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Preface 

The goal of this book is to describe in detail how Feynman integrals1 can be 
evaluated analytically. The problem of evaluating Lorentz-covariant Feynman 
integrals over loop momenta originated in the early days of perturbative 
quantum field theory. Over a span of more than fifty years, a great variety of 
methods for evaluating Feynman integrals has been developed. This book is 
a first attempt to summarize them. 

I understand that if another person - in particular one actively involved 
in developing methods for Feynman integral evaluation - made a similar 
attempt, he or she would probably concentrate on some other methods and 
would rank the methods as most important and less important in a different 
order. I believe, however, that my choice is reasonable. At least I have tried 
to concentrate on the methods that have been used in the past few years in 
the most sophisticated calculations, in which world records in the Feynman 
integral 'sport' were achieved. 

The problem of evaluation is very important at the moment. What could 
be easily evaluated was evaluated many years ago. To perform important 
calculations at the two-loop level and higher one needs to choose adequate 
methods and combine them in a non-trivial way. In the present situation -
which might be considered boring because the Standard Model works more 
or less properly and there are no glaring contradictions with experiment -
one needs not only to organize new experiments but also perform rather non­
trivial calculations for further crucial high-precision checks. So I hope very 
much that this book will be used as a textbook in practical calculations. 

I shall concentrate on analytical methods and only briefly describe nu­
merica! ones. Some methods are also characterized as semi-analytical, for 
example, the method based on asymptotic expansions of Feynman integrals 
in momenta and masses which was described in detail in my previous book. 
In this method, it is also necessary to apply some analytical methods of eval­
uation which were described there only very briefly. So the present book can 
be considered as Volume 1 with respect to the previous book, which might 
be termed Volume 2, or the sequel. 

1 Let us point out from beginning that two kinds of integrals are associated with 
Feynman: integrals over loop momenta and path integrals. We will deal only with 
the former case. 



VI Preface 

Although all the necessary definitions concerning Feynman integrals are 
provided in the book, it would be helpful for the reader to know the basics 
of perturbative quantum field theory, e.g. by following the first few chapters 
of the well-known textbooks by Bogoliubov and Shirkov and/or Peskin and 
Schroeder. 

This book is based on the course of lectures which I gave in the winter 
semester of 2003-2004 at the Universities of Hamburg and Karlsruhe as a 
DFG Mercator professor in Hamburg. It is my pleasure to thank the students, 
postgraduate students, postdoctoral fellows and professors who attended my 
lectures for numerous stimulating discussions. 

I am grateful very much to B. Feucht, A.G. Grozin and J. Piclum for 
careful reading of preliminary versions of the whole book and numerous com­
ments and suggestions; toM. Czakon, M. Kalmykov, P. Mastrolia, J. Piclum, 
M. Steinhauser and O.L. Veretin for valuable assistance in presenting exam­
ples in the book; toC. Anastasiou, K.G. Chetyrkin and A.I. Davydychev for 
various instructive discussions; to P.A. Baikov, M. Beneke, K.G. Chetyrkin, 
A. Czarnecki, A.I. Davydychev, B. Feucht, G. Heinrich, A.A. Penin, A. Signer, 
M. Steinhauser and O.L. Veretin for fruitful collaboration on evaluating 
Feynman integrals; to M. Czakon, A. Czarnecki, T. Gehrmann, J. Gluza, 
T. Riemann, K. Melnikov, E. Remiddi and J.B. Tausk for stimulating com­
petition; to Z. Bern, L. Dixon, C. Greub and S. Mach for various pieces of 
advice; and to B.A. Kniehl and J.H. Kiihn for permanent support. 

I am thankful to my family for permanent love, sympathy, patience and 
understanding. 

Moscow - Hamburg, 
October 2004 

V.A. Smirnov 
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1 Introduction 

The important mathematical problem of evaluating Feynman integrals arises 
quite naturally in elementary-particle physics when one treats various quanti­
ties in the framework of perturbation theory. Usually, it turns out that a given 
quantum-field amplitude that describes a process where particles participate 
cannot be completely treated in the perturbative way. However it also often 
turns out that the amplitude can be factorized in such a way that different 
factors are responsible for contributions of different scales. According to a 
factorization procedure a given amplitude can be represented as a product 
of factors some of which can be treated only non-perturbatively while others 
can be indeed evaluated within perturbation theory, i.e. expressed in terms of 
Feynman integrals over loop momenta. A useful way to perform the factoriza­
tion procedure is provided by solving the problem of asymptotic expansion of 
Feynman integrals in the corresponding limit of momenta and masses that is 
determined by the given kinematical situation. A universal way to solve this 
problem is based on the so-called strategy of expansion by regions [3, 10]. This 
strategy can be itself regarded as a (semianalytical) method of evaluation of 
Feynman integrals according to which a given Feynman integral depending on 
several scales can be approximated, with increasing accuracy, by a finite sum 
of first terms of the corresponding expansion, where each term is written as 
a product of factors depending on different scales. A lot of details concerning 
expansions of Feynman integrals in various limits of momenta and/or masses 
can be found in my previous book [10]. In this book, however, we shall mainly 
deal with purely analytical methods. 

One needs to take into account various graphs that contribute to a given 
process. The number of graphs greatly increases when the number of loops 
gets large. For a given graph, the corresponding Feynman amplitude is repre­
sented as a Feynman integral over loop momenta, due to some Feynman rules. 
The Feynman integral, generally, has several Lorentz indices. The standard 
way to handle tensor quantities is to perform a tensor reduction that enables 
us to write the given quantity as a linear combination of tensor monomials 
with scalar coefficients. Therefore we shall imply that we deal with scalar 
Feynman integrals and consider only them in examples. 

A given Feynman graph therefore generates various scalar Feynman inte­
grals that have the same structure of the integrand with various distributions 
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of powers of propaga tors (indices). Let us observe that some powers can be 
negative, due to some initial polynomial in the numerator of the Feynman 
integral. A straightforward strategy is to evaluate, by some methods, every 
scalar Feynman integral resulting from the given graph. If the number of 
these integrals is small this strategy is quite reasonable. In non-trivial situ­
ations, where the number of different scalar integrals can be at the level of 
hundreds and thousands, this strategy looks too complicated. A well-known 
optimal strategy here is to derive, without calculation, and then apply some 
relations between the given family of Feynman integrals as recurrence rela­
tions. A well-known standard way to obtain such relations is provided by the 
method of integration by parts1 (IBP) [6] which is based on putting to zero 
any integral of the form 

J d d of 
d kld k2··· akr 

over loop moment a k1 , k2, ... , ki, ... within dimensional regularization with 
the space-time dimension d = 4 - 2c- as a regularization parameter [4, 5, 7]. 
Here f is an integrand of a Feynman integral; it depends on the loop and 
external momenta. More precisely, one tries to use IBP relations in order to 
express a general dimensionally regularized integral from the given family 
as a linear combination of some irreducible integrals which are also called 
master integrals. Therefore the whole problem decomposes into two parts: a 
solution of the reduction procedure and the evaluat ion of the master Feynman 
integrals. Observe that in such complicated situations, with the great variety 
of relevant scalar integrals, one really needs to know a complete solution of 
the recursion problem, i.e. to learn how an arbitrary integral with general 
integer powers of the propagators and powers of irreducible monomials in the 
numerator can be evaluated. 

To illustrate the methods of evaluation that we are going to study in this 
book let us first orient ourselves at the evaluation of individual Feynman 
integrals, which might be master integrals, and take the simple scalar one­
loop graph r shown in Fig. 1.1 as an example. The corresponding Feynman 
integral constructed with scalar propagators is written as 

2 2 J ddk 
F r ( q ' m ; d) = ( k2 - m 2) ( q - k )2 . (1.1) 

1 As is explained in textbooks on integral calculus, the method of IBP is applied 

with the help of the relation J: dxuv' = uvl~- J: dxu'v as follows. One tries to 
represent the integrand as uv' with some u and v in such a way that the integral 
on the right-hand side, i.e. of u'v will be simpler. We do not follow this idea in 
the case of Feynman integrals. Instead we only use the fact that an integral of the 
derivative of some function is zero, i.e. we always neglect the corresponding surface 
terms. So the name of the method looks misleading. It is however unambiguously 
accepted in the physics community. 
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Fig. 1.1. One-loop self-energy graph. The dashed line 
denotes a massless propagator 

The same picture Fig. 1.1 can also denote the Feynman integral with 
general powers of the two propagators, 

2 2 J ~k 
Fr(q , m ; a1, a2, d) = (k2 _ m2)a1 [(q _ k)2Ja2 • 

(1.2) 

Suppose, one needs to evaluate the Feynman integral Fr(q2 , m 2 ; 2, 1, d) = 
F(2, 1, d) which is finite in four dimensions, d = 4. (It can also be depicted 
by Fig. 1.1 with a dot on the massive line.) There is a lot of ways to evaluate 
it. For example, a straightforward way is to take into account the fact that 
the given function of q is Lorentz-invariant so that it depends on the exter­
nal momentum through its square, q2 • One can choose a frame q = ( q0 , O), 
introduce spherical coordinates for k, integrate over angles, then over the 
radial component and, finally, over k0 . This strategy can be, however, hardly 
generalized to multi-loop2 Feynman integrals. 

Another way is to use a dispersion relation that expresses Feynman inte­
grals in terms of a one-dimensional integral of the imaginary part of the given 
Feynman integral, from the value of the lowest threshold to infinity. This dis­
persion integral can be expressed by means of the well-known Cutkosky rules. 
We shall not apply this method, which was, however, very popular in the early 
days of perturbative quantum field theory, and only briefly comment on it in 
Appendix F. 

Let us now turn to the methods that will be indeed actively used in this 
book. To illustrate them alllet me use this very example of Feynman integrals 
(1.2) and present main ideas of these methods, with the obligation to present 
the methods in great details in the rest of the book. 

First, we will exploit the well-known technique of alpha or Feynman pa­
rameters. In the case of F(2, 1, d), one writes down the following Feynman­
parametric formula: 

1 - 2 {1 ~d~ 
(k2- m2)2(q- k)2 - Jo [(k2- m2)~ + (1- ~)(q- k)2 + i0)3 (1.3) 

Then one can change the order of integration over ~ and k, perform inte­
gration over k with the help of the formula (A.1) (which we will derive in 
Chap. 3) and obtain the following representation: 

F( d) - -. d/2 ( ) 11 d~ ~-E: 
2, 1, - 11r r 1 + c: [ 2 2 ( ) . Jl+ o m - q 1 - ~ - 10 t: 

(1.4) 

2 Since the Feynman integrals are rather complicated objects the word 'multi­
loop' means the number of loops greater than one ;-) 
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This integral is easily evaluated at d = 4 with the following result: 

In (1 q2 jm2 ) 
F(2, 1, 4) = i1r2 - 2 . (1.5) 

q 

In principle, any given Feynman integral F( a 1 , a2 , d) with concrete num­
bers a1 and a2 can similarly be evaluated by Feynman parameters. In par­
ticular, F(1, 1, d) reduces to 

( ) - • d/2 ( ) 11 d~ ~-E 
F 1, 1, d - m r s [ 2 2 ( ) . l o m - q 1 - ~ - 10 c: 

(1.6) 

There is an ultraviolet (UV) divergence which manifests itself in the first pole 
of the function r( E), i.e. at d = 4. The integral can be evaluated in expansion 
in a Laurent series in E, for example, up to s 0 : 

F(1, 1,d) = i1fd/2e-1 Ec [~ -lnm2 + 2 

-(1-:22 )ln(1-~2 )+0(s)J, (1.7) 

where /E is Euler's constant. 
We shall study the method of Feynman and alpha parameters in Chap. 3. 

Another method which plays an essential role in this book is based on the 
Mellin-Barnes (MB) representation. The underlying idea is to replace asum 
of terms raised to some power by the product of these terms raised to certain 
powers, at the cost of introducing an auxiliary integration that goes from 
-ioo to +ioo in the complex plane. The most natural way to apply this 
representation is to write down a massive propagator in terms of massless 
ones. For F(2, 1,4), we can write 

1 1 J+ioo (m2Y 
( 2 2 )2 = -. dz ( k2 )2+z F(2 + z)r( -z) . m - k 21fl -ioo -

(1.8) 

Applying (1.8) to the first propagator in (1.2), changing the order of inte­
gration over k and z and evaluating the interna! integral over k by means of 
the one-loop formula (A.7) (which we will derive in Chap. 3) we arrive at the 
following onefold MB integral representation: 

iJrd/2 F(1- c) 1 J+ioo ( m2 ) z 
F(2, 1, d) = - ( -q2)l+c 2Jri -ioc dz -q2 

F(1 + s + z)r( -E- z)r( -z) 
X . 

F(1- 2c- z) 
(1.9) 

The contour of integration is chosen in the standard way: the poles with a 
r( ... + z) dependence are to the left of the contour and the poles with a 
r( ... - z) dependence are to the right of it. If Ici is small enough we can 
choose this contour as a straight line parallel to the imaginary axis with 
-1 < Rez <O. For d = 4, we obtain 
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F(2, 1, 4) =- m2 -. dz m 2 F(z)F( -z) . · 2 1 J+ioo ( 2 ) z 

q 2m -ioo -q 
(1.10) 

By closing the integration contour to the right and taking a series of residues 
at the points z =O, 1, ... , we reproduce (1.5). Using the same technique, any 
integral from the given family can similarly be evaluated. 

We shall study the technique of MB representation in Chap. 4 where 
we shall see, through various examples, how, by introducing MB integra­
tions in an appropriate way, one can analytically evaluate rather complicated 
Feynman integrals. 

Let us, however, think about a more economica! strategy based on IBP 
relations which would enable us to evaluate any integral (1.2) as a linear com­
bination of some master integrals. Putting to zero dimensionally regularized 
integrals of fk · k f ( a1, a2) and q· fk f ( a1, a2), where f ( a1, a2) is the integrand 
in (1.2), and writing down obtained relations in terms of integrals of the given 
family we obtain the following two IBP relations: 

d- 2a1- a2- 2m2a11+- a22+(1-- q2 + m2) =O, 

a2 - a1 - a11 + ( q2 + m2 - 2-) - a22+ (1- - q2 + m 2) = O , 

(1.11) 

(1.12) 

in the sense that they are applied to the general integral F(a1 , a2 ). Here the 
standard notation for increasing and lowering operators has been used, e.g. 
1 +2- F(a1, a2) = F(a1 + 1, a2- 1). 

Let us observe that any integral with a1 :::; O is zero because it is a massless 
tadpole which is naturally put to zero within dimensional regularization. 
Moreover, any integral with a 2 :::; O can be evaluated in terms of gamma 
functions for general d with the help of (A.3) (which we will derive in Chap. 3). 
The number a2 can be reduced either to one or to a non-positive value using 
the following relation which is obtained as the difference of (1.11) multiplied 
by q2 + m2 and (1.12) multiplied by 2m2: 

(q2 - m2)2a22+ = (q2 - m2)a21-2+ 

-(d- 2a1- a2)q2 - (d- 3a2)m2 + 2m2al1 +2- . 

(1.13) 

Indeed, when the left-hand side of (1.13) is applied to F(a1 , a2), we obtain 
integrals with reduced a 2 or, due to the first term on the right-hand side, 
reduced a1. 

Suppose now that a2 = 1. Then we can use the difference of relations 
(1.11) and (1.12), 

(1.14) 

by writing down a 1 ( q2 - m 2 ) 1 + through the rest terms, and reduce the index 
a1 to one or the index a2 to zero. We see that we can now express any integral 
of the given family as a linear combination of the integral F(1, 1) and simple 
integrals with a2 :::; O which can be evaluated for general d in terms of gamma 
functions. In particular, we ha ve 
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1 
F(2, 1) = 2 2 [(1- 2s)F(1, 1)- F(2, O)] 

m -q 
(1.15) 

At this point, we can stop our activity because we have already essen­
tially solved the problem. In fact, we shall later encounter several examples 
of non-trivial calculations where any integral is expressed in terms of some 
complicated master integrals and families of simple integrals. However, math­
ematically ( and aesthetically), it is natural to be more curious and wonder 
about the minimal number of master integrals which form a linearly inde­
pendent hasis in the family of integrals F( a1, a2 ). We will do this in Chaps. 5 
and 6. In Chap. 5, we shall investigate various examples, starting from sim­
ple ones, where the reduction of a given class of Feynman integrals can be 
performed by solving IBP recurrence relations. 

If we want to be maximalists, i.e. we are oriented at the minimal number of 
master integrals, we expect that any Feynman integral from a given family, 
F( a1, a2, ... ) can be expressed linearly in terms of a finite set of master 
integrals: 

(1.16) 

These master integrals l; cannot be reduced further, i.e. expressed as linear 
combinations of other Feynman integrals of the given family. 

There were several attempts to systematize the procedure of solving IBP 
recurrence relations. Some of them will be described in the end of Chap. 5. 
One of the corresponding methods [1,2, 11] is based onan appropriate para­
metric representation which is used to construct the coefficient functions 
c;(F(a1 , a2, ... )) = ci(a1, a2, ... ) in (1.16). The integrand of this representa­
tion consists of the standard factors x;ai, where the integration parameters 
xi correspond to the denominators of the propagators, and a polynomial in 
these variables raised to the power ( d - h - 1) /2, where h is the number of 
loops for vacuum integrals and some effective loop number, otherwise. This 
polynomial is constructed for the given family of integrals according to some 
simple rules. An important property of such a representation is that it auto­
matically satisfies IBP relations written for this family of integrals, provided 
one can use IBP in this parametric representation. For example, for the fam­
ily of integrals F(a1 ,a2 ) we are dealing with in this chapter, the auxiliary 
representation takes the form 

J J dx1dx2 (d-3)/2 
c;(a1, a2)"' a 1 a2 [P(xl, x2)] , 

xl x2 
(1.17) 

with the basic polynomial 

P(x1,x2) = -(xl- x2 + m 2)2 - q2(q2 - 2m2 - 2(xl + x2)). (1.18) 

As we shall see in Chap. 6, such auxiliary representation provides the 
possibility to characterize the master integrals and construct algorithms for 
the evaluation of the corresponding coefficient functions. When looking for 
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candidates for the master integrals one considers integrals of the type (1.17) 
with indices ai equal to one or zero and tries to see whether such integrals 
can be understood non-trivially. According to a general rule, which we will 
explain in Chap. 6, the value ai = 1 of some index forces us to understand 
the integration over the corresponding parameter Xi as a Cauchy integration 
contour around the origin in the complex Xi-plane which in turn reduces to 
taking derivatives of the factor p(d-3)12 in Xi at Xi = O. If an index ai is 
equal to zero one has to understand the corresponding integration in some 
sense, which implies the validity of IBP in the integration over Xi. 

In our present example, let us therefore consider the candidates F(1, 1), 
F(1, 0), F(O, 1) and F(O, 0). Of course, we neglect the last two ofthem because 
they are massless tadpoles. Thus we are left with the first two integrals. 
According to the rule formulated above, the coefficient function of F(1, 1) 
is evaluated as an iterated Cauchy integral over x1 and x 2 . It is therefore 
constructed in a non-trivial (non-zero) way and this integral is recognized as 
a master integral. For F(1, 0), only the integration over x1 is understood as a 
Cauchy integration, and the representation (1.17) gives, for the corresponding 
coefficient function, a linear combination of terms 

(1.19) 

with integer j and non-negative integer l. When j ~ O, the integration can be 
taken between the roots of the quadratic polynomial in the square brackets. 
Thus one can again construct a non-zero coefficient function and the integral 
F(1, O) turns out tobe our second (and the last) master integral. We shall see 
in Chap. 6 how (1.17) can be understood for j > O; this is indeed necessary 
for the construction of the coefficient function c2(a1, a2) at a2 >O. We shall 
also learn other details of this method illustrated though various examples. 
Anyway, the present example shows that this method enables an elegant and 
transparent classification of the master integrals: the presence of ( only two) 
master integrals F(1, 1) and F(1, O) in the given recursion problem is seen in 
a very simple way, as compared with the complete solution of the reduction 
procedure outlined above. 

One more powerful method that has been proven very useful in the evalua­
tion of the master integrals is based on using differential equations (DE) [8, 9]. 
Let us illustrate it again with the help of our favourite example. To evaluate 
the master integral F(1, 1) let us observe that its derivative in m2 is nothing 
but F(2, 1) (because (aj(am2 )) (1/(k2 - m2)) = 1/(k2 - m2) 2 ) which is ex­
pressed, according to our reduction procedure, by (1.15). Therefore we arrive 
at the following differential equation for f(m2) = F(1, 1): 

a 2 1 [ 2 ] -a 2 f(m) = 2 2 (1- 2c)f(m ) - F(2,0) , 
m m -q 

(1.20) 

where the quantity F(2, O) is a simpler abject because it can be evaluated in 
terms of gamma functions for general c. The general solution to this equation 
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can easily be obtained by the method of the variation of the constant, with 
fixing the general solution from the boundary conditionat m =O. Eventually, 
the above result (1. 7) can successfully be reproduced. 

As we shall see in Chap. 7, the strategy of the method of DE in much 
more non-trivial situations is similar: one takes derivatives of a master integral 
in some arguments, expresses them in terms of original Feynman integrals, 
by means of some variant of solution of IBP relations, and solves resulting 
differential equations. 

However, before studying the methods of evaluation, basic definitions are 
presented in Chap. 2 where tools for dealing with Feynman integrals are also 
introduced. Methods for evaluating individual Feynman integrals are studied 
in Chaps. 3, 4 and 7 and the reduction problem is studied in Chaps. 5 and 6. 
In Appendix A, one can find a table of basic one-loop and two-loop Feyn­
man integrals as well as some useful auxiliary formulae. Appendix B contains 
definitions and properties of special functions that are used in this book. A 
table of summation formulae for onefold series is given in Appendix C. In 
Appendix D, a table of onefold MB integrals is presented. Appendix E con­
tains analysis of convergence of Feynman integrals as well a description of a 
numerica! method of evaluating Feynman integrals based on sector decom­
positions. 

Some other methods are briefly characterized in Appendix F. These are 
mainly old methods whose details can be found in the literature. If I do not 
present some methods, this means that either I do not know about them, or I 
do not know physically important situations where they work not worse than 
than the methods I present. 

I shall use almost the same examples in Chaps. 3~7 and Appendix F to 
illustrate all the methods. On the one hand, this will be done in order to have 
the possibility to compare them. On the other hand, the methods often work 
together: for example, MB representation can be used in alpha or Feynman 
parametric integrals, the method of DE requires a solution of the reduction 
problem, boundary conditions within the method of DE can be obtained by 
means of the method of MB representation, auxiliary IBP relations within 
the method described in Chap. 6 can be solved by means of an algorithm 
originated within another approach to solving IBP relations. 

Basic notational conventions are presented below. The notation is de­
scribed in more detail in the List of Symbols. In the Index, one can find 
numbers of pages where definitions of basic notions are introduced. 

1.1 N otation 

We use Greek and Roman letters for four-indices and spatial indices, respec­
tively: 

x11 = (x0 ,x), 
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q·x = q0 x0 - q·x = 9J.Lvq~-'xv . 

The parameter of dimensional regularization is 

d=4-2E. 

The d-dimensional Fourier transform and its inverse are defined as 

j(q) = J ddx eiq·x f(x) ' 

f(x) = (2~)d J ddqe-ix·q J(q) . 

In order to avoid Euler's constant 1E in Laurent expansions in E, we pull 
out the factor e-rEE per loop. 
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2 Feynman lntegrals: 
Basic Definitions and Tools 

In this chapter, basic definitions for Feynman integrals are given, ultraviolet 
(UV), infrared (IR) and collinear divergences are characterized, and basic 
tools such as alpha parameters are presented. Various kinds of regularizations, 
in particular dimensional one, are presented and properties of dimensionally 
regularized Feynman integrals are formulated and discussed. 

2.1 Feynman Rules and Feynman Integrals 

In perturbation theory, any quantum field model is characterized by a La­
grangian, which is represented as a sum of a free-field part and an interac­
tion part, L = Lo + Lr. Amplitudes of the model, e.g. S-matrix elements 
and matrix elements of composite operators, are represented as power series 
in coupling constants. Starting from the S-matrix represented in terms of 
the time-ordered exponent of the interaction Lagrangian which is expanded 
with the application of the Wick theorem, or from Green functions written 
in terms of a functional integral treated in the perturbative way, one obtains 
that, in a fixed perturbation order, the amplitudes are written as finite sums 
of Feynman diagrams which are constructed according to Feynman rules: 
lines correspond to Lo and vertices are determined by Lr. The basic building 
block of the Feynman diagrams is the propagator that enters the relation 

(2.1) 

Here DF,i is the Feynman propagator of the field of type i and the colons 
denote a normal product of the free fields. The Fourier transforms of the 
propagators have the form 

iJ ·() _ Jd4 ip·xD ·( ) _ iZi(P) 
F,z p = xe F,z X - ( 2 2 + 'Q)a· ' p -mi 1 • 

(2.2) 

where mi is the corresponding mass, Zi is a polynomial and ai 1 or 2 
(for the gluon propagator in the general covariant gauge). The powers of the 
propagators al will be also called indices. For the propagator of the scalar 
field, we have Z = 1, a = 1. This is not the most general form of the prop­
agator. For example, in the axial or Coulomb gauge, the gluon propagator 
has another form. We usually omit the causal iO for brevity. Polynomials 
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associated with vertices of graphs can be taken into account by means of 
the polynomials Z1. We also omit the factors of i and (21r)4 that enter in the 
standard Feynman rules (in particular, in (2.2)); these can be included at the 
end of a calculation. 

Eventually, we obtain, for any fixed perturbation order, asum ofFeynman 
amplitudes labelled by Feynman graphs1 constructed from the given type of 
vertices and lines. In the commonly accepted physical slang, the graph, the 
corresponding Feynman amplitude and the integral are all often called the 
'diagram'. A Feynman graph differs from a graph by distinguishing a subset 
of vertices which are called external. The external momenta or coordinates on 
which a Feynman integral depends are associated with the external vertices. 

Thus quantities that can be computed perturbatively are written, in any 
given order of perturbation theory, through a sum over Feynman graphs. For 
a given graph r, the corresponding Feynman amplitude 

Gr(q" ... ,q.+,) ~ (2~)4 iJ ( ~ q;) Fr(q,, ... , q.) 

can be written in terms of an integral over loop momenta 

L 

Fr(qb ... , qn) = J d4k1 ... J d4kh IT DF,l(pl) , 
1=1 

(2.3) 

(2.4) 

where d4 ki = dk? dki, and a factor with a power of 21!' is omitted, as we 
have agreed. The Feynman integral Fr depends on n linearly independent 
external momenta qi = ( q?, q i); the corresponding integrand is a function of 
L internal momenta Pi, which are certain linear combinations of the external 
momenta and h =L-V+ 1 chosen loop momenta ki, where L, V and h are 
numbers of lines, vertices and (independent) loops, respectively, of the given 
graph. 

After some tensor reduction2 one can deal only with scalar Feynman in­
tegrals. To do this, various projectors can be applied. For example, in the 
case of Feynman integrals contributing to the electromagnetic formfactor 
(see Fig. 2.1) F'-'(pl,P2) = 'YMF1(q2) + aMvqvF2(q2), where q = Pl- P2, 'YM 
and aMv are "(- and a-matrices, respectively, the following projector can be 
applied to extract scalar integrals which contribute to the formfactor F1 m 
the massless case (with F2 = 0): 

1 When dealing with graphs and Feynman integrals one usually does not bother 
about the mathematical definition of the graph and thinks about something that 
is built of lines and vertices. So, a graph is an ordered family {V, C, 7r±}, where V 
is the set of vertices, C is the set of lines, and 7r ± : C ---+ V are two mappings that 
correspond the initial and the final vertex of a line. By the way, mathematicians 
use the word 'edge', rather than 'line'. 

2In one-loop, the well-known general reduction was described in [23]. Steps 
towards systematical reduction at the two-loop level were made in [1]. 
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P1 

P2 

Fig. 2.1. Electromagnetic formfactor 

(2.5) 

where p = 'YJ.I.PJ.I. aud d is the parameter of dimensional regularization (to be 
discussed shortly in Sect. 2.4). 

Anyway, after applying some projectors, one obtains, for a given graph, a 
family of Feynman integrals which have various powers of the scalar parts of 
the propagators, 1/(pf -m[)a1 , aud various monomials in the numerator. The 
denominators p[ can be expressed linearly in terms of scalar products of the 
loop and external momenta. The factors in the numerator can also be chosen 
as quadratic polynomials of the loop aud external momenta raised to some 
powers. It is convenient to consider both types of the quadratic polynomials 
on the same footing aud treat the factors in the numerators as extra factors 
in the denominator raised to negative powers. The set of the denominators 
for a given graph is linearly independent. It is natural to complete this set 
by similar factors coming from the numerator in such a way that the whole 
set will be linearly independent. 

Therefore we come to the following family of scalar integrals generated 
by the given graph: 

( ) J Jd 4 kl···d4 kh 
F a1, ... , aN = · · · Ea' EaN ' 

1 · · · N 
(2.6) 

where ki, i = 1, ... , h , are loop momenta, ai are integer indices, aud the 
denominators are given by 

(2.7) 

with r = 1, ... , N. The momenta Pi are either the loop momenta Pi = ki , i = 
1, ... , h, or independent external momenta Ph+l , . .. , Ph+n of the graph. 

For a usual Feynman graph, the denominators Er determined by some 
matrix A are indeed quadratic. However, a more general class of Feynman 
integrals where the denominators are linear with respect to the loop and/or 
external momenta also often appears in practica! calculations. Linear denom­
inators usually appear in asymptotic expansions of Feynman integrals within 
the strategy of expansion by regions [2, 29]. Such expansions provide a useful 
link of an initial theory described by some Lagrangian with various effective 
theories where, indeed, the denominators of propagators can be linear with 
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respect to the external and loop momenta. For example, one encounters the 
following denominators: p · k, with an external momentum p on the light cone, 
p2 = O, for the Sudakov limit and with p2 =/= O for the quark propagator of 
HQET [14, 19, 22]. Some non-relativistic propagators appear within threshold 
expansion and in the effective theory called NRQCD [4, 18, 35], for example, 
the denominator k0 - k2 /(2m). 

2.2 Divergences 

As has been known from early days of quantum field theory, Feynman in­
tegrals suffer from divergences. This word means that, taken naively, these 
integrals are ill-defined because the integrals over the loop momenta gener­
ally diverge. The ultraviolet (UV) divergences manifest themselves through 
a divergence of the Feynman integrals at large loop momenta. Consider, for 
example, the Feynman integral corresponding to the one-loop graph r of 
Fig. 2.2 with scalar propagators. This integral can be written as 

J d4 k 
Fr(q) = (k2- mi)[(q- k)2- m§] ' (2.8) 

where the loop momentum k is chosen as the momentum of the first line. 
Introducing faur-dimensional (generalized) spherical coordinates k = rk in 
(2.8), where k is on the unit (generalized) sphere and is expressed by means 
of three angles, and counting powers of propagators, we obtain, in the limit of 
large r, the following divergent behaviour: J;; dr r- 1 . For a general diagram, 
a similar power counting at large values of the loop momenta gives 4h(F)-
1 from the Jacobian that arises when one introduces generalized spherical 
coordinates in the (4 x h)-dimensional space of h loop four-momenta, plus 
a contribution from the powers of the propagators and the degrees of its 
polynomials, and leads to an integral r; dr rw- 1 ' where 

w=4h-2L+ Lnt 
l 

(2.9) 

is the (UV) degree of divergence of the graph. (Here nt are the degrees of the 
polynomials Zt.) 

q-k 

k Fig. 2.2. One-loop self-energy diagram 
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This estimate shows that the Feynman integral is UV convergent overall 
(no divergences arise from the region where all the loop momenta are large) 
if the degree of divergence is negative. We say that the Feynman integral has 
a logarithmic, linear, quadratic, etc. overall divergence when w = O, 1, 2, ... , 
respectively. To ensure a complete absence of UV divergences it is necessary 
to check convergence in various regions where some of the loop momenta 
become large, i.e. to satisfy the relation w('y) < O for all the subgraphs 'Y of 
the graph. We call a subgraph UV divergent if w( 'Y) 2: O. In fact, it is sufficient 
to check these inequalities only for one-particle-irreducible (1PI) subgraphs 
(which cannot be made disconnected by cutting a line). It turns out that 
these rough estimates are indeed true- see some details in Sect. E.l. 

lf we turn from momentum space integrals to some other representation 
of Feynman diagrams, the UV divergences will manifest themselves in other 
ways. For example, in coordinate space, the Feynman amplitude (i.e. the 
inverse Fourier transform of (2.3)) is expressed in terms of a product of the 
Fourier transforms of propagators 

L 

IT Dp,z(xz;- xzf) 
l=l 

(2.10) 

integrated over four-coordinates Xi corresponding to the internal vertices. 
Here li and lr are the beginning and the end, respectively, of a line l. 

The propagators in coordinate space, 

1 J 4 - . Dp,z(x) = (211')4 d pDp,z(p)e-•x·p, (2.11) 

are singular at small values of coordinates x = ( x0 , x). To reveal this singu­
larity explicitly let us write down the propagator (2.2) in terms of an integral 
over a so-called alpha-parameter 

fJ (p) =iZ (!~)e2iuz·pl (-Wz 1oo da aaz-lei(p2-m2)az F,z z 2. j:l r( ) z z . 
1 uUz uz=O az o 

(2.12) 

which turns out to be a very useful tool both in theoretical analyses and 
practica! calculations. 

To present an explicit formula for the scalar (i.e. for a = 1 and Z = 1) 
propagator 

Dp(p) = 1oo da ei(p2-m2)a (2.13) 

in coordinate space we insert (2.13) into (2.11), change the order of integra­
tion over p and a and take the Gaussian integrations explicitly using the 
formula 

Jd4k i(ak2 -2q·k) · 2 -2 -iq2 ja e = -111' a e , (2.14) 
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which is nothing but a product of four one-dimensional Gaussian integrals: 

100 dko ei(ak6-2qoko) = E e-iq6/a+i'rr/4, 

-00 V~ 

100 dk· e-i(ak;-2qiki) = ~7r eiq;/a-irr/4 1. = 1 2 3 
J ' ' ' -oo a 

(2.15) 

(without summation over j in the last formula). 
The final integration is then performed using [26] or in MATHEMATICA [37] 

with the foliowing result: 

DF(x) = m K1 (mJ -x2 + iO) 
4rr2v-x2 + iO 

1 1 ( 2 2) = - 4 2 - 2 -.-+0 m lnm , 
7r X - IO 

(2.16) 

where K 1 is a Bessel special function [12]. The leading singularity at x = O 
is given by the value of the coordinate space massless propagator. 

Thus, the inverse Fourier transform of the convolution integral (2.8) equals 
the square of the coordinate-space scalar propagator, with the singularity 
(x2 - i0)-2 . Power-counting shows that this singularity produces integrals 
that are divergent in the vicinity of the point x = O, and this is the coordinate 
space manifestation of the UV divergence. 

The divergences caused by singularities at smaliloop momenta are calied 
infrared (IR) divergences. First we distinguish IR divergences that arise at 
general values of the externa! momenta. A typical example of such a diver­
gence is given by the graph of Fig. 2.2 when one of the lines contains the 
second power of the corresponding propagator, so that a1 = 2. If the mass of 
this line is zero we obtain a factor 1/(k2 ) 2 in the integrand, where k is chosen 
as the momentum of this line. Then, keeping in mind the introduction of 
generalized spherical coordinates and performing power-counting at smali k 
(i.e. when ali the components of the four-vector k are smali), we again en­
counter a divergent behaviour f0A dr r- 1 but now at smali values of r. There 
is a similarity between the properties ofIR divergences of this kind and those 
of UV divergences. One can define, for such off-sheli IR divergences, an IR 
degree of divergence, in a similar way to the UV case. A reasonable choice is 
provided by the value 

w('y) = -w(rj;y) = w(;y)- w(F), (2.17) 

where ;y = F\ 'Y is the completion of the subgraph 'Y in a given graph r 
and r h denotes the reduced graph which is obtained from r by reducing 
every connectivity component of 'Y to a point. The absence of off-sheli IR 
divergences is guaranteed if the IR degrees of divergence are negative for ali 
massless subgraphs 'Y whose completions ;y include ali the externa! vertices in 
the same connectivity component. (See details in [8, 27] and Sect. E.l.) The 
off-sheli IR divergences are the worst but they are in fact absent in physicaliy 
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meaningful theories. However, they play an important role in asymptotic 
expansions of Feynman diagrams (see [29]). 

The other kinds of IR divergences arise when the external momenta con­
sidered are on a surface where the Feynman diagram is singular: either on a 
mass shell or ata threshold. Consider, for example, the graph Fig. 2.2, with 
the indices a1 = 1 and a2 = 2 and the masses m1 = O and m2 = m =f O on 
the mass shell, q2 = m 2 • With k as the momentum of the second line, the 
corresponding Feynman integral is of the form 

J d4k 
Fr(q; d) = k2(k2- 2q·k)2 . (2.18) 

At small values of k, the integrand behaves like 1/[4k2 (q·k)2], and, with the 
help of power counting, we see that there is an on-shell IR divergence which 
would not be present for q2 =f m 2 . 

If we consider Fig. 2.2 with equal masses and indices a1 = a2 = 2 at 
the threshold, i.e. at q2 = 4m2 , it might seem that there is a threshold IR 
divergence because, choosing the momenta of the lines as q/2 + k and q/2- k, 
we obtain the integral 

(2.19) 

with an integrand that behaves at small k as 1/(q · k)4 and is formally diver­
gent. However, the divergence is in fact absent. (The threshold singularity at 
q2 = 4m2 is, of course, present.) Nevertheless, threshold IR divergences do 
~xist. For example, the sunset3 diagram of Fig. 2.3 with general masses at 
threshold, q2 = (m1 + m 2 + m 3)2, is divergent in this sense when the sum 
of the integer powers of the propagators is greater than or equal to five (see, 
e.g. [11]). 

Fig. 2.3. Sunset diagram 

The IR divergences characterized above are local in momentum space, 
i.e. they are connected with special points of the loop integration momenta. 
Collineardivergences arise at lines parallel to certain light-like four-vectors. A 
typical example of a collinear divergence is provided by the massless triangle 
graph of Fig. 2.4. Let us take PI = p~ = O and all the masses equal to zero. 
The corresponding Feynman integral is 

3 called also the sunrise diagram, or the London transport diagram. 
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Pl 

Pl- P2 

P2 Fig. 2.4. One-loop triangle diagram 

(2.20) 

At least an on-shell IR divergence is present, because the integral is divergent 
when k --> O ( componentwise). However, there are also divergences at non­
zero values of k that are collinear with Pl or P2 and where k 2 ,...., O. This 
follows from the fact that the product 1/[(k2 - 2p·k)k2], where p2 =O and 
p f O, generates collinear divergences. To see this let us take residues in the 
upper complex half plane when integrating this product over ko. For example, 
taking the residue at k0 = -Jkl +iO leads to an integral containing 1/(p·k) = 
1/[p0 JkJ(1- cos O)], where O is the angle between the spatial components k 
and p. Thus, for small O, we have a divergent integration over angles because 
of the factor d cos O /(1-cos O) ,...., dO /0. The second residue generates a similar 
divergent behaviour- this can be seen by making the change k--> p- k. 

Another way to reveal the collinear divergences is to introduce the light­
cone coordinates k± = ko ± k3, k = (k1, k2). If we choose p with the only 
non-zero component P+, we shall see a logarithmic divergence coming from 
the region k_ rv k2 rv o just by power counting. 

These are the main types of divergences of usual Feynman integrals. Vari­
ous special divergences arise in more general Feynman integrals (2.6) that can 
contain linear propagators and appear on the right-hand side of asymptotic 
expansions in momenta and masses and in associated effective theories. For 
example, in the Sudakov limit, one encounters divergences that can be classi­
fied as UV collinear divergences. Another situation with various non-standard 
divergences is provided by threshold expansion and the corresponding effec­
tive theories, NRQCD and pNRQCD, where special power counting is needed 
to characterize the divergences. 

2.3 Alpha Representation 

A useful tool to analyse the divergences of Feynman integrals is the so-called 
alpha representation based on (2.12). It can be written down for any Feyn­
man integral. For example, for (2.8), one inserts (2.12) for each of the two 
propagators, takes the four-dimensional Gaussian integral by means of (2.14) 
to obtain 
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(2.21) 

For a usual general Feynman integral, this procedure can also explicitly 
be realized. Using (2.12) for each propagator of a general usual Feynman 
integral (i.e., with usual propagators (2.2)) one takes (see, e.g., [20]) 4h­
dimensional Gauss integrals by means of a generalization of (2.14) to the 
case of an arbitrary number of loop integration momenta: 

1 d4k, d4k,exp [· ( ~A.;k;·k; +2~q; k;) l 
= i-h7f2h(detA)-2 exp [-iL:Ai/qi·qjl 

•,J 
(2.22) 

Here A is an h x h matrix and A-1 its inverse.4 

The elements of the inverse matrix involved here are rewritten in graph­
theoreticallanguage (see details in [5, 20]), and the resulting alpha represen­
tation takes the form [6] 

i-a-h1f2h 

Fr(ql, ... , qn; d) = TI! F(al) 

X r)() do:l ... r)() do:L II Q:~z-lu-2zeiV/U-i'L.m~az' 
Jo lo 1 

(2.23) 

where a= 'L.a1, and U and V are the well-known functions 

(2.24) 
TET1l(j:T 

V= L II O:! (qr)2 (2.25) 
TET2 l(j:T 

In (2.24), the sum runs over trees of the given graph, i.e. maximal connected 
subgraphs without loops, and, in (2.25), over 2-trees, i.e. subgraphs that do 
not involve loops and consist of two connectivity components; ±qT is the 
sum of the external momenta that flow into one of the connectivity compo­
nents of the 2-tree T. (It does not matter which component is taken because 
of the conservation law for the external momenta.) The products of the al­
pha parameters involved are taken over the lines that do not belong to the 

41n fact, the matrix A involved here equals ef]e+ with the elements of an arbi­
trarily chosen column and row with the same number deleted. Here e is the incidence 
matrix of the graph, i.e. eiz = ±1 if the vertex i is the beginning/end of the line 
l, e+ is its transpose and j3 consists of the numbers 1/az on the diagonal - see, 
e.g., [20]. 
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given tree T. The functions U and V are homogeneous functions of the alpha 
parameters with the homogeneity degrees hand h + 1, respectively. 

The factor Z is responsible for the non-scalar structure of the diagram: 

z = II Zz (~~) ei(2B-K)/U 

1 21âuz 
u1= ... uL=O 

(2.26) 

where (see, e.g., [27, 38]) 

B = Luz L qr II az' , (2.27) 
l TET/ l'rf.T 

K = L II az (:L±uz) 2 

TETD lrf.T l 

(2.28) 

In (2.27), the sum is taken over trees T'/ that include a given line l, and qr is 
the total external momentum that flows through the line l (in the direction of 
its orientation). In (2.28), the sum is taken over pseudotrees T 0 (a pseudotree 
is obtained from a tree by adding a line), and the sum in l is performed 
over the loop (circuit) of the pseudotree T, with a sign dependent on the 
coincidence of the orientations of the line l and the pseudotree T. 

The alpha representation of a general h-loop Feynman integral is useful for 
general analyses. In practica! calculations, e.g. at the two-loop level, one can 
derive the alpha representation for concrete diagrams by hand, rather than 
deduce it from the general formulae presented above. StiU, even in practice, 
such general formulae can provide advantages because the evaluation of the 
functions of the alpha representation can be performed on a computer. 

Let us stress that this terrible-looking machinery for evaluating the de­
terminant of the matrix A that arises from Feynman integrals, as well as 
for evaluating the elements of the inverse matrix, together with interpreting 
these results from the graph-theoretical point of view, is exactly the same as 
that used in the problem of the solution of Kirchhoff's laws for electrica! cir­
cuits, a problem typical of the nineteenth century. Recall, for example, that 
the parameters az play the role of ohmic resistances and that the expression 
(2.24) for the function U as asum over trees is a Kirchhoff result. 

Explicit formulae for Feynman integrals (2.6) with more general propa­
gators which can be linear are not known. In this situation, one can derive 
alpha representation for any given concrete Feynman integral using formulae 
like (2.12) and performing Gaussian integration as in the case of Feynman 
integrals with standard propagators. We will follow this way in Chap. 3. 

2.4 Regularization 

The standard way of dealing with divergent Feynman integrals is to introduce 
a regularization. This means that, instead of the original ill-defined Feynman 
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integral, we consider a quantity which depends on a regularization param­
eter, >., and formally tends to the initial, meaningless expression when this 
parameter takes some limiting value, >.=>.o. This new, regularized, quantity 
turns out to be well-defined, and the divergence manifests itself as a singular­
ity with respect to the regularization parameter. Experience tells us that this 
singularity can be of a power or logarithmic type, i.e. lnn(>.- >.0 )/(>.- >.0 )i. 

Although a regularization makes it possible to deal with divergent Feyn­
man integrals, it does not actually remove UV divergences, because this op­
eration is of an auxiliary character so that sooner or later it will be necessary 
to switch off the regularization. To provide finiteness of physical observables 
evaluated through Feynman diagrams, another operation, called renormal­
ization, is used. This operation is described, at the Lagrangian level, as a 
redefinition of the bare parameters of a given Lagrangian by inserting coun­
terterms. The renormalization at the diagrammatic level is called R-operation 
and removes the UV divergence from individual Feynman integrals. It is, how­
ever, beyond the scope of the present book. (See, however, some details in 
Sect. F.5, where the method ofIR rearrangement is briefly described.) 

An obvious way of regularizing Feynman integrals is to introduce a cut­
off at large values of the loop momenta. Another well-known regularization 
procedure is the Pauli-Villars regularization [24], which is described by the 
replacement 

1 

and its generalizations. For finite values of the regularization parameter M, 
this procedure clearly improves the UV asymptotics of the integrand. Here 
the limiting value of the regularization parameter is M = oo. 

If we replace the integer powers al in the propagators by general complex 
numbers At we obtain an analytically regularized [30] Feynman integral where 
the divergences of the diagram are encoded in the poles of this regularized 
quantity with respect to the analytic regularization parameters >.1• For exam­
ple, power counting at large values of the loop momentum in the analytically 
regularized version of (2.8) leads to the divergent behaviour J: dr r>- 1 +>-2- 3 , 

which results in a pole 1/(>.1 + >.2 - 2) at the limiting values of the regular­
ization parameters At = 1. 

For example, in the case of the analytically regularized integral of Fig. 2.2, 
we obtain 

e-i7r(.Xl +>-2+1)/211'2 r)() {00 a?l-la>-2-1 

Fr(q; >.1, >.2) = F(>.l)r(>.2) Jo Jo dal da2 (~1 + ~2)2 

( . 2 a1a2 '( 2 2 )) x exp 1q ( ) - 1 m1 a1 + m2a2 . 
a1 +a2 

(2.29) 

After the change of variables TJ = a1 + a2, ~ = al/(a1 + a 2) and explicit 
integration over ry, we arrive at 
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F ( . A A ) _ i7r(.x1 +.A2) i1r2 F(A1 + A2 - 2) 
r q, 1' 2 - e F(A1)F(A2) 

r1 e1-1( 1 -~).A2-1 

x lo d~ [mi~+ m5(1- ~) - q2~(1- ~) - iO].x1 +.A2- 2 . 
(2.30) 

Thus the UV divergence manifests itself through the first pole of the gamma 
function F(A1 + A2 - 2) in (2.30), which results from the integration over 
small values of "7 due to the power ry.A1+.A2- 3 . 

The alpha representation turns out to be very useful for the introduction 
of dimensional regularization, which is a commonly accepted computational 
technique successfully applied in practice and which will serve as the main 
kind of regularization in this book. Let us imagine that the number of space­
time dimensions differs from four. Tobe more precise, the number of space 
dimensions is considered to be d- 1, rather than three. (But, of course, we 
still think of an integer number of dimensions!) The derivation of the alpha 
representation does not change much in this case. The only essential change 
is that, instead of (2.14), we need to apply its generalization to an arbitrary 
number of dimensions, d: 

j ddkei(ak 2 -2q·k) = ei7r(1-d/2)/27rd/2a.-d/2e-iq2/n. (2.31) 

So, instead of (2.21), we have the following in d dimensions: 

Fr(q; d) = e-i7r(l+d/2)/27rd/21oo 1oo da.1 da.2 (a.1 + a.2)-d/2 

x exp (iq2 a.1a.2 - i(mia.1 + m~a.2)) . 
a.1 + a.2 

(2.32) 

The only two places where something has been changed are the exponent of 
the combination (a.1 + a.2) in the integrand and the exponents of the overall 
factors. 

Now, in order to introduce dimensional regularization, we want to consider 
the dimension d as a complex number. So, by definition, the dimensionally 
regularized Feynman integral for Fig. 2.2 is given by (2.32) and is a function 
of q2 as given by this integral representation. We choose d = 4- 2c:, where the 
value c: = O corresponds to the physical number of the space-time dimensions. 
By the same change of variables as used after (2.29), we obtain 

Fr(q; d) = e-i7r(l+d/2)/27rd/21oo dryryc-1 

x 11 d~ exp {iq2~(1- ~)"7- i[mÎ~ + m~(l- ~)]"7} . (2.33) 

This integral is absolutely convergent for O < Re c: < A ( where A = oo if both 
masses are non-zero and A = 1 otherwise; this follows from an IR analysis of 
convergence, which we omit here) and defines an analytic function of c:, which 
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is extended from this domain to the whole complex plane as a meromorphic 

function. 
After evaluating the integral over 7], we arrive at the following result: 

( . ) _ . d/2 ( ) { 1 d~ 
Fr q, d - 11r r E la [mi~+ m~(l -o - q2~(1- o - iOj" . 

(2.34) 

The UV divergence manifests itself through the first pole of the gamma func­

tion F(c) in (2.34), which results from the integration over small values of 7] 

in (2.33). 
This procedure of introducing dimensional regularization is easily gen­

eralized [6-8] to an arbitrary usual Feynman integral. Instead of (2.22), we 

use 

j d'k, d'kh exp [i ( t= A;jk; ki + 2 ~ q; k;)] 

= ei7rh(l-d/2)/27rhd/2 ( det A) -d/2 exp [-i 2:: Ai:/ qi ·qjl ' 
t,J 

(2.35) 

and the resulting d-dimensional alpha representation takes the form [6, 7] 
ei1r[ a+h(l-d/2)] /21rhd/2 

Fr(ql, ... 'qn; d) = ( -l)a TII r(az) 

X foc dal ... r= daL II a~'-lu-d/2zeiV/U-iL_mzaz 
la la z 

(2.36) 

Let us now define5 the dimensionally regularized Feynman integral by 

means of (2.36), treating the quantity d as a complex number. This is a 

function of kinematical invariants constructed from the external momenta 

and contained in the function V. In addition to this, we have to take care of 

polynomials in the external momenta and the auxiliary variables Uz hidden 

in the factor Z. We treat these objects q; and uz, as well as the metric tensor 

g11v, as elements of an algebra of covariants, where we have, in particular, 

5 An alternative definit ion of algebraic character [16, 32, 36] (see also [10]) exists 
and is based on certain axioms for integration in a space with non-integer dimension. 
It is unclear how to perform the analysis within such a definition, for example, how 
to apply the operations of taking a limit, differentiation, etc. to algebraically defined 
Feynman integrals in d dimensions, in order to say something about the analytic 
properties with respect to momenta and masses and the parameter of dimensional 
regularization. After evaluating a Feynman integral according to the algebraic rules, 
one arrives at some concrete function of these parameters but, before integration, 

one is dealing with an abstract algebraic abject. Let us remember, however, that, in 
practical calculations, one usually does not bother about precise definitions. From 
the purely pragmatic point of view, it is useless to think of a diagram when it is not 
calculated. On the other hand, from the pure theoretical and mathematical point 
of view, such a position is beneath criticism. ;-) 
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(a~r) uZ,= g~ol,l'' g~ = d. 

This algebra also includes the "(-matrices with anticommutation relations 
"fft'Yv + "fv'Yft = 2gftv so that 'Yft'YM = d, the tensor E",ftv:A, etc. 

Thus the dimensionally regularized Feynman integrals are defined as lin­
ear combinations of tensor monomials in the externa! momenta and other 
algebraic objects with coefficients that are functions of the scalar products 
qi-qj. However, this is not all, because we have to see that the a-integral is 
well-defined. Remember that it can be divergent, for various reasons. 

The alpha representation is not only an important technique for evalu­
ating Feynman integrals but also a very convenient tool for the analysis of 
their convergence. This analysis is outlined in Sect. E.l. It is based on de­
compositions of the alpha integral into so-called sectors where new variables 
are introduced in such a way that the integrand factorizes, i.e. takes the form 
of a product of some powers of the sector variables with a non-zero function. 
Eventually, in the new variables, the analysis of convergence reduces to power 
counting (for both UV and IR convergence) in one-dimensional integrals. As a 
result of this analysis, any Feynman integral considered at Euclidean externa! 
momenta qi, i.e. when any sum of incoming momenta is spacelike, is defined 
as meromorphic function of d with series of UV and IR poles [7, 25, 27, 31, 33]. 
Here it is also assumed that there are no massless detachable subgraphs, i.e. 
massless subdiagrams with zero externa! momenta. For example, a tadpole, 
i.e. a line with coincident end points, is a detachable subgraph. However, such 
diagrams are naturally put to zero in case they are massless - see a discussion 
below. 

U nfortunately, there are no similar mathematical results for Feynman 
integrals on a mass shell or a threshold which are really needed in practice 
and which be mainly considered in this book. However, in every concrete 
example considered below, we shall see that every Feynman diagram is indeed 
an analytical function of d, both in intermediate steps of a calculation and, 
of course, in our results. Still it would be nice to have also a mathematical 
theorem on the convergence of general Feynman integrals. On the other hand, 
there is a practica[ algorithm [3] based on some sector decompositions that 
can provide the resolution of the singularities in E for any given Feynman 
integral in the case where all the non-zero kinematical invariants have the 
same sign (and, possibly, are on a mass shell or ata threshold). This algorithm 
is described in Sect. E.2. 

2.5 Properties of Dimensionally Regularized 
Feynman Integrals 

We can formally write down dimensionally regularized Feynman integrals as 
integrals over d-dimensional vectors ki: 
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L 

Fr(Qt, ... , Qn; d) = J ddk1 ... J ddkh IT DF,z(pz) . (2.37) 
l=l 

In order to obtain dimensionally regularized integrals with their dimension 
independent of c, a factor of p,- 2c: per loop, where p, is a massive parameter, is 
introduced. This parameter serves as a renormalization parameter for schemes 
based on dimensional regularization. Therefore, we obtain logarithms and 
other functions depending not only on ratios of given parameters, e.g. q2 jm2 , 

but also on q2 / p,2 etc. However, we shall usually omit this p,-dependence for 
brevity (i.e. set p, = 1) so that you will meet sometimes quantities like ln q2 

which should be understood in the sense of ln(q2 / p,2 ). 

We have reasons for using the notation (2.37), because dimensionally reg­
ularized Feynman integrals as defined above possess the standard properties 
of integrals of the usual type in integer dimensions. In particular, 

- the integral of a linear combination of integrands equals the same linear 
combination of the corresponding integrals; 

- one may cancel the same factors in the numerator and denominator of 
integrands. 

These properties follow directly from the above definition. A less trivial prop­
erty is that 

- a derivative of an integral with respect to a mass or momentum equals 
the corresponding integral of the derivative. 

This is also a consequence (see [8, 27]) of the definition of dimensionally 
regularized Feynman integrals based on the alpha representation and the 
corresponding analysis of convergence presented in Sect. E.l. To prove this 
statement, one uses standard algebraic relations between the functions enter­
ing the alpha representation [7, 20]. (We note again that these are relations 
quite similar to those encoded in the solutions of Kirchhoff's laws for a circuit 
defined by the given graph.) A corollary of the last property is the possibility 
of integrating by parts and always neglecting surface terms: 

Jd jd aiTL_ . 
d k1... d kh Bk':' DF,z(pz) =O, z = 1, ... , h . 

• l=l 

(2.38) 

This property is the hasis for solving the reduction problem for Feynman 
integrals using IBP relations [9] - see Chaps. 5 and 6. 

The next property says that 

- any diagram with a detachable massless subgraph is zero. 

This property can also be shown to be a consequence of the accepted 
definition [8, 27], by use of an auxiliary analytic regularization, using pieces 
of the a-integral considered in different domains of the regularization pa­
rameters. Let us consider, for example, the massless tadpole diagram, which 
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can be reduced by means of alpha parameters to a scaleless one-dimensional 
integral: 

J ddk {oc 
J!2 = -i"?rd/2 Jo da ac:-2 . (2.39) 

We divide this integral into two pieces, from O to 1 and from 1 to oo, integrate 
these two integrals and find results that are equal except for opposite signs, 
which lead to the zero value. 6 It should be stressed here that the two pieces 
that contribute to the right-hand side of (2.39) are convergent in different 
domains of the regularization parameter E, namely, Re E > -1 and Re E < -1. 
with no intersection, and that this procedure here is equivalent to introducing 
analytic regularization and considering its parameter in different domains for 
different pieces. 

But let us distinguish between two qualitatively different situations: the 
first when we have to deal with a massless Feynman integral, with a zero 
externa! momentum, which arises from the Feynman rules, and the second 
when we obtain such scaleless integrals after some manipulations: after using 
partial fractions, differentiation, integration by parts, etc. We can also include 
in this second class all such integrals that appear on the right-hand side 
of explicit formulae for ( off-shell) asymptotic expansions in momenta and 
masses [2,29]. 

In the first situation, the only possibility is to use the ad hoc prescription 
of setting the integral to zero. In the second situation, we can start with an 
alpha representation, introduce an auxiliary analytic regularization [8,27] and 
use the fact that it is convergent in some non-empty domain of these param­
eters (see Sect. E.1). A very important point here is that all the properties 
of dimensionally regularized integrals given above, apart from the last one, 
can be justified in a purely algebraic way [8, 27], through identities between 
functions in the alpha representation. Then, using sector decompositions de­
scribed in Sect. E.1, with a control over convergence at hand, one can see 
that all the resulting massless Feynman integrals with zero external momenta 
indeed vanish - see details in [8, 27]. 

Let us now remind ourselves of reality and observe that it is necessary to 
deal in practice with diagrams on a mass shell or at a threshold. What about 
the properties of dimensionally regularized Feynman integrals in this case? At 
least the algebraic proof of the basic properties of dimensionally regularized 
Feynman integrals is not sensitive to putting the externa! momenta in any 
particular place. However, as we noticed above, a general analysis of the 
convergence of such integrals, even in specific cases, is still absent, so that we 
do not have control over convergence. Technically, this means that the sectors 
used for the analysis of the convergence in the off-shell case are no longer 
sufficient for the resolution of the singularities of the integrand of the alpha 

6 These arguments can be found, for example, in [17], and even in a pure math­
ematical book [13]. Well, let us not take the latter example seriously ;-) 
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representation. These singularities are much more complicated and can even 
appear (e.g. at a threshold) at non-zero, finite values of the o:-parameters. 
However, the good news is that numerous practical applications have shown 
that there is no sign of breakdown of these properties for on-shell or threshold 
Feynman integrals. 

Although on-shell and threshold Feynman integrals have been already 
mentioned many times, let us now be more precise in our definitions. We 
must realize that, generally, an on-shell or threshold Feynman integral is not 
the value of the given Feynman integral Fr ( q2 , •.. ) , defined as a function 
of q2 and other kinematical variables, at a value of q2 on a mass shell or 
at a threshold. Consider, for example, the Feynman integral corresponding 
to Fig. 2.2, with m 1 = O, m2 = m, a 1 = 1, a2 = 2. We know an explicit 
result for the diagram given by (1.5). There is a logarithmic singularity at 
threshold, q2 = m2, so that we cannot strictly speak about the value of the 
integral there. StiU we can certainly define the threshold Feynman integral 
by putting q2 = m2 in the integrand of the integral over the loop momentum 
or over the alpha parameters. And this is what was really meant and will 
be meant by 'on-shell' and 'threshold' integrals. In this example, we obtain 
an integral which can be evaluated by means of (A.13) (to be derived in 
Chap. 3): 

J ddk _ . d/2 r(E) 
k2 (k2 - 2q·k)2 - m 2(m2)HE · (2.40) 

This integral is divergent, in contrast to the original Feynman integral defined 
for general q2 . 

Thus on-shell or threshold dimensionally regularized Feynman integrals 
are defined by the alpha representation or by integrals over the loop mo­
menta with restriction of some kinematical invariants to appropriate values 
in the corresponding integrands. In this sense, these regularized integrals are 
'formal' values of general Feynman integrals at the chosen variables. 

Note that the products ofthe free fields in the Lagrangian are not required 
to be normal-ordered, so that products of fields of the same sort at the same 
point are allowed. The formal application of the Wick theorem therefore 
generates values of the propagators at zero. For example, in the case of the 
scalar free field, with the propagator 

Dp(x) = (2~)4 J d4k k~-~x:2 ' 
which satisfies (O+ m 2 )Dp(x) = -iJ(x), we have 

TrjJ(x)rjJ(x) =: rjJ2 (x): +DF(O) . 

(2.41) 

(2.42) 

The value of Dp(x) at x =O does not exist, because the propagator is singular 
at the origin according to (2.16). However, we imply the formal value at the 
origin rather than the 'honestly' taken value. This means that we set x to 
zero in some integral representation of this quantity. For example, using the 
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inverse Fourier transformation, we can define Dp(O) as the integral (2.41) 
with x set to zero in the integrand. Thus, by definition, 

i J d4k 
Dp(O) = (27r)4 k2 - m2 . (2.43) 

This integral is, however, quadratically divergent, as Feynman integrals typ­
ically are. So, we understand Dp(O) as a dimensionally regularized formal 
value when we put x = O in the Fourier integral and obtain, using (A.l) 
( which we will derive shortly), 

J ddk 
k2- m2 = -i?rd/2 F(c- l)(m2)1-.s . (2.44) 

This Feynman integral in fact corresponds to the tadpole cp4 theory graph 
shown in Fig. 2.5. The corresponding quadratic divergence manifests itself 
through an UV pole in c- see (2.44). 

o Fig. 2.5. Tadpole 

Observe that one can trace the derivation of the integrals tabulated in 
Sect. A.l and see that the integrals are convergent in some non-empty do­
mains of the complex parameters >..z and c and that the results are analytic 
functions of these parameters with UV, IR and collinear poles. 

Before continuing our discussion of setting scaleless integrals to zero, let 
us present an analytic result for the one-loop massless triangle integral with 
two on-shell external momenta, PÎ = p§ = O. Using (A.28) (which we will 
derive in Chap. 3), we obtain 

J ddk = -i?rd/2 F(l + c)F( -c? . 
(k2 - 2p1·k)(k2 - 2p2·k)k2 F(l- 2c)( -q2)H.s 

(2.45) 

A double pole at c = O arises from the IR and collinear divergences. 
A similar formula with a monomial in the numerator can be obtained also 

straightforwardly: 

J ddkk~' . d/2 F(c)F(l-c)2 pl{+p~ 
(k2 -2p1·k)(k2 -2p2·k)k2 =17r F(2-2c) (-q2 )l+c · 

(2.46) 

Now only a simple pole is present, because the factor k~' kills the IR diver­
gence. 

Consider now a massless one-loop integral with the external momentum 
on the massless mass shell, p2 = 0: 
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J ddk 
(p-k)2k2. (2.47) 

If we write down the alpha representation for this integral we obtain the 
same expression (2.39) as for p = O because only p2 , equal to zero in both 
cases, is involved there. In spite of this obvious fact, there is still a qualitative 
difference: for p = O, there are UV and IR poles which enter with opposite 
signs and, for p2 = O (but with p "/=- O as a d-dimensional vector), there is a 
similar interplay of UV and collinear poles. 

Now we follow the arguments presented in [21] and write down the fol­
lowing identity for (2.47), with p = p1: 

where p~ =O and p 1·p2 "/=-O. We then evaluate the integrals on the right-hand 
side by means of (A.7) and (2.46), respectively, and obtain a zero value. This 
fact again exemplifies the consistency of our rules. 

Thus we are going to systematically apply the properties of dimensionally 
regularized Feynman integrals in any situation, no matter where the external 
momenta are considered tobe. Moreover, we will believe that these properties 
are also valid for more general Feynman integrals given by the dimensionally 
regularized version of (2.6) which can contain linear propagators. 

Let us also point out that the rule to put all scaleless integrals to zero is 
rather general and, as far as I know, never causes contradictions. In partic­
ular, it is applied in asymptotic expansions of Feynman integrals in various 
limits of momenta and masses within expansion by regions [2,29], where such 
integrals are always put to zero, even if they are not regulated by dimensional 
regularization. We will follow this rule also in Chap. 6 where we will put to 
zero scaleless integrals which appear in auxiliary parametric representations 
when constructing coefficient functions at master integrals. 
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3 Evaluating by Alpha 
and Feynman Parameters 

Feynman parameters1 are very well known and often used in practical calcu­
lations. They are closely related to alpha parameters introduced in Chap. 2 
so that we shall study both kinds of parametric representations of Feynman 
integrals in one chapter. The use of these parameters enables us to trans­
form Feynman integrals over loop momenta into parametric integrals where 
Lorentz invariance becomes manifest. Using alpha parameters we shall first 
evaluate one and two-loop integrals with general complex powers of the prop­
agators, within dimensional regularization, for which results can be written 
in terms of gamma functions for general values of the dimensional regulariza­
tion parameter. We shall show then how these formulae, together with sim­
ple algebraic manipulations, enable us to evaluate some classes of Feynman 
integrals. 

We then turn to various characteristic one-loop examples where results 
cannot be written in terms of gamma functions. In such situations, we shall 
be usually oriented at the evaluation in expansion in powers of c up to some 
fixed order. We then introduce Feynman parameters and present the so-called 
Cheng-Wu theorem which provides a very useful trick that can greatly sim­
plify the evaluation. Finally, we proceed at the two-loop level by presenting 
rather complicated examples of evaluating Feynman integrals by Feynman 
and alpha parameters. 

3.1 Simple One- and Two-Loop Formulae 

A lot of one- and two-loop formulae can be derived, using alpha and Feynman 
parameters, for general complex indices with results expressed in terms of 
gamma functions. A collection of such formulae is presented in Sect. A.l. 

Let us evaluate, for example, the dimensionally regularized massive tad­
pole Feynman diagram of Fig. 2.5 with a general power of the propagator, 

J ddk 
Fr(q; A, d) = ( -k2 + m2).A . (3.1) 

We apply the alpha representation of the analytically regularized scalar prop­
agator given by (2.12) with Z = 1, i.e. 

1See, e.g., textbooks [18] and [7]. 
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(3.2) 

change the order of integration over k and o:, take the Gaussian k integral by 
means of (2.31), again apply (3.2) written in the reverse order, i.e. 

r= d .>..-1 -iAa - F(A) i-.>.. 
Jo a a e - (A- iO).>.. ' (3.3) 

and arrive at (A.1). In particular, this table formula gives (2.44). 
Let us now turn to the dimensionally regularized Feynman diagram of 

Fig. 2.2 with general powers of the propagators, 

J ddk 
Fr(q; Al, A2, d) = ( -k2 + mf)At [-(q- k)2 + m~J.>..2 . (3.4) 

From now on, we shall use the following convention: when powers of prop­
aga tors are integers we use them with +k2+i0, but when they are non-integral 
or complex, we take the opposite sign, i.e. -k2 -iO. The second choice is more 
natural if we wish to obtain a Euclidean, -q2, dependence of the results (see, 
e.g., (3.6) below). We shall also prefer to use a1 for integer and Al for general 
complex indices. In the latter case, the alpha representation is obtained from 
(2.36) by replacing a1 by Al and dropping out the factor (-1)a. 

Starting from the alpha representation of Fig. 2.2, with the basic functions 
U = 0:1 +o:2 and V = 0:1 o:2q2, and using the change of variables 0:1 = ~TJ, 0:2 = 
ry(1 - ~) we obtain the dimensionally regularized version of (2.30), i.e. 

. _. d/2 r(Al + A2 + c:- 2) 
Fr(q, A1, A2, d)- m F(AI)F(A2) 

X 11 d~ et-1(1 - ~).>..2-l 
(3.5) 

[mi~+ m~(l- ~)- q2~(1- ~)- iO].>..t+.>..2+c:-2. 

Suppose that the masses are zero. In this case the integral over ~ can be 
evaluated in terms of gamma functions, and we arrive at the following result: 

(3.6) 

where 

G( A ) _ F(A1 + A2 + c:- 2)F(2- c:- A1)F(2- c:- A2) 
Al, 2 - r(AI)F(A2)r(4- A1- A2- 2c:) · 

(3.7) 

The one-loop formula (3.6) can graphically be described by Fig. 3.1. 
In the case where the powers of propagators are equal to one, we have 

(3.8) 

Note that although the indices of the diagrams are integral at the begin­
ning, non-integral indices shifted by amounts proportional to c: appear after 
intermediate integration, e.g. after the use of (3.8) inside a bigger diagram. 
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Fig. 3.1. Graphical interpretation of (3.6) 

Another formula that can be derived from (3.5) gives a result for the 
integral 

J ddk 

( -k2 + m2).A, ( -k2).A2 · 

Indeed, we set q = O, m 1 = m and m 2 = O, take an integral over ~ and obtain 
(A.4). 

Consider now the following integral that arises in calculations in Heavy 
Quark Effective Theory [12, 15, 17]: 

J ddk 

( -k2).A 1 (2v·k + w- i0).\ 2 • 

Since the denominator of one of the propagators is not quadratic we cannot 
use the general formula of the alpha representation. Still we proceed by alpha 
parameters, i.e. apply (3.2) to the first propagator and a similar Fourier 
representation 

1 i.\ r= .\-1 iAa 

(-A-iO).A=r(> .. )}o daa e ' (3.9) 

with A = -2v · k - w, to the second propagator. Changing the order of 
integration as above and evaluating a Gaussian integral over k we then apply 
(3.3) to take the integral of aÎ' +c-3e-ia:v2 fa, over a 1 and, finally, an integral 
over a 2 , and arrive at (A.25). 

The following one-loop integral is typical for the evaluation of the one-loop 
quark potential: 

J ddk 

( -k2).A, [-(q- k)2]A2 ( -2v·k- i0).\3 · 

Here v · q =O. (Typically, one chooses q = (0, q) and v = (1, 0).) One of the 
propagators is again not quadratic so that we proceed by alpha parameters 
and represent each of the three factors as an alpha integral. After taking a 
Gaussian integral over k we obtain 
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Then the integral over a3 can be evaluated by the change a 3 =-.fi and (3.3). 
After that the integration over a 1 and a 2 is taken, as before, by introducing 
the variables "1 = a1 + a2, ~ = al/(al + a2), with the result (A.27). 

Using alpha parameters one can also derive the formula (A.40) for the for­
mal Fourier transformation within dimensional regularization. This formula 
provides another way to derive (3.6). In fact, the initial integral is nothing 
but the convolution of the two functions, ji = 1/( -k2 - iOf'', i = 1, 2. Then 
one uses the well-known mathematical formula 

(fi * J2) (q) = (2n)d(!l-!2) 

for the convolution of two Fourier transforms, applies (A.40) and arrives at 
(3.6). 

3.2 Auxiliary Tricks 

3.2.1 Recursively One-Loop Feynman lntegrals 

Massless integrals are often evaluated with the help of successive application 
ofthe one-loop formula (3.6). In addition one can use the fact that a sequence 
of two lines with scalar propagators with the same mass and the indices a 1 

and a2 can be replaced by one line with index a1 +a2. Consider, for example, 
the two-loop diagram shown in Fig. 3.2. The interna! one-loop integral can 
be evaluated by use of (3.8) and is effectively replaced, according to Fig. 3.1, 
by a line with index E. Then the sequence of two massless lines with indices 
1 and E is replaced by one line with index 1 + E, and the one-loop diagram 
so obtained, which has indices 2 and 1 + E, is evaluated by means of the one­
loop formula (3.6), with the following result expressed in terms of gamma 
functions: G(1, 1)G(2, 1 +c)/( -q2 )1+2". The class of Feynman diagrams that 
can be evaluated in this way by means of (3.6) can be called recursively 
one-loop. 

Fig. 3.2. A recursively one-loop diagram 

Another example where two tabulated one-loop integration formulae can 
successively be applied is given by the two-loop scalar diagram of Fig. 3.3 
with general complex indices and two zero masses, 
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1 

' \ g 
Fig. 3.3. Vacuum two-loop diagram with the masses O, O and m 

Here one can first apply the one-loop massless integration formula (3.6), then 
apply (A.4) and obtain (A.39). 

3.2.2 Partial Fractions 

When evaluating dimensionally regularized Feynman integrals one uses their 
properties, in particular the possibility of manipulations based on the prop­
erties listed in Sect. 2.5. Here the following standard decomposition proves 
to be useful: 

1 

a~l(al-1+i) (-1)a1 

+ ~ al -1 (xz- xl)a,+i(x + xz)a2-i ' 
(3.10) 

where a 1 , a2 > O and 

(;) j!(n~j)! 
is a binomial coefficient. 

For example, the vacuum one-loop Feynman integral with two different 
masses, 

J ddk 

(k2 - mÎ)(k2 - m~) ' 

can be evaluated by (3.10) and (A.1), with the result 

2-2E 2-2E 
d/ m -m 

i7r 2r(c:-1) 2 1 
mi-m~ 

If one of the indices, e.g. a2 is non-positive, a similar decomposition is 
performed by expanding ( x + x 2 ) -a2 in powers of x + x 1 . Let us note that 
if one proceeds by MATHEMATICA [22], one can use, for given integer values of 
a1 and a2, the command Apart to perform partial fractions decompositions. 
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3.2.3 Dealing with Numerators 

As we have agreed we suppose that a tensor reduction for a given class of 
Feynman integrals was performed so that we start with evaluating scalar in­
tegrals. Let us, however, mention that one can also evaluate integrals with 
Lorentz indices. A lot of one-loop Feynman integrals with numerators can 
be found in Sect. A.l. One can reduce evaluating such a one-loop integral 
to an integral with a product ka 1 ••• kaN. Then one can switch to traceless 
monomials and back using (A.41a) and (A.41b). An integral with a traceless 
monomial independent of other Lorentz indices is again traceless. If it de­
pends on one external momentum it should be proportional to its traceless 
monomial. This is how tabulated integrals for traceless monomials, e.g. (A.8), 
can be derived. Then one can turn back to usual monomials using (A.41b). 
(In Sect. A.2, one can find also other useful formulae for various traceless 
monomials.) 

In the case of a general h-loop Feynman integral with standard propa­
gators, let us observe that the function (2.26) in (2.36) can be taken into 
account by shifting the space-time dimension d and indices a1 of a given di­
agram because any factor that arises after the differentiation with respect to 
the auxiliary parameters u1 is a sum of products of positive integer powers of 
the a-parameters and negative integer powers of the function U. In particu­
lar, the factor 1/Un is taken into account by the shift d--+ d + 2n. Then the 
shift of a power of a parameter a1 can be translated into a shift of the power 
of the corresponding propagator, in particular, a multiplication by a1 can be 
described by the operator ia1l+ where t+ increases the index a1 by one, the 
multiplication by ar can be described by the operator -al(al + l)t++, etc. 

This observation enables us to express any given Feynman integral with 
numerators through a linear combination of scalar integrals with shifted in­
dices and shifted dimensions. Systematic algorithms oriented towards real­
ization on a computer, with a demonstration up to two-loop level, have been 
constructed in [20]. We shall come back to this point in Chap. 5 when solving 
IBP recurrence relations. 

At the one-loop level, this property has been used [9] to derive a general 
formula for the Feynman integrals 

p(N) (..\ ..\ d) = J ddk kal ... kan (3 11) 
al···an 1, ... , N, rr{:l[-(qi-k)2+mn>-i' . 

depending on the external momenta q1 - q2, ... , qN - ql and the general 
masses mi: 
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Pl 

P2 

Fig. 3.4. Triangle diagram with the masses O, O, m, external momenta PÎ = p~ = O 
and general indices of the propagators 

(3.12) 

where {[gr[q1 ]~< 1 ••• [qN]~<N}o 1 ... <>n is symmetric in its indices and is composed 
of the metric tensor and the vectors qi. Tabulated formulae with numerators 
presented in Appendix Acan be derived by means of (3.12). 

Let us now present a simple one-loop example and illustrate the trick 
with turning to integrals without numerators. Consider the Feynman integral 
corresponding to Fig. 3.4 with a numerator 

F(q2, m2 ; a1, a2, a3, n, d) 

J ddk (l·k)n 
- (k2- 2pl·k)al(k2- 2p2·k)a2(k2- m2)a3 ' 

(3.13) 

where l is a momentum not related to P1 and P2. The alpha representation 
(2.36) takes the form 

where 

U = o:1 + o:2 + o:3 , V= q2o:1o:2 • 

Taking into account the arguments above we see, for example, that 
1 

F(a1, a2, a3, 1, d) = -- [a1l·p1F(a1 + 1, a2, a3, O, d + 2) 
7r 

(3.14) 

+a2l·p2F(a1, a2 + 1,a3, O, d + 2)] , (3.15) 
z2 

F(a1, a2, a3, 2, d) = -F(a1, a2, a3, O, d + 2) 
27r 

+~ [a1(a1 + 1)(l·pl)2 F(a1 + 2, a2, a3, O, d + 4) 
7r 

+2a1a2(l·pl)(l·p2)F(a1 + 1, a2 + 1, a3, O, d + 4) 

+a2(a2 + 1)(l·p2)2 F(a1, a2 + 2, a3, O, d + 4)] . (3.16) 
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Such a reduction of numerators can be performed for any Feynman inte­
gral. The corresponding algebraic manipulations can easily be implemented 
on a computer. 

3.3 One-Loop Examples 

Let us present examples of evaluation of Feynman diagrams by means of alpha 
parameters with results which are not written in terms of gamma functions 
for general d. We first turn to the example considered in the introduction. 

Example 3.1. One-loop propagator Feynman integrals (1.2) corresponding 
to Fig. 1.1. 

We apply (3.5) to obtain 

D ( 2 2. d)-· d/2(- 1)a1+a2r(al+a2+e-2) 
L"3.1 q ,m ,al,a2, -17f r(a1)r(a2) 

11 d~ ~a2-l(1- ~)l-a2-c: 

X [ 2 2~ "O]a1 +a2+c:-2 · om -q."-1 
(3.17) 

For example, we have 

2 2 J ddk 
F3.1(q ,m ;2,1,d)= (k2-m2)2(q-k)2 

11 (1- ~)-c:d~ 
= -ind/2 T(1 + e) · 

[ 2 2c ·o]l+c: o m-q.,-1 
(3.18) 

Suppose that we are interested only in the value of this (finite) integral exactly 
in four dimensions. The integral over ~ is then evaluated easily at e = O with 
the result (1.5). Similarly, Feynman integrals corresponding to Fig. 1.1 with 
various integer indices ai can be evaluated. In particular, we obtain (1.7). 

The next one-loop example is 

Example 3.2. The triangle diagram of Fig. 3.4. 

The Feynman integral for Fig. 3.4 with general integer indices looks like 
(3.13) with n =O, i.e. 

F3.2(q2, m2; a1, a2, a3, d) 

J ddk 

- (k2- 2pl·k)at(k2- 2p2·k)a2(k2- m2)a3 ' 
(3.19) 

where q = p1 - p2, q2 = -Q2 = -2p1 ·P2· The alpha representation (2.36) 
takes the form (3.14) with n =O. 

Introducing variables 0:1 = 6'TJ,0:2 = 6'TJ and 0:3 = (1- 6- 6)'TJ and 
integrating over 'TJ we obtain 
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(3.20) 

This can be a reasonable starting point for the evaluation of integrals with 
any given indices ai. Let us evaluate the integral with a1 = a2 = a3 = 1 at 
d = 4. Then the integral is finite: 

rl rl-~, d~ 
F3.2(q2' m2; 1, 1, 1, 4) = -i7r2 la d6 Jo Q266 + m2t1- 6 - 6) 

A straightforward integration gives the following result: 

F3.2(q2,m2; 1, 1, 1,4) 

= ~~ ( Li2 (x)- ~ ln2 x + lnx ln(1- x)- ~2 ) , (3.21) 

where Li2 (x) is the dilogarithm (see (B.7)) and x = m 2 jQ2 . 

Example 3.3. The massless on-shell box diagram of Fig. 3.5, i.e. with PT = 
o, i=1,2,3,4. 

Pl-..-----.-- P3 
1 

2 4 

3 
P2 ------+- P4 

Fig. 3.5. Box diagram 

With the loop momentum chosen as the momentum of line 1, the Feynman 
integral takes the form 

F3.3(s, t; a1, a2, a3, a4, d) 

J ddk 
- (k2)a1 [(k + pi)2]a2 [(k + Pl + P2)2]a3 [(k- P3)2]a4 ' 

(3.22) 

where s = (p1 + P2) 2 and t = (Pl + p3)2 are Mandelstam variables. 
The trees and 2-trees relevant to the functions U and V are shown in 

Figs. 3.6 and 3.7. Four more existing 2-trees, for example the 2-tree with 
the component consisting of the lines 1 and 2 and the component consisting 
of the isolated vertex with the external momentum p4 , do not contribute to 
the function V because the product a 3a 4 is multiplied by the corresponding 
external momentum squared which is zero. 

We have (2.36) with 
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u n c 
Fig. 3.6. Trees contributing to the function U for the box diagram 

I I 
Fig. 3. 7. 2-trees contributing to the function V for the massless on-shell box 
diagram 

(3.23) 

Introducing new variables by a1 = 7]16, a2 = ryi(1- 6), a3 = T/26, a4 = 
7]2(1- 6), with the Jacobian ry1 ry2, and evaluating an integral over ry2 due to 
the delta function and an integral over ry1 in terms of gamma functions we 
obtain 

where a= a 1 + a2 + a3 + a4. 
Consider, for example, the master integral2 with all the indices equal to 

one. We have 

. - . -. d/2F(2+c:)F(-c:)2 
F(s, t, d) = F3 .3 (s, t, 1, 1, 1, 1, d) - m r( _ 2c:) 

rl rl d6d6 
x Jo Jo [-t66- s(1- 6)(1- 6)- i0]2+c 

Then the integration over 6 results in 

F( t·d) = _· d/2r(1 +c:)r(-c:)2 
s, ' m r( -2c:) 

X {1 d~ [(-t)-1-Ecl-E _ (-s)-1-E(l- ~)-1-c] 
} 0 s- (s + t)~ 

(3.25) 

(3.26) 

The singularity at s - ( s + t )~ = O is absent because the rest of the integrand 
is zero at this point. To calculate this integral in expansion in f one needs, 
however, to separate the two terms in the square brackets. In order not to 
run into divergence due to the denominator one can perform an auxiliary 
subtraction at s- (s + t)~ =O. We obtain 

2We shall see in Chaps. 5 and 6 that this is indeed an irreducible Feynman 
integral. 



3.4 Feynman Parameters 41 

. _ . d/ 2 F(1+c)F(-E)2 . . 
F(s,t,d)- -m r(-2c) [f(s,t,c) + f(t,s,c)] , (3.27) 

where 

(3.28) 

To expand the function f in a Laurent series in E one needs to perform 
another subtraction, at ~ = O, which we make by the replacement 

1 (s+t)~ 1 
----.,--....,..- -+ + -
s-(s+t)~ s(s-(s+t)~) s· 

(3.29) 

Then the integral with the first term can be evaluated by expanding the 
integrand in E while the second term is integrated explicitly. Eventually, we 
arrive at the following result: 

i7fd/2e-/EE ( 4 2 
F(s, t; d) = st c2 -[In( -s) + ln( -t)] ~ 

+2ln(-s)ln(-t)- 4;
2) +O(E). (3.30) 

Here and in all the expansions in E below we pull out the factor e-lE", with 
Euler's constant /E, per loop in order to avoid it in our results. 

Although we are oriented at calculations in expansion in E, let us, for 
completeness, present a simple result for generalE [16] which can straightfor­
wardly be obtained from (3.27): 

i7rd/2r(-E)2F(c) [ _ ( t) F(s,t;d)=- (-t) "2F1 1,-E;1-E;1+-
stF( -2c) s 

+( -s)-c: 2 F 1 ( 1, -E; 1- c; 1 + D J , (3.31) 

where 2F 1 is the Gauss hypergeometric function (see (B.1)). 

3.4 Feynman Parameters 

Let us now present the alpha representation of scalar dimensionally regular­
ized integrals in a modified form by making the change of variables a 1 = rya;, 
where ~a; = 1. Starting from (2.36) with Z = 1, performing the integration 
over 77 from O to oo explicitly and omitting primes from the new variables, 
we obtain 

(3.32) 
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A folklore Cheng-Wu theorem [5] (see also [2]) says that the same formula 
(3.32) holds with the delta function 

(3.33) 

where vis an arbitrary subset of the lines 1, ... , L, when the integration over 
the rest of the a-variables, i.e. for lE.v, is extended to the integration from 
zero to infinity. Observe that the integration over a1 for l E v is bounded at 
least by 1 from above, as in the case where all the a-variables are involved 
in the sum in the argument of the delta function. 

One can prove this theorem straightforwardly by changing variables and 
calculating the corresponding Jacobian. But a simpler way to prove it3 is 
to start from the alpha representation (2.36), introduce new variables by 
al = rya; for alll = 1, 2, ... , L, where TJ = L:1E" a1, and immediately arrive 
at (3.32) with the delta function (3.33). Let us stress that this theorem holds 
not only for (3.32) corresponding to Feynman diagrams with standard prop­
agators but also for the alpha representation derived for Feynman diagrams 
with various linear propagators. 

As we will see below in multiple examples, an adequate choice of the delta 
function in (3.32) can greatly simplify the evaluation. Note that one can use 
various homogeneous substitutions which keep the form of the delta function 
in (3.32) - see Sect. 3.1of [10] and references therein. 

In addition to alpha parameters, the closely related Feynman parame­
ters are often used. For a product of two propagators, one writes down the 
following relation: 

1 
(~i -pi)Al(~~ -p~)A2 

F(.X1 + ,X2 ) [ 1 d~ el-1 (1 _ ~)A2-1 
- F(.XI)F(.X2 ) la [(~Î- PÎ)~ + (~~- p~)(1- ~)]A1+A2 

(3.34) 

This relation is usually applied to a pair of appropriately chosen propagators 
if an explicit integration over a loop momentum then becomes possible. Then 
new Feynman parameters can be introduced for other factors in the integral, 
etc. In fact, any choice of the Feynman parameters can be achieved by starting 
from the alpha representation (3.32) and making certain changes of variables. 
However, the possibility of an intermediate explicit loop integration of the 
kind mentioned above can be hidden in the alpha integral. 

The generalization of (3.34) to an arbitrary number of propagators is of 
the form 

_1_ = r(L: .xl) {1 d6 ... {1 d~L II ~;~-1 8 (:2:: ~l- 1) , (3.35) 
f1At 1 IJF(.Xl) la la 1 (L:A1 ~1 ):2::A 1 

where A1 = ~r - pf. 
3 Thanks to A.G. Grozin for pointing out this possibility! 



3.5 Two-Loop Examples 43 

For the evaluation of diagrams with a small number of loops, the choice of 
applying either alpha or Feynman parameters is usually just a matter of taste. 
In particular, if we apply (3.35) to a two-loop diagram and then integrate over 
two loop momenta, with the help of (A.1) and its generalizations to integrals 
with numerators, we obtain the same result as that obtained starting from 

(3.32). 
For completeness, here is a one more parametric representation which is 

related to Feynman parameters and is often used in practice: 

1 F()q + ..\2) t x.\ 2 - 1 dx 

A>-,B>-2 - F(..\l)F(..\2) Jo (A+ Bx)>-,+>-2 • 

(3.36) 

3.5 Two-Loop Examples 

At the two-loop level, we first consider the 

Example 3.4. Two-loop vacuum diagram of Fig. 3.8 with the masses m, O, m 
and general complex powers of the propagators. 

1 

8 
Fig. 3.8. Vacuum two-loop diagram with the masses m, O and m 

The Feynman integral is written as 

F.1.4(m2; ..\1, ..\2, ..\3, d) 

!! ddkddl 

( -k2 + m2).\' [ -(k + Z)2].\2 ( _z2 + m2).\3 
(3.37) 

(3.38) 

Now we exploit the freedom provided by the Cheng-Wu theorem and choose 

the argument of the delta function as a 1 + a 3 - 1. The integration over a 2 is 
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performed from O to oo. Resulting integrals are evaluated in terms of gamma 
functions for general c and we arrive at the table formula (A.38). 

Consider now 

Example 3.5. Two-loop massless propagator diagram of Fig. 3.9 with arbi­
trary integer powers of the propagators, 

Fig. 3.9. Two-loop propagator diagram 

(3.39) 

The sets of trees and 2-trees relevant to the two basic functions in the 
alpha representation are shown in Figs. 3.10 and 3.11 

Fig. 3.10. Trees contributing to the function U for Fig. 3.9 

(· ·) ·f\ '1· J· ·u 
Fig. 3.11. 2-trees contributing to the function V for Fig. 3.9 

Correspondingly, we have 

U = (o:1 + 0:2 + 0:3 + o:4)o:s + (o:1 + o:2)(o:3 + 0:4) , 

V= [(o:1 + o:2)o:3o:4 + o:1o:2(o:3 + o:4) + (o:1 + o:3)(o:2 + o:4)]q2 

= Vq2. 

(3.40) 

(3.41) 

As we will see in Chaps. 5 and 6, any diagram of this class can be evaluated 
for general c in terms of gamma functions. This is however hardly seen from 
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its alpha representation. In spite of the fact that the evaluation by alpha 
parameters is not an optimal method for this class of integrals, let us evaluate, 
for the sake of illustration, this diagram for all powers of the propagators 
equal to one, using its alpha representation. It is finite at d = 4, both in the 
UV and IR sense. Representation (3.32) takes the form 

(i7r2)21oo 1oo 8 (2>l0z- 1) 
F3.5(q2;1,1,1,1,1,4)=--2- do1··· do5 . 

q o o uv 
(3.42) 

We exploit the Cheng-Wu theorem by choosing the delta function 8 (o5 - 1), 
with the integration over the rest of the four variables from zero to infinity. 
Then one can delegate the integration procedure to MATHEMATICA [22] and 
obtain the well-known result4 : 

(. 2)2 
2 171' 

F3.s(q ; 1, 1, 1, 1, 1, 4) = - 2-6((3) , 
q 

where ( ( z) is the Riemann zeta function. 

(3.43) 

In the rest of this chapter, we shall consider just two more examples which 
are, however, more complicated than the previous ones. 

Example 3.6. Two classes of two-loop integrals5 with integer powers of the 
propagators: 

(3.44) 

It turns out that the F _ is simple. Indeed we rewrite the first denominator 
k2 + q·k as (k + q/2) 2 - q2/4 and similarly the second denominator, make 
the change of variables k = k' - q/2, l = l'- q/2 and recognize F_ as a 
two-loop vacuum diagram with the mass m 2 = q2 /4 shown in Fig. 3.8 which 
was evaluated in Example 3.4- see (A.38). 

The integrals F+ are, however, not so simple. Using the same manipulation 
as above we see that they are graphically recognized as sunset diagrams of 
Fig. 3.12 at threshold, i.e. q2 = 4m2. We start from the alpha representation 
(2.36) with Z = 1. The two basic functions are 

u = 0102 + 0203 + 0301 ' V= 010203q2 . (3.45) 

After using the threshold condition m 2 = q2 /4 we obtain 

4 This result was first obtained in [19] by means of expansion in Chebyshev 
polynomials in momentum space. In [6], it was reproduced using Gegenbauer poly­
nomials in coordinate space. 

5They were involved, in particular, in the calculation [1,8] of two-loop matching 
coefficients of the vector current in QCD and Non-Relativistic QCD (NRQCD) 
[3, 14,21]. 
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1 

C\ 
1 1 
\ 1 

', 3 ""/ 

Fig. 3.12. Sunset diagram with the masses m, m, O 

where 

W =(al+ a2)a1a2 + a3(a1 - a2)2 . (3.47) 

Proceeding as with the general alpha representation we come to 

2. - ( -1)a (i?rd/2) 2 r(a + 2c- 4) 
F+(q ,ai,a2,a3)- (q2j4)a+2c:-4 f]F(al) 

x [ [ [ o(Lo,-1) (!Jar'-'do,) ~:::.~:. (3.48) 

We continue to exploit the Cheng-Wu theorem in an appropriate way. We 
choose the delta function in (3.48) as 8 (a1 + a 2 - 1) and obtain an integral 
over ~ = a1 from O to 1, with a 2 = 1- ~, and an integral over t = a 3 from O 
to oo: 

(3.49) 

This two-parametric integral representation can be used for the evaluation 
of any diagram of the given class in expansion in c. Let us show how the 
integral with all the indices equal to one can be evaluated in expansion in c 
up to the finite part. We start with (3.49) which gives 

2. - (i?rd/2)2 r(2c- 1) 
F+(q ,1,1,1)-- (q2j4)2c:-l 

rl rX! [t + ~(1 - ~wc:-3 
x lo d~ lo dt [t(1 - 2~) 2 + ~(1 - ~wc:-l (3.50) 

Observe that the integrand is invariant under the transformation ~-+ 1 - ~· 

We write the integral as twice the integral from O to 1/2 over ~, change the 
variable ~ by ~ = (1- v'!="X)/2 and rescale t-+ t/4 to obtain 
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F+(q2 ; 1, 1, 1) =- (i7rd/2) 2 F(2c- 1)(q2 /2) 1- 2" 

X {01 dx {DO dt [t(1- X)+ xjl-2c 
Jo J1=X Jo (t + x)3-3c (3.51) 

Remember that our integral is UV divergent. The overall divergence is 
quadratic since the UV degree of divergence is w = 2, and there are three one­
loop logarithmically divergent subgraphs, so that, presumably, there should 
be poles up to the second order in E. One source of the poles is the overall 
gamma function F(2c -1). Another power of 1/c comes from the integration 
over t and x in (3.51), namely from the region of small t and x. To have the 
possibility to perform an expansion in E we have to reveal the singularity at 
E = O. Similarly to what we did in Example 3.3, let us perform a subtraction 
according to the identity 

[t(1- x) + xjl-2" = {[t(1- x) + xjl-2"- (t + x)l-2c} + (t + x)l-2c. 

Now, the integral with the expression in braces can be evaluated by expanding 
the integrand in a Laurent series in E, while the last term can be integrated 
by hand with a result expressed in terms of gamma functions which can be, 
of course, expanded in E after the evaluation: 

[ 1 dx {DO .,-----d....,.t :::-­
Jo J1=X Jo (t + x) 2-" 

y7iF(c) 
(1- c)F(c + 1/2) · 

The integration of the subtracted part up to order c0 can straightforwardly 
be done by MATHEMATICA [22]. Finally, we obtain the following result: 

(3.52) 

Consider now 

Example 3.7. Non-planar two-loop massless vertex diagram of Fig. 3.13 
with PÎ = p~ = O. 

The Feynman integral can be written as 

!! ddkddl 
F3.7(Q2; al, ... , a6, d) = [(k + l)2- 2pl·(k + l)]al 

1 
X [(k + l)2- 2p2·(k + l)]a2(k2- 2p1·k)aa(l2- 2p2·l)a•(k2)a5(l2)a6 ' (3·53) 

where Q2 = -(Pl - P2) 2 = 2pl ·p2, and the loop momenta are chosen as the 
momenta flowing through lines 5 and 6. 

Let us proceed by Feynman parameters following [11] where some inte­
grals of this class were calculated. (They were also evaluated in [13] and [16].) 
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P1 

q 

P2 

Fig. 3.13. Non-planar vertex diagram 

We write down Feynman parametric formula (3.34) for the pairs of the prop­
agators (3, 5) and (4, 6): 

1 ( -l)a3+a5 r(a3 + a5) 

r(a3)r(a5) 
x {1 d6 ~r3-1(1- 6)a5-1 

Jo [-(k- 6p1)2 - i0Ja3+a5 

and, similarly, for the second pair, with the replacements 

6 ---t 6, P1 ---t P2, k ---t l, a3 ---t a4, a5 ---t a6 . 

(3.54) 

Then we change the integration variable l ---t r = k + l and integrate over k 
by means of our one-loop tabulated formula (3.6): 

(3.55) 

Then we apply Feynman parametric formula (3.35) to the propagators 1 
and 2 and the propagator resulting from the right-hand side of (3.55), with 
a resulting integral over r evaluated by (A.1): 

J ddr 

[-(r2 - Q2 A(6, 6, 6, ~4))]a+E- 2 

= i1rd12 r(a + 2c-- 4) 1 (3 ) 
r(a+c--2) (Q2)a+2c-4A(6,6,6,~4)a+2c-4' .56 

where a = a1 + ... + a6 and 

Thus we arrive at the following intermediate result valid for general powers 
of the propagators: 



3.5 Two-Loop Examples 49 

(-1)a (i1rd/ 2 ) 2 T(2- E:- a3s)T(2- E:- a45) 
F3.7(Q2;a1, ... ,a5,d) = ( 2 ) +2 4 TI ( ) ( ) Q a E- r az r 4 - 2c - a3455 

xT(a + 2c- 4) 11 d6 .. ·11 d~4 ~~3-1(1- 6)a5-1~~4-1(1- 6)a6-1 

x~fl-1~~2-1(1- 6- ~4)~3456+c-3 A(6, 6, 6, ~4)4-2e:-a. (3.57) 

We use the shorthand notation a35 = a3 +as, a3455 = a3 + a4 +as+ a5. As 
usually, X+= X for X> O and X+= O otherwise. 

This faur-parametric integral representation can be used for the evalua­
tion of Feynman integrals of this class with various indices. Let us use it in 

the case a 1 = ... = a6 = 1 and evaluate the corresponding Feynman integral 
in expansion in E: up to the finite part. We have 

2. _ (i1rd/2) 2 T(2 + 2s)T(-s)2 

F3.7(Q ,1, ... ,1,d)- (Q2)2+2c T(-2s) 

1
1 11 ( 1 - 6 - ~4) Hc 

X d6... d~4 A(~ ~ ~ ~ )~+2c o o 1, 2, 3, 4 
(3.58) 

We introduce new variables by 6 = ~TJ, ~4 = (1 - ~)TJ and integrate over 6 
to obtain 

The singularity of the denominator at ~ = 6 is spurious because the nu­
merator is zero at this point. We notice that, due to the symmetry of the 
integrand, the integral over ~ and 6 equals twice the integral over the do­
main O :::; 6 :::; ~ :::; 1. Following [11] again, we turn to the variable z by 
6 = zC make the changes TJ--+ 1 - TJ, z --+ 1 - z and come to 

2 . (i1rd/2 ) 2 T(1 + 2s)T( -s) 2 

F3.7(Q , 1, ... , 1, d) = -2 (Q2 )2+2e: T( _ 2c) f(s) , 

where 

f(c) = 11 dryry"(1- TJ)-l-2e: 11 d~ cl-2c 

X rl dz {[1- ~(1- TJZ)rl-2c- (1- o-l-2c(l- TJZ)-1-2c} 
Jo z 

(3.60) 

(3.61) 

At this point it is claimed in [11] that, in principle, it is possible to evaluate 

this integral, in expansion in E: up to the finite part, performing appropri­
ate subtractions of the integrand. Still another way was chosen: to expand 
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various quantities of the type (1 -X)>. in a binomial series, with subsequent 
integration and summing up resulting multiple series. (This procedure can be 
qualified as another method of evaluation.) Let us, however, realize the pos­
sibility of making subtractions. Indeed, the situation is complicated because 
we are dealing with a three-parametric integral so that several subtractions 
that would reveal the singularities that generate poles in E are necessary. 

Since the prefactor in (3.60) involves a simple pole in E we have to evaluate 
the function f(c) given by (3.61) up to order c 1 . There are several sources of 
the poles: the points ~ = O, ~ = 1, rJ = O, rJ = 1, and z = 1. The following 
strategy of subtractions is suitable for the calculation. Let us first decompose 
f into the sum fi+ h according to the subtraction of the braces in (3.61) at 
'TJ =O, i.e. 

[(1 _ ~(1 _ 'TJZ))-l-2c; _ (1 _ o-l-2c;] 

+(1 _ o-l-2c; [1 _ (1 _ TJZ)-l-2c;] (3.62) 

Let us start with fi. We perform subtraction of the integrand at rJ = 1 
according to the decomposition of the first part of (3.62) into 

[(1 _ ~(1 _ z))-l-2c; _ (1 _ ~)-l-2c;] 

+ [(1 _ ~(1 _ 'TJZ))-l-2E _ (1 _ ~( 1 _ z))-l-2E] (3.63) 

The first termin (3.63) does not depend on rJ so that the corresponding inte­
gration over rJ is performed in terms of gamma functions. Then the integral 

( d~ cl-2E { 1 dz { [1 _ ~(1 _ z)tl-2E _ (1 _ o-l-2c} 
la la z 

appears. We need a subtraction at ~ = 1 here because when ~ ---+ 1 the factor 
z- 1- 210 generating a pole in E arises. So we replace ~- 1 - 210 by 1 + ( ~- 1 - 210 - 1). 
The first term corresponding to unity, after integration over ~, gives the 
following integral evaluated in terms of gamma functions 

11 dz ( 1 2c;) -- 1 - Z- - = 1/J (-2E) + 'YE , 
o 1- z 

where 'lj;(z) is the logarithmical derivative of the gamma function, i.e. 'lj;(z) = 
T'(z)/T(z). Thus we obtain the following contribution to our result: 

fn = _ T(1 + c)T( -2c) 
2cT(1- c) 

= _1_ - ~ - 3((3) - 3Jr4 E + O(c2) . 
8~ 24E 4 80 

(3.64) 

Starting from the second term we obtain an integral which can be eval­
uated by expanding the integrand in E and performing the integration, e.g., 
in MATHEMATICA [22], with the following contribution: 

11"2 4311"4 
fi2 = 12E + 5((3) + 180 E + O(c2) . (3.65) 
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In the second part of (3.63), we make the same replacement (with the 
same motivation) as before, i.e. ~- 1 -2" ----r 1 + (~- 1 - 2"- 1). The second part 
here again produces an integral which can be evaluated by expanding the 
integrand in c, with the following contribution: 

(3.66) 

The unity gives a part where the integration over ~ is explicitly taken. The 
corresponding result is proportional to the sum of these two two-parametric 
integrals: 

fo1 fo1 d1]dZ1J"(1- 'IJ)-1-2c- (1- 'l]-1-2c-) 

+ {1 {1 d'1]dZ1J"(1- 'IJ)-l-2c- [1- (1Jz)-2c- - 1- z-2c-] (3.67) 
lo lo 1- 'l]Z 1- z 

The first integral can be evaluated in terms of gamma functions, with the 
following contribution: 

/I4 = r(-2c) [r(1 +c)- r(1- c)] 
4c2 F(1- c) r(1- 3c) 
7!'2 7!'4 

= --- ((3)- -E: + O(c2). 
12c 36 

(3.68) 

In the second integral, one can expand the integrand in c. Here is the corre­
sponding contribution: 

(3.69) 

Let us now deal with h defined by the second part of (3.62). The integra­
tion over ~ is performed explicitly, and the following integral over z arises: 

{1 dz [(1- 'IJZ)-1-2c-- 1] . 
Jo z 

When z ----r 1 a factor (1 - 'IJ)-1- 2" appears so that we need a subtraction at 
z = 1. We make the replacement 1/z ----r 1 + (1- z)jz. The unity generates 
a part which is integrated explicitly over z and then over 1]. The resulting 
contribution is then 

!21 = _ F(-2c)2F(c) []_ (r(-4c) _ F(-2c)) + r(-2c)] 
r( -4c) 2c r( -3c) r( -c) r( -c) 

1 1 7!'2 7!'2 ( 297!'4 ) 
= 8c3 + 2c2 + 12c - 6 + 2((3) + 360 - 7((3) c + O(c2) . 

(3.70) 

Starting from the second term and performing one more subtraction we 
obtain the following integral 
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1111 1-z drydzryE(1- T))-1-2E __ 
o o z 

x { [(1 _ ryz)-1-2c _ (1 _ z)-1-2EJ + [(1 _ z)-1-2E _ 1]} (3.71) 

For the part corresponding to the second square brackets, one can explic­
itly integrate over T) and then expand the integrand in E and integrate over z 
with the following resulting contribution: 

r (-2c) 3 r ( 1 + c) [ 1 J 
fz2 = - T( -4c)T(1- c) 2c + 1 -1/J( - 2c)- 'YE 

= --1- - 7r2 + 7r2 - 2((3) + (7r4 + 7((3)) E + O(c2) . 
2c2 6c 6 90 

(3.72) 

For the part corresponding to the first square brackets in (3.71), one can 
expand the integrand in E and integrate over z and T) with the following 
resulting contribution: 

7f2 197r4 
h3 = --- 9((3) + -E + O(c2 ). 

6c 45 
(3. 73) 

Collecting all the eight contributions obtained and taking into account 
the prefactor in (3.60) we arrive at the well-known analytical result [11] 

2. - (i7fd/2e-'YEE)2 
F3.7(Q ,1, ... ,1,d)- (Q2 )2+2e 

x (~ - 7r2 - 83((3) - 597r4) + O(c) . 
c4 c2 3c 120 (3.74) 

In [11], a similar algorithm based on Feynman parameters has been de­
veloped for the evaluation of planar massless two-loop vertex diagrams. It 
has turned out that the evaluation, by Feynman parameters, in the planar 
case is more complicated. As we will see in Chaps. 5 and 6, there is, however, 
a better choice of an appropriate method in this situation and the planar 
vertex diagrams of this class are in fact much simpler than the non-planar 
o nes. 
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4 Evaluating by MB Representation 

One often uses Mellin integrals1 when dealing with Feynman integrals. These 
are integrals over contours in a complex plane along the imaginary axis of 
a product and ratio of gamma functions. In particular, the inverse Mellin 
transform is given by such an integral. We shall, however, deal with a very 
specific technique in this field. The key ingredient of the method presented 
in this chapter is the MB representation used to replace a sum of two terms 
raised to some power by the product of these terms raised to some powers. 
Our goal is to use such a factorization in order to achieve the possibility to 
perform integrations in terms of gamma functions, at the cost of introducing 
extra Mellin integrations. Then one obtains a multiple Mellin integral of 
gamma functions in the numerator and denominator. The next step is the 
resolution of the singularities in E by means of shifting contours and taking 
residues. It turns out that multiple MB integrals are very convenient for this 
purpose. The final step is to perform at least some of the Mellin integrations 
explicitly, by means of the first and the second Barnes lemma and their 
corollaries and/or evaluate these integrals by closing the integration contours 
in the complex plane and summing up corresponding series. 

In Sect. 4.1 we start with simple one-loop examples. In Sect. 4.2 we dis­
cuss general properties of multiple MB integrals we are going to deal with. 
We continue in Sect. 4.3 with typical one-loop examples. In fact we shall il­
lustrate the method of MB representation mainly by the same characteristic 
examples as in the case of the method of alpha and Feynman parameters in 
Chap. 3. Let us stress, however, that, for double and triple boxes, complete 
analytical calculations strictly by means of alpha and Feynman parameters, 
or, by some other techniques, are not known. We turn to various two-loop 
examples of massless and massive diagrams in Sects. 4.4 and 4.5, respectively. 
We then consider three- and even four-loop examples in Sects. 4.6 and 4.7. 
In Sect. 4.8, we discuss how multiple MB integrals can be used to obtain 
asymptotic expansions of Feynman integrals in various limits and compare 
this procedure with expansion by regions [4, 27]. In the last section, we also 
discuss some other results obtained by means of MB integrals and summarize 
basic characteristic features of the method presented in this chapter. 

1 First examples of application of Mellin integrals to Feynman integrals can be 
found in [5, 34]. 



56 4 Evaluating by MB Representation 

4.1 One-Loop Examples 

Our basic tool is the following formula: 

1 1 1 J+ioo yz 
(X+ Y)>- = r(>-.) 2rri -ioo dz T(>-. + z)T( -z) x>-+z . (4.1) 

Here the contour of integration is chosen in the standard way: the poles with 
ar( ... + z) dependence (Iet us caii them left poles, for brevity) are to the 
left of the contour and the poles with ar( ... - z) dependence (right poles) 
are to the right of it. See Fig. 4.1, where a possible contour C is shown in 
the case of).. = -1/4- i/2. (This terminology is useful and, although it often 
happens that the first right pole is to the left of the first left pole of a given 
integrand, this, hopefully, will not cause misunderstanding.) 

->-.-2 
• 

-2 

Imz 
c 2 

1 
->-.-1 

• • ->-. 

-1 o 

-1 

-2 

Rez 

1 2 

Fig. 4.1. Possible integration contour in (4.1) for A= -1/4- i/2 

We shall use decompositions X + Y of various functions in integrals over 
Feynman and alpha parameters. But a more transparent way2 to apply this 
representation is to write down a massive propagator in terms of massless 
o nes: 

1 1 1 J+ioo (m2)z 
(m2 - k2).A = r(>-.) 2rri -ioo dz ( -k2)A+z r(>-. + z)r( -z) . (4.2) 

Our first example is the same as Example 3.1: 

2 Historically, it was first advocated and applied in [8]. 
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Example 4.1. One-loop propagator Feynman integrals (1.2) corresponding 
to Fig. 1.1. 

We insert (4.2) with >. = a1 into (1.2), apply (3.6) and obtain the following 
result: 

2 2. - i7rd/2(-1)al+a2r(2-r::-a2) 
F4.1(q ,m ,a1,a2,d)- T(al)T(a2)(-q2)a1 +a2 +c:-2 

X~ J+ioo dz ( m2
2) z T(al + a2 + E:- 2 + z) 

2m -ioo -q 

x T(2- r::- a1 - z)r( -z) . (4.3) 
r( 4 - 2c - al - a2 - z) 

The rules for choosing an integration contour that goes from -ioo to +ioo in 
the complex z-plane are the same as before: the right poles (in T( ... - z)) 
are to the right of the contour and the left poles (in r ( ... + z)) are to left. 

This representation can be used to evaluate any integral of this family 
in a Laurent expansion in r::. In particular, for F4.1 (q2, m2; 2, 1, d), we obtain 
(1.9) and, at d = 4 come to 

_ i1r2 _1_ j+i= ( m2 ) z T(1 + z)T( -z)2 
F4.1 (2, 1, 4) - 2 . dz 2 ( ) 

q 2m -ioo -q r 1 - z 
(4.4) 

with an integration contour at -1 < Rez < O. U sing properties of the gamma 
function we obtain (1.10). 

Here is a subtle point: if we look at (1.10) we observe that there is a 
product T(z)T( -z) which would be bad if it was present from the beginning 
because we could not satisfy our agreement about choosing the integration 
contours. Indeed, here the right and left poles at r:: = O glue together and there 
is no space between them. However, the situation is unambiguous because we 
have fixed an integration contour with -1 < Rez < O and we are free to 
perform identica! transformations of the integrand after that. A moral of this 
discussion is the recipe to derive the MB representation for general powers 
of the propagators az and fix appropriate integration contours at this point. 
Then, for concrete integer indices az, we are allowed to make transformations 
like T(1 + z)T( -z) = -T(z)T(1- z), but it is necessary to remember about 
the choice of the contours made before this. 

The integral (1.10) can be evaluated, according to the Cauchy theorem, 
by closing the integration contour to the right and taking a series of residues 
(with the minus sign, of course) at the points z = O, 1, 2, .... The residue 
at z = O gives i1r2 ln ( -q2 /m2) jq2 and the residues at z = 1, 2, ... give the 
series 

_ i1r2 oo ~ (m2)n 
q2 L n q2 · 

n=l 

As a result, we reproduce (1.5). 
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In the case of the indices equal to one we use ( 4.3) to obtain 

2 2 i1r2r(1-c:) 
F4.I(q ,m ;1,1,d)= ( 2 ) -q c 

X _1 1 dz ( m2 ) z T(c + z)T( -z)T(1- E:- z) (4.5) 
2rri c -q2 r(2- 2€- z) 

To evaluate MB integrals in a Laurent expansion in E: the first point is to 
analyse how singularities in E: are generated. We know in advance that the 
given integral has a pole in E: because the diagram is UV-divergent. There are 
no explicit functions with singularities in E: so that the pole is generated by the 
MB integration. Indeed, the product T(c + z)r( -z) generates a singularity 
in E: when E:--+ O because the first left pole, i.e. at z = -E:, and the first right 
pole, i.e. z = O, glue together when E: = O, and there is no place for a contour 
between these poles. 

Possible integration contours C in (4.5) in the cases Rec: >O and Rec: <O 
are shown in Figs. 4.2 and 4.3, respectively. In the former case, a contour can 
be chosen as a straight line parallel to the imaginary axis, while in the latter 
case, there is no such choice. However, no matter which value of E: we can 
imagine, we shall use the same procedure to reveal the pole in c:: we write 
down the integral (4.5) as the sum of a similar integral over a new contour, 
C', which goes to the left of the pole at z = -E: and the residue at this 
point. In the integral over the shifted contour, the nature of the pole at 
z = -E: changes, and it becomes right, rather than left, in our terminology. 

-E:- 1 
• 

-2 

Imz 
C' C 2 

1 

-E: 1-E: 
• • 

-1 o 

-1 

-2 

Rez 

1 2 

Fig. 4.2. Possible integration contour in (4.5) in the case Rec- >O 
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Imz 
C,C' 2 

1 

-E- 2 -E -1 
c 

1-E 
• • C' • -E • 

Rez 

-2 -1 o 1 2 

-1 

-2 

Fig. 4.3. Possible integration contour in ( 4.5) in the case Re c: < O 

The crucial point is that, in the integral over C', we can safely expand the 
integrand in a Laurent series in E. (In this particular example, this is just a 
Taylor series.) As to the residue, it is equal to 

. 2 r(c) l7r 
(m2)E(1- c) 

and can explicitly be expanded in E. For the integral over the shifted contour 
C', with -1 < Rez <O, we obtain, at E =O, 

i7r2~1 dz ( m22)z r(z)r(-z). 
2m 0 , -q 1 - z 

This MB integral can be evaluated by closing the integration contour to the 
right in the complex z-plane, as in the previous example. Combining the 
corresponding result with the residue calculated above we arrive at (1.7). 

In fact, we could similarly proceed by moving the contour C across the 
right pole at z =O and, correspondingly, taking minus residue at this point. 
Then the integral over the new contour C' would be at O < Rez < 1. 

The next example is the same as Example 3.2: 

Example 4.2. The triangle diagram of Fig. 3.4. 

We again exploit the MB representation in the simplest way, i.e. apply 
(4.2) to the only massive propagator in (3.19), and evaluate the resulting 
massless triangle integral by (A.28) to obtain the following result: 
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( -1 )ai7rd/2 
F4.2(Q2 ,m2;a1,a2,a3,d) = f]T(at)(Q 2 )a+s-2 

X 2~i /_~~= dz ( ~: r T(a3 + z)T(a + E- 2 + z) 

T(2- E- a1 - a3- z)T(2- E- a2- a3- z)T( -z) 
x T(4-2E-a-z) ' (4·6) 

where a= a1 + a2 + a3 and Q2 = -(p1 - P2)2 as above. 
Consider, as in Chap. 3, the diagram with the powers of the propagators 

equal to one: 

i7rd/2 
F4.2(Q2, m2; 1, 1, 1, d) =- (Q2)l+c 

x _1_ J+ioo dz (m2) z T(1 + E + z)T(1 + z)F( -E- z) 2 T( -z) (4.7) 
27ri -ioo Q2 T(1- 2E- z) 

If we want to calculate this integral at E = O, we observe that we can safely 
set E = O in the integrand because the right and left poles in the complex 
z-plane are well separated. We obtain 

2 2 i7r2 
F4 .2(Q ,m ;1,1,1,4) = (Q2 ) 

1 J+ioo (m2 )z T(1+z)2T(-z)2 
x-2 . dz Q2 , (4.8) 

7rl -ioo Z 

where the integration contour can be chosen with -1 < Rez < O. The integral 
can be evaluated by the same procedure as before, with the known result 
(3.21). 

Any integral (3.19) with integer indices can be evaluated using (4.6). For 
example, 

i7rd/2 1 J+ioo (m2) z 
F4.2(Q2,m2;2,1,1,d)=(Q2)2+c27ri -ioo dz Q2 

T(2 + E + z)T(1 + z)T( -1- E- z)T( -E- z)T( -z) 
X ( ) . (4.9) r -2E- z 

We know in advance that there should be an IR pole in E because of the second 
power of the first massless propagator so that we anticipate that a pole is 
generated by the MB integration. Indeed, we observe that the only source of 
the singularity in E is the product T(1 + z )T( -1- E- z). When E ----> O the first 
left pole ( from T ( 1 + Z)) and the first right pole ( from T ( -1 - E - Z)) tend 
to each other and there is no place for an integration contour to go between 
them. To evaluate ( 4.9) in expansion in E we apply the strategy formulated 
above: we turn to the integral over a shifted contour which goes to the left 
of the first pole of T( -1 - E - Z) SO that this pole changes its nature, i.e. 
becomes left. According to the Cauchy theorem, (4.9) equals the integral over 
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the shifted contour minus residue of the integrand at the point z = -1 - c:. 
Then the integral is evaluated by closing the contour ( which can again be 
taken at -1 < Rez <O) to the right and summing up a series of residues at 
the points z =O, 1, 2, ... ). We thus obtain 

i?rd/2e-'YE" 
F4.2(Q2,m2;2,1,1,d) =- Q2 

[~ (~ _ 1 2) ln( -m2 jQ2) O( )] x 2 nm + 2 Q2 + c: 
m c: m-

(4.10) 

As before, we again had two options: to change the nature of the first pole 
of r( -1-c:-z) or the first pole of F(1 +z). Let us agree, for definiteness, that 
we shall always try to obtain MB integrals expanded in c: at -1 < Rez < O. 

The next example is the same as Example 3.3: 

Example 4.3. The massless on-shell box diagram of Fig. 3.5, i.e. with pr = 
o, i = 1,2,3,4. 

Up to now we applied MB representation using (4.2). Let us start with 
(3.24). The natural idea here is to apply (4.1) to the denominator of the 
integrand. We do this with X = -s66· After that we change the order of 
integration over z and the parameters 6 and 6 and evaluate the parametric 
integrals in terms of gamma functions: 

( -1 )ai?rd/2 
F4.3(s, t; a1, a2, a3, a4, d) = r(4 _ 2c: _a) IT r(az)( -s)a+c-2 

x ~ J+ioo dz (!) z F(a + c:- 2 + z)F(a2 + z)F(a4 + z)F( -z) 
2m -ioo s 

xr(2- a1 - a2 - a4- c:- z)F(2- a2- a3 - a4- c:- z) , (4.11) 

where a = a1 + a2 + a3 + a4. 
One can use this representation to evaluate any box with integer powers 

of the propagators in expansion in c:. In particular, 

i?rd/2 
F(s,t;d) = F4.3(s,t;1,1,1,1,d) = F(-2c:)(-s)2+" 

X -21 . J~ioo dz (!) z F(2 + c + z)F(l + z) 2 r( -1- c- z) 2 r( -z) . 
1fl -JOO 8 

( 4.12) 

The way how poles in c: are generated is already familiar: we immediately 
identify the product F(1 + z)2 r( -1- c:- z)2 responsible for that. The only 
difference with the previous cases is that the left poles in F(l + z)2 and the 
right poles in F( -1 - c:- z)2 are of the second order. After this analysis we 
proceed as before: take minus residue at z = -1 - c: and turn to the integral 
over the contour which goes to the right of it. The contribution of the residue 
is 
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. d/2 r(1 + c:)r( -c:) 2 [ t J 
l7f F( _ 2c)s( -t)l+c ln ~ + 2'1/J( -c;)- 'lj;(1 + c) + ')'E , (4.13) 

where '1/J(z) is the logarithmical derivative of the F-function. 
There is no gluing of left and right poles in the integral over the shifted 

contour so that it can be expanded safely in a Taylor series in c:. Every term 
of this expansion can be integrated by closing the integration contour to 
the right, taking residues at the points z =O, 1, 2, ... , and summing up the 
resulting series. Combining this contribution with (4.13) we obtain 

i7rd/2e-IE" . 
F(s, t; d) =- ( -s)l+2c:t L Cj(x) c:1 , (4.14) 

J=-2 

where x = t/ s. To calculate the first coefficients c_2, ... , c1, it is enough to 
use MATHEMATICA for summing up the series involved. However, starting from 
c2, it does not work. In this case, one can use summation formulae (C.83)­
(C.94) [14]. One can also do this automatically, using the package SUMMER [39] 
implemented in FORM [38]. We have 

47r2 
c-2 = 4, c_1 = -2lnx, c0 = - 3 , (4.15) 

c1 = 2 (Li3 ( -x) -lnx Li2 ( -x)) 

1 3 77r2 2 34((3) 
+ 3ln x + 6 1nx- (1r2 + ln x) ln(1 + x)- - 3- , (4.16) 

c2 = 2 (82,2( -x)- Li4 ( -x) + ln(1 + x)Li3 ( -x) -lnx 81,2( -x)) 
7r2 

+ ln X (ln X - 2ln( 1 + X)) Lb (-X) - 2 (ln X - ln( 1 + X) )2 

+ ln2 x ( ~ ln x ln(1 + x) - ~ ln2 (1 + x) - ~ ln2 x) 

2 417r4 
+'3(10lnx-3ln(1+x))((3)- 360 , (4.17) 

where, in addition to polylogarithms, we encounter generalized polyloga­
rithms 8a,b [12, 20] (see (B.8)). 

One indeed needs to know expansions of one-loop Feynman integrals up 
to order c:2 if one wants to perform calculations in two loops because some 
two-loop contributions factorize and one-loop diagrams enter with coefficients 
that have poles up to 1/ c:2. On the other hand, the functions that enter c:2-
terms of expansion of one-loop Feynman integrals should be present in gen­
uine two-loop contributions, although the 'true' two-loop world is, of course, 
much more complicated than the c:2-expansion of the one-loop world so that, 
usually, two-loop results involve functions that are not present in one-loop. 

Any on-shell massless box with integer indices can be evaluated by a 
similar procedure. Generally, one encounters several right and left poles which 
tend to each other when E --+ O. For example, we have 
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irrd/2 
F4.3(s, t; 2, 1, 1, 1, d) = - r( _ 1 _ 2c)( -s)3+" 

x~j+ioo dz(!)z r(3+c+z) 2m -ioo s 

xr(1 + z) 2 r( -2- c- z)r( -1- c- z)r( -z) . (4.18) 

Here the first two left poles of F(1 + z)2 glue, when c---+ O, with the first two 
right poles of the product r(-2-c- z )F( -1-c- z). However the generaliza­
tion of the above procedure to such situations is straightforward: one shifts 
the initial contour across the poles at z = -1 - c and z = -2 - c and takes 
two residues (with the minus sign) at these points. The procedure of evalu­
ating any given Feynman integral from this class can easily be implemented 
on a computer. 

4.2 Multiple MB Integrals 

Up to now we were dealing with one-parametric MB integrals. To resolve 
the singularities in c we analysed the integrand, and then shifted contours 
and took residues, in an appropriate way. In the end of this procedure we 
obtained either explicit expressions for general c or integrals where a Laurent 
expansion of the integrand in c was possible. In fact, we are going to use a 
similar procedure for multiple MB integrals which arise when evaluating more 
complicated Feynman integrals. Of course, the resolution of singularities in 
c in such multi-dimensional MB integrals is more complicated than in the 
one-dimensional case. Usually, the poles in c are not visible at once, at a 
first integration over one of the MB variables. However, the rule for finding a 
mechanism of the generation of poles is just a straightforward generalization 
of the rule used in the previous one-loop examples with one-parametric MB 
integrals. For example, for the massless master on-shell box, we observed that 
the product of F(1+z) and r( -1-.s- z) generated a pole ofthe type r( -.s) 
(this is nothing but the value of one of these gamma functions at the pole of 
the other gamma function). 

Suppose now that we are dealing with a multiple MB integral and we start 
from the integration over one of the variables, z. We shall analyse various 
products r(a+z)F(b-z), where a and b depend on the rest ofthe variables, 
with the understanding that this integration generates a pole of the type 
r(a + b). Indeed, if we shift an initial contour of integration over z across 
the point z = -a we obtain an integral over a new contour which is not 
singular at a+ b = O, while the corresponding residue involves an explicit 
factor r( a+ b). (Well, sometimes it turns out that it is cancelled by a factor 
in the denominator.) 

This observation shows that any contour of one of the next integrations 
over the rest of the MB variables should be chosen according to this depen­
dence, r(a + b). We continue this analysis, in a similar way, with various 
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next integrations of the second level, etc. In other words, we consider var­
ious orders of integrations over given MB variables and analyse whether a 
singular dependence on c: in the form of some gamma function, e.g. r( -c:), 
is generated in a given order. 

After this first step, we can identify some gamma functions (in the numer­
ator of the integrand) that are essential for the generation of poles in c:. Then 
we proceed with one of the MB integrations as in the case of one-dimensional 
MB integrals by shifting contour and taking residue. In the integral over the 
shifted contour, we continue this procedure by taking care of another key 
gamma function etc. The corresponding residue has one integration less. We 
deal with it exactly like with the initial integral, i.e. perform an analysis of 
generation of poles and then shift contours and take residues. In the end of 
our procedure, we are left with MB integrals which can be expanded in a 
Laurent series in c: under the sign of integration. We shall usually evaluate 
such expanded MB integrals by means of the table of one-dimensional MB in­
tegrals presented in Appendix D. Ali these formulae are corollaries of the first 
and the second Barnes lemmas (D.l) and (D.47). Typically, the integration 
over the last variable is performed, as in the previous examples, by shifting 
the contour to the right (or left) and taking a series of residues. These series 
are summed up by means of summation formulae of Appendix C. 

There is an alternative strategy [2, 33] for the evaluation of multiple MB 
integrals. First, one chooses a domain of the regularization parameter c: in 
such a way that all the integrations over the MB variables can be performed 
over straight lines parallel to imaginary axis. Then one lets c: -+ O, and 
whenever a pole of some gamma function is crossed one takes into account 
the corresponding residue. It is simple to organize this procedure in such 
a way that no more than one pole is crossed at the same time. For every 
resulting residue, which involves one integration less, a similar procedure is 
applied, and so on. We shall not, however, use this strategy. 

In fact, we are going to be pragmatic and not bother whether the change 
of the order of integration over MB variables is legitimate. Well, usually, at 
least at large values in the complex plane, the convergence of MB integrals is 
perfect3 because gamma functions have exponential decrease in both imagi­
nary directions. This property can be used for numerica! checks. Moreover, 
in complicated situations, one can decompose a given integrand into pieces 
and choose an order of integration for every piece in a special way, with the 
possibility to integrate explicitly, using table formulae of Appendix D. 

3 However, in some situations, e.g. in a MB integral for the Gauss hypergeometric 
function, the asymptotic exponents of gamma functions cancel each other so that 
the convergence is defined by the value of the argument x which is present in the 
MB integral as xz. Depending on whether lxl < 1 or lxl > 1, one has to close the 
integration contour to the right or to the left. Closing the contours to the different 
sides corresponds to an analytical continuation with respect to the argument x. 
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We shall apply some standard properties of integration for multiple MB 
integrals. We shall use changes of variables of the type z-+ ±z + zo. When 
doing this we shall, of course, trace how the nature of various poles is trans­
formed. Note that, after such a change, z-+ -z, right poles become left poles. 
The IBP is also possible in multiple MB integrals, although it is reasonable 
to apply it in rare situations. StiU sometimes it is useful. For example, tab­
ulated formulae of Appendix D with the factor 1/ z2 were derived using the 
IBP identity 

1 dzf(:) = 1 dzf'(z) . (4.19) 
c z c z 

The word 'multiple' will mean, in examples below, the number of MB 
integrations from two to eight ( and even ten, in some restricted sense) which 
is indeed a big number. StiH even in such situations, an explicit integration 
becomes possible, probably, because multiple MB integrals arising in the 
evaluation of Feynman integrals are very flexible, both in the procedure of 
resolving the structure of singularities in c: and when evaluating finite integrals 
after expansion in c:. 

Before evaluating a Feynman integral by means of MB integrals, we shall 
need to derive an appropriate MB representation. Of course, we shall try to 
have a minimal number of MB integrations. In every case, we shall derive 
MB representations for general powers of the propagators. This is useful and 
important for several reasons. First, if we obtain a MB representation for 
general indices which we might imagine as complex we will certainly have 
unambiguous prescriptions for choosing integration contours. Second, such 
general formulae can be checked using various partial simple cases. Finally, 
starting from a general formula we can derive a lot of formulae by setting 
some indices to zero and thereby turning to graphs where the corresponding 
lines are contracted to a point. We will illustrate all these features through 
multiple examples below. 

4.3 More One-Loop Examples 

We now turn to a class of one-loop Feynman integrals with two more param­
eters. 

Example 4.4. The massless box diagram of Fig. 3.5 with two legs on shell, 
p~ = p~ = O, and two legs off shell, PI, p§ =/= O. 

We proceed like in the pure on-shell case, using alpha parameters, and 
obtain 
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(4.20) 

We have chosen the delta function of the sum of all the a-variables so that 
the factor with a power of the function U is equal to one. 

Now we need a generalization of (4.1) to the case of several terms which 
is easily obtained by induction: 

1 1 1 J+ioo J+ioo n 

(Xl + ... + Xnf' = r(>..) (27ri)n-l -ioo . . . -ioo dz2 ... dzn!! Xfi 

n 

xX1A-z2- ... -Zn r(>.. + Z2 +o o o+ Zn) II r( -zi) o ( 4.21) 
i=2 

We use (4.21) to replace the last factor in (4.20) by a product of four 
factors thus separating terms with t, PI and p~ from s. After that we introduce 
new variables by a1 = 1116, a2 = 171(1-6), a3 = 1126, a4 = 172(1-6) and 
arrive at a product of three parametric integrals evaluated in terms of gamma 
functions. Eventually we obtain the following threefold MB representation of 
a general Feynman integral of the given class: 

i?Td/2 ( -1 )a 
F4.4(s, t,pÎ ,p~; a1, ... , a4, d) = r(4 _ 210 _a) TI r(at)( -s)a+o-2 

1 j+ioo j+ioo j+ioo ( -pÎY2 ( -p~y3 ( -W4 
x -- dz2dz3dz4 -'--::..c:.:-..:.....::..=_:...._..:....._ 

(21Ti)3 . . . (-s)z2+z3+z4 
-100 -100 -100 

XT(a + c- 2 + Z2 + Z3 + Z4)T(a2 + Z2 + Z3 + Z4)T(a4 + Z4) 

xT(2- c- a234- Z3 - Z4)T(2- c- a124 - Z2 - Z4) 

XT( -z2)T( -z3)T( -z4) . (4.22) 

In this chapter, we continue to use our notation: a124 = a1 + a2 + a4, etc. 
with a = al234· This representation can be, of course, used for evaluating 
these Feynman integrals. We shall use it, however, in the next section only 
as an auxiliary result when deriving an MB representation for the massless 
on-shell double box diagrams. 

One of the advantages of general formulae is that they provide a lot of par­
tial cases. For example (4.22) immediately gives a twofold MB representation 
for 

Example 4.5. The massless box diagram of Fig. 3.5 with three legs on shell, 
p~ = p§ = p~ =O, and one leg off shell, PI =1- O. 

Indeed we put p~ to zero in the 'naive' sense, i.e. in the integrand of the 
corresponding Feynman integral or in some parametric representation. This 
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is equivalent to setting p§ to zero in the sense of the leading term of the hard 
part of the asymptotic expansion in the limit p§ ---+ O (see details in [27]), 
which corresponds to taking residues (with the minus sign) of the poles of 
T( -z3 ). So we just take minus residue of the integrand at Z3 =O. Thus we 
obtain 

Let us now turn to massive diagrams. 

Example 4.6. The on-shell box with two massive and two massless lines 
shown in Fig. 4.4, with PI = ... = p~ = m 2 • 

Pl -+------ P3 
1 

1 
1 1 

2 1 4 1 
1 1 

3 
P2 -+-------+- P4 

Fig. 4.4. On-shell box with two massive and two massless lines. The solid lines 
denote massive, the dotted lines massless particles 

The derivation of the corresponding MB representation is quite straight­
forward. The combination that is involved in the corresponding integral over 
alpha or Feynman parameters has now an additional piece as compared with 
the massless case: 

V- U L mfal = sa1a3 + ta2a4- m2(a1 + a 3)2 . 

This term can be separated from the rest terms at the cost of introducing 
one more MB integration according to (4.21). This time, let us introduce new 
parametric variables in a slightly different way, a1 = 7]1~1, a2 = 'TJ26, a3 = 
7J1(l- 6), a4 = 7J2(1- ~2), in order to make (al+ a3)2 simpler. Evaluating 
the parametric integrals we arrive at the following massive generalization of 
(4.11): 
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(4.24) 

where a122344 = a1 + 2a2 + a3 + 2a4, etc. Observe that the onefold represen­
tation (4.11) in the massless case follows from (4.24) when we put m to zero. 
As it was discussed above we do this by taking the limit m _____. O in the sense 
of the leading term of the hard part of the expansion. Here this means that 
we just take minus residue at z2 = O with respect to the variable z2 which 
enters the integrand as the exponent of m2. 

In particular, we ha ve 

( -1 )ai7rd/2 
F4.5(s, t, m2; 1, 1, 1, 1, d) = T( _ 2.s)( -s)2+c 

1 l+ioo l+ioo ( -t)z1 (m2)z2 

x(2rri)2 -ioo -ioo dzldz2 (-s)z1+z2 T(2+.s+z1+z2)T(-z1) 

r( )r( 1 )2 T(1 + z1f T( -2- 2.s- 2zl) 
X - Z2 - - f - Z1 - Z2 . 

r(-2- 2c- 2zl- 2z2) 
(4.25) 

The resolution of singularities in .s can be performed here as in the one­
dimensional case because only the product T(1 + z1)2T(-2- 2.s- 2z1) is 
responsible for the generation of poles. To see this, we use properties of the 
gamma function and write r( -2-2.s-2zl) as r( -1-.s-zl)r( -1/2-.s-zl) 
up to a factor so that we obtain the product T(1 + z1)2 r( -1- .s- zl) which 
involves gluing of the left pole at z1 = -1 and the right pole at z1 = -1 - .s 
when f _____.O. We proceed as in Sect. 4.1 by taking minus residue at the point 
z1 = -1 - c and shifting the integration contour over z1 across this point. 
The residue gives 

_ T(1+.s)T(-.s)2 1 j+ioo dz2 (m2)z2 T(1+z2)T(-z2)3 

2s( -t)l+c r( -2c) (2rri) -ioo -s r( -2z2) 
(4.26) 

This integral can be evaluated by closing the contour to the left and taking 
residues at the points z2 = -1, -2, ... with summing up this inverse binomial 
series by the summation formulae of Sect. C.3. As to the integral over the 
shifted contour, it does not have poles in .s. If we need to expand (4.25) only 
up to .s0 this integral does not contribute because of the overall T( -2.s) in 
the denominator, so that we are left with the contribution of the residue: 

F4.5(s, t, m2; 1, 1, 1, 1, d) 

2i7rd/2e-'YEE [ 1 ( -t)] 1 - X -- - -ln - ln-- +O(c) 
- (m2)ctJ-s(4m2- s) f m2 1 + x ' 

(4.27) 

where x = 1/ J1- 4m2/s, in agreement with [3]. 
The general MB representation (4.24) can be used to derive an MB rep­

resentation for the triangle diagram shown in Fig. 4.5. This class of Feynman 
integrals is obtained from the corresponding box integrals if we set a4 = O. 
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Pl 

1 

1 3 

2 

P2 

Fig. 4.5. Triangle diagram with the masses m, m, O and external momenta on-shell, 
PÎ = p~ = m 2 • A dotted line denotes a massless propagator 

If we do this blindly in (4.24) we obtain a zero result due to F(a4) in the 
denominator. This is, of course, wrong. Let us think of a4 as a complex num­
ber and analyse the behaviour in the limit a4 ____, O similarly to what we do 
when analysing how singularities in r:: are generated. We identify the prod­
uct F(a4 + zl)F( -z1 ) responsible for the generation of the singularity when 
a4 ____, O. To reveal this singularity we can take minus residue at the point 
z1 = O and shift the integration contour over z1. The contribution of the new 
integral is indeed zero because of the factor 1/ F(a4). The contribution of the 
residue produces r(a4) which cancels this factor in the denominator, and we 
put a4 to zero after that. Changing the numbering 2 +-+ 3, for convenience, we 
obtain the following onefold MB representation4 for integrals corresponding 
to Fig. 4.5: 

(-1)airrdf2F(4- 2r::- a1- a2- 2a3) 
r(4- 2c- al- a2- a3)r(al)r(a2)( -s)a+c:-2 

X-2
1 . J+ioo dz (m2 )z r(a + C- 2 + z)r( -z) 
7rl -ioo -s 

F(2- a1 - a3 - r::- z)F(2- a2 - a3 - c- z) 
x~~--~--------~~--------~----~ 

F(4- 2c- a1- a2- 2a3- 2z) 
(4.28) 

Observe that if we want to have a representation for massive propagator­
type diagrams by setting a3 = O we shall not reduce the number of inte­
grations: there is no r(a3) in the denominator and, on the other hand, no 
singularities in the limit a3 ____, O are generated. So, one can simply apply 
(4.28) with a3 =O for this class of diagrams. 

The general MB representation (4.24) provides in a very similar way a 
MB representation for another triangle diagram obtained from Fig. 4.4. We 
shrink the line 3 to a point and obtain Fig. 4.6. The corresponding onefold 
MB representation takes the form 

4In [11], it was demonstrated that this Feynman integral reduces, for any values 
of the three indices, to a two-point function in the shifted dimension d- 2a3 . 
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Pl 

-- 1 ' ' 

P3 

Fig. 4.6. Triangle diagram with the masses m, O, O and external momenta on-shell, 
PÎ = p§ = m 2 , obtained from the box of Fig. 4.4 

1 J+ioo ( t ) z 
X-. dz - 2 F( a + E - 2 + Z )F(-Z) 

2m -ioo m 

xF(a2 + z)F(a4 + z)F(4- 2E- a1 - 2a2- 2a4- 2z) , ( 4.29) 

where t = (Pl + P3)2. 
Among other partial cases of the massive on-shell boxes let us mention 

the case where a1 = a2 =O. Then we obtain a massless one-loop propagator­
type diagram which is evaluated by (3.6). On the other hand, one can see 
that to perform the limit a1, a2 ---+ O it is necessary to take two residues in the 
integrand and somehow compensate the corresponding gamma functions in 
the denominator. Eventually one arrives at the known result. This procedure 
is just an additional check for the initial MB representation (4.24). 

The representation ( 4.24) can straightforwardly be generalized to various 
off-shell cases, similarly to how we obtained the generalizations (4.22) and 
(4.23). Here are three results which we shall use in Sect. 4.4. For the box of 
Fig. 4.4 with two massive and two massless lines, two legs on shell, p§ = p~ = 
m2, and two legs off shell we obtain the following fourfold MB representation: 

( -l)ai7fd/2 ( _ 8 )2-a-E 1 J+ioo J+ioo ( 4 ) II dz r(-z) 
F(4-2E-a)IJF(az)(27ri)4 -ioo ... -ioo j=l J J 

(m2 _ PÎ)zi (m2 _ p~)z2 ( -W3 (m2)z4 
X ( -S )21 +z2 +z3 +24 r( a2 + Z1 + Z2 + Z3)F( a4 + Z3) 

xF(2- a124 - E- Z1 - Z3 - Z4)F(2- a234 - E- Z2 - Z3 - Z4) 

F(4- a122344- 2E- Z1 - Z2- 2z3) 
x--~~----------------------~---

F(4- a122344- 2E- z1 - z2- 2z3- 2z4) 

xF(a+E-2+z1+z2+z3+z4). (4.30) 

For the box of Fig. 4.4 with two legs on shell, p~ = p~ = m2, and two legs 
off shell, we obtain: 
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( _ 1)ai71"d/2( -s)2-a-E: 1 l+ioo l+ioo ( 4 ) 
--=-:----'------'-:--:n=-=:-:-( ----=-) -( . ) 4 . . . II dzj r (-z j) 
r(4- 2e- a) r al 2m -ioo -ioo j=l 

x (m2- PÎY1(m2- p~)z2(-t)z3(m2Y4 F(a + z + z )F(a + z + z) 
( _ 8 )z1 +z2+z3+z4 2 1 3 4 2 3 

xF(2- a124 - €- Zl - Z2 - Z3 - Z4)F(2- a234 - €- Z3 - Z4) 
F(4- a122344- 2€- Z1 - Z2- 2z3) 

x~~----------------------~ 
F( 4 - a122344 - 2€ - Zl - Z2 - 2z3 - 2z4) 

xr(a+e-2+zl+z2+z3+z4)· (4.31) 

Finally, for the box of Fig. 4.4 with two legs on shell, PÎ = p~ = m2 , and 
two legs off shell, we obtain: 

___:___,___.:_ ____ ..:..."...==----=-----=- ---. -4 . • . II dzj r (-z j) 
( -l)airrd/2 ( _ 8 )2-a-E: 1 l+ioo l+ioo ( 4 ) 

r(4- 2~:- a) TI r(al) (2m) -i= -i= j=l 

(m2 _ p~)z1(m2 _ p§y2(-W3(m2)z4 
X (-s)zl+z2+z3+z4 F(a2 + Z2 + Z3)F(a4 + Z1 + Z3) 

XF(2- a124- €- Zl - Z3- Z4)F(2- a234- €- Z2 - Z3 - Z4) 
F(4- a122344- 2e- Z1- Z2- 2z3) 

x~~--~==~----~~~--~~ 

F(4- a122344- 2€- Zl- Z2- 2z3- 2z4) 

xr(a+e-2+zl+z2+z3+z4)· (4.32) 

4.4 Two-Loop Massless Examples 

Our first two-loop example is the same as Example 3. 7: 

Example 4. 7. Non-planar two-loop massless vertex diagram of Fig. 3.13 
with PÎ = p~ = O. 

We are again dealing with two-loop vertex Feynman integrals (3.53). 
We start with the four-parametric representation (3.57) obtained within the 
method of Feynman parameters in the previous chapter. Let us turn to the 
variables 6 = fTJ, ~4 = (1-~)"l and apply (4.1) to the resulting denominator 
in the integrand: 

r(a+2e-4) 

[ry~(1- ~) + (1- ry)(~6(1- 6) + (1- ~)6(1- 6)}t+2"-4 

= __!__ l+ioo dzl r( -z1)1tlel (1- ~)Zl 
2rri -ioo (1 - ry)a+2E:-4+zl 

X F(a + 2€- 4 + zl) (4.33) 
[~6(1- 6) + (1- ~)6(1- 6)t+2E:-4+z1 

Then we again apply (4.1) to transform the last line of (4.33) into 



72 4 Evaluating by MB Representation 

After that all the integrals over the parameters 6, 6, ~, 'TJ can be evaluated 
in terms of gamma functions, and we come to the following twofold MB 
representation of (3.53) with general powers of the propagators: 

2. _ (-1)a(i7rd/2)2F(2-E-a3s) 
F4.7(Q 'al, ... ' a6, d)- (Q2)a+2c-4F(6- 3€- a) Il F(az) 

F(2- €- a46) 1 l+ioo l+ioo 
x r(4 2 ) (2 .)2 dz1dz2F(a + 2~:- 4 + z1 + z2) 

- € - a3456 7fl -ioo -ioo 
xF( -zl)F( -z2)F(a4 + z2)F(a5 + Z2)F(a1 + Zl + Z2) 

F(2- €- a12- zl)F(4- 2~: + a2- a- z2) 
x~~--------~~~------------~ 

F( 4 - 2~: - a1235 - zl)F( 4 - 2~: - a1245 - zl) 
xF(4- 2€ + a3- a- Zl- Z2)F(4- 2€ + a6- a- Z1- z2) . (4.34) 

As in Chap. 3 let us evaluate the integral with all indices equal to one. 
We have 

(. d/2) 2 
2 17f 

F4.7(Q ; 1, ... , 1, d) = (Q2)2+2c F(c) , (4.35) 

with 

r(-~:)2 
F(c) = F( -3~:)F( -2~:) V(c) 

and 

V(c) = -( 1.) 2 1~ioo j~ioo dz1dz2F(2 + 2€ + Z1 + z2)F(1 + Z1 + z2) 
27fl -100 -100 

2 r(-~:- z1) 
X F(1 + z2) r( -zl)F( -z2) r( -2€- Z1)2 

X F( -1- 2€- z2)F( -1- 2€- Zl- Z2)2 . (4.36) 

After the useful change of variables z1 ---+ -1 - z1 - z2, we obtain 

V(c) = __ 1_1+ioo l+ioo dzldz2 F(1 + Zl + Z2)F(1- € + Zl + Z2) 
(27ri)2 -ioo -ioo F(1 - 2€ + Z1 + Z2)2 

X F( -2€ + z1)2 F( -zl)F(1 + 2€- Z1) 

x F(1+z2)2F(-1-2~:-z2)F(-z2). (4.37) 

The analysis of the integrand shows that the poles in € are generated by 
the two products r(-2€ + zl)2F(-zl) and F(1 + Z2) 2F(-1- 2€- Z2) so 
that the situation is somehow factorized and we can proceed like in the one­
dimensional cases taking care of the integrations over z1 and z2 separately. 
So, let us first deal with the first pole of r( -1 - 2€- Z2). We have minus the 
residue at z2 = -1- 2~:, 
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F ( ) = T(1 + 2c)r( -2c)T( -c)2 1 j+ioo d r(1 2 _ ) 
I E T( -3€) 2ni -ioo ZI + E ZI 

T( -2€ + ZI)3 
X T( )2T(-3c+zi)T(-zi), (4.38) 

-4€ +ZI 

and the integral F0 ( E) with the opposite nature of the first pole at z2 = 
-1- 2E. For (4.38), we analyse how singularities in E are generated. The 
situation is quite familiar and we come to the conclusion that they come from 
the product r( -2E + zi)3 r( -3E + zi)r( -zi). We take residues at the points 
ZI = 2E and ZI = 3c and turn to the integral F10 with the same integrand 
as (4.38) but with the opposite nature of these poles. The sum of these two 
residues gives, in expansion in E, 

F - -21Ec ( 1 7r2 211((3) 7r4) O( ) n-e ---- +- + E. 
E4 E2 6€ 80 

(4.39) 

The integral F10 can be evaluated by expanding the integrand in E and subse­
quently closing the contour to the right and summing up a series of residues. 
Here one can apply summation formulae of Appendix C for summing up this 
number series. The result is 

F - -21Ec ( 7r2 3((3) 417f4) O( ) 10-e -+----- + E. 
4c2 E 48 

(4.40) 

Now we have to calculate (4.37) with the opposite nature of the first pole 
of r( -1 - 2E- Z2). Let us take care of the first pole of r(- 2E +ZI )2. We take 
the residue at this point which is an integral Foi over z2 without gluing of 
poles of different nature and thereby can be evaluated directly in expansion 
in E. The resulting expanded integral is evaluated similarly to F10 . We obtain 

D - -21Ec ( 7r2 9((3) 317r4) O( ) roi- e -- + -- + -- + E • 
4c2 2E 60 

( 4.41) 

The remaining piece is the integral F00 with the integrand of ( 4.37) where 
the first poles of T( -2c+zi)2 and T( -1-2E-Z2) have changed their nature. 
There is no gluing anymore so that we can expand the integrand in c: 

( 4.42) 

where the integration contours are at -1 < Rezi,2 < O. The integral is 
a product of one-dimensional MB integrals which can be evaluated by the 
same procedure as above. We obtain 

7r2 
Foo = - 6 +O(c). (4.43) 

Summing up the four pieces (4.39), (4.40), (4.41) and (4.43) we reproduce 
the result (3.74) obtained in [15]. 
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Fig. 4.7. Double box 

Let us now consider 

Example 4.8. Massless on-shell planar double box diagram of Fig. 4.7. 

As in Example 4.3. we have PT =O, i = 1, 2, 3, 4. Let us consider double 

boxes with the irreducible numerator (k+p 1 +p2 +p4 ) 2 and the routing of the 
externa! momenta as in [2]. Then the general double box Feynman integral 
takes the form 

!! ddkddl 
K(s, t; al, ... ' as, c:) = (k2)a, [(k + P1)2]a2 [(k + Pl + P2)2]a3 

[(k + P1 + P2 + P4)2]-a" 
x [(l + P1 + P2) 2]a4 [(l + Pl + P2 + p4)2]a5 (F)a6 [(k- l) 2]a7 ' ( 

4"44) 

As usual, we consider the factor corresponding to the irreducible numera­
tor as an extra propagator but, really, we are interested only in non-positive 
integer values of as. In fact, there are two possible independent irreducible 
numerators but the derivation of the MB representation is simple only when 

we take one of them into account. 
In order to derive a MB representation for (4.44) it is possible to start 

from the alpha representation and then apply ( 4.1) to the corresponding 
functions U and V. This is not, however, an optimal way. In particular, this 
was done in the first calculation of the master double box [23] but a resulting 
MB representation turned out to be fivefold, with essential complications 
in the calculations. We will see that one can proceed using a fourfold MB 
representation. Let us mention, however, that in the case of non-planar on­
shell double boxes it was possible to achieve [33] the minimal number of 
integrations equal to four starting from the global alpha representation. 

So, we follow (as in [2]) the strategy of [35], where MB integrations were, 
first, introduced, in a suitable way, after the integration over one of the loop 
momenta, l, and complete this procedure after the integration over the second 
loop momentum, k. To do this, let us observe that (4.44) can be represented 

as 

K t· _ J ddk [(k + P1 + P2 + P4)2]-as 
(s, 'al, ... ' as, c) - (k2)a' [(k + Pl)2]a2 [(k + Pl + P2)2]a3 

xF4.4(s, (k + Pl + P2 + P4) 2, k2, (k + P1 + P2) 2; aG, a7, a4, a5, d), (4.45) 

where the integral of four propagators dependent on l has been recognized as 
the box with two legs off shell. Then we can use (4.22). After inserting it into 
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( 4.45) we obtain the massless on-shell box with the indices a1 - z2, a2, a3, as -
z4 for which we apply our representation ( 4.11). After these straightforward 
manipulations, we change the variables Z2---+ z2-z4, Z3---+ z3-z4, Z4---+ z1 +z4, 
and arrive at the following fourfold MB representation of (4.44) (see also [2]): 

(i1fd/2)2 ( -1)a 
K(s, t; at, ... 'as, c) = TI r( )F(4- - 2 )(- )a-4+2o 1=2,4,5,6,7 az a4557 c s 

x ( 1.)4 ~~ioo ... ~~ioo (rr dzj) (!)z' r(a2 + zl)r(-zl) 
27fl -100 -100 . 1 s 

J= 

F(z2 + Z4)F(z3 + Z4)F(a123S- 2 + E' + Z4)F(a7 + Z1- Z4) 
x~~--~~~~~~----~~----~~------~ 

F(al + Z3 + Z4)F(a3 + Z2 + Z4)F(4- a123S- 2c + Zl- Z4) 
F(as- Z2- Z3- Z4)F(a5 + Z1 + Z2 + Z3 + Z4)F( -Zl - Z2- Z3- Z4) 
x~~--~--~~~~~~--~--~--~~~--~--~--= 

F(as- Zl- Z2- Z3- Z4) 
xF(a4567- 2 + c + Z1 - Z4)F(2- a12s - c + Z2)F(2- a23s - c + Z3) 

xr(2- a557- c- z1- z2)F(2- a457- c- z1- z3). (4.46) 

Let us apply ( 4.46) to the evaluation, in expansion in c up to the finite 
part, of the double box without numerator and with all powers of the prop­
agators equal to one. We know in advance that it has poles up to the fourth 
order in c, due to IR and collinear divergences. In fact, at least the highest 
pole can be predicted without calculation. Representation ( 4.46) gives 

(i7fd/2) 2 
K(s, t; 1, ... , 1, O, c) =- ( -s)3+2" F(x, c) , (4.47) 

where x = tj s and 

F(x,o) ~ F(~2o) (2~)' [~= [~= (11 dz}"' 
F(1 + zl)F( -z1)F( -1- c- Z1- Z2)F( -1- c- Z1- Z3) 
x~--~~~~~~------~~~~------~--~ 

F(1 + Z2 + Z4)F(1 + Z3 + Z4)F(1 - 2c + Z1 - Z4) 
xF(2 + c + Z1 - Z4)F(1 + Z1 + Z2 + Z3 + Z4)F(1 + Z1 - Z4) 

XF(z2 + Z4)F(z3 + Z4)F( -E' + Z2)F( -E' + Z3) 

xF(1 + c + Z4)F( -Z2- Z3- Z4). (4.48) 

Observe that, because of the presence of the factor r( -2c-) in the denomina­
tor, we are forced to take some residue in order to arrive at a non-zero result 
at c = O, so that the integral is effectively threefold. 

Here is an example of the procedure of generating poles in the integral 
(4.48). The product r(-1- c- Z}- Z2)r(-c + Z2) generates, due to the 
integration over Z2, a pole of the type r( -1- 2c- Z}). Then the product of 
this gamma function with F(1 +zi) generates a pole of the type F(2c) due 
to the integration over z1 . 



76 4 Evaluating by MB Representation 

After such a preliminary analysis we conclude that the key gamma func­
tions that are responsible for the generation of poles in c are r( -€ + z2), 
r( -€ + z3) and F(1 + Zt - z4). This gives a hint for the construction of a 
complete procedure of the resolution of the singularities in c, with the goal 
to decompose the given integral into pieces where the Laurent expansion of 
the integrand in c becomes possible. One can proceed as follows. 

We first take care of the gamma functions r( -€ + Z2) and r( -€ + Z3), 
i.e. take residues at z2 = c and z3 = c and shift contours across these poles. 
As a result, (4.48) is decomposed as F =Fu+ Fw + Fo1 + F00 , where F11 

corresponds to taking the two residues, Foo is defined by the same expression 
(4.48) but with both first poles ofthe selected two gamma functions treated in 
the opposite way, and the two intermediate contributions defined by taking 
one of the residues and changing the nature of the first pole of the other 
gamma function. 

The contribution Fu takes the form 

1 1 ~+ioo l+ioo 
Fn = r(-2 ) (2 ")2 . . dztdZ4 X 21 F(1 + zt) c 7rl -100 -100 

XT( -1- 2c- Zt)2 F( -Zt)T(1 + Z1- Z4)F(2 + c + Zt- Z4) 

r( )2r( 2 ) F(1 + 2c + z1 + z4) ( ) X c + Z4 - c - Z4 . 4 49 
r(1 - 2c + z1 - z4)r(1 + c + z4) · 

The contributions Fw and F01 are equal to each other because of the 
symmetrical dependence of the integrand on z2 and z3 . We have 

Fol = r(~ ) -( 1.)31~ioo ~~ioo ~~ioo dzl dz2dZ4 X 21 F(1 + zt) 
2c 21r1 -100 -100 -100 

XT( -1- 2c- zt)F( -zt)F( -1- c- Zt- Z2)F*( -€ + Z2) 

F(1 + Zt - Z4)F(2 + c + Zt - Z4)F(c + Z4)F(z2 + Z4) 
x~----~~~~----~~~~~--~~~--~ 

F(1 - 2c + Zt - Z4)F(1 + Z2 + Z4) 

XT(1 + c + Zl + Z2 + Z4)F( -€- Z2- Z4), (4.50) 

where the first pole of r( -€ + Z2) is of the opposite nature. We indicate this 
by asterisk, as in Appendix D. 

For all these contributions, further decompositions are necessary. One can 
proceed as follows. 

In the case of Fu, take care of r(-1- 2c- Zt)· We decompose Fn 
as F 111 + F11o, where the additional index 1 corresponds to the residue at 
z1 = -1 - 2c ( with the minus sign) and O to the integral where the first pole 
of r( -1 - 2c - Zt) is left. Take care of r( Z4) and r( Z4 + c) by decomposing 
Fn1 as Fn1 = Fnn + Fnw, where the additional index 1 corresponds to 
the residues at z4 = O and z4 = c given by an explicit expression in terms of 
gamma and psi functions, and O to the one-dimensional MB integral where 
the first pole of each of these gamma functions is right. 

For Fno, take care of F(z4 + c) to obtain Fno = Fu01 + Fnoo, where 1 
denotes the residue at Z4 = -€. The F1101 is a one-dimensional MB integral 
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over z1 which is calculated hy expanding in E. The Fnoo starts from E 1 and 
therefore gives a zero contrihution. 

For F01 , take care of r( -1- 2E- z1) and ohtain the decomposition F01 
as Fon + F010 similar to the case of Fu. For Fon, let us consecutively take 
care of the first poles of the gamma functions F(z2 + Z4) and F(z2 + Z4- E) 
with respect to the variahle z2 and ohtain Fon = Fon1 + Fon2 + Fono, 
where 1 denotes the residue at z2 = -z4 , 2 denotes the residue at z2 = 
E - z4 and O denotes the integral with first poles of these gamma functions 
to he right. Then we ohtain Fon1 = Foun + Fou10, similarly taking care 
of F(E + z4)2, Fon2 = Fon21 + Fon2o taking care of F(E + z4)F(z4), and 
Fono = Fonol + Fonoo taking care of F(E + z4). For Fo10, we turn to the 
decomposition Fo10 = Fo1o1 + Fo10o where 1 stands for the residue at Z4 = - z2 
and o for the integral with the first right pole of r(z2 + Z4)· Finally, we turn 
to F0101 = F0101 1 + F01o1o, where 1 stands for the residue at z2 = -1- E- z1 
and 0 for the integral with the first left pole of F( -1 - E- Z1 - Z2). 

For F00 , we take care of the first poles of the gamma functions r ( -1 -
E- z1 - z2 ) and F( -1 - E- z1 - z3 ). The only non-zero contrihution arises 
when taking hoth residues. 

As a result we ohtain either explicit expressions in terms of gamma func­
tions and their derivatives, or one-dimensional integrals over straight lines 
parallel to the imaginary axis of ratios of gamma functions which can he of 
two types: integrals over z1 or some other z-variahle. The integrals over z1 

can he calculated hy closing the contour to the right, taking residues at the 
points z1 = O, 1, 2, ... and summing up resulting series with the help of the 
table of formulae [14] presented in Appendix C. The one-dimensional MB 
integrals over z2 or z3 or z4 can he calculated with the help of formulae of 
Appendix D which are all corollaries of the first and the second Barnes lemma 
(D.1) and (D.47). For example, this is the twofold MB integral that appears 
in Fonoo: 

(2~i)2 j_~~= j_~~oo dz2dz4F* (z2)F( -z2)F(1 + z4)r( -z4) 

F*(z2 + z4) 2 r( -Z2- Z4) 
X F(1 + Z2 + Z4) ' 

(4.51) 

where asterisks denote, as in Appendix D, the opposite nature of the first 
poles of the corresponding gamma functions, i.e. the poles z2 = O and z4 = 
-z2 are considered right here. The internal integral over Z4 is then evaluated 
with the help of (D.51), with A1 = 1, A2 = z2, A3 = O, A4 = 1 + z2 , and a 
resulting onefold MB integral is evaluated as other integrals of this kind. 

Collecting all the contrihutions we reproduce the result of [23]: 

(i7fd/2e-'J'EE) 2 (t ) 
K(s,t;1, ... ,1,0,E)=- (-s)2+2Et f ~;E , 

where 

( 4.52) 
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f(x, E) = _i + 5lnx - (2ln2 x- ~7r2) _!_ 
E4 E3 2 c2 

( 2 3 11 2 65 ) 1 - "3 ln x + 2 1r ln x - 3 ((3) ~ 

4 4 2 2 88 29 4 
+ 3 ln x + 61r ln x- 3 ((3) lnx + 30 1r 

- [ 2 Lh ( -x) - 2ln x Li2 ( -x) - (ln2 x + 1r2) ln(1 + x) J ~ 
E 

-4 [S2,2( -x) -lnx S1,2( -x)] + 44Li4 ( -x) 

-4 [ln(1 + x) + 6lnx] Li3 ( -x) 

+2 (ln2 x + 2ln x ln(1 + x) + 1
3° 1r2) Li2 ( -x) 

+ (1n2 x + 1r2) ln2(1 + x) 

-~ [4ln3 x+57r2lnx-6((3)]ln(1+x)+O(c). (4.53) 

This result is in agreement with the leading behaviour in the (Regge) 
limit t/ s ---*O obtained in [32] by use of the strategy of expansion by regions 
[4, 27, 30]. Keeping the two leading powers of x we have 

f(x,E) = _i + 5lnx- (2ln2 x- ~7r2) _!_ 
E4 E3 2 c2 

- (~ ln3 x + ~1r2 lnx- 65 ((3)) ~ 
3 2 3 E 

4 4 2 2 88 29 4 
+ 3 ln x + 61r In x- 3 ((3) lnx + 30 1r 

+2x (~ (1n2 x- 2lnx + 1r2 + 2) 

-~ { 4ln3 x + 3ln2 x + (57r2 - 36) lnx + 2[33 + 57r2 - 3((3)]}) 

+0(x2 ln3 x, E) . ( 4.54) 

Using known formulae that relate polylogarithms and generalized polylog­
arithms with arguments z and 1/z [12,20,21] one can rewrite this and similar 
results for the master double boxes in terms of the same class of functions 
depending on the inverse ratio sjt. 

Let us now illustrate the point discussed in the end of Sect. 4.2. The gen­
eral fourfold representation (4.46) contains a lot of information. In particular, 
it is very easy to derive MB representations for the two classes of Feynman 
integrals corresponding to the graphs shown in Fig. 4.8. The integrals for the 
box with a one-loop insertion are obtained from the double box integrals at 
a4 = a6 =O. (For simplicity, we consider the case a8 = 0.) There are T(a4 ) 

and T(a6) in the denominator of (4.46) but, of course, the limit a4 , a6 ---* O 
is not zero. Indeed, we can distinguish the product 
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1 6 
P1 P3 

2 7 5 2 7 5 

P2 P4 
3 3 

(a) (b) 

Fig. 4.8. Boxes with a one-loop insertion (a) and boxes with a diagonal (b) ob­
tained from Fig. 4. 7 

r(a4567- 2 + e + z1 - z4)r(2- as67- e- z1 - z2)T(z2 + z4) 

which generates, due to integration over z2 and Z4, the singularity of the 
type r(a4 ) - remember our discussion in Sect. 4.2. So, to perform this limit 
we take a residue at Z4 = -z2 and minus residue at z2 = 2- as67- e- z1 
and then set a4 = O. We still have T(aB) in the denominator, but there is 
also the product T(as67 - 2 + e + z1 + z3)T(2 - a57 - e - z1 - z3) which 
generates the singularity of the type T(a6 ). Therefore, we take minus residue 
at Z3 = 2 - a57 - e - z1 , then set a 6 = O and arrive at the following onefold 
MB representation: 

(i1rd/2)2 ( -l)a T(2- as - e)T(2- a7- e) 
K(al, a2, a3, O, as, O, a7, O)= TI T(az)T(4- as7- 2e)T(6- a- 3e) 

X ( -s)al-4+210 2~i [~~oo dz ( ~) z T(a- 4 + 2e + z)T(as7- 2 + e + z) 

xT(a2 + z)T(4- a12s7- 2e- z)T(4- a23s7 - 2e- z)T( -z) . (4.55) 

The integrals for the box with a diagonal are obtained from the double 
box integrals at a1 = a4 = O. We start from the limit a4 --t O as in the 
previous case. Then we observe that there is no T(a1 ) in the denominator 
and no gluing of right and left poles when a1 --t O. So, we just set a1 = O. 
After that the integration over Z3 involves only four gamma functions 

T(2- a23 - e + z3)T(as + z1 + z3)T(2- as1 - e- z1 - z3)r( -z3) . 

The integral is evaluated by the first Barnes lemma (D.l), and we obtain 

(i1rd/2)2 T(2- a23 - e)T(2- as6- e) 
K(O,a2,a3,0,as,a6,a7,0) = IJT( )T(4 2 )r(4 2 ) az - a237 - e - as67 - e 

(-l)ar(2-a7-e) 1 J+ioo (t)z 
X T(6-a-3e)(-s)a-4+2"27fi -ioo dz ~ T(a-4+2e+z) 

xr(a2 + z)r(as + z)r( -z) 

xr(4- a23s7- 2e- z)T(4- a2s67- 2e- z) . (4.56) 



80 4 Evaluating by MB Representation 

So, these two classes of integrals are rather simple because they are given 
only by onefold MB representations. Each of them can be evaluated by de­
composing the integral into 'singular' and 'regular' parts. The singular parts 
correspond to the residues necessary to reveal the singular behaviour in e: 
while the regular parts are given by integrals where expansion in e: in the in­
tegrand is possible. For the boxes with a one-loop insertion, the singular part 
is written as minus the sum of the residues of the integrand at the points j- 2e:, 
with j = -max{at, a3}- a257 +4, ... , -1, plus the sum of the residues of the 
integrand at the points j - 2e: for j = O, ... , 4 - a. For the diagonal crossed 
boxes, the singular part is written as minus the sum of the residues of the 
integrand at the points j- 2e:, with j = -max{a3, a5} -a257+4, ... , -1, plus 
the sum ofthe residues ofthe integrand at the points j-2e: for j =O, ... , 4-a. 

The regular parts can be written as MB integrals for -1 < Re z < O 
with an integrand expanded in a Laurent series in e: up to a desired order. 
Then these integrals are straightforwardly evaluated by closing the contour 
of integration to the right and taking residues at the points z = O, 1, 2, .... 
At this step, one can use the collection of formulae for summing up series 
presented in Appendix C. The evaluation of both the singular and the regular 
parts can easily be implemented on a computer. 

Let us, for example, present an analytical result [32] for the box with a 
diagonal with all indices equal to one: 

(irrd/2e-'YE") 2 
J((s,t;0,1,1,0,1,1,1,0,e:) =- 1"o(s,t,e:), 

s+t 
(4.57) 

where 

( 2 2) 1 JC0 (s, t, e:) = - ln x + 1r 2c2 

+ [2Li3 (-x)- 2lnxLi2 (-x)- (1n2 x + 1r2) ln(1 + x) 

+~ ln3 x + ln( -s) ln2 x + 1r2 ln( -t)- 2((3)] ~ 
3 c 

+4 (82,2( -x) -lnxS1,2( -x))- 4Li4 ( -x) 

+4 (ln(1 + x) -ln( -s)) Li3 ( -x) 

+2 (ln2 x + 2ln( -s) lnx- 2lnxln(1 + x)) Li2 ( -x) 

+2 (~ ln3 x + ln( -s) ln2 x + 1r2 ln( -t)- 2((3)) ln(1 + x) 

- (1n2 x + 1r2) ln2(1 + x)- ~ ln4 x- ~ ln( -s) ln3 x 

- (ln2 ( -s) + ~~ 1r2 ) ln2 x- 1r2 ln2 ( -s)- 21r2 ln( -s) lnx 

1r4 
+4((3) ln( -t) - 20 , (4.58) 

and x = tjs. 
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Concerning non-trivial checks of general formulae discussed in the end of 
Sect. 4.2let us observe that, ifwe start from (4.46), we have to obtain, in the 
limit a1,3,4 ,6 --+ O with as = O, the massless sunset diagram with the indices 
a2,a5,a7. Indeed, we can start from (4.55) and perform the limit a3--+ O by 
taking minus the residue at z1 = 4 - a1257 - 2c in order to take into account 
the singularity of the integral of T(a- 4 + 2E + zl)T(4- a1257- 2c- zl). 
Then we can set a 1 =O and reproduce a known result. On the other hand, we 
should obtain the product of two one-loop massless propagator-type integrals 
with the indices (al, a3) and (a4, a6) in the limit a2,5,7 --+O with as =O. Yes, 
we do this by a similar analysis and similar manipulations: take minus residue 
at z 1 =O and set a 2 =O, then take minus residue at Z4 = -z2- Z3 and set 
a 5 = O, then take residues at z2 = O and Z3 = O and set a7 = O. 

Representation (4.46) can be used for the evaluation, in expansion in E, of 
any massless on-shell planar double box. See, e.g., [2] where it was applied to 
the evaluation of a double box with a numerator, K ( s, t; 1, ... , 1, -1, E). Let 
us mention that, in this case, one meets a spurious singularity in MB integrals 
which can be cured by introducing an auxiliary analytic regularization. To do 
this, one can choose as = -1 + >.. Then the singularities in the MB integrals 
are first resolved with respect to >. and then with respect to E when >. and E 

tend to zero. (The singularities in >. are indeed cancelled.) 
Non-planar double boxes can also be evaluated by MB representation­

see [33]. 

4.5 Two-Loop Massive Examples 

Our next two-loop example is 

Example 4.9. Massive on-shell double box diagrams shown m Figs. 4.9 
and 4.10. 

P1 P3 

IJ:::::::L 1 6 
1 1 1 

21 71 51 
1 1 1 
1 

3 4 
P2 P4 

(a) (b) 

Fig. 4.9. Planar massive on-shell double boxes: (a) first type, (b) second type. The 
solid lines denote massive, the dotted lines massless particles 

This is an important class of Feynman integrals with one more parameter, 
with respect to the massless on-shell double boxes. In particular, it is relevant 
for Bhabha scattering. 



82 4 Evaluating by MB Representation 

6 

1 ' / 

5 ', / 7 1 / 

21 '' '' 1 / ' 1 / ' 1 3 / 

4 

Fig. 4.10. Non-planar massive on-shell double box 

The general double box Feynman integral of the first type (see Fig. 4.9a) 
takes the form 

!! ddkddl 
BPL,l (s, t, m2; al>···, as, c) = (k2 _ m2)a1 [(k + pl)2]a2 

[(k + P1 + P2 + P4)2]-as 
x~------~~--~~~----~~~~~~--------~~-

[(k + P1 + P2)2 - m2]a3 [(l + Pl + P2) 2 - m2]a4 [(l + P1 + P2 + P4)2]a5 

1 
X (z2 _ m2)a6 [(k -Z)2Ja7 ' (4.59) 

where we consider a (non-negative) power -as ofthe factor (k+p1 +P2+p4) 2 
in the numerator as in the massless case. 

To derive an appropriate MB representation for (4.59) we proceed simi­
larly to the massless case, i.e. recognize the interna! integral over l as a massive 
box with two legs off-shell for which we use representation (4.30). After that 
the integral over k can be recognized as the massive on-shell box represented 
by (4.24), and we obtain the following sixfold MB representation [26]: 

2. _ (i7rd/2) 2 (-1)a(-s)4-a-2e 
BPL,l(s,t,m ,al,····as,c)- TI r( ·)T(4- -2) 

j=2,4,5,6,7 aJ a4567 E 

1 ~+ioo ~+ioo 5 (m2)z1+z5 (t)w 
X-( ")6 . . . . . dw II dzj =- - r(a2 + w)r(-w) 

27rl -100 -100 . 1 s s 
]= 

T(z2 + Z4)T(z3 + Z4)T(4- a13- 2a2s- 2c + Z2 + Z3)T(a7 + W- Z4) 
x~~--~~~--~~--~~~~------~~~~------~ 

T(al + Z3 + Z4)T(a3 + Z2 + Z4) 

T(al23S- 2 + E + Z4 + Z5)T(a4567- 2 + E + W + Z1- Z4) 
x~----~----------~~--------------~--~ 

T(4- a46- 2a57- 2c- 2w- 2z1- Z2- Z3) 

T(as- Z2 - Z3 - Z4)T( -W- Z2 - Z3 - Z4)T(2- a23S - E + Z3 - Z5) 
x~~--~~~~~~----~~~~~~--~----~~~ 

T( 4 - al23S - 2c + W - Z4)T( as - W - Z2 - Z3 - Z4) 

T(a5 + W + Z2 + Z3 + Z4)T(2- a567- E- W- Z1 - Z2) 
x~----~--------~~------------~----~ 

T(4- a13- 2a2s- 2c + Z2 + Z3- 2z5) 

xT(2- a457- E- W- Zt - Z3)T(2- a12s- E + Z2 - Z5) 

xT(4- a46- 2a57- 2c- 2w- Z2- Z3)T(-z1)T(-z5). (4.60) 
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This general formula can be used to evaluate various Feynman integrals 
of the given family. Let us consider the example of the Feynman integral 

without numerator and ai= 1 for i = 1, 2, ... , 7. Then (4.60) takes the form 

(. d/2) 2 
(O) 2 = 2. _ _ l7r 

B (s,t,m ,c:)-BPL,I(s,t,m ,1, ... ,1,0,c:)- r(-2c:)(-s)3+2E 

X-( 1")6 J+ioo ... J+ioo dw IT dzj (m2) z, +zs (!) w 

2nl -ioo -ioo . I -s s 
)= 

T ( 1 + W) T ( -W) T ( 2 + c + W + ZI - Z4) T ( -1 - c - W - ZI - Z2) 
x--~--~~--~~----~~--------~~------~----~ 

T(1 - 2c: + W- Z4)T(1 + Z2 + Z4)T(1 + Z3 + Z4) 

T( -1- c- W- ZI- Z3)T( -zi)T( -E + Z2- Z5)T( -E + Z3- Z5) 
x~~--------------~~~~~--------~~~------~ 

T( -2c + Z2 + Z3- 2zs)T( -2- 2c- 2w- 2zi - Z2- Z3) 

xT(1 + c: + z4 + z5)T( -z5 )T( -2c: + z2 + z3)T(1 + w- z4) 

xT(1 + W + Z2 + Z3 + Z4)T( -2- 2c- 2w- Z2- Z3) 

(4.61) 

Observe that, because of the presence of the factor T( -2c:) in the denomina­

tor, we are forced to take some residue in order to arrive at a non-zero result 

at c: = O, so that the integral is effectively fivefold. 
Let us apply our strategy of shifting contours and taking residues, with 

the goal to decompose ( 4.61) into pieces where the Laurent expansion c: of 

the integrand becomes possible. We shall evaluate this integral in expansion 

in c: up to a finite part. We know in advance that the poles in c: are now only 

of the second order because collinear divergences are absent. This is how such 
procedure can be performed in this case [26]: 

1. Take minus residue at z3 = -2- 2c:- 2w- z2, then minus residue at 
w = -1- 2c:, then a residue at z4 =O, then a residue at z2 =O, expand 
in a Laurent series in c: up to a finite part. Let us denote the resulting 
integral over ZI and z5 by BI. 

2. Take minus residue at z3 = -2- 2c:- 2w- z2, then minus residue at 

w = -1- 2c:, then a residue at z4 =O, and change the nature of the first 

pole of T(z2 ) (choose a contour from the opposite side, i.e. the pole z2 

will be now right), then expand in c:. Denote this integral over ZI, z2 and 

Z5 by B2· 
3. Take minus residue at z3 = -2- 2c:- 2w- z2, then minus residue at 

w = -1- 2c:, then change the nature of the first pole of T(z4 ), then take 

a residue at z2 = -z4 , then take a residue at z4 = -c: and expand in c:. 
This resulting integral over ZI and z5 is denoted by B 3 . 

4. Take minus residue at z3 = -2- 2c:- 2w- z2 , then minus residue at 

w = -1- 2c:, then change the nature of the first pole of T(z4 ), then 

take a residue at z2 = -z4, then change the nature of the first pole of 

T(2(c: + z4)) and expand in c:. The resulting integral over ZI, z4 and z5 is 

denot.ed by B4. 
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5. Take minus residue at z3 = -2 - 2c-- 2w- z2 , then minus residue at 
W = -1 - 2E, then change the nature of the first poJe of F ( Z4), then 
change the nature of the first pole of r(z2 + Z4) and expand in E. The 
resulting integral over ZI, z2, Z4 and z5 is denoted by B5 . 

6. Take minus residue at z3 = -2- 2c-- 2w- z2 , then change the nature of 
the first pole of r( -2(1 + 2c- +w) ), then take minus residue at z4 = 1 +w, 
then minus residue at z2 = -1- 2c- w and expand in E. The resulting 
integral over w, ZI and z5 is denoted by B5. 

7. Change the nature of the first pole of r( -2- 2c- 2w- Z2 - Z3), then 
take minus residue at Z4 = -z2- z3 , then a residue at z3 = 2c- z2, then 
take a residue at z2 = 2c- and expand in E. The resulting integral over 
w, ZI and z5 is denoted by B 7 . 

One can see that ali the other contributions vanish at E = O. By a suitable 
change of variables, one can observe that B 7 = B6 . In fact, the dependence 
of the first fi ve contributions on the Mandelstam variable t is trivial: they are 
just proportional to 1/t. 

The two-dimensional integrals BI and B3 are products of one-dimensional 
integrals which can be evaluated by closing the contour to the left and sum­
ming up resulting series with the help of formulae [11] of Appendix C. 

To evaluate the three-parametric integral B4 it is reasonable to ob­
serve that the integrand only changes its sign after the transformation 
{ z4 ---+ - z4, ZI ---+ z5, z5 ---+ ZI}. If we take into account that the change of vari­
ables z4 ---+ - z4 implies that the initial integration contour -1 < Rez4 < O 
becomes O < Rez4 < 1 we will obtain a simple equation for B4 and conclude 
that the value of the integral equals 1/2 times the residue at z4 = O. The 
latter quantity turns out to be a factorized integral over ZI and z5 which is 
evaluated like BI and B3 . 

The three-dimensional integral B2 is evaluated by closing the integration 
contours over ZI and z5 to the left, summing up resulting series and applying 
a similar procedure to a final integral in z2. The corresponding result is 
naturaliy expressed in terms of polylogarithms, up to Li3 , depending on s 
and m 2 in terms of the variable 

v= [v'4m2-s+Fs]2. 
v'4m2-s-Fs 

The form of this result provides a hint about a possible functional de­
pendence of the result for the faur-dimensional integral B5 , and a heuristic 
procedure which was explicitly formulated in [14] turns out tobe successfuliy 
applicable here. First, ali the contributions, in particular B4, are analytic 
functions of s in a vicinity of the origin. One can observe that any given 
term of the Taylor expansion can be evaluated straightforwardly because the 
corresponding integrals over z2 and z4 are taken recursively. It is, therefore, 
possible to evaluate enough first terms (say, 30) of this Taylor expansion. 
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Then one takes into account the type of the functional dependence men­
tioned above, turns to a new Taylor series in terms of the variable v - 1 
and assumes that the n-th term of this Taylor series is a linear combination, 
with unknown coefficients, of the following quantities of levels 1, 2, 3, and 4, 
respectively: 

1 
n 
1 
n2' n 
1 S1(n) S2(n) S1(n)2 
n3 ,~,-n- n 

1 S1(n) S2(n) S1(n)2 

n4 '--;;T'~'~ 
S3(n) S12(n) S1(n)S2(n) 
-----

' n n n 

(4.62) 

(4.63) 

(4.64) 

n 
(4.65) 

where Sk(n) = 'L,j= 1 rk, etc. are nested sums (see Appendix C). Using the 
information about the first terms of the Taylor series one solves a system 
of linear equations, finds those unknown coefficients and checks this solution 
with the help of the next Taylor coefficients. 

This experimental mathematics has turned out to be quite successful for 
the evaluation of B5 . Finally, the contribution B 6 is a product of a one­
dimensional integral over z1, which is easily evaluated, and a two-dimensional 
integral over w and z5 which involves a non-trivial dependence on t and is 
evaluated by closing the integration contour in z5 to the left, summing up a 
resulting series in terms of Gauss hypergeometric function for which one can 
apply the parametric representation (B.5). After that the interna! integral 
over w is taken by the same procedure and, finally, one takes the parametric 
integral. 

The final result takes the following form [26]: 

(i7rd/2e-'"'fEc) 2 x2 
B(o)(s,t,m2;c) =- s2(-t)H2e: 

x [b26~) + b1 ~x) + bo1(x) + bo2(x,y) + O(c)] , 

where x = 1/yf1- 4m2/s, y = 1/yf1- 4m2/t, and 

b2(x) = 2(mx- Px)2 , 

b1(x) = -8 [Li3 c; x) +Li3 c ;x) +Li3 c-~:) 

+ Lh c ~ x)] + 4( mx - Px) [ Li2 c ; X) - Lb ( 1-~:)] 
-(4/3)m; + 4m;Px- 6mxp; + (2/3)p; + 4h(mxPx + p;) 

(4.66) 

(4.67) 



86 4 Evaluating by MB Representation 

-2l~(mx + 3px)- (1r2 /3)(4h- mx- 3px) + (8/3)l~ + 14((3) , (4.68) 

bm(x) = -8(mx- Px) [Li3 (x)- Li3 ( -x)- Li3 C; x) 

+ Li3 ( 1 ; x) -Li3 ( 1 ~ x) + Li3 c-~:)] 
+16Li2 ( 1 ; x) (Li2 (x)- Li2 ( -x)) 

+4 [Li, (x) 2 +Li, ( -x) 2 + 4Li, C; x) ']- SL;, (x) L;, ( -x) 

-(8/3)[7r2 - 6[~ + 6lxPx - 6mx(lx + Px - 2l2)]Li2 ( 1 ; X) 
-(4/3)[7r2 - 6l~ + 3m; + 6mx(2l2- 2lx- Px) + 12lxPx- 3p;] 

x(Li2 (x)- Lh ( -x)) + 8(mx- Px) [(Px- mx + 2l2)Li2 ( 1 ~X) 

+2(lx - mx + l2)Lh ( 1-~:)] - 8(mx - Px)(2lx - Px - 5mx + 4b) 

X ( -mxPx + l2(mx + Px) - l~ + 1r2 /6) 

-(20/3)m! + (164/3)m;Px- 40m;p;- (4/3)mxp;- (8/3)p! 

+8mxlx(m;- 3mxPx + 2p;) 

-4l2(7m; + 21m;px- 4mxlxPx- 23mxp; + 4lxP;- p;) 

-7r2((17/3)m;,- (4/3)mxlx- 2mxPx + (4/3)lxPx- (7/3)p;,) 
+l~(84m;- 8mxlx- 16mxPx + 8lxPx- 44p;) 
-(8/3)l2(6l~- 7r2)(3mx- 2px)- (4/3)7r2 l~ + 4li + 1r4 /9. (4.69) 

The last piece of the finite part comes from B6 and B7: 

b02 (X, Y) = 2(Px - mx) { 4 [ Li3 ( 1 ; X) - Li3 c ; X) 

+Lh ((1- x)y) _ LiJ (-(1 + x)y) + LiJ (-(1- x)y) 
1 - xy 1 - xy 1 + xy 

-Li3 ((1 + x)y)] + 2 [Lh ((1 + x)(1- y))- Li3 ((1- x)(1 + y)) 
1 + xy 2(1- xy) 2(1 - xy) 

-Lh ((1- x)(1- y)) + Lh ((1 + x)(1 + y))] 
2(1 + xy) 2(1 + xy) 

+2(my + Py- mxy- Pxy) 

X [ 2Li2 ( x) - 2Li2 (-X) + Li2 ( 1-~:) - Li2 ( 1 ~ x)] 

+4(mxy- Pxy)(Lh ( -y)- Li2 (y))- 4(mx + Px- 2Z2)Li2 ( 1 ; X) 
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-4(mxy - Pxy)Li2 ( 1 ; Y) - 4(mx + ly - mxy)Li2 ( (~ = :~Y) 
. (-(1+x)y) +4(Px + ly- mxy)L12 1 _ xy 

-4(mx + ly- Pxy)Li2 ( -i1+-x;y) 

. ((1+x)y) +4(Px + ly - Pxy )L12 1 + xy 

. ((1-x)(1+y)) 
+2(mx + Px + my + Py- 2mxy- 2h)L12 2(1 _ xy) 

. ((1-x)(1-y)) 
+2(mx + Px + my + Py- 2Pxy- 2l2)L12 2(1 + xy) 

+2p;(my + Py- mxy- Pxy) + 2px(2(myly + mypy + lyPy) 

+mxy ( -my - 2ly - 3py + 3mxy) + Pxy ( -3my - 2ly - Py + 3pxy)) 

+2mx(2Px + my- 2ly + Py)(my + Py- mxy- Pxy)- p~(mxy + Pxy) 

+2py(2m;Y + P;y) + m~(2py- mxy- Pxy) 

+2my(P~ + m;y + 2p;Y- Py(3mxy + Pxy))- 2(m~y + P~y) 
+2l2((4my + 4py- 3mxy)mxy + (2my + 2py- 3pxy)Pxy 

-2(Px + 2mx)(my + Py- mxy- Pxy)- m~- 4mypy- p~) 

+2l~(3(my + Py)- 2(2mxy + Pxy)) 

-(n2 /3)(my + Py- 8mxy + 6Pxy)} . (4.70) 

The following abbreviations are used here: lz = ln z for z = x, y, 2, Pz = 
ln(1 + z) and mz = ln(1 - z) for z = x, y, xy. 

This result is presented in such a way that it is manifestly real at small 
negative values of s and t. From this Euclidean domain, it can easily be 
continued analytically to any other domain. 

The result (4.66)-(4.70) is in agreement with the leading power behaviour 
in the (Sudakov) limit of the fixed-angle scattering, m2 « isi, Iti which can 
be alternatively obtained [26] by use of the strategy of expansion by regions 
[4,27]: 

(ind/2e-rE")2 
B (O)( t 2. ) _ 

s, 'm 'E - - 2( )1+2 s -t e: 

X {2L: - [(2/3)L3 + (n2 /3)L + 2((3)] ~ 
E E 

-(2/3)L4 + 2ln(t/ s)L3 - 2(ln2(t/ s) + 4n2 /3)L2 

+ [4Li3 ( -tj s) - 4ln(t/ s)Li2 ( -tj s) + (2/3) ln3(t/ s) 

-2ln(l + tj s) ln2(t/ s) + (8n2 /3) ln(t/ s) - 2n2ln(l + tj s) + 10((3)] L 

+n4 /36} +0(m2L3 ,c), (4.71) 
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where L = ln(-m2/s). This asymptotic behaviour is reproduced when one 
starts from the result (4.66)-(4.70). 

Another check of such a complicated result carne from the numerica! in­
tegration based on a method of sector decompositions in the space of alpha 
parameters [7] (tobe discussed in Sect. E.2). 

Let us stress that, in the present case with a non-zero mass, there are 
no collinear divergences and the poles in c: are only up to the second order, 
so that the resolution of singularities in c: in the MB integrals is relatively 
simple. Therefore, it looks promising to use the technique presented, starting 
from (4.60), for the evaluation of any given master integral. For example, 
the integral BP1,1(s, t, m2; 1, ... , 1, -1, c:) was evaluated in [31]. There is the 
same problem as in the massless case discussed above and connected with 
spurious singularities in MB integrals. It can also be cured in the same way, 
by introducing an auxiliary analytic regularization, e.g. with a8 = -1 + >.. The 
singularities in the corresponding MB integral are first resolved with respect 
to >. and then with respect toc when >. and c: tend to zero. In the result [31], 
one meets not only usual polylogarithms but also a harmonic polylogarithm 
(HPL) [22] (see Appendix C), H-1,0,0,1 ( -(1- x)/(1 + x)) with x defined 
after (4.66). 

Let us turn to the massive double boxes of the second type shown in 
Fig. 4.9b: 

(4.72) 

To derive a MB representation for (4.72) let us straightforwardly generalize 
the derivation of (4.60). For the subintegral over l we now use representation 
( 4.31) of the massive box with two legs off-shell in the second variant. Then 
the integral over k can be recognized as the massive on-shell box (4.24). We 
therefore o btain the following sixfold MB representation [ 31] : 

2. _ (i7rd/2) 2 ( -1)a( -s)4-a-2E 

BPL,2(s,t,m,a1,•••,a8,c)-TI r( ·)T(4- -2) 
j=2,4,5,6,7 aJ a4567 c: 

1 J+ioo J+ioo 6 (m2)zs+z6 (t)z' 6 
X-( ")6 . . . II dzj - - II r(-zj) 

2m -ioo -ioo j=1 -s s j=1 

T(a4 + Z2 + Z4)T(4- a445667- 2c- Z2- Z3- 2z4)T(a6 + Z3 + Z4) 
X 

T(4- a445667- 2c- Z2- Z3- 2z4- 2z5)T(6- a- 3c- Z4- Z5) 

T(a2 + zl)T(8- a13- 2a245678- 4c- 2z1- Z2- Z3- 2z4- 2z5) 
X 

T(8 - a13 - 2a245678 - 4c: - 2z1 - Z2 - Z3 - 2z4 - 2z5 - 2z6) 
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T(2 - a456 - c - Z4 - Z5)T(2 - a467 - c - Z2 - Z3 - Z4 - Z5) 
x~~--------------~~------~~----~~----~ 

T(a45678 - 2 + c + Z2 + Z3 + Z4 + Z5)T(a1 - Z3)T(a3 - Z2) 

XT(a4567 + c- 2 + Z2 + Z3 + Z4 + Z5)T(a- 4 + 2c + Z1 + Z4 + Z5 + Z6) 

XT(4- a1245678- 2c- Z1- Z2- Z4- Z5- Z6) 

XT(4- a2345678- 2c- Z1 - Z3- Z4- Z5- Z6) 

XT(a45678- 2 + c + Z1 + Z2 + Z3 + Z4 + Z5) , (4.73) 

This representation was used in [31] to calculate the master planar double 
box of the second type BPL,2(s, t, m2 ; 1, ... , 1, O, c:). The resolution of the 
singularities in c: was performed similar to the previous cases. The number 
of resulting MB integrals where an expansion in c: can be performed in the 
integrand is again equal to six. This time, some of the contributions turned 
out to be hardly evaluated in terms of known functions. Some two-parametric 
integrals of elementary functions entered the result in [31]. This result was 
controlled similarly to the previous case, by numerica! evaluation of finite 
MB integrals and numerica! evaluation by the method of [7] (tobe discussed 
in Sect. E.2). 

We shall come back to the discussion of the problem of the evaluation of 
the massive on-shell double boxes in Chap. 7. To conclude this section let us 
turn to the non-planar graph of Fig. 4.10. Its MB representation can again 
be derived by using an MB representation for the subdiagram consisting of 
the lines (4, 5, 6, 7). This time, we can use (4.32). For the subsequent integral 
over the second loop momentum, we need the following MB representation 
for this auxiliary one-loop integral: 

T(a245 + Z1 + 2z3 + 2z4) 
xT(a + c- 2 + Z2 + Z3 + Z4)T(a5 + Z4) T( ) 

a245 + z1 + Z3 + 2z4 

xr(a2 + a4 + z1 + z3 + z4)r( -a4 - z1 - z3 - z4)T(a4 + z1 + z3) 

xT(2- a1245 - c- Z2 - Z3 - Z4)T(2- a2345 - c- Z2 - Z3 - Z4) 

T(4- a12234455- 2c:- 2z3- 2z4) 
X (4.74) 

r(4- a12234455- 2c- 2z2- 2z3- 2z4) ' 

where u = (Pt + p4)2 is a Mandelstam variable. It can be derived similarly 
to the previous MB representations for one-loop Feynman integrals. 

Using (4.74) one arrives at the following eightfold MB representation [31]: 
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2_ _ (i7rd/2) 2 ( -l)a( -s)4-a-2E 
BNP(s, t, u, m , a1, ... , as, c:)- TI r( )F( ) 

]=2,4,5,6,7 aj 4- a4557 - 2c: 

1 J+iCXJ J+iCXJ S ( 2) Z5+Z6 ( t) Z7 7 
X (27ri)S -ioo . . . -ioo ]l dzj :8 ~ ( ~ r8 ]l F(- Zj) 

F(a5 + Z2 + Z4)F(a7 + Z3 + Z4)F(4- a455577- 2c- Z2- Z3- 2z4) 
x~~------~~~--~~~~~~~~~--~--~--~--~ 

F(al - Z2)F(a3- Z3)F(as- Z4) 

F(2- a557 - c:- z2 - z4 - z5)F(2- a457- c:- z3 - z4 - z5) 
x--~----~------------~~------------~------~ 

F( 4- a455577- 2c- Z2 - Z3 - 2z4- 2z5) 

F(as + Z1- Z4 + Z7)F(4- a234567S- 2c- Z2- Z5- Z5- Z7- zs) 
x~------------~~~~~--~----~----~------~--~ 

F(6- a- 3c:- z5) 

F(8- a13 - 2a24567S - 4c- Z2 - Z3 - 2z5 - 2z7 - 2zs) 
x~~~--~~--~~~----~~~----~--~----~~ 

F(8- a13 - 2a24567S - 4c:- z2 - Z3 - 2z5 - 2z6 - 2z7- 2zs) 

F(4- al24567S- 2c- Z3- Z5- Z5- Z7- Zs) 
x~~--------------------------------~ 

F(a24567S- 2 + c + Z1 + Z2 + Z3 + Z5 + Z7 + 2zs) 
xF(a4557 + c- 2 + Z2 + Z3 + Z4 + Z5 + Zs)F( -as- Z1 + Z4- Z7- Zs) 

XF(a24567S- 2 + c + Z1 + Z2 + Z3 + Z5 + 2z7 + 2zs) 

xr(a- 4 + 2c: + Z5 + z5 + Z7 + zs)F(a2s + z1 - Z4 + Z7 + zs) . (4.75) 

Representation (4.75) can be checked for various simple partial cases as 
it was explained above. Although the number of integrations is rather high 
one can proceed also in this case. However, it turns out that the massive 
non-planar case is rather complicated. A description of preliminary results 
for the master planar double box can be found in [31]. 

Let us now again illustrate the fact that general MB representations accu­
mulate a lot of information so that MB representations for various classes of 
Feynman integrals can be derived in a very simple way from an initial global 
representation. 

Suppose we want to consider 

Example 4.10. Sunset diagrams of Fig. 3.12 with one zero mass and two 
equal non-zero masses at a general value of the external momentum squared. 

Remember that we have already considered such Feynman integrals at 
threshold, q2 = 4m2 - see Example 3.6. There is no need to derive an ap­
propriate MB representation from the beginning. Let us observe that such 
Feynman integrals, with the massive propagators 5 and 7 and the massless 
propagator 2, can be obtained from the massive on-shell double boxes of 
Fig. 4.9b at a1 = a3 = a4 = a6 = O. As usual such a limit results in taking 
some residues. We first let a4 -+O and observe that F(a4) in the denomina­
tor can be cancelled only if we take into account the gluing in the product 
r(a4 + Z2 + Z4)r( -z2)r( -z4)· Thus we are forced to take the two residues at 
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z4 = O and z2 = O. Then the limit a6 ---+ O can similarly be taken, because of 
the presence of F(a6 + Z3)F( -z3)j F(a6), by taking minus residue at Z3 = 0. 
Then we take the limit a1 ---+ O by observing that the only way to cancel 
r(al) in the denominator is to take into account the gluing in the product 
F( al23578 - 4 + 2c + Z1 + Z5 + Z5)F( 4- a23578 - 2c- Z1 - Z5 - Z5) and take a 
residue, e.g. at z6 = 4- a23578 - 2c:- z1 - Z5 (with the minus sign). Finally, 
we let a3 ---+ O by distinguishing the product 

F(a23578- 4 + 2c + Z1 + Z5)F(8- a3- 2a2578- 4c- 2z1- 2zs) 

which generates r(a3) and cancels this factor in the denominator. 
After relabelling the lines, substituting t ---+ q2 and expressing the irre­

ducible numerator in terms of the loop momenta of the sunset diagram, we 
obtain 

F4.10(q2, m2; a1, a2, a3, a4, d) 

J J ddk dd[ [(k + Z) 2J-a4 

- (k2 _ m2)a1([2 _ m2)a2[(q _ k -Z)2Ja3 

(i7rd/2)2(-l)ar(2-a3-c:) 1 f+ioo (q2)z 
= r(al)r(a2)r(a3)(m2)a-4+2E 2Jri -ioo dz m2 

r(a- 4 + 2c + z)r(a3 + z)r( -z)F(2- a34- E- z) 
x~~--~----~~~~~~~~~~~------~~ 

F(a12 + 2a34- 4 + 2c: + 2z)F(2- E + z)F(2- a3- E- z) 
xF(a134- 2 + E + z)F(a234- 2 + E + z). (4.76) 

If we evaluate the integral in (4.76) for generalE by closing the contour 
and taking a series of residues we shall reproduce the result of [8] in terms of 
the hypergeometric series 4F3. We are oriented, however, at the evaluation 
in expansion in E and will evaluate integrals (4.76), for concrete values of 
the indices, by resolving singularities in E and then closing the contour and 
summing up the corresponding series. For example, ( 4. 76) gives 

F4.10 (q2, m 2 ; 1, 1, 1, O, d) =- (i1rd/2f F(1- c:)(m2 ) 1- 2E 

x-1-f+ioo dz(!L)z r(2c:-1+z)r(c:+z)2F(1+z)r(-z). (4.77) 
2Jri -ioo m 2 F(2c: + 2z)F(2- E + z) 

The resolution of the singularities in E is standard: we distinguish the 
factor F(2c:- 1 + z) as the source of poles. We have to take care of its first 
two poles, i.e. take residues at z = 1 - 2c: and z = -2c:. The calculation 
of the integral with the opposite nature of these two poles is performed by 
closing the integration contour to the right and summing up series, with the 
following result which can be found in [11, 13]: 

F ( 2 2.1 1 1 o d)- (· d/2) 2 ( 2)1-2E [ 1 ( q2 ) 1 4.10 q 'm ' ' ' ' ' - 171' m c:2 + 3- 4m2 E 
1r2 11 13(1 + x2) 1 + 2x- x2 

+-+-+ + lnx 
6 4 8x 2x 
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2 1- x + x2 2 ] 
-~ lnx- (1 _ x) 2 ln x + O(c) , (4.78) 

where x = h/4m2 - q2 - Ffj2)j(y'4m2 - q2 + Ffj2). (Please, note that 
the letter x is used in various ways: this is another function in Examples 4.6, 
4.9, while, for massless double and triple boxes, this is simply tjs.) 

4.6 Three-Loop Examples 

Our next example is already at three-loop level: 

Example 4.11. The massless on-shell triple box diagram of Fig. 4.11. 

Fig. 4.11. Triple box 

The general planar triple box Feynman integral without numerator takes 
the form 

!!! ddkdd[ddr 
T(s, t; a1, ... , a10, c) = (k2)a1 [(k + p2)2]a2 [(k + Pl + p2)2Ja3 

1 
x~------~~~--~~~~~--~~ 

[(l + p1 + p2)2]a4[(r -[)2Ja5([2)a6[(k -[)2]a7 
1 

X [(r + Pl + P2)2]as [(r + Pl + P2 + P4)2]a9 (r2 )aw (4.79) 

To derive a suitable MB representation for (4.79) we proceed like in the 
derivation of (4.46). We recognize the internal integral over the loop mo­
mentum ras a box with two legs off-shell given by (4.22). After inserting it 
into (4.79) we obtain an MB integral of the on-shell double box with certain 
indices dependent on MB integration variables. These straightforward ma­
nipulations lead [29] to the following sevenfold MB representation of (4.79): 

{i7fd/2) 3 ( -1)a( -s)6-a-3c 
T(s, t; a1, ... , a10, c) = TI r( )r(4 2 ) 

j=2,5,7,8,9,10 aj - a589(10) - c 

X _1_1+ioo .. ·l+ioo IT dzj (!) Zl r(a2 + Zl)r( -zl)r(z2 + Z4) 
(27ri)7 -ioo -ioo j=l S F(al + Z3 + Z4)F(a3 + Z2 + Z4) 
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T(2- a12- E + z2)T(2- a23- E + Z3)T(a7 + Z1 - Z4)T( -zs)T( -z6) 
x~----~~~--~~~------~~~--~~--~~--~~~ 

T(4- a123 - 2E + z1- z4)T(a5- zs)T(a4- z5) 

XT(z3 + Z4)T(a123- 2 + E + Z4)T(z1 + Z2 + Z3 + Z4- Z7) 

xT(2- a59(1o)- E- zs- z7)T(2- assg- E- z6- z7) 

XT(a467- 2 + E + Z1 - Z4- Z5- Z6- Z7 )T(as + Zs + Z6 + Z7) 

XT(4- a457- 2E + Z5 + Z6 + Z7)T(as89(10)- 2 + E + Z5 + Z6 + Z7) 

xT(2- a67 - E- Z1- Z2 + Z5 + Z7)T(ag + Z7) 

"'10 where a= L...i=l ai, a5s9(10) = as +as+ ag + a10, etc. 

(4.80) 

In the case of the master triple box, we set ai = 1 for i = 1, 2, ... , 10 to 
obtain 

T(o) (s, t, c) ::::::: T(1, ... , 1; s, t, c) 

(ind/2)3 1 f+ioo f+ioo 7 (t)z1 
= r(-2c)(-s)4+3c (2ni)1 -ioo ... -ioo .DdZj ~ T(1 +zi) 

T( -zl)T( -E + Z2)T( -E + Z3)T(1 + Z1 - Z4)T( -Z2- Z3- Z4) 
x~--~~----~~~--~~~~~--~~~~~--~ 

T(1 + Z2 + Z4)T(1 + Z3 + Z4)T(1 - 2E + Z1 - Z4) 

T(z2 + Z4)T(z3 + Z4)T( -zs)T( -z5)T(z1 + Z2 + Z3 + Z4 - Z7) 
x~----~~--~~~--~~--~~--------~----~ 

T(1 - zs)T(1 - z6)T(1 - 2E + zs + Z5 + Z7) 
X T(2 + E + Z5 + Z6 + Z7 )T( -1 - E - Z5 - Z7 )T( -1 - E - Z6 - Z7) 

X T(1 + Z7 )T(1 + E + Z1 - Z4 - Z5 - Z6 - Z7 )T( -E - Z1 - Z2 + Z5 + Z7) 

XT(1 + E + Z4)T(-E- Z1- Z3 + Z6 + Z7)T(1 + Z5 + Z6 + Z7). (4.81) 

Observe that, because of the presence of the factor r( -2E) in the denomina­
tor, we are forced to take some residue in order to arrive at a non-zero result 
at E = O, so that the integral is effectively sixfold. 

Then our standard procedure of taking residues and shifting contours can 
be applied, with the goal to obtain a sum of integrals where one may expand 
integrands in Laurent series in E. The analysis of the integrand shows that the 
following four gamma functions play a crucial role for the generation of poles 
in E: r( -E + Z2,3) and r( -1 - E - Z6,5 - Z7). The first decomposition of the 
integral (4.81) arises when one either takes a residue at the first pole of one 
of these gamma functions or shifts the corresponding contour, i.e. changes 
the nature of this pole. As a result ( 4.81) is decomposed as 2T0001 + 2T0010 + 
2Toon +To101 +2Tono+2Tonl +T1010+2T10n +Tnn where the symmetry of 
the integrand is taken into account. Here the value 1 of an index means that 
a residue is taken and O means a shifting of a contour. The first two indices 
correspond to the gamma functions T ( -E + Z2) and T ( -1 - E - Z5 - Z7) and 
the second two indices to T( -E + Z3) and T( -1 - E- Z6 - Z7 ), respectively. 
The term Toooo is absent because it is zero at E = o due to r( -2E) in the 
denominator. 
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Each of these terms is further decomposed appropriately and, eventu­
ally, one is left with integrals where integrands can be expanded in c. These 
resulting terms involve up to five integrations. Taking some of these integra­
tions with the help of the table of formulae presented in Appendix D, one 
can reduce all the integrals to no more than twofold MB integrals of gamma 
functions and their derivatives. In some of them, one more integration can 
be performed also in terms of gamma functions. Then the last integration, 
over ZI, is performed by taking residues and summing up resulting series, in 
terms of HPL. Keeping in mind the Regge limit, tj s ---. O, let us, for defi­
niteness, decide to clase the contour of the final integration, over ZI, to the 
right and obtain power series in tj s. The coefficients of these series are (up to 
( -1)n) linear combinations of 1jn6 , SI (n)jn5 , ... , SI (n)S3 (n)jn2 , .. . , where 
Sk(n) = E?=I j-k, etc. (see Appendix C). Summing up these series with 
the help of tabulated formulae of Appendix C gives results in terms of HPL 
of the variable -t j s which can be continued analytically to any domain from 
the region It/ si < 1. 

In the twofold MB integrals where one more integration ( over a variable 
different from ZI) can hardly be performed in terms of gamma functions, one 
performs it with ZI in a vicinity of an integer point ZI = n = O, 1, 2, ... , in 
expansion in z = ZI - n, with a sufficient accuracy. Then one obtains power 
series where, in addition to nested sums with one index, various nested sums 
(see Appendix C) appear. These series are also summed up in terms of HPL. 

Eventually one arrives at the following result [29]: 

( . d/2 -')'Ee) 3 6 ( L) 
T (O)( . ) = _ I7r e ""'Cj X, 

s, t, c s3(-t)I+3c ~ Ej ' 
J=O 

(4.82) 

where x = -tjs, L = ln(s/t), and 

16 5 3 2 
c6 = g, C5 = - 3L, C4 = -27r , (4.83) 

(4.84) 

c2 = -3 (17Ho,o,o,I (x) + Ho,o,I,I (x) + Ho,I,O,I (x) + HI,o,o,I (x)) 

-L (37Ho,o,I(x) + 3Ho,I,I(x) + 3HI,o,I(x))- ~(L2 + 1r2 )HI,I(x) 

- ( 2
2
3 L 2 + 81r2) Ho,I(x)- (~L3 + 1r2 L- 3((3)) HI(x) 

49 ~"(3)L _ 1411 7r4 

+ 3" 1080 ' 
(4.85) 
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c1 = 3 (81Ho,o,o,o,l (x) + 41Ho,o,o,l,l (x) + 37 Ho,o,l,O,l (x) + Ho,o,l,l,l (x) 

+33Ho,l,o,o,l(x) + Ho,l,O,l,l(x) + Ho,l,l,o,l(x) + 29Hl,o,o,o,l(x) 

+Hl,o,o,1,1(x) + Hl,O,l,o,l(x) + H1,1,o,o,l(x)) + L (177Ho,o,o,l(x) 

+85Ho,o,l,l(x) + 73Ho,l,O,l(x) + 3Ho,l,l,l(x) + 61Hl,o,o,l(x) 

+3Hl,O,l,l (x) + 3Hl,l,O,l (x)) 

( 119 2 139 2) (47 2 2) ( ) + 2L + 121f Ho,o,l(x) + 2L + 201f Ho,l,l x 

+ ( 3: L2 + 141f2 ) H1,o,1(x) + ~ (L2 + 1r2 ) H1,1,1(x) 

+ ( 2
2
3 L3 + ~~ 1r2 L - 96((3)) Ho,l (x) 

+ (~L3 + 1r2 L- 3((3)) H1,1(x) 

( 9 25 13 ) 
+ B L 4 + S1r2 L2 - 58((3)L + S1r4 H 1 (x) 

_ 503 1f4 L 73 1f2 '"(3) _ 301 '"(5) 
1440 + 4 ." 15 ." ' 

co =- (951Ho,o,o,o,o,l(x) + 819Ho,o,o,o,l,l(x) + 699Ho,o,o,l,O,l(x) 

+ 195Ho,o,o,l,l,l (x) + 547 Ho,o,l,o,o,l (x) + 231Ho,o,l,O,l,l (x) 

+159Ho,O,l,l,O,l(x) + 3Ho,O,l,l,l,l(x) + 363Ho,l,O,o,o,l(x) 

+267 Ho,l,o,o,l,l (x) + 195Ho,l,O,l,O,l (x) + 3Ho,l,O,l,l,l (x) 

+ 123Ho,l,l,O,O,l (x) + 3Ho,l,l,O,l,l (x) + 3Ho,l,l,l,O,l (x) 

+ 147 Hl,o,o,o,o,l (x) + 303Hl,o,o,o,l,l (x) + 231Hl,O,O,l,O,l (x) 

+3Hl,O,O,l,l,l (x) + 159Hl,O,l,O,O,l (x) + 3Hl,O,l,O,l,l (x) 

+3Hl,O,l,l,O,l(x) + 87Hl,l,O,O,O,l(x) + 3Hl,l,O,O,l,l(x) 

+3Hl,l,O,l,O,l (x) + 3Hl,l,l,O,O,l (x)) 
-L (729Ho,o,o,o,l (x) + 537Ho,o,o,l,l (x) + 445Ho,o,l,O,l (x) 

+ 133Ho,O,l,l,l (x) + 321Ho,l,O,O,l (x) + 169Ho,l,O,l,l (x) 

+97 Ho,l,l,O,l (x) + 3Ho,l,l,l,l (x) + 165Hl,o,o,o,l (x) 

+205Hl,O,O,l,l (x) + 133Hl,O,l,O,l (x) + 3Hl,O,l,l,l (x) 

+61Hl,l,o,o,l(x) + 3Hl,l,O,l,l(x) + 3Hl,l,l,O,l(x)) 

( 531 2 89 2) ( (311 2 619 2) 
- 2L + 41f Ho,o,o,l x)- TL + 121f Ho,o,1,1(x) 

- ( 247 L2 + 307 
1r2 ) H0 10 1(x)- ( 71 L2 + 321f2 ) Ho 111(x) 2 12 , , , 2 , , , -c~1 L2 - ~9; 1f2 ) Hl,O,O,l(x)- c~7 L2 + 501f2 ) Hl,O,l,l(x) 

(4.86) 
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( 35 2 2) 3 ( 2 2) - 2L + 147r H1,1,o,I(x)- 2 L + 1r H1,1,1,1(x) 

( 119 3 317 2 ) - 2L + 127f L- 455((3) Ho,o,I(x) 

( 47 3 179 2 ) - 2L + 127f L -120((3) H 0 ,1 ,1 (x) 

( 35 3 35 2 ) - 2 L + 12 1r L-156((3) H1,0,1(x) 

( 3 3 2 ) - 2L +1r L-3((3) H1,1,1(x) 

( 69 4 101 2 2 559 4) - SL + 87f L - 291((3)L + 001r H 0 ,1 (x) 

- -L + -1r L - 58((3)L + -1r H11(x)- -L + -1r L ( 9 4 25 2 2 13 4) (27 5 25 2 3 
8 8 8 , 40 8 

183 131 37 ) - 2((3)L2 + 501r4 L- 12 7r2 ((3) + 57((5) H 1 (x) 

( 223 21 ( ) 4 1 ( )) L 167 1 ( ) 2 624607 6 + -7f ." 3 + 1 9." 5 + -." 3 - --7[ . 
12 9 544320 

(4.87) 

The above result was confirmed with the help of numerica! integration 
in the space of alpha parameters [7]. Another natural check of the result is 
its agreement with the leading power Regge asymptotic behaviour [28] which 
was evaluated by an independent method based on the strategy of expansion 
by regions [4, 27]. 

The procedure described above can be applied, in a similar way, to the 
calculation of any massless planar on-shell triple box. At a first step, one has 
to take care of the following four gamma functions in (4.80): 

r(2- al2- c + Z2), F(2- a23- c + z3), 

F(2- a59 (IO) - c- zs - Z7 ), F(2- assg - c- ZG - Z7) . 

This procedure gives a decomposition similar to 2T0001 + 2T0010 + .... Next 
steps will be also generalizations of the corresponding steps in the evaluation 
of (4.81). 

The result presented above shows that analytical calculations of four­
point on-shell massless Feynman diagrams at the three-loop level are quite 
possible so that one may think of evaluating three-loop virtual corrections to 
various scattering processes. Let us now consider a more complicated four­
point three-loop diagram: 

Example 4.12. The massless on-shell tennis court5 diagram of Fig. 4.12. 

5Well, this is only one half of the court for singles. One also can call it 'window'. 
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9 10 
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2 7 5 

3 4 
P2 P4 

Fig. 4.12. Three-loop tennis court graph 

To derive an appropriate MB representation we can proceed again quite 
straightforwardly. Here we need an auxiliary MB representation for the dou­
ble box with two legs off shell applied to the double box subintegral in 
Fig. 4.12 and inserted into the MB representation for the on-shell box. As a 
result, an eightfold MB representation can be derived for the general diagram 
W(s, t; at, ... , a11 , c) of Fig. 4.12 with the eleventh index corresponding to 
the numerator (h ·h)-a11 which involves the scalar product of the momenta 
h,3 flowing though lines 1 and 3 in the same direction. 

Feynman integrals corresponding to Fig. 4.12 and many others will be 
indeed necessary to perform three-loop calculations of various scattering pro­
cesses. It turns out that triple boxes are necessary right now in order to 
check some relations between different loop orders in N = 4 supersymmetric 
gauge theories. The N = 4 theory has attracted considerable interest because 
of its remarkably simple structure and central role in the AdS/CFT corre­
spondence. As was recently emphasized in [1], one needs, in addition to the 
result ( 4.87) for the triple box considered above, just one more triple box [6], 
namely, W(s, t; 1, ... , 1, -1, c). For this integral, one has 

(i1l'd/2) 3 
W(s,t;1, ... ,1,-1,c) =- T(-2c)(-s)l+3et2 

x (2;i)8 [~:= · · · [~:= dwdz1 ll dzir( -zi) ( ~) w T(1 + 3c + w) 

T( -3c- w)T(1 + Zt + Z2 + Z3)T( -1- E'- Zt- Z3)T(1 + Zt + Z4) 
x~--~~~~~~--~~~~~~----~~~~--~--~ 

T(1 - z2)T(1 - z3)T(1 - z6 )T(1 - 2c + z1 + z2 + z3) 

T( -1 - E'- Zt - Z2 - Z4)T(2 + E' + Zt + Z2 + Z3 + Z4) 
x~~~~--~~~----~~~--~------~~~~~ 

T(-1- 4c- Z5)T(1- Z4- Z7)T(2 + 2c + Z4 + Z5 + Z6 + Z7) 

xT( -E' + Zt + Z3- Z5)T(2- W + Z5)T( -1 + W- Z5- Z6) 

XT(z5 + Z7- zl)T(1 + Z5 + Z6)T(-1 + W- Z4- Z5- Z7) 

xT(-c + Zt + Z2- Z5- Z6- Z7)T(1- E'- W + Z4 + Z5 + Z6 + Z7) 

XT(1 + E'- Zt- Z2- Z3 + Z5 + Z6 + Z7). (4.88) 
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There is again the factor F( -2c) in the denominator, so that the integral is 
effectively sevenfold. 

The evaluation of this integral in expansion in E: is in progress. Here is a 
preliminary result up to 1/ c3: 

(4.89) 

where 
16 13 19 1 

C6 = g, C5 = -Blnx, C4 = - 12 71"2 + 21n2 X 

c3 = ~ [Li3 ( -x) -lnx Li2 (-x)] + 172 ln3 x- ~ ln2 x ln(1 + x) 

157 2 5 2 241 +n-1r lnx- 41r ln(1 + x) -18((3) (4.90) 

with x = tjs. 

4. 7 More Loops 

One can proceed in the same style even in higher loops. Let us illustrate this 
point by considering 

Example 4.13. The four-loop ladder massless on-shell diagram shown in 
Fig. 4.13. 

P1 

21 71 5 1 
·1 

121 

P3 
1 6 10 13 

3 4 8 11 
P2 P4 

Fig. 4.13. Four-loop ladder diagram 

We start with the derivation of an appropriate MB representation for 
general powers of the propagators. As before we use this general strategy 
because it provides a lot of checks and gives the possibility to obtain MB 
representations for various diagrams which result from the given diagram 
when contracting some lines. 

As in the previous example, we need an auxiliary MB representation for 
the double box with two legs off shell but in a different situation ( two left legs 
rather than two upper legs off shell). It can easily be derived by the technique 
described and takes the form 
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T(a4557 + c- 2 + Z1 + Z2 + Z3)T(a5 + zi)T(a7 + Z1 + Z2 + Z3) 
x~~~----------------~~----~~----~~--~ 

F(4- 2c- a123s + z1 + z2 + z3)F(a1 - z2)T(a3- z3)F(as- zi) 

XT(a1238 + c- 2- Z1 - Z2- Z3 + Z4 + Z5 + Z5)T(a2 + Z4 + Z5 + Z5) 

xT(2- c- a457- Z1- Z3)T(2- c- a557- Z1- Z2)T(as- Z1 + Z4) 

xF(2- c- a12s + z1 + z2- Z4- zs) 

XT(2- c- a238 + Z1 + Z3- Z4- Z5) . ( 4.91) 

Then, similarly to the derivation of the multiple MB representation for 

the triple box when we inserted the MB representation of the box with two 

legs off shell into the MB representation of the on-shell double box, let us now 

insert ( 4.91) instead. We come to the following tenfold MB representation of 

the four-loop ladder diagram: 

(i7rd/2) 2 ( -1)a( -s)8-a-4e: 
Q(s,t;al, ... ,a13,E)=TI () ( ) 

j=2,5,7,9,11,12,13 r aj r 4- a9,11,12,13 - 2c 

X (2•~)" [~= [~= (j}z,) Gf H,I~,,, r(-z,) 

X T(a1.2 + Z1)T(a2 + Z7)T(z7- zw)T(zw- Z4)T(z4- zi) 

T(aw- Z2)T(as- Z3)T(a6- Z5)T(a4- Z5)T(a1- zs)T(a3- Zg) 

x F(2- c- a9,11.12 - z1 - z3)F(2- c- ag,12,13 - z1 - z2) 

F(4- 2c- a5,s.10 + z1 + z2 + z3)F(4- 2c- a4,6,7 + Z4 + z5 + z6) 

X T(ag + Z1 + Z2 + Z3)T(a9,11.12.13 + c- 2 + Z1 + Z2 + Z3) 

F(4- 2c- a1,2,3 + zs + Zg + z10) 

xT(2- c- a5,10 + Z1 + Z2 - Z4 - Z5)T(2- c- a5,8 + z1 + z3 - z4 - z6) 

xT(a5 + Z4 + Z5 + Z6)T(a5,8,10 + c- 2- Z1 - Z2- Z3 + Z4 + Z5 + Z5) 

xT(2- c- a6,7 + Z4 + Z5 - Zs - Z10)T(2- c- a1,2 + Zs + ZlQ - Z7) 

X T(2 - c - a4, 7 + Z4 + Z5 - Zg - ZlQ )T(2 - c - a2,3 + Zg + ZlQ - Z7) 

xT(aL2,3 + c- 2- Zs- Zg- ZlQ + Z7 )T(a7 + Zs + Zg + Z10) 

XT(a4,6,7 + c- 2- Z4- Zr;- Z5 + Zs + Zg + ZlQ), ( 4.92) 

where we separate indices in a 9,11 ,12,13 = a9 + a 11 + a 12 + a 13 etc. by commas 

because they are now two-digit. 
One can check this monster representation as before, using partial cases: 

when we put the indices a2, a5 , a7 , a9, a 12 to zero we reproduce a known 

analytical result for the product of four one-loop propagator diagrams with 
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Fig. 4.14. The 'N in O' diagram 

the indices ( a1, a3), ( a4, a5), (as, aw) and (an, a13). When we put the indices 
a1, a3, a4, a5, as, aw, an, a13 to zero we reproduce a known analytical result 
for the four-loop water melon diagram with the indices a2, a5, a7, a9, a 12 and 
the externa! momentum square t. 

Representation ( 4.92) contains a lot of information. Let us use it in or­
der to calculate the 'N in O' diagram6 shown in Fig. 4.14 exactly in four 
dimensions, i.e. at f = O. This is nothing but 

JV(q2) = (J(s,t;1,0,1,1,1,0,1,0,1,1,1,0,1,0) 

which is, of course, independent of t and proportional to 1/ q2 . The limit 
a2, a12 --t O is achieved as described above, due to four residues with respect 
to some of the integration variables. Then one can simply set a6 = as = O 
and obtain 

(4.93) 

with the constant C given by a finite fivefold MB integral. Three of these fi ve 
integrations can be performed explicitly with the help of tabulated formulae 
of Appendix D, and one can obtain the following twofold MB integral: 

1 J+ioo J+i= dz1 dz2 
C = -( .) 2 -2-r(zl + Z2)r(1 - Z1 - Z2)r(z2)r( -z2) 

27rl -ioo -i= 2z1 Z2 
xr(1- zl)r(zl) [zl(~(1- Z1) + ~(zl)- ~(1- Z1- Z2)- ~(zl + Z2)) 

-z2( ~(1 - z1 - z2) - ~( -z2) - ~(z2) + ~(z1 + z2))] 

X [~(zl) 2 - 2~(zl)~(1- z1 - Z2) + 2~(1- Z1- Z2)~(z1 + Z2) 

-~(z1 + z2) 2 - ~'(zl) + ~'(z1 + z2)] , (4.94) 

where the poles at z1 = O and z2 = O are considered left so that one can 
choose O< Rez1, Rez2 < 1 with Rez1 + Rez2 < 1 for the integration contour. 
One can check numerically, with a high accuracy, that the known result which 
will be presented shortly is successfully reproduced. 

6 This diagram was a challenge in the eighties in renormalization group calcula­
tions. In the first result on the five-loop ;3-function in the </J4 theory [9] (see [19] for 
a corrected later version) the contribution of this diagram was treated numerically. 
The analytical value of this diagram was predicted and later proven in [18] using a 
technique based on functional equations- see more details in Appendix F. 



4. 7 More Loops 101 

The twofold MB integral ( 4.94) can be converted into asum of two twofold 
series of expressions consisting of nested sums (see Appendix C). The first of 
them is obtained by taking residues at the points z2 = 1, 2, ... and then at 
z1 = 1, 2, .... The second of them is obtained by taking residues at the points 
z2 = 1- z1 + n2 with n2 = 1, 2, ... and then at z1 = 1, 2, .... Then one can 
perform one of the summations using the package SUMMER [39] and arrive at 
the following onefold series: 

(X) 5 

C= LLC~jn' 
n=1j=1 

where 

C5,n = 5n2 /6- 65Î- 2752 , 

C4,n = 5n251/2 + 35Î- 18512 + 125152-683 + 12((3), 

c3,n = n4/5- 4n25Î/3- 5t/2- 285m + 2081812-10513 

( 4.95) 

(4.96) 

(4.97) 

-19n252/6- 8Î82 + 375V2 + 45153 + 1154 + 651((3), (4.98) 

c2,n = n451/10 + n25i/6- 281112-185113- 177r2512/6 + 1651513 
2 3 2 

+ 11514 + 4n 8182/3- 25152/3 + 681282 - 8182 - 135212 

+19523- n253/3- 55Î53 + 25253/3-68184-455- 2n2((3)/3 

-35Î((3)- 52((3) + 14((5), (4.99) 

c1,n = 6h6 /2520- 1651113 + n25u2/3 + 4515113 + 145u4- 35Î2 

+105123- 3n2513- 551514 + 8815 + 3n452/20- n28Î82/6 

+65m52- 8181282 + 1081382- 5n2 5V6 + 5Î5~ + 55V3- 882112 

+818212- 351523 + 18524 + 10n25153/3 + 25Î53/3- 451283 

-1818283 + 105V3- n284j6- 35Î54- 315254-95155-8056/3 

-4512((3) + 45152((3) + 1453((3)- 9((3)2 ' (4.100) 

and we omit the argument n-1 in all the nested sums involved, i.e. 51 stands 
for 51 (n- 1) etc. 

Summation of the terms with 1/n5, ... ,1jn2 can be performed with the 
help of formulae (C.51)-(C.82) implemented in SUMMER [39]. The terms with 
1/n are also successfully summed up by SUMMER, and we arrive at the well­
known result [18]: 

N(q 2 ) = __!__ (in2)4 441 ((7). (4.101) 
q2 8 

1 cannot say that the derivation of this result outlined above is simpler 
than that of [18]. Let me, however, stress that the present derivation involves 
a lot of steps that are performed automatically, and a lot of other similar 
results (e.g. for diagrams which can be obtained from the four-loop ladder 
diagram by shrinking other lines to points) can be obtained quite similarly. 
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4.8 MB Representation versus Expansion by Regions 

To expand a given Feynman integral in some limit, where certain masses 
and/or kinematical invariants are large with respect to the rest of these pa­
rameters, one can successfully apply expansion by regions [4,30], as explained 
in the book [27] in detail. An alternative technique for solving the problem 
of asymptotic expansion is provided by multiple MB representations. Let us 
see how it works using some of our previous examples. 

For Example 4.1, we have derived the MB representation (4.3). Let us use 
it to expand such Feynman integrals in the two different limits, m2 j q2 --. O 
and q2 /m2 --. O. Consider, for example, F4.1(2, 1, 4) represented by (4.4). 

This is an integral over the variable z, with the ratio m 2 jq2 present in 
the form (m2/q2y. The initial integration contour is at -1 < Rez <O. Let 
us observe that if we follow the procedure used to evaluate this integral, 
i.e. close the integration contour to the right and pick up (minus) residues at 
z = O, 1, 2, ... , n, . .. we shall obtain terms of the asymptotic expansion in the 
limit m2 j q2 --. O. Indeed, one can prove that the remainder of this expansion 
determined by picking up the (n + 1)-st residue is of order (m2)n+l. Thus we 
obtain 

irr2 [ -q2 m2 m4 ] 
F4.1 (2, 1; 4) = Q2 ln m 2 - Q2 - 2(q2)2 - . . . . (4.102) 

If we are interested in the opposite limit, q2 /m2 --.O, the natural idea is 
to close the integration contour to the left and take residues at the points 
z = -1, -2, ... to obtain 

irr2 [ q2 (q2)2 ] 
F4.1(2, 1;4) = --2 1 + - 2 + --4 + .... 

m 2m 3m 
(4.103) 

Consider now Example 4.3, where IR and collinear divergences are present. 
We can use MB representation ( 4.11) for expanding Feynman integrals with 
various indices in the two different limits, t / s --. O and s jt --. O. There is 
again the typical dependence of the ratio of t and s on z of the form ( t / s Y. 
The procedure of using (4.11) to obtain an asymptotic expansion in the limit 
tj s --. O is standard: to shift the integration contour to the right. For the 
integral with given indices al, the points where it is necessary to take (mi­
nus) residues are given by the right poles of the gamma functions, in our 
terminology: at z =O, 1, 2, ... and at z = 2- max{ a1, a3}- a2- a4- c: + n 
with n =O, 1, 2, .... For example, for F(s, t; d) = F4.3(s, t; 1, 1, 1, 1, d) repre­
sented by (4.12), these are the two series of residues at z = O, 1, 2, ... and 
z = -1-c:, -c:, 1-c:, ... which reproduce the hard and collinear contributions, 
respectively, to the asymptotic expansion within expansion by regions - see 
Chap. 8 of [27]. We obtain 

irrd/2 { F(1 + c:)r( -c:)2 [ t J 
F(s,t;d) = r(-2c:) s(-t)l+c ln~+2~(-c:)-~(1+c:)+'YE 
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r(c:)r(1- c:)2 [ t ] - ln-+2'1/J(1-c:)-'I/J(c:)-1+1'E 
s 2 (-t)c s 

r(2 + c:)r( -1- c:) 2 

+ ( -s)2+E 

r(c:- 1)r(2- c:)2( -t)l-E [l t 2"'·(2 ) "''( 1) 3 ] + n-+ 'f/ -E -'f/E- --+')'E 
2s3 s 2 

r(3 + c)r( -2- c:) 2t} 
+ (-s)3+c + .... (4.104) 

To obtain the asymptotic expansion in the opposite limit, sjt ---+ O, one 
shifts the integration contour to the left and takes residues at the left poles 
at z = 2- min{ a2, a4} - n and at z = 2- a-c:- n with n = O, 1, 2, .... 
For F(s, t; d), these are the two series of residues at z = -1, -2, ... and 
z = -2 - c:, -3- c:, -4- c:, .... One can check that the resulting expansion 
is nothing but (4.104) with the interchange s---+ t, t---+ s- this should be the 
case because of the symmetry of the initial integral. 

In these two examples, terms of asymptotic expansions were obtained as 
residues in onefold MB integrals. As a non-trivial example with a multiple MB 
integration let us turn again to Example 4.8 of massless on-shell double boxes. 
Let us evaluate the leading asymptotic behaviour of the K(s, t; 1, ... , 1, O, c:) 
in the Regge limit, tj s---+ O, using representation ( 4.48). 

The starting point of the evaluation of this quantity in expansion in E was 
the analysis of gluing of right and left poles which showed the way how the 
poles in c: are generated. Now, our starting point is to look at the integration 
over the variable z1 which enters as the power of the ratio t/ s and try to 
understand what right poles with respect to z1 are. One source of such poles 
is obvious: this is r( -zi) corresponding to the hard part within expansion 
by regions- see Chap. 8 of [27]. This part, however, starts only with order 
( t / s )0 which is subleading, as we will see shortly. Other sources are not visible 
at once, similarly to the poles in E. However, the experience obtained in our 
previous examples when analysing the singular behaviour in c: shows how 
the poles in z1 appear after integrating over z2, z3 and Z4. Let us use the 
rule formulated in Sect. 4.2 and systematically applied in our examples and 
analyse the integrand of (4.48) from the point of view of generating right 
poles in Zl· Apart from r(-zl), there are only two gamma functions that 
can generate a singularity of the type r(. .. - zi): 

r(-1-E-Zl-z2) and r(-1-E-Zl-z3)· 

Indeed, the singularity of the type r( -1 - E - Zl) is generated, due to the 
integration OVef Z2, because of the presence of r( -E + z2), and, due to the 
integration over z3, because of the presence of r( -c:+z3). Thus, to reveal this 
singularity, we can take a residue at the first pole of r( -c:+z2) Of r( -c:+ Z3). 

Therefore, we start with the same decomposition F = F11 + F10 + F01 + F00 

as in Sect. 4.4. Now, in F11 represented by (4.49) and in F01 represented by 
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(4.50), the function r( -1-2c:-zl) is already explicitly present. The term F00 

does not contribute now because it cannot generate the leading asymptotic 
behaviour in the given limit. 

To evaluate the leading asymptotics, let us, first, consider F 11 and take 
(minus) residue at z1 = -1- 2c: to obtain 

f r(1 + 2c:) 1 j+ioo d r(1 - c:- z4)r( -2c:- z4)2 
11 = . Z4 

xl+2c: 21n -ioo F(1 + c: + z4)r( -4c: - z4) 

XF(c: + Z4) 2 F(z4) [2'/'E + lnx + '1/J( -2c:)- 'l/J(1 + 2c)- '1/J( -4€- Z4) 

+'1/J( -2€- Z4) + 'l/J(1- C:- Z4) + 'lj;(z4)] . (4.105) 

Observe that this quantity is nothing but the contribution F111 that we have 
met in Sect. 4.4. It was evaluated in expansion in c: by taking residues at 
z4 =O and z4 = c: and shifting the integration contour over z4. 

Starting from F01 and taking (minus) residue at z1 = -1- 2c: we obtain 

r(1 + 2c:) 1 l+ioo l+ioo 
!01 = - 1+2c: (2 .)2 . . dz2dz4F*( -c: + z2)F(c:- z2) 

X 7rl -100 -100 

r(c: + z4)r( -2c:- z4)r(1- c:- z4) 
X ~----~~~----~~----~ 

r( -4c:- z4) 
F(z2 + Z4)F( -C: + Z2 + Z4)F( -C: - Z2 - Z4) 

X F(1 + Z2 + Z4) (4.106) 

where the asterisk denotes, as in Appendix D, the opposite nature of the first 
pole of r( -c: + z2 ). Now we observe that this is nothing but the contribution 
Fou of Sect. 4.4, where it was explained how it can be evaluated in expansion 
in c:. Summing up results for Hu and Fou we reproduce the leading part of 
(4.54), e.g. the terms of order 1/t modulo logarithms. 

So, we see that the evaluation of the leading asymptotic behaviour in 
the Regge limit, using MB representation, is a (simple) part of the global 
evaluation. Observe that the evaluation of the triple box in Example 4.11 
is also organized in such a way that the leading Regge asymptotics can be 
extracted from this evaluation. On the other hand, it was also evaluated using 
expansion by regions [28]. 

It is not clear in advance which way is simpler: expanding by MB rep­
resentation, or, by regions. My experience tells me that, usually, expanding 
by regions is certainly preferable, but sometimes, it looks more convenient 
to derive an appropriate MB representation and proceed as described in this 
section. But I can imagine that, sometimes, this is just a matter of taste. In 
complicated situations, the two strategies can successfully be combined. In 
particular, extracting the leading asymptotic behaviour from a general MB 
representation can show what kind of contributions one gets and will help 
detecting all regions which contribute. 

There are a lot of papers where the asymptotic behaviour was evaluated 
using MB representations- see, e.g., [16]. 



4.9 Conclusion 105 

4.9 Conclusion 

Mellin integrals were used for the evaluation of Feynman integrals in various 
ways. For example, in [35], the first analytical result for massless double 
boxes of Fig. 4. 7 was obtained in the case where all the externa! legs are 
off-shell so that these are functions depending on many variables, s, t and PI 
for i = 1, 2, 3, 4. Nevertheless it was possible to evaluate the double box for 
all powers of the propagators equal to one exactly in four dimensions. The 
following nice mathematical result was obtained: 

(. 2)2 
l7r 22 22 
~C(plp4,P2P3, st), 

where 

1 
C(x1, x2, x3) = :\ (6 [Li4( -px) + Li4( -py)] 

+3ln }!_ [Li3( -px)- Li3( -py)] + ~ ln2 }!_ [Li2( -px) + Li2( -py)] 
X 2 X 

1 7r2 7r2 y 7n4) 
+4:ln2(px) ln2 (py) + 2 1n(px) ln(py) + 12 ln2 ;; + 60 , 

>. = >.( x, y) = J (1 - x - y) 2 - 4xy , 
2 

p=p(x,y)=1 +>-( )' - x- y x,y 

and x = xdx3, y = x2jx3. 

(4.107) 

(4.108) 

(4.109) 

Moreover, a similar analytical result was obtained [36] also for a general 
off-shell h-loop ladder planar diagram, in particular, for the off-shell triple 
box.7 In [37], an off-shell result for the non-planar two-loop three-point di­
agram was also obtained using the MB representation. Other examples of 
results obtained by this technique are analytical expressions for n-point one­
loop massive Feynman integrals for general d [10]. 

Let me summarize the basic features that distinguish the technique of 
MB representation presented in this chapter and oriented at the evaluation 
in c--expansion from other approaches based on Mellin integrals. 

- An appropriate multiple MB representation for a given class of integrals is 
derived for general powers of the propagators and irreducible numerators. 

7Well, one can hardly expect that explicit analytical results can be obtained for 
other ( even double-box) Feynman integrals of this purely off-shell class, in particu­
lar, with a double power of some propagator, with some irreducible numerator, or 
where one of the lines other than rungs is contracted to a point. The possibility to 
obtain such a nice mathematical result for such a complicated abject depending on 
so many variables in the case of all indices equal to one was later understood by 
making an interesting mathematical link with some problem of conforma! quantum 
mechanics - see [17]. 
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In order to achieve the minimal number of MB integrations it is recom­
mended to derive an MB representation for a sub-loop integral, insert it 
in the given integral over the loop momenta, etc. 

- There is always the possibility to check multiple MB representations, 
which are sometimes rather cumbersome, by using simple partial cases. 

- Multiple MB integrals are very fiexible for the resolution of the singular­
ities in c. This procedure reduces to shifting contours, in an appropriate 
way, and taking corresponding residues. 

- After the resolution of the singularities in c, at least some of the integra­
tions can be performed explicitly by tabulated formulae of Appendix D, 
with results in terms of gamma and psi functions. 

- One can usually have an easy numerica! control on finite (in c) MB inte­
grals: it is enough to integrate from -5i to +5i along the imaginary axis 
to have a very good accuracy. 

- When the integration in multiple MB integrals is hardly performed explic­
itly, one can convert them into multiple series and apply such packages 
as SUMMER [39] for summation. 

- Onefold MB integrals can be summed up by closing the integration con­
tour and summing up corresponding residues. Here one can apply sum­
mation formulae of Appendix C and/ or SUMMER. 

- All the manipulations with MB integrals can be done on a computer. (For 
example, I use MATHEMATICA for this.) 

The technique of multiple MB representations is not always optimal. This 
holds at least for non-planar double boxes with one leg off-shell. Although first 
analytical results were obtained with its help [24, 25] the adequate technique 
here turned out to be the method of differential equations which will be 
studied in Chap. 7. 
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5 IBP and Red uction to Master Integrals 

The next method in our list is based on integration by parts1 (IBP) [15] 
within dimensional regularization, i.e. property (2.38). The idea is to write 
down various equations (2.38) for integrals of derivatives with respect to loop 
momenta and use this set of relations between Feynman integrals in order to 
solve the reduction problem, i.e. to find out how a general Feynman integral 
of the given class can be expressed linearly in terms of some master integrals. 
In contrast to the evaluation of the master integrals, which is performed, 
at a sufficiently high level of complexity, in a Laurent expansion in c, the 
reduction problem is solved at general d, and the expansion in c does not 
provide simplifications here. 

The reduction can be stopped whenever one arrives at sufficiently simple 
integrals. On the other hand, one could try to solve the reduction problem 
in the ultimate mathematical sense, i.e. to reduce a given integral to true 
irreducible integrals which cannot be reduced further. 

To illustrate the procedure of solving IBP relations we shall begin in 
Sect. 5.1 with very simple one-loop examples. Usually, we shall indeed stop 
the reduction if we obtain integrals that can be expressed in terms of gamma 
functions for general values of the parameter of dimensional regularization, 
d. In Sect. 5.2, we shall proceed in two loops. We shall also study some 
general tricks within the method of IBP such as the triangle rule and shifting 
dimension. One of the two-loop examples, the reduction of massless on-shell 
double boxes, will be considered separately in Sect. 5.3. We shall conclude in 
Sect. 5.4 with brief bibliographic remarks and a description of attempts of 
making systematic the procedure of solving IBP recurrence relations. 

5.1 One-Loop Examples 

The first example is very simple: 

Example 5.1. One-loop vacuum massive Feynman integrals 

1 For one loop, IBP was used in [34]. The crucial step - an appropriate modifica­
tion of the integrand before differentiation, with an application at the two-loop level 
(to massless propagator diagrams) - was taken in [15] and, in a coordinate-space 
approach, in [51]. The case of three-loop massless propagators was treated in [15]. 
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(5.1) 

In this chapter, we are concentrating on the dependence of Feynman inte­
grals on the powers of the propaga tors so that we will usually omit dependence 
on dimension, masses and external momenta. Let us forget that we know the 
explicit result (A.1) and try to exploit information following from IBP. Let 
us use the IBP identity 

(5.2) 

with (8/(8k))·k = (8/(8k'"))k'", and write down resulting quantities in terms 
of integrals (5.1). We obtain 

(d- 2a)F(a)- 2am2 F(a + 1) =O. (5.3) 

This gives the following recurrence relation: 

d- 2a + 2 
F(a) = ( ) 2 F(a- 1) . 

2 a-1 m 
(5.4) 

We see that any Feynman integral with integer a > 1 can be expressed 
recursively in terms of one integral F(1) = h which we therefore consider as 
a master integral. (Observe that all the integrals with non-positive integer 
indices are zero since they are massless tadpoles.) This can be done explicitly 
here: 

(-1)a (1- d/2)a-l 
F(a) = (a- 1)!(m2)a-l h ' 

where ( x) a is the Pochhammer symbol and the only master integral is 

h = -iHd/2 F(1- d/2)(m2)d/2- 1 . 

As in Chap. 3 let us consider 

Example 5.2. Massless one-loop propagator Feynman integrals 

(5.5) 

(5.6) 

(5.7) 

(As we have agreed, the dependence on q2 and d is omitted.) For integer 
powers of the propagators, these integrals are zero whenever o ne of the indices 
is non-positive. Let us forget the explicit result (3.6) and try to apply the 
IBP identity 

J d 8 1 
d k 8k ·k (k2)a' [(q- k)2]a2 =O. (5.8) 

We recognize different terms resulting from the differentiation as integrals 
(5.7) and obtain the following relation 
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d- 2a1 - a2- a22+(1-- q2) =O (5.9) 

which is understood as applied to the general integral F(a1, a2 ) with the stan­
dard notation for increasing and lowering operators, e.g. 2+1-F(a1,a2) = 
F(a1 - 1, a 2 + 1). We rewrite it as 

(5.10) 

and obtain the possibility to reduce the sum of the indices a1 + a2. Explicitly, 
applying (5.10) to the general integral and shifting the index a2, we have 

1 
F(a1,a2)=-( ) 2 [(d-2a1-a2+1)F(a1,a2-1) 

a2 -1 q 

-(a2 - 1)F(a1 - 1, a2)] , (5.11) 

Indeed, a 1 + a 2 on the right-hand side is less by one than on the left-hand 
side. This relation can be applied, however, only when a2 > 1. Suppose now 
that a 2 = 1. Then we use the symmetry property F(a1,a2) = F(a2,al) and 
apply (5.11) interchanging a1 and a2 and setting a2 = 1: 

d- a1 -1 
F(a1, 1) =- ( ) 2 F(a1 - 1, 1) . (5.12) 

a 1 -1 q 

This relation enables us to reduce the index a 1 to one and we see that the 
two relations (5.11) and (5.12) provide the possibility to express any integral 
of the given family in terms of the only master integral h = F(1, 1) given by 
(3.8), i.e. F(a 1 ,a2) = c(a1,a2 )h, and the corresponding coefficient function 
c( a1 , a2 ) is constructed as a rational function of d. 

Let us now complete the analysis for the example considered in the intro­
duction, i.e. once again consider our favourite example: 

Example 5.3. One-loop propagator Feynman integrals (1.2) corresponding 
to Fig. 1.1. 

We stopped in Chap. 1 at the point where we were able to express any 
integral (1.2) in terms of the master integral h = F(1, 1) and integrals with 
a2 :::; O which can be evaluated for general d in terms of gamma functions by 
means of (A.3). Let us now try to understand what the true master integrals 
are. They should be really irreducible, i.e. they cannot be expressed linearly 
in terms of other integrals. 

Suppose that a2 :::; O, Then we can apply (1.11) to reduce a1 to one. In 
the case a1 = 1, we use relation (1.11) multiplied by 2- to express the term 
2m2a 11 +2- in (1.13). Thus, we obtain the following relation 

(5.13) 

that can be used to increase the index a2 to zero or one starting from negative 
values. We come to the conclusion that there are two irreducible integrals 
h = F(1, 1) given by (1.7) and 12 = F(1, O) which equals the right-hand side 
of (5.6), and any integral from our family can be expressed linearly in terms 
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of them. This reduction procedure to h and 12 can easily be implemented on 
a computer. Observe that the integrals h and h cannot be linearly expressed 
through each other because, at general d, h is a non-trivial function of q2 

and m2 while 12 is independent of q2 . 

This was the last example in this chapter, where we solve the reduction 
problem in the maxima! way, i.e. in the sense of reduction to irreducible 
integrals. In the rest of the examples, we shall not be so curious and will stop 
the reduction whenever we arrive at sufficiently simple classes of integrals. 
In Chap. 6, however, the reduction will be performed in the ultimate sense. 
Some other approaches with this property will be characterized in Sect. 5.4. 

The next example is again our old one. 

Example 5.4. The triangle diagrams of Fig. 3.4 given by (3.19). 

Writing down IBP relations with p 1,2 · (a 1 ( ak)) and (a 1 ( ak)) · k we ob­
tain the following three equations: 

a3- a1 + a1l +(3- + m 2)- a22+(r- 3- + Q2 - m 2) 

-a33+(1-- m 2) =O, 

a3- a2 + a22+(3- + m 2)- a 11 +(T- 3- + Q2 - m 2) 

-a33+(2-- m 2 ) =O, 

d- a1- a2- 2a3- (a1l + + a22+)(3- + m 2)- 2m2a33+ =O, 

where Q2 = -q2 = -(Pl- P2)2. 

(5.14) 

(5.15) 

(5.16) 

Let us observe that the integrals (3.19) can be evaluated in terms 
of gamma functions if at least one of the indices is non-positive. In the 
case of a 1 :::; O or a2 :::; O, we can apply (A.6) and, in the case of a3 :::; O, 
we can apply (A.12). Let us now assume that ali the indices are posi­
tive. Let us apply (5.14)-(5.16) to the general integral F(a1, a 2 , a3) and 
solve the corresponding linear system of the three equations with respect 
to F(a1 + 1, a2, a3), F(a1, a2 + 1, a3) and F(a1, a2, a3 + 1). We shall obtain 
an expression of these quantities in terms of integrals with the sum of the 
indices equal to a 1 + a2 + a3 . Using the first part of this solution we obtain 
a relation that expresses F(a1,a2,a3) in terms of integrals with a 1 less by 
one and can be used in the case a 1 > 1. Similarly, the second and the third 
parts of the solution give the possibility to reduce a2 > 1 and a3 > 1 to one. 
Therefore, we see that any given Feynman integral (3.19) can be reduced to 
h = F(1, 1, 1) and a family of simple integrals which can be expressed in 
terms of gamma functions. For example, we have 

(d- 4)(2m2 - Q2 ) 
F(1, 1, 2) = 2 ( 2 Q2 ) h 2m m-

1 [ 2 + 2 ( 2 Q2 ) Q (F(1, 2, O) + F(2, 1, O)) 
2m m-

-m2 (F(O, 1, 2) + F(O, 2, 1) + F(1, O, 2) + F(2, O, 1))] , (5.17) 
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where all the integrals with an index equal to zero can be evaluated simply 
by (A.4) and (A.7) 

Observe that the coefficient at hin (5.17) is proportional to E:. According 
to [18], where the reduction in the massless case was performed and in the case 
of general masses analysed, this is a general phenomenon, i.e. this property 
holds for any F( a1, a2, a3) with a1 + a2 + a3 > 3 in the case of general masses 
m 1 and indices. As a result, such integrals involve only elementary functions 
(no polylogarithms) in the expansion in E: up to the finite part - this was 
noticed very much time ago [35]. 

Let us again consider the massless on-shell boxes which we analysed in 
Examples 3.3 and 4.3. For convenience, we change the numbering of the lines 
as compared with Chaps. 3 and 4. 

Example 5.5. The massless on-shell box Feynman integrals of Fig. 5.1 with 
PT =O, i = 1, 2, 3, 4 and general integer powers of the propagators. 

P1 --.--------...- P3 
1 

3 4 

2 P2 _ _._ _____ P4 

Fig. 5.1. Box diagram 

Let us first observe that whenever one of the indices is non-positive, the 
integrals can be evaluated in terms of gamma functions for general E:. In 
particular, if some index is zero, e.g., a4 =O, one can apply (A.28). Suppose 
now that all the indices are positive. Starting from the IBP identity with the 
operator (8/ok)·k acting on the integrand and choosing the loop momentum 
k to be the momentum of each of the four lines, we obtain the following four 
IBP relations: 

a1sl + = a1 + 2a2 + a3 + a4- d + (a1l + + a33+ + a44+)2- =O, (5.18) 

a 2 s2+ = 2a1 + a2 + a3 + a4 - d + (a22+ + a33+ + a44+)1- =O, (5.19) 

a3t3+ = a1 + a2 + a3 + 2a4- d + (a1l + + a22+ + a33+)4- =O, (5.20) 

a4t4+ = a1 + a2 + 2a3 + a4- d + (a1l + + a22+ + a44+)3- =O, (5.21) 

where s = (Pl + P2) 2 and t = (Pl + p3)2 are Mandelstam variables, as above. 
These equations can be used to reduce the indices a1 to one. For example, 
when (5.18) is applied to the general integral, we have, on the right hand 
side, terms with a1 less by one, with the exception of one term corresponding 
to a11 +2-. This term, however, decreases a2 . Anyway, the sum ofthe indices 
corresponding to the right-hand side of (5.18)-(5.21) is less by one than 
corresponding to the left-hand side. 
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Therefore we come to the conclusion that any given Feynman integral 
Fs.s(al, a2, a3, a4) can be expressed linearly in terms of the master integral 
h = F5.5 (1, 1, 1, 1) and a family of integrals where some indices are non­
positive. We again stop reduction here and do not try to reduce various inte­
grals with non-positive indices to true master integrals. In Chap. 6, however, 
we will see what these true master integrals are. 

5.2 Two-Loop Examples 

Let us now see how IBP relations can be used for the reduction of the massless 
Feynman integrals corresponding to Fig. 3.9. We have already considered 
these diagrams in Example 3.5 in Chap. 3. 

Example 5.6. Two-loop massless propagator Feynman integrals of Fig. 3.9 
with integer powers of the propagators. 

First, we observe that if as = O the integrals over k and l decouple anei 
can be evaluated in terms of gamma functions by use of (3.6): 

Fs.6(a1,a2,a3,a4,0) = (-1)a,+a 2 +aa+a4 (ind/2) 2 

G(a1, a2)G(a3, a4) 
X-:-----::-'-.,----'-:---'-:-----,-7----..,. 

( -q2)a' +a2+aa+a4+2co-4 
(5.22) 

When some other index al is zero, the integral becomes recursively one­
loop (see Sect. 3.2.1), i.e. it can be evaluated in terms of gamma functions 
by successively applying the same one-loop formula, for example, 

Fs.6(a1,a2,a3,0,as) = (-l)a,+a2 +aa+as (ind/2) 2 

G(a3, as)G(a2, a1 + a3 + c- 2) 
x~~~~~~----~~ 

( -q2)a' +a2+aa+as+2co-4 
(5.23) 

Suppose now that all the indices are positive integers. Let us write down 
the following IBP identity: 

(5.24) 

Taking derivatives, using identities such as 2k · ( k - l) = k2 + ( k - l)2 - l2, 
and recognizing terms on the left-hand side as integrals (3.39), we arrive at 
the following relation: 

(5.25) 

Equation (5.25) can be used as a recurrence relation for the given family of 
integrals. Indeed, applying it to the general integral, we obtain 
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1 
Fs.o(a1,a2,a3,a4,as) = 2 d 

a1 + a2 + as-
x [a1 (Fs.3(al + 1,a2,a3 -1,a4,as)- Fs.3(al + 1,a2,a3,a4,a5 -1)) 

+{1 ~ 2,3 ~ 4}] . (5.26) 

On the right-hand side, we encounter integrals where the sum a 3 + a4 + a5 

is less by one than that on the left-hand side. Thus, successive application of 
this relation reduces any given integral to integrals with some index equal to 
zero, where (5.22) and (5.23) can be used. 

In fact, in case one of the indices is negative, generalizations of the explicit 
formulae (5.22) and (5.23) can be derived. To do this, one applies (A.12). 
Therefore we come to the conclusion that any given integral (3.39) with 
integer indices can be evaluated in terms of gamma functions for general 
values of d. If we are not too curious we can stop our analysis at this point 
and not bother about the minimal number of master integrals. We could 
consider any integral with a non-positive index as a master integral because 
they can be expressed explicitly in terms of gamma functions. Otherwise it 
is necessary to continue to exploit IBP relations and obtain a solution of 
the reduction problem in the strict sense, i.e. with a minimal family of the 
master integrals. U sually, people are lazy in such situations and indeed stop 
the reduction. In this particular example, we shall see, in Chap. 6, what the 
true master integrals are. 

For example, the integral with all indices equal to one, is evaluated by 
means of (5.26) as follows: 

1 
Fs.6(1, 1, 1, 1, 1) = - [Fs.6(2, 1, O, 1, 1)- F5.6(2, 1, 1, 1, O)] 

c 
1 1 

= EG(1, 1) [G(2, 1)- G(2, 1 + c)] ( -q2)1+2c 

= u::) 2 
[ 6((3) + ( ~~ + 12((3)) c 

+ ( ~4 
+ (24- n 2)((3) + 42((5)) c2] + ... , (5.27) 

so that the well-known result [14, 42] at order c0 is again (as in Sect. 3.5) 
reproduced. 

In this simple example, it was sufficient to use only one IBP relation which, 
in fact, follows from an IBP identity for the triangle diagram of Fig. 5.2 with 
general indices, m3 = O and general masses m1 and m2 . The general Feynman 
integral for this graph is 

J ddk 
F(al, a2, a3) = [(k + pl)2 _ mî]a1 [(k + p2)2 _ m~]a2 (k2)a3 · 

(5.28) 

Let us write down the IBP identity with the operator ( â / âk) · k acting on 
the integrand of (5.28). Then we obtain the following 'triangle' rule: 



116 5 IBP and Reduction to Master lntegrals 

Pl 

P2 

Fig. 5.2. Triangle diagram with general integer indices 

1 
1 = --=------,-----­

d- a1 - a2- 2a3 

x [a1l+ (3~- (PÎ- mi))+ a22+ (3~- (p~- m~))] (5.29) 

This identity can be applied to a triangle as a subgraph in a bigger graph. 
Suppose that the external upper right line in Fig. 5.2 has the mass m 1 and 
the external lower right line has the mass m 2 but these are internal lines for 
the bigger graph. Then the factors (PÎ- mi) and (p~- m~) effectively reduce 
the indices of the corresponding lines (with the momenta p1 and p2 ) by one. 
For example, if we consider the triangle rule in the massless case and apply 
it to the left triangle in Fig. 3.9 we shall obtain (5.25). 

The triangle rule derived above is very well known. Let us derive another 
triangle rule from it. Consider the case where (p1 -p2 ) 2 =O and m 1 = m 2 =O. 
Starting from the IBP identity with the operator ( â / âk) · k acting on the 
integrand and choosing the loop momentum k to be the momentum of each 
of the three lines, we obtain the following three IBP relations: 

d- 2a1- a2- a3- a22+r- a33+(r- pÎ) =O, 

d- a1- 2a2- a3- a1l+T- a33+(T- p~) =O, 

d- a1- a2- 2a3- a1l+(3~- PÎ)- a22+(3~- p~) =O. 

(5.30) 

(5.31) 

(5.32) 

We form the combination (5.30) times a11 + plus (5.31) times a22+ mmus 
(5.32) times a33+ and arrive at the following extra triangle relation: 

(d- 2a3- 2)a33+ = (d- 2a1- 2a2- 2)(all + + a22+). (5.33) 

There was a subtle point when multiplying quantities like 3+ and a3 which 
have algebraic properties similar to creation and annihilation operators. For 
example, the additional terms -2 in the brackets of (5.33) appear due to this 
multiplication. 

Consider now 

Example 5. 7. Planar two-loop massless vertex diagrams with PÎ = p~ = O 
and general integer powers of the propagators. 

The general scalar Feynman integral corresponding to Fig. 5.3 can be 
written as 



5.2 Two-Loop Examples 117 

Pl 

q 
5 

4 

P2 

Fig. 5.3. Planar vertex diagram 

(5.34) 

where k and l are loop momenta of the box and triangle subgraphs, respec­
tively. There is one irreducible numerator, which cannot be expressed linearly 
in terms of the factors in the denominator, chosen as l2. We are interested 
only in non-positive values of a7. 

As it was mentioned in Chap. 3, the evaluation of such Feynman integrals 
by Feynman parameters is rather cumbersome. It turns out that using IBP 
provides the possibility to reduce any integral of this family to very simple 
integrals. As we will see shortly, any given integral can be expressed in terms 
of gamma functions for general values of d. 

We shall not, however, write down various IBP relations for (5.34). As it 
was noticed in [36] it is enough to use just one tool, the triangle rule (5.29), 
for the evaluation of these integrals. Suppose that all the indices a1, ... , a6 

are positive and a7 = O. Let us apply (5.29) to the triangle subgraph, i.e. 
with the lines (1, 2, 6). We obtain 

1 = d 1 [alt+ (6-- 3-) + a22+ (6-- 4-)] (5.35) 
- a1- a2- 2a6 

as acting on F5.7(a1, ... , a6 , 0). Since the sum a1 + a2 + a6 on the right-hand 
side of the corresponding relation is less by one, it provides the possibility 
to reduce one of the indices a4, a5, a6 to zero. In the case where a6 = O the 
Feynman integral factorizes and is evaluated by (A.7) and (A.28): 

F5.7(a1, ... ,a5,0,0) = (-1)a1+ ... +a5 (i7rd/2f 
G(a1, a2)G3(a3, a4, a5) 
X~--=-~~--~~~ ( -q2)al + ... +a5+2c:-4 (5.36) 

where the function G3 is defined as the coefficient of the right-hand side of 
(A.28) at i7rd/2( -q2)->.1 ->.2->.a-c:+2. 
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Suppose now that a3 or a4 is zero. Let it be a4 so that the line 4 is 
reduced to a point. Then we apply (5.29) to the triangle subgraph, with the 
lines (5, 6, 3). We obtain 

1 
1 = [as5+3- + a56+ (3-- 1-)J (5.37) 

d - as - a5 - 2a3 

as acting on Fs.7(al,a2,a3,0,as,a6,0). (There is one term less as compared 
with (5.35) because of the on-shell condition PÎ = O.) This relation provides 
the possibility to reduce either a1 or a3 to zero. In both cases, resulting 
integrals become recursively one-loop and can be evaluated again by (A. 7) 
and (A.28). We have 

Fs.7(0,a2,a3,0,a5,a6,0) = (-1)a2+aa+as+a6 (ind/2f 
G(a2, a5)G3(a3, a2 + a5 + E- 2, as) 

X (5.38) ( -q2)a2+a3+as+a6+2E-4 

Fs.7(al,a2,0,0,as,a6,0) = (-1)a,+a>+as+a6 (ind/2) 2 

x G(a5, a5)G3(a1, a2, as+ a5 + E- 2) . (5.39) 
( -q2)a' +a2+as+a6+2E-4 

Therefore, any integral with positive indices can be evaluated by this 
procedure. For example, we reproduce the well-known result [28, 36, 41] for 
Fs.7(1, ... , 1, 0): 

(ind/2)2 1 [ 1 
(Q2 )2+2E ~ 2E G2(2, 2)G3(2 + E, 1, 1) 

-G2(2, 1) (~G3(2, 1,1 + c) + G3(1, 1, 1))] 

_ (ind/2e-/EE)2 (-1- 5n2 29((3) 3n4 ) 

- (Q2)2+2E 4c4 + 24c2 + 6E + 32 + O(c) (5.40) 

In fact, a similar reduction procedure can be developed for general Feyn­
man integrals with an irreducible numerator, i.e. for a7 < O, and with general 
integer indices (not only positive). This can be done by using generalizations 
of the triangle rule to the case with a numerator. In fact, a general recursive 
procedure for such integrals ( and integrals with another off-shell externa! mo­
mentum, PÎ # O instead of q2 # O) with general numerators was developed 
in [20], with boundary integrals written in terms of terminating hypergeo­
metric series of the unit argument. Another possibility in this situation is to 
get rid of the numerator and negative indices using the technique of shifting 
dimension which we will discuss shortly. Then we shall come back to this 
point. 

We now turn, following [3], to the two classes of integrals already studied 
in Chap. 4 which are partial cases of massless on-shell double boxes: boxes 
with a one-loop insertion and boxes with a diagonal shown in Fig. 5.4. For 
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Fig. 5.4. (a) Box with a one-loop insertion. (b) Box with a diagonal 

convenience, we again change the numbering of the lines: In Fig. 5.4a we 
adjust it to that of Fig. 5.1 and, in Fig. 5.4b, to a new numbering for the 
double box which will be studied in the next section. 

So, the next is 

Example 5.8. Reduction of boxes with a one-loop insertion. 

Let us, first, assume that we are dealing with the boxes with a one-loop 
insertion without numerator, Bs.s ( a1, ... , as) (In the given case, there are 
two independent scalar products that cannot be linearly expressed in terms 
of the denominators of the propagators.) In fact, the integration in the one­
loop insertion in Fig. 5.4a can be taken explicitly by (A. 7) and, graphically, 
this insertion can be replaced by a line with the index a4 + as + c: - 2 - see 
Fig. 3.1. Therefore, the problem reduces to the boxes of Fig. 5.1 in the case 
where the index of the line 4 is not integer. Still if one of the first three indices 
is non-positive we obtain a quantity evaluated in terms of gamma functions 
by (A.28). Suppose now that a1, a2, a3 > O. Then we can apply (5.18) and 
(5.19) to reduce a1 and a2 to one, as in the case of the box with integer 
indices. 

To take care of a3 let us form the new relation as a44+ times (5.20) minus 
a33+ times (5.21): 

(d- a1233)a33+ = (d- a1244- 2)a44+ 

+(a3- a4)(a1l + + a22+), 

where we keep our notation of Chap. 4, e.g. a 1233 = a1 + a2 + 2a3 etc. 

(5.41) 

Observe now that (5.41) can be used to reduce the index a3 to one because 
a1l + and a22+ in the last term can be replaced immediately according to 
(5.18) and (5.19). Let us therefore assume that a1 = a2 = a3 = 1. Now we 
can apply (5.21), where the term with a33- gives integrals expressed in terms 
of gamma functions, to have control on a4 = a~ + c: which has an amount 
proportional to c: because of the one-loop integration. For example, one can 
shift a~ to a~= 0: this choice corresponds to h = B5.8 (1, ... , 1). 

In the case with numerators, one can get rid of them by shifting indices 
and dimension [47], as outlined in Subsect. 3.2.3. Then the previous procedure 
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provides the possibility to express any given box, with dimension d shifted by 
a positive even number, in terms of the master box with a one loop insertion 
h ( d + 2n) in the same dimension and a family of simpler integrals expressed 
in terms of gamma functions. To complete this reduction procedure we need 
to know how to express these integrals in terms of h ( d). To do this, let us 
apply the general relation 

(5.42) 

where U given by (2.24) is one of the two basic functions present in the alpha 
representation (2.36). (The factors ( -1)h and 1/tr come from the overall 
coefficient in (2.36).) In particular, for Fig. 5.4a, this gives 

1 
d- =- [a4a54+5++(a1l++a22++a33+)(a44++a55+)]. (5.43) 

1f 

We have d-h(d + 2) = h(d). On the other hand, applying the right-hand 
side of (5.43) to h(d + 2) we obtain a linear combination of integrals in 
dimension d + 2 with shifted indices for which we can use the reduction 
procedure described above. As a result, we obtain a desired linear relation of 
the type 

h(d) = A(d)h(d + 2) + B(d), 

where A(d) is a rational function (of d, s and t) and B(d) comes from various 
integrals with some zero indices and can be evaluated in terms of gamma 
functions. Thus, any integral h ( d + 2n) can be expressed recursively in terms 
of the master integral 11 ( d) and a collection of simpler integrals. This com­
pletes our reduction procedure. 

Let us remember about the vertex diagrams of Example 5. 7 which we 
considered without numerator. Now, we can get rid of any numerator a.'l 

described above and then apply our reduction procedure formulated for non­
negative indices. However, since the corresponding results are expressed in 
terms of gamma functions for general d, there is no problem to make any 
shift d ---+ d + 2n in them. 

We shall consider the reduction of the boxes with a diagonal in the next 
section. 

5.3 Reduction of On-Shell Massless Double Boxes 

Let us turn, following [45], to 

Example 5.9. Reduction of on-shell massless double boxes. 

Let us follow the strategy [47] characterized in Subsect. 3.2.3 that enables 
us to express any integral with a numerator as a linear combination of inte­
grals with shifted indices and dimension d. So, let us deal with Fig. 5.5 and 
the corresponding Feynman integrals 
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Fig. 5.5. Double box 

where all indices a1 are non-negative. For convenience, we have changed the 
routing of the external moment a as well as the numbering of the lines in order 
to take into account the symmetry of the graph. (In Chap. 4, the numbering 
was oriented at insertions of boxes into double boxes.) 

Let us first analyse situations, where one of the indices is zero. For a6 = O, 
we obtain a product of two triangles which can be evaluated by (A.28) in 
terms of gamma functions. If a 5 = O or a7 = O we obtain planar vertex 
diagrams analysed in Example 5.7. They are all evaluated in terms of gamma 
functions. Consider now the four symmetrical cases, where one of the other 
four indices is zero. Let it be a4 ; graphically, this means that the line 4 is 
contracted to a point- see Fig. 5.5. In this reduced graph, we can apply the 
triangle rule (5.29) to the resulting triangle with the lines 5, 6 and 3. After 
that we reduce either a3 or a 1 to zero. Therefore, we arrive at a box with a 
one-loop insertion, in the former case, ora box with a diagonal, in the latter 
case - see Fig. 5.4. We conclude that, whenever one of the indices is zero, 
a given integral becomes a linear combination of the boxes with a one-loop 
insertion or a diagonal, or integrals expressed in terms of gamma functions. 
Let us call all these integrals boundary integrals. For the boxes with a one­
loop insertion, we already know how to perform the reduction further, due 
to Example 5.8. Let us forget about this for a while and decide that all these 
boundary integrals are simple enough to stop the reduction here (as this was 
done in [45]). 

To perform the reduction for a given double box with positive indices, let 
us start from the IBP relation with ;k · (k- p2 ) which gives 

sa1l + = a71+T + a56+(2-- 4-) + a1l +2-

(5.45) 

Three similar relations can be obtained from (5.45) by the two symmetry 
transformations: (1 +--+ 3, 2 +--+ 4, 5 +--+ 7) and (1 +--+ 2, 3 +--+ 4). The so-obtained 
four relations can be used to reduce the indices a1, a2 , a 3 , a4 to one. 

To reduce a5 to one we shall need one more IBP relation which is the 
difference of the relation obtained with ;k · k times a5 5+ and the relation 
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obtained with %k ·(k -l) times a66+: 

(d- a3455- 2)a55+ = (d- a34662)a66+ + (a5- a5)(a33+ + a44+) 

+a3a5r3+6+ + a4a6T 4+6+. (5.46) 

The symmetrical relation applied to reduce a7 to one is 

(d- a1277- 2)a77+ = (d- a1255)a56+ + (a7- a5)(a1l+ + a22+) 

+a1a61+3-6+ + a2a62+4-6+. (5.47) 

Using the above recurrence relations we can bring the indices of the lines 
1,2,3,4,5,7 all to one so that only a6 can now be greater than one. 

An appropriate relation for the reduction of a6 is [45] 

t(d- 6- 2a6)(a6 + 1)a66++ = 

-(d- 5- a5) ( 3d- 14- 2a6 + 2a6~) a56+ 

2 2 
+-(d- 4- a6) (d- 5- a6) 

s 

+{ (2+ + 7+) [ -~(d- 4- a5)(d- 5- a6) + 2~a~6+] 

- [2t(a6 + 1)a66++ + 2(d- 4- a6)a66+] 3+ }1-
+(d- 6)7_d_ ' (5.48) 

where d- is the operator that shifts dimension by -2, as before. This relation 
is valid only if it is applied to an integral with a1 = ... = a5 = 1 and a7 = 1 
(since some terms that are zero in this case are dropped out). The operator 
d- can be substituted explicitly using (5.42) with 

u = (a:l + 0:2 + 0:7 )(a:3 + 0:4 + 0:5) 

(5.49) 

so that 

(5.50) 

The relation (5.48) can be derived as follows. Let us start with an inte­
gral with the numerator 2k · P2. Since 2k · P2 = k2 - ( k2 - 2p2 · k), such an 
integral is the difference of integrals where a7 or a2 is reduced by one. On 
the other hand, we can express this integral with the numerator in terms of 
integrals with shifted dimension and indices. Using an exponentiation of this 
numerator, similarly to how this is done for polynomials in the propagators 
(see (2.12)) and modifying the derivation of the alpha representation for the 
scalar double box in this case, we see (similarly to (3.16)) that the insertion 
of the numerator and shifting dimension by -2 can be described either by 
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the difference of the operators 7-- 2- times d-, or (up to a coefficient with 
1r) by the operator 

(5.51) 

On the right-hand side of the so-obtained equation, we apply the reduction 
formulae (5.45)-(5.47) to reduce indices increased by the operators in (5.51). 
After some transformation, we then arrive at (5.48). 

Observe that on the left-hand side of (5.48) there is 6++, rather than 6+. 
This means that (5.48) enables us to reduce a6 to 1 or 2. Thus, after the 
application of the recurrence relations presented above, we reduce a given 
integral, up to our boundary integrals, to a linear combination of the two 
integrals, K1 (d) = K(1, 1, 1, 1, 1, 1, 1, d) and K2(d) = K(1, 1, 1, 1, 1, 2, 1, d). 
However, these integrals generally appear, in the course of the reduction, in 
shifted dimensions so that we obtain the two families of integrals instead: 
K1(d,n) = Kl(d+2n) and K2(d,n) = K2(d+2n) with K1(d,O) = K1(d) 
and K2(d, O)= K2(d). Of course, ifwe had results for general d for the master 
integrals ( even expressed in terms of gamma functions), there would be no 
problem to shift the dimension in such analytical results. However, we are at 
a rather high level of complexity and are able to obtain results (at least for 
the master integrals) only in a Laurent expansion in E, where expansions of 
the master integrals at d = 4- 2c and, say, at d = 6- 2c, when c-+ O, are 
not related to each other. 

To derive appropriate relations for the reduction of K 1,2 (d, n) to K 1,2 (d, 0), 
one can use the same trick with shifting dimension [4 7] as above, i.e. to write 
down equations K1,2(d, n) = d-K1,2(d, n + 1) with d- given by (5.50) and 
perform the reduction of the indices, which are increased after the action of 
d-, using (5.45)-(5.48). Solving the resulting linear system of equations one 
arrives at the following recurrence relations [45] which can be used to come 
back to dimension d = 4 - 2c in the two master integrals: 

K1(d,n)= ~ [a22(K1(d,n-1)-Jid)K1(d,n)) 

-a12(K2(d,n-1)-JJd)K2(d,n))], (5.52) 

K2(d, n) = ~ [ -a21 ( K1 (d, n- 1) -Jid) K1 (d, n)) 

+an (K2(d, n- 1) - JJd) K2(d, n)) J , (5.53) 

where operators J}d) are given by 

Jid) = { ~ (2+3+ + 2+ 4+ + 2+6+ + 4+6+ + 4+7+ + 3+7+) 

4 2 
+-(2+5+ + 5+6+ + 5+7+)- -(d- 5)(3s + 2t)(2+ + 7+) 

s s2t 

2 2 } + d- 6 3+6+7+- st(d- 6) (3s(d- 5) + t(3d- 14)) 3+6+ r 
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2 2 
an = - 2 (d- 5) (3s + 2t), 

s t 
2 3 

a12 = --;(4d- 21)- t(3d- 16), 

- - (d- 5) 2 (d- 7) (8(2d- 13) 6(3d- 20)) 
a 21 - st(d-8) s + t ' 

d -7 ( 
a22 = 82 t2 (d _ 8) 3s2 (3d- 16)(3d- 20) + 6st(5d2 - 59d + 172) 

+4e(d- 5)(d- 6)), 

L1 = 16(s + t)(d- 5) 3 (d- 6)(d- 7) . 
s4t(d- 8) 

(5.54) 

(5.56) 

(5.57) 

(5.58) 

(5.59) 

(5.60) 

Thus, we are already able to reduce any double box to the two master 
integrals K 1 (d) and K 2 (d) and a family of our boundary integrals. For the 
first master double box, K 1(d), we know the result given by (4.52) and (4.53), 
in expansion in c:, derived by MB representation in Chap. 4. To evaluate the 
second master double box, K 2 (d), let us use alpha representation (2.36), 
where the function U is given by (5.49) and the second basic function (2.25) 
by 

V= [a1a2(a3 + a4 + a5) + a3a4(a1 + a2 + a7) 

+a6(a1 + a3)(a2 + a4)] s + a5a6a7t, (5.61) 

We exploit this very simple dependence of this function on t to derive the 
following two relations by differentiating in t and implementing the factor 
a 5a5a7 /U by shifting indices and dimension: 
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a 1 
!l"K(s,t;1, ... ,1,d) = --K(s,t;1,1,1,1,2,2,2,d+2), (5.62) 
ut H 

8 2 
!l'K(s,t;1,1,1,1,1,2,1,d) = --K(s,t;1,1,1,1,2,3,2,d+2). (5.63) 
ut H 

Then we apply the reduction procedure described above and express the right­
hand side of these equations in terms of the two master double boxes and a 
family of our boundary integrals (around fifty terms in each case). In fact, 
the boundary integrals are simple enough here: a simple procedure based on 
the onefold MB representations (4.55) and (4.56) (see comments after these 
formulae) implemented on a computer can provide their E-expansions up to 
order E2 which is necessary here because the boundary integrals sometimes 
enter with coefficients involving 1/E2 . Then we insert (4.53) into (5.62) and 
use this equation to obtain a similar result for the second master double box. 

(ie-IE")2 
K(1,1,1,1,1,2,1,d) = (-s)2+2"t2h(tjs,E) 

with 

h (x, E) = i_ - 5 (ln X - 2) __!__ + (2ln2 X - 14ln X - ~ ( w2 + 4)) __!__ 
E4 E3 2 E2 

(5.64) 

+ ( ~ ln 3 x + 8ln 2 x + ( ~1 w2 + 14) ln x - 2 - 3w2 - 6: ( ( 3)) ~ 

-~ ln3 x(lnx + 1)- 2 (3w2 + 4) ln2 x + ( 10 + 9w2 + 8
3
8 ((3)) lnx 

29 4 
+20 + 12w2 - 30 w4 + 3((3) 

+x [-; +(8lnx-33) E
12 + (26lnx+6+ 22

1w2) ~ 

+~ ( -32ln3 x- 4(21 + 26w2) ln x + 180 + 209w2 + 904((3))] 

+ [2Li3 ( -x)- 2lnxLi2 ( -x)- (ln2 x + w2) ln(1 + x)] ~ 
E 

-4x [8 (Li3 ( -x) -lnxLb ( -x))- 4 (ln2 x + w2) ln(1 + x)] 

+4 (S2,2( -x) -lnxS1,2( -x))- 44Li4 ( -x) 

+4(ln(1 + x) + 6lnx- 2) Li3 (-x)- (ln2 x + w2) ln2(1 + x) 

-2 ( ln2 X+ 2ln X ln(1 +X) - 4ln X+ 
1
3° w2) Li2 (-X) 

+ (~ ln3 x + 4ln2 x + 1~ w2 lnx + 4w2 - 4((3)) ln(1 + x). (5.65) 

Proceeding in the same way with the second recurrence relation (5.63) 
and inserting there our analytical results for the two master double boxes we 
obtain the possibility to check these two results. 
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Although boxes with a one-loop insertion and a diagonal are simple quan­
tities one can reduce them further. In the former case, the reduction was 
described in Example 5.8. Let us now do this for the latter case and consider, 
following [3], 

Example 5.10. Reduction of boxes with a diagonal shown in Fig. 5.4b. 

We imply that we have already got rid of the numerators as before, by 
shifting dimension and indices. Applying our auxiliary triangle rule (5.33) to 
the triangles (3, 5, 6) and (2, 7, 6) in Fig. 5.4b we obtain 

(d- 2a27- 2)a22+ = (d- 2a6- 2)a66+- (d- 2a27- 2)a77+ , 

(d- 2a35- 2)as5+ = (d- 2a6- 2)a66+- (d- 2a35 - 2)a33+ . 

These relations can be used to reduce a2 and a 5 to one. 

(5.66) 

(5.67) 

Then the following IBP relations derived in [3] can be used to reduce a3 

and a7 to one: 

s(d- 2a35- 2)a33+ = -(d- a355- 1)(3d- 2a223567) 

+2(d- a355- 1)a72-7+ + (d- 2a6- 2)a62-6+ , 

t(d- 2a27- 2)a77+ = -(d- a257- 1)(3d- 2a235567) 

+2(d- a257- 1)a35-3+ + (d- 2a6- 2)a65-6+ . 

(5.68) 

(5.69) 

To reduce a5 to one, the following relation valid for a2 = a 3 = a 5 = a 7 = 1 
and derived in [3] can be used: 

st(d- 2a6- 2)a66+ = -(s + t)(d- a6 - 3)(3d- 2a6 - 10) 

+2(d- aG- 3)(tT7+ + s2+7-) + (d- 2a6 - 2)a66+(tT + s7-). (5.70) 

Finally, we have to express the master box with a diagonal, B5.10 (1, ... , 1, d+ 
2n), in the shifted dimension in terms of B5 .10 (1, ... , 1, d) which is given by 
(4.58) in expansion in r::. This can be done by the same trick with shifting 
dimension as above: we write down relation (5.42) for the box with a diagonal, 
i.e. where the function U is given by 

(5.71) 

according to (2.24), and apply it to B 5 .10 (1, ... , 1, d). Then we proceed ex­

actly as in Example 5.8 and arrive at a desired recurrence relation. 
The algorithm presented above enables us to reduce any massless double 

box in terms of the two master integrals K 1 and K 2 , two master boxes with a 
one-loop insertion and a diagonal and a family of integrals (two-loop planar 

vertices and products of triangles) expressed in terms of gamma functions. 
As was pointed out later [27] the choice of the second master integral K 2 as 
the integral with a dot on the sixth line brought complications in practica! 
calculations because one obtained a linear combination of K 1 and K 2 with 
a coefficient involving 1/r::, but the calculation of the master integrals in one 
more order in r:: looked rather nasty ( at that time ;-)). Two solutions of 
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this problem have appeared immediately. In [23], this very combination of 
the master integrals was indeed calculated using the method of differential 
equations ( to be studied in Chap. 7), while in [5] another choice of the master 
integrals was made: instead of K(1, 1, 1, 1, 1, 2, 1, 0), the authors have taken 
the integral K(1, 1, 1, 1, 1, 1, 1, -1) as the second complicated master integral. 
This was a more successful choice because, according to the calculational 
experience, no negative powers of c occur as coefficients at these two new 
master integrals. 

5.4 Conclusion 

When solving the problem of the reduction to master integrals, one tries to 
use all possible IBP relations. For h-loop Feynman integrals over the loop 
momenta ki depending on n independent external momenta Pj, all possible 
IBP relations with derivatives (8/8ki) · pj and (8/8ki) · kj are used. For 
example, for the double boxes, this gives 10 IBP relations. In addition to the 
IBP relations, one can use the so-called Lorentz-invariance (LI) identities [24]. 
They follow from the fact that scalar Feynman integrals are invariant under 
infinitesimal Lorentz transformations of the external momenta, Pt ---+ Pt + 
c~Pi. For example, in the case of four-point Feynman integrals (in particular, 
double boxes) with three independent external momenta, this provides the 
following relation, in addition to 10 IBP relations: 

3 

( /1> V V 1') "" ( 8 8 ) _ P1P2 - P1P2 L.....t Pn,J' 8 v - Pn,v 8 /1> - O 
n=l Pn Pn 

(5.72) 

as well as the other two relations obtained by the cyclic permutations from 
(5.72). 

Well, if we turn to alpha or Feynman parameters, the Lorentz invariance 
becomes manifest and the equations (5.72) trivially hold (in contrast to the 
IBP relations), so that one might think that the LI equations follow from 
the IBP relations. However, explicitly, this statement has not been proven. 
Anyway, the LI identities can be certainly practically very useful. One can 
consider them together with the IBP relations and not bother about whether 
they are linear combinations of some IBP relations. 

There are a lot of papers where reduction problems for various classes of 
Feynman integrals were solved, in some way, with the help of IBP relations. 
Here is a very short list of some of them, starting from the two-loop level. 

Historically, IBP relations were first successfully applied in [15] to three­
loop massless propagators diagrams shown in Fig. 5.6. The corresponding 
algorithm [29] called MINCER was implemented in FORM [52]. In [12, 19, 
22,30], the problem of reduction for two-loop on-shell diagrams was solved: in 
[30], relevant recurrence relations were derived and used to find all necessary 
integrals, and, in [12], a general algorithm implemented in the REDUCE [33] 
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Fig. 5.6. Three-loop massless planar, non-planar and Mercedez-Benz propagator 
diagrams 

package Recursor was constructed. The reduction in the three-loop case was 
developed in [38] and, completely, in [39] with an implementation in FORM [52] 
(although no details of the reduction procedure were presented, as in many 
other cases). 

The reduction of two-loop bubble integrals with different masses was 
solved in [21]. Three-loop vacuum diagrams with one mass were consid­
ered in [6, 12,46]. The corresponding computer package MATAD was developed 
in [46]. 

The reduction problem for the massless on-shell double boxes in the non­
planar case (Fig. 4.9b where alllines are massless) was solved, using IBP and 
LI relations, in [2] and, in the case of (simpler) pentabox diagrams, in [3]. The 
general algorithm for the massless on-shell double boxes resulted in a series 
of NNLO calculations of various scattering processes - see, e.g., [26] for a 
review. The reduction of two- and three-loop propagator diagrams in Heavy 
Quark Effective Theory was solved in [13, 31]. A pedagogica! introduction to 
recursion problems oriented at HQET can be found in a recent review [32]. 

Unfortunately, the way how IBP relations are solved is not often ex­
plained. A typical example of such a situation is solving the reduction prob­
lem for two-loop vertex diagrams at threshold, q2 = 4m2 : two independent 
algorithms were constructed [7, 17] but never published. 

The examples presented in this chapter and the papers cited above show 
how IBP relations can be solved without systematization. In other words, if 
it is necessary to solve a new problem, one can use the experience obtained 
in these examples and then analyse the new situation with the hope to solve 
somehow corresponding IBP relations. StiH the complexity of unsolved cal­
culational problems requires a systematization in this field. 

One might hope that a systematization can be achieved within the tech­
nique based on shifting dimension [47]. Typical tricks were described in 
the previous section. Some prescriptions of this technique were presented 
in [48, 49]. Another example of its applications [43] is provided by the cal­
culation of Feynman integrals relevant to the two-loop quark potential (to 
be considered within another technique in Chap. 6). It was also used to 
solve the reduction problem for two-loop propagator integrals with arbitrary 
masses [47]. Anyway, this technique provides the possibility to get rid of 
the numerators ( which, of course, make the problem of the reduction more 
complicated) from the beginning. 
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Another attempt of a systematization was initiated in [25, 37, 38]. It is 
based on the observation that the total number ofiBP and Lorentz invariance 
equations grows faster than the number of independent Feynman integrals, 
labelled by the powers of propagators and the powers of independent scalar 
products in the numerators, when the total dimension of the denominator 
and numerator in Feynman integrals associated with the given graph is in­
creased. Therefore this system of resulting equations sooner or later becomes 
overconstrained, and one obtains the possibility of performing a reduction to 
master integrals. To be formal let us modify our notation for the Feynman 
integrals a little bit. Consider now, as a general Feynman integral, 

J J H b1 HbN2 
d d 1 · · · N F(a1, ... , aN1 ; b1, ... , bN2 ) = · · · d k1 ... d kh a 1 a~1 , (5.73) 

El ... ENl 

instead of the dimensionally regularized version of (2.6). Now, we consider 
all the indices ai and bi to be positive or zero, both in the denominator and 
numerator. As before, all the quantities Ei and Hi are considered linear or 
quadratic with respect to the loop momenta. 

So, the idea [37, 38] is to write all possible IBP and LI relations for Feyn­
man integrals (5.73) with a fixed N 1 + N2 = N. Our experience tells us that 
starting from some large N this will be an overconstrained linear system of 
equations which will be solved successfully ( using a computer, of course). A 
breakthrough in the implementation of this idea carne due to the following 
two publications: the first practica} successful implementation was achieved 
for the reduction of massless double box diagrams with one leg off-shell [25] 
(which was applied for NNLO calculations of the process e+e- --t 3jets -
see [40] for a review), and detailed prescriptions for the implementation of 
this method in a general situation were presented in [37]. These two impor­
tant works have resulted in a series of various calculations at the two-loop 
level- see, e.g. [1,8-11, 16,44]. 

The implementation of this method on a computer in non-trivial situa­
tions was hardly possible, say, ten years ago. Indeed, for example, in the case 
of the double boxes with one leg off-shell, it was necessary [25] to solve linear 
systems of dozens of thousands of equations for dozens of thousands of vari­
ables. It is not clear at the moment what the practicallimits of applications of 
this algorithm are, for example, whether it can be applied successfully to such 
problems as the reduction of triple boxes or four-loop massless propagator 
diagrams. 

This method is rather pragmatic and is a kind of experimental mathe­
matics because its analysis from the mathematical point of view is absent. In 
particular, it is not known which linear equations of the method are really 
independent. It is not clear in advance which will be master integrals in a 
given problem: this becomes clear after solving the corresponding system of 
equations. The authors of [1, 8-11, 16, 25, 44] constructed various computer 
implementations of this method. Fortunately, a first public version called AIR 
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which can be applied to any problem, with the hope to obtain a solution of 
a concrete reduction problem, has recently appeared [4]. Now, to salve a new 
reduction problem, one can try to adjust this general computer algorithm, 
rather than salve IBP relations oneself. Well, if it turns out that this algo­
rithm does not work, for some reasons ( e.g. the lack of time or computer 
memory), then one could still try to salve the reduction problem in some 
way. One more option is described in the next chapter, where we will study a 
method which does not resemble any previously developed technique in this 
field. 

The explicit and detailed recipes for solving overdetermined systems of 
equations presented in [37] are more optimal than the simple Gauss elim­
ination. In fact, the Gauss elimination is present there, but only after the 
initial system is ordered according to some criteria. Then different terms of 
the equations are characterized by a relative weight of their complexity, and 
the equations are solved starting from the most complicated terms. 

One could stilllook for more optimal strategies. In particular, one could 
hope to use a Grobner hasis in this situation. This idea was already discussed 
in [48, 50] and applied to the case of two-loop propagator integrals with gen­
eral masses. In this case, it was possible to use an existing Grobner hasis for 
differential equations with coefficients independent of the arguments because, 
in the case of general non-zero masses, the initial problem of solving IBP type 
equations can be reduced to solving some systems of differential equations. 
Unfortunately, one usually needs physical cases, where zero masses are un­
avoidable. Solving the reduction problem with general non-zero masses and 
taking a massless (and on-shell or threshold) limit in the corresponding so­
lution is not a natural procedure, because coefficients at master integrals in 
this general solution are singular in these limits. Another variant here is to 
try to construct a Grobner hasis adequate to deal with IBP equations which 
are difference equations with respect to the indices. This is, however, an open 
mathematical problem. 
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6 Reduction to Master Integrals 
by Baikov's Method 

In the previous chapter, we solved IBP relations [7] in a non-systematic way. 
Now we are going to do this systematically following Baikov's method 1 [2, 4, 
5,14]. 

Our goal is to solve the reduction problem, i.e. to develop an algorithm 
that would enable us to express any Feynman integral of a given family of 
Feynman integrals which are labelled by powers of the propagators (indices) 
as a linear combination of some master integrals. A characteristic feature of 
this method is the reduction to a minimal number of master integrals. 

In Sect. 6.1, the basic parametric representation which is an essential 
ingredient of this method will be described. In Sect. 6.2, this representation 
will be applied to formulate a strategy for identifying master integrals and 
constructing the corresponding coefficient functions. As usual, we shall end 
up, in Sects. 6.2 and 6.3, with a lot of instructive examples starting from 
very simple ones. We shall continue to use mainly the examples considered in 
the previous chapters. In conclusion, applications and open problems of the 
method will be characterized. 

6.1 Basic Parametric Representation 

Suppose that we are dealing with a family 

F( ) = J ... J ddk1 ... ddkh 
g,_ Eal EaN ' 

1 · · · N 
(6.1) 

of h-loop dimensionally regularized Feynman integrals, where the factors in 
the denominator are given by (2.7) with r = 1, ... , N = h(h + 1)/2 + hn. 
The denominators are quadratic or linear with respect to the loop momenta 
Pi = ki, i = 1, ... , h, and the independent external momenta Ph+l, ... , Ph+n 
of the graph. The ai are integer indices. Underlined letters denote collections 
of variables, i.e. g,_ = ( a1, ... , aN), etc. 

1 In [2], it was characterized as a 'non-recursive' solution of IBP recurrence rela­
tions. As we will see shortly, solving some recurrence relations is necessary within 
this method. However, these auxiliary recurrence relations are simpler than the 
initial IBP recurrence relations for a given family of Feynman integrals. 



134 6 Reduction to Master Integrals by Baikov's Method 

Some of the factors in the denominator are associated with irreducible 
numerators (which cannot he expressed linearly in terms of the given set of 
the denominators), so that the corresponding indices ai are considered only 
non-positive. 

We are going to solve the reduction prohlem in a maxima! way, i.e. to 
he ahle to represent a given Feynman integral as a linear comhination of a 
minimal numher of some true master (or, irreducihle) integrals, 

(6.2) 

with the natural normalization conditions 

(6.3) 

which simply mean that any master integral cannot he expressed in terms of 
other master integrals. 

In fact, the master integrals are integrals of the given family, Ii = F(gi), 
where Qi = ( ai1 , ... , aiN) are some concrete sets of indices. In the approach 
under consideration, the master integrals have indices ai,. equal to one, or 
zero, or a negative value. 

Mathematically, if the reduction prohlem has heen solved, we know a hasis 
in the linear space of the given Feynman integrals. Then we could turn to 
some other hasis. In particular, we could choose all the master integrals which 
have only positive indices. Consider, for example, the propagator integrals 
of Example 5.3 and choose, instead of h = F(1, 1) and h = F(1, 0), say, 
h = F(1, 1) and 12 = F(2, 1), why not? Well, practically, this is an unnatural 
choice. According to our experience of solving IBP relations and our standard 
attempts to reduce complicated integrals to simpler integrals, we imply that 
the master integrals must have as many non-positive indices as possihle, so 
that we always keep this hierarchy in mind. Therefore, when we say that a 
given integral is irreducihle, we omit the words to simpler integrals, in this 
sense, i.e. that have more non-positive indices. 

Our experience of solving IBP recurrence relations, in particular, the ex­
amples of Chap. 5, shows that the coefficient functions ci (g) are rational 
functions of everything, i.e. of dimension, masses and externa! kinematical 
invariants. This property is a useful postulate that can he used in the cal­
culation of the coefficient functions. Within the approach of [2, 14], every 
coefficient function in ( 6.2) satisfies, hy construction, the initial IBP rela­
tions for (6.1) so that these relations for the given Feynman integrals are 
automatically satisfied. 

Let us start with the case of vacuum Feynman integrals which are func­
tions of some masses and are defined hy (6.1) with 

(6.4) 

with r = 1, ... , N = h(h + 1)/2. 
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The IBP relations in the vacuum case originate from the following N 
equations: 

J ... J ddk ddk ~. ( kj ) - o . > . 1 . . . h âki Efl ... E'ft - ' z - J . (6.5) 

We proceed, in this general situation, like in multiple examples in the previ­
ous chapter, i.e. perform differentiation and then express the resulting scalar 
products ki · kj in terms of the denominators Er. When we invert the relations 
(6.4) we obtain a matrix which is inverse, in some sense, to the matrix A~. 
So, we write down the IBP relations in the following form: 

L A~iA!r (r'- + m;,) arr+ = (d- h -1)oij/2' (6.6) 
r,r' ,i' 

where A~ = A~ for i = j, A~ /2 for i > j and Aţi /2 for i < j. The matrix 
A is defined as follows. Take the quadratic N x N matrix A, where the first 
index is labelled by pairs (i,j) with i ~ j, and the second index is r. The 
corresponding inverse matrix (A- 1W (with i ~ j) satisfies 

N 

""'Ai1 (A-1)i'J' = 8··,8· ., L..J r r n JJ • (6.7) 
r=1 

Then A~ is the symmetrical extension of (A-1 )~ to all values i,j. 
Moreover, the operators r+ and r- in (6.6) are our usual operators that 

increase and lower indices: 

r+ F( ... , ar, ... ) = F( ... , ar+ 1, ... ) , 

r-F( ... , an ... ) = F( ... , ar- 1, ... ) . 

(6.8a) 

(6.8b) 

We extensively exploited these operators in Chap. 5 for various concrete 
values of r. 

To construct the coeffi.cient functions ci (g) in the vacuum case, the fol-
lowing basic representation [2] is applied: 

J J dx1 ... dxN [P( ')](d-h-1)/2 
• • • a1 aN ;r_ ' 

Xl . .. XN 
(6.9) 

where the parameters x' = (x~, ... , x~) are obtained from;!: = (x1 , ... , XN) 
by the shift X~ = Xi + mr. 

Integration over the parameters Xi is understood in some way, with the 
requirement that the IBP in this parametric integral is valid. In this case, 
such objects satisfy the initial IBP relations (6.6). This property can be 
verified straightforwardly if we take into account that the operator arr+ 
is transformed into the differential operator â / âxr and the operator r- is 
transformed into the multiplication by Xr· 

Now, the basic polynomial P of;!: which enters (6.9) is [2] 

P(;!:_) = ~}t (ţA~ Xr) . (6.10) 
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Here are simple practica! prescriptions for evaluating the basic polynomials: 

1. Salve the system 

L A}' ki · kj = En r = 1, ... ,N 
i?_j?_l 

with respect to ki · kj , i ~ j; 
2. Replace Er by Xr on the right-hand side of this solution; 
3. Extend this expression to all values of i and j in the symmetrical way; 
4. Take the determinant of this matrix to obtain P. 

In fact, the basic polynomial is defined up to a normalization factor in­
dependent of the variables x1. This will be clear when constructing the coef­
ficient functions which will be themselves normalized at some point. 

For general Feynman integrals, the problem can be reduced to the vacuum 
case [2,4]. If there is one external momentum, q, so that we are dealing with 
a family of propagator-type integrals, one involves into the game coefficients 
of the Taylor expansion of F(g_) in q2 , 

00 

F( 2 ) '"' ( 2 2 )aN+l-lF( ) q ;ai, ... ,aN ,....., L..J q -mN+l a1, ... ,aN,aN+l . 
UN+l=l 

(6.11) 

It turns out [2,4] that the so defined objects F(a1, ... , aN, aN+l) (with some 
overall rescaling factor which is not important in the examples in this chapter) 
satisfy vacuum IBP relations. 

To formulate a prescription for corresponding hasis polynomials in the 
non-vacuum case, we need first to present a preliminary discussion of con­
structing master integrals. To identify candidates for master integrals in a 
first approximation, we shall analyse integrals where the indices correspond­
ing to irreducible numerators are set to zero and other indices are either zero 
or one. Let F(g_i) with aij = 1 or O be a candidate to be considered as a 
master integral. 

Let us remember the examples of Chap. 5, where the reduction always 
goes down: our experience tells us that a master integral Ii = F(g_i) = 
F(ait, ... , air, ... , aiN) never appears in the decomposition of a given Feyn­
man integral in terms of master integrals 

F(g_) = ... + ci(a1, ... ,an ... ,aN)Ii + ... 
if ar :::; O and air > O. Therefore, we carne to the natural condition for the 
coefficient function ci(f!) of F(g_i): if air = 1 then ci(a1, ... , an ... , aN) =O 
for ar :::; o. 

This condition can be realized easily [2] in an automatic way by treating 
the integration over x1 as a Cauchy integral around the origin in the complex 
x1-plane, 
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~ f d~i J ... [P(:f.)](d-h-1)/2 . (6.12) 
21f2 X/ 

According to the Cauchy theorem, this expression reduces to the Taylor ex­
pansion of order ai - 1 of the integrand in Xj so that it becomes a linear 
combination of terms 

(6.13) 

where z = (d- h- 1)/2, and Pi(:f.) is obtained from P(;&.) by setting to zero 
all the variables Xj with j such that aij = 1. We shall use ni instead of ai for 
powers of Xj in auxiliary parametric integrals. Observe that the parameter 
nd in such integrals plays the role of the shift of the dimension. 

Suppose that we are not interested in higher terms of the Taylor expansion 
in powers of (q2 - mJV+1) in (6.11), i.e. we need just the value at q2 = m~H1 , 
i.e. the term with aN+l = 1. Then the integration over XN+l should be un­
derstood in the sense of Cauchy integration so that, effectively, XN+l is set to 
zero. So, if F(x1 , ... , XN, XN+l) is the basic polynomial for the corresponding 
vacuum problem, then the basic polynomial for the initial propagator-type 
problem is obtained as 

(6.14) 

In the case of n independent external momenta q1, ... , qn, one includes 
into the procedure all the terms of the formal Taylor expansions in the scalar 
products qi · qj . One is usually interested only in the value at some qi · qj and 
not in the derivatives at these points. ( Otherwise, it would be necessary to 
deal with a generalization of (6.11), where the initial Feynman integrals are 
rescaled by the Gram determinant det(pi · Pi) which is raised to the power 
( h + n + 1 - d) /2 - see [2, 4].) Then the transition to the vacuum problem, 
which effectively increases the number of loops, h --+ h + n, can be performed 
as follows: 

1. Introduce a complete set ofinvariants by considering, in addition to ki · kj, 
i ;::: j and ki · qj, also invariants generated by the external momenta, i.e. 
the scalar products qi · qj, i;::: j. Let Pi = ki, i = 1, ... , hand Pi = qi, i = 
h + 1, ... , h + n so that the total number of the kinematical invariants 
becomes N = (h + n)(h + n + 1)/2. 

2. Introduce, in some way, the corresponding new propagators. 
3. Solve the system 

L A( Pi · Pi = En r = 1, ... , N 
i"2i?.l 

with respect to Pi · Pi. 

4. Evaluate the basic polynomial P for such a vacuum problem. 
5. Obtain P(;&.) = P(x1 , ... ,xN) = P(x1, ... ,xN,O, ... ,0). 
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Observe that the method under consideration is based only on the IBP 
relations so that the LI identities discussed in Sect. 5.4 are not used at all. 

6.2 Constructing Coefficient Functions. 
Simple Examples 

Now, we want to apply the basic parametric representation for two closely 
related purposes: 

- identifying master integrals, 
- constructing the corresponding coefficient functions. 

According to the discussion above, let us consider integrals where the 
indices corresponding to irreducible numerators are set to zero and other 
indices are either zero or one. Let Ii = F(gi) = F( ai1 , ... , ain ... , aiN). For 
indices equal to one, we understand the corresponding integration over Xj in 
the basic parametric representation (6.9) in the Cauchy sense. This leads to 
a Taylor expansion of order aj - 1 of the integrand in Xj and gives a linear 
combination of (6.13). 

Let us try to understand whether a given candidate can be considered as 
a master integral. Suppose that Pi = O. Then there is no other way as to 
consider the coefficient function equal to zero. Therefore, this integral cannot 
be a master integral and has to be recognized as a reducible integral within 
the reduction problem. 

Let us assume a weaker condition: the parametric integral involves an 
integral without scale which we put, by definition, to zero. Then, again, we 
cannot construct the coefficient function in a non-trivial way so that the cor­
responding integral is considered reducible. Let us stress that such a scaleless 
integral can appear not only immediately but also after some preliminary 
non-trivial integrations. 

After such analysis, we obtain a preliminary list of master integrals. Some­
times one has to consider master integrals which differ from F(g;) by some 
indices aij < O. The number of such additional master integrals is connected 
with the degree of the polynomial Pi with respect to some of the para­
meters Xj· 

Let us now turn to examples and see how the basic parametric represen­
tation enables us to solve the reduction problem. Many examples will be the 
same as in Chap. 5, in particular, the first one. 

Example 6.1. One-loop vacuum massive Feynman integrals given by the 
right-hand side of (5.1). 

We have one propagator with the denominator E = k 2 - m 2 and one 
kinematical invariant k2 . The equation E = k2 is solved as k 2 = E. Therefore, 
the resulting basic polynomial is P(x) = x and the polynomial that enters 
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(6.9) is P(x') = x + m 2 . There is one master integral h = F6 .1 (1) given by 
the right-hand side of (5.6). According to (6.9) the corresponding coefficient 
function is 

At a = 1 we have 

~ f dx (x + m2)(d-2)/2 = (x + m2)(d-2)/21 = (m2)(d-2)/2. 
21fZ X x=O 

To satisfy the normalization c(1) = 1 we define 

(m2)(2-d)/2 f dx 
c(a) = . -(x + m2)(d-2)/2 

2Jrz xa 

= (m2)(2-d)/2 (~)a-l [(x + m2)(d-2)/2] 1 

(a- 1)! OX x=O 

(6.15) 

(6.16) 

for a= 1, 2, .... So, we have F6 .1 (a) = c(a)h, in agreement with (5.5) and 
the explicit result ( A.1). 

As in Chaps. 3 and 5 let us consider 

Example 6.2. Massless one-loop propagator Feynman integrals given by the 
right-hand side of (5.7). 

The transition to the corresponding vacuum problem reduces to adding 
a new propagator, 1/(q2 - m 2 )a3 , with an effective mass m. The effective 
number of loops that is involved in the exponent in (6.9) is h = 2. We want to 
consider the value of our diagram at some general point and are not interested 
in higher terms of the Taylor expansion in q2 . Therefore, we consider only the 
value a3 = 1 so that, according to our agreements, the integration contour for 
the corresponding variable x 3 is taken as a Cauchy contour around the origin, 
and x 3 is set to zero. Thus, using (6.14), we obtain the basic polynomial 

( 6.17) 

The only possible candidate for a master integral is 

I _ F. (1 ) _. d/2(- 2)d/2_ 2 F(2- dj2)F2 (dj2 -1) 
1 - 6.2 '1 - m q F(d- 2) (6.18) 

because integrals with one non-positive index are zero. The corresponding 
coefficient function is 

( q2) (d-3) 

ci(ai,a2) =(al -1)!(a2 -1)! 

X ( [)~J a,-1 ( [)~J a2-l [P(xl, x2)](d-3)/2 (6.19) 

Xi=O 
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where the normalization condition c1 ( 1, 1) = 1 was immediately implemented. 
One can check that this result is in agreement with what we had in Exam­
ple 5.2 when explicitly solving recurrence relations. 

Let us now turn to 

Example 6.3. One-loop diagram for the heavy quark potential shown in 
Fig. 6.1. 

1 

Fig. 6.1. One-loop diagram for the heavy quark potential. A wavy line denotes a 
propagator for the static source 

(6.20) 

with v·q =O. 
In addition to k2, q · k and v · k, we consider q2, v · q and v2 as external 

kinematical invariants so that the effective loop number is h = 3. The choice 
of additional propagators is arbitrary. We choose the following extended set 
of the denominators: 

E1 = k2, E2 = (k- q) 2, E3 = k·v+v2 , 

E4 = v2 , Es = q2 , E6 = (q+v) 2 . 

The basic polynomial is given by the determinant of the matrix 

( 
X1 (xl-X2+Xs)/2 X3-X4 ) 

(xl-x2+xs)/2 xs (-x4-xs+x6)/2 . 
X3- X4 (-X4- X5 + X6)/2 X4 

(6.21) 

(6.22) 

The variables Xi are then shifted by the corresponding effective masses, x3 ---t 

X3 + v2,x4 ---t X4 + v2 ,xs ---t Xs + q2 ,x6 ---t X6 + (q + v)2. 
We are not interested in higher order Taylor coefficients of the additional 

kinematical invariants so that, effectively, we set X4 = x5 = X6 = O. Thus, we 
obtain 

P(x1, x2, x3) = (q2)2v2 + v2 (x1 - x2)2 + 2q2 [v2 (x1 + x2)- 2x~] , 

Observe that integrals (6.20) are zero whenever a1 or a2 are non-positive. 
After analysing various integrals with the indices 1 and O and corresponding 
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reduced polynomials we see that the coefficient functions can be constructed 
non-trivially for the following two integrals which can be evaluated by (A.27) 
and which we consider as master: 

h = F6.3(1, 1, 1) 

__ · d/2 ( -q2)d/2- 512,;:;r r(5/2- d/2)r(d/2- 3/2? 
- m v r(d-3) ' (6.23) 

I = p, (1 1 o) = i7rd/2(-q2)d/2-2 r(2- d/2)r(d/2- 1)2 
2 6.3 , , r(d-2) (6.24) 

The coefficient function c1 is simply calculated without integration. For the 
coefficient function c2, we need the following integrals: 

g1(k3,a) = I: dx3x~3 (a2 - x~)"' . (6.25) 

Here k3 is an integer but a depends on d. This integral can be interpreted in 
the sense of the principal value, with 

{ 
( 2)a+k/2+I/2 r(k/2 + 1/2)r(a + 1) c k 
a 10r even 

gl(k,a)= r(a+k/2+3/2) . 
O for odd k 

(6.26) 

Let us imply that these and similar integrals below are understood as con­
vergent integrals in an appropriate domain of analytical parameters, such as 
a in (6.26), with analytic continuation to the whole complex plane of a on 
the right-hand side. 

We obtain the following decomposition of the general integral of the given 
class: 

(6.27) 

One can check that this procedure is in agreement with the explicit result 
(A.27) evaluated in Sect. 3.1. 

Let us now consider again 

Example 6.4. Two-loop massless propagator Feynman integrals of Fig. 3.9 
with integer powers of the propagators given by the right-hand side of (3.39). 

The transition to vacuum integrals is similar to Example 6.2. Now we 
have h = 3. 

The basic polynomial can be obtained straightforwardly: 

P(x1, ... , xs) = -x1x2x3 + x~x3 + x2x~ + xix4 - x1x2x4 

2 
-X1X3X4- X2X3X4 + X1X4 + X1X3X5- X2X3X5 

-X1X4X5 + X2X4X5 + q2[-XIX2 + X2X3 + X1X4 

-X3X4 + X1X5 + X2X5 + X3X5 + X4X5- X~]+ (q2)2x5 . 

(6.28) 
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After analysing various candidates with the indices 1 and O we conclude 
that the corresponding integrals (6.13) with reduced polynomials Pi can be 
interpreted non-trivially only in the following three cases two of which are 
symmetrical to each other: 

F6.4(1, 1, 1, 1, O) = h , F6.4(0, 1, 1, O, 1) = F6.4(1, O, O, 1, 1) = !2 . 

Thus, we qualify them as master integrals. The values of these integrals can 
be obtained from (5.22) and (5.23), respectively: 

I = (" d/2)2(- 2)d-4 F(2- d/2)2 F(d/2- 1)4 
1 m q r(d- 2)2 ' 

(6.29) 

I = -c d/2)2(- 2)d-3r(3- d)r(d/2 -1)3 
2 l7f q r(3d/2 - 3) (6.30) 

The corresponding coefficient functions are constructed using the values 
of the following integrals that appear in (6.13). For c1, we use 

r2 
g2(a,{3) = Jo dxsx~(q2 -x5}'3 

= ( 2)a+/3+1 r(a + 1)F({3 + 1) . (6.31) 
q r(a+{3+2) 

For c2, we use 

g3 ( Cil, Ci4, {3) = 100 100 
dx1 dx4 xr' X~4 ( q2 + X1 + X4)/3 

_ ( 2)a,+a4 +/3+2 F(a1 + 1)F(a4 + 1)F(-al- a4- {3- 2) 
- q r(-!3) . (6.32) 

The decomposition of an arbitrary integral is 

F6.4(a1, a2, a3, a4, as) = c1 (a1, a2, a3, a4, as)h 

+ [c2(a1, a2, a3, a4, as)+ c2(a2, a1, a4, a3, as)] I2 . (6.33) 

We again consider 

Example 6.5. Two-loop massless vertex Feynman integrals (5.34) of Fig. 5.3 
with integer powers of the propagators. 

This is also a relatively simple example which can be treated almost like 
the previous examples. We shall deal with the following extended set of the 
denominators of the propagators: 

E1 = l2 - 2l·pl + PÎ , E2 = l2 - 2l·p2 + p~ , 

E3 = k2 - 2k·pl + PÎ , E4 = k2 - 2k·p2 + p~ , 

Es = k2 , E6 = k2 - 2k ·l + l2 , E1 = l2 , 

Es = PÎ , Eg = P1 · P2 , E10 = P~ · 
(6.34) 

(6.35) 
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The basic polynomial is straightforwardly evaluated, as a determinant 
of the corresponding 4 x 4-matrix (6.10). The effective number of loops to 
be used in (6.9) is h = 4. Since we are not interested in higher terms of 
expansion in the externa! kinematical invariants2 PÎ, p~ and P1 · P2, as usual, 
the parameters xs, x 9 and x 10 are set to zero, and we obtain the following 
basic polynomial, according to the last rule in Sect. 6.1: 

P(;r) = x~x~- 2x1x2x3x4 + xîx~ + 4Q2xlx2x5- 2Q2x2X3X5 

+2x1X2X3X5- 2x~X3X5- 2Q2X1X4X5- 2XÎX4X5 + 2x1X2X4X5 

+(Q2)2x; + 2Q2x1x; + xix; + 2Q2x2x;- 2x1x2x; + x~x; 
+2Q2X2X3X6 + 2Q2X1X4X6- 2(Q2)2X5X6- 2Q2X1X5X6- 2Q2X2X5X6 

+(Q2 ) 2x~- 2Q2x2X3X7- 2x2X~X7- 2Q2x1X4X7 + 4Q2X3X4X7 

+2x1X3X4X7 + 2x2X3X4X7- 2x1X~X7- 2(Q2)2X5X7- 2Q2x1X5X7 

-2Q2X2X5X7- 2Q2X3X5X7- 2X1X3X5X7 + 2x2X3X5X7- 2Q2X4X5X7 

+2x1X4X5X7- 2x2X4X5X7- 2(Q2)2X6X7- 2Q2X3X5X7- 2Q2X4X6X7 

+4Q2x5X6X7 + (Q2 ) 2 x~ + 2Q2x3x~ + x~x~ + 2Q2x4x~ 
(6.36) 

where Q2 = -(Pl- P2)2 as before. 
After a straightforward analysis of candidates we identify the following 

set of the master integrals: F(1, 1, O, O, 1, 1, O) = h, F(1, 1, 1, 1, O, O, O) = !2 
and F(O, 1, 1, O, O, 1, O) = F(1, O, O, 1, O, 1, O) = h 

To construct the coefficient function c1 we have to deal with integrals 
(6.13), where the reduced polynomial is 

pl (x3, X4, X7) = X7 [((Q2)2 + (x3 - X4)2 

+2Q2(x3 + x4))x7 + 4Q2x3x4] (6.37) 

One can observe that in the cases, where n4 ::; O (n3 ::; O) in the corresponding 
integral (6.13), one can straightforwardly integrate over X4 (x3 ) and then over 
X3 (x4) and X7, using 

94(o:, (3) = 100 
dx xa (x + a)f3 

_ a+f3+1 F(1 + o:)r( -o:- (3- 1) 
-a r(-(3) (6.38) 

Suppose now that n3, n4 > O in (6.13). Then we can use a trick based 
on the following integration formula obtained by IBP in a one-parametric 
integral: 

{
00 ~(Ax+By-n' Jo xn+-y 

20bserve that this is a formal expansion for p~ and p~ and a Taylor expansion 
for Pl"P2· 
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= (z- ~')B [')()~(Ax+ By-n'-1. 
z - n- n - ')' + 1 }0 xn+y 

(6.39) 

Applying it to the integration over X7 we can reduce either n3 or n4 to zero 
because here B = 4Q2x3x4 . 

The coefficient function c2 can easily be constructed because the corre­
sponding integral (6.13) over X7 can be evaluated by means of the following 
explicit formula 

95(k, al, a2) = r 2 dx xk(x- xl)a1 (x2- x)a2 

Jx1 
~ k-r( )a +a +r+l k! F(1 + a2)F(1 + a1 + r) = L...J X X2 - X1 1 2 

r=O 1 (k-r)!r! F(al+a2+r+2) ' 

and then over X5 and X6 by means of (6.38). 

(6.40) 

A similar procedure, without tricks, can be developed for the coefficient 
function c3. If !3 = F(O, 1, 1, O, O, 1, 0), this is achieved by integrating over x 7 

(which always can be done because n7 ::; 0), and then over x5 , x1 and x 4 . 

For the second copy of h, the coefficient function is symmetrically obtained. 
Let us again turn to our favourite example which illustrates all the basic 

methods. 

Example 6.6. One-loop propagator Feynman integrals (1.2) corresponding 
to Fig. 1.1. 

The transition to the corresponding vacuum problem reduces to adding 
a new propagator, 1/ ( q2 - s) a 3 • We again consider these integrals at general 
q2 and are not interested in derivatives so that, effectively, the corresponding 
index will be a3 = 1 and the corresponding variable x3 is set to zero. The 
resulting basic polynomial is 

(6.41) 

Of course, at m =O it coincides with the polynomial (6.17) for Example 6.2. 
There are two master integrals F6 .6 (1, 1) = h given by (1.5) and 

F6.6 (1, O) = ! 2 given by the right-hand side of (5.6). We want to construct the 
corresponding coefficient function with the normalization conditions (6.3), i.e. 

C1 ( 1, 1) = 1 , C1 ( 1, 0) = 0 , C2 ( 1, 1) = 0 , C2 ( 1, 0) = 1 . 

The coefficient function of h is simply obtained similar to the massless 
case 

(6.42) 
X;=O 
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For the coefficient function c2(a1,a2 ) of 12, we obtain linear combinations 
of one-parametric integrals 

(6.43) 

where 

P2(x) = P(x1, x)lx,=O = o:x2 + (3x + Î (6.44) 

with o:= -1, (3 = 2(m2 + q2), Î = -(m2 - q2)2. 
Consider first the case a2 ::; O. Then n1 is always non-positive here, and 

f ( n1, n 2) can be understood as an integral between the roots 

x~l,2) = (m=t= H)2 

of the quadratic polynomial P2(x2), using (6.40). 
The evaluation at a1 = 1 and a 2 = O provides a normalization factor to 

satisfy the normalization condition c2(1, O) = 1, and we obtain the following 
expression for c2 ( a1, a2) at a2 ::; 0: 

o o _ F(d- 1) 
c2(al, a2) = c2(al, a2) = 4d-2(m2q2)(d-2)/2 r((d- 1)/2)2 

x 1 r~2l dx2 (~) a,-1 [P(xl, x2)](d-3)/2 
(al- 1)! lx(l) xn2 OXl 

2 x 1 =0 

(6.45) 

In the case a2 >O, the integrals f(nl, n2) appear also with n 1 >O. When 
taken seriously they can be evaluated in terms of a Gauss hypergeometric 
function. Instead of doing this, let us apply IBP to our parametric integrals 
f(nl, n2). This gives the relation 

!( ) _ (d-3)/2-n2 
n1,n2 - 1 n1-

x(2o:f(nl- 2, n2 + 1) + (3f(nl- 1, n2 + 1)) (6.46) 

which can be used to reduce n 1 to one or zero. Moreover, the identity 

P.(d-3)/2-n2 _ p(d-3)/2-n2-lp. 
2 - 2 2 

leads to the relation 
1 

/(1, n2) =- (!(1, n2- 1)- o:f( -1, n2)- (3f(O, n2)) 
Î 

which can be used to reduce n 2 to zero. 

(6.47) 

This means that we can express any f(n 1,n2) as a linear combination of 
an auxiliary master integral /(1, O) and integrals f(n 1, n2) with n 1 ::; O which 
can be evaluated in terms of gamma functions. We believe that the coefficient 
functions are rational functions of everything. The only chance to satisfy this 
property here is to construct c2 ( a1, a2) as a linear combination of cg ( a1, a2) 
and the first coefficient function c1 ( a1, a2): 
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(6.48) 

The constant A is determined by the normalization condition c2 (1, 1) = 0: 

A= -cg(1, 1) . (6.49) 

After this, the dependence on /(1, O) drops out and c2 (a1 , a 2 ) indeed turns 
out to be a rational function. 

Observe that integrating over some real domain, in particular between the 
roots of a quadratic polynomial when constructing coeflicient functions, with 
a subsequent normalization, is in fact equivalent to solving IBP relations for 
our auxiliary parametric integrals. If there is such a possibility to understand 
a given parametric integral it is reasonable to use it. If there is no such possi­
bility, e.g. one meets a polynomial of the third degree, or, an integration over 
one of the x-variables leads to inconvenient integrals over the rest variables, 
then there is no other way as to treat the auxiliary parametric integrals in 
a pure algebraic way by solving the corresponding IBP relations. We shall 
meet such situations in the examples below. As to the example above, the 
situation with a 2 ::; O could be treated algebraically, by IBP in the initial 
two-parametric integral, but integrating over x2 has simplified the situation. 

6.3 General Recipes. Complicated Examples 

Let us extend what was done in the previous example to the general situation. 
After a preliminary analysis, with the help of (6.9), we obtain a preliminary 
list of candidates for the master integrals. Let us define the relation of partial 
ordering of the master integrals as follows: 

F(r,h) < F(!h) if a1j ::; a2j for ali j, 

and the strict inequality holds at least for one index. 
The master integrals can be grouped into families characterized by their 

maximal integrals. Let us start from the master integrals which have most 
non-negative indices. Usually, the corresponding parametric integral for the 
coeflicient function can be understood in such a way that it results in inte­
grations in terms of gamma functions. 

Consider now a situation with two master integrals with F(g2 ) < F(g1), 

and suppose that we already know c1 . If a2i = 1 we have also a 1i = 1. To 
construct an algorithm for the coeflicient function c2 (g) we start with the 
case of negative indices aj for those indices j where a 1j = 1 since in this case 
we have c1 (g) = O. Experience shows that the integrations for c2(g) result 
in ratios of gamma functions which in particular can be used to satisfy the 
normalization c2(g2) = 1. 

In a next step one considers the case aj > O. Then the corresponding 
parametric representation usually leads to integrals which cannot be evalu­
ated in terms of gamma functions. (See the previous example.) Thus at first 



6.3 General Recipes. Complicated Examples 147 

sight it looks hopeless to achieve that the coefficient functions have to be 
rational functions of d. The way out is to look for an expression for the co­
efficient function c2 (g_) which is a linear combination of ci(g_) and the basic 
parametric representation for c2 (g_) denoted by cg (g_) 

(6.50) 

The constant A is determined by the normalization condition c2 (g_1 ) = O 
which gives 

(6.51) 

Then IBP is applied to the parametric integrals and the corresponding 
relations are used to express any given parametric integral in terms of aux­
iliary (parametric) master integrals and expressions which are straightfor­
wardly evaluated in terms of gamma functions. The dependence on the new 
auxiliary master integrals has to drop out3 in order to provide a rational 
dependence of the coefficient functions on d. 

In fact, this strategy can be generalized to the case of several master 
integrals with more complicated hierarchies. Let us proceed with examples, 
where we shall meet such situations. These will be mainly our old examples 
considered in Chaps. 3-5. 

Example 6. 7. Feynman integrals (3.19) corresponding to the triangle dia­
gram of Fig. 3.4. 

Almost all the steps can straightforwardly be performed, as above. The 
basic polynomial is 

2 P(x1,xz,x3) = (x1- x3)(xz- x3)- Q X3 

-m2 (Q2 + x1 + xz- 2x3) + m 4 , 

where again Q2 = -(pl - pz) 2 with PÎ = p~ =O. 

(6.52) 

We obtain the following list of the master integrals: F(1, 1, 1) = h, 
F(1, 1, O) = 12 and F(O, O, 1) = h When testing various candidates to be 
master integrals we consider, in particular, F(1, O, 1) with the corresponding 
reduced polynomial P1,0,I(x2 ) = m 2 - Q2 - x 2 linearly dependent on x 2 . Let 
us try to understand the corresponding integrals (6.13) 

/ (m2- Q2- x2y-nd dx2 (6.53) 
x~2 

in a non-trivial way. (Here we have z = (d- 4)/2 = -E: because the effective 
number of loops is h = 3.) We do not consider the Cauchy integration around 
the origin in the complex plane because this choice corresponds to the value 
a 2 = 1 in the master integral so that we are looking for other options. We 

3 This cancellation serves as a good check of the algorithm, similarly to cancella­
tions of spurious poles in E on the right-hand side of various asymptotic expansions 
in momenta and/or masses [6]. 
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cannot integrate from x2 = O because we have integer negative powers of x2 . 

StiH it looks like there is a chance to obtain a new non-trivial understanding 
of the integral by choosing to integrate from -oo to m 2 - Q 2 Here we suppose 
that m 2 - Q 2 < O in order to have no singularity in the integration domain. 
However, this choice brings nothing new! One can check that, after the nor­
malization by the equation c1 ,0 ,1 (1, O, 1) = 1, one obtains the same expression 
as in the case of the Cauchy integration corresponding to other values of the 
index a2. Therefore, we conclude that we cannot interpret (6.53) in a new 
non-trivial way so that the integral F(1, O, 1) is nota master integral. 

A more general recipe is that, whenever we obtain in a linear dependence 
of a reduced polynomial in (6.13) on some variable, we shall usually4 conclude 
that this cannot be a master integral. 

The coefficient function of h can be constructed trivially because it does 
not involve integration. The coefficient function of h, with the corresponding 
polynomial P2 = (m2 + x3)(m2 - Q2 + x3), is also simple (at least simpler 
than in Example 6.6). If n3 ::; O in the corresponding integral (6.13), we can 
integrate between the roots of this polynomial using (6.40). In the case of 
n3 > O, one can use the IBP relation with respect to x3 in order to reduce 
n3 to one and the relation following from the identity P{-nd = P{-nd-l P2 

to adjust the dimension. 
For the coefficient function of h, we obtain integrals (6.13) with 

P3(x1, x2) = x1x2- m 2(Q2 + x 1 + x 2) + m 4 . 

If one of the indices n 1 and n 2 in this integral is negative the integration over 
the corresponding variable, e.g. over x2 , can be performed but one obtains a 
power of (m2 - x1 ) not regularized by z. So, in this situation, it is necessary 
to proceed in a pure algebraic way and solve the corresponding IBP relations, 
together with the relation that follows from the identity p;-nd = p;-nd-l P3 , 

in order to reduce any given integral to auxiliary master integrals. 
There is, however, one more option5 : to use the package AIR [1] based on 

the algorithm of [11] and designed to sol ve genuine IBP relations for Feynman 
integrals as discussed in the end of the previous chapter. It turns out that this 
program can be applied to the auxiliary IBP relations for integrals (6.13). As a 
result of this procedure, an algorithm for c3 can be constructed. In particular, 
we obtain 

1 [1 2 2 
F(1, 1, 2) = m 2 (m2 _ Q 2 ) 2.(d- 4)(2m - Q )h 

4Well, up to some pathological situations, where one has chances to obtain a new 
meaning for such integrals by considering the integration over Xi in the sense of a 
distribution with respect to the variables on which coefficients of the corresponding 
linear polynomial depend. 

5Thanks to J. Piclum who implemented the corresponding algorithm on a com­
puter, also for the Example 6.10 below. 
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2- d ] +(d- 3)I2 + 2m 2 h , (6.54) 

in agreement with ( 5.17), where sever al integrals expressed in terms of gamma 
functions were involved on the right-hand side. 

Let us again consider massless on-shell boxes which we have already anal­
ysed in Examples 3.3, 4.3 and 5.4. 

Example 6.8. The massless on-shell box Feynman integrals of Fig. 5.1 with 
PT =O, i = 1, 2, 3, 4 and general integer powers of the propaga tors. 

The basic polynomial is now 

P(x1, x2, X3, x4) = s2t2 + t2(x1- x2) 2 - 2st2(xl + x2) 

+s2(x3- x4) 2 - 2s2t(x3 + x4) 

-2st[2xlx2 + 2x3X4- (x1 + x2)(x3 + x4)] . (6.55) 

The effective number of loops to be used in (6.9) is now h = 4. Using the 
strategy formulated above, we reveal the following three master integrals: 
F(1, 1, 1, 1) =hand F(1, 1, O, O) = F(O, O, 1, 1) = h The coefficient function 
of h can be constructed trivially. In the case of I 2 (the first of the two 
symmetric variants), the integration in the corresponding integral (6.13) over 
x4 and then over x3 can be performed in terms of gamma functions if n4 :S O, 
and, in the opposite order, in the case of n3 :S O. One can then proceed 
similarly to Example 6.6 by introducing an auxiliary parametric integral and 
using IBP relations to reduce n3 or n4 to one or zero. Then, to define the 
coefficient function c2 , o ne involves a linear combination with the coefficient 
function c1 so that the dependence on this auxiliary integral drops out. 

Now we turn to a massive generalization of this example. 

Example 6.9. The on-shell boxes with two massive and two massless lines 
shown in Fig. 6.2, with PÎ = ... = p~ = m 2 . 

P1 

P2 

--~--------~-P3 

1 

31 
1 

1 

2 

1 

41 
1 

--~--------._-P4 

Fig. 6.2. On-shell box with two massive and two massless lines. The solid lines 
denote massive, the dotted lines massless particles 

As in Example 6.8, we have changed the numbering of the lines with 
respect to Chap. 4. 

The procedure is again straightforward. One can identify the master inte­
gral with four lines, F(1, 1, 1, 1) = h, two symmetrical master integrals with 
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three lines, F(1, O, 1, 1) = 121> F(O, 1, 1, 1) = h 2 , two master integrals with 
two lines, F(1, 1, O, O) = h1, F(O, O, 1, 1) = 132 and two symmetrical master 
integrals with one line, F(1, O, O, O) = 141, F(O, 1, O, O) = 142 . These master 
integrals are graphically shown in Fig. 6.3. We have the following hierarchy 
relations: 141,142 < 131 < h and h2 < h1, 122 < ft. 

-- o 1 \ 
1 \ 
1 1 
1 1 

\ 1 1 1 
\ 1 \ 1 

--4--- --4---

h 12 la! la2 14 

Fig. 6.3. Master integrals for Fig. 6.2 

The coeffi.cient function e1 is trivial. The coeffi.cient function e21 can be 
constructed, using (6.13), first in the case of n2 :::; O, where it can be obtained 
by an explicit integration. Then, for n2 > O, one applies IBP to these auxiliary 
integrals, introduces an auxiliary master integral and mixes such a solution 
with e1. 

To construct the coeffi.cient function of 131 , one uses a straightforward 
integration in the case n1 :::; O and general n2 and, similarly, for n2 :::; O and 
general n1 . In the case of n 1,2 > O, one can apply auxiliary IBP relations 
with the introduction of an auxiliary master integral for n1 = n2 = 1 which 
is cancelled when mixing the so constructed coefficient function with e1 . 

In the cases of the master integrals Ia2 , 141 and 142 , we have a tower of 
three hierarchical master integrals. Still the case of fa2 is quite similar to 
fa1 and does not provide complications. To construct the coeffi.cient function 
of 142 one uses a straightforward integration over x1 , x 3 , X4 in the case of 
n1 :::; O, n3 :::; O, and over x1, X4, X3 in the case of n1 :::; O, n4 :::; O. In the case 
of n 1 :::; O, n3,4 > O, one integrates over x1 and uses, for resulting integrals over 
x 3 and x4 , auxiliary recurrence relations, with an introduction of a master 
integral for n 3 = n4 = 1 which cancels when mixing with the coeffi.cient 
function e22 . Quite similarly, one can explicitly integrate over X3 or X4 when 
n 3 :::; O or/and n4 :::; O and reduce resulting integrals. Finally, in the case of 
n 1,3,4 > O, one solves corresponding auxiliary IBP relations and introduces a 
master integral for n 1 = n 3 = n4 = 1 which cancels when mixing with the 
coeffi.cient function e1 . 

Here is an example of the reduction of massive boxes to the master inte­
grals: 

d-5 (d-4)(4m2 -t) d-3 
F(2, 1, 1, 1) = 4 2 h + 2 2 (4 2 )t 12- 2 (4 2 )/32 m -s m m -s m m -s 

(d-4)(d-2) 1 ( ) 
2(d- 5)m4 (4m2 - s)t 4 · 6·56 
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We shall consider another example with a tower of three hierarchical mas­
ter integrals in the next section. 

The last example in this section is 

Example 6.10. Sunset diagrams of Fig. 3.12 with one zero mass and two 
equal non-zero masses at a general value of the external momentum squared. 

(6.57) 

where Q = (a1, a2, a3, a4, a5) with a3,4 ::; O. 
The strategy presented above reveals the following preliminary list of the 

master integrals: F(1, 1, O, O, 1) = h and F(1, 1, O, O, O) = J2. 
The coefficient function e2 can be constructed using the strategy described 

above: for n 5 ::; O, an integration in terms of gamma functions is used and, 
for n5 > O, a simple recursion is applied. It turns out that one can use the 
package AIR [1] to solve the recurrence relations for the auxiliary parametric 
integrals (6.13) corresponding to e1 , 

where z = (d- 4)/2 = -c and 

P1(x3, x4) = m2(x3 + x4 - 2q2)2 

-(x3- q2)(x4 - q2)(x3 + X4 - q2) . 

(6.58) 

(6.59) 

Remember that we ha ve n 3 , n4 ::; O so that we can perform a useful change of 
variables, x3,4 = x;,4 + q2 and deal with integrals in these variables where the 
basic polynomiallooks simpler. When solving the corresponding IBP relations 
(together with the relation following from the identity P{-nd = P{-nd-l Pl) 
it is useful to apply Euler's theorem to the factor [P1 (x3 , x4W-nd which is 
a homogeneous functions of the four variables, x3 , x4 , q2 , m2 (although it is 
clear that the resulting relation is nothing but a special combination of the 
IBP relations). A general solution to these relations is determined by the two 
auxiliary master integrals, f(O, O, O) and f( -1, O, 0). Therefore, it is necessary 
to introduce an extra master integral, l 1 = F(1, 1, -1, O, 1). 

As a result, an algorithm for the evaluation of all the three coefficient 
functions, e1, c1 and e2, can be constructed. The dependence on the auxiliary 
master integrals drops out in expressions for the coefficient functions. We 
have, in particular, 

(6.60) 
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F(2,1,-1,0,1)= 4 2
2 

2 [-(2(d-3)m2 +(d-1)q2)h 
m -q 

+3(d- 2)11 + (d- 2)12] . 

F(2,1,0,-1,1)= 2(4 
12 2) [(4(d-3)m4 -(d-2)(q2)2)h 

m m -q 

3 2- 2 2 ] +2(d- 2)q h- (d- 2)(2m - q )!2 . 

(6.61) 

(6.62) 

Let us consider, following [14], a more complicated example in a separate 
section. 

6.4 Two-Loop Feynman Integrals 
for the Heavy Quark Potential 

Example 6.11. Two-loop Feynman integrals for the heavy quark potential 
corresponding to Fig. 6.4. 

6 7 6 

(A) (B) 

Fig. 6.4. Feynman diagrams corresponding to case A and case B. Wavy lines 
denote propagators for the static source 

The numbering ofthe lines in Fig. 6.4 is changed as compared with Fig. 3.9 
in order to take into account the symmetry. There are two classes of such 
Feynman integrals which we denote A and B: 

!! ddkddl 
FA(!!)= (k2)a1(Z2)a2[(k _ q)2]a3[(l- q)2]a4[(k -Z)2]as 

1 
X (v·k)a6(v·l)a7 ' (6.63) 

!! ddkddl 
FB(!!) = (k2)al (z2)a2 [(k- q)2]a3 [(l- q)2Ja4 [(k -Z)2]as 

1 
X (v·k)a6[v·(k -l)]a7 ' (6·64) 

where v·q =O. 



6.4 Two-Loop Feynman Integrals for the Heavy Quark Potential 153 

The Feynman integrals necessary for the evaluation of the two-loop poten­
tial were calculated in [12]. In [13], a procedure for the evaluation of arbitrary 
integrals (6.63) and (6.64) was developed, using the technique of shifting di­
mension [15] discussed in Chap. 5. However, not all the necessary relations 
were published. Another version of partial calculation of integrals (6.63) and 
(6.64) was used in [9] for the evaluation of 1/m corrections to the two-loop 
potential. In this algorithm, IBP was used without systematization, as in 
Chap. 5, and the reduction always stopped at integrals expressed in terms of 
gamma functions so that a lot of boundary integrals, sometimes involving up 
to fourfold finite summations, entered the reduction. Now, we are going to 
apply the method of this chapter to these integrals. We will, therefore, obtain 
a minimal set of master integrals. 

The basic polynomials are straightforwardly obtained: 

PA(x1, ... , X7) = -[x2x6- X4X6 + ( -x1 + x3)x7] 2 

+v2{xÎx4 + x3(x~ + x2(x3- X4- xs) + X4X5) 

-x1[x2(x3 + X4- xs) + x4(x3- X4 + xs)]} 

+(q2)2[v2xs - (x6 - X7 )2] + q2{ v2[(x3 + X4- xs)xs 

+x2(x3- X4 + xs) + x1(-x3 + X4 + xs)] + 

2[X2X6( -X6 + X7) + X4X6( -X6 + X7) 

+x7(X1X6 + X3X6- 2XsX6- X1X7- X3X7 )]} , 

The two cases A and B are considered separately. 
Case A. 

(6.65) 

(6.66) 

The application of the procedures described above to case A leads to 
the following families of master integrals which are shown in Fig. 6.5. As 
far as the notation is concerned the first index labels the different master 
integrals. In case the master integrals are equal we introduce a second index 
for further specification. If 1j is a master integral with indices 1 and O then 
we shall denote by li the master integral which differs from 1j by one index 
-1 instead of O. 

- Family Al consists of the four master integrals with the hierarchy h > 
{121,122} > h 

h = FA(1, 1, 1, 1, o, 1, 1)' 
121 = FA(1,1,1,1,0,0,1), 
122 = FA(1,1,1,1,0,1,0), 
13 = FA(1,1,1,1,0,0,0). 

- Family A2 consists of the four master integrals with the hierarchy Is1 > 
{Jn,ls1} > 141: 
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Family Al: 

Family A2: 

Family A4: 

Fig. 6.5. Feynman diagrarns corresponding to the master integrals of case A. In 
addition to / 61, there is also a master integral !6 1 containing an irreducible numer­
ator 

!51 = 1"A(1,0,0,1,1,1,1), 

l11 = 1"A(1,0,0,1,1,0,1), 

ls1 = JCA(1,0,0,1,1,1,0), 

!41 = JCA(1,0,0,1,1,0,0). 

- Family A3 is symmetrical to Family A2 with respect to the transformation 
1 f-+ 2, 3 f-+ 4, 6 f-+ 7. It contains the master integrals h2, !72, ls2 and !42· 

- Family A4 contains the master integrals 

!61 = JCA(O, 1, O, 1, 1, 1, O), 

161 = JCA(O, 1, 0, 1, 1, 1, -1). 

- Family A5 is symmetrical to Family A4 with respect to the transformation 
1 f-+ 2, 3 f-+ 4, 6 f-+ 7. It contains the master integrals l62 and 162· 

As has already become clear from the examples discussed so far, one ex­
pects the appearance of complicated expressions for the coeffi.cient functions 
of simplest master integrals. Indeed, in the case of the coeffi.cient function 
c1, six out of seven indices can be treated with the help of differentiations 
and the remaining one-dimensional integral can be understood in the sense 
of integration (6.31). 

The situation is similar for c22 (and c21 which can be obtained by exploit­
ing the symmetry) where the remaining two-fold integration over X7 and x5 

can be understood with the help of the integrals (6.40) and (6.26). 
To construct c3 we have to understand, in some way, three integrations, 

over x5, x 6 , x 7 . In case one of the indices n5, n6 or n7 is less or equal to zero 
o ne can use various combinations of the auxiliary integrals gi ( i = 1, ... , 4) 
listed above. Thereby it is advantageous to perform the integration corre­
sponding to the negative index first. If, on the contrary, n5, n6 and n7 are 
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positive an immediate integration seems not to be possible. However, from the 
corresponding three-parametric integral representation it is simple to derive 
recurrence relations which shift at least one of the indices to zero, eventually 
at the cost of increasing the dimension nd. The latter does not constitute 
a problem since the whole formulation of our procedure is in d dimensions. 
Thus, also in this case the integration can be performed in terms of gamma 
functions. In principle one could be forced to introduce three auxiliary mas­
ter integrals and build the proper linear combinations with c1, c21 and c22. 
However, it turns out that the corresponding constants in such combinations 
are zero. 

For the coefficient function c51 , only two non-trivial integrations over x2 

and x 3 are involved which can be performed with the help of (6.32). 
For cs1, one can use the symmetry: 

The most complicated coefficient function is certainly c41 since there are 
four non-trivial integrations over x2, x3, X6 and X7 left. If n6 or n7 are less 
than or equal to zero the integrations can be performed in terms of gamma 
functions with the help of the formulae provided above. However, for n6 2 1 
and n7 2 1 this is not possible. In this case, the idea is to use IBP in order 
to reduce the faur-parametric auxiliary integrals 

A aux J J dx2 dx3 dx6 dx7 
!41' (n2, n3, n6, n7, nd) = · · · n 2 n 3 n6 n 7 

x2 x3 x6 x7 

X [P41(x2,X3,X6,X7)]z-nd (6.67) 

(with z = (d - h - 1)/2 = (d - 5)/2) to the auxiliary master integral 
J~,aux(1, 1, 1, 1, 0). Here P41 is obtained from PA by setting X1, X4 and Xs 

to zero. 
Observe that the corresponding recurrence procedure is significantly sim­

pler than the original one which involves seven denominators. Furthermore, 
if during the recursion either n6 or n7 becomes negative the corresponding 
expressions can immediately be expressed in terms of gamma functions. The 
five IBP relations which are useful for the reduction to J~,aux(1, 1, 1, 1, O) 
can be obtained by either differentiating the integrand with respect to Xi 

(i = 2, 3, 6, 7) or by writing down the identity P%1-nd = P%1-nrl P41 and in­
serting the explicit result for the last factor. The proper combination of these 
relations leads to new ones which allow the following steps to be performed 
in an automatic way: 

1. Reduce n6 and n7 to one. 
2. Reduce n2, n3 >O to n2, n3 ~O. 
3. Use IBP recurrence relations to obtain n2 = n3 . 

4. Reduce n2 = n3 <O to n2 = n3 =O. 
5. Adjust the dimension, i.e. reduce nd to zero. 

A simple relation transforms J~,aux(0, O, 1, 1, O) to J~,aux(1, 1, 1, 1, O). 
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At this point one constructs the final coefficient function c41 by consider­
ing the linear combination with c51, cn and csl· Since c41 (g71 ) = C41 (g81 ) = 
O, we are left with 

c41 (g) = c~1 (g) - c~l (g51 )c51 (g) , 

where 

o ( ) - __ 1_4(d- 3)(3d -14)(3d -10)(3d- 8) 
c41 .!!51 - q2v2 (d- 4)2(3d- 13)(3d- 11) 

(d- 5)2 ( 2)2JA,aux(1 1 1 1 O) 
+ (3d- 13)(3d- 11) q 41 ' ' ' ' . 

(6.68) 

In this combination the auxiliary master integral Jft•aux(1, 1, 1, 1, O) can­
cels and c41 (rr) turns out to be a rational function in d. 

The master integral h1 forms a family by its own. However, as the poly­
nomial P61 is quadratic in X7 and thus the corresponding recurrence relation 
shifts n7 only in steps of two, it is necessary to introduce in addition the 
master integral 161 where a7 = -1. The very calculation of the coefficient 
function is identica! for h1 and 161· For n3 ::; O, it can be done in terms of 
gamma functions with the integration order x3 , x 1 , x 7 . On the other hand, 
for n 3 > O, a simple one-step relation reduces n3 to zero. 

Let us now turn to 
Case B. 
As one can see from (6.66) the basic polynomial is quite similar to the 

one of case A which can be used while computing the coefficient functions. 
However, the symmetry can only be exploited if n7 ::; O as for n 7 > O the 
factor (x6 - x7 ) would appear in the denominator. 

Altogether there are four families which, however, show a more compli­
cated structure than in case A - see Fig. 6.6. More precisely one has 

- Family Bl. There are twelve master integrals which obey the hierarchies 
If > {If, h2} > !3 and If > If > {I6i,l6i} (i = 3, 4, 5, 6) and are given 
by 

Jf = FB(1, 1, 1, 1, 0, 1, 1), 

I!j = FB(1, 1, 1, 1, o, o, 1)' 

!22 = FB(1,1,1,1,0,1,0), 

J3 = FB(1,1,1,1,0,0,0), 

!63 = FB(1,1,1,0,0,0,1), 

!64 = FB(1, 1, o, 1, o, o, 1)' 

!65 = FB(1, o, 1, 1, o, o, 1)' 

!66 = FB(0,1,1,1,0,0,1). 

There are four master integrals with a6 = -1: 
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Family Bl: 
-o- -(} -(X)- -a:J---

-o--o--o--o 
Family B2: 

Family B3: 

Family B4: 

Fig. 6.6. Feynman diagrams corresponding to the master integrals of case B. In ad­
dition to hi (i = 3, ... , 7) there are also master integrals !6i containing irreducible 
numerators 

163 = FB(1, 1, 1, o, o, -1, 1)' 
164 = FB(1, 1, o, 1, o, -1, 1)' 
165 = FB(1, o, 1, 1, o, -1, 1)' 
166 = FB(O, 1, 1, 1, o, -1, 1). 

- Family B2. There are four master integrals which obey the following hi­
erarchy: 19 > { Is2 , Isi} > /41 with 

lg = FB(1,0,0,1,1,1,1), 
Is2 = FB(1,0,0,1,1,0,1), 
Is1 = FB(1,0,0,1,1,1,0), 
141 = FB(1,0,0,1,1,0,0). 

- Family B3. Similarly to Family B2, there are four master integrals obeying 
the hierarchy h3 > {Js3,l72} > /42 with 

153 = FB(0,1,1,0,1,1,1), 
ls3 = FB(0,1,1,0,1,0,1), 
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172 = ~B(0,1,1,0,1,1,0), 
142 = ~B(0,1,1,0,1,0,0). 

- Family B4 consists of the two master integrals 

167 = ~B(0,1,0,1,1,1,0), 
167 = ~B(0,1,0,1,1,1,-1). 

It is similar to the Families A4 and A5 of case A. 

The construction of the coefficient functions cf, c~ and c22 of the fam­
ily B1 proceeds alon§ the same lines as in case A. In the case of c3, we have to 
deal with integrals 13 ,aux(n5, n6, n7, nd) which are defined similarly to (6.67). 
There is a slight complication as, in contrast to case A, c3 (Q1) =f O. As a con­
sequence an auxiliary master integral, 1:,aux(O, 1, 1, O), has tobe introduced 
which is only cancelled after considering the proper linear combination with 
c1. The reduction to 1:,aux(O, 1, 1, O) is straightforward. 

Family B1 has four more members, h3, 164, 165 and h6, which belong to 
the four hierarchies 1f > 1,f > 16i (i = 3, 4, 5, 6). Thus, in order to obtain 
the coefficient functions c6i one has to consider the linear combination 

(6.69) 

Let us in the following restrict the discussion to c63 since the results for the 
other three coefficients can be obtained by exploiting the symmetry. The 
corresponding auxiliary integrals are given by an integral representation of 
the form 

C~3 "" . . . [P63(x4, X5, X6)]z-nd , J J dx4 dx5 dx6 

x~4 X~5 x~6 
(6.70) 

with 

P63 = (q2)2v2x5 + q2v2 (x4x5- x~)- 4q2x5x~- x~x~. (6.71) 

For n4 S O, where we have cf(n.) = c~(n.) =O, the integrals in (6.70) can 
be taken analytically in the order x 4, x5, x 6 using (6.40) for x4, the formula 
(6.40) for x5 and (6.26) extended to non-integer k3 for X6· 

Let n 4 > O. Then we need to introduce two auxiliary master integrals, 
1~~tux(1, O, O, O) and 1~,aux(1, O, 1, 0). The reduction of the auxiliary para­
metric integrals (6.70) can be performed as follows: 

1. Reduce n4 to one. 
2. Reduce n5 to zero. 
3. The reduction of n6 can only be performed in steps of two. Thus one ends 

up with n6 = O or n6 = -1. 
4. Adjust the dimension, i.e. reduce nd to zero. 

The corresponding recurrence relations are derived easily from ( 6. 71). It 
is interesting to note that in (6.69) the master integral 1~,aux(1, O, 1, O) is 
cancelled from cf and 1~,aux(1, O, O, O) from cr Observe that, due to the 
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structure of the reduced polynomial (6.71), in addition to 163 also a master 
integral with n6 = -1, 163, has tobe introduced which, however, has the 
same coefficient function as h3· Observe also that, for C63 and C65, the master 
integrals h and 16 are needed, while for C64 and c66, the integrals 16 and 1f 
are necessary. 

Families B2, B3 and B4 are similar to the families A2, A3 and A4, re­
spectively, so that the corresponding coefficient functions are similarly con­
structed. 

The procedure described above was implemented in a MATHEMATICA pack­
age (14]. 

Let us now list all occurring master integrals in both cases A and B. 
They have been obtained with the help of the program package developed 
for the calculation performed in (9] where IBP recurrence relations have been 
'nonsystematically' solved. 

(i1rd/2)2 1r r(5/2- d/2)2 r(d/2- 3/2)4 

h = Q2+4c:v2 T(d- 3)2 , 

(i1rd/2)2 .fi T(2- d/2)T(5/2- d/2)T(d/2- 1)2 T(d/2- 3/2)2 
h= Q1+4c:v T(d- 3)T(d- 2) 

1 _ (· d/2)2 r(2- d/2)2 r(d/2- 1)4 

3- l7r Q4cT(d- 2)2 ' 

I = _ (· d/2) 2 Q2_4c:T(3- d)T(d/2 -1)3 

4 m r(3d/2 - 3) ' 

ls = (i1rd/2f 7r~::'Y2Ec [- :€- 4 + ( -24 + ~1r2) c + 0(c:2)] , 

h = (i7rd/2f VW~l-4c: 

2d-2 T(3- d)T(7 /2- d)T(d/2- 1)T(d- 5/2)2 

x T(2 - dj2)T(2d- 5) ' 

1 = _ (i7rd/2) 2 .;;ffQ2-4c: 2d-2 T(3- d) 2 T(d/2- 1)T(d- 2)2 
6 7r r(3/2 - d/2)r(2d- 4) ' 

h = ( i7rd/2) 2 VW~l-4c: 

T(7 /2- d)T(d/2- 1)2 T(d/2- 3/2)T(d- 5/2) 
x~~--~~~--~~~--~~~--~ 

Is = h, 
lg = h, 
B 1 

Il = 2h, 

r(d- 2)T(3d/2- 4) ' 

I B _ (· d/2) 2 7r2e-2"fEc 
2 - l7r Q1+4c:v 
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x [ -4ln2 + c (~1r2 - 16ln2- 4ln2 2) + O(c2)] , 

-s -
!6 = -!6' 

where Q = Fff. The fact that h = [g and !7 = Is can be seen immediately 
by a simple change of the loop momenta. Since h = ! 8 , we have in both 
cases one master integral less. So, in case A, we have eight master integrals, 

- ~ B h, ... , h and !6, and, in case B, ten master integrals !2, ... , h, [g, ! 6 , ! 1 

and If!, Only two of the master integrals are not known in terms of gamma 
functions. Their results are given in expansion in c up to c1. For example, they 
can be evaluated by the method of MB representation described in Chap. 4. 

Here are some examples of results for the coeffi.cient functions: 

FA(2, 2, 1, 1, 1, 1, 1) = c1h + c3[a + (c41 + c42)l4 + (c51 + c52)h 

+(c61 + c52)l6 

with 

with 

(i7rd/2)2 ( 2 4 2 16 368 2 ) 
= QB+4c:v2 3c + 3c 7f - 9 + 457f - 8((3) + O(c) ' 

2(d- 5)(d- 4) 8(d- 5)(d- 3)2 

CI = q6 ' C3 = (d- 4)q8v2 ' 

-3(d- 3)(3d- 16)(3d- 14)(3d- 10)(3d- 8) 
C41 = C42 = (d- 9)(d- 8)(d- 7)(d- 6)2(d- 4)2ql0v2 

x(5d3 - 93d2 + 588d -1264), 
-3(3d- 17)(3d- 13)(3d- 11) 

C51 = C52 = (d _ g)(d _ 7)qB , 

-32(2d- 13)(2d- 11)(2d- 9)(2d- 7)(2d- 5) 
C61 = C62 = (d- 9)(d- 7)(d- 6)(d- 4)q10v2 . 

B 2(d- 5)(d- 4) -4(d- 5)(d- 3)2 

el = q6 ' c3 = (d- 4)qBv2 ' 

3(d- 3)(3d- 16)(3d- 14)(3d- 10)(3d- 8) 
c41 = (d- 9)(d- 8)(d- 7)(d- 6) 2(d- 4)2q10v2 

X (7d3 - 117d2 + 654d- 1232), 

-6(d- 3)(3d- 16)(3d- 14)(3d- 10)(3d- 8) 
c42 = (d- 9)(d- 8)(d- 7)(d- 6)2(d- 4)2q10v2 
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X (d3 - 12d2 + 33d + 16), 
-3(3d- 17)(3d- 13)(3d -11) 

C53 = (d- 9)(d- 7)q8 ' 

4(2d- 7)(2d- 5) 
C63 = C64 =- (d- 9)(d- 7)(d- 6)(d- 4)q10v2 

X (15d4 - 304d3 + 2240d2 - 7093d + 8118) , 

4(2d- 7)(2d- 5)(d2 - 17d + 55) 
C65 = C66 = (d- 7)(d- 4)q10v2 ' 

-32(2d- 13)(2d- 11)(2d- 9)(2d- 7)(2d- 5) 
C67 = (d- 9)(d- 7)(d- 6)(d- 4)q10v2 ' 

-3(3d -17)(3d -13)(3d -11) 
Cg= (d-9)(d-7)q8 . 

FA(1, 1, 2, 1, 1, -1, 1) = c3fa + (c41 + C42)J4 + C62J6 

(i7rd/2)2 ( 1 3 ) 
= Q4+4e - 2c + 2 - 2((3) + O(c) ' 

2(d- 3) -3(3d- 10)(3d- 8)(d2 - 5d + 2) 
C3 = (d- 4)q4' C41 = 2(d- 6)(d- 5)(d- 4)2q6 ' 

3(d- 5)(d- 2)(3d- 10)(3d- 8) 
C42 = 2(d- 6)(d- 4)2q6 ' 

4(2d- 9)(2d- 7)(2d- 5) 
C62 = (d- 5)(d- 4)q6 . 

(d- 5)(d- 3) -3(3d- 10)(3d- 8)(d2 - 9d + 22) 
C3 = (d- 6)q4 ' C41 = 2(d- 6)2(d- 5)(d- 4)q6 ' 

3(3d- 10)(3d- 8)(d2 - 11d + 26) 
C42 = 2(d- 6)2(d- 4)q6 ' 

(2d- 11)(2d- 7)(2d- 5) 
C63 = (d- 6)(d- 5)q6 ' 

-(2d- 7)(2d- 5) (2d- 7)2(2d- 5) . 
C64 = (d- 6)(d- 5)q6 ' C65 = (d- 6)(d- 5)q6 ' 

-(2d- 7)(2d- 5)(4d -19) 
C66 = (d- 6)(d- 5)q6 . 
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6.5 Conclusion 

Let us observe that since a given problem of solving IBP relations is always 
reduced, in the present method, to the corresponding problem for vacuum 
Feynman integrals, it turns out that different initial problems can have the 
same vacuum 'image'. As it was demonstrated in [4], this property can be 
used when a solution of some reduction problem is known and another re­
duction problem has the same vacuum image with it. For example, solving 
IBP relations for the two-loop massless vertex diagrams (of Fig. 5.3, Fig. 3.13 
and a Mercedez-Benz type) can be reduced to solving IBP relations for the 
three-loop propagator diagrams that was done in [7] and implemented in [8]. 

The method of this chapter has a feature opposite to the method of shift­
ing dimension [15] discussed in Chap. 5. Indeed, the first point in the latter 
is to get rid of numerators, with the primary idea to simplify the situation. 
In contrast to this, the numerators play a crucial role in the present method: 
each irreducible numerator results in an integration over the corresponding x­
variable in the basic parametric representation. One more difference of these 
two methods is that master integrals with indices ai > 1 usually appear in a 
reduction with shifting dimension, while there are no such master integrals 
in the present method. (The same feature holds for the modern realization of 
the method of differential equations tobe discussed in the next chapter.) On 
the other hand, shifting dimension is also an intrinsic feature of the present 
method because the dimension d enters the basic representation in a very 
simple way and it is necessary to put the shift of dimension under control 
when solving the auxiliary IBP relations. 

The method of this chapter was successfully applied, due to the reduction 
presented in Sect. 6.3, in [10], where various two-loop diagrams associated 
with the two-loop quark potential were necessary. A breakthrough in another 
direction- the evaluation of general four-loop propagator diagrams (i.e. one 
loop above [7]!) was also achieved with its help [3]. Another branch of this 
method was, however, applied there. It is based on an expansion at large 
d which is somehow introduced when constructing the coefficient function 
of the master integrals starting from (6.9). Unfortunately, no details of this 
branch have been published up to now. 

This method is now at the level of experimental mathematics, as well 
as many other techniques discussed in this book. One tries to follow the 
prescriptions formulated in this chapter and, hopefully, arrives at a solution of 
a given reduction problem. One always believes in the rational dependence of 
the coefficient functions on everything, and this is one of possible consistency 
checks. The validity of the reduction so obtained can be checked by explicit 
evaluation of various Feynman integrals of the given class. On the other 
hand, one can check that the initial IBP equations are satisfied for the so 
constructed coefficient functions. Anyway, after successful checks, one can 
cond ude that the obtained solution of the IBP relations is valid and apply it 
for practica! purposes. 
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I hope, however, that this method can be put on a solid mathematical 
ground and, moreover, some interesting mathematics is behind it. 
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7 Evaluation by Differential Equations 

The method of differential equations (DE) suggested in [20] and developed 
in [23] and later works (see references below) is a method of evaluating in­
dividual Feynman integrals. We have agreed that, at the present level of 
complexity of unsolved important problems, it looks unavoidable to decom­
pose the problem of evaluating Feynman integrals of a given family into the 
reduction to some master integrals and the problem of evaluating these mas­
ter integrals. Thus, this basic method is oriented at the evaluation of the 
master integrals. Moreover, in contrast to other methods of evaluating indi­
vidual Feynman integrals, it is assumed within this method that a solution 
of the reduction problem is already known. 

The idea is to take some derivatives of a given master integral with respect 
to kinematical invariants and masses. Then the result of this differentiation 
is written in terms of Feynman integrals of the given family and, according to 
the known reduction, in terms of the master integrals. Therefore, one obtains 
a system of differential equations for the master integrals which can be solved 
with appropriate boundary conditions. 

To illustrate basic recipes of this method we shall consider only four ex­
amples. The fact is that, for complicated examples, all the calculations can 
be done only on a computer and intermediate formulae usually happen to be 
very cumbersome. 

We shall consider typical one-loop examples in Sect. 7.1 and a two-loop 
characteristic example in Sect. 7.2. The status of the method, i.e. its perspec­
tives and open problems will be discussed in Sect. 7.3. together with a brief 
review of its applications. 

7.1 One-Loop Examples 

Of course, we start with our favourite example. 

Example 7.1. One-loop propagator diagram corresponding to Fig. 1.1. 

After solving the corresponding reduction problem in Chaps. 5 and 6, we 
know that there are two master integrals, F(1, 1) = h and F(1, O) = h. 
The second one is a simple one-scale integral given by the right-hand side of 
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(5.6). We have started to evaluate hin Chap. 1, by differentiating in m2 and 
arrived at the equation (1.20) for f(m2) = F(1, 1). Tobe very pedantic, let 
us rewrite it in terms of our true master integrals, 

â 2 1 [ 2 1-c: ] -8 2 f(m ) = 2 2 (1- 2c:)f(m ) - - 2 12 , 
m m -q m 

(7.1) 

although this does not make an essential difference here. 
Let us turn to the new function by f(m2 ) = i7l'd/2(m2)-e:y(m2). We obtain 

the following differential equation for it: 

1 m2(1- c:)- c:q2 r(c:) 
y - y - - --::---'--'---::-m2(m2 _ q2) - m2 _ q2 · (7.2) 

It can be solved by the method of the variation of the constant. The general 
solution to the corresponding homogeneous equation, with a zero on the 
right-hand side of (7.2), is 

y(m2) = e(m2- q2)1-2e:(m2)-e:. (7.3) 

Then we make e = e(m2) dependent on m2, solve this equation and obtain 

[ {m2 dx x-e: l 
f(m2) = i7l'd/2(m2- q2)1-2e: -r(c:) la (x- q2)2-2e: +el , (7.4) 

where the constant el can be determined from the boundary value /(0) which 
is a massless one-loop diagram evaluated by means of (A.7). This gives 

f(m2) = -i7l'd/2(m2- q2)1-2e: r(c:) 

[ rm2 dx x-e: r(l- c:)2 l 
x la (x- q2)2-2e: - F(2- 2c:)( -q2)1-e: . (7.5) 

If we turn to expansion in c: and take terms up to c:0 into account we shall 
reproduce ( 1. 7). 

The next example is also an old one. 

Example 7.2. The triangle diagram of Fig. 3.4. 

The reduction problem was solved in Examples 5.4 and 6. 7. The only 
master integral that is not expressed in terms of gamma functions for general 
dis F(1, 1, 1) = 11 = f(m2 ). We have already calculated it in Examples 3.2 
and 4.2. Let us now do this by DE. As in the previous example, we take the 
derivative a!2 f(m 2 ) and obtain F(1, 1, 2) for which we apply the relation 
(6.54), according to our reduction procedure. Let us again, as above, confine 
ourselves to the evaluation up to the finite part in c:. Then the first term on 
the right-hand side of (6.54) is irrelevant because it is proportional to c:. So, 
we obtain, at c: = O, 

(7.6) 
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Thus, the evaluation of h at d = 4 reduces to taking an integral of the right­
hand side of (7.6). The boundary condition is simple: this function vanishes 
in the large mass limit. This can be seen, for example, by examining this 
behaviour using the MB representation ( 4. 7) as explained in Sect. 4.8. (To 
do this, one takes a residue at the point z = -1.) Consequently, the known 
result (3.21) is once again reproduced. 

If one needs to evaluate h at general c, or obtain higher terms of expansion 
in E by DE, one can start from (6.54) and solve the so-obtained differential 
equation, applying the method of the variation of the constant quite similarly 
to Example 7.1. 

Let us now turn, following [8], to 

Example 7.3. The on-shell box diagram with two massive and two massless 
lines shown in Fig. 6.2, with PÎ = ... = p~ = m2. 

These are functions of the three variables s, t and m 2 . The following com­
binations naturally arise in the problem: 

v4m2-s-Fs v4m2-t-R 
X= v4m2 - s + Fs' y = -v-;=.4=m=;=;;2=-=t=-+-R--;::::-=t o 

(7.7) 

We again assume that we know a solution of the corresponding reduction 
problem. It was briefly described in Example 6.9. The reduction based on 
the algorithm of [16, 21, 22] which was discussed in Sect. 5.4 also leads [8] to 
the same family of the master integrals shown in Fig. 6.3: h = F(1, 1, 1, 1), 
12 = F(1, O, 1, 1) = F(O, 1, 1, 1), h1 = F(1, 1, O, 0), h2 = F(O, O, 1, 1) and 
14 = F(1, O, O, O) = F(O, 1, O, 0), where 12 and 14 are present in two copies. 

Suppose that we want to evaluate h by DE. Therefore, we assume that 
all the master integrals with the number of lines less than four are already 
known. The integrals 14 and h 2 are given by (2.44) and (3.8). The value ofthe 
master integral 131 = F(1, 1, O, O) is very well-known and can be obtained by 
various methods. Tobe self-consistent, let us observe that one can apply MB 
representation (4.28), set a1 = a2 = 1,a3 =O and evaluate this integral by 
closing the integration contour and summing up the resulting series. Within 
the method of DE, it is important to present this and later results in terms 
of the variables (7.7): 

i7l'd/2e-rEc [ 1 ( 1 1 ) ] 
h1= (m2)c ~+2-2 2- 1 -x Ho(x) +O(c). (7.8) 

Here and in subsequent formulae, usual logarithms and polylogarithms are 
written in terms of HPL [25] - see Appendix B. Moreover, it is necessary 
to rewrite the quantity q2 in (3.8) in terms of these variables, i.e. make the 
substitution q2 ----7 t ----7 -(1-y) 2 /(m 2 y) in the factor ( -q2 )E and then expand 
it in c. 

Finally, we need 12 which can be obtained using ( 4.29) at a1 = a2 = a4 = 1 
and evaluating this integral by closing the integration contour to the right. 
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In [8], this result was obtained by DE. It is also naturally written in terms 
of the variables (7.7): 

irr2 
[ 1 1 ] [2 2 ] h = 2m 2 1 + y - 1 _ y 31r + Ho,o(Y) + 2Ho,1 (y) + O(s) . (7.9) 

Observe that higher terms of this and other expansions in € can be found 
in [8]. 

The starting point is to take derivatives in s or t and write them down as 
a linear combination of integrals of the given class. In order to do this, one 
observes that taking derivatives in the external momenta reduces to taking 
derivatives in s and t: 

6 

Pi'_!,_ = L Pi' OSr _!_,_' 
Opj r=1 Opj OSr 

(7.10) 

where si = pr, i = 1, 2, 3, 4, are invariants with the on-shell condition, 
Si = m2, and ss = s, s5 = t. This linear system of six equations can easily 
be solved, i.e. the derivatives o 1 osr can be expressed linearly in terms of the 
derivatives Pi ·o 1 Opj with i, j = 1, 2, 3 - see [8]. One can use here the fol­
lowing expressions [12] which are equivalent to that of [8] due to the on-shell 
conditions: 

o 1[ s ] o s- = - P1 + P2 - (p2 - P3) ·- , os 2 4m2 - s - t op2 (7.11) 

o 1[ t ] o t- = - P3 - P1 - (p2 - P3) ·- · 
ot 2 4m2 - s - t OP3 

(7.12) 

So, we take partial derivatives of It = f(s, t) with respect to s and t, using 
(7.11) and (7.12), and obtain, on the right-hand side, a linear combination of 
integrals corresponding to Fig. 6.2. Every integral can be written in terms of 
the master integrals, according to the reduction procedure, and we obtain 

of_-~(~+ d- s _ d- 4 ) f + 91 
os - 2 s 4m2 - s 4m2 - s - t ' 

(7.13) 

of 1 (d-6 d-4 ) 
ot = 2 -t- + 4m2 - s- t f + 92 ' 

(7.14) 

where 

[ 1 4m2 - t) 1 l 91 = - d- 4 -- - + 12 ( ) 4m2s 4m2t(4m2- s) t(4m2- s- t) 

2(d- 3) [ 1 1 1 lI + + - 31 t (4m2 - s)2 t(4m2 - s) t(4m2 - s- t) 

- -+ h2 d- 3 [1 1 l 
2m2 - t s 4m2 - s 
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d-2[ 1 1 1 ]1 +-- + - 4 m2t (4m2- s)2 t(4m2- s) t(4m2- s- t) ' 
(7.15) 

9' ~ - 4!;! s [ ~ + 4m2 ~ s- t] 1' 

2(d-3) [1 1 ]1 - - + 31 
( 4m2 - s )2 t 4m2 - s - t 

- m2 (;,:, ~ s)' [ ~ + 4m2 ~ s- t]!, (7.16) 

It is sufficient to use one of the two equations to evaluate f(s, t). Let it 
be (7.13). Then (7.14) can be used for a non-trivial check. One needs also 
a boundary condition when solving (7.13): it can be obtained using the fact 
that the function f(s, t) is regular at s = O. Multiplying (7.13) by s and 
taking the limit s --+ O one obtains 

d-4 d-3 
f(O, t) = - 2m 2 12 + m 2t 132 . (7.17) 

Equation (7.13) can be solved in a Laurent expansion in E, 

f(s, t) = :2: li(s, t)Ej . 
j=-1 

(7.18) 

As a result, one obtains a set of nested differential equations from (7.13), 

dfJ 1 (1 1 ) ds = -2 -; + 4m2 - s li+ hj ' (7.19) 

where the functions hj involve, in addition to the corresponding term of the 
expansion of the function gt, a piece coming from IJ-I· These equations can 
be solved by the method of the variation of the constant. 

The homogeneous equation corresponding to (7.19), which is the same for 
all li, takes the following form in the new variables, x and y: 

( i_-.!, + _1_- _1_) f(o)(x) =O' 
dx x 1+x 1-x 

(7.20) 

with the solution 

! (O)( ) - X 
x- (1-x)(1+x) 

(7.21) 

Then the solution of the j-th differential equation in (7.19) can be written 
as 

! ·( ) - f(o)( ) [A· /d hj(x,y)] 
J X, y - X J + X f(O)(x) ' (7.22) 

where Aj is a constant which can be fixed by imposing the boundary condition 
(7.17) expanded in E. 
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Observe that the combinations of the kinematical invariants involved on 
the right-hand side of (7.13) and (7.15) and, therefore, present in h1 can be 
represented as 

4m2- s = m2(1 +x)2 
X ' 

4m2- s- t = m2 (x + y)(1 + xy) . 
xy 

(7.23) 

After that the integration in (7.22), order by order in c:, becomes straight­
forward. All the quantities are prepared in such a form that the integration 
is taken in terms of HPL of the next level, also of the arguments x and y. 
So, one arrives at (4.27). However, keeping in mind that this very master 
integral can be needed when evaluating other master integrals in two loops, 
also by the method of DE, it is reasonable to present it in the same form a..'l 
its ingredients were presented: 

i?Td/2e-'"YEc [ 1 1 ] [ 1 1 ] 
h = (m2)2+e: 1 + x - 1- x 1- y - (1- y)2 Ho(x) 

x [~ + Ho(Y) + 2Hl(Y)] + O(c:). (7.24) 

Further terms of this expansion in c: can be found in [8]. 

7.2 Two-Loop Example 

We turn again to Feynman integrals considered in Examples 4.10 and 6.10. 

Example 7.4. Sunset diagram of Fig. 3.12 with one zero mass and two equal 
non-zero masses at a general value of the external momentum squared. 

The general Feynman integral ofthis class is given by (6.57), so that there 
are two irreducible numerators in the problem. According to Example 6.10, 
we know a solution of the reduction problem, and that there are three master 
integrals, 11 = F(1, 1, O, O, 1), I 1 = F(1, 1, -1, O, 1) and 12 = F(1, 1, O, O, 0). 
The last of them is the square of the massive tadpole given by the right-hand 
side of (2.44). Let us now evaluate h and I 1 by DE. For convenience, let us 
use, instead of I1, the integral with a1 = a2 = a5 = 1 and the numerator 
equal to the product of the momenta (flowing in the same direction) of the 
massless and one of the massive lines, 

- 1(2 - ) Ir=2 qfr-h-h. (7.25) 

We start with taking derivatives. We use the homogeneity of the integrals 
h and 11 with respect to q2 and m2, with the help of Euler's theorem, set 
q2 = s and obtain 

sf'(s) = (1- 2c:)f(s)- 8~2 f(s), (7.26) 

- - â -
sf'(s) = 2(1- c:)/'(s)- âm2 f(s), (7.27) 
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where f(s) =hand j(s) = 11 , and we have already put m2 = 1 after differ­
entiating with respect to the mass which results in indices equal to 2 instead 
of 1 on one of the massive lines. We apply (6.60)-(6.62) to these integrals with 
the indices equal to two in order to obtain only the master integrals on the 
right-hand side. Therefore, we arrive at the following differential equations 
for the functions f ( s) and j ( s): 

1 
sf'(s) = 8 _ 4 [(3s- 2- 4c:(s- 1)) f(s) 

+4(c:- 1)(h(s) + 3j(s))J , (7.28) 

sf'(s) = ~(E- 1) [h(s)- sf(s) + 2j(s)] , (7.29) 

where h originates from h. 
As in the previous example, it is convenient to turn to the new variable 

x given by (7.7), or, vice versa, 

(1- x) 2 
s = - ..:....__:..._ 

X 

Then we obtain the following equations: 

f'(x) = x(x21_ 1) [(3- 4x + 3x2 - 4c:(1- x + x2)) f(x) 

-4(c: -1)x(h(x) + 3j(x))J , 

- 1 
f'(x) = 2x2(x- 1) (c:- 1)(1 + x) 

x [(x- 1)2 f(x) + x(h(x) + 2j(x))J 

(7.30) 

(7.31) 

(7.32) 

The second function j ( x) can be eliminated from this system in order to 
obtain a separate equation for the first one: 

! "( ) (3c:(x- 1)2 + 6x- 2) !'( ) 
x + x(x2- 1) x 

(2c:- 1)(2x + c:(1- 4x + x2)) f( ) 2(c:- 1)2 h( ) = 
+ x 2 (x- 1)2 x + x(x- 1)2 x 0 · (7.33) 

Then we turn to solving this equation in expansion in c:, as in the previous 
examples, 

!( ) _ f-2(x) f-1(x) f ( ) 
X - 2 + + JO X + .... 

E E 
(7.34) 

As usual, we need a general solution of the corresponding homogeneous equa­
tion at E = 0: 

11 ( ) 2 ( 3x - 1) , ( ) 2 ( 
f x + x(x2- 1/ x - x(x- 1)2 f x) =O. (7.35) 
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Two independent solutions are 

1- x +x2 
cf>t(x) = (x- 1)2 ' 

"' ( ) = 4x(1- x + x2)H0 (x)- 1 + 7x- 3x2 - x3 + x4 

'1'2 x x(x- 1)2 ' 

with the Wronskian 

(x + 1)4 

w(x) = x2(x- 1)2 . 

(7.36) 

(7.37) 

(7.38) 

The solutions are presented in a form similar to the previous example, in 
terms of HPL. 

The equation for f _2 has the inhomogeneous term 

2 
r -2(x) =- x(x- 1)2 (7.39) 

Its solution is written as 

f-2(x) = [el- j dx c/>2 (~~;(x)] cf>1 (x) 

[ Jd cf>t(x)r-2(x)]"' ( ) 
+ C2 + X w(x) '1'2 X , (7.40) 

where c1 and c2 are integration constants. We obtain 

f-2(x) = ( 1 )2 [x(ct(1- x + x2)- x)- c2(1- 7x + 3x2 + x3 - x4 ) 
xx-1 

+4c2x(1- x + x2)Ho(x)] . (7.41) 

The integration constants are evaluated from the regular behaviour of the 
solution at x ---+O so that 1/x and JX in the asymptotic expansion of (7.41) 
are forbidden. This gives the values c1 = 1 and c2 = O, with 

f-2(x) = 1. 

The inhomogeneous term for h ( x) is 

1- 8x + x 2 

r -t(x) = x2(x- 1)2 

Proceeding in a similar way we obtain the following solution: 

1 [ 2 3 ( 2) f-t(x)= 2x(x- 1)2 1-6x-x -2x +2c1x 1-x+x 

(7.42) 

(7.43) 

-2c2(1- 7x + 3x2 + x3 - x4 ) + 2(4c2 -1)x(1- x + x2)Ho(x)] (7.44) 

The regularity conditionat x =O gives c1 = 13/4 and c2 = 1/4, with 

f-t(x) = 1 + 10x + x2 (7.45) 
4x 
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Finally, for fo, we have the inhomogeneous term 

( ) __ 3- 9x + 2(48 + 1r2)x2 - 9x3 + 3x4 ( 7.46) 
ro x - 6x3(x- 1)2 

Similarly, we obtain the following solution: 

1 
fo(x) = 24x(x _ 1)2 [(x- 1)2(39 + 66x + 47r2x + 39x2) 

+12(1- 4x + 4x3 - x4 )Ho(x)- 48x(1- x + x2 )Ho,o(x)] . (7.47) 

The second function 

!- _ f-2(x) f-1(x) i ( ) 
- 2 + + JO X + ... 

E: E: 
(7.48) 

can be now obtained in a pure algebraic way, with the following results: 

- 1 +x2 
f-2(x) = -~, 

!- ( ) = _ 1 + llx + llx3 + x4 

-1 x 24x2 , 

]o(x) = 48x2(~ -1)2 [-(x -1)2 ((27r2 -ll)x(1 + x2) 

+13(1 + x4 ) + 44x2 ) -4 (1- 9x(1- x2)(1- x + x2)- x6 ) Ho(x) 

+24x(1- 2x + 4x2 - 2x3 + x4 )Ho,o(x)] . (7.49) 

The corresponding result for the master integrall1 can be obtained easily 
from (7.42), (7.44), (7.47) and (7.49), using (7.25). It can be evaluated also 
using the onefold MB representation (4.76) (with another choice of the nu­
merator). These results are in agreement with [11, 13], where another choice 
of the master integrals was used ( with higher powers of the propagators, 
instead of integrals with numerators). 

7.3 Conclusion 

At first sight, the method of DE cannot be applied to integrals dependent on 
one scale since the dependence on the only scale parameter is trivial and can 
be obtained immediately by power counting. However, one can introduce, for 
a one-scale integral, an additional scale parameter, apply the corresponding 
differential equation, get the boundary condition at a different, more suitable 
point and then return to the single scale value. An example of this strategy 
can be found in [5]. 

I admit that it might seem, from the previous examples1, that the method 
of DE is not optimal. In particular, the results for Example 7.4 can be, prob­
ably, derived by MB representation in a simpler way. However, the method of 

1Simple instructive examples can be found also in the review [1]. 
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DE is indeed very powerful and, in some situations, the very best one. An im­
portant feature of the strategy outlined above is that it can straightforwardly 
be generalized to more complicated classes of multiloop Feynman integrals, 
with a computer implementation of all the steps. The method of DE, coupled 
with solving the reduction problem by use of IBP and LI relations by means of 
the algorithm of [16,21,22], has become, by now, a powerful industry for ob­
taining results for various phenomenologically important classes of Feynman 
integrals- see, e.g., [2, 3, 6-9,15, 27]. The method of DE was also successfully 
applied [10, 24] for the analytical evaluation of various (generalized) sunset 
diagrams. 2 

However, the first impressive example of this technique was evaluating 
master integrals by DE for the massless double boxes with one leg off-shell, 
PÎ -=J. O, p§ = p~ = p~ = O, performed in [16]. Another important feature of 
the method of DE is that it provides a natural solution in the situation where 
results obtained can be hardly expressible in terms of known special functions 
of mathematical physics. The very form of results obtained when applying 
DE, by means of iterative integrations, naturally leads, in such a situation, 
to the idea to introduce new functions which would be adequate to express 
the results for the given class of the integrals. This is how two-dimensional 
HPL (2dHPL) [16], new special functions of mathematical physics introduced 
and studied by physicists, have appeared. They are natural generalizations 
of HPL to the case of functions of two variables. To define them [16] one 
uses, instead of the functions (B.lO), the following set of functions of the two 
variables x and y labelled by the four indices O, -1, -y and -1/y: 

1 1 1 
g(O;x) =;;, g(-1;x) = 1 +x, g(-y;x) = x+y, (7.50) 

1 
g(-1/y;x) = x+ 1/y (7.51) 

Then 2dHPLs are defined as the set of functions generated by repeated inte­
grations with these functions similarly to (B.9). 

Some basic properties of these new functions were studied and packages 
for the numerica! evaluation were provided [17, 18]. These are 2dHPL that 
have turned out to be adequate functions to express results for the double 
boxes with one leg off shell [16]. 

This strategy of inventing new special functions, in situations where one 
fails to express results in terms of the known functions3 , has already become 

2 For generalized sunset diagrams (i.e. with an arbitrary number of lines between 
two externa! vertices), a successful alternative technique is based on the coordinate 
space representation, where any such diagram is just a product of the propagators in 
coordinate space given by a Bessel function - see ( 2.16). Then, in order to go back to 
momentum space, it is necessary to evaluate a one-dimensional (but complicated) 
integral of this product of the Bessel functions with one more Bessel function -
see [19] and references therein. 

3 0f course, we already consider HPL and 2dHPL as known functions. 
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standard. In 2004, at least two types of new functions were introduced: gen­
eralized HPL in [3] which were necessary to evaluate some two-loop massive 
Feynman diagrams and some generalized 2dHPL [7] which were necessary to 
evaluate two-loop massless diagrams with three off-shelllegs. 

Pragmatically, the introduction of new functions is just a way to param­
eterize the results obtained. Then one has at least a definite procedure for 
the numerica! evaluation of any of the calculated integrals with a reasonable 
accuracy. Mathematically, if one introduces a new class of functions, there is 
an implicit obligation to describe their properties and present procedures for 
their numerica! evaluation. 

Of course, it is natural to try to represent results in known functions. Ob­
serve that, in the above examples where the new functions were introduced, 
at least some of the new functions can be expressed in terms of the standard 
special functions. Consider, for example, the generalized HPL of various types 
which were defined in [3] similarly to the HPL, with other basic functions, in 
particular 1/ Jt(t + 4). Observe that the new generalized HPL 

H(-r, -1;x) = 1x dt 

o Jt(t+4) 
(7.52) 

equals 

1 . ( 3) . ( ) 1 2 7r2 3 L12 -y - L12 -y + 2 ln y - 18 , (7.53) 

where y = ( y'4 + x- y'x)j(\/4 + x- y'x). 
For more complicated generalized HPL, similar representations can hardly 

be found. Still nobody has proven a no go theorem for this situation. More­
over, it is not clear how to take into account all possible choices of special 
combinations of the initial variables such as the y(x) above. Anyway, physi­
cists are naturally impatient to report on their results and apply them for 
the evaluation of physical quantities, so that, I hope, mathematicians will 
not blame them for this, keeping in mind that the mathematicians them­
selves seem not to bother about these interesting mathematical problems at 
the moment. 

Let us now remember about the evaluation of the massive on-shell QED­
type double boxes of Figs. (4.9) and (4.10). Two of our four examples were 
in fact oriented at this problem: its one-loop prototype and the sunset dia­
grams that can be obtained from the massive double boxes- see Sect. 4.5. 
In [12], it was reported about the solution of the reduction problem, by an 
authors' implementation of the algorithm of [16, 21, 22]. The number of mas­
ter integrals is 22 in the first planar case, 35 in the second planar case, and 
47 in the non-planar case. The diagrams with three reduced lines and some 
of the diagrams with two reduced lines have been calculated by DE [12]. 
When applying the method of DE to diagrams with six and seven lines, se­
rious problems arise because differential equations of third order and higher 
are encountered there. One may still hope to salve such equations or choose 
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another strategy. This could be the method of MB representation which was 
used to evaluate the most complicated planar master integrals - see Exam­
ple 4.9 and [26]. So, hopefully, the problem of the evaluation of the massive 
on-shell double boxes will be completely solved in the nearest future, as well 
as other phenomenologically important calculational problems at least at the 
two-loop level. 
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A Tables 

A.l Table of Integrals 

Each Feynman integral presented here can be evaluated straightforwardly by 
use of alpha or Feynman parameters. Results are presented for the 'Euclidean' 
dependence, -k2 , of the denominators, which is more natural when the pow­
ers of propagators are general complex numbers. As usual, -k2 is understood 
in the sense of -k2 - iO, etc. Moreover, denominators with a linear depen­
dence on k are also understood in this sense, e.g. 2p · k --+ 2p · k- iO, although 
sometimes this iO dependence is explicitly indicated to avoid misunderstand­
ing. 

f ddk _ . d/2 r(>. + c:- 2) 1 
( -k2 + m2f' - l1f r(>.) (m2).A+e:-2 . (A.l) 

f ddk ka' ... ka2n =i7rd/2T(>.-n+c:-2)(-l)ng~' ... azn 

( -k2 + m2).A 2n r(>.) (m2y-n+e:-2 ' 
(A.2) 

where g~' . ..c>zn = ga,az ... ga 2 n_,azn + ... (with (2n-1)!! terms in the sum) is 
a combination symmetrical with respect to the permutation of any pair of in­
dices. If the number of monomials in the numerator is odd, the corresponding 
integral is zero. 

f ddk (2l·k)2n 
(-k2 +m2f' 

=i7rd/2(-l)n(2n-l)!!r(>.-n+c:-2) (l2)n (A.3) 
r(>.) (m2).A-n+e:-2 

(A.5) 
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J ddk 

( -k2)>'·1 [-(q- k)2]-'2 

= i1rd/2 F(2- c- A1)F(2- c- A2) F(A1 + A2 + c- 2) (A. 7) 
r(AI)F(A2 )r(4- A1 - A2 - 2c) ( -q2)A1+-'2+e:~2 · 

Let k(o:l···o:n) = ko:1 ... ko:n + ... be traceless with respect to any pair of 
indices, i.e. 9o:io:jk(o: 1 ... o:n) =O~ see (A.41b) below. Then 

(A.8) 

where 

AT(Al, A2; n) = F(A1 +A( +)c ( 2~Ft + 2- c- A1)F(2 -) c- A2) . 
r A1 r A2 r 4 + n - A1 - A2 - 2c 

(A.9) 

For pure monomials, the corresponding formula has one more finite sum-
mation: 

J d kO:l • • • kO:n 

d k(-k2)-'1[-(q-k)2]-'2 

iJrd/2 [n/2] 1 
= (-q2)-'1+-'2+E~2 ~ ANT(Al,A2;r,n)2r(q2r{[g]"[qt~2r}o:l ... o:"' 

(A.lO) 

where 

ANT(Al, A2; r, n) 
F(A1 + A2 + c- 2- r)F(n + 2- c- A1- r)F(2- c- A2 + r) 

F(Al)F(A2)F(4 + n- A1- A2- 2c) 

(A.ll) 

and {[gnqJn~2r}o: 1 ... o:n is symmetric in its indices and is composed of the 
metric tensor and the vector q. 

d d k = ...,-~,---,..-.,------,------;:-J (2l· k)n iJrd/2 

( -k2)-'1 [- ( q - k )2]-'2 ( -q2)-'1 +-'2+e:~2 

[n/2] 1 

X L ANT(Al, A2; r, n) '( ~ 2 )' (q2 r(l2 r(2q·l)n~ 2r' r. n r. 
r=O 

(A.12) 
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J ddk 

( -k2f" ( -k2 + 2p·k)>'2 

. d/2 F()q + A2 + E- 2)F( -2>.1 - A2 - 2c + 4) 1 
- 17r 
- F(A2)F( -A1 - A2 - 2E + 4) (p2f'' +>-2+c:-2 . 

(A.13) 

where 

B (>. >. . ) = r(>.1 + >.2 + E- 2)F( -2>.1 - >.2 + n- 2c + 4) (A.l5) 
T 1' 2' n F(>.2)F( -A1- A2 + n- 2c + 4) . 

J dd k ka' ... kan = ind/2 
( -k2).A' ( -k2 + 2p·k).A2 (p2).A,+.Adc:-2 

[n/2] (-l)r 
x 2::: BNT(>.1, >.2; r, n)~(p2r {[gr[pJn-2r}a, ... an , (A.l6) 

r=O 

where 

BNT(>.1, >.2; r, n) 
F(A1 + A2 + E- 2- r)F( -2).1 - A2 + n- 2c + 4) 

r(>.2)r( ->.1 - >.2 + n- 2c + 4) 
(A.l7) 

d d k = -:--;:-:--;----:--;--:----;:-J (2l· k)n ind/2 

( -k2).A' ( -k2 + 2p· k )>'2 ( q2).A, +>-2+c:-2 

[n/2] l 

X 2::: BNT(A1, A2; r, n)( -lr l( ~ )l (p2r(l2r(2p·l)n-2r. (A.18) 
r. n 2r. 

r=O 

and 
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Jddk (p·k)bl(q·k)b2 
( -k2)A1 ( -k2 + 2q· k)A2 

(p2)bl/2 
= i7rd/2 (q2)>.1+>.2+E-2-bl/2-b2Bpq(A1,)..2;bl,b2)' (A.20) 

for even b1 ( and are equal to zero for odd b1 ), where 

Bpq(.Al, .A2; b1, b2) 

bl/2+[b2/2] ( -lt bl!b2! 
= L -----;p:- (bl/2)!(r _ bl/2)! BNT(.Al, .A2; r, b1 + b2) . (A.21) 

r=b1 /2 

J ddk 

(-k2 + m2)A1(2p·k)A2 

i7rd/2 F(.A2/2)F(.Al + .A2/2 + c- 2) 
(p2)A2/2(m2)Al +>.2/2+c-2 2F(.A1)F(.A2) 

(A.22) 

d d k -:---::-------:,..,...,---,-------,-,:---J k(al, ... ,nn) 

( -k2 + m2)Al (2p·k)A2 

. d/2 F((.A2 + n)/2) F(.A1 + (>.2- n)/2 + c- 2) p(alo ... ,nn) 

= l1l" 2F(.A1)F(.A2) (m2)>.1+(>.2-n)/2+E-2 (p2)(>.2+n)/2 . 

(A.23) 

i7rd/2 F(.A1 + >.2 + c - 2)F(2.Al + >.2 + 2c - 4) 
(p2)Al +>.2+c-2 F()..1)F(2)..1 + 2)..2 + 2c- 4) 

(A.24) 
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J ddk 

(-k2)Al[-(q- k)2J>'2(-2v·k- i0)>'3 

= ind/2 r( -Al- A3/2- E + 2)F( -A2- A3/2- E + 2) 
F( -Al - A2 - A3 - 2E + 4) 

F(Al + A2 + A3/2 + E- 2)F(A3/2) 
x 2F(A1 )F(A2)F(A3)( -q2)Al +.\2+.\3/2+c-2( v2)>,3/2 · (A.27) 

Let PÎ = p§ = O, q = Pl - P2. Then 

J ddk 

( -k2 + 2pl·kf'l ( -k2 + 2p2 ·k).\2( -k2).\3 

= ind/2 r( -Al - A3 - E + 2)r( -A2 - A3 - E + 2) 
F(AI)F(A2)F( -Al - A2 - A3 - 2E + 4) 

F(Al + A2 + A3 + E- 2) 
X ----'-:---::-:-:--...,...,.-...,...,.--,-----"--'-

( -q2).\1 +.\2+.\3+c-2 ' 

J ddk 

(2p1 · k + m2).\1 (2p2 · k + m2)A2 ( -k2)A3 

(A.28) 

= ind/2 F(Al + A3 + E- 2)F(A2 + A3 + E- 2)F( -A3 - E + 2) (A.32) 
F(A1 )F(A2)F(A3)( -q2)-.\rt:+2(m2).\1 +.\2+2.\3+2t:-4 

Let PÎ =O, p~ = -m2 , q = Pl- P2· Then 

J ddk . d/2 F(A2 + A3 + E- 2) 
(2p1 ·k).\1 ( -k2 + 2p2 ·k + m2).\2 ( -k2).\3 = 17r (m2).\2+.\3+t:-2 

r( -Al - A3 - E + 2)r( -A2 - E + 2) (A.33) 
x F(A2)F(A3)F( -Al - A2- A3- 2E + 4)( -q2).\1 ' 
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J ddk 

(2p1 ·k)At ( -k2 + 2p2 ·k _ m2)A2 ( -k2)A3 ( -q2 _ 2pl ·k)A4 

= i7rd/2 F(A2 + A3 + c - 2) 
(m2)>.2+>.3+e:-2 

F( -A1 - A3- c + 2)F( -A2 - A4 - c + 2) (A.34) 
x F(A2)F(A3)F( -Al - A2 - A3 - A4- 2c + 4)( -q2)>.1 +>.4 · 

Let P 2 = M 2, p2 =O, (P- p)2 =O. Then 

J ddk 

( -k2 + 2P·k)At ( -k2 + 2p·k)A2 ( -k2)>.3 

= Î7fd/2F( -Al- A2- 2A3- 2c + 4)F(Al + A2 + A3 + c- 2) 
F(A1)F( -Al- A2- A3- 2c + 4) 

F( -A2- A3- c + 2) 
X F(-A3 - c + 2)(M2)>.t+A2+>.3+e:-2 . (A.35) 

Let PI =O, p~ = m2, Q2 = 2pl ·p2. Then 

J ddk 

(2pl ·k)At ( -k2 + 2p2 ·k)A2 ( -k2)A3 (Q2 _ 2pl ·k)A4 

= i7fd/2 F(A3 - A4)F( -Al - A2 - 2A3 - 2c + 4) 
F(A2)F(A3)F( -Al - A2 - A3 - A4 - 2c + 4) 

X F(A2 + A3 + c- 2) (A.36) 
( Q2)At +>.4 (m2)>.2+A3+e:-2 ' 

J ddk Î7fd/2 
(2p1 ·k)At ( -k2 + 2p2 ·k)A2 ( -k2)>.3 - (Q2)At (m2)>.2+>.3+e:-2 

x F(A2 + A3 + E:- 2)F( -Al - A2 - 2A3 - 2c + 4) . (A.37) 
F(A2)F( -Al - A2 - A3 - 2c + 4) 

The following integrals are related to two-loop diagrams: 

!! ddkddl 

( -k2 + m2)>.t [-(k + l)2]>.2( _p + m2)>.3 

_ (· d/2) 2 F(Al + A2 + c- 2)F(A2 + A3 + c- 2)F(2- c- A2) 
- l7f F(A1)F(A3) 

F(A1 + A2 + A3 + 2c- 4) 
X F(Al + 2A2 + A3 + 2c- 4)F(2- c)(m2)>.t+>.2+>.3+2e:-4 ' (A.3S) 

(A.39) 
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This is the (inverse) Fourier transformation of ( -q2 - io)-.x in d dimen­
sions: 

1 J d e-ixoq iF(d/2- .X) 1 
(21T")d d q ( -q2 - iO)>- = 4>-1T"d/2 F(.X) ( -x2 + iO)d/2-.X o (Ao40) 

A.2 Some Useful Formulae 

To traceless expressions and back: 

[N/2] 

kal o o o kaN = ~! ~ 2r(d/2 +IN- 2r)r (k2r {[gnkJ(N-2r)}aloooO!N ' 

(A.41a) 

1 [N/2] 1 
k(aloooO!N) = _ ""' (k2)r{[g]r[k]N-2r}a1 oooO!N 

N! ~ 2r(2- N- dj2)r ' 

(A.41b) 

where {[gV[k]N-2r}a 1 oooO!N is defined after (Aoll) and (a)n is the Pochhammer 
symbol (Bo2)0 

Furthermore, 

[N/2] 
(kop)N = L aN,r(k2r(p2r(kop)(N-2r) ' (A.42) 

r=O 

[N/2] 
(kop)<Nl = L bN,r(k2r(P2r(kop)N-2r ' (Ao43) 

r=O 

k k(aloooO!N) _ (d- 2)N (k2)N 
(alooo<>N) - 2N ((d- 2)/2)N ' (Ao44) 

where (k o p)(N) = k(a 1 oooaN)P(aloooaN) and 

N! 
aN, r = --,-4r-r-=-! (:-::N-::--_-,2,.-r..,...,) !,...,.( d-::-/.,.,-2-+--=-N=---2-.,r ),--r ' (A.45) 

b - 1 
N,r - 4rr!(N- 2r)!(2- N- d/2)r o (A.46) 

Summation formulae: 

[(k!)m(k2t *gs] = krl o o okfmk~m+l oook~m+ngs,alooo<>m+n 
min{m,n} 1 1 

o . ~ 2(m+n)/2-1((m ~j~j2)!((n- j)/2)!j! 
J::=:o, J+mm{m,n} even 

x(kÎ)(m-1)12 (k~)(n-1)12 (k1 ok2 )1, (A.47) 
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min{2r,m} min{r,,2r-r,} 1 

L L (m- ri)!(n- 2r + ri)! 
r,=max{0,2r-n} j?_O, j+r, even 

' ' x m.n. (k2)(r1 -j)/2 (k2r-(r1 +j)/2 
2r-j((r1- j)/2)!(r- (r1 + j)/2)!j! 1 2 

x(k1·k2)j (k1·k3)m-r, (k2·k3)n- 2r+r,. (A.48) 

In particular, 

[(ki)m(k2t * {[grlk3]N-2r}] 

= (N: 2r) (k2·k3)N-2r[(ki)m(k2t-N+2r * 9s]' (A.49) 

where k1 · k3 = O, N = m + n, and 

[phl2 * {[grll]n-2r}] 

bl !b2! min{ r, [bl/2]} (p ·l)b' -2r, ( q ·l)b2 -2r+2r, (p2 )"'' ( q2)"'-r, 

~ L r1!(r- ri)!(b1- 2ri)!(b2- 2r + 2ri)! ' 
r, =max{O,r- [b2/2]} 

where p·q =O and n = b1 + b2. 

[(k1)m(k2)n(k3)l-m-n * 9s] 

L: L: 
j,?_O, j, +m evenj,?_O, h+n even)J?_O, )3+1-m-n even 

X (kÎ)(m-j,)/2 (k~)(n-)2)/2 (k~)(l-m-n-j3 )j2 

X (kl · k2)(j, +)2-)3)/2 ( k1 · k3) (j, -)2+)3)/2 (k2 · k3)( -j, +h+h)/2 , 

(A.50) 

. . . 2(j,+J2+)3-!)/2m!n!(l- m- n)! 

a(l,m,n,JI,J2,J3) = ((m- JI)/2)!((n- ]2)/2)!((l- m- n- J3)/2)! 

B(jl + )2- ]3)B(j1 - J2 + j3)B( -jl + j2 + j3) 

x ((jl + J2- J3)/2)!((jl- J2 + )3)/2)!((-jl + J2 + J3)/2)! ' (A.S1) 

where B( n) = 1 for n 2': O and B( n) = O otherwise. 
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The Gauss hypergeometric function (3] is defined by the series 

( ) ~ (a)n(b)n n 
2F1 a, b; c; z = L... ( ) 1 z , 

n=O C nn. 
(B.1) 

where 

(x)n = r(x+n)jr(x) (B.2) 

is the Pochhammer symbol. This power series has the radius of convergence 
equal to one. It is analytically continued to the whole complex plane, with a 
cut, usually chosen as (1, oo). The analytic continuation to values of z where 
lzl > 1 is given by 

F(c)F(b-a) -a ( 1) 
2F1(a,b;c;z) = F(b)F(c-a)(-z) 2F1 a,1-c+a;1-b+a;-_; 

r(c)r(a- b) -b ( 1) 
+r(a)r(c-b)(-z) 2F1 b,1-c+b;1-a+b;; 

Another formula for the analytic continuation is 

2F1 (a, b; c; z) = (1 - z)-a 2F1 (a, c- b; c; _z_) 
z-1 

This is a useful parametric representation: 

(B.3) 

(B.4) 

2F1(a, b; c; z) = F(b)~~~ _ b) 11 
dx xb-1(1- x)c-b-1(1- zx)-a. (B.5) 

The polylogarithms (6] and generalized (Nielsen) polylogarithms (2, 5] 
are defined by 

oo n 

Lia (z) = """:..._ L... na 
n=1 

( -1)a 11 lna-1 t 
= dt 

(a-1)! 0 t-1/z 

and 
_ (-1)a+b-1 [ 1 lna-1tlnb(1- zt) 

Sa,b(z)- (a- 1)!b! Jo t dt' 

where a and b are positive integers. 

(B.6) 

(B.7) 

(B.8) 
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The harmonic polylogarithms [8] Ha 1 ,a2 , ••• ,an (x) = H(a1, a2, ... , an; x), 
(HPL) with ai= 1, O, -1, are defined recursively by 

Ha"a2 , ... ,an(x) = 1x dtf(a1;t)H(a2, ... ,an;t), (B.9) 

where 
1 1 

!±l(x) = -1 - , fo(x) =-, 
=fX X 

H±l(x) = =fln(1 =fx), Ho(x) = lnx, 

and at least one of the indices ai is non-zero. For all ai = O, one has 

Ho,o, ... ,o(x) = ~ lnn x. 
n. 

(B.10) 

(B.ll) 

(B.12) 

Up to level4, HPL with the indices O and 1 can be expressed in terms of 
usual polylogarithms [8]: 

Ho(x) = lnx, 

H1(x) = -ln(1- x), 
1 2 

Ho,o(x) = 2! ln x, 

Ho,l(x) = Li2 (x) , 
H1,o(x) = -lnxln(1- x)- Li2 (x) , 

1 2 
H1,1(x) = 2! ln (1- x), 

1 3 
Ho,o,o(x) = 3! ln x , 

Ho,o,1(x) = Li3 (x) , 
Ho,l,o(x) = -2Li3 (x) + lnxLi2 (x) , 

Ho,1,1(x) = S1,2(x), 

H1,o,o(x) = -~ ln(1- x) ln2 x -lnx Li2 (x) + Li3 (x) , 

H1,0,1(x) = -2S1,2(x) -ln(1- x)Li2 (x) , 

H1,1,o(x) = S1,2(x) + ln(1- x) Li2 (x) + ~ lnx ln2(1- x) , 

1 3 
H1,1,1(x) =- 3! ln (1- x), 

1 4 
Ho,o,o,o(x) = 4! ln x, 

Ho,o,o,l(x) = Li4 (x) , 

Ho,o,l,o(x) = lnxLi3 (x)- 3Li4 (x) , 

Ho,o,1,1(x) = S2,2(x), 

Ho,l,o,o(x) = ~ ln2 x Li2 (x) - 2lnx Li3 (x) + 3Li4 (x) , 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 

(B.30) 

(B.31) 
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1 . 2 
Ho,l,D,l(x) = -2S2,2(x) + 2112 (x) , (B.32) 

1 . 2 
Ho,l,l,o(x) = lnx S1,2(x)- 2112 (x) , (B.33) 

Ho,1,1,1(x) = S1,3(x), (B.34) 
1 3 1 2 . Hl,o,o,o(x)=- 6ln xln(1-x)- 2 1n x112 (x) 

+ lnx 1i3 (x)- 1i4 (x) , (B.35) 
1 

Hl,o,o,l(x) = - 21i2 (x) 2 -ln(1- x)1i3 (x) , (B.36) 

H1,o,1,0 (x) = 2ln(1- x)1i3 (x) -lnx ln(1- x)1i2 (x)- 2lnx S1,2(x) 

+~Li2 (x)2 + 2S2,2(x), (B.37) 

Hl,O,l,l (x) = -ln(1- x)S1,2(x)- 3S1,3(x) , (B.38) 

Hl,l,o,o(x) = ~ ln2 x ln2(1- x) -ln(1- x)1i3 (x) 

+ lnx ln(1- x)1i2 (x) + lnx S1,2(x)- S2,2(x), (B.39) 

H1,1,D,l(x) = ~ ln2(1- x)1h (x) + 2ln(1- x)S1,2(x) + 3S1,3(x), (B.40) 

1 3 1 2 • Hl,l,l,o(x) = - 6lnx ln (1- x)- 2 1n (1- x) 112 (x) 

-ln(1- x)S1,2(x)- S1,3(x), (B.41) 
1 4 

H1,1,1,1(x) = 4! ln (1- x). (B.42) 

Analytic properties of HP1 (and 2dHP1) which allow to continue them 
to any domain are described in [18]. The HP1 are partial cases of the so­
called Z- and S-sums which are defined similarly to the nested sums (see 
Appendix C) but with the factor xJ - see, e.g., [7]. The set of Z-or S-sums 
can be equipped with an operation of multiplication in such a way that they 
(as well as HP1) form a Hopf algebra - see, e.g., [1, 8]. 
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C Summation Formulae 

Nested sums are defined as follows [17]: 

n 1 n Sk(j) 
Si(n) = L--:-; ' sik(n) = L -.-i ' 

j=l J j=l J 
(C.1) 

S. ( ) _ ~ Skl(j) S· ( ) _ ~ Sklm(j) 
•kl n - ~ ·i , •klm n - ~ ·i , 

j=l J j=l J 
(C.2) 

etc. Properties and algorithms for the nested sums ( also for negative indices 
which are defined with ( -1)i) are presented in [17]. In particular, for positive 
indices, we have 

(C.3) 

The nested sums are closely connected with multiple (-values - see, e.g., 
[1,2, 11, 19] and the review [7]. 

The sums with one index are connected with the 'lj; function ( the loga­
rithmical derivative of the gamma function) as 

'lj;(n) = St(n- 1)- 'YE, (C.4) 
'lj;(k)(n) = ( -1)kk! (Sk+ 1(n- 1)- ((k + 1)) , k = 1, 2, ... , (C.5) 

where ((z) is the Riemann zeta function 

00 1 
((z) = L nz . 

n=l 

(C.6) 

All the summation formulae of this Appendix, apart from the inverse 
binomial series1 , are implemented in the package called SUMMER [17] which 
is written in FORM [16]. This powerful package was successfully used in non­
trivial calculations- see, e.g., [12-14]. There is also another package operating 
with the nested sums [18]. 

Nested sums are closely connected with expansions of hypergeometric se­
ries in its parameters - see, e.g., [3, 4, 11]. For example, the expansion of 
the Gauss hypergeometric function 2F1 (1 + a1e:, 1 + a2e; 3/2 + be:; z) is con­
nected with inverse binomial series [3]. 

1The authors of SUMMER are planning to include the inverse binomial series into 
this package. 
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C .1 Some N umber Series 

These are series up to level 6 with at least 1/n2 dependence: 

00 1 7T2 

2:: n 2 = 6' 
n=l 

00 1 
2::3 = ((3)' n 
n=l 

00 1 7r2((3) 
2:: SI(n- 1) n4 = 2((5)- - 6- , 
n=l 

f S2(n- 1) ~3 = 7T2;(3) - 11;(5) ' 
n=l 

f sl (n- 1)2 ~3 = 7T2~(3) - 3(~5) ' 
n=l 

f S3(n- 1) ~2 = 9(~5) - 7T2~(3) ' 
n=l 

f Sl(n- 1)3 ~2 = 7T2~(3) + 15;(5) ' 
n=l 

00 1 7((5) 7r2((3) 
2:: S1(n -1)S2(n -1) n2 = - 2-- - 6-, 
n=l 

(C.7) 

(C.8) 

(C.9) 

(C.lO) 

(C.11) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

(C.19) 

(C.20) 

(C.21) 
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(C.22) 

(C.23) 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 

(C.29) 

(C.30) 

(C.31) 

(C.32) 

(C.33) 

(C.34) 

~ 4 1 859?T6 2 
L...J Sl(n- 1) n2 = 22680 + 3((3) ' 
n=l 

(C.35) 

00 1 177r6 2 L Sm(n- 1) n2 = 4536 - ((3) , 
n=l 

(C.36) 

00 1 313?T6 2 L S1(n- 1)S12(n- 1) n2 = 45360 - 2((3) · 
n=l 

(C.37) 
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Series up to level 6 with the factor 1/n where the convergence is provided 
by other factors: 

f '1/J'(n + 1)! = ((3), 
n 

n=l 

00 1 74 L '1/J'(n + 1)SI(n);:; = 3; 0 , 
n=l 

00 1 4 
'"""' "( ) 7r ~ '1/J n + 1 ;:; = - 180 ' 
n=l 

f '1/J'(n + 1)SI(n) 2 ~ = 7r
2;(3) , 

n=l 

f '1/J'(n + 1)2~ = 5rr2~(3) - 9((5) ' 
n=l 

f '1/J"(n + 1)SI(n)~ =- 27r
2f(3) + 7((5), 

n=l 

00 1 L '1/J"'(n + 1)- = -rr2((3) + 12((5), 
n 

n=l 

f '1/J""(n + 1)~ =- ~~~ + 12((3)2 , 
n=l 

00 1 6 L '1/J"'(n + 1)SI(n);:; = 1~12 , 
n=l 

00 1 6 L '1/J"(n + 1)SI(n)2;:; = ;O - 8((3)2 , 
n=l 

00 1 6 L '1/J'(n + 1)2SI(n);:; =-~2 + 2((3)2 , 
n=l 

~ , 3 1 269rr6 

~ '1/J (n + 1)SI(n) ;:; = 22680 ' 
n=l 

f '1/J'(n + 1)'1/J"(n + 1)~ = 2621:S~- 2((3)2 . 
n=l 

(C.38) 

(C.39) 

(C.40) 

(C.41) 

(C.42) 

(C.43) 

(C.44) 

(C.45) 

(C.46) 

(C.47) 

(C.48) 

(C.49) 

(C.50) 

Series of level 7 with at least 1/n2 dependence: 

00 1 L n7 = ((7) , (C.51) 
n=l 

~ S1(n- 1)_!_ = 3((7)- rr2((5) - rr4
((3) (C.52) 

~ n6 6 90 ' 
n=l 
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~ S2(n- 1)~ = -11((7) + 5w2((5) + 7r4((3) 
~ n5 6 45 ' 

(C.53) 

00 1 2 4 L Sl(n- 1)25 = -((7) + 7r ((5) - 7r ((3) ' 
n=l n 6 180 

(C.54) 

00 1 2 

"'S3(n -1)- = 17((7)- 57r ((5) 
~ n4 3 ' 

(C.55) 
n=l 

(C.56) 

(C.57) 

~ 512 (n _ 1) ~ = 141((7) _ 5n2((5) _ n4((3) 

~ n4 8 4 24 ' 
(C.58) 

~ S4(n- 1)~ = -18((7) + 57r2((5) + n4((3) 
~ n 3 3 90 ' 

(C.59) 

~ s13(n- 1)~ =- 73((7) + 5w2((5) 7r4((3) 
~ n3 4 3 + 72 ' 

(C.60) 

00 L Sl(n- 1)S3(n- 1)~ =- 85((7) + 117r2((5) n4((3) 
n=l n3 8 12 + 72 ' 

(C.61) 

~ S2 (n _ 1 ) 2 ~ = 13((7) _ 5n2((5) 117r4((3) 
~ n 3 8 6 + 180 ' 

(C.62) 

00 L S1(n- 1)S12 (n -1)~ =- 113((7) + 71f2((5) 7r4((3) 
n=l n 3 16 12 + 72 ' 

(C.63) 

00 L Sm(n _ 1)~ = _ 61((7) + 5n2((5) + n4((3) 
n=l n3 4 4 40 ' (C·66) 

00 L Sl(n -1)S13(n -1)~ = 61((7) - 3n2((5) n4((3) (C.68) 
n=l n 2 4 2 + 36 ' 
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00 L SI(n -1)2S3(n- 1)--; = 301((7) - 37r2((5) 7r4((3) 
n=l n 16 4 -~ ' (C.69) 

00 L S1(n- 1)S2(n _ 1)2--; = _ 77((7) + 137r2((5) _ 1r4((3) 
n=l n 16 12 ----:3Q , (C.70) 

00 L S1(n- 1)2S12 (n- 1)-;. = 423((7) _ 7r2((5) _ 3711"4((3) 
n=l n 16 6 360 ' (C.71) 

00 L SI(n -1)3S2(n- 1)-;. = 307((7) + 511"2((5)- 137r4((3) 
n=l n 16 12 180 , (C.72) 

00 L s1(n _ 1)5-;. = 1855((7) + 197r2((5) 
n=l n 16 4 

117r4((3) 
+ 30 ' (C.73) 

00 L SI(n- 1)Sm(n- 1)-;. = 73((7)- 37r2((5) - 7r4((3) 
n=l n 4 4 30 ' (C.74) 

00 L S5(n- 1)-;. = 10((7) _ 211"2((5) _ 7r4((3) 
n=l n 3 45 ' (C.75) 

00 L SI4(n- 1)-;. = 141((7) - 1911"2((5) - 7r4((3) 
n=l n 8 12 360 ' (C.76) 

00 

2:::.:: s23(n -1)_.;. =- 131((7) + 411"2((5)- 771"4((3) 
n=l n 16 3 180 ' (C.78) 

00 L S2(n- 1)S12 (n- 1)_!_ = _ 141((7) + 511"2((5) 1911"4((3) 
n=l n2 16 3 - 360 ' (C.79) 

00 L Sm(n- 1)_!_ = 113((7) - 7r2((5) 
n=l n 2 16 2 ' (C.80) 

00 

2:::.:: s212(n- 1)_;. = 169((7) - 11"2((5) - 771"4((3) 
n=l n 16 2 180 ' (C.81) 

00 L Sim(n- 1)-;. = 141((7) - 7r2((5)- 771"4((3) 
n=l n 8 180 . (C.82) 
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C.2 Power Series of Levels 3 and 4 
in Terms of Polylogarithms 

The formulae of this section can be found in [6]. 

oo n 

""'S2(n- 1).:_ = -2812(z) -ln(1- z)Li2 (z) , 
L..J n ' 
n=l 

(C.83) 

oo n 1 L S1(n -1)2: = -2S1,2(z) -In(1- z)Li2 (z)- 3 In3(1- z), (C.84) 
n=l 

oo n 

L S1(n -1)~2 = S1,2(z), 
n=l 

(C.85) 

oo n 

L \ = Li3 (z), 
n=l n 

(C.86) 

oo n 1 L S3(n- 1).:_ = --Li2 (z) 2 -In(1- z)Lh (z) , 
n=l n 2 

(C.87) 

oo n 1 L s12(n- 1) zn = 3S1,3(z) -In(1 - z)Lh (z) - 2Li2 (z) 2 
n=l 

+~ In2(1- z)Li2 (z) + 2ln(1- z)S1,2(z), (C.88) 

oo n 1 L S1(n- 1)S2(n -1): = - 2Li2 (z) 2 + In(1- z)(S1,2(z)- Li3 (z)) 
n=l 

+~ ln2(1- z)Lh (z) , (C.89) 

~ ( ) 3 zn 1 . 2 3 2 • L..J 81 n- 1 - = --L12 (z) +-In (1- z)L12 (z) 
n=l n 2 2 

+ In(1- z)(3S1,2(z)- Lh (z)) + ~ ln4 (1- z) , (C.90) 

oo n 1 L S2(n- 1) ~2 = -2S2,2(z) + 2Lh (z)2 , (C.91) 
n=l 

(C.92) 

oo n 

LS1(n-1)~3 = S2,2(z), 
n=l 

(C.93) 

oo n 

L ~4 = Li4 (z) . 
n=l 

(C.94) 
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C.3 Inverse Binomial Power Series up to Level 4 

The formulae of this section (as well as other similar formulae) can be found 
in [3]. See a table of formulae for the corresponding number series in [8]. Let 

V4=Z-Fz 
y - --'-===---'--== - )4-z+Fz · 

Then 

~ _1_ zn - 1 - y In 
~ e:) n - 1 + y y, 

(C.95) 

oo 1 zn 1 2 L (2n) n2 = -2ln y, 
n=l n 

(C.96) 

oo 1 n 

~ e:) ~3 = 2Li3 (y)- 2lnyLb (y) -ln2 yln(1- y) 

1 +6ln3 y- 2((3) , (C.97) 

oo 1 n 

~ e:) ~4 = 4S2,2(Y)- 4Li4 (y)- 4S1,2(y) lny 

+4Li3 (y) ln(1- y) + 2Li3 (y) lny- 4Lb (y) lnyln(1- y) 
2 2 1 3 1 4 -In yln (1-y)+ 3ln yln(1-y)- 24 In y 

-4ln(1- y)((3) + 2lny((3) + 3((4), (C.98) 

Loo 1 Zn 1- y 
--S1(n -1) = -­

n=l e:) n 1 +Y 

x [ -2Li2 (-y)- 2lnyln(1 + y) + ~ ln2 y- ((2)], (C.99) 

Loo 1 Zn 2 1 - Y [ . --S1(n -1) = -- 8812(-y)- 4LI3 (-y) 
n=l e:) n 1 + y , 

+8Li2 ( -y) ln(1 + y) + 4ln2(1 + y) Iny- 2In(1 + y) In2 y 

+~ In3 y + 4((2) In(1 + y)- 2((2) Iny- 4((3)] , (C.lOO) 

~ 1 zn 1- Y 3 
~ e:) ---;;S2(n- 1) =- 6(1 + y) In y, (C.101) 

00 1 zn 1 4 
~ e:) n2 S2(n- 1) = 24 In y, (C.102) 

f (21 ) zn S3(n- 1) = 1 - y [~ ln4 y + 6Li4 (y) + In2 yLi2 (y) 
n n 1 + y 24 

n=l n 
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-2((3) lny- 4lny 1i3 (y) - 6((4)] , 

~ 1 zn 1 - y [ 1 3 1 4 
~ -(2 ) -S1(n -1)S2(n -1) = -- -In yln(1 + y)- -In y 
n=I ;: n 1 + y 3 24 

+~((2) ln2 y + ln2 y 1i2 ( -y) + ln2 y 1i2 (y) + ((3) ln y- 4lny 1i3 ( -y) 

-4lny1ia (y) + ((4) + 81i4 (-y) + 61i4 (y)J , (C.103) 

oo 1 n 

~ e::) ~2 S1(n -1) = 41i3 (-y)- 21i2 (-y)lny 

1 - 6ln3 y + 3((3) + ((2) lny, (C.104) 

oo 1 n 

~ e::) ~2 SI(n- 1)2 = -881,2( -y) lny + 41ia ( -y) lny 

-21i2 ( -y) ln2 y + 41i2 ( -y)2 - 2~ ln4 y + 4((2)1h ( -y) 

2 5 +((2) ln y + 4((3) lny + 2((4), (C.105) 

oo 1 n 

~ e::) ~3 SI (n- 1) = 4H-l,O,O,l ( -y) + 82,2 (y2) 

-4S2,2(Y) - 482,2( -y) - 61i4 ( -y) - 21i4 (y) + 481,2( -y) ln y 

+481,2 (y) ln y- 281,2 (y2) ln y + 41i3 ( -y) ln(1 - y) 

+21i3 ( -y) ln y + 21i3 (y) ln y- 1i2 (y) ln2 y 

. 1 3 1 4 
-4112 (-y) lnyln(1- y)- 31n yln(1- y) + 24 ln y 

+2((2)1i2 (y) - ~((2) ln2 y + 2((2) ln y ln(1- y) 

+6((3) ln(1- y)- 3((3) lny- 4((4), (C.106) 

~ 1 zn 3 1- Y [ 
~ enn) -;-S1(n- 1) = 1 + y -4881,2( -y) ln(1 + y)- 4881,3( -y) 

+2482,2 ( -y) - 12((2) ln2(1 + y) - 24ln2(1 + y)1i2 ( -y) 

+24((3) ln(1 + y) + 24ln(1 + y)1i3 ( -y) - 8lny ln3(1 + y) 

+12((2) lnyln(1 + y) + 6ln2 yln2(1 + y) -ln3yln(1 + y) 

14 3()2 2 '() + 24 ln Y- 2( 2 ln y + 3ln y 112 -y 

+ ln2 y 1i2 (y) - 5((3) ln y- 12ln y 1ia ( -y) - 4ln y 1i3 (y) 

+~((4)+121i4(-y)+61i4(Y)]. (C.107) 
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C.4 Power Series of Levels 5 and 6 in Terms of HPL 

00 zn 
'"""--li (z) L....t n5 - o,o,o,o,1 , 
n=l 

oo n 

L S1(n- 1) ~4 = Ho,o,o,l,l(z), 
n=l 

oo n 

L S2(n- 1) ~3 = Ho,o,l,O,l (z) , 
n=l 

oo n 

'""" 2 z L....t S1(n- 1) n3 = Ho,o,l,o,l(z) + 2Ho,o,l,l,l(z), 
n=l 

oo n 

L S3(n- 1) ~2 = Ho,l,o,o,l(z), 
n=l 

oo n 

'""" 3 z L....t sl (n- 1) n2 = Ho,l,O,O,l (z) + 3Ho,l,O,l,l (z) 
n=l 

+3Ho,l,l,o,l(z) + 6Ho,1,1,1,1(z), 
oo n 

L S1(n -1)S2(n -1) ~2 = Ho,l,o,o,l(z) + Ho,l,O,l,l(z) 
n=l 

+ Ho,l,l,O,l (z) , 
oo n 

L s12(n- 1) ~2 = Ho,l,O,O,l(z) + Ho,l,l,O,l(z)' 
n=l 

oo n 

L S4(n- 1): = Hl,o,o,o,l(z), 
n=l 

oo n 

L s13(n -1) zn = Hl,O,O,O,l(z) + Hl,l,O,O,l(z)' 
n=l 

oo n 

L S1(n- 1)S3(n- 1) zn = H1,o,o,o,l(z) + Hl,O,O,l,l(z) 
n=l 

+Hl,l,O,O,l(z), 
oo n 

L S2(n- 1)2 zn = Hl,o,o,o,l(z) + 2Hl,O,l,o,l(z), 
n=l 

oo n 

L S1(n- 1)S12(n- 1): = Hl,o,o,o,l(z) + Hl,O,O,l,l(z) 
n=l 

(C.108) 

(C.109) 

(C.UO) 

(C.111) 

(C.112) 

(C.113) 

(C.114) 

(C.115) 

(C.116) 

(C.117) 

(C.l18) 

(C.119) 

+Hl,O,l,o,l(z) + 2Hl,l,o,o,l(z) + Hl,l,O,l,l(z) + 2Hl,l,l,o,l(z), (C.120) 
oo n 

L S1(n- 1)2S2(n -1): = Hl,o,o,o,l(z) + 2Hl,o,o,l,l(z) 
n=l 
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+2Hl,O,l,O,l(z) + 2Hl,O,l,l,l(z) + 2Hl,l,O,O,l(z) 

+2Hl,l,O,l,l(z) + 2H1,1,1,0,1(z), (C.121) 
oo n 

2.:: S1(n- 1)4 zn = Hl,o,o,o,l(z) + 4Hl,O,O,l,l(z) + 6Hl,O,l,O,l(z) 
n=l 

+12Hl,O,l,l,l (z) + 4Hl,l,O,O,l (z) + 12Hl,l,O,l,l (z) 

+12Hl,l,l,o,l(z) + 24Hl,l,l,l,l(z), (C.122) 
oo n 

2.:: Sm(n- 1) zn = Hl,o,o,o,l(z) + Hl,O,l,o,l(z) + Hl,l,o,o,l(z) 
n=l 

+ H1,1,l,O,l (z) , 
00 zn 
'"""'--li (z) ~ n6 - o,o,o,o,O,l , 
n=l 
oo n 

2.:: S1(n -1) : 5 = Ho,o,o,o,l,l(z), 
n=l 

oo n 

2.:: S2(n- 1) : 4 = Ho,o,o,l,o,l(z), 
n=l 
oo n 

2.:: S1(n -1) 2 : 4 = Ho,o,o,l,o,l(z) + 2Ho,o,o,l,l,l(z), 
n=l 

oo n 

2.:: S3(n- 1) : 3 = Ho,o,l,o,o,l(z), 
n=l 

oo n 

2.:: S1(n- 1)3 : 3 = Ho,o,l,o,o,l(z) + 3Ho,o,l,O,l,l(z) 
n=l 

+3Ho,O,l,l,O,l(z) + 6Ho,O,l,l,l,l(z), 
oo n 

2.:: S1(n -1)S2(n -1) : 3 = Ho,o,l,o,o,l(z) + Ho,o,l,O,l,l(z) 
n=l 

+Ho,O,l,l,O,l(z), 
oo n 

2.:: sl2(n- 1) :3 = Ho,O,l,O,O,l(z) + Ho,O,l,l,O,l(z), 
n=l 
oo n 

2.:: S4(n- 1) : 2 = Ho,l,o,o,o,l (z) , 
n=l 

oo n 

2.:: sl3(n -1) :2 = Ho,l,O,O,O,l(z) + Ho,l,l,O,O,l(z), 
n=l 

oo n 

2.:: S1(n- 1)S3(n- 1) : 2 = Ho,l,o,o,o,l(z) + Ho,l,O,O,l,l(z) 
n=l 

(C.123) 

(C.124) 

(C.125) 

(C.126) 

(C.127) 

(C.128) 

(C.129) 

(C.130) 

(C.131) 

(C.132) 

(C.133) 
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+Ho,l,l,O,O,I(z), 
oo n 

'2::: S2(n- 1)2 ~2 = Ho,I,o,o,o,I (z) + 2Ho,I,O,I,o,I (z) , 
n=l 

oo n 

'2::: S1(n -1)S12(n- 1) ~2 = Ho,I,o,o,o,I(z) + Ho,I,o,o,I,I(z) 
n=l 

(C.134) 

(C.135) 

+Ho,l,O,l,O,l(z) + 2Ho,l,l,O,o,I(z) 

+Ho,l,l,O,l,l(z) + 2Ho,l,l,l,O,I(z), (C.l36) 
oo n 

""" 2 z ~ S1(n -1) S2(n -1) n 2 = Ho,I,o,o,o,I(z) + 2Ho,I,O,O,l,I(z) 
n=l 

+2Ho,l,O,l,O,l(z) + 2Ho,I,O,l,l,I(z) + 2Ho,I,l,O,O,I(z) 

+2Ho,l,l,O,I,I(z) + 2Ho,I,l,l,O,I(z), 
oo n 

""" 4 z ~ S1(n- 1) n2 = Ho,I,o,o,o,I(z) + 4Ho,I,o,o,I,I(z) 
n=l 

(C.137) 

+6Ho,I,O,l,O,l (z) + 12Ho,l,O,l,l,l (z) + 4Ho,l,l,O,O,l (z) 

+12Ho,I,l,O,I,l(z) + 12Ho,I,l,LO,I(z) + 24Ho,l,l,l,l,l(z), (C.138) 
oo n 

'2::: Sn2(n -1) ~2 = Ho,I,o,o,o,I(z) + Ho,I,O,I,o,I(z) 
n=l 

+Ho,I,I,o,o,I(z) + Ho,I,l,I,O,I(z), 
oo n 

L S1(n -1)S4(n- 1) zn = HI,o,o,o,o,I(z) + HI,o,o,o,I,I(z) 
n=l 

+ Hl,I,o,o,o,I (z) , 
oo n 

L S1(n -1)Sl3(n -1) ~ = HI,o,o,o,o,I(z) + HI,o,o,o,I,I(z) 
n 

n=l 
+HI,O,l,O,O,I(z) + 2Hl,l,O,O,O,I(z) 

+HI,l,O,O,I,I(z) + 2Hl,l,l,O,O,I(z), 
oo n 

""" 2 z ~ SI(n -1) S3(n -1)-:;;: = HI,o,o,o,o,I(z) + 2HI,o,o,o,I,I(z) 
n=l 

+HI,o,o,I,O,I(z) + 2HI,O,O,l,I,I(z) + HI,O,I,o,o,I(z) 

(C.139) 

(C.140) 

(C.141) 

+2HI,I,o,o,o,I (z) + 2Hl,I,o,o,I,I (z) + 2Hl,I,l,O,O,l (z) , ( C.142) 
oo n 

'2::: S1(n -1)S2(n -1)2 zn = HI,o,o,o,o,I(z) + Hl,o,o,o,I,l(z) 
n=l 

+2Hl,O,O,l,O,I(z) + 2Hl,O,l,O,O,I(z) + 2Hl,O,l,O,l,I(z) 

+2Hl,O,I,I,o,I(z) + HI,I,o,o,o,I(z) + 2HI,l,O,I,o,I(z), (C.143) 
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= n 

2:::::: S1(n- 1)2S12(n- 1) zn = Hl,o,o,o,o,l(z) + 2Hl,o,o,o,l,l(z) 
n=l 

+2Hl,O,O,l,O,l(z) + 2Hl,O,O,l,l,l(z) + 3Hl,O,l,O,O,l(z) 

+2Hl,O,l,O,l,l (z) + 3Hl,O,l,l,O,l (z) + 3Hl,l,O,O,O,l (z) 

+4Hl,l,O,O,l,l (z) + 4Hl,l,O,l,O,l (z) + 2Hl,l,O,l,l,l (z) 

+6Hl,l,l,O,O,l(z) + 4Hl,l,l,O,l,l (z) + 6Hl,l,l,l,O,l(z), (C.144) 
= n 

2:::::: S1(n -1)3S2(n- 1): = Hl,o,o,o,o,l(z) + 3Hl,o,o,o,l,l(z) 
n=l 

+4Hl,O,O,l,O,l (z) + 6Hl,O.O,l,l,l (z) + 4Hl,O,l,O,O,l (z) 

+6Hl,O,l,O,l,l(z) + 6Hl,O,l,l,O,l(z) + 6Hl,O,l,l,l,l(z) 

+3Hl,l,O,O,O,I(z) + 6H1,1,0,0,1,1(z) + 6H1,1,0,1.0,1(z) 

+6Hl,l,O,l,l,l(z) + 6Hl,l,l,O,O,l(z) 

+6Hl,l,l,O,l,l (z) + 6Hl,l,l,l,O,l (z) , (C.145) 
oo n 

2:::::: S1(n -1)5 zn = Hl.o,o,o,o,l(z) + 5Hl,o,o,o,l,l(z) + lOHl,o,o,l,O,l(z) 
n=l 

+20Hl,O,O,l,l,l(z) + 10Hl,O,l,O,O,l(z) + 30Hl,O,l,O,l,l(z) 

+30Hl,O,l,l,O,l(z) + 60Hl,O,l,l,l,l(z) + 5Hl,l.O,O,O,l(z) 

+20Hl,l,O,D.l,l(z) + 30Hl,l,O,l,O,l(z) + 60Hl,l,O,l,l,l(z) 

+20Hl,l,l,O,O,l (z) + 60Hu.l,O,l,l (z) 

+60Hl,l,l,l,O,l (z) + 120Hl,l,l,l,l,l (z) , 
oo n 

"'S1(n- 1)Su2(n- 1) ~ = H1 o o o o 1(z) + H1 o o o 11(z) L.-t n ,,,,, ,,,,, 
n=l 

+HJ,o,o,l,D,l(z) + 2Hl,D,l,O,o,l(z) + Hl,O,l,O,l,I(z) 

+2Hl,O,l,l,O,l (z) + 2Hl,l,o,o.o,l (z) + Hu,o,O,l,l (z) 
+2Hl,l,O,l,O,l (z) + 3Hl,l,l,O,O,l (z) 

+H1,1,1,0,1,1(z) + 3Hl,l,l,l,O,l(z), 
oo n 

2:::::: S5(n- 1) zn = Hl,o,o,o,o,l (z) , 
n=l 

oo n 

2:::::: s14(n -1) :~ = Hl,O,O,O,O,l(z) + Hl,l,O,O,O,l(z)' 
n=l 

oo n 

L S2(n -1)S3(n -1) zn = Hl,o.o,o,o,l(z) + Hl.o,o,l,O,l(z) 
n=l 

+Hl,O,l,O,O,l(z), 

(C.146) 

(C.147) 

(C.148) 

(C.149) 

(C.150) 
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DO n 

L s23(n -1): = Hl,O,O,O,O,l(z) + Hl,O,l,O,O,l(z)' 
n=l 

DO n 

L sl2(n -1)S2(n -1) zn = Hl,O,O,O,O,l(z) + 2Hl,O,O,l,O,l(z) 
n=l 

+Hl,O,l,O,o,l(z) + Hl,O,l,l,O,l(z) 

+Hl,l,O,O,O,l(z) + 2Hl,l,O,l,O,I(z), 
DO n 

L Su3(n- 1) zn = Hl,o,o,o,o,I(z) + Hl,O,l,o,o,l(z) 
n=l 

+Hl,l,o,o,o,I(z) + Hl,l,l,o,o,I(z), 
DO n 

"""S212(n- 1) :_ = H1 o o o o 1(z) + H1 o o 1 o 1(z) ~ n ,,,,, ,,,,, 
n=l 

+HI,O,l,o,o,l(z) + Hl,O,l,l,O,l(z), 

(C.151) 

(C.152) 

(C.153) 

(C.154) 
DO n 

L Slm(n -1) zn = Hl,O,o,o,o,I(z) + Hl,O,O,l,O,l(z) + Hl,O,l,o,o,l(z) 
n=l 

+Hl,O,l,l,O,l(z) + Hl,l,o,o,o,l(z) + Hl,l,O,l,O,l(z) 

+HI,l,l,O,o,l(z) + Hl,l,l,l,O,l(z). 
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D Table of MB Integrals 

D.l MB Integrals with Four Gamma Functions 

This is the first Barnes lemma: 

(D.l) 

Results for integrals with 'lj;(>..1 + z), ... are obtained from (D.l) by dif­
ferentiating with respect to >..1, .... Second derivatives give, in a similar way, 
results for integrals with products of two different functions 'lj;(>..i ± z) and 
with the combinations '1/J'(>..i ± z) + 'lj;(>..i ± z)2 • 

Various corollaries can be derived from (D.l). For example, 

~ j+ioo dz r(>..1 + z)r*(>..2 + z)r( ->..2- z)F(>..3- z) 
2m -ioo 

= r(>..1 - >..2)r(>..2 + >..3) ['1/J(>..t - >..2) - '1/J(>..t + >..3)] , (D.2) 

~ l+ioo dz r(>..l + z)r(>..2 + z)r*( ->..2- z)r(>..3- z) 
2m -ioo 

= r(>..l - >..2)r(>..2 + >..3) ['I/J(>..2 + >..3) - '1/J(>..l + >..3)] . (D.3) 

The asterisk is used to indicate that the first pole of the corresponding gamma 
function is of the opposite nature, i.e. the first pole of r(>..2 + z) in (D.2) is 
considered right and the first pole of r( ->..2 - z) in (D.3) is considered left. 

These are four formulae with the psi function with the same condition as 
in (D.2): 

~ j+ioo dz r(>..1 + z)r*(>..2 + z)r( ->..2- z)r(>..3- z)'lj;(>..t + z) 
2m -ioo 

= r(>..t- >..2)r(>..2 + >..3) ['1/J(>..t- >..2)2 - '1/J(>..t- >..2)'1/J(>..1 + >..3) 
+'1/J'(>..t- >..2)- '1/J'(>..t + >..3)] , (D.4) 
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1 l+ioo 
2ni -ioo dz r(>,t + z)r* (.X2 + z)r( -.X2 - z)F(.X3 - z)'lj;(.X2 + z) 

1 [ 2 2 = - 2r(.Xt- .X2)F(.X2 + .X3) '1/J(.Xt- .X2) - 'lj;(.Xt + .X3) 

+2'1/J(.Xt- .X2)('YE- 'lf;(.X2 + A3))- 2'1/J(.Xt + A3)(1'E- 'lj;(.X2 + A3)) 

+'1/J'(.Xt- .X2) + '1/J'(.Xt + .X3)] , (D.5) 

1 l+ioo 
2ni -ioo dz F(.Xt + z)F*(.X2 + z)r( -.X2- z)F(.X3 - z)'lj;( -.X2 - z) 

1 [ 2 = 2r(-X1- .X2)F(.X2 + .X3) 'lj;(.Xt- .X2) + 21'E'I/J(.Xt + A3) 

+'1/J(.Xl + A3) 2 - 2'1/J(.Xt- .X2)(1'E + '1/J(.Xt + A3)) 
+'1/J'(.Xl- .X2)- '1/J'(.Xt + .X3)] , (D.6) 

1 l+ioo 
21ri -ioo dz F(.X1 + z)r*(.X2 + z)r( -.X2- z)F(.X3 - z)'lj;(.X3 - z) 

= F(.X1 - .X2)F(.X2 + .X3) ['1/J(.Xt - .X2)'lf;(.X2 + .X3) 

-'lj;(.X1 + .X3)'1j;(.X2 + .X3)- '1/J'(.Xt + .X3)] . (D.7) 

These are four formulae with the psi function with the same condition as 
in (D.3): 

~ j+ioo dz r(.X1 + z)F(.X2 + z)r*( -.X2- z)F(.X3- z)'lj;(.Xt + z) 
21fl -ioo 

= -r(.xl- .X2)r(.x2 + .X3) 

x ['1/J(.Xt- .X2)('1j;(.Xt + A3)- 'lj;(.X2 + A3)) + '1/J'(.Xt + A3)] , (D.8) 

~ j+ioo dz r(.X1 + z)r(.X2 + z)r*( -.X2- z)F(.X3- z)'lj;(.X2 + z) 
21fl -ioo 

1 [ 2 = 2r(.Xt- .X2)F(.X2 + .X3) ('1/J(.Xt + .X3)- 'lj;(.X2 + .X3)) 

+21'E('I/J(.Xt + .X3)- 'lj;(.X2 + .X3))- '1/J'(.Xt + .X3) + 'lf;'(.X2 + .X3)] , (D.9) 

~ j+ioo dz r(.X 1 + z)F(.X2 + z)r*( -.X2- z)F(.X3- z)'lf;( -.X2- z) 
21fl -ioo 

1 
= 2r(.X1 - .X2)r(.x2 + .X3) 

X [2('1/J(At - A2) -1'E)('Ij;(.X2 + A3)- 'lj;(At + A3)) 

+'1/J(.Xt + .X3)2 - 'lj;(.X2 + .X3)2 - 'lf;'(.X1 + .X3)- 'lf;'(.X2 + .X3)] , (D.10) 
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This is an example with the gluing of two poles: 

~ l+ioo dz T(A1 + z)T(A2 + z)r**( -1- A2- z)T(A3- z) 
21!'1 -ioo 

= r(Al - A2- 1)T(A2 + A3) [1 - A1 + A2 

+(Al+ A3- 1)('1j;(Al + A3- 1)- 'lj;(A2 + A3))] , (D.12) 

where the first two poles of r( -1- A2- z), i.e. z = -A2 and z = -A2 -1, are 
considered left, with the corresponding change in notation. Here it is implied 
that A1 + A3 =f 1. 

In the case Al+ A3 = 1, we have 

~ j+ioo dz T(1- A1 + z)T(A2 + z)r**( -1- A2- z)T(Al- z) 
21!'1 -ioo 

= (Al + A2 - 1)T(Al + A2)r( -Al - A2) . (D.13) 

Here is one more example of such an integral: 

~ j+ioo dz T(1- A1 + z)T*(A2 + z)T*( -1- A2- z)T(Al- z) 
21!'1 -ioo 

= r(Al + A2)r( -Al - A2) 

X [(Al+ A2)('1j;(-Al- A2)- 'lj;(1 +Al+ A2)) -1] . (D.14) 

Furthermore, we have 

1 l+ioo 
21ri -ioo dzr*(Al + z)T*(A2 + z)T(-A2 - z)T(-A1 - z) 

= T(Al - A2)T(A2 -Al) [2'YE + 'lj;(Al - A2) + '1j;(A2 -AI)] , (D.15) 

where the poles z = -A1 and z = -A2 are right. These are four more formulae 
with these conditions: 

1 l+ioo 
21ri -ioo dz T*(Al + z)T*(A2 + z)r( -A2 - z)r( -A1 - z)'lj;(A1 + z) 

1 [ 2 2 = - 4r(Al- A2)T(A2- A1) 2'YE + 1r - 4'1j;(Al- A2)'1j;(A2- A1) 

+4'YE('Ij;(A2- Al)- 2'1j;(Al- A2))- 4'1j;(Al- A2)2 - 4'1j;'(Al- A2) 

+2'1j;(A2- A1)2 + 2'1j;'(A2- AI)] , (D.16) 
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1 [ 2 2 2 = -4_F(A1- A2)F(A2- Al) 2ÎE + 1r + 2'lji(Al- .A2) 

+4'f(Al- A2)bE- 'lji(A2- .Al))- 8ÎE'f(.A2- Al)- 4'lji(A2- A1)2 

+2'f'(Al- .A2)- 4'1ji'(.A2- AI)] , (D.17) 

~ J+ioo dzr*(A1 + z)F*(A2 + z)F(-A2- z)F(-Al- z)'f(-A2- z) 
27rl -ioo 

1 [ 2 2 2 = -4_F(A1- A2)F(A2- AI) 2ÎE + 1r - 2'f(.Al- A2) 

-4'lji(Al- .A2)bE + 'lji(A2- A1))- 2'f'(.Al- A2)] , (D.18) 

~ j+ioo dzF*(A1 + z)F*(,\2 + z)F(-A2- z)F(-Al- z)'f(-Al- z) 
27rl -ioo 

1 [ 2 2 2 = -4F(.A1- A2)F(A2- AI) 2ÎE + 1r - 2'lji(A2- AI) 

-4bE + 'lji(A1- A2))'lji(A2- AI)- 2'f'(A2- AI)] . (D.19) 

There are similar formulae with different understanding of the nature of 
the poles: 

~ j+ioo dz F(A1 + z)r*(A2 + z)F( -A2- z)F*( -Al- z) 
27rl -ioo 

= 2F(.Al - A2)F(A2 -AI) bE + 'lji(A1 - A2)] , (D.20) 

where the pole z = -A1 is left and the pole and z = -A2 is right, and 

~ J+ioo dzF*(.A1 + z)F(A2 + z)F*(-A2- z)F(-Al- z) 
27rl -ioo 

= 2F(Al- A2)F(.A2- AI) bE + 'lji(A2- AI)] , (D.21) 

where the pole z = -,\1 is right and the pole and z = -A2 is left. These are 
four more formulae with these conditions: 
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1 l+ioo 
-. dz r* (.A1 + z)F(.A2 + z)r*( -.A2 - z)r( -.A1 - z)'ljl( -.A1 - z) 
21!'1 -ioo 

= -~F(.Al- .A2)F(.A2- .AI) [2'Y~ + rr2 - 4)'E'Iji(.A2- .A1) 

-6'1ji(.A2- .AI)2 - 6'1ji'(.A2- .XI)] . (D.25) 

Furthermore, we have 

1 l+ioo 
2rri -ioo dz F(.A1 + z)F(.A2 + z)r*( -.A2 - z)F*( -.A1 - z) 

= F(.A1 - .A2)F(.A2 - .A1) [2'YE + 'lji(.A1 - .A2) + 'lji(.A2 - .A1)] , (D.26) 

where the poles z = -.A1 and z = -.A2 are left. These are four more formulae 
with these conditions: 

1 l+ioo 
2rri -ioo dz F(.A1 + z)F(.A2 + z)F*( -.A2 - z)r* ( -.A1 - z)'ljl( -.A1 - z) 

= -~r(.xl- .A2)r(.x2- .AI) [2'Y~ + rr2 + 2'1ji(.Al- .A2)2 
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+41/J(.Xl- Ă2)('YE -1j;(.X2- Ă1))- 8")'E1/J(A2- .Al) 
-41j;(.X2- .X1)2 + 21/J'(.Xl- Ă2)- 41/J'(.X2- .XI)} (D.30) 

We also have 

(D.31) 

where the pole z = -A2 is right. These are three more formulae with this 
condition: 

1 l+ioo 
21ri -ioo dz T(.X1 + z)r*(.X2 + z)r( -.X2 - z)21j;(.X1 + z) 

= -T(.X1- .X2) [1J;(.X1- .X2)1/;'(.X1- .X2) + 1/J"(.Xl- Ă2)] , (D.32) 

1 l+ioo 
21ri -ioo dz T(.X1 + z)T*(.X2 + z)r( -.X2 - z)21j;(.X2 + z) 

= T(.X1- Ă2)1/;'(.X1- Ă2) [2'YE + 1/;(.X1- Ă2)] , (D.33) 

1 l+ioo 
21ri -ioa dz T(.X1 + z)r* (.X2 + z)r( -.X2 - z)21j;( -.X2 - z) 

= ~T(.X1- Ă2) [2'YE1/J'(.Xl- Ă2) -1/J"(.Xl- Ă2)] . (D.34) 

We also have 

1 l+ioo 
21ri -ioo dz T(.X1 + z)T(.X2 + z)T*( -.X2- z)2 

= ~r(.X1- Ă2) (1r2 + 2('YE + 1/;(.X1- .X2))2 - 21/;'(.Xl- Ă2)) , (D.35) 

where the pole z = -A2 is left, 

~ l+ioo dz T(.X1 + z) 2 T*( -Al- z)T(.X2- z) 
2m -ioo 

= -T(.X1 + .X2)1/J'(.X1 + .X2), (D.36) 

where the pole z =-Al is left, and 

~ l+ioo dz r*(.X1 + z)2 T( -Al- z)T(.X2- z) 
2m -ioo 

= ~T(.X1 + Ă2) [2('YE + 1/;(.X1 + Ă2)) 2 + 1r2 - 21/;'(.Xl + Ă2)) , (D.37) 

where the pole z = -A1 is right. These are three more formulae with this 
condition: 
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~ J+ioo dz r*(A1 + z)2 r( -Al- z)r(A2- z)'lj;(Al + z) 
2m -ioo 

1 [ 3 ( 1 ) 2 n 2 
) = 6r(Al + A2) 'lj;(Al + A2) + 3'lj;(Al + A2) 'lf'; (Al+ A2 - 1'E + 6 

-2')'~- ')'E1f2 + 6')'E'l/J1(Al + A2)- 4((3)- 2'lj;"(Al + A2)] ' (D.38) 

~ J+ioo dz r*(A1 + z)2 r( -A1 - z)r(A2- z)'lj;( -Al- z) 
21fl -ioo 

1 [ 2 3 = - 12 r(Al + A2) 12')'E'l/J(Al + A2) + 2'lj;(Al + A2) 

+3'lj;(Al + A2) ( 6')'~ + ~2 - 2'lj;' (Al + A2)) 

+2(4')'~ + 2')'E1f2 - 6')'E'l/J1(Al + A2) + 8((3) + 'lf';"(Al + A2))] ' (D.39) 

~ J+ioo dz r*(Al + z) 2 r( -Al- z)r(A2- z)'lj;(A2- z) 
21fl -ioo 

= ~r(Al + A2) [41'E'l/J(Al + A2) 2 + 2'l/J(Al + A2) 3 + 4')'E'l/J'(Al + A2) 

+'lf';(Al + A2)(21'~ + n 2 + 2'lf';'(Al + Az))- 2'lj;"(Al + A2)] . (D.40) 

In some situations, it is possible to evaluate MB integrals with higher 
derivatives of the 'lj; function. Here are some examples: 

~ J+ioo dz r(Al + z) 2 r(A2- z) 2'lj;(Al + z) 
2m -ioo 

r(Al + A2) 4 

= r(2(A1 + A2)) [2'lj;(Al + A2)- 'lf';(2(Al + A2))] , (D.41) 

(D.43) 
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r(Al + A2)4 [ 2 
= r(2(Al + A2)) 4'1/J(Al + A2) - 4'1/J(.\1 + .\2)'1/J(2(A1 + A2)) 

+'I/J(2(Al + A2))2 + '1/J'(Al + A2)- 'I/J'(2(Al + A2))] , (D.44) 

1 l+ioo 
21l'i -ioo dz T(Al + z)2 T(A2 - z)2'1/J(Al + z)2'1jJ(A2 - z) 

r(Al + A2)4 [ 3 2 
= r(2(A1 + A2)) 8'1/J(Al + A2) -12'1/J(Al + A2) 'I/J(2(A1 + A2)) 

+2'1/J(Al + A2)(3'1jJ(2(Al + A2))2 + 2'1/J'(Al + A2)- 3'1/J'(2(Al + A2))) 

+'I/J(2(Al + A2))(3'1/J'(2(Al + A2))- 2'1/J'(Al + A2)) 

-'I/J(2(Al + A2)) 3 - 'I/J"(2(Al + A2))) , (D.45) 

1 l+ioo 
21l'i -ioo dz T(Al + z)2 T(A2- z)2'1jJ 1(Al + z)'ljJ(A2- z) 

r(Al + A2) 4 , 
= r(2(A1 + A2)) [4'1/J(Al + A2)'1/J (Al + A2) 

-2'1/J(2(Al + A2))'1/J'(Al + A2) + '1/J"(Al + A2)] , (D.46) 

D.2 MB Integrals with Six Gamma Functions 

This is the second Barnes lemma: 

_1 j+ioo dz T(Al + z)T(A2 + z)T(A3 + z)T(A4 - z)T(As - z) 
21l'i -ioo T(A6 + z) 

r(Al + A4)T(A2 + A4)T(A3 + A4)T(A1 +As) 
T(Al + A2 + A4 + As)T(Al + A3 + A4 +As) 

T(A2 + As)T(A3 +As) (D.47) 
X T(A2 + A3 + A4 +As) ' 

where A6 = Al + A2 + A3 + A4 +As. 
Here is a collection of its corollaries: 

_1 j+ioo dz T(Al + z)T(A2 + z)T(A3 + z)T*(-A3 - z)T(A4 - z) 
21l'i -ioo T(As + z) 

r(Al- A3)T(A2- A3)T(A3 + A4) [·'·(' , , , ) = o/ /\1 + 1\2 - 1\3 + 1\4 
r(Al + A2- A3 + A4) 

+'I/J(A3 + A4) - '1/J(Al + A4) - 'I/J(A2 + A4)] , (D.48) 

where As= Al+ A2 + A4 and the pole z = -A3 is considered left, 

_1 j+ioo dz T(Al + z)T(A2 + z)T*(A3 + z)T(-A3 - z)T(A4 - z) 
21l'i -ioo T(As + z) 
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= F(A1 - A3)F(A2 - A3)F(A3 + A4) ['I/J(A1 _ A3) + 'I/J(A2 _ A3) 
F(A1 + A2 - A3 + A4) 

-'ljJ(A1 + A4) - 'ljJ(A2 + A4)] , (D.49) 

where As = A1 + A2 + A4 and the pole z = -A3 is considered right, 

1 J+ioo F(A1 + z)F(A2 + z)F*( -A3 + z)F(A3- z) 2 
-- dz~~~~~~~~~~~~--~ 

27ri -ioo F(A4+z) 

= _ r(A1 + A3)F(A2 + A3) ["i"(A +A ) + "1"(A +A )] (D.so) 
r(A1 + A2 + 2A3) 'f/ 1 3 'f/ 2 3 , 

where A4 = A1 + A2 + A3 and the pole z = A3 is considered right, 

1 J+ioo F(A1 + z)F*(A2 + z) 2F(-A2- z)F(A3- z) -- dz~--~--~~~~~--~~--~ 

27fi -ioo F(A4+z) 

= F(A1 - A2)F(A2 + A3) [7f2 
( _"!'(A _A ) "i'(A A ) 

2F(A1 + A3) 2 + 'YE 'f/ 1 2 + 'f/ 1 + 3 

+'I/J(A2 + A3)) 2 + '1/J'(Al- A2) + '1/J'(Al + A3)- 'I/J'(A2 + A3)] , (D.51) 

where A4 = A1 + A2 + A3 and the pole z = -A2 is considered right, 

1 J+ioo r( A1 + z)F(A2 + z) 2 F* ( -A2 - z )F(A3 - z) -- dz~--~~--~~~~--~~--~ 

27fi -ioo F(A4+z) 

= F(A1 - A2)F(Az + A3) ["i/(A A ) _";·'(A A )] 
F(A1 + A3) 'f/ 1 + 3 'f/ 2 + 3 , (D.52) 

where A4 = A1 + A2 + A3 and the pole z = -A2 is considered left. 
The integrals (D.47) can be evaluated recursively in the case where the 

difference A6 - (A1 + A2 + A3 + A4 +As) is a positive integer. In particular, 
we have 

__ 1 J+ioo dz F(A1 + z)F(A2 + z)F(A3 + z)F(A4- z)F( -z) 

27ri -ioo F(As+z) 

(r(l + A2 + A3 + A4))- 1 F(AI)F(A3)F(A2 + A4) 
F(1 - )q - A3 - A4)F(1 + A1 + Az + A4)F(A1 + A3 + A4) 

x [F(1 + Az)F(l - A1 - A3 - A4)F(A1 + A4)F(A3 + A4) 

-F(Az)r( -Al- A3- A4)r(1 + A1 + A4)r(1 + A3 + A4)] , (D.53) 

where As = A1 + A2 + A3 + A4 + 1, and 

__ 1 J+ioo dz F(Al + z)F(A2 + z)F(A3 + z)F(A4- z)r( -z) 
27fi -icxo F(As+z) 

(r(2 + A2 + A3 + A4))-1 F(A1)F(A3)F(A2 + A4) 

F(1 - A1 - A3 - A4)F(2 + A1 + A2 + A4)F(A1 + A3 + A4) 
x [r(2 + A2)r(1 - A1 - A3 - A4)F(A1 + A4)F(A3 + A4) 

-2F(1 + A2)F( -Al - A3 - A4)F(1 + A1 + A4)F(1 + A3 + A4) 

+F(Az)F(-1- A1- A3- A4)F(2 + A1 + A4)F(2 + A3 + A4)] , (D.54) 

where As = A1 + A2 + A3 + A4 + 2. 
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Here are more corollaries of the second Barnes lemma: 

1 j+ioc dz 
-2 . - F(Al + z)F(A2 + z)F(A3- z)F(A4- z) 

Jrl -ioc Z 

r(2- A1- A3)r(1- A2- A3)F(A1 + A3- 1)F(A2 + A3) 
r(1 - AI)F(1 - A2) 

x [r(1 - AI)F(1 - A2) - r(2- A1 - A2 - A3)F(A3)] , (D.55) 

where A1 + A2 + A3 + A4 = 2, and the pole at z =O is considered left, 

1 j+ioc dz 
-2 . - F(Al + z)F(A2 + z)F(A3- z)F(A4- z) 

Jrl -ioc Z 

= -r(A1)F(A2)r(2- A1- A2- A3)F(A3) 
+ r(2- A1- A3)r(1- A2- A3)F(A1 + A3- 1)F(A2 + A3) 

r(1 - AI)F(1 - A2) 
x [r(1 - AI)F(1 - A2) - r(2- A1 - A2 - A3)F(A3)] , (D.56) 

where A1 + A2 + A3 + A4 = 2, and the pole at z = O is considered right, 

_1 j+ioc dz F*(A + z) 2 F*(z)r( -z)r( -A- z) 
2Iri -ioc F(A + 1 + z) 

1 j+ioc dz = --. - F(A + z)F(z)F*( -z)F*( -A- z) 
2m -ioc Z 

1 
= 6A r(A)r( -A) [12hE + 7/J(A)) + 2h2 

+3A((7jJ(A) -7/J( -A)) 2 -7/J'(A) + 7/J'( -A))] , (D.57) 

where the nature of the poles at z = O and z = -A is indicated by asterisks, 
according to our conventions, 

1 j+ioo F(A+z) 2F(z)F*(-z)F*(-A-z) - dz~-~~~~~~~-~ 
2Iri -ioo F(A+1+z) 

1 j+ioo dz 1 = --. - r*(A + z)r*(z)r( -z)r( -A- z) = 2 r(A)F( -A) 
2m -ioo Z A 

X [1+A(7/J(A)+7/J(-A)+2-yE)-A2 (7/J'(A)- :
2
)], (D.58) 

1 j+ioo F(A + z)2 F*(z)F( -z)F*( -A- z) - dz~-~-~~~~~-~ 
2Jri -ioo F(A + 1 + z) 

1 j+ioo dz 
= --. - F(A + z)r*(z)r( -z)r*( -A- z) 

27rl -ioo Z 

= ~ r(A)r( -A) [ 2hE + 7/J(A)) -A ( 7/J' (A) - : 2
) J . (D.59) 
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We also have 

1 j+ioo dz 
-. 2 r(>,l + z)F(A2 + z)F(A3- z)F(A4- z) 
21fl -ioo Z 

F(2- A1 - A3)F(1 - A2 - A3)F(2- A1 - A2 - A3)F(A3) 
F(2 - Al)F(1 - A2) 

xF(Al + A3- 1)F(A2 + A3) [1 +(Al- 1)(7j;(2- Al)+ 7j;(1- A2) 

-7j;(2- A1- A2- A3) -7j;(A3))] , (D.60) 

where A1 + A2 + A3 + A4 = 2, and the pole at z =O is considered left, 

1 j+ioo dz 
-. 2 F(Al + z)F(A2 + z)F(A3- z)F(A4- z) 
27rl -ioo Z 

= F(2- A1- A2- A3)F(A3) [-F(Al)F(A2)(7j;(Al) + 7j;(A2) 

-7j;(2- A1- A2- A3)- 7j;(A3)) 
F(2- A1 - A3)F(1- A2- A3)F(A1 + A3- 1)F(A2 + A3) 

+ F(2 - Al)F(1 - A2) 
X [1 +(Al- 1)(7j;(2- Al)+ 7j;(1- A2) 

-7j;(2- A1- A2- A3)- 7j;(A3))]] , (D.61) 

where A1 + A2 + A3 + A4 = 2, and the pole at z =O is considered right, 

1 j+ioo dz 
-. - F(Al + z)r*(A2 + z)r( -A2- z)F*( -Al- z) 
27rl -ioo Z 

1 
= - AÎ A2 r(Al - A2)F(A2 -Al) [2Al - A2 

+Al(Al + A2)('YE + 7/J(Al- A2))- Al(Al- A2) 
x(7j;(-Al) -7j;(-A2) + 7j;(A2- Al) -7j;(1- A1 + A2))] , (D.62) 

where the pole at z = O is left and the nature of the first poles of the gamma 
functions is shown by asterisks, 

1 j+ioo dz 
-. - F(Al + z)F(A2 + z)r*( -A2- z)r*( -Al- z) 
21fl -ioo Z 

1 [ 2 2 = A2 A2 F(Al- A2)F(A2- Al) A1- A1A2 + A2 
1 2 

-AlA2(Al + A2)1'E + Al(Al- A2)A2(7/J( -Al) -7/J( -A2)) 

-AlA2(A27j;(Al- A2) + A17f;(A2- A1))] , (D.63) 

where the pole at z =O is left, 

1 j+ioo dz 
-2 . 2 F(Al+z)r*(A2+z)r(-A2 -z)r*(-A1 -z) 

7rl -ioo Z 

1 [ 2 2 = A3 A2 r(Al - A2)F(A2- Al) 2(Al + A1A2- A2) 
1 2 
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+AI (AÎ +A~)( 1/I(AI - A2) + 'YE) 
-AI(AÎ- A~)(1/I(-AI) -1/1( -A2) + 1/1( -Al+ A2) -1/1(1- AI+ A2)) 

-AÎA2(AI- A2)(1/I'(-Al) -1/I'(-A2))] , (D.64) 

where the pole at z = O is left, 

1 j+ioo dz 
-2 . 2 T(AI + z)T(A2 + z)T*(-A2 - z)r*(-A1- z) 

11"1 -ioo Z 

1 [ 2 2 = - A3 A3 r(AI - A2)T(A2 - A1) (AI + A2)(2A1 - 3AIA2 + 2A2) 
1 2 

-AIA2(AÎ + A~)'YE + AIA2(AÎ - A~)1/l( -Al) 

-A~A~(1/I(AI- A2) -1/I(-A2))- AiA2(1jl( -A2) + 1/I(A2- Al)) 

+Ai A~( 1/1' (-Al) -1/1' ( -A2)) - AÎ A~( 1/1' (-Al) -1/1' ( -A2))] , (D.65) 

where the pole at z = O is left, 

1 j+ioo dz 
-. 2 T(A + z)r(z)r*( -z)r*( -A- z) 
21l"l -ioo Z 

1 
=- 6A3 T(A)T( -A) [12- 6A(2'YE + 1/1( -A)+ 1/I(A)) 

+A2(rr2 - 61/1'(-A))- 3A3 (1j1"(-A) + 2((3))] , (D.66) 

where the pole at z = O is left, 

1 j+ioo dz 
-. 2 T(A + z)r*(z)r(-z)r*( -A- z) 
21l"l -ioo Z 

1 
= 6A3 T(A)T( -A) [ -12 + 6A(2'YE + 1/1( -A)+ 1/I(A)) - A2(rr2 - 61/1'( -A)) 

-A3 (rr2(1jl( -A) -1/I(A)) + (1/1( -A) -1/I(A))3 - 21/1"( -A) -1/I"(A) 

+3(1/1( -A) -1/I(A))(1/I'( -A)+ 1/I'(A))- 6((3))] , (D.67) 

where the pole at z =O is right, 

1 j+ioo dz 
-. - T(A + z) 2 T*( -A- z) 2 

211"1 -ioo Z 

=- 6~4 [6 + A2(rr2 - 61/1'( -A))+ 12A3((3)] , (D.68) 

where the pole at z = O is left, 

1 j+ioo dz 
-. 2 T(A + z) 2 r*( -A- z) 2 

21l"l -ioo Z 

= 3~5 [ 12 + A2 ( rr2 - 61/J' (-A)) - 3A3 ( 1/1" (-A) - 2((3))] , (D.69) 

where the pole at z = O is left, 
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where the pole at z = O is right. 



E Analysis of Convergence 
and Sector Decompositions 

In this appendix, the analysis of convergence of Feynman integrals based on 
the alpha representation is briefly described. The UV divergences come from 
the region of small values of the a-parameters in (2.36), while the off-shell 
IR divergences arise from the integration over large az. To reveal these diver­
gences, the integration region is divided into so-called 'sectors', where new 
integration variables are introduced, with the goal to obtain a factorization 
of the integrand. Then the analysis of convergence reduces to power counting 
in one-dimensional integrals. 

However, this mathematical analysis of convergence is restricted to the 
cases where the external momenta are Euclidean. Generalizations of these 
results connected with the analysis of convergence and dimensional regular­
ization to Feynman integrals at a mass shell or at a threshold are not known. 
On the other hand, it turns out that, in these important cases, one can in­
troduce some practica! sector decompositions and corresponding sectors [5] 
that give the possibility to have control on the convergence and, in particu­
lar, provide a powerful method of evaluating Feynman integrals in situations 
with strong UV, IR and collinear divergences. The corresponding algorithm 
is described in Sect. E.2. 

E.l Analysis of Convergence 

We obtain the alpha representation of an analytically and dimensionally reg­
ularized Feynman integral corresponding to a graph r starting from the 
alpha representation (2.36) and substituting the powers of propagators a1 by 
az + Az with general complex numbers >.1• For simplicity, let us assume the 
scalar case and that the powers of propagators are equal to one. (If a1 > 1, 
one can represent such a line by a sequence of a1 lines.) In this case the alpha 
representation takes a simpler form 

Fr(q_, m; d, ~) 

~ i~ dq r;r at' U (<>) -df' exp ( iV(R, <>) /U (<>) - i ~ mf a,) , (E.l) 
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where the functions U and V are given by (2.24) and (2.25), and from now 
on we omit the coefficient 

(-l)Lei7r(I:>-z+h(l-d/2l)/2nhd/2/II r(>..z + 1), 

which is irrelevant to the analysis of convergence. In this appendix (as in 
Chap. 6), families of variables are denoted by underlined letters, i.e. q = 
(qi, ... ,qn), m = (mi, ... ,mL), ~ = (AI, ... ,AL), Q = (o:I,···,o:L), etc., 
with dg_ = do:1 ... do:L. Let us also assume here and later that the limit of 
integration refers to all of the integration variables involved. 

The alpha parameters have dimension -2 in mass units. By making the 
change of variables o:1 ---7 JL-2o:1, where JL is a massive parameter, we can 
transform to dimensionless alpha parameters. For simplicity, let us take JL = 1 
in this appendix. To separate the analysis of the UV and IR convergence as 
much as possible let us decompose the integration from O to oo over each 
alpha parameter into two regions: from O to 1 and from 1 to oo. The inte­
gral (E.1) is then divided into 2L pieces, each of which is determined by a 
decomposition of the set of lines C of the given graph into two subsets, L 0 

and Lf3, corresponding to the integrations over the UV region (from O to 1) 
and the IR region (from 1 to oo), respectively. For a given piece generated by 
a subset Le" let us change the variables o:z for l E Lf3 according to o:z = 1/ f]z. 
The corresponding integral then takes the form 

Ffta(q_,m;d,~)= lldg_d~ II a?z II f3z->-z-c:U(g_,~)-d/2 
lEC, lE.Cr, 

x exp (iV(q_, Q, ~)/U(g_, ~)- i L mfo:z - i L mf / f3z) (E.2) 
lE.Cn lE.C13 

For brevity, the new functions U and V are denoted by the same letters, 
although they are now of the form 

U(g_, ~) = (II f3z) U(g_)laz--+l//3z.lEC13 
lE.C13 

~ T~· Cn/.) CITn/') · (E.3) 

(E.4) 
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Remember that ±qT is the sum of the external momenta that flow into one 
of the connectivity components of a 2-tree To 

For a given piece Fft"' , let us change the numbering of the lines in such 
a way that the UV lines (i.eo those with a1 :::; 1) have smaller numberso 
Thus we perform integration in the domain O :::; a1 :::; 1, 1 :::; l :::; [ and 
O :::; (31 :::; 1, [ + 1 :::; l :::; L, where [ = I.CaJ If S is a finite set, we denote by 
ISI the number of its elementso 

As we shall see, the analysis of UV and IR convergence is now decoupledo 
To analyse the UV convergence let us divide the domain of integration over a1 
into sectorso In the following, we shall use sectors of two types associated with 
nests and forests, respectivelyo The sectors connected with nests of subgraphs, 
(i.eo that 'Y c 1' or 1' c 'Y for any pair of the subgraphs of any nest; let us 
call them N-sectors) [14] are defined by 

(E.5) 

and similar inequalities obtained by permutationso Without loss of generality, 
let us consider only the sector (Eo5)o Let us then change the integration 
variables according to 

a 1 = t1 0 o o t1 0 (Eo6) 

The new ( N -sector) variables t1 are expressed in terms of a1 by 

t = { atfal+l if l < ~ 
l al if l = l o 

(Eo7) 

The corresponding Jacobian equals TI tl-1
0 

The decomposition of the IR integration, over f3l, is performed in a quite 
similar wayo The following are the corresponding analogues of N -sectors and 
sector variables: 

f3L ~ o o o ~ (3l+l , 

f3l = TT+l o o o Tl ' 

- { f3d f3l-1 if l > ~ + 1 
Tl - (3l+l if l = l + 1 ' 

and the corresponding Jacobian is TI TF-lo 
So, the initial integral is eventually divided into ( L + 1)! sectors 

a1r(l) :::; o o o :::; a1r(l) :::; 1 :::; a1r(f+1) :::; a1r(L) , 

(Eo8) 

(E.9) 

(Eo10) 

(Eoll) 

which are labelled by permutations 1r of the numbers 1, o o o, L and the num­
ber l. As we have stated, we consider only the contribution of the identica! 
permutation, i.eo 1r(l) = l, l = 1, o o o, Lo 

Although these sectors provide a resolution of the singularities of the 
integrand, they can turn out to be too rough for analysing convergenceo A 
more sophisticated set of sectors corresponds to the maxima! UV and IR 
forestso A set f of 1PI subgraphs and single lines with non-coincident end 
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points is called a UV forest [8, 16, 22] if the following conditions hold: ( i) 
for any pair 'Y, "(1 E f, we have either 'Y C "(1 , "(1 C 'Y or C('y n 'Y') = 0; 
(ii) if "(1 , ... , 'Yn E f and C( "fi n 'Yj) = 0 for any pair from this family, 
the subgraph uni is one-vertex-reducible (i.e. can be made disconnected by 
deleting a vertex). 

Let F be a maximal UV forest (i.e. there are no UV forests that include 
F) of a given graph r. An element 'Y E F is called trivial if it consists of 
a single line and is not a loop line. Any maxima! UV forest has h(r) non­
trivial and L- h(T) trivial elements. Let us define the mapping a: F---> C 
such that a('y) E C('y) and a('y) fţ. C('y') for any "(1 C "(, "(1 E F. Its inverse 
a- 1 uniquely determines the minimal element a- 1(l) ofthe UV forest F that 
contains the line l. Let us denote by 'Y+ the minimal element of F that strictly 
includes the given element 'Y. 

For a given maxima! UV forest F, let us define the corresponding sector 
( F -sector) as 

V;:= {glo:! :S o:a('Y) :S 1, l E 'Y E F} . (E.12) 

The intersection of two different F -sectors has zero measure and the union of 
all the sectors gives the whole integration domain of the UV alpha parameters 
(i.e. 0:1 :S 1) (see [8, 16, 18, 22]). For a given F-sector, let us introduce new 
variables labelled by the elements of F, 

O:!= II t'Y , 

'YEF: IE'Y 

(E.13) 

where the corresponding Jacobian is IJ'Y t~('Y)- 1 . The inverse formula is 

t = { O:a('y)/O:a('y+) if "( is not maxima! (E. 14) 
'Y ~~ if"(~max~~ · 

Consider, for example, the two-loop self-energy diagram of Fig. 3.9 and 
the following maxima! UV forest F consisting of 'Y1 = { 1}, 'Y2 = { 2}, 'Y3 = 

{3}, 'Y4 = {1, 2, 5}, 'Y5 = r. The mapping a is a('y1) = 1, a('y2) = 

2, a('y3 ) = 3, a('y4 ) = 5, a('y5 ) = 4. The sector associated with this maxima! 
UV forest is given by V;: = { o:1,2 :S o:5 :S 0:4, 0:3 :S o:4} and the sector vari­
ables are t'Y1 = 0:1/ o:s, t'Y2 = 0:2/ o:s, t'Y3 = 0:3/0:4, t'Y4 = o:s /0:4, t'Ys = 0:4. 

The IR F-sectors and variables are introduced in a quite analogous way. 
New variables T'Y are associated with maxima! IR forests composed ofIR­
irreducible subgraphs- see [18]. (A subgraph 'Y of ris called IR irreducible 
[10, 18] if the reduced graph rj-;y is one-vertex-irreducible. (As in Chap. 2, 
r h is obtained from r by reducing every connectivity component of 'Y to 
a point.) The UV and IR maxima! forests Fa and F(3, composed of lines 
Ca and Cf3, respectively, are then combined in pairs to generate 'generalized 
maxima! forests', with corresponding variables {t'Y, T'Y' }, "(EFa, "(1 E Ff3. As 
a result, the initial integration domain is divided into F-sectors associated 
with generalized maxima! forests. 
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In each of the N- or F-sectors, the function (E.3) takes a factorized form 
in the new variables [8, 16, 18, 22, 24]: 

u = (rr t~'(rz)) ( IT TlL-l+l-h(I'ht-1)) [1 + PN(ţ,z:)J (E.15) 
1=1 1=1+1 

( IT t~h)) ( IT T!;h)-h(I'/'Y)) [1 + PF(ţ, .r:)] (E.16) 
rE:Fa 1E:F13 

where PN and PF are non-negative polynomials, "il denotes the subgraph 
consisting of the lines { 1, ... , l}, and again '7 = F\ "(. The factorization of the 
function (E.4) in the N-sector variables is of the form 

V _ (IT~ th(Tl)) ITL L-1+1-h(I'ht-1) ( )-1 - l Tl T[+l ... Tlo 

1=1 1=1+1 

X [ ( qTo) 2 + Po (q, ţ, z:) J ' (E.17) 

where l0 denotes the number such that all the external vertices belong to the 
same connectivity component of the subgraphs 11 for l ~ lo. In the Euclidean 
domain, where 

(E.18) 

for any subset I of external lines, we ha ve ( qTo) 2 < O and P0 (q, ţ, r..) ::; O. 
These factorization formulae are proven by constructing an appropriate 

tree or a 2-tree. In particular, in the case of pure a-variables, one uses the 
formula 

IT a = IT th(T)+c(rnT)-c(r) 
l ' ' 

(E.19) 
lECa \T rEF a 

where T is a tree or 2-tree and c('Y) is the number of connectivity components 
of"(, so that the factorization reduces to constructing a (2- )tree that provides 
the minimal value ofthe non-negative quantity c('YnT)- c('Y). In particular, 
the unity termin the square brackets in (E.15) corresponds to the tree which 
is constructed as follows: one considers the lines l = 1, 2, ... consecutively 
and includes the given line in the tree if a loop is not generated. In (E.16), 
the minimal power of the sector variables is achieved for the tree which is 
composed of all trivial elements of the given maximal UV-forest :F. 

The 2-tree T0 that gives q}0 in (E.17) is constructed by a similar procedure 
with the additional requirement that a line is not included when it could 
connect all the external vertices of the graph. The factorization in the F­
sector variables is a little bit more complicated (see [18]); instead of the 



226 E Analysis of Convergence and Sector Decompositions 

contribution of the 2-tree T0 , there is a sum of contributions from some 
family of 2-treeso 

These formulae provide a factorization of the integrand of the alpha rep­
resentation and make manifest the analysis of the UV and IR convergenceo 
The contribution of the N-sector (Eoll) takes the form 

F~(!l, m; d, ~) = {1 dţ d1: (rr tthtl+hbz)c-[wbtl/2]-1) 

Jo 1=1 

X ( u 71>.('"Y{)-h(Thz- 1 )c+[(w(T)-w('"Y{l+1)/2]-1) 

l=l+1 

[ ( )l c-2 (oq}0 + Po(q,i,1:) ( )-1 
X 1 + PN ţ, 1: exp 1 R c ) 'TŢ+l o o o Tt 0 

1 + N ţ,1: 

-it m[az(f)- i t mfff3z(1:)) , (Eo20) 
!=1 !=1+1 

where 

>.(lt) = 2:: Ât ' (Eo21) 
lE'"'! 

and, in addition to "(!, we have introduced the notation 'Y[ = F\'Yt-1 for the 
subgraph composed of the lines { l, l + 1, o o o , L} o The general case [ < lo is 
assumedo The square brackets in the exponents denote the integer parts of 
numbers, and h{lt) and w{lt), as before, denote the number of loops and the 
UV degree of divergence, respectivelyo This factorization is given here for a 
general grapho In the scalar case, on which we are concentrating, the degrees 
of divergence are even numbers so that one can avoid the need to take those 
integer partso 

The structure of the factorized representation in the F -sector variables is 
similar, where the product of powers of the sector variables now takes the 
form 

( II t~b)+h(-y)c-[w(-y)/2]-1) 
'"'!EFa 

X ( II r;(-y)-h(T/'Y)c+[(w(T)-w(-y)+l)/2]-1) 

'"YE:FfJ 

(Eo22) 

So the factorized N -sector integrals take the same form as the F -sector in­
tegrals if we let the UV subgraph 'Y be any graph of type 'Yt and the IR 
subgraph 'Y be any graph of type 'Y[, no matter whether they are UV /IR 
irreducibleo Therefore, to analyse the UV and IR convergence, the F-sectors 
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are certainly preferable because it suffices to check convergence in a smaller 
family of integrals. 

The analysis of convergence has therefore been reduced to counting powers 
in products of one-dimensional integrals over the sector variables. Note that 
(IR) convergence in the variables Tz is guaranteed if T1- 1 is present in the ex­
ponent. This property can be explained by the fact that the one-dimensional 
integral J000 dT e-im2 /T T>-cp( T), with an infinitely differentiable function cjJ and 
a sufficient decrease at infinity, is well defined even at arbitrary values of 
Re A :::; -2 ( where it is, strictly speaking, divergent): this is true both in 
the sense of the analytic continuation from the domain Re A > -1 and in 
the sense of the limit o ----+ +0 with m 2 ----+ m 2 - io (with identica! resulting 
prescriptions in both these variants). In particular, such integrals are well 
defined for the integer values A= -1, -2, ... 

Thus we have IR convergence when either the subgraph 1{ (or just 1) 
has at least one non-zero mass or its completion /z- 1 (or '?) does not have 
all the external vertices in the same connectivity component. Therefore it is 
sufficient to check the IR convergence for the other IR-irreducible subgraphs. 
The domain of the regularization parameters Az and E where these sector 
integrals are convergent is determined by the inequalities 

ReA(!)+ h(r) Rec: > [w(r)/2], 

ReA(r)- h(F/"f) Rec: < [(w(F)- w(r) + 1)/2], 

(E.23a) 

(E.23b) 

which correspond, respectively, to UV-irreducible subgraphs and massless IR­
irreducible subgraphs whose completions "( contain all the external vertices 
in the same connectivity component. 

It turns out that this domain is non-empty for any graph without massless 
detachable subgraphs, i.e. massless subgraphs with zero external momenta. 
This statement can be proven [22] by observing that the parameters 

Aj0l = (2- c:) ( 1 +o- ii~:) -1 , (E.24) 

where T'/ is the set of trees containing the line l, satisfy (E.23a) and (E.23b) 
for sufficiently small O > O. (As before, 1 ... 1 is the number of elements in 
the corresponding finite set.) Here again the scalar case is assumed. The gen­
eralization to a general diagram is straightforward: one adds nz/2 to the 
right-hand side of (E.24), where n 1 is the degree of the polynomial in the 
numerator of the lth propagator. 

In order to see that the Feynman integral can be continued from the 
above domain of mutual convergence to the whole hypercomplex plane of the 
variables (~, E) let us use the well-known property of the integrals 

F(A) = 100 
dx x>-cp(x). (E.25) 

(In distributional language, this is the analytic property of the distribution 
x~ - see [12].) Indeed, the integral (E.25) with an infinitely differentiable 
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function cjJ which has a compact support (or, a fast decrease at large values 
of x- see details in [12]) is absolutely convergent for all complex values of A 
with Re A > -1 so that it defines an analytic function of A in this domain. 
This function can be continued analytically to the whole complex plane of A 
with simple poles at A = -1, -2, .... To perform the analytical continuation 
to the domain Re A > -2 one decomposes the integral (E.25) into the two 
integrals, from O to 1 and from 1 to oo, and uses an appropriate subtraction 
in the first ofthem, i.e. represents cjJ(x) in (E.25) as (cfJ(x) -cjJ(O))+cfJ(O) and 
takes the integral with the second term explicitly to obtain 

F(A) = { 1 dx x,\(cjJ(x)- cjJ(O)) + !(O) + foc dx x,\cjJ(x) . 
Jo /\+1 J1 (E.26) 

The first integral on the right-hand side is now absolutely convergent at 
Re A > -2 so that we obtain, from (E.26), an explicit analytic continuation 
of the function F(A) to this domain. We also see that this function has a 
simple pole atA= -1 with the residue cjJ(0). 1 

This procedure can naturally be generalized for the analytic continuation 
to the whole complex plane. To do this, o ne makes more subtractions2 : 

1 [ n (j) l n (j) 
F(A) = r dx X,\ cjJ(x)-"' cP . (O) xj +"' . cP \0) 

Jo L- J! L- J!(A + J + 1) 
]=0 )=0 

+ J,oc dx x,\cjJ(x) . (E.27) 

Let us come back to our sector integrals. It follows from the factorizations 
(E.20), when they are written for all the sectors, that the Feynman integral 
can be continued from the above domain of mutual convergence to the whole 
hypercomplex plane of the variables (~, E) as a meromorphic function, with 
series of UV and IR poles. It is also clear that, in the case where there is no 
non-empty mutual-convergence domain, the contribution from any sector can 
be made convergent by choosing the absolute values of the real parts of the 

1 In distributional language, this means that the functional x~ has the pole at 
.A.= -1 with the residue o(x). By the way, in the domain -2 <Re.\.< -1, the 
value cjJ(O)/(.A.+ 1) can be rewritten as -t/1(0) J1

00 dx x·". After we combine it with the 
last integral in (E.26) we obtain the following compact expression for the analytic 
continuation of (E.25) to this hand: F(.A.) = J0oo dxx.\(tfi(x)- t/1(0)). However, in 
our case of factorized expressions resulting from sector integrals, this is not relevant 
because we are dealing with finite regions of integration. 

2With the help of this procedure, the analytic continuation of (E.25) to the 
hand -n- 1 <Re .A.< -n- 1 takes the form [12]: 
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UV /IR analytic-regularization parameters to be sufficiently large (positive 
and negative for l :::; [ and l > [, respectively). The analytic regularization can 
then be switched off, by analytic continuation, and one obtains [9] a dimen­
sionally regularized Feynman integral as the sum of its sector contributions, 
which were defined in their own initial analyticity domains using the auxil­
iary analytic regularization. Therefore, we obtain a definition of dimensional 
regularization for any Feynman integral at Euclidean external momenta. 

E.2 Practica! Sector Decompositions 

The sector decompositions of the previous section are simpler than the sectors 
of [22]. However, if we want to apply sectors for the numerica! evaluation 
of Feynman integrals the initial decomposition of the integration domain 
over every alpha parameter in the two regions is not optimal at all because 
we obtain 2L pieces from the beginning. So, the natural idea is to apply 
the sectors of [22]. Presumably, this procedure can be implemented on a 
computer, but no such examples are known. 

The bad news is that, although the sector decompositions discussed above 
can successfully be used for proving theorems on renormalization [14, 21, 24] 
and on asymptotic expansions in limits of momenta and masses typical of 
Euclidean space (see [17, 18] and Appendix B of [19]), they are not sufficient 
for resolving the singularities of the integrand in the case of Feynman integrals 
on a mass shell or at a threshold. Let us consider again Example 3.3 of 
Sect. 3.3, with the basic functions U and V given by (3.23), and try to apply 
the N-sectors to resolve the singularities of the alpha integral in the region of 
large al. To do this, let us turn to the variables f3t = 1/a1, as in the previous 
section, where we obtain the functions 

U@=~~~+~~~+~~~+~~~' 
V(~) = t(32(34 + s(31(33 . 

(E.28) 

(E.29) 

Consider now the N-sector (32 :::; (31 :::; (33 :::; (34 and introduce the variables 
(E.10), i.e. by means of the relations 

(E.30) 

In these sector variables, the function (E.28) factorizes, in a suitable way, 
according to (E.15), but the function (E.29) does not: 

(E.31) 

Such a phenomenon would never happen for Feynman integrals considered 
at Euclidean external moment a - see the general result (E.1 7). 

So, we do not have a nice factorization property similar to (E.17) for 
the contribution of the sector under consideration. In order to perform the 
analysis of convergence, the factor sT1 + tT3 raised to some power dependent 
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on c has to be further factorized. The natural idea here is to perform a 
next sector decomposition, using N-sectors, then proceed further if we do 
not immediately succeed, etc. However, this procedure looks awful from the 
practical point of view: to haveL! contributions at the first step, then (L!)2 at 
the second step is a very bad idea if we think of a computer implementation. 

StiH the idea to introduce, recursively, more and more sectors has turned 
out to be quite successful and easily implemented in practice. A suitable 
algorithm based on sector decompositions for resolving singularities of general 
Feynman integrals, in particular, considered on a mass-shell or at a threshold, 
possibly, with severe UV, IR and collinear divergences, was developed in [5]. 
On the one hand, this algorithm makes the analysis of the singularities in 
c possible for any given Feynman integral. On the other hand, it gives a 
powerful universal numerical method for evaluating Feynman integrals. 

The starting point of the algorithm of [5] is representation (3.32), where 
the sum of all the parameters az is implied in the <5-function. It is supposed 
that all the kinematical invariants and the masses have the same sign, i.e. if 
there is a non-zero mass, all the invariants are non-positive. Then one intro­
duces the following primary sectors L1z labelled by the number l = 1, ... , L: 

ai :::; az , l =f i = 1, 2, ... , L (E.32) 

and turns, in a given sector L1z, to the variables 

t. = { ai/ az if i =f l 
' az if i = l · 

(E.33) 

Then the integration over tz is taken due to the <5-function, and one obtains 
the integral 

1 ( ) 
uL-(h+l)d/2 

Fz = j IT dti VL-hd/2 1 . 

0 i#l tz=l 

(E.34) 

Here we used the fact that the functions U and V are homogeneous functions 
of the alpha parameters with the homogeneity degrees hand h + 1, respec­
tively. The goal of the introduction of the sector decompositions is to obtain 
a perfect factorization, i.e. of the form (E.15) for U and of the form (E.17) for 

- V+U 2:: mŢa1 , where, instead of (qTo ) 2 , there is some positive combination 
of the kinematical invariants and masses. 

So, if the perfect factorization is not achieved, for the contribution of the 
given sector L1z, the next natural step is to introduce a second decomposition 
in a similar way, i.e. over L - 1 sectors L1zj, 

ti :::; ti , i = 1, 2, ... , L , i =f j, l , j =f l . (E.35) 

and new variables t~ similarly to (E.33). One may hope that sooner or later 
a perfect factorization will be achieved. If this is the case, one obtains a sum 
of parametric integrals, over some sector variables ti, where the singularities 
are factorized, i.e. the integrand is a product of ti raised to some powers 



E.2 Practicat Sector Decompositions 231 

Ai = ni + hic:, with integer ni and hi -1= O, and the two functions (also 
raised to similar powers) which result from U and V and are positive in the 
integration region. 

In such a 'perfect' situation, the analysis of convergence reduces to count­
ing powers of the variables ti. This reminds again, as in the end of the previ­
ous section, the analysis of the distribution x~ - see [12]. Explicitly, we have 
integrations over sector variables (of some level of iterations) of the form 

G(c:) = 11 dttn+hecp(t)' (E.36) 

where t is one of the sector variables, n and h -/= O are integer numbers and 
cp(t) is a function with cp(O) -/=O which involves similar factorized integrations 
over the rest of the sector variables. If n ~ O, the integration over t does not 
generate poles in c:. Suppose that n is negative. The procedure outlined in 
the end of the previous section suggests a similar subtraction: 

G(c:) = {1 dt tn+he [c/J( t) - -f1 c/J(j\(0) tjl 
lo j=O J 

-n-1 cp(j) (O) 

+ L j!(n + hc: + j + 1) · 
J=O 

(E.37) 

After performing such manipulations with integrations over all the sector 
variables ti with ni < O one obtains a linear combination of integrals where 
one can perform an expansion in a Laurent series in c:. This provides the 
possibility to formulate an algorithm for the numerical evaluation of any 
term of expansion of the given Feynman integral in c:. 

Numerous practical calculations have shown [5] that this algorithm works 
for complicated Feynman integrals with multiple IR and collinear divergences. 
For example, analytical results for double and triple boxes [3, 20, 23] were 
numerically confirmed by means of this algorithm. 

Once again, this is a method with experimental mathematics. It is not 
guaranteed, as in a mathematical theorem, that the process of the recur­
sive introduction of the sector decompositions described above will stop at 
some point with a perfect factorization. Moreover, practica! calculations have 
shown that one has to avoid possible closed loops in the algorithm. However, 
this is the only working general algorithm at the moment, applicable at any 
loop order, with applications restricted only by the computer time. One may 
hope that the algorithm can be generalized to the cases without restrictions 
on the signs of the kinematical invariants and the masses. Observe, however, 
that another important generalization, to the case of phase-space integrals, 
was already developed and successfully applied in practice in [ 1, 2, 6, 11, 13]. 
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F A Brief Review of Some Other Methods 

In this appendix, some methods which were not considered in Chaps. 3-7 are 
briefly reviewed. The method based on dispersion relations was successfully 
used from the early days of quantum field theory. The Gegenbauer Polyno­
mial x-Space Technique [13], the method of gluing [15] and the method based 
on star-triangle uniqueness relations [16, 23, 36] are methods for evaluating 
massless diagrams. The method of IR rearrangement [38], also in a gener­
alized version based on the R* -operation [14, 34], is a method oriented at 
renormalization-group calculations. 

The recently developed method of difference equations [27] is also briefly 
described. It is not analytical, although based on non-trivial mathematical 
analysis. It enables us to obtain numerical results with extremely high pre­
cision, with hundreds of digits. Finally, some methods which could be char­
acterized as based on experimental mathematics are discussed. In particular, 
this is the integer relation algorithm called PSLQ [18] which provides the 
possibility to obtain a result for a given one-scale Feynman integral, when 
we strongly suspect that it is a linear combination of some transcendental 
numbers with rational coeffi.cients, provided we know the result numerically 
with a high accuracy. 

F .1 Dispersion Integrals 

A given propagator scalar Feynman integral can be written as 

F( 2) = _2_ 1oo ds LlF(s) 
q 2 · 2 ·o ' 7fl so s- q -1 

(F.1) 

where the discontinuity LlF(s) = 2iim(F(s + iO)) is given, according to 
Cutkosky rules, by a sum over cuts in a given channel of integrals, where the 
propagators i/(k2 - m 2 + iO) in the cut are replaced by 21riB(k0 )8(k2 - m 2), 

while the propagators to the left of the cut stay the same, and the prop­
agators to the right of the cut change the causal prescription and become 
-i/(k2 - m2 - iO). 

Let us again consider our favourite example of Fig. 1.1, with the indices 
equal to one. This time, let us include al the necessary factors of i from each 
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propagator and the factor -i corresponding to the definition of the Feynman 
integral with i on the right-hand side of (2.3). We have 

.:1.F(q2) = 47r2 J ddk O(ko)r5(k2 - m2)e(qo- ko)r5[(q- k) 2] 

= 27r2 Jld-1 ro dr rd-2 r5 [ ( q5 - m2) 2 - r2] 
qo la 2qo 

24-d7r(d+3)/2 (q2 _ m2)~-3 

T((d- 1)/2) (q2)(d-2)/2 
(F.2) 

where X+ =X for X> O and X+= O otherwise, as usual. We have chosen 
q = ( q0 , O) and introduced ( d- 1 )-dimensional spherical coordinates with the 
surface of the unit sphere in d dimensions equal to 

27rd/2 
Jld = T(d/2) . (F.3) 

For d = 4, this gives 

.:1.F(s) = 27r3(q2- m2)+ 
q2 

(F.4) 

Integrating from the threshold s0 = m 2 in the dispersion integral (F.1) 
(where a subtraction is needed) leads to the finite part of (1.7) (where the 
factors of i mentioned above were dropped) up to a renormalization constant. 

In this calculation, a phase-space integral corresponding to a two-particle 
cut with the masses m and O was evaluated. The evaluation of three- and four­
particle phase-space integrals is much more complicated. Although we have 
less integrations in integrals corresponding to cuts, because of the 5-functions, 
resulting integrals are still rather nasty so that the evaluation of Feynman 
integrals via their imaginary part by means of Cutkosky rules (see [29] for 
a typical example) was successful only up to some complexity level. On the 
other hand, the phase-space integrals are needed for the calculation of the 
real radiation. It has turned out that the development of methods of eval­
uating Feynman integrals resulted in similar techniques for the phase-space 
integrals. Now, one applies, for the evaluation of the phase-space integrals, 
the strategy of the reduction to master integrals, using IBP, and DE applied 
for the evaluation of the master integrals - see, e.g., [1, 2]. Moreover, the 
technique of the sector decompositions of [7] (see Sect. E.2) is also applicable 
here and was successfully applied in NNLO calculations - see references in 
the end of Appendix E. 

F .2 Gegenbauer Polynomial x-Space Technique 

The Gegenbauer polynomial x-space technique (GPXT) [13] is based on the 
SO(d) symmetry of Euclidean Feynman integrals. According to (A.40), the 
dimensionally regularized scalar massless propagator in coordinate space is 
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(F.5) 

where x2 = x6 + x2 . It can be expanded in Gegenbauer polynomials [17] as 

1 1 

[(x1- x2)2]>· (max{lx1l, lx2l} )2.>. 

~C>.(A .A) (min{lx1l,lx2l})n/2 
X L.J n X1 X2 {l 1 1 l} , 

n=O max X1 , X2 
(F.6) 

where lxl = H, .\ = 1 - c and x = xflxl. The polynomials C~ are orthog­
onal on the unit sphere [17]: 

(F.7) 

The normalization is such that J dx = 1. So, the strategy of GPXT is to turn 
to coordinate space, represent each propagator by (F.6), evaluate integrals 
over angles by (F.7) and sum up resulting multiple series. 

First results for non-trivial multiloop diagrams within dimensional regu­
larization were obtained by GPXT: for example, the value of the non-planar 
diagram (see the second diagram of Fig. 5.6 with all the powers of the prop­
agators equal to one), with the famous result proportional to 20((5) [13]. 

The GPXT as well as the method of gluing (see below) were crucial in 
many important analytical calculations, for example, of the three-loop ratio 
R(s) in QCD [12] and the five-loop ;3-function in the tjJ4 theory [11]. More 
details on the GPXT can be found in the review [25]. 

F.3 Gluing 

The dependence of an h-loop dimensionally regularized scalar propagator 
massless Feynman integral corresponding to a graph r on the external mo­
mentum can easily be found by power counting: 

(F.8) 

where w is the degree of divergence given by (2.9) and Cr(c) is a meromorphic 
function which is finite at c = O if the integral is convergent, both in the UV 
and IR sense. (Of course, there are no collinear divergences in propagator 
integrals.) 

It turns out that the values Cr(O) are the same for graphs connected by 
some transformations based on gluing. The gluing can be of two types: by 
vertices and by lines. Let r be a graph with two external vertices. Let us 
denote by Î' the graph obtained from it by identifying these vertices, and 
by f the graph obtained from it by adding a new line which connects them. 
Then the following properties hold [15]: 
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Gluing by vertices. Let us suppose that two UV- and IR-convergent 
graphs, F1 and n, ha ve degrees of divergence W1 = W2 = -4 and that f1 
and f 2 are the same. Then Cr1 (O) = Cr2 (0). 
Gluing by lines. Let us suppose that two UV- and IR-convergent graphs, 
F1 and F2, have degrees of divergence W1 = Wz = -2 and that f'1 and f'2 
are the same. Then Cr1 (O) = Cr2 (0). 

For example, the first and the second diagrams in Fig. 5.6 with all the 
indices equal to one produce the same graph after the gluing the external 
vertices. It is shown in Fig. F.l. Therefore, one could obtain the value of 
the more complicated non-planar diagram (proportional to 20( ( 5)) from a 
simpler planar diagram [15]. 

Fig. F.l. The graph f obtained by gluing of vertices 

The method of gluing was successfully applied in the combination with 
GPXT- see the references above. 

F .4 Star-'friangle Relations 

The method based on star-triangle uniqueness relations can be applied to 
massless diagrams. As in the case of GPXT, the coordinate space language 
is used, where the propagators have the form 1/(x2 )>- up to a coefficient 
depending on c- see, e.g., (F.5). 

The basic uniqueness relation [16, 36] connects diagrams with different 
numbers of loops. It is graphically shown in Fig. F.2, where >< = d/2 - Ai 
and 

(-\ -\ -\ ) = d/2 II r(d/2- -\i) 
v 1 , 2, 3 1r . r (Ai) . 

2 

(F.9) 

This equation holds when the vertex on the left-hand side is unique, i.e. 
,\1 +-\2 +-\3 = d. The triangle on the right-hand side, with ,\~ +-\~+-\~ = d/2, is 
also called unique. Remember that, in coordinate space, the triangle diagram 
does not involve integration and is just a product of the three propagators, 

[(xl - X2)2r>-3 [(x2 - X3) 2r>- 1 [(x3 - x!) 2r>- 2 , 

while the star diagram is an integral over the coordinate corresponding to 
the central vertex. 
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Fig. F.2. Uniqueness equation 

The relation (F.9) can be used to simplify a given diagram. Almost unique 
relations introduced in [35], with )q +A2+A3 = d-1, can be also useful. Some­
times one introduces an auxiliary analytic regularization, to satisfy (almost) 
unique relations, which can be switched off in the end of the calculation. For 
example, using ( almost) unique relations, the general ladder massless scalar 
propagator diagram with an arbitrary number of loops, h, with all the in­
dices ai equal to one (see the first diagram of Fig. 5.6 and imagine a general 
number of rungs), was evaluated [5] with a result proportional to ((2h- 1). 

Another example of applications of the uniqueness relations is the eval­
uation of the diagram of Fig. 4.14 where they were coupled with functional 
equations [23]. In this calculation, the initial problem was reduced to the 
problem of expansion of the propagator diagram of Fig. 3.9 with the indices 
a 1 = ... = a4 = 1, , a 5 = 1 +A in a Taylor series in A up to A4 . This dia­
gram, at various indices, was investigated in many papers starting from the 
old result for all indices equal to one [33] which was later reproduced [13] by 
GPXT, an analytical result for this diagram with general values of the indices 
a 1 and a 2 and other integer indices [13], an analysis of this diagram from the 
group-theoretical point of view [9], an extension of the previous results with 
the help of GPXT [24], etc. As a more recent paper, with updated references 
to the previous works, let us cite [6], where the expansion of this diagram at 
indices ai =ni+ hiE:, with integer hi, in c was further studied. 

F.5 IR Rearrangement and R* 

The method of IR rearrangement is a special method for the evaluation of 
UV counterterms which are necessary to perform renormalization. The coun­
terterms are introduced into the Lagrangian, i.e. the dependence of the bare 
parameters ( coupling constants, masses, etc.) of a given theory on a regu­
larization par am eter ( e.g., d within dimensional regularization) is adjusted 
in such a way that the renormalized physical quantities become finite when 
the regularization is removed. The renormalization can be described at the 
diagrammatic level, i.e. the renormalized Feynman integrals can be obtained 
by applying the so-called R-operation which removes the UV divergence from 
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individual Feynman integrals. Thus, for any R-operation, the quantity RFr 
is UV finite at d = 4. 

As is well known, the requirement for the R-operation to be implemented 
by inserting counterterms into the Lagrangian leads to the following structure 
[8]: 

RFr = L Ll('yl) ... Ll('yj )Fr = R' Fr + Ll(r) Fr , (F.lO) 
')'l,•••,')'j 

where Ll('y) is the corresponding counterterm operation, and the sum is over 
all sets {1'1, ... , 1'j} of disjoint UV-divergent 1PI subgraphs, with Ll(0) = 1. 
The 'incomplete' R-operation R', by definition, includes all the counterterms 
except the overall counterterm Ll(F). For example, if a graph is primitively 
divergent, i.e. does not have divergent subgraphs, the R-operation is of the 
form RFr = [1 + Ll(F)] Fr. 

The action of the counterterm operations is described by 

Ll('y) Fr = Frh o P"Y , (F.ll) 

where F r h is the Feynman integral corresponding to the reduced graph r h, 
and the right-hand side of (F.ll) denotes the Feynman integral that differs 
from F r h by insertion of the polynomial P"Y in the external momenta and 
internal masses of 1' into the vertex v"Y to which the subgraph 1' was reduced. 
The degree of each P"Y equals the degree of divergence w('y). It is implied that 
a UV regularization is present in (F.10) and (F.ll) because these quantities 
are UV-divergent. The coefficients of the polynomial P"Y are connected in a 
straightforward manner with the counterterms of the Lagrangian. 

A specific choice of the counterterm operations for the set of the graphs of 
a given theory defines a renormalization scheme. In the framework of dimen­
sional renormalization, i.e. renormalization schemes based on dimensional 
regularization, the polynomials P"Y have coefficients that are linear combi­
nations of pure poles in e = (4- d)/2. In the minimal subtraction (MS) 
scheme [21], these polynomials are defined recursively by equations of the 
form 

(F.12) 

for the graphs 1' of the given theory. Here kc is the operator that picks up 
the pole part of the Laurent series in e. The modified MS scheme [4] (MS) 
is obtained .from the MS scheme by the replacement J.L2 --t J.L2e"YE /(4rr) for 
the massive parameter of dimensional regularization that enters through the 
factors of J.L2c per loop. 

If r is a logarithmically divergent diagram the corresponding counterterm 
is just a constant. To simplify its calculation it is tempting to put to zero 
the masses and external momenta. This is, however, a dangerous procedure 
because it can generate IR divergences. Consider, for example, the two-loop 
graph of Fig. F .3a. It contributes to the mass renormalization in the cp4 theory. 
To evaluate the corresponding counterterm it is necessary to computeR' F"Y, 
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-s ~ -(0} 
(a) (b) (c) 

Fig. F.3. (a) A two-loop graph contributing to the mass renormalization. (b) A 
possible IR rearrangement. (c) A three-loop graph contributing to the ,8-function 

according to (F.12). Here R' = l+Ll1, where Ll1 is the counterterm operation 
for the logarithmically divergent subgraph of Fig. F.3a. We consider each of 
the two resulting terms separately. The last term is simple. The first one is 
just the pole part of the given diagram. If we put the mass to zero we shall 
obtain an IR divergence. There is another option which is safe: we put the 
mass to zero and let the external momentum q flow in another way through 
the graph: from the bottom vertex, rather than from the right vertex - see 
Fig. F.3b. Then the resulting Feynman integral is IR-convergent and, at the 
same time, much simpler because it is now recursively one-loop and can be 
evaluated in terms of gamma functions. 

This is a simple example of the trick called IR rearrangement and invented 
in [38]. In a general situation, one tries to put as many masses and external 
momenta to zero as possible and, probably, let the external momentum flow 
through the graph in such a way that the resulting diagram is IR-convergent 
and simple for calculation. Consider now the three-loop graph of Fig. F.3c 
contributing to the ,8-function in the cp4 theory. It is also logarithmically 
divergent. When calculating its counterterm, it is dangerous to put the masses 
to zero and let the external momentum flow from the bottom to the top 
vertex, because we run into IR divergences either due to the left or the right 
pair of the lines. StiH there is a possibility not to generate IR divergences: 
to put the masses of the central loop and the external momentum to zero. 
The resulting three-loop Feynman integral is evaluated in terms of gamma 
functions, first, by integrating the massless subintegral by (A.7) and then by 
(A.38). 

At a sufficiently high level, such a safe IR rearrangement is not always 
possible. However, there is a way to put as many masses and momenta to 
zero and still have control on IR divergences. Formally, we have 

(F.13) 

where it is implied that all the masses are put to zero, and one external 
momentum is chosen to flow through the diagram in an appropriate way. 
(Another version is to put all the external momenta to zero and leave one 
non-zero mass.) 
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The operation R* removes not only UV but also (off-shell) IR divergences 
in a similar way [14], i.e. by a formula which generalizes (F.10). Now, it 
includes IR counterterms Ll('y) which are defined in a full analogy to the 
UV counterterms .:1(1'). They are defined for subgraphs irreducible in the 
IR sense, with the IR degree of divergence given by (2.17). Now, they are 
local in momentum space. For example, the IR counterterm corresponding 
to the logarithmically divergent (in the IR sense, i.e. with the IR degree 
of divergence w('y) = O) factor 1/(k2 ) 2 for the two lower lines in Fig. F.3a 
( when they are massless) is proportional to !j( d) ( k) / E. More details on the 
R*-operation can be found in [34]. So, according to (F.13), one can safely 
put to zero all the momenta and masses but one, in a way which is the 
simplest for the calculation, at the cost of generating IR divergences which 
should be removed with the help of IR counterterms. Finally, the problem 
of the evaluation of the UV counterterms for graphs with positive degrees of 
divergence can be reduced, by differentiating in momenta and masses, to the 
case w =O. 

The R* -operation was successfully applied in renormalization group cal­
culations- see, e.g., [11]. 

F .6 Difference Equations 

A new method based on difference equations has recently appeared. Basic 
prescriptions of this method can be found in [27] and an informal introduction 
in [28]. It is analytical in nature but is used to obtain numerical results with 
extremely high precision. The starting point of this approach is to choose 
a propagator, in an arbitrary way, treat its power, n, as the basic integer 
variable and fix other powers of the propagators (typically, equal to one). 
Then the general Feynman integral (5.73) of a given family is written as 

J J d d H 
F(n) = · · · d ki ... d kh EnE E , 

I 2 · · · N 

(F.14) 

where H is a numerator. After combining various IBP relations, one can 
obtain a difference equation for F(n): 

co(n)F(n) +CI (n)F(n + 1) + ... + cr(n)F(n + r) = G(n) , (F.15) 

where the right-hand side contains Feynman integrals FI, F2 , ... which have 
one or more denominators E2, E 3 , ... less with respect to (F .14). These inte­
grals are treated in a similar way, by means of equations of the type (F.15) so 
that one obtains a triangular system of difference equations. This system is 
solved, starting from the simplest integrals that have the minimum number 
of denominators, with the help of an Ansatz in the form of a factorial series, 

CXJ b ' n"'"' l n. 
J.L L.."r(n-K+l+1)' 

l=O 

(F.16) 
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where the values of parameters f..L, bt and K are obtained from these values 
for the factorial series corresponding to the right-hand side of (F.15). 

This method was successfully applied, with a precision of several dozens 
up to hundreds of digits, to the calculation of various multiloop Feynman 
integrals [26, 27]. 

Observe that, although this method is numerica!, it requires serious math­
ematical efforts. The same feature holds for any modern method of numerica! 
evaluation. One can say that the boarder between analytical and numerica! 
methods becomes rather vague at the moment. Remember about new results 
obtained in terms of new functions discussed in the end of Chap. 7 - in a 
narrow sense, these new functions can be regarded as tools to obtain numeri­
cal results at various points. Another numerica! method based on non-trivial 
mathematical analysis was described in Sect. E.2. For completeness, here 
are some references to modern methods of numerica! evaluation of Feynman 
integrals: [30-32]. Observe that such methods are often called semianalytical. 

Sometimes it is claimed that sooner or later we shall achieve the limit in 
the process of analytical evaluation of Feynman integrals so that we shall be 
forced to proceed only numerically (see, e.g., [30]). However, the dramatic 
progress in the field of analytical evaluation of Feynman integrals shows that 
we have not yet exhausted our abilities. So, the natural strategy is to combine 
available analytical and numerica! methods in an appropriate way. 

F. 7 Experimental Mathematics and PSLQ 

When evaluating Feynman integrals, various tricks are used. One usually does 
not bother about mathematical proofs of the tricks, partially, because of the 
pragmatica! orientation and strong competition and, partially, because, now, 
there are a lot of possibilities to check obtained results, both in the physical 
and mathematical way. 

An example of such 'experimental mathematics' suggested in [20] was 
described in Sect. 4.5, where it was supposed that the nth coefficient of the 
Taylor series Cn of a piece of the result for the master massive double box is 
a linear combination of the 15 functions ( 4.62)-( 4.65) of the variable n. Then 
the possibility to evaluate the first 15 coefficients c1 , c2 , ... , c15 was used 
and the corresponding linear system for unknown coefficients in the given 
linear combination was solved. At this point, a pure mathematician could 
say that there is no mathematical proof of this procedure and its validity 
is not guaranteed at all even after we (successfully) check it by calculating 
more terms of the Taylor expansion, starting from the 16th and comparing 
it with what we have from the obtained solution. Still 1 believe that this 
pure mathematician will believe in the result when he/she looks at some 
details of the calculation. Indeed, suppose that we forget about just one 
of the functions in (4.62)-(4.65) and follow our procedure. Then we indeed 
obtain a different solution of our system of 14 equations but it blows up and 
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looks so ugly, in terms of rational numbers with hundreds of digits in the 
numerator and denominator, that this pure mathematician will say that our 
previous solution, with nice rational numbers, is true and there is no need 
for mathematical proofs. 

Of course, an important point here is to understand what we can expect 
in the result. Another example is given by taking a sum when going from 
(4.94) to (4.95) when evaluating the diagram of Fig. 4.14. Instead of using 
SUMMER [39], we can suppose that the general term ofthe Taylor series (4.95) is 
a linear combination, with unknown coefficients, of (4.62)-(4.65) and similar 
terms up to level 7. (For example, at level 7, one can use the structures with 
a 1/n2 dependence present on the left-hand side of (C.51)-(C.82).) Then one 
obtains a system of 63 linear equations for these coefficients and solves it 
using information about the first 63 terms which can be obtained from the 
two-fold series following from (4.94). 

There are a lot of other elements of experimental mathematics in dealing 
with Feynman integrals. Indeed, we never hesitate to change the order of in­
tegration over alpha and Feynman parameters and over MB parameters, it is 
not known in advance which IBP equations within the algorithm formulated 
in [27] are really independent, there is no mathematical justification of the 
prescriptions of Chap. 6, etc. One more example of experimental mathemat­
ics1 is provided by the so-called PSLQ algorithm [18]. It can be applied when 
we evaluate a one-scale Feynman integral in expansion in c. Let us suppose 
that, in a given order of expansion in c, we understand which transcendental 
numbers can appear in the result and that we can obtain the result numeri­
cally with a high accuracy. For example, in the finite part of the c-expansion 
in two loops we can expect at least Xi-l = ((i) with i = 2,3,4 or, equiva­
lently, x1 = rr2 , x 2 = ((3) and x3 = rr4 . Then the PSLQ algorithm could be 
of use. In this particular example, it gives the possibility to estimate whether 
or not a given number, x can be expressed linearly as x = c1x1 + c2x2 + C3Xa 

with rational coefficients ci. 
The PSLQ is an example of an 'integer relation algorithm'. If x1, x 2 , · • • , Xn 

are some real numbers, it gives the possibility to find the n integers Ci such 
that c1x1 +c2x2 +· · ·+cnXn =O or provide bounds within which this relation 
is impossible. (In the above situation, we consider our numerica! result as x4, 
in addition to the Xi, i = 1, 2, 3.) More formally, suppose that xi are given 
with the precision of v decima! digits. Then we have an integer relation with 
the norm bound N if 

(F.17) 

provided that maxlcil <N, where c>O is a small number of order w-v. With 
a given accuracy v, a detection threshold c and a norm bound Nas an input, 

1The very term 'experimental mathematics' can be found on the web page 
where, in particular, the PSLQ algorithm is described [39]. 
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the PSLQ algorithm enables us to find out whether the relation (F .17) exists 
or not at some confidence level (see details in [18]). 

The PSLQ algorithm has been successfully applied in the evaluation of 
various single-scale Feynman integrals- see, e.g., [3, 10, 19, 22]. The experience 
obtained in these calculations shows that one needs around ten digits for each 
independent transcendental number. 
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List of Symbols 

A~ - matrix which defines denomina­
tors of the propagators 

az - power of a propagator (index) 
c; ( a1, o o o , aN) - coefficient function of 

a master integral /; 
iJ F - propagator in coordinate space 
DF, DF,i- propagator in momentum 

space 
d- space-time dimension 
Er - denominator of propagator 
Fr - Feynman integral 
2H(a,b;c;z)- Gauss hypergeometric 

function 
G(.A1,.A2)- function in one-loop 

massless integration formula 
g,.," - metric tensor 
Ha 1 ,a2 ,o.o,an (x) - harmonic polyloga-

rithm (HPL) 
h - nUmber of loops 
l; - master integral 
k - loop momentum 
L - number of lines 
Lia (z)- polylogarithm 
l - loop momentum 
m- mass 
P( x1, o o o , x N) - basic polynomial 
p - external or internal momentum 
Q2 = -q2 - Euclidean external 

momentum squared 
q - external momentum 
Sa,b(z)- generalized polylogarithm 
Si> Sjk,. o o- nested sums 
s = (Pl + P2)2 - Mandelstam variable 

T- tree, 2-tree, pseudotree 
t = (Pl + P3? - Mandelstam variable 
tz - sector variable 
U - function in the alpha representation 
u = (p1 + P4?- Mandelstam variable 
uz - auxiliary parameter 
V - number of vertices 
V - function in the alpha representation 
w - variable in MB integrals 
x - coordinate 
x; - variable in the basic parametric 

representation 
Z1 - polynomial in propagator 
z, z;- variable in MB integrals 

az - alpha parameter 
f3z = 1/az -inverse alpha parameter 
r- graph 
r(x) - gamma function (first Euler 

integral) 
'Y - subgraph 
"/E = Oo577216 o o o - Euler's constant 
6 ( x) - delta function 
E: = ( 4 - d) /2 - parameter of 

dimensional regularization 
((z)- Riemann zeta function 
Al - parameter of analytic regularization 
~' ~i- Feynman parameter 
Tz - sector variable 
7/J(x) = r'(z)jr(z)- logarithmical 

derivative of the gamma function 
w - degree of UV divergence 
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