 
phase shift that we take as a reference of 0. By contrast, if the atom is 
placed in a state with transition frequency COB that has large detuning from 
the bare cavity resonance at coc, then to all intensive purposes the atom-
cavity behaves as two independent systems, with CO±^COB,C- The incident 
field at frequency coo = ^c will then be reflected from the cavity with phase 
shift n. Hence, the phase shift for a field upon reflection can be condi
tioned upon the internal state of the atom. 

In the new proposal of Ref ^^^\ the two photonic qubits involved 
have the same carrier COQ frequency but different times of arrival at the 
cavity. The qubit states now correspond to single-photon states, with hor
izontal and vertical polarization encoding |1) and |0>, respectively. In 
a simple version of the protocol, vertical polarization is reflected from 
a polarizing beam splitter, while the horizontally polarized photons are 
reflected from the cavity. An atom inside the cavity is prepared in an 
equal superposition of two ground states, one with transition frequency 
coA that is resonant with the cavity at COQ and one with frequency COB that 
is far from the cavity resonance. A sequence of reflections of two hor
izontally polarized photons in combination with 7t/2 transformations of 
the atomic ground states then leads to a TT phase-shift, whereas all other 
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combinations of two polarized photons lead to a zero phase shift (with the 
atomic state unaffected at the end of the process). As demonstrated in Ref 
28, the value n for the phase shift is more or less independent of the posi
tion of the atom as the only criterion is that g be sufficiently large to shift 
the atom-cavity resonance frequencies (JO± appreciably compared to their 
linewidths. 

Finally, it is important to note in this context that although sin
gle photons are not easy to produce, cavity-QED setups are in fact able 
to generate single photons with high efficiency and with well-defined 
coherence and spatio-temporal mode profiles, as has been demonstrated 
in recent experiments/^^ Thus, initial demonstrations of photonic quan
tum logic using Fabry-Perot cavities seems possible in the near future, 
with encouraging prospects for scalable quantum computation by employ
ing the protocol of Ref 28 with lithographically fabricated micro-resona-
^0,^06,17) 

3.2. Atoms as Qubits 

Although there are several ways of implementing material qubits 
in cavity-QED, so far we have principally considered Fabry-Perot cavi
ties, consisting of two mirrors of extremely high quality placed at very 
short distance, with single neutral atoms inside. There are, however, other 
types of resonators and other types of material qubits that can play the 
same role as a Fabry-Perot cavity with neutral atoms. In particular one 
may think of microspheres,^^^^ microdisks,^^^^ microtoroids,^^^^ or photonic 
bandgap cavities.̂ ^ '̂̂ ^^ Moreover, one may think of using quantum dots 
in cavities.̂ ^^^ Finally, it is certainly possible to build a cavity around 
an ion trap, as has been demonstrated recently in two different research 
groupŝ "̂̂ '-̂ ^̂  (where the finesse of the cavities, though, is not as high as 
achieved in the experiments with neutral atoms, and strong coupling has 
not yet been achieved). At the moment quantum information process
ing experiments in Fabry-Perot cavities with neutral atoms are clearly the 
more advanced. We thus spHt this section into two parts, with one subsec
tion that discusses the current advances and obstacles in Fabry-Perot cav
ity-QED and another that provides references for some novel approaches 
that may be realized in the future. 

3.2.1. Atoms in Fabry-Perot Cavities 

One important obstacle in the way of quantum computing with cav
ity-QED arises from the motion of the atoms. Whereas ions can be cooled 
down to the Lamb-Dicke limit, where the typical excursions of the ions 
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are limited to much less than the (effective) wavelength, for atoms inside 
a cavity this limit has not yet been reached. In fact, in early experiments 
atoms traversed the cavity and were not trapped at all. Since then, great 
advances in trapping and cooling techniques have routinely allowed trap
ping times of single atoms of several seconds. ̂ ^̂  There are several issues 
related to the motion of atoms that are of direct interest to quantum infor
mation processing. We discuss these one by one. 

(1) The motion of atoms inside a cavity can in fact be monitored in real 
time, by measuring a probe laser beam traversing the cavity. As men
tioned above, the resonance frequencies a;± of the atom-cavity system 
depend on the value of the atom-cavity coupling rate g. The trans
mission of a probe beam thus depends on g which in turn depends 
on the atom's position. This dependence can be inverted and together 
with the atomic equations of motion, one can reconstruct the atom's 
motion as a function of time. See Refs. 36-40 for experiments that 
investigate this possibility, with Ref 38 having actually achieved in the 
inversion to realize an "atom-cavity microscope." An important goal 
for continuing research is to use such tracking to actively cool the 
atomic motion via real-time feedback.̂ ^̂ ~̂ ^̂  

(2) The intracavity motion of atoms can certainly be suppressed via adap
tations of standard laser cooling techniques, albeit not yet to the 
Lamb-Dicke limit. As it turns out the cavity field itself may cool the 
atoms (to about the Doppler limit),̂ '̂ '*̂  and the addition of a far-off 
resonant trapping beam (FORT) can further control the motion to 
some degree.̂ "̂ ^̂  A potential problem is that the trapping and cooUng 
laser beams would interfere with the lasers that perform gates on the 
atoms. However, one important trick is to make the trapping potential 
independent of the internal state of the atom^̂ ^ by choosing an appro
priate frequency of the FORT laser beams, thus making the system 
more robust. Indeed, in recent experiments employed a single atom 
(that is, one-and-the-same atom) trapped in a FORT to realize a one-
atom-laser, ̂ ^̂  and to produce a well-controlled deterministic sequence 
of single photons.̂ ^^ 

(3) An important method to mitigate the effects of atomic motion in 
cavity-QED is by using so-called adiabatic passage schemes.̂ ^̂ ^ Such 
schemes rely on the fact that a system starting out in the ground 
state of a Hamiltonian will stay in a time-dependent ground state 
of a time-dependent Hamiltonian if the latter is varied sufficiently 
slowly in time. Thus population can be transferred almost perfectly 
from one state to another without having to control the Hamilto
nian very precisely: what matters is only that it be varied slowly. Such 
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schemes were indeed proposed in this context for transferring quan
tum information from one cavity to another/^^^ Moreover, for opera
tions within one cavity, too, it has been shown that adiabatic passage 
schemes are far more robust against motional decoherence^^^^ than 
other schemes that rely on designing particular laser pulse shapes and 
accurate timing. Finally, yet another adiabatic passage scheme has 
been proposed to perform gates in a way that is independent of the 
atomic position/^^^ The latter makes use of the fact that a particu
lar eigenstate of the Hamiltonian depends only on the ratio of two 
parameters, both of which are functions of the atom's position. If 
both parameters, one being the coupling of the atom to a probe laser, 
the other the coupling to the cavity field, depend on position in the 
same way, the ratio is independent of position. This type of method 
is, generally speaking, the best way to proceed in quantum informa
tion processing. It pays to put a lot of effort into avoiding deco-
herence errors, as the alternatives, error correction and fault-tolerant 
quantum computing, require enormous amounts of overhead. Adia
batic passage schemes are intrinsically more robust and, one could 
say, intrinsically fault tolerant. 

An issue that has not been addressed yet experimentally is scaling. 
Although recent experiments did succeed in distinguishing a single trapped 
atom from 2, or 3, or more trapped atoms, and in monitoring the decay, 
one by one, of multiple atoms out of the cavity,̂ "̂ ^̂  control of the motion 
of multiple atoms, and individual addressing of multiple atoms in a cav
ity, lies still in the future. In fact, at this moment most of our own exper
imental efforts are aimed more towards implementing complex quantum 
communication protocols, than directly at scaling up quantum comput
ing schemes using atoms as qubits. However, it is important to note that 
quantum communication techniques based upon cavity-QED may prove 
very useful for other implementations of quantum computing, such as the 
ion-trap quantum computer, to connect qubits separated by relatively large 
distances. 

3.2.2. Other types of cavity-QED 

While experiments in optical cavity-QED have so far relied almost 
exclusively on the traditional Fabry-Perot resonator, a growing menag
erie of new monolithic microcavities is becoming available as a result 
of the explosive development of fabrication technology.^^^^ The first type 
of monolithic cavity investigated for cavity-QED was the quartz micro-
sphere,̂ ^^^ which can be easily fabricated from fiber-quality fused silica 
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preforms using either a gas flame or infrared laser. These whispering-
gallery mode resonators can achieve high quality factor by virtue of the 
high material transparency and the low surface roughness created by the 
surface tension of molten glass. While high-g ( 2 — 10^-10^^) and low 
mode volume microspheres have been available in several atomic phys
ics laboratories for a number of years, system integration issues associ
ated with optical coupling and atom delivery have slowed progress. Still, 
it seems likely that strong coupling will be achieved by combining micr
ospheres with 'atom chip' technology (see Refs. 16, 17 and references 
therein), in the near future. 

Recently some important advances have been made in adapting the 
basic idea of fused silica whispering-gallery mode resonators, to faciH-
tate their incorporation in chip-Hke hardware platforms. In particular, new 
types of high-Q microdisk^^^^ and microtoroid^^^^ optical resonators have 
been demonstrated that can be fabricated by combining lithography with 
either etching or laser-induced reflow; these methods lead to lithograph
ically positioned microcavities that can be efficiently coupled via tapered 
optical fibers. The open geometry of whispering-gallery mode resonators 
presents a number of advantages over the closed Fabry-Perot configura
tion, in terms of the ease with which cold atoms can be controUably deliv
ered into the optical mode volume. 

The fused silica microcavities mentioned above all provide relatively 
high quality factor (2 '^10^ — 10^ )̂ in combination with small mode vol
umes for strong coupling. In contrast, planar photonic crystal defect cavi-
tieŝ ^̂ ^ seem to have limited Q but should provide sufficiently small mode 
volumes to still make strong coupling possible^^^^ Indeed, recent exper
iments have demonstrated that photonic crystal defect cavities with with 
No^lO~^ and no'^ 10"^ (the numbers defined in Eq. (1)) can be fabricated 
and probed spectroscopically via robust tapered-fiber optical couplers.^^^^ 
If fiber-coupled photonic crystal structures of this type can be successfully 
combined with atom chip technology for cold atom delivery,̂ ^^^ the result
ing systems could provide an interesting new paradigm for cavity-QED. 
While some concerns remain about deleterious effects of surface interac
tions, such research is strongly motivated the promise of extremely high 
interaction rates (g ̂  20 GHz) and the expectation of reduced susceptibility 
to acoustic vibrations. 

4. CONCLUSIONS 

Cavity-QED has an estabHshed tradition of generating experimen
tal and theoretical results that drive our understanding of coherence and 
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decoherence in open quantum systems. In the new era of quantum infor
mation science, it has continued to play such a role and will in all 
likelihood do so for years to come. Basic operations such as quantum state 
synthesis, quantum logic, and quantum state mapping have all been dem
onstrated in recent cavity-QED experiments in the optical and/or micro
wave regimes. Finally, we would like to note that research in cavity-QED 
has blazed conceptual and methodological trails that will provide crucial 
guidance for analogous systems in mesoscopic physics.̂ ^̂ ^ 
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Quantum Information Processing with Trapped Neutral 
Atoms 

p. S. Jessen,!-̂  I. H. Deutsch,̂  and R. Stock^ 

Quantum information can be processed using large ensembles of ultracold and 
trapped neutral atoms, building naturally on the techniques developed for 
high-precision spectroscopy and metrology. This article reviews some of the most 
important protocols for universal quantum logic with trapped neutrals, as well as 
the history and state-of-the-art of experimental work to implement these in the 
laboratory Some general observations are made concerning the different strat
egies for qubit encoding, transport and interaction, including trade-offs between 
decoherence rates and the likelihood of two-qubit gate errors These trade-offs 
must be addressed through further refinements of logic protocols and trapping 
technologies before one can undertake the design of a general-purpose neutral-
atom quantum processor 

KEY WORDS: Quantum information processing; neutrals atoms; controlled col
lisions; optical lattice. 
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1. INTRODUCTION 

An important lesson from 20th-century information science is that "infor
mation is physical". One cannot understand the power of algorithms, 
communication protocols or other information processing tasks separately 
from the physical description of the devices that perform them. In particu
lar, quantum systems allow the implementation of new types of logic that 
cannot be efficiently simulated on classical systems governed by laws based 
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on local realism. This has allowed a whole new field to emerge—quantum 
information science—whose ultimate vision is the construction of a uni
versal quantum computer capable of executing any algorithm that can be 
described by a quantum evolution. 

Exactly what features give quantum computers their power is still a 
subject of debate, but certain ingredients are generally agreed upon as 
essential: 

• A many-body system whose Hilbert space has scalable tensor 
product structure. 

• The ability to prepare a fiducial quantum state. 
• A universal set of quantum operations capable of implementing an 

arbitrary quantum map. 
• A method to read-out the quantum state. 
• A dissipative mechanism to remove the entropy associated with 

unavoidable errors in a fault-tolerant manner. 

Since they were proposed in their original form, we have learned 
that some of the so-called "DiVincenzo Criteria"^^^ can be relaxed. For 
example, universal quantum maps need not be unitary and may instead 
have irreversible quantum measurements at their core, as shown by pro
posals for linear optics quantum computation,^^^ quantum computation 
via teleportation,^^^ and the so-called "one-way quantum computer" in 
which conditional measurements are performed on an entangled "cluster 
state".^^^ Such developments highlight an important fact: the roadmap to 
a universal quantum computer is still evolving, and the "best" way to 
accompHsh a computational task will depend on the strengths and weak
nesses of the physical system at hand. Even so, the essential ingredient is 
clear: quantum control of a many-body system,̂ ^^ including both reversible 
unitary evolution and irreversible quantum measurement. Robust, high 
fideUty execution of these tasks is the goal of all physical implementations 
of quantum information processing (QIP). 

Given these preliminaries, it is clear that atomic, molecular and/or 
optical (AMO) systems offer unique advantages for QIP. More than in any 
other subdiscipline, the quantum optics community has explored the foun
dations of quantum mechanics in the laboratory, including detailed stud
ies of the processes of measurement and decoherence, entanglement and 
the violation of Bell's inequalities. In appropriately designed dilute systems, 
coherence times can be very long and decades of research in spectros
copy, precision metrology, laser cooling, and quantum optics has produced 
a large toolbox with which to manipulate them and drive their quantum 
dynamics. Indeed, atom- and ion-based atomic clocks are arguably the 
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best controlled, most quantum coherent devices available, and present a 
strong motivation to consider the use of similar systems for QIR 

2. SURVEY 

Proposals to use neutral atoms as the building blocks of a quan
tum computer followed closely after the first demonstration of quantum 
logic in ion traps/^^ Laser cooling of ions and neutrals was initially devel
oped as an enabhng technology for precision metrology. Both systems were 
known to have long coherence times but also complementary features that 
lead to radically different approaches to, e.g. atomic clock design. Because 
ions are charged they can be tightly confined in deep traps and observed 
for very long times, but the strong Coulomb repulsion limits the number 
of ions that can be precisely controlled in a single trap. In contrast, neu
tral atoms usually interact only at very short range and can be collected 
in large ensembles without perturbing each other, a clear advantage for 
both metrology and QIP, On the downside, traps for neutrals are shal
low compared to ion traps, and the atom/trap field interaction invariably 
perturbs the atomic internal state. In QIP, one must balance an intrin
sic conflict - qubits must interact with each other and with external con
trol fields that drive the quantum algorithm, while at the same time the 
system must couple only weakly to the noisy environment which leads to 
decoherence. In an ion trap the Coulomb interaction leads to collective 
modes of center-of-mass motion, which can be used as a "bus" for cou
pling qubits together. ̂ ^̂  However, control of a strongly coupled many-body 
system becomes increasingly complex as the system size grows, and will 
likely require the use of intricate multitrap designs to overcome the diffi
culty of working with even a handful of ions in a single trap.̂ ^̂  Also, 
the strong interactions can have a parasitic effect by couphng the ionic 
motion to noisy electric fields such as those associated with patch poten
tials on the trap electrodes. ̂ ^̂  Neutral atoms in the electronic ground state, 
in contrast, couple weakly to each other and to the environment, and so 
offer a different compromise between coupling vs. control complexity and 
decoherence. 

The generally weak- and short-range coupling between neutrals makes 
the introduction of non-separable two-qubit interactions the critical ele-
merit of neutral atom QIP. Brennen etalP^ and Jaksch etalS^^^ real
ized independently that this might be achieved by encoding qubits in 
the hyperfine ground manifold of individual atoms trapped in optical lat-
tices,̂ ^̂ ^ and using the state-sensitive nature of the trap potential to bring 
the atomic center-of-mass wavepackets together for controlled interactions 
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mediated by either optical dipole-dipole coupling^^^ or ground state colli-
sions/^^^ Further ideas include a proposal for fast quantum gates based on 
interactions between Rydberg atoms/^^^ and another based on magnetic 
spin-spin interaction/^^^ These developments occurred against a backdrop 
of steady progress in the technologies for cooling, trapping and manip
ulating neutrals, in particular in optical lattices. Early work that helped 
inspire proposals for QIP include the demonstration of Raman sideband 
cooling to the lattice vibrational ground state,̂ ^^^ the generation of vibra
tional Fock- and delocalized Bloch-states,^^^^ and tomographic reconstruc
tion of the atomic internal^^^^ and center-of-mass state/^^^ At the same 
time theoretical work indicated that loading an optical lattice from a 
Bose-Einstein condensate can induce a transition to a Mott-insulator 
state with nearly perfect, uniform occupation of the lattice sites/^^^ A 
series of ground-breaking experiments by the group of Bloch and Hansch 
have recently demonstrated, in short order, first the Mott-insulator tran
sition,^ ̂ ^̂  followed by coherent spHtting and transport of atomic wave-
packets,^^^^ and finally controlled ground-ground state collisions and the 
generation of entanglement in an ensemble consisting of short strings of 
atoms/^^^ Other elements of neutral atom QIP have been pursued in a 
number of laboratories, including patterned loading of optical lattices,̂ ^^^ 
addressing of individual lattice sites,̂ -̂̂ ^ and alternative trap technologies 
such as magnetic microtraps,̂ ^"^^ and arrays of optical tweezers traps/^^'^^^ 

2.1. Neutral Atom Traps 

Implementation of neutral atom QIP is closely tied to the development 
of suitable traps. Neutral atom traps in general rely on the interaction of 
electric or magnetic dipole moments with AC and/or DC electromagnetic 
fields. Magnetic traps have found wide use in the formation of quantum 
degenerate gases, but tend to be less flexible than optical traps in terms 
of the atomic states that can be trapped, and therefore have not been 
as widely considered for QIP. For this reason, we concentrate on optical 
traps created by the dynamical (AC) Stark effect in far detuned, intense 
laser fields. In principle, these traps suffer from decoherence caused by the 
spontaneous scattering of trap photons, but in practice the rate can be 
suppressed to a nearly arbitrary degree through the use of intense trap 
light tuned very far from atomic resonance. Proposals for QIP typically 
have considered alkalis (e.g. Rb or Cs), which are easy to laser-cool and 
have nuclear spin so qubits can be encoded in long-lived hyperfine ground 
states. For these atomic species trap detunings are always much larger than 
the excited state hyperfine splitting. In this limit, the optical potential can 
be written in the compact form,̂ ^^^ U(x) = Us(\) — f^•Bf\cii\), where ^^ (̂x) 
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Fig. 1. Schematic of a 3-D optical lattice, (a) Two pairs of linearly polarized beams provide 
transverse confinement, and the beams along z in the lin-^-lin configuration provide longitu
dinal confinement in a+ and CT- standing waves, (b) Potential surfaces for the atom in differ
ent magnetic sublevels, described in the text, shown here as in gray and white, are moved 
along the z-axis through a rotation of the angle 6 between polarization vectors for controlled 
colHsions. 

is a scalar potential (independent of the atomic spin) proportional to the 
total laser intensity, and Bfict is a fictitious magnetic field that depends on 
the polarization of the trap Hght, and fi = gpl^B^, where F is the total 
angular momentum (electron plus nuclear) and gf is the Lande g-factor. 
For trap detunings much larger than the excited state fine structure 
Bfict -^ 0, and the potential is always purely scalar. 

This description is the foundation for designing QIP protocols. To 
illustrate this point we consider how to bring atoms together for con
trolled interactions in a one-dimensional (1-D) optical lattice consisting 
of a pair of counterpropagating plane waves whose Hnear polarizations 
form an angle 0 (Fig. 1). Choosing the z-axis along the lattice beams, 
the optical potential is given by [/^(x) = 2[/o(l+cos^cos2^z), /XfiBfict = 
UosinOsinlkztz, where UQ is the hght shift in a single, linearly polarized 
lattice beam and k the laser wave number. For sin ̂  ^ 0 there is a gradi
ent of the fictitious B-field near the minima of the scalar potential Us(x), 
which separates the different magnetic sublevels as in a Stern-Gerlach 
apparatus and causes the trap minima for hyperfine substates |F, i m ^ ) to 
move in opposite directions along z. A closer inspection of the full lattice 
potential shows that the trap minima move by ±X/2 for every Ijt increase 
of the polarization angle 0. Thus, a pair of atoms in, e.g. |F, m/?) and 
|F, —m/r), trapped in neighboring wells at 0=7T/2, can be superimposed 
by rotating the lattice polarization to 0=n, and separated again by fur
ther polarization rotation. 
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2.2. Quantum Logic 

The basic design of a QIP protocol in the standard quantum circuit 
model involves a choice of qubit encoding, initialization method, single-
and two-qubit gates, and read-out method. Of these mutually dependent 
design elements, the implementation of unitary two-qubit entangling gates 
poses the most fundamental challenge. One well-known example of a uni
versal two-qubit gate is the controlled-phase (CPhase) gate, which maps 
the two-qubit logical basis state |1> |1) ^^ -11) |1), and leaves the oth
ers unchanged. In fact, any gate based on a diagonal two-qubit Ham-
iltonian can be converted to CPhase by single-qubit rotations, provided 
that the energy shifts are non-separable, AE = E\\ -\- EQQ — (E\o-h Eo\) =j^ 
0, and the duration of the interaction is r = ±nh/AE. If noise and/or 
decoherence introduces errors at a rate y then we can estimate the min
imum error probability of such a gate, Perror = 

\-Q-y^^nhy/AE. The 
quantity AE/y is thus a key figure of merit of the gate operation, with a 
clear physical interpretation; it is the spectral resolvability of the coupled 
two-qubit states. 

Because of their short range, neutral-atom interactions are best 
understood in terms of controlled collisions. To implement high-fideUty 
quantum logic these coUisions must be state-dependent, but at the same 
time they must not cause scattering into states outside the computational 
basis. In atomic systems, these requirements are generally in conflict, but 
can be reconciled through appropriate choices of qubit encoding and trap 
geometry. Jaksch etal proposed to use elastic 5-wave collisions of atoms 
in the electronic ground state.̂ ^^^ In this protocol, the main concern is to 
suppress inelastic collisions caused by the Heisenberg spin-exchange inter
action that preserves only the total magnetic quantum number, but not 
that of the individual atoms. Jaksch etal. solved this problem by encod
ing qubits in the stretched states |1) = |F+,m/r = F+), |0) = |F_,m^^ = F_), 
where F± = I ±\/2. Because gF±=±\/F these states move in opposite 
directions in a lattice of the type discussed in Sec. 2.1. Rotating the lat
tice polarization angle from ^ = 0 to TT will then cause an atom in the 
state |0) and moving to the right to collide with an atom in the state |1) 
and moving to the left, i.e., the two qubits interact only if the state is 
|0) |1) and not otherwise. In that case AE = Eo\ y^O and a CPhase can be 
achieved. Furthermore, because 5"-wave scattering conserves mf-\-m'p (to 
good approximation) and neither mp nor m'^- can increase, this collision 
must be elastic. 

Several additional protocols for two-qubit interactions have been pro
posed. For example, Charron etalS^^^ and Eckert etalP-^"^ considered 
encoding qubits in the ground and first excited center-of-mass vibrational 
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States of trapped atoms, and to couple atomic qubits in neighboring 
traps by lowering the intervening potential barrier until tunneling causes 
atoms in the excited states to couple via -̂wave collisions. Brennen etal 
considered collisions of nearby but non-overlapping wavepackets asso
ciated with different internal states in different potentials/^^ This gives 
greater flexibility to design elastic but state-dependent interactions, but 
requires resonant and/or longer range forces than the \/r^ van der Waals 
potential between ground state atoms. Brennen etal proposed to use the 
\/r^ electric dipole-dipole interactions created when an off-resonant laser 
field mixes the ground-state manifold with excited electronic states. These 
excited states will spontaneously emit photons and cause errors, but the 
rate saturates to that of the two-atom super-radiant state when the atoms 
are separated by less than a wavelength, while the dipole-dipole interac
tion continues to increase with decreasing atomic separation. Thus, for 
very tightly localized wavepackets in close proximity, the dipole-dipole 
interaction can be nearly coherent. Relatively long-range interactions pro
vide yet another strategy to implement quantum logic with neutrals.̂ ^^^ 
If atoms are excited into high-lying Rydberg states one can induce very 
large dipole moments by applying a static electric field. The interaction 
between two such dipoles is large enough to provide useful level shifts 
even if atoms are separated by several microns. In one possible proto
col, qubits are encoded in the magnetic field-insensitive "clock doublet", 
|1) = |F+,m/7 = 0), |0> = |F_,mF = 0). To execute a two-qubit gate the 
atoms are excited by a laser tuned to the transition from the logical 
state |1> to a Rydberg level. If the atoms are not too far separated 
the Rydberg dipole-dipole interaction is strong enough to shift the two-
atom, doubly excited state out of resonance and prevent it from becom
ing populated, a phenomenon referred to as "dipole-blockade". Since the 
blockade occurs only for the |1) |1> logical state it can be used to achieve 
a CPhase. 

2.3. Experimental Progress 

Efforts to implement neutral atom QIP in the laboratory represent a 
natural but challenging extension of existing tools to prepare, control and 
measure the quantum state of trapped neutrals. A number of experiments 
have demonstrated several of the key components that go into QIP, and 
very recently some of these have been combined for the first time to dem
onstrate control and entanglement in a neutral-atom many body system. 
In this section, we briefly review progress in three main areas: initializa
tion of the qubit register, implementation of single- and two-qubit gates, 
and methods to address individual qubits. 
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Optical lattices typically confine atoms tightly on the scale of an 
optical wavelength (the Lamb-Dicke regime), and lend themselves read
ily to the use of Raman sideband cooling. In a first demonstration, Ha-
mann etal initialized 98% of a 10^-atom ensemble in a single spin- and 
vibrational-ground state of a sparsely filled 2-D lattice,̂ "̂*̂  and subsequent 
work has achieved a somewhat lesser degree of state preparation in nearly 
filled 3-D lattices.̂ ^^^ These laser cooling-based approaches are relatively 
simple to implement and will work in any tightly confining trap geome
try, but when used in a lattice will produce a random pattern of vacant 
and occupied sites. Sparse, random filling may suffice for ensemble-based 
investigations of quantum logic,̂ ^^^ but falls short of the requirements of 
full-scale lattice-based QIP. 

Better filling and initialization can be achieved by loading a 3-D 
lattice from a high-density Bose-Einstein condensate and driving the 
atom/lattice through a superfluid to Mott insulator phase transition.^^^^ 
The group of Bloch and Hansch at MPQ in Munich used this approach as 
a starting point for a series of proof of principle experiments to estabhsh 
the viability of the Jaksch etal. collisional protocol.^^^^ As the first step, 
Greiner etal successfully demonstrated the transition to an "insulator" 
phase consisting of individual ^^Rb atoms localized in the ground state 
of separate potential wells.̂ ^^^ Mandel etal. then explored spin-dependent 
coherent transport in the context of interferometry.^^^^ This was done by 
preparing atoms in the logical-10) state, transferring them to an equal 
superposition of the states |0) and |1> with a microwave :7r/2-pulse, and 
"spHtting" them into two wavepackets by rotating the laser polariza
tion vectors. The "which way information" was then erased with a final 
7r/2-pulse and the atoms released from the lattice, allowing the separated 
wavepackets of each atom to overlap and interfere as in a two-slit experi
ment. Inhomogeneities across the ensemble were at least partially removed 
through a spin-€cho procedure using additional jr-pulses. In this fashion, 
the experiment achieved fringe visibilities of 60% for separations of three 
lattice sites, limited by quantum phase-errors induced by magnetic field 
noise, vibrational heating and residual inhomogeneities. Finally, Mandel 
et al. performed a many-body version of this experiment in a nearly filled 
lattice,̂ ^^^ where the majority of atoms underwent collisional interactions 
with their neighbors according to the Jaksch etal protocol. For appropri
ate collision-induced phase shifts this will lead to the formation of chains 
of entangled atoms, which cannot then be disentangled again by "local" 
operations such as the final 7r/2-pulse. In the experiment, a periodic dis
appearance and reappearance of interferometer fringe visibility was clearly 
observed as a function of interaction time and corresponding degree of 
entanglement. Technical limitations, in particular the inability to perform 
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single qubit measurements, have so far made it difficult to obtain quan
titative estimates for the size and degree of entanglement of these cluster 
states, or to extract the fidelity of the underlying CPhase interaction. 

The experiments just described are essentially multiparticle interfer-
ometry, and illustrate how proof-of-principle and optimization of a gate 
protocol can be achieved with ensemble measurements. To proceed toward 
universal QIP it will be necessary to develop an ability to manipulate and 
read out the state of individual atomic qubits. In principle this can be 
accomplished by performing single-qubit rotations with focused Raman 
beams rather than microwave fields, and single-qubit readout with focused 
excitation beams and/or high-resolution fluorescence imaging. However, 
the necessary optical resolving power will be nearly impossible to achieve 
in current lattices whose sites are separated by roughly 0.5/xm. There are 
several possible ways around this problem: the lattice can be formed by a 
CO2 laser so individual sites are 5/xm apart and resolvable with a good 
optical microscope,̂ ^^^ or a conventional lattice can be loaded with a pat
tern where atoms occupy only every nth well.̂ ^̂ ^ Alternatively, one might 
use other trapping geometries, such as arrays of very tightly focused opti
cal tweezers-type traps. Schlosser etal. has shown that a few such traps 
can be formed in the focal plane of a single high-NA lens, and that 
the trap lens can be used at the same time to achieve spatially resolved 
detection of fluorescence.^^^^ This work used the abiUty to detect single 
atoms, in combination with a phenomenon known as "coUisional block
ade", to load individual traps with exactly one atom each. Much larger 
arrays of such traps have been demonstrated using microfabricated arrays 
of high-NA microlenses,̂ ^^^ but this approach has yet to demonstrate the 
loading and detection of one atom per trap. 

3. LESSONS LEARNED AND FUTURE RESEARCH 

The seminal experiments by the Munich group have demonstrated the 
feasibihty of coherent spin transport and entanglement via controlled col-
Hsions, but also served to highlight some of the fundamental limitations 
of the particular protocol employed. To implement high-fidelity coUisional 
gates one must achieve a spin-dependent phase shift, while at the same 
time restrict the interaction to a single coUisional channel so as to prevent 
scattering outside the computational basis. Jaksch etal. accomplished this 
with their stretched-state encoding, but at the cost of being maximally sen
sitive to magnetic field- and trap noise which was already a limiting fac
tor in the Munich experiments. Moreover, in a filled lattice the protocol 
leads to large entangled chains rather than the isolated two-qubit interac
tions required in the standard quantum circuit model. 
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It is of course conceivable that one might switch between-noise pro
tected encodings and encodings suitable for colHsions during the course of 
a computation, but such an approach would be cumbersome. Our group 
is now exploring an alternative, by developing new methods to accurately 
control collisions between cold atoms in tight traps. As in the original 
proposal by Brennen etal, we consider logical basis states |0> = |F+, mp) 
and |1) = |F_, —rriF) for which Zeeman and AC Stark shifts are close to 
identical. With such encodings the logical states move on identical optical 
potentials and are never split into separated wavepackets. This provides 
excellent immunity against noise, but at a cost: in a two-qubit interac
tion all four logical states interact. The challenge is then to engineer a 
collision to produce a non-separable phase shift without inelastic scat
tering. The possibilities of coherent control by directly manipulating the 
center-of-mass wave packets for atoms in tight traps offer new avenues 
to reach this goal. A particularly promising approach is to consider reso
nant interactions between atoms in spatially separated traps that can then 
be used to pick out and strengthen a single elastic channel and suppress 
off-resonance inelastic processes. 

Stock etal have studied the resonant interaction that occurs when 
a molecular-bound state is AC Stark shifted into resonance with a 
center-of-mass vibrational state of the two-atom system.̂ ^̂ ^ These "trap-
induced shape resonances" show up as avoided crossings in the energy 
spectrum as a function of the trap separation, as shown in Fig. 2. The 
energy gaps indicate the strength of the resonance and become substan
tial when the scattering length associated with the collision is on the order 
of the trapped wave packet's width. At this point, the two-atom inter
action energy is a non-negligible fraction of the vibrational energy. The 
Munich experiments used ^^Rb atoms for which the relevant scattering 
length is ~100 ao, and a shallow lattice potential where the trapped wave 
packet width was -̂ 1200 ao, resulting in a negligible energy gap of order 

we choose to work instead of ^̂ ^Cs, the relevant scattering 
length Hes in the range from 280 ao to 2400 ao. which is comparable to the 
^̂ 200 ao wave packet width in a moderately deep lattice. In this case, the 
trap-induced shape resonance will be significant, and should provide a new 
and flexible mechanism for designing quantum logic protocols. Additional 
flexibility and control can in principle be introduced by tuning the scatter
ing length via optically or magnetically induced Feshbach resonances, as 
demonstrated in several BEC experiments.̂ -̂̂ ^ 

The Jaksch etal. proposal and Munich experiments together pro
vide proof-of-principle that the most important components of QIP can 
be achieved with trapped neutral atoms, but are still far from a full 
quantum computer architecture. Spin-dependent trapping forces are at the 
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Fig. 2. (a) Sum of the harmonic trapping potential and chemical-binding potential (gray 
line), as a function of the relative coordinate r along a line through the two trap minima. 
The trap eigenstate can become resonant with a molecular-bound state at a critical separa
tion Azres- (b) The energy spectrum as a function of separation between traps Az (in units of 
the trap ground state width zo) shows the energy shift of the molecular-bound state due to 
the harmonic trapping potential and the avoided crossings associated with the trap-induced 
resonance. 

heart of the protocol, and the trap detuning therefore can be at most 
comparable to the excited state fine structure. The resulting photon scat
tering ultimately leads to motional heating, decoherence, and even the 
occasional loss of an atom. It is, therefore, necessary to explore mecha
nisms for re-cooling and replacing atoms, and to provide a supply of fresh 
ancilla atoms as required for error correction. Most importantly, trapping 
architectures must be developed that allow efficient, programmable trans
port and qubit interaction, along with individual qubit manipulation and 
readout. Long-period or pattern loaded̂ ^̂ ^ lattices or arrays of tweezers 
traps are one step in this direction, as is recent work on microwave spec
troscopy in micro-magnetic traps.̂ ^̂ ^ Protocols based on Rydberg atoms 
provide additional freedom to design a workable QIP architecture.̂ ^^^ 
Because of the longer range of the interaction there is in principle no need 
for spin-dependent transport, and trap fields can therefore be detuned 
much further from resonance. This should effectively remove one impor
tant source of heating and decoherence. However, the approach raises new 
challenges related to the coherent control of Rydberg atoms, e.g. accurate 
and highly coherent TT-pulses between ground and Rydberg levels. Rydberg 
atoms are also highly susceptible to background DC and AC electric fields, 
as well as to spontaneous decay and perturbation by thermal blackbody 
radiation. 

As the Review and Discussion in this article illustrates, both the 
details and overall architecture of a hypothetical neutral atom quantum 
processor continues to evolve. Every known approach involves tradeoffs 
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between conflicting requirements, and much additional research is required 
before we can hope to identify a winning strategy. In addition, new 
paradigms are being developed, inspired by the physical constraints of 
the particular implementations under study. An excellent example is the 
"one-way quantum computer" of Raussendorf and Briegel, in which the 
type of cluster states generated in the Munich experiments become a 
resource for computation rather than a liability.̂ ^̂  Whether this proto
col can be made fault-tolerant is a subject of continued research. Indeed, 
fault tolerance is the ultimate goal of any QIP implementation, and it will 
eventually be necessary to consider in detail how it might be achieved in 
the context of concrete logic protocols and architectures. Optical lattices 
and similar traps that allow blocks of physical qubits to be encoded and 
manipulated in parallel provide an attractive architecture for error cor
rection. More speculatively, error correction based on topological codes 
might be implemented in a lattice geometrŷ -̂ ^̂  and lead to a very robust 
fault-tolerant architecture. Which, if any of these ideas ultimately turn out 
to be practical remains to be seen. Clearly, information is still physical. 
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The Road to a Silicon Quantum Computer 

J. R. Tuckeri'3 and T.-C. Shen^ 

We discuss prospects for building a silicon-based quantum computer with phos
phorous donor qubits. A specific architecture is proposed for initial demonstra
tions; and the advantages and difficulties of this approach are described along 
with a plan for systematic development and calibration of the individual 
components. 

KEY WORDS: Qubits; quantum computer; phosphorous donors; STM hthog-
raphy. 

PACS: 73.21.-b; 73.23.Hk; 81.16.-c; 85.35.-p; 85.40.Ry. 

1. INTRODUCTION 

Phosphorous donors in silicon present a unique opportunity for solid-state 
quantum computation.^^^ Electrons spins on isolated Si:P donors have very 
long decoherence times of ^^60 ms in isotopically purified ^^Si at 7K.̂ ^^ 
By contrast, electron spin dephasing times in GaAs are orders-of-magni-
tude shorter due spin-orbit interaction; and the background nuclear spins 
of the III-V host lattice cannot be eliminated by isotope selection. Finally, 
the Si:P donor is a self-confined, perfectly uniform single-electron quan
tum dot with a non-degenerate ground state. A strong Coulomb potential 
breaks the 6-valley degeneracy of the silicon conduction band near the 
donor site, yielding a substantial energy gap of ~15 meV to the lowest 
excited state^^^ as required for quantum computation. 
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Kane's original proposal^^^ envisions encoding quantum information 
onto the nuclear spin 1/2 states of ^^P qubits in a spinless / = 0 ^^Si lat
tice. Nuclear spin relaxation times for P donors are extremely long when 
the electron spin is polarized, many hours at LHe temperature and far 
longer below. The Kane architecture employs an array of top-gates to 
manipulate the ground state wavefunctions of the spin-polarized electrons 
at each donor site in a high magnetic field B ^2 T, at very low temperature 
r^ lOO mK. "^-gates" above each donor tune single-qubit NMR rotations 
via the contact hyperfine interaction; and "/-gates" between them induce 
an indirect two-qubit nuclear exchange interaction via overlap of the spin-
polarized electron wavefunctions. Although the nuclear spin offers unlim
ited decoherence times for quantum information processing, the technical 
problems of dealing with nuclear spins through the electrons are exceedingly 
difficult. A modified version of the Kane architecture was soon proposed 
using the spin of the P donor electron as the qubit.̂ "*̂  In this scheme, A-
gates would modulate the electron's g-factor by polarizing its ground state 
into Ge-rich regions of a SiGe heterostructure for selective ESR rotations, 
while two-qubit electron exchange is induced through wavefunction overlap. 

At its inception, the most difficult challenge to realizing Kane's pro
posal was thought to be the positioning of P donors into silicon with atomic 
accuracy. By coincidence, we published a process for doing this only a few 
weeks later.̂ ^^ Previous work had shown that the low-energy electron beam 
of a scanning tunneling microscope (STM) could be used to remove hydro
gen from H-terminated silicon surfaces with atomic precision.^^^ By dosing 
the resulting pattern with phosphine gas, individual PH3 precursor mole
cules can be selectively adsorbed onto the STM-exposed dangling bonds, fol
lowed by low-temperature silicon overgrowth to incorporate the P atoms as 
activated donors. Over the last three years, both our group and the Austra
lian Centre for Quantum Computer Technology have been actively engaged 
in implementing these techniques as the 'bottom-up' route to a silicon quan
tum computer. Thus far, linear arrays of individual PH3 precursor molecules 
have been accurately positioned onto hydrogen-terminated Si(l 0 0)-2 x 1 
surfaces,̂ ^^ and their P atoms incorporated into the surface crystal structure 
via low-temperature anneal.^^^ Ultra-low-temperature silicon overgrowth has 
also been developed by fabricating unpatterned P 5-layers from self-ordered 
PH3 molecular precursors.^^-^^^ The saturated surface yields an ultra-dense 
2D electron gas with a carrier density of ^1.5 x 10^^ cm~^, corresponding to 
full activation of a -^IMML PH3 adlayer. Magnetoresistance measurements 
show metallic conductivity of ~ 1-2 k^/sq., and 2D weak-localization effects 
with an electron phase coherence (Thouless) length L^ ^ 150 nm.̂ ^ '̂̂ ^^ Close 
agreement of results between two groups indicates a robust, high quality 
process. 
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All of the techniques needed to place P qubits into silicon are now in 
place. To realize a silicon quantum computer (Si QC), P donors must be 
integrated with: (1) single-electron transistors (SETs) to perform spin-to-
charge state readout and (2) top-gate arrays for accurate control of bound 
electron wavefunctions and nearest-neighbor exchange. Both of these tasks 
are very difficult. Here, we will outline an approach based on independent 
development and scaUng of these two major components prior to combin
ing them into a working prototype, as in conventional integrated circuits. 

2. THE 3-SPIN "UNIVERSAL EXCHANGE"QUBIT 

The choice of architecture will be crucial to a first demonstration of 
Si QC. DiVincenzo et alS^^^ have shown that the nearest-neighbor Hei-
senberg exchange can be universal for composite 3-spin qubits; and this 
appears to offer the simplest possible implementation. Figure 1 illustrates 
a 3-donor qubit with logic states encoded onto the 5=1/2, 52 = 1/2 sub-
space of the bound electrons. Logic zero is represented by spins 1 and 
2 in the singlet state 5, and spin 3 up. Logic one is a linear combina
tion of triplet states r+ and JQ for spins 1 and 2, with spin 3 down and 
up, respectively, that preserves the overall spin quantum numbers. Initial
izing to logic zero is achieved by cooling the system in a large magnetic 
field to polarize spin 3, while inducing an even greater exchange coupling, 
înitial >2/XB^;^^B^, between spins 1 and 2 to produce the equilibrium 

spin singlet. Typical parameters for 10~^ initialization error at T = 
100 mK are 5- - 1 T and înitial ^ 200/xeV. In this electron-spin qubit, the 
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Fig. 1. Sketch for a composite 3-spin "universal exchange" qubit of Si:P donors in a Kane-
type architecture with the integrated SET readout. A strained Si quantum well on relaxed 
SiGe prevents ionization of the donors during gate operations. 
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hyperfine interaction with ^^P nuclei is suppressed by the large magnetic 
field, adding only a rapidly oscillating spin-flip component of order ^^10"^ 
to electron wavefunctions outside the encoded subspace. 

One-qubit operations are implemented with the nearest-neighbor 
exchange in four or fewer steps, eHminating the need for gated ESR 
rotations. The two-qubit CNOT operation can also be performed by 
the nearest-neighbor exchange within a ID array, in 19 steps/^^^ This 
large overhead for "universal exchange" may not be optimal for a large-
scale quantum computer, but the internal structure of the 3-spin qubit is 
uniquely suited to an initial demonstration. 

As indicated in Fig. 1, this adaptation to the Kane architecture 
employs A-gates over each donor site in addition to the /-gates between 
nearest neighbors. Although this is an exchange-only qubit, calculations 
of the potential landscape show that both sets of gates are needed to 
span the required range of /-coupling. During entanglement operations, 
the programmed exchange energy sets a time scale for the gate pulses: 

h 4 x l 0 - ^ s 
2̂:r = 7 ^ - 7 7 — 7 7 - . (1) 

Assuming that gate response can be tailored on a ^ 10 ps scale, a 
fidelity standard of 10~^ would require exchange energies of '^ 10 neV 
in order to lengthen gate pulses into the -^0.1 /xs range. On the other 
hand, controlling the magnitude of exchange at the -^10 neV level is likely 
to be problematic, keeping in mind that k^T ^%.6 /xeV at T = 100 mK 
(not to mention voltage noise on the gates!). Initial plans call for a larger 
'on-state' exchange energy in the range /on'^ 0.1-1 /xeV, implying a pulse 
length fidelity of ^ 10~^ sufficient for testing basic entanglement opera
tions. The 'off-state' coupling will need to be JQ^^\Q~^^ eV or less. 

Including the initialization requirement /initial ^ 200 iioW, the electron 
exchange energy must be controlled over at least eight orders-of-magni-
tude. A complete set of potential calculations has recently been carried 
out for the 3-donor, 7-gate array shown in Fig. 1, employing realistic SiGe 
heterolayer structures and gate parameters.^ ̂ ^̂  Combined with our previ
ously published simulations of P donor exchange in an applied parabolic 
potential,^ ̂ ^̂  these results indicate that the structure in Fig. 1 should have 
all of the capabilities needed to initialize logic 0, transform the spin entan
glement to logic 1, and read out the result. Similar calculations also show 
that individual electrons can be transferred to empty neighboring sites, 
carrying quantum information around a larger array 

The most important property of the 3-spin qubit is the ability 
to perform a detailed caHbration before attempting high-frequency gate 



The Road to a Silicon Quantum Computer 109 

operations. An integrated SET is included for singlet/triplet readout on 
electrons 1 and 2, via gate-induced charge transfer in the spin singlet state. 
The exchange energy J\2 can thus be measured inside the qubit for the 
"on" configuration of gate voltages that couples electrons 1 and 2 and 
isolates electron 3. Readout is accomplished by rapidly adjusting the gate 
voltages to apply a potential difference between coupled donors 1 and 2 
on a time scale fast compared to the electron spin lifetime. Our simu
lations show a sharp threshold for spin-singlet charge transfer into the 
doubly- occupied D~ state at a potential difference roughly equal to the 
on-site repulsion f /~42 meV for P donors in the Hubbard model.̂ ^^^ 
The spin-triplet remains unpolarized until ionization takes place at ~20% 
higher potential difference, providing a well-defined window for spin-state 
readout. By reinstating the 'on' gate voltages and slowly ramping the 
magnetic field between measurements, the equilibrium singlet/triplet cross
over can be identified at ^cr = Ju/^f^B yielding a direct experimental 
measurement of exchange energy. The J23 parameter space could also be 
characterized by repositioning the SET to monitor charge on donor 2. 
By comparing data of this type with simulations of the gate operations, 
it should be possible to produce a fully caHbrated 3-spin qubit ready for 
high-frequency entanglement. 

3. SET SPIN-STATE READOUT 

The planar SET shown in Fig. 1 can be patterned into the P 
5-layer by STM along with the individual P donor qubits, in the same 
lithographic step.̂ '̂̂ ^^ The entire SET structure—source, drain, Cou
lomb island and capacitive gate—is comprised of ultra-dense 2D metallic 
regions grown into the siHcon crystal from PH3 molecules at saturation 
coverage. The gaps between these metallic areas serve as planar tunnel 
junctions, with a maximum built-in potential comparable to the ~44 meV 
binding energy of an isolated P donor. The ^ 8 nm width of the tunnel 
junctions is dictated by the relatively large Bohr radius, a^ ^^2.5 nm, of 
the P donor ground state—large enough to permit modulation of tunnel 
barriers with a top-gate. Recently, we fabricated our first electrical device 
between pre-implanted contacts in the form of an Aharonov-Bohm ring 
to demonstrate electron wave interference across a ~50 nm diameter.^^^^ 
The AustraHan Centre has now applied ex situ contacts to a 90 nm-wide 
STM-patterned line, and demonstrated the sharp 2D to ID crossover in 
magnetoresistance.^^^^ We believe that an integrated SET will be essential 
to development of Si QC, and efforts to realize it are currently under
way. 
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Fig. 2. Sketch for a planar implementation of singlet/triplet-spin-state readout. 

Figure 2 illustrates a planar circuit for developing singlet/triplet state 
detection without top-gates. Here, the P-donor SET is combined with a 
focused-ion beam (FIB) counter electrode. Two individual P "qubits" are 
separated by 1 0 « B ^ 25 nm and positioned at a distance of '̂ lOO nm from 
the SET in the same lithographic step. Because the pre-implanted Ga+ 
FIB line is p-type, a large built-in electric field will be generated along the 
axis of the P-donor "molecule" in the direction of the ultra-dense n-type 
SET. The magnitude of this field is '^ 1.3 x 10^ V/cm for a total separa
tion of '--SOO nm, close to our theoretical estimate for the critical field, 
^crit'^ 1-5 X 10^ V/cm, needed to induce singlet-state charge transfer into 
the D~ configuration at IO^B donor separation.^^^^ Relatively small volt
ages can then be applied to the FIB line to induce reversible polarization 
in the equiUbrium singlet state at magnetic fields below J/2 /XR, and no 
polarization in the triplet state above, yielding an experimental value for 
exchange energy. 

The absence of amorphous tunnel barriers in the P-donor SET can 
be expected to eliminate the large "telegraph noise" seen in conventional 
SETs as a series of random discrete changes in the voltage threshold of the 
Coulomb blockade.^^^^ This enhanced stability, and greatly reduced 1 / / 
noise, should make it possible to develop spin-state detection in a simpH-
fied planar circuit, and then use that capability to calibrate the exchange 
interactions inside a Si QC prototype. 

4. DEVELOPING TOP-GATES 

Gate arrays of ^^15 nm pitch are needed to control the potential 
at each donor site and the exchange coupling between them. Fabrication 
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.1 ^ VB VG VB 

Fig. 3. Sketch for one section of a "single-electron pump" with ultra-dense P-donor islands 
for scaling gate pitch and registration down to single P qubits. 

techniques for doubling a larger pitch defined by e-beam Hthography into 
the ^^15 nm range are currently under development; but the gates must 
also be registered to the underlying P donor qubits with ~2 nm accuracy. 
For the anticipated exchange energies /on ^0.1-1 /xeV, operating frequen
cies will be in the ~ 100 MHz range: 

- ^ 2 4 0 MHzxi( /xeV). (2) 
h 

In that case, an initial fidehty standard of -̂̂ 10"^ will require a well-
characterized gate response at ^100 GHz. This combined set of require
ments for gate dimensions, registration, and frequency is unlikely to be 
realized in entanglement experiments on qubit arrays, since this is an 
all-or-nothing proposition. 

A systematic strategy for gate development can be implemented, how
ever, by employing metallic P donor islands as the elements of a charge-
coupled device (CCD) array. In this approach, a series of Coulomb islands 
would be inserted into an STM-patterned line, each coupled to its nearest 
neighbors by a planar tunnel junction. At first, the islands would contain 
large numbers of donors in the form of an ultra-dense metalHc 'quantum 
dot'. Figure 3 illustrates the smallest such unit, a 3-gate array to control 
both tunnel barriers and the dot potential for one island. As control is 
estabUshed over single-electron transport through a series of these struc
tures, both islands and gates would be scaled continuously toward single 
P qubits. The frequency response of the gate arrays can also be tested at 
each stage. The final goal here is a 7-gate "single-electron pump"^^^^ that 
can control current flow through three P donor islands—the same config
uration as the 3-spin qubit. 
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5. CONCLUSION 

Most of the processes needed to fabricate a 3-spin "universal exchange" 
qubit with Si:P donors have been separately demonstrated. Integrating 
them will be difficult, but strategies are available for systematic develop
ment and testing of the individual components. Hurdles include registra
tion of gates to P-donor qubits, the quality of ultra-thin gate dielectrics, 
and the material perfection of SiGe heterolayers; but there appear to be 
no show-stoppers in fabrication. High-frequency entanglement operations 
will entail additional issues of measurement, refocusing, and control. 

In spite of these difficulties, it is important to appreciate the intrin
sic ~60 ms electron spin dephasing time in the Si:P system and its poten
tial for large scale integration. The non-degenerate P-donor ground state is 
large enough to permit electronic control, but small enough to yield level 
spHttings that prevent state mixing. Deforming these very robust wave-
functions and coupling them to the nearest neighbors can realize all of 
the basic operations of quantum information processing. The same set of 
gates can move this quantum information along linear arrays, providing 
the basis for a scalable architecture. 

Finally, a siHcon-based quantum computer can have the tremendous 
advantage of on-chip MOS control circuits. A tunneling MOS transistor 
with metal silicide source/drain has been proposed and demonstrated at 
^25 nm gate length by one of us,̂ ^̂ '̂ ^̂  and refined to ^̂ 20 nmx25 nm 
overall dimensions by a University of California Berkeley, group.̂ ^̂ ^ These 
tunneling transistors can operate at T = 0 as well as at room temperature; 
and they can be integrated with gates and P-donor SETs in a low-tem
perature process. The potential for large-scale Si QC is unparalleled in the 
soHd state, if it can be realized. 

ACKNOWLEDGMENTS 

The authors wish to thank the following colleagues who have made 
important contributions to our joint efforts: Y.-C. Chang, M. Feng, 
R.-R. Du, M. A. Zudov, J. S. Kline, S. J. Robinson, R. Chan, J.-Y. Ji, 
A. Fang, and J. C. Kim. This work is based on research supported 
by the DARPA QuIST Program under Contract No. DAAD19-01-1-
0324 and the U.S. National Science Foundation under ITR Grant EIA-
01-21568. 



The Road to a Silicon Quantum Computer 113 

REFERENCES 

1. B. E. Kane, Nature 393, 133 (1998). 
2. A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, Phys. Rev. B 68, 

193207 (2003). 
3. D. K. Wilson and G. Feher, Phys. Rev. 124, 1068 (1961). 
4. R. Vrijen, E. Yablonovitch, K. Wang, H. W Jiang, A. Balandin, V. Roychowdhury, 

T. Mor, and D. DiVincenzo, Phys. Rev. A 62, 12306 (2000). 
5. J. R. Tucker and T.-C. Shen, Solid State Electronics 42, 1061 (1998). 
6. T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W Lyding, Ph. Avouris, and R. E. 

Walkup, Science 268, 1590 (1995). 
7. J. L. O'Brien, S. R. Schofield, M. Y. Simmons, R. G Clark, A. S. Dzurak, N. J. Cur-

son, B. E. Kane, N. S. McAlpine, M. E. Hawley, and G W. Brown, Phys. Rev. B 64, 
161401(R) (2001). 

8. S. R. Schofield, N. J. Curson, M. Y. Simmons, F. J. RueB, T. Hallam, L. Overbeck, and 
R. G Clark, Phys. Rev Lett. 91, (2003). 

9. T.-C. Shen, J.-Y. Ji, M. A. Zudov, R.-R. Du, J. S. Kline, and J. R. Tucker, Appl. Phys. 
Lett. 80, 1580 (2002). 

10. L. Overbeck, N. J. Curson, M. Y. Simmons, R. Brenner, A. R. Hamilton, S. R. Schofield, 
and R. G Clark, Appl Phys. Lett. 81, 3197 (2002). 

11. M. A. Zudov, C. L. Yang, R. R. Du, T.-C. Shen, J.-Y. Ji, J. S. Kline, and J. R. Tucker, 
http://arXiv.org/abs/cond-mat/0305482. 

12. E J. RueB, L. Oberbeck, M. Y Simmons, K. E. J Goh, A. R. Hamilton, T. Hallam, 
N. J. Curson, and R. G Clark (unpublished). 

13. D. R DiVincenzo, D. Bacon, J. Kempe, G Burkard, and K. B. Whaley, Nature 408, 339 
(2000). 

14. Y-C. Chang and J. R. Tucker (unpublished). 
15. A. Fang, Y C. Chang, and J. R. Tucker, Phys. Rev. B 66, 155331 (2002). 
16. J. R. Tucker and T.-C. Shen, Int. J. Circuit Theory and Appl. 28, 553 (2000). 
17. J. R. Tucker and T.-C. Shen, Ext. Abstracts of the 2nd Int. Workshop on Quantum Dots 

for Quantum Computing, University of Notre Dame, August 2003, pp. 44-45. 
18. N. M. Zimmerman, W H. Huber, A. Fujiwara, and Y Takahashi, Appl. Phys. Lett. 79, 

2188 (2001). 
19. H. Pothier, R Lafarge, R F Orfila, C. Urbina, D. Esteve, and M. H. Devoret, Physica B 

169, 1598 (1991). 
20. J. R. Tucker, C. Wang, and R S. Carney, Appl. Phys. Lett. 65, 618 (1994). 
21. C. Wang, J. R Snyder, and J. R. Tucker, Appl. Phys. Lett. 74, 1174 (1999). • 
22. J. Kedzierski, R Xuan, V. Subramanian, E. Anderson, J. Bokor, T.-J. King, and C. Hu, 

lEDM (2000). 



Controlling Spin Qubits in Quantum Dots 

Hans-Andreas Engel,̂  L. P. Kouwenhoven,̂  Daniel Losŝ  
and C. M. Marcuŝ  

We review progress on the spintronics proposal for quantum computing where 
the quantum bits (qubits) are implemented with electron spins. We calculate the 
exchange interaction of coupled quantum dots and present experiments, where 
the exchange coupling is measured via transport. Then, experiments on single 
spins on dots are described, where long spin relaxation times, on the order of a 
millisecond, are observed. We consider spin-orbit interaction as sources of spin de-
coherence and find theoretically that also long decoherence times are expected. 
Further, we describe the concept of spin filtering using quantum dots and show 
data of successful experiments. We also show an implementation of a read out 
scheme for spin qubits and define how qubits can be measured with high preci
sion. Then, we propose new experiments, where the spin decoherence time and the 
Rabi oscillations of single electrons can be measured via charge transport through 
quantum dots. Finally, all these achievements have promising applications both in 
conventional and quantum information processing. 

KEY WORDS: Spin qubits; coupled quantum dots; spin filter; spin read out. 

PACS: 03.67.Lx; 03.67.Mn; 73.23.Hk; 85.35.Be. 

1. INTRODUCTION 

The spin degree of freedom promises many applications in electronics/^"^^ 
Prominent experiments have shown injection of spin-polarized currents 
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into semiconductor material/^'^^ long spin dephasing times in semicon
ductors (approaching microseconds)/^^ ultrafast coherent spin manipula
tion/^^ as well as phase-coherent spin transport over distances of up to 
100/xm/^^ Irrespective of spin, the charge of the electrons can be used 
to control single electrons by confining them in quantum dot structures, 
which leads to striking effects in the Coulomb blockade regime/^^ The 
Loss and DiVincenzo proposal^^^ combines these two fields of research 
and uses the spin of electrons confined on quantum dots as spin qubits for 
quantum computation. This proposal comprises two-qubit quantum gates 
relying on the exchange interaction of coupled quantum dots and com
prises spin-to-charge conversion for efficient read-out schemes, satisfying 
all theoretical requirements for quantum computing. This quantum com
puter proposal, based on exchange interaction, can be mapped from elec
tron spins on dots to nuclear spins of P atoms in Si, as shown by Kane^^^^ 
(see article in this issue). 

The spin qubit proposal^^^ addresses the central issues for building 
a quantum computer. However, for a concrete implementation of spin 
qubits, a more detailed theoretical and experimental understanding of 
spins on quantum dots is required. This demand has led to many new 
theoretical and experimental investigations on quantum dots, which also 
address interesting aspects of physics on their own. In this article we will 
review some of these recent results. 

1.1. Quantum Dots 

In this article we consider semiconductor quantum dots. These are 
structures where charge carriers are confined in all three spatial dimen
sions. The dot size, typically between lOnm and 1 /xm,̂ ^̂  is on the order of 
the Fermi wavelength in the host material. The confinement of the quan
tum dots is usually achieved by electrical gating of a two-dimensional elec
tron gas (2DEG), possibly combined with etching techniques, see Figs. 1, 
2(a), and 5(b). Small dots have charging energies in the meV range, result
ing in quantization of charge on the dot (Coulomb blockade). This allows 
precise control of the number of electrons and of the spin ground state 
on the dot. Such a control of the number of electrons in the conduction 
band of a quantum dot (starting from zero) has been achieved with GaAs 
heterostructures, e.g., for vertical dots^^^^ and lateral dots.̂ ^ '̂̂ ^^ Quan
tum dots have various tunable parameters. These include geometry, energy 
spectrum, coupling between dots, etc. which open up many possibilities by 
providing a versatile system for manipulation of electronic states, in par
ticular the spin state. Further, the electronic dot-orbitals are highly sensi
tive to external magnetic and electric fields,^^'^^^ since the magnetic length 
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' back gates magnetized or heterostructure 
high-g layer quantum well 

Fig. 1. An array of quantum dots (circles) is defined by gate electrodes (dark gray) which 
confine the electrons. For spin manipulations, electrons can be moved by changing the gate 
voltage, pushing the electron wave function into the magnetized or high-^ layer, allowing for 
spatially varying Zeeman splittings. Alternatively, local magnetic fields can be achieved by a 
current-carrying wire (indicated on the left of the dot array). Then, the electron in each dot 
is subject to a distinct Zeeman splitting. This can be used for one-qubit gates, since only 
relative spin rotations are sufficient. Further, the spins can be addressed individually with 
ESR pulses of an oscillating in-plane magnetic field which is in resonance with a particu
lar Zeeman splitting. These mechanisms allow single-spin rotations in different spatial direc
tions. For gate operations on two qubit spins, their exchange coupling can be controlled by 
lowering the tunnel barrier between the dots (see Sec. 2). Here, the two rightmost dots are 
drawn schematically as tunnel-coupled. Note that only electrical switching is required to con
trol spin dynamics and quantum computation with such a device. 

corresponding to fields of 5 ^ 1T is comparable to typical dot sizes. In 
coupled quantum dots, Coulomb blockade effects/̂ "̂ ^ tunneling between 
neighboring dots/̂ '̂ "̂ '̂ ^^ and magnetization^^^^ have been observed as well 
as the formation of a delocalized single-particle statê '̂̂ '̂ ^̂  and coherent 
charge oscillations/^^^ 

1.2. Quantum Computing with Spin Qubits 

The interest in quantum computing^^ '̂̂ ^^ derives from the hope to 
outperform classical computers using new quantum algorithms. These 
algorithms make use of the quantum computer's abiUties to exist in a 
quantum superpositions of its "binary" basis states |0---00>, |0-'-01), 
|0---10),..., and to perform unitary time evolutions f/|^in) == l^out) for 
computation. The basis states can be realized by concatenating several 
quantum bits (qubits) which are states in the Hilbert space spanned by 
|0) and |1). A natural candidate for the qubit is the electron spin because 
every spin 1/2 encodes exactly one qubit. Such spin qubits on quantum 
dots are good candidates for realizing a quantum computer.̂ ^^ We consider 
the five criteria of DiVincenzo's checklist̂ ^̂ ^ which must all be satisfied for 
any physical implementation of a quantum computer. We briefly discuss 
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(b) | 

Fig. 2. (a) Double dot structure with a single electron in each dot, shown as scanning 
electron micrograph of the metallic surface gates/'-^^ The circles indicate the two quantum 
dots and the arrows show the possible current paths. A bias voltage, VDOT , can be applied 
between source 2 and drain 1, leading to current through the dots. A bias voltage, VSDJ 
between source and drain / = 1, 2 yields a current, /QPC, through the corresponding QPC. (b) 
Charge stability diagram (honeycomb)^'^^ of the double quantum dot, measured with QPC-
R.̂ ^̂ ^ A modulation (0.3 mV at 17.77 Hz) is applied to gate L, and d/gpc/dVL is measured 
with a lock-in amplifier and plotted versus Vi and VPR. The bias voltages are VSD2 = 100/^V 
and VDOT = ^SDi = 0 . The inset shows a magnification of the honeycomb pattern for the first 
few electrons in the double dot. The labels "AZL^R" indicate the number of electrons in the 
left and right dot, and the double dot is completely empty in the region "00." 

that these criteria are satisfied for spins qubits/^'^^^ These criteria provides 
us with a good starting point for going into the details of concrete parts 
of the actual implementation of spin qubits. In the following sections we 
then show where specific theories and current experiments give new insight 
into the realization of spin qubits. 

(i) A scalable system with well characterized qubits is required. To 
speed up calculations using a quantum computer, one needs a large num
ber of qubits, i.e., on the order of 10^. This requirement is achievable for 
spin qubits, since producing arrays of quantum dots is feasible with state-
of-the-art techniques for defining nanostructures in semiconductors. Fur
ther, the electron's spin 1/2 provides a natural qubit, setting |0) = | t ) and 

(ii) The state of the qubits must be initialized to a known value at the 
beginning of a computation. To initialize spin qubits, one can apply a 
large magnetic field g^x^B^kT that allows them to relax to the thermal 
ground state. Alternatively, one can inject polarized electrons into the dot 
by using spin-polarizing materials '̂*'̂ ^ or by using a spin filter^^^^ which we 
describe in Sec. 4. 

(iii) Long decoherence times, much longer than the gate operation time, 
is the most difficult criterion to satisfy for many quantum computer 
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proposals. Here, the current knowledge about the spin qubits is very 
promising. Gate operation times well below one ns are in principle fea
sible. ̂ ^̂ ^ Using theoretical estimates and experimental data on spin flip 
times, the expected decoherence times can reach ms (see Sec. 3). Thus, the 
decoherence times could be eight orders of magnitude larger than the gate 
operation times. 

(iv) With a universal set of quantum gates, any quantum algorithm can 
be implemented by controlling a particular unitary evolution of the qubits. 
It is sufficient to have single-qubit gates and a universal two-qubit gate 
(e.g., xoR or square root of SWAP). Single qubit gates can be produced 
by controlHng the local magnetic field, the local g factor (or g tensor), 
or local Overhauser field, which, e.g., can be achieved with a semiconduc
tor heterostructure and electrical gating,^^ '̂̂ '̂̂ ^^ (see Fig. 1). To build two-
qubit gates, one can use the exchange interaction which arises when two 
neighboring dots are tunnel coupled, which can again be controlled via 
gate voltages. ̂ '̂̂ ^̂  We describe the exchange interaction of coupled dots in 
Sec. 2. 

(v) Qubit read out determines the result at the end of the computation 
by measuring specific qubits. There are several proposals for measuring the 
spin in quantum dots, most of them rely on transferring the information 
from the spin to the charge state,̂ ^^ e.g., by making use of the PauU prin
ciple, ̂ ^̂ '̂ '̂̂ ^̂  via the spin-orbit interaction,^^^^ or by making use of the 
Zeeman sphtting.^^^^ We discuss concrete read-out schemes for spin qubits 
in Sec. 5 and address experiments^^^^ where single-shot read out has been 
achieved. 

2. TWO COUPLED QUANTUM DOTS AS QUANTUM GATES 

We now consider a pair of spin qubits which aro coupled by the 
exchange interaction, which results from the combination o^ the Coulomb 
interaction and the Pauli exclusion principle. Two electrons in coupled 
quantum dots and in the absence of a magnetic field ha^e a spin-singlet 
ground state, while the first excited state in the presence gf sufficiently 
strong Coulomb repulsion is a spin triplet. Higher excited states are sep
arated from these two lowest states by an energy gap, given either by 
the Coulomb repulsion or the single-particle confinement. The low-energy 
dynamics of such a system is described by the effective Heisenberg spin 
Hamiltonian, 

Hs(0 = / ( 0 S i - S 2 , (1) 
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where 7(0 describes the exchange coupHng between the two spins Si and 
S2 and is given by the energy difference between the triplet and the sin
glet, J = ErQ- Es. After a pulse of J(t) with f^' dtJ(t)/h = n (mod 2n), 
the time evolution Uit) = T Qxp{i f^ H^(T)dT/h) corresponds to the SWAP 

operator Usw, whose application leads to an interchange of the two spin 
states. While L̂sw is not sufficient for quantum computation, any of its 

1 /2 
square roots, say L̂sw I0X> = (I0X>+^"lx0))/(l+0, turns out to be a uni
versal quantum gate. It can be used, together with single-qubit rotations, 
to assemble any quantum algorithm.^^^ 

We consider a system of two coupled quantum dots in a 2DEG, con
taining one (excess) electron each (see Fig. 2(a)). The dots are arranged 
in a plane such that the electrons can tunnel between the dots, lead
ing to an exchange interaction / between the two spins, which we now 
calculate. We model this system of coupled dots with the Hamiltonian 
^ = IZ/=i 2 ^ i + ^ + ^ z = ^orb + ^z- The single-electron dynamics in the 
2DEG (xy-plane) is defined with the Hamiltonian hi, containing the quar-
tic confinement potential 

2 

V{x,y) = —^ M-'-'i^^' (2) 

with inter-dot distance 2a, effective Bohr radius aB = y/h/ma)o, and effec
tive mass m. Separated dots ( a ^ a e ) are thus modeled as two harmonic 
wells with frequency COQ, consistent with experiments where the low-energy 
spectrum of single dots indicates a parabolic confinement.^^^^ A magnetic 
field B = (0, 0, B) is appHed along the z-axis, which couples to the elec
tron spins through the Zeeman interaction Hz and to the charges through 
the vector potential A(r) = (B/2)(—y, x, 0). In almost depleted regions, like 
few-electron quantum dots, the screening length X can be expected to be 
much larger than the screening length in bulk 2DEG regions (where it is 
40 nm for GaAs). Thus, for small quantum dots, say X > 2 a ^ 4 0 n m , we 
consider the bare Coulomb interaction C = e'^/K\r\ — r2|, where K is the 
static dielectric constant. 

Now we consider only the two lowest orbital eigenstates of Horh, leav
ing us with one symmetric (spin singlet) and one antisymmetric (spin trip
let) orbital state. The spin state for the singlet is |5) = (|t>|.) — | | t ) ) /V2? 
while the triplet spin states are |^o) = (lt^^) + | | t » / V 2 , |7̂ +) = l t t ) , and 
|r_) = | H ) . For kT<^hcoo, higher-lying states are frozen out and //orb 
can be replaced by the effective Heisenberg spin Hamiltonian (Eq. (1)). 
To calculate the triplet and singlet energies, we use the analogy between 
atoms and quantum dots and make use of variational methods similar to 
the ones in molecular physics. Using the Heitler-London ansatz with the 
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ground-State single-dot orbitals, we find/^^^ 

/ = 
sinh(2j2 2 ^ ) l 4 ^ ^ ^ 

(3) 

with zeroth order Bessel function /Q, dimensionless distance d = a/a^ 
between the dots, magnetic compression factor b = J\'\-a)^/(jL>^, and Lar-
mor frequency COL = eB/2mc. In Eq. (3), the first term arises from 
the confinement potential, while the terms proportional to the param
eter c = -yjn/lie^/Ka^)/h(jL>{) result from the Coulomb interaction C; the 
exchange term is recognized by its negative sign. We are mainly inter
ested in the weak coupling limit \J/h(o^\<^\, where the ground-state Hei-
tler-London ansatz is self-consistent. We plot J{B) (Eq. (3)) in Fig. 3(a) 
and observe the singlet-triplet crossing, where the sign of / changes from 
positive to negative (for the parameters chosen in Fig. 3(a) at 5 ^ 1 . 3 T ) . 
Finally, J is suppressed exponentially, a Qxip(—2d'^b), either by compres
sion of the electron orbitals through large magnetic fields (b > 1), or by 
large distances between the dots (J > 1), where in both cases the orbi
tal overlap of the states in the two dots is reduced. The Heitler-London 
result (Eq. (3)) was refined by taking higher levels and double occupancy 
of the dots into account (implemented in a Hund-MuUikan approach), 
which leads to quaHtatively similar results,̂ ^^^ in particular concerning the 
singlet-triplet crossing. These results have been confirmed by numerical 
calculations which take more single-particle levels into account.̂ -̂ ^^ 

A characterization of a double dot can be performed with trans
port measurements. We describe transport through a double quantum dot, 
using a master equation approach.̂ ^"^^ We calculate differential conduc
tance G = d//dysD as a function of the bias voltage VSD == A/x/e in the 
sequential tunneling and cotunnehng regime. We obtain the main peak of 
the Coulomb blockade diamond and its satelUte peaks. Since the posi
tions of these peaks are related to the interdot tunnel spHtting and to the 
singlet-triplet splitting 7, one can determine these values in a standard 
transport experiment. Further, our model can be checked independently, 
since we also predict which satellite peaks have positive or negative val
ues of G and since we describe structures inside the Coulomb blocked dia
monds which are due to a combined effect of cotunneling and sequential 
tunnehng.̂ -^^^ When we measure transport properties of a structure resem-
bhng a single dot, we observe features as would be expected for a double 
dot.̂ ^^^ This indicates that a double dot in formed within our structure. 
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Fig. 3. The exchange couphng J (sohd Hne) for GaAs quantum dots a function of the 
magnetic field B. (a) Theoretical prediction (Eq. (3)) for a double dot with confinement 
energy ^ = 3meV, inter-dot distance d = a/aB=0.1, and c = 2.42.̂ ^^^ For comparison, the 
short-range Hubbard result J=4t-^/U (dashed-dotted line) and the extended Hubbard result 
J ^At'^/U -\- V (dashed line) are plotted, (b) Experimentally observed exchange coupling J 
via transport measurements.^^^^ Although a single dot structure was used, the measurements 
show double dot features, indicating that a double dot is formed within the structure. The 
dependence on magnetic field B is in agreement with the theoretical predictions, in particu
lar, J can be tuned through zero near 5 = 1.3T, 

We can then extract the 5-dependent exchange coupHng from our data 
which again is in agreement with theoretical predictions for double dots 
(see Fig. 3(b)). That singlet-triplet crossings occur in single dots is estab-
Hshed experimentally.^^^^ 

In further experiments, we measured a double quantum dot with tun
able tunnel couplings. Spectroscopy of the double dot states was per
formed using a quantum point contact (QPC) as a local charge sensor. 
From the charge distribution on the double dot, we can deduce charge 
delocalization as a function of temperature and strength of tunnel cou
pHng. Conversely, we can measure the tunnel coupling t as function of the 
voltage applied on a gate in the coupling region. We find that the tun
neling coupling is tunable from t = 0 to 22 /xeV when the gate voltage is 
increased.^^^^ 

For few-electron quantum dots, the charging energies of a double 
quantum dot can be tuned such that there is only a single electron in each 
dot. The number of electrons on the dots can be controlled by simulta
neously measuring the charge distribution with a QPC charge sensor̂ ^^^ 
(see Fig. 2), or by measuring transport through the double dot.̂ ^^^ 



Controlling Spin Qubits 123 

3. SPIN RELAXATION 

The lifetime of an electron spin is described by the following two 
time scales. The (longitudinal) spin relaxation time T\ describes the time 
scale of a spin-flip process when the electron is aligned along the external 
magnetic field. The spin decoherence time T2 is the Ufetime of a coherent 
superposition Of I t ) + y6 II). Since quantum gate operations require coher
ence of the underlying qubits, they must be carried out on times shorter 
than T2. We note that T2<2Ti and typically even T2<^T\P^^ thus from 
the sole knowledge of T\, no lower bound for T2 can be deduced. There
fore, it is of interest to investigate the interactions leading to decoherence 
(as we do now) and to find ways of measuring the decoherence time T2 in 
an experiment (see Sec. 6). 

For spins on quantum dots, one possible source of spin relaxation 
and decoherence is spin-orbit interaction. Calculations show that phonon-
assisted spin-flip times^^ '̂̂ ^^ in quantum dots are unusually long. This is 
so because the spin-orbit coupling in two-dimensions (2D) is linear in 
momentum, both for Dresselhaus and Rashba contributions. Due to this 
linearity, the effective magnetic field due to spin-orbit fluctuates trans
versely to the external magnetic field (in leading order). This implies that 
T2 = 2T\ for spin-orbit interaction^^^^ and thus long decoherence times are 
expected. Another source of decoherence is the hyperfine coupHng between 
electron spin and nuclear spins in a quantum dot,̂ ^ '̂̂ '̂̂ ^^ since all nat
urally occurring Ga and As isotopes have a nuclear spin / = 3/2. It is 
known that such decoherence can be controlled by a large magnetic field 
or by polarizing the nuclear spins, i.e., by creating an Overhauser field.^^^^ 

The spin relaxation time T\ of single electron spins on quantum dots 
was measured in recent experiments. One way to assess T\ is to mea
sure transport through the dot while applying double-step pulses to the 
gate voltage of the dot. First, the dot is emptied and filled again with 
one electron with a random spin. Then, the electron is held in the dot 
during a time t\^. Finally, the gate voltage is tuned such that the elec
tron can tunnel out of the dot and contribute to a current, but only 
if it is in the excited spin state. Thus, the (time-averaged) current will 
be proportional to the probability of having an excited spin on the dot 
after time ^h; this probability decays on the time scale of T\. In these 
experiments, the limited current sensitivity puts an upper bound on ĥ-
Since T\ turned out to be longer than this bound, one was not able to 
measure T\. Still, it is possible to obtain a lower bound of for T\ and 
^100/xs was obtained for triplet to singlet transitions^^^^ and for N = \ 
Zeeman levels.̂ "̂ "̂ ^ Using a charge read-out device (see Sec. 5), single tun
neling events can be observed. This aflowed us to measure T\ directly 
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and T^^^ = lms was obtained at 5 = 8T /^^^ We now compare this value 
with theoretical predictions/"*^^ We assume a GaAs dot with Dresselhaus 
spin-orbit interaction H^o = p{—pxCJx-\- PyOy), with quantum well thick
ness d = 5 nm, and with lateral size quantization energy hco^ = 1.1 meV, 
corresponding to a Bohr radius aB = 32nm. The material parameters are 
the dielectric constant A: = 13.1, coupling constant of deformation poten
tial So = 6.7eV, piezoelectric constant /ii4= -0.16C/m^, sound velocity 
Sj for branch 7, namely 51 =4.73 x lO^cm/s and 52=^^3 = 3.35 x lO^cm/s, 
sample density Pc = 5.3 x lO^kg/m^, and effective mass m* = 0.067me. 
The remaining unknown parameter is the spin-orbit length Aso = ^/^*i^. 
It can be extracted from (independent) weak antilocalization measure-
ments/^^^ where Xso ̂  9 /xm was found. Taking the Zeeman splitting used 
in the measurement of T, ^, we obtain '̂̂ ^^ ri%Q^750/xs, with an error of 
50% due to the uncertainty of the value of the Zeeman splitting. There is 
some additional uncertainty on the value of A,so which depends on elec
tron density and growth of the sample. For example, we find Aso^ 17/xm 
in other samples,̂ ^^^ which would indicate a longer T\ time since T\ a 
A,|Q.^^^^ Within these uncertainties we find an agreement between experi
ments and theory, T^^"^ ^T^^^. Moreover, the predicted 5-dependence^^^^ 
of l/Ti agrees well with the experiment,^^^^ where a plateau is seen around 
J^'^ lOT. From this we can conclude that the spin-phonon mechanism is 
the dominant source for spin relaxation (and not hyperfine interaction). 
Since T2 = 2T\ for spin-orbit interaction^^^^ and since there is no difference 
between decoherence and relaxation for hyperfine interaction,^^''"^^^ we can 
expect spin decoherence times T2 to be on the order of milliseconds. 

4. SPIN FILTER 

An important device for spintronics is a spin filter which selectively 
transmits electrons with respect to their spin orientation. For quantum 
computation with spin qubits, such a spin filter can be used for initiali
zation and read out (see Sees. 1.2 and 5). We proposed to use a quan
tum dot attached to in- and outgoing current leads as a spin filter.^^'^^ 
The direction of polarization of this spin filter can be tuned electrically 
by changing the gate voltage on the quantum dot. We now describe the 
operational principle of such a spin filter and present experimental imple-
mentations.^^^^^^ 

Our spin filter proposal^^^^ requires a lifted spin-degeneracy on the 
dot with a Zeeman splitting Az = |/XBg^|. For two electrons on the dot, 
we assume a singlet ground state with energy Es, while the lowest-lying 
triplet state has a higher energy Ej^. Let us consider the sequential 
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tunneling transition where the number of electrons on the dots changes 
from 1 to 2. The bias between the leads at chemical potentials /xi,2 
is A/x = /xi —/Z2 >0 . For small bias and low temperatures such that 
A^6, kT < min{Az, Ej_^ — Es), only ground state transitions are energeti
cally allowed, i.e., It)^^!*^)- Thus, only spin down electrons can tunnel 
through the dot (see Fig. 4(a)). We calculate the current through the dot 
using the standard tunneling Hamiltonian approach in the 
Coulomb blockade regime^^^ and the master equation for the reduced 
density matrix of the dot.̂ ^^^ The current in first order in tunneling is 
the sequential tunneUng current IsS^^ which is spin-| polarized. The sec
ond-order contribution is the cotunneling current /ĉ ^̂ ^ which involves 
a virtual intermediate state, where energy conservation can be violated 
for a short time. Thus, our energetic argument does not hold here and 
the cotunneling current IQ contains a spin-f component, reducing the 

Fig. 4. Spin filter in the sequential tunneling regime/^^^ (a) and (b) Operation principle of 
the spin filter, (a) Regime where the only allowed 1^^2 electron transitions are "[^^S due to 
energy conservation, thus only spin-| electron pass through the dot (see text), (b) The 0 ^ 
1 electron transition provides a spin filter for spin-t electrons, (c) and (d) The experimen
tally measured d//dysD is plotted as function of bias voltage VSD and gate voltage VG at 
B|| = 12T.(4^) In the region labeled " | " only spin-down electrons pass through the dot while 
in the region " t " only spin-up electrons, (e) Analyzing all transitions between the dot states 
|0), I t ) , II), 1*̂ ), 17b), and \T±), the predicted d//dysQ is shown schematically and agrees 
with the experimental data. This indicates that the current is spin polarized in the regimes 
labeled by arrows. ̂ "̂^̂  
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efficiency of the spin-filtering effect. For Az < Ej^ - ^ s . the ratio of spin-
polarized to unpolarized current iŝ ^̂ ^ 

/sCD/ZcCt)---—-—^V^^T-r^, (4) 
(y\+y2)max{kBT, A/z} 

where yi is the tunneling rate between lead / and the dot. In the sequen
tial tunneling regime we have yi <kBT, A/x, thus, the ratio Eq. (4) is large 
and the spin-filter is efficient. We implemented this spin filter with a single 
quantum dot in the few electron regime. ̂ "̂^̂  The measured currents agree 
well with the theoretical predictions (see Fig. 4). 

Spin filtering properties of both open̂ "̂ ^̂  and Coulomb blockaded^^^^ 
quantum dots were measured directly in a polarizer-analyzer geometry, 
where the spin polarization of current emitted from the dot (polarizer) was 
detected using a QPC at g = 0.5e^/h (analyzer).^^^^ These polarizer and 
analyzer elements were coupled by transverse focusing with the use of a 
small magnetic field applied perpendicular to the sample plane shown in 
the inset of Fig. 5(b). The collector voltage at the QPC shows a focus
ing peak when the distance between emitter and collector is an integer 
multiple of the cyclotron diameter. Measuring at the focusing peak, we 
find that in the presence of an in-plane field of a few Tesla or more, the 
current through the quantum dot (which is strongly coupled to leads) is 
indeed spin polarized. For the case of open dots,̂ "̂ ^̂  the direction of polar
ization can be readily tuned from along to against the applied in-plane 
field, see Fig. 5. However, for the closed dots, reversed spin filtering was 
not observed though ground-state peak motion was seen.̂ ^^^ More work is 
needed to clarify this departure from expectation. 

5. READ-OUT OF A SINGLE SPIN 

At the end of every (quantum) computation, one reads out the result 
of the computation. For this it is sufficient to determine the state of some 
qubits which are either in state |t) or in state |̂ |.) (we do not need to mea
sure a coherent superposition). However, it is very hard to detect an elec
tron spin by directly coupling to its tiny magnetic moment (on the order 
of /XB)- This difficulty is overcome by converting the spin information into 
charge information, which is then measured (we describe implementations 
below). Ideally, the qubit state can be determined in a single measurement, 
referred to as single shot read out. In general, however, there are some 
errors associated with the measurement, thus the preparation and mea
surement of the qubit need to be performed not only once but n times. 
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i-0.6 

0 50 
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0 50 
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Fig. 5. The spin polarization of current through a quantum dot is detected with an ana
lyzer setup. The polarization is measured via the collector voltage (at the focusing peak, see 
text). The polarization of the current though the quantum dot in a magnetic field fluctu
ates as function of gate voltage. The fluctuations in the collector voltage only occur when 
the emitter forms a quantum dot, the collector is spin-sensitive, and an in-plane magnetic 
field is applied.̂ "̂ ^̂  (a) Comparison of normalized focusing peak height as a function of Vg at 
5|l = 6 T for a spin-selective collector, gc = 0.5e-^/h, at B\\ = 6 T for an unpolarized collector, 
gc = 2e^/h, and at B\\ = 0 with gc = ().Se^/h. Dividing by average peak height, (Vc), normal
izes for changes in focusing efficiency, (b) Focusing peak height at fiy = 6 T with spin-selective 
collector, gc = 0.5e-^/h, comparing an emitter which is a point contact at le-^/h and an emit
ter which is a quantum dot with both leads at 2e^/h. The inset shows a micrograph of the 
measured device, where the dot on the left and the QPC on the right side.̂ ^̂ ^ 

We now determine n by assuming that the measurement has two possi
ble outcomes, A^ or A;. Then, for an initial qubit state |t>, with prob
ability p^ the outcome is A^, which we would interpret as "qubits was in 
state It)." However, with probability 1 — P | , the outcome is A; and one 
might incorrectly conclude that "qubit was in state | | ) " . Conversely, the 
initial state | | ) leads with probability p^ to A | and with 1 — p ; to A^. 
How many times n do the preparation of a qubit in the same initial state 
and subsequent measurement need to be performed until the state of the 
qubit is known with some given infidelity a (n-shot read out)? We model 
the read out process with a positive operator valued measure (POVM) and 
find from a statistical analysis that we need^^^^ 

n > zl Al-^)-
e = (V^TPI- yO-Pt)(i - n)) 

(5) 

(6) 

with the quantile (critical value) zi-a of the standard normal distribution 
function, <t>(zi-a) = l—oi = (l/2)[l-\-Qrf(zi-a/V2)]. We interpret e as mea
surement efficiencyp^^ since it is a single parameter ^ G [ 0 , 1] which tells us 
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if n-shot read out is possible. For p>̂  = /7| = 1, the efficiency is maximal, 
e= 100%, and single-shot read out is possible (n = 1). When the measure
ment outcome is independent of the qubit state, i.e., p^^X — p^ (e.g., 
p^ = p^ — {\l2y), the state of the qubit cannot be determined and the effi
ciency is ^ = 0%. For the intermediate regime, 0 % < ^ < 100%, the state of 
the qubit is known after several measurements, with n satisfying Eq. (5). 
In the more general case, the state of a register with k different qubits 
should be determined with infidelity ^. The probability that the state of 
all qubits is determined correctly is 1 — y6 = (l —a)^. One could expect that 
the required n grows dramatically with k. Fortunately this is not the case, 
from Eq. (5) we find that n^Klje- 1) log kj^ is sufficient. 

For the actual implementation of the spin qubit read out, the 
most prominent idea is to transfer the qubit information from spin 
to charge,̂ '̂̂ " '̂̂ '̂̂ '̂̂ '̂̂ '̂̂ ^^ which can then be accessed experimentally 
with sensitive voltage or current measurements. A straightforward con
cept yielding a potentially 100% reliable measurement requires a "spin-fil-
|-gj."(24) ^hJQĵ  allows only, say, spin-up but no spin-down electrons to pass 
through, as it is described in Sec. 4. For performing a measurement of a 
spin in a quantum dot, the spin filter is connected between this dot and 
a second ("reference") dot. The charge distribution on this system can be 
detected with sensitive electrometers^^"*^ by coupling the dots to a quantum 
point contact^^ '̂̂ ^^ or to a single-electron transistor (SET).̂ ^^^ Then, if the 
spin had been up, it would pass through the spin filter into the second dot 
and a change in the charge distribution would be measured, while there is 
no change for spin down^^\ Instead of a spin filter, one can use different 
Zeeman splittings on qubit and reference dot or make use the PauH prin
ciple to read out the spin qubit via charge detection.^^^^ 

Finally, we consider the qubit dot coupled to a lead instead of a ref
erence dot. For Zeeman splittings larger than temperature, one can tune 
the dot levels such that only the excited spin state, |J.), can tunnel into 
the leads^^^^ with rate /out (spin f electrons can tunnel only onto the 
dot). Such a tunneling event changes the number of electrons on the dot 
and produces a pulse in the QPC current, whose duration must exceed 
m̂ to be detected, until a spin f electron tunnels onto the dot with rate 

/in. After waiting a time t to detect such a signal, we have p^ = 1 and 
^ = /7; = (l — ^"^^o^O^"^"" '̂"- We implemented this scheme experimentally.^^^^ 
Accounting also for finite T\ and temperature, we obtain p^ = 92% and 
p^ = 70%. This means that the measurement efficiency is ^ = 41%o, which 
is already very close to single-shot read out. For example, after 16 mea
surements, one knows the state of a 10 qubit register with an error smaller 
than 10~^. Further, this single spin detection scheme made it possible to 
determine the T\ times of electron spins on quantum dots,̂ ^^^ see Sec. 3. 
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6. DETECTION OF SINGLE-SPIN DECOHERENCE 

As it was seen in Sec. 3, it is an important research goal to mea
sure the decoherence time T2 of single spins on quantum dots. For this, we 
now describe how to extract the decoherence time T2 from the sequential 
tunneling current through a quantum dot, in the presence of an applied 
electron spin resonance (ESR) field producing spin-flips on the dot.̂ ^^^ We 
assume that the Zeeman spUtting on the dot is gii-QB > A/x, k^T, while the 
Zeeman splitting in the leads is different, such that the effect of the ESR 
field on the leads can be neglected. This can be achieved, e.g., by using 
materials with different ^-factors for the dot and the leads. We derive 
the master equation and find the stationary reduced density matrix of 
the quantum dot in the basis If), II), \S) (with corresponding energies 
0 = E^ <Ei< Es)' We can assume that the triplet is higher in energy and 
does not contribute to the sequential tunnehng current. In the regime Es > 
/ji\ > Es — g/jLBB > /X2, the current is blocked in the absence of the ESR 
field due to energy conservation. We calculate the the stationary current 
and find^28) 

nco)(x- i ^ . . , , (7) 
(co-gn^BV-^V^^ 

where the width of the resonance at co = g/jiBB is given by the total spin 
decoherence rate Vi^ = (Ws^ + Wsi)/2-\-l/T2. Here, Wsa denotes the rate 
for the transition from the state |or) = | t ) , | | ) to the singlet \S) due to 
electrons tunneling from the leads onto the dot. Therefore, the inverse of 
the observed line width 1/V|f represents a lower bound for the intrinsic 
single-spin decoherence time T2. For finite temperatures and in the hnear 
response regime A/JL <kT, the current has roughly the standard sequen
tial tunneling peak shape cosh~^[(£^s - E^- iJi)/2kBT] as a function of the 
gate voltage VgateO /̂̂  = (/>t^i+/^2)/2, while the width of the resonance in 
Eq. (7) as a function of co remains unaffected. 

The spin of a quantum dot in the presence of an ESR field shows 
coherent Rabi oscillations. It is possible to observe these Rabi oscillations 
of a single spin via time-averaged currents when ESR pulses are appHed. 
Then, the time-averaged current I(tp) as a function of the pulse length tp 
exhibits the Rabi oscillations of the spin-state of the dot,̂ ^^^ see Fig. 6. 
Observing such Rabi oscillations of a single spin would be a significant 
achievement, since this implied an working implementation of a one qubit 
gate. 
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Fig. 6. Single spin Rabi oscillations, generated by ESR pulses of length tp, are observable 
in the time-averaged current I{tp) through a quantum dot/^^^ We take the amplitude of ESR 
field as B J = 20 G (and g = 2), and A/i > kT, n 
T2 = 150ns. (a) Evolution of the density matrix p, 

:2 X 10^ s-^ 72 •• • 5y\, T\ = I ixs, and 
where a pulse of length tp = 200 ns is 

switched on at r = 0, obtained via integration of master equation, (b) Time-averaged current 
I(tp) (solid line) for a pulse repetition time tr = 500 ns. We also show the current where yi 
and y2 are increased by a factor of 1.5 (dotted) and 2 (dash-dotted). Calculating the current 
contributions analytically, we obtain I(tp)(x 1 - p\{tp), up to a background contribution /bg 
for times t <tp, which is roughly linear in tp. Thus, the current / probes the spin state of the 
dot at time tp and therefore allows one to measure the Rabi oscillations of a single spin.̂ ^^^ 

7. CONCLUSIONS 

We described the basic requirements for building a quantum com
puter with spin qubits. We addressed several concrete implementation 
issues for spin qubits, namely coupling between quantum dots, spin relax
ation and decoherence measurements, spin filter devices, and single-spin 
read out setups. For all these issues, we reviewed theoretical and experi
mental results. These results give further insight in the details of quantum 
computing with spin qubits. 
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Spin-based Quantum Dot Quantum Computing 
in Silicon 
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The spins of localized electrons in silicon are strong candidates for quantum 
information processing because of their extremely long coherence times and the 
integrability of Si within the present microelectronics infrastructure. This paper 
reviews a strategy for fabricating single electron spin qubits in gated quantum 
dots in SilSiGe heterostructures. We discuss the pros and cons of using silicon, 
present recent advances, and outline challenges. 

KEY WORDS: Quantum computation; quantum dot; silicon; silicon-germa
nium; spin; quantum well. 

PACS: 03.67.Pp; 03.67.Lx; 85.35.Be; 73.21.La. 

1. INTRODUCTION 

The seminal paper by Loss and DiVincenzo^^^ outlined essential compo
nents of quantum dot quantum computing (QDQC): (1) spin qubits in 
single electron dots, (2) qubit initialization by thermalization in a magnetic 
field, (3) qubit rotations performed using electron spin resonance (ESR), 
(4) two-qubit gates enabled by electrostatic control of exchange coupling in 
neighboring dots, and (5) readout by spin-charge transduction. Subsequent 
theoretical work has shown that two-qubit gates can be sufficiently fast 
(sub-nanosecond),̂ '̂̂ ^ and that these same interactions can be harnessed 
for single-qubit rotations,̂ '̂̂ ^ albeit with some encoding overhead. The 
most challenging aspect of scalable QDQC is fast readout: spin-dependent 

^Physics Department, University of Wisconsin-Madison, Madison, WI 53706 USA. 
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tunneling schemes have been proposed/^'^^ as well as microwave-enabled, 
fast initialization and readout in a closed dot/^^ 

Quantum dots in semiconductors have a long history, much of which 
is reviewed in the excellent book/^^ An important step forward for quan
tum computing was the realization of dots in GaAs containing controlled 
numbers of electrons as few as 0 and l/^^^^) Spin spectroscopy has been 
performed in dots, indicating that they are indeed viable candidates for 
qubits/̂ ^"^^^ More recently, the ability to readout a single spin inside a 
quantum dot was demonstrated by Elzerman et alS^^^ These and other 
important advances are reported in the paper by Engel, Kouwenhoven, 
Loss, and Marcus of this volume. 

Many techniques developed in atomic physics can be directly adapted 
for quantum dots, at least in principle. Examples include readout and ini
tialization,̂ ^^ as well as a recent proposal by Lukin and coworkers to 
enable long-range interactions between quantum dots.̂ ^̂ ^ However, the 
flexibility of quantum dots comes at the price of embedding the qubits 
in a solid matrix, with consequent issues related to decoherence. For this 
reason, materials properties are crucial for quantum dot-based devices. A 
major motivation for the development of the silicon quantum dot archi
tecture is that the materials properties of silicon result in unusually long 
electron spin coherence times. 

2. STRAINED SILICON QUANTUM DOT QUBITS 

Here we outline the main challenges to QDQC in silicon, and we 
describe solutions for many of these problems. We discuss six critical 
areas: growth of strained silicon, silicon two-dimensional electron gas 
(2DEG) based quantum dots, valley degeneracies and their consequences, 
tolerance to impurities, decoherence, and bandwidth concepts at both high 
and low frequency limits. 

2.1. Strained Silicon Growth 

UnHke the AlGaAs system, SiGe structures inherently involve strain, 
as the lattice parameter of Ge is 4% larger than that of Si. Thus, 
Sio.75Geo.25 strain-relaxed buffer layers provide a template for silicon 
growth resulting in silicon with biaxial tensile strain of about 1%. As a 
result, the cubic symmetry of Si is broken and the six conduction band 
valleys are no longer degenerate. In the case of biaxial tensile strain, the 
two perpendicular A2 valleys having electrons with a light in-plane effec
tive mass are lower in energy than the four in-plane A4 valleys with a 
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heavy in-plane effective mass, and the energy level of the lowest two A2 
valleys is lower than that of the conduction band in bulk SiGe. Thus, the 
quantum well formed in such a strained Si layer is occupied by light effec
tive mass electrons. Because of the large energy spHtting of the conduction 
band valleys, intervalley scattering is also reduced, resulting in higher 
electron mobility. 

One challenge in attaining high mobiHty Si/SiGe heterostructures is 
to minimize the threading dislocation density arising from the lattice mis
match between Si and SiGe. Since bulk SiGe substrates are not available, 
structures with strained Si layers having a high mobiHty two-dimensional 
electron gas are achieved by first growing a strain-relaxed SiGe buffer layer 
on a Si(OOl) substrate, which provides a "virtual substrate" for the growth 
of a pseudomorphic Si layer under biaxial tensile strain. When a Sio.vGeoj 
layer is grown directly on Si(OOl), strain-induced roughening occurs, 
leading to the random nucleation of misfit dislocations and a threading 
dislocation density on the order of lO^̂ cm"̂ .̂ ^̂ ^ In contrast, at lower 
mismatch strain, e.g., SiGe x = 0A5, the surface remains flat and dislo
cation nucleation takes place by a multiplication mechanism that results 
in much lower threading dislocation densities. The strain-relaxed buffer 
layer typically used for modulation-doped field-effect transistors (MOD-
FETs) is a thick structure in which the Ge concentration is increased lin
early or in small steps up to 25 or 30% plus a thick uniform composition 
Sio.7Geo.3 layer. Grading allows dislocation nucleation to occur at low mis
match strain and threading dislocation densities are reduced to the 10^-
lO^cm"^ range, depending on the grading rate and growth conditions.̂ ^^^ 
A strained Si quantum well is grown on this virtual substrate and is then 
modulation doped by capping with a thin intrinsic alloy layer, followed by 
a P-doped alloy layer, and finally a thin Si layer as shown in Fig. 1(a). For 
some experiments, the strained Si quantum well is grown with isotopically 
pure ^^Si. 

To obtain high mobility, scattering must be minimized. Scattering is 
induced by local changes in electric field and strain, as well as inter-
facial roughness on short length scales. Increasing the setback of the 
donors from the well decreases Coulomb scattering, increasing mobihty 
until other scattering mechanisms are dominant. It has been shown that 
threading dislocation densities that exceed 3x10^ cm~^ reduce the electron 
mobiHty in modulation-doped strained Si.̂ ^̂ ^ Additionally, the strained Si 
layer must be below the critical thickness for misfit dislocation formation 
at the Si/SiGe interface to avoid scattering.̂ ^^^ Roughening of the surface 
of the SiGe virtual substrate, the so-called cross-hatch roughness, is inher
ent in the strain relaxation process.̂ ^̂ ^ This roughness appears as inter
face roughness in the pseudomorphic layer structure that forms the 2DEG, 
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Fig. 1. (a) Cross sectional TEM image of the modulation-doped layer structure. The 
strained Si quantum well is grown on a uniform composition Sio.7Geo.3 layer, which is 
grown on top of a step-graded buffer layer (not shown). The spacer and supply layers are 
also Sio.7Geo.3. (b) AFM image of an etched dot fabricated from the heterostructure shown 
in (a). Three 2DEG side gates are visible. 



Spin-based Quantum Dot Quantum Computing in Silicon 137 

Specifically the strained Si quantum well. Fortunately, the length scale of 
this roughness is long enough that it does not reduce the electron mobil-
ity/̂ ^^ Low temperature electron mobiHty in the range of 1-6 x lO^cm^/Vs 
has been achieved in modulation-doped strained Si/SiGe structures grown 
epitaxially by various growth methods/̂ ^"^^^ 

In addition to low temperature 2DEG and quantum dot forma
tion, these developments are also critical for non-cryogenic appUcations. 
The room temperature electron mobility in modulation-doped strained Si 
structures is typically 2000-2800 cm /̂V s, about 3-5 times that in n-type 
Si metal-oxide semiconductor field-effect transistors (MOSFETs). Thus, 
faster transistors are anticipated using strained Si structures, provided the 
device dimensions remain favorable. High-speed modulation-doped field-
effect transistors (MODFETs) have been fabricated with Si/SiGe layer 
structures.̂ ^^^ Recently MODFETs having 70-79 GHz fy and record 194 
GHz /Max at room temperature were reported.̂ ^^^ 

2.2. Quantum Dots 

A critical challenge for single-electron strained Si dots is the fab
rication of high quaUty Schottky contacts on Si/SiGe heterostructures. 
Although it is relatively easy to fabricate large barrier Schottky con
tacts on silicon, it is challenging to create ultra-low leakage contacts on 
Si/SiGe heterostructures, due to the proximity of high P doping (typically 
> lO^^cm"^) near the interface of the gate electrode.̂ ^^^ Possible alterna
tive approaches are the use of dielectric films to create metal-insulator-
semiconductor (MIS) structures and the relocation of the P-doped supply 
layer underneath the Si quantum well. Bottom doping has been demon
strated by MBE growth techniques, but for CVD this is extremely diffi
cult to achieve due to memory effects associated with phosphorous doping 
from PHs.̂ ^̂ ^ 

A second strategy is to avoid metal top-gates entirely, and instead 
to use 2DEG side gates, separated from the active region of the device 
by etch trenches. We have observed Coulomb blockade in such quantum 
dots with multiple gates to independently control the tunnehng to the 
leads as well as the overall electron occupation of the quantum dot.̂ ^̂ ^ 
Quantum dots are fabricated by electron beam Uthography and subsequent 
CF4 reactive-ion etching. An AFM image of such a device is shown in 
Fig. 1(b). The electron density in the 2DEG from which the dot was 
formed is 4x 10̂ ^ cm"^ and the mobility is 40,000cm^/Vs at 2K. Ohmic 
contacts to the 2DEG are formed by a Au/Sb alloy. Figure 2 shows 
a Coulomb blockade trace at T = 1.8K. Control of the dot electron 
population and the lead resistances is achieved with three separately 
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Fig. 2. Coulomb blockade trace for the dot shown in Fig. 1(b). The temperature was 1.8 K, 
and the gate voltage Vg was applied to gate 2. 

tunable gates. Each gate is fabricated from the same 2DEG from which 
the quantum dot is created. Such in-plane coupling of one 2DEG to 
another has been used to monitor the electron population in GaAs quan
tum dots.̂ ^^^ Here we have inverted this idea and used the 2DEG-2DEG 
coupling to control the dot. 

Etched gates are very effective for individual dots, and can likely be 
used by themselves to create two coupled quantum dots. However, due to 
the relatively large size of 2DEG side gates it is likely that truly metallic 
top-gates will be required to couple many dots together. A second impor
tant challenge is the achievement of low charge noise. Switching events 
in the dot shown in Fig. 1(b) occur on the time scale ~ 1 h (Note added 
in proof: recent advances have extended this time to more than 10 hours 
between switching events). Improving this charge noise is an important 
goal. It is known that the charge noise in some types of silicon quan
tum dots, for example, oxide confined dots, can be extremely low, allowing 
repeatable measurement over very long time periods.^^^^ 

2.3. Valley States 

As described above, strain in Si/SiGe heterostructures reduces the 
sixfold silicon valley degeneracy to twofold. This remaining twofold 
valley degeneracy is a potential compHcation in two-qubit gates mediated 
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Fig. 3. Computed valley splitting £21 versus number of atomic monolayers in the quan
tum well. Solid line corresponds to zero applied field; oscillations reflect transitions of val
ley ground state from even to odd symmetry. Dotted and dashed lines correspond to finite 
applied E fields between l^mV/nm. Inset: even and odd symmetry traces of tight-binding 
coefficients for a pair of valley split ground states. 

by inter-dot exchange coupling/^^ Fortunately, the twofold valley degener
acy in strained silicon quantum wells is spUt by the quantum well confine
ment potential. As shown in Fig. 3, recent work has demonstrated that 
the valley spHtting can be engineered both by varying the well width and 
by applying electric fields, and that the splitting, in some cases, can be 
quite large.̂ ^̂ ^ The valley spUtting is most easily understood in the infinite 
square well limit. Because the valley minimum is not at the center of the 
Brillouin zone (k = 0), the electron wavefunctions experience atomic-scale 
modulations. In a semiconductor with two degenerate valleys, the oscilla
tions of the two lowest energy states have very similar envelopes, but are 
out of phase by 90°. For an infinite square well, the energy eigenstates 
are linear combinations of four different /:-values, yielding an energy spHt
ting that decays as (width)"~ ;̂ the spHtting for a 4nm weH is 1.5 meV. In 
nonzero electric field the potential is asymmetric, and the energy differ
ence between the two lowest energy states increases with increasing exter
nal electric field.^^^^ Typical modulation doped heterostructures experience 
internal electric fields of order lOmV/nm. In calculations involving iso
lated electrons in a quantum well, we obtain splittings larger than 1 meV— 
quite a large energy. ̂ -̂^̂  
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A potential concern is whether the exchange coupHng between two 
qubits will oscillate uncontrollably as a function of position, in analogy 
with donor-bound electrons in silicon.̂ -̂ -̂ ^ In fact, the situation in strained 
silicon quantum dots is quite different. Because of strain, the charge den
sity in the plane of the quantum well does not have atomic-scale oscilla
tions. Perpendicular to the quantum well the oscillations self-align because 
of the presence of the strong confining heterostructure potential. Because 
the length scale of the quantum well potential is so much shorter than that 
of variations in the quantum well plane, the Born-Oppenheimer approx
imation is appropriate and immediately shows that the oscillations in 
charge density perpendicular to the quantum well plane follow any slow 
variations in quantum well width and position.^^^^ 

It is important to mention that it is also possible to view valley 
degeneracy as a resource. It may be possible to use valley states rather 
than spin states to store quantum information. Such states would be 
charge qubits with little difference in charge distribution for the two 
states, possibly leading to weak decoherence. In a different approach, using 
spin, conceivably one could access all low-lying eigenstates to form a 
four-dimensional qubit Hilbert space. 

2.4. Tolerance to Impurities 

For scalable QDQC, it is important that quantum dot exchange cou
plings be tolerant to the presence of low concentrations of impurities. It is 
well known that charged impurities such as ionized donors cause scatter
ing effects which limit the 2DEG mobility.̂ ^ '̂̂ ^^ These charges also have 
some effect on electrostatic control of qubit gate operations. However, a 
more important issue from the standpoint of decoherence and scalability 
is the influence of neutral dopant impurities like P in Si and Si in GaAs. 
Such impurities can potentially act as renegade qubits, siphoning off quan
tum information in an uncontrolled way. When the exchange coupling 
between qubit and impurity becomes large enough, fault-tolerant quan
tum error correction schemes^^ '̂̂ ^^ are no longer effective. Such donor-
bound spins are abundantly present in the modulation-doped supply layer 
of semiconductor 2DEGs, and they also occur at low densities throughout 
the sample. 

To investigate this issue, we have computed the qubit-impurity ex
change coupling / for two cases:̂ ^^^ an impurity in the supply layer, and 
an impurity in or near the quantum well. In the first case, due to the 
potentially large numbers of neutral donors in the supply layer, the impor
tant quantity is the distance between the supply layer and the quantum 
well. We obtain the following minimum set-back distances between the 
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quantum well and the supply layer: 18nm for Si in GaAs and 8nm for 
P in Si. These numbers are only weakly dependent on the details of the 
structure or on the choice of fault-tolerance schemes and error correction 
coding, because of the exponential dependence of the exchange coupling 
on qubit-impurity separation. The results do depend on choice of barrier 
materials and, in particular, on the height of the quantum well barriers. 
Fortunately, these distances are consistent with typical experimental 
set-backs of ~20nm for GaAs and ^ lOnm for Si. 

We have also studied the effect of impurities in or very near the quan
tum well. We find that impurity spins near the quantum well pose a threat 
to qubits at a distance of ^ lOOnm for Si in GaAs and ~ 6 0 n m for P 
in Si. The results are somewhat sensitive to specific details of the qubit 
confinement potential. A crucial observation, from the perspective of sca-
labiHty, is that the computed impurity danger zones are approximately 
equal to the radius of a single electron dot. That is, a single impurity can 
only kill one, or at most two qubits in a ID array. Therefore, a modest 
amount of parallel connectivity would enable scalable computations, pro
vided the impurity density is somewhat smaller than the qubit density. We 
can estimate this critical impurity density by assuming that only impuri
ties near the quantum well can trap electrons. For Si in GaAs the crit
ical density is about 1.0 x lO^^cm"^ (assuming a 25-nm quantum well), 
while for P in Si the density is 1.6 x lO^^cm"^ (assuming a 6-nm quan
tum well). Both of these impurity density limits are achievable in good 
materials. 

2.5. Decoherence 

Silicon-based quantum dots have the compelling attribute that the 
spin coherence time T2 can be very long. The reasons for long coher
ence times are the availabihty of the spin-zero ^^Si isotope, use of which 
greatly reduces relaxation via nuclear spins (hyperfine coupling), and sil
icon's small spin-orbit coupling (SOC), which suppresses phonon and 
SOC-based decoherence mechanisms. 

Each electron spin S interacts with all nuclear spins 1{ with which it 
overlaps spatially. As pointed out in Refs. 39 and 40, in the QC opera
tional regime the external magnetic field B will exceed 100 gauss, so that 
electron spin-flips accompanied by one nuclear spin flip are not allowed 
energetically. This suppresses the single-spin-flip mechanism considered in 
Refs. 41 and 42, and the dominant ESR relaxation mechanism becomes 
spectral diffusion.̂ "̂ ^̂  Measurements^^^^ and theory^^^^ have made it clear 
that in the spectral diflfusion regime the relaxation rate increases with the 
density of the nuclear moments. 
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Natural Si has isotopic fractions 95.33% spin 0 (mostly ^^Si and a 
small fraction ^^Si) and 4.67% spin l/2(^^Si). Spins in naturally occur
ring silicon have T2 in the range 0.1-1 ms at low temperatures, and 
the dominant source of decoherence is coupling to the ^^Si nuclei.̂ "̂ "̂ ^ 
(One must note here that the decay of spin echoes is not purely expo
nential, and more than one time scale may enter.) Measured Ti val
ues for low doped isotopically purified ^^Si are substantially longer.̂ "̂ ^̂  
In 1958 Gordon and Bowers ^^^"^ observed a T2 of around 0.5 ms at 
1.4 K for phosphorus-doped isotopically pure ^^Si, versus 0.24 ms for 
similarly doped natural Si:P. Tyryshkin et alS^^^ recently compared T2 
times with different doping levels in isotopically pure silicon. Below 12 K 
the relaxation time T2 in isotopically pure ^^Si was as large as 3 ms. 
Furthermore, by comparing different doping levels and attributing the 
remaining linewidths to a magnetic dipole-dipole interaction of neighbor
ing phosphorus donors (via instantaneous diffusion),̂ ^ '̂"^^^ they extrap
olated from their data 72 = 62 ms (at 7K) for isolated donors in ^^Si. 
The presence of non-zero nuclear spin isotopes clearly results in shorter 
electron spin coherence times. 

Electron spins in qubits can dephase even while in contact with a 
bath at zero temperature, because the quantum computer itself is not in 
equilibrium, and excited states are populated. Because of spin-orbit cou
pling, there is an effective spin-phonon coupling, and spins can flip by 
spontaneous emission of phonons. This process contributes to the relax
ation rate T^\ which is usually a lower bound to the decoherence rate 
T^^y Generally, transition rates are proportional to ( g - 2 ) ^ . This leads 
to very long T\ and T2 values in Si donor states,̂ "̂ ^̂  and these favorable 
numbers are expected to extend also to dot-confined electrons.̂ ^^^ Addi
tional spin-orbit mixing due to the Rashba field,^^^^ typically prevalent in 
asymmetrically doped semiconductor heterostructures, is also expected to 
be quite weak in silicon.̂ ^^^ Thus, spectral diffusion should be the predom
inant decoherence limiting mechanism in silicon QDQC. 

For electrons in a Si/SiGe 2D electron gas, Tyryshkin et alP^^ 
have measured 72= 2.98/xs in a sample with a phosphorus delta-doping 
layer above the well that was illuminated and thermally annealed. The 
relatively short decoherence time is due to the increase in scattering mech
anisms in a mobile, 2D electron system, as explained recently in the 
context of Rashba spin-orbit coupling and the D'yakanov/Perel' (DP) 
spin-relaxation mechanism.^^^^ Confinement of the electrons laterally in 
a quantum dot suppresses the dominant 2DEG relaxation mechanism, 
greatly increasing the coherence time.̂ ^̂ ~^̂ ^ Since there should be very 
few phosphorus donors within the well to contribute to magnetic 
dipole-dipole driven instantaneous diffusion, quantum dots fabricated in 
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isotopically pure small ^^Si quantum wells in principle should have better 
coherence times. 

2.6. Bandwidth Issues 

It is important to note that bandwidth in quantum computing is 
limited on both the high and the low end. At low frequencies, decoher-
ence forms a fundamental, yet device dependent limit. As we have seen, 
the natural decoherence timescale for a SiGe QDQC should be ~10ms. 
Threshold theorems for fault-tolerant quantum computing vary according 
to qubit architectures and coding sophistication.^-^^^ In particular, schemes 
have been devised for local gates,̂ ^^^ and can even be extended to ID 
arrays with nearest-neighbor coupling.^^^^ Nonetheless, the exact probabil
ity threshold for fault tolerance in a QDQC is not available yet. Some
what arbitrarily, we estimate it here as 10~^-10~^. Thus, quantum gate 
operations must be at least as fast as 0.01 to 1/xs in SiGe. Furthermore, 
fault-tolerance requires that readout and initialization steps must be per
formed at these same speeds. This does not imply that spins cannot be 
read out at much slower speeds, only that high speeds are required for 
scalabiHty. 

High-bandwidth constraints include non-adiabatic gating effects,̂ ^̂ '̂ "̂ ^ 
and sensitivity limits for readout. Based on shot noise analysis, the upper 
bound^^ '̂̂ ^^ on detection sensitivity for charge induced on the island of an 
optimized rf-SET (the lowest noise detector currently available) is about 
4 X 10~^ e/^Hz. Simulations suggest that fast readout and initialization 
in SiGe can meet the stringent high and low-bandwidth criteria,^^^ but 
experimental confirmation of this result is required. 

The technical criteria for scalable QDQC are also challenging. On the 
low-bandwidth side, computations should be completed at speeds consis
tent with laboratory or human timescales (probably less than days!). If the 
necessary structures can be built, this limit is not a problem for soHd state 
QC implementations. However, high-bandwidth technical limits are set by 
control and measurement electronics. We mention here a single example, 
discussed in Refs. 67 and 68. In these papers, we investigated the control 
sensitivity of the exchange coupling / to voltage pulses AV for particu
lar SiGe devices. We found that, because of the exponential dependence 
of / on AV in typical architectures, small fluctuations in AV produced 
relatively large errors in / . As consistent with fault tolerant computing, 
the total exchange pulse (consisting of / integrated over pulse time A^ 
should have an error less than 10~^-10~^.^^^^ However, the accuracy of 
control electronics is strongly sensitive to bandwidth, in terms of both the 
height and width of the pulse. As shown in Fig. 4, using specially designed 
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Gate voltage, / 
Fig. 4. Computed exchange coupling as a function of reduced gate voltage. The pseudo-
digital technique allows a flat-top working point to replace the usual exponential dependence 
of /(v). Lower right: pseudo-digital top-gate scheme for coupled double dots, each with a sin
gle electron. Upper left: computed electron densities for "off" and "on" configurations. 

"pseudo-digital" dot architectures greatly decreases the electronics require
ments in these simulations. 

3. OUTLOOK FOR QUANTUM DOTS 

As described above, recent advances point to a promising future for 
QDQC. Nonetheless, important challenges remain. A major goal for siH-
con 2DEG-based quantum dots is the fabrication of highly tunable, cou
pled dots, and the demonstration of spin measurement. A challenge for 
quantum dots in all materials is connectivity: is it possible to develop sys
tems that are more highly connected than linear arrays? It is well known 
that such connectivity is an important aid in algorithm and error correc
tion development, and there is an inverse relation between connectivity 
and resource requirements and operating timescales. Recent advances show 
that coupling between dots need not be highly localized.^^^^ Perhaps the 
greatest challenge is the development of long-distance couplings between 
qubits. Although not required, such couplings would be a great benefit 



Spin-based Quantum Dot Quantum Computing in Silicon 145 

to QDQC. Cross-fertilization from other QC disciplines should play an 
important role in meeting this challenge. 

ACKNOWLEDGMENTS 

We thank Steve Lyon, Alex Rimberg, and the University of Wiscon
sin solid state quantum computing group for many fruitful discussions. We 
acknowledge support from ARDA, ARO, and NSF. 

REFERENCES 

1. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998). 
2. G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999). 
3. X. D. Hu and S. Das Sarma, Phys. Rev. A 61, 62301 (2000). 
4. D. Bacon et al, Phys. Rev. Lett. 85, 1758 (2000). 
5. D. P DiVincenzo et al. Nature 408, 339 (2000). 
6. P Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000). 
7. H. A. Engel and D. Loss, Phys. Rev. Lett. 86, 4648 (2001). 
8. M. Friesen et al, Phys. Rev. Lett. 92, 037901 (2004). 
9. L. L. Sohn, L. P. Kouwenhoven, and G. Schon, eds., Mesoscopic Electron Transport, 

NATO ASI Ser. E, Vol. 345. Kluwer, 1997. 
10. R. C. Ashoori et al, Phys. Rev. Lett. 68, 3088 (1992). 
11. M. Ciorga et al, Phys Rev. B 61, R16315 (2000). 
12. J. M. Elzerman et al, Phys. Rev. B 67, 161308 (2003). 
13. T. Fujisawa et al. Nature 419, 278 (2002). 
14. R. M. Potok et al, Phys. Rev Lett. 91, (2003). 
15. R. Hanson et al, Phys. Rev. Lett. 91, 196802 (2003). 
16. Elzerman, et al (unpublished). 
17. L. L Childress, et al, Phys. Rev. A 69, 042302 (2004). 
18. P M. Mooney, Mater Set Eng. R-Rep 17, 105 (1996). 
19. K. Ismail, J: Vac. Set Technol B 14, 2776 (1996). 
20. K. Ismail et al, Phys. Rev. Lett. 73, 3447 (1994). 
21. R. M. Feenstra and M. A. Lutz, J. Appl Phys. 78, 6091 (1995). 
22. K. Ismail et al, Appl Phys. Lett. 66, 842 (1995). 
23. F Schaffler et al, Semicond. Sci Tech. 1, 260 (1992). 
24. Y J. Mii et al, Appl Phys. Lett. 59, 1611 (1991). 
25. T. Okamoto et al, Phys. Rev. B 69, 041202 (2004). 
26. K. Ismail et al, IEEE Electr Device Lett. EDL-14, 348 (1993). 
27. S. J. Koester et al. Electronics Lett. 39, 1684 (2003). 
28. P M. Mooney and J. O. Chu, Annu. Rev. Mater. Sci 30, 335 (2000). 
29. L. Klein et al, Appl Phys. Lett. 84, 4074 (2004). 
30. N. M. Zimmerman et al, Appl Phys. Lett. 79, 3188 (2001). 
31. T. B. Boykin et al, Appl Phys. Lett. 84, 115 (2004). 
32. L. J. Sham and M. Nakayama, Phys. Rev. B 20, 734 (1979). 
33. B. Koiller, X. D. Hu, and S. Das Sarma, Phys. Rev. B 66, (2002). 



146 Eriksson et al. 

34. S. N. Coppersmith, (unpublished). 
35. F. Stern and S. E. Laux, Appl Phys. Lett. 61, 1110 (1992). 
36. P. W. Shor, in Proceedings of the 35th Annual Symposium on Fundamentals of Computer 

Science (IEEE Press, Los Alamitos, 1996), pp. 56-65. 
37. A. M. Steane, Phys. Rev. A 68, 042322 (2003). 
38. S. Liao, S. N. Coppersmith, M. A. Eriksson, and M. Friesen, (unpubhshed). 
39. R. de Sousa and S. Das Sarma, Phys. Rev. B 67, 033301 (2003). 
40. R. de Sousa and S. Das Sarma, Phys. Rev B 68, 115322 (2003). 
41. A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002). 
42. A. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. B 67, 195329 (2003). 
43. M. Chibi and J. Hirai, J. Phys. Soc Jpn. 33, 730 (1972). 
44. J. R Gordon and K. D. Bowers, Phys. Rev. Lett. 1, 368 (1958). 
45. A. M. Tyryshkin et al, Phys. Rev. B 68, 193207 (2003). 
46. J. R Klauder and R W. Anderson, Phys. Rev. 125, 912 (1962). 
47. W. B. Mims, Phys. Rev 168, 370 (1968). 
48. G. Feher and E. A. Gere, Phys. Rev. 114, 1245 (1959). 
49. C Tahan, M. Friesen, and R. Joynt, Phys. Rev B 66, 035314 (2002). 
50. Y. A. Bychkov and E. L Rashba, J. Phys. C-Solid State 17, 6039 (1984). 
51. Z. Wilamowski et al, Phys. Rev. B 66, 195315 (2002). 
52. A. M. Tyryshkin, S. A. Lyon, W. Jantsch, and F. Schaeffler, preprint cond-mat/0304284. 
53. C. Tahan and R. Joynt, "Spin relaxation in SiGe two-dimensional electron gases," pre

print cond-mat/0401615. 
54. A. V. Khaetskii and Y. V. Nazarov, Phys. Rev B 61, 12639 (2000). 
55. A. V. Khaetskii and Y V. Nazarov, Phys. Rev B 64, 125316 (2001). 
56. B. L Halperin et al, Phys. Rev Lett. 86, 2106-2109 (2001). 
57. Aleiner L L. and V. L Fal'ko, Phys. Rev Lett. 87, (2001). 
58. D. M. Zumbuhl et al., Phys. Rev. Lett. 89, (2002). 
59. E. Tsitsishvili and G.S. Lozano and A.O. Gogolin, "Rashba coupling in quantum dots: 

exact solution," preprint cond-mat/0310024. 
60. C. Tahan, M.Friesen, and R. Joynt (unpublished). 
61. D. Gottesman, J. Mod Optic 47, 333 (2000). 
62. D. Aharonov and M. Ben-Or, in Proc. 29th Ann. ACM Symp. on Theory of Computing, 

p. 176, ACM, New York, 1998, preprints quant-ph/9611025, quant-ph/9906129. 
63. J. Schliemann, D. Loss, and A.H. MacDonald, Phys. Rev. B 6308, 085311 (2001). 
64. X. D. Hu and S. Das Sarma, Phys. Rev A 66, 012312 (2002). 
65. A. N. Korotkov and M. A. Paalanen, Appl Phys. Lett. 74, 4052 (1999). 
66. M. H. Devoret and R. J. Schoelkopf, Nature 406, 1039 (2000). 
67. M. Friesen, R. Joynt, and M. A. Eriksson, Appl Phys. Lett. 81, 4619 (2002). 
68. M. Friesen et al, Phys. Rev. B 67, 121301 (2003). 
69. This criterion, different than used in our previous papers, represents the amphtude of 

error, consistent with the probability of error mentioned above (10~^-10~'^) (D. Gottes
man and E. Yablonovitch, private communications). 

70. N. J. Craig et al. Science 304, 565 (2004). 



Optically Driven Quantum Computing Devices Based 
on Semiconductor Quantum Dots 

Xiaoqin Li,̂  Duncan Steel/"* Daniel Gammon̂  
and L. J. Sham*̂  

This paper concerns optically driven quantum logic devices based on semiconduc
tor quantum dots. It provides a brief review of recent theoretical and experimental 
progress towards building such devices and a description of a possible direction of 
further research. We consider both the exciton and the electron spin as a poten
tial qubit. Quantum dot fabrication and single dot spectroscopy studies are briefly 
discussed followed by a description of experimental demonstrations of basic quan
tum logic operations. A scheme for a scalable quantum computer based on optical 
control of electron spins localized in quantum dots is described in detail. Impor
tant lessons as well as challenges for future research are summarized. 

KEY WORDS: Quantum computing; quantum entanglement; semiconductor 
quantum dots; ultrafast optical spectroscopy. 

PACS: 78.67.Hc; 42.50.Md; 03.67.Lx; 42.50.Hz. 

1. INTRODUCTION 

Semiconductor quantum dot (QD) studies have evolved from ensembles to 
single and coupled dots, opening up the possibility of building quantum 
devices based on the existing infrastructure for quantum optoelectronic 
semiconductor fabrication. It is believed that these dots may be used 
as the basic building blocks for future quantum information processing 
devices. The focus of this paper is on building optically driven quantum 
logic devices based on semiconductor QDs. We aim to provide a simple 
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review of the rapid theoretical and experimental progress made in the past 
few years and discuss the future directions. 

Following the first theoretical proposal^^^ to use optical excitation in 
confined semiconductor systems for quantum computation, early optical 
spectroscopy studies of single quantum dots demonstrated the existence of 
isolated optical excitations^^'^^ and provided the promising prospect that 
such localized excitations may be controlled individually and used as car
riers of quantum information/^^ More detailed exciton-based proposals of 
implementation foUowed/^"^^ Following studies of the coherent nonlinear 
optical response^^^ and coherent optical control^^^ at the single dot level, an 
experimental breakthrough was made in 2001 when several groups demon
strated Rabi oscillations of excitons confined in single quantum dots using a 
variety of optical techniques/^^"^^^ Rabi oscillation of a qubit is an essential 
forerunner to arbitrary single qubit operations. 

The essence of quantum computation and information processing lies 
in the generation of entanglement of qubits. Theoretical studies show that, 
while not scalable, two excitons in a single dot can be used to demon
strate simple quantum algorithms such as the Deutsch-Jozsa algorithm 
with pulse-shaping techniques for quantum operations.^^^ Quantum coher
ence between arbitrary states within the computation basis was shown to 
persist for the lifetime of dipole transitions.^^^'^^^ Entangled states of two 
polarized exciton states in a single dot were created and detected opti
cally. ̂ "̂̂ '̂ ^̂  A key experimental demonstration of the capability of coherent 
control of excitons for conditional quantum operations is the demonstra
tion of a simple two-bit quantum gate based on two excitons confined in 
a single quantum dot.̂ ^^^ 

A proposal for a scalable system is based on using single electron spins, 
with much longer coherence times than the above systems based on excitons, 
residing in closely spaced quantum dots with gate control of spins in sepa
rate dots.̂ ^^^ There is considerable experimental effort currently directed at 
developing appropriate gate control of the spins. Optically driven electron 
spins confined in QDs is a promising alternative to electronic control for 
future quantum information processing since the speed for optical opera
tions can easily exceed a THz.̂ ^ '̂̂ ^^ The recent demonstration of fabrica
tion of structures, where one extra electron is confined in a single dot,̂ ^^^ 
has been a promising step towards achieving these proposals. 

For charged quantum dots of the above type, optical excitation cre
ates a charged exciton (trion), which can be used to rotate the electron 
spin.̂ ^^^ This charged exciton state thus serves as an auxiliary state that 
provides optical access to the electron spin. Currently, the properties of 
negatively charged dots and, in particular, of trions are being studied 
intensely.̂ ^^^ 
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In this review, we follow a particular framework for universal quan
tum computation^^^^ of defining qubits, the single qubit operations and 
the two-qubit conditional operations on demand, initialization and read
out. We discuss the experimental demonstrations achieved so far based on 
exciton qubits, and describe proposals for the next generation of systems 
based on manipulation of spin qubits. 

2. QUBITS IN SEMICONDUCTOR QUANTUM DOTS 

Optical excitation of an electron into the empty conduction band of 
a semiconductor leaves a hole in the valence band. The electron and hole 
attract each other via the Coulomb interaction and form a bound-state 
exciton. The quantum dot serves as a trap with an effective potential for 
the electron and one for the hole as shown in Fig. 1(a). Because the band 
gap forms an excitation barrier, the effect of the Coulomb interaction of 
the large number of electrons in the ground state with the excited electron 
simply renormalizes its attraction with the hole by a dielectric constant 
and its mass in combination with the influence of the crystal poten-
tial.Unless there are too many excited electrons, the electron-hole pair 
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Fig. 1. Optical control of exciton-based qubits and spin-based qubits. (a) The single par
ticle energy levels in a neutral dot indicating the optical excitation of an exciton qubit; (b) 
the excitation diagram of a two-exciton system confined in a single dot; (c) the single par
ticle energy levels in a dot indicating the electron spin and the optically controlled exciton; 
(d) spin manipulation through the Raman process of the two lowest spin states and the trion 
state. 
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behaves remarkably like a positronium atom. The presence and absence of 
an exciton in a dot can serve as a qubit. 

In an alternate scenario, one can dope each QD with a single elec
tron. The spin of each localized electron then serves as a qubit. The state 
of the single electron spin is controlled via a stimulated Raman transition 
via the trion (electron-exciton) state^^^^ as illustrated in Fig. 1(c) and (d). 

Laser pulses on the order of tens of femtoseconds are readily avail
able in laboratories nowadays. The interaction energy of the excitons and 
the Zeeman energy of the spin levels are both of the order of meV. To 
minimize unintended dynamics of the unselected states in either the exci
ton or the spin qubit system, the pulse width cannot be arbitrarily short. 
Nevertheless, optically driven logic devices can be operated at clock speeds 
approaching the THz regime. Pulse shaping schemes^ '̂̂ ^^ can be imple
mented to prevent the addition of errors in logical qubits. The clock speed 
of the operations is thus orders of magnitude faster than electrical or 
microwave control for the same spin qubit system. 

Minimizing the errors in quantum operations caused by dephasing 
(and hence reducing the demand for error corrections) requires complet
ing quantum operations before the system loses quantum coherence. The 
exciton coherence is limited by radiative recombination, whose time ranges 
from 100 ps in the large interface fluctuation dots^^^ to 1 ns in the self-
assembled dots.̂ ^̂ "-̂ ^̂  For operations of ps duration, the number of possi
ble operations is 10^-10^, which is currently believed to be insufficient for 
error correction. Shorter pulses are not viable, since the resultant increase 
in bandwidth results in excitation of other unintended states which com
promises device performance. 

The coherence time scale for electron spin based qubits is expected 
to be much longer, in the range of 1-100 JJLSS'^^^ Electron spins make bet
ter qubits obviously from this perspective. Optical manipulation of a single 
electron spin is still a challenging task at this point. Initial demonstrations 
towards building quantum dot logic gates were based on excitons. How
ever, such optical manipulation of exciton-based qubits is in fact a signifi
cant component of what is needed to optically control a single electron 
spin, and hence is the penultimate demonstration leading to an optically 
driven spin-based quantum logic device. 

3. FABRICATION OF QUANTUM DOTS AND SPECTROSCOPY 
STUDIES OF SINGLE DOTS 

Using advanced semiconductor fabrication technologies such as molec
ular beam epitaxy (MBE), coherent (defect free) islands spontaneously 
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form on an initially flat 2-dimensional layer in the Stranski-
Krastanow growth mode of a highly strained system. Such a self-assembled 
mechanism is a rapid method to produce quantum dot arrays. Steady 
progress has been made in terms of fabricating quantum dots with more 
regular shape, size and positions.^^^^ This type of quantum dot is believed 
to be promising for practical appHcations involving a large number of 
quantum dots and has been widely studied. Many challenges remain but 
already the properties of single pairs of vertically coupled dots have been 
explored optically. ̂ ^̂ ^ Other groups are attempting to develop laterally 
coupled dots, which may be necessary to scale to larger numbers of qubits. 
Considerable effort is needed, but researchers should eventually be able 
to provide designer QD molecules. For entanglement of two qubits from 
two dots on demand, it is better to have no interaction between two 
dots during quiescence but the two dots must be sufficiently close for 
the optical induction of qubit interaction such as via the optical RKKY 
interaction.^^^^ 

Another model system studied extensively is the natural quantum 
dot formed due to interface fluctuations in narrow quantum wells fol
lowing growth interruption. The monolayer high islands provide the 
necessary quantum potential to localize spins and excitons. The most 
direct evidence of such localized excitons is provided by images taken 
by near-field optical microscopes.̂ ^^~^^^ Besides near field microscopes, 
other approaches to achieve high spatial resolution include the use of 
shadow masks or mesas to limit the area of optical excitation. In this 
way single dot spectroscopy shows extremely sharp resonances.^ '̂-^^ Such 
spectra can only be observed at the single dot level—ensemble mea
surements show broad energy spectra due to inhomogeneous broaden
ing as a result of fluctuations in size and shape of the large number of 
dots. 

Nonlinear spectroscopy measurements using continuous wave (CW) 
lasers have confirmed that pure dephasing processes are reduced as a result 
of reduced interaction between localized excitons. ̂ ^̂  Furthermore, such 
CW spectroscopy studies have enabled detailed studies of biexciton for
mation in single dots, providing important information such as binding 
energy and nonradiative coherence times.̂ ^^^ Transient nonlinear studies 
on self-assembled QDs have turned out to be quite challenging and have 
required wave-guide structures to enhance the interaction length in initial 
studies. Such measurements have revealed long dephasing times of a few 
hundred picoseconds.^^^'^^^ In addition, optically induced entanglement of 
two orthogonally polarized exciton transitions in ensembles of InAs dots 
have been measured.̂ '̂̂ ^ 
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4. OPTICAL COHERENT MANIPULATION OF EXCITON QUBITS 

Universal computation may be achieved by quantum algorithms 
consisting of sequences made up from a set of arbitrary one-qubit 
operations and one entanglement creating two-qubit logic gate, such as a 
controlled-NOT (CNOT) gate or a square-root swap gate or a phase gate. 
A CNOT gate has now been demonstrated using two exciton qubits in 
a single quantum dot̂ ^̂ ^ based on the demonstration of Rabi oscillations 
and production of entangled states/^^^ 

We note that a two-bit system in a single quantum dot forms 
the basis for the device where the necessary coupling is provided by 
the enhanced Coulomb interaction as a result of quantum confinement. 
Fig. 1(b) shows the excitation level diagram of such a two-exciton sys
tem. This simplest two-bit system involves the crystal ground state (|00)), 
two distinguishable excitonic states with orthogonal polarizations (|01) and 
110)) and the biexciton state (|11)). It is important to note that the qubits 
are defined in the basis of the Bloch vectors of the exciton pseudo-spins. 
The value 1 (0) corresponds to the presence (absence) of an exciton with 
the Bloch vector pointing up (down). 

An important feature evident in the excitation picture is the large 
binding energy of the biexciton state due to the three-dimensional quantum 
confinement in QDs. The binding energy varies with the size of QDs, typ
ically in the range of 3 ^ meV. The large binding energy implies the fol
lowing: the excitation of one exciton leads to a different excitation energy 
of the other exciton, shifting it down by an amount equal to the binding 
energy. This feature gives rise to the characteristic conditional dynamics 
needed for building a CNOT gate. 

Biexcitons confined in a single quantum dot have been identified opti
cally, and Rabi oscillations of the exciton to biexciton transition have also 
been demonstrated.^^^^ An important achievement of such a demonstration 
is that the n pulse can serve as the operational pulse of a CNOT gate. The 
performance of this exciton-based CNOT gate can be examined by com
paring the physical truth table shown in Fig. 2 with the ideal one. Like a 
classical gate, the truth table provides the population of each state at the 
output corresponding to a particular input. As an example, if the input 
state of the system is 10, after the gate operation, the populations in states 
(00, 01, 10, 11) are (0.14, 0.06, 0.17, 0.63) respectively, as opposed to the 
ideal (0, 0, 0, 1). 

Quantum coherence and entanglement are critical to the superior per
formance of quantum logic devices compared to classical devices. The 
complete wavefunction immediately following a pulse that simultaneously 
excites both excitonic states can be written as V̂  = Co|00)-h C+|01) + 
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Truth Table 

I01> |10> 
Input 

|11> 
|10> 

101 > Output 
|00> 

Fig. 2. Truth table of the numerically simulated CNOT gate using experimentally obtained 
parameters. In an ideal gate, the four highest bars are 1 and the others are 0. 

C_|10) + C+_|ll>. The existence and duration of quantum coherence 
between arbitrary states in the computational basis was first measured in 
the weak excitation regime in a series of nonlinear spectroscopy studies 
using CW lasers/̂ '̂ '̂̂ ^^ The creation of a specific entangled state requires 
laser pulses with pulse area (time-integrated electric field interaction) of 
^7T. In an experiment aiming to create the Bell state |01) + |10) using n 
pulses coupled to both orthogonal excitons, coefficients were estimated to 
be Co = 0.48, C+ = C_ = 0.62, C+_ =0, leading to entanglement entropy as 
high as ~0.7. The above discussion has assumed a pure quantum state fol
lowing the optical excitation. Ref 16 provides a more complete discussion 
of the mixed state entanglement. The temporal evolution of the non-radi
ative Raman coherence between states |01> and |10) was directly resolved 
in quantum beats measured in differential transmission (DT) geometry as 
shown in Fig. 3. The Raman coherence time was determined from the 
envelop decay of the beats, and was found limited by the lifetimes of 
the exciton transitions even in the strong field regime, thus showing that 
the potential coupling to other states under the high intensity optical field 
did not result in any detectable unintended dynamics or decoherence. 

An extended definition of gate fidehty,^^^^ Tr [pp (t) pj (t)] , measures 
the overlap between the gate-produced mixed state denoted by the physi
cal density matrix rp and the ideal one n, averaged over all possible initial 
states. Accounting for dephasing, the fidehty of the CNOT gate was calcu
lated to be 0.7 assuming that the initial states can be prepared perfectly.̂ ^̂ ^ 
An ideal gate would have fidelity of 1 while any real gate would have fidel
ity between 0 and 1. Long operational pulses and short dephasing times 
due to fast recombination, a consequence of the large dipole moment in 
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pump pulse 
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Fig. 3. An entangled state involving two polarized excitons confined in single dots was 
created and detected optically as evidenced by quantum beats between states |01) and |10) 
shown. The quantum coherence time between these two states is directly extracted from the 
decay of the envelope. 

natural QDs, are two key issues that lead to fidelity below one for the gate. 
The combination of a short operational pulse (1 ps) and long population 
relaxation times (200 ps) with no pure dephasing would lead to a much 
improved gate with fidelity, (F), as high as 0.97 with the optimal separa
tion between pulses. 

In order to increase the quantum operations beyond one dot, inter-
dot exciton interaction is required. One proposal is to use an electric field 
to increase the dipole-dipole interaction between two excitons in separate 
dots.̂ ^̂  Dynamic control of the electric field means some sacrifice of the 
clock speed of the optical control. Another proposal is to put the dots in 
an optical cavity so that the cavity mode can serve as a data bus for the 
exciton qubits.̂ ^ '̂̂ ^^ 

5. OPTICAL CONTROL OF SPIN QUBITS IN QUANTUM DOTS 

In this section we describe a scheme for a quantum computer that 
can be scaled up to many qubits based on optical control of the electron 
spin. The system consists of a 2-dimensional array of self-assembled quan
tum dots in a plane normal to the growth axis of an epitaxial cake of 
III-V semiconductors. Each dot is charged with one electron whose two 
spin states in the lowest orbital serve as the fundamental qubit. 

A set of qubit operations required for universal quantum computation 
(consisting of arbitrary single qubit rotations and a suitable conditional 
two-qubit operation) are proposed using coherent optical control of 
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off-resonance Raman processes which involve the spin states in a static 
magnetic field transverse to the growth direction. Since the shortest dot-
center to dot-center distance will be tens of nanometers, current near-
field optics capability is unable to address two neighboring qubits. To 
circumvent this problem, we have developed the zip-code concept of light 
covering an area containing a dozen or so of dots. Within each zip-code, 
frequency selection is used to carry out the quantum operations on one 
or two desired spins. The unintended dynamics of the other spins is elim
inated by laser pulse shaping. 

We classify the errors in quantum operations into two classes: the 
unintended dynamics due to the discrete states in the dots and the deco-
herence effects due to the coupling of the spin degrees of freedom with the 
environment defined as any system with a continuum of degrees of free
dom such as the electromagnetic field and the soHd vibrations. The direct 
spin dephasing time is long because of the weak spin flip terms. The opti
cal decoherence incurred by the optical processes, potentially the strongest 
component of decoherence, is minimized by keeping the Raman processes 
off-resonance. The advantage of the optical control is then the fast (sub-
nanosecond) clock speed in relation to very long spin dephasing time (pos
sibly close to milUseconds). 

5.1. Qubit Initialization 

The system needs to be prepared initially to a specific state, say, all 
spins down. The qubit initialization is to be carried out by first spUtting 
the two spin states in each dot with a constant magnetic field and then 
optical pumping of the spin up state to the trion state allowing time for 
relaxation into the spin down states.̂ ^ '̂̂ ^^ 

5.2. Measurement 

Measurement can be carried out through optical recycling transitions 
between a specific electron spin state and the corresponding trion state 
under resonant optical excitation. The transition will occur only if the 
electron is in the targeted spin state. A photon will be emitted after each 
cycle until there is a spin flip process of the trion or electron, providing a 
burst of photons.^^^^ 

5.3. Arbitrary One-qubit Operations 

The use of coherent circularly polarized light propagating along the 
growth axis of the semiconductor layers (denoted as the z-axis) for the 
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Raman process shown in Fig. 1(d) can produce a single qubit rotation 
only about the z-axis. We have designed a method for a rotation about 
any axis through any angle by utilizing a static magnetic field pointing 
away from the z-axis and with sufficient Zeeman splitting so that two 
pulses of different frequencies can separately address the optical excita
tion (lowest energy trion) of each spin state without interfering with the 
other state/^^^ The three parameters of an arbitrary rotation, such as 
the Euler parameters or the orientation of rotation axis relative to the 
magnetic field and the angle of rotation are determined by the relative 
phase and Rabi frequencies of the two appHed pulses connecting the two 
spin states to the trion state and their common detuning from the trion 
state. 

While we make use of the off-resonance Raman process in the adi-
abatic regime, our pulse design is conceptually from that for the popu
lation transfer using stimulated Raman adiabatic passage (STIRAP).^^^^ 
While both methods involve coherent control of the three-level system, 
STIRAP uses the dark optical dressed state to affect the population trans
fer whereas we use the other two dressed states to make a spin rotation. 
The "counter-intuitive" sequence of two pulses used in STIRAP requires 
the foreknowledge of the initial and the final state, which cannot be used 
as a qubit operation in quantum computing. Our design for a qubit oper
ation makes use of the remaining two states and works for an arbitrary 
initial spin state. 

5.4. Two-qubit Logic Gate 

The principle is based on Ref 19, optically creating a Heisenberg 
interaction between two spins in two nearest neighbor dots as illustrated 
in Fig. 4(a). The amount of rotation between the two antiparallel spin 
states shown in Fig. 4(b) can be controlled by the time duration of the 
optical pulse. For example, an effective nil pulse yields a qubit swap. 
However, to reduce the addressing problem because of the current focus
ing limit of the optical field, the intermediate state of the excited trion 
should be chosen to be the common bound states of the two dots. The 
dots are designed with the ground states of the electrons in different dots 
isolated from one another but with the first or higher excited states hav
ing overlapping wave functions between the nearest neighbors as shown in 
Fig. 4(b). Thus, for the single-qubit operation, the lowest trion used for 
the intermediate Raman state is isolated in a dot, whereas for the two-
qubit operation, the excited trion state is designed to cover two and only 
two neighboring dots. 
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Fig. 4. Optical control of two spins in two separate dots, (a) The single particle energy level 
scheme; (b) the same process in terms of the four states of the two spins and the excited 
states with the addition of an exciton. 

The excited trion energies of the two dots are brought to coincidence 
by the dynamic Stark shift (second-order ac electric field induced energy 
change) while the relevant energy levels from the other dots are kept 
away from the optical frequencies used. Under ideal operation conditions, 
the detuning from the intended intermediate state is always less than the 
energy differences between the intermediate state and other states. To 
refine the operation for less than ideal circumstances, we propose pulse 
shaping, to be discussed in Sec. 5.5. 

5.5. The Possibility in Principle of Building a Large Quantum Computer 

The problem of addressing specific single or two qubits belongs to 
the realm of the avoidance of unintended dynamics. Its solution is key 
to both specific quantum operations and to the scalabihty of the com
puter. In NMR,̂ ^^^ a sequence of pulses in time is used to accompHsh 
an operation. In quantum optics,̂ ^^^ a pulse is shaped in the frequency 
domain to acquire a certain shape in the time domain without drastically 
increasing the operation time. The pulse shaping approach for quantum 
operations^ '̂"* '̂̂ "^^ in frequency space uses a broader bandwidth than the 
interdot and intradot energy differences to gain a short operation time. 
The idea is to use the flexibility of the pulses to return the unintended 
dynamics to a net zero at the end of the operations. 
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The use of the frequency space avoids the time consumed by pulse 
sequencing in NMR depending on the principle of spin echo, which the 
dot system cannot afford because of its much shorter decoherence time. 
The energy difference for unintended dynamics to arise is 0.1-1% of the 
laser bandwidth, one to two orders of magnitudes smaller than the NMR 
design. Our approach does not so much eliminate the unintended dynam
ics by interference to render the undesired level dark as to bring the 
recalcitrant electron back to its original state at the end of the pulse. It is 
possible to limit the overhead of pulse shaping to have a power-law depen
dence on the number of qubits.^^^ We have simulated a few pulse-shaping 
operations to study their performance quality^ '̂̂ ^^ but much work for the 
spin operations remains to be carried out. 

5.6. Decoherence 

There are two sources of decoherence. One is spin relaxation whose 
time is long, as discussed above, although the transverse relaxation time 
T2 in a single dot has yet to be measured. The decoherence due to the 
optical processes during the operations involving the additional excitons 
could be fast and has to be ameliorated by design, such as detuning or 
pulse shaping. 

6. SUMMARY 

The experience of building quantum logic devices based on optically 
driven quantum dots has provided the basis for moving from the exci-
ton qubit to the spin qubit. Many benchmark features predicted for zero-
dimensional systems have been readily observable in the model system of 
natural dots formed by interface fluctuations once the technical challenges 
of nano-optical probing to enable the study of individual quantum dots 
were overcome. The body of work has shown that the quantum dots do 
indeed have the optical features of sharp energy level structure associated 
with atomic systems and that decoherence effects that are associated with 
the continuum states of higher-dimensional structures are not an issue 
in these systems, in general. Multiple reports of exciton Rabi oscillations 
demonstrated on different types of quantum dots verify the robustness of 
such qubit rotational operations. Evaluation of the performance of the 
these systems show surprisingly high fidelity for initial studies, and fur
ther progress in materials development and the application of optical pulse 
shaping and coherent control techniques will surely result in considerable 
improvement. 
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While further development of exciton based qubit systems will 
undoubtedly lead to impressive performance, much of the future work 
will be focused on extending the exciton system to the A system of 
Fig. 1(d) by doping a QD with a single electron. Moving to the spin 
based qubit will lead to longer coherence times with the promise of 
improved performance as aimed at quantum computing. The challenges 
here lie in developing further control of materials fabrication, which will 
be paired with more sophisticated schemes for optical excitation and 
coherent control. Full characterization of the density matrix will be essen
tial for complete understanding of the system, and means for reliable read
out and initialization will need to be experimentally investigated. 

Advances in materials work combined with new optical probing and 
coherent optical control developments have enabled surprisingly fast devel
opment of optically driven quantum dot systems for quantum information 
processing. Innovative proposals by many groups have identified several 
approaches now to extend this work in a scalable manner.̂ ^̂ "̂ '̂̂ '̂̂ '̂̂ ^̂  
Many critical questions remain, however, and further work is required in 
all areas. 
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Implementing Qubits with Superconducting 
Integrated Circuits 

Michel H. Devoret̂  "̂  and John M. Martinis^^ 

Superconducting qubits are solid state electrical circuits fabricated using tech
niques borrowed from conventional integrated circuits. They are based on the 
Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit ele
ment available at low temperature. In contrast to microscopic entities such as 
spins or atoms, they tend to be well coupled to other circuits, which make them 
appealling from the point of view of readout and gate implementation. Very 
recently, new designs of superconducting qubits based on multi-junction circuits 
have solved the problem of isolation from unwanted extrinsic electromagnetic per
turbations. We discuss in this review how qubit decoherence is affected by the 
intrinsic noise of the junction and what can be done to improve it. 

KEY WORDS: Quantum information; quantum computation; superconducting 
devices; Josephson tunnel junctions; integrated circuits. 

PACS: 03.67.-a, 03.65.Yz, 85.25.-j, 85.35.Gv. 

1. INTRODUCTION 

1.1. The Problem of Implementing a Quantum Computer 

The theory of information has been revolutionized by the discovery 
that quantum algorithms can run exponentially faster than their classical 
counterparts, and by the invention of quantum error-correction proto
cols/^^ These fundamental breakthroughs have lead scientists and engi
neers to imagine building entirely novel types of information processors. 
However, the construction of a computer exploiting quantum—rather than 
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classical—principles represents a formidable scientific and technological 
challenge. While quantum bits must be strongly inter-coupled by gates 
to perform quantum computation, they must at the same time be com
pletely decoupled from external influences, except during the write, control 
and readout phases when information must flow freely in and out of the 
machine. This difficulty does not exist for the classical bits of an ordinary 
computer, which each follow strongly irreversible dynamics that damp the 
noise of the environment. 

Most proposals for implementing a quantum computer have been 
based on qubits constructed from microscopic degrees of freedom: spin of 
either electrons or nuclei, transition dipoles of either atoms or ions in vac
uum. These degrees of freedom are naturally very well isolated from their 
environment, and hence decohere very slowly. The main challenge of these 
implementations is enhancing the inter-qubit coupling to the level required 
for fast gate operations without introducing decoherence from parasitic 
environmental modes and noise. 

In this review, we will discuss a radically different experimental 
approach based on "quantum integrated circuits." Here, qubits are con
structed from collective electrodynamic modes of macroscopic electrical 
elements, rather than microscopic degrees of freedom. An advantage of 
this approach is that these qubits have intrinsically large electromagnetic 
cross-sections, which implies they may be easily coupled together in com
plex topologies via simple linear electrical elements like capacitors, induc
tors, and transmission lines. However, strong coupling also presents a 
related challenge: is it possible to isolate these electrodynamic qubits from 
ambient parasitic noise while retaining efficient communication channels 
for the write, control, and read operations? The main purpose of this arti
cle is to review the considerable progress that has been made in the past 
few years towards this goal, and to explain how new ideas about meth
odology and materials are likely to improve coherence to the threshold 
needed for quantum error correction. 

1.2. Caveats 

Before starting our discussion, we must warn the reader that this 
review is atypical in that it is neither historical nor exhaustive. Some 
important works have not been included or are only partially covered. On 
the other hand, the reader may feel we too frequently cite our own work, 
but we wanted to base our speculations on experiments whose details we 
fully understand. We have on purpose narrowed our focus: we adopt the 
point of view of an engineer trying to determine the best strategy for 
building a reliable machine given certain design criteria. This approach 
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obviously runs the risk of presenting a biased and even incorrect account 
of recent scientific results, since the optimization of a complex system is 
always an intricate process with both hidden passageways and dead-ends. 
We hope nevertheless that the following sections will at least stimulate dis
cussions on how to harness the physics of quantum integrated circuits into 
a mature quantum information processing technology. 

2. BASIC FEATURES OF QUANTUM INTEGRATED CIRCUITS 

2.1. Ultra-low Dissipation: Superconductivity 

For an integrated circuit to behave quantum mechanically, the first 
requirement is the absence of dissipation. More specifically, all metallic 
parts need to be made out of a material that has zero resistance at the 
qubit operating temperature and at the qubit transition frequency. This is 
essential in order for electronic signals to be carried from one part of the 
chip to another without energy loss—a necessary (but not sufficient) con
dition for the preservation of quantum coherence. Low temperature super
conductors such as aluminium or niobium are ideal for this task.̂ ^̂  For 
this reason, quantum integrated circuit implementations have been nick
named "superconducting qubits" ̂  

2.2. Ultra-low Noise: Low Temperature 

The degrees of freedom of the quantum integrated circuit must be 
cooled to temperatures where the typical energy kT of thermal fluctua
tions is much less that the energy quantum hcoo\ associated with the tran
sition between the states |qubit = 0) and |qubit=l). For reasons which 
will become clear in subsequent sections, this frequency for superconduct
ing qubits is in the 5-20 GHz range and therefore, the operating tem
perature T must be around 20 mK (recall that 1 K corresponds to about 
20 GHz). These temperatures may be readily obtained by cooling the chip 
with a dilution refrigerator. Perhaps more importantly though, the "elec
tromagnetic temperature" of the wires of the control and readout ports 
connected to the chip must also be cooled to these low temperatures, 
which requires careful electromagnetic filtering. Note that electromagnetic 

În principle, other condensed phases of electrons, such as high-Tc superconductivity or the 
quantum Hall effect, both integer and fractional, are possible and would also lead to quan
tum integrated circuits of the general type discussed here. We do not pursue this subject fur
ther than this note, however, because dissipation in these new phases is, by far, not as well 
understood as in low-re superconductivity 
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(a) 
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TOP ELECTRODE 

Fig. 1. (a) Josephson tunnel junction made with two superconducting thin films; (b) 
Schematic representation of a Josephson tunnel junction. The irreducible Josephson element 
is represented by a cross. 

damping mechanisms are usually stronger at low temperatures than those 
originating from electron-phonon coupling. The techniques^^^ and require-
mentŝ "̂ ^ for ultra-low noise filtering have been known for about 20 years. 
From the requirements kT <^ha>o\ and hojo\ <^ A, where A is the energy 
gap of the superconducting material, one must use superconducting mate
rials with a transition temperature greater than about 1 K. 

2.3. Non-linear, Non-dissipative Elements: Tunnel Junctions 

Quantum signal processing cannot be performed using only purely 
linear components. In quantum circuits, however, the non-linear elements 
must obey the additional requirement of being non-dissipative. Elements 
Hke PIN diodes or CMOS transistors are thus forbidden, even if they 
could be operated at ultra-low temperatures. 

There is only one electronic element that is both non-linear and non-
dissipative at arbitrarily low temperature: the superconducting tunnel junc
tion^ (also known as a Josephson tunnel junction^^^). As illustrated in 
Fig. 1, this circuit element consists of a sandwich of two superconducting 
thin films separated by an insulating layer that is thin enough (typically 
^ I n m ) to allow tunnehng of discrete charges through the barrier. In later 

^A very short superconducting weak link (see for instance Ref. 6) is a also a possible can
didate, provided the Andreev levels would be sufficiently separated. Since we have too few 
experimental evidence for quantum effects involving this device, we do not discuss this oth
erwise important matter further. 
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sections we will describe how the tunneling of Cooper pairs creates an 
inductive path with strong non-linearity, thus creating energy levels suit
able for a qubit. The tunnel barrier is typically fabricated from oxidation 
of the superconducting metal. This results in a reliable barrier since the 
oxidation process is self-terminating.̂ ^^ The materials properties of amor
phous aluminum oxide, alumina, make it an attractive tunnel insulating 
layer. In part because of its well-behaved oxide, aluminum is the material 
from which good quaHty tunnel junctions are most easily fabricated, and it 
is often said that aluminium is to superconducting quantum circuits what 
silicon is to conventional MOSFET circuits. Although the Josephson effect 
is a subtle physical effect involving a combination of tunnehng and super
conductivity, the junction fabrication process is relatively straightforward. 

2.4. Design and Fabrication of Quantum Integrated Circuits 

Superconducting junctions and wires are fabricated using techniques 
borrowed from conventional integrated circuits^. Quantum circuits are 
typically made on silicon wafers using optical or electron-beam lithogra
phy and thin film deposition. They present themselves as a set of micron-
size or sub-micron-size circuit elements (tunnel junctions, capacitors, and 
inductors) connected by wires or transmission Hues. The size of the chip 
and elements are such that, to a large extent, the electrodynamics of the 
circuit can be analyzed using simple transmission line equations or even 
a lumped element approximation. Contact to the chip is made by wires 
bonded to mm-size metallic pads. The circuit can be designed using con
ventional layout and classical simulation programs. 

Thus, many of the design concepts and tools of conventional semi
conductor electronics can be directly applied to quantum circuits. Nev
ertheless, there are still important differences between conventional and 
quantum circuits at the conceptual level. 

2.5. Integrated Circuits that Obey Macroscopic Quantum Mechanics 

At the conceptual level, conventional and quantum circuits differ in 
that, in the former, the collective electronic degrees of freedom such as 
currents and voltages are classical variables, whereas in the latter, these 
degrees of freedom must be treated by quantum operators which do 
not necessarily commute. A more concrete way of presenting this rather 

^It is worth mentioning that chips with tens of thousands of junctions have been successfully 
fabricated for the voltage standard and for the Josephson signal processors, which are only 
exploiting the speed of Josephson elements, not their macroscopic quantum properties. 
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abstract difference is to say that a typical electrical quantity, such as the 
charge on the plates of a capacitor, can be thought of as a simple num
ber is conventional circuits, whereas in quantum circuits, the charge on 
the capacitor must be represented by a wave function giving the proba-
biUty amplitude of all charge configurations. For example, the charge on 
the capacitor can be in a superposition of states where the charge is both 
positive and negative at the same time. Similarly the current in a loop 
might be flowing in two opposite directions at the same time. These sit
uations have originally been nicknamed "macroscopic quantum coherence 
effects" by Tony Leggett̂ ^^ to emphasize that quantum integrated circuits 
are displaying phenomena involving the collective behavior of many par
ticles, which are in contrast to the usual quantum effects associated with 
microscopic particles such as electrons, nuclei or molecules^. 

2.6. DiVicenzo Criteria 

We conclude this section by briefly mentioning how quantum inte
grated circuits satisfy the so-called DiVicenzo criteria for the implemen
tation of quantum computation.^^^ The non-linearity of tunnel junctions 
is the key property ensuring that non-equidistant level subsystems can be 
implemented (criterion #1: qubit existence). As in many other implemen
tations, initialization is made possible (criterion #2: qubit reset) by the 
use of low temperature. Absence of dissipation in superconductors is one 
of the key factors in the quantum coherence of the system (criterion #3: 
qubit coherence). Finally, gate operation and readout (criteria #4 and #5) 
are easily implemented here since electrical signals confined to and travel
ing along wires constitute very efficient coupling methods. 

3. THE SIMPLEST QUANTUM CIRCUIT 

3.1. Quantum LC Oscillator 

We consider first the simplest example of a quantum integrated cir
cuit, the LC oscillator. This circuit is shown in Fig. 2, and consists 
of an inductor L connected to a capacitor C, all metallic parts being 
superconducting. This simple circuit is the lumped-element version of a 
superconducting cavity or a transmission line resonator (for instance, the 
link between cavity resonators and LC circuits is elegantly discussed by 

^These microscopic effects determine also the properties of materials, and explain phenomena 
such as superconductivity and the Josephson effect itself Both classical and quantum cir
cuits share this bottom layer of microscopic quantum mechanics. 
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Fig. 2. Lumped element model for an electromagnetic resonator: LC oscillator. 

Feynman^^^^). The equations of motion of the LC circuit are those of an 
harmonic oscillator. It is convenient to take the position coordinate as 
being the flux O in the inductor, while the role of conjugate momentum 
is played by the charge Q on the capacitor playing the role of its conju
gate momentum. The variables O and Q have to be treated as canonically 
conjugate quantum operators that obey [^, Q\ = ih. The hamiltonian of 
the circuit is H = {\/2)^^/L + {\I2)Q^/C, which can be equivalently writ
ten as H = fkjL>{){n-\-{\/2)) where n is the number operator for photons in 
the resonator and (JL)Q = \/^/LC is the resonance frequency of the oscillator. 
It is important to note that the parameters of the circuit hamiltonian are 
not fundamental constants of Nature. They are engineered quantities with 
a large range of possible values which can be modified easily by chang
ing the dimensions of elements, a standard Uthography operation. It is 
in this sense, in our opinion, that the system is unambiguously "macro
scopic". The other important combination of the parameters L and C is 
the characteristic impedance Z = ^LjC of the circuit. When we combine 
this impedance with the residual resistance of the circuit and/or its radi
ation losses, both of which we can lump into a resistance R, we obtain 
the quality factor of the oscillation: Q^Z/R. The theory of the harmonic 
oscillator shows that a quantum superposition of ground state and first 
excited state decays on a time scale given by l/RC. This last equahty illus
trates the general hnk between a classical measure of dissipation and the 
upper limit of the quantum coherence time. 

3.2. Practical Considerations 

In practice, the circuit shown in Fig. 2 may be fabricated using pla
nar components with lateral dimensions around 10/xm, giving values of L 
and C approximately 0.1 nH and IpF, respectively, and yielding COQ/ITT^ 

16 GHz and ZQ = 10^ . If we use aluminium, a good BCS superconduc
tor with transition temperature of 1.1 K and a gap A/^~200/xy, dissipa
tion from the breaking of Cooper pairs will begin at frequencies greater 
than 2A//i :^ lOOGHz. The residual resistivity of a BCS superconduc
tor decreases exponentially with the inverse of temperature and Hnearly 



170 Devoret and Martinis 

with frequency, as shown by the Mattis-Bardeen (MB) formula p {co) ^ 
po(^/^B^)exp(-A/^B^) /^^^ where po is the resistivity of the metal in 
the normal state (we are treating here the case of the so-called "dirty" 
superconductor,^^^^ which is well adapted to thin film systems). Accord
ing to MB, the intrinsic losses of the superconductor at the temperature 
and frequency (typically 20 mK and 20 GHz) associated with qubit dynam
ics can be safely neglected. However, we must warn the reader that the 
intrisinsic losses in the superconducting material do not exhaust, by far, 
sources of dissipation, even if very high quality factors have been demon
strated in superconducting cavity experiments.^^^^ 

3.3. Matching to the Vacuum Impedance: A Useful Feature, not a Bug 

Although the intrisinsic dissipation of superconducting circuits can be 
made very small, losses are in general governed by the coupling of the 
circuit with the electromagnetic environment that is present in the forms 
of write, control and readout lines. These lines (which we also refer to 
as ports) have a characteristic propagation impedance Zc ĉ  50 ̂ , which 
is constrained to be a fraction of the impedance of the vacuum Zyac = 
371Q. It is thus easy to see that our LC circuit, with a characteristic 
impedance of Zo = 10fi, tends to be rather well impedance-matched to 
any pair of leads. This circumstance occurs very frequently in circuits, and 
almost never in microscopic systems such as atoms which interact very 
weakly with electromagnetic radiation^. Matching to Zyac is a useful fea
ture because it allows strong coupling for writing, reading, and logic oper
ations. As we mentioned earlier, the challenge with quantum circuits is to 
isolate them from parasitic degrees of freedom. The major task of this 
review is to explain how this has been achieved so far and what level of 
isolation is attainable. 

3.4. The Consequences of being Macroscopic -

While our example shows that quantum circuits can be mass-pro
duced by standard micro-fabrication techniques and that their parameters 
can be easily engineered to reach some optimal condition, it also points 
out evident drawbacks of being "macroscopic" for qubits. 

^The impedance of an atom can be crudely seen as being given by the impedance quantum 
RK =h/e-^. We live in a universe where the ratio Zvac/2/?A:, also known as the fine structure 
constant 1/137.0, is a small number. 
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The engineered quantities L and C can be written as 

L =L'^^^ + AL(t), 
C = C'^^^ + AC(t). ^^ 

(a) The first term on the right-hand side denotes the static part of the 
parameter. It has statistical variations: unlike atoms whose transition fre
quencies in isolation are so reproducible that they are the basis of atomic 
clocks, circuits will always be subject to parameter variations from one 
fabrication batch to another. Thus prior to any operation using the circuit, 
the transition frequencies and coupling strength will have to be determined 
by "diagnostic" sequences and then taken into account in the algorithms, 

(b) The second term on the right-hand side denotes the time-depen
dent fluctuations of the parameter. It describes noise due to residual 
material defects moving in the material of the substrate or in the mate
rial of the circuit elements themselves. This noise can affect for instance 
the dielectric constant of a capacitor. The low frequency components of 
the noise will make the resonance frequency wobble and contribute to the 
dephasing of the oscillation. Furthermore, the frequency component of the 
noise at the transition frequency of the resonator will induce transitions 
between states and will therefore contribute to the energy relaxation. 

Let us stress that statistical variations and noise are not problems 
affecting superconducting qubit parameters only. For instance when sev
eral atoms or ions are put together in microcavities for gate operation, 
patch potential effects will lead to expressions similar in form to Eq, (1) 
for the parameters of the hamiltonian, even if the isolated single qubit 
parameters are fluctuation-free. 

3.5. The Need for Non-linear Elements 

Not all aspects of quantum information processing using quantum 
integrated circuits can be discussed within the framework of the LC 
circuit, however. It lacks an important ingredient: non-linearity. In the 
harmonic oscillator, all transitions between neighbouring states are degen
erate as a result of the parabolic shape of the potential. In order to have 
a qubit, the transition frequency between states | qubit = 0} and | qubit =1} 
must be sufficiently different from the transition between higher-lying ei-
genstates, in particular 1 and 2. Indeed, the maximum number of 1-qubit 
operations that can be performed coherently scales as Qo\ \WQI —mil/coQi 
where Qoi is the quaUty factor of the 0 - ^ 1 transition. Josephson tunnel 
junctions are crucial for quantum circuits since they bring a strongly non-
parabolic inductive potential energy. 
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4. THE JOSEPHSON NON-LINEAR INDUCTANCE 

At low temperatures, and at the low voltages and low frequencies cor
responding to quantum information manipulation, the Josephson tunnel 
junction behaves as a pure non-linear inductance (Josephson element) in 
parallel with the capacitance corresponding to the parallel plate capaci
tor formed by the two overlapping films of the junction (Fig. lb). This 
minimal, yet precise model, allows arbitrary complex quantum circuits to 
be analysed by a quantum version of conventional circuit theory. Even 
though the tunnel barrier is a layer of order ten atoms thick, the value of 
the Josephson non-linear inductance is very robust against static disorder, 
just like an ordinary inductance—such as the one considered in Sec. 3—is 
very insensitive to the position of each atom in the wire. We refer tô "̂*̂  
for a detailed discussion of this point. 

4.1. Constitutive Equation 

Let us recall that a linear inductor, like any electrical element, can be 
fully characterized by its constitutive equation. Introducing a generaliza
tion of the ordinary magnetic flux, which is only defined for a loop, we 
define the branch flux of an electric element by <t>{t) = f_^ V(t])dt\, where 
V(t) is the space integral of the electric field along a current line inside the 
element. In this language, the current I(t) flowing through the inductor is 
proportional to its branch flux 4>(r): 

7(0 = -^0(0. (2) 

Note that the generalized flux ^(t) can be defined for any electric ele
ment with two leads (dipole element), and in particular for the Josephson 
junction, even though it does not resemble a coil. The Josephson element 
behaves inductively, as its branch flux-current relationship^^^ is 

/ ( 0 = /osin[2;rcD(0/Oo]. (3) 

This inductive behavior is the manifestation, at the level of collec
tive electrical variables, of the inertia of Cooper pairs tunneling across the 
insulator (kinetic inductance). The discreteness of Cooper pair tunneling 
causes the periodic flux dependence of the current, with a period given 
by a universal quantum constant OQ. the superconducting flux quantum 
h/2e. The junction parameter IQ is called the critical current of the tun
nel element. It scales proportionally to the area of the tunnel layer and 
diminishes exponentially with the tunnel layer thickness. Note that the 
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constitutive relation Eq. (3) expresses in only one equation the two Joseph-
son relations/^^ This compact formulation is made possible by the intro
duction of the branch flux (see Fig. 3). 

The purely sinusoidal form of the constitutive relation Eq. (3) can 
be traced to the perturbative nature of Cooper pair tunneling in a tunnel 
junction. Higher harmonics can appear if the tunnel layer becomes very 
thin, though their presence would not fundamentally change the discus
sion presented in this review. The quantity In <t>(t)/<^o = ^ is called the 
gauge-invariant phase difference accross the junction (often abridged into 
"phase"). It is important to realize that at the level of the constitutive rela
tion of the Josephson element, this variable is nothing else than an electro
magnetic flux in dimensionless units. In general, we have 

9 = 8mod27t, 

where 0 is the phase difference between the two superconducting conden
sates on both sides of the junction. This last relation expresses how the 
superconducting ground state and electromagnetism are tied together. 

4.2. Other Forms of the Parameter Describing the Josephson 
Non-linear Inductance 

The Josephson element is also often described by two other parame
ters, each of which carry exactly the same information as the critical cur
rent. The first one is the Josephson effective inductance Ljo = (po/Io^ where 
(PQ = <t>o/27t is the reduced flux quantum. The name of this other form 
becomes obvious if we expand the sine function in Eq. (3) in powers of 
0 around O == 0. Keeping the leading term, we have / = O/LJQ. Note 
that the junction behaves for small signals almost as a point-like kinetic 

- I — ? * — ' " ^ 

o 

(Do 

Fig. 3. Sinusoidal current-flux relationship of a Josephson tunnel junction, the simplest 
non-linear, non-dissipative electrical element (solid line). Dashed line represents current-flux 
relationship for a linear inductance equal to the junction effective inductance. 
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inductance: a 100 nm x 100 nm area junction will have a typical induc
tance of 100 nH, whereas the same inductance is only obtained magneti
cally with a loop of about 1 cm in diameter. More generally, it is conve
nient to define the phase-dependent Josephson inductance 

\d^J CO COS 8 

Note that the Josephson inductance not only depends on 6, it can 
actually become infinite or negative! Thus, under the proper conditions, 
the Josephson element can become a switch and even an active circuit ele
ment, as we will see below. 

The other useful parameter is the Josephson energy E]=(poIo. If we 
compute the energy stored in the junction E(t) = f_^I(t\)Viti)dti, we 
find E(t) = -Ej cos[27t ^(t)/<t>o]. In contrast with the parabolic depen
dence on flux of the energy of an inductance, the potential associated 
with a Josephson element has the shape of a cosine washboard. The total 
height of the corrugation of the washboard is 2Ej. 

4.3. Tuning the Josephson Element 

A direct application of the non-linear inductance of the Josephson 
element is obtained by splitting a junction and its leads into two equal 
junctions, such that the resulting loop has an inductance much smaller 
the Josephson inductance. The two smaller junctions in parallel then 
behave as an effective junction^^^^ whose Josephson energy varies with 
Oext? the magnetic flux externally imposed through the loop 

^j(^ext) = Ej COS (jrOext/^o) • (4) 

Here, Ej the total Josephson energy of the two junctions. The Josephson 
energy can also be modulated by applying a magnetic field in the plane 
parallel to the tunnel layer. 

5. THE QUANTUM ISOLATED JOSEPHSON JUNCTION 

5.1. Form of the Hamiltonian 

If we leave the leads of a Josephson junction unconnected, we obtain 
the simplest example of a non-linear electrical resonator. In order to ana
lyze its quantum dynamics, we apply the prescriptions of quantum circuit 
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theory briefly summarized in Appendix 1. Choosing a representation priv
ileging the branch variables of the Josephson element, the momentum cor
responds to the charge Q = leN having tunneled through the element and 
the canonically conjugate position is the flux <^ = (p()6 associated with the 
superconducting phase difference across the tunnel layer. Here, N and 0 
are treated as operators that obey [0,N] = i. It is important to note that 
the operator N has integer eigenvalues whereas the phase 0 is an opera
tor corresponding to the position of a point on the unit circle (an angle 
modulo 27r). 

By eliminating the branch charge of the capacitor, the hamiltonian 
reduces to 

H = Ecj(N - Q.llef - £ j cos Q (5) 

2̂ 
where f'cj = ^ ^ is the Coulomb charging energy corresponding to one 

Cooper pair on the junction capacitance Cj and where Qx is the residual 
offset charge on the capacitor. 

One may wonder how the constant Q^ got into the hamiltonian, since 
no such term appeared in the corresponding LC circuit in Sec. 3. The con
tinuous charge Q^ is equal to the charge that pre-existed on the capaci
tor when it was wired with the inductor. Such offset charge is not some 
nit-picking theoretical construct. Its physical origin is a slight difference 
in work function between the two electrodes of the capacitor and/or an 
excess of charged impurities in the vicinity of one of the capacitor plates 
relative to the other. The value of 2r is in practice very large compared 
to the Cooper pair charge le, and since the hamiltonian (5) is invariant 
under the transformation N -> N ±1, its value can be considered com
pletely random. 

Such residual offset charge also exists in the LC circuit. However, we 
did not include it in our description of Sec. 3 since a time-independent 
Qr does not appear in the dynamical behavior of the circuit: it can be 
removed from the hamiltonian by performing a trivial canonical transfor
mation leaving the form of the hamiltonian unchanged. 

It is not possible, however, to remove this constant from the junction 
hamiltonian (5) because the potential is not quadratic in 0. The parameter 
Qr plays a role here similar to the vector potential appearing in the ham
iltonian of an electron in a magnetic field. 

5.2. Fluctuations of the Parameters of the Hamiltonian 

The hamiltonian 5 thus depends thus on three parameters which, fol
lowing our discussion of the LC oscillator, we write as 
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Ec = E'^^' + AEc(t). (6) 

Ej = Ef'-\-AEjit) 

in order to distinguish the static variation resulting from fabrication of the 
circuit from the time-dependent fluctuations. While Qf^^ can be consid
ered fully random (see above discussion), E^^^ and Ef^^ can generally be 
adjusted by construction to a precision better than 20%. The relative fluc
tuations AQr(t)/2e and AEj(t)/Ej are found to have a 1 / / power spec
tral density with a typical standard deviations at 1 Hz roughly of order 
lO'^Hz"^/-^ and 10~^Hz~^/"^, respectively, for a junction with a typical 
area of O.Ol /im^S^^^ The noise appears to be produced by independent 
two-level fluctuators.^^^^ The relative fluctuations AEc(t)/Ec are much 
less known, but the behavior of some glassy insulators at low tempera
tures might lead us to expect also a 1 / / power spectral density, but prob
ably with a weaker intensity than those of AE](t)/E]. We refer to the 
three noise terms in Eq. (6) as offset charge, dielectric and critical current 
noises, respectively. 

6. WHY THREE BASIC TYPES OF JOSEPHSON QUBITS? 

The first-order problem in realizing a Josephson qubit is to suppress 
as much as possible the detrimental effect of the fluctuations of Q^, while 
retaining the non-linearity of the circuit. There are three main stategies 
for solving this problem and they lead to three fundamental basic type of 
qubits involving only one Josephson element. 

6.1. The Cooper Pair Box 

The simplest circuit is called the "Cooper pair box" and was first 
described theoretically, albeit in a slightly different version than presented 
here, by Biittiker.̂ ^^^ It was first realized experimentally by the Saclay 
group in 1997.̂ ^^^ Quantum dynamics in the time domain were first seen 
by the NEC group in 1999.̂ ^0) 

In the Cooper pair box, the deviations of the residual offset charge 
Qr are compensated by biasing the Josephson tunnel junction with a 
voltage source U in series with a "gate" capacitor Cg (see Fig. 4a). One 
can easily show that the hamiltonian of the Cooper pair box is 

H = Ec{N- Ngf - E] cos 0. (7) 
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Here EQ = (le)^ /{I (Cj + Cg)) is the charging energy of the island of the 
box and Âg = 2r + CgU/2e. Note that this hamiltonian has the same 
form as hamiltonian (5). Often Âg is simply written as CgU/le since U at 
the chip level will anyhow deviate substantially from the generator value 
at high-temperature due to stray emf's in the low-temperature cryogenic 
wiring. 

In Fig. 5, we show the potential in the 0 representation as well as 
the first few energy levels for Ej/Ec = l and Ng = 0. As shown in Appen
dix 2, the Cooper pair box eigenenergies and eigenfunctions can be calcu
lated with special functions known with arbitrary precision, and in Fig. 6 
we plot the first few eigenenergies as a function of Ng for Ej/Ec = OA 
and Ej/Ec = 1. Thus, the Cooper box is to quantum circuit physics what 
the hydrogen atom is to atomic physics. We can modify the spectrum with 
the action of two externally controllable electrodynamic parameters: Â g, 
which is directly proportional to U, and Ej, which can be varied by apply
ing a field through the junction or by using a split junction and apply
ing a flux through the loop, as discussed in Sec. 3. These parameters bear 
some resemblance to the Stark and Zeeman fields in atomic physics. For 
the box, however much smaller values of the fields are required to change 
the spectrum entirely. 

We now limit ourselves to the two lowest levels of the box. Near the 
degeneracy point Ng = 1/2 where the electrostatic energy of the two charge 
states \N = 0) and |A/̂ =1) are equal, we get the reduced hamiltonian^^ '̂̂ ^^ 

^qubit = -Ezicrz + ^cont ro l^x) , (8) 

where, in the limit Ej/Ec<l. E^^E^/l and Xcontroi=2(£c/^j) ((l/2)-A^g). 
In Eq. (8), az and ax refer to the PauU spin operators. Note that the 
X-direction is chosen along the charge operator, the variable of the box 
we can naturally couple to. 

Fig. 4. The three basic superconducting qubits. (a) Cooper pair box (prototypal charge 
qubit); (b) RF-SQUID (prototypal flux qubit); and (c) current-biased junction (prototypal 
phase qubit). The charge qubit and the flux qubit requires small junctions fabricated with 
e-beam lithography while the phase qubit can be fabricated with conventional optical lithog
raphy. 
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E/E, 

Fig. 5. Potential landscape for the phase in a Cooper pair box (thick solid line). The first 
few levels for Ej/Ec = l and Ng = l/2 are indicated by thin horizontal solid lines. 

If we plot the energy of the eigenstates of hamiltonian (8) as a 
function of the control parameter Xcontroh we obtain the universal level 
repulsion diagram shown in Fig. 7. Note that the minimum energy 

(2EjEc)^ 

(2EjEc)^^ 

Fig. 6. Energy levels of the Cooper pair box as a function of Ng, for two values of EJ/EQ-
As Ej/Ec increases, the sensitivity of the box to variations of offset charge diminishes, but 
so does the non-linearity. However, the non-linearity is the slowest function of EJ/EQ and a 
compromise advantageous for coherence can be found. 
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Fig. 7. Universal level anticrossing found both for the Cooper pair box and the 
RF-SQUID at their "sweet spot". 

splitting is given by Ej. Comparing Eq. (8) with the spin hamiltonian 
in NMR, we see that Ej plays the role of the Zeeman field while the 
electrostatic energy plays the role of the transverse field. Indeed we can 
send on the control port corresponding to U time-varying voltage signals 
in the form of NMR-type pulses and prepare arbitrary superpositions of 
states.̂ ^2^ 

The expression 8 shows that at the "sweet spot" Xcontroi = 0? i-̂ -? the 
degeneracy point Ng = l/2, the qubit transition frequency is to first order 
insentive to the offset charge noise AQr- We will discuss in Sec. 6.2 how 
an extension of the Cooper pair box circuit can display quantum coher
ence properties on long time scales by using this property. 

In general, circuits derived from the Cooper pair box have been nick
named "charge qubits". One should not think, however, that in charge 
qubits, quantum information is encoded with charge. Both the charge Â  
and phase 0 are quantum variables and they are both uncertain for a 
generic quantum state. Charge in "charge qubits" should be understood 
as refering to the "controlled variable", i.e., the qubit variable that couples 
to the control line we use to write or manipulate quantum information. In 
the following, for better comparison between the three qubits, we will be 
faithful to the convention used in Eq. (8), namely that ox represents the 
controlled variable. 

6.2. The RF-SQUID 

The second circuit—the so-called RF-SQUID^^^^—can be considered 
in several ways the dual of the Cooper pair box (see Fig. 4b). It employs 



180 Devoret and Martinis 

E/E, 

O/On 

Fig. 8. Schematic potential energy landcape for the RF-SQUID. 

a superconducting transformer rather than a gate capacitor to adjust the 
hamiltonian. The two sides of the junction with capacitance Cj are con
nected by a superconducting loop with inductance L. An external flux 
Oext is imposed through the loop by an auxiliary coil. Using the methods 
of Appendix 1, we obtain the hamiltonian^^^ 

2Cj 2L ^ 
2e 
h (0 - ^ex t ) (9) 

We are taking here as degrees of freedom the integral 0 of the voltage 
across the inductance L, i.e., the flux through the superconducting loop, 
and its conjugate variable, the charge q on the capacitance Cj; they obey 
[<j),q\ — ih. Note that in this representation, the phase 0, corresponding to 
the branch flux across the Josephson element, has been eliminated. Note 
also that the flux 0, in contrast to the phase 0, takes its values on a line 
and not on a circle. Likewise, its conjugate variable q, the charge on the 
capacitance, has continuous eigenvalues and not integer ones like Â . Note 
that we now have three adjustable energy scales: Ej, Ecj = (2^)^/2Cj and 

The potential in the flux representation is schematically shown in 
Fig. 8 together with the first few levels, which have been seen experi
mentally for the first time by the SUNY group.̂ "̂̂ ^ Here, no analytical 
expressions exist for the eigenvalues and the eigenfunctions of the prob
lem, which has two aspect ratios: EJ/EQ] and X = Lj/L- 1. 

Whereas in the Cooper box the potential is cosine-shaped and has 
only one well since the variable 0 is 2:1-periodic, we have now in gen
eral a parabolic potential with a cosine corrugation. The idea here for cur
ing the detrimental effect of the offset charge fluctuations is very different 
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than in the box. First of all Qf^^ has been neutralized by shunting the two 
metallic electrodes of the junction by the superconducting wire of the loop. 
Then, the ratio Ej/Ecj is chosen to be much larger than unity. This tends 
to increase the relative strength of quantum fluctuations of q, making off
set charge fluctuations AQr small in comparison. The resulting loss in the 
non-Hnearity of the first levels is compensated by taking X close to zero 
and by flux-biasing the device at the half-flux quantum value Oext = ^o/2. 
Under these conditions, the potential has two degenerate wells separated 
by a shallow barrier with height EB = 0X^/2)EJ. This corresponds to the 
degeneracy value Ng = l/2 in the Cooper box, with the inductance energy 
in place of the capacitance energy. At ^ext = ^o/2, the two lowest energy 
levels are then the symmetric and antisymmetric combinations of the two 
wavefunctions localized in each well, and the energy splitting between the 
two states can be seen as the tunnel splitting associated with the quantum 
motion through the potential barrier between the two wells, bearing close 
resemblance to the dynamics of the ammonia molecule. This sphtting Es 
depends exponentially on the barrier height, which itself depends strongly 
on E]. We have Es = r/V^B^̂ CJ exp (-§V^B/^ 'CJ) where the numbers r] 
and ^ have to be determined numerically in most practical cases. The non-
linearity of the first levels results thus from a subtle cancellation between 
two inductances: the superconducting loop inductance L and the junction 
effective inductance —Ljo which is opposed to L near Oext = ^o/2. How
ever, as we move away from the degeneracy point Oext = ^o/2, the splitting 
2E^ between the first two energy levels varies Hnearly with the applied 
flux E^ = ^(^l/2L)(N^-l/2). Here the parameter Â4> = Oext/^o, also 
called the flux frustration, plays the role of the reduced gate charge Â g. 
The coefficient ^ has also to be determined numerically. We are there
fore again, in the vicinity of the flux degeneracy point <l>ext = ^o/2 and 
for Ej/Ecj^ 1, in presence of the universal level repulsion behavior (see 
Fig. 7) and the qubit hamiltonian is again given by 

^qubit = -Ez iPZ + ^control^z) , (10) 

where now Ez = E^/2 and ĉontrol = 2(£'<D/£'5)((1/2) - Â <D). The qubits 
derived from this basic circuit̂ ^̂ '̂ ^̂  have been nicknamed "flux qubits". 
Again, quantum information is not directly represented here by the flux 
0, which is as uncertain for a general qubit state as the charge q on the 
capacitor plates of the junction. The flux 0 is the system variable to which 
we couple when we write or control information in the qubit, which is 
done by sending current pulses on the primary of the RF-SQUID trans
former, thereby modulating N^, which itself determines the strength of 
the pseudo-field in the X-direction in the hamiltonian 10. Note that the 
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parameters Es, E^, and N^ are all influenced to some degree by the crit
ical current noise, the dielectric noise and the charge noise. Another inde
pendent noise can also be present, the noise of the flux in the loop, which 
is not found in the box and which will affect only N^. Experiments on 
DC-SQUIDS^^^^ have shown that this noise, in adequate conditions, can 
be as low as 10~^(/i/2^)/Hz~^/^ at a few kHz. However, experimental 
results on flux qubits (see below) seem to indicate that larger apparent flux 
fluctuations are present, either as a result of flux trapping or critical cur
rent fluctuations in junctions implementing inductances. 

6.3. Current-biased Junction 

The third basic quantum circuit biases the junction with a fixed 
DC-current source (Fig. 7c). Like the flux qubit, this circuit is also 
insensitive to the effect of offset charge and reduces the effect of charge 
fluctuations by using large ratios of EJ/EQ]- A large non-linearity in the 
Josephson inductance is obtained by biasing the junction at a current / 
very close to the critical current. A current bias source can be understood 
as arising from a loop inductance with L ^- oo biased by a flux c|> ^- CXD 
such that / = 0 /L . The Hamiltonian is given by 

H = EQJP^ - IcpoS - locpo cos 8, (11) 

where the gauge invariant phase difference operator 8 is, apart from the 
scale factor cpo, precisely the branch flux across Cj. Its conjugate vari
able is the charge 2ep on that capacitance, a continuous operator. We 
have thus [8, p] = i. The variable 8, like the variable </> of the RF-SQUID, 
takes its value on the whole real axis and its relation with the phase 0 is 
8 mod In =0 as in our classical analysis of Sec. 4. 

The potential in the 8 representation is shown in Fig. 9. It has the 
shape of a tilted washboard, with the tilt given by the ratio / / / Q . When 
/ approaches /Q, the phase is 8^n/2, and in its vicinity, the potential is 
very well approximated by the cubic form 

f/(5) = ^ o ( / o - / ) ( 5 - ^ / 2 ) - ^ ( 5 - 7 ^ / 2 ) ^ (12) 

Note that its shape depends critically on the difference / Q - / . For / < / o , 
there is a wefl with a barrier height AU = (2\/2/3)Io(po(l — I/Io)^^^ and 
the classical oscillation frequency at the bottom of the well (so-called 
plasma oscillation) is given by 
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Fig. 9. Tilted washboard potential of the current-biased Josephson junction. 
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Quanturn-mechanically, energy levels are found in the well (see Fig. 11)̂ ^̂  
with non-degenerate spacings. The first two levels can be used for qubit 
states/^^^ and have a transition frequency ô oi — 0.95a;p. 

A feature of this qubit circuit is built-in readout, a property missing 
from the two previous cases. It is based on the possibility that states in 
the cubic potential can tunnel through the cubic potential barrier into the 
continuum outside the barrier. Because the tunneling rate increases by 
a factor of approximately 500 each time we go from one energy level to 
the next, the population of the |1) qubit state can be reliably measured by 
sending a probe signal inducing a transition from the 1 state to a higher 
energy state with large tunneling probability. After tunneling, the parti
cle representing the phase accelerates down the washboard^ a convenient 
self-amplification process leading to a voltage as large as 2A/€ across the 
junction. Therefore, a finite voltage V 7̂  0 suddenly appearing across the 
junction just after the probe signal imphes that the qubit was in state |1), 
whereas y = 0 implies that the qubit was in state |0>. 

In practice, like in the two previous cases, the transition frequency 
o){)\/27T falls in the 5-20 GHz range. This frequency is only determined by 
material properties of the barrier, since the product Cj Lj does not depend 
on junction area. The number of levels in the well is typically AU/h(i>p^4. 
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Setting the bias current at a value / and calling A/ the variations of 
the difference / —/Q (originating either in variations of / or /Q), the qubit 
Hamiltonian is given by 

^qubit = ^OlO^Z + J 2cjo C ^^^^^ "̂  ^^^^' ^^^^ 

where x=y/^o\/^^U —1/4 for typical operating parameters. In contrast 
with the flux and phase qubit circuits, the current-biased Josephson junc
tion does not have a bias point where the 0-> 1 transition frequency has a 
local minimum. The hamiltonian cannot be cast into the NMR-type form 
of Eq. (8). However, a sinusoidal current signal A / ( 0 ^s in a;oî  can still 
produce ax rotations, whereas a low-frequency signal produces oz opera-
tions.̂ '̂̂ ) 

In analogy with the preceding circuits, qubits derived from this circuit 
and/or having the same phase potential shape and qubit properties have 
been nicknamed "phase qubits" since the controlled variable is the phase 
(the X pseudo-spin direction in hamiltonian (13)). 

6.4. Tunability versus Sensitivity to Noise in Control Parameters 

The reduced two-level hamiltonians Eqs. (8), (10) and (13) have been 
tested thoroughly and are now well-established. They contain the very 
important parametric dependence of the coefficient of ax, which can be 
viewed on one hand as how much the qubit can be tuned by an external 
control parameter, and on the other hand as how much it can be dephased 
by uncontrolled variations in that parameter. It is often important to real
ize that even if the control parameter has a very stable value at the level of 
room-temperature electronics, the noise in the electrical components relay
ing its value at the qubit level might be inducing detrimental fluctuations. 
An example is the flux through a superconducting loop, which in princi
ple could be set very precisely by a stable current in a coil, and which in 
practice often fluctuates because of trapped flux motion in the wire of the 
loop or in nearby superconducting films. Note that, on the other hand, 
the two-level hamiltonian does not contain all the non-Unear properties of 
the qubit, and how they conflict with its intrinsic noise, a problem which 
we discuss in the next Sec. 6.5. 

6.5. Non-linearity versus Sensitivity to Intrinsic Noise 

The three basic quantum circuit types discussed above illustrate a gen
eral tendency of Josephson qubits. If we try to make the level structure 
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very non-linear, i.e. \CL>O\—OJ\2\^COO\^ we necessarily expose the system 
sensitively to at least one type of intrinsic noise. The flux qubit is contruc-
ted to reach a very large non-linearity, but is also maximally exposed, rela
tively speaking, to critical current noise and flux noise. On the other hand, 
the phase qubit starts with a relatively small non-linearity and acquires it 
at the expense of a precise tuning of the difference between the bias cur
rent and the critical current, and therefore exposes itself also to the noise 
in the latter. The Cooper box, finally, acquires non-linearity at the expense 
of its sensitivity to offset charge noise. The search for the optimal qubit 
circuit involves therefore a detailed knowledge of the relative intensities of 
the various sources of noise, and their variations with all the construction 
parameters of the qubit, and in particular—this point is crucial—the prop
erties of the materials involved in the tunnel junction fabrication. Such in-
depth knowledge does not yet exist at the time of this writing and one can 
only make educated guesses. 

The qubit optimization problem is also further compHcated by the 
necessity to readout quantum information, which we address just after 
reviewing the relationships between the intensity of noise and the decay 
rates of quantum information. 

7. QUBIT RELAXATION AND DECOHERENCE 

A generic quantum state of a qubit can be represented as a unit vec
tor S pointing on a sphere—the so-called Bloch sphere. One distinguishes 
two broad classes of errors. The first one corresponds to the tip of the 
Bloch vector diffusing in the latitude direction, i.e., along the arc joining 
the two poles of the sphere to or away from the north pole. This process is 
called energy relaxation or state-mixing. The second class corresponds to 
the tip of the Bloch vector diffusing in the longitude direction, i.e., perpen
dicularly to the line joining the two poles. This process is called dephasing 
or decoherence. 

In Appendix 3, we define precisely the relaxation and decoherence 
rates and show that they are directly proportional to the power spectral 
densities of the noises entering in the parameters of the hamiltonian of 
the qubit. More precisely, we find that the decoherence rate is proportional 
to the total spectral density of the quasi-zero-frequency noise in the qubit 
Larmor frequency. The relaxation rate, on the other hand, is proportional 
to the total spectral density, at the qubit Larmor frequency, of the noise 
in the field perpendicular to the eigenaxis of the qubit. 

In principle, the expressions for the relaxation and decoherence rate 
could lead to a ranking of the various qubit circuits: from their reduced 
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spin hamiltonian, one can find with what coefficient each basic noise 
source contributes to the various spectral densities entering in the rates. 
In the same manner, one could optimize the various qubit parameters to 
make them insensitive to noise, as much as possible. However, before dis
cussing this question further, we must realize that the readout itself can 
provide substantial additional noise sources for the qubit. Therefore, the 
design of a qubit circuit that maximizes the number of coherent gate oper
ations is a subtle optimization problem which must treat in parallel both 
the intrinsic noises of the qubit and the back-action noise of the readout. 

8. READOUT OF SUPERCONDUCTING QUBITS 

8.1. Formulation of the Readout Problem 

We have examined so far the various basic circuits for qubit imple
mentation and their associated methods to write and manipulate quantum 
information. Another important task quantum circuits must perform is the 
readout of that information. As we mentioned earlier, the difficulty of the 
readout problem is to open a coupling channel to the qubit for extracting 
information without at the same time submitting it to both dissipation and 
noise. 

Ideally, the readout part of the circuit—referred to in the follow
ing simply as "readout"—should include both a switch, which defines an 
"OFF" and an "ON" phase, and a state measurement device. During the 
OFF phase, where reset and gate operations take place, the measurement 
device should be completely decoupled from the qubit degrees of freedom. 
During the ON phase, the measurement device should be maximally cou
pled to a qubit variable that distinguishes the 0 and the 1 state. However, 
this condition is not sufficient. The back-action of the measurement device 
during the ON phase should be weak enough not to relax the qubit.̂ ^^^ 

The readout can be characterized by 4 parameters. The first one 
describes the sensitivity of the measuring device while the next two 
describe its back-action, factoring in the quality of the switch (see Appen
dix 3 for the definitions of the rates F): 

(i) the measurement time Tm defined as the time taken by the measuring 
device to reach a signal-to-noise ratio of 1 in the determination of the 
state, 

(ii) the energy relaxation rate F^^ of the qubit in the ON state. 

(iii) the coherence decay rate F^^^ of the qubit information in the OFF 
state. 
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(iv) the dead time d̂ needed to reset both the measuring device and qubit 
after a measurement. They are usually perturbed by the energy expen
diture associated with producing a signal strong enough for external 
detection. 

Simultaneously minimizing these parameters to improve readout per
formance cannot be done without running into conflicts. An important 
quantity to optimize is the readout fidelity. By construction, at the end of 
the ON phase, the readout should have reached one of two classical states: 
Oc and Ic, the outcomes of the measurement process. The latter can be 
described by two probabiUties: the probabiUty poOciPiO ^^at starting from 
the qubit state |0) (|1)) the measurement yields Oc(lc). The readout fideHty 
(or discriminating power) is defined as F = /7ooc + Piic ~ 1- F^^ ^ measur
ing device with a signal-to-noise ratio increasing like the square of mea
surement duration r, we would have, if back-action could be neglected, 
F = erf(2-i/2r/rm). 

8.2. Requirements and General Strategies 

The fideUty and speed of the readout, usually not discussed in the 
context of quantum algorithms because they enter marginally in the eval
uation of their complexity, are actually key to experiments studying the 
coherence properties of qubits and gates. A very fast and sensitive read
out will gather at a rapid pace information on the imperfections and drifts 
of qubit parameters, thereby allowing the experimenter to design fabrica
tion strategies to fight them during the construction or even correct them 
in real time. 

We are thus mostly interested in "single-shot" readouts,^^^^ for which 
F is of order unity, as opposed to schemes in which a weak measurement 
is performed continuously.^^^^ If F < 1, of order F~^ identical preparation 
and readout cycles need to be performed to access the state of the qubit. 
The condition for "single-shot" operation is 

The speed of the readout, determined both by rm and t^, should be 
sufficiently fast to allow a complete characterization of all the properties 
of the qubit before any drift in parameters occurs. With sufficient speed, 
the automatic correction of these drits in real time using feedback will be 
possible. 

Rapidly pulsing the readout to full ON and OFF states is done with 
a fast, strongly non-linear element, which is provided by one or more 
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auxiliary Josephson junctions. Decoupling the qubit from the readout in 
the OFF phase requires balancing the circuit in the manner of a Wheat-
stone bridge, with the readout input variable and the qubit variable corre
sponding to two orthogonal electrical degrees of freedom. Finally, to be as 
complete as possible even in presence of small asymmetries, the decoupling 
also requires an impedance mismatch between the qubit and the dissipa-
tive degrees of freedom of the readout. In Sec. 8.3, we discuss how these 
general ideas have been implemented in second generation quantum cir
cuits. The examples we have chosen all involve a readout circuit which is 
built-in the qubit itself to provide maximal coupling during the ON phase, 
as well as a decoupling scheme which has proven effective for obtaining 
long decoherence times. 

8.3. Phase Qubit: Tunneling Readout with a DC-SQUID On-chip 
Amplifier. 

The simplest example of a readout is provided by a system derived 
from the phase qubit (see Fig. 10). In the phase qubit, the levels in the 
cubic potential are metastable and decay in the continuum, with level n + 1 
having roughly a decay rate F^+i that is 500 times faster than the decay 
r„ of level n. This strong level number dependence of the decay rate leads 
naturally to the following readout scheme: when readout needs to be per
formed, a microwave pulse at the transition frequency ojn (or better at 
66)13) transfers the eventual population of level 1 into level 2, the latter 
decaying rapidly into the continuum, where it subsequently loses energy 
by friction and falls into the bottom state of the next corrugation of the 
potential (because the qubit junction is actually in a superconducting loop 
of large but finite inductance, the bottom of this next corrugation is in fact 
the absolute minimum of the potential and the particle representing the 
system can stay an infinitely long time there). Thus, at the end of the read
out pulse, the sytem has either decayed out of the cubic well (readout state 
Ic) if the qubit was in the |1) state or remained in the cubic well (read
out state Oc) if the qubit was in the |0) state. The DC-SQUID amplifier 
is sensitive enough to detect the change in flux accompanying the exit of 
the cubic well, but the problem is to avoid sending the back-action noise 
of its stabilizing resistor into the qubit circuit. The solution to this prob
lem involves balancing the SQUID loop in such a way, that for readout 
state Oc, the small signal gain of the SQUID is zero, whereas for readout 
state Ic, the small signal gain is non-zero.^^^^ This signal dependent gain is 
obtained by having two junctions in one arm of the SQUID whose total 
Josephson inductance equals that of the unique junction in the other arm. 
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Fig. 10. Phase qubit implemented with a Josephson junction in a high-inductance super
conducting loop biased with a flux sufficiently large that the phase across the junction sees 
a potential analogous to that found for the current-biased junction. The readout part of the 
circuit is an asymmetric hysteretic SQUID which is completely decoupled from the qubit in 
the OFF phase. Isolation of the qubit both from the readout and control port is obtained 
through impedance mismatch of transformers. 
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Fig. 11. Rabi oscillations observed for the qubit of Fig. 10. 

Finally, a large impedance mismatch between the SQUID and the qubit is 
obtained by a transformer. The fidelity of such readout is remarkable: 95% 
has been demonstrated. In Fig. 11, we show the result of a measurement 
of Rabi oscillations with such qubit+readout. 
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Fig. 12. "Quantronium" circuit consisting of a Cooper-pair box with a non-linear induc
tive readout. A Wheatstone bridge configuration decouples qubit and readout variables when 
readout is OFF. Impedance mismatch isolation is also provided by additional capacitance in 
parallel with readout junction. 

8.4. Cooper-pair Box with Non-linear Inductive Readout: The 
"Quantronium" Circuit 

The Cooper-pair box needs to be operated at its "sweet spot" (degen
eracy point) where the transition frequency is to first order insensitive to 
offset charge fluctuations. The "Quantronium" circuit presented in Fig. 12 
is a 3-junction bridge configuration with two small junctions defining a 
Cooper box island, and thus a charge-Hke qubit which is coupled capac-
itively to the write and control port (high-impedance port). There is also 
a large third junction, which provides a non-hnear inductive coupling to 
the read port. When the read port current / is zero, and the flux through 
the qubit loop is zero, noise coming from the read port is decoupled 
from the qubit, provided that the two small junctions are identical both in 
critical current and capacitance. When / is non-zero, the junction bridge is 
out of balance and the state of the qubit influences the effective non-linear 
inductance seen from the read port. A further protection of the impedance 
mismatch type is obtained by a shunt capacitor across the large junc
tion: at the resonance frequency of the non-linear resonator formed by 
the large junction and the external capacitance C, the differential mode 
of the circuit involved in the readout presents an impedance of the order 
of an ohm, a substantial decoupling from the 50 ^ transmission line car
rying information to the amplifier stage. The readout protocol involves a 
DC pulse^^ '̂̂ ^^ or an RF pulsê -̂ ^̂  stimulation of the readout mode. The 
response is bimodal, each mode corresponding to a state of the qubit. 
Although the theoretical fidelity of the DC readout can attain 95%, only a 
maximum of 40% has been obtained so far. The cause of this discrepancy 
is still under investigation. 

In Fig. 13 we show the result of a Ramsey fringe experiment dem
onstrating that the coherence quality factor of the quantronium can reach 
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Fig. 13. Measurement of Ramsey fringes for the Quantronium. Two n/2 pulses separated 
by a variable delay are applied to the qubit before measurement. The frequency of the pulse 
is slightly detuned from the transition frequency to provide a stroboscopic measurement of 
the Larmor precession of the qubit. 

25,000 at the sweet spot/^^^ By studying the degradation of the qubit 
absorption line and of the Ramsey fringes as one moves away from the 
sweet spot, it has been possible to show that the residual decoherence is 
limited by offset charge noise and by flux noise/^^^ In principle, the influ
ence of these noises could be further reduced by a better optimization 
of the qubit design and parameters. In particular, the operation of the 
box can tolerate ratios of EJ/EQ around 4 where the sensitivity to offset 
charge is exponentially reduced and where the non-Unearity is still of order 
15%. The quantronium circuit has so far the best coherence quaUty factor. 
We believe this is due to the fact that critical current noise, one dominant 
intrinsic source of noise, affects this qubit far less than the others, rela
tively speaking, as can be deduced from the qubit hamiltonians of Sec. 6. 

8.5. 3-Junction Flux Qubit with Built-in Readout 

Figure 14 shows a third example of built-in readout, this time for 
a flux-Hke qubit. The qubit by itself involves three junctions in a loop, 
the larger two of the junctions playing the role of the loop inductance 
in the basic RF-SQUID.^^^^ The advantage of this configuration is to 
reduce the sensitivity of the qubit to external flux variations. The read
out part of the circuit involves two other junctions forming a hysteretic 
DC-SQUID whose offset flux depends on the qubit flux state. The criti
cal current of this DC-SQUID has been probed by a DC pulse, but an 
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Fig. 14. Three-junction flux qubit with a non-hnear inductive readout. The medium-size 
junctions play the role of an inductor. Bridge configuration for nulling out back-action of 
readout is also employed here, as well as impedance mismatch provided by additional capac
itance. 
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Fig. 15. Ramsey fringes obtained for qubit of Fig. 14. 

RF pulse could be applied as in another flux readout. Similarly to the two 
previous cases, the readout states Ic and Oc, which here correspond to the 
DC-SQUID having switched or not, map very well the qubit states |1> and 
|0>, with a fideHty better than 60%. Here also, a bridge technique orthogo-
nalizes the readout mode, which is the common mode of the DC-SQUID, 
and the qubit mode, which is coupled to the loop of the DC-SQUID. 
External capacitors provide additional protection through impedance mis
match. Figure 15 shows Ramsey oscillations obtained with this system. 
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8.6. Too much On-chip Dissipation is Problematic: Do not Stir up the Dirt 

All the circuits above include an on-chip amplification scheme pro
ducing high-level signals which can be read directly by high-temperature 
low-noise electronics. In the second and third examples, these signals lead 
to non-equilibrium quasi-particle excitations being produced in the near 
vicinity of the qubit junctions. An elegant experiment has recently dem
onstrated that the presence of these excitations increases the offset charge 
noise.̂ ^^^ More generally, one can legitimately worry that large energy 
dissipation on the chip itself will lead to an increase of the noises dis
cussed in Sec. 5.2. A broad class of new readout schemes addresses this 
question.^^ '̂̂ '̂̂ ^^ They are based on a purely dispersive measurement of 
a qubit susceptibility (capacitive or inductive). A probe signal is sent 
to the qubit. The signal is coupled to a qubit variable whose average 
value is identical in the two qubit states (for instance, in the capacitive 
susceptibility, the variable is the island charge in the charge qubit at the 
degeneracy point). However, the susceptibility, which is the derivative of 
the qubit variable with respect to the probe, differs from one qubit state 
to the other. The resulting state-dependent phase shift of the reflected sig
nal is thus amplified by a linear low temperature ampHfier and finally dis
criminated at high temperature against an adequately chosen threshold. 
In addition to being very thrifty in terms of energy being dissipated on 
chip, these new schemes also provide a further natural decoupHng action: 
when the probe signal is off, the back-action of the amplifier is also com
pletely shut off. Finally, the interrogation of the qubit in a frequency band 
excluding zero facilitates the design of very efficient filters. 

9. COUPLING SUPERCONDUCTING QUBITS 

A priori, three types of coupHng scheme can be envisioned: 

(a) In the first type, the transition frequency of the qubits are all equal 
and the coupling between any pair is switched on using one or sev
eral junctions as non-linear elements.^^ '̂̂ ^^ 

(b) In the second type, the couplings are fixed, but the transition frequen
cies of a pair of qubits, originally detuned, are brought on resonance 
when the coupUng between them needs to be turned on.̂ ^̂ ~̂ ^̂  

(c) In the third type, which bears close resemblance to the methods used 
in NMR,^^^ the couplings and the resonance frequencies of the qubits 
remain fixed, the qubits being always detuned. Being off-diagonal, 
the coupling elements have negUgible action on the qubits. However, 
when a strong micro-wave field is applied to the target and control 
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qubits their resonant frequency with an appropriate amplitude, they 
become in "speaking terms" for the exchange of energy quanta and 
gate action can take place/^^^ 

So far only scheme (b) has been tested experimentally. 
The advantage of schemes (b) and (c) is that they work with purely 

passive reactive elements hke capacitors and inductors which should 
remain very stable as a function of time and which also should present 
very httle high-frequency noise. In a way, we must design quantum inte
grated circuits in the manner that vacuum tube radios were designed in 
the 1950s: only six tubes were used for a complete heterodyne radio set, 
including the power supply. Nowadays several hundreds of transistors are 
used in a radio or any hi-fi system. In that ancient era of classical elec
tronics, linear elements hke capacitors, inductors or resistors were "free" 
because they were relatively reUable whereas tubes could break down eas
ily. We have to follow a similar path in quantum integrated circuit, the reU-
ability issues having become noise minimization issues. 

10. CAN COHERENCE BE IMPROVED WITH BETTER 
MATERIALS? 

Up to now, we have discussed how, given the power spectral densi
ties of the noises AQr, A£'c and A£j , we could design a qubit equipped 
with control, readout and coupling circuits. It is worthwhile to ask at this 
point if we could improve the material properties to improve the coher
ence of the qubit, assuming all other problems like noise in the control 
channels and the back-action of the readout have been solved. A model 
put forward by one of us (JMM) and collaborators shed some Hght on 
the direction one would follow to answer this question. The 1 / / spec
trum of the materials noises suggests that they all originate from 2-level 
fluctuators in the amorphous alumina tunnel layer of the junction itself, 
or its close vicinity. The substrate or the surface of the superconducting 
films are also suspect in the case of AQr and AEQ but their influence 
would be relatively weaker and we ignore them for simplicity. These two-
level systems are supposed to be randomly distributed positional degrees 
of freedom §/ with effective spin-1/2 properties, for instance an impurity 
atom tunneling between two adjacent potential well. Each two-level sys
tem is in principle characterized by three parameters: the energy splitting 
hcoi, and the two coefficients at and ^i of the Pauli matrix representa
tion of ^i = oiiGiz-\- ^iCJix {z is here by definition the eigen-energy axis). 
The random nature of the problem leads us to suppose that a/ and ^t 
are both Gaussian random variables with the same standard deviation p/. 
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By carrying a charge, the thermal and quantum motion of §/ can contrib-

ute to ^Qr = J2i^i^i ^^d AEc = Y^iCi^aiz. Likewise, by modifying the 
transmission of a tunneUng channel in its vicinity, the motion of §/ can 
contribute to AEj = J2i8i^i' We can further suppose that the quality of 
the material of the junction is simply characterized by a few numbers. The 
essential one is the density v of the transition frequencies coi in frequency 
space and in real space, assuming a co~^ distribution (this is necessary to 
explain the 1 / / behavior) and a uniform spatial distribution on the sur
face of the junction. Recent experiments indicate that the parameter v is 
of order 10^/xm~^ per decade. Then, assuming a value for p/ independent 
of frequency, only one coefficient is needed per noise, namely, the average 
modulation efficiency of each fluctuator. Such analysis provides a common 
language for describing various experiments probing the dependence of de-
coherence on the material of the junction. Once the influence of the junc
tion fabrication parameters (oxydation pressure and temperature, impurity 
contents, and so on) on these noise intensities will be known, it will be 
possible to devise optimized fabrication procedures, in the same way per
haps as the 1 / / noise in C-MOS transistors has been reduced by careful 
material studies. 

11. CONCLUDING REMARKS AND PERSPECTIVES 

The logical thread through this review of superconducting qubits has 
been the question "What is the best qubit design?". Because some crucial 
experimental data is still missing, we unfortunately, at present, cannot con
clude by giving a definitive answer to this complex optimization problem. 

Yet, a lot has already been achieved, and superconducting qubits are 
becoming serious competitors of trapped ions and atoms. The following 
properties of quantum circuits have been demonstrated: 

(a) Coherence quality factors Q(p = T(pCooi can attain at least 2x10^. 
(b) Readout and reset fideUty can be greater than 95%. 
(c) All states on the Bloch sphere can be addressed. 
(d) Spin echo techniques can null out low frequency drift of offset 

charges. 
(e) Two qubits can be coupled and RF pulses can implement gate oper

ation. 
(f) A qubit can be fabricated using only optical lithography techniques. 

The major problem we are facing is that these various results have not 
been obtained at the same time IN THE SAME CIRCUIT, although suc-
cesful design elements in one have often been incorporated into the next 
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generation of others. The complete optimization of the single qubit+read-
out has not been achieved yet. However, we have presented in this review 
the elements of a systematic methodology resolving the various conflicts 
that are generated by all the different requirements. Our opinion is that, 
once noise sources are better characterized, an appropriate combination 
of all the known circuit design strategies for improving coherence, as well 
as the understanding of optimal tunnel layer growth conditions for low
ering the intrinsic noise of Josephson junctions, should lead us to reach 
the 1-qubit and 2-qubit coherence levels needed for error correction.^^^^ 
Along the way, good medium term targets to test overall progress on 
the simultaneous fronts of qubit coherence, readout and gate coupling 
are the measurement of Bell 's inequality violation or the implementation 
of the Deutsch-Josza algorithm, both of which requiring the simultaneous 
satisfaction of properties (a)-(e). 
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APPENDIX L QUANTUM CIRCUIT THEORY 

The problem we are addressing in this section is, given a supercon
ducting circuit made up of capacitors, inductors and Josephson junctions, 
how to systematically write its quantum hamiltonian, the generating func
tion from which the quantum dynamics of the circuit can be obtained. 
This problem has been considered first by Yurke and Denker̂ ^^^ in a sem
inal paper and analyzed in further details by Devoret.^^^^ We will only 
summarize here the results needed for this review. 

The circuit is given as a set of branches, which can be capacitors, 
inductors or Josephson tunnel elements, connected at nodes. Several inde
pendent paths formed by a succession of branches can be found between 
nodes. The circuit can therefore contain one or several loops. It is impor
tant to note that a circuit has not one hamiltonian but many, each one 
depending on a particular representation. We are describing here one 
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particular type of representation, which is usually well adapted to cir
cuits containing Josephson junctions. Like in classical circuit theory, a 
set of independent current and voltages has to be found for a particular 
representation. We start by associating to each branch b of the circuit, the 
current /b flowing through it and the voltage fb across it (a convention has 
to be made first on the direction of the branches). Kirchhoflf's laws impose 
relations among branch variables and some of them are redundant. The 
following procedure is used to ehminate redundant branches: one node of 
the circuit is first chosen as ground. Then from the ground, a loop-free 
set of branches called spanning tree is selected. The rule behind the selec
tion of the spanning tree is the following: each node of the circuit must be 
Hnked to the ground by one and only one path belonging to the tree. In 
general, inductors (linear or non-Unear) are preferred as branches of the 
tree but this is not necessary. Once the spanning tree is chosen (note that 
we still have many possibilities for this tree), we can associate to each node 
a "node voltage" v^ which is the algebraic sum of the voltages along the 
branches between ground and the node. The conjugate "node current" in 
is the algebraic sum of all currents flowing to the node through capaci
tors ONLY. The dynamical variables appearing in the hamiltonian of the 
circuit are the node fluxes and node charges defined as 

0n = / V{tl) dtu 
J—oo 

qn= i{t\) dti. 
J—oo 

Using Kirchhoff's laws, it is possible to express the flux and the 
charge of each branch as a Unear combination of all the node fluxes 
and charges, respectively. In this inversion procedure, important physical 
parameters appear: the magnetic fluxes through the loops imposed by 
external static magnetic fields and the polarization charges imposed by 
charge bias sources. 

If we now sum the energies of all branches of the circuit expressed 
in terms of node flux and charges, we will obtain the hamiltonian of 
the circuit corresponding to the representation associated with the par
ticular spanning tree. In this hamiltonian, capacitor energies behave like 
kinetic terms while the inductor energies behave as potential terms. The 
hamiltonian of the LC circuit written in Sec. 2 is an elementary example 
of this procedure. 

Once the hamiltonian is obtained it is easy get its quantum version by 
replacing all the node fluxes and charges by their quantum operator equiv
alent. The flux and charge of a node have a commutator given by ih, like 



198 Devoret and Martinis 

the position and momentum of a particle 

1̂ 0, Ĵ = ih. 

One can also show that the flux and charge operators corresponding 
to a branch share the same commutation relation. Note that for the spe
cial case of the Josephson element, the phase 0 and Cooper pair number 
N, which are its dimensionless electric variables, have the property 

In the so-called charge basis, we have 

Â  = Y^N\N){N\, 
N 

COS ^ = i J : (I^V) (TV + 11 + | ^ + ) {N\) 
N 

while in the so-called phase basis, we have 

id 

Note that since the Cooper pair number N is an operator with integer 
eigenvalues, its conjugate variable 0, has eigenvalues behaving like angles, 
i.e., they are defined only modulo lit. 

In this review, outside this appendix, we have dropped the hat on 
operators for simplicity. 

APPENDIX 2. EIGENENERGIES AND EIGENFUNCTIONS 
OF THE COOPER PAIR BOX 

From Appendix 1, it easy to see that the hamiltonian of the Cooper 
pair box leads to the Schrodinger equation 

Ec I T̂^ Âg I -Ej cos e 
\ide V 

^k(0) = Ek^kid). 
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The functions % {0) e~̂ ĝ and energies Ek are solutions of the Mat-
hieu equation and can be found with arbitrary precision for all values of 
the parameters Âg and Ei/Ec.^^^^ For instance, using the program Math-
ematica, we find 

Ek = ECMA [k-\-l- (^+ l)mod2 + 2A^g(-l)\ -2Ej/Ec] , 

where A^A(^^)=J^2LthieuCharacterist icA[r,q] , 
Mc (a ,^,z) = MathieuC [a , q, z] , 

APPENDIX 3. RELAXATION AND DECOHERENCE RATES 
FOR A QUBIT 

Definition of the Rates 

We start by introducing the spin eigenreference frame z, x and y con
sisting of the unit vector along the eigenaxis and the associated orthogonal 
unit vectors (x is in the XZ plane). For instance, for the Cooper pair box, 
we find that z = cos aZ + sin aX, with tan a = IEQ (Ng — 1/2) /Ej, while 
jc = —sin QfZ +cos aX. 

Starting with "5 pointing along x at time r = 0, the dynamics of the 
Bloch vector in absence of relaxation or decoherence is 

= cos{(jL>o\)x -\- sm(coo\)y 

In presence of relaxation and decoherence, the Bloch vector will devi
ate from So(t) and will reach eventually the equilibrium value S^^z, 
where S^"^ = tanh (hcooi/Ik^T). 

We define the relaxation and decoherence rates as 

ln(5,(r)-5r) 
Fi = lim —^ -, 

In 
t{t)-Sl''z 

F0 = lim -

Note that these rates have both a useful and rigorous meaning only if 
the evolution of the components of the average Bloch vector follows, after 
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a negligibly short settling time, an exponential decay. The Fi and F^ rates 
are related to the NMR spin relaxation times T\ and Tj^'^^^ by 

^2 = ( F ^ - f F l / 2 ) - ^ 

The T2 time can be seen as the net decay time of quantum informa
tion, including the influence of both relaxation and dephasing processes. 
In our discussion of superconducting qubits, we must separate the contri
bution of the two type of processes since their physical origin is in general 
very different and cannot rely on the T2 time alone. 

Expressions for the Rates 

The relaxation process can be seen as resulting from unwanted tran
sitions between the two eigenstate of the qubit induced by fluctuations in 
the effective fields along the x and y axes. Introducing the power spectral 
density of this field, one can demonstrate from Fermi's Golden Rule that, 
for perturbative fluctuations, 

' • ^ — ^ — • 

Taking the case of the Cooper-pair box as an example, we find that 
Sy(cooi) = ^ and that 

/

-\-oo 
d^e'^^(A(OA(0)) + (^(0^(0)), 

-00 

where 

A(t) 
A£j(r)£ei 

B(t) = 
£jA£el(0 

E,i=2Ec(N^-l/2). 

Since the fluctuations AEe\(t) can be related to the impedance of the 
environment of the box/'^'^''^^^ an order of magnitude estimate of the 
relaxation rate can be performed, and is in rough agreement with obser
vations. *^ '̂̂ '* 
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The decoherence process, on the other hand, is induced by fluctua
tions in the effective field along the eigenaxis z. If these fluctuations are 
Gaussian, with a white noise spectral density up to frequencies of order 
several F^ (which is often not the case because of the presence of 1/f 
noise) we have 

In presence of a low frequency noise with an 1/f behavior, the formula 
is more compHcated/̂ ^^ If the environment producing the low frequency 
noise consists of many degrees of freedom, each of which is very weakly 
coupled to the qubit, then one is in presence of classical dephasing which, 
if slow enough, can in principle be fought using echo techniques. If, one 
the other hand, only a few degrees of freedom like magnetic spins or 
glassy two-level systems are dominating the low frequency dynamics, deph
asing is quantum and not correctable, unless the transition frequencies of 
these few perturbing degrees of freedom is itself very stable. 
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Towards Scalable Linear-Optical Quantum Computers 

J. p. Dowling,̂ '̂  J. D. Franson,̂  H. Lee,!"* and G. J. Milburn^ 

Scalable quantum computation with linear optics was considered to be impossible 
due to the lack of efficient two-qubit logic gates, despite the ease of implementa
tion of one-qubit gates. Two-qubit gates necessarily need a non-linear interaction 
between the two photons, and the efficiency of this non-linear interaction is typi
cally very small in bulk materials. However, it has recently been shown that this 
barrier can be circumvented with effective non-linearities produced by projective 
measurements, and with this work linear-optical quantum computing becomes a 
new avenue towards scalable quantum computation. We review several issues con
cerning the principles and requirements of this scheme. 

KEY WORDS: Linear optics, Logic gates, Single photon. Quantum memory, 
Quantum repeater. 

PACS: 03.67.Lx, 03.67.Pp, 42.50.Dv, 42.65.Lm. 

1. PRINCIPLES 

There are three key principles in the Knill, Laflamme, and Milburn 
(KLM) proposal̂ ^^ for efficient and scalable linear-optical quantum infor
mation processing (QIP): 

(1) Conditional non-linear gates for two photon states. 
(2) Teleportation to achieve high efficiency. 
(3) Error correction to achieve scalabiUty. 
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Fig. 1. The conditional non-linear sign (NS) gate. 
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Fig. 2. Controlled-a^ gate with dual-rail logic and two NS gates. 

Conditional non-linear gates are based on the non-unitary state change 
due to measurement. The gate works with some probability, but correct 
functioning is heralded by the measurement result. We seek to implement 
a non-Hnear transformation, the so-called non-linear sign (NS) gate, on an 
arbitrary two-photon state of a single mode field: 

| iA)=«o |0 ) i+a i | l ) i+a2 |2 ) i^ |TA^)=ao |0 ) i+a i | l ) i - a2 |2 ) i . (1) 

This is done using the linear-optical network shown in Fig. 1. The sig
nal state is first combined with two ancilla modes, one in a single-photon 
state and one in the vacuum. At the end of the optical processing pho
ton counting is done on the ancilla modes. If the number of photons is 
unchanged from the input, the desired transformed state exits the signal 
mode port. This will happen with a probability of 0.25. 

In order to use this result to implement QIP we code the logical 
states as physical qubits using one photon in one of two modes: |0)L = 
|l)i ^ |0)2, |1)L = |0)i (8) |1)2. Single-qubit gates are then implemented by 
a beam splitter. A two qubit gate, the conditional sign-flip gate, can then 
be implemented using the Hong-Ou-Mandel (HOM) interference effect to 
first convert two single modes, each with one photon, into an appropri
ate entangled two-photon state (Fig. 2). Such a gate uses two NS gates 
and thus succeeds with probabiHty of 0.125. A general formaHsm for cal
culating the effective photon non-linearities generated by such conditional 
measurement schemes in linear optics can be found in Ref 2 
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We have also shown that probabiHstic quantum logic operations can 
be performed using polarization-encoded qubits/^^ as illustrated by the 
controUed-NOT gate shown in Fig. 3. This device consists of two polar
izing beam splitters and two polarization-sensitive detectors, along with a 
pair of entangled ancilla photons. 

The correct controlled-NOT logic operation will have been performed 
whenever one and only one photon is detected in each of the two detec
tors, which occurs with a probability of 0.25. Feed-forward control̂ ^^ must 
also be appHed, depending on what polarization states were measured. 
From an experimental perspective, this approach has the advantage of 
being relatively simple and insensitive to phase drifts. 

A sequence of such probabilistic gates is of course not scalable. How
ever, the Gottesman and Chuang protocol for implementing gates via 
teleportation^^^ can be used to fix this. Implementation of the gate then 
reduces to preparing the appropriate entangled-state resource. That can be 
done off-Hne by using conditional gates, and only when success is achieved 
is the teleportation gate completed. Using a resource with n photons in 
In modes decreases the gate failure probabiHty as n"^ or even as n~̂ .̂ ^̂  
Gates can thus be implemented efficiently. The controlled-a^ (CZ) gate is 
now achieved with success probability n^/(n + 1) ,̂ denoted as CZ^2/(„ + i)2. 

CONTROL 

TARGET 

OUTPUT 

Fig. 3. Implementation of a probabilistic controlled-NOT gate using polarization-encoded 
qubits. 
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When a teleportation gate fails it does so by making a measure
ment of an incoming qubit. This is always heralded and can be fixed 
using detected-measurement codes. This enables the scheme to be scal
able (i.e. fault-tolerant) provided the intrinsic error probabiHty is <0.5/^^ 
but at the expense of very compHcated, multi-mode, entangled, resource 
states for teleportation. The other major source of error is photon loss. In 
principle, this can also be corrected using teleportation gates. ScalabiUty 
requires that loss probabiHty per gate be <0.01.̂ ^^ Not detecting a photon 
is equivalent to loss. While there are proposals for single-photon detectors 
that have quantum efficiency higher than 99%, using cycling transitions in 
atomic vapors,̂ '̂̂ ^ currently the best known value is around 93%.̂ ^̂ ^ 

Three experiments have implemented conditional two-qubit gates: 
Pittman et al.'S^^^ O'Brien et al.;̂ ^̂ ^ and Sanaka et al.̂ ^̂ ^ The first 
experiment is based on the Pittman and Franson's polarization-encoded 
scheme.̂ ^̂ ^ The second is based on a simplification of the KLM-NS gate 
that requires only two photons. ̂ ^̂^ The last is a full four photon version 
of KLM.̂ ^̂ ^ However, all experiments so far only work in the coincidence 
basis. This means that successful implementations correspond to two- or 
four-fold coincidence counts. However, no light leaves the device as all 
photons are detected. 

Experimental results obtained from a CNOT gate in Ref 11 are 
shown in Fig. 4. Here, a single ancilla photon was used, which restricts the 
operation of the device to the case in which a single photon is detected in 
each output port (the so-called coincidence basis). This was a three-pho
ton experiment in which two of the single photons were obtained using 
parametric down-conversion while the third photon was obtained by atten
uating the pump laser beam. Optical fibres were used instead of free-space 
components in order to reduce errors due to mode mismatch. The fidelity 
of the output qubits was limited in this case by the degree of indistinguish-
ability of the three photons. Experimental demonstrations of several other 
simple quantum logic gates have also been performed, including a quan
tum parity check̂ "̂*̂  and a quantum encoder.̂ ^̂ ^ 

2. REQUIREMENTS 

There are four major technical requirements that must be met: 

(1) Single photon sources 
(2) Number-discriminating photon detectors 
(3) Feed-forward control and quantum memory 
(4) Design and implementation of the very complex quantum circuit 

architectures. 
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Fig. 4. Implementation of a probabilistic CNOT gate using polarization-encoded qubits. (H) 

The required ideal single-photon sources are transform-limited pulses with 
one and only one photon per pulse. In practice, this means that one 
must be able to exhibit HOM interference between photons from differ
ent pulses. The required single-photon detectors must be able to detect a 
single photon with efficiency >0.99 and discriminate between 0, 1, and 
2 photon counts.̂ ^̂ ^ Although two-photon interference visibiUties >99% 
have been achieved/^ ̂ ^ it may be necessary to achieve even higher visibil
ities for quantum computing appHcations. 

One approach to implementing such a single-photon source is illus
trated in Fig. 5. A pulsed laser beam generates pairs of photons in a 
parametric down-conversion crystal. Detection of one member of a pair 
signals the presence of the other member of the pair, which is then 
switched into an optical storage loop. The single photon can then be 
switched out of the storage loop when needed.̂ ^̂ ^ Although this kind of 
approach cannot produce photons at arbitrary times, it can produce them 
at periodic time intervals that could be synchronized with the cycle time of 
a quantum computer. A prototype experiment of this kind demonstrated 
the abihty to store and retrieve single photons in this way, but its perfor
mance at the time was Umited by losses in the optical switch. 

The abiUty to switch a single photon into an optical storage loop and 
then retrieve it when needed can also be used to implement a quantum 
memory for single photons. This application is more demanding than the 
single-photon source described above, since the polarization state of the 
photons must be maintained in order to preserve the value of the qubits. 
A prototype experiment of this kind has also been performed, where the 
primary limitation was once again the losses in the optical switch.̂ ^̂ ^ 



210 Dowling, Franson, Lee and Milburn 

Ax 

At 

X \ output 

Fig. 5. Single-photon source using parametric down-conversion and an optical storage 
loop. Similar storage techniques can also be used to implement a quantum memory device 
for single photons. 

qubit release 

Fig. 6. A cyclic quantum memory based on quantum error correction. 

Furthermore, the ability to perform quantum logic operations using 
linear elements raises the possibility of using quantum error correction 
techniques to extend the coherent storage time of the quantum memory 
described above, see Fig. 6. The primary source of error is expected to 
be photon loss, which can be corrected using a simple four-qubit encod
ing schemê ^̂ ^ as illustrated in Fig. 7. Provided that the errors in the logic 
gates and storage loops are sufficiently small, techniques of this kind can 
be used to store photonic qubits for an indefinitely long period of time. 

An essential component in this kind of quantum memory is the 
single-photon quantum non-demolition (QND) measurement device.̂ ^̂ ^ 
Again, a simple way to perform a single-photon QND measurement is 
provided by quantum teleportation techniques. If the input state is in a 
arbitrary superposition of zero and one photon, with a fixed polarization, 
the detector coincidence in a Bell-state measurement signals the present of 
a single photon in the input and output states.̂ ^̂ ^ 

Similar techniques can also be used to compensate for the photon loss 
in optical fibre transmission lines, which would allow the development of 
a quantum repeater. A quantum repeater is a device for achieving remote, 
shared entanglement by using quantum purification and swapping proto
cols. ̂ ^̂^ A simple protocol for optical quantum repeaters based on linear 
optical elements and an entangled-photon source has been developed.̂ ^̂ ^ 
On the other hand, utilizing quantum error correction, one can relay an 
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Fig. 7. Quantum error-correction code that recovers photon loss using two ancilla photons. 
The QND box represents a single-photon quantum non-demolition measurement device. The 
inset shows the two-to-four qubit encoding. 

unknown quantum state with high fidelity down a quantum channel. This 
relay device we call a quantum transponder, and it has direct applications 
to quantum repeater and memory applications. 

The fact that the LOQC architecture employs a non-deterministic 
protocol imphes that large number of ancilla photons are required to 
make the scheme nearly deterministic. The implementation of quantum 
circuits then becomes more demanding with these increased number of 
resources. For example, implementing the error-correction circuit in Fig. 7 
at >80% success probability requires more than 300 ancilla photons for 
each two-qubit gate and the same number of single-photon detections at 
the extremely high quantum efficiency.̂ ^^^ Using a concatenation scheme 
to manage a single two-qubit gate with 95% success probability requires 
about 300 successful CZ9/16 gate operations.^^^ Therefore, development of 
techniques for efficient simplification of quantum circuits is an important 
task, as is the abiUty to fabricate these circuits on an opto-electonic chip. 

On the other hand, QIP schemes implemented in unconventional 
ways, such as cluster state quantum computing,^^^^ may be utilized to 
reduce the number of resources. It has recently been shown that the 
required number of optical elements and resources can be reduced by an 
order of magnitude from the original KLM scheme by using multi pho-
ton-Hnked states,̂ ^^^ and even more reduction has been found by using 
the cluster-state approach.^^^^ Furthermore, it may be possible to avoid the 
need for large number of nested interferometers and entangled ancillae by 
using hybrid approaches that combine linear optics techniques with some 
amount of non-linearity. ̂ ^̂ ^ 
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3. CONCLUSION 

Quantum mechanics enables some exponentially more efficient algo
rithms than those that can be implemented on a classical computer. This 
discovery has led to the explosive growth of the field of quantum compu
tation. Many physical systems have been suggested for building a quan
tum computer, but the final architecture is still to be determined. These 
systems include ion traps, non-linear optical systems, quantum dots, and 
superconducting circuits, among others.̂ ^^^ In linear optical quantum com
puting the desired non-Hnearities come from projective measurements. Pro
jective measurements over some part of the quantum system simply project 
the rest of the system into a desired quantum state. Additional photons, 
known as ancillae, are mixed with the inputs to the logic devices using 
beam splitters, while single-photon detectors are used to make measure
ments on the ancilla photons after the interaction. The non-Hnear nature 
of single-photon detection and the quantum measurement process then 
project out the desired logical output. Therefore, although logic operations 
are inherently non-linear, our approach uses only simple linear optical ele
ments, such as beam splitters and phase shifters. Building a quantum com
puter will be a major challenge for a future quantum technology; requir
ing the ability to manipulate quantum-entangled states of large number of 
sub components. Systematic development of each component of prepara
tion, control, and measurement will facilitate the task of building a quan
tum computer. 
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Photonic Technologies for Quantum Information 
Processing 

Prem Kumar/^ Paul Kwiat,̂  Alan Migdall,̂  Sae Woo Nam,"* 
Jelena Vuckovic,̂  and Franco N. C. Wonĝ  

The last several years have seen tremendous progress toward practical optical 
quantum information processing, including the development of single- and entan
gled-photon sources and high-efficiency photon counting detectors, covering a range 
of wavelengths. We review some of the recent progress in the development of these 
photonic technologies. 

KEY WORDS: Quantum dot; entanglement; down-conversion; single-photon 
detector. 

PACS: 03.67.-a, 42.50.Dv, 42.65.Lm, 78.67.Hc, 85.60.Gz. 

1. INTRODUCTION 

It is now generally realized that fundamentally quantum-mechanical 
phenomena can enable significant, and in some cases, tremendous, improve
ment for a variety of tasks important to emergent technologies. Build
ing on decades of successes in the experimental demonstration of such 
fundamental phenomena, it is not surprising that photonics is playing a 
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preeminent role in this nascent endeavor. Many of the objectives of quan
tum information processing are inherently suited to optics (e.g., quantum 
cryptography^^^ and optical metrology^^ )̂, while others may have a strong 
optical component (e.g., distributed quantum computing^^^). In addition, 
it is now known that, at least in principle, one can realize scalable Hn-
ear optics quantum computing (LOQC).̂ "̂ ^ For these applications to attain 
their full potential, various photonic technologies are needed, including 
high fidelity sources of single and entangled photons, and high efficiency 
photon-counting detectors, both at visible and telecommunication wave
lengths. Much progress has been made on the development of these, 
though they are still not up to the demanding requirements of LOQC. 
Nevertheless, even at their present stage they have direct application to ini
tial experiments. Moreover, they may find use in various "adjacent" tech
nologies, such as biomedical and astronomical imaging, and low-power 
classical telecommunications. Here we describe a number of the leading 
schemes for implementing approximations of sources of single photons 
on-demand and entangled photons, followed by a review of methods for 
detecting individual photons. 

2. SINGLE-PHOTON SOURCES 

Photon-based quantum cryptography, communication, and computa
tion schemes have increased the need for light sources that produce indi
vidual photons. Ideally a single-photon source would produce completely 
characterized single photons on demand. When surveying attempts to cre
ate such sources, however, it is important to realize that there never has 
been and will never be such an ideal source. All of the currently avail
able sources fall significantly short of this ideal. While other factors (such 
as rate, robustness, and complexity) certainly do matter, two of the most 
important parameters for quantifying how close a "single-photon source" 
approaches the ideal are the fraction of the time the device delivers Hght 
in response to a request, and the fraction of time that that light is just a 
single photon. 

In general single-photon sources fall into two categories—isolated 
quantum systems, or two-photon emitters. The first type relies on the fact 
that a single isolated quantum system can emit only one photon each 
time it is excited. The trick here is obtaining efficient excitation, out
put collection, and good isolation of individual systems. The second type 
uses Hght sources that emit two photons at a time. Here the detection of 
one photon indicates the existence of the second photon. That knowledge 
allows the second photon to be manipulated and delivered to where it is 
needed. 
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2.1. Quantum Dot Single-Photon Sources 

A quantum dot is essentially an artificial atom that is easily iso
lated, so it is an obvious choice as the basis of a single-photon source. 
Single photons on-demand have been generated by a combination of 
pulsed excitation of a single self-assembled semiconductor quantum dot 
and spectral filtering/^^ When such a quantum dot is excited, either 
with a short (e.g., 3ps) laser pulse, or with an electrical pulse,̂ ^̂  elec
tron-hole pairs are created. For laser excitation, this can occur either 
within the dot itself, when the laser frequency is tuned to a reso
nant transition between confined states of the dot, or in the surround
ing semiconductor matrix, when the laser frequency is tuned above the 
semiconductor band gap. In the latter case, carriers diffuse toward the 
dot, where they relax to the lowest confined states. Created carriers recom-
bine in a radiative cascade, leading to the generation of several photons 
for each laser pulse; all of these photons have slightly different frequen
cies, resulting from the Coulomb interaction among carriers. The last emit
ted photon for each pulse has a unique frequency, and can be spectrally 
isolated. 

If the dots are grown in a bulk semiconductor material,̂ ^^ the 
out-coupling efficiency is poor, since the majority of emitted photons are 
lost in the semiconductor substrate. To increase the efficiency, an opti
cal microcavity can be fabricated around a quantum dot. An additional 
advantage is that the duration of photon pulses emitted from semiconduc
tor quantum dots is reduced, due to an enhancement of the spontaneous 
emission rate. This enhancement, also known as the Purcell factor, is pro
portional to the ratio of the mode quality factor to the mode volume. In 
addition, the spontaneous emission becomes directional; the photons emit
ted into the nicely shaped cavity mode can be more easily coupled into 
downstream optical components. 

By embedding InGaAs/GaAs quantum dots inside micropost mi-
crocavities with quahty (Q)-factors of around 1300 and Purcell factors 
around five, the properties of a single-photon source have been signifi
cantly improved;̂ ^̂  see Fig. 1. The probabiHty of generating two pho
tons for the same laser pulse [estimated from the zero-time correlation 
parameter g^^\^)] can be as small as 2% compared to a Poisson-distrib-
uted source (i.e., an attenuated laser) of the same mean photon rate, the 
duration of single-photon pulses is below 200 ps, and the sources emit 
identical (indistinguishable) photons, as confirmed by two-photon interfer
ence in a Hong-Ou-Mandel type experiment.̂ ^^ Such sources have been 
employed to realize the BB84 QKD protocol, and to generate post-selected 
polarization-entangled photons. ̂ ^̂  
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Fig. 1. (a) Scanning electron micrograph showing a fabricated array of GaAs/AlAs micro-
posts (-^OJ-zxm diameters, 5-/xm heights), with InAs/GaAs quantum dots embedded at the 
cavity center, (b) Electric field magnitude of the fundamental HEn mode in a micropost mi-
crocavity with a realistic wall profile, (c) Photon correlation histogram for a single quantum 
dot embedded inside a micropost and on resonance with the cavity, under pulsed, resonant 
excitation. The histogram is generated using a Hanbury Brown and Twiss-type setup—the 
vanishing central peak (at T = 0) indicates a large suppression of two-photon pulses (to ~2% 
compared to a Poisson-distributed source, e.g., an attenuated laser, of the same intensity. The 
13-ns peak-to-peak separation corresponds to the repetition period of excitation pulses. 

These sources still face several great challenges, however. They require 
cryogenic cooling (<10K), the output wavelengths are not yet readily tun
able (present operation is around 900 nm), the out-coupling efficiency into 
a single-mode traveling wave is still rather low (<40%)/^^ and excitation 
of quantum dots in microcavities presently requires optical pumping (elec
trical pumping would be more desirable and efforts in that direction are 
underway^^^). In the future, photonic-crystal microcavities may lead to 
much higher ratios of the quality factor to mode volumes, and there
fore, much stronger cavity QED effects should be possible.̂ ^^^ This would 
enable an increase in the efficiency and speed of the single-photon devices, 
and thus open the possibility for building integrated quantum informa
tion systems. The spontaneous emission lifetime could be reduced further 
to on the order of several picoseconds, which would allow the genera
tion of single photons at a rate higher than 10 GHz. Moreover, the Pur-
cell effect would also help in bringing the emitted photons closer to being 
Fourier-transform limited in bandwidth. Finally, photonic-crystal based 
cavities could even enable the realization of the strong coupling regime 
with a single quantum dot exciton, opening the possibility for the genera
tion of completely indistinguishable single photons by coherent excitation 
schemes. 
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2.2. Other Single-Emitter Approaches 

Other isolated quantum system approaches to producing single photons 
include isolated single fluorescence molecules^^^^ and isolated nitrogen vacan
cies in diamond/^^^ Two significant deficiencies of these sources for many 
applications are that it is not easy to efficiently out-couple the photons, and 
that the spectral spread of the light is typically quite large (^^HOnm), though 
widths as low as 12 nm have been seen in new results/^ ̂ ^ This spectral width 
is non-optimal for appHcations relying on two-photon interference effects, 
and also for quantum cryptographic applications (where one typically desires 
fairly narrow bandwidths to exclude background light). 

More recently, single atoms^^^^ coupled to a high-finesse optical cavity 
have demonstrated features of single-photon operation. Despite the tech
nological challenges, this approach does offer the large potential advantage 
that the photons are emitted preferentially into the cavity modes, which 
are easier to couple out of, with couphngs of 40-70% already achieved. 
Also, the frequency of the photons is necessarily matched to a strong 
atomic transition, which may allow for efficient quantum communication 
using photons, while other quantum information processing tasks, such as 
memory or state readout, are carried out in the atomic system.̂ ^ '̂̂ ^^ 

2.3. Downconversion Single-Photon Sources 

Another effort toward single-photon sources reUes on producing pho
tons in pairs, typically via the process of optical parametric down conver
sion (PDC).^^^^ The PDC process effectively takes an input photon from 
a pump beam and converts it into output pairs in a crystal possessing a 
X̂ ^̂  nonlinearity. Thus the detection of one photon can be used to indi
cate (or herald) the existence of the second photon, which is available 
for further use. This second photon is, at low photon rates, left in an 
excellent approximation to a single-photon number state.̂ ^^^ It has been 
demonstrated how these photons may then be converted into completely 
arbitrary quantum states with fidehties of 99.9%.̂ ^^^ Recent efforts have 
focused on improving the collection of those pairs and improving the 
"single-photon accuracy," e.g., the value of ĝ ^̂  (0). 

The physics of the PDC process guarantees that the output pairs will 
possess certain energy and momentum constraints, so that under appropri
ate conditions the detected location of the herald photon tightly defines 
the location of its twin, a significant advantage over other single-photon 
schemes. There have been many mode-engineering efforts to improve this 
collection into a single mode,̂ ^^^ but the current best collection efficiency is 
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Fig. 2. Multiplexed PDC scheme to better approximate a source of single photons on 
demand. By operating an array of simultaneously pumped PDC sources at low photon pro
duction rates and optically switching the output of one of the PDC sources that did produce 
a photon to the single output channel, it is possible to increase the single-photon rate, while 
maintaining a low rate of unwanted multiphoton pulses. 

Still only 58% ,̂ including 15% optical-transmittance losses. (Contrast this 
to the required single-photon efficiency of over 99% for LOQC.)̂ "̂ ^ One 
example of a method to improve this is to directly modify the spatial emis
sion profile of the photon pairs (which are usually emitted along cones) 
so that the photons are emitted preferentially into "beacon"-like beams, 
which couple more naturally into single-mode optical fibers/^^^ Another 
approach yet to be explored is the use of adaptive optics to tailor the out
put modes. It should be noted that not all quantum information process
ing applications require single-mode performance; for example, free-space 
quantum key distribution is likely to work nearly as well with a small 
number of modes. 

Because the conversion of pump photons into pairs via PDC is a ran
dom process, these sources suffer from the same problem that afflicts faint 
laser sources—one cannot guarantee that one and only one photon pair 
is created at a time (i.e., ĝ ^̂  (0) ^ 0). Multiplexing and storage schemes 
have been proposed to deal with this. They both work by similar principles 
(one scheme is based on space multiplexing^^ ̂ ^—see Fig. 2—and the other 
is based on temporal multiplexing^^ '̂̂ ^^)—photons are created at relatively 
low rates where the probability of simultaneous multi-pair production is 

^An 83% coupling efficiency has recently been reported. See quant-ph/0408093. 
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low; contingent on the detection of a herald photon, the twin is then 
"stored", to be emitted in a controlled fashion at some later desired time. 
The overall emission rate is reduced, but the rate of producing one and 
only one photon at regular intervals is improved. 

3. ENTANGLED-PHOTON SOURCES 

Entangled states are now known to be a critical resource for realiz
ing many quantum information protocols, such as teleportation and quan
tum networking. An on-demand source of entangled photons would also 
greatly aid the realization of all-optical quantum computing. 

3.1. Down-Conversion Schemes 

At present, by far the most prevalent source of entangled photon 
pairs is parametric down conversion based on crystals with a /̂ ^̂  non-Hn-
earity. As discussed above, it is precisely the temporal and spatial correla
tions between the photon pairs which make them very promising for the 
realization of an on-demand source of single photons. Much of the effort 
in studying these sources has been devoted to the generation of polariza-
r/o/t-entangled photon pairs, an area which has seen tremendous growth— 
more than a million-fold improvement in the detected rates of polariza
tion-entangled photons has been achieved in the past two decades (see 
Fig. 3). 
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Fig. 3. The apparent "Moore's Law" for entanglement. Shown are the reported detection 
rates of (polarization-)entangled photon pairs (from down conversion), as a function of year. 
The sohd Hne—drawn to guide the eye—indicates the xlOO gain every 5 years. The primary 
Hmiting factor has now become the lack of single-photon counting detectors with saturation 
rates above 10 MHz. 
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There are now several ways to realize polarization entanglement using 
the PDC process. One method uses a single nonHnear crystal, cut for 
"type-II" phase matching, and selecting out a particular pair of out
put directions/^-^^ Although initially these sources used large gas lasers 
for pumping, the recent availability of ultraviolet diode lasers has led to 
much more compact sources/^^^ A potentially important disadvantage, in 
addition to the need to compensate the birefringent walk-off with this 
scheme, is that the entanglement is present only over a particular pair of 
modes (corresponding to the intersection of two cones). One method to 
eliminate this disadvantage is to pump the crystal from two different direc
tions, ̂ ^̂ '̂ ^̂  or to allow the PDC to occur in either of two crystals, the out
puts of which are superposed directly^^ '̂̂ ^^ or using a beam splitter.̂ ^^^ By 
proper alignment, nearly all of the output modes can display polarization 
entanglement, which moreover is completely tunable.^^^^ Nearly perfect 
entanglement (within statistical uncertainty) has been observed with such 
sources. Results with short-pulse pumpŝ ^ '̂̂ ^ '̂̂ ^^ are encouraging, but the 
quahty of the entanglement is typically not as high, a problem that will 
need to be addressed for future applications. 

One disadvantage of all of these techniques is that the output spec
tral bandwidth is still quite wide (typically 1-10 nm) for possible coupling 
to atomic states. Research is underway to circumvent this problem by plac
ing the nonlinear crystals inside high finesse optical cavities, which signifi
cantly increases the probability of downconversion into a narrow spectral 
bandwidth.^^^) 

As discussed above, there are a number of approaches for improv
ing the coupling efficiency into single spatial modes. Improving conversion 
efficiency by finding higher non-linearity bulk crystals is limited by the 
choice of available crystals (with BBO and LilOs being two of the better 
ones). Engineering crystals by processes such as periodic poling^^^^ allows 
one to take advantage of crystals (e.g.. Lithium Niobate) with somewhat 
higher nonlinearities. The conversion efficiency into a specific mode can be 
further enhanced by some 1-2 orders of magnitude by creating waveguides 
in these crystals.̂ -̂̂ ^ Because the waveguide is small, possibly even single 
mode, it can be much easier to collect the output light. However, the net 
outcoupling efficiencies achieved to date (10-20%) still require substantial 
improvement. Finally, by using a buildup cavity to recycle the unconverted 
pump photons, the effective conversion efficiency may be increased (at the 
expense of a more complicated setup).̂ "̂̂ ^ 

Entanglement in non-polarization degrees of freedom, such as 
energy/time-bin^^^^ and orbital angular momentum,^^^^ has also been real
ized recently. These may present some advantages over the polarization 
case, e.g., they allow implementation of higher-order quantum structures. 



Photonic Technologies for Quantum Information Processing 223 

such as qu-trits (3-level systems), and timing entanglement is more robust 
for transmission through optical fibers. 

One problem plaguing all of these sources is that the production of 
pairs is a random process. By using short pulsed pumps, it is possible to 
define the times when no photon pairs will be produced, but there is still 
no way to guarantee production of exactly one photon-pair during any 
given pulse. At least one theoretical scheme has been proposed to circum
vent this problem,̂ ^̂ ^ but practical implementations have yet to be realized. 

3.2. x̂ ^ -̂Nonlinearity Schemes 

The difficulty of coupling the entangled photons into optical fibers 
has been overcome by directly producing them inside of the fiber, by 
exploiting the x̂ '̂̂  (Kerr) nonUnearity of the fiber itself ̂ ^̂^ By placing 
the pump wavelength close to the zero-dispersion wavelength of the fiber, 
the probability ampHtude for inelastic four-photon scattering can be sig
nificantly enhanced. Two pump photons at frequency co^ scatter through 
the Kerr nonlinearity to create simultaneous energy-time-entangled sig
nal and idler photons at frequencies co^ and ô i, respectively, such that 
2CL>P=-(D^-\-(D{. Because of the isotropic nature of the Kerr nonlinear
ity in fused-siHca-glass fibers, the correlated scattered photons are pre
dominantly co-polarized with the pump photons. Two such correlated 
down-conversion events from temporally multiplexed orthogonally polar
ized pumps can be configured to create polarization entanglement as well. 
In this way all four polarization-entangled Bell states have recently been 
prepared, violating Bell inequalities by up to ten standard deviations of 
measurement uncertainty.̂ ^^^ One drawback is the existence of Raman 
scattering in standard optical fibers due to coupling of the pump photons 
with optical phonons in the fiber. However, for small pump-signal detu-
nings the imaginary part of x̂ ^̂  in standard fibers is small enough that a 
10-fold higher probabihty of creating a correlated photon-pair in a suitable 
detection window can be obtained than the probabihty of two uncorre
cted Raman-scattered photons in the same detection window.̂ "̂ ^̂  Further 
work to quantify Raman scattering at the single-photon level is needed. 

3.3. Quantum Dot Entangled-Photon Sources 

A biexcitonic cascade from a semiconductor quantum dot might also 
allow the generation of polarization-entangled photon pairs on demand, since 
the selection rules should translate the anticorrelation of electron and hole 
spins in the biexcitonic state into polarization anticorrelation of photons.̂ "̂ ^̂  
However, this requires that the two decay paths from the biexcitonic state 
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are indistinguishable; therefore, the effects such as dot anisotropy, strain, 
piezoelectric effects, and dephasing processes need to be minimized/̂ ^^ To 
accompUsh this, one needs to optimize quantum dot growth conditions and 
employ novel high-Q photonic crystal microcavities, which would increase the 
radiative recombination rate over the dephasing rate/̂ ^^ 

4. SINGLE-PHOTON DETECTORS 

As noted in the introduction, photon-based quantum information 
processing applications require that single photons, or more generally, 
the photon number in a multiphoton state, be detected with efficiency 
approaching unity. To that end much progress has been made in recent 
years towards developing high efficiency, low noise, and high count-rate 
detectors, which can reliably distinguish the photon number in an incident 
quantum state. 

4.1. Avalanche Devices 

Detection of single photons with avalanche photodiodeŝ "̂ ^̂  (APDs) 
biased above the breakdown voltage is convenient (no cryogenic temper
atures are needed) and relatively efficient. When one or more photons are 
absorbed, the generated carriers that undergo avalanche gain may cause a 
detectable macroscopic breakdown of the diode p-n junction. APD pho
ton counters suffer both from dark counts, where thermally generated 
charge carriers cause a detection event, and from after-pulses, where carri
ers from a previous avalanche cause subsequent detection events when the 
APD is reactivated. 

The best counters at visible wavelengths have been made with silicon 
APDs. These work well because of both the material system's ability 
to provide very low-noise avalanche gain and the availability of silicon 
of nearly perfect quality. For example, the single-photon counting mod
ules (SPCMs), made by Perkin-Elmer (SPCM-AQR-16), can have 50-70% 
quantum efficiency near 700-nm wavelength, dark-count rate < 25/s, and 
can count at rates up to 10-15 MHz."̂ "̂*̂ ^ The dark-count rate is low 
enough for the SPCMs to be operated continuously except for a 50-ns ava
lanche quench time, although heating effects limit the CW counting rate to 
about 5 MHz. After-pulsing is less than 0.5%. The quantum efficiency of 

^Certain trade names and company products are mentioned in the text in order to specify 
adequately the experimental procedure and equipment used. In no case does such identifi
cation imply recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the products are necessarily the best available for the 
purpose. 
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the SPCMs drops at longer wavelengths (2% at 1 /xm). Attempts to resolve 
multiple photons by splitting a multi-photon pulse into several time bins 
(e.g., with a storage loop) have been made, but they are limited by losses 
in the device switching photons into and out of the loop, and by the 
non-unity detector efficiencies. ̂ ^̂^ 

The Visible Light Photon Counter̂ "̂ ^̂  (VLPC) and Solid State Photo-
multiplier̂ "̂ ^̂  (SSPM) are modified Si devices which operate using a spa
tially localized avalanche from an impurity band to the conduction band. 
They possess high quantum efficiency (estimated to be '̂ 95%) with low 
multiplication noise. The localized nature of the avalanche allows high effi
ciency photon-number discrimination,̂ '*^^ which is not possible with con
ventional APDs. Using this capability, the non-classical nature of PDC 
has been investigated and violations of classical statistics demonstrated.̂ ^^^ 
Unfortunately, these detectors require cooHng to 6K for optimal perfor
mance, and even then they display dark count rates in excess of 10̂  s~^ 

In the infrared, 1-1.6/xm, the best results to date have come from 
APDs having InGaAs as the absorption region that is separate from 
a multiplication layer of InP^̂ ^̂ ; see Fig. 4. This has proven to be a 
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Fig. 4. Quantum efficiency versus dark-count probability for two InGaAs APDs operated 
in gated Geiger mode near 1537nm wavelength. In the gated Geiger mode, the APD is 
biased below breakdown and a short electrical pulse (~lns), coincident with the incident 
light pulse containing the photon to be detected, brings it momentarily into the breakdown 
region. The inset shows a schematic of the electronic circuit used with the APDs (from Ref 
38). 
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better solution than germanium APDs/^^^ To suppress the high dark 
count rate in these devices, at best thousands of times worse than in sil
icon APDs, cooled InGaAs/InP APDs are usually activated for only a l 
iens duration to coincide with the arrival of the photon to be detected. 
The reported quantum efficiencies are typically between 10-30%, and the 
APDs are usually operated at a count rate of 100 kHz in order to allevi
ate after-pulsing caused by carriers trapped between the InGaAs and InP 
layers. 

4.2. Superconducting Devices 

Superconducting devices offer the potential to achieve levels of perfor
mance that exceed those of conventional semiconductor APDs. Although 
there are many types of superconducting detectors, only three have been 
used to observe single optical photons: the transition-edge sensor̂ ^^^ 
(TES), the superconducting tunnel junction^^^^ (STJ), and the supercon
ducting single-photon detector (SSPD).^^^) Both the TES and the STJ 
detectors have been able to detect single photons and count the number 
of photons absorbed by the detector. The TES detector uses the steep 
slope of the resistance as a function of temperature at the superconduct
ing transition as a very sensitive thermometer. This thermometer is able to 
measure the temperature change in an absorber when one or more pho
tons are absorbed (see Fig. 5). The TES detectors are slow, capable of 
count rates at most up to 100 kHz, but essentially have no dark counts.̂ ^^^ 
The reported detection efficiency currently varies from 20% to 40% in 
the telecom to optical band, although significant improvements in detec
tion efficiency and speed are being realized with better detector designs 
(e.g., anti-reflection coatings) and research into new superconducting 
materials. 

In an STJ detector, excitations of the superconductor are generated 
when a photon is absorbed. The excited quasiparticles can create an 
enhanced tunneling current which is proportional to the energy of the 
photon (or the number of photons absorbed). These detectors are similar 
in speed to the TES and also have no dark counts. The detection efficiency 
demonstrated to date is roughly 40% for visible photons,^^^^ which could 
be improved with AR coatings. 

The SSPD detectors are extremely fast detectors (--100-ps total pulse 
duration) that have single photon sensitivities.^^^^ In an SSPD, the detec
tor is a narrow superconducting current path on a substrate. This path is 
current-biased at a point just below the superconducting critical current. A 
local hot spot is formed where a photon(s) is absorbed, locally destroying 
the superconductivity. This forces the current to flow around the hot spot 
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Fig. 5. Measured Poisson photon-number distribution of an attenuated, pulsed 1550-nm 
laser, repeatedly measured using a TES. The TES devices are made of superconducting tung
sten and operated at a temperature of 100 mK. The horizontal axis is the pulse height of the 
photon absorption events in units of the energy of one 1550-nm photon, 0.8 eV (from Ref 
53). The inset shows a photograph of four fiber-coupled devices prepared to be cooled to 
lOOmK. 

causing the current density around the hot-spot to exceed the critical cur
rent density. As a result, the device develops a resistance, causing a voltage 
to appear across the device. These detectors are single-photon-threshold 
devices and are not able to resolve the photon number in multiphoton 
pulses. Typical implementations use meandering paths to increase the sen
sitive area, which is otherwise very small due to the narrowness required 
for the conducting path. Much improvement in device fabrication and 
design is needed to improve the quantum efficiencies of these devices 
beyond the current values of ^20%; the detection efficiency is lower still, 
due to the area effect mentioned above. 

4.3. Frequency Upconversion 

Detection techniques based on frequency upconversion allow IR 
photons to be converted into the visible where single photon detection is 
more efficient and convenient. Frequency upconversion uses sum-frequency 
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Fig. 6. CW single-photon upconversion efficiency versus circulating pump power in the 
pump enhancement ring cavity (inset). Solid line is a theoretical fit to data. At high pump 
powers lower than expected efficiencies are due to heating in PPLN that caused thermal 
instability in the ring cavity lock. See Ref. 56 for results with improved cavity lock. 

generation in a non-linear optical crystal to mix a weak input signal 
at (JL>{^ with a strong pump at co^ to yield a higher-frequency output 
field at ô out = <̂ in + <̂ p- With sufficient pump power this upconversion 
can occur with near unity efficiency even for weak light fields at the 
single-photon level. For LOQC and quantum key distribution applications, 
telecommunication-wavelength photons at 1.55/xm can then be efficiently 
detected with low-noise, high quantum-efficiency Si APDs. Recently, up
conversion of single photons from 1.55 to 0.63/xm in bulk periodically 
poled lithium niobate (PPLN) has been demonstrated with an efficiency of 
90%,̂ ^̂ ^ limited only by the available continuous wave (CW) pump power 
at 1.06/xm, see Fig. 6. The bulk PPLN crystal is embedded inside a pump 
enhancement cavity that also imposes a well-defined spatial mode for the 
single-pass input photons. One approach to eliminate the need for a sta
bilized buildup cavity is to use a bright pulsed escort beam which is tem
porally mode-matched to the input photon. Such a system has enabled 
single-photon conversion efficiencies of '^80% and backgrounds less than 
10~'̂  per pulse.̂ ^̂ ^ 

The pump power requirement can be relaxed by using a waveguide 
PPLN crystal,̂ ^̂ ^ but the effect of waveguide losses must be addressed 
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to achieve the required near-unity net upconversion efficiency. The next 
step is to demonstrate frequency upconversion of a quantum state/^^^ i.e., 
high fideUty frequency translation of a single photon in an arbitrary quan
tum polarization state. This will allow a modular approach to developing 
LOQC technologies. For example, the photonic qubits and ancilla photons 
can be prepared at wavelengths with the most convenient and efficient 
methods, and then converted with near-unity efficiency to wavelengths that 
are optimal for photonic logic gates employing quantum interference. Sim
ilarly, tunable quantum frequency upconversion can be used to match the 
required wavelengths to the resonant transitions in various atomic systems, 
for applications such as quantum repeaters.̂ ^"*^ As another example, there 
have also been proposals^^^^ to couple the photons to an atomic vapor sys
tem—the excitation of a single atom can be made very probable by having 
many atoms, and that excitation can be read out with very high efficiency 
by using a cycling transition. Such schemes could potentially yield efficien
cies in excess of 99.9%. However, there are critical noise issues which must 
still be addressed. 

5. CONCLUSIONS 

For reasons noted in the introduction, there is intense current interest 
in creating robust, high-precision sources and detectors of single photons. 
In the last year alone, two special issues have appeared in the literature 
focusing just on these topics.̂ ^ '̂̂ ^^ Though tremendous progress has been 
achieved, more development is clearly necessary to bring these technolo
gies to the level of operation needed for LOQC. Nevertheless, already they 
have shown promise, enabling the realization of simple quantum gates, and 
improved quantum key distribution protocols. We anticipate that further 
improvements over the next few years will continue to make optical qubits 
an attractive system, though it remains to be seen whether the extremely 
demanding LOQC requirements can be met. 
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Quantum Computer Development with Single Ion 
Implantation 
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Spins of single donor atoms are attractive candidates for large scale quantum 
information processing in silicon. Formation of devices with a few qubits is cru
cial for validation of basic ideas and development of a scalable architecture. We 
describe our development of a single ion implantation technique for placement 
of single atoms into device structures. Collimated highly charged ion beams are 
aligned with a scanning probe microscope. Enhanced secondary electron emission 
due to high ion charge states (e.g., 3ipi3+^ ^y. uej-ps+j allows efficient detec
tion of single ion impacts Studies of electrical activation of low dose, low energy 
implants of ^^P in silicon show a drastic effect of dopant segregation to the 
SiOilSi interface, while Si^NJSi retards ^^P segregation. We discuss resolution 
limiting factors in ion placement, and process challenges for integration of single 
atom arrays with control gates and single electron transistors. 

KEY WORDS: Electron emission; single electron devices; coulomb blockade; 
ion doping; scanning probe; quantum computation. 
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1. INTRODUCTION 

Several promising proposals for implementation of large scale quantum 
information processing devices in solids are based on the manipulation 
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of spins of electrons and nuclei of single dopant atoms/^"^^ The accu
rate placement of single atoms and their integration with control gates 
and readout structures (such as single electron transistors) represents a 
nanofabrication challenge that needs to be mastered in order to be able 
to test, validate and improve device architectures. Spins of electrons of 
phosphorous atoms are the most attractive candidates to date, since their 
decoherence time is quite long ('^60 ms for isolated donors),̂ "*^ and their 
integration in a silicon matrix allows use of a highly developed semicon
ductor processing infrastructure. 

In this article we describe our program on single atom array for
mation by single ion implantation, and the integration of single P-atom 
arrays with control gates and readout SETs.̂ '̂̂ ^ 

2. SINGLE ION IMPLANTATION 

In single ion implantation, every ion impact has to be detected, and 
the position of each ion impact has to be controlled with high resolution 
and accuracy.̂ ^"^^ The ease or difficulty of detecting single ions depends 
on their energy and charge state. Low energy (<20keV), singly charged 
ions are difficult to detect, because emission of secondary electrons from 
inelastic colhsions ("kinetic electron emission") is ineffective with second
ary electron yields of one or less than one electron per ion.̂ ^^ Detection 
in the bulk of a detector is difficult because most of the ion's energy is 
dissipated in elastic collisions and not in the formation of electron hole 
pairs. This is especially so for low energy heavy ions (e.g., Te at 20keV), 
where only about 10% of the ion energy is transferred into measurable 
electronic excitations in the solid. Using high charge state ions allows effi
cient detection of single ions, because secondary electron emission is pro
portional to the ion charge state, y^~ 1.5 x ^ , and tens to hundreds of 
electrons can be emitted from single ions.̂ ^^^ Secondary electron emission 
from high charge state ions is rather insensitive to the ions kinetic energy 
for ion energies above 2keV. Secondary electron emission yields increase 
for very low impact energies (below 2 keV) due to increased time for above 
surface charge relaxation.^^^^ 

Next to detection, the second challenge in single ion implantation is 
to ensure accurate alignment and high resolution in ion placement. In con
ventional focused ion beam systems, beams of Ga"^ ions are focused to a 
spot size of ^ 10 nm (full width half maximum of a beam with approx
imately Gaussian shape). This is enabled by the high brightness of the 
Hquid metal ion source used to form Ga"^ beams.̂ ^^^ While progress is 
being made in source development, the brightness of highly charged ion 
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sources still remains orders of magnitude lower than that of liquid metal 
ion guns/^^^ Besides beam resolution, i.e., spot size, the accuracy of align
ment is crucial for placement of ions into desired positions. Alignment is 
complicated by the fact that the ion beam must not be used for imaging 
of the region of interest since this would be accompanied by undesired 
implantation. 

A schematic of our single ion implantation setup is shown in Fig. 1. 
Beams of highly charged dopant ions are extracted from our electron 
beam ion trap/source.̂ ^"^^ Typical ion beam energies are 1-10kVxi^', where 
q is the charge of the selected ion species. Specific ion species are selected 
by momentum analysis in a double focusing bending magnet. The beam 
is first focused by a series of electrostatic lenses and is then collimated 
by a set of apertures. Ions transmit the nanometer scale apertures at a 
rate of a few ions per second.̂ ^^^ When a highly charged dopant ion 
reaches a wafer surface, the potential energy that corresponds to its high 
charge state is released. Once the ion reaches a critical distance above the 

Fig. 1. Schematic illustration of the Single Ion Implantation setup with SFM alignment. 
Piezo-resistive cantilever with hollow tip (1) and small aperture (2), mounted on a pre-coUi-
mation membrane (3), and secondary electron detector (4). The sample is an SET pair shown 
here in a scanning force microscope image (5, planar view). Dashed lines indicate magnetic 
field lines for guidance of secondary electrons to the detector. 
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surface, it can capture electrons from the solid into excited Rydberg states, 
while vacancies in inner shells remain empty. This process, also referred to 
as formation of a transient "hollow atom", is very effective and the ion 
actually neutralizes completely before it impinges on the surface. Rapid 
di-electronic processes mediate the relaxation to the ground state. The ion 
travels only for about lOfs in the soHd during dissipation of the poten
tial energy.̂ ^^^ Secondary electron emission yields depend on the specific 
material. For 3ipi3+ ^^ silicon with a native oxide, about 20 electrons are 
emitted by each ion. It is important to note that these electrons are emit
ted within less than lOOfs. Most of the secondary electrons have energies 
of ~5-20eV. The beam collimating aperture is formed in the tip of a scan
ning force microscope, and the tip is placed in close proximity (<5/>6m) to 
the sample surface to minimize beam divergence. In order to maximize the 
extraction efficiency of secondary electrons into the detector, we formed 
a magnetic guide field with an angle of 10° with respect to the surface. 
Secondary electrons spiral along the magnetic field lines to the surface of 
a plastic scintillator. The scintillator is biased at high voltage (10-18 kV). 
Electrons are stopped in the scintillator and a fraction of their energy is 
converted into electronic excitations which relax radiatively. A typical con
version efficiency is 100 photons per lOkeV electron. Photons are emit
ted with a decay time of about 2 ns, and are guided through a Teflon 
coated quartz light guide to a photo multiplier tube (PMT). The PMT 
detects photons from the scintillator (central wavelength 425 nm) with a 
quantum efficiency of 15-20%. Multiple photons arrive as a burst and the 
resulting avalanche of electrons produces a pulse with a height propor
tional to the number of secondary electrons collected from a single ion 
impact. The detection of multiple secondary electrons in a burst is crucial 
since this allows us to discriminate spurious background in the PMT from 
the pulse height spectrum. Single electron or single photon background 
events are well separated from true single ion impact events. Examples 
of pulse height distributions are shown in Fig. 2 for Tê -̂ "̂  and P^^+ 
ions with kinetic energies of 3kVx^. Tellurium, a double donor in sili
con, is a candidate for implementation of spin dependent charge measure
ments.^^ ̂ ^ Atoms of both phosphorous and tellurium were injected into 
the highly charged ion source by evaporation of solid stock in ovens. The 
detection efficiencies for single ions of P^^+ and Te-̂ "̂̂  are 85% and 95%, 
respectively. The collection efficiency for secondary electrons, and guidance 
of photons to the PMT has been optimized to achieve 100% detection 
efficiency for Xe"*̂ "̂ . In these measurements some background from high 
energy events in the scintillator was present. This background was reduced 
by reduction of the scintillator voltage, and allowed us to detect Xe^ "̂̂  
ions with 85% efficiency and zero background in the main peak region 
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Fig. 2. Pulse height distributions from detection of secondary electrons bursts following the 
impact of 126^^33+ ^̂ ^ ^^^ 3ipi3+ JQĵ g Q^y J^Q detection efficiencies were 95% and 85% 
respectively. 

over periods of hours. Here, ions were not decelerated and their kinetic 
energies corresponded to a 5kV extraction potential. Detection of very 
low energy heavy ions was achieved by deceleration at the target, and we 
detected 7keV Xê ^+ ions also with 85% efficiency.̂ ^̂  With further opti
mization of the secondary electron collection and reduction of losses in 
the light pipe from the scintillator to the PMT we anticipate to be able to 
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detect low energy P^^+ ions with 100% efficiency integrated with scanning 
probe aHgnment. 

The aperture that defines the beam spot is formed in the tip of a 
scanning force microscope (SFM). The SFM is based on piezoelectric sen
sors with a Wheatstone bridge circuit formed in silicon cantilevers/^ ̂ ^ The 
SFM is needed to allow accurate alignment of the ion beam with marker 
structures on the samples. An aHgnment accuracy of ^^5 nm is highly desir
able for effective device development. The probe tip is a hollow pyramid 
into which a large hole (~500nm diameter) is drilled with a FIB (Fig. 3). 
The SFM cantilever is mounted on a silicon nitrite membrane, and when 
the hole is drilled in the tip, a second hole is also pierced through the 
membrane. These two holes are aligned and the membrane provides addi
tional beam collimation. The large hole in the tip is then reduced in diam
eter by monitored, in situ thin film deposition.^^^^ Holes with diameters as 
small as 4.3 nm have been formed this way. Additionally, "sensing poles", 
i.e., poles with radii of curvature of less than 50 nm to ensure high imag
ing resolution have been formed by electron beam assisted deposition of 

Fig. 3. SFM cantilever with hollow pyramid tip. A hole was drilled in a single step both 
through the tip and the membrane on which the cantilever is mounted. The hole in the mem
brane is visible due to the tilt angle of 17°. The insert on the top left shows a hole that went 
through several cycles of drilling and closing by electron beam assisted Pt deposition, and re-
drilling. The insert on the right shows a 90 nm wide "sensing pole" grown next to a hole with 
reduced diameter. 
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Pt. The sensors of the piezoresistive SFM allow imaging of the surface 
topography in conventional contact mode, and also in tapping mode with 
rapid thermal actuators/^^^ The latter is important for increased imaging 
and alignment speed. To date, our SFM with sensors have been operated 
in vacuum and integration with the implant beam is in progress. Studies of 
tip lifetime and charge exchange of ions during transmission of the aper
tures indicate that the tips are robust for days of exposure to ion beams 
with nA intensities.^^^ 

3. ACTIVATION OF LOW DOSE, LOW ENERGY P IMPLANTS 
IN SILICON 

Ion implantation is accompanied by damage to the host crystal as 
incident ions transfer energy to target atoms in elastic collisions. Atoms 
are displaced from their lattice positions, forming vacancies and inter-
stitials. A fraction of these defects anneals during the collision cascade 
that accompanies the slowdown process of the incident ions. Implanted 
ions come to rest mostly on interstitial positions in the lattice. Following 
implantation, arrays of P atoms have to be annealed in order to incorpo
rate the P atoms into the sihcon lattice, and to heal implantation dam
age to the silicon crystal. Incorporation into the lattice ensures that the 
bound excess electrons (at low temperature) exhibit the quasi hydrogenic 
wave function that makes them so attractive for quantum information 
processing. A qubit spacing of 20nm corresponds to ~10^^ P-atoms/cm^, 
representing a regime of ultra low dose in ion implantation. Diffusion dur
ing activation annealing of dopants in sihcon is a well studied problem, 
but most studies have focused on the high dose (> lO^^cm"^) regime rel
evant for conventional silicon devices.̂ ^^^ For low energy implants with a 
shallow range, the interface to the silicon crystal plays a crucial role dur
ing annealing. Phosphorous diffusion is mediated by silicon interstitials. 
The Si02/Si interface injects interstitials during anneaUng, and this leads 
to the segregation of P atoms to the interface. The consequence of this 
segregation effect is that P atoms are not electrically active, since they 
are bound at the interface, and that any pre-formed atom array is com
pletely dissolved. Even a "perfect" Si02/Si interface can absorb a dose 
of at least lO^^P/cm .̂̂ ^^^ The Si3N4/Si interface shows a complementary 
effect, since it injects vacancies during annealing. Vacancies retard P diffu
sion in Si. We have studied the activation of low dose P implants in Si 
and use spreading resistance analysis (SRA) as a method for character
ization of carrier concentrations. SRA has exquisite sensitivity (down to 
at least 10^^ carriers/cm^), but the depth resolution is limited to about 
5 nm, and the accuracy of absolute carrier levels is also limited (error of 
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'--25%). However, SRA does allow the qualification of trends, where depth 
profiling with secondary ion mass spectrometry (SIMS) is in turn limited 
by a detection efficiency for ^̂ P in Si of about lO^^cm"^. In Fig. 4, we 
show SRA depth profiles of carrier concentrations for silicon (100) sam
ples (5^cm, n-type), implanted with a phosphorus dose of lO^^P/cm .̂ 
Samples were annealed for 10 s at 1000 °C in a dry nitrogen atmosphere. 
The implant energies were 15, 30 and 60keV. We compare samples with 
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2.0x10̂ 5 H 
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Fig. 4. SRA depth profiles of carrier concentration for silicon samples with Si02 (a) and 
Si3N4 (b) layers. The implant dose was 10^^ '̂P/cm ,̂ and implant energies were 60, 30 and 
15keV. 
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a 5nm thick Si02 layer and a 7nm thick Si3N4 layer. For the oxide, 
a large fraction of the dose is driven to the interface, while the nitride 
retards dopant movement. The fraction of activated dopants increases with 
the implant energy from 25% to 75% for both interfaces. Residual oxy
gen from water in the ambient of the annealing chamber might contrib
ute to some dopant deactivation also for the samples with silicon nitride 
interface. Increasing the number of available vacancies during annealing by 
co-implantation with Si+ increases the activation probability,̂ ^^ and exper
iments are underway to combine co-implantation with Si3N4/Si interfaces 
to achieve full electrical activation of low energy, low dose implants. 

This effect of enhanced dopant segregation rules out the use of Si02 
interfaces close to P atom arrays. An additional reason to abandon SiOa 
(and Si3N4) is that electrical defects in amorphous dielectrics are sources 
of random polarization that preclude large scale spin qubit integration. We 
are currently developing a dielectric free, metal silicide based process for 
epitaxial integration of P atom arrays. 

Small scale test devices are important for proof of principle demon
strations. While Si02 is incompatible with phosphorus, it is not with anti
mony. Antimony diffusion is mediated by vacancies,̂ ^̂ ^ and retarded by 
interstitials, making formation of Sb atom devices with Si02/Si interfaces 
an attractive test bed for single atom electronics. 

4. SINGLE ELECTRON TRANSISTORS IN SILICON 

Single electron transistors (SET) are sensitive electrometers that make 
them prime candidates for implementation of single spin measurements 
in spin dependent charge measurements.̂ ^^^ We have formed SET pairs in 
SOI in order to develop two atom devices for single charge transfer exper
iments. An example of an SET pair is shown in Fig. 5, together with a 
typical I — V curve of source-drain current and voltage. Coulomb block
ade effects have been studied in silicon nanostructures for many years.̂ ^̂ ^ 
Patterning of SOI with electron beam lithography allows reliable forma
tion of silicon nanowires down to lOnm line width.̂ '̂̂ ^ Mechanisms for 
formation of effective tunnel barriers are controversial. While dehberate 
tunnel barriers can be formed, charging effects also result from defects 
and dopant fluctuations. In our fabrication process, silicon nanowires are 
defined using the negative resist hydrogen silsesquioxane (HSQ) together 
with an organic resist in a bi-layer electron beam lithography process.̂ ^̂  
Nanowire size reduction by oxidation was not applied, due to direct Hth-
ographic access to features around 10-15 nm. The SET with a 14 nm wide 
wire had a capacitance of lOaF and a charging energy of about lOmeV. 
SOI is a very attractive material for formation of single atom test devices 
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Fig. 5. Scanning electron micrograph of an SET pair in SOI (a) and typical Coulomb 
blockade signature in the / - V curve of a device with 14nm wide silicon wire. The temper
ature was 4.2 K, and the gate voltage 20 mV. 

since charging energies are large enough to allow testing at liquid helium 
temperatures. SET pair structures with a few Sb dopants are promising for 
single electron transfer tests, but large scale integration requires the devel
opment of a dielectric free architecture. 

5. OUTLOOK 

The effective ion placement resolution that can be achieved with sin
gle ion implantation is limited by the following contributions: (1) Range 
straggling from statistical energy loss processes leads to a distribution 
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of implantation depths. Range straggling is proportional to the implant 
energy, and implantation with very low energies (< 1 keV) can achieve 
placement accuracies of a few nm. For heavier ions, implantation into a 
given mean depth is accompanied by smaller range straggling. E.g., the 
range straggling for implantation into a depth of 20 nm is 9nm for 13keV 
P, but only 6nm for 25keV Sb ions. (2) The beam spot size can be con
trolled with the aperture size in the SFM tip, and ~5nm wide apertures 
have been formed. Ion transport through nanotubes (carbon, or boron 
nitride based) would reduce the aperture size to 1-2 nm, and experiments 
are underway to test the efficiency of nanotube ion guides. (3) Alignment 
to markers can be achieved with scanning force microscopy to an imag
ing resolution of 1-5 nm. (4) Diffusion during annealing can completely 
dissolve atom arrays. Most dopants diffuse through distinct and specific 
mechanisms.^^^^ Phosphorous diffuses in silicon through interstitials, while 
antimony diffuses through vacancies. P diffusion is retarded by silicon 
nitride (which injects vacancies), while antimony diffusion is retarded by 
silicon dioxide (which injects interstitials). Choice of appropriate dopant 
interface combinations can reduce dopant movement during annealing to 
a few nm. Taking these contributions into account we conclude that an 
overall placement accuracy of 5-10 nm is possible with our current single 
ion implantation approach, and this enables the formation of prototype 
devices for spin qubits. A placement resolution below 5nm will be pos
sible if low energy ions can be transported through nanotubes efficiently. 
While single atom placement by scanning tunneUng microscope (STM) 
based hydrogen Hthography has atomic resolution in single atom place
ment, issues of diffusion and segregation are dependent on device inte
gration and remain to be resolved also for STM based arrays. ̂ ^̂ '̂ ^̂  In 
contrast to STM, single ion implantation does not require specific surface 
chemistries, so that ions can be placed into any matrix, and ions across 
the periodic table can be implanted. It is also perceivable to form devices 
where the strengths of both techniques are utilized. 

Integration of several thousand qubits is necessary to realize the full 
potential of quantum computation. The development of tools for single 
atom array formation, process integration and formation of device infra
structure (control gates and SETs) has to take this goal into account at 
every level, while also focusing on the demonstration of basic steps in sin
gle and few qubit experiments. 
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Bang-Bang Refocusing of a Qubit Exposed 
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Solid state qubits promise the great advantage of being naturally scalable to large 
quantum computer architectures, but they also possess the significant disadvan
tage of being intrinsically exposed to many sources of noise in the macroscopic 
solid-state environment. With suitably chosen systems such as superconductors, 
many of sources of noise can be suppressed. However, imprecision in nanofabri-
cation will inevitably induce defects and disorder, such as charged impurities in 
the device material or substrate. Such defects generically produce telegraph noise 
and can hence be modelled as bistable fluctuators. We demonstrate the possibil
ity of the active suppression of such telegraph noise by bang-bang control through 
an exhaustive study of a qubit coupled to a single bistable fluctuator We use 
a stochastic Schrodinger equation, which is solved both numerically and analyt
ically. The resulting dynamics can be visualized as diffusion of a spin vector on 
the Bloch sphere We find that bang-bang control suppresses the effect of a bista
ble fluctuator by a factor roughly equalling the ratio of the bang-bang period and 
the typical fluctuator period. Therefore, we show the bang-bang protocol works 
essentially as a high pass filter on the spectrum of such telegraph noise sources. 
This suggests how the infiuence of \/f-noise ubiquitous to the solid state world 
could be reduced, as it is typically generated by an ensemble of bistable fiuctua-
tors. Finally, we develop random walk models that estimate the level of noise sup
pression resulting from imperfect bang-bang operations, such as those that cannot 
be treated as 8-function impulses and those that have phase and axis errors. 
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1. INTRODUCTION 

In order to implement solid-state quantum information processing devices, 
the noise sources causing decoherence of their quantum states have to be 
carefully understood, controlled, and eliminated. This is a formidable task, 
as a solid-state environment generically couples a macroscopic number of 
degrees of freedom to any such device. Thus, a fundamental prerequisite 
for any design is that it must significantly decouple the quantum states 
used for computation from phonons and other quasiparticles in the under
lying soUd crystal. Examples of such designs are those employing discrete 
states in quantum dots^^^ or superconductors with a gapped density of 
states.^2-^) 

Most research going beyond this fundamental prerequisite has con
centrated on decoupling devices from external noise sources such as elec
tromagnetic noise generated by control and measurement apparatus.^^^ On 
the other hand, there inevitably are internal noise sources because the fab
rication of gates, tunnel junctions, and other functional components cre
ates defects in the underlying crystal. Prominent examples of such defects 
are background charges in charge-based devices or cricital current fluctu
ations in flux-based devices.̂ '̂̂ ^ A clear signature of such defects is tele
graph noise in the case of a few defects or 1//-noise in the case of a larger 
ensemble.̂ ^^^ With the growing success in engineering the electromagnetic 
environment, these defects are becoming more and more the key limiting 
sources of decoherence. 

Such defects do not fall in the large class of noise sources that can be 
approximated well as a bosonic bath, and this fact complicates analysis. 
Whereas it is realistic to treat a bosonic bath in the tractable near-equi
librium thermodynamic limit where fluctuations are purely Gaussian,̂ ^^"^^^ 
localized noise sources with bounded spectra like the defects in which 
we are interested produce noise that is significantly non-Gaussian. Theo
ries treating large ensembles of non-Gaussian noise sources have been pre-
sented.̂ ^ '̂̂ ^^ However, with the ongoing improvement in nanofabrication 
technology, it is realistic to consider the case where non-Gaussian noise 
sources are reduced down to only a single one or a few per device. This 
is the case we treat here, and thus the defects find a more realistic repre
sentation as a small set of bistable fluctuators.^^^^ (henceforth abbreviated 
bfls). In principle, this approach can be extended to larger sets of bfls with 
a range of different mean switching times (e.g., an ensemble with an expo
nential distribution of switching times that produces l//-noise.^^^"^^^) 

This report is organized as follows. Section 2 presents the model of 
a single bfl in the semiclassical limit, where it acts as a source of tele
graph noise. Section 3 introduces an idealized open loop quantum control 
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technique, quantum bang-bang control/̂ ^"^^^ which is suitable for slowly 
fluctuating noise sources. Section 4 explains how we simulated the qubit 
dynamics under the influence of noise with and without bang-bang con
trol by integrating of the corresponding time-dependent Schrodinger equa
tion. As a measure of the decoherence, we analyze the deviations of the 
qubit's trajectory on the Bloch sphere from that of the noiseless case. 
These deviations take the form of a random walk around the noiseless-
case trajectory. We therefore analyze the suppression of these deviations by 
comparing the variances of these random walks with and without bang-
bang control. Both numerical and analytical solutions (the latter in the 
long-time or "diffusion" limit) are presented. Comparison of the numerical 
simulations to the analytical solutions shows excellent agreement. We then 
analyze how these results change when practical limitations are considered 
such as the fact that a bang-bang pulse cannot be an ideal 5-function 
impulse and the fact that the duration or polarization axis of the pulse 
may suffer from random fluctuations. We show at the end of subsec. 4.2 
that within large margins bang-bang suppression of the bfl noise is not 
inhibited by having a finite, rather than infinitesimal, pulse length. How
ever, in Sec. 5, we do find that duration and polarization axis errors in 
the bang-bang pulses can significantly affect the suppression of bfl noise. 
We present a point of optimum performance. Section 6 concludes with 
remarks on several recent publications concerning the suppression of tele
graph or 1//-noise. 

2. MODEL OF THE BISTABLE FLUCTUATOR IN ITS 
SEMICLASSICAL LIMIT 

We describe the bfl-noise influenced evolution of the qubit in its semi-
classical limit by using a stochastic Schrodinger equation^^ '̂̂ ^^ with the 
time-dependent effective Hamiltonian 

/ / f ( 0 = Hq + //noise(0 (1) 

//q = h€qa^ + ^ AqO-;? (2) 

^noise(0 = ^Ci &^ ^bfl(0 (3) 

where 6q and Aq define the free (noiseless) qubit dynamics. §bfl(0 denotes 
a function randomly switching between ±1 (see. Fig. 1), which represents a 
telegraph noise signal. The switching events follow a symmetrical Poisson 
process, i.e., the probabilities of the bfl switching from +1 to —1 or —1 
to +1 are the same and equal in time. The Poisson process is character
ized by the mean time separation Tbfl between two bfl flips. The coupling 
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Fig. 1. Schematic plot of a typical Poisonian bfl noise signal and its resulting random walk 
behavior (in the limit of small deviations). The periodic fast switching step function rep
resents a bang-bang pulse with a time scale ratio: ibfl/rbb = 10 and yields a quite smaller 
random walk step-length. Tsys = -7=^— denotes the evolution period of the qubit in the 

noiseless case. 

amplitude to the qubit in frequency units is a. The relation of this Ham-
iltonian to a microscopic model is explained in the Appendix. 

Starting with an arbitrary initial state of the qubit, represented by 
some given point on the Bloch sphere, we can numerically integrate the 
corresponding stochastic differential equation and obtain the correspond
ing random walk on the Bloch sphere 

5 (0 = Texp {-'"£"' (s)ds]a(0) (4) 

with T denoting the usual time-ordering operator. 

3. BANG-BANG CONTROL PROTOCOL 

We propose to reduce the influence of the bfl-noise by applying to 
the qubit a continuous train of TT-pulses along the a^-axis. This refocusing 
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pulse scheme essentially corresponds to the standard quantum bang-bang 
procedure (̂ 0-22) ^j. ̂ ^^ Carr-Purcell-Gill-Meiboom echo technique from 
N M R / ^ ^ ^ For technical convenience, we consider the TT-pulses to be of 
infinitesimal duration. This simplification is not crucial as will be detailed 
later in Subsec. 4.2 The pulses are assumed to be separated by a con
stant time interval rbb- The mean separation rbfl between two bfl-flips is 
assumed to be much longer than rbb- For theoretical convenience, we also 
assume that rbfl is shorter than the free precession period of the qubit. 
This too is not a crucial restriction. (It can always be overcome by chang
ing to a co-precessing frame.) 

Qualitatively, bang-bang control works as follows. Since tbb <^ rbfl, it 
is usually the case that the bfl does not flip during the time between two 
bang-bang pulses that flip the qubit. In this way, the bang-bang pulses 
average out the influence of //noise (0- In fact, the refocusing scheme fully 
suppresses the a^-term of the static Hamiltonian (2) (compare Fig. 5); but 
this turns out to be no crucial obstacle to universal quantum computa
tion as will be outlined later on. As one can visualize in Fig. 1, it is only 
when a bfl-flip occurs during a bang-bang period that the net influence 
of the bfl felt by the qubit is nonzero, and the qubit thus suffers some 
random deviation from its trajectory in the noiseless case. Taken together, 
these random deviations constitute a random walk around the noiseless 
case trajectory. While this walk is actually continuous, it can be modelled 
as a discrete walk with steps that are randomly distributed in time, one 
step for each bfl flip (see e.g. Ref 26). The average step length is essentially 
the product of the noise coupling strength a and the mean time the bfl in 
its present state can influence the qubit. Without bang-bang control, this 
mean influence time is tbfl, whereas with bang-bang control, it is reduced 
to Tbb- Therefore, both with and without bang-bang control, the random 
walk has the same time distribution of steps, but with bang-bang control 
the step size can be significantly reduced roughly by a factor of the ratio 
of time scales Tbb/Tbfl. 

4. RANDOM WALK ON THE BLOCH SPHERE 

Now we study this proposal quantitatively. We simulate these ran
dom walks both with and without bang-bang control by integrating both 
numerically and analytically the Schrodinger equation, Eq. (4), with the 
stochastic Hamiltonian of Eqs. (1-3). As generic conditions for the qubit 
dynamics, we choose €q = Aq = ^o- Without loss of generaHty, we set the 
qubit's initial state to be spin-up along the z-axis. If the qubit-bfl cou
pling a were zero, then the qubit would simply precess freely on the Bloch 
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Fig. 2. Schematic plot of noisy qubit evolution generated by Poissonian telegraph noise. The 
resulting random walk (dot-dashed line) on the Bloch sphere is comprised both of deviations 
AcTdeph in parallel to the free precession trajectory (dotted line), which correspond to dephasing, 
and deviations Acrrei perpendicular to it, which correspond to relaxation/excitation. 

Sphere around the rotation axis G^-\-G^ (the dotted Hne in Fig. 2). Hence, 
we expect for a sufficiently small coupling {a <^ QQ) only a slight devia
tion of the individual time evolution compared to the free evolution case 
(the dashed line in Fig. 2). For the coupling strength, we take a = 0.1^o-
All the following times and energies are given in units of the unperturbed 
system Hamiltonian, i.e., our time unit rsys is given according the free pre
cession time 7rrsys/V2, and our energy unit is given by AE = Je^ + A^ = 

VIQQ. The time scale ratio is taken to be Tbfi/rbb = 10 if not denoted 
otherwise. 

This approach accounts for the essential features of our specific sit
uation: the long correlation time of the external noise, essentially rbfi, its 
non-Gaussian statistics and its potentially large ampHtude at low frequen
cies. These properties are crucial and are difficult, although not impossible, 
to take into account in standard master equation methods. 

4.1. Numerical Simulations 

We have numerically integrated Eq. (4) and averaged the deviations of 
the random walk evolution from the unperturbed trajectories for times up 
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to lOOrsys over A^=10-̂  realizations. Larger simulations have proven that 
convergence is already sufficient at this stage. We shall examine the root-
mean-square (rms) deviations of this ensemble at given time points 

Aarms(0 = 

N 
^ E ( - ; ( ^ ) - - n o i s y , / 0 ) (5) 

with and without bang-bang control. In other approaches, such as those 
based on master equations, one separates dephasing and relaxation. Both 
are contained here in Eq. (5). We shall point out notable differences 
between these two channels. The deviation as a function of time is 
plotted in Fig. 3. 

The total deviations on intermediate time scales are suppressed by a 
ratio on the order of 10. A detailed numerical analysis shows that without 
bang-bang suppression, the deviations parallel to the free precession 

<1 

Fig. 3. Time evolution of the rms deviations for bfl-induced random walks with and with
out bang-bang control at a coupling constant a = 0.1 and a typical flipping time scale rbfl = 
lO'-̂ tsys- The separation between two bang-bang pulses is Tbb = 10~̂ Tsys. The straight lines 
are square-root fits of the analytical derived random walk model variances (plotted as trian
gles). Inset: Components of the deviations from the free precession trajectory that are paral
lel to it (dephasing) and perpendicular to it (relaxation/excitation) with bang-bang control. 
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trajectory (which correspond to dephasing) are of similar size to those per
pendicular to free precession (which correspond to relaxation/excitation). 
In contrast, with bang-bang control, dephasing is almost totally absent as 
one can see in the inset of Fig. 3. 

The main double-logarithmic plot of Fig. 3 shows that on short time 
scales (/^<0.1rsys, which corresponds to < 10 random walk steps), devia
tions increase almost linearly in time. It is not until times on the order of 
rsys that the noise-induced deviations start to behave as typical classical 
random walks, increasing as a square-root in time. 

4.2. Analytical Random Walk Models 

We now develop analytical random walk models for our system. The 
random walk on the Bloch sphere is in general two-dimensional, consist
ing of both parallel and perpendicular deviations to the free evolution tra
jectory. Bang-bang control, as was seen in the above numerical results 
and as will be seen in the following analytical results, essentially reduces 
the random walk to one-dimension as only the perpendicular deviations 
remain significant. In the following, we restrict ourselves to the long-time 
(many random walk steps) regime. 

We first calculate for both cases the probabiHty distributions of the 
deviations after one bfl flip ("one-step deviations" in terms of the discrete 
random walk). The fluctuation of the period between r^j. leads to 
dephasing, which can be evaluated at a <$C ^q, Aq to 

^ 5 d e % = 2 ; r c o s 0 ( - ^ - — ) r b f l 2 . ± 2 - ^ ^ (6) 

where the prefactor cos (p = , "^ takes the effective trajectory radius 

into account. 
For the relaxation/excitation effect of the noise, one has to use the 

projection of the perturbation orthogonal to the free axis, using sin rj = 
QfAq/(6q +Aq). Furthermore this type of deviation also depends on the 
actual position of the spin on the Bloch sphere, e.g., there is no relaxation 
when the state is at one of the poles. 

Averaging in rms-fashion over a full azimuthal cycle leads to a fac
tor of I/V2. Moreover, the impact of relaxation/excitation is scaled down 
by an additional factor of cos0 = Aq /^A^+6^ corresponding to the pro
jection of the Bloch vector onto the precession axis, which furthermore 
decreases the deviation angle. In total, using T^j.:^rper to first order in a, 
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we find 

1 A^ 
Aâ ^^ = 27r cos0 sin r/—^ c o s 0 - ^ :^ ^ ^ arbfl. (7) 

Our rms measure of the impact of the noise, Eq. (5), does not handle 
these two kinds of deviations separately, but rather adds them up to: 

N 

q q , -, q 

(A2+e2)2 ( ,2 + A2)3 

(A2+6^)3/2 
y4(A2+62)A2^2 + 2A6arbfl 

(8) 

Our rms treatment disregard the different types of decoherence, 
dephasing and relaxation/excitation, corresponding to phase and bit-flip 
errors respectively. This is no crucial drawback but merely lies in the 
nature of our generic situation. If needed, both components can be 
isolated. 

The derivation of the maximal one-step deviation for the bang-bang 
controlled situation has to be handled differently. The deviation resulting 
from a bfl-flip during a bang-bang pulse period is maximal if the step 
happens exactly at the moment of the second qubit spin-flip (i.e., in the 
middle of the bang-bang cycle). When this happens, the refocusing evolu
tion has in its first half a drift, for example, to the "right" (compare to 
Fig. 5) and in the last half an equal aberration. 

The resulting one-step deviation appears to be on the order of 1OLT}Q\^. 

However, this is scaled down by a factor of 1/V2, as the impact of the 
aberration in x-direction is proportional to a factor of s in / , where x 
denotes the longitudinal angle of the present spin position on the Bloch 
sphere (see Fig. 5). This is because the cr^-component of the noisy evo
lution does not influence the qubit, if it is near the â  = ±l-state and 
its influence is suppressed correspondingly in between. As we are mainly 
interested in mean aberrations after many random walk steps, we simply 
average the maximal one-step deviation over one precession period in the 
usual rms manner to obtain 

(ACax) = \ ^ f'J sin2 x4a2r2^ d^ 

= V2aTbb. (9) 

Obviously, this variance only contributes to relaxation. 
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Fig. 4. Plot of a typical one-step deviation from the unperturbed qubit trajectory with 
generic values for €q and Aq. The fractions of the bfl fluctuations in a^-direction have 
to be distinguished with respect to their effects on the qubit: those that yield dephasing 
deviations that are parallel to the free precession trajectory (proportional to sin</>) versus 
relaxation/excitation deviations that are perpendicular (proportional to sin rj). Both parts are 
additionally domineered by a factor of coscf) due to the diminished radius of the trajectory 
starting from the initial state cr̂  = -|-1. The impact of the relaxation/excitation generating part 
is furthermore depending on cos 0 as well as sin / , the azimuth angle of the qubits present 
position. 

Fig. 5. Sketch of a maximal one-step deviation during a bang-bang modulated cycle, which 
appears if the bfl-state flips precisely at the intermediate bang-bang pulse time. The dephas
ing part of deviation evidently averages out, while a relaxating aberrance arise proportional 
to the noise-coupling constant a. 
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In the long time limit, we replace the fluctuating number of random 
walk steps for a given time A? of noisy evolution by its expectation value 
N\)fl = At/T\)f[. This allows us to use the number of random walk steps as 
time parameter/^^^ This simplification does not introduce significant error, 
as the relative number variation for At scales as \^J/J^^ = V^bfl/^^ -^ ^ 
in our preferred long-time limit. We encounter two different one-step-dis
tributions, depending on whether the numeration of the step is an odd or 
even (corresponding to an "up" or "down" state of the bfl). For definite-
ness, we assume the bfl is initially in its "upper" state, which is of no influ
ence on the long time limit as the memory to the initial state is already 
erased. The step-size distribution of the bfl model in our small deviation 
regime is given from Poisson statistics 

V5 

<^odd/even(^)- ^ (^ 

with p = ^arbf l the typical one-step deviation as calculated in Eq. (8). 
^(jc) denotes the Heaviside step function. We neglect the correlations 
between transverse and perpendicular deviations as we expect them to 
average out in the long-time limit. 

For the bang-bang suppressed random walk, the flipping positions of 
the bfl-noise sign in the bang-bang time-slots are essentially randomly dis
tributed as long as tbb <^ ^bfl. That is why we find a constant step-size 
distribution between zero and a maximum divergence of y ^ ^ (see 
Eq. (9)), namely 

^odd/even^-^^ - ' ^^^^ 

By means of these one-step probabihty distributions, we are able to 
calculate via the convolution theorem the distributions for 2A^bfl-step ran
dom walks. Specifically, they are the inverse Fourier transforms of the 
N\yf[-fold products of the Fourier transforms of the two-step distribu-
tion.̂ ^^^ For the case without bang-bang control, we find 

= r^L_e-'^^( '- V " (12) 
whereas for the case with bang-bang control, it is 
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_,, , / [ l - cos ( (K + l)fc)]Y 
^ 27ry2Wbfl y [ l -cos(^)] / 

(13) 

with ^ and ^~^ denoting the discrete Fourier transformation and its 
inverse, respectively. 

Already for random walk step-numbers on the order of 10, the 
resulting distributions are almost Gaussian. Their standard deviations give 
the rms-deviations of the random walk models plotted in Fig. 3. As in 
the numerical simulations at long times, they grow as a square-root of the 
number of steps. As one can recognize, the underlying two-step distribu
tions in the ^-space (i.e., the functions in the large brackets of Eqs. (12) 
and (13)) are symmetric and diflferentiable around zero such that the above 
integrals can be evaluated analytically using the saddle point approxima
tion (the small parameter is k, which is justified at least qualitatively in 
our bounded variable integral). We find for their variances in real space 
representation 

-V5 
Aorbfl(Nbfl) = V Â bfl)̂  = V A b̂fl-y-aT b̂fl (14) 

for the case without bang-bang control and 

Aabb(A^bfl) = — 2 ~ - ^ = Y — « ^ b b (15) 

for the case with it. In the large-A^bfl limit, this model shows excellent 
agreement with the numerical simulations. 

At first sight, treating bang-bang pulses as 5-function impulses appears 
to be an extraordinarily strong assumption, especially because in a physi
cal implementation, the large bandwidth associated with very short pulses 
could excite other noise sources. However, this 5-function impulse approx
imation is only for technical simplification. In fact, going to the other 
extreme of a wide, continuous pulse of the form sin(-r-r) would also refo-
cus our bfl-noise over the course of its periods. Comparing the two-step 
deviation distributions arising from 5-function impulses versus continuous 
sine waves, one obtains for the 5-function case 

of (x) = ^l:i^e{y-x)e{Y+x) (16) 
y 

and for the continuous sine wave case 

e(Y-x)e{Y+x) (17) 



Bang-Bang Refocusing of a Qubit Exposed to Telegraph Noise 259 

Fig. 6. Comparison of two-step distributions for the random walks with bang-bang con
trol when the bang-bang pulses are taken to be 5-functions (left) versus a continuous sine 
wave s in ( :^0 (right). For clarity, the j-axis is rescaled to the maximum values of the distri
butions, while the x-axis is given in units of y. 

These distributions are depicted in Fig. 6. One recognizes that in fact 
the distribution arising in the continuous sine wave case is narrower (and 
therefore indicates more effective noise suppression) than the 5-function 
impulse case, with the drawback of leaving less free evolution time for 
coherent operation. 

4.3. Distributions of the Random Walks Deviation 

Beyond predicting the variances of the random walks, our analysis 
also allows evaluation of their full probability distributions. We compare 
them to numerics with and without bang-bang compensation by use of 
simulations with 10"* realizations at an evolution time ?o = '̂ Sys- The numer
ical histograms of the deviations with their respective one- and two-dimen
sional Gaussian fits are shown in Fig. 7. 

We observe that not only the distribution obtained with bang-bang 
control is much narrower than the distribution obtained without it, but 
also that its shape is qualitatively different. The maximum of the bang-
bang controlled distribution is at zero error. In contrast, the uncontrolled 
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Fig. 7. Histograms of the deviation from free evolution both without bang-bang control 
(left) and with bang-bang control (right). Also plotted are fits to the expected two- and one-
dimensional random walk statistics respectively associated with the uncontrolled and con
trolled cases. Numerical data were collected over 10^ realizations at a fixed time to = rsys 
defined such that rbfl=0.01rsys and thus Â Â = rsys/rbfl = 100 steps. (NB: The x-axis scale of 
the right graph depicting the bang-bang controlled case is 15 times smaller than that of the 
left graph depicting the uncontrolled case.) 

distribution has its maximum at a finite error | ACT Imax ^0 .01 , and it has 
zero probabiHty of zero error. This reflects the one-dimensional nature of 
the bang-bang controlled random walk in contrast to the two-dimensional 
nature of the uncontrolled random walk. 

4.4. Bang-Bang Control Working as a High-Pass Filter 

In order to measure the degree of noise suppression due to bang-
bang control, we define the suppression factor St^ as follows for a given 
evolution time to 

<5ro(^bfl/'^bb) = 
Agr'm's(^o) 

A^r'Ss(^o)' 
(18) 

We now systematically study the dependence of St^^ on rbfl/ibb for a con
stant mean bfl switching rate tbfi = 10~^rsys at a fixed evolution time 0̂ = 
Tsys. The numerical data in Fig. 8 show that the suppression efficiency is 
linear in the bang-bang repetition rate, r̂̂ ŷ  =M^bfl/'̂ bb- The numerically 
derived value of the coefficient, Mnumericaî  1.679, is in excellent agreement 
with the analytical result /̂ analytical = ^^2—1.581 from our saddle point 
approximation, Eqs. (14) and (15). 

This small discrepancy between the numerical and analytical results is 
due to the fact that the analytical calculations neglect correlations between 
the parallel and perpendicular components of the random walk. This 
leads to an underestimate of the rms-deviation Aa^^^ in the case without 
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X numerical result 
— linear fit of numerics 

analytical result 

^ f l / S b 

Fig. 8. The suppression factor StQizhfi/T^hh) = ^^ms(^oy^^mLs(^o) evaluated for fo = Tsys as 
a function of the ratio of the mean switching time Tbfl and the bang-bang pulse separation 

bang-bang control (compare also to Fig. 7). Therefore, we have quanti
tatively proved our qualitative intuition: bang-bang control afTects the bfl 
noise signal like a high-pass filter, an effect that one of the authors has 
generally predicted for dynamical decoupHng techniques/^^^ 

5. LIMITATIONS DUE TO PULSE INACCURACIES 

Thus far, we have tacitly assumed that one could apply perfect, zero-
width TT-pulses along exactly the a;c-axis of the Bloch sphere. We now 
take into account that the control pulses themselves typically will have 
slight fluctuations in their duration or polarization that interfere with the 
desired refocusing. As already shown at the end of Subsec. 4.2, the restric
tion of pulses to infinitesimal duration can be significantly relaxed. We 
now investigate to what extent the restriction to perfect pulses can be 
relaxed. 

5.1. Two Generic Types of Bang-Bang Inaccuracies 

We essentially analyze two generic types of errors that could occur in 
the control apparatus when trying to apply TT-pulses in a;^-direction. One, 
the duration of each pulse could exhibit fluctuations, resulting in fluctua
tions in the rotation-angle around the desired value of it. Two, the polar
ization axis could suffer from directional deviations around the desired 
value of ax. Assuming the statistical independence of each pulse error, 
we expect for both types of imperfections a random-walk-like behavior of 
increasing deviations compared to evolutions with perfect pulses. 
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5.1.1. One-dimensional pulse error (dephasing) 

We make the quite general assumption that we may model the one-
dimensional phase fluctuation of the imperfect bang-bang pulses 0J(JC) as 
a Gaussian distribution of the pulse durations and therefore of the rota
tion angles around their intended value n. This assumption should be 
valid for many physical situations, e.g., if the inaccuracy is due to elec
tromagnetic noise in the pulse generator. The Gaussian is parameterized 
by its standard deviation 500 (see Fig. 9). Thus, the corresponding pulse 
angle aberration of the jih. step is given by 

0j.^x) = -^ e^'^^K (19) 

Having assumed a Gaussian distribution, we can exactly evaluate the dis
tributions of the A^-step deviation A<^M (which are usually given as A'̂ -fold 
time-convoluted integrals) as follows by use of the convolution theorem 

(bid _ [nUM 
\ 2N6<l>l) 1 X . . . . . . ^ 2 ^ ^ 

v27r/V50o 

with ^Y = '^Vt>j] denoting the Fourier transform of 0j^ and ^~^ denot
ing the inverse Fourier transform. 

Fig. 9. Sketch of one-dimensional bang-bang aberration. The variations 50o of the rotation 
angle around the desired value of n leads to slight deviations in parallel to the permitted 
dynamical direction, thus generating dephasing. 
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Therefore the rms displacement in the random walk increases as a 
square-root in the number N of bang-bang pulses: 50A^ = \/]V50o- Equiv-
alently, the dephasing grows as square-root in time 

50(0=7^7^500 (21) 

on the time scale of our coarse-graining (which is here given as Tbb). 

5.1.2. Two-dimensional pulse error: dephasing and relaxation/excitation 

A similar argument works when there are also fluctuations around the 
desired ax rotation axis. Each individual variation of the axis can be spUt 
into two components: (1) (50perp, which is perpendicular to the connecting 
vector between the ajc-3.xis and the qubit state a(t) on the Bloch sphere, 
and (2) 50tan, which is transverse to it (see Fig. 10). To first order, the 
perpendicular part does not disturb the intended spin-flip.̂ ^^^ However, the 
transverse part does cause a deviation from the ideal spin-flip in a direc
tion toward or away from the previous qubit state. (Therefore, it produces 
relaxation or excitation, as its effect is orthogonal to the free a^-evolu
tion.) Consequently, in a statistical average we only have to consider 1/V2 
of the typical total mean 500 of the aberration. The effect of a TT-rotation 
around an axis tilted by an angle 50tan is a deviation 250tan from the tra
jectory of the perfect evolutions; thus we receive altogether a deviation on 
the order of \/250o. 

Fig. 10. Sketch of two-dimensional bang-bang aberration. To first order, variations 5</>perp 
of the rotation axis perpendicular to the connection vector between ax and the qubit state 
(here for simplicity: a^rr+l) do not influence the intended spin-flip, whereas the variations 
50tan along this line causes deviations on the Bloch sphere perpendicular to the permitted 
evolution trajectories (therefore producing relaxation or excitation). 
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Therefore, we obtain analogously to Eq. (19) for each single step dis
tribution 

0fW = — J — - . V ^ ) ; (22) 

and analogously to Eq. (20) for the deviation after Â  steps 

O f̂ = L _ V̂ ^ / . (23) 
v^V27V(50o 

Equivalently, in terms of the time t 

50(0 = y2r/rbb-500. (24) 

5.2. Numerical and Analytical Results 

In the same manner as our previous integrations of a stochastic 
Schrodinger equation, we numerically simulate qubit dynamics under inac
curate pulses. In the first instance, we work without bfl-noise to verify our 
analytical random walk model. Later, we add the bfl-noise in order to 
study the competition between the two sources of error. 

5.2.1. Random walk due to inaccurate bang-bang pulses only 

We analyze deviations on the Bloch sphere between the noiseless case 
trajectories that occur when the bang-bang pulses are perfect and those 
when they are not. As per Eq. (5), we calculate the rms-deviation over 
ensembles of Â  = 10^ realizations. As a representative time point, we once 
again choose ô = Ŝys- This is because, as explained in the discussion sur
rounding Fig. 3, this time scale should exhibit neither short-time effects 
nor near-total decoherence. From Eqs. (21) and (24), it immediately fol
lows that for the mean deviations at ô if there are phase errors 

AaiJ^(ro) = yA^(50o = . / ^ 5 0 O , (25) 

and if there are axis errors 

^bb 

Aa^^ro) = y2]v^^0o = j2—8(t>o- (26) 
V b̂b 

As characteristic values for the mean accuracy of single pulses, we 
choose (500 ^^ the range of 10"^ to lO"'*, which should be technologically 
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feasible. As one can see in the double logarithmic plots of Fig. 11, the 
numerically determined evolutions follow the analytically expected square-
root type random walk behavior. 

X numerical data for 5(|) = 10 

"•" numerical data for 5(|) = 10 

\ / numerical data for 6(t) = 
- - analytical curves 

-1 1 I I I n i l 

100 10000 
# of bang-bang pulses 

le+06 

o 

X numerical data for 5(|) = 10 

_|». numerical data for 6(|) = 10" 

\ / numerical data for 5(|) = 10' 
- -• analytical curves 

1—I I I I n i l 

10000 
# of bang-bang pulses 

le+06 

Fig. 11. Plot of the one- respectively two-dimensional imperfectly bang-bang pulsed evolu
tion. Dashed lines are square-root fits of the numerical data, while the solid lines denotes the 
analytical calculations. 
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5.2.2. Random walk due to both inaccurate bb-pulses and bfl-noise 

We now combine our imperfect bang-bang pulse operations with our 
former bfl-noise signal to discuss the applicability of our control scheme 
when "reaHstic" pulse generators are used. As before, we calculate the rms 
deviations at ô = "̂ Sys by averaging over 10^ realizations. The bfl-param-
eters are those used previously: a coupling strength a = 0.1 and an aver
age switching time Tbfl = 0.01rsys- However, with the aim of determining 
the optimal bang-bang protocol in the presence of pulse imperfections, we 
now consider different pulse separation times Tbb/Tsys ranging from 10~^ 
to 10-2. 

We assume that the errors induced by the bfl and those induced by 
the pulse generator are statistically independent, and thus we sum together 
both sets of induced deviations in the usual rms-fashion. In comparison 
to the case of ideal bang-bang pulses, Eq. (15), we find here the average 
total deviations induced by both bfl telegraph noise and imperfect bang-
bang pulses to be: 

^41 = Aa^ + Aâ ,̂ ' 

= J:^A^bfla^T^bb^-^bb50o 

/L2^2 _ ^ ^ . ^ 2 i ^ 
= A ^ « ' ^ b b — + ^ ^ 0 — (27) 

Y 2 ^̂  Tbfl Tbb 

in the one-dimensional case where imperfect pulses only impart phase 
errors (due to imprecise pulse duration), and 

A 4 I = y ^ ^ ^ T ^ 

= y^A^bfl«2r4 + 2A b̂b50o 

= j\-'-L-+^^<t>l^ (28) 
y 2 ^̂  Tbfl " Tbb 

in the two-dimensional case when imperfect pulses impart both phase and 
relaxation/excitation errors (due to imprecision in the pulses' polarization 
axes). 

As Fig. 12 demonstrates, we observe a very good agreement between 
our numerical and analytical results. Such data make it possible to 
determine an optimal bang-bang separation time r^^V Specifically, this 
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Fig. 12. Plot of the Bloch sphere rms deviations received by one-Ztwo-dimensipnal inaccu
rately pulsed bang-bang compensation of the typical bfl-perturbation. Dashed lines describe 
the aberrances for pure faulty bang-bang (i.e., without bfl-noise), respectively the exactly 
compensated bfl-case (see Fig. 3), while solid lines denotes the deviations calculated by ran
dom walk analysis. 

optimum can be derived by calculating the zero value of the derivative of 
Eqs. (27) and (28) with respect to tbb. We therefore conclude that the opti
mal period between bang-bang pulses is: 
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Ad 3 502 
- b b - f b f l ^ (29) 

for the one-dimensional case and 

.2d _ 3 / . ^</>0 
b̂b "^y^^bf l -^ (30) 

for the two-dimensional case. These optimal times respectively correspond 
to minimized variances at ô = "̂ Sys of 

for the one-dimensional case of only imprecise pulse durations and 

A < = V2-i/3 + 2 2 / 3 ^ ! ^ V ^ (32) 

^bfl 

for the two-dimensional case of both imprecise pulse durations and polar
ization axes. 

6. CONCLUSION AND REMARKS 

We have investigated the qubit errors that arise from the noise gen
erated by a single bistable fluctuator (bfl) in its semiclassical limit, where 
it behaves as a telegraph noise source. We numerically integrated a cor
responding stochastic Schrodinger equation, Eq. (4), as well as analyti
cally solved (in the long-time limit) appropriate random walk models. As 
a characteristic measure of the resulting dephasing and relaxation effects, 
we used the rms deviation of noisy evolutions compared to noiseless ones. 
To suppress the effects of this noise, we presented a bang-bang pulse 
sequence analogous to the familiar spin-echo method. We claimed this 
pulse sequence to be capable of refocusing most of the bfl-noise induced 
aberrations. Both in the case without bang-bang control and the case with 
it, there was excellent agreement between our numerical and analytical 
results on the relevant intermediate time scales (i.e., times after a short 
initial phase where deviations grow linearly instead of as a square-root in 
time, but before the qubit becomes totally decohered). 

In particular, we confirmed our preliminary qualitative picture that 
bang-bang control works as a high pass filter, suppressing qubit errors by 
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a factor ^rbfi/rbb that is directly proportional to the ratio of the mean bfl 
switching time and the period between bang-bang pulses. The numerically 
and analytically calculated constants of proportionality /̂ numerical ^ 

1.679 
and /Xanaiyticai = \/V2—1.581 also matched to good accuracy. These results 
imply that the bang-bang procedure is an appropriate remedy against the 
1//-noise that often is seen in solid-state environments. This is because 
bang-bang control exhibits maximal suppression of bfl telegraph noise, 
and 1// noise generally arises from an ensemble of bfls. Finally, one has 
to be aware that also the static a^-term of the Hamiltonian is averaged 
out, and this generally reduces the degree of control on the qubit. But 
this is only a technical constraint, as one could imagine interchanging 
two different types of bang-bang pulses (e.g., along the x and the y-axis 
respectively) to admit corresponding quantum-gate operations. 

We previously presented this basic idea in a short paper ^^^\ The 
present work extends that short paper by treating the effects of differ
ent types on non-ideal bang-bang pulses. Moreover, the analytical random 
walk method is outhned in much more detail, as this method should also 
be applicable to other problems that are difficult to treat in a master equa
tion approach. 

Meanwhile, several other extensions of Ref 28 have been proposed 
by other research groups. Ref 17 includes a larger number of fluctua-
tors, described as semiclassical noise sources, but restricts itself to a single 
spin-echo cycle. Ref 29 analyzes extensively the importance of higher, non-
Gaussian cumulants and memory effects and arrives at a number of ana
lytical results, but it does not treat the option of refocusing. Ref 30 treats 
a full microscopic model and compares different variations of the bang-
bang pulse sequence. Ref 31 also treats a full microscopic model with 
potentially many fluctuators using a Lindblad-type approach and covers 
a wide range of ratios between the fluctuator and bang-bang pulse time 
scales. One of its main conclusions is that a Zeno effect is found in a 
parameter regime not covered by our work. Note that all of these other 
extensions of our work treat only the case of ideal bang-bang pulses. 
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APPENDIX A 

We shall now connect the model of a single bfl as a telegraph noise 
source to a microscopic Hamiltonian. We start with the conventional 
Hamiltonian model of a single bfl, e.g., Refs. 14, 32 and 33. The original 
qubit is influenced by noise from another qubit, the bfl, which itself is cou
pled to a thermal environment by a bilinear spin-boson type interaction: 

H = ^qubit + ^qubit,bfl + ^bfl + ^bfl,env + ^env- (33) 

where 

^qubit = ^^q^z + /i AqO-x"̂  (34) 

^qubit,bfl = haa^G^^ (35) 

//bfl = ^^bfl^z^^ + ^Abfl(T,^^ (36) 

//bfl,env = hxa^^ J2 (^] +^v) (37) 
j 

H,ny = ^ I ] ^7 {a]aj + id/2) (38) 
j 

The scalar a denotes the coupling strength between the original qubit and 
the bfl, while the scalar A, indicates the influence of the environmental heat 
bath on the bfl. 

It is not obvious how to treat such a combined open quantum sys-
tem^^^'^^\ The common approach of deriving a master equation for the 
reduced qubit system does not work, as it is not clear how to introduce an 
open quantum system "bfl" as the environment. Gassmann, et al present 
four alternative approaches. ^̂ ^̂  Their first approach is to derive a stan
dard Markovian master equation for the combined open system "qubit 
+ bfl" and trace out the parameters of the bfl afterwards. Their second 
approach is to consider the qubit as influenced by an effective bfl-bath 
environment by use of an Markovian and secular approximation in the 
limit of small a. Their third approach, which is both the most general and 
the most compHcated, is to deduce a master equation by applying a non-
Markovian weak-coupling perturbation ansatz in second order in a. 
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For our investigations, we prefer this last and most general approach: 
a stochastic treatment employing an appropriate randomly changing bfl-
noise Hamiltonian term (compare also to Ref. 17). This choice is not only 
because of practical reasons (to make our numerics feasible), but also due 
to empirical considerations (see Refs. 8 and 9, where characteristics of tele
graph noise were observed and attributed to bfls). Hence, we restrict our 
analysis to the limit A ^ a , i.e., the limit where the coupling of the bfl to 
the external environment is much larger than interaction between the bfl 
and the qubit. For convenience, we assume the bfl is in its high-tempera
ture limit. (Note that this does not necessarily mean the qubit is also in a 
high-temperature regime for the qubit's energy scale might be much larger 
than that of the bfl.) We thus assume the bfl behaves like a classical (i.e., 
decohered) noise source, and we specifically describe the bfl's influence on 
the qubit with the following stochastic Hamiltonian: 

^qubit.bfl ' ' -^ '- ^qutit,bfl(0 = ^CC a^ IbflCO. (39) 

In the equation above, §bfl(0 is a random function of time representing the 
switching of the a^^^-value between ± 1 . In our high-temperature limit, we 
assume §bfl(0 has symmetrical Poissonian statistics (i.e., the probabilities 
of the bfl switching from +1 to —1 and from —1 to +1 are equal and con
stant over time). Such a symmetrical random process is readily described 
by just one parameter: the typical time separation rbfl between two bfl flips 
(see Fig. 1). 

The high temperature limit is not a crucial constraint. Treating the 
strongly thermally coupled bfl in an intermediate temperature regime 
would only result in some asymmetrically switching |bfl(0- The typical 
switching times time rj^^ for switching the bfl up and down respectively 

satisfy the detailed balance relation ^ =:̂ -^^bfl/̂ &^^ where ^^bfl denotes 

the energy separation of the two bfl-states, and T the temperature of the 
heat bath which drives the switching of the bfl. The microscopic structure 
of the rates depends on details of the experiment. Typically, they will be 
golden rule rates containing the density of states of the heat bath and the 
matrix element of its coupling to the bfl. If that bath is made of harmonic 
oscillators with an ohmic spectral density, we, e.g., expect switching rater 

•.±ao8E\yfi/(e'^^^^^^^^^ -I), where ao is the dimensionless cou
pling strength to the Ohmic bath. This would essentially only lead to an 
additional drift of the qubit state, i.e., a random walk with a nonzero aver
age value. Neither our analytical results nor our conclusions would other
wise change qualitatively. In fact, assuming the the bang-bang pulse cycles 
are sufficiently short relative both the typical +1 to —1 and —1 to +1 

{<.r-
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switching times of the bfl, bang-bang suppression of the bfl noise should 
not be diminished at all by the bfl's asymmetrical switching. We therefore 
obtain Eq. (1) as our starting point of the bfl-perturbed qubit dynamics. 
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Quantum Computing and Information Extraction for 
Dynamical Quantum Systems 

Giuliano Benenti,̂ '̂  Giulio Casatî '̂  and Simone Montangero^ 

We discuss the simulation of complex dynamical systems on a quantum com
puter. We show that a quantum computer can be used to efficiently extract rel
evant physical information. It is possible to simulate the dynamical localization 
of classical chaos and extract the localization length with quadratic speed up 
with respect to any known classical computation. We can also compute with alge
braic speed up the diffusion coefficient and the diffusion exponent, both in the 
regimes of Brownian and anomalous diffusion. Finally, we show that it is possi
ble to extract the fidelity of the quantum motion, which measures the stability of 
the system under perturbations, with exponential speed up. The so-called quantum 
sawtooth map model is used as a test bench to illustrate these results. 

KEY WORDS: Quantum computation; quantum simulation; information 
extraction; dynamical systems; complex systems; chaos. 

PACS: 03.67.Lx; 05.45.Mt. 

1. INTRODUCTION 

One of the main applications of computers is the simulation of dynamical 
models describing the evolution of complex systems. From the viewpoint 
of quantum computation, quantum mechanical systems play a special role. 
Indeed, the simulation of quantum many-body problems on a classical 
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computer is a difficult task as the size of the Hilbert space grows expo
nentially with the number of particles. For instance, if we wish to simu
late a chain of n spin-1/2 particles, the size of the Hilbert space is 2^. 
Namely, the state of this system is determined by 2" complex numbers. As 
observed by Feynman in the 1980s,̂ ^^ the growth in memory requirement 
is only linear on a quantum computer, which is itself a many-body quan
tum system. For example, to simulate n spin-1/2 particles we only need n 
qubits. Therefore, a quantum computer operating with only a few tens of 
qubits could outperform a classical computer. More recently, a few quan
tum efficient algorithms have been developed for various quantum systems, 
ranging from some many-body problems^^'^^ to single-particle models of 
quantum chaos.^^^^ 

Any quantum algorithm has to address the problem of efficiently 
extracting useful information from the quantum computer wave function. 
The result of the simulation of a quantum system is the wave function of 
this system, encoded in the n qubits of the quantum computer. The prob
lem is that, in order to measure all N = 2^ wave function coefficients by 
means of standard polarization measurements of the n qubits, one has to 
repeat the quantum simulation a number of times exponential in the num
ber of qubits. This procedure would spoil any quantum algorithm, even in 
the case in which such algorithm could compute the wave function with 
an exponential gain with respect to any classical computation. Neverthe
less, there are some important physical questions that can be answered in 
an efficient way, and we will discuss a few examples in this paper. 

As a test bench to illustrate the power of quantum computation in 
the simulation of dynamical systems, we will discuss a quantum algo
rithm which efficiently simulates the quantum sawtooth map, a physical 
model with rich and complex dynamics.^^^ This system is characterized 
by very different dynamical regimes, ranging from integrability to chaos, 
and from normal to anomalous diffusion; it also exhibits the phenomenon 
of dynamical localization of classical chaotic diffusion. We will show that 
some important physical quantities can be extracted efficiently by means 
of a quantum computer: 

(i) the localization length of the system, which can be extracted with a 
quadratic speed up with respect to any known classical computation;^^^ 

(ii) the diffusion coefficient and the diffusion exponent, both in the regimes 
of normal (Brownian) and anomalous diffusion; in this case we 
obtain an algebraic speed up; 

(iii) the fidelity of quantum motion, which characterizes the stability of 
the system under perturbations; for this quantity we achieve an expo
nential speed up. 
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The paper is organized as follows: the properties of the sawtooth 
map model are discussed in Sec. 2; our quantum algorithm simulating the 
quantum dynamics of this model in Sec. 3; the quantum computation of 
the localized regime and the extraction of the localization length in Sec. 
4; the quantum simulation of the phenomena of normal and anomalous 
diffusion and the computation of the diffusion coefficient and diffusion 
exponent in Sec. 5; the quantum computation of the fidelity of quantum 
motion in Sec. 6; our conclusions are summarized in Sec. 7. 

2. THE SAWTOOTH MAP 

The sawtooth map is a prototype model in the studies of classical 
and quantum-dynamical systems and exhibits a rich variety of interesting 
physical phenomena, from complete chaos to complete integrabiUty, nor
mal and anomalous diffusion, dynamical localization, and cantori localiza
tion. Furthermore, the sawtooth map gives a good approximation to the 
motion of a particle bouncing inside a stadium billiard (which is a well-
known model of classical and quantum chaos). 

The sawtooth map belongs to the class of periodically driven dynam
ical systems, governed by the Hamiltonian 

H{ej',x) = -^-v{e) Y, ^(^-JT), (1) 

where (7,^) are conjugate action-angle variables (0<^<27r). This Hamil
tonian is the sum of two terms, H(0, I;T) = Ho(I) -\- U(0;T), where 
//o(/) = /^/2 is just the kinetic energy of a free rotator (a particle moving 
on a* circle parametrized by the coordinate 0), while 

U(0;T) = V(0)J2^(T-JT), (2) 

represents a force acting on the particle that is switched on and off 
instantaneously at time intervals T. Therefore, we say that the dynamics 
described by Hamiltonian Eq. (1) is kicked. The corresponding Hamilto
nian equations of motion are 

. dH AV{6) ^ 

dO do ^ -^ ^ .̂ N 

. dH 
0 = = / . 

di 
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These equations can be easily integrated and one finds that the evolution 
from time IT~ (prior to the /-th kick) to time (/ + \)T~ (prior to the 
(/ + l)-th kick) is described by the map 

0=0-\-TI, 
(4) 

where F(0) = —dV(0)/dO is the force acting on the particle. 
In the following, we will consider the special case V(0) = —k(0 — 

Tt)^/2. This map is called the sawtooth map, since the force F(0) = 
—dV(0)/dO = k{0—7r) has a sawtooth shape, with a discontinuity at ^ = 0. 
By rescaling I -^ J = TI, the classical dynamics is seen to depend only on 
the parameter K=kT. Indeed, in terms of the variables (J,0) map (4) 
becomes 

J = J + K(0-7T), 
(5) 

The sawtooth map exhibits sensitive dependence on initial conditions, 
which is the distinctive feature of classical chaos: any small error is ampli
fied exponentially in time. In other words, two nearby trajectories separate 
exponentially, with a rate given by the maximum Lyapunov exponent A, 
defined as 

: lim 1. (m\ 
(6) 

where the discrete time t = T/T measures the number of map iterations 
and 6{t) = ^[6J{t)f-^[8e{t)f. To compute 8J{t) and 56>(0, we differen
tiate map (5), obtaining 

= M 
'8J' 

= 
K 8J 

80 
(7) 

The iteration of map (7) gives 8J(t) and 80(t) as a function of 8J(0) and 
5^(0) [(57(0) and 80(0) represent a change of the initial conditions]. The 
stability matrix M has eigenvalues /x± = ^(2-i- K ±y/K^-\-4K), which do 
not depend on the coordinates J and 0 and are complex conjugate for 
—4 < ^ < 0 and real for K <—4 and A' > 0. Thus, the classical motion is 
stable for —4 < ^ < 0 and completely chaotic for K <—4 and ^ > 0. For 
^ > 0 , 8(t)(x(/jL-^y asymptotycally in r, and therefore the maximum Lya
punov exponent is A = ln/x+. Similarly, we obtain X = ln|/x_| for K <—4. 
In the stable region -4<K<0, A = 0. 
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The sawtooth map can be studied on the cyUnder [/ e (—00, +cx))], 
or on a torus of sinite size (—nL < J <7tL, where L is an integer, 
to assure that no discontinuities are introduced in the second equa
tion of (5) when J is taken modulus InL). Although the sawtooth 
map is a deterministic system, for ̂  > 0 and K <-4 the motion along 
the momentum direction is in practice indistinguishable from a random 
walk. Thus, one has normal diffusion in the action (momentum) vari
able and the evolution of the distribution function / ( / , t) is governed 
by a Fokker-Planck equation: 

dJ \2 djj 

The diffusion coefficient D is defined by 

| = ^ U ' ' ^ | . (8) 

((A7(0)^) 
D = lim , (9) 

where AJ = J — {J), and (...) denotes the average over an ensemble of 
trajectories. If at time ? = 0 we take a phase space distribution with ini
tial momentum 7o and random phases 0<0 <27T, then the solution of the 
Fokker-Planck equation (8) is given by 

1 
fiJj) = -=== exp 

VlnDt 

(J-JQY 

IDt 
(10) 

The width y((A7(0)^> of this Gaussian distribution grows in time, 
according to 

{{M{t)f)^D{K)t. (11) 

For ^ > 1, the diffusion coefficient is well approximated by the random 
phase approximation, in which we assume that there are no correlations 
between the angles (phases) 0 at different times. Hence, we have 

D(^)^((A7i)2> = - L ( \e{^j^f = l - f \oKHO-nf = ^K^\ 
In Jo 2TC JO 3 

(12) 

where AJ\=:J — J is the change in action after a single map step. For 0 < 
K <l diffusion is slowed, due to the sticking of trajectories close to bro
ken tori (known as cantori), and we have D(K) ^ 3.3 K^^^ (this regime is 
discussed in Ref 8). For - 4 < j ^ < 0 the motion is stable, the phase space 
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has a complex structure of elliptic islands down to smaller and smaller 
scales, and one can observe anomalous diffusion, that is, ( (AJ)^)a^", 
with ai^X (for instance, a = 0.57 when ^ = —0.1, see Fig. 4). The cases 
^ = - 1 , - 2 , - 3 are integrable. 

The quantum version of the sawtooth map is obtained by means of 
the usual quantization rules, d-^Q and I^^ I = —id/dO (we set h=\). The 
quantum evolution in one map iteration is described by a unitary operator 
U, called the Floquet operator, acting on the wave function V̂ : 

^ = IJ \jr = exp 
/ ' 
JlT 

-{l+\)T-
-i / dr//(<9, / ; r) 

JlT-
^ , (13) 

where H is Hamiltonian (1). Since the potential V{0) is switched on only 
at discrete times IT, it is straightforward to obtain 

where I denotes the identity operator. It is important to emphasize that, 
while the classical sawtooth map depends only on the rescaled parame
ter K = kT, the corresponding quantum evolution (14) depends on k and 
T separately. The effective Planck constant is given by /igfT = T. Indeed, 
if we consider the operator J — TI (J is the quantization of the classical 
rescaled action 7), we have 

[Oj] = T[ej^] = iT = ih,ff. (15) 

The classical limit /igfT -> 0 is obtained by taking k^^oo and 7 ^ - 0 , while 
keeping K = kT constant. 

3. QUANTUM COMPUTING OF THE QUANTUM SAWTOOTH 
MAP 

In the following, we describe an exponentially efficient quantum 
algorithm for simulation of the map (14).̂ ^^ It is based on the for
ward/backward quantum Fourier transform between momentum and angle 
bases. Such an approach is convenient since the operator U, introduced 
in Eg. (13), is the product of two operators, /ŷ  = ^'^(^-^^)/2 and UT = 
^-iTi /2^ diagonal in the 0 and / representations, respectively. This quan
tum algorithm requires the following steps for one map iteration: 
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1. We apply Uk to the wave function V^(^). In order to decompose the 
operator Uk into one- and two-qubit gates, we first of all write 0 in binary 
notation: 

n 

e = 2nY^aj2-J, (16) 

with Qfy €{0, 1}. Here n is the number of qubits, so that the total number 
of levels in the quantum sawtooth map is N = 2^. From this expansion, we 
obtain 

; b j 2 = i 

that is 

((9-TT!)^ =47r^ Y^ !i0---(8)l^-j_l 0 0 -̂̂ (8)1^^+1 

71.72 = 1 

(8) • • • (8)1 y2-l 0 (9̂ 2 0 f y2 + l 0 ' " * 0ly„, (18) 

where \j is the identity operator for the qubit j and the one-qubit oper
ators Oj^ and Oj^ did on qubits j \ and 72? respectively. We have 

where (a^); denotes the PauH operator a^ for the qubit j . Note that the 
operator Oj is diagonal in the computational basis {|0>, |1)}. We can insert 
Eq. (18) into the unitary operator Uk, obtaining the decomposition 

n 

^ik{e-A)^/2^ YY exp[i27r^i^(fi0.-.0!yj_i0(3ji0lji+i 
; i j ' 2 = i 

^in)] ' (20) 

which is the product of «^ two-qubit gates (controlled phase-shift gates), 
each acting non-trivially only on the qubits 71 and ji. In the compu
tational basis {|QfyjQfy2) = |00), |01), |10), 111)} each two-qubit gate can be 
written as Qxp(i2n^kDj^j^), where Dj^j^ is a diagonal matrix: 
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r 1 
4n2 

DhJi--

0 0 0 

0 -U^E-h) 0 0 
0 0 -Uin-^) 0 
0 0 0 ( i _ ^ ) ( i - ^ ) J 

(21) 

Note that decomposition (20) of Uk is specific to the sawtooth map. 
2. The change from the 0 to the / representation is obtained by means 

of the quantum Fourier transform, which requires n Hadamard gates and 
^n(n — 1) controlled phase-shift gates (see, e.g., Ref 9). 

3. In the / representation, the operator UT has essentially the same 
form as the operator Uk in the 0 representation, and therefore it can be 
decomposed into n^ controlled phase-shift gates, similarly to Eq. (20). 

4. We return to the initial 0 representation by application of the 
inverse quantum Fourier transform. 

Thus, overall, this quantum algorithm requires 3n^ + n gates per map 
iteration (3^^ - n controlled phase-shifts and 2n Hadamard gates). This 
number is to be compared with the 0(n2^) operations required by a clas
sical computer to simulate one map iteration by means of a fast Fourier 
transform. Thus, the quantum simulation of the quantum sawtooth map 
dynamics is exponentially faster than any known classical algorithm. Note 
that the resources required to the quantum computer to simulate the evo
lution of the sawtooth map are only logarithmic in the system size Â . 
Of course, there remains the problem of extracting useful information 
from the quantum-computer wave function. This will be discussed in the 
subsequent sections. 

4. QUANTUM COMPUTING OF DYNAMICAL LOCALIZATION 

Dynamical localization is one of the most interesting phenomena that 
characterize the quantum behavior of classically chaotic systems: quantum 
interference effects suppress chaotic diffusion in momentum, leading to 
exponentially localized wave functions. This phenomenon was first found 
and studied in the quantum kicked-rotator model̂ ^^^ and has profound 
analogies with Anderson localization of electronic transport in disordered 
materials.^^^^ Dynamical localization has been observed experimentally in 
the microwave ionization of Rydberg atoms^^^^ and in experiments with 
cold atoms. ̂ ^̂ ^ 
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Dynamical localization can be studied in the sawtooth map model. In 
this case, map (14) is studied on the cylinder [/ e (-00, +00)], which is cut
off at a finite number Â  of levels due to the finite quantum (or classical) 
computer memory. Similarly to other models of quantum chaos, quantum 
interference in the sawtooth map leads to suppression of classical chaotic 
diffusion after a break time t*. For t >t*, while the classical distribution 
goes on diffusing, the quantum distribution reaches a steady state which 
decays exponentially over the momentum eigenbasis: 

I i2 1 

Wm = \{m\xl/)\ ^ - exp 
2\m —mo\ 

(22a) 

with mo the initial value of the momentum (the index m singles out 
the eigenstates of / , that is, I\m) =m\m)).^ Therefore, for t > t* only 
y/{(Am)^)^l levels are populated. 

An estimate of t^ and I can be obtained by means of the follow
ing argument.^^^^ The localized wave packet has significant projection over 
about i basis states, both in the basis of the momentum eigenstates and in 
the basis of the eigenstates of the Floquet operator U defined by Eq. (13). 
This operator is unitary and therefore its eigenvalues can be written as 
exp(/A./), and the so-called quasienenergies A,/ are in the interval [0, 27r[. 
Thus, the mean level spacing between "significant" quasienergy eigenstates 
is AJB" ^ In/I. The Heisenberg principle tells us that the minimum time 
required to the dynamics to resolve this energy spacing is given by 

f ^ ^ l / A £ ^ € . (23) 

^Strictly speaking, the asymptotic tails of the locahzed wave functions decay, for the saw
tooth map model, as a power law: 

Wm^- ^ 4 . (22b) 
| m - m o r 

This happens due to the discontinuity in the kicking force F(6) = k(6 — TT), when the angle 
variable ^ = 0. For this reason the matrix elements of the evolution operator U [defined by 
Eq. (13)] decay as a power law in the momentum eigenbasis: Umm' = {m\U\m') ~ l/|m - m ' | " , 
with a = 2. This case was investigated for random matrices, where it was shown that eigen-
functions are also algebraically localized with the same exponent aM^^ However, the local
ization picture is not very sensitive to the behavior of the tails of the wave function. Indeed, 
a rough estimate of the crossover between the exponential decay Eq. (22a) and the power 
law decay Eq. (22b) is given by their crossing point, 

3 1 
mc^-llogi, W^(mc)~-4^—-. (22c) 

This implies that by increasing I the exponential localization is pushed to larger momentum 
windows and down to smaller probabilities. 
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This is the break time after which the quantum feature of the dynam
ics becomes apparent. Diffusion up to time t^ involves a number of levels 
given by 

y ( ( A m ) 2 ) ^ y A ^ ^ € , (24) 

where Dm = D/T^ is the classical diffusion coefficient, measured in number 
of levels. The relations (23) and (24) imply 

i / ?̂  D (25) 

Therefore, the quantum localization length i for the average probabiUty 
distribution is approximately equal to the classical diffusion coefficient. 
For the sawtooth map. 

l^Dn ^^in^/3)k^. (26) 

Note that the quantum localization can take place on a finite system only 
if i is smaller than the system size Â . 

In Fig. 1 (taken from Ref 7), we show that exponential local
ization, obtained using our quantum algorithm, can already be clearly 
seen with n = 6 qubits. It is important to stress that in a quantum 
computer the memory capabilities grow exponentially with the number 
of qubits (the number of levels Â  is equal to 2"). Therefore, already 
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Fig. 1. The probability distribution over the momentum basis for the sawtooth map with 
n = 6 qubits, k = V3, K = Vl, and initial momentum mo = 0; the time average is taken in 
the intervals 10 < / < 20 (full curve) and 290 < r < 300 (dashed curve). The straight line fit, 
Wm ocexp(—2|m|/^), gives a localization length i^ 12. Note that the logarithm is base ten. 
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with less than 40 qubits, one could make simulations inaccessible to 
today's supercomputers. Figure 1 shows that the exponentially localized 
distribution, appearing at t ^ t^, is frozen in time, apart from quantum 
fluctuations, which we partially smooth out by averaging over a few map 
steps. The freezing of the localized distribution can be seen from compar
ison of the probability distributions taken immediately after t^ (the full 
curve in Fig. 1) and at a much larger time r = 300^25r* (the dashed curve 
in the same figure). Here the localization length is € ^ 12, and classical dif
fusion is suppressed after a break time t*^l^Dm, in agreement with esti
mates (25) and (26) [the classical diffusion coefficient is Dm ^ {n^/?>)k^ ^ 
9.9]. This quantum computation up to times of the order of I requires a 
number Ng'^l>n^i^\{)^ of one- or two-qubit quantum gates. 

In Fig. 2, we show a quantum computation that might be performed 
already with a three-qubit quantum processor. It is possible to compare 
two very different regimes, namely the localized and the ergodic regime, 
by varying only the value of the quantum parameter k, while keeping the 
classical parameter K constant. In both cases the wave function is sta
tionary (apart from quantum fluctuations), as can be seen from the com
parison of the wave function patterns at different times. The difference 
between the two cases is striking. Notice that, in this example, the local
ization length I < 1 and one can explain the results of this simulation using 

Fig. 2. The probability distribution over the momentum basis for the sawtooth map with 
n = 3 qubits, k = K/T = KN/ITTL, and initial momentum WQ = 0: ergodic regime at L = 1 
(full symbols) and localized regime at L = 5 (empty symbols). Circles (squares) represent the 
wave function after t = 3 (t = 50) time steps. The dashed line represents an equally weighted 
wave function. To smooth the results, we average over ten (one hundred) different values of 
^€[1 .4 , 1.5] for the localized (ergodic) case. 
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perturbation theory. Indeed, we have ^ ~ 0 . 3 5 < 1, and therefore we can 
treat the kick Uk as a perturbation of the free-evolution operatore UT> The 
case shown in Fig. 2 is interesting since it involves only n = 3 qubits and a 
few tens on quantum gates. Therefore this quantum computation seems to 
be accessible or close to the present capabilities of NMR-based^^^'^^^ and 
ion-trap^^^^ quantum processors. 

We now discuss how to extract the relevant information (the value 
of the localization length) from a quantum computer simulating the 
sawtooth-map dynamics. The localization length can be measured by run
ning the algorithm repeatedly up to time t>t*. Each run is followed by a 
standard projective measurement on the computational (momentum) basis. 
Since the wave function at time t can be written as 

\ylr{t)) = Y,f{mJ)\m)^ (27) 
m 

with \m) momentum eigenstates, such a measurement gives outcome m 
with probability 

Wrk = \{m\f{t))\^ = \f{mj)\^. (28) 

A first series of measurements would allow us to give a rough estimate 
of the variance ((Am)^) of the distribution Wm. In turn, y/{(Am)^) gives 
a first estimate of the localization length I. After this, we can store the 
results of the measurements in histogram bins of width 8m(xi^y/{(Am)^). 
Finally, the localization length is extracted from a fit of the exponential 
decay of this coarse-grained distribution over the momentum basis. Ele
mentary statistical theory tells us that, in this way, the localization length 
can be obtained with accuracy v after the order of l/v^ computer runs. It 
is interesting to note that it is sufficient to perform a coarse-grained mea
surement to generate a coarse-grained distribution. This means that it will 
be sufficient to measure the most significant qubits, and ignore those that 
would give a measurement accuracy below the coarse graining 8m. Thus, 
the number of runs and measurements is independent of I. 

In Fig. 3, we report a simulation of the measurement process. In 
the upper figure we compare the exact probabilities given by the wave 
function with the result of a complete measurement of all qubits and 
the result of a coarse-grained measurement. The histograms are built 
from the same number of computational runs, each followed by a projec
tive measurement. The coarse-grained measurement does not resolve the 
thinnest structures of the exact wave function. However, it is still possible 
to extract a good estimate of the localization length t from a fit of the 
exponential decay of the probability distribution Wm. In the lower figure 
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we compare the localization lengths, extracted from the complete and the 
coarse-grained measurements, as a function of the number NM of projec
tive measurements. Two distinct behaviors are clearly distinguishable: the 
localization length computed from the complete measurement of all qubits 
converges slowly to the exact value for the localization length, since a large 
number of projective measurement is required in order to resolve the expo
nentially decaying tails. On the contrary, the coarse-grained measurements 

(b) 

14 

12 

10 

8 

6^ 

25^ 30 m 

5 > ^ 

1 ' \ ' • 

- ^ :g^:: l 

10^ 10^ NM 10-

Fig. 3. Top: Simulation of a measurement experiment for the quantum sawtooth map at 
n = 6, K = V2, T = 2nL/N, L = 10, t = 50. The thick line is the exact wave function, the 
thin dashed (thick full) histogram represents the result of NM runs, each followed by a pro
jective measurement of all (all except two) qubits. In both cases NM = 5 X 10^; Bottom: The 
estimated localization length £ as a function of the number NM of projective measurements. 
We estimate £ by fitting the probability decay for the complete (circles) and coarse-grained 
(squares) measurements. Triangles give 2^, with the inverse partecipation ratio computed 
from the coarse-grained probability distribution. The straight line is the theoretical result 
£~6.8, obtained from Eq. (26). 
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approach the exact value after a much smaller number of measurements, 
even though the fluctuations as a function of the number of measurements 
are quite large. 

It is possible to give a better estimate of the localization length by 
computing the inverse participation ratio 

The inverse participation ratio determines the number of basis states sig
nificantly populated by the wave function and gives an estimate of the 
localization length of the system. We have \ <^ <N, with the limiting 
cases ^ = 1 and ^ = N corresponding to a wave function delta-peaked 
(Wfn=8ni,mo) OT Uniformly spread (Wm = \/N). In the localized regime, 
^^i/2. We stress that the inverse participation ratio is almost insensitive 
to the behavior of exponentially small tails of the wave function. Thus, the 
estimate i.^2^ is quite accurate already with a small number of coarse
grained mesurements (see Fig. 3). 

We now come to the crucial point, of estimating the gain of quantum 
computation of the localization length with respect to classical computa
tion. First of all, we recall that it is necessary to make about f^ = 0(i) 
map iterations to obtain the localized distribution, see Eq. (25). This is 
true, both for the present quantum algorithm and for classical computa
tion. It is reasonable to use a basis size N=0{t) to detect localization 
(say, Â  equal to a few times the localization length). In such a situation, 
a classical computer requires 0{t^ log£) operations to extract the local
ization length, while a quantum computer would require 0(£(log€)^) 
elementary gates. Indeed, both classical and quantum computers need to 
perform t^t* = 0(l) = 0(N) map iterations. Therefore, the quantum com
puter provides a quadratic speed up in computing the localization length. 
We point out that the number of runs and measurements necessary to 
extract the localization length i does not depend on i itself and, there
fore, on the system size N = 0{i). Hence, this number does not affect the 
quadratic speed up provided by the quantum computer. It is also interest
ing to notice that, even though the speed up is only quadratic, the advan
tage of the quantum computer in memory resources remains exponential. 
This point becomes crucial in many-dimensional or many-body physical 
models, in which, using a classical computer, it is very hard, if not impos
sible, to merely establish if the system is localized or not. As the results of 
this section can be extended to this kind of problems, quantum computers 
promise to become a useful tool for their investigation. 

As we shall see in Sec.6, the quantum computation can provide an 
exponential gain (with respect to any known classical computation) in 
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problems that require the simulation of dynamics up to a time t which 
is independent of the number of qubits. In this case, provided that we 
can extract the relevant information in a number of measurements poly
nomial in the number of qubits, one should compare 0(t(\og N)^) ele
mentary gates (quantum computation) with 0(tN log Â ) elementary gates 
(classical computation). 

5. QUANTUM COMPUTING OF BROWNIAN AND ANOMALOUS 
DIFFUSION 

As we have discussed in Sec. 2, the classical sawtooth map is charac
terized by different diffusive behaviors in the chaotic and semi-integrable 
regimes. Quantum computers could help us to study these different 
regimes by simulating the map in the deep semiclassical region /igfT -^ 0. 
Let us first show that a quantum computer would be useful in com
puting the Brownian diffusion coefficient Dm- For this purpose, we can 
repeat several times the quantum simulation of the sawtooth map up 
to a given time t, ending each run with a standard projective measure
ment in the momentum basis. This allows us to compute, up to statistical 
errors, ((Am)^). The diffusion coefficient is then obtained from Eq. (24) 
as Dm ̂  ((Am)^)/r. Therefore a computation of the diffusion coefficient 
up to time t significantly involves the order of y/Dmt momentum eigen-
states (other levels are only weakly populated for times smaller than t and 
can be neglected). Thus, a basis of dimension N = 0{t^/^) is sufficient for 
this computation. To estimate the speed up of quantum computation, one 
should compare 0{t{\og N)^) = 0{N^([og N)^) elementary gates (quantum 
computation) with O (tN log N) = 0(N^ \og(N)) elementary gates (classical 
computation). This gives an algebraic speed up. 

We note that similar computations could be done in the regime of 
anomalous diffusion, in which ((A7)^) = r^((Am)^) a^", to evaluate the 
exponent a, a quantity of great physical interest. Such a regime is quite 
complex in the sawtooth map: Fig. 4 shows, for the classical map, the 
dependence of the exponent of as a function of ^ . As can be seen from 
this figure, the map explores subdiffusive (of < 1) and superdiffusive (a > 1) 
regions, up to baUistic diffusion (or = 2). As required by the principle of 
quantum to classical correspondence, the quantum sawtooth map follows 
this behavior in the deep semiclassical regime /ieff<l, up to some time 
scale which diverges when ĝff -^ 0. It is important to point out that êff 
drops to zero exponentially with the number of qubits (/leff ocl/A^= 1/2"), 
and therefore the deep semiclassical region can be reached with a small 
number of qubits. For large fieff ? one can also study how diffusion is mod-
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Fig. 4. Left: Exponent a of the anomalous diffusion [((A/)^) a r " ] as a function of K for 
the classical sawtooth map in the semi-integrable regime. 

ified by important quantum phenomena, like quantum tunneling, localiza
tion, and quantum resonances. 

A quantum computer could help us in obtaining the exponent a of 
the anomalous diffusion. In this case, since ((Am)^)ar", a rough esti
mate of the size of the basis required for the computation up to time t 
is N^Oit^'f^). Hence, we must compare Oa(log N)'^) = 0{N^I''{\og Nf) 
elementary gates (quantum computation) with 0{tN log N) = 0(N^^~^'^^^^ 
\og(N)) elementary gates (classical computation). The speed up is again 
algebraic. 

QUANTUM COMPUTING OF THE FIDELITY OF QUANTUM 
MOTION 

The simulation of quantum dynamics up to a time t which is indepen
dent of the number of qubits is useful, for instance, to measure dynamical 
correlation functions of the form 

C(t) ^ (lAI AHO B(0) |IA) = W {wy AH^) U' B(0) \if), nt\t A1 (30) 

where U is the time-evolution operator. Similarly, we can efficiently 
compute the fidehty of quantum motion, which is a quantity of central 
interest in the study of the stability of a system under perturbations (see, 
e.g., Refs. 19-26 and references therein). The fidehty f(t) (also called the 



Quantum Computing and Information Extraction 289 

Loschmidt echo), measures the accuracy with which a quantum state can 
be recovered by inverting, at time t, the dynamics with a perturbed Hamil-
tonian. It is defined as 

f(t) = {xlf\(U^yu'\if). (31) 

Here the wave vector \i//) evolves forward in time with the time-evolution 
operator U up to time t, and then evolves backward in time with a per
turbed time-evolution operator U^. If the operators U and Ue can be sim
ulated efficiently on a quantum computer, as is the case in most physically 
interesting situations, then the fidelity of quantum motion can be evalu
ated with exponential speed up with respect to known classical computa
tions. The same conclusion is valid for the correlation functions (30). 

The fidelity can be efficiently evaluated on a quantum computer, 
with the only requirement of an ancilla qubit, using the scattering circuit 
drawn in Fig. 5.̂ ^ '̂̂ ^^ This circuit has various important applications in 
quantum computing, including quantum state tomography and quantum 
spectroscopy.^^^^ The circuit ends up with the measurement of the ancilla 
qubit, and we have 

{a,)=MTv(Wp)l {cry)=lm[Tv(Wp)l (32) 

where {cxz) and {ay) are the expectation values of the Pauli spin opera
tors a^ and ay for the ancilla qubit, and W is a unitary operator. These 
two expectation values can be obtained (up to statistical errors) if one runs 
several times the scattering circuit. If we set p = \'^){'\l/\ and W = (uly U\ 
it is easy to see that f{t) = \Tr{Wp)\^ = {az)'^-\-{ay)^. For this reason, pro
vided that the quantum algorithm which implements U is efficient, the 
fidelity can be efficiently computed by means of the circuit described in 
Fig. 5. This apphes to a large class of problems and, in particular, to the 
quantum sawtooth map. We note that another possible way to efficiently 
measure the fidelity has been proposed in Ref 25. 

It is interesting to discuss the time scale of the fidehty decay in 
chaotic systems.^^^^^^ To be concrete, let us consider the quantum saw
tooth map model and choose to perturb the kicking strength: k-^k^ = 

(0X01 —I H 

P -

H ——Measurement 

W 

Fig. 5. Scattering circuit. The top line denotes the ancilla qubit, the bottom line a set of n 
qubits, H the Hadamard gate, and W a unitary transformation. 
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A: + cr, corresponding to a classical perturbation K =kT ^> K' = K -\- e, 
with e=aT<^K. In this case, the typical transition matrix elements Vjk = 
{uj\V\uk) of the perturbation operator V = -[a(§-7Ti)^/2]J2j8(T - jT) 
between the eigenstates {\uj)} of the Floquet operator U are of the order 
of V^a/\fN {\uj) is an eigenstate of U corresponding to the quasienergy 
Xj if lJ\uj)=Q\^(iXj)\uj)). This energy scale has to be compared with the 
typical energy separation AE^\/N between the unperturbed quasiener-
gies. It can be shown^^ "̂̂ ^^ that there exist three regimes for the fidelity 
decay: 

(1) for a < a^ ^ I/VA/", corresponding to V < AE, the fidelity decay 
can be calculated in perturbation theory. This gives a Gaussian decay: 
/ ( O - ^ e x p ( - y V ) ; 

(2) for Gp < a < ac ^ I, the fidelity decay is exponential: f(t) ~ 
exp( - rO, with rate r ~ y^/Af'^-^a^ given by the Fermi golden rule; 

(3) in the semiclassical regime a > cr̂  -̂  1, the fidelity decay is again 
exponential, but with a perturbation independent rate r=X, where X is the 
Lyapunov exponent of classical chaotic dynamics. 

As an example, we show in Fig. 6 the crossover between the Fermi 
golden rule and the Lyapunov regime. It is interesting to note that the 
Lyapunov exponent in this case could be extracted already with n = lO 
qubits and a few kicks. 

10" 

f(t) ta-D- "O-n-n-T3~n~n 
• • • n ~ Q - t r 

^. 

6 6 • • • # $ ? » • • • * * ? T 
X X 

± 
10 
t 

15 20 

Fig. 6. Fidelity decay for the sawtooth map with n = \0 qubits, K = 0.75, L = 1, e = 10"^ 
(squares), 2 x 10~-̂  (diamonds), 3 x lO""̂  (triangles), 10~^ (circles), 2 x 10~^ (stars), and 3 x 
10""̂  (crosses). Dashed hnes correspond to the Fermi Golden rule decay: /(0~exp(-Aor^f), 
where A^2A. Full lines show the Lyapunov decay: /(0~exp(—Ar), with the maximum Lya
punov exponent X — ln[(2 -\- K ^- y/K^^+AK)/!] ^ 0.84. Note that the crossover between the 
Fermi golden rule and the Lyapunov regime takes place at 6 ~ 5 x 10~-̂ , corresponding to 
a ~ 1. The dotted line shows the fidelity saturation value f^ — \/N. We choose as initial wave 
function a momentum eigenstate and data are obtained after averaging over 100 different ini
tial conditions. 
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7. CONCLUSION 

In this paper, we have discussed relevant physical examples of effi
cient information extraction in the quantum computation of a dynamical 
system. We have shown that a quantum computer with a small number 
of qubits can efficiently simulate the quantum localization effects, simu
late both the Brownian and anomalous diffusion in the deep semiclassi-
cal regime, and compute the fidelity of quantum motion. We would Hke to 
stress that the simulation of complex dynamical systems is accessible to the 
first generation of quantum computers with less than 10 qubits. Therefore, 
we beUeve that quantum algorithms for dynamical systems deserve further 
studies, since they are the ideal software for the first quantum processors. 
Furthermore, we emphasize that the quantum computation of quantities 
hke dynamical localization or fidelity is a demanding testing ground for 
quantum computers. In the first case, we want to simulate dynamical local
ization, a purely quantum phenomena which is quite fragile in the pres
ence of noise;̂ ^̂ '̂ ^̂  in the latter case, fidelity is computed as a result of a 
sophisticated many-qubit Ramsey-type interference experiment. Therefore, 
the computation of these quantities appears to be a relevant test for quan
tum processors operating in the presence of decoherence and imperfection 
effects. 

It is interesting to discuss why the speed up in computing the local
ization length and the diffusion coefficient is not exponential, even though 
a single step of the dynamical evolution can be simulated with exponential 
speed up. The ultimate reason is that, in diffusive processes, the spread of 
information is "slow". More precisely, the number Â  of quantum levels 
which are significant to describe the system's dynamics grows only alge
braically in time. Therefore, in order to use Â  levels, dynamics must be 
iterated up to a time scale which is algebraic in Â , that is, exponential in 
the number of qubits. 

Finally, we would hke to stress that the results discussed in this 
paper have a general validity, beyond the sawtooth map model. The 
localization length, the diffusion coefficient and the fidelity can be 
extracted, with the same speed up (algebraic or exponential), also in 
all other one-dimensional driven dynamical systems modeled by Eq. (1), 
provided that the driving force is sufficiently regular to be computed effi
ciently (this is the case, for instance, when it can be expanded in Taylor 
series). Moreover, our results can be extended to many-dimensional and 
many-particle systems, for which the computation of the quantities dis
cussed in this paper by means of a classical computer turns out to be 
a prohibitive task. 
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One-Dimensional Continuous-Time Quantum Walks 

D. ben-Avraham,i E. M. Bollt,̂  and C. Tamon̂ '̂  

We survey the equations of continuous-time quantum walks on simple 
one-dimensional lattices, which include the finite and infinite lines and the finite 
cycle, and compare them with the classical continuous-time Markov chains. The 
focus of our expository article is on analyzing these processes using the Laplace 
transform on the stochastic recurrences. The resulting time evolution equations, 
classical vs. quantum, are strikingly similar in form, although dissimilar in behav
ior. We also provide comparisons with analyses performed using spectral methods. 

KEY WORDS: Quantum walks; continuous time; Laplace transform. 

PACS: 03.67.Lx. 

1. INTRODUCTION 

The theory of Markov chains on countable structures is an important area 
in Mathematics and Physics. A quantum analog of continuous-time Mar
kov chains on the infinite line is well studied in Physics (for example, 
it can be found in Ref. 12, Chapters 13 and 16). More recently, it was 
studied by Aharonov et al^^^ and by Farhi and Gutmann.̂ ^^^ The latter 
work placed the problem in the context of quantum algorithms for search 
problems on graphs. Here, the symmetric stochastic matrix of the graph 
is viewed as a Hamiltonian of the quantum process. Using Schrodinger's 
equation with this Hamiltonian, we obtain a quantum walk on the under
lying graph, instead of a classical random walk. 
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Recent works on continuous-time quantum walks on finite graphs 
include the analyses of mixing and hitting times on the n-cube/^^'^^^ of 
mixing times on circulant graphs and Cayley graphs of the symmetric 
group/^'^^^ and of hitting times on path-Hke graphs/^'^^ Most of these 
are structural results based on spectral analysis of the underlying graphs, 
such as the n-cube, circulant and Cayley graphs, and (weighted) paths. For 
example, Moore and Russell̂ ^^^ proved that the mixing time of a quan
tum walk on the n-cube is asymptotically faster than a classical random 
walk; Kempe^^^^ proved that the hitting time for vertices on opposite ends 
of the n-cube is exponentially faster than in a classical random walk. Ah-
madi et alS^^ and Gerhardt and Watrous^^^^ proved that circulants and the 
Cayley graph of the symmetric group lack the uniform mixing property 
found in classical random walks. 

A recent work of Childs et alS^^ gave intriguing evidence that contin
uous-time quantum walk is a powerful method for designing new quantum 
algorithms. They analyzed diffusion processes on one-dimensional struc
tures (finite path and infinite line) using spectral methods. Another work 
by Childs and Goldstone^^^^ explored the application of continuous-time 
quantum walks to perform Grover search on spatial lattices. 

There is an alternate theory of discrete quantum walks on graphs, 
which we will not discuss here. This alternate model was studied in 
Aharonov et alS"^^ and Ambainis et alP"^ but had appeared earlier in 
work by Meyer.̂ ^^^ The work by Ambainis et alS^"^ had also focused on 
one-dimensional lattices. Recently, Ambainis^ ̂ ^ developed an optimal (dis
crete) quantum walk algorithm for the fundamental problem of Element 
Distinctness. This offers another idea for developing quantum algorithms. 

We survey and (re)derive equations for the continuous-time classical 
and quantum walks on one-dimensional lattices using the Laplace trans
form that works directly with the recurrences. The Laplace transform is a 
well-known tool in stochastic processes (see Ref 7) and it might offer a 
useful alternative to the Fourier transform in certain settings. 

1.1. Stochastic Walks on Graphs 

Let G = {V, E) be a simple (no self-loops), countable, undirected 
graph with adjacency matrix A. Let Z) be a diagonal matrix whose yth 
entry is the degree of the 7 th vertex of G. The Laplacian of G is defined 
as H = A — D. Suppose that P(t) is a time-dependent probability distribu
tion of a stochastic (particle) process on G. The classical evolution of the 
continuous-time walk is given by the Kolmogorov equation 

P\t) = HP{t). (1) 
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- 2 - 1 0 1 2 ••• 0 1 2 3 4 
• • • • • Ol il 0* *2 

Fig. 1. Examples of some one-dimensional lattices. From left to right: Z, P4, 

1 Graph 

Z 

Ziv 

PiV 

m) = 
Classical walk 

probability on vertex j at time t 

e- '%|(i) 

a=±j{modN) 

E e-'/„(t) 
a=±:?(mod2iV) 

Quantum walk 
i/jj (t) = amplitude on vertex j at time t 

(-Oi^V|,,(«) 

E i-irjait) 
a=±j{modN) 

E i-irJait) 
Q;=±jf (mod 2N) 

Fig. 2. The equations of the continuous-time classical vs. quantum walks on the infinite 
line, finite cycle, and the finite line, assuming the particle starts at position 0. 

The solution of this equation, modulo some conditions, is P(t) = Q^^P{0), 
which can be solved by diagonalizing the symmetric matrix H. This spec
tral approach requires full knowledge of the spectrum of H. 

A quantum analog of this classical walk uses the Schrodinger 
equation in place of the Kolmogorov equation. Let ^j/: V{G) ^- C be the 
time-independent amplitude of the quantum process on G. Then, the wave 
evolution is 

in—ir(t) = Hif(t). 
at 

(2) 

Assuming fi=\ for simplicity, the solution of this equation is il/(t) = 
Q~^^^\/r(0), which, again, is solvable via spectral techniques. The classical 
behavior of this quantum process is given by the probability distribution 
P(t) whose j th entry is Pj(t) = \il/j(t)\^, where ylrj{t) = {j\'\lf{t)). The aver
age probability of vertex j is defined as PO') = limr^oo 7 /o Pj{t)dt (see 
Ref. 4) (Fig. 1). 

The table in Fig. 2 shows the known equations for continuous-time 
stochastic walks on the infinite (integer) line Z = { . . . , - 2 , - l , 0 , l , 2 , . . . } , 
the finite cycle ZM = {0,... , N — 1} on N vertices, and the finite path 
Fi^ = {0,... ,N} on N -\-l vertices, in terms of the two kinds of Bessel 
functions /(•) and /(•) . We assume here that the particle is initially at 0. 
The plots in Figs. 3 and 4 show the dissimilar behavior of the classical ver
sus quantum walks. 
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5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 

Fig. 3. Stochastic walks on the infinite Hne Z: (a) plot of Po(t) in the continuous-time ran
dom walks for / € [0,50]. (b) plot of |iAo(OP in a continuous-time quantum walk for t e 
[0, 50]. Both processes exhibit exponential decay, but with the quantum walk showing an 
oscillatory behavior. 
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Fig. 4. Stochastic walks on the finite cycle Z5, each approximated using 21 terms: (a) plot 
of Po(t) in the continuous-time random walks for r e [0, 50]. (b) plot of |TAO(OP in the con
tinuous-time .quantum walk for / € [0, 500]. The classical walk settles quickly to 1/5, while 
the quantum walk exhibit a short-term chaotic behavior and a long-term oscillatory behav
ior below 0.1. 
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1.2. Laplace Transform 

The Laplace transform of a time-dependent function P(t), denoted 
P(s) = C{P(t)}, is defined as 

poo 
/:{P(t)}= / Q'''P(t)dt. (3) 

The only basic properties of the Laplace transform which we will need are 
(see Ref 3): 

• Linearity: C{aP(t)-^bQ(t)} = aP(s) + bQ(s) 
• Derivative: /:{P\t)} = sP(s)-P(0) 
• Shifting: CIQ""^P(t)] = P(s-a) 

The relevant inverse Laplace transform involving the Bessel functions are 
(for v > - l ) : 

P(s) = ^^-^^ " ^ "̂̂  ^^=> PiO^a^'Iyiat), (Eq. (29.3.59) in Ref 3) 

(4) 

P(s) = ^^^^^^^=J^ ^_^ P ( 0 = a V v ( a O . (Eq. (29.3.56) in Ref 3) 
V̂ ^ + â  

(5) 

2. THE INFINITE LINE 

2.L Classical Process 

The Kolmogorov equation for the infinite line is 

P;(t) = \Pj-iit)-Pj(t)-^\Pj^i(t). (6) 

with initial value Pj(0)=8oj. The Laplace transform of Eq. (6) is 

Pj^l(s)~2(s^l)Pj(s) + Pj,i(s) = -Pj(0). (7) 

The solution of ^̂ ^ - 2(5- -f 1)^ + 1 is ^± = (5- +1) ± ^/(s-\-l)^-I. A natural 
guess of the solution is 

P,(.).{fi '^{<l (8) 
AqL if 7 > 0. 
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When 7 = 0 , we get A = (\-\-s — q-)~^. Thus, for j eZ, 

^/- ^ [(. + 1) y(7TT)i3T]m 
' " il+s-q-) V( , + 1 ) 2 - 1 

Using the inverse Laplace transform Eq. (4), after shifting ^ ^ i ' + l, we get 

Pj{t) = Q-'l\j\{t). (10) 

This is a probability function, since e'/^Cz+i/z) ^ ^oo^_^^/:/^(^)^ if z 7^0 
(see Eq. (9.6.33) in Ref 3). 

2.2. Quantum Process 

The Schrodinger equation for the infinite line is 

l^lr]{t) = \^lrj.x{t)^\^|rj^x{t). (11) 

The Laplace transform of Eq. (11) is 

i;j+x{s)-2i{s^irj{s)-fj{Q)) + ^j.x{s) = ̂ . (12) 

The solutions of <7̂  — 2\sq + 1 are q± = i(s ± \^s^-\-1), where q^q- = 1. A 
guess for the solution is 

irj{s) = 
Aqi ifj<0 
Aqi if j > 0. 

(13) 

When j = 0, we get A = (s + iq-) ' . Thus. 

(s + lq-) 7^2 + 1 

The inverse Laplace transform Eq. (5) yields, for j e Z, 

TAj(0 = ( - i ) ' ^ ' ^ | ( 0 . (15) 

This is a probability function, since 1 = JQU) + '^Jl'kL\Jk^z) 
(see Eq. (9.1.76) in Ref 3). 



One-Dimensional Continuous-Time Quantum Walks 301 

2.3. Spectral Analysis 

Let / / be a Hamiltonian defined as (j\H\k) = l if j = k± I, and 0 oth
erwise. For each pe[—n,7T], define \p) so that 

u\p) = -^epK (16) 

The eigenvalue equation H\p)=Xp\p) has the solution Xp=co^{p). Thus, 
the amplitude of position j when the particle starts at position 0 is 

O-|e-i^^|0) = ^ r ePJQ-^'^^'(P^ dp 

= (-iyjjit). (see Eq. (9.1.21) in Ref. 3) (17) 

Childs et alS^^ gave a more generalized analysis along these fines. 

3. THE FINITE CYCLE 

3.1. Classical Process 

If A is the adjacency matrix of the finite cycle, let H =^A — I be its 
Laplacian matrix. The Kolmogorov equation for the finite cycle is 

P'j(t) = \Pj.iit)-Pj(t)-^'jPj^i{t). (18) 

Applying the Laplace transform to Eq. (18), we get 

(^+l)Py(5)-P,-(0) = lPy_l(5) + iP,-+l(^). (19) 

For convenience, define the extra condition P-i(s) = Pj^-i(s)-\-2, so that 
Pj^i(s)-2(s-\-l)Pj(s)-\-Pj-\(s) = 0 holds for jeZ^. The cycle condition 
is PN(S) = PO(S). We guess the solution to be 

Pj{s) = Aqi + BqL (20) 

where q± is the solution to x^ — 2{s + l)jc + 1 = 0, i.e., q± = {s ^\) ± 
^ (^ + 1 )^ - 1, with q^q-. = \. Using the cycle condition, we get 

Aql + Bq^^A^B =^ A(q!^-\) = B{1-q^) =^ B = Aq^. (21) 
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Using the extra condition and Eq. (21), we get A = 2((q^—q-)(q!!^ — 1))"^ 
Thus, for j GZM, 

Pj(s) = Aqi-^Bqi = A(qi^q^-') 

(?+ 
oo 

E 
k=0 

I Kq--Tq- ) Z yr-^ ( kN+j , {k+\)N-j\ 

{(s + 1) - V(i + 1)2 - \f^+i ((i + 1) - y/{s + 1)2 - l)(*+i)'v-; 

V(^ +1)^ -1 7(^ + 1)2-1 

The inverse Laplace transform Eq. (4), after shifting, yields, for j eZ^, 

oo 

^y(0 = X^e-^ [4yv+y(0 + /(;t+iW-;(0]= ^ e-^/c,(0. (22) 
^=0 a=±jimodN) 

3.2. Quantum Process 

Since the finite cycle is a regular graph, instead of the Laplacian, we 
use the adjacency matrix directly. In a continuous-time quantum walk, this 
simply introduces an irrelevant phase factor in the final expression. The 
Schrodinger equation, in this case, is 

iiA;.(0 = ^iA;-i(0 + iV^,>i(0. (23) 

The Laplace transform of Eq. (23) is 

irj^as)-2i(sirj(s)-xlfj(0)) + ^j-^(s) = 0. (24) 

The cycle boundary condition is xirjs/(s) = iro(s). For convenience, define 

iA-i(^) = V^yv-i(̂ ) = 2i. (25) 

The solutions of q-^ - 2\sq -\-1 are q± = i(s ± \/s^-\-1), with q-\-q- = 1. A 
solution guess, for jeZ^, is 

irj(s) = Aqi + BqL (26) 
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The cycle boundary condition yields B — Aq^. By Eq. (25), we get 
A = 2iaq+-q^Kq^-l)rK Thus, for jeZN, 

fjis) = Aqi + BqL=A{q{ + ql ^) 

2i (qi+qr^) 
{q+-q-) (1-^^) ~ (q+-q-)f^J< 

^,A,+,-^^(,+,);V, 
•0 

= E 
k=0 L 

{{-i){^s^ + \-s)f^^J {{-i){^s^ + \-s)^^^^^^-J 
• + 

The inverse Laplace transform Eq. (5) gives, for j eZ^, 

oo 

*=o 
J2 i-ifJait). 

a = ±j (modA )̂ 

(27) 

3.3. Spectral Analysis 

The normaHzed adjacency matrix H of ZN is the circulant matrix 

/ 0 1/2 0 . . . 0 1/2\ 
I 1/2 0 1/2.. . 0 0 

H=\ 0 1/2 0 . . . 0 0 

\ l / 2 0 0 . . . 1/2 0 / 

(28) 

It is well known that all N x N circulant matrices are unitarily diag-
onalized by the Fourier matrix F = -J=V{(DN), where CON = Q^^^^^ and 

V((ON) is the Vandermonde matrix defined as V(a)N)[j,k] = col^, for j,ke 

) = {0, 1 , . . . , A/̂  — 1}. The eigenvalues of H are Xj = jicoj^ + 
cos(27tj/N), for j =0,1,... , N — \. Thus, the wave amplitude at vertex j 
at time t is 

A ^ - l 

irjit) = ^j:^-"''"'''''^''^o^i'- (29) 
*:=0 

From earlier analysis, we get the following Bessel equation 

, iv-i 
— ^e-"'=°'<2;r*/w)e2;ri7*/jv^ J^ (-i)"J„{t). (30) 

k=0 a=±;(mod N) 
N 
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It is an open question if there exists a time t e E"̂  such that for all j e 
ZM we have \fj(t)\^ = l/N, i.e., uniformity is achieved at time t. For Â  = 
2, 3,4, it is known that instantaneous exact uniform mixing is achieved (see 
Refs. 6 and 16). 

4. THE FINITE PATH 

4.1. Classical Process 

Let A be the normalized adjacency matrix of the finite path, where A 
is a stochastic matrix where the probabiHty transitions are proportional to 
the degrees of the vertices. Let / / = A — / be its Laplacian. Then, the Kol-
mogorov equation, in this case, is 

P'j{t) = \Pj.x{t)-Pj{t) + \Pj^x{t). (31) 

for 0<j <N, with initial condition Pj(0) = 8jo and boundary conditions 

p^(0 = Pi (0 - /^0 (0 , P ; ( 0 = Pyv-i(0-P;v(0- (32) 

The Laplace transform of Eq. (31) is 

Pj+i(s)-2(s + \)Pj(s) + Pj.x(s) = 0^ 0<j<N^ (33) 

and two boundary equations (\-\-s)Po(s) - 1 = P\(s), and (\-\-S)PN(S) = 
Pj^^\(s). A guess of the solution is 

Pj(s) = Aql + BqL 0<j<N, (34) 

where q± = (s -\-\)± y/(s-h 1 ) ^ - 1 . The boundary equations give B - A = 
2/(q^—q-) and A = Bq^. Combining these last two equations, we get 

2 q^ 

{q+-q-){\-qiN) - ^ - . - - . - . . ^ v . - (35) 

Thus, for 7 = 0 , 1 , . . . ,A', 

~ , j , 2N—is 
2 {qL+q- ) Pj{s)^Aqi + BqL = A{qi+qf ^)^^_ ^ ^ ^, ^^ 

^^+-^-\=o 

{q+-q-) (l-^^A/) 
OO 

2Nk+j , 2N(k-\-\)-j 
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The inverse Laplace transform Eq. (4), after shifting, yields, for j = 
0 , 1 , . . . , TV, 

oo 

^7 (0 = J2 ^~' U2Nk^j(t) + l2N(k^l)-j(t)] = J2 ^~'Jcc{t). (36) 
k=() oi=±j {mod IN) 

4.2. Quantum Process 

The Schrodinger equation for the finite path is 

iV ;̂.(0 = iiAy-l(0 + iV^;+l(0, (37) 

for 0<j<N, with initial condition il/j(0) = 8oj- and boundary conditions 

iV̂ oW = V î(0, iiAJv« = V^^-i(0- (38) 

The Laplace transform of Eq. (37) is 

fj^l(s)-2is^j(s) + fj.i(s) = 0, 0<y< iV , (39) 

and two boundary equations is-^ojs) — [ = -^1(5), and is\lrM{s) = '(lrN-i(s). 
The solutions of q^ — 2isq-\-l are q± = i(s±y/s'2-\-1). A guess of the solu
tion is 

irj(s) = Aqi + BqL 0<j<N. (40) 

From the boundary equations, we get B — A = 2i/(q^—q-) and B = Aq^^. 
Thus, 

^ ^ T ^ - T T T T K - (41) 

For 7=:0, 1 , . . . .A', 

fj{s) = Aqi + Bqi = A{qi+qf ^) 

A;=0 L y/s^ + l V?Tl 
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The inverse Laplace transform Eq. (5) yields, for j =0,\,... , N, 

a=±j {vaod IN) 

(42) 

4.3. Spectral Analysis 

The spectrum of a path on n vertices is given by Spitzer/^^^ For 
7 G {0, 1, . . . , A }̂, the eigenvalue Xj and its eigenvector Vj are given by 

/ ( j + l)7r\ / 2 . ({j + \)n ^^ , ^̂ >̂  
A./=cos —7—r- , Vi(i) = J - sm —-(€+1) . 

The probability of measuring vertex 0 at time t is given by 

(43) 

Poit)-- (Â  + 2)2 
j,k 

Since all eigenvalues are distinct, the average probability of measuring the 
starting vertex 0 is 

P(0) = T > sm ^̂  sm ;— 
J,K 

X lim - /" e-"<^^-^*' dr 

Equating this with Eq. (42), we obtain a Bessel-like equation: 
lim — f 

Jo 

J2 (-i)"-̂ "̂ ^ 
a=0(mod 2N) 

df = 
(N+iy k=o ^ 

N + 2 

(45) 
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5. CONCLUSIONS 

This expository survey reviews equations for the continuous-time 
quantum walks on one-dimensional lattices. The focus was on analysis 
based on the Laplace transform which works directly with the stochas
tic recurrences. It would be interesting to extend this analysis to higher-
dimensional or to regular graph-theoretic settings. Another interesting 
direction is to consider lattices with defects and weighted graphs.̂ ^̂  
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