
AAppppllliiiccaattiiioonnss   ooff
SSppeecciiiffiiiccaattiiioonn   aanndd
DDeessiiiggnn   LLaanngguuaaggeess

ffoorr   SSooCCss

EEddiiitteedd   bbyy
AA... VVaacchhoouuxx

The ChDL series



APPLICATIONS OF SPECIFICATION 

AND DESIGN LANGUAGES FOR SOCS



Applications of Specification and

Design Languages for SoCs

Selected papers from FDL 2005

Edited by

A. VACHOUX

Ecole Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10  1-4020-4997-8 (HB)

ISBN-13  978-1-4020-4997-2 (HB)

ISBN-10  1-4020-4998-6 ( e-book)

ISBN-13  978-1-4020-4998-9 (e-book)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved

© 2006 Springer 

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.



Contents

List of Figures xiii

List of Tables xvii

List of Listings xix

Preface xxi

Part I Specification, Design, and Verification Methods

Introduction 3
Alain Vachoux

1
PSL-Based Online Monitoring of Digital Systems 5
Dominique Borrione, Miao Liu, Pierre Ostier, and Laurent Fesquet

1. Introduction 5
1.1 State of the Art 6
1.2 PSL as a Design Language 7

2. Monitor Construction: Principles 9
2.1 Property Satisfaction 9
2.2 Library of Primitive Components 10
2.3 Structure of a Primitive Monitor 12
2.4 Construction of Complex Monitors 13

3. Validation 15
3.1 Functional Comparison 15
3.2 Area Comparison 16

4. Implementation of Monitors 17
4.1 Design Flow with Assertion Monitors 17
4.2 Example: A Bus Snoop System for Software Verification 19

5. Conclusion 20

Acknowledgments 21
References 21

2
Refining Synchronous Communication onto Network-on-Chip Best-Effort

Services
23

Zhonghai Lu, Ingo Sander, and Axel Jantsch
1. Introduction 23
2. Related Work 25

v



vi Contents

3. Refinement Overview 26
3.1 The Perfectly Synchronous Model 26
3.2 Nostrum Communication Services 27
3.3 The Refinement Procedure 28

4. Channel Refinement 29
5. Process Refinement 30

5.1 Interfacing with the Service Channels 30
5.2 Process Synchronization Property 31
5.3 Achieving Synchronization Consistency 32
5.4 Feedback Loops 33

6. Communication Mapping 34
6.1 Channel Mapping 34
6.2 Communication Process Mapping 34

7. Conclusions and Future Work 37
References 37

Part II C/C++-Based System Design

Introduction 41
Frank Oppenheimer

3
Behaviour Separation: A High-Level Methodology Applicable in the

SystemC Environment
43

Giovanni B. Vece, Massimo Conti, and Simone Orcioni
1. Introduction 43
2. Principles of the Behaviour Separation Methodology 45
3. Application for Communication Protocols 47
4. Realization in SystemC 49
5. Application Example Based on an AMBA AHB Master Device 50
6. I/O Adaptation; Limitations and Application Fields 54
7. Modelling of Complete AMBA AHB Master Devices and Results 55
8. Extension to Generic Protocols 56
9. Conclusions 58
References 58

4
Mixing Synchronous Reactive and Untimed MoCs

in SystemC
61

Fernando Herrera and Eugenio Villar
1. Introduction 62
2. Mapping of SR and Untimed MoCs to SystemC 66
3. Untimed–SR MoC Interfaces 73
4. Conclusions 79
References 80

5
Interface-Centric Abstraction Level for Rapid Hardware/Software Integration 83
André C. Nácul, Marcello Lajolo, and Tony Givargis

1. Introduction 83



Contents vii

2. Related Work 85
3. Terminology 86
4. System-Level API 87

4.1 Interface Synthesis 90
4.2 RTOS Synthesis 93
4.3 Our Hardware/Software Codesign Environment 94

5. Hardware/Software Integration 95
6. Conclusions 97
References 97

6
Efficient and Customizable Integration of Temporal Properties into SystemC 101
Roland J. Weiss, Jürgen Ruf, Thomas Kropf, and Wolfgang Rosenstiel

1. Introduction 101
2. Property Synthesis 102

2.1 Intermediate Language 104
3. Integrating Temporal Properties into SystemC 104

3.1 Property Specification 106
3.2 Property Checking 106
3.3 Customizing Actions with Policies 108

4. Experimental Results 108
4.1 Memory Consumption 109
4.2 Run-time Performance 109

5. Related Work 110
6. Conclusions and Future Work 111

Acknowledgments 112
References 112

7
UMoC++: A C++-Based Multi-MoC Modeling Environment 115
Deepak A. Mathaikutty, Hiren D. Patel, Sandeep K. Shukla, and Axel Jantsch

1. Introduction 116
2. Related Work 117
3. Generic MoCs 117

3.1 Preliminary Notations 118
3.2 Generic MoCs Formulation in SML-Sys 119
3.3 Untimed Model of Computation 119

4. Essential Concepts from FL mapped to C++ for our Implementation 121
4.1 Polymorphic Types 121
4.2 Higher-Order Functions 122
4.3 Partial Application 122

5. Generic MoCs Formulation in C++ 123
5.1 UMoC++ Framework 124
5.2 Process Constructors 124
5.3 Process Combinators 125

6. Example of Models in our Framework 126
6.1 Petri Net Style Modeling Using UMoC++ 126
6.2 Synchronous Data Flow Style Modeling Using UMoC++ 127
6.3 Cosimulation With SystemC 128



viii Contents

7. Conclusion 128
References 129

Part III Analog, Mixed-Signal, and Heterogeneous System Design

Introduction 133
Christoph Grimm

8
Creating Virtual Prototypes of Complex MEMS Transducers Using

Reduced-Order Modelling Methods and VHDL-AMS
135

Torsten Mähne, Kersten Kehr, Axel Franke, Jörg Hauer, and Bertram Schmidt
1. Introduction 136
2. Theory of the Reduced-Order Modelling Method 137
3. Micromechanical Yaw Rate Sensor 138
4. Preparation of the FE Models for the ROM Method 140
5. Generation of the Reduced-Order Behavioural Models 140
6. Integration of the Reduced-Order Behavioural Models 143
7. Simulation of the Complete Sensor System 146
8. Conclusions 150

Acknowledgments 151
References 151

9
Modeling Uncertainty in Nonlinear Analog Systems with Affine Arithmetic 155
Wilhelm Heupke, Christoph Grimm, and Klaus Waldschmidt

1. Introduction 155
2. Semisymbolic Simulation with Affine Arithmetic 157

2.1 Basic Concepts of Affine Arithmetic 157
2.2 Interval Arithmetic versus Affine Arithmetic 158
2.3 SystemC-AMS-Based Implementation 159

3. Efficient Handling of Additional Terms in Feedback Control Systems 161
3.1 Implementation of the Simplification Method 162
3.2 Comparison of Efficiency 163

4. Experimental Results 165
5. Conclusion 166
References 168

10
SystemC-WMS: Mixed-Signal Simulation Based on Wave Exchanges 171
Simone Orcioni, Giorgio Biagetti, and Massimo Conti

1. Introduction 171
2. Description and Modeling of Analog Modules in SystemC 173

2.1 Module Representation with a b Parameters 174
2.2 Wavechannels 176

3. SystemC-WMS Class Library 178
4. Application Example 179

4.1 Simulation Results 183
5. Conclusion 184
References 184



Contents ix

11
Automatic Generation of a Coverification Platform 187
Suad Kajtazovic, Christian Steger, Andreas Schuhai, and Markus Pistauer

1. Introduction 187
2. Related Work 188

2.1 Summary 189
3. Design Methodology 190

3.1 System Design Level 190
3.2 Language Level 191
3.3 Simulator Level 191

4. Design of a Cosimulation Interface 191
4.1 Interfacing Between Simulators 191
4.2 Communication 193
4.3 Data Type Conversion 194
4.4 Synchronization 195
4.5 Cosimulation Interface 195

5. Automatic Code Generation 196
6. Experimental Example 198

6.1 Design Steps 198
6.2 Results 200

7. Conclusion 202
References 202

12
UML/ XML-Based Approach to Hierarchical AMS Synthesis 205
Ian O’Connor, Faress Tissafi-Drissi, Guillaume Révy, and Frédéric Gaffiot

1. Introduction 205
2. AMS IP Element Requirements for Synthesis Tools 206
3. UML in AMS Design 210

3.1 Reasons for Using UML in Analogue Synthesis 210
3.2 Mapping AMS IP Requirements to UML Concepts 211
3.3 Modelling Analogue Synthesis with Activity Diagrams 213

4. Extensions to Existing Analogue Synthesis Tool (runeII) 214
4.1 AMS Soft-IP Definition 216
4.2 AMS Firm-IP Synthesis 216

5. Example 218
5.1 Class Diagram Example 219
5.2 Soft-IP XML File Example 220
5.3 Optimisation Scenario Example 220
5.4 Firm-IP XML Output File Example 220

6. Conclusion 220

Acknowledgments 224
References 224

Part IV UML-Based System Specification and Design

Introduction 229
Piet van der Putten



x Contents
13
Compiled and Synthesized UML 231
Cathy Berthouzoz, François Corthay, Medard Rieder, Rico Steiner,
and Thomas Sterren

1. Introduction 232
2. Codesign 232
3. A Theoretical Codesign Approach 233
4. A Practical Codesign Approach 235
5. Translation 236

5.1 Hardware Thinks Differently 236
5.2 UML Elements 237
5.3 UML to VHDL Mapping 238

6. Experimentation 242
7. Conclusions 243

7.1 Tool Chain Improvement 243
7.2 The 6qx Process 244

References 245

14
Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 247
Oana Florescu, Jeroen Voeten, and Henk Corporaal

1. Introduction 247
2. Related Research 249
3. Real-Time Systems Models 250
4. From a Model to Its Realisation 253
5. Realisation of Systems with Time-Intensive Computations 256
6. Conclusions and Future Work 260

Acknowledgments 261
References 261

15
Traceability and Interoperability at Different Levels of Abstraction in

Model-Driven Engineering
263

Lossan Bondé, Pierre Boulet, and Jean-Luc Dekeyser
1. Introduction 264
2. Metamodel for Traceability in Model Transformations 264

2.1 Concepts and Overview of the Metamodel 265
2.2 More Details on the Metamodel 266

3. Generation of the Trace Model 267
3.1 Principle of TraceModel Generation 268
3.2 Example 269

4. Getting Interoperability from Traceability 271
4.1 Proposed Approach for Interoperability 271
4.2 Application of the Approach on an Example 273

5. Conclusion 275
References 275

16
Power Simulation of Communication Protocols with StateC 277
Luca Negri and Andrea Chiarini

1. Introduction 277



Contents xi

2. The StateC Flow 279
3. Implementation-Independent Model 281

3.1 Statecharts Modeling of a Protocol Stack 281
3.2 Logical Activities Identification and Localization 282

4. Implementation-Dependent Model 283
4.1 Model Characterization 283
4.2 Training and Validating the Model 284

5. Power Simulation 285
5.1 Automatic Simulator Generation 285
5.2 Simulator Usage 288

6. Experimental Results 289
6.1 Implementation-Independent Models 289
6.2 Power Characterization of the Models 290
6.3 Simulator Performance 291

7. Conclusions and Future Work 292
References 293

17
Integrating Model-Checking with UML-Based SoC Development 295
Peter Green and Kinika Tasie-Amadi

1. Introduction 296
2. Overview of the Approach 296
3. Background 297

3.1 Overview of CSP and FDR 298
3.2 Previous Approaches to the Checking of UML Models 298
3.3 UML State Machines 299

4. Translating State Machines to CSP 300
4.1 Flattening State Machines 301
4.2 Realizing State Machine Semantics in CSP 302

5. Mapping the Models to CSP 304
5.1 Use Case Models 304
5.2 Interaction Models 304
5.3 The Composite Object Model 305

6. The UML2CSP Tool 306
7. Applying FDR to Translated Specifications 307
8. Partial Case Study 308
9. Conclusions 310
References 311



List of Figures

1.1 Property status and monitor output 10

1.2 Property monitor for P1 11

1.3 Structure of a primitive monitor 13

1.4 Tree structure of PSL property P1: always (req ->
next((next e[1:2](done)) until grant)) rising edge(clk); 14

1.5 Comparison flow 15

1.6 Design flow to implement assertion monitors 18

1.7 The bus snoop system implemented on an FPGA with
assertion monitor 19

2.1 An NoC design flow 24

2.2 The digital equalizer 26

2.3 Communication refinement overview 27

2.4 Processes for synchronization 32

2.5 Read/write adapters for a process with strong synchronization 33

2.6 Read/write adapters for a process with strict synchronization 35

2.7 The equalizer mapped on an NoC 36

3.1 Protocol rules classification in fixed and free protocol rules 45

3.2 Generic architecture for communication protocol–bound
devices 47

3.3 Device architecture in the SystemC environment 49

3.4 Bound unit I/O adaptation 55

3.5 Device architecture for protocols concerning internal behaviour 57

4.1 Heterogeneity and abstraction in the specification 63

4.2 SR reactive process styles in SystemC 68

4.3 Untimed MoCs P. O. over the SystemC time axis 70

4.4 SR MoC adds T. O. in the reactive chain and perfect synchrony 71

4.5 SR reactive chain with a feedback loop 73

4.6 Perfect synchrony and P. O fulfilling in CSP–SR connection 74

4.7 Untimed–SR MoC interface in the MoC interface taxonomy 75

4.8 Timing and blocking semantics in Untimed–SR interfaces 76

xiii



xiv List of Figures

4.9 Dynamic check of reaction time 77

4.10 Types of border processes in KPN–SR MoC interface 78

4.11 Border channels in KPN–SR interface 78

5.1 Interface synthesis for hardware-to-hardware communication 90

5.2 Interface synthesis for software-to-software communication 91

5.3 Interface synthesis for hardware-to-software communication 92

5.4 Interface synthesis for multiprocessor communication 93

5.5 Code example 94

5.6 Hardware/Software integration 96

6.1 Example of an AR-automaton for a simple FLTL property.
The state labeled with R is the rejecting state. 103

6.2 Outline of the IL approach 105

6.3 Memory consumption for properties P1 and P2 109

6.4 Run-time comparison for arbiter example 110

7.1 Parallel, sequential, and feedback operators 120

7.2 Mapping of the Amplifier PN to a Petri net 127

7.3 An FIR Filter cosimulated using UMoC++ and SystemC 128

8.1 Yaw rate sensor manufactured by Robert Bosch GmbH 139

8.2 Steps to prepare the coupled FE models of the yaw rate
sensor for the generation of its in-plane and out-of-plane
ROMs: (a) single-domain FE models, (b) preparation
of the coupled FE models, and (c) electromechanically
coupled FE models 141

8.3 Steps to generate the reduced-order models of the yaw
rate sensor 142

8.4 Structure of the yaw rate sensor full model with the
in-plane and out-of-plane ROMs 144

8.5 Structure of the test bench for the yaw rate sensor full model 147

8.6 Simulated self-excitation of the yaw rate sensor 148

8.7 Simulated rate detection of the yaw rate sensor 149

9.1 Simulated system with nonlinear block 164

9.2 Step responses of a feedback loop containing a nonlinear block 167

10.1 Example of interconnection problem 174

10.2 Wavechannel symbols for parallel and series interconnections 176

10.3 Half-bridge inverter: electrical schematic diagram 180

10.4 Simulation results of the half-bridge inverter 183

11.1 System description 190

11.2 Simulator interfacing principle 192

11.3 Proposed coupling mechanism 193



List of Figures xv

11.4 Simple example of the CsBlock concept 194

11.5 Simulator interface structure 196

11.6 Class diagram of the cosimulation interface generator 197

11.7 Flow of the automatic code generator 197

11.8 A system overview of an automotive power management system 199

11.9 System overview 199

11.10 Configuration of the Cosimulation Platform 200

11.11 Cosimulation results 201

11.12 Signal comparison: generator and board voltage in simulation
and cosimulation 201

12.1 AMS synthesis loop showing AMS IP facet use 209

12.2 UML representation of AMS IP hierarchical dependencies 212

12.3 UML class definitions for AMS IP blocks 212

12.4 Activity diagram for TIA block synthesis process 215

12.5 UML/ XML use flow in runeII 215

12.6 Screenshot of the runeII GUI 217

12.7 TIA and amplifier in an integrated optical link 218

12.8 TIA and resistive feedback classes in UML 219

13.1 Traditional embedded system development cycle 232

13.2 Different degrees of partitioning 234

13.3 Model-driven codesign of embedded systems 234

13.4 A practical codesign approach 235

13.5 UML object diagram 238

13.6 VHDL representation (a) of a single UML state (b) 241

13.7 Principle of the chronometer codesign demonstrator 242

13.8 Overview of the 6qx codesign process 244

14.1 SHE method for real-time systems design 250

14.2 Example of a timed labelled transition system 251

14.3 Two phases of model execution 252

14.4 A timed trace of the transition system 252

14.5 The UML model of a simple controller 252

14.6 The timed labelled transition system of the model 253

14.7 A timed trace of the controller 253

14.8 Timed traces ε-close 254

14.9 Implementation of the controller in physical time 255

14.10 Y-chart scheme for real-time systems design 256

14.11 Observational-equivalent model timed trace 257

14.12 Implementation of the equivalent model in physical time 258

14.13 A possible execution that still preserves the properties 259



xvi List of Figures

15.1 Overview of the metamodel 266

15.2 Detailed metamodel 268

15.3 Mapping ModTransf rules to trace element 269

15.4 Simple UML class translated into a Java class 270

15.5 Interoperability bridging from trace information 272

15.6 A simple PIM model transformed into two PSM models 273

16.1 The StateC power modeling and simulation flow 279

16.2 Common pattern of communication between layers of
the stack 282

16.3 Automated Statecharts to SystemC transformation 286

16.4 State template for SystemC simulator. Dark gray shaded
texts are the only parts that change from one state to the other. 288

16.5 Partial view of full Bluetooth Statecharts model; subset
of states used for controlling inquiry procedures. Logical
activities are highlighted with bold arrows. 290

16.6 Partial view of full 802.11 Statecharts model; subset of
states used for packet transmission in distributed coordination
function (DCF) mode. 291

17.1 Hierarchical state machine and its flat-equivalent 300

17.2 Concurrent state machine and its flat-equivalent 301

17.3 Flattening and completion transitions 302

17.4 Object state machine and its simplified representation in CSP 303

17.5 Simple sequence diagram 305

17.6 Modified object state machine facilitating dynamic object
creation/destruction 306

17.7 Structure of the UML2CSP tool 306

17.8 Use case monitor water level 309

17.9 Checking an interaction against a use case 309

17.10 Desirable property and the results of a refinement check 310



List of Tables

1.1 Components in the library 11

1.2 Parameters 12

1.3 List of properties for library validation 16

1.4 List of complex properties with nested temporal operators 17

1.5 Area comparison results 17

3.1 Code data for different master devices 56

5.1 The API functions 87

6.1 The categorized IL statements 105

9.1 Affine expressions and their interval counterparts 158

9.2 Measured computation time 165

12.1 AMS IP block facets 208

12.2 Mapping of AMS IP requirements to class structure 214

xvii



List of Listings

6.1 The IL code for formula G(a → X b). The left column
gives the code location and the statement’s opcode, seperated
by a colon. 105

6.2 The main loop of the checker process 107

7.1 Mealy-based process constructor in SML-Sys 120

7.2 Mealy-based process constructor in C++ 125

7.3 Sequential composition 126

11.1 Basic synchronization algorithm 195

12.1 Entity/functional and structural model DTD template 217

12.2 Entity/functional model description output in XML 221

12.3 Structural model description output in XML 221

12.4 TransimpedanceAmplifier/RFeedback optimisation scenario
description in Java 222

12.5 Firm-IP synthesis results in XML 223

13.1 Generated code of UML diagram in Figure 13.5 240

14.1 POOSL model of the simple controller 253

14.2 Observational-equivalent model of the controller 257

14.3 Example of model without observational equivalence 260

xix



Preface

The Forum on specification and Design Languages (FDL) is the premier Euro-
pean forum to exchange experiences and learn about new trends in the applica-
tion of languages and models for the specification and modeling of electronic
systems. FDL’05 was organized around four thematic areas that cover essen-
tial aspects of system-level design methods and tools: “C/C++-Based System
Design” (chaired by Frank Oppenheimer, OFFIS, Germany), “Analog, Mixed-
Signal, and Heterogeneous System Design” (chaired by Christoph Grimm,
University of Hannover, Germany), “UML-Based System Specification and
Design” (chaired by Piet van der Putten, TU Eindhoven, The Netherlands), and
“Specification, Design, and Verification Methods” (chaired by Alain Vachoux,
EPFL, Switzerland). This book includes a collection of outstanding contribu-
tions to FDL’05 that have been carefully selected by the thematic area Chairs
and thoroughly revised by the authors. The book has 17 chapters grouped in
four parts. Each part groups chapters related to one thematic area and is intro-
duced by its respective FDL’05 Chair:

Part I, “Specification, Design, and Verification Methods,” includes two
chapters covering system design issues of growing importance, namely
assertion-based design and network-on-chip (NoC) design flow.

Part II, “C/C++-Based System Design,” includes five chapters mostly
addressing issues related to the development and the use of SystemC for
hardware/software system-level design.

Part III, “Analog, Mixed-Signal, and Heterogeneous System Design,”
includes five chapters discussing how the design of mixed-signal/mixed-
technology systems may be handled at system level.

Part IV, “UML-Based System Specification and Design,” concludes the
book with five chapters exploring modeling methodologies that can map
abstract models of complex systems onto efficient implementations.

The book is providing an excellent coverage of recent achievements in the
use of languages and models for the specification and the design of systems-on-
chip (SoCs). It also highlights the diversity of the issues that have to be tackled

xxi



xxii Preface

with in today’s system designs and the creativity of researchers to develop
efficient solutions. Last, but not least, the book shows the importance of the
FDL event as the place to discuss issues related to electronic system design.

On a final note, I would like to warmly thank Torsten Mähne for his excellent
work in helping me editing the book. Torsten efficiently managed all the subtle
LATEX issues that arose and highly contributed to make all chapters in the book
consistent.

Alain Vachoux
FDL’05 General Chair

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

March 2006



I

Specification, Design,
and Verification Methods



Introduction

This thematic area of FDL’05 deals with specification-driven designs,
formal verification techniques, mixed formal and simulation-based verifica-
tion techniques, formal languages (B, CTL, Z, temporal logic, etc.), syn-
chronous languages (Esterel, etc.), modeling concepts (e.g., StateCharts, Petri
Nets, finite state machines (FSMs), dataflow models, etc.), and models of
computation.

In this part, two contributions in this thematic area addressing two important
aspects in system design have been selected. The first aspect is assertion-based
design methods. Using assertions in design models provides means to write
specifications in a formal way that can be unambiguously understood and ver-
ified by designers and tools. They also provide a strong link between design
and verification activities early in the design flow. One emerging assertion lan-
guage is the Property Specification Language (PSL). PSL is an IEEE standard
that has been designed to unify static (formal) and dynamic (simulation-based)
verification and that is currently supported by many commercial electronic de-
sign automation (EDA) tools. Chapter 1 by Dominique Borrione, Miao Liu,
Pierre Ostier, and Laurent Fesquet, entitled “PSL-Based Online Monitoring
of Digital System,” presents an original method for generating hardware as-
sertion monitors. Such monitors capture the occurrence of events specified by
logical and temporal properties originally written as PSL assertions. The chap-
ter illustrates the approach on an experimental field programmable gate-array
(FPGA)-based platform that includes a Nios-embedded processor.

The second aspect deals with the design of systems-on-chip (SOC) archi-
tecture and the mapping onto a network-on-chip (NoC) architecture. NoC is
an emerging paradigm that aims at providing efficient on-chip communication
services capable of supporting large quantities of heterogeneous processing
components (e.g., processor cores digital signal processings (DSPs), FPGAs/
application-specific integrated circuits (ASICs), and memories). Such SOCs
are one possible solution to sustain the ever increasing complexity of appli-
cations and are enabled by the constant improvements in manufacturing tech-
nologies. Chapter 2 by Zhonghai Lu, Ingo Sander, and Axel Jantsch, entitled
“Refining Synchronous Communication onto Network-on-Chip Best-Effort

3



4 Introduction

Services,” presents a novel approach to refine a system model specified with
perfectly synchronous communication onto an NoC best-effort communication
service. The approach starts from a formal synchronous model of the commu-
nication and ends with an NoC architecture providing best-effort communica-
tion service class. The use of perfectly synchronous models allows to cleanly
separate computation from communication and to better formalize and vali-
date system specifications. The proposed refinement procedure then takes care
of deriving an efficient implementation of the communication onto the NoC ar-
chitecture, for which the perfect synchrony assumption does not hold anymore.

Alain Vachoux
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland, March 2006



Chapter 1

PSL-Based Online Monitoring of Digital Systems

Dominique Borrione, Miao Liu, Pierre Ostier, and Laurent Fesquet
TIMA
46 Avenue Félix Viallet
38031 Grenoble cedex
France

Abstract We present an original method for generating monitors that capture the occur-
rence of events, specified by logical and temporal properties under the form of
assertions in declarative form, written in the PSL standard. The method includes
a library of primitive digital components and a technique to interconnect them,
resulting in a synthesizable digital module that can be properly connected to a
digital system under verification, or to a set of input signals under scrutiny. The
complexity of the generation is proportional to the size of the PSL expression.
A prototype emulation system has been implemented.

Keywords: property; monitor; PSL.

1. Introduction

Today’s increasing design complexity requires innovative methods for verifi-
cation and debug. With verification consuming up to 70% of the design cycle,
assertion-based design (Foster et al., 2003) is viewed as one key method for
improving productivity. An assertion is a design property that is declared to
be true and should be evaluated by one or more techniques among simulation,
emulation, or formal verification. The introduction of new standard languages
such as Property Specification Language (PSL) or SystemVerilog has made as-
sertions more easy to write and very powerful. An assertion can also be seen
as a high-level functional specification for a circuit intended for monitoring of
events over time.

5
A. Vachoux (ed.), Applications of Specification and Design Languages for SoCs – Selected papers from
FDL 2005, 5–22.
© 2006 Springer.



6 Dominique Borrione et al.

We developed an original method for generating hardware that monitors sig-
nals whose behavior is specified by logical and temporal properties under the
form of assertions in declarative form. In this chapter, we shall use Accellera’s
PSL standard (Accellera, 2003, 2004) and assume the reader to be familiar
with its basic concepts. The method is founded on a library of primitive di-
gital components and a technique to interconnect them, resulting in a digital
module that can be properly connected to the signals of interest. Monitoring
can be initialized and started independently from the system under scrutiny;
it runs concurrently with the system under verification and notifies its envi-
ronment when the property checking is terminated with a true or false value
or whether the property is still being evaluated, possibly with a transient false
value. Properties over finite and infinite state sequences over time are covered
by the method. Monitors under this method may be used for design verification
by simulation. But their primary use is online checking during either hardware
emulation for debug or normal system operation for safety-critical property
checking.

1.1 State of the Art

PSL (Accellera, 2003, 2004) is a standard specification language proposed by
Accellera, and further standardized by IEEE. It is based upon the Sugar 2.0
property specification language (Formal Methods Group, 2000), and is an ex-
tension of the temporal logics: linear temporal logic (LTL) and computation
tree logic (CTL). PSL is used to describe properties that are required to hold
in a device under verification (DUV). Owing to its formal denotational seman-
tics, PSL provides a means to write specifications that are both easy to read and
mathematically precise. Special care has been devoted to the semantic defini-
tion. Gordon performed a “deep embedding” of PSL in the High Order Lan-
guage (HOL) proof assistant. He used this mechanized system to demonstrate
theorems about the semantics and to derive correct-by-construction mathe-
matical observers for PSL properties (Gordon et al., 2003). A detailed analysis
revealed some inconsistencies in the interpretation of a special class of regular
expressions; to help solve this problem, Claessen and Martensson proposed an
operational semantic definition (Claessen and Martensson, 2004) to guide the
semantic definition with the structure of the PSL formula.

PSL is designed to unify static verification (e.g., model checking) and dy-
namic verification (e.g., simulation). All properties expressed in PSL can be
verified by formal verification methods that consider all possible states of a
DUV, traversing them in a branching or parallel behavior. In contrast, some of
these properties cannot be easily evaluated in simulation or execution of the
DUV, because time advances monotonically along a single path. So a simple
subset of PSL is defined that conforms to the notion of monotonic advancement
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of time, left to right through the property, which in turn ensures that properties
within the subset can be evaluated along the execution of the DUV.

Many products support PSL. Long lists of companies and software names
may be found, together with their websites (Cohen et al., 2004; IBM, 2005).
Without any attempt to exhaustivity, the main tools may be partitioned into:

1. Formal verification of circuit properties by model checking: The
property, written in PSL, is evaluated over the reachable states of the
finite state machine (FSM) extracted from the design. Further to Rule-
Base from IBM (Beer et al., 1996), let us mention Verix from Real Intent,
Safelogic Verifier, imPROVE-HDL from TransEDA, Verity-Check from
Veritable, Archer-SF from 0-In Design Automation, etc.

2. Automatic generation of test bench: Tools like Designer from HDL
and Specman Elite from Verisity generate full-coverage test bench for
PSL assertions automatically.

3. Simulators supporting standard hardware description languages
(HDL’s) and PSL assertions at the same time: During simulation, the
evaluation of properties is executed on the fly and the evaluation results
are shown as waveforms together with other signals of the design. Ex-
amples of such tools include Cadence Incisive or Modelsim from Men-
tor Graphics.

4. Plug-in products working together with leading HDL simulators add
the assertion support to these simulators: Examples are Auriga from
FTL Systems, Safelogic Monitor, VN-Property from TransEDA, and
Archer-CDV from 0-In Design Automation. Novas Software developed
a series of products as an assertion-based debug system. Esterel Tech-
nologies has integrated assertion checking into Esterel Studio.

5. Generation of property monitors: IBM Corporation has developed a
tool named FoCs (Abardanel et al., 2000), which generates HDL check-
ers for PSL properties that can subsequently be linked to the design and
loaded into a verification environment. By this method, assertions can
be verified by simulation as well as formal methods without change.
Summit has combined FoCs into its C/C++/SystemC simulation tool
Visual Elite, in which Sugar assertions are transformed into efficient
assertion-checking code.

1.2 PSL as a Design Language

From the information and publications available to the authors, PSL properties
are largely seen as an expression of the intended behavior of a design expressed
in another language. PSL properties are what you want to verify on your de-
sign, rather than synthesizing the specification of an interesting observer. Yet,
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in safety critical systems, it may be of utmost importance to design a system
together with one or more monitors that can detect the occurrence of possibly
complex sequences of events, particularly when such events are the result of
transient errors or when such events are rare and the size of the design defeats
formal verification methods. In that case, synthesizing a hardware monitor that
checks a PSL property becomes a design activity.

IBM’s FoCs partially address this objective, by producing a source HDL
process from a PSL statement. But the presence of error-reporting statements
in the resulting code is clearly verification-oriented, and the user is limited to a
very strict subset of primitive PSL. Moreover, the lack of information about the
principles for constructing the monitors prevents incremental enhancements.
The situation with other products is even worse; no information about the ge-
nerated property monitors is made visible to the user. The motivation for our
research was thus to find a method that would allow the synthesis of monitors
in an incremental way, in order to easily adjust to any semantic change between
PSL language versions, and that would remain of a tractable complexity.

Many works have been published in the context of model checking of LTL
formulae. A standard technique translates the formula into an automaton that
recognizes all the acceptable sequences of values for the operand signals in
the formula (Daniele et al., 1999; Gastin and Oddoux, 2001). The problem is
that the resulting automaton is nondeterministic, which is inappropriate for a
hardware implementation, and the transformation into a deterministic one is
exponential in the number of nondeterministic decision states (Sebastiani and
Tonetta, 2003). Considering that a syntactically simple PSL formula can easily
expand into an LTL formula with a large number of temporal operators, the
automata-theoretic approaches appear too inefficient.

In contrast, we are not interested in generating an automaton, but rather a
sequential circuit whose state space is equivalent to that of an accepting au-
tomaton for the formula. Taking a hardware design approach guided by the
syntactic structure of the PSL formula, it is possible to directly build a monitor
as a structural interconnection of primitive components. More precisely, we
defined a library of primitive components, one for each PSL operator, whose
behavior is based on the operator semantics. Both the “weak” and the “strong”
version of the PSL operators are supported. For a PSL formula, all involved op-
erator monitors are combined together with dedicated rules to build the monitor
for that formula. Monitors generated by our method have the same structure as
the PSL formulae, and are thus easy to understand, to debug, and to reuse. This
approach is flexible and easy to extend, should PSL be extended in a future
revision of the standard. The validity of the method depends on the correctness
of the individual library elements and of the composition method; this point
will be discussed in Section 3.
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This chapter describes the monitors for the “foundation language” opera-
tors. Monitors for the “sequential extended regular expressions” (SEREs) are
described in (Gascard, 2005).

2. Monitor Construction: Principles

We provide a mechanism to automatically produce a hardware monitor that
checks a property specified in any (linear temporal) PSL that ensures monotonic
advancement of time, left to right through the property. The “simple subset” of
PSL has this property, although it may be extended. In the following, we use
the Very High Speed Integrated Circuit (VHSIC) Hardware Description Lan-
guage (VHDL) flavor of PSL and components are described in VHDL, but the
principles apply to other syntax as well. In the text and the figures, 0 and 1 are
used both for bits ‘0’ and ‘1,’ and for Booleans false and true.

2.1 Property Satisfaction

PSL defines four levels of satisfaction of a property on a finite execution path
of the DUV, which we recall as follows:

Holds strongly. No bad states have been seen. All future obligations have
been met. The property will hold on any extension of the path.

Holds (but does not hold strongly). No bad states have been seen. All future
obligations have been met. The property may or may not hold on any
given extension of the path.

Pending. No bad states have been seen. Future obligations have not been met.
The property may or may not hold on any given extension of the path.

Fail. A bad state has been seen. Future obligations may or may not have been
met. The property will not hold on any extension of the path.

The key idea to the monitor construction is based on this observation. In
practice, it is sufficient to obtain the answer about a property satisfaction one
or two clock cycles after this answer is known in theory. This is quite different
from the results of model checking, which can tell that a formula is true/false
in a state even when that formula references future values.

Example: Assume signals A, B, C take values as shown in Figure 1.1 (vertical
dotted lines stand for the default clock edges), and PR is defined as:

PSL property PR is A implies (next[2](B until C));

PR is true in the initial state of the system (A = 1, B = 0, C = 0), but
the answer depends on the true value of (B until C) two cycles later,
which is known only when C takes value 1.



10 Dominique Borrione et al.

A

B

C

PR pending PR holds

PR monitor output

Fig. 1.1 Property status and monitor output

The monitor outputs have the following significance, some of which are
for the strong version of operators only. Internal monitors, and in particular
primitive components, have the first two outputs only.

Checking: indicates when output valid is effective.

Valid: provides the evaluation result (1 for absence of error, 0 for error).

Pending: takes value 0 if the obligations have been met, 1 otherwise.

Fail: takes value 1 if bad states have happened, 0 otherwise.

Outputs checking and valid are generated by the last monitor, and they
can be used to generate appropriate actions when a valuation of the property
has been obtained. The combination of outputs pending and fail indicate the
evaluation result of the property (00 for hold, 01 or 11 for fail, 10 for pending).

Example: Let P1 be the following invariant property (it must always hold),
synchronized on the rising edge of clock clk. P1 states that one clock
cycle after receiving a request on signal req, a done signal must be
eventually received within one or two cycles and remain 1 until grant
is received. Figure 1.2 displays the monitor generated for P1 defined as:

property P1 is always (req->next((next_e 1:2(done))
until grant)) @rising_edge(clk).

2.2 Library of Primitive Components

A primitive monitor is defined for each operator of the “foundation language”
of PSL. Table 1.1 lists all the components of our library of primitive moni-
tors: column “Monitor Name” lists their names for further reference in this
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Fig. 1.2 Property monitor for P1

Table 1.1 Components in the library

Monitor name Corresponding foundation language operator

gen init Initial state generator
mnt always always (FL Property)
mnt never never (Boolean)
mnt next next [Number] (FL Property)
mnt next a next a [finite Range] (FL Property)
mnt next e next e [finite Range] (Boolean)
mnt next event next event (Boolean) [positive Number] (FL Property)
mnt next event a next event a (Boolean) [finite postive Range]

(FL Property)
mnt next event e next event e (Boolean) [finite postive Range] (Boolean)
mnt abort FL Property abort Boolean
mnt before Boolean before Boolean, Boolean before Boolean
mnt until FL Property until Boolean, FL Property until Boolean
mnt impl Boolean -> FL Property
mnt iff Boolean <-> Boolean
mnt and FL Property and op FL Property
mnt or Boolean or op FL Property
mnt eventually eventually! Boolean

document, and column “Corresponding Foundation Language Operator” lists
the PSL operator or set of operators that each component implements. For all
monitors that have a strong and a weak version, both versions are supported
(not repeated in the table).
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Table 1.2 Parameters

Name Type Explanation

OP TYPE INTEGER Type of operator:
0: weak type operator or weak exclusive operator
1: strong type operator or strong exclusive operator
2: weak inclusive operator
3: strong inclusive operator

NUM CLK INTEGER Number of clock cycles
LOW CLK INTEGER Lower bound of clock range
HIGH CLK INTEGER Higher bound of clock range
NUM COND INTEGER Number of condition occurrences
LOW COND INTEGER Lower bound of the range of condition occurrences
HIGH COND INTEGER Higher bound of the range of condition occurrences

The primitive monitors are defined as generic modules; they must be in-
stantiated with parameters indicating the strength and numeric attributes of the
particular operator in use (see Table 1.2). A particular operator variation be-
longing to a single operator family, and implemented within one monitor, can
be chosen by the parameter OP_TYPE. For example, the family of operators
next includes next, next!, next[num], next![num]; the family of opera-
tors until includes until, until!, until_ and until_!.

In addition, two primitive monitors have different interfaces and connection
rules; they correspond to operators abort and operator and when its operands
are temporal expressions (an extension to the simple subset; Liu, 2004). For
reasons of space, these monitors are not further discussed.

2.3 Structure of a Primitive Monitor

The main structure of a primitive monitor is shown in Figure 1.3. Two main
blocks can be identified:

The checking window block generates the temporal window for the eval-
uation of the operands, and it sets an internal check enabling check_en
signal, based on the evaluation requirement (start input signal) and
the semantics of the operator. For the operators that include an over-
lap of evaluation windows, due to multiple activations of the start
input signal, a shift register checkbit_reg is included. Defined as a
BIT_VECTOR(HIGH_CLK downto 0), checkbit_reg shifts from the
lowest bit to the highest bit at each time unit/clock cycle.

The evaluation block executes the checking of the operands, when the
checking-enable signal is ‘1.’ When reset is active, the monitor stays
in its reset state. Otherwise, when check_en is active, the operand is
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Semantics of
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Check_en

Checking

Valid

Reset_n

Clk

Start

Operand(s)

Fig. 1.3 Structure of a primitive monitor

checked and output valid represents the result. When check_en is in-
active, execution is stopped and output valid stays in its default value “1.”

2.4 Construction of Complex Monitors

To generate the monitors for complex properties, primitive single-operator
monitors are interconnected to construct a complex property monitor. The
method is based on the syntax tree of the property. A node in the tree rep-
resents a PSL operator, a leaf represents a basic operand (signal or constant
value), and the edges connect an operator with its operands. Some operators
have two operands, whereas some have only one. The root node of a prop-
erty tree is the operator with lowest precedence, i.e., the operator executed last
Figure 1.4.

Initial-State Generation. Normally, a PSL property refers to the initial state
of the design, i.e., the state at power on. If the property needs to be evaluated at
states other than the initial state, it should be enclosed in some temporal oper-
ator, such as always, never, until. We use a module gen_init to generate
the initial-state signal init_cycle, which is active one cycle immediately af-
ter power up reset. This signal is used as the evaluation requirement for the
whole property, and it is fed into input start of the root monitor.

Operators. For each node in the tree structure of a property, a correspond-
ing operator monitor is needed. All components available in the PSL monitor
library and the relationship with PSL operators are listed in Table 1.1.
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always
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grantnext_e
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done

always

->

next

until

grantnext_e

req

done

Fig. 1.4 Tree structure of PSL property P1: always (req -> next((next e[1:2](done)) until

For usual Boolean expressions written with Boolean operators and Boolean
variables, no special processing is needed. They are kept unchanged within the
monitor and synthesized into usual gate networks.

Example: (not a), (a or b), not (a and b), etc.

Operand Properties of Boolean and Temporal Operators. If the operand
of an operator is a Boolean expression, just connect it to the corresponding
operand input of the operator monitor. If the operand is a formula composed of
other PSL temporal operators, connect value ‘1’ to the corresponding operand
input of the operator monitor in order to disable the evaluation function within
the monitor. This is Because the evaluation of other operands depends on other
monitors and cannot be obtained within this single monitor (Figure 1.3).

Example: assert always (req -> next ack)

The second operand of operator -> is a formula (next ack) with a temporal
operator. So, for the monitor of operator ->, the second operand input expr
is connected to ‘1’ to disable the evaluation function within the monitor. The
connection of monitor -> is as follows: clk, reset_n, req are primary inputs;
input start is connected to the output checking of the monitor always; and

grant)) @ rising edge(clk)
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the outputs checking and valid are connected to the corresponding primary
outputs of the overall monitor.

Connection of Consecutive Operators. For two operators N1 and N2 such
that N1 is the father node of N2 in the tree structure (N2 is an operand of N1),
the two monitors are connected in the following way (see Figure 1.2 for an
illustration):

• Output checking from monitor N1 is fed to input start of monitor N2.

• Output valid from monitor N1 is useless, and left unconnected.

• The clock and reset signals are shared by the two monitors.

3. Validation

As a first validation step, the results of our prototype monitor synthesizer have
been compared (Liu, 2004) with those provided by FoCs, version 2.02. The
comparison method is shown in Figure 1.5. We used RuleBase to check the
equality between the monitors generated by our compiler and by FoCs.

3.1 Functional Comparison

First, simple properties were written to verify each library component indi-
vidually. Because model checking cannot verify parameterized modules, all
parameters were fixed with (small) constant values. All the weak versions of
the monitors in our library were shown equivalent to the process generated
by FoCs, on the properties listed in Table 1.3, except the monitor for opera-
tor abort, which is not supported by FoCs.

PSL Property

Entity compare É

U_focs_mnt É
U_prop_mnt É

ISEQUAL=
(valid_focs=valid_prop)

Gate Level

Netlistsynthesi s

class.db

RuleBase

Formal checker

PSL Property

Vunit p1{

assert always ISEQUAL;}

Pass
/Fail?

PSL Property

ISEQUAL=

PSL property

ISEQUAL=

Gate Level

Netlistsynthesi s

class.db

Gate Level

Netlist

Gate level

Netlistsynthesi s

class.db

synthesis

class.db

RuleBase

Formal checker

PSL Property

Vunit p1{

assert always ISEQUAL;}

Pass
/Fail?

RuleBase

Formal checker

RuleBase

formal checker

PSL Property

Vunit p1{

assert always ISEQUAL;}

PSL property

Vunit p1{

assert always ISEQUAL;}

Pass
/Fail?

FoCs

vunit p1 É

compiler

PSL-VHDL

Monitor

library

Property monitor

FoCs monitor

dc_shell

Fig. 1.5 Comparison flow
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Table 1.3 List of properties for library validation

PSL property

assert always (Req);
assert never (a);
assert always (a -> next (b));
assert always (a -> next [4] (b));
assert always (a -> (next a [1 to 3] (b)));
assert always (a -> (next e [1 to 2] (b)));
assert always (a -> next event(b) (c));
assert always (a -> next event(b) [4] (c));
assert always (a -> next event a(b)[1 to 3] (c));
assert (always a) abort b;
assert always (a -> (b before c));
assert always (a -> (b before c));
assert always (a -> (b until c));
assert always (a <-> b);
assert always ((a -> (b until c)) and (d -> next(e)));
assert always ((a) or (next a [1 to 3] (b)));
assert always (a->next event e(b) [1 to 6] (c));

Then we wrote compound PSL properties, involving several nested FL tem-
poral operators, and performed the comparison of the monitor result with the
process generated by FoCs. On all cases when we limited our properties to the
subset supported by FoCs, we proved the functional equality. Examples of such
properties are given in Table 1.4. This experiment, although not a thorough ver-
ification, gave us some initial confidence in our complex monitor construction
method.

Note that some monitors could not be checked in this way. For instance,
in FoCs, operator until_ has the limitation that both operands should be
Boolean. So we could not compare our monitor for a property such as:
always ((next (a)) until_ b);

3.2 Area Comparison

We used Synopsys “design compiler” to synthesize the equivalent monitors
generated by our PSL-VHDL compiler and by FoCs V2.02, and compared the
area efficiency of the two results. The circuit area is computed on the basis of
Synopsys generic library class.db: the unit is the area of the ND2 (two-input
inverted and gate) cell. The results are shown in Table 1.5.

It is interesting to see that for simple properties with small-value parameters,
the area of FoCs monitors is smaller than our monitors; but for complicated
properties with larger parameters, such as Prop1�4, the area of FoCs monitors
is much larger than ours (see boldface numbers).
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Table 1.4 List of complex properties with nested temporal operators

Name PSL property

Prop1 always (a-> next(next a[2 to 10] (next event(b) [10] (( next e [1
to 5] (d)) until (c)))));

Prop2 always (a->(next event a(b) [1 to 4] (next((d before e) until
(c)))));

Prop3 always (a->(next event(c) ((next event e(d)[2 to 5](e)) until
(b))));

Prop4 (always (a->next(next [10] (next event(b) ((next e[1 to 5](d))
until (c)))))) and (always (e->(next event a(ff)[1 to 4]
(next((gg before h) until (i))))));

Prop5 always ((a-> next(next[10] (next event(b) ( ( next e[1 to 5](d) )
until (c) ) ) )) or e);

Table 1.5 Area comparison results

PSL property Combinational area Sequential area Total area

Ours FoCs Ours FoCs Ours FoCs

Prop1 94 331 308 2172 402 2503
Prop2 55 73 131 450 186 523
Prop3 60 120 141 618 201 738
Prop4 120 114 371 639 491 753
Prop5 67 40 256 198 323 238
G(a->next b) 12 6 50 30 62 36
G(a->next[10]b) 23 15 111 93 134 108
G(a->next a[1 to 3](b)) 20 11 62 58 82 69
G(a->next a[5 to 20](b)) 58 50 181 268 239 318
G(a->next e[1 to 2](b)) 20 8 76 37 96 45
G(a->next event e(b) [1 to
6](c))

57 36 123 184 180 220

G(a->(b before c)) 26 12 62 44 88 56

4. Implementation of Monitors

4.1 Design Flow with Assertion Monitors

To implement PSL assertions in a digital system, the designer follows the stan-
dard design flow (HDL description, synthesis, place, and route) presented in
Figure 1.6. The PSL assertions are extracted from the system specification.
The extraction can be performed either from a high-level system description,
from the hardware description, or from the software (see dashed lines in Fig-
ure 1.6). In the last case, the software is executed on a processor core that
is instrumented at hardware level with the monitors. Once the PSL assertions
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Place and route
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FPGA
rapid verification

High-level system description

Fig. 1.6 Design flow to implement assertion monitors

have been extracted, the monitors are automatically generated by a dedicated
synthesizer (PSL2VHDL), resulting in a netlist of property monitors written
in synthesizable RT-level VHDL. This netlist is then merged with other hard-
ware cores, to be synthesized with a commercial tool. At this point, the only
assumption made is that the signal names in the hardware core description and
in the PSL language are the same. The monitor output signals can be observed
directly if connected to the pins. Otherwise, a dedicated monitor interface can
be more convenient to read the monitor state and to observe the system under
verification.

After synthesis, the generated circuit (hardware cores and monitors) follows
the standard steps of a design flow to be targeted either in an ASIC or in an
FPGA, depending on the purpose of the monitors. Monitors implemented in an
ASIC are primarily devoted to online testing of the circuit in operation. If the
FPGA implementation is chosen, the monitors can be used to detect design er-
rors at the hardware or software level, the primary interest being several orders
of magnitude in the verification speed compared with a simulation execution.
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4.2 Example: A Bus Snoop System for Software
Verification

To demonstrate the hardware monitor principles on a real system, an experi-
mental platform, based on an Altera FPGA (a Stratix 1s40), has been designed.
The implemented architecture is described in Figure 1.7. The Nios-Avalon ar-
chitecture is based on a standard Avalon bus and has an Universal Asynchro-
nous Receiver–Transmitter (UART) serial interface, a Nios processor with a
RAM, and a boot ROM. The hardware monitors are connected to the bus
through a small interface in order to snoop the data transactions about which
the PSL properties are written. The interface also allows the Nios proces-
sor to scan the state (pending, hold, fail) of the monitors. Figure 1.7 dis-
plays an experiment in which three PSL properties are compiled through our
PSL2VHDL compiler and are then synthesized on the FPGA.

The host computer is used to load the hardware on the FPGA (with a Joint
Test Action Group (JTAG) link not represented in Figure 1.7). Then, the soft-
ware is downloaded through the UART link and executed on the Nios proces-
sor. A typical Nios executable code results from the compilation of a program
that performs read/write operations on an external device, thus activating bus
transactions.

Fig. 1.7 The bus snoop system implemented on an FPGA with assertion monitor
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Each monitor snoops its own set of signals on the Avalon bus and evaluates
a particular property. The dedicated bus–monitor interfaces are individually
controllable by software, which provides great flexibility. After one or more
monitors are started, as long as all hardware monitors are in pending state, the
Nios executes its program normally. When a monitor detects a hold or fail con-
dition, an interrupt is generated and the Nios processor executes an exception
handler. The interrupt routine performs appropriate actions for debug, e.g., read
the state of the implied monitor and display it on the host computer.

As an illustration, the prototype has been demonstrated at the DATE’05
exhibition. Hardware monitors for the properties P1 to P4 listed below were
exercised by stimuli sent by a program running on the Nios; the user could
select the stimuli via the screen and keyboard of the host computer through the
UART link:

vprop P1 assert always (Req -> (Ack before! Grant));
vprop P2 assert (always (Req -> next a [1 to 3] (Ack)));
vprop P3 assert (always (Req -> next event (Ack)[3](Grant)));
vprop P4 assert (always (Req -> (Req until Ack) before Grant));

5. Conclusion

In this chapter, we described a new efficient methodology to generate monitors
from PSL assertions. The technology is based on a library of primitive compo-
nents that implement the PSL logical and temporal operators and on a struc-
tural method to interconnect them. Our prototype implementation automati-
cally synthesizes monitors from a PSL property, as an RT-level VHDL compo-
nent netlist. Our practical experiments show that the area of the monitors thus
obtained increases gracefully with the number of nested PSL operators, and the
upper bound of the observation window of the (next, next_event) operators.
Various applications are foreseen:

Design verification: The monitor is implemented on FPGA and serves as a
fast verification tool connected to a hardware prototype of the DUV.

Safety critical application insurance: The monitor is implemented together
with the DUV and permanently snoops on its critical outputs or state ele-
ments, to catch possible errors that would violate an essential property.

Synthesis of special-purpose hardware modules: These modules are speci-
ally dedicated to the observation of events or event sequences specified
in PSL. Such monitors, directly produced through the application of our
method, could trigger the monitored design for wake up (power-saving
applications) or special behavior initiation (alarm, reconfiguration, on-
line testing, special processing, etc.).
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Current work aims at removing some limitations of the current library, which
is strictly limited to scalar bit and Boolean operands. Also, the implementation
of a term rewriting preprocessing step should enlarge the set of supported tem-
poral expressions involving SEREs.

In another direction, a complete formal proof of the library components is
being performed. Theorem-proving techniques are applied to obtain a proof
that is independent of the valuation of the temporal parameter (number of
cycles or time interval) present in many operators.
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Chapter 2

Refining Synchronous Communication
onto Network-on-Chip Best-Effort Services

Zhonghai Lu, Ingo Sander, and Axel Jantsch
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Royal Institute of Technology
Sweden

Abstract We present a novel approach to refine a system model specified with perfectly
synchronous communication onto a network-on-chip (NoC) best-effort commu-
nication service. It is a top-down procedure with three steps, namely, channel
refinement, process refinement, and communication mapping. In channel refine-
ment, synchronous channels are replaced with stochastic channels abstracting
the best-effort service. In process refinement, processes are refined in terms
of interfaces and synchronization properties. Particularly, we use synchroniz-
ers to maintain local synchronization of processes and thus achieve synchro-
nization consistency, which is a key requirement while mapping a synchronous
model onto an asynchronous architecture. Within communication mapping, the
refined processes and channels are mapped to an NoC architecture. Adopting the
Nostrum NoC platform as target architecture, we use a digital equalizer as a tu-
torial example to illustrate the feasibility of our concepts.

Keywords: synchronous model; communication refinement; network-on-chip.

1. Introduction

For system design, a synchronous design style is attractive since it allows us
to separate timing from function. The designer can focus on the design of
the system functionality without being distracted by unnecessary low-level
communication details. This also facilitates the verification task, which is a
key activity at the system level. Later, refinement explores the implementation
space under constraints, making design decisions and filling in implementation
details. Network-on-Chip (NoC) is an emerging system-on-chip (SoC) para-
digm aimed to cope with the scalability problem of various buses in order
to connect tens or perhaps even hundreds of microprocessor-sized heteroge-
neous resources, such as processor cores, digital signal processings (DSPs),
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field programmable gate-arrays (FPGAs) application-specific integrated cir-
cuits (ASICs), and memories. The complex integration is desired by ever-
increasing functionality and enabled by the steady technology scaling.
Nostrum (Millberg et al., 2004; Nilsson et al., 2003; Thid et al., 2003) is our
NoC architecture offering a packet-switched communication platform. To sat-
isfy different performance/cost requirements, Nostrum provides two classes of
communication services: best effort (BE) and guaranteed bandwidth (GB) ser-
vices. The BE service is connectionless where packets are routed without re-
source reservation. The GB service is connection-oriented where packets are
delivered after enough bandwidth is reserved. It achieves better performance
at the expense of higher cost.

In this chapter, we are interested in mapping a system specified as a synchro-
nous model onto an NoC. To this end, we propose an NoC design flow shown
in Figure 2.1 where we concentrate on the communication problem. There are
three communication-related tasks: clustering and resource allocation, com-
munication refinement, and synthesis. The clustering flattens the hierarchy in
the model and groups processes into new processes with coarser granularity.
With resource allocation, the grouped processes are allocated to network nodes,
either hardware (HW) or software (SW) execution resources. Communication
refinement bridges the gap between the communication model in the specifica-
tion and the NoC communication implementation by adapters. With synthesis,
these processes and adapters are synthesized into HW and/or SW.

We address the communication refinement that starts from a synchronous
communication model and ends with the Nostrum NoC best-effort commu-
nication services. With the specification model, communication is perfectly
synchronous with a global logical clock and cleanly separated from compu-
tation. With the NoC communication service, communication introduces vari-
able delays and crosses multiple clock domains connected by a packet-switched
network. Clearly, the communication in the implementation domain is not
synchronous, and thus not consistent with that in the specification domain.

Clustering and resource allocation

Hardware Software

process model
Synchronous NoC

platform

Channel refinement

Process refinement

Communication mapping

Synthesis

Computation  refinement Communication  refinement

Fig. 2.1 An NoC design flow
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Our contributions are (1) a novel approach to realize this communication re-
finement; (2) a classification of process synchronization properties such as
strict, nonstrict, strong, and weak synchronization in order to formally an-
alyze the processes’ local synchronization requirement(s) (Section 5.2); (3)
using synchronizers (synchronization adapters) to maintain synchronization
consistency during refinement (Section 5.3). We will focus on the synchro-
nization issue while keeping the process computation untouched. Note that
this synchronization issue lies at the system-modeling level and not at the
lower implementation levels such as shared memory synchronization using
locks or semaphores, as well as message-passing synchronization using block-
ing or nonblocking semantics. We assume that, after a clustering, the resulting
processes, more precisely the process networks, are top-level entities. Each
process may comprise a hierarchy of subprocesses, which are intended to re-
side in a synchronous implementation domain. Besides, we consider that a
resource maintains a local synchronous region. Consequently, a process is to
be mapped to one resource and one resource hosts exactly one process.

2. Related Work

Based on the isolation of communication from computation, a large body of
work on communication refinement exists. Through the virtual component
interfaces (VCI) of the VSI Alliance (Lennard et al., 2000), the COSY-VCC
design flow (Brunel et al., 2000) supports communication refinement from
specification to performance estimation and to implementation. IPSIM (Cop-
pola et al., 2003) developed on top of SystemC 3.0 supports an object-oriented
methodology and establishes two intermodule communication layers. The mes-
sage box layer concerns generic and system-specific communication,
whereas the driver layer implements higher level application-dependent com-
munications. The SpecC methodology defines four levels of abstraction,
namely, at the specification, architecture, communication, and implementation
level, and the refinement transformations between them (Dömer et al., 2002).
These works do not assume a synchronous specification.

With synchronous communication, latency insensitive theory (Carloni et al.,
2001) targets synchronized HW design where synchronization can still be
achieved using relay stations even if interconnecting synchronous image pro-
cessing (IP) blocks experiences indefinite wire latencies. Desynchronization
for SW design was addressed in Benveniste et al. (2000). Furthermore, some
mathematical frameworks were developed to support refinement-based design
methods. Benveniste et al. present a theoretical framework for modeling het-
erogeneous systems, and derive sufficient conditions to maintain semantic-
preserving transformations when deploying a synchronous specification onto
GALS and the loosely time-triggered architectures (Benveniste et al., 2003).
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Another framework is proposed by Guernic et al. (2003) concerning the re-
finement of a polysynchronous specification, which allows the existence of
multiple clocks instead of a single clock. All these works are complementary
to ours but none of them provides a detailed refinement approach targeting an
NoC platform.

3. Refinement Overview

3.1 The Perfectly Synchronous Model

The synchronous modeling paradigm is based on an elegant and silmple math-
ematical model, which is the ground of synchronous languages such as Es-
terel, Signal, Argos, and Lustre. The basis is the perfect synchrony hypothesis,
i.e., both computation and communication take no observable time. A system
is modeled as a set of concurrent communicating processes through signals.
Processes use ideal data types and assume infinite buffers. Signals are ordered
sequences of events. Each event has a time slot as a slot to convey data. If
the data contains useful information, the event is present and is called a token.
Otherwise, the event is absent and modeled as a � representing a clock tick.
Each signal can be related to the time slots of another signal in an unambiguous
way. The output events of a process occur in the same time slot as the corre-
sponding input events. Moreover, they are instantaneously distributed in the
entire system and are available to all other processes in the same slot. Receiv-
ing processes in turn consume the events and emit output events again in the
same time slot. The medium through which a signal passes can thus be viewed
as an ideal communication channel that has no delay for any event data types
(unlimited bandwidth). A process specified in the synchronous paradigm is a
synchronous process. For feedback loops, the perfect synchrony creates cyclic
dependency between output and input, and thus leads to deadlock, which can
be resolved with initial events in the specification. A synchronous model is de-
terministic, i.e., if given the same input streams, it generates the same output
streams.

As a tutorial example, Figure 2.2 illustrates an equalizer model. It adjusts the
bass and treble volume of the audio stream according to button control levels.
In addition, it prevents the bass level from exceeding a predefined threshold to

Audio in Bass fillter (BF) Level control (LC)
Buttons

Audio out

Sum

s1(Bass)

s4(A.Treble)

s2(Treble)

s3(A.Bass)

Bass

Treble

Treble fillter (TF)

P1

P2

P4

P3

s0

s5

sb

sao

Fig. 2.2 The digital equalizer
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avoid damaging the speakers. Its function can be described by the following set
of equations, where the initial value “1” is used to resolve the feedback loops:

AudioOut = Equalizer(Buttons,AudioIn)
where
AudioOut = Sum(AudioBass,AudioTreble)
(Bass, Treble) = LevelControl(Buttons,AudioOut)
AudioBass = BassFilter(AudioIn, init : Bass)
AudioTreble = TrebleFilter(AudioIn, init : Treble)
init = 1

This model is specified in the functional language Haskell and is executable.

3.2 Nostrum Communication Services

In Nostrum, each resource Ri (i = 1, 2, . . . , n) is equipped with a resource-
network-interface (RNI) in order to access the network, as shown in the lower
part of Figure 2.3. The RNI and the network belong to the Nostrum proto-
col stack. Nostrum provides a message-passing platform with two commu-
nication services, i.e., BE and GB. The BE service (Nilsson et al., 2003) is
connectionless. Packets are routed in the network without reserving network
resources such as storage and link bandwidth. The end-to-end flow control,
reordering, packetization, and packet admission control are performed by RNIs.
The BE service maintains message order, and is lossless and corruptless. It
has no guarantee on timely delivery, but must have an upper bound on de-
livery time. To this end, we assume that the communication protocols can
prevent the network from saturation and guarantee bounds on delay. The GB
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RNI RNI
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R2 Rn

write
adapter

read
adapter

ch

P�

s�s

Q�

s

BE channel

Q

Q

Fig. 2.3 Communication refinement overview
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service is connection-oriented. Bandwidth is negotiated during a connection-
establishment phase. Packets are delivered after a connection is established.
The GB service is implemented by using looped containers and temporally
disjoint networks (Millberg et al., 2004). The RNIs hide the service implemen-
tation details and make the services transparently accessible to applications.
The access methods are communication primitives offered to the higher layer.

Within Nostrum, we define a set of basic communication primitives for mes-
sage passing as follows:

int open(int src, int dst, int service, struct bandwidth): it opens a simplex
channel between a source src process and a destination dst process.
The service denotes the channel service class: 0 for the BE service,
1 for the GB service. The bandwidth is a user-defined record with
three fields {int min_bw, int avg_bw, int max_bw} which spec-
ifies the minimum, average, and maximum bandwidth (bytes/second) re-
quirement of the channel. The method returns a unique channel identity
number (cid) upon successfully opening the channel. Otherwise, it re-
turns various reasons of failure, such as a destination invalid or perfor-
mance not satisfied.

bool write(int cid, void msg): it writes msg to the specified channel cid. The
size of messages is bounded. It returns the status of the write.

bool read(int cid, void *msg): it reads channel cid and writes the received
data to the address starting at msg. It returns the status of the read.

We have implemented these primitives with the BE service using SystemC
in our layered NoC simulator Semla (Thid et al., 2003). The write() and
read() are presently implemented with nonblocking semantics. Semla is pro-
grammable as to network topology, process-to-resource mapping, routing algo-
rithm, and traffic pattern. The current implementation opens channels statically
during compile time and the opened channels are never closed during simula-
tion.

3.3 The Refinement Procedure

Given a synchronous system specification, our objective is to refine the syn-
chronous communication onto the Nostrum BE service. For this communica-
tion refinement, we propose a three-step procedure: channel refinement, process
refinement, and communication mapping. We illustrate the procedure by a pair
of producer–consumer processes in Figure 2.3. The three steps are marked by
a circle with a step number inside it.

Step 1: With channel refinement, we first abstract the behavior of the Nostrum
BE service as that of stochastic channels which are then used to replace
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the ideal communication channels for passing signals. In Figure 2.3, the
ideal channel for signal s between producer P and consumer Q is refined
to a BE service channel ch. After being delivered through the service
channel, signal s turns into signal s′, which is a derived version of s.
Furthermore, s and s′ are not synchronous since different clock domains
are involved in the service channel.

Step 2: With process refinement, we discuss how to connect a process to the
service interface and how its synchronization property can be met by us-
ing adapters to wrap the process. Particularly, to guarantee a correct re-
finement, the process synchronization property must be consistent from
the specification to the refined model. We classify and analyze the syn-
chronization property of processes and then discuss how to maintain syn-
chronization consistency. The process synchronization property can be
annotated by designers on processes to enable automatically instantiat-
ing synchronizers to achieve synchronization consistency in the process
refinement. Moreover, we consider design decisions to handle feedback
loops, by which the process synchronization may be relaxed in order to
optimize performance since a synchronous specification may overspec-
ify the system. In Figure 2.3, P and Q are wrapped with a write and a read
adapter, respectively. Note that an adapter contains both a component
to interface with the service channel (writer/reader) and component(s)
to achieve synchronization consistency (synchronizers) whenever nec-
essary.

Step 3: Finally, together with a process-to-resource allocation scheme, the
communication mapping is to implement the adapters and map the ser-
vice channels on an NoC, in this case, the Nostrum simulator Semla.
In Figure 2.3, the refined processes P′ and Q′ are mapped to the re-
sources R1 and Rn, respectively. Accordingly, the service channel ch is
implemented through the interfaces provided by the RNIs of the
resources R1 and Rn.

4. Channel Refinement

The Nostrum BE service provides in-order, lossless, and bounded-in-time com-
munication between processes. However, its performance is nondeterminis-
tic since the message delivery experiences dynamic contentions in the RNIs
and network. To capture the characteristics of the BE service, we resort to a
stochastic approach. Formally, we develop a unicast BE service channel as a
point-to-point stochastic channel: given an input signal of messages
{m1,m2, . . . ,mn} to the service channel, the output signal is {d1,m1, d2,m2,
. . . , dn,mn}, where message mi (i = 1, 2, . . . , n) is bounded in size; di denotes
the delay of mi, which may be expressed as the number of absent (�) values and
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is subject to a distribution with a minimum di,min and maximum di,max value.
The actual distribution, which may differ from channel to channel, is irrele-
vant. We do not make any further assumptions about this. If di = n (n is a
positive integer), it means there are n absent values between mi−1 and mi. We
can identify two important properties of the generic service channel behavior:
(1) di is varying and (2) di is bounded. This behavior is purely viewed from the
perspective of application processes and its implementation details are hidden.

Replacing the ideal channel (zero delay and unlimited bandwidth) with a
stochastic channel (varying delay and limited bandwidth) leads to the violation
of the synchrony assumption. In the specification, a channel is ideal so that
we can use a single signal s to connect a producer to a consumer process.
After replacing the ideal channel with a service channel, the signal s can be
seen as being split into a pair of signals, the original signal s and its derived
signal s′, as shown in Figure 2.3. For a process with two synchronous input
signals, e.g., the Sum process of the equalizer (Figure 2.2), if both signals s3

and s4 are delivered through a service channel, they are split, resulting in two
derived signals s′3 and s′4, which are now the input signals to the Sum process.
Apparently, the two pairs of signals, s3 and s′3, s4 and s′4, and the two derived
signals s′3 and s′4 are not synchronous. A synchronous system becomes globally
asynchronous, leading to a possibly nondeterministic behavior that deviates
from the specification. It is therefore important for a refinement to maintain
synchronization consistency for functional correctness.

5. Process Refinement

We first describe how to interface with the service channels in general, and
then discuss the synchronization property of processes followed by methods
to achieve synchronization consistency. At the system level (a composition of
processes), we discuss feedback loops.

5.1 Interfacing with the Service Channels

Once an ideal channel is replaced by a service channel, the processes can not
be directly connected to the interface of the service channel. They must be
adapted in terms of data and control because (1) the input/output data type
of a service channel is of a bounded size whereas a signal in the specification
assumes an ideal data type, whose length is finite but arbitrary, e.g., a
32/64-b integer, a 64-b floating point, or a user-defined 256-b record type, etc.;
or (2) the service channel has bounded buffers and limited bandwidth whereas
a signal uses unlimited resources. The sending and receiving of messages use
shared resources and thus control functionality has to be added to allocate
shared resources, schedule multiple threads, and achieve thread-level synchro-
nization. These adaptations are achieved by a writer and reader process.
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Specifically, to interface with the service channels, a producer needs to be
wrapped with a writer and a consumer with a reader.

5.2 Process Synchronization Property

In the system model, all signals of processes are synchronous. However, whether
or not the input signals of a process must be synchronous is subject to the
evaluation condition of processes, specifically, the local condition(s) to evalu-
ate the input events. Because of the tight synchronization in the model, some
processes may be overspecified, limiting the implementation alternatives. Dur-
ing the refinement, the designer(s) must inspect and determine the synchro-
nization property of the processes.

Inspired by Lee and Parks (1995), we use firing rules to discuss the synchro-
nization property of synchronous processes. For a synchronous process with
n input signals, PI is a set of N input patterns, PI = {I1, I2, . . . , IN}. The input
patterns of a synchronous process describe its firing rules, which give the con-
ditions of evaluating input events at each event cycle. Ii (i ∈ [1,N]) constitutes
a set of event patterns, one for each of n input signals, Ii = {Ii,1, Ii,2, . . . , Ii,n}. A
pattern Ii, j contains only one element that can be either a token wildcard ∗ or
an absent value �, where ∗ does not include �. Based on the definition of firing
rules, we propose four levels of process synchronization properties as follows:

Strict synchronization. All the input events of a process must be present be-
fore the process evaluates and consumes them. The only rule that the
process can fire is PI = {I1}, where I1 = {[∗], [∗], . . . , [∗]}.

Nonstrict synchronization. Not all the input events of a process are absent
before the process fires. The process cannot fire with the pattern I =

{[�], [�], . . . , [�]}.

Strong synchronization. All the input events of a process must be either present
or absent in order to fire the process. The process has only two firing
rules PI = {I1, I2}, where I1 = {[∗], [∗], . . . , [∗]} and I2 = {[�], [�], . . . , [�]}.

Weak synchronization. The process can fire with any possible input patterns.
For a two-input process, its firing rules are PI = {I1, I2, I3, I4}, where I1 =

{[∗], [∗]}, I2 = {[�], [�]}, I3 = {[∗], [�]}, and I4 = {[�], [∗]}.

We can identify processes with a strict, strong, and weak synchronization
property in the equalizer (Figure 2.2). The bass filter (s0 and s1) and treble
filter (s0 and s2) have a strict synchronization. Both filters are composed of a
finite impulse response (FIR) filter and an amplifier. The FIR filter is spec-
ified as a finite state machine (FSM), whose state transition is sensitive to
time; thus a � value in an audio stream can change the values of its out-
put sequence. Meanwhile, the amplifier must have an amplification level, thus
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a � value makes the amplifier undefined. The Sum process (s3 and s4) has
a strong synchronization. It is a combinational process and thus tolerable to
events with a � value. However, the two events of s3 and s4 must be synchro-
nized before being processed since they represent the low- and high-frequency
components of the same audio sample. The level control (sb and s5) process
has a weak synchronization. It can fire even when either or both of the events
of sb and s5 are absent since pressing buttons happens irregularly and the bass
level surpassing the threshold occurs only aperiodically.

5.3 Achieving Synchronization Consistency

Apparently, for processes with a strict or strong synchronization, their syn-
chronization properties cannot be satisfied if any of their input signals passes
through a service channel since the delays through the channel are stochas-
tic. Although globally asynchronous, the processes can be locally synchro-
nized by using synchronizers to satisfy their synchronization properties. To
achieve strong synchronization, we use an align-synchronization process sync;
to achieve strict synchronization, we use three processes, sync, deSync, and
addSync. We use a two-input process to illustrate these processes in Figure 2.4.
An align-synchronization process sync aligns the tokens of its input events, as
shown in Figure 2.4a. It does not change the time structure of the input signals.
A desynchronizer deSync removes the absent values, as shown in
Figure 2.4b. All its input signals must have the same token pattern, resem-
bling the output signals of the sync process. Removing absent values implies
that the process is stalled. The desynchronizer changes the timing structure of
the input signals, which must be recovered in order to prevent from causing

{...,an,...,^,^,a2,^,a1,^}

{...,bn,...,^,b2,^,^,^,b1}

{...,an,...,a2, ^, ^,  a1, ^}
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Fig. 2.5 Read/write adapters for a process with strong synchronization

unexpected behavior of other processes that use the timing information. An
add-synchronizer addSync adds the absent values to recover the timing struc-
ture, as shown in Figure 2.4c. It must be used in relation to a deSync process. If
the input events of the deSync is a token, the addSync reads one event from its
internal buffers for each output signal; otherwise, it outputs a � event. The two
processes deSync and addSync are used as a pair to assist processes to fulfill
strictness.

We can now use these synchronizers in connection with the reader and
writer processes to wrap the original processes to interface with the service
channels and maintain the synchronization consistency from the specification
model to the refined model. For instance, as shown in Figure 2.5, we use a
sync process and a pair of reader/writer processes to wrap the Sum process in
the equalizer to maintain its strong synchronization. We use the three processes,
sync, deSync, and addSync, and a pair of reader/writer processes to wrap the
bass/treble filter process (Figure 2.2) to maintain their strict synchronization.

The refinement of processes with a nonstrict synchronization should be in-
dividually investigated according to their firing rules.

5.4 Feedback Loops

In the specification, feedback loops are resolved by using initial events. If the
feedback signals pass through a service channel, the delays are nondetermin-
istic. If following the initial-event approach in the refinement procedure, we
encounter a problem since we are not certain how many initial events are re-
quired to resolve the deadlock. Consider the bass/treble filter, if the tokens of
s1/s2 are not available, it cannot fire. This implies it may not be able to process
enough audio samples in time, leading to violate the system’s performance
constraint. However, if the amplification level signals s1 (bass) and s2 (treble),
are delayed and thus not available, the amplifiers should continue functioning
by, for example, using the previous amplification level or simply using a con-
stant level like 1. In this case, the effect of pressing buttons may be delayed
several cycles. This is tolerable since the human sensing of the changes in the
audio volume is not instantaneous.
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By this observation, we can in fact relax the strict synchronization of the
processes bass/treble filter, using a relax-synchronization process relax illus-
trated in Figure 2.4d. If the input event is a token, it outputs the token; oth-
erwise, a token x0 is emitted. The exact value of x0 is application-dependent.
Relaxing synchronization is a design decision leading to behavior discrepancy
between the specification and the refined model. Care must be taken to validate
the resulting system.

6. Communication Mapping

The inputs to this task are the refined model as well as a process-to-resource
allocation scheme; the output is a communication implementation on Semla.

6.1 Channel Mapping

With a resource allocation scheme, all processes are allocated to resources in a
one-to-one manner. Note that this is not a limitation but due to the assumption
on the clustering and resources (refer to Section 1). With such a clustering, in-
terprocess signals, which represent interresource communications, are mapped
to service channels. Since the processes may be hierarchical, we need to flat-
ten the hierarchy to the level that each signal mapped to a service channel can
be uniquely identified with a pair of a producer and a consumer process with
finer granularity. For simplicity, we do not consider mapping multiple service
channels to one implementation channel. Mapping channels is thus straight-
forward. Each pair of processes communicating through a service channel
in the refined model results in its dedicated unicast implementation channel,
which is mapped to the open channel primitive open(). For example, with the
producer–consumer case, a BE channel setup is fulfilled by a single line of
code: int ch[1]=open(P,Q,BE_SERVICE,NULL).

6.2 Communication Process Mapping

After the process refinement, a refined process consists of the original compu-
tational process, the writer and reader, and perhaps the synchronizer(s) to sat-
isfy their synchronization properties. Our refinement keeps the original processes
intact. Therefore, the tasks of communication process mapping are to imple-
ment the writer/reader and the synchronizers such as sync, deSync, addSync,
and relax, and to coordinate the writing and reading operations.

In SystemC, processes are implemented as modules. The reader/writer may
be implemented as separate modules or in the same modules as processes. We
implement a process and its adapter(s) in a single module. For implementa-
tion, execution control in the module must be considered. Suppose the module
has a single thread of control, we need to find a periodic admissible sequen-
tial schedule (PASS) for process executions (Lu et al., 2002). For the process
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ch0
reader writer
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write_rdy
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read (ch0,ch1 /ch2)

Fig. 2.6 Read/write adapters for a process with strict synchronization

in Figure 2.6, a PASS could be PASS={reader, sync, deSync, Bass/Treble Fil-
ter, addSync, writer}. Besides, a control signal write rdy must be asserted by
the writer to the reader to enable reading the channel(s) for the next-round
PASS execution, as shown in Figure 2.6. This leads to a local feedback loop,
and we adopt the initial-event approach to deal with it. In this case, write rdy is
initially asserted. Using the communication primitives defined in Section 3.2,
the SystemC module for Figure 2.6 is sketched as follows, with each compo-
nent explained briefly in commentary:

1 process_class::Process(){
2 //initially write_rdy=1;
3 //read_ch0_rdy=0; read_ch1_rdy=0
4 //sync_rdy=0; compute_done=0;
5 if (write_rdy==1){
6 //(1) reader: nonblocking read ch1 and ch2
7 if (read_ch0_rdy==0)
8 if ((read(ch[0],&r_msg1))==true)
9 read_ch0_rdy=1;

10 if (read_ch1_rdy==0)
11 if ((read(ch[1],&r_msg2))==true)
12 read_ch1_rdy=1;
13 //(2) sync: synchronize the two events
14 if (read_ch0_rdy==1 && read_ch1_rdy==1)
15 sync_rdy=1;
16 else sync_rdy=0;
17 //(3) deSync: desynchronization by guard
18 if (sync_rdy==1 && compute_done==0){
19 //process computation
20 //return w_msg and set compute_done to 1
21 w_msg=compute(r_msg1,r_msg2);
22 write_rdy=0; compute_done=1;}
23 }
24 //(4) addSync: fill synchronization
25 if (sync_rdy==1 && compute_done==1) {
26 //(5) writer: nonblocking write ch3
27 if (write_rdy==0)
28 if (write(ch[3],w_msg)==true){
29 write_rdy=1;
30 sync_rdy=0; compute_done=0;
31 read_ch0_rdy=0; read_ch1_rdy=0;}}
32 }
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Fig. 2.7 The equalizer mapped on an NoC

In the implementation domain, whether to emit and pass � through a ser-
vice channel either as a special message or using one bit to indicate presence
and absence can be a design decision. To preserve the semantics, � must be
transported. However, this incurs too much overhead on computation and com-
munication, and may be meaningless since its value is useless. Therefore �
is usually neglected. Only in cases where the timing information carried by
� is used by other processes, it must be emitted and passed. In the equal-
izer case, � is neglected since its timing information is not used by any of the
four processes.

We have implemented the equalizer in Semla. The purpose is to validate the
concepts of our refinement approach. Figure 2.7a illustrates the mapped equal-
izer in a 4 × 4 mesh NoC. All the five interresource signals s1, s2, . . . , s5 (Fig-
ure 2.2) use the BE service. The resources and the network run with the same
speed. The switches operate synchronously with the switching per hop taking
one cycle. The message streams on s3 and s4 are injected into the network
conservatively so that a new audio sample will not be processed by the filters
until the previous sample has been handled by the Sum process. This implies
that the audio samples are not processed in a pipeline fashion in the network.
In addition, we inject background traffic with uniformly distributed random
destinations in the network. The motivation is to load the network with rea-
sonable amount of traffic since the equalizer example can make use of only a
small fraction of the network capacity. Figure 2.7b shows the equalizer perfor-
mance, where the network load is the average percentage of active links per
cycle. The process computations are function calls and complete instantly. We
observe the average delay that is the time (in cycles) to process one sample.
Since the audio processing is not pipelined, the throughput (samples/cycle) is
simply the inverse of the average delay. In Figure 2.7b, the first row shows the
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case where there is no background traffic. As expected, when the network is in-
creasingly loaded, the average delay is increased and the throughput decreased.
The average delay can be seen as the time to respond to a button press or to
activate bass control. We noted that the audio output sequences are different
from those observed from the specification due to relaxing the synchronization
for the feedback loops. We conducted other experiments in which we removed
the feedback loops, and could validate that the output sequences agree with
each other in all traffic-setting cases.

7. Conclusions and Future Work

Communication refinement is a crucial step in an NoC design flow. We have
presented a refinement approach that allows us to map a perfectly synchronous
communication model onto the NoC BE service accessible through commu-
nication primitives. Particularly, we classify the synchronization properties of
processes and describe methods to achieve synchronization consistency dur-
ing the refinement upon the violation of the perfect synchrony hypothesis. For
feedback loops, we relax the synchronization with the tolerance of system re-
quirements. In this chapter we use Nostrum as target, but with few adjustments;
this approach is also applicable for other NoC platforms.

In future work, we plan to develop formalism for synchronization consis-
tency and realize automatically analyzing the synchronization properties of
processes. During refinement, we take either automatic analysis that yields
correct synchronization and system behavior or manual analysis with design
decisions on the synchronization refinement combined with a systematic veri-
fication of the resulting implementation. For the refinement of feedback loops,
we intend to use the Nostrum GB service to reach a systematic solution.
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Introduction

This part of the book contains the five most interesting contributions selected
from the C/C++-Based System Design Thematic Area (CSD-TA) workshop,
which was part of the FDL’05 conference. The CSD-TA addresses language-
based hardware/software system methodologies and tools for modeling,
simulating, evaluating the performance, and analyzing hardware/software
systems. The focus of this thematic area is on research approaches applying
C/C++-based languages like SystemC, but other languages are explicitly wel-
comed as well. Topics of interest also include Real-Time Operating System
(RTOS) and embedded software aspects.

Through its open and extensible language architecture, SystemC provides
an efficient framework for new research approaches addressing the design of
complex electronic systems. On this foundation, Chapters 3–7 present method-
ologies and extensions for SystemC to enlarge its scope and expressiveness.
Chapters 3–7 address very different design challenges such as behavioral sep-
aration in protocol-dominated systems, checking of timing properties, hard-
ware/software integration, and mixing synchronous with untimed models of
computation (MoC).

In the first chapter of this part, “Behaviour separation: a high-level method-
ology applicable in the SystemC environment” (Chapter 3), Giovanni et al.
describe an approach to foster reuse when modeling design components com-
municating through protocols. Their technique enables an efficient reuse of
parts of components sharing one protocol by separating the fixed proto-
col behavior from the device-specific behavior. The chapter illustrates the ap-
plicability and efficiency of the presented methodology using an Advanced
Microcontroller Bus Architecture (AMBA) bus system master device design ex-
ample.

In “Mixing synchronous reactive and untimed MoCs in SystemC” (Chap-
ter 4), Fernando Herrara and Eugenio Villar present a methodology that
allows to mix models of computations for describing components in a
heterogeneous system. In particular, the work approaches the integration of
the synchronous, reactive, and the untimed model of computation in the Sys-
temC language framework. The chapter describes a concrete SystemC-based
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mechanism applying so-called border channels and border processes to inter-
face synchronous, reactive, and untimed models.

The third chapter by André et al., “Interface-centric abstraction level for
rapid hardware/software integration” (Chapter 5), describes a portable set of
abstract operative system (OS) primitives realized as an application program-
ming interface (API) facilitating hardware/software codesign in SystemC. The
API covers all aspects of typical operation systems, e.g., process management,
communication, synchronization, and timing. For each OS primitive, they pro-
vide a hardware and a software implementation alternative. With these alterna-
tives, the designer can easily evaluate different alternative system partitionings.

Roland et al. received the FDL’05 Best Paper Award for their contribution,
“Efficient and customizable integration of temporal properties into
SystemC” (Chapter 6). The work presents an extension of SystemC with cus-
tomizable temporal properties. The two main aspects discussed in this chapter
are the way to specify temporal properties in SystemC models and the mech-
anism to check these properties automatically. Both aspects are illustrated by
modeling examples and performance-evaluation results.

The heterogeneity and complexity of electronic systems necessitates
integration of different MoC into a semantically well-defined and efficient
modeling environment. In “UMoC++: A C++-based multi-MoC modeling
environment” (Chapter 7), Deepak et al. describe basic techniques to inte-
grate generic MoCs taken from functional frameworks, such as ForSyDe and
SML-Sys, into an efficient framework based on an imperative language. By
doing so, the presented environment called UMoC++ promises to improve the
efficiency while maintaining the well-defined semantic of the heterogeneous
system model.

It is my hope that this short introduction will draw your attention to the very
interesting work presented in the following chapters. As they outline the scope
of the CSD-TA quite well, they might also encourage you to attend or even
contribute to one of the following CSD workshops at the FDL conference.

Frank Oppenheimer
OFFIS e. V.

R&D division Embedded Hardware/Software-Systems
Oldenburg, Germany, February 2006



Chapter 3

Behaviour Separation: A High-Level Methodology
Applicable in the SystemC Environment

Giovanni B. Vece, Massimo Conti, and Simone Orcioni
Dipartimento di Elettronica, Intelligenza artificiale e Telecomunicazioni
Università Politecnica delle Marche
via Brecce Bianche, 12
I-60131 Ancona
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Abstract This chapter proposes a modelling technique called behaviour separation for
the high-level design of devices bound to a working protocol. This technique is
based on a device characterization through orthogonal behavioural components,
favouring code reuse and making modelling effort easier. Its realization can be
achieved in SystemC environment in a very suitable manner. This is possible by
the advanced modelling capabilities provided by this environment, in particular
the IMC communication strategy.

In this chapter, we show a concrete application of this approach based on the
master devices bound to the AMBA AHB protocol.

Keywords: high-level modelling technique; code reuse; SystemC; AMBA AHB.

1. Introduction

SystemC (OSCI, 2006) is an emerging C++ environment for the modelling, the
simulation, and the synthesis of electronic systems. Like other hardware de-
scription languages (HDLs), such as very high speed integrated circuit (VH-
SIC) hardware description language (VHDL) and Verilog, SystemC provides
the means to express mandatory hardware semantics, such as modularity, con-
currency, and synchronization (Panda, 2001; Grotker et al., 2002). In addition,
it is possible to employ all the advanced descriptive functionalities offered
by the C++ language: classes, objects, virtual function, polymorphism, tem-
plates, etc. (Stroustrup, 2000). In this way SystemC is able to provide powerful
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abstraction mechanisms, which are very suitable for a high-level modelling
such as system level or transaction-level modelling (TLM) (Grotker et al.,
2002; Pasricha, 2002; Jayadevappa and Shankar, 2004). In fact, at these levels
a major importance is given to the functional aspects; implementation details
are not yet taken into account and then cannot impose strict constraints on the
modelling possibilities. This allows to treat the system to be modelled in a
quite abstract and parameterizable way.

Nowadays, high-level modelling is assuming a more and more important
role in the design of the modern electronic systems, because of the continu-
ous increase in their complexity. One of the most important abstraction mech-
anism supported by SystemC is given by the uncoupling between module
implementation and its external communication. This is carried out by develop-
ing communication through the actions involved in this task (for example, read
or write operation), rather than through the accurate modelling of the input/out-
put (I/O) physical features. At code level this is achieved through an interface
class, which contains a set of virtual functions standing for the main actions
associated with a certain communication modality. This modelling strategy is
usually referred as interface method call (IMC) (OSCI, 2006) and represents a
concrete realization of a powerful communication paradigm called interface-
based design (Rowson and Sangiovanni-Vincentelli, 1997), which favours code
reuse and modelling effort. The SystemC environment already provides inter-
face classes for some well-known communication modalities (hardware sig-
nal, first-in first-out semaphore, etc.), together with default implementations.
However, an user can define new interface classes and provide his own im-
plementations for his interface classes and also for those already provided by
SystemC.

In the past few years, several researches have been carried out in order to
improve and optimize the communication capabilities provided by SystemC
(Caldari et al., 2003; Coppola et al., 2003, 2004). However, up to now the IMC
strategy has been typically applied to realize communication at the physical
level, i.e., the effective communication between modules and channels phys-
ically separated. In this chapter, we present a modelling technique based on
a logical extension of the IMC strategy and suitable for the high-level mod-
elling of systems with a constant component in their behaviour. In particular,
we will consider the case of devices bound to a working protocol. We have
called the proposed technique behaviour separation, and we have applied it
for modelling master devices related to advanced microcontroller bus archi-
tecture, advanced high-performance bus (AMBA AHB) communication pro-
tocol (ARM, 1999). It will be be shown how this approach offers the same
benefits of the IMC strategy in its typical application for physical communica-
tion, favouring code reuse and easing the modelling effort.
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In order to fix the ideas, we will show the features of this methodology
through its application for the modelling of devices bound to a communication
protocol, considering the concrete case of AMBA AHB master devices. How-
ever, we will also provide some guidelines for extending the application of be-
haviour separation for modelling devices bound to a generic working protocol.

2. Principles of the Behaviour Separation Methodology

First of all we will explain some theoretical principles on which behaviour
separation is based. When modelling a system through a suitable language, we
must describe all the rules that establish the system behaviour, according to the
adopted abstraction level. From an abstract point of view, we can imagine to
represent the overall behaviour of a system through a set that contains all the
rules which establish the system behaviour.

The devices bound to a working protocol have to show a behaviour compat-
ible with such a protocol. Moreover, more general devices may carry out some
further tasks not related to the associated working protocol. Thus for this kind
of devices, the set can be subdivided into two complementary subsets. One sub-
set contains the working rules related to the protocol, whereas the other subset
contains the working rules related to the other other possible tasks. Moreover,
it is possible to further subdivide the former subset into two complementary
subsets, as shown in Figure 3.1.

In fact, we can distinguish two categories as regards the protocol rules. In
particular, there are protocol rules fixed by the the protocol in a strict and uni-
vocal manner. All the devices bound to a specific protocol have to reproduce
these rules always in the same way. These rules are typically known a priori,
depending only on the protocol specification and not on the intrinsic features
of the devices to be modelled. We can refer to these rules as fixed protocol rules
or fixed protocol behaviours.

However, there are other protocol rules that are not univocally fixed by the
protocol and partially depend on intrinsic device features. In general, different
devices bound to a same protocol can realize these rules in different ways. We
can refer to these other rules as free protocol rules or free protocol behaviours.

Other
Fixed

Free

Fig. 3.1 Protocol rules classification in fixed and free protocol rules
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In Figure 3.1, each of these subsets has been associated to an alphabetical
letter. The subset A contains the working rules that are not related to protocol;
the subset B contains the rules related to protocol and univocally fixed, that is
fixed protocol rules; finally the subset C contains the rules related to protocol
but not fixed, that is free protocol rules.

In order to explain this classification, let us consider the concrete case of a
master device bound to the AMBA AHB communication protocol. In particu-
lar, let us consider some typical working situations. For example, when granted
access to the AMBA bus, a master device always has to declare the features of
a new transfer right from the start, without modifying these features during
the transfer. Moreover, if the selected slave device replies with an ERROR re-
sponse, a master device always has to set HTRANS signal to IDLE (ARM,
1999). All these behavioural rules are examples of the rules univocally fixed
by the AMBA AHB protocol. So every master device has to reproduce these
rules always in the same way. These rules are examples of fixed protocol rules.

Now let us consider other working situations. For example, there are no
impositions on the moment when a master device can start a new transfer, when
it is in IDLE state. Moreover, when a new transfer starts, the features of such
transfer are exclusively set by the master device, with no imposition coming
from the protocol in this case also. As we can see, these other rules are still
related to AMBA AHB protocol, but are not fixed by the protocol. These other
rules really depend on the intrinsic features of a master device, and different
master devices could realize these rules in different ways. Hence these other
rules are examples of free protocol rules.

Behaviour separation methodology describes the device behaviour taking
into account this characterization, i.e., describing the device behaviour so as to
separate these subsets of rules. In this way, it is possible to achieve some mod-
elling benefits due to the properties of these subsets. In particular, for a specific
working protocol, the fixed protocol rules (subset B) represent a constant be-
havioural component, since these rules are univocally established once and for
all. So if it were possible to describe these rules in a separate and distinct way,
this description would be valid for every device bound to the considered pro-
tocol. This description could be made once and for all, and the related code
could be reused every time a new device has to be modelled. In this way, when
modelling a new device, only the behavioural rules related to the subsets A and
C should be described.

The code reuse for fixed protocol rules can be very significant, as it will be
shown from the experimental results. Moreover, it is also possible to achieve
some facilitations as regards the description of free protocol rules. All these as-
pects could provide an important contribution for making the overall modelling
effort easier. In particular, this is true for high-level descriptions (system level
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or transaction level), which represent the most suitable application context for
the behaviour-separation approach.

At this point the question is how to realize a device description based on be-
haviour separation. The applicability of this approach depends on the language
used for the modelling purpose. In other words, it is necessary that the used
language provides modelling constructs suitable for realizing the behaviour-
separation idea. Anyway these constructs are available in SystemC. Before
examining the realization in SystemC, it is necessary to introduce some other
features concerning architectural aspects.

3. Application for Communication Protocols

In this section, we will focus on the application of behaviour separation for
devices bound to a communication protocol. However, in Section 8, we will
provide some guidelines for extending this approach to devices bound to generic
protocols.

Now let us consider a device bound to a communication protocol. Typically,
the rules related to this kind of protocol are expressed by the relationships
between the I/O signals referred to the protocol. In general, such device may
be characterized by the I/O signals related to the protocol and further possible
I/O signals. These further I/O signals may be present for implementing some
free protocol rules and possible tasks not related to the protocol.

For applying behaviour separation, we could model the device through the
architecture in Figure 3.2 where the device has been split into two complemen-
tary units called bound unit and free unit.

Bound unit should be a module that manages the whole behaviour related to
the protocol. For this reason, only the bound unit should establish the run-time

Fig. 3.2 Generic architecture for communication protocol–bound devices
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progress for the output protocol signals, as reported in Figure 3.2. At the same
time, bound unit should be characterized by a fundamental property in order
to realize the behaviour-separation idea; it should explicitly implement only
the fixed protocol rules, and should not depend on the real implementation
of the free protocol rules. If this were true, the bound unit would really define
only the protocol’s constant component. All that could allow us to define the
bound unit once and for all and to reuse its code for modelling different devices
related to the same protocol.

Bound-unit processes should manage all the working phases related to the
protocol. This means that such processes should realize both the fixed protocol
rules and the free protocol rules. The fixed protocol rules must be explicitly
described by bound-unit processes. For a communication protocol, the fixed
protocol rules may depend only on the input signals related to the protocol. For
this reason, according to the architecture in Figure 3.2, bound unit is connected
to the protocol input signals.

In contrast, the free protocol rules must be handled by the bound unit in a
different way. As we have explained, these rules are not known a priori and
represent a variable component as regards the device behaviour related to the
protocol. These rules are not explicitly implemented by the bound unit, but
are handled in an implicit way. More precisely, the free protocol rules must be
implemented inside the free unit but their execution can be required by bound
unit. In particular, bound unit must be able to invoke the execution of free
protocol rules from free unit during a simulation. This should happen when
free protocol rules have to be executed in order to reproduce the correct run-
time behaviour related to the protocol. For this purpose, as shown in 3.2, it is
necessary to define a suitable communication mechanism between bound unit
and free unit, which allows the invocation of free protocol rules.

With regards to the free unit, this component should realize the behavioural
part that depends on the specific device features. In particular, the free unit
must provide a suitable implementation for the free protocol rules and for all
the possible tasks not related to the protocol. In practice, the free unit should
implement the rules for the subsets A and C reported in Figure 3.1. For this
purpose the free unit could need the access to all input signals, both protocol
and further signals. Moreover, in order to implement the possible tasks not
related to the protocol, the free unit has to establish the run-time progress for
further output signals.

The architectural characterization we have now explained is abstract, with
no references to a concrete realization through a particular language. In sec-
tion 4 we will show how this architecture can be concretely realized in
SystemC, emphasizing the communication mechanism between bound unit
and free unit in particular.
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4. Realization in SystemC

The architectural characterization through bound and free units can be realized
in SystemC in a natural and flexible way (see Figure 3.3). In particular, this
is possible through an extension of its IMC capabilities (OSCI, 2006). More
precisely, we can define an interface abstract class for the communication bet-
ween bound and free free unit (Grotker et al., 2002; OSCI, 2006). This class
inherits from SystemC class sc_interface and contains a set of pure virtual
methods. These interface methods realize the various free protocol rules and at
the same time provide a mechanism for invoking these rules.

These interface methods must be defined by the free unit; so free unit has
to be an implementation class inheriting from the interface class (Stroustrup,
2000). However, free unit could need the access to I/O signals and could be
described through its own internal processes. As a consequence, in the most
general case, free unit may be defined through an sc_module class (Grotker
et al., 2002; OSCI, 2006) inheriting from the interface class.

On the other hand, bound unit must be an sc_module, which is connected
to the protocol I/O signals and is described through suitable internal processes.
Such processes should model all the working phases related to the protocol.
At code level the fixed protocol rules are explicitly defined, whereas the free
protocol rules are reported through the invocation of the interface methods.
According to the typical SystemC approach, the invocation of these methods
may be carried out through an sc_port object (OSCI, 2006) linked to the
interface class. In this case, this sc_port does not match with a real physical
port, but rather represents an object suitable for interacting with the interface
methods.

Fig. 3.3 Device architecture in the SystemC environment
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An important aspect is that the bound unit does not depend on the implemen-
tation of the interface methods. In fact, this implementation is hidden inside the
free unit, and the bound unit simply invokes the interface methods through their
standard names, without knowing their real definition. All that leads to a sepa-
ration between bound unit and free unit at code level. In this way, bound unit
can be connected with different free units based on the same protocol interface.
At the same time, it is possible to reuse the bound-unit code for modelling dif-
ferent devices related to the same protocol. In fact bound unit implements only
the constant part of the protocol behavior, that is the fixed protocol rules. So,
when modelling a new device, it could be necessary to define only a suitable
free unit considering the specific device features.

The proposed SystemC realization is based on the same IMC technique typ-
ically used in SystemC for physical communication. In the typical application
of IMC there are two main subjects: (1) an sc_module, which communicates
by invoking the methods of a specific communication interface; (2) a channel,
which is connected to this module and provides a specific definition for these
methods. In behaviour separation, bound unit plays the role of the sc_module
whereas free unit plays the role of the channel. In other words, this approach is
based on an alternative application of the IMC capabilities in order to model the
internal behaviour of devices bound to a working protocol. In these sections,
we have considered the communication protocols; however, in 8, we will deal
with the the extension for devices bound to a generic protocol.

5. Application Example Based on an
AMBA AHB Master Device

In this section we consider a concrete application of the behaviour-separation
approach, for the modelling of AMBA AHB master devices (ARM, 1999).

First of all we have executed an accurate analysis on the AMBA AHB proto-
col specification, in order to distinguish between fixed and free protocol rules.
Through this examination we have found out all those aspects of the AMBA
AHB protocol that are not univocally fixed, i.e., the free protocol rules. Then
we have defined an interface class containing a set of pure methods (Strous-
trup, 2000), that model such free protocol rules. This interface class is called
AMBA_Free_If:

1 class AMBA_Free_If : public sc_interface
2 {
3 public:
4 virtual notransfer()=0;
5 virtual startransfer()=0;
6 virtual transferInfo()=0;
7 virtual getdata()=0;
8 virtual putdata()=0;
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9 virtual trans_type transnow()=0;
10 virtual anothertransfer()=0;
11 virtual firstaddwrap()=0;
12 virtual endincr()=0;
13 virtual subtransfer()=0;
14 virtual actionposterror()=0;
15 };

For simplicity reasons, we have reported the virtual methods (lines 4–14)
omitting their return values and their possible input parameters. These meth-
ods are involved in some typical working phases related to an AMBA AHB
master device: bus request; generation and handling for reading and writing
data; transfer features declaration; address handling for nonincremental
transfers.

Then we have defined an sc_module for bound unit. We have realized this
component through a high-level modelling, based on an algorithmic descrip-
tion. However, we have maintained a accurate (CA) behaviour (Grotker et al.,
2002) through an exact timing triggering with respect to the input signals:

1 class BOUND_unit : public sc_module
2 {
3 // I/O ports and auxiliary objects, not shown
4 ...
5 // internal processes
6 void bus_request();
7 void bus_granting();
8 void first_transfer1();
9 void first_transfer2();

10 void loop_transfer();
11 void last_transfer();
12 void exception_manager();
13 void reset_manager();
14 // port for communication with free_unit
15 sc_port<AMBA_Free_If > Free;
16 // constructor and other components , not shown
17 ...
18 };

Inside the bound unit there is a set of processes that realize all the working
phases related to AMBA AHB protocol (lines 6–13). In our implementation
these processes are all sc_thread; their triggering is due to clock, asynchro-
nous inputs, and some sc_event objects (OSCI, 2006). Besides, we can also
notice an sc_port object called Free, and linked to AMBA_Free_If class (line
15). This sc_port is used by the bound unit to invoke the execution of the
interface methods, in order to manage the free protocol rules.
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At this point, in order to complete the modelling of a device, a final step
is necessary: defining a suitable free unit class, which must provide an imple-
mentation for all the methods of AMBA_Free_If interface class.

Now we can consider the concrete application of behaviour separation at
code level. For this purpose, we will examine the code of one of the bound-
unit processes, i.e., the bus_request process:

1 void BOUND_unit::bus_request()
2 {
3 transfer_type trinf_tmp; // auxiliary object
4 ... //initialization instructions , not shown
5 while(true) {
6 if(HRESET) {
7 if(Free->startransfer()) {
8 HBUSREQ = true;
9 HTRANS = NONSEQ;

10

11 trinf_tmp = Free->transferInfo();
12 HADDR = trinf_tmp.firstaddr;
13 HWRITE = trinf_tmp.write;
14 HSIZE = trinf_tmp.size;
15 HLOCK = trinf_tmp.lock;
16 HPROT = trinf_tmp.prot;
17 HBURST = trinf_tmp.burst;
18 ... //setting of some auxiliary objects, not shown
19 notify(SC_ZERO_TIME ,checkbusgranted);
20 wait(checkbusrequested);
21 } else {
22 wait(HCLK.posedge_event()|HRESET.negedge_event());
23 wait(SC_ZERO_TIME);
24 if(!HRESET.read()) {
25 ... //reset condition handling, not shown
26 }
27 }
28 } else {
29 ... //reset condition handling, not shown
30 }
31 }
32 }

The bus_request process manages the working phase before a new trans-
fer starts. This process is triggered by the positive clock edges and by the nega-
tive edges of HRESET input signal (ARM, 1999). Let us consider the execution
steps in normal conditions, neglecting the case of reset events.

At the beginning the interface method startransfer is invoked on the
sc_port Free (line 7). This method returns a boolean value and its actual
implementation is hidden inside free unit. startransfer is invoked in order
to know if a new transfer has to be started. This protocol aspect is not fixed by
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the AMBA AHB protocol and hence represents a free protocol rule. In fact, a
master device can start a new transfer in any moment during this phase with
no imposition from the protocol. The startransfer method is repeatedly
invoked until its return value is true. When this happens, it means the master
device wants to start a new transfer. Then the output signal HBUSREQ must
be set to true and the output signal HTRANS to NONSEQ (lines 8–9). These
two assignment instructions are univocally specified by the protocol in this
working situation (ARM, 1999). Thus these instructions represent two fixed
protocol rules and are explicitly defined in the code.

Then the setting of all these output signals, which communicates the features
of the new transfer (lines 12–17), is carried out. The setting of these output sig-
nals is achieved by invoking another interface method, that is transferInfo
(line 11). This method returns a transfer_type object; transfer_type is
a C++ struct whose internal members can represent the values for the several
protocol output signals. The transferInfomethod returns a transfer_type
object, which is assigned to an auxiliary object, called trinf_tmp; through
such object the output signals are finally set. In this situation the values to be
assigned to these output signals are not fixed by the AMBA AHB protocol.
Thus this represents another free protocol rule, which is realized by the inter-
face method transferInfo.

After this step the run-time execution is moved to another process, i.e.,
bus_granting. This process deals with the next working phase, and is trig-
gered by the notification of the sc_event checkbusgranted (line 19). At
this point the bus_request process stops. According to the final wait instruc-
tion (line 20) (OSCI, 2006), this process will be resumed when the sc_event
checkbusgranted is invoked by another process of bound unit.

In the bus_request process we have seen a concrete application of be-
haviour separation at code level. The other processes of bound unit are imple-
mented in the same way too. In particular, we have seen the description of a
typical phase characterized by fixed and free protocol rules. The fixed and free
protocol rules are reported in the code in an interleaved way, according to the
execution scheduling dictated by the protocol. Fixed protocol rules are explic-
itly defined, whereas free protocol rules are reported through the invocation
of the interface methods. In other words, this code implements only the fixed
protocol rules, that is the protocol’s constant component. In this way, when
modelling a new master device, the code of the fixed protocol rules is already
available through the bound-unit definition. At the same time there are also
some facilitations for defining the free protocol rules, which can be described
in a helped and driven way by considering the semantics of each interface
method separately.

Now we can briefly summarize the necessary steps to apply behaviour sep-
aration for modelling a device bound to a certain working protocol:
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1. Examining the protocol specifications and distinguishing between fixed
and free protocol rules

2. Defining an interface class whose virtual methods model the found free
protocol rules

3. Defining a suitable bound unit unit class that models the device behav-
iour related to the protocol; fixed protocol rules are explicitly described
whereas free protocol rules are described by invoking the interface meth-
ods.

4. Examining the working features of the device to be modelled and under-
standing the specific realization of the free protocol rules

5. Defining a class for free unit, which inherits from the interface class and
contains a suitable implementation for the interface methods

6. Defining the device behaviour not related to the protocol, that is the fur-
ther possible tasks carried out; for a communication protocol this can be
made inside the definition of free unit, even if, in general, it is possible
to follow any solution valid in the SystemC environment.

The first three steps depend only on the protocol specification and hence
can be made once and for all. On the contrary, the steps 4–6 depend on the
device’s intrinsic features and their realization is not univocally fixed. So, when
modelling new devices bound to the considered protocol, only the steps 4–6
could be required.

6. I/O Adaptation; Limitations and Application Fields

For a specific communication protocol, bound unit should be defined once and
for all and its I/O ports should agree with the I/O signals related to such pro-
tocol. This also means the types associated to these ports should be specified
once and for all, considering that C++ is a strongly typified (Stroustrup, 2000).
As far as possible it would be better to associate these ports to quite abstract
and high-level types, without references to implementation details not imposed
by the protocol.

However, when using a device description in different application contexts,
in general based on different abstraction levels, there could be some incompat-
ibilities with the types associated to the ports of the modules externally con-
nected. In this case it is not necessary to define new bound-unit modules, which
match with the required types for the I/O ports. In fact, it is possible to apply
the typical SystemC solution for this kind of problem, that is adapter modules
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Fig. 3.4 Bound unit I/O adaptation

(Grotker et al., 2002; OSCI, 2006). By using two I/O adapter modules, bound
unit should be instantiated with the structure in Figure 3.4.

In this way all the features and benefits previously described are still valid.
If there were I/O type mismatching within a particular application context, it
could be necessary to define only the suitable I/O adapter modules, reusing the
same bound-unit core.

The proposed modelling technique could prove to be favourable in several
applications, even if there are some limitations to be considered.

Probably, the main limitation is the fact that the separation of the protocol
behaviour, and hence the separation in bound unit and free unit, is a purely
logical characterization. So there is no matching with the physical structure of
the real device, and this may make this approach unsuitable for direct synthesis.
This means this modelling methodology may not be suitable in a context where
synthesis is an important target. In the design flow, this approach could be
applied in the early phases, for system level modelling and analysis. In fact,
in such context physical details are usually not yet set and the main target
is evaluating system behaviour. Moreover, this approach may also be applied
for research applications. For example, we have applied behaviour separation
for modelling particular AMBA AHB master devises, used to evaluate some
performances concerning the AMBA AHB protocol (Conti et al., 2004; Vece
et al., 2005).

So, in general, this modelling methodology can be taken into account in all
those cases in which we want to reproduce the behaviour of a device, without
being strictly interested in its physical implementation.

7. Modelling of Complete AMBA AHB Master Devices
and Results

So far, we have seen the definition of a bound unit and an interface class for
the AMBA AHB protocol. In order to achieve a complete device description,
it is necessary to define a suitable class for free unit.

For our researches (Conti et al., 2004; Vece et al., 2005) we have realized
several free-unit classes, which provide different implementations for the vir-
tual methods of the AMBA_Free_If interface class. In this way we have mod-
elled several master devices, characterized by a variable behavioural
complexity.
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Table 3.1 Code data for different master devices

Master behaviour features Free unit
code (kB)

Bound unit
code (kB)

Total code
(kB)

Code reuse
(%)

Deterministic; not parameterizable 7 33 40 82
Pseudorandom; parameterizable 17 33 50 66
Pseudorandom; parameterizable;
feedback for power management

23 33 56 58

The simplest devices have been based on a static and deterministic behav-
iour. In this case free protocol rules are static and do not depend on the de-
vice’s input signals. On the contrary, the most complex devices have been
developed through a parametric and pseudorandom behaviour, in which free
protocol rules are not static but depend on input signals and also on some ran-
dom variables. The statistics of these random variables can be set at the begin-
ning of a SystemC simulation. Moreover, some of such devices are also based
on a feedback mechanism for power optimization.

After realizing these devices we carried out several tests, in order to ver-
ify their compatibility with the SystemC environment and also their behaviour.
This testing phase gave good results. The particular architecture of these de-
vices did not cause rejections or limitations neither at compilation time nor at
run-time. Also the expected behaviour was successfully confirmed by the sim-
ulations. In (Vece et al., 2005), it is possible to find a detailed description about
this testing phase.

Now we can evaluate the modelling efforts spent to realize these device
descriptions. For this purpose, we can consider the amounts of code required
for realizing these devices. However, we should really consider the code for
bound unit and free unit separately. In fact the real modelling effort was given
only by the realization of free unit. For each device we have always used the
same bound-unit code.

In Table 3.1 we have reported the amounts of source code for three different
master devices. The values are expressed in kB units. The amount of code for
bound unit is constant for each device and is equal to 33 kB.

As we can notice, the reuse of bound unit determines a significant saving in
the code required to model a complete device. This data is especially interest-
ing for the last two devices considered in Table 3.1, which are characterized by
a quite complex behaviour and require a higher modelling effort.

8. Extension to Generic Protocols

Now, as final point, we will briefly explain how this modelling approach could
be extended for devices bound to generic protocols.
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Fig. 3.5 Device architecture for protocols concerning internal behaviour

The characterization through fixed and free protocol rules is always valid.
So we can always define an interface class for free protocol rules. Also bound
unit and free unit should maintain their reciprocal roles. What may change is
the architecture.

In the previous sections we have considered devices bound to a communi-
cation protocol, in particular the concrete case of AMBA AHB master devices.
Now let us consider a device bound to another kind of working protocol. For
example, we could consider a protocol that establishes the internal device
behaviour, without input and output ports related to it; that could be the case of
an intermediate protocol in the Bluetooth protocol stack. In this case,
we should refer to a new architecture for applying separation. In particular,
the architecture shown in Figure 3.5.

In this case bound unit is not an sc_module any more. Now bound unit is
an internal process or also a set of internal processes. These processes describe
all the protocol behaviour and execute free protocol rules by invoking them
from a free unit class. Also in this case the invocation could be made through
a suitable sc_port object. On the other hand, free unit is still defined as an
implementation class for free protocol rules. In this case free unit needs not
to be connected to I/O ports, and can be instantiated as an external object.
Also in this case there are the same benefits seen for the devices bound to a
communication protocol. In particular, it is still possible to reuse bound-unit
code, that is the code of the processes related to bound unit.

This way to act can be intuitively generalized for other kinds of working
protocols. More precisely, for modelling a device bound to a particular kind of
protocol, the application of behaviour separation could require a customized
architectural characterization. However, we can maintain all those features
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concerning the classification in fixed and free protocol rules, the use of the
IMC communication technique, and the benefits for code reuse.

9. Conclusions

In this chapter, we have explained the features of behaviour separation, a mod-
elling methodology suitable for devices bound to a working protocol. We have
shown how this approach can be realized in a suitable way in a SystemC/C++

environment. That is possible through the modelling capabilities of this en-
vironment, and in particular through an extension of the IMC technique. We
have highlighted the benefits and limitations of this approach on the basis of
the application contexts. Moreover, a concrete application has been consid-
ered, concerning the AMBA AHB master devices. This application has shown
a quite significant code reuse and some facilitation for the modelling effort.
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Abstract The support of heterogeneity at the specification level, i.e., the ability to mix
several models of computation (MoCs) in the system-level specification, is be-
coming increasingly important in system-level design methodologies of hard-
ware/software (HW/SW) embedded systems. It presents several advantages. At
the modeling level, it enables a more natural description that can be more ef-
ficiently simulated. In addition, it can ease the automation of the design flow
over a heterogeneous target platform. This work is in the context of the deve-
lopment of a heterogeneous system-level specification methodology based on
SystemC. The methodology is able to support untimed MoCs (such as process
network (PN), Kahn process network (KPN), and communicating sequential
process (CSP)) and MoCs with a more detailed handling of time, such as the
synchronous reactive (SR) MoC. The problem of MoC interfaces has been ad-
dressed and specifically solved for untimed–untimed interfaces. In this chapter,
this work is extended with the connection between untimed MoCs and the SR
MoC. This connection involves the intersection of different MoC restrictions
in the time domain. The way in which the untimed–SR interface specifies how
the untimed events map onto the SR time domain is shown. These general con-
cepts are reflected later in the SystemC untimed–SR interfaces, consisting of
border processes and channels. The incompatibilities between time restrictions
provoked or transmitted by the connection are also shown, as well as the way
these are detected in SystemC. Previously, a study of the time semantics of the
untimed and SR MoCs and how MoCs assumptions are abstracted from the time
model of SystemC are presented.
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1. Introduction

The effort in the development of more productive methodologies for hardware/

software (HW/SW) embedded systems is narrowing the design gap provoked
by the increasing integration capability and thus complexity. This complexity
enables the implementation of a whole system in a single chip (System-on-
Chip or SoC; Chang et al., 1999). One of the main reasons for this productivity
rise is the increase of abstraction level at the system specification. The design
starts by constructing a system-level specification, which incorporates more
abstract primitives, with a more powerful semantic content and less depen-
dent on the implementation architecture. SystemC (OSCI, 2001; Grötker et al.,
2002; Müller et al., 2003) has gained the confidence of many users (more than
36000 registered) as a system-level specification language. It provides impor-
tant advantages, such as, being based on C/C++, support for SW modeling,
HDL description, and system-level specification. This eases the adoption of
the language by embedded SW developers and HW designers and the tran-
sition to a system-level specification style. In addition, it is an open-source
project, which also provides extension features as part of the language itself.
This facilitates the incorporation of an important feature in the specification
methodology of HW/SW embedded systems: heterogeneity.

In this context, heterogeneity is the ability to mix (include and commu-
nicate) several models of computation or MoCs (such as synchronous data
flow (SDF), finite state machine (FSM), kahn process network (KPN), register-
transfer level (RTL); Lee and Sangiovanni-Vincentelli, 1998) in the same sys-
tem specification. We name this heterogeneity at specification-level (marked
in bold in Figure 4.1), in contrast to heterogeneity at the implementation level,
which expresses the presence of many types of implementation architectures
or technologies (application-specific integrated circuits (ASICs), digital sig-
nal processing (DSPs), application-specific instruction set processors (ASIPs)
general-purpose processors, etc.) in the target platform.

Complexity and heterogeneity in the implementation platform are strongly
related phenomena and usually occur together; thus a methodology for the
design of such complex embedded systems has to provide abstraction and
heterogeneity at the specification level. While abstraction enables confronting
the specification with powerful primitives (in the semantic sense), heterogene-
ity at the specification level reflects the heterogeneity of the implementation
platform.

There are several advantages in a system-level heterogeneous specification
methodology:

The specifier can build the specification more naturally. A description
style suited to the functionality that must be specified in each part of the
specification can be used.
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Fig. 4.1 Heterogeneity and abstraction in the specification

The simulation speed is improved since the simulation engine adapts to
the detail level that the semantics of MoC primitives requires.

The benefits provided by the different MoCs are maintained. For exam-
ple, properties such as determinism in SDF, KPN, SR, and CSP or static
schedulability in SDF.

The automation of synthesis and generation flows, thus the mapping to
a heterogeneous target platform, is easier. For example, a cycle-based
MoC, such as RTL, presents a description style more suited to the im-
plementation flow of custom HW devices of the HW/SW platform.

As a consequence, heterogeneous system specification has gained an
increasing interest from the research community. In Lee and Sangiovanni-
Vincentelli (1998), a theoretical framework for the study and comparison of
MoCs is proposed. It describes processes as a set of behaviors and a behavior
as a set of signals. Process composition is the intersection of their behaviors.
The interaction between processes is through signals, a collection of events.
Each event is a value-tag pair, where the tag comes from a partially or to-
tally ordered set. This permits useful and objective considerations in one of
the most important features of an MoC: the handling of time. It defines a
timed MoC as that where the tag set is totally ordered. It also defines syn-
chronous events as those with the same time tag. Then, it defines synchronous
signals as those having only synchronous events and synchronous processes
as those having synchronous signals as behaviors. In Jantsch (2004), a useful
tool called Rugby metamodel enables the study of MoCs through four separate
domains: computation, communication, data, and time. Hierarchy is indepen-
dently considered. Each domain represents a feature of the model that can be
independently treated at a specific detail level and a classification of MoCs
can be done just by considering the coordinates in the Rugby metamodel. In
addition, a classification classification of MoCs considering one of the most
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distinguishing domains, time, is done. Untimed MoCs, with less-restrictive
time assumptions, are distinguished from synchronous and timed MoCS, the
latter begin the most restrictive ones in time domain (see Figure 4.7).

In addition to theoretical frameworks, there are also frameworks for hetero-
geneous specification. One of the most known and influencing ones is Ptolemy
(Ptolemy, 2006). It comprises a component-based graphical specification frame-
work, which establishes a match MoC-component, clearly separating MoCs at
the specification level (hierarchical heterogeneity). This work is mainly in-
tended for modeling and each MoC is supported over its own execution frame-
work (simulation engine), taking Java as the implementation
language.

Efforts have been taken to incorporate heterogeneity in C-based specifica-
tion languages and, specifically, in SystemC. Moreover, heterogeneous speci-
fication in SystemC requires the development of an appropriate specification
methodology.

In Patel and Shukla (2004), a way to provide heterogeneity support for Sys-
temC is shown. The extension of the SystemC discrete event (DE) strict-timed
kernel in order to provide support to the MoC (Lee and Messerschmitt, 1987)
is proposed. It is an approach similar to Ptolemy Ptolemy in that each sup-
ported MoC has its corresponding simulation kernel in charge of the execution
of an efficient simulation of that part of the system. It can reach a simula-
tion speedup around 75% in stand-alone SDF specifications and may admit
the incorporation of any MoC, including analog MoCs. Currently, the support
of more MoCs, such as CSPs (Hoare, 1978) or FSMs, is being explored. The
main drawback of the approach is that it requires a nonstandard SystemC simu-
lation kernel. In addition, as other heterogeneous specification methodologies,
simulation speedups are affected by Amdahl’s law (Michalove, 2006) when
more demanding MoCs (in terms of simulation time) are also present in the
specification.

In Herrera et al. (2004, 2005), a SystemC specification methodology was
proposed with the goal of an efficient support of heterogeneity. It is supported
by the theoretical frameworks presented, such as the time tag framework of Lee
and Sangiovanni-Vincentelli (1998), extended in Villar (2002), or the Rugby
metamodel and the MoCs taxonomy of Jantsch (2004), used in Herrera et al.
(2005) for studying and providing MoC interfaces. The proposal has several
distinguishing features. Firstly, it provides support for a single-source system-
level design flow (Posadas et al., 2005). This design flow starts from a speci-
fication attending a general specification methodology. This is a first level of
basic rules and methodological guidelines. Guidelines are general in the sense
that they reflect the main restrictions and targets of the specification method-
ology, still letting some flexibility to the specifier. The most important ones
are the focus of the design task on conceiving a specification of flat concurrent
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functionality enclosed in a hierarchy of modules and a clear separation between
communication and computation. The specifier basically fills the process com-
putation by writing its functionality and channel accesses. The rules dictate
which SystemC primitives (SC_THREAD, sc_fifo, etc.) to use and how (i.e.,
do not directly use wait on event in the computation code) to use them. In
addition, a library, categorized in SystemC as methodology-specific library
(OSCI, 2006, 2001), provides new elements and, therefore, features, which
enable the extension of the language over the SystemC standard library in a
core-decoupled way. For example, the library includes classes and macros for
easing the debug of the concurrent specification. The implementation of these
new elements (MoC channels, MoC interface channels, checking elements) is
written using the public elements provided by SystemC, which explains why
no kernel extension is needed.

Furthermore, heterogeneity support is obtained in this methodology by the
application of the same philosophy. Heterogeneity is achieved through an extra
level of rules, attending and eventually extending those of the general specifi-
cation methodology, and through a set of new elements added to the specifi-
cation library. Since these new elements become a majority in the specifica-
tion library, the library may be assumed to be a heterogeneous specification
library. Most of the new elements are nonstandard channels, such as the uc_rv
uc_rv rendezvous channel; therefore it can also be understood as a new com-
munication library. The methodology ensures the support of those MoCs that
may be comprised through DE strict-timed model of the simulation kernel.
Untimed MoCs (PN, KPN (Kahn, 1974)), CSPs, and the SR model of compu-
tation are the SR model of computation are supported. This methodology does
not preclude heterogeneous specification based on multiple simulation kernels
when it is required. This would be the case for simulations since the DE kernel
might not be able to handle analog able to handle analog simulation efficiently.
This would require clear temporal execution semantics. MoC interfaces are
supported border processes and channels, provided as a general solution for
solution for interfaces between different MoCs. In Herrera et al. (2005),
untimed–untimed MoC interfaces are already dealt. Some questions, such as
the support of untimed–SR, untimed–timed interfaces, and the temporal inter-
pretation of events when these interfaces are present in the specification, are
not covered yet.

In this chapter, the support of heterogeneity of the methodology is extended
with the connection between the SR MoC and untimed MoCs KPN, untimed
MoCs (KPN, PN, and CSP cases). The temporal semantics and effects of the
MoC interface over the events of the specification have been analyzed. SR–
untimed MoC interfaces are provided in the form of border processes and bor-
der channels. They include automatic checks for the fulfillment of MoC rules in
a transparent of these interfaces requires the understanding of how each MoC is
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supported by the standard kernel and the common points and incompatibilities
between SR and untimed MoCs.

The structure of the chapter is as follows. In 2, the support of the SR MoC,
showing and contrasting how SR and untimed MoCs are abstracted from the
SystemC time axis, is explained. In Section 3, general concepts for the MoCs,
which handles time at a different level of detail, are given are given and het-
erogeneous specification involving the usage of the involving the usage of the
SR and untimed MoCs in the same specification is described. Section 4 con-
clusions of this work.

2. Mapping of SR and Untimed MoCs to SystemC

Synchronous MoCs include more restrictive assumptions on time information
than untimed MoCs. In Jantsch (2004), two types of synchronous MoCs are
considered: clocked synchronous and perfectly synchronous. The latter is also
called SR (Benveniste and Berry, 1991). Specifically, a basic assumption of
the SR MoC is known as the perfect synchrony hypothesis, which establishes
that the system reacts, as a result of input data, producing output results in
zero time (instantaneous reaction). That is, outputs are synchronous with the
inputs. Perfect synchrony restrictions involve a more detailed level handling
of time since it may be considered as a restriction added to the partial order
between events (given also in untimed MoCs) provoked by the topology and
causal relationships among the elements of the specification.

In an SR MoC, all the activity of the system concentrates on specific points
of the time axis called slots, an event being synchronous with every event in
the same slot. No further restrictions are imposed on event time tags, except
for the set of slots to be an ordered set (such as natural numbers; Jantsch,
2004). Neither a physical interpretation nor a regular distance between event
time tags is required. A further implication of perfect synchrony affects the role
of constructive elements. A distinction must be made between generation enti-
ties plus their associated events (usually part of the environment) and reactive
entities/events (usually part of the system). The former ones constitute a spon-
taneous functionality, which do not need to be triggered and which is able to
feed the rest of the specification with new events. In many specifications, par-
ticularly, in those of reactive systems, spontaneous functionality is found only
in the environment. The reactive entities form a reactive functionality, which
needs the events to be present to run. Due to the perfect synchrony hypothesis,
reactive functionality triggers and reactive functionality can be decomposed
into decomposed into reactive computation quanta, that is, functionality por-
tions without explicit delays or blocking computation quanta form a reactive
chain, respecting the perfect link does not introduce a delay. introduce a delay.

The perfect synchrony hypothesis does not mean that the system processes
of the specification need to be synchronous under the terminology of Lee and
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Sangiovanni-Vincentelli (1998). Although some modeling approaches oblige
every signal to always present events with the same tags (such is the case of
Ptolemy, making explicit the bottom,⊥, to express the absence of value), others
may not do so, making ⊥ implicit (such is the case of our methodology, as will
be seen).

The fact of having the same time tags in input and output events, despite
having a causality relationship among them, brings about some problems or
paradoxes when cases of convergence and feedback are present in the specifi-
cation. In order to explicitly solve this, new specification elements that explic-
itly introduce time information are often provided. Such is the case of delay
elements to break feedback loops or empty events. This also affects the way in
which the systems can be hierarchically composed.

Once the SR basic assumptions have been seen, the way in which this MoC
is supported in the SystemC specification methodology is described. As men-
tioned, this is done in the form of new guidelines and elements, following the
general specification methodology, which specification methodology, which in
this case is extended in order additional checking features.

As the general specification methodology states, any functionality is en-
closed in SystemC processes, while communication is done only through
channels. The separation between spontaneous and reactive functionalities is
supported through the separation between generator processes (GPs) and gen-
erator channels (GCs), usually in the context of the environment, and reactive
processes (RPs) and reactive channels (RCs), usually part of the reactive sys-
tem. A GP generates spontaneous events through write accesses to GCs. A GC
triggers an RP that in time, can be linked to a sequence of more RPs, commu-
nicated by more RCs forming a reactive chain. The existence of concurrency
in the GPs provokes the existence of several concurrent reactive chains. An-
other possibility for concurrency is a GP or an RP writing to two or more RCs
connected to two or more RPs (i.e., two or more reactive chains).

Both GPs and RPs are enclosed in SC_THREADs. RPs may also be written
through SC_METHODs. (data transfer and synchronization) among processes is
supported is supported through the uc_SR channel (Herrera et al., 2004).

Several process specification styles are possible. A GP has a style similar
to the one used in untimed MoCs, acting as a nonblocking process, running
in a loop inside a SC_THREAD without a sensitivity list. A wait on time in the
GP can separate the generation events to resume different slots. Nevertheless,
a reactive process or RP RP (Figure 4.2) presents a statement, which stops the
process activity until some event is some event is present. This event is a write
access to at least one of the uc_SR (or sc_buffer) channels the process is re-
active to. When the RP is enclosed by an SC_THREAD, this list can be statically
(left-hand side of Figure 4.2) or dynamically (center of Figure 4.2) provided.
Another static option is through an SC_METHOD (right-hand side of Figure 4.2),
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 void reactive_computation( ) { 

   // local initialation 

   while(true) { 

     wait(); 
   if(ch1->event() &&ch2->event()) { 

… 

  } 

else if(ch1->event()) { 

…; ch1->read(); …;

} 

else if(ch2->event()) { 

…; ch3->write(out_token) ;…; 

} 

else { // not expected } 

 } 

 } 

SC_CTOR(module_name) { 

SC_THREAD(reactive_computation); 
sensitive << ch1; 
sensitive << ch2->default_event; 

} 

void reactive_computation( ) { 

// local initialation 

while(true) { 

wait(ch1||ch2); 
if(ch1->event() &&ch2->event() ) { 

… 

} 

else if(ch1->event()) { 

…; ch1->read(); …;

} 

else if(ch2->event()) { 

…; ch3->write(out_token) ;…; 

} 

   else {// not expected } 

 } 

} 

SC_CTOR(module_name) { 

SC_THREAD(reactive_computation); 

}

 void reactive_computation( ) { 

   // local initialation 

   while(true) { 

     if(ch1->event() &&ch2->event()) { 

… 

} 

else if(ch1->event()) { 

…; ch1->read(); …;

} 

else if(ch2->event()) { 

…; ch3->write(out_token);…; 

} 

     else {// not expected } 

   } 

 } 

 SC_CTOR(module_name) { 

SC_METHOD(reactive_computation);

sensitive << ch1; 
sensitive << ch2->default_event; 

}

Fig. 4.2 SR reactive process styles in SystemC

which prevents the use of any wait statement inside the computation. The RP
is explicit and powerful, in the sense that computation to be performed is de-
fined for each delta trigger. This is done by means of an if statement, which
considers the possible combinations. The combinations considered by each if
branch treat if branch treat or react to triggers with the same SystemC time
coordinate (ti, δk). There is no explicit use of the empty use of the empty event/
token, ⊥, in the body of the process. there is an implicit use, since, among the
trigger combinations of some may implicitly have the absence of a trigger on
a specific uc_SR channel.

For process communication, the uc_SR channel provides additional features
to those of sc_buffer, a standard SystemC channel, which could give a basic
coverage of SR MoC in SystemC. The uc_SR channel provides a and a read
interface with two access methods, written (or, equivalently, event) and read.
It permits a unidirectional flow of triggering events and single data tokens of
generic type from write to read interface. The write access method allows the
GP to allows the GP to pass a generation event and, if desired, a updated at the
end of each delta, in which a write access has been has been present. The read
access is divided into a written access method, which permits checking if a
specific uc_SR uc_SR instance was responsible for the current makes effective
the read of the data without consumption. Therefore, without consumption.
Therefore, any number of readers of the same uc_SR instance is allowed.

With respect to the execution semantics, the order of execution is fixed by
the system topology and the semantics of the processes and the uc_SR channel.
The topology is stated by the way in which processes are connected through
channels. The semantics of processes is given by the standard and the structure
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of GPs and RPs. SC_THREADs trigger at the beginning of the execution and
only stop execution if they find a blocking access wait or a delay statement.
SC_METHODs are reactive computation quanta, which admit no blocking state-
ment. The uc_SR channel has its own abstract semantics transmitting an event
and a data token in δ-time (without t-time advance) and offering nonblocking,
nonconsuming read access.

In order to go into more detail about SR execution semantics in SystemC,
the abstract concept of the time handled up to now for the general presen-
tation of the SR temporal semantics is substituted. Till now, each event, e,
was assumed to have an associated time tag represented as T (e). From now,
the simulation mechanism, which handles a time axis comprising a a dou-
ble coordinate, is considered. For that double coordinate the notation T (e) =

(ti, δ j) = (time-coordinate, delta-coordinate) is now assigned. The delta, δ j,
represents the SystemC evaluation-update cycle, while represents the SystemC
time advance. The ti coordinate is the the dominant one in order to estab-
lish an order relationship between events. That is, if T (e0) = (t0, δ0) and
T (e1) = (t1, δ1) when t0 < t1, then T (e0) < T (e1), the relationship between
δ0 and δ1. In case t0 = t1, then T (e0) < T (e1) ⇔ δ1 << δ2. The flexible
interpretation of deltas is necessary to support untimed MoCs and to give the
designer enough flexibility to decide where to schedule each event depending
on the mapping to the different processing elements (specific HW, application-
specific processors, general-purpose processors, etc.).

Channels are the main elements to control the MoC temporal semantics.
Their SystemC implementation is mainly done through the sc_event and
sc_primitive_channel SystemC classes. The sc_event class permits time
control at delta level through methods. The primitive channel primitive chan-
nel (sc_primitive_channel class) and its update methods enables a finer
control. This is finer control. This is because the channel is able to perform
actions at any of the two basic stages of the delta cycle (namely, the evaluation
and the update phases).

The distinguishing time restriction in untimed models is the preservation of
a partial order (P. O.) among events. Figure 4.3 represents in a simple CSP
example how the restrictions, written in abstract terms within the box, are
mapped over the SystemC time axis. The P. O. comes from the concurrency
among processes and the synchronization restrictions. There is a total order
(T.O.) within the same process computation. In SystemC, T. O. within the
process computation is easily fulfilled since it comprises a sequential C/C++

algorithm. T (eim) < T (ein) ∩ T (ekm) < T (ekn) happens in Figure 4.3 only
if there is at least a delay in delta between m-th and n-th events. Otherwise,
T (eim) = T (ein) ∩ T (ekm) = T (ekn) fulfills. Synchronization restrictions come
from time semantics of the channels T (eim) < T (ekn) ∩ T (ekm) < T (ein) for
the rendezvous in commented, the channel semantics is achieved through a
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T(eim) < T(ekn) ∩ T(ekm) < T(ein) ∩ din=dkn (rendezvous) 
P.O.

untimed MoC ⇔    (events partially ordered)

SystemC time model

T(eim) = T(ekm) < T(ekn) < T(ein) ∈P.O.

T

t 

d

t0 t1 t2 t3

ein

eim

ekn

ekm

T = (t,d )
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d
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ein

eim

ekn

ekm

(b)
T(eim) = T(ekm) < T(ein) = T(ekn) ∈ P.O.

eineim

eknekm

(a)

Abstract CSP time model 

Design

uc_rv 

ein ekn

ekmeim

PiPk

T(eim) < T(ein) ∩ T(ekm) < T(ekn) (process T.O.)   

Fig. 4.3 Untimed MoCs P. O. over the SystemC time axis

SystemC implementation using the synchronization primitives using the syn-
chronization primitives sc_event and sc_primitive_channel.

The flexible or relaxed interpretation of the untimed specification in the Sys-
temC approach can also be appreciated. For example, a whole execution could
run in the same “instant” (tim = tin = tkm = tkn), over a δ-axis, varying only
the δi coordinate, which is thus the only variable responsible for keeping the
P.O. (Figure 4.3a). In the other extreme, each could have associated a differ-
ent ti (Figure 4.3b), for example, after an implementation or a time-estimation
process. Anyhow, the P.O. has been preserved. An important remark is that,
required conditions do not force a strict mapping of event mapping of event
time tags over the SystemC time coordinate, but of the P.O. inherent to the
specification plus the rest of rest of MoC time assumptions (perfect synchrony).

About the abstraction of the SR MoC from SystemC, as with MoCs, both
spontaneous and reactive functionality are specified specified through C/C++

sequential algorithms within SystemC processes. Therefore, the T. O. within
the process algorithm is kept. Perfect synchrony hypothesis is accomplished
when the input and the provoked output events in the same time, interpreted
in this methodology as having ti ti tag (ti inputs = t j outputs). Therefore, delta
delays in computation do not affect the fulfillment of instantaneous reaction in
the MoC. This means that while events of processes in the same reactive chain
share the same SystemC ti coordinate, a flexibility in the order of events with
respect to the delta coordinate may occur. Specifically, this P. O. may happen
among the events belonging to different processes of the same reactive chain. If
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the reactive chain is composed by a single branch, there will be a T. O. among
events of the same reactive chain, otherwise, there will be a P. O. A connection
to an untimed MoC may provoke this P. O. on the reactive chain (i.e., an access
to a first-in first-out (FIFO) in an RP), which does not involve a violation of the
perfect synchrony. A more clear source of P. O. is the concurrency of reactive
chains, which appears with several GCs. As can be seen, the common factor of
P. O. is concurrency.

In Figure 4.4, it can be seen how eim (m-th event of the i-th process) and ekm

m-th ekm (m-th event of the k-th process) are related by the SR channel, which
provokes a reaction in delta time but without ti shift. That is, δim + 1 = δkm

and tim = tkm, which means T (eim) < T (ekm). The RP reacts ti advance and
preserving its internal T. O. The sequential sequential algorithm of Pk com-
putation determines that ekm occurs before ekn. Formally, in the methodology,
T (ekm) ≤ T (ekn) since a delta delay or even a time delay (d2) may appear or
not between these events. For instance, a delta delay may appear if the RP per-
forms an access to a rendezvous channel. This is the case of MoC connections.
In the case of Figure 4.4a, T (ekm) = T (ekn), that is, happen in the same (δ, t)
SystemC time, then fulfilling fulfilling T (eim) < T (ekm) = T (ekn). The GP and
the GC may be formally defined. A GP is that making a write to a generator
SR channel (GC). A GC is that receiving a write access first δ (δ0) of the slot.
The generator process GP required to separate write events in the ti coordinate.
Each ti coordinate. Each single ti coordinate represents a slot. No GP should
generate more than one generation event to a single GC in the same ti. There-
fore, the generation events are separated by an arbitrary d = (t j − ti) > 0 time
(with j � i). This separation is reflected in the d delay of Figure 4.4, which may
be a data-arrival rate of the environment. However, since environment. How-
ever, since generation events are, in general, provided that ti ∈ ℵ in SystemC,
then the ti set or slot set in this SR approach fulfills being a totally ordered
set. Therefore, the ti coordinate defines the total ordering among slots over the

T (eim) < T (ein) ∩ T (ekm) < T (ekn) ∩ T (eqm) < T(eqn) (process T.O.) 

perfect synchrony: 

P.O.

GP

RC

RP

to d 

(a) 

to d 

ein

t1

d

t t t1

(c) 

(b)

(c)

uc_SR2

e km

ekn

eqm

eqn

Pi
Pk

d 

RP

uc_SR1

GC

wait waiteim

ein

Pq

d2

d2

Design
(d2) 

eim

eqm

eqn

ekn
ekm

ekn

ekm

eim

(b)

ein

eqm

eqn

ekn

(a) 

tim = tkm = tkn = 

T (eim) < T (ekm) ∩ tim = tkm dim < dkm ∩ tim = tkm    (uc_SR1)
T (ekm) < T (eqm) ∩ tkm = tqm dkm < dqm ∩ tkm = tqm  (uc_SR2) 

T(eim) < T(ekm) = T(ekn) < T(eqm) = T(eqn) < T(ein) 
tim = tkm = tkn = tqm = tqn < tin
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T (eim) < T (ekm) < T (eqm) = T (eqn) < T (ekn) < T (ein) 

tim = tkm = tqm = tqn < tkn < tin

tim = tkm = tqm = tqn < tin < tkn

T (eim) < T (ekm) < T (eqm) = T (eqn) < T (ein) < T (ekn) 

Fig. 4.4 SR MoC adds T. O. in the reactive chain and perfect synchrony
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t-axis (if ti > t j, then T (ei) > T (e j) the t-axis if ti > t j, then T (ei) > T (e j)
independently implementation enables the placement of the chained process in
the the chained process in the same t-axis coordinate, with a the δ-axis, which
strongly depends on the topology. The topology. The number of deltas between
consecutive t tags, ti not specified and depends on the activity of the system.
In this depends on the activity of the system. In this sense, events of the re-
active chain execute an SR evaluation and keeping ti constant. Notice that a
SystemC evaluation cycle is the first part of the evaluation-update cycle called
δ SystemC simulation. This is different from the SR evaluation cycle, which
involves one or several δ cycles. The longer δ cycles. The longer the reactive
chain or the feedback loop, the larger the number of deltas, so the activity so the
activity present between consecutive time slots. so the activity present between
consecutive time slots.

Bearing in mind the assumptions shown, in an isolated SR MoC, there is
always a static structure (the GPs of the reactive chains remain the same dur-
ing all the execution). Despite these specification guidelines and new elements,
the high flexibility of the language may still drive to violations of the SR MoC
conditions. Most cases of possible violations of have to do with the break of
the reactive chain through a through a delay (provoking a shift on t coordinate)
in the reactive chain (Figures 4.4b and c). The the event order and determinism
property, which do not necessarily have to be lost when perfect synchrony
is missed, as a consequence consequence of a design process (d2 delay in
Figure 4.4).

As in untimed MoCs, some dynamic checks permit monitoring SR condi-
tions. The ability to selectively apply them gives flexibility for constructing the
reactive specification with different restriction degrees. A full accomplishment
of SR conditions may be configured by default to obtain the benefits offered by
this MoC. Summarizing, the checks are SEVERAL_CALLERS, LOST_TRIGGER,
OLD_VALUE_READ, SAME_DELTA_WRITE, SAME_TIME_WRITE, CHECK_DELTA_
NUMBER, and CHECK_AUTOFEEDBACK. Some of them are of special interest
when the SR MoC is connected with untimed MoCs.

SAME DELTA WRITE (BURST WRITE in Herrera et al. (2004)): It detects if the
channel is written more than once in the same delta cycle. This elim-
inates the indeterminism source of loosing N − 1 data tokens from N
write events, coming from either several or the same process.

SAME TIME WRITE: It checks one of the necessary conditions for avoiding
nondeterminism when perfect synchrony is assumed. Specifically, it
checks that a GC is not written more than once in the same time (ti
coordinate). In this way, it is guaranteed that a reactive chain is trig-
gered by only one data token at each generator channel, written at the
first delta of the reaction. This does not require a specific or regular
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uc_SR 

write event/written
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RC 2 

uc_SR 

uc_SR 

uc_SR RP 3

Fig. 4.5 SR reactive chain with a feedback loop

temporal spacing, but only its presence. This check is more restrictive
than the SAME_DELTA_WRITE check, which allows a multiple write of
the GP during the slot (since a slot may comprise more than one delta).

SAME TIME WRITE: This check is restricted to the GCs, instead of every uc_SR
instances. The rest of SR channel instances, RCs, may be triggered more
than once per ti or slot (although no more than once per delta if the
SAME_DELTA_WRITE is activated). This could happen in the reactive
channel (RC 2) shown in Figure 4.5, since it is involved in a feedback
loop inside the reactive chain. The loop in Figure 4.5 (which appears by
a sequential composition in the reactive process RC 2; Jantsch, 2004)
exposes the need for stabilization in order to reach a finite reaction in the
slot and thus an advance at ti coordinate. Finite reaction means that there
will be no more triggering events (writes) after a finite number of deltas.
In this approach, neither a formal nor a static check for stabilization is
done. Instead, the CHECK_DELTA_NUMBER check has been provided.

CHECK DELTA NUMBER: It monitors the number of deltas given in an uc_SR
instance at each slot. If it is defined as 0, it performs an activity analysis,
reporting at the end of the simulation the number of deltas per uc_SR
channel instance in each slot. In case it is defined as a number greater
than 0, it becomes a limit, which raises an error if it is reached in some
channel instance. Reaching this limit does not formally mean that the sta-
bilization was not possible, but, at least, it gives a track for the sink-time
of a never-ending simulation and the most active points of the system
specification.

3. Untimed–SR MoC Interfaces

The study and development of the MoC interfaces is systematically done thro-
ugh an MoC interface taxonomy (Herrera et al., 2005) based on the MoC tax-
onomy in Jantsch (2004). In these taxonomies, a distinctive feature is the detail
level handled in the time domain.
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The MoC taxonomy establishes groups of MoCs, characterized by sharing
basic assumptions in the time domain. Furthermore, the groups handling more
detailed time information incorporate additional new restrictions. This enables
the support of several MoCs by means of abstraction from more detailed MoCs
and provides a basis to face the problem of MoC interfaces.

In general, whatever the MoC combination, the time axis that lets the whole
set of events of the specification be coherently placed has to handle the most
detailed level among those handled by the MoCs present in the specification.
This is illustrated in Figure 4.6. An SR MoC and a CSP MoC are connected
through an MoC interface, which in this case is a border process (BP). The
most detailed level feasible in the methodology is the DE strict-timed MoC.
However, MoC primitives MoC primitives are abstract (i.e., the uc_SR and the
uc_rv channels) and no DE temporal semantics has to be taken into account.
As has been seen, channel semantics and the T.O. of each process determines
the execution semantics. In the case of Figure 4.6, the more restrictive seman-
tics of uc_SR channel will force the hypothesis (implemented over the DE
kernel) affecting the time the time tagging of the events of all the specification,
including including those of the CSP part.

On the other hand, handling a different level of detail in the time domain
in each MoC part involves that the MoC interface must perform an adaptation
(something not necessary in untimed–untimed MoC interfaces; Herrera et al.,
2005), extracting or time information, or at least the consideration of the possi-
ble possible incompatibilities. For instance, the BP must incorporate d1 delay
in Figure 4.6. It must also be considered that the violations of restrictions may
cross MoC borders or be originated in other parts of the specification. Next,
the untimed (PN/KPN/CSP)–SR MoC interfaces (highlighted in the right Fig-
ure 4.7), in the category of category of untimed–synchronous MoC interfaces
(MI), will be presented. In this specification methodology, the SR MoC differs
from the untimed MoCs in the communication domain (different channels)
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Fig. 4.6 Perfect synchrony and P. O fulfilling in CSP–SR connection
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Fig. 4.7 Untimed–SR MoC interface in the MoC interface taxonomy

and, especially, in the time and computation domains. Thus, the untimed–SR
MoC interfaces have to undergo adaptations in all these domains.

The adoption of the general specification methodology enables the consid-
eration of a minimum difference in computation and communication domains.
It is possible to use SC_THREADs for specifying both untimed and SR MoCs.
Moreover, both untimed and SR channels are similar in that they are basically
templates allowing the unidirectional transfer of different data types. This per-
mits making a general consideration of untimed–SR interfaces by analyzing
only the differences in time assumptions and the distinguishing aspects in the
communication domain, that is, in channels. Specifically, these aspects are the
blocking or unblocking character of channel accesses, independent of which
data is transferred and the sense of data transfer.

Two cases A and B are distinguished. In Figure 4.8, MoC interfaces are
abstracted as lines delimiting MoCs. In case A, the SR MoC connects to the
untimed MoC through an write access type, that is, entailing the untimed MoC
as part of untimed MoC as part of the reactive chain. In Figure 4.8, d = (t, δ)
represents the response delay accumulated in the untimed part, where t is the
integer number of part, where t is the integer number of SystemC time units and
δ is the integer number of deltas accumulated. Then, given that MoC assump-
tions are fulfilled in the SR part (slot total to different slots and instantaneous
reaction of the reactive chain) and in the untimed part (partial ordering), three
untimed part (partial ordering), three possibilities can be distinguished:

A.1 The untimed part provokes no blocking (immediate reaction, that is d =

(0, 0)) or, in case it did, the reaction takes a limited number of deltas,
d = (0, δ) with δ < ∞. Then, perfect synchrony is kept in the SR part,
since no advance in the ti SystemC coordinate is given. The P. O. is also
maintained in the untimed part, although events are overrestricted by the
total slot ordering imposed by the SR part.

A.2 The untimed part is accessed through a blocking access, which provokes
a reaction after d = (t, δ) time, with 0 < t < ∞ (t is a bounded SystemC
time) and δ < ∞ (bounded number of deltas). While the untimed part
keeps the P. O., the SR part sees a bounded reaction, but that introduces
a shifting on t axis in the tail of the reactive chain. That is, the reactive
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Fig. 4.8 Timing and blocking semantics in Untimed–SR interfaces

chain is broken. Although the break of the reactive chain violates the SR
assumptions in SystemC, this kind of “timed” SR can still be useful for
time analysis of possible implementations. Here two derived cases can
be distinguished. The first one is when ti + d < t j (case A.2.1). In that
case, it can be considered that the reactive chain, prolonged by the un-
timed part, reacts fast enough and the system copes with the generation
events. If ti + d ≥ t j (case A.2.2) reaction finishes too late, that is, after
at least a new trigger has already arrived.

These cases are detected by a new check, represented in Figure 4.9,
called REAC_TIME. This check can be configured at two assert levels. In
a RESTRICTIVE mode, the violation of the perfect synchrony is asserted
as an error, the simulation being stopped. In a WEAK mode, the reactive
chain break will be allowed and reported as a warning if the reaction time
was fast enough (case A.2.1). Otherwise (case A.2.2) an error is raised,
because there would not be implementation to attend the triggers in time
(before the new ones arrive), provided the explicit time information of
the specification. In other words, any implementation would be unfea-
sible. The tricky question about the implementation of the REAC_TIME
check is that the t2 time must be tested in the reactive process, just before
invoking the wait. This is implicitly done by an internal function called
check_reaction_time. The association between GCs and reactive BP
is implicitly done by means of the sensitivity list (or channels passed to
the wait). If the style of the RP use a wait statement, a wait_SR macro
lets implicitly call the check_reaction_time function.

A.3 The untimed part provokes a reaction that completes after d = (t, δ), with
t < ∞ and δ = ∞. Although in a limited t, it executes forever in the δ
axis, which is equivalent to not to reach a stabilization within the slot.
This situation is detected by the CHECK_DELTA_NUMBER check.

B A write access performed from the untimed part is considered. In this
case, the untimed part behaves as a generator process of the reactive
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chain in SR. Assuming that the SR part fulfills its assumptions, the un-
timed part of the MoC interface must present a separation at ti coordi-
nate in every pair of its accesses to the SR part. The SAME_TIME_WRITE
check would detect a possible violation of this point.

After the generic analysis, the SystemC elements in charge of the support of
heterogeneity can be shown. As commented, these MoC interfaces are BPs and
BCs. The KPN–SR case is presented first. Later, this is extended to the PN–
SR and CSP–SR cases. In Figure 4.10, four possible cases for BPs for KPN–
SR MoC interfaces are shown. The cases a and b summarize the summarize
the situation in which the BP performs as a reactive SR process, triggered by
one or more SR channels. The BP accesses the uc_SR channel by means of
the access methods corresponding to the read interface: the written (or event)
method and the read method. Therefore, the reactive BP is involved in the
middle of a reactive chain. Separately analyzing both cases, we first see in case
a that the reactive BP also does a write to an infinite FIFO channel. Since this
presents no blocking, the reaction of the BP lasts a finite number of deltas.
That is, the BP without time delays plus an reactive chain in deltas without
ti advance, and the perfect synchrony hypothesis holds (case A.1 of untimed–
SR interfaces). In case b, the reactive BP does a blocking read access. The
question is whether this means a break of the reactive channel. If this means
a break of the reactive channel. If the unblock inside the same time slot, case
A.1 is repeated. However, in general, a blocking read access to infinite FIFO
may drive to the possibility of A.2 or A.3 cases. Cases c and d of Figure 4.10
consider a BP where the access to the SR process is done by means of a write
access which will provoke the trigger of a KPN-type access. The case B of
untimed–SR interfaces is There is no incoherence with the KPN part and the
point is to separate the writings to the SR reactive channel in different slots.
In case c, at least an explicit delay is needed in the process. In the case d,
that explicit delay in the BP is not case d, that explicit delay in the BP is not
necessary whenever accesses from uc_inf_fifo occur separated in time.

Two types of border channels for KPN–SR are provided. They are
represented in Figure 4.11 together with the time adaptation they perform.
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Adaptation in the data domain is unnecessary since the channels are tem-
plates transferring generic data types. With respect to the computation domain,
i.e., the style of processes they communicate and the semantics they have, in
the case a, inf_fifo_SR, the KPN process is a typical sequential process,
which can perform infinite writings into the channel. Not only are the data
written accumulated but also their related events (write event queue). On the
SR side, we have a reactive process whose sensitivity list can incorporate the
inf_fifo_SR instance. The channel can receive a parameter at construction
time, which would oblige the separation of successive writings in delta time
(by default), in (represented in Figure 4.11), or in a random random amount
of time. Another useful feature of this channel is that it can be configured to
oblige time spacing as a sampling process. As can be seen, this is a BC with
its own semantic and implementation. The case b, the SR_inf_fifo channel,
has a write SR interface and a FIFO read interface. This channel is an infinite
FIFO channel (uc_fifo_inf) extended with an SR write interface, thanks to
its compatible nonblocking semantics with the infinite FIFO write interface.
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Once the SR–KPN BPs have been shown, let us generalize to the case. The
KPN MoC can be seen as a singular case (N = ∞) of of PN, which handles
FIFO channels of limited size (N). For BPs, Figure 4.10 can be reused by sub-
stituting infinite FIFOs by limited FIFOs. With respect to the SR–KPN case,
only the differences in cases a and c may appear. Case a generalizes now to the
blocking possibility (A.2), thus the application of REAC_TIME check for this
situation becomes necessary. The break of the reactive chain converts the reac-
tive BP in a new generator process, since, although it only transfers events, it
translates the remainder of the chain to a later slot (see right part of Figure 4.9).
This slot is new with respect to the domain slots, that is, the set of slots forced
by the SR part. This is a dynamism in generation, which contrasts with the sta-
tic role of generator processes and reactive processes in a stand-alone SR spec-
ification. Case c does not present differences with respect to SR–KPN c case,
since the finite FIFO does not ensure the write accesses to the uc_SR channels
to be separated in the ti axis. About BCs for the SR–PN, Figure 4.11 can be
reused, but introducing fifo_SR and SR_fifo channels instead. The first case
is similar to the inf_fifo_SR channel, but limiting the queue size and adding
read blocking semantics. The second case is an extension of the limited FIFO
channel supporting a write SR interface. The BPs and BCs for the CSP–SR
case are considered now. A.1, A.2, A.3, and B cases can be identified. Recall-
ing Figure 4.10 again (but substituting FIFO accesses by rendezvous channels),
for cases a and b, the BP acts as a reactive process. Any rendezvous access will
provoke a potential blocking access and REAC_TIME check is again applica-
ble. Cases c and d are similar to those in KPN–SR and PN–SR. Whenever a
rendezvous involves a ti separation, the SR channel writings will not provoke
the assertion of SAME_TIME_WRITE. Again, the BC cases are quite similar. An
rv_SR channel accepts at its input the rendezvous write interface, but now
there is no queue associated. Thus, it is basically an uc_SR channel with a ren-
dezvous write interface, which admits the time spacing between write channel
accesses. An uc_SR_rv is an asymmetric rendezvous channel (writing from
SR side to CSP side), which provides an uc_SR write interface.

4. Conclusions

In this chapter, the untimed–SR MoC specification has been incorporated to a
heterogeneous specification methodology based on SystemC. In this methodol-
ogy methodology these MoCs can be easily mixed, thanks to the coherence in
the mapping of the specification events over the SystemC (t, δ) time axis. Each
MoC imposes its own mapping restrictions. Untimed MoCs impose a P. O.,
while SR MoCs add the perfect synchrony assumption. At the specification
level, it is solved through interface BPs and BCs, which hide event handling
and extend SystemC capabilities in a core-decoupled way. They also dynami-
cally check the fulfillment of MoC conditions. Interface BPs and BCs also let
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either a specification with clear delimited MoCs or an amorphous specifica-
tion. These concepts have been exemplified with the connection between some
specific untimed MoCs already supported in the methodology (PN, KPN, CSP)
and the SR MoC itself.

The timing interpretation made in the chapter is one of many possibilities.
A wide agreement should be reached in order to ensure a general methodology
able to be standardized. In any case, a founded methodology fully understood
by the user is required.

In future work, the incorporation of other untimed MoCs, such as SDF (Lee
and Messerschmitt, 1987), will show the general character of the approach.
Other works may explore the connection with MoCs with more level in the
time domain, such as clocked synchronous, discrete discrete event and analo-
gous models.
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Abstract With the continuous advances of high-level synthesis and hardware/software co-
design, engineers now have the luxury and desire to explore multiple high-level
architectures very quickly. System-level tools can enable trade-offs of architec-
tures that rely on different combinations of memory access, resource sharing,
and multiplexing. A good system-level design flow must enable fast and ac-
curate viewing of multiple solutions based on different design choices. In this
chapter, we present a system-level application programming interface (API) for
text-based specifications that combine transaction-level modeling for the hard-
ware interface, operating system (OS), and device drivers levels for the soft-
ware interface into a unified semantics. We also present a refinement process
that allows to generate a hardware/software integration very rapidly.

Keywords: interface synthesis; hardware/software codesign.

1. Introduction

The design of embedded systems is growing in complexity at a fast rate.
Devices are more feature-rich than ever, incorporating new functionalities,
newer protocols, and more modes of operation. At the same time, designers
must keep pace to deliver a new generation of products in an even tighter
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time-to-market. Coupled with the growth in chip capacity, the task is daunt-
ing and calls for a simpler design flow.

Automation is one solution to cope with the growth in system design com-
plexity. Automating the generation of code has long been used in different
stages of embedded systems design, for instance, in hardware synthesis. More
recently, software and operating systems (OS) have also been the focus of
automation efforts (Besana and Borgatti, 2003; Herrera et al., 2003; Nacul and
Givargis, 2004).

Aside from automation, the design flow also needs to maximize design reuse
and portability. Ideally, functional blocks should be easily migrated from hard-
ware to software, and vice versa. A higher level of abstraction in describing the
system’s functionality facilitates this process. In such high abstraction, system
specification can be carried in a portable fashion, independent of associated
models of computation, hardware availability, communication architecture, or
specific OS support.

The system-level design community has tried to address these issues in dif-
ferent ways. We believe that a common programming interface is needed to al-
low designers to easily specify communication and iteration with an OS layer.
SystemC (OSCI, 2006) has tried to support a common interface. Nevertheless,
in the current version, the support for software and OS is still not complete.

In this work, we propose a generic framework for system specification.
Our framework is composed of a portable application programming interface
(API), its corresponding semantics, and alternatives for hardware and software
implementation for each entry of the API. The objective is to provide design-
ers with a minimal set of high-level primitives that can be used to abstract
and specify the system behavior. Our API is not dependent on any system-
level design language. Rather, we are presenting a methodology to synthesize
hardware, software, and interface communication based on the proposed API.
The API can be adapted or incorporated in the design language of choice. Sys-
temC (OSCI, 2006), for instance, includes support for some of the primitives
we present. Other primitives, however, are not present in SystemC, or have a
behavior that is not the one we envision.

The API is partially based on the portable operating system interface
(POSIX)/Pthreads standard (The Open Group, 2004), and encompasses pri-
mitives for processes instantiation, communication with shared variables and
message passing, process synchronization, and timing behavior specification.
The framework is integrated in our hardware/software codesign environment.
When a functional block is mapped to a specific platform component,
either hardware or software, we are able to automatically generate all the
hardware descriptions, interconnections, software data structures, and even
device drivers that will effectively implement the semantics of the API en-
tries. Therefore, with the use of an abstract, high-level system description, it is
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possible to automate hardware, software, and communication interface gener-
ation, enhancing portability and reuse.

A description provided with this API can easily be mapped to different
processors, various OS, and many communication architectures, without the
need to modify any part of the original specification. The use of a portable
specification also enables a rapid exploration of design alternatives. Since the
proposed API is platform- and implementation-independent, one can easily test
different communication architectures or different OS much quicker than when
using platform-specific code like the advanced microcontroller bus architecture
(AMBA) bus API (ARM, 2003) or VxWorks OS API (Wind River, 2006).

This chapter is organized as follows. Section 2 discusses the previous works
related to our proposal. We define the terminology used in this chapter in Sec-
tion 3. Section 4 describes our API, presenting possible mapping alternatives.
In Section 5, we present an example of hardware/software integration process
starting from the proposed API. We present our conclusions in Section 6.

2. Related Work

System-level design has been the motivation for many publications in the
literature. Most of the approaches address one of the components of synthe-
sis, be it communication, hardware, or software synthesis. The synthesis of
(real-time) OS support has been studied more recently. However, none of the
approaches integrate all the parts into one framework, as we propose in this
work.

Cadence’s Virtual Component Codesign Environment (VCC) was an earlier
tool in trying to provide a design space exploration environment for systems-
on-chip (SoCs). It used library components to synthesize the design. VCC
lacked a complete path to implementation, though. In this sense, Dziri et al.
have combined VCC to other tools in order to provide a complete path to im-
plementation (Dziri et al., 2003). The main difficulty was integrating the dif-
ferent design tools, each of them using a different specification model.

Concerning interface synthesis and analysis, Meyerowitz has presented a
tool (Meyerowitz et al., 2003) that can evaluate different bus architectures and
arbitration protocols. He shows that response time and bandwidth utilization
can improve by combining different arbitration protocols. Passerone et al. gen-
erate interface adapters, allowing IP blocks to communicate even with incom-
patible protocols (Passerone et al., 1998). A transaction-level model for the
AMBA bus in SystemC 2.0 is presented in Caldari et al. (2003). They pro-
pose a set of high-abstraction classes to model communication interfaces. This
is similar to the work presented by Coppola et al. also on the synthesis of
communication interfaces (Coppola et al., 2003).
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There have also been proposals addressing automatic generation of real-time
operating systems (RTOSs) for SoC architectures. However, most of them are
concerned only with the software aspects of the RTOS generation, and do not
integrate hardware synthesis or custom communication infrastructures. Some
examples of these works are the proposals found in Le Moigne et al. (2004),
Besana and Borgatti (2003), and Herrera et al. (2003). Gerstlauer et al. pro-
pose to model the RTOS functionality with system-level language primitives,
refining the RTOS with the specification (Gerstlauer et al., 2003). His work is
integrated in the SpecC environment.

In terms of system-level design languages, the two most developed ap-
proaches are clearly SystemC (OSCI, 2006) and SpecC (Gerstlauer et al., 2001).
The transaction-level modeling (TLM) provided by SystemC supports model-
ing of hardware and software components, tied together with different com-
munication interfaces. Software support and specially RTOS support is not yet
fully integrated in the language, though, and is the subject of discussions for
the next SystemC release. The same applies to SpecC, which still does not have
a fully integrated RTOS interface.

3. Terminology

The terminology regarding OS, hardware and software design is way over-
loaded. Different terms are used to refer to the same concept, and the hardware
and software communities do not have a common terminology. Since we are
trying to define a system-level API suitable for hardware and software imple-
mentations, it is mandatory that we define the terms that will be used through-
out this work. Two terms are specially of interest to us, be it processes, tasks,
and threads; and concurrency and parallelism.

In the software and OS community, threads refer to units of execution,
whereas processes also include resource allocation. A thread is generally viewed
as a light process, because there is no need to allocate a separate memory space,
file tables, page tables, and other structures that are common to processes. Usu-
ally, a process may contain many threads. In the RTOS community, the term
task is used to represent an execution job, usually implemented by a thread. On
the other hand, there is no thread concept in the hardware community. Instead,
the term process is more common and often refers to some sort of processing
unit, like a processor or an application-specific integrated circuit (ASIC). When
describing two processes in hardware, we typically end up with two data paths
and two controllers. In this chapter, we will use the term process to designate
unit of execution, be it a hardware or software implementation.

Similarly, the terms parallel and concurrent are used interchangeably. In this
work, parallel processes are those truly executing in parallel, i.e., at the same
time, without multiplexing. Therefore, we need distinct hardware in
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order to be able to run processes in parallel. On the contrary, concurrent refers
to processes that are competing for the same hardware, usually in a time-
multiplexed fashion. To the user, they are seen as if they were executing in
parallel, but in reality only one of them will be executing in one processor at
any given clock cycle.

4. System-Level API

The proposed generic API for design specification is presented in Table 5.1.
It is partially based on the POSIX standard (The Open Group, 2004), a well-
defined and accepted programming interface for OS, and includes extra prim-
itives that are not part of POSIX. The API is divided into four parts: process
management, communication, synchronization, and timing. Process manage-
ment includes functions to control process creation and execution. The
communication part encompasses shared memory and message-passing-based
communication, both blocking and nonblocking style. Synchronization in-
cludes primitives for process synchronization, like mutexes, semaphores, and
condition variables. Finally, the timing section allows some control over the

Table 5.1 The API functions

API parts API functions

Process process_create(id, param, func, arg)
management process_delete(id)

process_suspend(id)
process_resume(id)

Communication port_send(port, data, size, mode)
port_receive(port, size, mode)
shared_mem_read(mem, offset, size, mode)
shared_mem_write(mem, offset, data, size, mode)

Synchronization mutex_lock(mutex)
mutex_unlock(mutex)
sema_wait(sem)
sema_post(sem)
cond_var_wait(var, mutex)
cond_var_signal(var)
cond_var_broadcast(var)
sched_yield()

Timing time_wait(time)
process_join(id)
mutex_lock_tmo(mutex, time)
sema_wait_tmo(sem, time)
cond_var_wait_tmo(var, mutex, time)
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timing behavior of the system, providing a timed-wait and controlling time-
outs for blocking operations.

The API is thought to be integrable with any system-level specification
language like SystemC. The API represents the abstract functionality that is
believed to be needed to facilitate the design of hardware devices and the spe-
cification and synthesis of OS-based software. Some design languages might
already include an equivalent form of part of the API. SystemC, for example,
has its own classes for mutexes (sc_mutex) and semaphores (sc_semaphore),
which work very similarly to those presented here. In that case, the native
classes can be used. Other entries of the API are not available in SystemC
or any other design language, and therefore must be included.

The API functions are inspired by POSIX and TLM. Process management
and synchronization primitives are largely based on POSIX. There is a clear
one-to-one mapping of the API entries to POSIX primitives. These are more
likely to be used in software descriptions. Meanwhile, communication primi-
tives are the highly abstract send and receive typical of a TLM description,
along with shared memory access, useful for both hardware and software de-
signs. The range of specification styles possible to target with the API is very
broad. Hardware-oriented specifications might use bit manipulation and low-
level constructs more intensively, whereas software-oriented specifications
could use pointers, memory allocation, and stack manipulation more frequently.
Nevertheless, the API we propose is neutral and can accommodate either style.

In the process management section of the API, four functions are defined.
The function process_create is used to instantiate and start the execution of
a new process. The function func is the entry point of the process. Note that
the actual code of the process, be it hardware or software, is already available.
The API function will create a new context for the new process and start exe-
cuting the initial function. Also note that in case of hardware processes, if more
than one process share the same hardware implementation, there is a need to
synthesize a scheduler within the hardware implementation, so that time shar-
ing of the hardware is possible. The process_delete stops and removes a
process from the scheduler list forever, freeing all the resources that were held
by that process. Finally, process_suspend and process_resume are used
to stop and resume the execution of a process, respectively. A process is sus-
pended by a process_suspend call, and stays suspended until some other
process executes process_resume for that specific process.

Two different communication models are supported in the API, message
passing and shared memory. Message passing is abstracted out by the concept
of ports, and provides the primitives port_send and port_receive to im-
plement the communication. Blocking and nonblocking styles are supported
and are specified by the designer through the argument mode. A blocking send
blocks the sender until the receiver reads the message. Similarly, a blocking
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receive blocks the receiver until a message is available in the corresponding
port. Shared memory communication is modeled with the shared_mem_read
and shared_mem_write primitives. Here, two styles are also possible, syn-
chronous and asynchronous, specified in the mode parameter. In synchronous
mode, a lock is associated with each shared memory block, and only one
process can access the memory at one specific time. Meanwhile, the asynchro-
nous mode does not have a lock associated with the memory, and therefore
concurrent accesses can happen. It is up to the programmer to ensure the cor-
rect behavior of the accesses. In all communication primitives, the size of the
data block to be transmitted or received is specified in the size parameter. In
case the data size is larger than the specified width of the communication inter-
face, a protocol will have to be implemented to ensure that the data is correctly
partitioned in the sender, and received and reassembled in the receiver.

In the synchronization section, three different synchronization mechanisms
are defined by the API: mutexes, semaphores, and condition variables. A sema-
phore is a synchronization mechanism that controls access to shared devices or
data structures. A semaphore is initialized to a specific count value C, represent-
ing the number of available devices or the number of concurrent accesses possi-
ble. A call to sema_wait will block the calling process if the semaphore value
is zero, meaning that none of the shared resources are available, whereas a call
to sema_post increments the value of the semaphore and unblocks a possibly
waiting process. Mutexes are similar to binary semaphores, i.e., semaphores
initialized with the value of one. The process calling mutex_lock will block
in case the mutex value is zero and mutex_unlock will set the mutex value
to one, allowing one of the possibly waiting processes to continue. Further-
more, condition variables allow processes to wait for some event or condition
to happen. The process calling cond_var_wait will block until the condi-
tion is met and the corresponding cond_var_signal is invoked. Alternatively,
cond_var_broadcast can be used to signal an event when multiple processes
should resume execution as a result of one event. Finally, the last entry in the
synchronization section is sched_yield, which is an explicit release of the
processing unit. In software implementations, it will result in a context switch,
whereas in a hardware implementation, it will be equivalent to forcing a clock
boundary in the execution.

Lastly, the timing section allows the specification of the timing behavior of
processes. Processes can wait for a fixed amount of time using the API called
time_wait. The waiting time is provided in the parameter time. Additionally,
it is also possible to specify time-outs for each of the blocking synchronization
primitives, with sema_wait_tmo, mutex_lock_tmo, and cond_var_
wait_tmo. These functions behave exactly like the corresponding non-timed-
out versions, except that a maximum blocking time is provided as an additional
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parameter of the function and an exception will occur in case the time-out is
reached. In this case, the designer should handle the error appropriately.

4.1 Interface Synthesis

When the input design description contains communication primitives from
the system-level API, there is a need to synthesize the communication interface
between the processes. Depending on the design partitioning, the interface will
need to connect two hardware modules, two software modules, or a hardware
and a software module. In this section, we show examples of custom interface
synthesis for different partitions. We refer to the process-sending data as the
producer, and the process receiving data as the consumer.

Hardware-to-Hardware Communication. In the case where two proce-
sses that communicate through ports are mapped to a hardware implemen-
tation, there are different alternatives for interface synthesis. However, since
this is a hardware-to-hardware communication, it is not necessary to generate
RTOS code or software to handle this specific communication.

One possible architecture for a port-based hardware-to-hardware commu-
nication is shown in Figure 5.1. In this case, there is a direct data connection
between producer and consumer. Additionally, control lines are synthesized
according to the API usage. If the port is ever used for a blocking send, then an
acknowledge line from the consumer to the producer is necessary. Therefore,
the producer is suspended until it receives an acknowledge from the consumer
in case of a blocking communication. For communications with multiple con-
sumers, the producer waits for the acknowledge of all consumers. This be-
havior is implemented with a logic OR of the individual acknowledges of the
consumers, as shown in Figure 5.1. Similarly, an event line is added from the
producer to each consumer for the case when blocking receives are specified.
Since the event and acknowledge control signals are synthesized only when
needed, they are shown with dashed lines in Figure 5.1.

Producer
Consumer

Evt_p

p_Data p_Data

p_Event

p_Ack

Consumer

Evt_p

port_receive(p,...)

port_send(p,...)

Fig. 5.1 Interface synthesis for hardware-to-hardware communication
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Other architectures are also possible from the same system-level API. For
instance, it is possible to generate a transaction-level model with AMBA-bus
transactions for each port primitive. In this case, the port_send and port_
receive primitives are replaced by a set of calls to the AMBA transaction-
level API (ARM, 2003).

Software-to-Software Communication. When two software processes are
mapped to the same processor, the interface synthesis is simpler. Our frame-
work will generate a software data structure in memory, shared between the
processes, that will keep the data along with event and acknowledge control
signals. All the producer has to do is to update two memory locations, with
data and event signaling (in case of blocking receives), whereas the consumer
will read the data memory and update the acknowledge bit of the same port.
Figure 5.2 shows the interaction between the processes.

Hardware-to-Software Communication. Hardware-to-software commu-
nications can be implemented by either interrupts or polling, using memory-
mapped addresses in the latter case. In both cases, we will need some RTOS
support in order to coordinate the processes. One possible solution is shown in
Figure 5.3. Our framework will generate a bus adaptation layer for the hard-
ware module, so that it can send and receive data from the bus. In the case of
a memory-mapped communication, a device driver is also generated and runs
inside the processor, monitoring the bus for activity in the memory-mapped
region. The device driver is responsible for transferring data from the bus to
the processor memory, to an equivalent port structure as the one shown in
Figure 5.2. The software process will access the port data structure as it did in
the software–software case, retrieving data and updating event flags. If instead
an interrupt-based communication is specified, then an interrupt service rou-
tine (ISR) needs to be synthesized. The ISR will be responsible for receiving
the event signaling from the producer. In the interrupt-based communication,
the actual data is still transferred through a memory-mapped location to the
port structure.

Port

Data

Evt/Ack

Processor

Producer Consumer

port_send(p,...) port_receive(p,...)

Fig. 5.2 Interface synthesis for software-to-software communication
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Fig. 5.3 Interface synthesis for hardware-to-software communication

Software-to-Hardware Communication. In software-to-hardware com-
munications, the producer is running in a processor, communicating with a
hardware module. In our model, this kind of communication is always memory-
mapped. The producer will update a port data structure, and a device driver
propagates data and events to and from the bus. Events and acknowledge sig-
nals are generated for the receiver whenever necessary.

Note that the device driver can be unique for all the software-to-hardware
and hardware-to-software communications. It has to monitor a set of software
ports, transferring data to the bus, as well as monitor the bus for memory-
mapped communications.

Multiprocessor Communication. Finally, in case the processes are mapped
to different processors, with different buses, a bridge will also be synthesized.
Figure 5.4 shows the proposed architecture. In this scenario, the producer runs
on processor 1, connected to system bus 1, whereas the consumer runs on
processor 2, connected to system bus 2. The producer will see the bridge as the
consumer, characterizing a software-to-hardware communication. Meanwhile,
the consumer will see the bridge as the producer, therefore a hardware-to-
software communication. The port will be accessed through a memory-mapped
address. In addition to the bridge, device driver code is synthesized for both
processors, linking the software process to the RTOS and to the bridge hard-
ware.

For shared memory communication, two different architectures are possible,
depending on synchronous or asynchronous communication. In the synchro-
nous mode, a locking structure is generated for each shared memory, so that
access is granted exclusively to each process. Every memory access has to ob-
tain the lock first. In the asynchronous mode, only the memory is synthesized.
The locking mechanism is implicit in the API call for shared memory access.
Every shared memory will be directly connected to the system bus, accessible
by the central processing unit (CPU). Additionally, a dedicated memory port
will be available for each hardware module accessing the memory, so that us-
ing the bus is not necessary while accessing shared data. Therefore, there is
less contention and higher parallelism in the implementation.
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Fig. 5.4 Interface synthesis for multiprocessor communication

4.2 RTOS Synthesis

In addition to communication interface synthesis, the generation of RTOS sup-
port is required. In this case, our system-level API has to be mapped to OS-
specific resources, adapting the generic API to the functionality available in
the target RTOS. Since our API is based on POSIX, the mapping is trivial
when targeting a POSIX-compliant OS, like Embedded Linux (ELC, 2006) or
eCos (Massa, 2002). Alternatively, our tool is able to target non-POSIX RTOSs
by mapping the API calls to the specific RTOS. Finally, the API-based descrip-
tion is used as input to tools that generate a customized OS infrastructure, like
Polis (Balarin et al., 1997) and Phantom (Nacul and Givargis, 2004), in case a
custom-generated RTOS was specified.

Figure 5.5 shows the code generation process for our system-level API. In
Figure 5.5a, the design is specified with the API primitives in a C-like speci-
fication. Figure 5.5b shows the generation of C code for a POSIX-compatible
OS. The API primitives are expanded to POSIX code. Some primitives have a
direct transformation to a POSIX call. Others need to be expanded into more
than one POSIX instruction. This is the case with send and receives and syn-
chronous shared memory access.

Note that a data structure is generated for the port-based communication
(lines 1 to 7), as discussed earlier. The port_send (line 8) and port_receive
(line 5) are expanded to POSIX/Pthread calls for mutexes and condition vari-
ables (lines 20 to 24 and lines 12 to 17), and updates the port data structure,
reading data (line 15), sending data (line 21), and setting event flags (lines 16
and 22). The generated code also includes the corresponding checks (line 13)
and waits (line 14) in the case of the blocking port receive.
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struct port_t {
   int value;
   int flag;
   pthread_mutex_t mutex;
   pthread_cond_t reader;
   pthread_cond_t writer;
};
port_t p_in, p_out;
void filter(void *arg) {
   int data;
   port_init(&p_out);
   pthread_mutex_lock(&p_in->mutex);
   if(!p_in->flag)
      pthread_cond_wait(&p_in->reader, &p_in->mutex);
   data = p_in->value;
   pthread_cond_signal(&p_in->writer);
   pthread_mutex_unlock(&p_in->mutex);
   if(data > 128)
      data -= 128;
   pthread_mutex_lock(&p_out->mutex);
   p_out->value = data;
   p_out->flag = 1;
   pthread_cond_signal(&p_out->reader);
   pthread_mutex_unlock(&p_out->mutex);
}
int main() {
   ......
   pthread_create(id, NULL, filter, NULL);
   ......
}

(b) POSIX expanded code
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(a) API code

in int p_in;
out int p_out;
process filter {
   int data;
   data = port_receive(p_in, 4, BLOCKING);
   if(data > 128)
      data -= 128;
   port_send(p_out, data, 4, NON_BLOCKING);
}
int main() {
   ......
   process_create(id, NULL, filter, NULL);
   ......
}

Fig. 5.5 Code example

4.3 Our Hardware/Software Codesign Environment

Our codesign framework provides an interface and a set of tools for synthe-
sizing and simulating a design. Input to our codesign environment is a set of
modules M1, M2, . . . , Mn that implement a design. Modules are described in
a C-based system-level language, extended with the proposed API functions.
Each module represents a process. Next, the mapping step partitions the design
into hardware and software implementations. The partitioning granularity is at
the process level, i.e., once a process is mapped to hardware or software, all
its functionality is synthesized to execute as a hardware block or a software
task inside an RTOS. Currently, the partitioning process is manual. Once the
design is partitioned, the designer specifies the communication parameters. In
case of hardware-to-software communications, for instance, it is possible to
determine the use of interrupts. Finally, hardware, software, and interfaces are
synthesized.

Hardware synthesis is handled by an in-house behavioral synthesizer that
produces synthesizable register transfer level (RTL) for each module. Software
modules are generated according to the OS support desired by the
designer. For each target software environment, we provide a library that im-
plements the specified API for the referred environment. At that time, our code-
sign framework can generate software modules based on the POLIS framework
(Balarin et al., 1997), the Phantom Compiler (Nacul and Givargis, 2004), and
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any POSIX-based OS, like Embedded Linux (ELC, 2006) or eCos (Massa,
2002) with the POSIX adaptation layer. In the latter case, there is a one-to-one
mapping of some of the API functions to the POSIX library of the OS, while
others require some expansions, as shown in Figure 5.1.

Software is compiled to a specific processor, which can be a NEC V850 or
an ARM946. Finally, the interface is generated according to the partition and
the communication style specified. We have simulators available that allow
us to simulate the synthesized hardware, selected processor (cycle accurate in
the case of V850 and instruction based in the case of ARM), software, and
communication interfaces.

5. Hardware/Software Integration

The steps of our hardware–software integration process are depicted in Fig-
ure 5.6. The block diagram on top helps in visualizing the connections and
processes. This example implements a matrix multiplication algorithm con-
sisting of three processes: the index control, which controls the execution of
the algorithm; the data retriever, which fetches data from the shared memory
Mem, and passes them, two at a time, to the module MAC; MAC module,
which multiplies the data, accumulates intermediate results and finally writes
the result back into the shared memory. So data retrieve only reads data from
the shared memory, whereas MAC only writes into it.

An excerpt of the specification code is shown in the specification section of
Figure 5.6. The specification contains some of the API calls proposed in this
work incorporated into a C-based specification. This specification is the input
to our codesign environment.

The process mapping is specified next. In the example of Figure 5.6, the
index control and the data retrieve processes are mapped to software running
in a single processor, while the multiplier is mapped to a custom hardware
module. During the mapping stage, it is also necessary to specify the op-
tions for the communication interfaces. For the ports between index control
and data retrieve, the communication will be internal to the processor since
it is a software-to-software communication. Therefore, a software port struc-
ture will be generated, like the one shown in Figure 5.5b. For the case of the
ports between data retrieve and multiplier, we chose a memory-mapped com-
munication to implement the hardware-to-software and software-to-hardware
communications. Alternatively, interrupts could have been used for the com-
munication that originates in the multiplier.

In the code generation stage, the environment synthesizes the communica-
tion interface, along with the software targeted at the OS specified by the user
and the hardware modules. In this stage, the RTOS is adapted to the applica-
tion. Since there is a memory-mapped communication, the appropriate device
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for(i=0;i<H_sz;i++)
  for(j=0;j<V_sz;j++)
    port_send(line, i, 4, BLK);
    port_send(column, j, 4, BLK);

i = port_receive(line, 4, BLK);
j = port_receive(column, 4, BLK);
shared_mem_read(mem, i*H+j, 4, SYNC);
port_send(x...);
port_send(y...);
port_receive(next, 1, BLK);

x = port_receive(x, 4, BLK);
y = port_receive(y, 4, BLK);
r = x*y;
shared_mem_write(r, r_addr, 4, SYNC);
port_send(next, 1, 1, NBLK);

Block diagram

   pthread_mutex_lock(mutex);
   column->value = j;
   column->flag = 1;
   pthread_cond_signal(reader);
   pthread_cond_wait(writer);
   pthread_mutex_unlock(mutex);

wait(x_event)
x = x_data;
x_ack = 1;
.....
next _data= 1;
next_evt = 1;

Code
generation

X_Data X_evt X_ack

Fig. 5.6 Hardware/Software integration

driver for the communication will be incorporated into the software code. An
address decoder is generated for the multiplier process, so that it can access the
bus. A locking structure is synthesized around the shared memory block. The
lock is needed to support the synchronous operations in the memory access.
Software-mapped processes are expanded to a POSIX specification, which can
be compiled against POSIX-compliant OSs. The same POSIX code can still be
used to generate application-specific OS infrastructure, such as POLIS (Balarin
et al., 1997) or Phantom (Nacul and Givargis, 2004).

Meanwhile, hardware-mapped processes result in the generation of a low-
level SystemC description, to be synthesized with the appropriate tools. This
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detailed description includes the necessary extra hardware and interconnec-
tions that implement the hand-shaking control discussed in Section 4.1.

The final architecture is shown in the implementation section of Figure 5.6.
The CPU will be executing the two processes mapped to software, supported
by the RTOS specified in the mapping stage. The CPU is connected by a sys-
tem bus to the hardware and shared memory modules. An address decoder
connects the hardware to the bus. Finally, the shared memory incorporates the
lock to support the synchronous communication specified earlier in the design,
providing a dedicated access port to the hardware module. Note the expansion
of the connections from the hardware module, with the inclusion of the con-
nections for event and acknowledge for each port from software to hardware
and hardware to software. The figure shows the expansion for the X port, and
the other ports are expanded similarly.

The final generated hardware and software architectures are simulated in an
internally developed, cycle-accurate simulator. We are able to simulate the sin-
gle and multiprocessor architectures, along with memory, buses, bridges, and
reconfigurable logic to implement hardware-mapped modules. Currently, our
simulator supports the NEC V850 processor and can provide cycle-accurate
execution data. Additionally, we have an instruction-accurate model of the
ARM946 processor.

6. Conclusions

Current complexity of embedded systems is driving a consensus toward the
need for a higher abstraction level support for system specification. This will
result in more opportunities for design reuse and better design space explo-
ration capabilities. In this context, synthesis of OS and hardware/software in-
terfaces is needed.

In this chapter, we have introduced a system-level API that provides a spec-
ification support for rapid hardware/software integration by combining into a
unified semantics, both transaction-level modeling for hardware specifications
and OS and device drivers layers for software specifications. We have shown
how this API can be easily integrated in any current system-level design lan-
guage and we have discussed its utilization into a hardware/software codesign
flow.
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Abstract In this chapter, we describe our enhanced extension of SystemC with temporal
properties. The two main tasks involved are the synthesis of checker automata
corresponding to given temporal logics formulae and the integration of prop-
erty specification into the SystemC framework.

For synthesis of checker automata we rely on an intermediate language (IL)
that is directly generated from property specification language (PSL) or finite
linear temporal logic (FLTL) properties in a bottom-up fashion. IL can either be
translated to native code in a preprocessing step or be executed directly in a sim-
ple virtual machine. Our temporal SystemC checker supports both alternatives.

Properties can be added dynamically any time during simulation. A dedi-
cated observer process is responsible for checking all active properties contin-
uously against the current system state during simulation. The actual executing
property checkers can be customized according to the users needs. When spe-
cial states are reached, i.e., finding a validation or violation of the property, a
policy class dispatches to user-defined action handlers.

1. Introduction

The complexity of modern hardware/software systems requires more rigorous
validation procedures in the development process. One promising approach is
reusing formal specifications written in temporal logics during all phases of the
design process. After requirements analysis, the informal specification is cast
into temporal properties that capture the design intent. This formalization of the
requirements improves the understanding of the new system. Then, the system
model and implementation can be annotated with the same temporal properties.
However, the executing system is now monitored for validation or violation of
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the properties. Special actions can be performed upon reaching these special
system states, ranging from simple logging activities up to throwing exceptions
or error recovery attempts.

The described methodology suffers from the typical deficit of simulation-
based approaches to system validation which is incomplete coverage, i.e., only
the paths executed during simulation can be monitored. No statements about
the unexplored system states can be made. However, because the properties are
already formalized, they can be reused if parts of the system are subjected to
fully formal verification techniques like model checking (Clarke et al., 1999).
Furthermore, the actual system coverage can be measured with respect to the
specified properties.

This chapter describes in detail the integration of temporal properties into
SystemC (Grötker et al., 2002), which meets the above characteristics. The
framework is called SystemC temporal checker (SCTC). We focus on en-
abling an assertion-based design methodology (Coelho and Foster, 2004) in
SystemC. To achieve this, several tasks have to be met. First, a mechanism
has to be devised for adding properties to SystemC designs. These properties
have to be synthesized into a form that is executable together with the Sys-
temC model. Finally, the designer should be able to customize the actions taken
when properties trigger, which we support by a policy-based design (Alexan-
drescu, 2001) of our checking engine. The advantages of assertion-based de-
sign are the following:

A formalization of the design intent improves the understanding of the
design.

Temporal properties enhance the communication between involved par-
ties by unambiguously capturing the system requirements.

Assertions allow identifying problems close to the real error source and
taking appropriate actions.

The rest of the chapter is organized as follows. Next, we detail the process
of property synthesis to the intermediate language (IL). Then we describe the
integration of temporal properties into SystemC and give some experimental
results. Finally, we conclude and give a brief outlook on future work.

2. Property Synthesis

At the user level, properties are written in a property specification language
(PSL). A property specification is the formalization of design intent in a hu-
man and machine readable format with a clearly defined semantics. In order
to discuss properties in more detail, it is beneficial to take a layered view on
them. Properties are composed of three layers:
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1. The Boolean layer consists of propositions and Boolean connectives.

2. The temporal layer adds operators for temporal reasoning to the Boolean
layer.

3. The verification layer provides indicators for verification tools how to
apply the property.

The third layer is used to control the high-level behavior of the verifica-
tion tools, e.g., if a property violation should stop the verification process or
simply emit a logging message. The first two layers make up the actual prop-
erty that relates parts of the system under verification, thus describing desired
or error states.

In this chapter, we concentrate on properties in temporal logics with a linear
time model, which is well suited for simulation contexts. Our synthesis engine
supports the PSL (Accellera, 2004) and finite linear temporal logic (FLTL; Ruf
et al., 2001), an extension to linear temporal logic (LTL) with time bounds on
the temporal operators.

The main task of the synthesis engine is to convert the plain text prop-
erty specification into a format that can be executed during system monitor-
ing. We use accept–reject automata (AR-automata; Ruf et al., 2001) for this
purpose. AR-automata can detect validation or violation of properties on finite
system traces, or they stay in pending state if no decision can be made yet.
Figure 6.1 shows the AR-automaton that corresponds to the FLTL property
G(req→ F[2] ack).

Our first approach implemented in Java converted FLTL formulae into
AR-automata using a straightforward automata representation. The SystemC
checker reads the result from a text file describing the AR-automaton. Notice
that this description contains a complete enumeration of all transitions for all
combinations of input variables. Thus, the memory requirements are n × 2|I|,
where |I| denotes the number of input variables and n is the number of states
of the AR-automaton. The size of the AR-automaton is minimized using a
partitioning algorithm that merges bisimilar states (Milner, 1980; Ruf et al.,
2001). Because of performance problems when synthesizing larger formulas,
we developed a new synthesis engine (Krebs and Ruf, 2003). The new engine

Fig. 6.1 Example of an AR-automaton for a simple FLTL property. The state labeled with R
is the rejecting state.
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translates a temporal formula to IL, an executable representation for AR-au-
tomata.

2.1 Intermediate Language

The motivation for IL is producing a space-efficient and executable representa-
tion of properties for the validation process. The commands available in IL can
be grouped into four categories: time, compare, branch, and return statements.
Table 6.1 shows the IL statements.

The translation of LTL formulae to IL converts temporal operators into se-
quences of IL statements. This algorithm works bottom-up and merges subfor-
mulae until the whole expression is translated. The main operation is merging
two subformulae. More details are available in Krebs and Ruf (2003). The IL
code for formula G(a→ X b) is given in Listing 6.1.

This encoding does not represent every state transition of an AR-automaton
explicitly. Moreover, the transitions are given implicitly by paths through the
IL code ending in either a return or wait statement. Experiments in Krebs and
Ruf (2003) show that the new translation scheme is usually orders of magnitude
faster than the traditional one.

Once a property has been translated to IL code there are several options
how to use the IL code. First, IL code can be further translated into code or
data structures native to the target platform, e.g., SystemC. Second, the IL
code can be executed directly in a virtual machine. We currently support both
alternatives. Finally, another option is to synthesize hardware from IL code and
use it for monitoring the final system. Figure 6.2 summarizes the IL approach.

3. Integrating Temporal Properties into SystemC

SystemC (Grötker et al., 2002) is a C++ library developed to support model-
ing not only at the system level but also at other levels of abstraction, such as
register transfer level (RTL). The modeled systems may be composed of both
hardware and software components. The whole library is written in ISO/ANSI
compliant C++ (ISO/IEC, 2003) and therefore runs on all standard compli-
ant C++ compilers. It constitutes a domain-specific language embodied in the
library’s data types and methods.

The SystemC core language is built around an event-driven simulation ker-
nel, which allows efficient simulation of compiled SystemC models. Processes
in SystemC are nonpreemptive, thus one erroneous process can deadlock the
simulator. The SystemC library provides abstractions for hardware objects that
allow modeling from RTL to transactional level. The SystemC library and ref-
erence implementation of the simulation kernel are available for free in source
code (OSCI, 2006).
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Table 6.1 The categorized IL statements

Category Statement Semantics

Time WAIT n Wait n steps

Compare CHK s Check signal s

JMP n
Branch JEQ n Jump to address n (possibly depending on previous CHK)

JNE n

RNE T/F
Return RET T/F Terminate with true/false result (possibly depending on previous CHK)

REQ T/F

Listing 6.1 The IL code for formula G(a→ X b). The left column gives the code location and
the statement’s opcode, separated by a colon.

1 00000000:00000001 CHK 00000000
2 00000004:0000002a JEQ 0000002c
3 00000008:0000005f WAIT 1,5
4 0000000c:00000001 CHK 00000000
5 00000010:00000012 JEQ 00000020
6 00000014:00000011 CHK 00000010
7 00000018:fffffff0 JNE 00000008
8 0000001c:1fffffff RET 0
9 00000020:00000011 CHK 00000010

10 00000024:00000008 JNE 0000002c
11 00000028:1fffffff RET 0
12 0000002c:0000005f WAIT 1,5
13 00000030:ffffffd0 JMP 00000000

Interpretation on 
virtual machine
Monitoring during

simulation (SystemC)

Translation to 
native code

Monitoring during
Simulation

Hardware synthesis

Monitoring during
emulation or operation

PSL / FLTL
property

IL Code

Fig. 6.2 Outline of the IL approach
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However, SystemC currently does not contain a mechanism for specifying
and checking temporal properties. In this section, we will look into extending
SystemC with these abilities based on the IL synthesis engine described in
Section 2.

3.1 Property Specification

C++, and therefore SystemC also, provides no language mechanism for tem-
poral property specification. There are several ways to deal with this problem.
One common approach is to hide the specification in comments (Chen and
Roşu, 2005) or external files and instrument the system code in a preprocess-
ing phase. Also, a library can provide functions to trigger property checking.
The property specification itself is given as a string in the function call. The ad-
vantage of the first approach is that the entities in the specification can relate to
source-level constructs like variable names. However, a separate tool is needed
to preprocess the code. The latter technique is more easy to handle by the user,
but entities in the specification have to refer to source code constructs by name.
For example, in SystemC all signals are given a unique name and can therefore
be used in such specifications. In addition, specifications are treated as first-
class citizens of the code, which makes it much easier to control the addition
of properties dynamically.

We support property specification in SystemC through a library extension.
A base class Proposition allows wrapping arbitrary source code entities as
named objects. A default implementation for SystemC signals exists.

3.2 Property Checking

After deciding how to specify the properties, the second major task is to deter-
mine how to check the property. A thorough taxonomy of design decisions is
given in Chen et al. (2004). The main aspects are:

Running location: The validation process is either executed in-line, i.e., in
the same process as the system under test (SUT), or out-line, i.e., the
checker runs in a different process or on another machine.

Running time: The validation process is either executed on-line, i.e., together
with the SUT, or off-line, i.e., a system trace is inspected by an external
tool after system execution.

Scope: The scope attribute defines how the property relates to the system and
thus fixes the checking semantics of the property. In Chen et al. (2004)
the attributes class, method, block, and checkpoint are defined.

The taxonomy lacks in two regards. All scope attributes relate to single
objects. We think that for system validation an attribute for checking interacting
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Listing 6.2 The main loop of the checker process

1 checkerLoop(in: activationQueue , activeList)
2 for all properties pi in activationQueue
3 if pi.timestamp < now
4 activeList.append(pi)
5 activationQueue.remove(pi)
6 for all properties pi in activeList
7 pi.check()

components is essential. However, in order to allow intercomponent property
checking, a notion of time has to be introduced when to sample the system
state. We call this system scope. In SystemC, and other hardware-centric de-
scription languages, properties can be bound to clocks. For pure software sys-
tems, this is not as obvious.

Also, an attribute is missing for stating when a property should be activated.
This is especially important for static specifications in comments or external
files.

Our temporal SystemC checker is realized as a separate module with a
thread process dedicated to executing the IL code corresponding to active prop-
erties. The main problem for nonintrusively integrating a checker process into
the simulation kernel is SystemC’s lack of scheduling features. The order in
which processes are executed is undetermined. The main consequence of this
behavior is that only the state of signals can be asserted across module bound-
aries. If the checker process would be called before or after all process execute
during one simulation cycle, a stable snapshot of the system would be available
for property checking. We deal with this problem by introducing an activation
queue. Newly activated properties perform their initial check immediately and
are then appended to the activation queue. The checker process in the current
cycle then adds all properties from the previous cycle to its active list. Finally,
the properties in the active list are executed. The checker main loop is shown
in Listing 6.2.

The check() method depends on the representation of the AR-automata.
For an exhaustive enumeration of the transitions, the valuation of all proposi-
tions present in the property provides an index into the current state’s transition
table. Then the next state is checked for being the automaton’s accept (reject)
state, thus indicating validation (violation) of the property. Otherwise, the au-
tomaton remains in pending state.

If we execute IL code directly in method check(), we have to follow the
control flow of the code, possibly checking the current value of encountered in-
put signals. This process ends either by reaching a wait statement, thus leaving
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the property in pending state, or reaching a return statement, thus finding a
validation or violation of the property.

Finally, notice that checking the specification can be reduced to calling the
check() method on active properties and wrapping input variables by sub-
classing from class Proposition, thus making them named entities. The Sys-
temC specific parts are captured by the checker module, which calls method
check(), and subclasses of Proposition for handling SystemC data types
like signals. The core checking engine can be adapted easily to other sampling
sources, like event loops of a graphical user interface (GUI) framework.

3.3 Customizing Actions with Policies

For the user annotating code with temporal assertions, it is of primary impor-
tance to be able to take special actions depending on the state of the checked
properties. In C++, policy-based design (Alexandrescu, 2001) has attracted
considerable interest recently. The idea is to orthogonally decompose a class’
behavior into policies. Policies are themselves classes that are passed as tem-
plate parameters to the original class. The original class is therefore responsible
for implementing its behavior of its policy classes. In our case an action policy
allows customizing a property’s checking process. Every legal action policy
has to implement these functions:

OnInitial(Property& p): Call this function when the check method is exe-
cuted the first time.

OnAccepting(Property& p): Call this function when the check method
encounters an accepting state.

OnRejecting(Property& p): Call this function when the check method
encounters a rejecting state.

OnPending(Property& p): Call this function when the check method leaves
the property in pending state.

Default implementations are provided for action policies like throwing
exceptions on encountering accept or reject states, or just logging the progress
of the property-checking process.

4. Experimental Results

The significant improvement of the IL property synthesis algorithm over the
automata-based Java implementation has already been shown in Krebs and Ruf
(2003). Therefore, we concentrate on comparing the run-time performance and
memory requirements of an exhaustive transition table against IL code. In the
first case, the data structures are created on-the-fly from IL code. In the second
case, IL code is executed in its virtual machine.
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Fig. 6.3 Memory consumption for properties P1 and P2

4.1 Memory Consumption

We have examined how much memory-representing properties actually
requires.

Property P1 is G(a→ F[n](b∨c∧d)). The results are shown in Figure 6.3a.
Both IL and the table approach consume approximately the same amount of
memory. The memory consumed grows exponentially with the time bound for
this property.

Property P2 checks in a holonic transportation system that two robots mov-
ing in the system do not collide. The position is encoded with 5 b for every
holon, thus the property contains 10 propositions. The results for translating
this property with different time bounds is given in Figure 6.3b. We see that
because more propositions are part of the property, the memory consumption
grows very large for the table approach.

4.2 Run-time Performance

In these experiments, we checked two properties against a scalable model of an
arbiter (McMillan, 1992). The arbiter eventually acknowledges a request by a
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cell within 2n cycles, where n is the number of cells. The first property checks
that at most one acknowledge is given each cycle. The second property checks
that after a request signal, the acknowledge signal comes within the required
time frame.

Figure 6.4a shows the time taken by the simulator and the time consumed
by the the checker module for running a given number of cycles. On the left-
hand side the times are shown for the checker that works directly on IL code,
whereas on the right-hand side the table-driven approach is given. As expected,
the simulator requires the same time in both cases. However, the IL module
performs better than the table driven approach. The reason for this is that in the
table-driven approach checking the termination condition takes longer.

Figure 6.4b shows the same test, however, with an arbiter consisting of 50
cells. The most noteworthy point is that the overhead of the checker slightly
decreases. However, again the IL code checker performs better.

5. Related Work

Related work can be divided into two sections. On the one hand, we dis-
cuss algorithms for generating automata or isomorphic representations like IL
from property formulae. On the other hand, we examine frameworks that al-
low adding property specifications, and temporal expressions in particular, to
system models.

The specification framework most closely related to SCTC is monitoring-
oriented programming (MOP; Chen et al., 2004; Chen and Roşu, 2005). Their
monitors can be interpreted as AR-automata. It would be interesting to use IL
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as monitor generator in MOP and use their monitor generators for SCTC. Both
frameworks allow the exchange of the underlying property synthesis engine.
MOP is tailored toward monitoring general Java code and uses a preprocessing
phase to instrument Java source code. As mentioned in Section 3.2, they allow
properties only at the object, method, block or code line level, whereas SCTC
supports checking at the system level. We extended their taxonomy in this
respect. No framework that supports temporal assertions in C++ is known to
the authors. However, a few commercial offerings add temporal checking to
SystemC.

Translating LTL formulae into Buechi automata has been covered in litera-
ture (Gerth et al., 1995; Daniele et al., 1999; Somenzi and Bloem, 2000) over
the years. Buechi automata are an important representation for model checking
LTL formulae.1 The checking algorithm for AR-automata is simpler but sacri-
fices completeness as it cannot handle loops, which are intrinsic in algorithms
on Buechi automata. One can make Buechi deterministic and minimize the re-
sulting automata to get monitors; however, this approach is not very efficient
because it requires multiple passes over the automata.

In Sen and Roşu (2003) and Sen et al. (2003), the authors describe a novel
one-pass algorithm for generating optimal monitors using a rewriting method
called circular coinduction for properties formulated with regular expressions
and LTL, respectively. An algorithm for generating a dynamic programming
algorithm corresponding to a past time temporal logic formula is presented in
Havelund and Roşu (2002).

None of the discussed approaches handles PSL and time bounds on tempo-
ral operators. Also, none of the approaches uses an IL executable in a virtual
machine for representing monitors.

6. Conclusions and Future Work

We presented a framework for annotating SystemC designs with temporal
expressions. An efficient property synthesis engine is employed for turning
the high-level formulae into executable intermediate code.

Future work aims at further enhancing the IL checker generator. This is
done by transferring and applying automata algorithms directly on IL code.
Also, various specific optimizations for IL are explored, like caching repetitive
code sequences or selective compilation of subformulae.

We also explore ways to extend the scope of the SystemC checker to general
C++ code. Here, the main task is to come up with an extensible scheme to
define sampling points for creating a notion of time necessary for checking
temporal expressions. Then, the checker can also be used to validate SystemC

1 We also use AR-automata in a formal verification algorithm (Ruf et al., 2003).
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models at the transactional level. Finally, an updated simulation kernel with
special handling of the checker process is being developed.
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oriented programming: a tool-supported methodology for higher quality
object-oriented software. Technical Report UIUCDCS-R-2004-2420, Uni-
versity of Illinois at Urbana-Champaign.
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Sen, Koushik, Roşu, Grigore, and Agha, Gul (2003) Generating optimal linear
temporal logic monitors by coinduction. In: Saraswat, Vijay A. (ed) Pro-
ceedings of the 8th Asian Computing Science Conference on Programming
Languages and Distributed Computation, volume 2896 of Lecture Notes in
Computer Science. Springer, Mumbai, India, pp. 260–275.

Somenzi, Fabio and Bloem, Roderick (2000) Efficient Büchi automata from
LTL formulae. In: Emerson, E. Allen and Sistla, A. Prasad (eds) Proceed-
ings of the 12th International Conference on Computer Aided Verification
(CAV) 2000, volume 1855 of Lecture Notes in Computer Science. Springer,
Chicago, IL, pp. 248–263.



Chapter 7

UMoC++: A C++-Based Multi-MoC Modeling
Environment

Deepak A. Mathaikutty1, Hiren D. Patel1, Sandeep K. Shukla1, and Axel Jantsch2

1Center for Embedded Systems for Critical Applications
Virginia Tech
Blacksburg, Virginia
USA
2Department of Microelectronics and Information Technology
Royal Institute of Technology
Stockholm
Sweden

Abstract System-on-chip (SoC) and other complex distributed hardware/software systems
contain heterogeneous components that necessitate frameworks capable of ex-
pressing heterogeneous models of computation (MoCs) for modeling their func-
tionalities. System-level design languages (SLDLs) that facilitate multi-MoC
modeling should have well-defined semantics and should be readily subjected
to formal analysis to handle the design complexity. As a result, we follow the
multi-MoC paradigm based on timing abstraction and functional parameteriza-
tions that have rigorous denotational semantics, which are compliant to func-
tional idioms as shown in functional frameworks such as ForSyDe and SML-Sys.
However, functional frameworks are not widely used in the industry due to
issues related to efficiency and interoperability with other widely used SLDLs.
This imposes a requirement for an imperative language-based implementation
of these generic MoCs that offers all the advantages of the underlying formal
semantics. In this chapter, we formulate the basis for having generic MoCs in an
imperative language and describe the implementation of an untimed modeling
framework called UMoC++.
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language.
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1. Introduction

System-level modeling for system-on-chip (SoC) and hardware/(solidus) soft-
ware codesign has been gaining importance due to the raising complexity of
such systems, continual advances in semiconductor technology, and produc-
tivity gap in design. Efforts toward mitigating the productivity gap has led
to the evolution of several design methodologies of which the one we
address are system-level design languages (SLDLs). Examples of recently in-
troduced system-level modeling languages are SpecC, SystemC (OSCI, 2006),
and System Verilog (Accellera, 2006). In addition, most system models for
SoCs are heterogeneous in nature and encompass multiple models of compu-
tation (MoCs) in their different components. As a result, we need a frame-
work that provides a way to express heterogeneous MoCs for modeling SoCs
that have well-defined formal semantics and is readily amenable to formal
verification.

The multi-MoC paradigm discussed in Jantsch (2003) describes the function-
based semantic definition of MoCs that provide a generic classification of com-
putational models by abstracting time. These generic MoCs have well-defined
denotational semantics that make them readily subjected to formal analysis
and further amenable to functional paradigms. Hence, a functional language
(FL) can easily be used to implement them and create a modeling environ-
ment. One such modeling framework is ForSyDe (Sander and Jantsch, 2004)
built on the semantics of a synchronous computational model (Jantsch, 2003)
that facilitates the application of formal methods for transformation and syn-
thesis. However, ForSyDe is more compliant to applications that are synchro-
nous in nature. On the other hand, we need a framework such as SML-Sys
(FERMAT, 2006) that provides multiple MoCs for heterogeneous system de-
sign. We implemented SML-Sys in a functional language called Standard ML
(SML; Milner et al., 1997). Some of the advantages of the SML-Sys framework
are: (i) its generic design makes it highly expressible and easily extensible; (ii)
precise semantics of the model are derivable because of the rigorous denota-
tional semantics of functional programs; (iii) formal verification of the func-
tionalities of the models can be achieved without having to parse through the
C++/Java language specifics; (iv) design transformations are function applica-
tions, which provide clean and precise refinement semantics in the framework.

FLs are mainly used in academia for conceptualization and development
of theoretical basis for research. It is not common practice to use FLs in the
industry for hardware/software design, since the industry prefers imperative
languages like C/C++ that have a lower learning curve and provides faster sim-
ulation results and requires less memory. The design of imperative languages
is based on the von Neumann model, whereas that of FLs are based on math-
ematical functions. The formulation of generic MoCs in an FL like SML-Sys
is inefficient (Okasaki, 1992) due to the implementation cost for single
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assignment, call by value and recursion that bring in a lot of implicit garbage
collection, potentially huge stack, and lots of copying. Furthermore, designers
accustomed to the imperative notion of programming find it difficult to relate
and work with FLs due to their abstract expressibility. Most industrial intel-
lectual properties (IPs) are C or C++-based. With the current trend toward
IP-based integration, FL-based model development brings in issues of interop-
erability and reusability. Hence, there is a necessity for an imperative language-
based implementation of generic MoCs that takes advantage of features in FL
to attain a well-defined formalism and further can be used for cosimulation
with other SLDLs to facilitate interoperability and IP-based integration.

2. Related Work

The two most prominent works in classification of MoCs were done in the
context of the Ptolemy II project and the ForSyDe project (Sander and Jantsch,
2004). Ptolemy II is built with multiple MoCs, which include various sequen-
tial MoCs such as finite state machine (FSM), discrete-time, continuous-time,
and MoCs of interacting entities, such as communicating sequential process
(CSP), Kahn process network (KPN), etc. The other distinguishing classifica-
tion of MoCs was done by abstracting time and functional parameterizations.
This work can be distinguished from Ptolemy’s work as a distinction of the
denotational view versus operational view of MoCs (Patel and Shukla, 2004).

ForSyDe is a library-based implementation that provides a computational
model for the synchronous domain with interfaces implemented in Haskell.
However, since ForSyDe has a single computational model based on the syn-
chrony assumption, it is best suited for applications amenable to synchrony.
SML-Sys, when compared with ForSyDe, has a higher modeling fidelity1

(Patel and Shukla, 2004) since it is a multi-MoC modeling framework based on
the generic definition in Jantsch (2003), which is an extension of the ForSyDe
methodology.

3. Generic MoCs

We briefly introduce the generic MoCs defined in Jantsch (2003). These MoCs
are built on processes, events, and signals. Events are the elementary units
of information exchanged between processes. Processes receive or consume
events and they send or emit events. Signals are finite or infinite sequence of
events. The activity of processes is divided into evaluation cycles. A process
partitions its input and output signals into subsequences corresponding to its
evaluation cycles. During each evaluation cycle a process consumes exactly
one subsequence of each of its input signals. To relate functions on events to

1how close it is to the conceptual MoC
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processes we introduce process constructors, which are parameterizable struc-
tures that instantiate processes. Furthermore, we define process combinators to
construct process networks (PNs) through process compositions.

An MoC is defined as a set of processes and PNs that are constructed from
the given set of process constructors and combinators. We finally categorize
the MoC based on “how the processes communicate and synchronize” with
other processes and, in particular, with the “timing information” available to
and used by the process.

Definition 3.1. In Jantsch (2003), an MoC = (C,O) is defined as a 2-tuple
where C is a set of process constructors, each of which, when given constructor-
specific parameters, instantiates a process. O is a set of process composition op-
erators, which when given processes as arguments instantiates a new process.

MoCs are characterized by the duration of their evaluation cycles. The three
generic MoCs defined in Jantsch (2003) are: untimed MoC (UMoC), synchro-
nous MoC, and timed MoC.

Untimed MoC: Processes communicate and synchronize with other processes
without the notion of time such that only the order of events are relevant.

Synchronous MoC: The Synchronous MoC divides the timeline into inter-
vals. Every computation within an interval occurs at the same time,
but the intervals are totally ordered along the timeline. In synchronous
MoCs, the evaluation cycle of processes lasts exactly one time
interval. We further categorize synchronous MoCs into:

Perfect Synchronous MoC: This MoC is built on the basis of the per-
fect synchrony hypothesis (Jantsch, 2003), where the output events
of a process occur in the same time interval as the corresponding
input events.

Clocked Synchronous MoC: This MoC is based on the clocked syn-
chronous hypothesis (Jantsch, 2003). It differs from the perfectly
synchronous MoC in that every process incurs a delay from an
input event to an output event.

Timed MoC: This MoC is a generalization of the synchronous MoC. Timing
information is conveyed on the signals by transmitting absent events at
regular time intervals.

3.1 Preliminary Notations

We introduce few notations used in defining and distinguishing the generic
MoCs. The set of values V represents the data communicated over a signal and
the set E constitutes events containing values. A sequence of events constitutes
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a signal. Processes are defined as functions on signals p: S → S that is a
mapping between signal sets. Furthermore, they are allowed to have internal
state such that for the same given input signal they react differently at different
time instances.

3.2 Generic MoCs Formulation in SML-Sys

In this section, we briefly discuss the implementation of the UMoC for the
SML-Sys framework (Mathaikutty et al., 2004). For these generic MoCs,
finite signals are implemented as generic lists as shown below:

1 (* Definition of a Finite signal *)
2 datatype signal = nil | ’a :: ’a list

3.3 Untimed Model of Computation

UMoC adopts the simplest timing model, corresponding to the causality ab-
straction. Processes, modeled as state machines, are connected to each other
through signals. Signals transport data values from a sending process to a re-
ceiving process. The data values do not carry time information, but the signals
preserve the order of emission.

Process Constructors. In the UMoC, process constructors are higher order
functions that take functions on events as argument and instantiate processes.
We implement a set of process constructors that are used to define compu-
tational blocks which are either complex processes or process networks. We
suffix the name with U to designate it to the UMoC. We discuss the imple-
mentation details of a Mealy-based process constructor with respect to finite
signals.

Definition 3.2 (Mealy-based process constructor). It resembles a Mealy-based
state machine with the addition of a next-state function, an output encoding
f that depends on both the input partition and the current state: mealyU(γ, g,
f , ω0) = p, where p(s) = ś, with Ψ (v, s) = 〈ai〉, where v(i) = γ(ωi), g(ai, ωi) =

ωi+1, f (ωi, ai) = ái, and s, ś, ai, ái ∈ S , ωi ∈ E, i ∈ N.

The list of elementary process constructors implemented for the UMoC
is shown in Mathaikutty et al. (2005). The Mealy-based process constructor
shown in Listing 7.1 can be extended to handle multiple inputs making it more
generic, which results in simplifying the above list.

Process Combinators. We define compositional operators to combine dif-
ferent processes to form complex processes and PNs. These are also
implemented as higher-order functions (HoFs). The sequential, parallel, and
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Listing 7.1 Mealy-based process constructor in SML-Sys

1 (* mealy-based process constructor for the UMoC *)
2 fun mealyU (h, g, f, w) = fn (s) => constructor (h, g, f, w, s)
3

4 fun constructor (_, _, _, _, []) = [] | constructor (h, g, f, ↵
w, s) = f (w, head (partition([h w], s))) @ constructor ↵
(h, g, f, g (w, partition ([h w], s)), drop (s, (h w)))

P

s1

s2

      s3

FBP (p)

P2

P1

s

P2P1

s1 s2

(P1 o P2)

(P1 || P2)

Fig. 7.1 Parallel, sequential, and feedback operators

feedback operators are shown in Figure 7.1. We discuss the implementation of
the sequential and the feedback operators with respect to finite signals.

Definition 3.3 (Sequential composition operator). Let p1 and p2 be two pro-
cesses with one input and one output each, and let s ∈ S be a signal. Their
sequential composition denoted by p1× p2, is defined as follows: (p1× p2)(s) =

p2(p1(s)).

1 (* sequential composition operator *)
2 fun seqcomp (p1,p2) = fn (s) => p2 (p1 (s))

Definition 3.4 (Feedback composition operator). Given a process p : (S ×
S ) → (S × S ) with two input signals and two output signals, we define the
process FBp(p) : S → S . The behavior of the process FBp(p) is defined by the
least fixed-point semantics: FBp(p)(s1) = s2, where p(s1, s2) = (s2, s3).

1 (* Feedback Operator *)
2 fun fb (p) (s) = fixpt(p, s, [], length(s) + 1)
3 fun fixpt (q, s, sout, 0) = sout | fixpt (q, s, sout, n) = ↵

fixpt (q, s, (q s sout), n - 1)
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Formalized Definition of UMoC.

Definition 3.5 (UMoC). UMoC is defined as MoC = (C,O), where
C = {mapU, scanU, scandU,mealyU,mooreU, zipU, zipUs, zipWithU, unzipU,
sourceU, sinkU, initU} and O = {‖, ◦,FBp}

4. Essential Concepts from FL mapped to C++ for our
Implementation

The Standard Template Library (STL; Musser and Saini, 2001) is a C++-based
generic library of container classes, algorithms, and iterators that are heavily
parameterized through templates. Templates allow a generic component to take
type T, where T can be replaced with the actual type. As a result the operations
and element manipulations are identical regardless of the type of component,
thereby facilitating a way to reuse source code. C++ provides two kinds of
templates: class templates and function templates. Function templates are used
to write generic functions that can be used with arbitrary types, whereas class
templates are usually used as adaptive2 storage containers. In order to mimic
the advantages of FL languages offered by some key concepts like polymorphic
types, HoF, and partial applications, we implement similar facilities in C++

using STL skeletons. In the following subsections, these functional concepts
and their implementation using C++ are discussed.

4.1 Polymorphic Types

Polymorphism is a type discipline that allows one to write functions that can
act on values of multiple types in a uniform way. C++ supports parametric
polymorphism by means of templates. A template definition consists of a list
of type variables, followed by the definition of a function, a class member
function, or a class. Here is an example of a function template to compute the
sum of two values:

1 template <typename T> T sum(T a, T b) { return a + b; }

where T is the placeholder for any built-in or user-defined C++ type. The sub-
stitution with concrete types is not transparent to the user. The different in-
stances of sum are distinguished by the overloading mechanism of C++. For
example, if the user passes two integer values to sum, the compiler
automatically instantiates int sum(int, int). For a user-defined type, the
+ operator needs to be defined.

2reusable and efficient
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4.2 Higher-Order Functions

HOFs (Okasaki, 1992) are functions that take functions as arguments and/or
return functions as result. Even though the term higher-order function is from
the FL community, C++ STL also contains many examples of HOFs (e.g.,
for_each, transform; Musser and Saini, 2001). HOFs are implemented in
C++ using function templates and the ability to overload the function call op-
erator (operator()). An example of an HOF is shown below where the unary
function f takes a value of type x as argument and applies f to x once:

1 template <typename OPR, typename ARG> ARG apply(OPR f, ARG x)
2 { return f(x); }

OPR is the placeholder for arbitrary C++ types that support the function call
syntax such as pointers to functions and classes that overload the function call
operator:

1 template <typename T>
2 struct Myfunc { T operator() (T c) { return c + c; } };

The overloaded operator() permits objects of type Myfunc3 to be used as if
they were ordinary C++ functions. Such objects are called functors or func-
tional objects (Kuchën and Striegnitz, 2002).

4.3 Partial Application

Passing less than n arguments to an n-ary function is called partial applica-
tion. Partial application (Okasaki, 1992) semantically means binding the first
argument of an n-ary function to some fixed value. In C++, support for par-
tial application is limited to binary functions using the std::bind1st and
std::bind2nd constructs. To partially apply a function using these constructs,
the user must create a wrapper class for the ordinary C++ function or use
the std::ptr_fun adaptor that automatically generates an appropriate object.
Consider a binary C++ function float add(float a, float b), which re-
turns a + b, using the bind1st and ptr_fun, we partially apply add to 2.0
as shown below:

1 std::bind1st( std::ptr_fun(add), 2.0 );

The result of std::bind1st is a functional object that behaves like a unary
function which takes a single float as argument and returns the value of the
argument incremented by 2.0. For example, instantiating the following will
return 12.2:

1 std::bind1st( std::ptr_fun(add), 2.0 ) (10.2);

3class can be used as an equivalent for struct, except that all members are private by default
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The std::bind2nd construct can be used similarly to bind the second
argument of a binary function. The limitation of partial bind to binary func-
tion is overcome with the Boost library (Abrahams and Gurtovoy, 2004) that
provides the boost::bind construct, which is a generalization of the stan-
dard functions std::bind1st and std::bind2nd. The bind construct can
handle functions with more than two arguments, and its argument substitution
mechanism is more general:

1 boost::bind(f, _1, _2, _3)(x, y, z); // f(x,y,z);

C++ offers many features that can be tailored toward the implementation
of functional idioms. One problem with the usage of templates to mimic the
functional idioms is that of code bloat (Musser and Saini, 2001). An alter-
nate approach to this implementation is the use of run-time type information
(RTTI), but the problem is the run-time overhead involved.

Many library-based implementations supporting functional programming in
C++ are available. The Boost library (Abrahams and Gurtovoy, 2004) provides
enhancement to the function object adapters in C++, to support higher-order
programming. FC++ (McNamara and Smaragdakis, 2000) is another library-
based implementation that allows functional programming in C++ with the
reusability benefits of higher-order polymorphic functions.

5. Generic MoCs Formulation in C++

Implementing the function-based formalism of MoCs in C++ brought up the
following concerns: C++ allows passing of functions as arguments to other
functions in the form of function pointers. However, since function pointers
can refer only to existing functions at global or file scope, these function ar-
guments cannot capture local environments.4 Therefore, we had to model this
type of function closure by enclosing the function inside an object such that the
local environment or parts are captured as data members of the object. This is
possible in C++ because objects in C++ are essentially higher-order records,
that is, records that contain not only values but also functions. This sort of
abstraction brings in type safety since it avoids the need for type-casts or
untyped pointers.5 This abstraction is facilitated through C++ classes or class
templates. We illustrate how we model our process constructors and process
combinators for the UMoC using this abstraction.

4the environment captured by a process
5an untyped pointer points to any data type
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5.1 UMoC++ Framework

In this section, we briefly discuss the implementation of the UMoC in C++.
Signals are defined as generic lists, which allows a signal to be of polymorphic
type. To facilitate this in C++, we model signals as type std::vector<T>,
where the placeholder T will be replaced by the actual type. Therefore, a signal
is a vector of elements of type T as shown below:

1 /* Definition of a signal */
2 template <class T> class signalstruct
3 {
4 public:
5 signalstruct();
6 signalstruct();
7 /* Define Accessory functions */
8 private:
9 vector <T> signal;

10 };

We also model the different signal manipulators as function templates that
take an input of type signalstruct<T> and the other input parameters and
generate an output of type T or signalstruct<T>.

5.2 Process Constructors

We define a set of process constructors that have varied functionalities; some
with internal state, some with a single input and output, and some with several
inputs and several outputs. The parameters of a process constructor range from
an initial state, a next-state function, output encoding function, to partitioning
functions for different inputs and outputs. As a result of this varied type of
parameters, we use the class template–based abstraction to built objects that
hold the local environment for a specific constructor.

The Mealy-based process constructor has been implemented as shown in
Listing 7.2. It is a function template that takes two arguments of type
MealyObj and signalstruct<SigType> and returns a value of type
signalstruct<SigType>. The first argument is an object that captures the
environment of Mealy-based process. This class encapsulates an initial state
and three member functions, which are as follows: (i) pfn determines the
number of events handled during an evaluation cycle, from the current state
of the process; (ii) nfn, when given the current state of the system and the
input subsequence, calculates the next state of the system; and (iii) ofn is the
output-encoding function that produces an output based on the current state
and the input subsequence. Therefore, the mealyU function template, given an
Mealy-based object and an input signal, produces an output and a transition of
the system to the next state.
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Listing 7.2 Mealy-based process constructor in C++

1 /* Mealy-based Process Constructor */
2 template <class MealyObj, class SigType>
3 signalstruct <SigType> mealyU (MealyObj obj, signalstruct ↵

<SigType> isig)
4 {
5 signalstruct <SigType> osig;
6 if(isig.empty() == true)
7 return osig;
8 else {
9 MealyObj tobj;

10 osig = obj.ofn(obj.w, take(isig, obj.pfn(obj.w)));
11 tobj.w = obj.nfn(obj.w, take(isig, obj.pfn(obj.w)));
12 osig = append(osig, mealyU(tobj, drop(isig, ↵

obj.pfn(obj.w))));
13 return osig;
14 }
15 }

The class template–based abstraction allows us to maintain a uniform struc-
ture6 for the different process constructors, which is essential while defining
the process composition operators as explained in the next subsection.

5.3 Process Combinators

Process combinators are operators that define the composition of different
process constructors. We describe the implementation of the sequential and
feedback combinator. Notice that the class template based–abstraction results
in process constructors having similar structure, which facilitates the imple-
mentation of generic combinators. This abstraction allows the combinator to
take any two processes and an input and define their composition, where the
processes passed are objects that encapsulate their functionality.

The implementation of the sequential combinator is shown in Listing 7.3. It
is a function template that takes four parameters. The first parameter of type
CombType describes a type abstraction for the generic processes, whereas the
second parameter of type ProcObj1 and third parameter of type ProcObj2
are process type objects and the fourth parameter of type SigType is an in-
put signal. The first parameter is an encapsulation of two function templates
process1 and process2. The output of the instantiation of process1, with
the object of type ProcObj1 and the input signal, is given as input to process2

6w. r. t. number of arguments
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Listing 7.3 Sequential composition

1 /* Sequential Composition of Processes */
2 template <class CombType, class ProcObj1, class ProcObj2, ↵

class SigType>
3 SigType seqcomp (CombType comb, ProcObj1 obj1, ProcObj2 obj2, ↵

SigType isig)
4 {
5 SigType osig;
6 osig = comb.process2 (obj2, comb.process1 (obj1, isig));
7 return osig;
8 }

along with the object of type ProcObj2 to return a signal that is the output of
the sequential composition.

The implementation of the feedback combinator is shown in Mathaikutty
et al. (2005). It is a function template that takes four parameters similar to
the sequential combinator, except that the feedback composition is done on a
single process and it takes two input signals. The second input signal is the
fixed-point signal generated through the fixed-point operator. The fixed-point
signal is computed on an event basis, until the fixed-pointing terminates. At
each evaluation, the current fixed-point signal depends on the input signal and
all the previously generated fixed-point values.

6. Example of Models in our Framework

We model an adaptive amplifier and a power state machine to demonstrate
the expressiveness of the framework. The implementations for these models
are provided in Mathaikutty et al. (2005). We illustrate the genericness of the
UMoC++ framework by describing how to model Petri net, Synchronous data
flow (SDF), and FSM.

6.1 Petri Net Style Modeling Using UMoC++

The Petri net style modeling is untimed by nature; therefore, we illustrate how
analysis and design techniques can be applied to UMoC++ to allow Petri net
modeling. A signature of a process is expressed as a pair of sets (I,O), where I
contains the partitioning functions for the input and O contains the partitioning
functions for the outputs. For a process network to be mapped to a Petri net, all
the processes it is composed of should have constant signatures.

Consider the amplifier process composition shown in Mathaikutty et al.
(2005). Let us assume that all processes have a constant signature as shown
in Figure 7.2a, then this PN can be converted into a Petri net by representing
each process by a transition and each signal by a place as shown in Figure
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Fig. 7.2 Mapping of the Amplifier PN to a Petri net

7.2b. This mapping is an abstraction of the original process because the data
is abstracted into indistinguishable tokens. Consider Figure 7.2, the process
signatures (Ii,Oi) for process Pi, 0 ≤ i ≤ 5 are as follows:

I0 = {} I1 = {k1, k11} I2 = {k3} I3 = {k7} I4 = {k9} I5 = {k6}
O0 = {k0} O1 = {k2} O2 = {k4, k5} O3 = {k8} O4 = {k10} O5 = {}

with all k j being constant natural numbers. Each transition in the Petri net rep-
resents an input or output of a process, and the weight of a transition is the
corresponding constant partitioning function. The restriction on the process
signatures can be relaxed to allow processes like state machines that have a
rational match at each state7 such that the ratio can be used to compute the
weight of the transitions. Furthermore, these design techniques can be auto-
mated since there is a unique mapping from the UMoC++ framework to Petri
net.

6.2 Synchronous Data Flow Style Modeling Using
UMoC++

The SDF is also untimed and it is a specialization of our generic UMoC. In or-
der to allow SDF style modeling, our UMoC is restricted to where all processes
define only constant partitions for all their input and output signals. Therefore,
all process signatures are constant. In Section 6.1, we had shown the mapping
of PNs to Petri nets. A similar mapping can be used to derive the incidence
matrix of the SDF graph, which in turn is used to compute schedules and max-
imum buffer sizes as explained in Jantsch (2003).

Modeling an FSM in UMoC requires using either the Mealy-based or the
Moore-based process constructor. In order to illustrate the FSM capability of
the UMoC, we model a fairly complex example of a power state machine as a
Moore-based process shown in Mathaikutty et al. (2005).

7the ratio of Iq/Oq at state q is a constant
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Fig. 7.3 An FIR Filter cosimulated using UMoC++ and SystemC

6.3 Cosimulation With SystemC

In SystemC, a process wraps the functionality that has to be scheduled to run
through a discrete-event simulator; therefore, it results in slower simulation.
The UMoC++ framework is independent of any simulator, and an immediate
advantage is the ability to have an interoperable design approach with C/C++-
based SLDLs such as SpecC and SystemC.

The relative ease to cosimulate with the UMoC++ framework is illustrated
through an example of a finite impulse response (FIR) filter as shown in Figure
7.3, where the stimulus and display components are simulated using SystemC,
and the computational component that convolutes the input and the FIR coef-
ficient is modeled in UMoC++. Since the computation block has to commu-
nicate with the stimulus and display block, we built a wrapper for the com-
putation block using SystemC. The computation block is modeled as a se-
quential composition of a zip-based process that groups the shifted input from
the stimulus and the FIR coefficients and a map-based process that convolutes
them. Furthermore, this interoperability positions UMoC++ as a framework
that facilitates IP-based design integration.

7. Conclusion

We have presented a type-safe framework for modeling in the UMoC using
C++, which supports a higher-order functional programming style. As a result,
we get the advantages of FL in our imperative-based implementation and also
remove the problems associated with efficiency and reusability. The framework
is implemented entirely using C++ class templates. Limitation of this frame-
work is that we provide minimal error-checking capability; therefore, the user
is required to follow a strict discipline while modeling. Furthermore, during
modeling the user is required to use only the generic process constructors and
combinators and limit the usage of C++, since one immediate advantage of
our framework is its extensibility. In this chapter, we primarily focus on how
the foundation for the function-based semantics of generic MoC was built in
an imperative language. Furthermore, we implemented the UMoC++ frame-
work, which is a formulation of the UMoC. We illustrate through a set of
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examples, the relative ease to model using our UMoC and its generic property
that accounts for its expressibility and extensibility. We also briefly describe
the mapping of models built in UMoC++ to many untimed variants, such as
Petri net, SDF, and provide guidelines for an FSM style modeling. The other
generic MoCs such as perfectly synchronous, clocked synchronous, and timed
can be implemented using the formulation described in this chapter, which is
the context of our future work.
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III

Analog, Mixed-Signal, and
Heterogeneous System Design



Introduction

The design of analog and mixed-signal (AMS) systems has—unfortunately—
never been done in a really systematic way. Until now, analog design is done
rather bottom up and in an intuitive way. Therefore, the design of analog cir-
cuits has often been compared with “black magic”. The lack of methodology
was—and is—acceptable for small, stand-alone analog circuits that are func-
tionally well separated from digital components.

Today’s AMS systems no longer fulfil these conditions. Therefore, AMS
designers face a number of challenges.

The shrinking of analog circuits causes increasing process variations.
This requires a more complete and more systematic verification,
especially applying Monte Carlo Simulation, corner-case analysis, and
regression tests. However, for reliable results many simulation runs (100–
100,000) are needed. Considering the run time for numerical analog sim-
ulation, new methods like importance sampling, symbolic analysis, or
even formal verification might become interesting complements.

Analog circuits are more closely coupled and functionally linked with
digital hardware or even software. Therefore, design and verification re-
quires an overall system simulation. Despite attractive languages and
simulators like very high speed integrated circuit (VHSIC) hardware
description language (VHDL)-AMS or cosimulation environments, the
mixed-domain and mixed-level modeling and simulation are still an
issue and require especially appropriate modeling and verification meth-
odologies.

Many requirements (very low voltage, very low power, etc.) are hard to
meet by the well-known analog circuit topologies. Available tools sup-
port the dimensioning and optimization of given topologies, but lack
support for the more creative topology design. This task requires expert
and application knowledge. Analog topology synthesis might solve the
problem in the future. Today’s designers must reuse the topologies once
designed and adapt them to new requirements.
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Using “black magic” from SPICE days for the design of AMS systems
results in low design productivity and frequent redesigns. However, the ap-
plication of new tools and languages can also be a challenge without the right
knowledge, methodology, and design flow. The following part of the book con-
tains some chapters that describe successful application of methodologies and
tools. They give the reader valuable hints for solving the issues mentioned ear-
lier.

Chapter 8 deals with the abstract modeling of micro mechanical components
for system-level verification. Here, a behavioral model is created by reduced-
order modeling methods and formulated in the language VHDL-AMS. This
permits an overall system simulation with—despite the complexity—sufficient
simulation speed.

Chapter 9 introduces a new kind of analysis that goes beyond simulation:
semisymbolic simulation. Although not yet available in commercial simula-
tors, the methods described seem to be an appropriate approach to deal with
increasing process variations and to get better verification coverage.

Chapter 10 entitled “SystemC-WMS: mixed-signal simulation based on wave
exchanges” introduces an extension to SystemC—originally intended for system-
level analysis of hardware/software systems. This extension allows
designers to include analog circuits into the system-level simulation, model-
ing the overall system in a single language—SystemC-WMS.

Besides the cosimulation based on specific languages, simulator coupling
is an important issue. For simulator coupling, especially the interfaces bet-
ween different languages and simulators require a lot of effort. Chapter 11,
“Automatic generation of a coverification platform”, gives an overview of an
approach that supports the automatic generation of interfaces.

Finally, the application of Universal markup language (UML) for reuse of
analog circuits is introduced in Chapter 12, “UML/XML-based approach to
hierarchical AMS synthesis”.

Christoph Grimm
University of Hannover

Hannover, Germany, February 2006
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Abstract In this chapter, the creation of “virtual prototypes” of complex micro-electro-
mechanical transducers is presented. Creating these behavioural models can be
partially automatised using a reduced-order modelling (ROM) method. It uses
modal decomposition to represent the movement of flexible structures. Shape
functions model the energy conservation and full coupling between the different
physical domains. Both modal shapes and shape functions for strain
energy and lumped capacitances of the structure can be derived in a highly auto-
mated way from a detailed 3D finite element (FE) model available from earlier
design stages. Separating the generation of the ROM from the same FE model
but for different operation directions circumvents the current limitations of the
used ROM method. These submodels are integrated into a full model of the trans-
ducer. VHDL-AMS system is used to describe additional strong coupling effects
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between the different operation directions, which are not considered by the used
ROM method itself. The application of this methodology on a commercially
available yaw rate sensor as an example for a complex transducer demonstrates
the practical suitability of this approach.

Keywords: micro-electro-mechanical systems (MEMS); surface micromachined (SMM)
transducers; finite element method (FEM); model extraction; reduced-order mod-
elling (ROM); modal decomposition; VHDL-AMS; geometry-, circuit-, and
system-level simulation.

1. Introduction

Micro-electro-mechanical systems (MEMS) are characterised by a strong and
non-linear interaction between various physical domains. The consideration of
only one domain during the design process is therefore not sufficient (Mehner,
2000). The physics of microsystems can be described using partial differential
equations. These can be solved numerically with boundary or finite elements
methods (BEM, FEM). This approach leads to very detailed models, which are
used to determine the mechanical properties of flexible microstructures and
the electrostatic field distribution between their electrodes, i.e., to support the
design process of the different MEMS components. However, these models
are, in terms of memory consumption and computing time, too expensive to
be used for the simulation of the entire microsystem. Thus feedback effects of
driving and sensing circuits cannot be analysed at the detailed geometry level.

The whole system can only be described at higher levels of abstraction,
like the circuit and system levels. On these levels, only the degrees of free-
dom (DOFs) at the interfaces (ports) of the different components are of inter-
est. The derivation of simplified and verified behavioural models is therefore
necessary. Their manual creation is time-consuming, error-prone, and often
implies strong simplifications (only first and second DOFs). One better solu-
tion is the automatised generation of these models by extracting the necessary
informations from detailed FE models that are already available from earlier
design steps. This can be done using reduced-order modelling (ROM) meth-
ods that were in scope of several research efforts in the field of MEMS over
the past few years (Bechtold et al., 2003; Chen et al., 2004; Gabbay et al.,
2000; Mehner et al., 2000; Reitz et al., 2004; Rudnyi and Korvink, 2002,
Rudnyi et al., 2004). These methods focus on various fields of application with
different interdomain coupling effects.

One of these ROM methods, developed by Gabbay et al. was evaluated re-
garding its applicability to complex MEMS that use electrostatic fields to ex-
cite the mechanical structure and to detect its movements. It was successfully
used to create a fully coupled behavioural model of a commercially available
micromechanical yaw rate sensor. A new approach is presented to circumvent
the limitation of the chosen ROM method to structures moving primarily in
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one dominant direction. Separate models for the different operating directions
are generated from the same FE model and afterwards coupled using VHDL-
AMS system to manually model the missing effects. The modelling flow is
presented as well as a methodology to organise the models for efficient future
maintenance and extension.

2. Theory of the Reduced-Order Modelling Method

The chosen ROM method (Bennini et al., 2001b) uses a weighted sum of n
mode shapes (modal amplitudes qi, eigenvectors ϕi(x, y, z)) of the mechanical
structure to represent its deflection u:

u(t, x, y, z) ≈ ueq +

n∑

i=1

qi(t) ·ϕi(x, y, z) (8.1)

where ueq is the initial displacement caused by prestress in equilibrium state.
Especially for MEMS, a few eigenmodes are usually enough to accurately
describe the dynamic response of the structure (Bennini et al., 2001a). The
strain energy Wmech that is stored within the structure due to deflection or
prestress is expressed as a function of the modal amplitudes qi. Geometrical
non-linearities and stress-stiffening are considered by calculating the modal
stiffness ki j from the second derivatives of the strain energy with respect to the
modal amplitudes:

ki j =
∂2Wmech

∂qi ∂q j
. (8.2)

The modal masses mi and modal damping constants di are calculated from
the eigenfrequencies ωi of the modes i and the entries of the modal stiffness
matrix ki j:

mi =
kii

ω2
i

(8.3)

di = 2ξiωi · mi (8.4)

where ξi is the modal damping ratio of mode i. The modal damping ratios rep-
resent the fluidic damping of the structure and can be obtained from analytical
calculations (squeeze or slide film damping), numerical fluid dynamic simula-
tions, or measurements. The deflection of the mechanical structure changes the
capacitances between the electrodes in a non-linear manner. The capacitance
Cop between the electrodes o and p is calculated as a function of the modal
amplitudes and therefore provides the coupling between the mechanical and
electrical quantities. The displacement current Io through the electrode o can
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be calculated from the stored charge:

Io =
dQo

dt
=

∑

p

d
[
Cop(q1, . . . , qn)(Vo − Vp)

]

dt
(8.5)

where Vo and Vp are the voltages at the electrodes. The governing equation
describing the whole electrostatically actuated micromechanical structure in
terms of modal coordinates is:

FM,i = miq̈i + diq̇i +
∂Wmech(q1, . . . , qn)

∂qi

−1
2

∑

r

∂C(r)
op(q1, . . . , qn)

∂qi
(Vo − Vp)2 +

∑

j

ϕi jλ j (8.6)

where FM,i is the modal force and r is the number of capacitances involved
between the multiple electrodes. The λ j are the reaction forces to the external
forces FN, j = −λ j at the master nodes j of the FE mesh that remain accessible
in the behavioural model.

The ROM consists of Equations 8.1, 8.5, and 8.6, which fully describe the
static and dynamic non-linear behaviour of the flexible structure and its non-
linear coupling to the electrostatic domain. All missing parameters of the ROM
can be derived from a detailed, fully coupled FE model of the MEMS compo-
nent in a highly automated manner. The eigenvectors ϕi and eigenfrequencies
ωi of the considered modes i are taken from the modal analysis of the me-
chanical structure. The shape function of the strain energy Wmech(qi) as well as
the functions of the capacitances Cop(qi) are expressed in a polynomial form.
They are fitted to a set of sample points of strain energy and capacitances ex-
tracted from a series of static analyses of the FE model, in which the structure
is deflected to various linear combinations of its mode shapes. The ROM-Tool
available in ANSYS/Multiphysics since Release 7 is one implementation of
this method (ANSYS, 2002).

3. Micromechanical Yaw Rate Sensor

The yaw rate sensor (Figure 8.1) developed by Robert Bosch GmbH is manu-
factured in a surface micromachining (SMM) process (Funk, 1998). The me-
chanical part of the sensor consists of a flat polysilicon structure. This rotor
is fixed to the centre by an X-shaped spring and thus movable around all three
axes of the coordinate system. Comb-drive structures, which are placed in pairs
at its perimeter, excite and detect the in-plane oscillation of the rotor around
the vertical z-axis. If the whole chip with the oscillating rotor is rotated around
the x-axis with the angular rate ωi,x, the law of the conservation of the angular
momentum causes a torque MD,y around the y-axis:

MD,y =
(
Jz + Jy − Jx

)
ωi,xωr,z (8.7)
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(a) Principle

(b) SEM photography

Fig. 8.1 Yaw rate sensor manufactured by Robert Bosch GmbH

where Jx, Jy, and Jz are the moments of inertia of the rotor around the axes
of the coordinate system and ωr,z is the current angular speed of the rotor. The
rotor starts a tilting oscillation around the y-axis with an amplitude proportional
to the angular rate ωi,x. This out-of-plane movement of the rotor is detected
electrostatically using the electrodes below the structure.
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4. Preparation of the FE Models for the ROM Method

To apply the described ROM method, detailed FE models of the yaw rate
sensor are needed, which model the structural as well as the electrostatic do-
mains. To that end, the structural model available from earlier design steps of
the device has to be extended to describe also the capacitances between the
electrodes. To circumvent the limitation of the ROM method to systems mov-
ing primarily in one direction, two separate ROMs have to be generated for
the yaw rate sensor: one representing the in-plane movement of the rotor and
the other the out-of-plane movement. The two models will be coupled on the
circuit level. To limit the model size and conserve simulation time during the
generation pass, the FE models should contain only the details necessary for
the particular ROM. Hence, two separate coupled FE models of the sensor are
created from the same underlying structural model: one modelling the comb-
drive capacitances to excite and detect the in-plane movement of the rotor and
the other modelling the capacitances of the rotor to the electrodes below the
structure used to detect its out-of-plane movement. This approach also over-
comes some implementation-related limitations of the ANSYS ROM-Tool re-
garding the complexity of the models, especially the number of considered
modes (≤9), conductors (≤5), and master nodes (≤10), that can be transformed
into ROMs.

To model the capacitances of the comb-drive structures and the capaci-
tances between the movable structure and the subjacent electrodes, 1D electro-
mechanical transducer elements of the type TRANS126 were used (ANSYS,
2002). The nodes of these lumped elements have structural DOFs (displace-
ment and force) as well as electrical DOFs (voltage and current) to fully de-
scribe the interaction between the structural and electrostatic domain in their
proximity. The capacitance-displacement functions of the transducer elements
are derived from an analytical approach using the parallel-plate capacitor as-
sumption. The calculated characteristic curves can be corrected to account for
the stray field using the results obtained from electrostatic field simulations
with detailed cutaway FE models of one comb finger and a cross-shaped sec-
tion of the moving SMM structure. In order to describe the total capacitance
between two electrodes many transducer elements have to be connected in par-
allel, each describing one section of the space between the electrodes. In case
of the comb-drive structures and the capacitances below the rotor, this results
in one element at the end of each comb finger and at each cross section, re-
spectively. Figure 8.2 illustrates all the steps necessary to prepare the coupled
FE models for the ROM generation pass.

5. Generation of the Reduced-Order Behavioural Models

The prepared coupled FE models of the yaw rate sensor can now be simplified
to the reduced-order behavioural models using the ANSYS ROM-Tool. This
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Fig. 8.2 Steps to prepare the coupled FE models of the yaw rate sensor for the generation of
its in-plane and out-of-plane ROMs: (a) single-domain FE models, (b) preparation of
the coupled FE models, and (c) electromechanically coupled FE models

is done during the generation pass, which consists of a series of steps that are
described in detail in ANSYS (2002) and Mähne (2004). Figure 8.3 illustrates
the most important steps for the generation of the in-plane and out-of-plane
ROMs of the sensor.

First the tool is initialised by establishing the main properties of the ROM:
name of the FE model and its dimensionality (2D or 3D), working direction
of the structure, capacitances, and master nodes that should be retained in the
ROM. Then a static test load is applied to the FE model to bring it in a typical
deflection state that will be used to select the right modes for the ROM. The dis-
placement of the structure through the test load is extracted from the FE model
at the nodes that are selected to represent the neutral plane of the structure
and stored in a file for later use. With a modal analysis of the structure, its first
nine eigenfrequencies and mode shapes (represented by the eigenvectors of the
nodes in the neutral plane and of the master nodes) are extracted. After these
preparatory analyses, the modes for the ROM are selected automatically by
calculating the contribution factor of each mode shape to resemble as close as
possible the deflection state of the structure through the test load (Figure 8.3).
The first eigenmode (oscillation around the z-axis) is identified as the only
one contributing to the in-plane movement of the rotor and therefore selected



142 Torsten Mähne et al.

(a) In-plane model

(b) Out-of-plane model

Fig. 8.3 Steps to generate the reduced-order models of the yaw rate sensor
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for the in-plane ROM. All extracted higher eigenmodes contribute to the out-
of-plane movement of the rotor, but the calculated contribution factors show
that the lower eigenmodes are dominating. These are the modes no. 2 and 3
(tilting oscillation around the y- and x-axes) as well as the modes no. 4 and
5 (butterfly-shaped oscillation of higher order around the y- and x-axes). Due
to a bug in the VHDL-AMS export function of ANSYS Releases ≤ 8.1, only
three modes can currently be considered in the ROMs. For this reason only
the modes no. 2, 3, and 4 are selected for the out-of-plane ROM. This does not
influence the modelling of the sensor effect (conservation of the
angular momentum) itself, but influences the modelling of higher-order in-
terfering effects like prestress and direct structural coupling between the dif-
ferent operation directions. The most time-consuming step is the following
sampling pass where the strain energy and capacitances of the FE model are
extracted for certain compositions of the scaled mode shapes. The sample rou-
tine had to be reimplemented to allow the extraction of the capacitances from
the TRANS126 elements. To this set of sample points the polynomials for the
strain energy and capacitances are fitted. Type and order of the polynomials
can be chosen individually for each shape function. The fitting step concludes
the generation of the ROMs. They can be used afterwards within ANSYS
(ROM144 element) or exported to an equivalent VHDL-AMS behavioural model
(Schlegel et al., 2005).

The complete generation pass is automatised using APDL scripts so that
the generation of the in-plane and out-of-plane ROMs can be run overnight in
batch-mode. This is necessary since each mode was captured using 11 samples
giving just 11 static analyses for the in-plane ROM but 113 = 1331 static
analyses for the out-of-plane ROM. Since each static analysis takes roughly
1 min on recent PCs (P4 Xeon, 2.8 GHz, 4 GB RAM, Linux) both ROMs are
generated within 23 h of CPU time.

6. Integration of the Reduced-Order Behavioural Models

The exported VHDL-AMS description of the ROMs are stored in a number
of packages and entities that follow a fixed naming scheme (Mehner, 2004).
Therefore, they have to be separated into different design libraries. Each ROM
defines a package initial that contains its characteristic constants, namely,
modal masses, modal damping ratios, and eigenvectors of the master nodes.
The polynomials for the strain energy Wmech(qi, q j, qk) and the capacitances
Cop(qi, q j, qk) are defined in separate packages called s ams i jk and
caop ams i jk, respectively, each defining the type of the particular polyno-
mial, a flag if it should be inverted; the order of the polynomials with respect
to the modal amplitudes qi, q j, and qk; scaling factors for the functions to
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Fig. 8.4 Structure of the yaw rate sensor full model with the in-plane and out-of-plane ROMs

overcome numerical problems; the number of polynomial coefficients; and the
coefficients themselves.

The entity transducer (the ROM144 functional blocks in Figure 8.4) de-
scribes the interface of the ROM. Each DOF of the ROM144 element is mapped
to one of the across or through quantities of the terminals of the entity. At the
modal terminals the modal amplitude qi and modal force FM,i are available for
the chosen modes. The master node terminals provide the displacement ui and
the inserted forces FN,i at these nodes. At the electrical terminals the voltages
Vi and currents Ii are available for the electrodes of the system.

The architecture behav of this entity implements the complete behavioural
model of the ROM. It declares all across and through quantities for the termi-
nals of the entity. It also defines a function spoly_calc(), which calculates
the strain energy and capacitances as well as their first derivatives with respect
to the modal amplitudes qi, q j, and qk using the information of the polynomials
defined in the packages s ams i jk and caop ams i jk, respectively. The ordi-
nary differential equations (Equations 8.1, 8.5, and 8.6) that describe the ROM
are directly included in the architecture body as simultaneous statements using
the ’dot attribute to describe the derivatives with respect to the time.

An interesting detail of the ROMs is the use of an own system of units called
µMKSV based on µm, kg, s, and V. Its use is recommended for
ANSYS to overcome numerical problems in MEMS FE models (ANSYS,
2002). Since the ROM method does not change the system of units of a model it
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has to be declared for the VHDL-AMS models too. The use of the IEEE stan-
dard packages for electrical (ieee.electrical_systems) and mechanical
systems (ieee.mechanical_systems) is not possible since they are based
on the SI system of units that is used for most other models on the circuit and
system level. Hence, a new package µMKSV has been created that declares all
important mechanical and electrical quantities as subtypes of real using their
own tolerance groups. The attributes unit and symbol are defined for each
subtype naming their unit in a long and short form. These attributes document
the declarations and are used for presentational purposes such as naming the
axes in the signal plots of the simulator. The declared subtypes and natures
can be named the same as their counterparts in the IEEE packages, allowing
easy switching between the system of units, but only if the global name han-
dling is implemented correctly within the VHDL-AMS simulation environ-
ment. Otherwise, additional prefixes have to be used to prevent name clashes.
Converter entities were implemented as an interface between the µMKSV and
SI systems of units for the electrical (voltage, current) and mechanical quanti-
ties (displacement, force). They convert the across and through quantities
between the terminals for the different system of units so that Kirchhoff’s law
remains valid.

To describe the complete yaw rate sensor, the two generated ROMs of the
structure have to be coupled to model the conservation of the angular mo-
mentum and a direct structural coupling between the operating directions of
the sensor (Figure 8.4). The interface to this new entity representing the com-
plete sensor consists of the electrical terminals that correspond to the pads on
the sensor chip and three quantity input ports for the chip yaw rates ωi,x, ωi,y,
and ωi,z around the x-, y-, and z-axes, respectively. The coupling is done in
the architecture behavioural using the VHDL-AMS support for combining
the structural and behavioural descriptions in a single architecture. One insta-
nce of the in-plane and one instance of the out-of-plane ROMs are created and
their electrical terminals are connected through the system of units converter
entities to the corresponding external electrical terminals. Since the external
terminals of the sensor model use the declarations from ieee.electrical_
systems, it is fully compatible to other models of electrical components that
use the SI system of units.

To model the conservation of the angular momentum, the state of motion of
the rotor with respect to the sensor chip as well as the one of the sensor chip
itself with respect to an inertial coordinate system have to be known. The state
of motion of the rotor is calculated from the first three modal amplitudes. These
are directly proportional to the deflection angels σr,z, σr,y, and σr,x of the rotor
around the z-, y-, and x-axes, respectively. The first and second derivatives of
the deflection angles with respect to time give the current angular velocities
ωr,z, ωr,y, ωr,x and angular accelerations αr,z, αr,y, αr,x. The state of motion of
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the sensor chip itself is calculated from the yaw rate input signals by integrat-
ing and deriving them with respect to time to get the current rotation angles
σi,x, σi,y, σi,z and angular accelerations αi,x, αi,y, αi,z. With the known state of
motion of the rotor and the sensor chip, the torques Mx, My, and Mz can be
calculated to conserve the angular momentum (Funk, 1998; Mähne, 2004):

Mx = −
[
Jx

(
αi,x + ωi,yωr,z − ωi,zωr,y

)
+

(
ωi,y + ωr,y

) (
ωi,z + ωr,z

) (
Jz − Jy

)]

My = −
[
Jy

(
αi,y + ωi,zωr,x − ωi,xωr,z

)
+

(
ωi,z + ωr,z

) (
ωi,x + ωr,x

)
(Jx − Jz)

]

Mz = −
[
Jz

(
αi,z + ωi,xωr,y − ωi,yωr,x

)
+

(
ωi,x + ωr,x

) (
ωi,y + ωr,y

) (
Jy − Jx

)]

(8.8)

The torques are applied to the ROMs as force pairs at facing master nodes.
The known deflection angles of the rotor can also be used to model the di-
rect structural coupling between the in-plane and out-of-plane motion due to
the non-rectangular sections of the beam springs supporting the rotor. To re-
semble the out-of-plane deflection of the rotor, forces FQ,z,i(σr,z) are applied at
the master nodes of the out-of-plane ROM. The relationships between forces
and the in-plane displacement angle σr,z are derived from the results of a series
of static analyses of the structural FE model, to which polynomials are fitted.
The implementation details of this effect are encapsulated in their own entity
so that they can be changed easily to adapt the model, e.g., to changes in the
manufacturing process. The created sensor model could easily be extended to
include further effects such as cross talk between the electrical signal paths due
to parasitic capacitances and resistors.

7. Simulation of the Complete Sensor System

The created full model of the yaw rate sensor can be integrated in a test bench
of the complete sensor system for verification (Figure 8.5). The test bench
connects simple structural models of the drive amplifier, detection circuit, and
amplitude gain controller (AGC) to the sensor model. Although the models
of the electrical components implement just their ideal behaviour, they could
easily be extended to be more realistic by adding a new architecture.

The created models of the sensor systems set high demands to the used
VHDL-AMS simulator regarding its IEEE standard conformity and the quality
of its solvers. This is a general problem when simulating MEMS and other mul-
tidomain system that are common, e.g., in the automotive sector (Haase, 2003;
Schwarz, 2002). Because of the coupling of different domains very
different time constants appear in the system creating stiff differential equa-
tions, which couple quantities of very different orders of magnitude. An addi-
tional problem is the need for integration of models using different systems of
units as discussed in Section 6 creating the necessity of support for tolerance
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Fig. 8.5 Structure of the test bench for the yaw rate sensor full model

groups. For non-linear systems with discontinuities in their description, like the
switch discussed later, the support for the break statement to reinitialise the
operating point is very important. Only the simulator SMASH of Dolphin Inte-
gration met all these demands and its version 5.2.1 was used for the analysis of
the created model (Dolphin, 2003). Operating point and small signal analysis
of the ROMs and the complete yaw rate sensor model, which were exposed
to certain static and small signal loads, showed that all important mechanical
and electrical characteristic quantities (stiffness, masses, moments of inertia,
eigenfrequencies, quality factors, capacitances) are very close (relative error
≤6% ) to the values of the coupled FE model and correspond well with the
specifications of the real sensor element.

The drive amplifier uses a variable gain to amplify the detected drive sig-
nal and couples it capacitively on the drive combs. This signal excites the in-
plane motion of the rotor. The movement is detected by measuring the dis-
placement current at the detection combs, which is converted to a voltage and
amplified to give the drive signal that is fed back to the input of the drive am-
plifier. The closed feedback loop leads to a resonant self-excitation of the in-
plane movement that is stabilised using the AGC. It consists of two controllers:
a P controller with a high proportional gain used to speed up the start-up phase
and a PI controller with a lower proportional gain but with a reset time. The
control is switched when the amplitude reaches a threshold so that the in-plane
amplitude can stabilise on the desired value. The switch models need support
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Fig. 8.6 Simulated self-excitation of the yaw rate sensor

for VHDL-AMS break statement within the used simulator to allow proper
initialisation of the new operating point of the system. Figure 8.6 shows the
results of the transient analysis of the self-excitation of the in-plane move-
ment of the rotor. The first graph shows the feedback signals at the driving
electrodes, the second one shows the detected in-plane signal, and the third
one shows the amplitude and reference signals at the AGC. The in-plane os-
cillation stabilises on the desired amplitude within 50 ms. After this start-up
phase the sensor is ready for detecting the yaw rate ωi,x. The results show
also a frequency shift of the in-plane movement from the expected 1.487 kHz
(first eigenfrequency of the rotor) to 1.680 kHz due to stress-stiffening of the
X-shaped spring at large in-plane amplitudes and demonstrates the successful
consideration of non-linear mechanical effects by the chosen ROM method.

The yaw rate ωi,x at the input of the sensor causes an out-of-plane move-
ment of the oscillating rotor, which is measured using the displacement cur-
rents at the subjacent detection electrodes. This out-of-plane signal contains the
desired rate signal as well as the quad signal that is caused by the structural
coupling between the in-plane and out-of-plane movement. The signals are
90◦ out of phase so that they can be clearly separated using synchronous am-
plitude demodulation with the drive signal as the demodulation carrier. It also
allows a sign-sensitive detection of ωi,x. The results of the transient analysis
of this rate detection is shown in Figure 8.7 for two cases—one neglecting
the structural coupling between the in-plane and out-of-plane movement and
one considering the structural coupling. The first graph shows the yaw rate test
signals applied to the sensor, the second one shows the drive signal used as
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Fig. 8.7 Simulated rate detection of the yaw rate sensor
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demodulation carrier of the out-of-plane signal in the third graph, the fourth
graph shows the quad signal, which corresponds to the amount of structural
coupling between the in-plane and out-of-plane movement, and the fifth graph
shows the demodulated rate signal. Without structural coupling the rate signal
is the envelope of the detected out-of-plane signal. It also shows the low cross
sensitivity of the sensor against yaw rates other than ωi,x. The small detected
quad signal results from a cross demodulation error. The simulation results for
the second case show that the out-of-plane movement caused by the yaw rate is
much smaller than the much stronger movement caused by the direct structural
coupling between in-plane and out-of-plane movement. However, the rate sig-
nal can still be extracted because of the fixed phase relationship between the
two movements. The remaining offset error could be easily suppressed.

The results (Figures 8.6 and 8.7) agree well with older results published in
Lorenz (1999) and Reitz et al. (2004). The transient simulation of the whole
sensor system including self-excitation and rate detection over a period of
120 ms with a maximum integration step width of 1 µs using SMASH took
approximately 45 min on a recent PC (P4, 2.4 GHz, 512 MB RAM, Windows
2000). The newly created behavioural sensor model can be used to evaluate
different circuit concepts (Funk, 1998; Rocznik, 2004) by creating new archi-
tectures and changing the configuration of the entities for the driving, sensing,
and control circuits or by creating entire new testbenches that integrate the
sensor model.

8. Conclusions

In this chapter, a new approach for creating accurate fully coupled behavioural
models (virtual prototypes) of complex MEMS was presented. A commer-
cially available ROM method was utilised to automatically extract the ver-
ified ROMs from available FE models of the component and VHDL-AMS
to model missing effects. The whole modelling process was outlined using
a micromechanical yaw rate sensor as an example. It was shown how struc-
tural FE models available from earlier design steps can be extended to also
model the coupling to the electrostatic domain and how the ROMs are gen-
erated from these prepared FE models using the ANSYS ROM-Tool. While
the ROM method itself is still under research, the implementation used here
is already useful even though it has limitations. A careful partitioning of the
problem and modelling of the missing coupling effects by hand can circum-
vent most of these limitations. This was demonstrated by generating separate
ROMs for the different moving directions of the yaw rate sensor and their cou-
pling on the circuit level. The modelling of the missing coupling effects can be
done in a very natural way using VHDL-AMS powerful language constructs
for behavioural and structural description. The realised partitioning of the full
yaw rate sensor model offers an easy way to add/change the coupling effects
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between the different ROMs. The created full model of the sensor was included
in a testbench for the complete sensor system adding the circuits for driving,
sensing, and controlling of the movement of the micromechanical element.
Different analyses showed the successful modelling of all important mechan-
ical and electrical properties of the sensor, the self-excitation of the in-plane
movement, the yaw rate detection, and the low cross sensitivity of the sensor.
It was shown that VHDL-AMS is a good choice to model non-linear, discon-
tinuous, and multidomain systems even though their simulation imposes high
demands on the used simulator, which were met only by SMASH for the pre-
sented project. In the future, MEMS will get even more complex so that further
research on ROM methods is required to improve the automation of the model
extraction and extend the coverage of considered effects within the ROM. More
effort is also needed on the tool side to improve the implementation and inte-
gration of the different program systems that are used in the MEMS design
process.

Acknowledgments

The work presented in this chapter was carried out within a diploma thesis
project at the department CR/ARY of Robert Bosch GmbH in close collabora-
tion with the IMOS of Otto-von-Guericke-University Magdeburg.

References

ANSYS (2002) ANSYS 7.1—Coupled-Field Analysis Guide. ANSYS, Inc.

Bechtold, Tamara, Rudnyi, Evgenii B., and Korvink, Jan G. (2003) Automatic
generation of compact electro-thermal models for semiconductor devices.
In: IEICE Transactions on Electronics, E86-C: 459–465.

Bennini, Fouad, Mehner, Jan, and Dötzel, Wolfram (2001a) Computational
methods for reduced order modeling of coupled domain simulations. In:
11th International Conference on Solid-State Sensors and Actuators (Trans-
ducers 01). IEEE, Munich, Germany, pp. 260–263.

Bennini, Fouad, Mehner, Jan, and Dötzel, Wolfram (2001b) A modal
decomposition technique for fast harmonic and transient simulations of
MEMS. In: International MEMS Workshop (IMEMS), volume 9, Singapore,
pp. 477–484.

Chen, Jinghong, Kang, Sung-Mo (Steve), Zou, Jun, Liu, Chang, and Schutt-
Ainé, José E. (2004) Reduced-order modeling of weakly nonlinear MEMS
devices with taylor-series expansion and arnoldi approach. Journal of Mi-
croelectromechanical Systems, 13(3):441–451.



152 Torsten Mähne et al.

Dolphin (2003) VHDL-AMS in SMASH Release 5.2. Dolphin Integration, 39,
avenue du Granier, B. P. 65 ZIRST, 38242 Meylan, France.

Funk, Karsten (1998) Entwurf, Herstellung und Charakterisierung eines
mikromechanischen Sensors zur Messung von Drehgeschwindigkeiten. Dis-
sertation, Technische Universität München, München.

Gabbay, Lynn D., Mehner, Jan E., and Senturia, Stephen D. (2000) Computer-
aided generation of nonlinear reduced-order dynamic macromodels—i:
Non-stress-stiffened case. Journal of Microelectromechanical Systems,
9(2):262–269.

Haase, Joachim (2003) Anforderungen an VHDL-AMS-Simulatoren (En-
twurf vom 1. Juli 2003). Technical report, Fraunhofer-Institut für Integrierte
Schaltungen, Außenstelle EAS Dresden, Zeunerstraße 38, 01069 Dresden.

Lorenz, Gunar (1999) Netzwerksimulation mikromechanischer Systeme. Num-
ber D46 (Diss. Universität Bremen) in Berichte aus der Mikromechanik.
Shaker Verlag, Aachen.

Mähne, Torsten (2004) Ordnungsreduktionsverfahren zur automatischen
Generierung von Systemmodellen bei mikroelektromechanischen Syste-
men. Diplomarbeit, Otto-von-Guericke-Universität Magdeburg, Fakultät
für Elektrotechnik und Informationstechnik, Postfach 4120, D-39016
Magdeburg.

Mehner, Jan (2000) Entwurf in der Mikrosystemtechnik, volume 9 of Dresdner
Beiträge zur Sensorik. Dresden University Press, Dresden, München. Zugl.:
Chemnitz, Techn. Univ., Habil., 1999.

Mehner, Jan (2004) External System Simulation Based on VHDL-AMS.
CADFEM GmbH.

Mehner, Jan E., Gabbay, Lynn D., and Senturia, Stephen D. (2000) Computer-
aided generation of nonlinear reduced-order dynamic macromodels—
ii: Stress-stiffened case. Journal of Microelectromechanical Systems,
9(2):270–274.

Reitz, Sven, Döring, Christian, Bastian, Jens, Schneider, Peter, Schwarz, Peter,
and Neul, Reinhard (2004) System level modeling of the relevant physical
effects of inertial sensors using order reduction methods. In: DTIP of MEMS
& MOEMS, Montreux, Switzerland.

Rocznik, Marko (2004) Optimierung des Entwurfs mikroelektromechanischer
Drehratensensorsysteme. Dissertation, Fakultät Elektrotechnik und Infor-
mationstechnik der Technischen Universität Ilmenau, Ilmenau.



Creating Virtual Prototypes of MEMS Transducers Using ROM Methods 153

Rudnyi, Evgenii B. and Korvink, Jan G. (2002) Review: automatic model
reduction for transient simulation of MEMS-based devices. In: Sensors Up-
date, volume 11, pages 3–33. WILEY-VCH Verlagsgesellschaft, Weinheim.

Rudnyi, E. B., Lienemann, J., Greiner, A., and Korvink, J. G. (2004)
mor4ansys: generating compact models directly from ANSYS models. In:
Technical Proceedings of the 2004 Nanotechnology Conference and Trade
Show, Nanotech 2004, volume 2. Boston, MA, pp. 279–282.

Schlegel, Michael, Bennini, Fouad, Mehner, Jan E., Herrmann, Göran, Müller,
Dietmar, and Dötzel, Wolfram (2005) Analyzing and simulation of MEMS
in VHDL-AMS based on reduced-order FE models. IEEE Sensors Journal,
5(5):1019–1026.

Schwarz, Peter (2002) Modellierung und Simulation heterogener technischer
Systeme. Technical report, Fraunhofer Institut für Integrierte Schaltungen
Erlangen, Außenstelle Entwurfsautomatisierung Dresden, Zeunerstraße 38,
D-01069 Dresden.



Chapter 9

Modeling Uncertainty in Nonlinear Analog Systems
with Affine Arithmetic
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Abstract This chapter describes a semisymbolic method for the analysis of mixed sig-
nal systems. Aimed at control and signal-processing applications, it delivers
a superset of all reachable values. The method that relies on affine arithmetic
is precise for linear systems, but in the case of nonlinear systems approxima-
tions are needed. As a new term is added for each approximation, the number
of approximation terms increases during simulation and therefore slows down
the simulation. This leads to a quadratic time complexity in the number of
time steps. A method to avoid this and an example implementation based on
SystemC analog and mixed signal (AMS) are presented. Efficiency and time com-
plexity of the improved semisymbolic simulation are analyzed and discussed.

Keywords: affine arithmetic; intervals; SystemC-AMS; simulation; uncertainty; tolerance.

1. Introduction

Today’s automotive, telecommunication, and ambient intelligence applications
consist of sensors, actuators, analog and digital circuits, and a large portion of
software. At the system level, designers usually specify and model such ap-
plications by continuous-time block diagrams with directed signal flow. For
the verification and analysis of such systems, most notably a transient simula-
tion is used: input stimuli are specified and the simulator computes the output
signals. The transient simulation allows designers to get important insight into
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the behavior of the modeled system and provides a basic functional verifi-
cation. However, within the design process of many of the above-mentioned
systems, much time is spent for analyzing the impact of uncertainties:

Static variations of operating conditions (e.g., production tolerances)

Dynamic variations of operating conditions (e.g., temperature drift)

Quantization and rounding errors in digital signal processing (DSP) and
analog/digital conversion

Physical effects in analog circuits (e.g., noise)

One big problem is that some deviations are compensated and do not have
a large impact on some output of interest, whereas another deviation of same
magnitude will be amplified and thus violates the specification.

The established analog or mixed-signal simulators at the electrical level pro-
vide different methods that help designers to evaluate the impact of deviations:
noise analysis, sensitivity analysis, worst-case analysis, Monte Carlo analy-
sis, AC analysis, and sometimes combinations thereof. These analyses are ei-
ther based on the fact that analog circuits can be linearized around a working
point (AC analysis, noise analysis), require monotonicity (sensitivity analysis),
or use a huge number of simulation runs to find corner cases (worst-case simu-
lation) and to compute statistical properties at the outputs (Monte Carlo
analysis).

Although these analyses are very useful, they have several drawbacks. Meth-
ods based on linearization are usually restricted to analog circuits and are not
applicable to mixed-signal systems or even DSP software. In order to over-
come these problems designers have to provide discrete models and additional
models that are used for AC analysis. Furthermore, time domain simulations
are used in combination with fast fourier transform (FFT) methods to get in-
formation about the spectral distribution of noise, for example. Unfortunately,
transient simulations and Monte Carlo methods do not provide information
about the contribution of single sources of uncertainty to the total uncertainty
at, for example, outputs in a direct and easy way; usually the interpretation is
rather difficult.

The above-mentioned classical analyses are aimed toward the electrical level
and are based on linearization and linear equation solvers. The method pro-
posed in this chapter is intended for a system-level simulation with a discrete
time static data flow model of computation, which is implied by the use of
SystemC analog and mixed signal (AMS). One should be aware that there is
no automatic way to use the electrical-level models at the system level or vice
versa, yet.

Compared with purely numerical simulation, the symbolic or formal tech-
niques provide designers with more information, e.g., about the origin of a
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deviation (Henzinger, 1996; Zhang and Mackworth, 1996; Hartong et al., 2002).
Unfortunately, symbolic or formal techniques are far away from being applica-
ble to the design of complex and heterogeneous systems (Stauner et al., 1997).
In this situation, semisymbolic techniques are very attractive if they combine
advantages of symbolic techniques with the general applicability of simulation.
A promising approach is the use of affine arithmetic (Andrade et al., 1994) for
semisymbolic analysis (Fang et al., 2003; Lemke et al., 2002) or even a semi-
symbolic simulation (Heupke et al., 2003). A direct and easy interpretation is
of particular interest for the case of design automation at system level.

Fang and Rutenbar are doing a static analysis of rounding errors in DSP
algorithms with affine arithmetic (Fang et al., 2003). In Heupke et al. (2003)
and Grimm et al. (2004a), we use affine arithmetic for semisymbolic transient
simulations of complex signal processing systems. The simulation result is a
numerical output together with a symbolic, affine approximation of the con-
tributions of different (symbolic) sources of uncertainty. An important advan-
tage of the proposed method is the safe inclusion of all reachable values by
the affine expression, there by delivering reliable results. On the other hand,
the increasing number of terms and the resulting overapproximation caused by
each nonlinear operation are the disadvantages.

In this chapter, we introduce a method for semisymbolic simulation with
affine arithmetic that efficiently handles these approximation terms. Section 2
gives a brief introduction to affine arithmetic and semisymbolic simulation
with affine arithmetic as described in Heupke et al. (2003). Section 3 intro-
duces a method to handle the overapproximation terms in semisymbolic sim-
ulation based on affine arithmetic. This enables affine arithmetic to reach the
same asymptotic time complexity as that of conventional numerical simulation.
Section 4 demonstrates the applicability of the method by a simple example.

2. Semisymbolic Simulation with Affine Arithmetic

2.1 Basic Concepts of Affine Arithmetic

Affine arithmetic (Andrade et al., 1994), introduced by Comba et al., is a kind
of improved interval arithmetic and therefore allows us to compute with un-
certain values. In each affine expression, the influence of independent sources
of uncertainty i to a variable x̂ with the central value x0 is represented by a
symbolic sum of terms xiεi. Noise symbols εi represent arbitrary, but for one
simulation run fixed values from the interval [−1, 1]. The partial deviations xi

then scale these intervals. The εi is a symbolic representation and a certain
value is never assigned to them.

x̂ = x0 +

n∑

i=1

xiεi, εi ∈ [−1, 1]
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Table 9.1 Affine expressions and their interval counterparts

Affine arithmetic Interval arithmetic

Affine form Diameter Interval Diameter

x̂ = 17.3 + 2.5ε1 5.0 X = [14.8, 19.8] 5.0
ŷ = 15.4 + 2.5ε1 5.0 Y = [12.9, 17.9] 5.0
ẑ = 15.4 + 2.5ε2 5.0 Z = [12.9, 17.9] 5.0
x̂ − ŷ = 1.9 + 0.0ε1 0.0 X − Y = [−3.1, 6.9] 10.0
x̂ − ẑ = 1.9 + 2.5ε1 − 2.5ε2 10.0 X − Z = [−3.1, 6.9] 10.0

Basic mathematical operations are defined by

x̂ ± ŷ := (x0 ± y0) +

n∑

i=1

(xi ± yi)εi

and

cx̂ := cx0 +

n∑

i=1

cxiεi.

The operation rad(x̂) is the radius of the affine expression x̂.

rad(x̂) =

n∑

i=1

|xi|

The results of linear operations give accurate limits and have no over-
approximation (no unnecessary expansion of the error interval).

2.2 Interval Arithmetic versus Affine Arithmetic

The subtraction of two affine expressions, which include the same noise sym-
bols εm, may reduce the partial deviation of the result, in contrast to the same
values with different noise symbols. This allows us to model error cancellation,
for example in feedback loops. In Table 9.1 the variables with a hat denote
affine arithmetic variables whereas the ones written with a capital letter are
corresponding interval variables. The diameter is obviously twice the radius
for affine forms. In the case of intervals, the diameter is the difference between
supremum and infimum of the interval.

Table 9.1 shows the difference between affine arithmetic and interval arith-
metic in the case of different or same source of uncertainty. The variables x
and y share an uncertainty caused by the same source of uncertainty and there-
fore both have a term ε1. For demonstration purposes also the influence of this
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uncertainty is of same magnitude and direction/sign. In contrast to that the vari-
able z has a term ε2 that shows that the uncertainty of z has a different source
of uncertainty, although both have the same magnitude in example given in
Table 9.1. The effect shows up in the subtraction of x − y. Interval arithmetic
increases the interval diameter instead of bringing it to zero, whereas affine
arithmetic keeps the correlation and delivers the precise result. This is because
the information contained in interval arithmetic is too limited, as the range
of values is not the only important information that is needed to describe the
influence of uncertainty.

This effect of interval arithmetic may be tolerated sometimes, but a sim-
ulation of a control loop, where a too pessimistic result is fed back in each
time step, results in a diameter that is increasing with simulated time and de-
pending on the system will increase exponentially in the worst case. This will
deliver with interval arithmetic that the result is [−∞,+∞] within a small num-
ber of simulation time steps (Heupke et al., 2003). For sure this is a safe inclu-
sion, but would be useless pessimistic.

The concept described in this chapter can be extended to dynamic uncertain-
ties and therefore to analyze effects like colored noise as described in Grimm
et al. (2004b).

An important aspect is the guarantee that, after each operation, the result is
a superset of all reachable values. This is a problem especially for nonlinear
operations. For nonlinear operations, different methods for overapproximation
are defined in Andrade et al. (1994). These methods add a new noise sym-
bol εm+1 that describes the over approximation. For example, multiplication of
two affine expressions is defined by:

x̂ · ŷ := x0 · y0 +

m∑

i=1

(x0 · yi + xi · y0)εi + rad(x̂) · rad(ŷ) · εm+1.

In general, the error introduced by some nonlinear operation is overapproxi-
mated by a new noise symbol εm+1.

All nonlinear operations introduce new noise symbols, and therefore some
systems may present a problem because of the permanently increasing num-
ber of terms. But some systems include strategies to reduce the influence of
deviations (e.g., feedback). Caused by these strategies, the influence of these
noise symbols converges to zero and for a stable system they are absolutely
summable. Section 3 describes how this property delivers a solution for the
problem of the increasing number of terms.

2.3 SystemC-AMS-Based Implementation

For the implementation we chose SystemC-AMS (Vachoux et al., 2004), but
the concept mentioned later can be implemented in every language that
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supports operator overloading, e.g., very high speed integrated circuit (VH-
SIC) hardware description language (VHDL)-AMS.

SystemC-AMS is an extension of the class library SystemC, aimed at sup-
porting the modeling of mixed-signal (analog and digital) systems. It pro-
vides means to simulate analog, mixed-signal, and signal processing systems
as a block diagram. In contrast, SystemC allows us to immediately reuse the
code portion for these blocks, which have to be implemented in software later
on. Additionally, the code of the models that will be implemented in digi-
tal hardware can be automatically synthesized to create, for example, an ap-
plication specific integrated circuit (ASIC) or field programmable gate array
(FPGA) implementation. Only for the blocks, which model analog behavior,
there is no automatic way for implementation. These blocks are specified by
transfer functions or static nonlinear functions implemented in C++. Static
data flow is used as the model of computation.

The implementation of the affine arithmetic is based on the libaffa
library (Gay, 2003), which defines linear and nonlinear operations on affine
arithmetic variables in a class called AAF (affine arithmetic forms). It allows us
to model computations with uncertainties in general.

Using the AAF class with SystemC-AMS is very simple. In SystemC-AMS,
as in SystemC, signals are instantiated with a template parameter T that speci-
fies their value type. For example by sca_sdf_signal<double> my_signal,
a signal with a value range of a variable with double precision is instantiated in
SystemC-AMS. Of course, one can as well specify the template parameter AAF
instead of double. This small change is all that is needed with SystemC-AMS
to turn the numerical simulation into a semisymbolic simulation based on affine
arithmetic. Instead of using operators defined for double values, the compiler
will use the operators defined in the AAF class, which overload the standard
operators. The results of the simulation are affine expressions that semisym-
bolically represent possible deviations.

For example, one can write the following code:

1 AAF a(2.0), b(3.0), c(2.0), y;
2

3 // constructor which adds a noise symbol
4 // x_i with partial deviation 0.1:
5 AAF uncertainty(Interval(-0.1, +0.1));
6 a = a + uncertainty;
7 y = (a + b) * (c + uncertainty);
8 cout << "y�=�" << y << endl;

This simple program produces the following output:

y = 10 + (e1*0.7) + (e2*0.01)

So after the uncertainty is introduced one can use a variable of type AAF like
any other variable.
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The advantage of semisymbolic simulation compared with a pure numerical
simulation becomes obvious if the uncertainties at the output of the simulated
system exceed some specified range. In this case, the symbolic representation
provides designers with the contribution of all sources of uncertainty to the
deviation at the output. It also models the effects that are created by the combi-
nation of uncertainties. This together allows the designer to identify the sources
of uncertainty where improvements are most fruitful. As a long-term perspec-
tive, one day a mixed-signal synthesis system can be directed this way where
further optimization is needed.

3. Efficient Handling of Additional Terms
in Feedback Control Systems

Each nonlinear operation approximation creates an additional term, as can be
seen in the code example. These approximations are a problem for the affine
arithmetic, as potentially a high number of very small and thereby insignificant
terms in the symbolic expression is created.

This problem shows up especially if the system that is modeled contains a
loop and has at least one component which creates an approximation in the
path of this loop (e.g., by multiplication of two affine expressions).

Then any kind of memory (e.g., some modeled energy storage) in a block
within the modeled system will contain most of the approximation terms that
are created in each simulation cycle of this loop. If there is a constant number of
approximations, this means that in each simulation cycle the number of terms
increases by this constant number.

To cope with this, we introduce a method that “cleans up” the affine
arithmetic expression variables. It somewhat resembles the garbage collection
concept used to free unneeded memory of variables, which is used in some pro-
gramming languages, e.g., Java.

If the number of noise symbols in the affine expressions increases above a
certain level, the simplification() method is called. For all variables in the
system, all terms smaller than a cut level l, set by the user, are summed up
separately by the ones with a positive and the ones with a negative sign to two
special noise terms.

Deleting the terms with an absolute value below this cut level could poten-
tially lead to inaccurate results in the case of a high number of simulation
time steps and certain functional blocks, e.g., integrators, because in this
example they may grow to a big one over time. Therefore it is better to sum
them. This way it delivers a safe inclusion, but it means that the correlation of
the individual terms is lost. But it does not exhibit the same problem like in-
terval arithmetic does, as described earlier, because the correlation of this sum
is still valid for all AAF variables in the future time steps and the terms with
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different signs are kept separate. Furthermore, these uncertainties are usually
far smaller than the nominal values; and if l again is far smaller than the other
uncertainties, any kind of over-approximation would not create a problem. So
the influence of approximations decreases below the level l after several time
steps.

Please note that if the simplification method would be called too often, the
unneeded overapproximation could potentially show up significantly, and in
the above-mentioned example the concept of feedback that makes these terms
converge to 0 would not work. On the other hand, if called not often enough, the
computation time will increase significantly. Our experience is that the choice
of the time point, when to call the simplification method, was not very critical
for the example system.

The method resembles the typical strategy of leaving away smaller terms.
But with affine arithmetic we do not have to really leave the smaller terms
away, instead we can handle their sum as a new uncertainty. So not only the
modeled uncertainties of the real system but obviously also the uncertainties
caused by the modeling process, like these simplifications, are analyzed.

3.1 Implementation of the Simplification Method

In the present implementation the simplification method is invoked every thou-
sandth simulation cycle, but later on it might be automatically invoked by some
heuristic. For example the change in the highest index of the noise terms since
the last simplification could be used as a criterion, when to call this method.
The cut level l is set to a constant small fraction of the smallest explicitly
introduced uncertainty by the user.

The change in an affine expression can be seen by the following example of
a simplification with l = 1.0 · 10−4. First a variable was printed immediately
before the simplification:

28.9796 + (e1*2.9925) + (e5*0.000856951)
+ (e6*1.14971e-006) + (e7*1.11085e-006)
+ (e8*-1.34821e-007) + (e9*1.07968e-006)
+ (e10*-1.12145e-007)

After the simplification the printed variable changed to

28.9796 + (e1*2.9925) + (e5*0.000856951)
+ (e34*3.34024e-006) + (e35*-2.46966e-007)

Usually this happens with far more terms, but for demonstration purposes it
would be difficult to show. In this case ε34 sums up the positive insignificant
terms and ε35 sums up the negative insignificant terms.

By handling a list with pointers to all affine variables in the system, it is
possible to access all AAF variables. This list is added as a static member of the
AAF class so that all AAF variables share it.
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The AAF class saves the affine expression in one variable for the central
value x0 and two pointers to dynamically allocated arrays called coefficients
and indices. In a first run across all AAF variables and across all coefficients
in these variables, the significant terms are collected based on the cut level l. A
term xi of an affine variable x̂ is significant if it fulfills the condition:

|xi| > l.

The second run goes again across all variables. For each of the variables it
is determined how many significant terms are contained, based on the result
of the first run. Then two new arrays for the coefficients and the indices are
allocated and the significant terms are copied to the new arrays. After that the
memory of the old arrays is freed.

3.2 Comparison of Efficiency

The following text analyses the effort to handle one variable. So the total effort
also scales with the number of variables for all similar simulation methods.

Figure 9.1 shows a system we implemented as a test in order to validate
the behavior by transient simulations with affine expressions as data type. It
contains two elements that can be troublesome:

The first is feedback. Another range arithmetic, the interval arithmetic
(Moore, 1966), will not deliver a meaningful result for the simulation
of systems with feedback, whereas affine arithmetic works fine in this
respect (Heupke et al., 2003).

The second is the emphasized nonlinear block in the system, which is
interesting, as it creates additional approximation terms in each iteration
through the loop. This results in a high number of terms that slows down
the simulation more and more if nothing is done about that.

Let us assume such a system with a loop, n be the number of total simu-
lation time steps, and c be a constant that describes the maximum number of
nonlinear operations along the path of the loop. Remember that these nonlin-
ear operations add terms. Further let k be the number of explicitly introduced
uncertainties.

With conventional simulation based on the static data flow model of com-
putation and with variables of type, e.g., double the space complexity is O(1)
and the simulation time is O(n).

In contrast to that in the naive implementation, the maximum memory
needed for each affine variable is

cn + k ⊆ O(n)
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Fig. 9.1 Simulated system with nonlinear block

because in each of the n steps c uncertainties are added, caused by overap-
proximations, and a maximum of k has been added intentionally at the elabo-
ration phase. This means that the space complexity is O(n).

Even worse is the resulting time complexity. This is because in each sim-
ulation time step each term of an affine variable needs to be handled, e.g., an
arithmetic operation has to be performed for it by the central processing unit
(CPU):

n∑

i=1

(ci + k) =
cn(n + 1)

2
+ kn =

c
2

· n2 +
c + k

2
· n ⊆ O(n2)

For every stable system system theory require that every bounded input deliv-
ers a bounded output. Obviously, every technically meaningful system to be
implemented is stable. Furthermore, a discrete system is stable if and only if
the impulse response is absolutely summable:

∞∑

i=−∞
|h(i)| < ∞

This implies an important aspect: the impulse response of the opened control
loop converges to zero. So every introduced overapproximation term will con-
verge to zero with the number of iterations through the control loop in the
given example. This means that we can apply a trick that copes with the terms
caused by the overapproximation. From time to time we sum up all approxima-
tion terms that got extremely small (smaller than l) by a simplification method,
thereby keeping the safe inclusion but reducing the number of terms. On the
other hand, this means, if the number of terms cannot be reduced, we get a
strong indication that the system might be unstable.
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Table 9.2 Measured computation time

Number of time steps Computation time without Computation time with
simplification (s) simplification (s)

1,000 1 1
2,000 4 2
4,000 16 5
8,000 61 10

16,000 244 20
32,000 999 40
64,000 4, 083 79

128,000 – 159
256,000 – 319
512,000 – 640

1,024,000 – 1, 275

This simplification method, if called every m simulation time steps, is a sub-
stantial step forward regarding efficiency; because in the m time steps between
two simplification operations, a maximum of c terms adds in each time step.
To this adds the number of k explicitly introduced terms. As c, m, and k are all
constants, we get asymptotically the same space complexity like pure numeri-
cal simulation:

cm + k ⊆ O(1)

The time complexity of the simulation with the simplification method needs
cm + k computations in one simulation time step in the worst-case of the
time step before the next simplification method call. This happens n times
in the worst-case. To this adds the effort of the simplification method, called
n/m times. The simplification method itself needs in the first and the second
pass to touch every term. This gives a total time complexity of O(n); the same
complexity numerical simulation has

(cm + k)n +
2n
m

(cm + k) =

(
cm + k +

2
m

(cm + k)

)
· n ⊆ O(n)

4. Experimental Results

The system shown in Figure 9.1 was implemented in SystemC-AMS and the
AAF class. With this setup transient simulation runs were performed.

Table 9.2 shows the time needed for the simulation with and without the
simplification method used. The time interval that was simulated was the same
for all values in the table and was scaled to deliver time results that are easy to
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interpret. Only the step width in time was changed for each row. The simplifi-
cation method was called every thousandth time step, respectively, never in the
case of no simplification.

The table shows the clear advantage of the simplification method, as the
computation time increases linearly with the number of simulated time steps
if the simplification method is used. It is very clear to see a quadratic increase
of the needed computation time for the simulation without using the simpli-
fication method that shows up as a fourfold increase of the required com-
putation time for a twofold increase in the number of time steps. So it gets
obvious that affine arithmetic would be much harder to use without this sim-
plification method for long simulation runs in the presence of feedback and
nonlinearity.

For a visual representation, we convert affine expressions to intervals, by
use of the rad operator. These intervals can be plotted as shown in Figure 9.2
as a range. In the case of an uncertainty that is substantially smaller than the
central value, two separate traces with different scalings are plotted. For both
types of plots we use the program gnuplot, as usual waveform viewers do
not support interval type signals. Figure 9.2a shows the step response of a
feedback loop that contains a nonlinear control path, which is shown in Fig-
ure 9.1. Figure 9.2b shows the step response close to the stability border and
Figure 9.2c the same system, but beyond the stability border. It is interesting
to note the typical chaotic effects of nonlinear systems near the stability border
that show up very clearly in the uncertainty, and which are not linear with the
central value in Figure 9.2b.

5. Conclusion

Without the described method, semisymbolic simulation with affine arithmetic
has quadratic time complexity. On the other hand, with the presented method,
simulation with affine arithmetic has linear time complexity even in the pres-
ence of nonlinearities and feedback. This means that affine arithmetic is feasi-
ble for simulation even with a large number of time steps in nonlinear feedback
systems.

Compared with the analyses in “analog” simulators, the described method is
applicable to DSP methods and to discrete-time approximations of analog cir-
cuits. This allows designers an analysis of heterogeneous systems that include
large fractions of DSP software. The symbolic representation of the contribu-
tions to the deviations at the outputs can be interpreted easily and it delivers
a safe inclusion, an important aspect for the design of security critical sys-
tems, which could create otherwise dangerous situations if their deviation is
too large.
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(a) System within the stable area
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(b) System near the stability border
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Fig. 9.2 Step responses of a feedback loop containing a nonlinear block
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The improved efficiency of semisymbolic simulation is a basic foundation
for semisymbolic simulation of more complex systems. For example, in
Grabowski et al. (2006), semisymbolic simulation is extended toward analog
circuit simulation. Without the method described in this chapter, this would not
have been possible.
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Chapter 10

SystemC-WMS: Mixed-Signal Simulation
Based on Wave Exchanges
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Abstract This chapter proposes a methodology for extending SystemC to mixed-signal
systems, aimed at allowing the reuse of analog models and to the simulation
of heterogeneous systems. To this end, a general method for modeling analog
modules using wave quantities is suggested, and a new kind of port and channel
suitable to let modules communicate through waves have been defined. These
entities are plugged directly on top of the standard SystemC kernel, so as to
allow a seamless integration with the preexisting simulation environment, and
are designed to permit total interconnection freedom to ease the development of
reusable analog libraries.

Keywords: SystemC; mixed-signal simulation; system-level simulation.

1. Introduction

SystemC is an emerging tool for the description and simulation of hardware
and software at system level (OSCI, 2006), and it is not rare that this high
level of abstraction could require the interfacing of both digital and analog
parts. Such necessity of simulating a continuous-time analog part can arise,
for example, in the area of power switching control as in the automotive or
RF domains. To this aim it has been proposed (Einwich, 2002) to constitute
an Open SystemC Initiative (OSCI) Working Group devoted to the develop-
ment of an extension of SystemC to mixed-signal simulation: SystemC ana-
log and mixed signal (AMS). (Vachoux et al., 2003b) describes in detail the
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SystemC-AMS requirements and objectives. The first aspect considered is the
need to encompass a variety of models of computation (MoCs) that can be
used in order to describe any kind of system (discrete-event, data-flow, finite-
state machines (FSMs), analog signal flow, generic continuous-time, etc.). Fur-
thermore, SystemC must also extend to heterogeneous domains of applica-
tion (i.e., electrical, mechanical, fluidic), due to the increasing complexity of
nowadays devices.

The OSCI Working Group claims that SystemC-AMS, besides being suit-
able for the description and the simulation of heterogeneous systems and
supporting continuous-time MoCs, must also meet the following objectives:
it must be an extension of the current SystemC; it must provide a (possibly
generic) way to handle interactions between MoCs; it must provide appropri-
ate views for the description of continuous-time models; and, finally, it must
support the coupling with existing continuous-time simulators. A recent de-
scription of the state of the art of this initiative can be found in Vachoux et al.
(2003a).

The current implementation is structured into different layers. The solver
layer provides simple but efficient solvers for linear differential equations and
for explicit-form transfer functions. The synchronization layer provides a sim-
ple and fast synchronization scheme that executes analog solvers before the
first delta cycle of each time step, scheduling them using static data flow. Fi-
nally, a view layer provides means for specifying equations, for instance, using
netlists.

In addition to the activity performed by OSCI, different papers (Aljunaid
and Kazmierski, 2004; Bjørsen et al., 2003; Bonnerud et al., 2001) aimed at the
extension of SystemC to analog environments have been published. In Bjørsen
et al. (2003), a mixed-signal simulation framework oriented to the simulation
of signal processing–dominated applications is presented. The library modules
proposed do not provide a real continuous-time modeling but a discrete-time
domain regulated by a virtual clock or a multiphase clocking scheme. More
recently, a mixed-signal extension using a general-purpose analog solver cou-
pled with SystemC kernel by a lock-step synchronization algorithm has been
proposed in Aljunaid and Kazmierski (2004). This implied a modification of
the SystemC 2.0 kernel to invoke and synchronize the operation of an analog
solver together with that of the core kernel.

The basic SystemC methodology (OSCI, 2006) makes use of modules and
interfaces to describe complex systems. Modules communicate through
interfaces, implemented in channels, by calling methods in the channels them-
selves. Conversely, events occurring in a channel can activate modules
connected to that channel. The present work proposes a methodology for the
description of analog blocks using only such instruments and libraries. Tak-
ing advantage of this communication scheme and of the underlying SystemC
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kernel, we implement the various analog parts of a system as analog mod-
ules, which communicate by exchanging energy waves through wavechannel
interfaces. The use of energy waves permits the definition of a standard ana-
log interface that allows the interconnection of modules belonging to different
domains as well as of modules developed independently. Furthermore, inter-
connections of analog blocks giving rise to simple kinds of nonlinear differen-
tial algebraic equations (DAEs) can also be simulated.

2. Description and Modeling of Analog Modules in
SystemC

SystemC is essentially a library of C++ classes developed to build, simulate,
and debug a system-on-chip (SoC) described at system level. It provides an
event-driven simulation kernel and the functionality of the system derives from
the interaction of concurrent processes that describe the behavior of individual
modules subject to stimuli sent to them by other modules.

The core SystemC simulation paradigm assumes that modules have clearly
defined inputs and outputs, and that they communicate between one another
by means of appropriate channels. This paradigm allows the simulation to be
carried out by a simple time-marching algorithm that only needs to take care
of interactions between modules and the channels directly connected to them,
without the need of dealing with the global system topology.

In order to be able to simulate systems containing analog modules some
extensions to the base kernel are necessary. In cases where it is easy to obtain a
signal-flow graph (SFG) representation of the system, this simulation paradigm
can be coupled with an appropriate ordinary differential equation (ODE) solver
as in Biagetti et al. (2004). This enables an efficient simulation of continuous-
time analog modules described by a system of nonlinear ODEs of the following
type: {

ẋ = f (x, u)

y = g(x, u)
(10.1)

where f and g are vector expressions describing system dynamics, while x, y,
and u are state, output, and input vectors, respectively.

Equation 10.1 should describe a part of the system under consideration, like
an N-port modeled at circuit level, or it may represent a high-level macro-
model describing the part functionality. This description is not able to take into
account parts that need a DAE system to be described, neither conservative-
law systems; however, it is quite general and will thus be used to describe the
behavior of a single module.

Nevertheless, a SFG representation is not always the most suited to model
the interaction between modules representing analog units, since it can be hard
to account for load effects or other interactions that might occur as they are
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interconnected. The goal of the next section is to propose an extension of this
approach to cases where a SFG representation of the modules is undesirable or
excessively demanding.

2.1 Module Representation with a b Parameters

The first problem that needs to be solved is the possibility of interconnecting
modules written independently. Figures 10.1a and b depict one possible prob-
lem that can arise trying to bind together electrical modules that use currents
or voltages as their input/output signals. Whatever the designer’s choice was
regarding what to consider input or output, it would not be possible to simul-
taneously connect them in series or in parallel, as well as to cascade them.

Furthermore, in non-SFG representations there can be no physical clue on
which quantity to consider input or output of a given module. Even if in princi-
ple it is feasible to write a specialized channel that can handle all the
possible combinations arising from a random choice, the resulting interconnec-
tion model would lack a physical meaning and would likely be cumbersome.

The use of an incident/reflected wave model (Kurokawa, 1965) for the
description of analog modules allows us to avoid this difficulty since it can
be mandated that modules use incident waves as inputs and produce reflected
waves as outputs. This immediately solves the problem for cascaded modules,
and the parallel or series connection can be accounted for by using an ap-
propriate channel that dispatches waves to the modules it connects together
(Figure 10.1d) and permits the formulation of a generic and standard analog
interface usable across a variety of domains.

Such channel behaves similarly to the scattering junction of wave digital
filters (WDFs; Fettweis, 1973), which are digital models of analog filters,

Fig. 10.1 Example of interconnection problem
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obtained through the discretization of individual circuit components by a
methodology that can also be extended to circuits in which mildly nonlinear
elements are present (Sarti and De Poli, 1999).

The proposed approach makes use, like in the WDF theory, of the a b para-
meters as input/output signals and implements the duties of the scattering junc-
tion in a new entity called wavechannel, complying with SystemC conventions
for channels. Furthermore, the user can choose the level of abstraction at which
to model the system and the integration method (ODE solver) used to solve the
continuous-time system.

Without loss of generality, we can fix our attention to an N-port in the elec-
trical domain, described through its port quantities v j and i j, j = 1, . . . ,N.
Figure 10.1c depicts the situation for a single port. The relation between elec-
trical quantities and wave quantities can be obtained from the following defin-
ition of incident (a j) and reflected (b j) wave:

a j =
1
2

(
v j/

√
R j + i j

√
R j

)

b j =
1
2

(
v j/

√
R j − i j

√
R j

) (10.2)

so that a2
j − b2

j is the instantaneous power entering port j and R j is a nor-
malization resistance. Similar relations hold for other domains as well. In the
frequency domain, this representation leads to the commonly adopted descrip-
tion with a scattering matrix, and the normalization resistance can be assumed
like the characteristic impedance of the transmission line connected to the port.

Solving the system Equation 10.2 for the electrical quantities gives the
inversion formulae:

v j =
(
a j + b j

)
·
√

R j

i j =

(
a j − b j

)
√

R j

(10.3)

that can be useful when translating module descriptions from one set of quan-
tities to the other.

Let us suppose that a port is defined by means of a relation of the type of
Equation 10.1, where in the electrical domain {u, y} = {v, i} (while in other
domains we can find, for example, force and velocity or pressure and volume
velocity as port variables). It is straightforward to build the representation of
an N-port with the a b parameters by using Equations 10.1 and 10.2, thus ob-
taining: {

ẋ = f1(x, a)

b = g1(x, a)
, (10.4)

which are the state space equations written in wave quantities.
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2.2 Wavechannels

Wavechannels are the means by which modules described by wave quantities
communicate. They can be thought of as a bunch of transmission lines con-
necting ports to a junction box, in which the lines are tied together, and their
role is to model the scattering of waves that occurs at the junction.

Consider a junction between N ports, each with its own normalization
factor R j. Let v and i be the voltage and current vector, respectively, and:

{
Av v = 0

Ai i = 0
(10.5)

be a complete and minimal set of Kirchhoff’s equations describing the junction
([Av]i j, [Ai]i j ∈ {0,±1}). We maintain that letting:

Ax = Av diag
k=1,...,N

Rk and Ay = Ai diag
k=1,...,N

1/Rk (10.6)

the scattering matrix S (such that a = S b), by substituting Equations 10.3 and
Equation 10.6 into Equation 10.5, becomes:

S =

[
Ax
Ay

]−1 [
−Ax
Ay

]
(10.7)

where b are the waves reflected by modules and thus entering the junction,
whence a are scattered back from the junction to the modules thereby inter-
connected.

The above formulation can be used for any kind of junction. But, although
there are many possible ways in which the lines can be tied together, the
most common situation is to have parallel or series connections, as shown in
Figure 10.2 for channels connecting three ports. From Kirchhoff’s laws, a par-
allel connection is characterized by the equations:

N∑

j=1

i j = 0 v1 = v2 = · · · = vN (10.8)

for which the scattering matrix described by Equation 10.7 results in

a j =
2
∑N

k=1 bk/
√

Rk√
R j

∑N
k=1 1/Rk

− b j. (10.9)

Fig. 10.2 Wavechannel symbols for parallel and series interconnections
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Similarly, for a series wavechannel we have
N∑

j=1

v j = 0 i1 = i2 = · · · = iN , (10.10)

which leads to:

a j = b j −
2
∑N

k=1 bk
√

Rk∑N
k=1 Rk/

√
R j

. (10.11)

It may be worth noticing here that, if N = 1, Equations 10.9 and 10.11 simply
become a1 = ±b1, and the two channel types are thus able to model the total
reflection that takes place at an open circuit or at a shunt, respectively.

In the current implementation of wavechannels, the propagation delay can
be excluded so that their connection to instantaneous blocks may result in the
production of delay-free loops. This is accounted for by the standard SystemC
delta cycle mechanism, which, without further intervention, would just use a
fixed-point algorithm to search for the solution of the instantaneous loops, pro-
vided that the embedded ODE solver does not advance its state while iterating
to find the fixed-point. The fixed-point solution is equivalent to the solution
of Maxwell’s equations in quasistatic conditions, i.e., when it is possible to
model the circuit with lumped elements. The quasistatic condition is valid if
the wave propagation delay τ is much smaller than the ∆t used by ODE solvers.
In our fixed-point solution method this τ is approximated with a null time.

Furthermore, to increase the convergence speed of the fixed-point algorithm,
a damping effect has been introduced. This has been done on the basis that, in
a time-marching simulation, states between successive time steps should not
be very different, and thus the fixed-point solution may take advantage of a
limitation in the amount of change allowed to the variables. Let a(n)[t] be the
wave at the n-th delta cycle of the time step t. The evaluation of the module
output functions, based on the values of the inputs a(n)[t] and of the state x[t],
yields the reflected wave b(n+1)[t]. This is used in Equations 10.9 and 10.11 to
compute the scattering due to interconnections; let us call ã(n+1)[t] the result.
We then put

a(n+1)[t] = a(n)[t] + λ(ã(n+1)[t] − a(n)[t]) (10.12)

where λ is a positive constant less than 1 (we obtained good results with values
close to 0.9), governing the amount of damping. The update of a is skipped
altogether when the amount of change is below a predefined threshold related
to the desired accuracy of the solution, so as to exit from the delta cycling and
thus allowing the time to be incremented and the state of ODE solvers to be
updated.

With this approach, it has been possible to obtain accurate simulations with
a reasonable convergence speed of most of the systems containing delay-free
loops, provided they do not contain directly coupled state variables, that is, the
circuit has a solution for every possible value of the state variables.
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3. SystemC-WMS Class Library

To ease the implementation of complex systems containing analog blocks, a
number of templates and classes have been designed and integrated in the
SystemC-wave mixed signal (SystemC-WMS) class library: a new kind of port
to let modules communicate through wave quantities (ab_port), a channel that
can interconnect them and that does the real computation of the scattering that
occurs at junctions (ab_signal), and a template base class (wave_module)
that takes care of handling sensitivity lists and port declarations.

Ports expose an interface that allows users to read the incident wave value
and to report (write) the reflected wave value, together with utility functions to
poll for changes and to get other channel properties:

1 template <class T> struct ab_signal_if : virtual sc_interface
2 {
3 virtual bool poll () const = 0;
4 virtual const T read () const = 0;
5 virtual void write (const T &) = 0;
6 ...
7 };

The basic wave_module template looks like the following:

1 template <int n, class T> struct wave_module : sc_module , ...
2 {
3 ab_port <T> port[n];
4 sc_event activation;
5 ...
6 };

where port is the array (or possibly a single variable if n=1) of ports used by
the module to communicate. Of course, they can be freely mixed with stan-
dard SystemC ports. The activation is an event that is signaled when some
change occurs at the waves entering any of the ports, and the template parame-
ter T must be associated to a structure, which essentially consists of a collection
of typedefs, needed to define the underlying data type used for waves and to
document the nature of the port. A number of predefined natures (electrical,
mechanical, etc.) have been provided, and, of course, templates to ease the im-
plementation of transducers (that is, modules with ports of different natures)
have also been defined and implemented.

With this library the only thing that the user needs to do in order to model
an analog module is to implement the state derivative vector field f and output
transformation function g as in Equation 10.4:

1 struct example : wave_module <1, electrical >, analog_module
2 {
3 // state variable x is inherited from analog_module
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4 void field (double *var) const;
5 void calculus ();
6 SC_CTOR(example) : analog_module(...)
7 {
8 SC_THREAD(calculus);
9 sensitive << activation;

10 }
11 };
12

13 void example::calculus ()
14 {
15 x = 0; // state initialization here
16 while (step()) { // perform one ODE solver step
17 double a = port->read(); // read incident wave here
18 double b = g(x, a); // compute reflected wave
19 port->write(b); // and send it out here
20 }
21 }
22

23 void example::field (double *var) const
24 {
25 double a = port->read();
26 var[0] = f(x, a); // evaluate state change
27 }

The step function is inherited from the analog_module and contains a simple
time-marching ODE solver (Biagetti et al., 2004). Currently, the user has a
choice of Euler and Adams-Bashforth ODE solvers, but the implementation of
other time-marching ODE solvers should be straightforward.

Finally, ab_signal takes care of making communication between modules
possible. These signals can just be declared by specifying the nature of the
ports and the kind of connection topology to make between them, with an
optional default normalization resistance, for instance:

1 ab_signal <electrical , parallel> test_signal_1(50 ohm);
2 ab_signal <electrical , series> test_signal_2(10 ohm);

and then connected to ports like ordinary SystemC signals.

4. Application Example

As an example of a possible application of this extension to a real problem, a
half-bridge inverter has been chosen. A simplified schematic of the circuit is
shown in Figure 10.3. It is used to drive an RLC load for an induction-heating
appliance. The function of the circuit is to regulate the delivery of power to a



180 Simone Orcioni et al.

Control

Switch1 Switch2wave_source Bridge

Filter

Snubber

Load

Fig. 10.3 Half-bridge inverter: electrical schematic diagram

load. The amount delivered can be set by changing the duty cycle and/or the
frequency of the signals controlling the two switches with a proper algorithm
that can be implemented in digital hardware. Of course, the maximum output
power corresponds to a 50 % duty cycle at the resonance frequency, but in the
proposed example we have not modeled the details of the digital controller and
have thus chosen a 48 % duty cycle, for safe operation of the switches, and a
fixed frequency of 20 kHz.

The main components of the circuit are the switches (controlled recti-
fier), the Graetz’ bridge used to rectify the line voltage (ideal_rectifier),
and the voltage source (wave_source) used to convert stimuli from standard
SystemC signals or an SFG representation to the wave representation. Further-
more, there are a couple of different passive reactive linear networks (RC and
RLC). All of the analog stuff is connected together by means of wavechannels,
as shown by the following code fragment illustrating the structure of the cir-
cuit under consideration. A brief description of the most important modules
follows the code.

1 int sc_main (int argc, char *argv[])
2 {
3 sc_signal <electrical::wave_type > in;
4 sc_signal <bool> pulse1, pulse2;
5 ab_signal <electrical , parallel> mains;
6 ab_signal <electrical , parallel> rectified;
7 ab_signal <electrical , parallel> chopped;
8 ab_signal <electrical , series> shunt;
9

10 generator signal_source("SOURCE1", 230 V, 50 Hz);
11 signal_source(in);
12

13 controller ctrl("CONTROL", 20 kHz);
14 ctrl(pulse1, pulse2);
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15

16 source <electrical > wave_source("SOURCE2", cfg::across);
17 wave_source(mains, in);
18

19 ideal_rectifier bridge("BRIDGE");
20 bridge(mains, rectified);
21

22 RC filter("FILTER", 1 ohm, 5 uF);
23 filter(rectified);
24

25 controlled_rectifier switch1("SWITCH1");
26 switch1(chopped, rectified , pulse1);
27

28 controlled_rectifier switch2("SWITCH2");
29 switch2(shunt, chopped, pulse2);
30

31 RLC load("LOAD", 3 ohm, 80 uH, 740 nF);
32 load(chopped);
33

34 RC snubber("SNUBBER", 10 ohm, 10 nF);
35 snubber(chopped);
36

37 sc_start(150e-6, SC_SEC);
38 return 0;
39 }

The source class is a generic converter from standard SystemC signals to
wave signals, and the second parameter to its constructor specifies an “across”-
type (as opposed to a “through”-type) source, which is a voltage source in the
electrical domain. The controlled_rectifier module models the behavior
of an ideal switch, like an MOS switch with zero on resistance, coupled in par-
allel with a bypass ideal diode. It has been modeled as a 2-port module with
an additional logical input to control the switch. For simplicity, the assumption
that normalization resistances are the same for both ports has been made in
its formulation, and so imposed in its constructor. That way, in its conducting
state, whether it is due to the transistor switched on or to the diode, it sim-
ply lets waves through (like a transparent channel), otherwise it reflects them
backwards (like a couple of open circuits). Its implementation is shown in the
following:

1 struct controlled_rectifier : wave_module <2, electrical >
2 { // Ideal switch with integrated ideal diode
3 SC_HAS_PROCESS(controlled_rectifier);
4 controlled_rectifier (sc_module_name name);
5 void calculus ();
6 sc_in <bool> control;
7 };
8
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9 controlled_rectifier::controlled_rectifier ...
10 {
11 SC_METHOD(calculus);
12 sensitive << activation << control;
13 // sets normalization resistances on both ports to be the ↵

same:
14 port[0] <<= port[1] <<= 1;
15 }
16

17 void controlled_rectifier::calculus ()
18 {
19 double a0 = port[0]->read(), a1 = port[1]->read();
20 bool diode_on = a0 > a1, switch_on = control->read();
21 bool on = diode_on || switch_on;
22 port[0]->write(on ? a1 : a0);
23 port[1]->write(on ? a0 : a1);
24 }

When the switch is off, the detection of the state of the diode is done by
looking at port voltages; but if the diode is off too, port voltages are propor-
tional to incident waves, since b j = a j ⇒ v j = 2a j

√
R0, so it is perfectly legal

to test the latter ones. A similar formulation models the diode bridge in the
ideal_rectifier module.

For what concerns the linear components, they are all modeled according to
Equation 10.4 and the example module reported in Section 3. In particular, the
equations governing the RLC circuit in wave quantities are:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ0 = 2a
√

R0 − (R + R0)x0/L − x1/C

ẋ1 = x0/L

b = a − x0

√
R0/L

(10.13)

where the state vector x is composed of x0 = LiL and x1 = CvC with obvious
meaning of the symbols. This directly translates into the following state update
and output computation functions:

1 void RLC::field (double *var) const
2 {
3 double a = port->read()
4 var[0] = 2*a*sqrt(R0) - state[0]*(R + R0)/L - state[1]/C ;
5 var[1] = state[0]/L ;
6 }
7

8 void RLC::calculus ()
9 {

10 R0 = port->get_normalization();
11 while (step()) {
12 double a = port->read();
13 double b = a - state[0]*sqrt(R0)/L;
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14 port->write(b);
15 }
16 }

that, together with the obvious declaration of the RLC structure, complete the
definition of the module. A model for the RC module can be derived similarly.
The complete source code for this example, the full library, and other applica-
tions are available from the authors’ website (Biagetti et al., 2006).

4.1 Simulation Results

The circuit has been simulated using the proposed SystemC extension, which
uses a fourth-order Adams-Bashforth ODE solver, and the results compared
to a Matlab™ simulation done with the Simulink Power toolbox using the
ode15s stiff ODE solver. Excessively long simulation times with the Matlab
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ode113 solver (Adams-Bashforth), suited for nonstiff systems, led us to be-
lieve that testing both simulators with the same solver algorithm could not be
very significant because of their different application contexts (which is a sin-
gle module in our simulator).

Nevertheless, using an adaptive time step with the same maximum ∆t of 5 ns,
we obtained a simulation time of 11.3 s with SystemC-WMS and 2.3 s with
Matlab™, both running on an Intel™ Pentium™ M processor at 1000 MHz.

Results are shown in Figure 10.4, where load current and chopped voltage
are plotted as a function of time. The curves are completely overlapping.

5. Conclusion

The increasing complexity of systems and circuits asks for an easy way to
model and simulate the overall behavior of a complex system spanning multi-
ple domains. In order for SystemC to be able to cope with these requirements,
an extension aimed at allowing the modeling and simulation of analog circuits
is mandatory.

This work proposes an effective, and still not excessively complex frame-
work, that simplify the modeling of the interaction between analog models
belonging to heterogeneous domains, as well as model reuse. By using power
waves as standard input/output signals for analog modules, these can be inde-
pendently modeled and freely interconnected together in arbitrary topologies
without having to deal with complex interface compatibility issues. Moreover,
this allows for a uniform treatment of heterogeneous domains, thus paving the
way to the development of truly generic and reusable model libraries.

The first results are encouraging in terms of accuracy of simulation and,
despite the simplicity of the algorithms employed, the variety of the class of
circuits that can be simulated.
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Abstract Complex microelectronic embedded systems are mostly subdivided into sev-
eral subsystems, which are designed in different hardware description languages
(HDLs) to get best system performances. Verification of all subsystems in one
environment presents a difficult task. One of the possibilities to solve this prob-
lem is using cosimulation techniques and standard HDL simulators. This chap-
ter focuses on automatic building of cosimulation interfaces and model sources
extracted from a HDL-independent system description. Moreover, it presents
a design methodology, which introduces advanced cosimulation techniques to
be used in mixed-signal system design. The proposed cosimulation technique
and the automation methods have been applied on an application framework for
multi-HDL system verification and later on evaluated by an example taken from
the automotive industry.

Keywords: heterogeneous system design; cosimulation; design automation; distributed
computing.

1. Introduction

Verification plays an important role in the design of microelectronic embedded
systems that become more and more complex. The complex systems consist
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mostly of subsystems designed in different, hardware description languages
(HDLs) to get best performance provided by used HDLs (e.g., hardware/

software subsystems). The verification of heterogeneous systems in one envi-
ronment is very difficult. Currently, there are three possibilities to verify such
systems. The first one is to translate corresponding subsystem descriptions
from the foreign HDL into the target HDL, which can involve a degradation
of model performance. The second possibility considers that the used simula-
tor supports multi-HDL system design, which is preferred by many electronic
design automation (EDA) tool vendors. A cosimulation presents the third pos-
sibility for the verification of heterogeneous systems. In a cosimulation, sub-
systems are simulated using HDL-specific simulators and the communication
between them has been established by a cosimulation interface. In recent years,
use of cosimulation techniques becomes a more and more interesting solution
for the verification of heterogeneous system designs.

In this chapter we present an advanced cosimulation technique to be used
in system design of microelectronic embedded systems. Automation in system
design is one of the guidelines followed in this work. This work concentrates
on design of a generic cosimulation interface and automatic building of a verifi-
cation platform. Moreover, it presents a methodology to be used in multi-HDL
system design.

This chapter is organized as follows. Section 2 describes cosimulation tools
and methods, which are related to this work. The proposed design methodol-
ogy has been described in Section 3. Section 4 describes the proposed generic
cosimulation interface. One important topic in this work is the automatic code
generation, which is described in Section 5. The proposed approach has been
illustrated in Section 6 by an example taken from automotive industry. Section
7 concludes this work.

2. Related Work

In the past few years, interfacing between different simulators and cosimulation
techniques have been investigated intensively. Many different solutions have
been found. A short overview about the used technologies and tools is given
here.

CosiMate (TNI-Software, 2005) is an EDA-tool, which uses a common
cosimulation bus based on the open application programming interface (API).
A graphical user interface supports the configuration of the cosimulation bus.
Several simulators can be coupled into one cosimulation environment:
Matlab/Simulink, Saber, SystemC, VHDL/Verilog Simulators from Mentor-
Graphics, Cadence, etc. CosiMate links these simulators through a configura-
tion file and C interfaces to create the cosimulation bus.
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Seamless (Mentor Graphics, 2005) provides a cosimulation with several in-
struction set simulator (ISS) and HDL simulators. The cosimulation is based
on the C-bridge API. The cosimulation backplane is tool-independent and sup-
ports several of today’s popular simulators. The setup of the cosimulation must
be done manually.

Link for ModelSim (The MathWorks, 2005) was presented by MentorGraph-
ics and MathWorks as a solution for the cosimulation between Matlab/Simulink
and the ModelSim simulator. It uses the standard communication layer (socket
connection) for the data transfer. It integrates Matlab/Simulink into the hard-
ware design flow for the development of field programmable gate array (FPGA)
and application-specific integrated circuit (ASIC).

DCB (distributed cosimulation backbone; de Mello and Wagner, 2002) is
based on the high-level architecture (HLA) method for the generation of dis-
tributed cosimulation interfaces. DCB serves as a common interface for differ-
ent simulator types. Each simulator can be connected by ambassadors to the
DCB backbone. Ambassador controls the data exchange between DCB back-
bone and connected simulator. DCB supports both synchronous and asynchro-
nous simulation. Therefore, rollbacks are possible. The DCB has been defined
in the scope of the SIMOO project (Copstein et al., 1997).

Ptolemy II (Brooks et al., 2004) is a platform for modeling, simulation, and
design of concurrent, real-time, embedded systems. Ptolemy II supports sev-
eral computation models (e.g., time-discrete, discrete-event, time-continuous,
etc.), which are called domains. Many predefined execution units, called actors,
are available as well as a graphical editor for the system modeling. Ptolemy II
provides interfaces to most of today’s popular simulators as well.

2.1 Summary

The two relevant approaches for implementing the cosimulation environment
in this work are the backplane-based simulation and the direct coupling. Al-
most every cosimulation framework recently proposed uses the simulation
backplane. For example, the centralized scheme facilitates user interaction and
the open API benefits in seamless coupling of different types of simulators.
However, the backplane also has considerable drawbacks, such as the perfor-
mance bottleneck caused by the centralized communication.

As a consequence of the backplane’s drawbacks, this work bases on direct
coupling of simulators without a central control unit. The proposed commu-
nication scheme is more flexible than a cosimulation backplane. However, the
cosimulation is supported by an automatic code generation, which examines
the whole system and not only the interfacing between two models.
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3. Design Methodology

Based on top-down system design using intellectual property (IP) models, the
proposed methodology subdivides the system design into three different levels:

1. System design level

2. Language level

3. Simulator level

3.1 System Design Level

At the system design level, a heterogeneous system is described using a
language-independent description semantic that enables integration of subsys-
tems designed in different HDLs. At this level the functional descriptions of
models are not necessary since the system has been designed using provided IP
models. Concerning that, a system description becomes language-independent.
It opens a possibility to use the same description semantic for models written
in different HDLs. For the system description, system hierarchy, and schematic
representation eXtensible markup language (XML) has been used. The essen-
tial benefits of XML are language independency, legibility, compactness, and
support of hierarchical structures. An example of a system description using
XML is depicted in Figure 11.1a and its graphical representation in a schematic
editor in Figure 11.1b.

The simple model consists of three blocks (ramp, R, and GND), which are
connected with two connections (net and gnd_). As depicted, at the system
design level (in this case a top-level description) no functional description of
models has been used. Only the model references and model parameters have
been used.

Fig. 11.1 System description
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3.2 Language Level

At the language level the system has been enhanced to meet the requirements of
target simulation environment. This includes splitting of the designed system
into subsystems, which are later on grouped by its HDL or by required simula-
tors (e.g., for parallel simulation), whereby the special cosimulation blocks are
inserted between foreign subsystems. At this level the model sources including
cosimulation interfaces have been generated. The performed modification does
not have an influence on the behavior of the designed system.

3.3 Simulator Level

At the simulator level the modified system description serves as an outline for
code generation and setup of the cosimulation platform. Involved simulators
communicate through integrated cosimulation interfaces. The data flow and
simulation of the whole system is controlled by a synchronization mechanism.

An application framework has been developed to support system design
based on the proposed design methodology. Language and simulator levels
described above are design steps in a heterogeneous system design that are
performed in this framework fully automatically.

4. Design of a Cosimulation Interface

The first and rather more challenging design effort of this work concentrates on
a proper coupling mechanism that enables the incorporation of several different
simulators into a heterogeneous cosimulation environment. The finally devel-
oped communication scheme allows flexible, reasonably efficient, and time-
accurate heterogeneous cosimulation. The architecture of the implementation
of the coupling mechanism should be designed as an easy-to-use, customiz-
able, and extensible framework. The developed concept is inspired by many
aspects of the previously introduced cosimulation approaches. By means of
evaluations of relevant simulation principles and resulting design decisions,
this section presents the overall design of the so-called cosimulation interface,
which is the central component used to interconnect different simulators.

4.1 Interfacing Between Simulators

In general, there are two possibilities to interface different simulators. The first
approach is based on file input/output (I/O) primitives, which is sometimes
used for less complex hardware/software cosimulation applications. The more
common and flexible communication approach uses open interfaces provided
by the participating simulators. Communication by means of file I/O opera-
tions is rather simple and provides simulator independency, but it is inflexible
and does not meet all intended requirements. Hence the coupling mechanism
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proposed by this work utilizes open interfaces of simulators. Prominent simu-
lator interface examples are foreign language interface (FLI) (Model Technol-
ogy, 2001) and programmable logic interface (PLI) (Mittra, 1999). Figure 11.2
depicts the key principle of the simulator interfacing. The cosimulation
interface component (CsInterface) hooks on the provided open C/C++ API.
As no standardized simulator API has been developed yet, an adaptor is needed
to adjust the basic cosimulation interface to the simulator-specific API. All
cosimulation interface components are interconnected by means of a commu-
nication system.

Communication System. Since the communication mechanism has a deep
impact on simulation performance and accuracy, the communication system
must be planned carefully and several aspects have to be considered. The fol-
lowing two requirements influence the design of the communication mecha-
nism:

Discrete-event simulation uses a low time abstraction, therefore the com-
munication should be fast and efficient (i.e., low overhead and short
transmission times).

Distributed simulation possibly on different platforms demands a
network-compatible communication mechanism. The used communica-
tion system has to be portable to different platforms, e.g., Linux and
Microsoft Windows.

There are two main paradigms for interconnecting simulators. One is based
on shared resources (shared memory) and the other one lets simulators com-
municate through channels. The first one is highly efficient but not applica-
ble for distributed simulation. The latter paradigm offers the choice between
several communication techniques, such as transmission control protocol/In-
ternet protocol (TCP/IP) or user datagram protocol (UDP) socket connections,
remote procedure call (RPC) or higher abstract interprocess communication
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(IPC) mechanisms. The proposed communication mechanism of this work uti-
lizes the idea of abstract communication channels, i.e., simulators communi-
cate with each other through abstract channels. An abstract channel provides
a uniform interface and encapsulates the underlying communication mecha-
nism. Hence different channel implementations can easily be exchanged. This
provides the opportunity to select the most appropriate communication mecha-
nism for a given configuration. This work prefers low abstract methods to high
abstract and convenient communication frameworks, such as common object
request broker architecture (CORBA).

Coupling Mechanism. Summarizing, the proposed cosimulation environ-
ment uses a decentralized coupling mechanism. Communication, synchro-
nization, data conversion, and control functionality is distributed across all
simulators and implemented by means of cosimulation interfaces. Cosimula-
tion interfaces communicate through abstract, peer-to-peer channels. There-
fore, each cosimulation interface establishes one connection to every other
simulator. Figure 11.3 depicts the principle of the proposed coupling mecha-
nism.

Abstract channels provide basic communication functionality by means of
a simple uniform interface. Basically, the package-oriented channel interface
provides two operations: readPackage and writePackage. These operations
must be of blocking nature. The example shows the needed peer-to-peer con-
nections between three simulators. Simulators A and B are placed on the same
workstation, hence they are connected by a shared memory channel. Assuming
that workstation 1 and 2 are both sited in a network (LAN/WAN), the peer-to-
peer connections between these workstations are built on a TCP/IP channel.

4.2 Communication

The basic coupling and communication mechanism builds the foundation
needed by the three main tasks of the cosimulation interface component: data
communication, data type conversion, and synchronization.
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Fig. 11.4 Simple example of the CsBlock concept

The CsBlock modules are used to exchange signals between different sim-
ulation engines. It is obvious that data type conversion also takes place in the
CsBlock module. One CsBlock is connected to local blocks with input and
output ports and propagates signal changes to the corresponding CsBlock on
a remote simulator. Clearly, cosimulation blocks always appear in pairs. Each
CsBlock corresponds to a counterpart sited on a remote simulator. The simple
example shown in Figure 11.4 illustrates this concept of using cosimulation
blocks to exchange signals between modules on separated simulators. At the
system design level only the structure of the model is represented.

4.3 Data Type Conversion
Considering data conversion more precisely, one have to distinguish between
language-level and simulator-level conversion. At the language level, the cos-
imulation tool has to find equivalent data types for different languages. This
usually happens at compile time (code generation phase). At the simulator
level, the signal values have to be converted to the simulator’s internal rep-
resentation, which happens at run time. Converting data types is the next step
done by the interface modules. This step is required to convert values from one
data format to another. The data type conversion is predefined during the code
generation phase at the language level. It has been implemented using a sim-
ple hash-table, which searches for equivalent data type for a certain language.
In order to allow a coupling between several simulators with different data
representations, it is a good practice to convert data values to a uniform inter-
mediate format. This work uses the American Standard Code for Information
Interchange (ASCII) format for intermediate data representation.
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Listing 11.1 Basic synchronization algorithm

1 while unprocessed events remain do
2 send and receive messages generated in the previous iteration
3 LBTS = min i(Ni + LAi) // Ni = time of next event in LPi

4 process events with time stamp ≤ LBTS // LAi = lookahead of LPi

5 barrier synchronisation
6 end while

4.4 Synchronization

The cosimulation environment structure is determined by the performance ad-
vantage of a decentralized communication scheme over a centralized one, so
that the synchronization method has to be decentralized. The conservative pro-
tocols are relatively straightforward to implement and can be optimized by
adjusting a few model-specific parameters. Basically, they have a performance
advantage over synchronous protocols. The chosen synchronization method is
actually implemented as a decentralized, “synchronous”, conservative protocol
(Calinescu, 1995). The term synchronous refers to the implementation princi-
ple that is based on barrier synchronization. The basic algorithm is shown in
Listing 11.1. Each iteration consists of the following steps:

Compute a lower bound on the time stamp (LBTS) of events that might
be received later

Events with time stamp ≤ LBTS are safe to process

Process safe events, exchange messages

Global synchronization (barrier synchronization)

The barrier synchronization method descends from the bulk synchronous par-
allel (BSP) model, which nowadays is a generic target for conservative discrete-
event simulations.

4.5 Cosimulation Interface

Figure 11.5 depicts the rough architecture of entire simulator interface with its
relevant components. CsBlock modules represent blocks simulated on a re-
mote simulator. If a signal of a sensitive input port changes, the CsBlock mod-
ule converts the signal value into an intermediate representation and packages
it into a remote event. Afterwards it forwards the event to the CsInterface
component. A CsBlock also receives event messages and writes the packaged
signal values to the corresponding output ports. CsInterface is the central
component of the simulator interface responsible for event exchanging and
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Fig. 11.5 Simulator interface structure

synchronization. It contains a CsLinkRemoteSE component for each remote
simulator, which accumulates all incoming and outgoing events for a certain
remote simulator, stores them in a queue, and exchanges them with its counter-
part. Each CsLinkRemoteSE is directly connected to a Channel responsible
for data exchange.

The basic synchronization algorithm, implemented in the CsScheduler
component, conducts the CsLinkRemoteSE components to send and receive
external events in proper time steps. Furthermore, the CsScheduler embeds
the cosimulation interface into the simulation process, i.e., it invokes the
CsInterface procedures at specific simulation times. All incoming events
are dispatched according to their time stamps and destination blocks by the
EventScheduler component. Therefore, it fetches incoming events from
the CsInterface and propagates them to the corresponding CsBlock mod-
ule. All components are designed to build a general framework, which is eas-
ily extensible and adaptable to interconnect distinct simulators. The simulation
performance can be optimized by adjusting simulation-specific parameters of
certain interface components.

5. Automatic Code Generation

One of the main tasks in this work is the automatic building of a cosimulation
platform based on the proposed design methodology. The generation process of
a verification platform consists of three main tasks: the cosimulation interface
generation, the semiautomatic system partitioning, and the hierarchical code
generation. The automatic cosimulation interface generator creates CsBlocks,
CsInterfaces, and Channels, which are required to establish a connection
between two CsBlocks. Figure 11.6 depicts the class diagram of the cosimu-
lation interface generator.

As depicted, the central component in the cosimulation interface generator
is CsInterfacePairBuilder, which is derived from the SourceBuilder
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class. Two provided methods enables simple creation of a CsBlock pair:
buildInterfacePair(BlockA, BlockB) and writeSourceCode(). The
buildInterfacePair-Method creates two CsBlocks using simulator-specific
CsInterfaceBuilder classes. All cosimulation sources are generated by
invoking the writeSourceCode() method. It is obvious that the cosimulation
interface generator must have an abstract structure, which enables modular and
generic implementation. The cosimulation interface generator serves for cre-
ating CsBlock pairs, CsInterface control structure (Cs-API) and required
channels. It does not create the whole verification platform, due to hold the
system is simple and clearly arranged. The cosimulation interface generator
has been integrated in a more complex structure, which handles the code gen-
eration for the verification of the whole designed system. Figure 11.7 depicts
the flow of the automatic code generation. The first step after getting the sys-
tem description and the initialization phase in the code generator is to check
the presence of a cosimulation.
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In case of a cosimulation, the code generator executes a system partition-
ing that performs the creation of subsystems, which are later on clustered by
simulator type. In this process, the cosimulation interface generator has been
used to create required CsBlock pairs. At least the code generator invokes
the source generation for each created top-level description. Recursively, all
blocks are scanned and their source codes are generated. If a block is a basic
IP block the source code will be taken from the provided IP library, other-
wise they will be generated. The last step in the code generation flow is the
creation of the simulator-specific invocation scripts. Each involved simulator
uses specific call routines, which are defined in a simulator script.

Currently, the presented work provides automatic code generation for very
high speed integral circuit (VHSIC) hardware description language (VHDL),
VHDL analog and mixed signal (AMS), SystemC, Simulink, and SaberMAST
models, whereby a cosimulation interface can be created between ADVanceMS,
ModelSim, AMS Designer, Simulink, and SystemC simulators.

6. Experimental Example

An example of the code generation of a heterogeneous system using the
methodology described in Section 3 is presented in this section. Figure 11.8 de-
picts a system overview of an automotive power management system (APMS).
The system controls the power needs of the automotive electromechanical
loads and the charging of the battery and prevents a complete discharging of
the battery at any time. This system should work in the large signal area and
should contain all important analog nonlinear effects (voltage, current), and the
algorithms of the controller. The energy consumption of the car depends first
on static loads, controlled by the driver (driving cycle), and at second from the
behavior of the driver assistant systems (dynamic loads dependent on the envi-
ronment like street condition, etc.). It contains analog and digital components
as well as software components. The microcontroller developed in SystemC as
a state-machine represents a software part of the system. All other components
such as analog-to-digital/digital-to-analog converter (ADC/DAC), generator,
speed-sensor, battery etc. are coded in VHDL-AMS.

6.1 Design Steps

Concurrently developed subsystems are integrated using the schematic edi-
tor integrated in our application framework. Figure 11.9.a depicts a schematic
overview of the APMS system at the system design level.

Two D/A converters and two A/D converters build a bridge between the
microcontroller and the analog part of the system. To overcome the problems
of the integration of models written in different languages, four CsBlock pairs
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Fig. 11.9 System overview

have been inserted between the microcontroller unit and four converters. With
the insertion of CsBlocks, the APMS system has been subdivided into two
language/simulator groups.

Next step is generating the top-level description of the generated language/

simulator groups. In our example we have two language groups: SystemC
and VHDL-AMS. The SystemC system consists of the microcontroller and
four SystemC-interface modules. Respectively, the VHDL-AMS subsystem
consists of VHDL-AMS components and four VHDL-AMS interface mod-
ules. Figure 11.9b depicts the system overview at the language level with
inserted interface modules. The A/D and D/A converters use standard logic
vectors for communicating with the microcontroller unit. The VHDL standard
logic vectors (std_logic_vector) are converted into logic vectors (sc_lv)
on the SystemC side. Only one peer-to-peer connection channel between
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SystemC and VHDL-AMS simulation has been created, which is used to
transfer the data of all interface modules. We use ADVanceMS simulator from
MentorGraphics to simulate the VHDL-AMS subsystem. Since the current ver-
sion of the ADVanceMS simulator does not provide the required FLI func-
tions for the used synchronization method, we used the ModelSim interface of
ADVanceMS to get access to FLI and through FLI to SystemC. The configu-
ration of the cosimulation platform is depicted in Figure 11.10.

This configuration enables cosimulation of analog components with soft-
ware components of the system. The interface module on the VHDL-AMS
side was simulated using ModelSim library. Its entity definition is described
in VHDL and the functional behavior of the interface module in C++. The
remaining part of the VHDL-AMS side was simulated using ADVanceMS.

6.2 Results

The proposed cosimulation technique has been evaluated by used heteroge-
neous examples. Figure 11.11a depicts the comparison between performed
cosimulations and its chart has been depicted on Figure 11.11b.

A cosimulation, which is distributed by TCP/IP using two workstations, has
been compared with a cosimulation, whereby both simulators run on the same
workstation. The best results have been retrieved by a distributed cosimula-
tion allowing parallel execution of independent simulation tasks. The table on
Figure 11.11a shows the comparison of elapsed times for specific simulation
time. At least the average speed-up has been calculated, which is recently de-
pendent on many different factors. The applied synchronization method and
CsInterface control structures have been improved by the results retrieved
from the performed cosimulation, which are compared with the results from
a simulation of the same system. To improve the implemented cosimulation
approach, the multipoint control unit (MCU) model has been developed in
SystemC as well as in VHDL language. The computed data from both simu-
lations are identical, which verifies the applied cosimulation method and used
synchronization algorithm (Figure 11.12). The computed signals of a cosimu-
lation are present on the upper side in the figure and the simulation results of a



Automatic Generation of a Coverification Platform 201

Fig. 11.11 Cosimulation results

Fig. 11.12 Signal comparison: generator and board voltage in simulation and cosimulation

cosimulation are present on the lower side of the waveform viewer. It is obvi-
ous that the homogeneous simulation in this case must be faster than performed
cosimulation, due to the delays of the communication and the used synchro-
nization method.

However, the elapsed simulation time depends strongly on the structure
of the simulated system, involved simulators, and many other factors. The
primary goal of this work was not accelerating the simulation but more to
provide the possibility to design systems that are language-independent and
automatically generate the required heterogeneous verification platform, which
ensures cycle accurate cosimulation. Furthermore, the proposed cosimulation
method supports building distributed and parallel simulation environment, to
increase the simulation time. The ADVanceMS–SystemC cosimulation exam-
ple has been advised selected here to present the actually attractive and recently
required combination, which integrates analog, digital, as well as software
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components in one environment using today’s most popular simulators. The
proposed design methodology supports multi-HDL system design based on
models provided by an IP library. Moreover, the verification platform has been
generated fully automatically. The implemented automatic code generator
reduces the system design time, which is an important issue.

7. Conclusion

The proposed design methodology using cosimulation techniques has been ap-
plied on an application framework, which generates the required verification
platform fully automatically. Multi-HDL system design, generic interfacing,
as well as automatic generation of a verification platform including genera-
tion of cosimulation interfaces are the key benefits of this work. A generic and
modular structured code generator has been implemented. The cosimulation
method as well as the code generator itself have been evaluated by an example
taken from the automotive industry.
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Chapter 12
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AMS Synthesis
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Abstract This chapter explores the suitability of unified modeling language (UML)
techniques for defining hierarchical relationships in analogue and mixed signal
(AMS) circuit blocks, and extensible markup language (XML) for storing soft
AMS intellectual property (IP) design rules and firm AMS IP design data. Both
aspects are essential to raising the abstraction level in synthesis of this class of
block in SoCs. The various facets of AMS IP are discussed, and explicit map-
pings to concepts in UML are demonstrated. Then, through a simple example
block, these concepts are applied and the successful modification of an existing
analogue synthesis tool to incorporate these ideas is proven. The central data
format of this tool is XML, and several examples are given showing how this
metalanguage can be used in both AMS soft-IP creation and firm-IP synthesis.

Keywords: analogue and mixed-signal; synthesis; IP; UML; XML.

1. Introduction

Cost, volume, power, and pervasivity are all difficult constraints to manage in
the design of new integrated systems (smart wireless sensor networks, ubiq-
uitous computing, etc.). Along with increasingly complex functionality and
human–machine interfaces, they are driving the semiconductor industry to-
wards the ultimate integration of complete, physically heterogeneous systems
on chip (SoCs). The coexistence of sensors, analogue/mixed, and radio
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frequency RF systems (multi-physics part commonly called AMS1) with digi-
tal and software IP2 blocks cause significant design problems.

The difficulty centres on the concept of abstraction levels. To deal with
increasing complexity (in terms of number of transistors), SoC3 design re-
quires higher abstraction levels. But at the same time, valid abstraction is be-
coming increasingly difficult due to physical phenomena becoming first order
or even dominant at nanometric technology nodes. The rise in analogue,
mixed-signal, RF4, and heterogeneous content to address future application
requirements compounds this problem. Efficient ways must be found to incor-
porate non-digital objects into SoC design flows in order to ultimately achieve
AMS/digital hardware/software co-synthesis.

The main objective of such an evolution is to reduce the design time in order
to meet the time to market constraints. It is widely recognised that for complex
systems at advanced technology nodes, mere scaling of existing design tech-
nology will not contribute to reducing the “design productivity gap” between
the technological capacity of semiconductor manufacturers (measured by the
number of available transistors) and the design capacity (measured by the ef-
ficient use of the available transistors). Since 1985, production capacity has
increased annually by between +41% and +59%, while design capacity in-
creases annually by a rate of only +20% to +25%. The 2003 ITRS Roadmap
clearly states that “cost [of design] is the greatest threat to continuation of
the semiconductor roadmap”. Only the introduction of new design technology
(such as, historically, block reuse or IC implementation tools: each new tech-
nology has allowed design capacity to “jump” and to catch up with production
capacity) can enable the semiconductor industry to control design cost. With-
out design technology advances, design cost becomes prohibitive and leads to
weak integration of high added value devices (such as RF circuits). One of the
next advances required by the electronic design automation (EDA) industry is
a radical evolution in design tools and methods to allow designers to manage
the integration of heterogeneous AMS content.

2. AMS IP Element Requirements for Synthesis Tools

Most analogue and RF circuits are still designed manually today, resulting in
long design cycles and increasingly apparent bottlenecks in the overall de-
sign process (Gielen and Dehaene, 2005). This explains the growing awareness
in industry that the advent of AMS synthesis and optimisation tools is a nec-
essary step to increase design productivity by assisting or even automating the

1Analogue and mixed-signal
2Intellectual property
3System-on-chip
4Radio frequency
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AMS design process. The fundamental goal of AMS synthesis is to quickly
generate a first-time correct-sized circuit schematic from a set of circuit speci-
fications. This is critical since the AMS design problem is typically undercon-
strained with many degrees of freedom and with many interdependent (and
often-conflicting) performance requirements to be taken into account.

Synthesisable (soft) AMS IP is a recent concept (Hamour et al., 2003)
extending the concept of digital and software IP to the analogue domain. It is
difficult to achieve because the IP hardening process (moving from a
technology-independent, structure-independent specification to a qualified lay-
out of an AMS block) relies to a large extent on the quality of the tools being
used to do this. It is our belief that a clear definition of AMS IP is an inevitable
requirement to provide a route to system-level synthesis incorporating AMS
components.

Table 12.1 summarises the main facets necessary to AMS IP. For the sake
of clarity, a reference to very high speed integrated circuit (VHSIC) hardware
description language (VHDL)-AMS concepts is shown wherever possible.

Figure 12.1 shows how these various facets of AMS IP should be brought
together in an iterative single-level synthesis loop. Firstly, the performance
criteria are used as specifications to quantify how the IP block should carry
out the defined function. Performance criteria for an amplifier, for example,
will include gain, bandwidth, power supply rejection ratio (PSRR), offset, etc.
They can be considered to be the equivalent of generics in VHDL-AMS. They
have two distinct roles, related to the state of the IP block in the design process:

1. As block parameters when the IP block is a component of a larger block,
higher up in the hierarchy, in the process of being designed;

2. As specifications when the IP block is the block in the process of be-
ing designed (such as here); This role cannot be expressed with VHDL-
AMS generics, although language extensions (Doboli and Vemuri, 2003;
Hervé and Fakhfakh, 2004) have been proposed

It will be shown in Section 3 that this dual role requires the definition of a new
data type.

The comparison between specified and real performance criteria values act
as inputs to the synthesis method, which describes the route to determine de-
sign variable values. It is possible to achieve this in two main ways:

1. Through a direct procedure definition, if the design problem has suffi-
cient constraints to enable the definition of an explicit solution

2. Through an iterative optimisation algorithm; if the optimisation process
cannot, as is usually the case, be described directly in the language used
to describe the IP block, then a communication model must be set up
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Table 12.1 AMS IP block facets

Property Short description VHDL-AMS equivalent

Function de-
finition

Class of functions to which the IP block belongs entity, behavioural
architecture

Performance
criteria

Quantities necessary to specify and to evaluate the
IP block

generic

Terminals Input/output links to which other IP blocks can con-
nect

terminal

Structure Internal component-based structure of the IP block structural
architecture

Design
variables

List of independent design variables to be used by a
design method or optimisation algorithm

subset of
generic map

Physical
parameters

List of physical parameters associated with the in-
ternal components

generic map

Evaluation
method

Code defining how to evaluate the IP block, i.e.,
transform physical parameter values to performance
criteria values. Can be equation- or simulation-based
(the latter requires a parameter extraction method)

(partly) process or
procedure

Parameter
extraction
method

Code defining how to extract performance crite-
ria values from simulation results (simulation-based
evaluation methods only)

Synthesis
method

Code defining how to synthesise the IP block,
i.e., transform performance criteria requirements
to design variable values. Can be procedure- or
optimisation-based

Constraint
distribution
method

Code defining how to transform IP block parameters
to specifications at a lower hierarchical level

between the optimiser and the evaluation method; a direct communica-
tion model gives complete control to the optimisation process, while an
inverse communication model uses an external process to control data
flow and synchronisation between optimisation and evaluation; the lat-
ter model is less efficient but makes it easier to retain tight control over
the synthesis process

The synthesis method generates combinations of design variables as ex-
ploratory points in the design space. The number of design variables defines
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Fig. 12.1 AMS synthesis loop showing AMS IP facet use

the number of dimensions of the design space. The design variables must be
independent of each other and as such represent a subset of IP block parame-
ters (i.e., performance criteria, described earlier) in a structure definition. For
example, a differential amplifier design variable subset could be reduced to
a single gate length, bias voltage, and three transistor widths for the current
source, matched amplifier transistors, and matched current mirror transistors.
Physical variables are directly related to design variables and serve to parame-
terise all components in the structure definition during the IP block evaluation
process. These are represented by the generic map definitions in structural ar-
chitecture component instantiations in VHDL-AMS. In the above example, the
design variable subset would be expanded to explicitly define all component
parameters.

The evaluation method describes the route from physical variable values to
the performance criteria values and completes the iterative single-level optimi-
sation loop. Evaluation can be achieved in two main ways:

1. Through direct code evaluation, such as for active surface area calcula-
tions

2. Through simulation (including behavioural simulation) for accurate per-
formance evaluation (gain, bandwidth, distortion, etc.). If the IP block
is not described in a modelling language that can be understood by a
simulator, then this requires a gateway to a specific simulator and to
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a jig corresponding to the IP block itself. For the simulator, this re-
quires definition of how the simulation process will be controlled (part
of the aforementioned communication model). For the jig, this requires
transmission of physical variables as parameters and extraction of per-
formance criteria from the simulator-specific results file. The latter de-
scribes the role of the parameter extraction method, which is necessary
to define how the design process moves up the hierarchical levels during
bottom-up verification phases.

Once the single-level loop has converged, the constraint distribution method
defines how the design process moves down the hierarchical levels during top-
down design phases. At the end of the synthesis process at a given hierarchical
level, an IP block will be defined by a set of physical variable values, some
of which are parameters of an IP sub-block. To continue the design process,
the IP sub-block will become an IP block to be designed and it is necessary to
transform the block parameters into specifications. This requires a definition
of how each specification will contribute to an error function for the synthesis
method and includes information additional to the parameter value (weighting
values, specification type: constraint, cost, condition, etc.).

3. UML in AMS Design

3.1 Reasons for Using UML in Analogue Synthesis

UML5 is a graphical language enabling the expression of system requirements,
architecture, and design, and is mainly used in industry for software and high-
level system modelling. UML 2.0 was adopted as a standard by OMG6 in 2005.
The use of UML for high-level SoC design, in general, appears possible and is
starting to generate interest in several research groups (Riccobene et al., 2005).
A recent proposal (Carr et al., 2004) demonstrated the feasibility of describ-
ing AMS blocks in UML and then translating them to VHDL-AMS, building
on other approaches to use a generic description to target various design lan-
guages (Chaudhary et al., 2004). This constitutes a first step towards raising
abstraction levels of evaluatable AMS blocks. Considerable effort is also being
put into the development of “AMS-aware” object-oriented (OO) design lan-
guages such as SystemC-AMS (Vachoux et al., 2003) and SysML (Vanderper-
ren and Dehaene, 2005). However, further work must be carried out to enable
the satisfactory partitioning of system-level constraints among the digital, soft-
ware, and AMS components. At the system level, the objective in SoC design
is to map top-level performance specifications among the different blocks in

5Unified modeling language
6Object Management Group
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the system architecture in an optimal top-down approach. This is traditionally
done by hand in an ad hoc manner. System-level synthesis tools are lacking
in this respect and must find ways of accelerating the process by making rea-
sonable architectural choices about the structure to be designed and by accu-
rately predicting analogue/RF architectural specification values for block-level
synthesis.

Therefore, to be compatible with SoC design flows, top-down synthesis
functionality needs to be added to AMS blocks. Our objective in this work is
to demonstrate that this is possible. Since UML is a strong standard on which
many languages are based (SysML is directly derived from UML, and SystemC
as an OO language can be represented in UML also), it should be possible to
map the work to these derived or related languages.

3.2 Mapping AMS IP Requirements to UML Concepts

In order to develop a UML-based approach to hierarchical AMS synthesis, it
is necessary to map the AMS IP element requirements given in Section 3.1 to
UML concepts.

UML has many types of diagrams and many concepts that can be expressed
in each—many more, in fact, than are actually needed for the specific AMS IP
problem. Concerning the types of diagram, two broad categories are available:

1. Structural diagram, to express the static relationship between the build-
ing blocks of the system. We used a class diagram to describe the proper-
ties of the AMS IP blocks and the intrinsic relations between them. The
tenets of this approach and how to generate UML-based synthesisable
AMS IP will be described in this section, with an example in Section 5.

2. Behavioural diagram, showing the evolution of the system over time
through response to requests, or through interaction between the system
components. We used an activity diagram to describe the AMS synthesis
process. This will be described in further detail in Section 3.3 and exten-
sions to an existing AMS synthesis tool to incorporate these concepts
will be shown in Section 4.

Class relationships. Firstly, it is necessary to establish a clear separation of
a single function definition (entity and functional behavioural model for top-
down flows) from n related structural models (for single-level optimisation and
bottom-up verification). Each structural model will contain lower-level com-
ponents, which should be described by another function definition. It is also
necessary to establish functionality and requirements common to all structural
models whatever their functions be. By representing all this in a single dia-
gram (Figure 12.2), we are in fact modelling a library of system components,



212 Ian O’Connor et al.

1 1 1 1

B
is a component of

A

BA
inherits from

Element0_Functional

Element0_FunctionalElement0_Functional

Element0_Structural0 Element0_Structural1

Element0_Functional

Topology

Fig. 12.2 UML representation of AMS IP hierarchical dependencies

#name:String
model name
#instanceName:String
instance name
#physical:InstanceVector
physical variables
#abstracts
abstract design variables
#performances:ExtendedVector
performance criteria

specific synthesis procedure
#code:String

+evaluate():void
evaluate prototype
+setOptimizer():void
define optimization algorithm
+optimize():void
run optimization process
+updateSpecifications():void
update performance values

#varName:Specification
design and physical variables

+optimize():void
synthesis method

+descend():void
invoke instance topdown methods

+abstractToPhysical():void
physical variable calculation

+evaluate():void
structural architecture model
bottom up performance aggregation

+setVariables():void
set up variables

#SpecName:Specification(...)
generic specifications /
performance criteria

+evaluate():void
behavioral architecture model
+physicalToSpecifications():void
generic specification distribution

+setPerformances():void
set up performance criteria

+selectTopology():void
choice of most suitable structure

Topology Structural modelFunctional description

Fig. 12.3 UML class definitions for AMS IP blocks

not the actual system to be designed itself. This can be done using an object
diagram—however, in this work we will focus on the broader class diagram.

A class diagram constitutes a static representation of the system. It allows
the definition of classes among several fundamental types, the class attri-
butes and operations, and the time-invariant relationships between the various
classes. From the above analysis, we require (cf. Figure 12.3):

1. A single, non-instantiable (abstract) class representing common func-
tionality and requirements, in a separate publicly accessible package.
We called this class Topology.

2. A single class representing the function definition, which inherits from
Topology. An alternative solution would be to separate “evaluatable”
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functionality and “synthesisable” functionality through the use of inter-
faces. This is certainly a debatable point, but our view is that it would
tend to overcomplicate the description process. Another point is that
one can also be tempted to separate the entity aspect from the behav-
ioural model aspect, which would then allow the entity class to become
abstract. Again, this also appears to be somewhat overcomplicated to
carry out.

3. The n classes representing the structural models, which all inherit from
the function definition class. Each structural variant is composed of a
number of components at a lower hierarchical level, represented by a
single function definition class for each component with different func-
tionality. As the structural variant cannot exist if the component classes
do not exist, this composition relationship is strengthened to an aggrega-
tion relationship.

AMS IP requirement handling through definition of class attributes and
methods. Having established how to separate particular functionality
between common, functional, and structural parts of an AMS hierarchical
model, it is now necessary to define how to include each facet of the AMS
IP requirements set out in Section 2. This is summarised in Table 12.2.

Thus the performance criteria and variables are defined with the type
Specification. This is a specific data type, which plays an important role
in the definition of AMS IP. It requires a name String, default value, and
units String as minimum information. When used as a performance require-
ment in a base class, it can also take on the usual specification definitions
(<, >, =, minimize, maximize).

3.3 Modelling Analogue Synthesis with Activity Diagrams

In UML, a behavioural diagram complements structural diagrams by showing
how objects or classes interact with each other and evolve over time to achieve
the desired functionality. Among these, the activity diagram is useful for show-
ing the flow of behaviour (objects, data, control) across multiple classes as a
sort of sophisticated data flow diagram.

Figure 12.4 shows an example flow for two hierarchical levels. For a given
hierarchical level, the process begins with specification definition—either from
an external point (e.g., user) or from the design process at the hierarchical
level immediately above. It then calls a number of internal methods (set per-
formances, variables, and abstracts), all of which must have been explicitly
defined by the IP creator prior to synthesis. The optimisation process can then
begin with dimension (or variable) value modification according to the opti-
misation algorithm used, determination of the physical parameter values from
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Table 12.2 Mapping of AMS IP requirements to class structure

Property Class Attribute type Method Access

Function definition constructor public
entity name Functional String private
behavioural Functional evaluate() public
architecture

Performance criteria Functional Specification protected
setPerformances() public

Terminals Functional DomainNode protected

Structure
structural Structural String private
architecture name

Design variables Structural Specification protected
setVariables() public

Physical parameters Structural Specification protected

Evaluation method Structural evaluate() public
Parameter extraction
method

Synthesis method Structural optimize() public
abstractToPhysical() public

Constraint Structural descend() public
distribution method Functional physicalToSpecifications() public

the new design variable set, and evaluation and comparison of achieved perfor-
mance values with requirements. If the requirements are met, then the process
can go down through the hierarchy to determine the parameters of lower hier-
archical blocks, or if there are no lower levels then the verification process can
begin. It should be noted that the sequence of events for a functional/structural
model pair maps to the iterative loop shown in Figure 12.1.

4. Extensions to Existing Analogue Synthesis Tool
(runeII)

We have incorporated these concepts into an existing in-house AMS synthesis
framework, runeII. This builds on a previously published version of the tool
(Tissafi-Drissi et al., 2004). The main motivation behind this evolution was to
improve the underlying AMS IP representation mechanisms and to enhance
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create design variables

set variables

get specifications

set abstracts

modify dimensions

convert abstracts
to physicals

evaluate

specifications
verified?

Optimisation

level
hierarchical

Descend

create design variables

specifications
verified?

No

Yes

specifications
verified?

set performances

convert physicals
to specifications

set performances

create specifications

No

Yes

Yes

Top-level entity Top-level structural model Lower-level structural modelLower-level entity

Fig. 12.4 Activity diagram for TIA block synthesis process

GUIXMLUML

.java .class

XML

User

Soft IP

Firm IP
Soft IP definition

Firm IP synthesis

Fig. 12.5 UML/ XML use flow in runeII

the input capability of the tool. A schematic showing the various inputs and
data files is given in Figure 12.5.

From the user’s point of view, there are two main phases to AMS synthe-
sis: (i) AMS soft-IP definition, which can be done through UML, XML,7 or

7eXtensible markup language
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through a specific GUI8; and (ii) AMS firm-IP synthesis, which can be run
from the GUI or from scenarios. XML is a text markup language for inter-
change of structured data specified by W3C. The Unicode Standard is the ref-
erence character set for XML content and, because of this portable format and
ease of use, it is fast becoming a de facto standard for text-based IP exchange.

4.1 AMS Soft-IP Definition

The aim of the first point is to create executable and synthesisable models
(here, in the form of Java .class files). We consider the central, portable for-
mat to be XML, which can be generated directly from the GUI and from .java
source files.

A screenshot of the GUI enabling the creation of such files from graphical
format is shown in Figure 12.6. The various zones in the figure have been
numbered and the corresponding explanation is given as follows:

1. Menu bar

2. Database tree explorer (top nodes = entity/functional models; nested
nodes = structural models); the user is able to process several actions:
new, open, export, import, delete, rename, cut, copy, paste; these actions
operate on the currently selected structure or function and are also avail-
able in the main frame toolbar

3. Entity/functional model editor; here, the IP creation process starts in
earnest in defining the various performance criteria

4. Structural model editor; this window allows the creation of design vari-
ables, physical parameters, evaluation procedures, etc.

5. Preset design plans (sequences of optimisation algorithms)

6. Technology data files

7. Message window; this is to output log information, e.g., detailed infor-
mation about the operation that is being made, error descriptions, etc.

4.2 AMS Firm-IP Synthesis

The second point exploits the created executable, synthesisable models in an
iterative process aiming to determine the numerical parameter values neces-
sary to optimally realise the numerical performance requirements. Again, the
database format was chosen as XML for reasons of portability. Here, apart

8Graphical user interface
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Fig. 12.6 Screenshot of the runeII GUI

Listing 12.1 Entity/functional and structural model DTD template

1 <!{ELEMENT} FunctionName (Structure1 , Structure2*)>
2 <!{ATTLIST} FunctionName
3 PerformanceName1 CDATA ""
4 ...
5 >
6

7 <!{ELEMENT} StructureName (Component1 , Component2 , ...)>
8 <!{ATTLIST} StructureName
9 VariableName1 CDATA ""

10 ...
11 >

from capture of the numerical information itself in an XML document, a defi-
nition of the legal building blocks necessary to the interpretation of the XML
document structure is required. This is the purpose of a DTD,9 which can be
declared inline in the XML document or as an external reference. We have
chosen the latter approach, which is shown in Listing 12.1.

9Document type definitions
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As mentioned previously, the synthesis process can be run either from the
GUI or through the creation of scenarios. Scenarios are another type of class
that instantiate and set-up all the components necessary for synthesis in their
constructor, much as in a traditional netlist, and then define the optimisation
process in the main method. The scenario actually represents the final exe-
cutable and, while more difficult to generate, avoids any constrictions imposed
by the GUI.

5. Example

We now introduce an example circuit to illustrate the concepts previously de-
scribed. We focus on the representation of a resistive feedback TIA10 (consist-
ing of a non-differential inverting amplifier with feedback resistance) as part
of a configuration memory operating system (CMOS) photoreceiver front-end
(Figure 12.7; Tissafi-Drissi et al., 2003).

It is important to understand how a TIA is specified in the link. The main
performance criteria for the TIA itself are the in-band transimpedance gain Zg0,
angular resonant frequency ω0, quality factor Q, quiescent power dissipation,
and occupied surface area. The first three quantities express the capacity of the
TIA to convert an input photocurrent variation to an output voltage variation
according to a linear second-order transfer function. The latter two criteria
(power and area) can only be accurately determined by synthesising down to
transistor level, constituting the main difficulty in AMS IP formulation. To

10Transimpedance Amplifier

+

-DetectorSource

I-V
conversion

Current
modulation

electronic photonic electronic

Transmission Reception

Integrated optical link

Transimpedance amplifier Fast inverter amplifier

refV

v-A
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ii

fR
ddV

oviv
3M

1M

2M

Fig. 12.7 TIA and amplifier in an integrated optical link
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reach this level, the specific TIA structure (resistive feedback) is considered.
The physical parameters consist of the feedback resistance value Rf and the
internal amplifier performance criteria (voltage gain Av, output resistance Ro).
Concerning the design variables, it has been shown in O’Connor et al. (2003)
that only one is necessary: Mf , the ratio between Rf and Ro.

5.1 Class Diagram Example

This information suffices to start building a class diagram for the TIA structure
(Figure 12.8).

For clarity, only the TransimpedanceAmplifier functional model class,
defining the TIA performance criteria, and its derived RFeedback structural
model class, defining the physical and design variables, have been expanded.
It should be noted that the physical variables related to the internal amplifier
are defined in an aggregation relationship between the RFeedback class and
the Amplifier functional model class. The other classes show their context
in a class diagram representing an optical receiver circuit hierarchy. Some of

1 1

1

TIAComparator

#Zg0:Specification=new Specification("Zg0",0.0,"Ohm")
#w0:Specification=new Specification("w0",0.0,"rad/s")

+TransimpedanceAmplifier():TransimpedanceAmplifier

#Power:Specification=new Specification("Power",0.0,"W")
...

TransimpedanceAmplifier

+evaluate():void

+selectTopology():void
+setPerformances():void

+physicalToSpecifications():void

Amplifier

+descend():void
+evaluate():void

+abstractToPhysical():void
+setVariables():void

+optimize():void

#Rf:Specification=new Specification("Rf",0.0,"Ohm")

RFeedback

Inverter

Receiver

Topology

Driver

CurrentModulation

Fig. 12.8 TIA and resistive feedback classes in UML
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the class methods shown are related to the specific implementation. In particu-
lar, some constructors require XML document inputs. These represent firm-IP
data allowing the block to retrieve previously stored information in the format
described in Section 4.2.

5.2 Soft-IP XML File Example

An example of an XML file representing (i) an entity/functional model is given
in Listing 12.2, and (ii) a structural model is given in Listing 12.3. Both are
based on specific DTD rules corresponding to the concepts set out in Section
4 and illustrate the various facets of AMS IP defined in Section 2.

5.3 Optimisation Scenario Example

As a simple example, Listing 12.4 shows the scenario (Java source) to optimise
the RFeedback object.

5.4 Firm-IP XML Output File Example

The partial results, in the output XML format, of this synthesis process achieved
for a 0.35 µm CMOS technology and with specifications given in the first line
of the file are shown in Listing 12.5.

6. Conclusion

In this chapter, we have proved the feasibility of the use of UML for the rep-
resentation of synthesisable hierarchical AMS IP blocks. A parallel between
UML concepts and widely used concepts in AMS behavioural modelling lan-
guages (we used the VHDL-AMS example) was established, in particular:

Class diagrams to represent the various ways (structural architectures)
of realising a given function (entity and behavioural architectures)

Inheritance relations to identify the relationship between an entity/be-
havioural model (base class) and one or more structural architectures
(derived classes)

Aggregation relations to identify the subcomponents in a structural ar-
chitecture

We have successfully used these concepts to build class diagrams for a vari-
ety of AMS soft-IP blocks. Although the approach is quite straightforward, the
resulting diagrams can be quite large and unwieldy. Further work is necessary
to determine how to make better use of package diagrams in soft-IP library
management.
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Listing 12.2 Entity/functional model description output in XML

1 <category name="TransimpedanceAmplifier"> - <template ↵
name="Zg0"

2 units="Ohm">
3 <definitions constraint=">" cost="maximize" ↵

condition="0.1"/>
4 - <harness simulator="spectre" file="input.scs" ↵

options="-env�artist4.4.5" analysis="ac" selected="true">
5 - <code>
6 Zg0 = spectre.gainMax("ID:p","vo");
7 </code>
8 </harness>
9 + <harness simulator="eldo" file="input.cir" options="" ↵

analysis="ac" selected="false">
10 </harness>
11 </template>
12 + <template name="QuiescentPower" units="W"></template>
13 ...

Listing 12.3 Structural model description output in XML

1 - <topology name="TransimpedanceAmplifier -RFeedback"
2 instanceName="" categoryName="TransimpedanceAmplifier">
3 + <physical type="dependent" name="Amplifier" ↵

instanceName="A1" categoryName="Amplifier">
4 </physical>
5 + <physical type="independent" name="Resistance" ↵

instanceName="Rf"></physical>
6 - <abstract type="independent" name="Double" ↵

instanceName="Mf">
7 - <dimension name="Value" units="" lower="0.0010" ↵

upper="100.0" variation="linear">
8 </dimension>
9 </abstract>

10 ...
11 - <performance name="Zg0" units="Ohm" heuristic="false" ↵

enabled="false">
12 - <equation>
13 Zg0 = ((Rf_Value * A1.Av())- A1.Ro())/(1 + A1.Av());
14 </equation>
15 </performance>
16 + <performance name="QuiescentPower" units="W" ↵

heuristic="false" enabled="false"></performance>
17 ...
18 </topology>
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Listing 12.4 TransimpedanceAmplifier/RFeedback optimisation scenario description in Java

1 package scenarios;
2

3 import basic.*; ...
4

5 public class S_RFeedback extends TestTIA {
6 public S_RFeedback()
7 {
8 try {
9 // load specifications

10 Document TIADoc = ReadXML.loadDocument( ↵
"/home/work/xmlFiles/TIA_specs.xml", true);

11 // create RFeedback object with specifications.
12 // Sizing is done in the constructor.
13 // Assign it to tia object
14 // (defined in TestTIA base class)
15 tia = new RFeedback("Rf",TIADoc);
16 } catch (Exception e) { e.printStackTrace(System.err); }
17 } // end constructor
18

19 public static void main(String[] args)
20 {
21 try {
22 // create scenario object.
23 // Design process defined and executed in constructor.
24 S_RFeedback scenario = new S_RFeedback();
25 // evaluation of resulting RFeedback object
26 scenario.getTIA().evaluate();
27 // store results in firm IP database
28 Document outputDocTIA = new Document( ↵

WriteXML.XMLTopology(scenario.getTIA()));
29 WriteXML.save( ↵

"/home/work/xmlFiles/outxml/S_TIA_perfs.xml", ↵
outputDocTIA);

30 } catch (Exception e) { e.printStackTrace(System.err); }
31 } // end main
32 } // end S_RFeedback
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Listing 12.5 Firm-IP synthesis results in XML

1 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE GenericLink
2 SYSTEM "Link_dtd.dtd"> <GenericLink BER="<�1.5E-18�Bit/s"
3 DataRate=">�1.5e9�bit/s" Abstract="True" toOptimize="True"> -
4 <OPPLink>
5 + <Driver BiasCurrent="=�2e-3�A" ModulationCurrent="=�25e-6�↵

A" Abstract="False" toOptimize="True">
6 </Driver>
7 + <WaveguideStructure Loss="2e-2�U" Length="2e-3�U"/>
8 - <Receiver>
9 + <Detector extinctionRatio="1.0�U" currentNoise="1.0�U" ↵

Responsivity="0.8�A/W" />
10 - <TIAComparator>
11 ...
12 <TransimpedanceAmplifier Cd="=�400.0E-13�F" Cl="=�↵

150E-13�F" Zg0="=�1E3�Ohm" Q="=�0.7017" ↵
Abstract="True" toOptimize="True">

13 <RFeedback Rf ="1390�Ohm">
14 <Amplifier Av="10" Ro="500�Ohm" Cm="8.0�E-14�F" ↵

Co="5.0�E-13�F" Ci="7.0E-13�F" ↵
QuiescentPower="0.5E-3�W" Abstract="True"/>

15 </RFeedback>
16 </TransimpedanceAmplifier>
17 ...
18 + <Comparator BW="=�3�GHz" QuiescentPower="=�164E-6" ↵

Latence="=�" refVoltage="=�" Vl="=�0.1�V" Vh="=�0.8�↵
V" Lmin="=�0.35E-6�m" Abstract="True" ↵
toOptimize="True"/>

19 </TIAComparator>
20 </Receiver>
21 </OPPLink>
22 </GenericLink>
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Several methods have to be written to render these model classes synthesis-
able (we associate UML with Java for this development task, but there is no
technical reason why the same concepts cannot be developed with other OO11

languages such as C++). We used this in the context of extending an exist-
ing AMS synthesis flow and as such have used it for low-level AMS blocks
(TIA, amplifiers, filters, and duplexers). XML was used in this respect to for-
mulate soft-IP information and to store all generated numerical firm-IP. Future
work will include the use of Pareto-sets to optimally reduce the amount of
information stored and data mining techniques to retrieve useful information.
Application of this approach to more complex discrete-time and RF blocks is
also a goal.
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Introduction

This part of the book contains a selection of the most interesting work pre-
sented in the FDL’05 on the thematic area “UML-based system specification
and design.” This thematic area addresses specification and design method-
ologies such as the model-driven architecture (MDA) approach, which use
unified modeling language (UML) to map abstract models of complex embed-
ded systems to highly programmable hardware platforms and heterogeneous
systems on chip (SoCs).

The first three chapters in this part have been presented in the session “Model-
driven engineering chapter.” The first chapter, “Compiled and synthesized
UML: a practical approach for codesign” (Chapter 13) by C. Berthouzoz, F.
Corthay, T. Sterren, R. Steiner, and M. Rieder, explores a practical approach
for bridging the gap between UML models and VHDL. The mapping of UML
on VHDL is described as a set of rules that forms the basis for a code gen-
erator. The second chapter, by O. Florescu, J. Voeten, and H. Corporaal is on
“Property-preservation synthesis for unified control- and data-oriented mod-
els” (Chapter 14), focuses on the preservation of real-time system properties
when developing models on the path from analysis to synthesis. The third
chapter, “Traceability and interoperability at different levels of abstraction in
model-driven engineering” (Chapter 15) by L. Bonde, P. Boulet, J. L. Dekeyser,
describes a model-driven engineering approach of software design, in which
the whole process of design and implementation is worked out around models.
The focus is on the interoperability between evolving models from platform-
independent to platform-dependent, using an additional traceability model.

The last two chapters selected for this part of the book have been pre-
sented in the session “Verification and validation”. “Power simulation of com-
munication protocols with StateC” (Chapter 16) by L. Negri and A. Chiarini
describes a modeling and simulation flow that can evaluate policies for opti-
mizing power consumption in communication protocol implementations. The
fifth and last chapter in this part is by P. Green and K. Tasie-Amadi. “In-
tegrating model-checking with UML-based SoC development” (Chapter 17)
addresses the complexities of SoC design where rigorous development methods
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and automated tools are required. This chapter presents an approach to formal
verification using model-checking, designed for use in the context of a UML-
based SoC design flow. By translating UML models to communicating sequen-
tial process (CSP), an failures divergences refinement (FDR) model checker
can be used to verify specified properties.

Piet van der Putten
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Technische Universiteit Eindhoven
Eindhoven, The Netherlands, February 2006



Chapter 13

Compiled and Synthesized UML

A Practical Approach for Codesign

Cathy Berthouzoz, François Corthay, Medard Rieder, Rico Steiner,
and Thomas Sterren
Haute Ecole Valaisanne (HEVs)
Infotronics Unit
Rte du Rawyl 47
CH-1950 Sion
Switzerland

Abstract Embedded systems are complex systems with limited resources such as reduced
processor power or relatively small amounts of memory and so on. The real-
time aspect may also play an important role, but it is definitely not a main con-
sideration of this work. Complexity of recent embedded systems is growing as
rapidly as the demand for such systems and can be managed only by the use
of a model-driven design approach. Since modeling languages such as unified
modeling language (UML) are semiformal, they allow the design of systems
that cannot be implemented using formal languages such as C/C++ or very high
speed integrated circuit (VHSIC) hardware description language (VHDL). This
chapter intends to show how the gap between model and formal language can be
bridged. First, a set of rules restricts the use of model elements in a way that the
model will become executable. Furthermore, a unique mapping between UML
and formal language elements enables automatic code generation. Formal ver-
ification at model level is an important consideration and becomes possible by
the fact that rules restrict the application of model elements. UML to software
(C/C++) and UML to hardware (VHDL) mapping form the base for a practical
codesign approach where a part of the system is realized through software and
another part through hardware. Mapping of UML to programming languages
is well known today and achieved by many tools. Mapping of UML to hard-
ware description languages (HDLs) is less known and not realized in tools. This
chapter documents an attempt to define a set of rules and to implement UML
to VHDL mapping in a practical code generator. It also shows parts of a real-
world sample that was realized to verify usability and stability of rules and map-
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ping. Finally, an outlook on further developments as improvement of the UML
to VHDL mapping and a simple codesign process called 6qx will be given.

Keywords: Codesign; UML; VHDL; XML.

1. Introduction

Although embedded systems were not widespread before 1990, they have now
become very popular. Affordable prices of big-sized memory and powerful
processors form the ideal alchemy for the birth of numerous embedded sys-
tems. Another component of this alchemy is the fact that hardware has be-
come programmable. Field programmable gate arrays (FPGAs) with sufficient
number of gates at reasonable prices made the borderline between hardware
and software vanish. Even though there are a rising number of basic compo-
nents for embedded systems, and new technologies appear in rapid succes-
sion, the system development cycle is still quite traditional as illustrated by
Figure 13.1.

2. Codesign

In such a traditional process, hardware and software are developed in parallel,
which brings up several issues such as:

Need of early hardware and software partitioning

Asynchronous development of hardware and software

Fig. 13.1 Traditional embedded system development cycle
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Late integration with possible need of redesign

Missing hardware prevents testing the software before integration

An important reason why development of hardware and software is not in-
tegrated is the lack of simple model-based approaches. Several reasons prevent
the use of model-driven development:

Existing Codesign tools are very expensive and mostly dedicated: If code-
sign tools exist, these are almost certainly very expensive and dedicated
to a specific thematic and platform. Readapting to other thematic and/or
other platforms is practically impossible.

Developers think in terms of code and not model: Traditional thinking
(Edwards, 1993; Labrosse, 1995; Perry, 1994) and often also invest-
ments that have been made into some existing platform inhibit a change
in attitude. Since formal descriptions are what they are and do not heal
lack of methodic approach, first experiences in modeling are mostly dis-
appointing and many hardware and software programmers therefore fall
back into well-known territory, which means thinking either in hardware
or in software code.

Therefore, the Haute Ecole Valaisanne (HEVs) approach of a codesign
method was to use existing software modeling techniques already established
on the market and to bridge the gap between software engineering and system
engineering (codesign) by adding the hardware engineering part. How this was
done will be described in detail in the following chapters and sections.

3. A Theoretical Codesign Approach

As a theoretical approach, we have developed a quite simple pyramid with the
integrated system model as its top.

As underlying layer, we split up the model into a hardware model and a
software model section. This process is called partitioning. The partitioning
is done manually to give us the most flexibility to draw the borderline (Fig-
ure 13.2) between hardware and software. However, all needed interfaces bet-
ween hardware and software are automatically created. Each of the models
will then be translated into either hardware code (very high speed integrated
circuit (VHSIC) hardware description language (VHDL); IEEE, 1987) or soft-
ware code (C/C++; Micheloud and Rieder, 2002). Afterwards, the code will
get synthesized or compiled and then uploaded into the target system. These
last two steps are automated and require no user interaction. Figure 13.3 shows
the theoretical model.

Finally there has to be a formal verification step. The produced code has
to be verified against the model. Not only the software and the hardware code
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(a) (b)

Fig. 13.2 Different degrees of partitioning

Fig. 13.3 Model-driven codesign of embedded systems

have to be verified but also the semantics of the overall system have to be
tested. Timing constraints has to be tested to.

It can easily be seen that integration problems will be minimized, since in-
tegration is already part of the model. It also can be seen that different degrees
of partitioning are possible throughout this model. Figure 13.2 shows both,
one hardware-(a) and one software-centric (b) partition (solution) of a given
system.



Compiled and Synthesized UML 235

4. A Practical Codesign Approach

Theoretical approaches are nice to have a basic understanding, but to come
to true results practical models have to be developed out of the theoretical
ones. We did this by instantiating a codesign model using realistic tools and
targets. Figure 13.4 shows an overview of this practical approach. To make the
complexity of this problem reasonable, some constraints are introduced:

Actually, we can do the two extreme partitions: either full hardware or
full software.

A formal verification of the produced code against the model is not yet
possible.

Real-time aspects are only partially taken into account. The system has
to reproduce the behavior specified by the model. The code is not able to
handle hard-real-time situations. But it is possible to generate very com-
pact and target-specific code due to the flexible translation mechanism.

To understand Figure 13.4, one must understand the unified modeling lan-
guage (UML) (Booch et al., 2005) approach we use to manage different par-
titions of the embedded system on model level. Packages, classes, and state
charts are used to model the target-independent elements and the behavior of
the system. Furthermore, one component is defined for each of the partitions

Fig. 13.4 A practical codesign approach
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(hardware/software). Interfaces allow using the same system description for
several partitions and targets. Doing so makes it possible to define an arbitrary
number of hardware software components, respectively, for an arbitrary num-
ber of targets. A partition-specific component holds all the information that is
model-level related, such as which packages or classes are part of this specific
partition. It also holds all target-specific information, such as which tool will
generate the code, how this code will be translated, how it will be synthesized
or compiled, and how it will be uploaded to the embedded system. In this way
it is possible to automate the entire build and execute command chain.

Basically, the build command is run with the components name as parame-
ter; the entire model will then be exported and either the hardware or software
translator parses and translates the information related to the specific compo-
nent (partition) out of the exported model. It would also be possible to have a
single translator, which receives one more parameter that determines whether
to translate model information into hardware or software code. For reasons of
simplicity (a translator is a quite complex matter), we decided to build two
separate ones.

It has to be emphasized that the partitioning is done manually by defining
components and assigning packages and classes to them. Also, components
have to be equipped with target-specific information. But it also has to be em-
phasized that partitioning is done after modeling the system and just before
generating the code.

5. Translation

The correct translation of the UML elements into code is the core problem
of any realistic codesign approach. Many researchers have already worked on
this problem. The translation of UML to software code has been thoroughly
researched and offers good stability and performance today. When it comes to
the translation of UML into hardware the papers, McUmber and Cheng (1999)
and McUmber and Cheng (2001), are good examples. Unfortunately, many of
these findings lead toward code that cannot be compiled/synthesized because
their main focus is on the model level. Our work requires that the generated
code can be compiled/synthesized. To do real codesign, both the model and
the generated code have to be adapted to each other. Therefore, we focused
our research on solving this problem (Steiner, 2004). The following sections
describe the main results of this work.

5.1 Hardware Thinks Differently

It is very common in UML to communicate using events. But the concept
of events known from software does not exist in hardware. The only hard-
ware event is the continuous clock signal, the system clock. All other
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communication is done using signals that hold their value until they are told to
change it.

In software, events can be used for communication tasks. But that is not
true in hardware. Even if one defines a signal with a pulse width of one period
of the system clock as an event, this will not be an event because only the
value of the signal is taken into consideration and not the pulse width. In UML
this would mean that state transitions are only decorated with a guard but no
trigger.

This, and the fact that UML is closely related to software, brings us to fill
the gap between UML and hardware. Therefore, we need to develop a com-
munication mechanism that can act as expected in UML (see Section 5.3). We
need also to define some rules to coordinate the use of UML for hardware and
software systems. There are three reasons for doing so:

1. In every hardware description language (HDL), one can describe func-
tions and situations that cannot be synthesized. But if the designer
follows some basic and simple rules, he can be sure that the design will
be synthesizable. In UML, the same situation exists. One can design a
model that can be translated neither to software nor to hardware.

2. Until now, UML was used to design software (Douglass, 1999, 2002)
only. There is a lack of experience when it comes to creating models
that can be translated to hardware and software. Defining some rules will
help the designers to improve their know-how and it will add quality to
their models.

3. Guided by these rules, the designers can be sure that their models will
be suitable for software/hardware codesign.

The above-mentioned rules would normally be part of a hardware/software
process. We are currently working on such a process (see Section 7.2). How-
ever, describing these rules now would go beyond the scope of this document.
Instead, we would like to concentrate on the mapping of UML elements to
VHDL code, which is the subject of the next section.

5.2 UML Elements

Since there is a large number of UML elements, this first approach to UML to
VHDL translation does not take them all into account. The translated elements
are classes, attributes, operations, class diagrams, objects, object diagrams,
associations, ports, interfaces, events, and state charts. As our real-world exam-
ple shows, these elements are enough to model the behavior of simple systems
(McUmber and Cheng, 1999, 2001).

There is a strong parallelism (Douglass, 2002; Naylor and Jones, 1995;
Rajan, 1998) between these elements and the traditional concepts used by
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Fig. 13.5 UML object diagram

hardware designers. State charts became a very popular concept among hard-
ware designers to describe a design before implementing it. The top-down
concept is also widely used for analyzing hardware designs. The system is
seen as a black box with inputs and outputs. The black box is broken down
into smaller parts, each one seen as a black box itself. Inputs and outputs of
the black boxes are connected in order to establish the communication. This
process goes on until the desired granularity is obtained. Finally, the black
boxes are given a described behavior, e.g., by a state chart. The same analysis
and design process is possible with object diagrams, an object corresponding
to a black box. Communication between objects is also possible using ports
and interfaces. An object can be equipped with ports and interfaces, and ports
are interconnected by links. Figure 13.5 shows a typical example.

The next section provides more details about the translation technique we
used.

5.3 UML to VHDL Mapping

It is important to find optimal patterns to translate UML elements to VHDL.
Due to the fact that an UML element can have several decorations, it is im-
portant to find a general VHDL description that can handle all the UML dec-
orations. Without going too much into details we will now show how UML
elements are translated into VHDL. To give an idea of the translations result,
Listing 13.1 shows the VHDL code that corresponds to the UML elements of
Figure 13.5. The following lines will give an overview and a brief description
of the used patterns:

The class Factory is translated into an entity construct. The entity
named Factory consists of a list of ports and an architecture section.
By default the two inputs reset and clock are added to the entity’s
port list. Depending on the class ports and interfaces, other input and
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output ports may be added to the port list. The main implementation (the
behavior) of the class can be found in the architecture section.

An object is an instance of a class. In VHDL it is possible to create
an instance of an entity. To do this, first a component has do be defined
inside the architecture containing the instance. According to Figure 13.5,
the components named Class_A and Class_B are defined (cf. A:, B: at
Listing 13.1). The second step is to create an instance and to map the
ports to other ports or to signals. The instances are called theClass_A
and theClass_B (cf. C:, D: in Listing 13.1).

The UML elements port and interface are translated into input and output
ports of an entity. Provided interfaces are translated into input ports and
required interfaces are translated into output ports. The names of VHDL
ports are the same as the ones of the ports and interfaces in the UML
model (cf. A:, B: in Listing 13.1).

In UML, links are used to interconnect objects via ports and interfaces
(see link between the two objects in Figure 13.5). Depending on the used
interfaces, ports and objects, several signals will be defined in VHDL.
These signals will be used in the port map sections of components to
realize a connection between components (cf. C:, D: in Listing 13.1).

The second type of UML diagrams discussed here are state charts. Due to
the fact that state charts are well known to hardware designers, we will briefly
explore this topic and explain the main ideas and concepts we used to translate
UML state charts into VHDL.

As state charts are used to describe the behavior of a class, the corresponding
translation is put into the architecture of the VHDL entity. First, a new data type
representing all the states of the state chart is defined.

A single UML state is translated into up to three VHDL states (cf. Figure
13.6). This procedure is necessary to handle the three different types of actions
that can be embedded in a state: actions on entry, reactions in state, and actions
on exit. Even if this seems to add a lot of overhead to the hardware, it is in-
deed not the case. As doubling the number of states requires one more single
flip-flop, tripling the number of states will therefore add only two additional
flip-flops. Furthermore, the translator is optimized in a way that it adds the ad-
ditional states only when they are referenced. The actions on entry and actions
on exit are executed once. The reactions in state are executed on each rising
edge of the clock, while the system stays in the current state.

State charts are implemented as case structures where every case represents
a state or one of the additional pseudostates. A state chart is described by two
VHDL processes: the first one handles all the transition conditions and the
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Listing 13.1 Generated code of UML diagram in Figure 13.5

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3

4 entity Factory is
5 port(
6 reset : in STD_LOGIC;
7 clock : in STD_LOGIC
8 -- other ports here.
9 );

10 end Factory;
11

12 architecture FA of Factory is
13 -- Declare signals to interconnect nested blocks
14 signal link_0_Interface_A_methode_0: STD_LOGIC;
15 signal link_0_Interface_B_methode_0: STD_LOGIC;
16 -- A: Declare class Class_A
17 component Class_A
18 port(
19 clock : in STD_LOGIC;
20 reset : in STD_LOGIC;
21 port_0_Interface_A_methode_0 : in STD_LOGIC;
22 port_0_Interface_B_methode_0 : out STD_LOGIC);
23 end component;
24 -- B: Declare class Class_B
25 component Class_B
26 port(
27 clock : in STD_LOGIC;
28 reset : in STD_LOGIC;
29 port_0_Interface_B_methode_0 : in STD_LOGIC;
30 port_0_Interface_A_methode_0 : out STD_LOGIC);
31 end component;
32 begin
33 -- C: Instantiate the Class_A
34 theClass_A: Class_A
35 port map (
36 reset => reset,
37 clock => clock,
38 port_0_Interface_A_methode_0 => ↵

link_0_Interface_A_methode_0 ,
39 port_0_Interface_B_methode_0 => ↵

link_0_Interface_B_methode_0);
40 -- D: Instantiate the Class_B
41 theClass_B: Class_B
42 port map (
43 reset => reset,
44 clock => clock,
45 port_0_Interface_A_methode_0 => ↵

link_0_Interface_A_methode_0 ,
46 port_0_Interface_B_methode_0 => ↵

link_0_Interface_B_methode_0);
47 end FA;
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(a)

(b)

Fig. 13.6 VHDL representation (a) of a single UML state (b)

state sequencing and the second one takes care of the execution of the various
actions of a state.

By doing so, we can introduce a simple communication mechanism. An
event is defined as a signal set to the value ‘1’ for exactly one period of the
system clock. In the action handling process, all event signals are by default
set to the value ‘0’. When an event has to be fired, the signal is simply set to
‘1’.

The result of the above translation is very generic. We use basic VHDL
elements and well-known structures. This has a number of advantages.

If the generated code is semantically correct, it is granted that the gener-
ated code is synthesizable.

The generated code is platform-and manufacturer-independent. This is
because we do not use target-specific elements such as memory or
multiplier blocks.
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The next section describes a demonstrator that was created to verify the
techniques exposed in this section.

6. Experimentation

As usual in research projects, all obtained results have to be verified and proven
at the end.

A simple chronometer demonstrator was built up. We used an ARM
7 equipped board with a minimal operating system called IDF (interrupt-driven
framework) as software target, and a Xilinx Spartan II–equipped board as hard-
ware target. The chronometer itself consists of a stepper motor, some push but-
tons, and an optical sensor. An UML model of the system was created, then
synthesized once for the hardware target and compiled once for the software
target. Both systems were working without touching the model. All code was
automatically generated, compiled, uploaded, and started in the targets. Figure
13.7 shows the schematic of the demonstrator.

The following conclusions can be drawn from the chronometer experience:

1. The software code generator we used was the built-in one of the mod-
eling tool. For future development of the codesign project, it has to be
replaced by one of the same types as the hardware code generator. This
is necessary to allow correct interface integration between hardware and
software.

2. Moving the partition line between hardware and software means
involving interfaces. For our purpose we implemented interfaces man-
ually, but for a real-world development process it is a must to at least

Fig. 13.7 Principle of the chronometer codesign demonstrator
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semiautomate this action. This means that it would be possible to “drag
and drop” readymade interface blocks into the model and to connect
them to the correct locations in the hardware and software fragment of
the system’s model.

3. The mapping for the hardware should also be optimized. It would be
especially nice to parameterize target-specific matter inside the model
and not to find these adaptations somewhere in the translator.

4. Not all elements of UML 2.0 (Booch et al., 2005) have been used. This
was partially due to the fact that the software built-in translator did not
recognize them, at least not in the version of the tools we were using.
This problem will automatically be corrected by introducing the “home-
brew” software translator.

5. More complex demonstrators must be implemented to stress-test the
codesign approach we are currently using. But it must be stated that the
results we obtained until now are very encouraging and that the gener-
ated systems are amazingly stable.

It would be nice to have a framework inside which development is rolling
down. A first approach of such an allover development process is briefly out-
lined in the conclusion.

7. Conclusions

The above-mentioned experiences lead to a certain number of conclusions that
have to be applied in the very near future to the described codesign approach.

7.1 Tool Chain Improvement

The most important improvements that will be done around the tool chain are:

Improved hardware code generation patterns will be implemented in the
hardware translator.

A separate software translator will be added to the tool chain.

Standard interfaces will be defined in UML as patterns that can be ap-
plied to a given situation.

The whole approach will be intensively tested by the means of real-world
projects and demonstrators.

Another more important development will be to introduce a general formal-
ism that embeds the present experimental codesign process. The reason for this
is that any modeling activity requests formalism and sequencing. An outlook
on this process is presented in the next section.
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7.2 The 6qx Process

The definition of a simple codesign process is the logical consequence of this
conclusion, and because we had already defined a software-centric process (6q;
Rieder, 2005) we will extend this one into a codesign process. The 6q process
has been developed in an embedded systems context and therefore provides a
quite good potential to cover hardware development aspects also. The method
of the 6q process is object-oriented and the model is incremental. It consists of
six major steps: system specification, analysis, design, translation, validation,
and integration.

These steps will also be contained in the new 6qx process, but will be
adopted to meet codesign requirements as follows:

The first two steps, system specification and analysis, gather information
about the system to be developed and map results into a UML model by means
of use-case diagrams, interaction diagrams, class diagrams, state charts, and
deployment diagrams. Since these steps try to specify and analyze the system,
they do not care about implementation details (hardware/software). The major
difference of these steps compared to the original 6q process, where hardware
and software are developed in parallel, will be the removal of the hardware–
software partitioning decision. It is delayed into the design step, because the
model covers both hardware and software of the system.

Fig. 13.8 Overview of the 6qx codesign process
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The design step will transform the flat analysis model into a well-structured
model that can be partitioned into a hardware (HW) and a software (SW) parti-
tion according to various criteria (costs, speed, physical limitations, etc.). The
hardware partition may be split up once again into a programmable hardware
(PHW) partition and an analog/digital hardware partition (DHW). Interfaces
between both partitions have to be defined after partitioning or even while par-
titioning. The 6qx process will contain recommendations about use and imple-
mentation of interfaces in the form of interface patterns defined in UML. It will
also contain hardware and software design rules (cf. Section 5.1) in the form
of patterns defined in UML.

The translation step will regulate implementation details. Important ele-
ments that will be introduced here into the system model are components that
will bind the hardware and the software partition to specific targets (cf. Sec-
tion 5.2).

The validation step will be responsible for verifying correct functioning of
the designed hardware and/or software. This will be achieved by reusing formal
descriptions of behavior from the specification and analysis step. Simulators
will be used to verify correct behavior.

The integration step will put it all together and finally verify the correct
allover system behavior and stability. Erroneous behavior will result in feed-
back toward the analysis pipe; insufficient stability will result in feedback to-
ward the design pipe. Figure 13.8 gives an idea of the 6qx process.
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Abstract In the software/hardware engineering model-driven design methodology, preser-
vation of real-time system properties can be guaranteed in the model synthesis up
to a small time-deviation. Therefore, this methodology is well suited for the de-
sign and implementation of control systems in which execution times of actions
are small; thus the time-deviations obtained are small. However, in systems con-
taining time-intensive computations, the time-deviations become large and, con-
sequently, the real-time properties are much weakened. This chapter proposes
an approach for obtaining stronger preservation of the observable properties of
the system by abstracting from its internal unobservable actions. In this way, a
unified way of analysis and synthesis of a larger area of real-time applications
can be obtained, which enables designers to achieve predictability in the design
of many systems.

Keywords: real-time; property-preservation synthesis; observation equivalence.

1. Introduction

The main purpose of modelling is to help engineers understand the relevant
aspects of a system, while avoiding the expense and trouble of actually buil-
ding it. Whereas traditional forms of engineering have a well-established
modelling methodology, software engineering, and particularly real-time
embedded software is still an emerging discipline. Although it is applied to
increasingly complex systems, its modelling techniques are neither mature nor
reliable yet (Selic and Motus, 2003). Nevertheless, software models have a
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unique and remarkable advantage over most other engineering models; they
can be used to automatically generate the realisation of the system modelled,
which is an executable program for a particular platform. Starting with a sim-
plified and highly abstract model, refinements can be carried out until a com-
plete specification is obtained, including all the details necessary in the final
product. From such a detailed specification, adequate computer tools can gen-
erate an implementation.

The model-driven architecture (MDA) initiative of the Object Management
Group (Miller et al., 2001) shows that the interest in technologies for support-
ing model-driven development has increased. In the development trajectory
proposed in MDA, system models are made from early stages to help designers
in reasoning about different trade-offs. By making design decisions and adding
the corresponding details to the model, the design space is narrowed. The soft-
ware models are kept independent from the platform as long as possible in
this design trajectory. This platform-independence provides the flexibility of
reusing the design model and/or of targeting it to a different platform. More-
over, it may allow the prediction from the model of a suitable platform. Going
lower in the design pyramid by increasing the number of details, a complete
specification can be obtained from which the software implementation can be
automatically generated.

The software components employed in the embedded systems, like the ones
in cars, airplanes, printer/copier machines, or medical devices, are supposed
to synchronise and coordinate different processes and activities. Therefore,
their behaviour must meet hard timing constraints, either for people’s safety
or simply to ensure things work correctly. Usually, a real-time software com-
ponent must work together with other software and hardware components to
obtain the specified behaviour. Its correctness depends on both the logical re-
sult and the moment in time when the result was ready. Experience showed
that existing model-driven development approaches for software systems are
not suited to cope with real-time system design. Traditional design approaches
proved themselves unable to capture adequately both the functional and
non-functional (timing) characteristics of a system, while abstracting from
low-level details. For predictably designing such systems, an appropriate
methodology needs to provide (Huang et al., 2003b) (i) a suitable modelling
technique that can appropriately capture functional and timing properties in
models in order to formally analyse them, and (ii) a mechanism to generate
the implementation from the model while preserving the properties analysed,
phase also known as model synthesis.

The Software/Hardware Engineering (van der Putten and Voeten, 1997) is a
model-driven design methodology suitable for analysis and synthesis of real-
time systems in which actions need small execution time. In this chapter, we
propose an idea for synthesis, using the same methodology, of system models
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containing both short actions and time-intensive computations while still pre-
serving the real-time properties analysed. We make observations regarding the
possibility of code generation from models which are equivalent from the per-
spective of an external user. By applying this idea, we can have a predictable
and unified trajectory from a model towards a property-preserving system re-
alisation for a large area of real-time applications (both control-oriented and
data-oriented).

The remainder of this chapter is organised as follows. Section 2 discusses
related research. Section 3 presents the technique used for formal modelling of
systems. Section 4 shows how the properties of control-oriented system models
are preserved in their implementations. Section 5 discusses a way to synthesise
models of applications that contain time-intensive computations. Conclusions
are drawn in Section 6.

2. Related Research

In the context of model-driven approaches for software development, the Uni-
fied Modelling Language (UML) (OMG, 2003) has been adopted as a standard
facility for constructing models of object-oriented software. UML proved to
be suitable for modelling the functional aspects of a system, which can also
be correctly synthesised. Moreover, extensions were defined to it to provide
a standardised way of denoting non-functional (timing) aspects for real-time
systems as well (OMG, 2005). Nevertheless, the application of mathematical
analysis techniques remains complicated due to the difficulty of relating for-
mal techniques to UML diagrams, whereas the synthesis of the model cannot
preserve the timing properties of the system.

For modelling purposes, a number of techniques and theories were
proposed, targeting a certain view over a system, e.g., correctness analysis,
scheduling analysis. For example, classic scheduling theory (Buttazzo, 1997)
provides techniques for the analysis of timing behaviour of a system and for the
scheduling of its tasks onto the target platform such that the timing constraints
are satisfied. Real-time systems are assumed to be composed of independent
tasks with periodic arrival times; therefore, well-studied methods, like rate
monotonic scheduling, can be applied. Nevertheless, analysis of such models
often yields pessimistic results and it is not suitable for handling non-periodic
tasks with non-deterministic behaviours. Moreover, the models analysed by
classical scheduling analysis do not incorporate information about the func-
tionality of tasks, which makes them unsuitable for model synthesis.

A way to relax the stringent constraints on task-arrival times is by using au-
tomata with timing constraints to model task-arrival patterns. The model can
describe concurrency and synchronisation of periodic, sporadic, pre-emptive,
or non-pre-emptive real-time tasks with or without precedence constraints. An
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automaton is schedulable if there exists a scheduling strategy such that all pos-
sible sequences of events accepted by the automaton are schedulable (all asso-
ciated tasks can be computed within deadlines). Based on the results obtained
for schedulability analysis on timed automata, the TIMES tool (Amnell et al.,
2003) has been designed for schedulability analysis and synthesis of real-time
systems. A model consists of (i) a set of application tasks whose executions
may be required to meet different timing, precedence, and resource constraints;
(ii) a network of timed automata describing the task-arrival patterns; and (iii)
a pre-emptive or non-pre-emptive scheduling policy. From such a model, the
TIMES tool can generate a scheduler and compute the worst-case response
time for all tasks. Nevertheless, TIMES tool does not have enough expres-
sive power to describe all kinds of data computations involved in a system.
This is due to the exhaustive analysis that might lead to state space explosion
problems if there are many details involved. Therefore, TIMES analysis and
synthesis might not scale up to any kind of system.

3. Real-Time Systems Models

The Software/Hardware Engineering (van der Putten and Voeten, 1997) is a
system-level design methodology that uses a UML profile to formulate the con-
cepts needed for the realisation of the requested functionality of a system. The
UML profile smoothes the application of the Parallel Object-Oriented Speci-
fication Language (POOSL) (van der Putten and Voeten, 1997) to develop an
executable model, as shown in Figure 14.1. POOSL formalises the behaviour
specified in informal UML diagrams, establishing a formal executable model.
The realisation of the system can be generated from this model using the Ro-
talumis tool (van Bokhoven, 2002).

System
requirements

UML model

Modelling
POOSL

executable
model

Formalisation

Meets system
requirements?

Analyse

No

System
implementation

(Rotalumis)

Synthesise
Yes

Fig. 14.1 SHE method for real-time systems design
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POOSL is equipped with mathematical semantics that can formally describe
concurrency, distribution, communication, timing, and functional features of a
system in a single executable model, using a small set of very powerful prim-
itives. Primitives can be combined in an unrestricted fashion and any com-
bination has a precisely defined meaning. The formal semantics guarantees a
unique and unambiguous interpretation of a POOSL model, guided by seman-
tical axioms and rules independent of the underlying execution platform. The
importance of the formal semantics of a modelling language in supporting the
predictability of the system design process is investigated in (Huang et al.,
2005).

POOSL consists of a process part and a data part. The process part (processes
and clusters), based on a real-time extension of the process algebra Calculus
of Communicating Systems (CCS) (Milner, 1989), is used to specify the real-
time behaviour of active components. The data part, based upon traditional
concepts of sequential object-oriented programming, is used to specify the in-
formation that is generated, exchanged, interpreted, or modified by the active
components.

The semantics of POOSL is defined as a timed labelled transition system, as
the example in Figure 14.2 shows, where S 1–S 8 represent states of the system,
a1–a4 action transitions, and t1–t3 time transitions. A timed labelled transition
system represents an abstract view over a system, considering it as an entity
having some internal state and, depending on that state, it can engage in tran-
sitions leading to other states. Such a transition might be autonomous or stim-
ulated by the environment. When action transitions take place, the state of the
system changes by changing its content (e.g., when an event happens, certain
parameters of the system get different values). In case of time transitions, only
the time parameter changes its value according to the time interval specified,
whereas the rest of the system content stays the same.

In a model based on the timed labelled transition system, the execution has
two phases, as shown in Figure 14.3: (i) the state of a system changes either
by asynchronously executing atomic actions, such as communication or data
computation, without passage of time (phase 1), or (ii) by letting time pass
synchronously without any action being performed (phase 2).

S1 S2 S3 S4 S5

S6 S7 S8

a1 t1 a2

a3
a4

t2

t3

Fig. 14.2 Example of a timed labelled transition system
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Asynchronous 
execution of actions

Synchronous
passage of time

Fig. 14.3 Two phases of model execution

time

a1
t1 t3

a3 a4

Fig. 14.4 A timed trace of the transition system

:Controller

:Environment

in out

sensor actuator

Fig. 14.5 The UML model of a simple controller

A run over a transition system represents a timed trace, as the one in Figure
14.4, where each action is executed at a particular time. As there are many
possible runs due to the parallelism and non-deterministic choices that can be
expressed, a POOSL model represents, in fact, a set of timed traces. If all the
traces of the model satisfy a real-time property (e.g., that a particular event
happens at a certain moment), then the model of a system has that particular
real-time property.

For illustration purposes, a simple controller is used in the following. The
UML graphical representation of this system is provided in Figure 14.5 using
the UML stereotype “capsule”. The small black squares in the figure repre-
sent output ports and the white ones represent input ports.
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Listing 14.1 POOSL model of the simple controller

1 in?input(x); /* x is received as a message */
2 computation(x)(y); /* x is the input, y is the output of ↵

computation */
3 delay deadline; /* wait for deadline units of time */
4 out!output(y); /* y is sent as a message */

S1 S2in? S3computation Delay
deadline

S4 S5Out!

Fig. 14.6 The timed labelled transition system of the model

Deadline
in?  ; Computation

Model
time

Out!

t1 t2

Fig. 14.7 A timed trace of the controller

The POOSL specification1 of the system is given in Listing 14.1. The con-
troller reads some data x from the environment, performs computations with it
and delivers the result y back to the environment at a certain time.

The timed labelled transition system underlying the POOSL model looks
like in Figure 14.6. According to the semantics of the language, a timed trace
of the model is the one shown in Figure 14.7. in?input(x) and computa-
tion(x)(y) are executed in this exact ordering, without consuming any time
and at the same instant t1. Then, time passes for deadline units (t2 = t1 +

deadline) and, finally, out!output(y) is instantly performed at t2.

4. From a Model to Its Realisation

As mentioned in the previous section, a real-time system can be formalised as
a set of timed traces. If two timed traces have the same sequence of actions, a
notion of distance between them is defined. The distance represents the largest
deviation between the ending points of corresponding time intervals, as shown
in Figure 14.8. Two timed traces whose distance between them is equal to ε are
called ε-close. If two execution traces are ε-close and one of the traces satisfies

1Note that the notations in a POOSL specification are CCS alike.
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Time

a1
t1 t3

a3 a4

Time
t1- e t3- e

a3 a4a1

Fig. 14.8 Timed traces ε-close

a real-time property,2 then this property, weakened up to ε,3 is satisfied in the
second trace as well. This result was mathematically proved in (Huang et al.,
2003a).

Both the model and the realisation of a system can be viewed as sets of timed
traces. To obtain an implementation of a system that preserves the properties
analysed in its model, thus an implementation consistent with the model, two
things must be achieved: (i) to generate a trace in the implementation from the
set of execution traces of the model, and (ii) to make the corresponding traces
in the model and in the implementation to be ε-close.

A mechanism of generating a trace from a POOSL model was proposed and
proved correct in (Geilen, 2002). The data part of a POOSL model is directly
translated into corresponding C++ expressions. Each process in the model
is represented by a C++ data structure named process execution tree (PET),
whose nodes represent statements in the specification of behaviour. During the
evolution of the system, a PET scheduler makes choices for granting actions
or time transitions, while each PET adjusts its internal state according to the
choice of the PET scheduler. This mechanism guarantees that the realisation of
the model generated by the code generation tool is a trace from the model.

Although actions in a model are regarded timeless, in reality, it will always
take a certain amount of time to execute them; between the corresponding
traces there appears a time-deviation. If the distance between these two traces
is ε (ε-hypothesis), then all the properties of the model are preserved up to ε in
the implementation.

To generate the implementation ε-close to the POOSL model, the code gen-
eration tool, Rotalumis (van Bokhoven, 2002), synchronises the model time

2An example of a real-time property is that a certain action happens at a particular moment in time.
3If a property P is true in the first trace in the interval [t1, t2], the other trace satisfies P in the interval
[t1 − ε/2, t2 + ε/2].



Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 255

Controller

{t1}
in?

computation

{t1+e1}

out!
{t2}

{t2+e2}

Fig. 14.9 Implementation of the controller in physical time

with the physical time. As shown in the UML sequence diagram from Figure
14.9, all the actions that happen instantly in the model at a certain time t (in
Figure 14.7, in? and computation happen at model time t1, out! at t2) are
executed within a small ε amount of time around the corresponding moment
in physical time (in? and computation are executed in ε1 around physical
time t1, out! in ε2 around t2). To maintain the synchronisation between model
time and physical time, delays are not executed in the implementation exactly
as specified in the model (deadline units of time), but physical time passes
until the next corresponding moment in the model time is reached (the delay
deadline = t2 − t1 is shortened to t2 − t1 − ε1).

The size of the maximum time-deviation between a model and its implemen-
tation can be obtained at the time of generation and execution of code by using
measurements. On the other hand, it can be estimated from the model itself,
using the Y-chart scheme (depicted in Figure 14.10) approach for design space
exploration. This scheme contains the models of both the real-time application
and the target platform, and by analysing their mapping, as shown in (Florescu
et al., 2004b), the time-deviation can be monitored. This deviation depends on
how many actions need to be executed at the same time in the model as well
as on their execution times. If the value obtained for ε is considered too large,
either the implementation is generated for a higher performance platform on
which the execution of all the actions takes less time, the mapping is changed,
or the model is redesigned.
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Fig. 14.10 Y-chart scheme for real-time systems design

5. Realisation of Systems with Time-Intensive
Computations

In a model of a real-time system, usually a distinction can be made between ac-
tions and time-intensive computations. Action is the name given to an “activity”
specified in the model that needs small execution time on the target platform
(e.g., a control action). On the other hand, time-intensive computations are
the “activities” specified in a model that usually need a considerable amount
of time for execution, as it is the case of the computation in Figure 14.9. In
case of real-time systems containing such computations, the time-deviation be-
tween the model and the implementation is usually large. Therefore, with the
current generation of code, the properties analysed in the model will be much
weakened in the implementation.

Nevertheless, in data-oriented real-time applications, many computations
that take considerable amount of time are modelled (for example, different
multimedia algorithms must be applied on a stream of data). For this kind of
system, it is not intended for the computations to be instantaneous, but to be
finished before a deadline when the results must be given to the environment
(like in the example given in Section 3).

Two systems are called observational-equivalent if they cannot be distin-
guished between them through the interaction of a user with each of them.
They have the same observable properties4 and the same set of timed traces
with respect to these properties. Therefore, an implementation preserving the
observable properties of a model preserves the observable properties of the
observational-equivalent one.

4A user can see the same properties by interacting with the systems.
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Listing 14.2 Observational-equivalent model of the controller

1 in?input(x);
2 computation1(x)(y1);
3 delay deadline1;
4 computation2(y1)(y2);
5 delay deadline2;
6 computation3(y2)(y);
7 delay deadline3;
8 out!output(y);

Based on this insight, in case of systems with time-intensive computations,
instead of generating an implementation for the original model we could gener-
ate the implementation for an observational-equivalent one. In Listing 14.2, we
give a specification, which is observational-equivalent with the example given
in Section 3. The computation is split, for example, into three smaller parts
(computation1, computation2, and computation3) that, put in sequence,
form the original computation specified in the model. After each small com-
putation, a certain amount of time delay follows (deadline1, deadline2,
and deadline3) and the sum of all delays makes the original delay amount
(deadline = deadline1 + deadline2 + deadline3). A timed trace of this system
is given in Figure 14.11.

The two systems modelled are, obviously, observational-equivalent for a
user for whom it is important when the input data x is read from the envi-
ronment, what is the flow of computations performed on x, and when the fi-
nal result y is available. For this system, the existing synthesis mechanism
for POOSL models, which relies on the ε-closeness between traces for the
properties-preservation, can be applied. To obtain an implementation trace
ε-close to its corresponding trace in the model, as shown in the previous sec-
tion, a synchronisation of each moment in the model time when an action hap-
pens with the corresponding physical time, up to ε, is realised, as shown in
Figure 14.12. For the implementation of the original model, there are only two
synchronisation points, t1 and t2 from Figure 14.9, and the time-deviation is

deadline1

in?  ; computation1

Model
time

out!

t1 t4
deadline2 deadline3

computation2
computation3

t3t2

Fig. 14.11 Observational-equivalent model timed trace
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computation2

{t2}

{t3+e3}
computation3

{t3}

Fig. 14.12 Implementation of the equivalent model in physical time

large. For the observational-equivalent model, in Figure 14.12, there are four
synchronisation points, t1, t2, t3, and t4, and the time-deviation for each of
them is smaller. Therefore, over the whole system, the properties are stronger
preserved in the realisation of the second model.

From the perspective of the code generation tool, looking at Figure 14.12,
what it actually has to do is to generate a trace in which the execution of the
computation (made of computation1, computation2, and computation3)
starts immediately after reading x from the environment, continues more or less
without stopping, and finishes before the moment the result y must be given
back to the environment. In other words, deadline represents the deadline of
the computation, and only the observable actions of the system are synchro-
nised in the physical time as depicted in Figure 14.13. The time needed for the
execution of computation does not have to count against the size of the time-
deviation between model and implementation because, for the observational-
equivalent model in Figure 14.12, the value of ε is small and it is determined
by the execution time of out!output(y).

As shown in this simple example, the implementation of a model contain-
ing time-intensive computations can be generated from an equivalent model
that has the same observational behaviour and the same properties as the orig-
inal one. Under these circumstances, we can define actions and computations
slightly different than at the beginning of this section. We name actions those
activities that can be observed by a user interacting with the system and,



Property-Preservation Synthesis for Unified Control- and Data-Oriented Models 259

Controller

{t1}
in?

computation

{t1+e1}

out!
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Fig. 14.13 A possible execution that still preserves the properties

therefore, their moments of execution in the model time must be synchronised
with the physical time. On the other hand, computations are the internal ac-
tivities of a system that a user cannot observe and who need to be scheduled
for execution such that they can meet their deadlines. Moreover, if they are
still running, they can be pre-empted by an action whose model time must be
synchronised with the physical time. By abstracting from the internal actions
of the model and synchronising the model time with the physical time only for
the moments when observable actions happen, the observable properties of a
model can be preserved; thus the code generation tool can handle the model
synthesis of data-oriented applications as well.

However, it is not always possible to execute a computation within a dead-
line. For a specification like the one given in Listing 14.3, according to the
formal semantics of the language, the urgent message can arrive either before
the execution of computation(x)(y) or during the delay, which means af-
ter the execution of computation has finished. If the computation has a
deadline in the implementation, then, at the time the urgentMessage ap-
pears, the execution of computation must be pre-empted. The computation
will not be allowed to continue; thus the state in which the system realisa-
tion will be in that moment will not be a state present in the model. In this
case, the relaxation of the timing constraints is not possible because there is no
equivalence relation between this model and another one that has the computa-
tion split into smaller parts. Therefore, the execution time of the computation
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Listing 14.3 Example of model without observational equivalence

1 abort
2 (computation(x)(y); delay deadline)
3 with p?urgentMessage;

contributes to the total time-deviation between the model and the implementa-
tion of this system.

Nevertheless, the mechanism that we propose in this chapter for the syn-
thesis of real-time systems with time-intensive computations has the benefit of
using an existing methodology, without changing the syntax, the semantics of
the modelling language, or anything else, just by relaxing the constraints on the
properties to be preserved. However, work needs to be done to formalise these
ideas and to mathematically prove them. Moreover, a mechanism of identifica-
tion of the observational-equivalent system whose implementation is the same
with the one of the given model is required.

To analyse a model with different kinds of activities (taking longer or shorter
execution time), the Y-chart scheme can be used again. Such a unified model
helps designers in reasoning about aspects like what is the largest time-
deviation (ε) that the system can allow, or what is an appropriate scheduling of
the time-intensive computations, as shown in (Florescu et al., 2004a).

6. Conclusions and Future Work

To achieve a predictable design of real-time embedded systems, a unified ex-
ecutable model, capturing both functional and timing aspects of a system, is
suitable to allow engineers to reason about different properties in a unified
manner. Moreover, such a model must be easily refinable towards a com-
plete system specification from which the implementation can be automatically
obtained.

In this chapter, we have presented how the Software/Hardware Engineer-
ing methodology can be used for the modelling, analysis, and synthesis of a
large area of real-time systems (control-oriented, data-oriented applications).
The POOSL modelling language allows specification of both timing and func-
tional aspects of systems, whereas the ε-hypothesis guarantees the preserva-
tion of properties between two timed systems with a small time-deviation. By
satisfying the ε-hypothesis, the code generation tool, Rotalumis, succeeds in
synthesising an implementation of a model preserving all the properties, in
case the actions specified are not time-consuming. For the data-oriented ap-
plications, we propose a way to generate the realisation from a model that is
observational- equivalent with the original one but which has the advantage
that the time-deviation obtained for it is smaller. In fact, we suggest that it is
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possible to make an abstraction from the internal actions of the system and
synchronise the physical time with the model time only for the observable ac-
tions. Moreover, this realisation would preserve the observable properties of
the original real-time system.

For the future research, we aim at formalising this mechanism and at
giving a mathematical definition for the circumstances when computations can
be safely pre-empted by actions. Furthermore, we want to adapt the code gen-
eration tool to work according to the proposed mechanism and to apply it to
realistic case studies.
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Chapter 15

Traceability and Interoperability at Different Levels
of Abstraction in Model-Driven Engineering
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Abstract Model-driven engineering (MDE) is an emerging approach of software design
where the whole process of design and implementation is worked out around
models. With MDE, a system is built by designing a set of models at differ-
ent levels of abstraction. At the first level, only the main functionalities of the
system are modeled. This first model is called according to the model-driven ar-
chitecture (MDA) terminology as the platform-independent model (PIM). This
PIM can be projected into one or more other models by transformations. These
latter models are at lower levels of abstraction. When a model at a given level
of abstraction integrates some platform (technology) information, it is called a
platform-specific model (PSM). Model transformation is therefore a key issue
of the MDE approach. However, many questions arise about transformations.
Among these questions is: When a model is transformed into different other
models on different platforms, how to ensure the interoperability between these
models?

This chapter aims to provide an answer to the above question. Our approach
is based on a traceability model. This model not only keeps links between the
source and target model elements but also records the different operations that
where performed in the transformation. We present a methodology for the au-
tomatic generation of the traceability model and the exploitation of this model
to ensure interoperability. An example based on open core protocol (OCP) is
provided to illustrate our proposal.

Keywords: MDA; MDE; model transformations; traceability; interoperability.
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1. Introduction

Embedded system designers need to model both applications and hardware
architectures. For that a huge number of models are available, each one propos-
ing its own abstraction level associated to its own software platform for
simulation or synthesis. The design flow of embedded systems implies the han-
dling of many models at different levels of abstraction. The new methodologies
(approaches) model-driven engineering (MDE) and model-driven architecture
(MDA; Kleppe et al., 2003; OMG, 2003) are very useful in such a context (see
Oliver, 2005 and Bondé et al., 2005). In many cases, one has to build simu-
lations using components image processings (IPs) at different abstraction lev-
els. Such simulations raise some interoperability problems between abstraction
levels.

In MDE the whole process of design and implementation is worked out
around models. In this vision, the model transformations play an important
part. As the methodology gets mature, model transformations will involve
more and more models from different metamodels at different levels of abstrac-
tion. Using MDE methodologies, we can transform models at different levels
of abstraction. But the question of interoperability between different models
derived from transformation remains without answer.

In this chapter we introduce a new approach of solving the interoperability
problem by using a traceability model. Traceability in software modeling can
be defined as the ability to trace (follow) the different model elements from the
design step down to the implementation.

The chapter is organized in five sections. Section 2 we presents the meta-
model for a trace model. Section 3 explains how to generate automatically the
trace model. Section 4 explains how trace information can be used for inter-
operability bridge generation. And Section 5 concludes and discusses some
perspectives and further work.

2. Metamodel for Traceability in Model Transformations

In the current state of the art, traceability is achieved manually with great ef-
forts. Many research works are done on traceability, but most of them address
the question in the area of tracing requirements, system code, and documenta-
tion (see Antoniol et al., 2000; Champeau and Rochefort, 2003; Egyed, 2001,
2002; Zamfiroiu and Prat, 2001). We believe that traceability can be defined
in a more general way by a metamodel. This metamodel can then be used in
model transformation to produce trace information. And the trace information
can be used to solve interoperability problem.

The subject of traceability is of great interest in MDA transformations, but
when it comes to defining what is to be traced, not so much is said. So before
defining a metamodel for traceability, we will first define what information we
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expect to get from a trace model or what kind of information about transfor-
mation we want to keep.

2.1 Concepts and Overview of the Metamodel

A good traceability model should be complete enough to record the necessary
trace information. But a too complex model is difficult to exploit. To solve
this trade-off between completeness and simplicity, we think that the design of
such a model should be driven by the envisioned purpose of the trace model.
The following are the requirements which form the basis of the traceability
metamodel (TM) we suggest in this paper:

Requirement 1: A TM should be used to establish or maintain consistency
between the heterogeneous models used in an MDE-based design flow.

Requirement 2: In a context of model transformation, a TM should be de-
signed in such a way that it would be automatically generated along with
the transformation itself.

To fulfill requirement 1, a traceability model should be able to find out all
the elements in a model created by transformations that relate to a given el-
ement in the source model, so that when this latter is modified we can either
automatically or manually propagate the modifications in the related models.
It is therefore necessary during the transformation process to create links be-
tween the target model elements and all the source model elements implied in
the transformation. We have captured this kind of information under the Rela-
tionship concept.

The Relationship concept simply records the dependencies between the so-
urce model elements and the target model elements, and nothing more. So if
we intend to have any kind of automatic model update we need also to remem-
ber the different operations that we performed on the input model to produce
the output one. Another reason that motivates the need for keeping records
of operations is that, sometimes, transformations can be semiautomatic. We
mean by semiautomatic a transformation which is composed of an automatic
step followed by some manual tunings. In this kind of transformations, it is
desirable to avoid as much as possible the repetition of the manual tunings.
Keeping the operations done in the transformation can help to update the tar-
get model without replaying the transformation that could overwrite the initial
manual tunings. To model the operations used in a transformation, we use the
TraceOperation.

So far we considered that a traceability information (trace) is made of two
elements: the Relationship and the TraceOperation. We use the TraceElement
concept to represent this basic trace information. The whole set of trace
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Fig. 15.1 Overview of the metamodel

information associated to a given transformation is captured under the Trace-
Model concept. A TraceModel is thus made of a set of TraceElements.

According to our requirement 2, a traceability model should be automati-
cally derived from the transformation. To make this possible there should be a
kind of dependency between the transformation rules and the trace model. This
dependency is shown in the metamodel (Figure 15.1) by the dependency rela-
tion between TraceModel and TransfRules. The issue of automatic trace model
generation will be further discussed in Section 3.

The overview of the metamodel is presented in Figure 15.1, in which we
have left out the attributes of the different elements in order to keep it simple.

2.2 More Details on the Metamodel

The most simple operation one can get in a model transformation is to copy
the attribute of an input element to a given attribute of the output element, the
two attributes being of the same type. We have modeled this simple operation
using the Copy concept. This concept has two attributes which refer to the
source attribute and the target attribute. The second kind of transformation
operation is to take an input attribute of a given type and to convert it to an
attribute of another type in the output element. We call such an operation a
Convert operation. Some other less direct transformation operations take as
input several input attributes to create an output attribute. The input attributes
can be from one or more input elements. We refer to this type of operation



Traceability and Interoperability at Different Levels of Abstraction in MDE 267

by the Transform concept. All the operations described so far deal with the
attributes; we have generalized them under the AttributeOperation concept.

It is not realistic to think that model transformation can always be performed
in one step. In some cases, it can be necessary to do it in many steps. For exam-
ple a first step creates the output concepts (elements) and a second step creates
the links or relationships between the previous created elements. In this situa-
tion, we should be able to represent operations consisting in linking the output
elements. The Link concept was introduced in our metamodel to fit this need.
The Link concept has only one attribute holding the list of the objects to be
linked. Finally, in a model transformation, it is very possible to encounter a
situation where there are some output concepts that are not directly related
to some input concepts, but are rather related to other output concepts. This
is likely possible in transformations where the metamodels involved are too
different from each other. To record the creation of such elements we use the
Create concept. The Link and Create operations are related to concept manage-
ment, we have therefore gathered them under the ConceptOperation concept.

In short, a trace operation is either an operation that deals with attributes,
it is in that case an AttributeOperation, or an operation that handles model
elements, then it is classified into ConceptOperation.

The TraceOperation concept can be associated to an ImplementationClass
which actually performs the operation. By doing so we make it possible for
the user to provide his own trace operations. If no ImplementationClass is pro-
vided, it is up to the engine to perform the operation.

The detailed description of the proposed metamodel is given in
Figure 15.2.

3. Generation of the Trace Model

In our view of model transformation, a transformation is specified through a
set of rules. The model transformation engine used in this work is ModTransf
(Dumoulin, 2004). ModTransf takes one or more models and one or more set
of rules as input, and it produces one or more models as output. When an object
(model or model element) is submitted to the engine for transformation, Mod-
Transf looks for the appropriate rule matching the source elements and applies
the rule. The rule creates target elements and fills them with the source element
properties. The rule can call the engine with nested elements allowing the call
of rules defined for other elements. ModTransf rules are eXtensible markup
language (XML)-based. A rule is made of leftConditions, rightConditions, and
actions. The conditions are used to describe the pattern of source concepts used
by the rule and the concepts that the rule should produce. The actions specify
how the output concepts are created and updated. More details on ModTransf
and its XML rules formalism can be obtained in Dumoulin (2004).
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Fig. 15.2 Detailed metamodel

3.1 Principle of TraceModel Generation

As stated before, a transformation is the application of a set of transformation
rules on input model to produce output model. When a transformation rule is
executed by the transformation engine, some output model elements are cre-
ated from some input model elements. The idea in our approach for trace model
generation is: on completion of the application of a transformation rule, we ask
the engine to perform the necessary actions to produce the trace information.
These actions are:

Record the link between the concerned input concepts and the output
concepts. To do so, we use the elements in the leftConditions and right-
Conditions of the rule being applied to create the relationship of the trace
element.

Record the operations that actually perform the transformation. From
the action parts of the ModTransf rule, we create the TraceOperation
elements of the trace element.

At the beginning of the transformation process, we create an empty trace
model, and each time a transformation rule is applied, we create a TraceEle-
ment and add it to the model. So when the transformation process is completed,
the whole trace information is also generated as well.
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Fig. 15.3 Mapping ModTransf rules to trace element

We can observe from Figure 15.3 how straight it is to map a ModTrans-
fRule to a TraceElement, even though the trace model is not designed only for
ModTransf. In fact Figure 15.3a shows the structure of a ModTransf transfor-
mation rule whereas Figure 15.3b presents the structure of a TraceElement as
described in Section 2.

3.2 Example

To illustrate our talk, let us consider a simple transformation where a unified
modeling language (UML) Class concept is translated into a Java Class. We
will not give here the UML and Java metamodels, they can be found in many
relevant documentations. The example is sketched out in Figure 15.4. The
UCustomer class is transformed into a JCustomer class. In this transformation,
the attributes of the UML class are copied to fill the JCustomer class attributes.
If we suppose that there is a Java class called UAttribute2JAttribute, which,
given an attribute and its type, can create the necessary getter and setter for the
corresponding Java class attribute, then we can set the UAttribute2JAttribute as
the ImplementationClass for the Copy operation used for the trace operation.
The ModTransf rules used to perform the transformation are as follows:

1 <rule ruleName="class">
2 <description> Transform a class to a class</description>
3 <leftConditions>
4 <concept type="Core.Class" model="uml" use="required"/>
5 </leftConditions>
6 <rightConditions>
7 <concept type="JavaClass" model="java"/>
8 </rightConditions>
9 <rightCreates extendsConditions="true"/>

10 <actions>
11 <copyPrimitive actionName="name" leftProperty="name" ↵

rightProperty="name"/>
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Fig. 15.4 Simple UML class translated into a Java class

12 <transform actionName="ownedElements" use="optional">
13 <left>
14 <expr expr="feature"/>
15 </left>
16 <right>
17 <switch>
18 <case type="Attribute">
19 <property name="attributes"/>
20 </case>
21 <case type="Method">
22 <property name="methods"/>
23 </case>
24 </switch>
25 </right>
26 </transform>
27 </actions>
28 </rule>
29 <rule ruleName="attribute">
30 <description>Transform a class attribute</description>
31 <leftConditions>
32 <concept type="Core.Attribute" model="uml"/>
33 </leftConditions>
34 <rightConditions>
35 <concept type="Attribute" model="java"/>
36 </rightConditions>
37 <rightCreates extendsConditions="true"/>
38 <actions>
39 <copyPrimitive actionName="name" leftProperty="name" ↵

rightProperty="name"/>
40 </actions>
41 </rule>
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The first rule states that a UML class is transformed into a Java class. The
transform action of this rule indicates that when a feature of the class (attribute
or method) is encountered, the engine will be called back with the input con-
cept being the current feature. In case the feature type is Attribute, the second
rule in charge of transforming an attribute will be executed. In this example of
transformation, the first rule will be called only one time and the second rule
three times (one time for each attribute).

At the end of this transformation, the associated trace model corresponding
to this transformation is presented below:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <TraceModel name="SimpleExample">
3 <TraceElement>
4 <Relationship srcObjects="UCustomer" ↵

trgtObjects="JCustomer"/>
5 <TraceOperation>
6 <Copy srcAttribute="name" trgtAttribute="name"/>
7 </TraceOperation>
8 <TraceOperation>
9 <Copy srcAttribute="address" trgtAttribute="address"/>

10 </TraceOperation>
11 <TraceOperation>
12 <Copy srcAttribute="phone" trgtAttribute="phone"/>
13 </TraceOperation>
14 </TraceElement>
15 </TraceModel>

4. Getting Interoperability from Traceability

The IEEE Standard Glossary of Software Engineering Terminology defines in-
teroperability as the ability of two or more systems or components to exchange
information and to use the information that has been exchanged (see Sanders
and Hamilton, 2003). Some works related to systems interoperability can be
found in Bencomo and Blair (2004) and Kleppe et al. (2003).

In this chapter we consider interoperability between two systems (at the
platform-specific model (PSM) level) that are derived from one platform-
independent model (PIM) model by model transformation. The two systems
are interoperable if they can exchange information to fulfill the goal of the
system under construction.

4.1 Proposed Approach for Interoperability

We propose to tackle the interoperability problem by concentrating on the com-
munication between the system components. The idea behind is that, during the
transformation process, the communication information between the different
components are recorded in the trace model. For example, in a system where
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Fig. 15.5 Interoperability bridging from trace information

the different components communicate through ports that have interfaces of
some types, when the system or the model is transformed, its components are
transformed including the component ports. So if we trace the initial compo-
nent ports, we can find out the communication scheme (model) in the new
system. Once the new communication scheme is known, we generate a Bridge
that will solve the possible incompatibilities between the new port interfaces.
The Bridge generation as summarized in Figure 15.5 is done in three steps:

Step 1: generation of the trace model.

Step 2: analysis of the trace model to get the necessary conversions or adjust-
ments for the bridging purpose.

Step 3: realisation of the bridge.

Using the ModTransf engine we are able to transform one PIM model into
one or more PSM models. In Figure 15.5 the PIM model is transformed into
PSM 1 and PSM 2. We have seen in Section 3 that alone with the transforma-
tion we generate the trace model. The first thing that the Bridge Generator does
is to extract (retrieve) from the trace model the information related to ports and
their interfaces. From this information, the new communication incompatibil-
ities will be found out. These incompatibilities determine the functionalities
that should be implemented by the Bridge.
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The word Bridge in our proposal refers to a software component that has a
set of communication ports and interfaces through which it can communicate
with two or more other components. This software component also has the
capacity of performing all the necessary type conversions to fit the compliance
requirements of the communication between the different components.

Given the information from the analysis of the trace model, the bridge gen-
eration can be performed by a simple program that, given the information about
the ports of the different components and their types, will create an instance of
a generic class Bridge with the appropriate conversion methods.

4.2 Application of the Approach on an Example

We now show an application of our approach in a simple example. The exam-
ple presents a PIM model that is transformed into two PSM models, and shows
how the interoperability between the two PSM models is realized.
Figure 15.6 presents the initial system, the result of the transformation, and
the bridge between the two PSMs.

Source PIM model. At the PIM level, our system is made up of two compo-
nents (Comp1 and Comp2). Each component has a set of three ports, described
as follows:

Port 1: It is a command port. Commands are read and write, 1 b is enough to
encode the command information.

OCP address port

OCP data port

OCP command port1

3

2

Comp1 Comp2data
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Fig. 15.6 A simple PIM model transformed into two PSM models
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Port 2: It is a data port and the type of the associated interface is Integer. Thus
the two components communicate by exchanging some integer values.

Port 3: It is an address port.

In this simple system, the communications are from Comp1 to Comp2. A
communication message is composed of three fields. The first field holds the
command (read or write), the second contains the data. This field can be empty
when the command is a read command. The last field corresponds to the ad-
dress for reading or writing.

Transformation and target PSM models. The PIM model is transformed
into two PSMs (TLM-PVT and TLM-CABA). For more information about the
different levels of TLM, see Hardee and Colgan (2004).

The Comp1 component is transformed into a Processor component in the
PSM 1 model. The ports and associated interfaces of the Processor component
are of the same type as those of the Comp1 component in the source model.

The Comp2 component is transformed into a Memory component in the
PSM 2 model. This Memory component is associated to a bus having an OCP
interface (see OCP, 2003, p. 13 and Haverinen et al., 2002). In the transforma-
tion, the ports of Comp2 are mapped as follows:

Port 1 (command port) is mapped to the OCP command port. An OCP com-
mand is coded with 3 b with the following meanings: 000—Idle,
001—Write (WR), 010—Read (RD).

Port 2 (data port) is mapped to the OCP data port.

Port 3 (address port) is mapped to the OCP address port.

Bridging of the two PSM Models. Given that in the original PIM model,
Comp1 and Comp2 were exchanging information, after the transformation of
the initial PIM system into two PSMs we have to ensure that the two resultant
models can communicate.

Let us name the three ports of the components p1, p2, and p3. From the trace
model, we have the following information:

Processor.p1 is derived from Comp1.p1, and their associated interfaces
are of the same type.

Processor.p2 is from Comp1.p2, and their interfaces are of the same type.

Processor.p3 is from Comp1.p3, and their interfaces are of the same type.

We can see that in this example the communication protocol on the Processor
side is the same as in the initial system.
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If we assume that the OCP data and address ports are identical to p2 and
p3, then the only problem to solve is to convert the 1 b information from port
p1 (read/write command) of Processor to an OCP command coded in 3 b (see
Figure 15.6).

If the OCP data or address port are not identical to the Processor ports p2
and p3, then we need some simple coding/decoding functions to transform the
n bit information into p bits.

5. Conclusion

Building an embedded system implies dealing with many models at differ-
ent levels of abstraction. A codesign environment requires methodologies and
tools for model management.

In this chapter we have presented an approach to achieve interoperability in
model transformations. We have defined a metamodel for traceability. With this
metamodel we are able to generate automatically a traceability model during
transformation. We have also shown how this traceability model can be used
to generate a Bridge for interoperability. The approach has been put into action
through an example based on OCP.

We believe that the work which is done here can be useful for other
purposes:

Our traceability model generated could be exploited to implement re-
versibility in model transformations.

In a simulation environment, the trace model could be used to relate
simulation information to the corresponding design or implementation
elements.

We will address these issues in our future works.
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Power Simulation of Communication Protocols
with StateC
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Abstract With the proliferation of battery-powered mobile devices relying on wireless
ad hoc communication, low power consumption has become one of the primary
goals in the design and implementation of communication protocols. We propose
StateC, a power modeling and simulation flow well suited for high-level power
modeling and optimization of communication protocols, wireless in particular.
StateC can aid both in seeking power-optimized implementations and in devis-
ing optimal power management policies for existing devices. The flow relies on
high-level UML statecharts models of the protocol stack and provides automatic
tools for power characterization and for the generation of high-performance Sys-
temC simulators based on such models. Preliminary application of StateC to
Bluetooth and 802.11 exhibits good model accuracy (validation error below 1% )
and high simulator performance. Although the flow has been targeted at wireless
communication devices so far, its generality and use of widespread standards
suggests its possible application to a generic hardware/software system.

Keywords: UML statecharts; power modeling; Bluetooth; IEEE 802.11.

1. Introduction

Mobile embedded devices relying on battery power and featuring wireless con-
nectivity are becoming very popular. To cope with the power consumption
issues that spoil their usability, many techniques have been addressed in the
literature. These can be classified as power-optimized designs providing spe-
cial low-power operational modes and power management techniques to fully
exploit these modes.

277
A. Vachoux (ed.), Applications of Specification and Design Languages for SoCs – Selected papers from
FDL 2005, 277–294.
© 2006 Springer.



278 Luca Negri and Andrea Chiarini

For both strategies power modeling is a crucial aid. It can be performed at
diverse levels of abstraction; however, low-level approaches such as transistor
and gate level have proved too complex both when seeking optimal power
management policies and for design space exploration in a preliminary design
stage. For this reason, power management theory makes use of system-level
power models (Bogliolo et al., 2004), which rely on a high-level architectural
breakdown of the total power into contributions from different subsystems,
where each can be in different power states.

However, most system-level power management strategies that have been
proposed for wireless interfaces consider models with a limited number of
power states and focus on a single subsystem, the radio interface card (Jones
et al., 2001; Simunic et al., 2000). Such models are easy to build, but sometimes
do not capture the full spectrum of operational states in the device. Moreover,
many power optimization studies in the field of wireless networks are based
on over-simplified power models (e.g., fixed ratio between transmission and
reception (Ashok et al., 2003), between communication and processing (Toh
et al., 2001), etc.).

In this chapter we propose a high-level power modeling and simulation flow
called StateC, specifically aimed at communication protocols, wireless in par-
ticular. The flow is based on power models that are similar to the system-
level ones, but relies on a functional rather than architectural breakdown of
the power budget; that is the power contributions captured by the model are
directly linked with protocol activity (connection setup, transmission, pag-
ing/beacon transmission, etc.) rather than with states of hardware components
(on, idle, standby, etc.). Furthermore, compared with other functional models
such as in Lattanzi et al. (2004), StateC leverages the syntax of UML state-
charts to provide concurrent state machine models, well suited to model the
(power) behavior of multilayer protocol stacks, possibly including the applica-
tion layer.

StateC allows the user to quickly go from a behavioral specification of the
system, given in Statecharts notation, to a fully-functional SystemC (Panda,
2001) power simulator. Other frameworks to convert UML or Harel State-
charts into C++ or SystemC have been proposed in Bjorklund et al. (2004) and
in Nguyen et al. (2004); however, these are more complex than ours and aim
at system synthesis rather than simulation. Other statecharts simulators, such
as Matlab’s StateFlow, are interpreted and pay a performance penalty. On the
other hand, network-oriented simulators such as NS2 (VINT, 2006) and Glo-
MoSim (Zeng et al., 1998) rely on proprietary formats to describe protocols.
StateC combines the flexibility of graphical UML Statecharts models with the
performance of a compiled SystemC simulator.

Section 2 presents the general StateC flow, whose three main phases are
further described in Sections 3, 4, and 5. Section 6 presents some experimental
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results for Bluetooth and 802.11 and Section 7 concludes the chapter with some
remarks and future work.

2. The StateC Flow

The StateC flow can be used (i) for power management of existing communi-
cation devices, (ii) as power-optimized design aid, and (iii) for design-space
exploration in the implementation of new communication protocols; this is il-
lustrated in Figure 16.1 with three different flows. These flows share some
phases and present some other distinct ones.

When StateC is used for power management (see flow (a) in Figure 16.1),
the following steps should be followed:

An implementation-independent modeling phase, with the purpose of
creating a behavioral model of the communication protocol (or stack
of protocols) in Statecharts notation. At this level, the model depends
only on the chosen suite of protocols and can be adapted for different
implementations.

2. Activities identification

5a. Training and validation

3. State-activity matching

Protocol
specs

1. Statecharts modeling

Implementation-Independent model

Implementation-Dependent model Implementation-Dependent model

4a. Power measurements

Real
device

7a. Scenarios simulation

6a. Simulator generation

Power simulation Power simulation

Usage
Scenarios
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design

(a) Power management
flow

(b) Power-optimized
design flow

(c) Design-space
exploration flow

Fig. 16.1 The StateC power modeling and simulation flow
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A characterization of the model with the implementation-dependent mod-
eling phase. This is performed either via experimental measurements on
a chosen implementation or via low-level (e.g., very high speed inte-
grated circuit (VHSIC) hardware description language (VHDL)) power
simulation. At this stage, the model contains power figures that are spe-
cific to the tested device.

The model can then be used for power simulation under different usage
scenarios with the goal of devising optimal power management policies
for the single nodes and for the whole network. For instance, given cer-
tain throughput or delay requirements, the simulation can help in find-
ing the best tuning of the protocol’s specific parameters (transmit power,
beacon intervals, backoff rules, etc.) that satisfies the requirements while
minimizing power consumption in the whole network or on selected
nodes.

The same implementation-independent model can be reused and character-
ized for different implementations, e.g., to compare them via power simulation
in selected scenarios. The other two possible usages we envision for StateC
are:

As an aid for power-optimized design (see flow (b) in Figure 16.1).
StateC models can be used to improve existing designs. In this case, the
protocol model is simulated at the implementation-independent level,
providing precious information on which states of the protocol stack are
worth optimizing, for instance, to grant a minimum device lifetime in a
given scenario.

For design-space exploration in the implementation of new communica-
tion protocols (see flow (c) in Figure 16.1). In this case the power charac-
terization of the model is performed repeatedly on low-level descriptions
(e.g., VHDL) of the candidate designs. Since the characterization proce-
dure can be automated, flow (c) allows the powerwise comparison of the
different designs under a typical usage scenario.

The implementation-independent modeling phase is the only one that re-
quires human intervention; guidelines on how it should be carried out are given
in Section 3. The implementation-dependent modeling can be fully automated
for a given protocol stack, and is described in Section 4. Finally, for the power
simulation phase, we have developed an automated tool that generates a Sys-
temC power simulator starting from the Statecharts protocol model, whose full
logic is described in Section 5.
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3. Implementation-Independent Model

The implementation-independent modeling phase comprises three steps (also
visible in Figure 16.1):

1. Represent protocol stack behavior with a set of finite state machines
(FSMs). Different layers of the protocol stack should be modeled as
concurrent FSMs that drive each other via events, using the Statecharts
syntax.

2. Identify a set of logical activities (connection, transmission, etc.), which
represent the sources of power consumption in the model.

3. Define a relationship between states and activities, i.e., define, for each
state in the FSMs, which activities are triggered.

The result of steps 1–3 is a behavioral model of the protocol stack with some
unknown parameters, namely the power consumption of the logical activities.

3.1 Statecharts Modeling of a Protocol Stack

Each layer of the protocol stack being analyzed is, in a real implementation,
an independent entity, with its own notion of current state; interaction among
layers occurs via primitive calls. In the same fashion, the Statecharts model of
a stack comprising L layers is a concurrent state containing L substates.

Inside each layer, a number of simple states exist, that is only one of them is
active at a time. The number and nature of such states is derived from protocol
specifications. If in abundant number, states can be grouped in composite states
according to the Statecharts syntax. Furthermore, additional concurrent states
can be used within a layer to model separate threads, if this is suggested either
by protocol specifications or by some preliminary experiments.

Intralayer transitions are controlled by triggering events and guard condi-
tions, according to Statecharts syntax. Events can be classified as:

Internal events from another layer of the stack, used for interlayer syn-
chronization.

External events from outside the stack; these are normally found on
the transitions of the upmost layer in the stack, and are the means by
which an application can control stack operation. Also, external events
can originate in the environment around the device.

TIMEOUT events, a particular category of events defined in the origi-
nal Statecharts syntax by Harel (1987) and mirrored in unified modeling
language (UML) with the AFTER keyword. A TIMEOUT(base_event,
time_units) event fires automatically when time_units time units



282 Luca Negri and Andrea Chiarini

Fig. 16.2 Common pattern of communication between layers of the stack

have elapsed since base_event has occurred. The value of time_units
can be (i) a constant value, (ii) a function of some variables of the State-
chart, or (iii) a random number taken from a distribution that is function
of some variables of the Statechart. A typical example of (iii) could be
the time spent to successfully send a packet of a certain size, given the
value of the model variable BER.

The Statecharts formalism makes concurrency possible by means of a broad-
cast communication mechanism. Despite this, in our models concurrency is
normally handled using variations of a more restrictive communication pat-
tern, shown in Figure 16.2, which basically simulates the call of primitives
among layers that occur in a real implementation. In Figure 16.2, dotted ar-
rows represent cause–effect relationships. Call of a primitive of layer l by layer
l + 1: layer l + 1 sets some variable(s) x and fires event A, which unlocks layer
l; when layer l is done it triggers B and returns to the caller, which continues
execution. This is equivalent to l + 1 calling a primitive of l, which might ac-
tually happen when a primitive of l + 1 is called by some other entity (labeled
EXTERNAL_EVENT or LAYER(l+2)_EVENT).

3.2 Logical Activities Identification and Localization

Let S be the set of all states in the model. Steps 2 and 3 in the implementation-
independent modeling phase are the identification of a set P of N basic logical
activities and their localization within the states. A logical activity is an op-
eration that takes place (and consumes power) on a potential implementation
of the protocol stack, and is represented in the power model by its power con-
sumption pi. It can directly map to architectural parts of the foreseen imple-
mentation (e.g., radio, baseband) or be purely logical (transmission, reception,
scheduling, and so on).
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The Statecharts syntax already has a concept of activity, which suits also
the case of our logical activities, intended as sources of power consumption.
In general, a state can use zero or more activities and an activity can be asso-
ciated with one or more states; let ρ ⊂ S × P be a relationship capturing this
association. As a consequence of this matching process each state in S either
(i) consumes no power, (ii) consumes power directly by using some activity,
or (iii) consumes power indirectly by activating, via events, other states that
consume power directly.

To power-characterize a Statecharts model for a specific implementation
means to assign a value to pi (0 ≤ i ≤ N). Here p0 is an additional activity
called “Standby” that should be associated with the top-level state that con-
tains the whole model. This models the standby power consumption on the
device (i.e., with the device simply turned on).

4. Implementation-Dependent Model

The implementation-dependent modeling phase comprises two steps (see flows
(a) and (c) in Figure 16.1):

4. Perform a series of experimental measurements on a real device or a
series of power simulations on a low-level (e.g., VHDL) description of
a possible implementation.1 In each test, have the protocol stack per-
form a series of operations and record the total energy consumption. As
the experiment is associated to a path in the Statecharts model, what is
measured is a linear combination of the unknown activity power con-
sumptions pi.

5. Write a linear system associated with the whole set of experiments, hav-
ing the activity power consumptions as unknowns and solve it with the
least squares method.

The result of steps 4–5 is a device-specific Statecharts model with power con-
sumption values assigned to the logical activities.

4.1 Model Characterization

An experiment consists of having a device under test (DUT) perform a series
of communication tasks, and recording the total energy consumption. Let M be
the number of these experiments. An experiment is associated to a path in the
Statechart model. For a single layer of the stack, a simple path φ is an ordered

1From now on the experimental approach will be considered; however, mostly the same rules apply to the
low-level power simulation one.
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series of states and times (spent in the states). Formally:

φ = (s0, t0), (s1, t1), . . . , (sk, tk), . . . , (sK , tK); 0 ≤ k ≤ K (16.1)

where sk ∈ S, tk is the time spent in state sk, and K is said to be the length
of path φ. Extending this concept to the whole model, a composite path Φ is a
set of L simple paths φ1, φ2, . . . φL (one simple path per layer, L being the total
number of layers) with the additional condition that:

∑

tk |(sk ,tk)∈φ1

tk =
∑

tk |(sk ,tk)∈φ2

tk = · · · =
∑

tk |(sk ,tk)∈φL

tk (16.2)

Note that Equation 16.2 allows the simple paths of the different layers to have
different lengths (in terms of number of states visited) but enforces the same
duration in terms of total time.

Given an experiment j and the associated composite pathΦ j, it is possible to
write an equation relating the energy consumption E j measured experimentally
with a linear combination of the activity power consumptions pi (i = 1, . . . ,N)
that represents the model prediction:

E j =

N∑

i=0

pit ji (16.3)

where t ji is a coefficient equal to the total usage time for activity pi during
test j; this is equal to the sum of the times spent in states that make use of pi,
according to ρ.

The number of experiments M must be M > N; in general, the higher the
number of experiments compared to the number of activities, the more reliable
the final model.

The calculation of the t ji coefficients for a given experiment implies knowl-
edge of the associated sequence of states and relative permanence times and
is a key part of the characterization process. Depending on the protocol un-
der examination, the available instrumentation and the target reliability of the
model, the operation can be carried out in different ways. In certain cases (e.g.,
Bluetooth) times are well-defined in the specifications; in other cases (e.g.,
802.11) random timers are involved, and either the use of average values or
experimental tracing becomes necessary.

4.2 Training and Validating the Model

The final step to be carried out is the training of the linear power consumption
model (given by the activity power consumptions pis) using the experimental
data. This can be accomplished by solving the system formed by Equation 16.3
for the M experiments, which can be conveniently expressed in matrix notation
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as:
E = T × P (16.4)

where E is the vector of the M total energy measurements, P is the vector of
the N unknown activity power consumptions, and T is the M ×N matrix of the
t ji coefficients. Since the system is overconstrained, it can be solved with the
least squares method, which yields

P = (TT × T)−1 × TT × E (16.5)

If the Moore-Penrose pseudoinverse (TT × T)−1 is singular, either different
activities must be chosen or different experiments be run, until all rows and
columns in the matrix are linearly independent. Validation of the linear model
can be performed using standard techniques such as cross validation or (leave
one out (LOO) validation (Hassoun, 1995).

5. Power Simulation

The final stage of all flows is the execution of a number of simulations on the
previously built models. This is visible in Figure 16.1 in all flows as “power
simulation” and comprises two steps:

6. The automated generation of the SystemC power simulator starting from
the Statecharts model.

7. The use of the simulator, which has different goals in the three flows of
Figure 16.1.

5.1 Automatic Simulator Generation

The generation of the SystemC simulator given in the Statechart model is a
fully automated procedure. This allows to easily build a simulator for any new
protocol and to rapidly rebuild it after modifications to the protocol model.

Relying on UML allows the use of a broad range of graphical design tools,
such as commercial, free, and open source; most of these tools allow to export
the UML model in XML Model Interchange (XMI), a language coded using
XML format. Alternative languages, such as GTDL (Jin et al., 2002) have been
considered; however, XMI promises to become the de facto standard in the
coming years for general model and metamodel communication purposes. As
of date, we are working on the 1.2 XMI specification version (OMG, 2005).

The automatic translation of the XMI-coded model relies on a series of tech-
niques originally developed in the web applications field. The syntactic and se-
mantic rules for code translation are specified using the eXtendible stylesheet
language transformations (XSLT) and XPath languages. The actual merge be-
tween XMI and the defined XSLT rules is carried out using an XSLT processor.
The whole process is visualized in Figure 16.3.
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<xmi>
...
</xmi>

XSLT
processor

SystemC compiled
simulator

GXL/SystemC XSLT template

UML modeling tool

Fig. 16.3 Automated Statecharts to SystemC transformation

The SystemC production process relies on a series of consecutive XSLT
transformations. The first conversion aims at simplifying the XMI code, which
comprises large quantities of unnecessary information (e.g., graphical format-
ting notations) and produces an intermediate Statechart skeleton including only
the necessary material. The intermediate format relies on another XML specifi-
cation, graph eXchange language (GXL; Holt et al., 2000), which is sufficiently
compact and easily readable. Even if GXL supports graph hierarchy, the model
already at this stage is flattened out, as stack hierarchy is only indirectly present
in the final SystemC code. The following XSLT passes analyze the code, parse
all present variables (to be declared in the final C++ header), and then produce
the header and main code file for a single SystemC module, which comprises
the entire protocol stack. The Statecharts to SystemC conversion process fol-
lows these mapping rules:

Layers: Protocol hierarchy is eliminated in the final C++ code. The reasons
behind this “monolithic” approach are the broadcast-style communica-
tion employed in Statecharts on one side and the scoping of events and
variables in SystemC (more in general C++) on the other. The best solu-
tion we have found to cope with this misalignment is the implementation
of the whole Statechart (i.e., all layers together) in the same class, which
allows all events and variables to be visible to all states and transitions.

States: The translation phase is based on a code template, which represents a
single Statechart state along with all its outgoing transitions. Replicat-
ing this template card(S) times where card(S) is the number of states
in the whole model yields the complete simulator C++ code, ready for
compilation. The template is the code of a SystemC execution thread,
so the final simulator is actually made up of card(S) threads executing
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simultaneously (although all but the current-state threads, one per layer,
will be in a waiting status).

Transitions: For each state, we make use of two SystemC events, one for state
entrance and one for state exit. More specifically, we define card(S) state
entrance events, one for each state, and a single, common state exit event.
The launching and catching of these two events causes one state to return
in a waiting status and a new one to enter execution, thus simulating a
state transition. This will be further explained.

Variables: Variables are considered global both in the Statecharts model and
in the SystemC simulator and are mapped one-to-one.

Events: The Statecharts to SystemC event mapping is not symmetrical, due to
the particular implementation of transitions.

In Figure 16.4, all fundamental parts of the state template are presented,
including the transition mechanism:

1. The whole state can be seen as one infinite loop. After first activation (by
the state’s own entrance event) the state begins execution (2–5), eventu-
ally exits, and returns waiting for the next activation event.

2. Once a state is activated, place for state on-entry code is given. As exam-
ple in Figure 16.4, when entering this state another transition is launched
somewhere in the Statechart. This is done by setting a global string vari-
able called new_event, unique within the entire class, and then launch-
ing the exit_current_state event. Active states will pick up the event
and check the new_event variable to evaluate if they should undertake
a transition.

3. After on-entry code execution, the state enters a loop to be exited only
once when the exit_current_state event has been launched some-
where else and a transition has been chosen. In the case of timeout-
controlled transitions, the amount of time to wait for (which is in
general function of some variable) is first calculated and then added to
the wait() call as an additional event.

4. When the internal wait() is activated, be it the exit_current_state
event or a timeout, all possible outgoing transitions are evaluated. The
global variable new_event is checked, and further guard conditions are
considered. If a timeout transition is to be taken, new_event is expected
to be found empty. If a valid transition is found it is taken, on-transition
code is executed, and the destination state activation event is fired start-
ing from the next simulation delta-cycle.
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Fig. 16.4 State template for SystemC simulator. Dark gray shaded texts are the only parts that
change from one state to the other

5. After the internal loop space for on-state-exit code is given. In our mod-
els we usually implement a function here to keep track of state perma-
nence time based on the SystemC kernel time. This code is executed
before the next state enters its on-entry code, as activation will be effec-
tive only after a delta-cycle.

5.2 Simulator Usage

The SystemC simulator traces the time spent in each state, for each layer of
the model, and this information can be used for different purposes. According
to Figure 16.1, it can be used to calculate the total power consumption of a
given scenario for the power management and design-space exploration flows
or simply to determine power critical states in the power-optimized design flow.

The simulation scenario is also to be implemented using Statecharts, as an
additional layer above the stack of protocols, which represents application
logic, to be translated and compiled together with the protocol stack model.
This application layer controls the stack using its internal and external events;
in this way, it can either control the upmost layer of the stack (which will in
turn control the lower layers) or directly control any lower layer. As of date,
only one device (i.e., one instance of the stack) can be simulated at the same
time, and therefore the application layer must also include the behavior of
the environment around the simulated device (using, for example, stochastic
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TIMEOUT transitions). However, we are working on an extension of the sim-
ulator allowing multiple instances of a stack to be interconnected as SystemC
modules and to exchange signals.

All variables used in the Statecharts are parsed using XSLT and listed in an
external configuration file. Modifying this file causes the variables to assume
different initial values upon simulation start. In this way the same compiled
scenario (protocol stack plus application) can be used for parametric explo-
ration without further recompilation cycles.

6. Experimental Results

This section presents the application of StateC to two different case studies,
namely the Bluetooth (BT) and WiFi 802.11 protocol stacks. Extracts of the
implementation-independent models are given (Section 6.1), along with ex-
perimental validation figures (Section 6.2) and simulator performance consid-
erations (Section 6.3).

6.1 Implementation-Independent Models

We have created implementation-independent Statecharts models of two
protocol stacks so far: Bluetooth and 802.11. For Bluetooth, we presented a
complete Statecharts model in Negri et al. (2004) in a simplified format (not
including all states and events). Conversely, Figure 16.5 shows a part of the
complete model in full Statecharts notation, including all events and guard
conditions.2

The full statecharts model of Bluetooth comprises the three lowest layers
of the stack: Radio, Baseband and Link Controller (LC); however, Figure 16.5
shows only the subset of states required by the BT inquiry procedure. The
procedure consists of sending a burst of small packets on different frequen-
cies to other (potentially listening) devices (Bluetooth SIG, 2003) and can be
started by the application layer by setting the Inq_TO variable and firing the
LC_Inq_evt (see LC layer in Figure 16.5). This triggers in turn the activa-
tion of the Baseband and Radio state machines. Power consumption is calcu-
lated by tracing the times spent in the states LC_Inquiry, LC_Inq_Wait, and
Radio_TX_Data, where the logical activities INQ and TX are present (high-
lighted with bold arrows in Figure 16.5). In this case, INQ is active for the
whole duration of the inquiry, whereas TX only contributes to the power con-
sumption during each single packet and not in between packets.

For 802.11 (WiFi), we present here a small portion of the full Statecharts
model as well; Figure 16.6 represents the procedure defined in the IEEE spec-
ifications for packet transmission using the distributed coordination function

2The complete model in full notation is too large to be presented here.
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Partial Bluetooth Stack for Handling Inquiry Procedures

Link Controller

Radio

Baseband

Fig. 16.5 Partial view of full Bluetooth Statecharts model; subset of states used for controlling
inquiry procedures. Logical activities are highlighted with bold arrows

(DCF). This portion belongs to the second of the three layers we have de-
fined for 802.11: one PHY layer, corresponding to physical radio packet trans-
mission; a MAC sublayer, comprising the complex functions related to packet
transmission and reception in a mainly asynchronous environment as that of
WiFi; and a MAC Layer describing the main operation modes, as normal/power
save mode, or ad hoc/managed mode, which influence the rest of the Statechart
behavior.

The composite state in Figure 16.6, which can be reached from the central
Idle state upon the launching of a tx_pkt_evt event, groups all substates
linked with DCF transmission. It includes the pretransmission exponential
back-off algorithm, the optional RTS/CTS virtual carrier sense handshake, and
the post-transmission ACK packet reception. The states show how the State-
chart syntax can handle random TIMEOUT transitions and interact with the
underlying physical transmission layer. In this case no logical activity was di-
rectly linked with this layer, conveying instead energy consumption sources in
the lower PHY state machine, not shown here.

6.2 Power Characterization of the Models

We have applied the implementation-dependent modeling phase to the BT
model using two different Bluetooth modules. In both cases, characterization
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Fig. 16.6 Partial view of full 802.11 Statecharts model; subset of states used for packet trans-
mission in distributed coordination function (DCF) mode.

was performed via experimental measurements and validation carried out with
the LOO strategy (Hassoun, 1995). The results of this process are presented in
Negri and Zanetti (2006), where we describe into detail the experimental test-
bench used to characterize the BT modules, the set of experiments performed
and the outcoming model, which is made up of 12 power figures stemming
from 12 logical activities. These include the INQ and TX activities presented
in Section 6.1 and other activities that model the power contribution of differ-
ent states in the whole model (connected as master, slave, disconnected for the
LC layer; TX and RX for the Radio layer, and so on). The model is then vali-
dated achieving an RMS validation error on the predicted energy consumption
of a generic task around 0.7% We consider this figure a very good result for
a high-level power model.

We have recently completed the power characterization phase for actual
802.11 implementations, with similar results, namely RMS validation error
just below 1%

6.3 Simulator Performance

We have started experimenting the power simulation phase as well. For simula-
tion generation we have used a simple open-source XSLT processor, Sablotron
(Ginger Alliance, 2006), which can easily be integrated in automated script
procedures. In the resulting code, each state takes up about 50 to 100 lines
of code (depending mainly on the number of outgoing transitions). Therefore,
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given a model with n states, and with p additional states in the application layer
controlling the model, the whole simulator will include at most approximately
(n + p) · 100 lines of code. Spatial complexity is thus linear with the number of
states.

We ran preliminary performance tests on a P4 2.6 GHz laptop. We have
verified that simulation time (temporal complexity) is linear with the num-
ber of events. The execution of simulations with a single node (module inter-
face for simulating more than one interacting node is not yet implemented) was
able to process roughly 2 million events per second, which is orders of mag-
nitude faster than our previous StateFlow™ Bluetooth simulator for Matlab™.
Direct comparisons with other network simulators such as NS2 (VINT, 2006)
and GloMoSim (Zeng et al., 1998) are not possible due to their different scope
and level of simulation detail.

7. Conclusions and Future Work

We have presented StateC, a power modeling and simulation flow, which can
be used to define power management policies and as an aid in seeking power-
optimized designs; in particular, we have presented its adoption in the case of
communication-driven devices. The Statecharts modeling phase of the flow has
been successfully applied to Bluetooth and 802.11, for which excerpts of the
full models have been shown. Power characterization of the models has been
performed via experimental measurements for the Bluetooth case, yielding a
validation error below 1%; characterization of 802.11 devices produced similar
results. The automatic SystemC simulator generation engine has been tested as
well, and performance of the resulting simulators proved to be remarkable,
especially when compared to existing (interpreted) Statecharts simulators. On-
going and future work includes:

On the modeling side, the full automation of the power characterization
phase for Bluetooth modules and the finalization of the implementation-
dependent model for 802.11 network interface cards (NICs)

On the simulator generation side, the extension of the XSLT engine to
handle composite states and internal transitions, and to allow simulation
of multiple instances of a protocol stack at the same time

Finally, we believe the methodology could be easily reapplied in the near
future to other emerging wireless stacks (e.g., Zigbee) and more in general to
other hardware/software systems, where the concept of layer of the communi-
cation stack can be relaxed to a more general concept of thread running on the
DUT.
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Abstract In order to address the complexities of system-on-chip (SoC) design, rigorous
development methods and automated tools are required. This chapter presents
an approach to formal verification using model-checking, designed for use in
the context of a Unified Modeling Language (UML)-based SoC design flow.
Different UML models can be automatically translated into Communicating Se-
quential Process (CSP) by the UML2CSP tool that has been developed in this
work. The translated models can be checked for consistency with the model-
checker Failures Divergences Refinement (FDR). Checks can also be carried out
to determine whether models exhibit specified properties. The overall objective
of the work is to ensure that only correct models are carried into the later stages
of development where they are partitioned, and implementations are synthesized.
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1. Introduction

The transistor count of integrated circuits is rising faster than the ability of
designers to exploit this increasing capacity, leading to the design gap (SE-
MATECH, 1999). It is widely believed that rigorous development methods and
design automation will play a significant role in reducing this gap (Chang et
al., 1999; Green et al., 2002). This chapter is concerned with applying formal
verification via model-checking to unified modeling language (UML) mod-
els constructed in the context of a disciplined system-on-chip (SoC) design
method. The method, hardware and software objects on chip (HASoC; Green
et al., 2002), adopts an iterative, incremental approach, merging concepts from
several methods (Morris et al., 1996; Booch et al., 1999; Chang et al., 1999).
A key feature of HASoC is the creation of abstract object models, which are
unpartitioned in the sense that their implementation in software or hardware is
not fixed. The realization of objects in software or hardware is determined later
in development on the basis of nonfunctional requirements.

The aim of this work is early-stage verification of UML models using model-
checking techniques, so that only provably correct models are input into the
partitioning and synthesis phases. Two broad areas are addressed. The first
concerns the behavioral equivalence of different UML models. Most methods
that use UML, including HASoC, require the construction of several models,
e.g., use case, interaction, and class models. For large, complex systems, en-
suring behavioral consistency between different models is difficult. The sec-
ond area involves checking whether or not a system model displays desirable
properties, and that undesirable properties, such as deadlock, are absent. The
approach discussed in this chapter, known as model-checking for UML SoC
models (MoCUS), uses similar techniques and automated tools to address both
areas.

An overview of MoCUS is given in Section 2, followed by reviews of the
chosen model-checker and its input language, previous attempts to couple
model-checking with UML-based development, and relevant UML semantics.
Sections 4 and 5 discuss aspects of the model translation process. The trans-
lation tool developed in this work is introduced in Section 6, and Section 7
discusses the checks that are applied to translated models. A partial case study
is presented in Section 8, and conclusions are drawn in Section 9.

2. Overview of the Approach

The MoCUS approach can be used with use case, sequence diagram,1 and class
models. These models are developed in the usual way, and then the behaviors

1The complete set of sequence diagrams is termed the Interactions Model (IM).
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of all classifiers (use cases and classes) are defined by UML state machines
(USMs). The state-based use case descriptions and sequence diagrams are then
automatically translated into the input language of a model-checker by the
UML2CSP tool developed as part of this work. The UML2CSP tool also au-
tomatically builds the composite object model (COM). This contains the state
machine representations of all the objects present in the sequence diagrams,
obtained from the class state machines, with communications links defined by
the message paths in the IM and output actions in the state machines. Once
constructed, the COM is also translated into the input language of the chosen
model-checker.

Consistency between models can be tested by checking sequence diagrams
of use case scenarios against use case state machines, the requirement being
that the sequences of transactions between the system and the actors in the
environment are the same for both models. Sequence diagrams can be checked
against the COM to ensure that the composition of object state machines can
realize the behavior described by the sequence diagrams. Use cases can also
be checked against the COM to verify that the system objects can implement
the behavior implied by the specification.

Property checking is performed by defining desirable/undesirable properties
as sequence diagrams, and checking them against the COM. This is particu-
larly useful for investigating properties that the system must always (or never)
display, irrespective of the use case that is executed. Examples of this type of
property checking are given in Tasie-Amadi (2004). These techniques are not
only restricted to the verification of functional behavior but can also be applied
to communications behavior. In the HASoC method, an object model of the
system’s hardware platform is developed, with UML port state machines be-
ing used to describe the communications (bus) protocol. By creating a COM
based on the platform port state machines, and sequence diagrams represent-
ing desirable/undesirable communications behavior, model-checking via the
MoCUS approach can be applied.

MoCUS uses the model-checker FDR (failures divergences refinement
checker), whose input language is CSP (communicating sequential processes).
This combination was chosen because one type of FDR check, the refinement
check, is in many cases, the check that is required to support the investigation
of consistency between different UML models.

3. Background

This section provides an overview of CSP and FDR, and a brief review of
previous works on applying model-checking to UML models. It is concluded
by a brief recap of the semantics of USMs.
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3.1 Overview of CSP and FDR

CSP and FDR support the specification and verification of concurrent systems.
CSP specifications are based on two elements, namely processes and events.
Processes are transition systems (Schneider, 2000), and so can be viewed as
moving between states based upon the occurrence of atomic events. Processes
can be constructed from other processes via composition operators and event-
prefixing operator (->). An example of event prefixing is u->V, which rep-
resents a process that performs event u and then one of the event sequences
(traces) of process V. Since CSP operators have formal definitions, the behav-
ior of a composite process can be found from the behavior of its components
and the operators used to aggregate them.

Concurrent processes interact via shared events, which occur when all the
processes that share the event occupy states with outgoing transitions labelled
by the event. Hence shared events act to synchronize processes. Communica-
tion between concurrent processes is achieved by one-way channels between
processes, with the sending and receipt of a message being treated as a shared
event.

Verification of CSP specifications makes use of a number of semantic mod-
els, the most basic of which is the traces model. Although the traces model
can be used to answer questions about safety, more sophisticated models are
required to deal with liveness issues (Schneider, 2000). The failures model is
more powerful and can be used to investigate liveness for systems that do not
experience divergence (or livelock). This model deals with traces and refusals,
the latter being the set of events that a process can refuse to perform after ex-
ecuting the associated trace. For systems that can potentially diverge, then the
most powerful and complex semantic model, the failure-divergences model, is
required for verification.

The CSP refinement operation is important in this work. One process is said
to be a refinement of another if it displays a subset of the other’s behavior.
Refinement can be considered with respect to traces, failures, etc.

The FDR tool (FSEL, 2003) supports the model-checking of machine-
readable CSP specifications. It can be used to check for deadlock, divergence,
and can perform refinement checks to determine if one process is a refinement
of another. The use of FDR is discussed in Section 7.

3.2 Previous Approaches to the Checking of UML Models

Previous works on the application of model-checking to UML models have
either used the SPIN or FDR model-checkers. Similar SPIN-based approaches
are reported in Lilius and Paltor (1999) and Schäfer et al. (2001). Both are
concerned with the automated translation and checking of interaction diagrams
and class state machines. However, whilst the approach of Lilius and Paltor
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(1999) addresses the issue of detecting errors such as deadlock in a network
of state machines formed from a collaboration diagram and a set of class state
machines, the approach in Schäfer et al. (2001) also investigates consistency
between sequence diagrams and class state machines.

Engels et al. (2001) discusses a manual mapping between class state ma-
chines (without hierarchy or concurrency) and CSP. Translated models are
checked with the FDR tool, and applications cited include checks for dead-
lock and for protocol consistency in UML-RT models. Other approaches that
provide a mapping between USMs and CSP are reported in Ng and Butler
(2002) and Ng et al. (2003). As with Engels et al. (2001), Ng and Butler (2002)
only deal with flat state machines without concurrency, and map objects whose
classes are described by state machines to CSP processes. Some of the mapping
rules developed in Ng and Butler (2002) are similar to those used in this work.
Ng et al. (2003) extends the rules of Ng and Butler (2002) to include hierarchy
explicitly. This is found to be difficult and the mapping rules are subject to a
number of restrictions.

CSP is used to specify the semantics of a subset of UML in Davies and
Crighton (2002), and rules for translating classes, objects, state machines, and
interactions into CSP are given. Only nonhierarchical state machines without
orthogonal regions are considered, and sequence diagrams are totally ordered.
Checks for consistency between sequence diagrams and class state machines,
based on FDR refinement checks, are discussed.

It is believed that the work presented here represents a significant advance
over previous works in terms of the range of UML models that can be included
in the model-checking process. Relative to other work involving UML and CSP
this work also supports a wider range of state machine features and provides
an automated translation and checking capability.

3.3 UML State Machines

UML provides an extensive set of features to support state machine modeling,
including hierarchical decomposition, concurrent regions, in-state activities,
and actions associated with state entry/exit and also with transitions. The be-
havior of a USM is specified in terms of an abstract machine consisting of
an event queue, a dispatcher, and an event processor (OMG, 2001)2. Events re-
ceived by a USM are placed on its event queue. The dispatcher selects a queued
event and sends it to the event processor, which makes a transition, generates
actions, etc., if appropriate. The machine implements run-to-completion se-
mantics (RTC) since the dispatcher only sends an event to the processor when
it has completed the processing of the previous event.

2This work was based on the UML 1.4 standard. The used parts of UML have not changed in UML 2.0.
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Many of the features of USMs are supported in MoCUS, including concur-
rency, hierarchy, and actions. Those that have not been incorporated into the
UML2CSP tool include local variables, guards, and in-state activities. Hence
the approach is restricted to checking the control-oriented behavior of a
system.

Choice vertices are supported by the UML2CSP tool. However, the lack of
guards means that the choice is nondeterministic. Nevertheless, since a model-
checker exhaustively searches a model’s state space, all paths originating from
a choice vertex will be searched, and so all the possible consequences of the
choice will be explored.

4. Translating State Machines to CSP

A key part of the MoCUS approach is the translation of USMs into CSP. The
generic problems of translating USMs to CSP are considered in this section,
and issues relevant only to the use case state machines or class state machines
are presented in Sections 5.1 and 5.3.

As indicated above, UML provides an extensive set of constructs to support
state machine modeling. However, the semantic gap between UML and CSP
means that many of the features of state machines are difficult to map directly
to CSP (Tasie-Amadi, 2004), although simple state machines may be readily
represented. Consequently, USMs are translated to CSP in a two-stage process.
First, they are flattened by recursively substituting child state machines for
parent superstates (Figure 17.1) and also by the computation of product state
machines to replace orthogonal regions (Figure 17.2).

After a state machine has been flattened, it must be mapped to CSP in
such a way as to realize the semantics of the hypothetical machine specified
in the UML standard, and briefly introduced in Section 3.2. Communications
between state machines, or between a state machine and an actor, must also be
implemented. These issues are discussed in Section 4.2.
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Fig. 17.1 Hierarchical state machine and its flat-equivalent
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Fig. 17.2 Concurrent state machine and its flat-equivalent

4.1 Flattening State Machines

Figure 17.1 shows how the flattening algorithm used in this work reduces a
hierarchical state machine to a flattened form. Note that the algorithm gives
priority to inner transitions, in accordance with UML semantics (OMG, 2001),
since there is no transition from state X to Z caused by event a. Implement-
ing this semantics directly in CSP is extremely cumbersome (Ng et al., 2003;
Tasie-Amadi, 2004).

The replacement of orthogonal regions by a product state machine is shown
in Figure 17.2. This includes the case where simultaneous transitions can be
caused in both regions by the same event (h). In the original state machine
the ordering of the transition actions x and y is nondeterministic, and so two
transitions triggered by h are included in the product state machine to represent
this nondeterminism.

Issues concerning child state machines that contain final states must also
be considered. When a child state machine enters a final state it triggers a
completion event that causes a transition out of the parent state. Completion
events are denoted as transitions with no event triggers (see Figure 17.3). UML
semantics specify that a completion event must be handled in the RTC step that
follows the one in which it was generated.

Flattening the hierarchical state machine in Figure 17.3a causes the action
associated with the completion transition to be included with the transition
from state B, preserving the order of actions implied by Figure 17.3a. Strictly
speaking, the state machines in Figures 17.3a and 17.3b are not completely
equivalent, since in the hierarchical machine action c takes place in the RTC
step after a/b whereas in the flat state machine it takes place in the same
RTC step. Nevertheless, the action traces of the two machines are identical
and therefore the mapping is acceptable for model-checking purposes. Other
issues associated with completion events are discussed in Tasie-Amadi (2004).

The key advantage of flattening USMs is that it simplifies their transla-
tion to CSP. A disadvantage is the increase in size of a USM’s internal
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Fig. 17.3 Flattening and completion transitions

representation. However, this is unlikely to be a practical problem as use case
state machines will typically represent behavior at a high level of abstraction,
and well-designed individual class state machines are unlikely to have very
large state spaces. In terms of model-checking, the size of the task depends on
the number of distinct states, not the number of states appearing in the UML
state diagram, and so is fixed regardless of whether or not the state machine
has hierarchy and concurrency, or is flat.

4.2 Realizing State Machine Semantics in CSP

After flattening, USMs are translated into behaviorally equivalent CSP
processes. The translation provides for communication between state machines,
or state machines and actors, and both synchronous and asynchronous com-
munication are supported. In the CSP specifications, all communication is
performed over channels and synchronous sends are realized by following a
channel send with a channel receive, causing the sender to await the return
message. Asynchronous communications are implemented via the automatic
insertion of buffer processes. The overall scheme for the realization of object
state machines is shown in Figure 17.4a. This is the most general case, since,
as discussed in Tasie-Amadi (2004), a slight simplification is possible for use
case state machines.

Figure 17.4 shows that OBJECT_A receives synchronous messages from
OBJECT_X and asynchronous messages from OBJECT_Y via a buffer. The box
labeled “CHOICE” represents the CSP deterministic choice operator ([]), which
allows a process (OBJECT_A) to await input from one of a number of channels,
and to respond to the channel that is supplying input. If input is pending on
several channels, then one is chosen nondeterministically and input from that
channel takes place.

The representation of Figure 17.4a can be simplified by eliminating the
event queue (Figure 17.4b). This is possible because the order that messages
are dispatched from the queue to the processor is specified by OMG (2001) to
be nondeterministic, and so this semantics can be realized directly by the CSP
deterministic choice construct. This reduces the state space to be searched, and
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Fig. 17.4 Object state machine and its simplified representation in CSP

so checking is much faster. Mappings that do and do not use event queues have
been implemented, with identical results being obtained. However, the imple-
mentation that did not use event queues was two orders of magnitude faster
than the one that did.

The event processor is represented by a CSP process (STATE_MACHINE),
with a parameterized subprocess representing the states in the flat state ma-
chine (STATE_MACHINE_STATE). The structure of the processor is:

STATE_MACHINE = STATE_MACHINE_STATE(InitialState)
STATE_MACHINE_STATE(s) =
[] ev:SetOfEventsFromState(s) @ P(ev) ->

STATE_MACHINE_STATE(NextState(s, ev))

where SetOfEventsFromState(s) defines the set of events that cause tran-
sitions from state s and NextState is the transition relation. When STATE_
0MACHINE_STATE(s) executes it awaits one of the events that can cause
transitions from state s to arrive from the “CHOICE” construct in Figure 17.4.
It then executes a process P based on the event ev that has been received. P
implements the response of the state machine to the event that has been re-
ceived (e.g., in terms of actions). The state machine then moves to the target
state indicated by the transition relation.

The above specification is generic and is customized for a particular flat
USM through the construction of the event sets, the P functions and the tran-
sition relation. Generic specifications are stored in a system of files associated
with the UML2CSP tool, which constructs the state machine–specific elements
from the flattened automaton.
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5. Mapping the Models to CSP

Issues that must be addressed when translating each of the three UML models
mentioned in Section 2 to CSP will now be considered.

5.1 Use Case Models

The Use Case Model (UCM) consists of use case diagrams and textual and state
machine descriptions of each use case. In use case state machines, transition
triggers are messages from actors, and actions represent either messages sent
by the use case to actors or internal operations. Translation of the UCMs to CSP
is accomplished via the approach described earlier. Certain additional features
are supported by the UML2CSP tool. These concern relationships between
use cases, and the tool is able to create composite state machines from parent
and child use case machines in the case of include relationships, and to a
limited extent, for extends relationships. Other forms of use case relationship
are also supported, since there may be ordering relations between use cases
(Tasie-Amadi, 2004).

5.2 Interaction Models

In MoCUS, sequence diagrams are used to define use case scenarios and also
desirable/undesirable properties. The latter can be useful in its own right, and
also where behaviors cross use case boundaries (Tasie-Amadi, 2004).

To check a sequence diagram against the UCM, or the COM, a CSP repre-
sentation of the diagram is required. The IM differs from the UCM and the
COM in that sequence diagrams are not typically represented as state ma-
chines. Although it is possible to produce a state machine representation, it
is simpler to generate a CSP process directly from the sequence diagram. This
can be achieved by treating each actor and object in a sequence diagram as a
CSP process. The behavior of each of these processes is defined by the com-
munications that occur on the corresponding object’s timeline, and the behav-
ior of the sequence diagram is defined by the parallel composition (||) of
these processes. For example, consider the simple sequence diagram shown in
Figure 17.5. The sending of the synchronous message m21 from o1 to o2 is
treated as an event that is shared by o1 and o2, and is the first event that can
occur in a trace of either process. Hence the CSP specification for this interac-
tion, which will be called I1 is

I1 = O1 || O2 || O3
O1 = m21 -> r_m21 -> SKIP3

O2 = m21 -> m31 -> r_m31 -> r_m21 -> SKIP
O3 = m31 -> r_m31 -> SKIP

3SKIP is a primitive CSP process that represents successful termination.
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Fig. 17.5 Simple sequence diagram

This approach applies to asynchronous communication if the positions of
the messages in the diagram represent a single ordering from the possible set
of orderings. It can also yield partial orders relating to asynchronous message
sends but is not completely satisfactory when messages may be received in
various orders, when multiple sequence diagrams are required to model the
different sequences in a partial order. An alternative approach that rectifies this
problem is discussed in Tasie-Amadi (2004), but has not yet been implemented.

5.3 The Composite Object Model

Objects appearing in sequence diagrams must have a class state machine, which
are mapped to CSP processes (Section 4). Details of communications between
objects are extracted from sequence diagrams and state machines, and are used
to connect the processes via communications channels and buffer processes for
asynchronous messages. The CSP “object” processes are composed in paral-
lel, and the result is the COM. Total or partial orders of message exchanges
arise naturally within the model from the combination of parallel composition
of objects, the type of communication between objects (synchronous or asyn-
chronous), and the object state machines.

Many object-oriented (OO) software systems feature dynamic object cre-
ation and destruction. Although this is much more difficult if objects are im-
plemented in hardware, recent advances in the run-time management of field
programmable gate array (FPGAs) with on-chip block RAM may reduce these
difficulties (Edwards and Green, 2003). Hence, dynamic creation and destruc-
tion are considered here. However, applying model-checking to systems with
unrestricted dynamic creation is not possible since the state space to be checked
is unbounded (Holzmann, 1997). This problem is overcome by requiring that
the maximum number of run-time instances of each class be bounded, and
by modifying the class state machines as shown in Figure 17.6 (Tasie-Amadi,
2004). All of the instances that can possibly exist at run-time are then included
in the COM.
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Object state machines are modified by treating the original machine as a
composite state, and by adding two new states as shown in Figure 17.6. Hence,
an object begins life in the “object not yet created” state, and when it is brought
into existence by a create call it enters the “original” state machine. If the object
is deleted via a destroy message, or its state machine moves into a top-level
final state, it moves into the “object destroyed or terminated” state, and cannot
respond to any further messages.

6. The UML2CSP Tool

The UML2CSP tool logically sits between a UML model capture tool and the
FDR model-checker (Figure 17.7). When developers have completed a set of
UML models, they must export the models in XML model interchange (XMI)
format (Grose, 2001). This is a file format that has been developed to support
model exchange between UML tools from different vendors. UML2CSP is
written in Java and is based around a public domain XMI parser. The graphics
user interface (GUI) of the tool enables models in XMI format to be selected by
users for loading and translation to CSP. It also enables the types of checks to
be performed to be specified. Although it would be advantageous for the output
of FDR to be translated back into UML form before output to the developer,
this has not yet been implemented and so the developer must be able to interpret
the output from the FDR tool.
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7. Applying FDR to Translated Specifications

Although MoCUS was developed for use within HASoC at specific points
within the design flow, model-checking with UML2CSP can be performed at
any time, so long as the models to be checked have been completed, exported
in XMI format, and translated into CSP.

When FDR is utilized for checking, the semantic model (Section 3.1) to
be used must be specified. Since the failures-divergences model is the most
powerful, refinement checks would usually be performed in this model unless
there is good reason to use an alternative.

When checking an interaction against a use case, the concern is whether
or not the external behavior of the two models is consistent, i.e., whether the
sequence(s) of message exchanges between objects and actors in the sequence
diagram is consistent with the use case state machine. The traces model is used
for this type of check to verify that the traces of the interaction are a subset
of those of the use case. The more complex semantic models cannot be used
since they involve the requirement that the refusals of the two models should be
consistent. When a use case is offered, in general, the scenario that is enacted
is determined by the environment, and so typically a use case cannot refuse
to engage in any of its scenarios. Hence the refusal sets of the interaction and
the use case will often be different and so the failures or failures-divergences
models cannot be used. This argument also applies to checking interactions
against the COM.

Checks of a use case against the COM are also concerned with external
sequences of events. Here, since the COM realizes all the behavior of the use
case state machine, the sets of refusals should be compatible and so the above
argument does not apply. Hence the failures-divergences model is used, or if
divergence is absent, the failures model is sufficient.

There is a problem if several use cases realized by the COM can respond to
the same event(s). For example, if use cases A and B both respond to message x
and use case A is checked against the COM, then FDR may find external event
sequences that contain x, but which do not belong to use case A. Consequently,
when use cases respond to the same event, developers must provide distinct
names in the different use cases.

It may be imagined that property checking can also be accomplished via
refinement checks, since, for example, a desirable property of a process is
a subtrace of that process. If all events that are not part of the property are
hidden,4 then it might be assumed that a refinement check could be applied.

4CSP includes a hiding operator that takes as arguments a process and a set of events, and produces a
process that is a modification of the original, such that none of the events in the set appears in any trace of
the modified process.
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However this is not the case, because refinement checking always searches the
state spaces of the two processes from their initial states. Hence, imagine that
it is desirable to check that the COM always exhibits some property, i.e., for all
executions of the COM, a certain sequence of events occurs within the COM’s
trace of events. In the general case, the subtrace corresponding to the property
will not be possible from the initial state of the COM and so a refinement check
will fail, although the property might actually hold.

Property checking uses an approach based on string matching with deter-
ministic finite automata (DFA; Tasie-Amadi, 2004). In essence, the property is
equivalent to a string that is sought in a character stream (process trace), and
since techniques for the construction of DFA recognisers for strings are well-
known (Crouchemore and Hancart, 1997), it is possible to construct a DFA
from a sequence diagram description of the property. The DFA is termed as an
interaction graph and is translated into CSP using the techniques discussed in
Section 4. It may, however, be noted that this can only be done for properties
that represent a total order. If a property is partially ordered, then a separate
DFA must be generated for each possible sequence.

The CSP specifications for the model to be checked (M) and the interaction
graph (I) are composed together in parallel in such a way that they synchronize
on all events in M. I is constructed so that if the next event is part of the property,
a transition to the next state in I occurs, whereas if it is not, a transition back
to the initial state of I takes place. If the final state of I is entered, then the
property has been found in the trace of the model M. If the whole state space of
M has been searched and I has not entered its final state, then the model does
not display the property.

8. Partial Case Study

Examples of applying MoCUS can be found in Tasie-Amadi (2004). Part of
one of these studies is presented here, relating to the well-known mine-pump
system. The system is installed in a mine to drain water that gathers at the bot-
tom of the shaft. When the water reaches a given depth, a pump is switched
on. When the water reaches a low water mark, the pump is switched off.
This simple scenario is complicated by a number of other factors, but these
are not relevant for this discussion. The entire UML model of this system
has been translated into CSP and subjected to extensive checking with FDR
(Tasie-Amadi, 2004).

Figure 17.8 shows the state machine representing the use case that monitors
the water level. A scenario of this use case, representing the situation where
the depth of water exceeds the threshold and the pump is switched on, appears
in Figure 17.9a. The results of checking the interaction of Figure 17.9a against
the use case of Figure 17.8 is shown in Figure 17.9b. The highlighted line
with the tick indicates that the interaction is a trace refinement of the use case,
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i.e., that the two models are consistent. The line below indicates that the sce-
nario cannot be executed repeatedly. This is clearly correct—the pump cannot
be repeatedly switched on, without having been first switched off.

A property, related to the use case of Figure 17.8, which the system is in-
tended to display is shown in Figure 17.10a. It models the situation that prevails
after the water depth has exceeded the high water threshold, the pump has been
turned on, and the water level is falling. This property was checked against the
COM. As it cannot be observed from the initial state of the use case, the check
was performed using an interaction graph. The result of this check (not shown)
indicated that the property does not hold in the COM. This is not surprising as
there is clearly an error in Figure 17.10a.

A disadvantage of using interaction graphs is that although the technique
can detect errors, it does not at present provide any indication of why or where
the error occurs. However, it is possible to gain greater insight into the source
of the error by performing a refinement check. Although this is bound to fail,
the sequence of events (counterexample) that is produced can prove helpful in
locating the source of the problem. Figure 8 shows the counterexample pro-
duced by a refinement check
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The highlighted line indicates that the COM cannot perform the indicated
message at this point in the trace. wl_LowAndRising5 is a message from the
environment indicating that the water is rising from a low level. However, the
property in Figure 8 is concerned with water falling after the high water thresh-
old has been exceeded and the pump has been switched on. Hence the inclusion
of the wl_LowAndRising message in the property is an error. Removing this
message, and those that it triggers, from the property and repeating the check
shows that the COM upholds the corrected property.

9. Conclusions

MoCUS facilitates the application of model checking to UML models, en-
abling developers to perform exhaustive consistency checks between models
in an effort to uncover errors early in development. It also enables develop-
ers to specify properties that are desirable or undesirable and then to exhaus-
tively check models to determine whether or not the model displays those
properties. MoCUS has proved to be highly effective in uncovering errors, and
many mistakes (both intentional and unintentional) have been found in the full
mine-pump model and others that have been developed (Tasie-Amadi, 2004).

5This event is referred to as LowRising in the use case and sequence diagrams.
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This enables developers to ensure that only models that are provably correct
are input to the partitioning and implementation synthesis processes. Although
this alone does not guarantee the correctness of the final implementation, it
does remove major sources of error and so will help to reduce development
timescales.

There are many avenues for further research. These include investigating the
composition of use case state machines into a single automaton that specifies
the externally visible behavior of the system, and using this to verify the COM.
Some works on this topic are reported in Tasie-Amadi (2004), although a num-
ber of problems in achieving this goal are also reported. Another area worthy
of study concerns applying MoCUS to hardware systems, rather than abstract
object models, e.g., to investigate the overall communications behavior of a
hardware platform.
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