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PREFACE

Almost all books on thermodynamics contain some errors which are not purely
typographical. Reiss (1965) Preface, p.ix

In the preface to a book on thermodynamics it is customary to offer an excuse
for writing yet another. Often the excuse is that no good text is available for this
or that specialized subject. Although it is true that we are not completely satisfied
with the texts available in the thermodynamics of geochemistry, one would have to
be tremendously devoted to teaching for this to be sufficient reason for undertaking
the prodigious amount of work involved in writing a book. In our case the reason is
probably to be found rather in a long fascination with the subject, an accumulation
over the years of topics that we felt were usually badly presented in books, and a desire
to see what the final product would look like if we were to put all our convictions on
paper. Still, it will have been a sterile effort if there are not at least some students who
are helped a little over the hurdles that are encountered in trying to learn this most
useful and most difficult of subjects.

Asking "why another book on thermodynamics?" is reminiscent of the story of the
man who, asked if he was going to the concert that night to hear one of Beethoven's
symphonies, replied no, he'd already heard it. Thermodynamics texts are somewhat
like that. Mostly they do not say anything that other books have not said (what is
left to say after Gibbs, after all?), but a lot remains in the interpretation, the nuances;
authors of thermodynamics texts are like conductors—their worth is shown in the
insights of their interpretation, and it seems there will always be room for new books
on thermodynamics, just as there is always an audience for more performances of
Beethoven.

If there is a difference between this and other books in the same general area, it
is not so much in describing the applications of thermodynamics in geochemistry, as
in outlining the fundamentals required to understand thermodynamics itself. This is
where most of the fascination of the subject is, and where most difficulties arise in
learning and teaching the subject. Thermodynamics is of course usually learned in
a series of several encounters, in each of which one probes a little deeper into the
mysteries of hypothetical systems, unattainable states, unknowable parameters, and
impossible processes. We have pondered these mysteries for a long time, and admired
the writings of many masters of the subject. We should mention in particular the books
by Badger, Callen, and by Reiss, from which we learned a great deal, and whose ideas
we in part follow in this book. Students of Gibbs will find other sections where we
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follow the Master very closely. We sincerely hope that what we have distilled from
these writings and combined with our own experience will be found useful in spite
of our "errors which are not purely typographical."

Who Is the Book For?

In the sense that we do not skip anything fundamental that is necessary to understand-
ing thermodynamics, the book could be used in a first introduction to the subject.
However, we treat these subjects in more detail than is customary in introductory
courses, and we do go on to some more advanced topics, so that in that sense the book
is for more advanced readers. Then again, we have certain emphases and points of
view that are not so much thermodynamic as philosophical, so that we hope that the
book will be read with interest by our peers. If there must be a designated intended
readership, we could say that it might be people who have some acquaintance with
chemical thermodynamics and are eager for more.

Ideally, a student of thermodynamics in the Earth Sciences should have a good
grounding in linear algebra because it simplifies and unifies some topics, such as those
dealing with components, phases, reactions, and the phase rule, and some of the best
modern applications are built along these lines. Unfortunately, we were unable to cram
the necessary material into Chapter 2. We can only somewhat lamely recommend to
students that they pick up linear algebra somewhere along the way. A similar comment
can be made about statistical mechanics and its applications in thermodynamics. We
make a gesture in this direction in Chapter 6, but again, serious students of the subject
will want to learn more.

Historical Note

Although we have made an occasional foray into biographies and other literature
on the development of thermodynamics, and mention bits of history here and there,
we are not very knowledgeable in this area. For the most part, we follow traditional
attributions of equations and concepts, which may be incorrect. McGlashan (1966)
claims that

The history of thermodynamics is in fact a much more difficult subject than
thermodynamics i tself , . . .

Truesdell's (1980) Law of Attributions states that

For arbitrary n, any false attribution outlasts n documented corrections.

Thus it may be that Rankine rather than Clausius discovered entropy, or that Reech
preceded Gibbs in the definition of fundamental equations (Truesdell, 1980), but we
take no stand on these and other matters. In fact, we are inclined to leave the history
of thermodynamics to the specialists, in view of Truesdell's (1980) opinion:

I feel myself permitted, therefore, to select instead of fields of brilliant suc-
cess like hydrodynamics, elasticity, and electromagrietism, one accursed by
misunderstanding, irrelevance, retreat, and failure. Thus I write of thermo-
dynamics in the nineteenth century.
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A Note on Units

Many readers may be dismayed to find that we do not use only SI units. The fact
is that in geochemistry at the present time this is not possible without a great deal
of difficulty, because at least one very important group of contributors to the data of
geochemistry, "Prediction Central" at Berkeley, continues to use calories and related
units. Changing all their numbers to SI units simply to preserve SI uniformity in
this text would be counter-productive. Students of this subject simply must become
accustomed to switching back and forth between calories and Joules, and all their
related units. We have tried to include all necessary conversion factors and constants
in Appendix A.

ACKNOWLEDGMENTS

The late Professor A. R. Gordon used to teach a course in the chemistry department at
Toronto called "Advanced Thermodynamics," which the senior author was obliged to
take as a beginning graduate student. Professor Gordon never used lecture notes, but
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twice a week. What is most memorable, however, was his concern for a proper
understanding of the fundamentals. The lecture notes from that course became clog-
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them are incorporated in this book. Prof. Gordon used to say

"In thermodynamics, you have to get to the point where you understand what
any damn fool means no matter what he says."
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a number of individuals. Hugh Greenwood and Edgar Froese should get medals.
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insightful comments on many of the early chapters on fundamentals, and encouraged
us to extend the "model" aspect of the presentation, which we have done. The late Al
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and provided much careful and useful criticism. He was an extraordinary student,
and would have contributed much to science but for his untimely accidental death.
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Frank Spera, Dick Bailey, Larry Barron and Peter Renders. Christophe Monnin and
Susan Brantley helped a great deal on the Pitzer equations. Not all of these people
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x PREFACE

cases we have persisted in our perhaps misguided ways. Either way, the contributions
of these people were quite significant, and we thank them all. Thanks also to Susan
Lehre for help with the diagrams, and to Domenic Channer for a thorough checking
of references and equation numbers.

Toronto G. M. A.
Princeton D. A. C.
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1
THERMODYNAMICS—A MODEL SUBJECT

. . . the almost certain truth that nobody (authors included) understands thermody-
namics completely. The writing of a book therefore becomes a kind of catharsis in
which the author exorcises his own demon of incomprehension and prevents it from
occupying the soul of another.

Reiss (1965) Preface, p. vii

The teaching of thermodynamics, not to mention the writing of a book on ther-
modynamics, presents a great challenge for anyone foolhardy enough to undertake
it. How to present the subject?—historical or postulational; classical or statistical;
macroscopic or microscopic; mathematical or non-mathematical; rigorous or close
enough; applications or fundamentals; and so on. Then there is the uncomfortable fact
that, as Reiss (1965) points out, one very probably doesn't completely understand the
subject. But if teaching thermodynamics presents difficulties, what of the poor stu-
dent who is subjected to an almost insuperable series of obstacles; everything seems
to depend on infinitesimals, on the most unusual and unlikely hypothetical systems,
on differentials which may or may not be integrable, and especially on reversible
processes which are completely unimaginable and seem to be the key to everything.
Somehow out of this mess come concepts and relationships which are very useful in
the real world, and it can be argued that in introductory courses the goal should be an
ability to use these relationships, not to understand them.

At the same time the subject is so profound and esthetically pleasing to scientists
that many feel the urge to rhapsodize on it. Lewis and Randall (1923), who wrote
one of the more significant books on the subject after Gibbs, likened thermodynam-
ics to a cathedral inspiring solemnity and awe; Einstein wrote that it was the only
physical theory of universal content that he was sure would never be overthrown.
The profundity of the subject comes from the seemingly universal applicability of
its premises and conclusions to some of the most fundamental questions of science,
and the elegance from the simplicity and symmetry of its mathematical operations.
For example, it is quite amazing to realize that essentially all the geochemical ap-
plications discussed in this book involve a single equation, along with a few direct
descendants, derived directly from the first and second laws of thermodynamics. It is
a considerable challenge to show the meaning of this equation and how to use it.

In this text we present the subject as we would have liked to have had it presented
to us—with a careful and complete explanation of some fundamental points, a partial
or complete neglect of others, a combination of historical, postulational, and statisti-
cal approaches as seems appropriate at the moment, and a smattering of applications
in geochemistry. The choice of topics to present and to neglect is indefensible, except
that it is based on our experience in trying to understand the subject and in trying
to teach it in a geological context. The reader will find a perhaps unusual emphasis
on the concepts of metastability, constraints, fundamental equations, thermodynamic
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4 THERMODYNAMICS IN GEOCHEMISTRY

potentials, and some mathematics such as Legendre Transforms, much of which is
traceable to books by Reiss (1965) and Callen (1960), and all of which is related
to our conviction that thermodynamics is best understood as a model, a system of
equations which is quite separate from reality. A central theme of the book is that
the reason reversible processes (defined as a continuous succession of equilibrium

states) are of such fundamental importance in thermodynamics is not really because
of entropy or heat engines, but because reversible processes are the physical equiv-
alent of continuous functions. Reversible processes (strictly speaking reversible and
quasistatic processes, an important distinction in our usage) are necessary so that
mathematics can be used in connection with processes; they are the only kind of
thermodynamic process to which differentiation and integration can be applied. A
careful consideration of the equilibrium state reveals that real systems never achieve
this state, so that the system of equations describing reversible processes is therefore
completely removed from physical reality. These equations have as variables physical
properties, and represent a series of surfaces and planes in multidimensional space
(thermodynamic state space) which in their symmetry and shining beauty might well
be thought of as a cathedral. Any such physical representation probably is inappro-
priate however, because the surfaces and planes of the model show no signs of dust
or dirt or indeed of imperfections of any kind.

We refer to this edifice of surfaces and planes described by the differential equa-
tions of thermodynamics in many places throughout the book as "the equilibrium
model" or "the thermodynamic model." The properties of real systems (rocks, min-
erals, magmas, hydrothermal solutions, etc. in our cases) which are (approximately)
at equilibrium can be thought of as points (almost) on these surfaces, and all aspects
of our development of thermodynamics follows from this situation.

We find that in science it is always essential to keep a clear mental distinction
between reality and the model that one develops to describe reality, and this is just
as true for thermodynamics as for any other subject. We have found that many of the
problems in teaching and learning thermodynamics are made easier by making this
distinction between the model, in which mathematical relationships are simple, in
which tangents and points slide around surfaces with the greatest of ease; and reality,
infinitely more complex, which only approaches the model in states of equilibrium.
We hope the reader will agree.

1.1. CHEMICAL REACTIONS

The following is a brief introduction to our usage and notation. Words in italics in
this section are defined and discussed more fully in later sections.

Thermodynamics is primarily concerned with energy changes, and in chemical
thermodynamics, these changes are commonly associated with the rearrangement of
atoms from one configuration into another. This rearrangement is called a chemical
reaction, and the writing and understanding of chemical reactions is of course central
to all of physical chemistry.

Consider the generalized chemical reaction
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The quantities A, B, M, and N are in our usage constituents , or, for the moment,
chemical formulae representing various combinations of elements in a system. The
stoichiometric coefficients a, 6, m, and n are a set of dimensionless numbers, usually
integers, which allow a mass and charge balance in the reaction. There may be any
number of phases involved, and the constituents represented are normally only a
few of the large number in the system. They are chosen to represent a process of
interest to us. For example, consider a clay mineral (unspecified) on the sea bottom.
An essential constituent of clay minerals is SiOi, and seawater also contains SiO2 in
dissolved form. If we are interested in the exchange of silica between clay minerals
and seawater, we might write a reaction such as

or, using (s) and (aq) to denote solid and aqueous constituents,

or, if we are interested in a particular aqueous silica species,

Note that the clay mineral contains many other constituents, as does the seawater.
They affect the properties of the constituents we have chosen to consider, but they
do not appear in the reaction. They may also be very important in the way that the
reaction proceeds in real systems. In other words, reactions do not always involve
only the reactants and products which have been chosen. Thus in reaction (1.1), A
and B may not form M and N directly, but may in fact form X, which then changes
to M and N. This may or may not be important to the user of the equation, but it
makes no difference to the energy balances involved, as long as equilibrium states
are compared.

Another fact to note is that the constituents chosen may not actually exist in
the real system, only in the model of the system. The commonest example of this
in geochemistry is the use of oxygen gas (O2((?)) as a constituent in systems under
highly reducing conditions (see §18.5.1).

1.1.1. Notation

The reaction as written with the = sign implies little more than a mass and charge
balance. The constituents may or may not have reached equilibrium, or one side
may be metastable with respect to the other. For reactions that go irreversibly to
completion, we will often use —>, as in A —> B, and for an equilibrium, we can use
A ^ B. However, we have probably not been completely consistent in this usage.
The = sign covers all cases.

One of the purposes in writing the reaction is to consider the change in some
property of the system between the states represented by the left and right sides. For
example, in reaction (1.4), we may find that ArG° = x Joules. In this statement, G°
is the property of interest, and A means
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To obtain the correct sum on each side, of course, the stoichiometric coefficients must
be used. For example, in reaction (1.4),

The small r in ArG° means we are dealing with a reaction. Other letters in this position
have more specialized meanings, such as A/G° (a reaction in which a compound is
formed from its elements), or AtG°, a phase transition. The individual constituents
usually have molar units (e.g., J mol"', but by convention, the A quantities normally
omit the mol"1 term, as in ArG° = x J.

We usually indicate the constituent as a subscript and the phase or other informa-
tion as a superscript, as in

1.2. WHAT'S AHEAD

The relatively simple reactions (1.2), (1.3), and (1.4) are typical of many in geochem-
istry, and serve to illustrate many of the aspects of thermodynamics that we will be
considering. We said that thermodynamics is concerned with the energy changes in
such reactions. Apart from the fundamental question of what exactly energy is, we
have to know exactly what kind of energy to deal with in connection with different
problems—there are several. Then how do you measure such energy changes, or
where do you look them up? And what good is the energy change once you do know
it? What can you do with it? Then there is the problem that each of the constituents in
these reactions is part of a solution. How can we break up the energy content or the
volume of a solution into energies or volumes of its various parts? The formula SiOa
is also the formula for several minerals—how do they fit in? How can we consider
one constituent of a clay mineral and ignore the others? What happens if the clay
mineral or the seawater changes composition? And probably the hardest question of
all—how do we know if we have chosen an appropriate equation to consider? Maybe
the energy level of SiC>2 in clays is difficult to deal with. Maybe other reactions would
be more appropriate, or lead to more useful results. Nevertheless, the questions we
have raised are valid, and our answers form the substance of this book.

It is relatively easy to write and balance chemical reactions. It takes years of
experience and considerable scientific insight to know which reactions are worth
writing and investigating in any given research situation. The problem of the silica
balance in the oceans is one of the innumerable ongoing problems in geochemistry,
many of which have partial answers. At the present time the reactions we have
written above are probably not very useful for several reasons. The point is that
thermodynamics cannot decide such questions—you the investigator must decide. In
this book we deal with the simpler problem of how to deal with the thermodynamics
of given reactions.



2
MATHEMATICAL BACKGROUND

No attempt is made at mathematical rigor, since in physics this is always illusory.

Landau and Lifshitz, Statistical Physics quoted in Lewins (1985), p, 168.

2.1. THE MATHEMATICAL SIDE OF THERMODYNAMICS

Thermodynamics, like other sciences, has a theoretical side, expressed in mathemati-
cal language, and a practical side, in which experiments are performed to produce the
physical data required and interpreted by the theoretical side. The mathematical side
of thermodynamics is simple and elegant and is easily derived from first principles.
This might lead to the conclusion that thermodynamics is a simple subject, one that
can be easily absorbed early in one's education before going on to more challenging
and interesting topics. This is true, if by learning thermodynamics one means learning
to manipulate its equations and variables and showing their interrelationships. But
for most students the subject is actually far from simple, and for professors it is a
considerable challenge to present the necessary material intelligibly. The equations
and the variables are somehow related to the real world of beakers and solutions,
fuels and engines, rocks and minerals, and it is this interface that provides most of the
difficulties. What do variables such as entropy and free energy really mean, and what
physical processes do the equations describe? The difficulty in understanding and
using thermodynamics is conceptual, not mathematical. We will attempt to explain
the relationship between the mathematical and the physical sides of thermodynamics,
but it is advisable first to review the mathematics involved and subsequently to define
the terms used in thermodynamics.

The mathematics required for thermodynamics consists for the most part of noth-
ing more complex than differential and integral calculus. However, several aspects of
the subject can be presented in various ways that are either more or less mathemati-
cally based, and the "best" way for various individuals depends on their mathematical
background. The more mathematical treatments are elegant, concise, and satisfying
to some people, and too abstract and divorced from reality for others.

In this book we attempt to steer a middle-of-the-road course. We review in the first
part of this chapter those aspects of mathematics that are absolutely essential to an
understanding of thermodynamics. The chapter closes with mathematical topics that,
although not essential, do help in understanding certain aspects of thermodynamics.

We do not strive for the last ounce of mathematical rigor, and the mathematical
demonstrations of points in thermodynamics! are usually presented in addition to other
physical or conceptual ways of looking at the same material. With this approach we
hope to convey a sense of the elegance of the subject without restricting the book to
mathematically-oriented readers.

7
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2.2. ESSENTIAL MATHEMATICS

2.2.1. Variables and Functions

A variable is a quantity in mathematical relationships, represented by a symbol, that
may take on any value from a given set of values. Variables are related to one another
by functions. If for every value of the variable x there corresponds at least one value
of the variable y, then y is a function of x, written y = y(x) or y = /(x).

Functions may also involve more than two variables, so that if values are assigned
to all but one variable (the independent variables), the value of the remaining one (the
dependent variable) is fixed, i.e., in w = w(x, y, z), x, y, and z are the independent
variables and w the dependent. Usually the choice is arbitrary, that is, we can usually
solve for x and find x = x(w, y, z), making x the dependent variable, and so on. In
cases where it is difficult or impossible to solve explicitly for the desired dependent
variable, we may write an implicit function f ( x , y, w, z) = 0 and treat it as described,
for example, by Dence (1975, p. 53).

A function having three variables, x, y, and z, therefore has two independent vari-
ables, and can be said to be divariant, or to have two degrees of freedom. "Divariance"
and "two degrees of freedom" refer to the fact that we are free to choose the values
of two of the variables (perhaps within certain ranges), the third then being fixed by
the functional relationship. For example, for the function

if we choose x = 2, y = 2, then z is fixed at —4. If in addition to this function we
have another one involving the same variables, such as

we now have three variables and two functional relationships, and we are only free to
choose one of the three variables, the other two then being fixed. This situation can
be said to be univariant or to have one degree of freedom.

And, of course, if we have a third functional relationship, e.g.,

then we have no choice, x, y and z are fixed at 2, 3 and —5 respectively, and the situ-
ation is invariant. These equations or functions can also be thought of as constraints
on the numerical values of the variables.

2.2.2. Variable Space

Graphs of functions involve one dependent variable and one or two independent
variables. For example, the function y = x2 is shown in Figure 2.1. The two or three
variables involved can be said to define a "Variable Space," within which the function
forms a line or a surface. Functions with more than three variables cannot, of course,
be represented in three dimensional space, but can still be thought of as surfaces in a
higher-order space or hyperspace.



FIG. 2.1. The function y = x2

2.2.3. Single-Valued and Continuous Functions

Functions may have many attributes and may be classified in various ways—see, for
example, Perrin (1970, Chap. 1). From our point of view, the two most important
attributes that functions may have are to be (a) single-valued and (b) continuous.
A single-valued function, as the name suggests, is one for which there is only one
value of the dependent variable for given values of the independent variables. Thus
y = z2 (Figure 2.1) is single-valued in x (there is only value of y for chosen z-values).
However, y-x^ (Figure 2.2) is not single-valued in z, since for a given value of x
there are two values of y.

Functions may also have ranges of the independent variables within which they
are single-valued and other ranges in which they are multi-valued.

Continuous functions are ones in which the dependent variable changes smoothly
and continuously for smooth and continuous changes of the independent variables.
Figures 2.1 and 2.2 represent continuous functions, but Figure 2.3 represents a func-
tion which is continuous for x =/ a but shows a discontinuity from — oo to +00 at
x = a. The mathematical definition of continuity is that f ( x ) is continuous at x = a
if /(a) is defined, and if limx_>a f(x) = /(a).

Most functions that have discontinuities, such as the one shown, have them only
for certain isolated values of the independent variables, and they are continuous for
all other values. As long as we stay within the allowed ranges then, the function is
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FIG. 2.2. The function y = x 2 .

continuous, and in fact this is the case for many thermodynamic functions. That is,
they may be used only within certain ranges denned by phase transitions such as
boiling points, freezing points, and other physical discontinuities.

Multi-valued and discontinuous functions often present difficulties for differenti-
ation and integration. They are mathematically "not well-behaved." There is always
great difficulty, for example, in fitting an equation of state in the vicinity of critical
points (critical points being both mathematical and physical discontinuities).

2.2.4. Differentials and Derivatives

Thermodynamic relationships are so often presented in differential form that it is
essential to have a clear understanding of what differentials are. In Figure 2.4 we
illustrate the usual definition of a derivative. For any function y = y(x), the derivative
of y is a function y'(x) where

10 THERMODYNAMICS IN GEOCHEMISTRY

As shown in Figure 2.4, the quantity

is the slope of a line that intersects the function y(x) at two points, (x\, j/i) and (XQ, yo)
and Ax = x\ — XQ, Ay = y\ — yo. As Ax gets smaller, x\ and y\ approach XQ and
j/o and in the limit as Ax —> 0, the line of intersection becomes the tangent to j/(x) at
(XQ, yo)- The notation y'(x) indicates that the derivative, or the slope of the tangent,
is a new function of x, quite distinct from the original function y(x).

If we let Ax = dx and define dy, the differential ofy as
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FIG. 2.3. Function showing a discontinuity at x = a.

then

and the symbol dy/dx is often used to represent the derivative, dx has already been
defined as equal to Ax, i.e., any increment of x, and dy is a linear function of dx as
shown in Figure 2.5. Obviously neither dx nor dy is necessarily an infinitesimal. It
is an unfortunate fact that because dy/dx is equal to the derivative, many students of
thermodynamics get the idea that differentials are infinitesimal quantities, and this is
a stumbling block to the intuitive grasp of the many equations involving differentials.
During integration, of course, differentials can and do take on infinitesimal values.

Of particular interest in thermodynamics is the extremum value of certain func-
tions, i.e., the maximum or minimum point. According to the calculus, this is the point
where the derivative passes through zero, or dy/dx = 0. In Figure 2.1, dy/dx = 2x
(or dy = 2x dx), which equals zero at x = 0. In differential form, we say the minimum
occurs at dy = 0. This means that at the minimum, where the tangent is horizontal, y
will not change (dy = 0) no matter what the size of dx. Keep this in mind when you
get to Chapter 5 (§5.4).

2.2.5. Partial Derivatives and Total Differentials

A function having several variables may be differentiated with respect to one of the

11
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FIG. 2.4. The meaning of dy/dx.

variables, keeping all the others at fixed values. Thus the function

can be differentiated with respect to x, keeping y constant, thus evaluating (dz/ax)v,
and it can also be differentiated with respect to y keeping x constant, evaluating
(dz/dy)x. These quantities are termed partial derivatives. The new shape of the "d"
symbol is to remind us of the partial nature of the differentiation process and the
subscripts remind us which variables are being held constant. In cases where there is
no likelihood of confusion, the subscripts are often omitted. For example, if

then
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FIG. 2.5. dy is a homogeneous linear function of dx.

and

The total differential of z, dz, is defined as

For example, if the function V = V(T, P) is

where R is a constant, then

Equation (2.4) has a very straightforward geometrical meaning, illustrated in
Figure 2.6. Here, PQRS is a surface in x, y, z space representing the function z =
z(x, y). PABC is the plane tangent to the surface at point P, and PDEF is a horizontal
(z = constant) plane through P. Now (dz/dx)v is the slope of the tangent plane in
the x-direction and (dzfdy)x is the slope in the ^-direction. Thus (dz/dx)y • dx and
(dz/dy)x • dy, where dx and dy are arbitrary increments in x and y starting at P, will
give the change in z along the tangent plane (not along the function z = z(x, y)) in
the x and y directions respectively. It can be seen from the diagram that the sum of
these two quantities is the change in z, dz, at the point (P + dx), (P + dy), since the
tangent is planar. Thus equation (2.4) is the equation of the tangent plane to the surface



FIG. 2.6. A plane tangent to a curved surface, illustrating the meaning of partial derivatives
and total differentials.

z = z(x, y) at an arbitrary point P. We reiterate that dx and dy are not necessarily
infinitesimals, and can generally be thought of as macroscopic quantities, except
during integration. If dx and dy are small, then dz will be a good approximation to
A.Z, and this fact is used in some types of calculations. However, rather than thinking
of equation (2.4) as a poor representation of the surface z = z(x, y) unless dx and
dy are infinitesimals, it is preferable to think of it as an exact representation of the
tangent plane.

Thermodynamics commonly deals with continuous changes in multivariable sys-
tems. For this reason, total differentials are frequently used and it is essential to have
a clear idea of their meaning.

2.2.6. Exact and Inexact Differentials

Exact differentials are those obtained by differentiating some continuous, single-
valued function. Since the function can be obtained again by integration, exact dif-
ferentials are expressions whose integrals will be the same no matter which path of
integration is chosen. Accordingly, the total differentials we have just discussed are
also exact differentials. They are the "normal" kind of differential. What then is an
inexact differential?
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for all pairs of terms in the expression.
Equation (2.9) is known as the reciprocity relation or cross-differentiation identity.

It follows from the fact that the order of differentiation of our original function
z = z(x, y) with respect to x and y is immaterial. Mathematically this is written

If, in equation (2.8), M = (dz/dx)y and ,/V = (dz/dy)x for some function z = z(x, y),
then equation (2.9) must follow from (2.10).

As an example of the use of this relation, let us test equation (2.7) for exactness.
Applying the reciprocity relation gives

Hence equation (2.6) has been shown to be an exact differential expression, as we
knew it must be because we derived it by differentiating the function V = RT/P.

Frankly, it is rarely of interest in thermodynamics to test expressions for exact-
ness. The expressions in common use are generally well known to be exact or inexact.
However, the reciprocity relationship is useful in deriving relationships between ther-
modynamic variables.
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Obviously if one always starts with a function and derives differentials from it,
one will never generate an inexact differential. However, in the physical sciences one
is apt to come across differential expressions of the type

where M and N may or may not be functions of x and y. The concept of inexact
differentials arises because not every expression of this type (called a Pfaff differential
expression) is equal to the differential of some function z = z(x, y). For example,
(xdy + y dx) is clearly exact, being equal to d(xy), but (x dy - y dx) is not equal to
the differential of any function of x and y, and is inexact.

Expressions that are not exact, (as well as those that are) are very important in
thermodynamics. (Note that we may speak of either dz orofMdx + N dy as being
an exact differential, or of being exact).

If M and/or N are not functions of x and y, the expression is inexact. If M and JV
are functions of x and y, one may determine whether the expression is exact (whether
it is equal to the differential of some function of x and y) by determining whether M
and N are the partial derivatives of some function with respect to x and y. If they are,
then for the expression to be exact it is necessary and sufficient that
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Getting back to the inexact differentials, suppose we have an expression

where X, Y, and Z are functions of x, y, and z but reciprocity is not satisfied,1 and the
expression is not exact. We may assign another variable to represent this expression,
e.g.

and this variable ($) is called an inexact differential. To remind ourselves that it
represents a differential expression rather than an ordinary algebraic expression, it is
usually combined with some kind of letter "<f" such as D or 6 or 3—any form except
d, which is reserved for exact differentials. We use D, thus

Inexact differentials such as DQ are thus simply a shorthand notation for a differential
expression such as (2.11) and are not the differential of any function. It follows that
they cannot be integrated without specifying a path (see Line Integrals, §2.2.9).

Of special interest is the simplest of inexact differentials, y dx. When y and x are
both independent variables, y dx is clearly inexact, since we may write the equivalent
expression

and applying the reciprocity relationship,

Clearly there is no function the differential of which is equal to y dx. Similarly, not
being exact, the integral o f y d x is not independent of the path chosen. But expressions
like y dx are important in thermodynamics and must be integrated. The most common
examples are PdV and TdS.

Expressions that are not exact can only be integrated after making them exact, and
this is done by choosing a functional relationship between x and y, i.e., by making

Now y and x are no longer independent of one another, and the expression

is exact and may be integrated unambiguously. Reciprocity is satisfied since we may
write y(x) dx as

'in the case of three or more terms, the reciprocity relation must hold between any two.
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and

The manner in which y is transformed to y(x) is arbitrary, but is commonly done
by applying an "integrating denominator", or an "integrating factor." Thus, if the
differential exoression

is not exact, it can frequently be made so by dividing through by some particular
A = X(x, y). A is thus an integrating denominator. (Of course, if there is such a function
A for M dx + N dy, finding out what it is may be another matter.) It happens that Pfaff
differential expressions in two variables will always have integrating denominators,
while with more than two they may or may not. This topic is discussed in detail
by Reiss (1965, Chap. 2), who gives the conditions necessary to have integrating
denominators.

Probably the most important example we shall encounter on this topic is the
relationship between entropy, heat, and temperature:

As we shall see, S is a function of state, hence dS is exact. Hence, T is an integrating
denominator for the Pfaff differential Dq. That is, dividing the inexact differential
Dq by T produces the exact differential dS.

2.2.7. Simple Transformations of Partial Derivatives

It is often helpful in thermodynamic manipulations to. be able to replace one partial
derivative with an equivalent but more convenient expression. For example, the reci-
procity condition (2.9) may be used to interchange variables in a partial derivative.
Like the reciprocity relation, most such transformations derive quite simply from
the properties of partial derivatives. As an example, consider equation (2.5) for the
volume of an ideal gas. Equation (2.6) may be solved for (3V/dT)p by in effect
dividing through by dT. For a system at constant volume, dV = 0, so

Rearranging (2.14) gives the new relationship



18 THERMODYNAMICS IN GEOCHEMISTRY

Such derivatives may also be treated, within limits, as simple fractions. Thus

And therefore,

Note that all three of the variables V, P, and T are interrelated interchangeably by
these two expressions. Thus, experimental determination of any two of these partial
derivatives would give the third.

A new dependent variable, such as x(P, T) in the above example could be intro-
duced by the relationship

Next, we might wish to evaluate the partial derivatives (dV/dT)x or (dV/dP)x.
These may be obtained from (2.6) by taking the appropriate total derivative with the
restriction that x be held constant:

Finally, the partial derivative dV/dx may be evaluated from differential expressions
such as (2.6) using the chain rule of elementary calculus. From (2.5), V is a function
of T and P, or V = V(T, P). Let T and P each be functions of two other variables
x and 11.

Because V = V(T, P), it follows from the chain rule that
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We may conveniently regard equations (2.20) as being derived from (2.6) through
division by the differentials dx or dy. As an example, consider a generalized total
differential

or

where

and

Then in a similar way, expressions such as (2.20) may be quickly simplified to the
forms

or

The above techniques are used quite commonly to interrelate and manipulate
thermodynamic variables. Later in this chapter we introduce two additional and more
general methods of manipulating thermodynamic derivatives called Legendre and
Jacobian transformations.

2.2.8. Integration

As with differentiation, we do not give a full discussion but only recall to the reader
the essentials of integration. Integration is the inverse of differentiation. That is, the
problem is to find a function when its rate of change is known. It is performed by sum-
ming up (functions of) differentials that are chosen to be very small (infinitesimals).
This can be done either in the general case, giving indefinite integrals, or between
specified limits, giving definite integrals. For example,

is the general case, since differentiation of y(x) plus any constant will give y'(x), the
derivative of a constant being zero.

is the definite integral between the limits a and o, and can be thought of as the area
under the curve y'(x) in the x-y plane, between the limits x = a and x = b. Both
methods of integration have been used in applications of thermodynamics in the Earth
sciences, but in this text we prefer the definite integral.



FIG. 2.7. Integration of the function y dx illustrating that the functional relationship between
y and x must be specified.

2.2.9. Line Integrals

The properties of exact versus inexact differentials are well illustrated by integrating
them along different paths. An integral whose path is specified is called a line integral.
Consider the expression y dx, that we have just seen is inexact. Integration of y dx
can be viewed as determining the area under some curve in the x-y plane (Figure
2.7), but the obvious question is what curve?

If we are integrating from A to C there are an infinite number of paths to follow,
giving an infinite number of areas. For example, the path ABC results in the area
y\(x2 — x\), while ADC results in 2/2(^2 — x\), and intermediate paths such as the
one shown give intermediate results. This is clearly also true of the expression x dy.
However, the exact expression

is different. Integration from (x\, y\) to (x2,2/2) always results in the area

no matter which path is followed, illustrating once again that x dy + y dx is an exact
differential.

Thus in summary, exact differentials have coefficients that satisfy the reciprocity
relations and have definite integrals that are independent of the path followed during
integration. Exact differentials are obtained by differentiating some function. Inexact
differentials have coefficients that do not satisfy the reciprocity relations, and have

20 THERMODYNAMICS IN GEOCHEMISTRY



MATHEMATICAL BACKGROUND 21

integrals that depend on the path chosen. An inexact differential is not the (total)
differential of any function.

2.2.10. Total versus Molar Properties

There is more than one difficulty introduced when physical properties of systems
are used as variables in functions, as the reader will discover. However, the first
difficulty encountered is relatively simple, although extremely important. That is that
many physical properties such as the volume and various energy terms come in two
forms—the total quantity in the system, and the quantity per mole or per gram of
substance considered. For example, if we have 513 g of water in a beaker, its volume
(V) is about 513 cm3. We are, however, often concerned not with the total volume
but the volume per mole (V, about 18 cm3mol^1 in this case), or the volume per
gram (specific volume, about 1 cm3g~'). We use Roman capital letters for "total"
properties, and the corresponding italic capitals for molar properties, and

where Z is any total property, Z is the corresponding molar property, and J^ n* is
the total number of moles in the system (see §14.3 for an example of the change from
one to the other). We don't have a special type of symbol for specific properties (i.e.
property per gram rather than per mole) as they are not often used.

The reader is advised to notice whether Roman or Italic capitals are used in the
equations to be presented, as it is an aid to clear thinking. In fact, many sections of
this text will be quite confusing if the distinction is not made. Generally speaking,
any functions or equations that are used in real applications will be in the molar
form, while theoretical discussions are often more convenient using the total form.
For example, much of the theoretical discussion in Chapters 4 to 6 inclusive will use
total properties, but in Chapter 7 we start to discuss measurements and properties
with numerical values, and of necessity we use molar properties.

Of course, many equations look much the same with total and molar proper-
ties, because ratios are involved. That is, if (<9U/<9S)V = T, then it is also true that
(dU/dS)v = T; or if (dG/dP)T = V, then (dG/dP)T = V, so that the distinction
may seem to be unimportant. However, sometimes it is important. For example, un-
derstanding the meaning of partial molar properties (Chapter 9) is not really possible
without making this distinction clear, and many of the equations in Chapter 14 look
quite different in the two forms.

2.3. ADDITIONAL MATHEMATICAL TECHNIQUES

In this section we continue the presentation of the mathematics of thermodynamics,
but the concepts here are less essential to the understanding of thermodynamics. This
is not to imply that the following material is of little use or that the reader should
blithely skip ahead to Chapter 3. On the contrary, the next three topics are extremely
powerful and may be used to quickly derive and illustrate most of the theoretical
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foundation of thermodynamics. Mastery of these somewhat more difficult techniques
actually helps reveal the fundamental simplicity of thermodynamics, and unfolds
much of its symmetry, elegance, and unity.

2.3.1. Molar and Partial Molar Properties

It is possible to subdivide the properties used to describe a thermodynamic system
(e.g., T, P, V, [7,...) into two main classes termed intensive and extensive variables.
This distinction is quite important since the two classes of variables are often treated in
significantly different fashion. For present purposes, extensive properties are defined
as those that depend on the mass of the system considered, such as volume and total
energy content, indeed all the "total" system properties (Z) mentioned above. On
the other hand, intensive properties do not depend on the mass of the system, an
obvious example being density. For example, the density of two grams of water is
the same as that of one gram at the same P, T, though the volume is double. Other
common intensive variables include temperature, pressure, concentration, viscosity
and all molar (Z) and partial molar (Z, defined below) quantities.2

Partial molar quantities are very commonly used to describe solutions, or systems
containing more than one component. Mathematically, a partial molar quantity Zi is
defined as the partial derivative

where Z is an extensive or "total" property of a system that contains constituent i and
(usually) other constituents as well, and the partial derivative of Z is taken at constant
T, P and fij, where m is the number of moles of constituent i, and fii refers to all
constituents other than the constituent i being considered.

Equation (2.22) is a good example of the conceptual difficulties peculiar to ther-
modynamics, which we mentioned at the beginning of this chapter. Mathematically,
(2.22) is a simple enough definition, but what does it mean physically? Partial molar
quantities are discussed in more detail in Chapter 9; for present purposes, we might
use volume, V, as an example of property Z. Equation (2.22) then refers to the change
in total volume V of a solution when one mole of component i is added to a'quantity
of that solution sufficiently large that the concentrations of all other components (fii)
do riot change significantly at constant T and P. In other words, V* is the effective
volume of one mole of component i in this solution at the T, P and concentration of
interest. Notice also that while V is obviously an extensive property, Vi is intensive
since by (2.22) it is defined in terms of volume per mole (and this cannot change with
the size of a system). In general, all partial molar quantities such as Vi,Gi,Hi,S>i,
etc. are intensive and derived from their extensive equivalents (V,G,H,S) by (2.22).

2The word "molar" in this phrase refers to "per rnole," and has no connection with the molarity scale of
concentration. An alternative name is partial molal quantity, which is synonymous, and has no connection
with the molality scale of concentration.
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2.3.2. Homogeneous Functions

Functions are said to be homogeneous and of degree n if we can multiply every
variable in the function by a constant, then factor out the constant. For example,
f(x, v, z) is homogeneous in degree n if

Thus, x2 + y2 + z2 is homogeneous second degree because

Clearly, homogeneity is concerned with the exponents of the variables in a function.
Homogeneity is not always quite so obvious, however. For example

IS ULHIHJgCUCUUS 111 U1C lUUlUl UCglCC.

Some functions are homogeneous in only some of the variables and not in others,
which is the usual case in thermodynamics. Thus

is homogeneous second degree in x, but not in y, and not overall, because

Consider an ideal gas, for which

V being the total volume, n the number of moles of gas, R the gas constant, T the
absolute temperature, and P the pressure. Clearly V is homogeneous first degree in
(n, T, P), homogeneous first degree in n only or in T only, and of degree — 1 in P
only. The derivative

which is & partial molar quantity, is homogeneous zeroth degree in T, P (or n, T, P)
and zeroth degree in n only. Also

is zeroth degree in T, but still first degree in n and degree —1 in P. Similarly,
differentiating V with respect to P produces a function homogeneous in degree —2 in
P. Thus, without bothering to derive a formal proof, we see that differentiation of a
function with respect to a variable lowers the degree of homogeneity of that variable
by one. These relations are illustrated in Figure 2.8 where we see that V is a function
of T, P and n, but (dV/dT)P>n is a function of P and n but not of T, and so on. As
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we have seen, extensive properties are those that depend on the mass of the system
considered, such as volume or total energy. Mathematically speaking then, extensive
properties are homogeneous in the first degree in the masses of the components. For
a two component system for example,

where n\ and n2 are the masses of components 1 and 2, and P, T and V are the
pressure, temperature, and total volume of the system.

Intensive properties were defined as those that do not depend on the mass of the
system considered. They are thus homogeneous in the zeroth degree in the masses of
the components. For example, for the density

where p is the density. Temperature and pressure are normally considered to be
intensive variables, since intuitively they do not depend on what mass of system
is considered. However, "care is required in the equating of intensive variables and
variables homogeneous first order in the masses of the components, because in

P is clearly first order in n, and in

T is homogeneous in degree — 1 in n. In other words, we must be clear as to what
variables are being held constant when we say something is homogeneous in the
masses of its components. Obviously if we stuff twice the mass into a system without
changing V or T, the P will rise, but this is not usually the operation considered when
T and P are said to be intensive, and that intensive variables are zeroth order in mass.
There is no real danger of confusion here since the terms intensive and extensive are
usually used in a very general sense, whereas homogeneity is a very clearly defined
concept, and hence more useful. Its usefulness arises mainly from Euler's theorem
regarding homogeneous functions.

2.3.3. Euler's Theorem for Homogeneous Functions

This theorem says that for a function such as f ( x , y, z) that is homogeneous in degree

thus relating a function to its partial derivatives in a way somewhat reminiscent of the
relation between the total differential and the partial derivatives. Euler's theorem for
homogeneous nth order functions is obtained by differentiating (2.23) with respect
to fc (using the chain rule on the left hand side):

n,



FIG. 2.8. (a) Volume versus temperature for various quantities of an ideal gas at various
pressures. R, the gas constant, is taken as equal to 2, and n is the number of moles of the gas.
(b) dV/dT versus pressure at any temperature for one mole (n = 1) and two moles (n = 2) of
an ideal gas.

25
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Because this result must hold for arbitrary values of k, we may set k = I in (2.25)
and obtain

This simple relationship is extremely useful. For example, taking the volume of
a two cnmnnnent svstfitm

at constant T, P and with V homogeneous in degree 1 in n\, n2, we can immediately
write, from (2.26),

a relation we shall make much use of. In other words, the total system volume is
the sum of its parts—the moles of each component times its partial molar volume,
summed over all components.

2.3.4. Legendre Transforms

The Legendre Transform allows one to change a function to a different function having
as independent variables the partial derivatives of the original function, without losing
any information. This description in words is more difficult than the operation itself. To
see its usefulness in thermodynamics, one simply needs to realize that fundamentally
the first and second laws of thermodynamics give us a criterion of system stability in
terms of entropy (S), volume (V) and energy (U), which we will consider further on.
In other words, we have some very useful relationships beginning with the function

If you then realize that

and

ind look at the description we have just given of the Legendre Transform, you will
see that it will allow us to define a new function that is just as useful as (2.28) but that
ases T and P as independent variables instead of S and V. As we said before, the
ievelopment of thermodynamics does not depend on the Legendre Transform—other
jaths through thermodynamic pedagogic space are available-—but it is elegant and
xmcise. It illustrates quite beautifully the underlying unity and symmetry among the
:hermodynamic state functions and their independent variables.

or
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We derive the transform first using the simple algebraic approach of Boas (1966,
p. 159). The total differential of a function / = f ( x , y) is written

If we define

then

Subtracting the quantity d(qy) from both sides of (2.30), we have

or

This is the total differential of a new function,

that has the partial derivatives

and

Notice that the transformation merely replaces the original variable y in f ( x , y) by
its partial derivative df/dy to give the new function ty(x, df /dy), which is

For many people, it is helpful to view this solution geometrically (Callen, 1960,
p. 90). To state the problem in a different way then, given the function

we want a method whereby the derivatives

are used as independent variables in a new function containing the same information
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FIG. 2.9. Illustration of why one must know the slope (p) as a function of the y-intercept (*)
to have the same information as one has in the function y = y(x). (a) the function y = y(x). y
is known for any x. (b) y is known as a function of the slope (p = dy/dx) of y = y(x). This
does not fix the position of the curve with respect to the z-axis. (c) the slope p as a function
of the y-intercept of the slope ($). Defines an infinite set of tangents that outline the original
function y = y(x).

as the original. To begin, consider a function of a single independent variable

Geometrically, p = dy/dx is a tangent (Figure 2.9a). We might be tempted to simply
eliminate x and find y = y(p), but this would lose some information since knowing y
as a function of the slope does not give us y as a function of x (Figure 2.9b).

For example, let

then



MATHEMATICAL BACKGROUND 29

and

We now have y as a function of dy/dx but it is not what we want. However, if we
knew the intercept as a function of the slope, we would have the same information
we started with, since the original curve y -- y(x) can be considered as being denned
or outlined by an infinite number of tangents, each uniquely defined by a slope and
intercept. (Figure 2.9c).

Thus, if ̂  is the intercept, then

is the relation we want.
Now since

then

and, in case you didn't notice, the Legendre Transform has been found. It can be
shown that in the general case

the Legendre Transform is

That is, to form the Legendre Transform of a function, subtract from the original
function the products of each variable to be changed and the derivative of the function
with respect to that variable. After that, one can proceed to tidy up by eliminating y
in the new function by differentiating. Thus in the case of y = y(x),

or

and in the general case
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FIG. 2.10. The function y = y(x) and the tangent to the function at an arbitrary point. <£ is
the j/-intercept of the tangent, and the slope p = (y — ̂ )/(x — 0).

For example, if

then

and

or since

and
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Next, consider another example. If we have

we know a; as a function of the two independent variables y and z. If we wish to
use y and (dx/dz)y as independent variables instead of y and z, we define a new
function—let's call it g this time instead of *, where

Frankly, as far as its use in thermodynamics is concerned, we could stop right
there. However, to demonstrate that we have defined a function g that really has as
its independent variables y and (dx/dz), which is not exactly obvious at this stage,
we can substitute (y3 — 3z2) for x and -6z for (dx/dz), giving

Then substituting —(dx/dz)/6 for z we have

showing that g is indeed a function of y and (dx/dz).
If we let

we see that

analogous to d^/dp = —x in the last case, and in conformity with the generalized
equation (2.33).

Finally, if we need a function not of y and z or y and (dx/dz) but of (dx/dy) and
(dx/dz), we transform both variables, and invent the new function h, such that

Again, for thermodynamic purposes, that goes far enough, but as before, we can
demonstrate that h is a function of (dx/dy) and (dx/dz). Thus, since

Let
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and

then
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Thus h is a function of p\ and 02, and

and

2.3.5. Jacobian Transformations and Thermodynamic Partial Derivatives

If we consider the ten most common thermodynamic variables P, V, T, U, S, G,
H, A, q and w, there exists a very large number of partial derivatives and relations
between their derivatives (see Margenau and Murphy, 1956, p. 15). For example,
there are 720 (= 10 x 9 x 8) ways of choosing any 3 different variables from a set
of 10; hence there must be 720 partial derivatives of the form (dx/dy)z relating
these variables. Now we have shown above that any one such partial derivative may
generally be related to three other mutually independent derivatives by the following
kind of manipulation. Given a function

then the total differential is

and the total derivatives of this with respect to T and P, holding a new fourth variable
x constant (where x is one of the remaining 7 variables U, S, G, H, A, q or w) are

For an alternative method of obtaining the same relationships, see Denbigh (1966,
p. 92). The total number of equations such as (2.19) relating any combination of
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the 720 derivatives taken four at a time is :/20x719
4

x,718x717 = 11,104,365,420. To
make matters worse, there are many relationships between two or three first order
derivatives (such as Maxwell's relations), and many relationships involving second
and even higher order derivatives; this makes the total of all possible relations even
more staggering. To be sure, we might never need more than a small fraction of these
equations and derivatives. However, their total number is so gigantic that there would
seem to be no simple way even to tabulate them so we might pick and choose those
we do need.

This conundrum was first overcome by Percy Bridgman (1914,1926), an eminent
physicist who is also remembered today by petrologists and geochemists for his many
contributions to high-pressure experimental chemistry and physics—most notably
the Bridgman unsupported area seal used in many high pressure vessels. Bridgrnan
developed an ingenious method of tabulating the 720 first derivatives, expressing his
results in terms of T, P, S and three derivatives that are readily measured, (dV/8T)P,
(dV/dP)T, and Cp = (dH/dT)P. Bridgrnan's approach combined algebra and the
manipulation of partial derivatives described earlier in this chapter (for details, see
Margenau and Murphy (1956, p. 16)). Some years later, a more general method based
on the properties of Jacobian determinants was developed (Shaw, 1935). Further
details are given by Margenau and Murphy (1956, p. 17) and Tunell (1960).

Although understanding Jacobians is not particularly difficult, we will save con-
siderable space here by presenting only the conclusions most useful to us, in the
form of Table 2.1, which quickly generates all 336 partial derivatives of the form
(dx/dy)z for the eight variables T, P, V, S, U, H, A and G (omitting q and w). The
results presented in Table 2.1 are expressed (after Bridgman) in terms of T, P, S, and
the measurable derivatives (dV/dT)P, (OV/dP)T, and Cp = (3H/dT)P (thermal
expansion, compressibility, and heat capacity, respectively). The symbols (dx)y and
(du)y were originally introduced by Bridgrnan (1914) to represent Jacobians, and
are also used by Pitzer and Brewer (1961, p. 667). They immediately suggest the
relationship

which is the key to using the Table.
For example, to find (dV/8S)P use the second and third rows of the Table to

obtain

This relates an almost unmeasurable quantity to three experimentally accessible vari-
ables T, Cp, and (dV/&T)P.

Tables similar to but more comprehensive than 2.1 are given by Bridgman (1926),
Goranson (1930), Shaw (1935), Margenau and Murphy (1956, p. 22) and Tunell
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(1960). A small subset of this Table gives Maxwell's relations between partial deriva-
tives of thermodynamic variables (§14.3.1).

Table 2.0 Jacobians giving partial derivatives (dx/dy)z for the variables T, P, V, S, U,
H, A, G using the relationship (dx/du)y = (dx)y/(du)y. After Pitzer and Brewer (1961).
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PROBLEMS

1. Show that dV for an ideal gas is an exact differential by integrating equa-
tion (2.7) from (Pi, TO to (P2, T2) by two different paths: (a). (Pi, TO ->
(Pi,T2) -H. (P2,T2)and(b). (P1;TO -+ (P2,TO -> (P2,T2). The result for
both paths should of course be (V2 — V\).

2. Find the total differentials of the following functions:

3. Which of the following expressions are homogeneous in x and y and that
are homogeneous in x, y and zl What are the degrees of homogeneity?
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4. For u = (x3/y) + (y3/x) + xy, show that (du/dx)y and (d2u/dx2)y are
homogeneous in the first and zeroth degrees respectively. Verify that

This illustrates the fact that differentiation lowers the degree of homogeneity
by one.

5. Given that volume is homogeneous first order in the masses of the compo-
nents, use Euler's Theorem to show that

6. Determine which of the following expressions are exact, and find an inte-
grating factor for the inexact ones.

7. Given the function

find the (partial) Legendre Transform w = w(y,p) where p - (du/dx)y,
and show that (dw/dv\, = —x.

8. Given the function

find the Legendre Iranstorm / = j ( p , q ) where p = (aa/ab)c and q =
(da/dc)b, and show that (df/dp)q - ~b and (df/dq)p = —c.

9. Use Table 2.1 to derive an expression for the total differential of the en-
thalpy in terms of C° ando;(= (l/V)(dV/dT)P). In other words, start with
dH = (dH/dT)PdT + (dH/dP)TdP and find expressions for the two
partial derivative terms from Table 2.1. You will find that if in this resulting
equation you let dH = 0, you get an expression for (dT/dP)H identical to
that in equation 8.1 (Chapter 8). This derivation is used by Ramberg (1971)
in his elegant discussion of the Joule-Thompson effect in a gravitational
field.

10. Use Table 2.1 to derive an expression for (dT/3P)s (used in §8.2.1, Chapter
8).
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THERMODYNAMIC TERMS

There are probably, in fact, very few applications of thermodynamic reasoning to
natural phenomena where the concept of local equilibrium does not enter the analysis
in some way, even though not formally acknowledged.

Thompson (1970)

But no real measurement is reversible, and no real system is completely in equilib-
rium.

Herzfeld(1962).

3.1. THERMODYNAMICS DEFINED

Thermodynamics is the science that deals with energy differences and transfers be-
tween systems, and with systematizing and predicting what transfers will take place.
Such fundamental topics naturally find application in all branches of science, and
have been of interest since the earliest beginnings of science. In general, since we are
dealing with energy transfers between systems, most of what follows has to do with
what the entities (equilibrium states) are from which and to which energy is being
transferred, and the boundaries or walls through which or by which the transfer is
effected. It is in these considerations that we first see the differences between natural
systems (reality) and our models of these systems.

3.2. SYSTEM

System refers to any part of the universe we care to choose, whether the contents
of a crucible, a cubic centimeter in the middle of a cooling magma, or the solar
system. Depending on the nature of the discussion, it must be more or less clearly
defined and separated (in fact or in thought) from the rest of the universe, which
then becomes known as the system's surroundings. At the outset, we will effect an
enormous simplification by considering only systems that are unaffected by electrical,
magnetic, or gravitational fields, and in which particles are sufficiently large that
surface effects can be neglected. Each of these topics can be incorporated into the
basic thermodynamic network to be developed, but it is a nuisance to carry them all
along from the beginning, and a great deal can be done without considering them at all.
More exactly, a great deal can be done if we choose to consider systems where these
fields and surfaces play a minor role. Clearly we would not get very far if we tried to
understand the solar system without considering gravitational fields. Chemical and
geochemical problems however commonly do not need to have these factors included
in order to be understood.

In science, when a problem or a phenomenon such as the solar system or the boiling
of water is said to be understood, what is usually meant is that we have a model of
the phenomenon which is satisfactory at some level, and about which virtually all

37
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scientists agree. The model is normally mathematical, and incorporates a number
of assumptions or simplifications about the subject or phenomenon being modeled.
When the phenomena involve energy levels and transfers, chemical reactions, and
so on, the model is invariably thermodynamic to some extent. In constructing such
models, we find that there are several kinds of systems that are useful, depending on
our purposes. These are as follows.

3.2.1. Types of System

• Isolated Systems have walls or boundaries that are rigid (thus not permitting
transfer of mechanical energy), perfectly insulating (thus preventing the
flow of heat) and impermeable to matter. They therefore have a constant
energy and mass content, since none can pass in or out. Perfectly insulating
walls and the systems they enclose are called adiabatic. Perfectly isolated
systems do not occur in nature of course, emphasizing the model nature of
these systems.

• Closed Systems have walls that allow transfer of energy in or out of the
system but are impervious to matter. They therefore have a fixed mass and
composition but variable energy levels.

• Open Systems have walls that allow transfer of both energy and matter to
and from the system. The system may be open to only one chemical species
or to several.

• Simple Systems are those that contain no interior walls. The simplest of
simple systems would be a single phase, having all its properties uniform
throughout, but multiphase systems are also simple if there are no imper-
meable or adiabatic barriers between the phases.

• Composite Systems are made up of two or more simple systems, and are
thus systems having internal walls.

The term system can also of course be applied to a natural situation, rather than a
model. We speak of vein systems being open to hydrothermal solutions, or of a crystal
becoming a closed system during its cooling history. However, when thermodynamics
is applied, the system invariably becomes a model system.

3.3. EQUILIBRIUM

We adopt a double-barreled definition of equilibrium:

1. A system at equilibrium has none of its properties changing with time, no
matter how long it is observed.

2. A system at equilibrium will return to that state after being disturbed, that is,
after having one or more of its parameters slightly changed, then changed
back to the original values.

This definition is framed so as to be "operational," i.e., you can apply these criteria
to real systems to determine whether they are at equilibrium. And in fact, many real



THERMODYNAMIC TERMS 39

systems do satisfy the definition. For example, a crystal of calcite sitting on a museum
shelf obviously has exactly the same properties this year as last year (part 1 of the
definition), and if we warm it slightly and then put it back on the shelf, it will gradually
resume exactly the same temperature, dimensions, and so on that it had before we
warmed it (part 2 of the definition). The same remarks hold for a crystal of aragonite
on the same shelf, so that the definition can apparently be satisfied for various forms
of calcium carbonate. In other words, many real systems achieve equilibrium. Or do
they?

In the following examination of equilibrium states, we will find that although
many real systems do satisfy our criteria and can certainly be said to have achieved
"equilibrium," a close examination shows that all real systems stop changing before
reaching a true minimum energy state, and this is important to an understanding of
the thermodynamic model. Barton (1972) and Barton et al., (1963) provide a good
discussion of many of the aspects of equilibrium mentioned here.

3.3.1. Stable andMetastable Equilibrium

What exactly do we mean by "stable" and "metastable"? The difference is one of
energy levels. A system of fixed composition under given conditions is assumed
to have one configuration (molecular arrangement; structure) that has a minimum
energy level. Configurations that have higher energy levels should spontaneously re-
organize themselves so as to lower their energy level (by losing heat, homogenizing,
recrystallizing, etc.),' but are sometimes prevented from doing so, either by a physical
constraint, such as a wall separating one part of the system from another, or by an
"energy barrier" of some kind. For example, a mixture of H2 and O2 under most
conditions contains a great deal more energy than does H2O, and is metastable with
respect to H2O. Aragonite has a higher energy content per mole than has calcite, and
is a metastable form of CaCOs.

The best mechanical analogy is a ball rolling in a series of hills and valleys. In
Figure 3.1 we see a ball on a surface having two valleys, one higher than the other. At
(a), the ball is in an equilibrium position, which fulfills both parts of our definition—it
will stay there forever, and will return there if disturbed, as long as the disturbance
is not too great. However, it has not achieved the lowest possible potential energy
state, and therefore (a) is a metastable equilibrium position. If the ball is pushed past
position (b), it will roll down to the lowest available energy state at (d), a stable
equilibrium state. During the fall, e.g. at position (c), the ball (system) is said to be
unstable.

In position (b), it is possible to imagine the ball balanced and unmoving, so that
the first part of the definition would be fulfilled, and this is sometimes referred to
as a third type of equilibrium, admittedly a trivial case, called unstable equilibrium.
However, it does not survive the second part of the definition, so we are left with only
two types of equilibrium, stable and metastable.

'Unless of course the system is isolated, in which case it cannot lower its energy level. Systems of Ihis
kind are especially interesting and are considered later (Chapter 5).
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FIG. 3.1. Four positions of a ball on a surface, to illustrate the concept of equilibrium.
Position a—metastable equilibrium. Position b—unstable. Position c—unstable. Position d—
stable equilibrium.

In chemical systems, metastable equilibrium states are quite common because
of activation energy barriers which prevent the occurrence of reactions that, if they
did occur, would result in a lower energy state. The common examples of hydrogen-
oxygen mixtures and polymorphs such as aragonite have already been mentioned. In
the mechanical analogy in Figure 3.1, the energy barrier preventing the fall of the ball
from (a) to (d) is obviously the energy required to push the ball from (a) to (b).

Another possibility is that the ball could be in position (c), but enclosed in a
viscous medium that prevents it from rolling quickly. Depending on the viscosity,
we could have any rate of descent, from rapid to not perceivable over millions of
years. This state, i.e., one that shows no perceptible change but is or may be actually
slowly changing, has also sometimes been described as metastable. Examples would
be some types of organic matter, work-hardened metals, glasses, plastics, and so on,
that are more accurately thought of as "frozen" unstable states. The second part of the
definition is intended to eliminate these states, because the right kind of "disturbance"
might briefly "thaw" the system, allowing the ball to roll a little farther down the hill,
so that the system does not return to its original state after the disturbance.

Unfortunately, in real systems the distinction between these various states is not
always as clear as in Figure 3.1. For example, the ball might be stuck in position
(c), but in a rather small valley that is hard to see at the scale of the drawing. The
fact that it is released and continues to fall after a disturbance does not necessarily
mean that it was not truly metastable. Another problem is that thermodynamics cannot
tell us whether or not there are states at even lower energy levels than our "stable"
states. These are all problems familiar to the experimentalist. We describe "stable,"
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"metastable", and so on in terms of systems that are well understood, but until a (real)
system is understood, the distinctions we are making are often very difficult. On the
other hand, these distinctions are very clear cut in our model systems. They may be
incorrect, but they are very clear cut. By this we mean that when numerical values are
assigned to the thermodynamic properties of chemical and mineralogical substances,
the relationships between the substances, including which substances are stable and
which are metastable, are completely determined and quite clear. But the numerical
values may be incorrect, because of the experimental difficulties we have mentioned,
and may later be revised. The revised relationships will also be quite clear, but may
well be different.

The True Energy Minimum

Finally, we note that for a system to have truly reached the very bottom of its "energy
valley," all gradients in temperature, pressure, and composition must be eliminated
(a formal proof of this is presented in Chapter 14, but it certainly seems intuitively
reasonable). A system can conform completely to our two-part definition of equilib-
rium, yet not have reduced its energy as much as possible. Thus the museum crystals
of calcite and aragonite we spoke of may be at equilibrium as we have defined it, yet
have internal gradients in trace elements and isotopes, or various structural defects, or
high-energy morphologies (e.g. aragonite needles), and so on. These energy anoma-
lies may be small compared to the energy difference between the two polymorphs,
but nevertheless if they are present, each crystal could conceivably reduce its energy
content a little further, i.e., get deeper into its "energy valley" by eliminating these
features.

This true or idealized energy minimum is also sometimes referred to as the equi-
librium state, stable or metastable, and discussions can become confused unless the
distinction between the macroscopic, practical kind of equilibrium that we have de-
fined and the more idealized, conceivable kind of equilibrium state is made clear.

3.3.2. Partial Equilibrium

Another type, or perhaps sub-type of equilibrium is partial equilibrium. That is,
systems may appear to be at equilibrium with respect to some processes and not with
respect to others. Thus the ball in position (d) in Figure 3.1 is in stable equilibrium
as far as its potential energy with respect to the surface under it is concerned, but it
may be at the same time out of thermal equilibrium with its surroundings. A system
consisting of a layer of oil on top of a layer of water may be in complete thermal
equilibrium but not yet at equilibrium with respect to the water vapor pressure above
the oil. Adjacent crystals of pyroxene and olivine may have achieved equilibrium with
respect to Fe-Mg partitioning, but not with respect to Ni partitioning. All of these and
many more cases can be thought of in a practical sense as cases of partial equilibrium.
However, a note of caution is required. Not only in each case has equilibrium not
been completely achieved, but theoretically at least, equilibrium has not even been
partially achieved because as the part of the system that is not at equilibrium changes,
the so-called partial equilibrium state also changes in response. For example, in two
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crystals such as olivine and pyroxene, the equilibrium partitioning of two elements
is never theoretically independent of other elements unless they are completely ideal
solutions. Thus the gradual equilibration of Ni between the two phases will cause, or
should cause, a readjustment of the Fe/Mg ratios, however small. As water diffuses
through the oil layer and evaporates into the vapor space above, heat is absorbed,
causing a thermal gradient between the system and its surroundings and disturbing
the thermal equilibrium. Even in the case of the ball in the valley, as the ball warms up
or cools down in reaching thermal equilibrium with its surroundings, it will expand
or contract, changing the distance between its center of gravity and the surface it is
resting on, and hence its potential energy.

3.3.3. Local Equilibrium

There is one more type of equilibrium we need to discuss, local equilibrium. In
any system that overall is in disequilibrium there may be regions or sub-systems
that have reached equilibrium by any test. Thus pyroxene may be in equilibrium
with the hornblende that mantles it but not with the magma next to the hornblende;
a cubic meter of magma in the center of a pluton may be in equilibrium with the
magma next to it, but not with magma close to the margins of the intrusive; and so
on. Local equilibrium is thus a kind of regionalized partial equilibrium, and must
be a very common situation in geology. It can be argued in fact that because the
universe is heterogeneous and in disequilibrium, all natural equilibrium states are in
fact only local equilibria. This is not so obvious, or perhaps not very useful, when
discussing laboratory systems where great care is taken to control the environment of
an experiment. But in natural systems, the system boundaries are always arbitrarily
chosen by the investigator (e.g. the cubic meter of magma in the pluton), and the
chosen system is always contiguous with other parts of the world with which it is
not in equilibrium. Therefore all real systems contain at best only local equilibria,
arid as we have mentioned above, local or partial equilibrium states have not "really"
achieved equilibrium.

3.3.4. Measurement Sensitivity

But another aspect of the problem has been raised—that of the sensitivity of our
measuring techniques. In each case mentioned above, the changes taking place may
well be undetectable. Certainly no electron microprobe operating today would detect
any change in Fe-Mg contents of an olivine-pyroxene pair if the Ni contents were
to change by a few parts per million. Other cases are easily conceived where we
might detect such changes with careful or very modern techniques, but not with the
techniques of a few years ago. So are we to say that a given system was in partial
equilibrium last year, but now that we have machine X, it is now in disequilibrium?

3.3.5. "Real" versus "Model" Equilibrium

It seems clear from this discussion that the question of whether any particular real
system had reached equilibrium or not can only be answered in relation to the purposes
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of the investigator. A given natural system may be in equilibrium for some purposes
and not for others. Geologists and chemists often assume equilibrium, then apply the
thermodynamic model and look at the results. If they make sense, they feel that to
that extent the assumption of equilibrium was justified.

Many natural systems achieve equilibrium in a practical sense, i.e., our mea-
surements may not be able to detect any departure from equilibrium. Even if they
are slightly out of equilibrium, it doesn't matter much for many purposes. However,
probably no one who has looked carefully into mineral compositions and structures
would assert that minerals or mineral assemblages had absolutely no gradients in
trace elements, isotopes, defects, or that the surface energies were minimized, etc.
Experimentalists, who expend prodigious efforts trying to achieve equilibrium in
their experiments, would probably be the last ones to assert that any particular ex-
perimental charge had actually achieved that state. No real system ever achieves a
true energy minimum; there are always imperfections in the real world. This "true
energy minimum" is an idealized, or as we call it, a model equilibrium state. It is this
state, in which the energy of the system is truly minimized, all gradients eliminated,
morphologies optimized, and so on, that is used in the thermodynamic model. The
distinction between the practical and model equilibrium states is clear conceptually,
but may involve only a few joules of energy, i.e., the difference in terms of energy may
be quite small. It is the fact that the difference is small that allows thermodynamics
to be useful.

So why are we devoting so much discussion to such a small point? The reason will
gradually become apparent. This topic is simply the first one in which the distinction
between the thermodynamic model and the real world arises. The fact that real systems
do achieve "equilibrium" tends to lead to the conclusion that thermodynamics refers
to, or even is part of, real systems, and this inevitably leads to confusion with respect
to reversible processes, infinitesimals, choice of components, and many other parts
of the model. Our point of view is that real systems achieve the kind of practical
equilibrium we defined in §3.3, including local and partial equilibria, but that the
thermodynamic model uses idealized equilibrium states. If there is not too much
difference between them, then the model results are useful in the real world. The
definition of "too much difference" depends on the application.

3.4. STATE VARIABLES

Systems at equilibrium have measurable properties. A property of a system is any
quantity that has a fixed and invariable value in a system at equilibrium. If the system
changes from one equilibrium state to another, the properties therefore have changes
that depend only on the two states chosen, and not on the manner in which the system
changed from one to the other. This dependence of properties on equilibrium states
and not on processes is reflected in the alternative name for them, state variables.
Recall from the discussion of Euler's theorem in Chapter 2 that extensive variables
are proportional to the quantity of matter being considered—for example, volume and
(total) heat capacity. Intensive variables are independent of quantity, and include con-
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centration, viscosity, density, molar heat capacity, and many others. Several important
state variables are not measurable in the absolute sense in a particular equilibrium
state, though they do have fixed, finite values in these states. However, their changes
between equilibrium states are measurable or at least calculable. Reference in the
above definition to "equilibrium states" rather than "stable equilibrium states" is de-
liberate, since as long as metastable equilibrium states are truly unchanging they will
have fixed values of the state variables. The thermodynamics of organic compounds,
virtually all of which are metastable in an oxidizing environment, is an example of
this distinction.

Since state variables have fixed values in equilibrium states and have changes
between equilibrium states that do not depend on how the change is carried out,
it follows that the differentials of state variables will always be exact differentials,
according to our definitions in Chapter 2.

3.5. DEGREES OF FREEDOM

Systems at equilibrium have literally dozens of properties. In addition to those state
variables applicable to the system as a whole such as T and V, each phase within the
system has a host of properties such as heat capacity, cell size, optic angle, refractive
index, and so on, and all can be considered properties of the system according to our
definition.

Experience has shown that to describe equilibrium systems, or to distinguish
between one equilibrium state and another, it is not necessary to enumerate all the
properties of a system. It has been observed that for each equilibrium system, when-
ever a certain number of properties have been specified, all the others have fixed and
unchanging values. For example, for any sample of any gas, whenever the pressure
and temperature have been fixed, the volume will be observed to take on a fixed value
as well. If the temperature and volume are fixed, the pressure will be observed to
have a fixed value also. The gas has a number of other properties too, such as heat
capacity, viscosity and so on, and it is possible in principle, if not always in practice,
to fix all the properties of the system by fixing any two. (We will describe this notion
more formally in a later chapter (§5.4.1) as Duhem's Law.)

Other, more complex systems require more than two variables to be fixed, but
all systems have a definite number of properties that must be fixed in order to fix
all the others, that is, to define the equilibrium state. This is called the number of
independent variables, or the number of degrees of freedom possessed by the system.
There is a very close analogy, then, between equilibrium systems and the multivariate
functions discussed in Chapter 2. There we said that the function x = x(y, z) could
be said to have two degrees of freedom since fixing any two of the variables fixes the
third. A divariant system then, can be thought of as a multivariate function having
dozens of variables, but there exist also a number of equations relating these variables,
reducing the independent variables or degrees of freedom to two. We will see what
these equations are when we consider the phase rule (§14.6).
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FIG. 3.2. P-V-T surface of a simple homogeneous system. Arrows on axes show direction
of increases of P, V and T.

3.6. THERMODYNAMIC STATE SPACE

For systems having not more than two degrees of freedom, we can define a "State
Space" using one or two independent variables and one dependent variable as axes,
completely analogous to our "Variable Space" for functions (§2.2.2). Just as func-
tions are represented by lines or surfaces in Variable Space, equilibrium systems are
represented by lines or surfaces in State Space,

In Figure 3.2, the stable equilibrium surface of a simple homogeneous system such
as a gas is represented schematically in P-V-T Space (two independent variables, one
dependent). In Figure 3.3 the surface intersects the axes in a pictorially convenient
fashion. Thus, for an ideal gas a surface V = V(T, P) = RT/P may be plotted in
P-V-T state space. This surface represents all equilibrium states attainable by the
gas, and the equation V = RT/P is termed an equation of state. Usually the term
"equation of state" is used exclusively for functions relating the state variables P,
V and T. Only equilibrium states are defined by equations of state. Thus the surface
V = V(P, T) shown in Figure 3.3 is termed an equilibrium surface. Every stable
equilibrium state of the system is represented by a point on this surface, and when
the system is not at equilibrium, it cannot be represented in the diagram.

Metastable states can also be represented in state space as additional surfaces
sub-parallel to the Stable Equilibrium Surface, since they do not intersect that surface
or other metastable surfaces.2 Figure 3.4 shows a Stable Equilibrium Surface similar

2That is, they do not intersect in P-V-T space; they do intersect in other varieties of thermodynamic
state space.
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FIG. 3.3. P-V-T surface of a simple homogeneous system, with P and V axes reversed to
allow more convenient representation of the surface.

to that of Figure 3.3, but this time it is supposed to represent the mineral graphite.
Also shown is the Metastable Equilibrium Surface for diamond.

Clearly, Metastable Equilibrium Surfaces are completely analogous to Stable
Equilibrium Surfaces. There is, however, one important difference between the two
surfaces. Every metastable system, and corresponding metastable equilibrium surface,
has at least one degree of freedom more than the corresponding stable system. To
amplify what we mean by this, we will introduce the concept of constraints. In this
discussion, we follow the ideas of Reiss (1965) very closely, though not his usage of
some terms.

3.6.1. Constraints and Metastable States

In mathematics, constraints are functional relationships that must be satisfied in solv-
ing a system of equations, as we have seen in Chapter 2. Similarly, if we say for a
certain system of fixed composition that T = 25°C, P = 1 bar, this is sufficient to fix
all the other state variables, and the equations T = 25°C, P = 1 bar are analogous to
the constraint relationships of mathematics. However, in the case of physical systems,
we can speak of constraints as either the values of the variables themselves, or as the
physical arrangement that leads to the fixing of a state variable. For example we might
use a thermostat to fix the temperature at 25°C and some weights on a piston to fix
the pressure. The thermostat and the weights and piston are in a physical sense the
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FIG. 3.4. Schematic P-V-T surfaces of graphite and diamond.

constraints on the system that fix all its state variables, and we say that the T and P
are constrained to certain values. There is always a one-to-one relationship between
constraints and state variables.

Although, as we have seen, each system has a minimum number of independent
variables that must be specified or fixed for the system to be at stable equilibrium,
systems frequently have more than this number of variables fixed, and they can then
be said to be in metastable equilibrium states. In fact our definition of a metastable
state can be restated as one that has more than the minimum number of constraints
necessary to fix the equilibrium state. To illustrate what we mean by a metastable
state, and the wide-ranging nature of the definition, we consider next three examples.

Partitioned Gas Example

Consider the system in Figure 3.5a. We have a given mass of gas with a fixed volume
and temperature. As we have seen, this is enough to completely fix all properties
of the gas. In Figure 3.5b, we have the same mass of gas, the same total V and the
same T but we also have a sliding partition locked in place that produces different
gas pressures on each side. To fix the variables of this system we need to specify
one more constraint, e,g., T, V and the position of the partition, or T, V and PI, or
T, V and P2 or T, PI and P2 etc. If we release the constraint (unlock the partition),
the partition will spontaneously move to a position where PI = P2, and we have the
original condition of needing only to fix two constraints. To establish the existence
of the third constraint, that is, to push the partition to one side and hold it there, we
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FIG. 3.5. A composite system at fixed T and V. (a) Partition is free to move—stable equi-
librium. (6) Partition locked in place—metastable equilibrium.

must do work on the system, raising its energy content, and when it is released, the
energy content of the system is lowered.

Now the system in Figure 3.5b is not the usual sort of example used to illustrate
metastable systems, but it is a perfect example for our purpose. All other metastable
systems are completely analogous in all respects, with the single exception that we
generally have little control over the degree of metastability, or the degree to which
a system deviates from stable equilibrium. This lack of control, however, does not
change the principles involved.

Polymorph Example

We have been considering the polymorphs calcite and aragonite, but just for a change
let's take graphite and diamond. Graphite is the stable form of carbon at the Earth's
surface. To fix its properties, in principle we need to specify two variables such as
P and T. To produce diamond, we must perform work on the graphite, and we must
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hold the result of this work (the crystal structure of diamond) in place by means of
an activation energy barrier. If the energy barrier is circumvented or released in some
manner, diamond slides down the energy scale to graphite once more. The metastable
state, diamond, requires one more constraint than the stable state, graphite, and the
release of the constraint results in energy loss from the system.

Mineral polymorphs of this type are the usual sort of geochemical examples used
to define metastable equilibria, and the usual definition centers on the fact that the
metastable phase has a higher energy content than the stable phase. By focusing
on the constraint that prevents the metastable phase from changing to the stable
phase, we have not changed the concept of metastability but have simply broadened
its applicability, as shown in the other examples. The perfect analogy between the
partitioned gas example and the polymorph example should demonstrate the utility
of the "extra constraint" definition we have used.

Chemical Reaction Example

Consider any chemical reaction A + B = C that might be, for example,

or, more geologically

At any particular T and P for which A, B and C are not at equilibrium, either
A + B is stable or C is stable. If C is stable, consider carefully what A + B means.
If C is stable, then obviously the combination of A + B will spontaneously react to
form C, unless constrained from doing so. In other words, unconstrained A + B is
an unstable assemblage. But in applying thermodynamics to A + B and C in order to
decide which is stable, we must consider the equilibrium properties of A, B, and C.
So if C is stable, A and B must be considered separately, not together. The fact that
A and B are separated means, in the thermodynamic model, that A + B exists at T
and P but is constrained from reacting, therefore there is an extra (third) constraint
involved, and therefore A + B is a metastable state. The separation of A and B may
be effected by various means, such as having a partition between them, or by having
A and B in separate containers, but when this separation is ended, or this constraint
is released, A + B slides down the energy gradient, forming C. In the reverse case,
where C spontaneously reacts to form A + B, then A and B are stable together, and
no separation is implied.

Some metastable systems of course may have more than one extra constraint.
Consider A + B = C again, this time where A is H2 gas, B is O2 gas, and C is H2O
liquid, where the T is 25° C and the P is 1 bar. If the H2 and O2 are in separate parts of
a container separated by a partition, they are of course constrained from reacting, and
the partition represents a first constraint. If the partition is then removed, the gases
mix but they do not react to form water, because there is an activation energy barrier
that must be overcome; this represents a second constraint. Finally if a catalyst is
introduced, removing this constraint, the gases react to form the stable phase, water.
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Another example of metastability, completely different from these, is found in the
subject of galvanic cells (Chapter 18).

We therefore define metastable equilibrium states as those having more constraints
than the minimum number required to define stable equilibrium for the system. In
most cases of interest to Earth scientists, there is one added constraint—an activation
energy barrier.

A large part of thermodynamics deals with processes occurring between meta-
stable and stable states, which we consider next.

3.7. PROCESSES

If we now define a process as the act of changing a system from one equilibrium state
to another, we see that any two equilibrium states of the system may be connected
by an infinite number of different processes, because only the initial and final states
are fixed; anything at all could happen during the act of changing between them. In
proceeding from State A to State B, the system in real life would normally be out of
equilibrium while changing between the two states, and thus the process could not be
represented in state space. If the equilibrium states are little red lights on the surface,
the light at A would be lit until the process began, then it would go out, and some
time later, the light at B would come on when the system had settled down in its new
conditions.

Much of the following discussion of processes will seem rather futile to anyone
looking for a description of what happens in real systems. Reversible, quasistatic and
virtual processes just do not occur anywhere in the real world. But we are not trying
to describe what happens in real systems. We are describing processes that can be
represented by equations in the mathematical model we call thermodynamics.

3.7.1. Reversible Processes

Another way of changing the system from state A to state B is also possible. That
is, instead of leaving the surface and heading into the realm of disequilibrium, the
point representing the system might remain on the surface at all times; or in other
words the little red light at A might simply slide over to B, remaining lit. There are
still an infinite number of paths it might follow between A and B, whether it remains
on the surface or not. All processes leading from A to B that remain on the Stable
Equilibrium Surface consist of a continuous succession of stable equilibrium states
called reversible processes. They are hypothetical limiting cases, because it is in fact
impossible for real systems to behave in this way.

We have just defined reversible processes in terms of the stable equilibrium sur-
face, but completely analogous processes are also possible on metastable equilibrium
surfaces, and the definition can be extended to include these. In fact, however, most
discussions of reversible processes refer to stable equilibrium states and surfaces.

When changes in state variables are integrated (e.g. Jy
2 P dV) the integration,

regardless of path, follows the Stable Equilibrium Surface, and hence simulates a
reversible process. The net result on the system, however, is the same for irreversible
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(non-equilibrium) as well as reversible processes, as long as the beginning and end
points are the same in each case.

3.7.2. Irreversible Processes

Also very important of course are processes leading from a metastable equilibrium
state to a stable equilibrium state. These are irreversible, because when the (extra)
constraint is released, even momentarily, the system is not in balance and proceeds in
one direction, towards equilibrium. However, this inexorable progress towards equi-
librium can be performed in one jump or can be halted in a succession of (metastable)
equilibrium states called a quasistatic process.

Quasistatic Irreversible Processes

In many presentations of thermodynamics, quasistatic processes are either not men-
tioned or are said to be the same as reversible processes. In our usage, however,
quasistatic processes are similar to reversible ones in that they are a continuous suc-
cession of equilibrium states, but these states are metastable equilibrium states, not
stable equilibrium states. A quasistatic process is most easily imagined as result-
ing when one of the constraints on a metastable equilibrium state is released for an
extremely short time, then re-imposed. While the constraint is released, the system
changes slightly but irreversibly towards equilibrium, then settles down in its new
metastable equilibrium state when the constraint is re-applied. This succession of
events is repeated until the final state is reached.

The complete development of this concept, and an understanding of why it is a
useful part of the thermodynamic model, must await introduction of the Second Law.
However, as an example, consider again the reaction A + B = C in the Chemical
Reaction Example in §3.6.1. Under conditions where C is stable, release of the con-
straint on A + B results, as we said, in the irreversible reaction of A with B to form
C. But suppose only a tiny amount of A and B are allowed to react, then they are
separated again, or otherwise constrained from reacting, and the reaction products
allowed to equilibrate. Then another tiny increment of reaction is allowed, followed
by equilibration, and so on.3 The resulting succession of (metastable) equilibrium
states is what we call a quasistatic process. We will see that it is just as fundamental
a part of our model as is the reversible reaction, and in the hands of insightful geo-
chemists (and computer programmers) has in recent years become a standard tool of
geochemical modeling.

3.7.3. Virtual Processes

Following Reiss (1965), we define a virtual process as the inverse of an irreversible
or quasistatic process; in other words it is an irreversible process that goes backwards.
Systems will never spontaneously undergo virtual processes, they must be "pushed"
by an external energy source. Imposing an additional constraint on a system always
involves adding energy to the system, and the process of doing this is the virtual

3 In Chapter 19 we describe an example where A is K-feldspar and B is water.
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reaction. We do not make much explicit use of this kind of reaction, but its existence
is implied by many diagrams and statements (see Chapter 5).

3.7.4. Special Kinds of Processes

Adiabatic processes occur without any exchange of heat between the system and its
surroundings. Isothermal processes occur at constant temperature, isobaric processes
at constant pressure, isochoric at constant volume, and isoplethal at constant compo-
sition. Finally, in a cyclical process, initial and final states of the system are identical.
Integration in cyclical processes is often symbolized by the integral

where § refers to an integral around any closed path, that is, a process that returns to
the initial state. If a; is a function of state and thus independent of path, then the value
of such cyclical integrals is necessarily zero.

3.8. PHASES, COMPONENTS, SPECIES AND CONSTITUENTS

The matter contained in a system may be grouped into regions having different struc-
tures and/or compositions called phases. A phase is defined as a homogeneous body
of matter, generally having distinct boundaries with adjacent phases and so in prin-
ciple is mechanically separable from them. The shape, orientation, crystallinity and
position of the phase with respect to other phases are irrelevant, so that a single phase
may occur in many places in a system. Each mineral in a rock is therefore a single
phase, as is a salt solution, or a mixture of gases. Single phase systems are called
homogeneous, and multiphase systems heterogeneous. Some complications in the
definition of phases will be taken up in Chapter 14.

It will of course be important in our discussions about thermodynamic systems to
be quite specific and precise about their chemical compositions. The term generally
used to describe the composition of a system is component. The components of a
system are defined by the smallest set of chemical formulae required to describe the
composition of all the phases in a system. This simple definition requires a surpris-
ing amount of explanation and discussion to be completely clear, much of which we
postpone to Chapter 14 because it involves concepts not yet introduced. For now, we
will simply say that although the number of components possessed by a system in
a given state is fixed, the identity of these components is not. Consider for example
the system A-B, in which phases A2B and AB2 occur. The compositions of both
phases can be described by various amounts of components A and B, or AiB and B,
or A2 and 62, or in fact any two compositions on the join A-B, including negative
compositions beyond A or B. There are in fact an infinite number of possible choices
for any system, but the number of components required is fixed. Another thing about
components worth mentioning at this stage is that systems can have different num-
bers of components in different stable equilibrium states. For example pure albite
(NaAlSi^Og) is a one-component system at ordinary conditions, but at high pressures
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and temperatures it breaks down to jadeite (NaAlSi2Oe) plus quartz (SiO2), and two
components are required to describe the same bulk composition because the number
of phases has changed.

Also before proceeding we must explain our usage of the terms species and
constituent. Liquid and gaseous solutions are found to contain, in fact are made up
of, molecular and ionic entities called species having some existence as identifiable
units. Thus air is mostly N2 and O2, (which could also be chosen as the components of
air), while NaCl in water, two components, has a number of species (Na+ or Na(H2Q)^,
Cl~ or C1(H2O)~, H2O, H3O

+, OH~, etc.) the exact nature of which is still a research
topic. Solution components can correspond to species, but need not (we could for
example choose N and O or NIQ and OIQ as the components of air). Solids and solid
solutions present us with a terminology problem, because while in many discussions
we refer to various combinations of atoms in a solid, such as MgO in MgSiOs, they
are not species in the usual gaseous and aqueous sense, and they are not necessarily
components. We cannot properly speak for example of the component MgO in pure
MgSiO3, because MgSiC>3 has only one component, which is necessarily MgSiOs. We
could, however, stretch the point slightly and refer to end-members of solid solutions
and to pure minerals as mineral species.

We therefore introduce the term constituent in order to be able to reserve the use
of the term component to its rigorous or "phase rule" sense. A constituent of a phase
or of a system is therefore simply any combination of the elements in the system
in any stoichiometry. MgSiO3 therefore has only one component but any number of
constituents, such as Mg, Mg2, Mg_i, SiO2, (SiO2)_[, MgSi, MgSiO, and so on.
Constituents are therefore the most general of descriptors of system compositions,
including both all species, if such exist, and components, as shown in Figure 3.6.

3.8.1. Phases, Components and The Model

Further discussion of these topics is found in Chapters 10 and 14. We leave these
other considerations until later because a full discussion is much easier when other
thermodynamic concepts such as activity and fugacity have been introduced. One
of these considerations will be found to be that although as denned here phases and
components appear to be entities that occur in rocks, minerals, solutions, and other
parts of the real world, we will show that they are in fact parts of the thermodynamic
model, just as much as are equilibrium and reversible processes.

3.9. MATHEMATICS AND PHYSICAL PROPERTIES

We have mentioned several times now that thermodynamics is best viewed as a model,
rather than some kind of description of natural processes. In this section we take a
closer look at why this must be so. One of the main reasons is that we use physical
properties as mathematical variables.

3.9.1. Vsing Properties as Variables

Normally, when constructing a mathematical model to be used in the physical sciences,
it is desirable that the functions be single-valued in all independent variables and
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FIG. 3.6. Hierarchy of system compositional terms.

continuous within certain useful ranges of the variables, as well as having continuous
higher-order derivatives. In other words, the functions should be "well-behaved".
But consider the difference between using pure numbers and physical properties as
variables.

The function x = x(y, z) in mathematics will always give the same value or values
of x for given values of y and z. You will not get one value of x today and a different
one tomorrow. You may get two values of x, but you will get both of them today and
both tomorrow. When dealing with physical properties, however, it is conceivable
that something quite different might happen. We might have, for example, a function
relating pressure (P), temperature (T) and volume (V) of a system

that will always give one value of V for given values of T and P; however, the system
itself (that is, if we actually measure V at a particular T and P) might give one value
today but a different value tomorrow and a third value the next day. Also, V may
be steady and unchanging each time we make the measurement, though steady at
different values each time, or it may not be steady but "drifting" to higher or lower
values as we try to measure it. This is not a difficult situation to imagine, by the way,
and is a common sort of problem for experimentalists. The function (3.1) may be
well behaved, but the system is not. Obviously, to be useful, equation (3.1) must be
used only in situations where the physical property V is a single-valued function of
the physical properties P and T.
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3.9.2. Single-Valued Properties

What does it mean to say that our physical properties must be single-valued? It means
that our thermodynamic functions (such as equation (3.1)) can deal only with systems
at equilibrium where, according to our definition, the properties of the system do not
change with time. This equilibrium state may be stable or metastable, but generally
speaking for systems more complex than a single component (e.g. a pure mineral)
stable equilibrium states are almost always referred to.4

This is a remarkable restriction, since as we look around us we see rather few
systems at stable equilibrium. Stable equilibrium is, in fact, often very difficult or
impossible to achieve in many systems, and is never achieved in an absolute sense.
Nevertheless, our thermodynamic equations are restricted to using properties in equi-
librium states.

3.9.3. Continuous Properties

Another problem arises from the fact that function V = V(T, P) represents V as a
continuous function of T and P. We mentioned in Chapter 2 that many functions are
continuous only within certain limits, as illustrated in Figure 2.3. Figure 3.7a shows
y as another kind of discontinuous function of x, that is, y only has finite values at
certain specific values o f x , and not in between. This is all very well for a mathematical
function, but if y is the length of a metal bar and x is its temperature, for example,
and the points represent our measured values of length at certain temperatures, then
the graph is misleading. We know very well that the bar continues to exist and has
measurable values at temperatures in between those at which we have chosen to
measure it, and we feel perfectly confident in drawing a smooth line through our
measured values to represent length at all temperatures (Figure 3.7b), particularly if
we have a theory totelluswhat the shape of the line should be and if our measurements
conform to the theory. To measure the length of a metal bar at a given temperature,
we must be sure that the whole bar is at that temperature, i.e., it must be in a state
of equilibrium, otherwise the length will be changing as the bar achieves a constant
temperature (i.e., as we said above, the properties must be single-valued). Thus every
point on the line in Figure 3.7b represents an equilibrium state of our system, and since
it is a continuous line, we imply that there is a continuous succession of equilibrium
states of our system. The line then represents the lengths we would observe if we
couid heat the bar to successively higher temperatures (or cool it to successively lower
temperatures) while maintaining it at all times at complete equilibrium. However, this
is in fact impossible to do. To raise the temperature of the bar, heat must flow into
it, which requires a thermal gradient between the outer and inner parts of the bar.
As long as the gradients exist, the bar's length will be changing, and it will not be
in equilibrium. As soon as the bar re-equilibrates at its new temperature, we may
measure its length, but it will be separated from the initial point by some value of
AT (or A.T in Figure 3.7a).

4Except in organic systems, where metastable states are often referred to.



FIG. 3.7. (a) A discontinuous function y = y(x). y only has values at certain fixed values of
x. (b) A homogeneous linear function y = ax + b through the points of 3.7a. The existence of
the function implies a reversible process.
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Now we can make this AT as small as we like, but it remains true that the
measured values will be individual points representing equilibrium states, and we
would have to make an infinite number of measurements to create a continuous
line of measured points. Although this is impossible in practice, the corresponding
mathematical procedure is quite simple. One determines the limit as the number of
determinations approaches infinity, and, of course, in this simple case one obtains the
line y = ax+b. In other words, one simply draws a line through the points on the graph.
Clearly, the essence of this argument would be the same if we used equation (3.1) or
any other relation between physical variables.

We have described this situation in such detail because it is one of the simplest
examples available of the kinds of relationships between mathematics and reality that
make up the bulk of the equations in thermodynamics. It is easy to have the single-
valued and continuous function y = ax + b, which is differentiable, integrable, and
entirely well-behaved. It is impossible to have the physical situation that it describes
(an infinite number of measurements, or a bar changing its length in a continuous
succession of equilibrium states in response to changing temperature). The mathe-
matical function is an extrapolation, a limit-taking, of possible physical situations,
and of course we must do this to be able to apply mathematical techniques (e.g., dif-
ferentiation, integration) to our measurements. In summary, continuous mathematical
functions using physical parameters as variables imply the existence of impossible
processes, which we call reversible processes.

3.9.4. Thermodynamics as a Mathematical Model

The continuous succession of equilibrium states represented by the line in Figure 3.7b
is one example of a reversible process. The explanation of reversible processes takes
up considerable space in most texts, and usually it seems to have some connection
with entropy changes. However, the importance of reversible processes is much more
fundamental than furnishing an explanation for the entropy. It is a direct result of our
desire to apply mathematics to physical properties.

The concept of reversible processes often causes difficulties and dissatisfaction in
newcomers to the subject, perhaps because of the apparent arbitrariness or physical
unreality of such processes. Much of this dissatisfaction can be alleviated by thinking
of thermodynamics not as a description of reality or real processes but as a mathe-
matical model, represented by lines and surfaces in mermodynamic state space, and
using physical properties as its variables. When real systems achieve equilibrium,
which they do only in a practical sense, their properties are interrelated by the model,
and therefore changes in real system properties from one equilibrium state to another
can also be given by the model. This point of view appears clearly in the following
quotation from Pippard (1966, p. 97). He is speaking of a mass of gas that is released
from a smaller volume into a larger volume by piercing the wall that separates them.

It follows from this that when the gas is confined to the smaller volume it
has one value of the entropy, when the wall is pierced it has another value,
and that it is the act of piercing the wall and not the subsequent expansion
that increases the entropy. In the same way when two bodies at different
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temperatures are placed in thermal contact by removal of an adiabatic wall,
it is the act of removing the wall and not the subsequent flow of heat that
increases the entropy.

Because we have not yet introduced the entropy this quotation may seem out of
place, but in fact, as also pointed out by Pippard, the concept applies equally well to
any thermodynamic variable. For example, one could say that it is the piercing of the
wall and not the subsequent expansion that changes the volume of the gas. By this
we mean that the thermodynamic variable volume is fixed by the physical constraints
on the system, and once these are fixed, the (model) volume is fixed, whether the
gas has achieved this volume or not. In other words, the properties considered by
thermodynamics belong to the model, not to the system being modeled.

How Can Thermodynamics Be Useful?

The requirements that our functions and properties be single-valued and continuous re-
sult in what seem to be rather heavy restrictions in the applicability of thermodynamic
functions. If stable equilibrium states are often hard (or theoretically impossible) to
achieve, and if the functions imply processes that cannot be carried out, how can ther-
modynamics be useful? It is useful for two main reasons. First, even if our systems of
interest do not reach stable equilibrium, it is of great interest to know what the stable
equilibrium state is and what its properties are under given conditions, to know what
state the system is "trying to achieve," and how much energy is expended in reaching
that state. And second, it is not necessary that processes be carried out reversibly for
the functions (that describe the reversible processes) to be useful, because the func-
tions can be integrated to give the changes in properties between equilibrium states
regardless of the nature of the real process between these states. This follows from
our definitions of equilibrium states (that always have the same properties for a given
state), of state variables (that always have exact differentials), and of integrals of exact
differentials (that always give the same result regardless of the path followed). For
example, in the case of steam engines, thermodynamics was not and is not capable of
fully "describing" a single one; however, it is capable of showing what energy output
would be available if such engines worked perfectly (thus establishing an efficiency
scale), and it can also show what aspects must be changed to improve the efficiency.
In mineral systems thermodynamics has found many uses, such as predicting stable
mineral assemblages in rocks at various pressures and temperatures. The question of
the degree to which individual natural systems have achieved or normally achieve
equilibrium is often hotly debated; however, in a general sense it can be confidently
stated that a great many natural systems approach stable equilibrium states sufficiently
closely that thermodynamic calculations applied to them are very useful. If this were
not the case, Earth scientists would have little interest in the subject.

Reversible processes are but one example of a host of concepts of a similarly
idealized nature in chemistry and physics—for example, ideal gases and solutions,
absolute zero temperature, infinitely dilute solutions, perfect black-body radiation,
isolated systems, perfect insulators, and so on. In every case, the adoption of the
idealized case simplifies or makes possible the application of mathematics to physical
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reality. Mathematics and thermodynamics deal with models of reality, not with reality
itself.

PROBLEMS

1. Look up the definitions of equilibrium, stable, metastable, reversible and
quasistatic in any textbooks on thermodynamics or physical chemistry you
have at hand, and reflect on the differences between them and the definitions
in this text.

2. Why are the populations of species and components only partly overlapping
in Figure 3.6? Give examples.

3. Consider the system MgO-SiO2-H2O. List two different sets of compo-
nents, three constituents, three mineral species, and three aqueous species,
that might be found in this system.
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THE FIRST LAW OF THERMODYNAMICS

. . . and now we have the universally accepted doctrine of the equivalence and in-
terconvertibility of mass and energy. Here at last we have the thing that we have
been searching for so long: a unique value in any reference frame for the energy of a
system and a simple physical significance for the thermodynamically undetermined
"constant of integration' of the energy equations.

Bridgman(1941)p. 92.

It is important to realize that in physics today, we have no knowledge of what
energy is.

Feynman, Leighton and Sands (1963, Vol. 1, p. 4-2).

4.1. INTRODUCTION

We have by now amassed sufficient definitions and reviewed enough mathematics
to begin discussion of energy levels and transfers. This is a very difficult subject,
as evidenced by the fact that more than 50 years of scientific effort were required
before the relationships between heat, work, and energy were well understood. A
knowledge of the history of development of this understanding by Carnot, Mayer,
Rumford, Clausius, Joule, Thompson, and others is very helpful in appreciating the
significance of the First Law of thermodynamics.

Part of the difficulty lies in the fact that the concepts of temperature, heat and
work are so intuitively familiar to us that we tend to use them without much thought.
We have already discussed systems in terms of heat transfer just as if we knew exactly
what heat is.

We present here a summary of the present understanding of the relation between
heat, work, and energy levels of systems, leading to a definition of the first law of
thermodynamics.

4.2. ZEROTH LAW OF THERMODYNAMICS

We are all familiar with the sensation of warmth, that is, that some objects are hotter
or colder than others. A large number of instruments called thermometers can be
(and have been) devised which will indicate degrees of hotness or coldness of their
environments. They have physical properties which vary perceptibly as they become
hotter or colder (examples are the volume of a body of fluid at a fixed pressure,
the length of a column of mercury in a glass tube, or the voltage produced by a
metallic couple); these changes can be assigned arbitrary units of "hotness." The
zeroth law says that two bodies that are in thermal equilibrium with a third body are
in equilibrium with each other. By thermal equilibrium we mean that two bodies are
in contact separated by a wall or walls that prevent exchange of mechanical energy
or mass, but which still allow the two bodies to interact energetically. Such walls
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are called diathermal, that is, they allow heat to flow between the bodies. When no
further change in the bodies is observed, they are at equilibrium; if one of these is a
thermometer, its properties (volume, length, voltage) have been calibrated according
to some arbitrary scale, and a reading on this "hotness" or temperature scale may be
made. The zeroth law says that if two bodies are placed separately in contact with
the thermometer and the same temperature reading results, then the two bodies will
be found to be in equilibrium (no changes result) when placed in contact with each
other. This innocuous and almost self-evident statement is the basis of the concept
of temperature as a useful thermodynamic parameter. This can be shown as follows.
Suppose our thermometer is a body of gas at a fixed pressure. As it gets warmer or
cooler, its volume changes, and we can conveniently read this volume on a manometer
or other gauge attached to the gas. If we suppose the change in volume to be linear
between varying states of warmth, then two reference points will suffice to define
a temperature scale. To calibrate the thermometer, we first put the gas container in
a mixture of ice, water, and ammonium chloride, and when the gas stops changing
volume, we mark the manometer level as "zero" temperature. Then we hold the gas
container until it reaches thermal equilibrium with a human body, and we mark the
manometer level as "96." These two reference states were chosen by D. G. Fahrenheit
in 1724 as the basis of his temperature scale. On this scale boiling water gives a reading
of 212 and freezing water is 32. The manometer may now be marked off in 96 equal
divisions between the 0 and 96 levels established, and other equal divisions may be
added above and below. These divisions or "degrees" constitute our temperature scale.
Clearly, our degrees are actually a measure of volume in this case, so we don't seem
to have made any fundamental advance. But in fact we can follow this calibration
procedure using any fixed amount of gas and arrive at an equally useful thermometer.
Because we can do a similar calibration using many different properties of many
substances (such as the length of a metal bar, or the density of a liquid), it appears that
the scale of degrees we have established, though it may have arbitrary units, expresses
a property of many substances not included in the particular property calibrated. This
is recognized by including the degree among the fundamental dimensions of science.

Let us now place our gas thermometer in contact with a second container of
another gas having pressure P and total volume V, and we find that the reading on
our manometer or temperature scale is 6\. It has been known since about 1661 that
the relation between P and V for a fixed amount of gas at a fixed temperature is
PV = constant (approximately). This is Boyle's Law. Thus by varying the pressure
on our gas at 61, we will find the volume varying inversely, and a plot of P versus
V will describe a hyperbola (Figure 4.1). We could then place our thermometer and
second gas container in an oven or refrigerator and we would find that at this different
temperature Boyle's Law still holds, but the constant is different. There are in fact a
series of isotherms on the PV diagram for our gas, one for each temperature reading
on our thermometer (Figure 4.1), and there presumably exists a functional relationship
between the Boyle's Law constant and 0, hence between PV and 9. Thus

This is called the equation of state of the gas, and because 9 is a function of two state



FIG. 4.1. Pressure (P) versus volume (V) for a gas at various fixed values of the empirical
temperature.

variables, it is itself a state variable. Since we could carry out this procedure with
any gas, or indeed with any substance, then every substance has an equation of state
involving P, V, and 6.

It is thus established that temperature is a function of the state of each substance
(a state variable) that has the property of taking on the same value for systems in non-
adiabatic contact with each other. This is clearly not true of many other state variables
including P, V, density, and so on. This underscores the importance of the "diathermal
wall," which we said "allowed systems to interact" energetically without allowing
mechanical work to be done. That this can be done and that such (heat-conducting)
walls exist is a matter of experience.

4.3. TEMPERATURE SCALES

Obviously the empirical temperature scale we have denned has some defects from a
practical point of view. The first defect is that although we may feel that Fahrenheit
made the only wise choice of reference states in choosing the temperature of a mixture
of ice, NHtCl, and water and the temperature of the human body, it may happen that
someone else will feel that the temperature of the dew at daybreak on the first day
of summer and the temperature of the flame of a wax candle would be much better
reference states for a temperature scale, and that 666 would be a good number of
divisions to have between them. It is even conceivable that others might find the
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temperatures of freezing and boiling water more to their liking, and there is no logical
basis for arbitrating between these choices, only various degrees of practicality. If this
situation prevailed, there would be as many equations of state for substances as there
were temperature scales in use, and experience indicates that that would be quite a
few.

A second major defect of the empirical temperature is that any property of any
substance that varies appreciably as the substance warms and cools can be used, and
all are assumed to change in a linear fashion between and beyond the two reference
temperatures. But in fact observation shows that in general, substances are all different
in the way they respond to temperature changes. The result is that even if one particular
set of reference temperatures were chosen, different thermometric substances would
give different temperatures for states in between the two reference states. This state
of affairs makes the empirical temperature seem a rather dubious sort of fundamental
property.

4.3.1. The Centigrade Scale

It was discovered fairly early, however, that the gas thermometer was quite useful
since at ordinary pressure practically any gas would give about the same readings
between two reference states. Suppose we adopt a centigrade scale, which strictly
speaking simply means that we have 100 divisions between two fixed points. If we
have a volume of gas VQ at the lower reference temperature and a volume VIOQ at the
upper reference temperature, then at other temperatures

where 0 is our empirical temperature. Thus

and we get a value for 9 by measuring V# when our gas is equilibrated with any
particular state at temperature 6. This can also be expressed as

The quantity Vo/(Vioo — VQ) is experimentally determinable, and is found to be 2.73
for most gases when the two reference state temperatures are those of freezing water
and boiling water. Then

-Tom this it appears that when 9 = —273,

and
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Thus if the linearity of the scale is maintained to very low temperatures, gases equi-
librated with an object at -273 degrees on our centigrade gas scale will apparently
have zero volume. This must represent an absolute zero on the scale, since we can't
imagine negative volumes. In fact we cannot even imagine zero volume for finite
quantities of gas (except for ideal gases whose particles occupy zero volume). So it
also appears that our absolute zero is not physically attainable.

The suggestion that temperature scales do have an absolute zero which is mea-
surable, although perhaps not physically attainable, would go a long way toward re-
moving the arbitrary nature of our temperature measurements. Fortunately, the truth
of these ideas can be established independently of any consideration of individual
temperature scales as we have above; Lord Kelvin's demonstration of this will be
considered later on.

4.3.2. Practical and Absolute Temperature Scales

If freezing water at atmospheric pressure is given a temperature of 0° on our centigrade
scale and boiling water 100°, and if we are correct that there is an absolute zero to
the degree of coldness attainable at —273 on this scale (—273°C), we could avoid
negative numbers by choosing different numbers for the scale, and assigning 0 to
absolute zero. This means that water would freeze at 273° and boil at 373°. This
scale is called the Kelvin scale, in honor of Lord Kelvin, who first pointed out the
existence of the absolute nature of temperatures. We will point out in Chapter 5
that the difference between these scales involves more than just avoiding negative
temperatures.

The idea of a temperature scale having two fixed points and an absolute zero exi sts
as an abstract concept, independent of any particular thermometer that might be used in
a practical sense. This abstract concept we will call for the moment an "absolute" scale
of temperature. As soon as we start to use the scale with real thermometers, we run into
problems of calibration, inter-laboratory differences, choice of thermometer, and so
on. Therefore in 1927 an international body established the International Temperature
Scale, which consisted of temperature values assigned to six reproducible equilibrium
states (fixed points) and formulae for calculating temperatures in between the fixed
points. The fixed equilibrium states were the ice point, the boiling points of oxygen,
water, and sulfur, and the freezing points of silver and gold. The temperatures chosen
for these points were the most accurate available, in the sense of conforming most
closely to the "absolute" temperature scale, but as techniques improved the values
assigned to the fixed points have changed periodically, by international agreement.
There is therefore a distinct difference between the abstract "Absolute" Temperature
Scale which exists as a kind of absolute truth, and the International Scale, now called
the International Practical Temperature Scale (IPTS), which is an ever-evolving
approximation of the truth.

Thus thermometers are calibrated according to IPTS, and then give good approx-
imations of the "Absolute" temperature. These temperatures are expressed either as
°C or as K, depending on whether 0 or 273 (more exactly 273.15) is assigned to the
ice point. In 1948, the name of the Centigrade scale was officially changed to the
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Celsius scale, retaining the °C symbol, after Anders Celsius, a Swedish astronomer
who first used (in 1742) 100 divisions between the freezing and boiling points of
water as a temperature scale. The fact that he used 100 for the ice-point and zero for
the boiling point was perhaps eccentric, but no more or no less logical or fundamental
than the reverse.

The Celsius and Kelvin temperature scales, defined by dividing the temperature
interval between freezing and boiling water into 100 divisions (both thus being centi-
grade scales) had some serious theoretical and practical difficulties. The problem
was that even though any two fixed points will serve to define a linear temperature
scale, and the freezing and boiling points of water with 100 degrees between them
should serve as well as any others, this choice means that the numerical value of the
absolute zero temperature in °C, and hence the numerical value of the freezing and
boiling points of water themselves in degrees Kelvin were matters of experimental
determination. Because of experimental difficulty in precisely reproducing the freez-
ing point of air-saturated water, the temperature of this point was not exactly known,
experimental values ranging from about 273.13 to 273.17 K. The boiling point was
by definition then exactly 100 degrees higher.

This situation was rectified in 1954 when by international agreement the definition
of the temperature scale was changed so that now the triple point of water is fixed
by definition at 273.16 on the Kelvin scale. The Kelvin scale now has therefore one
"labeled" fixed point instead of two "unlabeled" fixed points with 100 divisions in
between. (Alternatively you could think of the new scale as having two fixed points,
one at absolute zero and the other at the triple point of water, with 273.16 divisions in
between, but since absolute zero is unattainable it is hardly a fixed point in the usual
sense.)

Somewhat surprisingly, the triple point of water (the state where ice, water, and
water vapor coexist at equilibrium) is quite easily achieved reproducibly in the lab-
oratory, and it is experimentally found to be about 0.01 degrees above the freezing
point of water at atmospheric pressure (Figure 4.2). The number 273.16 was therefore
chosen so that the freezing point would be 273.15 K, which was the best estimate of
that temperature from previous studies, based on the old scale. There was therefore
minimum disruption in changing over to the new definition of the Kelvin temperature
scale.

The Celsius Scale was defined (1948) as having a temperature of 0.01°C at the
triple point of water, so that 0°C is still the temperature of freezing water at one
atmosphere pressure. Therefore there are no longer necessarily exactly 100 degrees
between the freezing and boiling points of water on either the Celsius or the Kelvin
scales, so that neither is now strictly speaking a centigrade scale, and the temperature
of boiling water is as much a matter of experiment as any other fixed point. It is of
course very close to 100.00°C or 373.15 K, but probably not exactly. The present
situation is summarized in Figure 4.3.

In summary, then, the Kelvin temperature scale in use today has one fixed point,
the triple point of pure water, assigned a value of 0.01 degrees Celsius and 273.16
degrees Kelvin (more correctly called 273.16 Kelvins). Since there is experimentally
0.01 degree between the triple point and the freezing point of water at atmospheric
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FIG. 4.2. The P - T phase diagram for the system H20. The temperature of the triple point
is defined as 273.16 K.

pressure, the freezing point is 0°C and 273.15 K. Absolute zero is then -273.15°C
and 0 K.

Thus the numerical conversion between the two scales is

The International Practical Temperature Scale consists of a number of equilibrium
states which have been assigned temperatures on the Celsius scale, to facilitate the
measurement of temperatures everywhere. Since the number of degrees between the
triple point of water and any other equilibrium state, such as the freezing point of
molten zinc, is a matter of experimental determination, the temperature values as-
signed to the chosen fixed points are changed from time to time as techniques improve.

4.3.3. The Geophysical Laboratory Temperature Scale

It is of interest to Earth scientists that one of the most prestigious laboratories in
the field of experimental petrology and geochemistry, the Geophysical Laboratory of
the Carnegie Institution of Washington, has its own practical temperature scale. This
was developed in 1914 by Arthur L. Day, based on earlier measurements with a gas
thermometer by Day and Sosman, and these same fixed points have been used at the



FIG. 4.3. Various temperature scales.

Geophysical Laboratory ever since, in spite of continual changes in the International
Practical Temperature Scale (in 1927, 1948, 1969). As a result, experimental results
from the Geophysical Lab over the years have a consistent base, and can be easily
intercompared. Differences between the Geophysical Laboratory Scale and the IPTS
are now all less than 1°C.

4.4. INTERNAL ENERGY

We have attempted to introduce the concept of temperature as a thermodynamic
parameter without any necessary reference to the concept of heat, although not nec-
essarily avoiding that term. This was done by saying that diathermal walls exist that
allow two bodies to interact energetically while excluding mechanical interaction
and mass transfer. Since we limit forms of energy to work and heat (as discussed
next), then if energy is transferred and work is eliminated, it follows that diathermial
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walls must allow heat transfer, whatever that is. Why do some bodies have different
temperatures than others, and why does a body change in temperature? We usually
answer that heat is added to or subtracted from the body, but what does that mean?
To explain this, we had better first discuss energy in general.

4.4.1. Energy

Energy can be defined as the capacity to do work, where work is a force moving
through a distance, but at first this hardly seems very satisfying. What exactly is "a
capacity"? This is most readily visualized by considering various types of energy,
and situations where energy transfers occur.

The capacity to do work arises from three sources, giving three types of energy.

1. Potential Energy, Ep, is energy a body has due to its position. A brick on a
table, for example, could perform work while falling to the floor if it were
suitably attached to strings and pulleys. This energy clearly depends on
the frame of reference—the brick has more energy with respect to levels
below the floor than it has with respect to the floor. Using the whole Earth
as reference, a body would have to be at rest on the lowest point on the
surface of the earth to have zero potential energy. In this example, we have
assumed a gravitational field. Other, or additional, potential energies can
be due to electric or magnetic fields.

2. Kinetic Energy, Ek, is energy a body has due to its motion. Bodies in motion
can perform work during the process of being stopped or slowed down. For
example, the brick on the table has zero kinetic energy (again the reference
system is important, the brick may have a kinetic energy relative to a moving
object, or an extra-terrestrial one) but acquires some during its fall. This
kinetic energy does work on the floor by deforming it on impact.

3. Rest Energy, Er, is energy a body has due to its mass. This source of energy
was not understood until the introduction of the Special Theory of Relativity
by Einstein in 1905. He postulated the essential equivalence of matter and
energy, the two being related by

where m is the inertial mass of an object and c the velocity of light. For all
objects other than elementary particles, the inertial mass and the ordinary
Newtonian rest mass are the same.

Thus the total energy possessed by any macroscopic body or system is

In thermodynamics, we always choose the boundaries of the system to be the reference
frame for energy. Thus all systems at equilibrium must have Efc = Ep = 0, and any
change in energy of the system must be a change in the rest energy, Er. E^ and Ep

above refer of course to the body or system as a whole. Since every macroscopic
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body is made up of small particles, the rest energy of the body is made up of the total
energies of these particles, and each particle itself will have a rest energy, a kinetic
energy, and a potential energy. Addition of energy to the system, for example, by
heating it or pounding it with a hammer, will result in an increase in the energies of
the individual particles, primarily by increasing their velocities. But the overall effect
will be to increase the mass of the system, since Er = me2, and c is a constant. In other
words, not only is there no such thing as an isolated system (since we lack perfectly
insulating and rigid walls) but there is no such thing as a closed system, since this
was defined as one having a variable energy content but constant mass.

4.4.2. The Internal Energy

However, ordinary (i.e., non-nuclear) energy changes result in completely negligible
changes in mass, so this is more of a semantic problem than a real one. We will
continue to use the concept of a closed system because for almost all our practical
and theoretical purposes, the mass is constant. Since we have just one kind of energy
for our systems (albeit made up of three kinds on the particle level) we may drop
the subscript and simply refer to the energy of the system, or, as is traditional in
thermodynamics, the Internal Energy. However, in thermodynamics there is no need
whatsoever to equate the Internal Energy of a system with its rest energy, Er. All
that is required is that fixed energy levels be attributed to equilibrium states—the
numerical value of the energy level is irrelevant—so the Internal Energy is given a
different symbol, U (or U, the molar internal energy).

Note that apart from relativity theory, there is no way of computing the total
or internal energy of a system, and with relativity theory, one sees that the energy
content of macroscopic systems is almost inconceivably large. Although seemingly
possible, development of thermodynamics using absolute values of U has never been
done since it is not necessary and would add nothing of value to the science, which
is quite content to deal only with changes in the energy, as we will see. It is helpful
though, to remember that although never given in numerical terms, U in our systems
can be thought of as an extraordinarily large quantity, and what is of importance to
us are the changes in the last few digits of the number representing it. We repeat
however, that this is simply a device to help conceptualize the Internal Energy; U in
thermodynamics is in fact not identified with Er, it is simply an unspecified amount
of energy which is fixed in given equilibrium states. The formal relationship is

I tie constant is or unspecified size, and is the constant referred to by Jtsndgman
in the quote at the head of this chapter.

Since we do not use absolute values of U or U, we cannot use absolute values
of any quantities having U in their equations of definition. This may become a point
of some regret if you find yourself puzzling over some unfamiliar standard states
later on. Somewhat paradoxically, in spite of being possibly the most fundamental
of thermodynamic quantities, Internal Energy or even changes in U are little used
in geochemical applications. It is never listed in tables of thermodynamic values,
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for example, and one rarely needs to calculate AC/. The reason for this will become
apparent as we proceed. It has to do with the fact that we, the users of thermodynamics,
have a great predilection for using temperature, pressure, and volume as our principle
constraints or measured system parameters. This requires that we use AC/ in slightly
modified forms, that is, AC/ modified by what are often relatively small correction
factors (such as PAV), and these modified forms are given different names and
symbols. It is then quite possible to rarely think about AC/, since it seems only to
arise in the development of the First Law. For a better understanding of the subject,
however, it is best to realize that in most energy transfers in the real problems that we
will be considering, AC/ is by far the largest term involved. Just because we do not
usually calculate its value does not mean it is not important (see Chapter 8 for some
cases where it is calculated).

Since equilibrium states are unchanging in any respect, they evidently have a
constant or fixed energy content, and in fact the assertion or supposition that this is
the case is at the heart of the First Law of thermodynamics. Before discussing this,
let's have a look at how energy may be added to or taken from systems.

4.5. ENERGY TRANSFERS

Systems are capable of different amounts of work at different times, so that evidently
energy is capable of entering and leaving systems. We have, of course, implicitly
assumed this in our previous discussions and definitions. In classical thermodynamics
only two ways of changing energy contents are considered—by adding or subtracting
heat or work.

• Heat (q) is the energy that flows across a system boundary in response to a
temperature gradient.

« Work (w) is the energy that flows across a system boundary in response to a
force moving through a distance (such as happens when a system changes
volume). '

These statements suffice to describe what heat and work are, but do not provide a way
of measurement. In fact it has proved quite difficult to provide a rigorous definition
of heat in this respect. According to the experts (e.g. Canagaratna, 1969) there is
really only one. Heat is that part of any energy transfer that is not accounted for
by mechanical work (which has a satisfactory definition: force x distance), and
assuming that other forms of energy transfer are negligible. That is,

This turns out to be not very different from the way we actually do think about
heat in thermodynamics, as when we subtract a PAV term from a calorimetry result,
and describe the remaining energy term as heat.

1 Strictly speaking we should introduce q and w for total quantities of heat and work, and q and w for
the heat and work per mole of substance affected. As we rarely use these quantities, we follow many other
books on the subject in using one symbol for both. Thus in this chapter q and w appear in equations with
AU, and refer to total heal and work, but in Chapter 8 we calculate values of w in Joules per mole.
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FIG. 4.4. The pond analogy for the First Law.

Heat and work are therefore not separate entities as such, but forms of energy
which are transferred in different ways. An enlightening analogy has been offered by
Callen (1960): in Figure 4.4 we consider the water in a very deep pond (the amount
of water is thus very great but finite and in principle could be exactly measured) to
correspond to the internal energy U of a system. Water may be added and subtracted
from the pond either in the form of stream water (heat) or precipitation/evaporation
(work). Both the inlet and outlet stream water can be monitored by flow gauges, and
the precipitation measured by a rain gauge plus knowledge of the surface area of the
pond. Evaporation would be trickier to measure, but we may assume either that it is
negligible or that we have a suitable measure for it. Now if the volume of stream inlet
water over some period of time is q, and the stream outlet water q0, the rain wr and
the evaporation wc, then if there are no other ways of adding or subtracting water,
clearly
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where AU is the change in the amount of water in the pond, which could be monitored
bv a level indicator as shown. Thus

where

and

Once water has entered the pond it loses its identity as stream- or rain-water.
The pond does not contain any identifiable stream-water or rain-water, simply water.
Similarly systems do not contain so much heat or work and the terms "heat content"
and "heat capacity" are misleading if considered literally. They are hold-overs from
the days of the caloric theory, when heat was thought to be a fluid that flowed into
cooler bodies from hotter ones. It seems to be intuitive to think of heat as something
that systems have, while work is something that systems do, but this is wrong. More
than 100 years have passed since Joule demonstrated the equivalence of heat and work,
but it seems we often still have difficulty in realizing the implications of this. Just as
the water level in the pond can be raised from A to B either by stream water alone or
by rain water alone, Joule showed that a temperature rise in a water bath of so many
degrees can be caused either by heating (transferring energy due to a temperature
difference) or by thrashing a paddle wheel about in it (transferring energy by force
through distance, i.e., by deformation of the system boundary).

Another implication or assumption in our pond analogy is that water is conserved,
i.e., if it disappears somewhere it must reappear somewhere else. The same proposition
regarding energy is known as the First Law of thermodynamics.

4.6. THE FIRST LAW OF THERMODYNAMICS

A concise statement of the First Law is energy is conserved. This includes systems
at equilibrium, which have stable energy contents or levels, but more to the point, it
includes energy transfers.

If U is the energy content of a system, and it may gain or lose energy only by
the flow of heat (q) or work (w), then clearly, as in the pond analogy, AU must be
the algebraic sum of q and w. However, we must have some convention as to what
direction of energy flow +q, —q, +w and — w refer to. In the pond analogy we assumed
implicitly that addition of water to the pond was positive, whether as stream water
or rain water. Thus heat added to a system is positive, and work done on a system
is positive. This convention may be represented as in Figure 4.5a, and is what we
call the "scientific" convention—scientists like it because it is internally consistent.
It results in the equation previously found,

Another convention (Figure 4.5b) is to say that heat added to a system is positive, but
that work done by a system is also positive, or that work done on a system is negative.
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FIG. 4.5. The two commonly used conventions for the sign of q and w, leading to two
formulations of the First Law.

This we call the "engineering" convention, because engineers prefer to think in terms
of heat engines, and an engine doing work is something positive. This results in the
relation

Naturally, other conventions are possible (two others, to be exact) but fortunately
they are not widely used. In this text we will use the scientific sign convention: any
additions of matter and energy to the system are positive in sign and all losses are
negative.

Please note that we have not demonstrated the truth of the First Law. It is in fact
not capable of "proof." The assertion that energy is always conserved is based on
the experience and observations of countless observers over many years, and has
become a cornerstone of science, but the fact that it has never been known to fail



FIG. 4.6. Irreversible expansion of a gas from external pressure Pextt to Pext2. During
expansion, external pressure is fixed at P1 by the weight of the piston.

does not constitute a proof of its correctness. Whether it is in fact a "law" is debated
by philosophers, but whatever it is called, an understanding of the relations between
energy, heat, and work is the vital first step in learning thermodynamics.

4.6.1. Work

We have made the point, demonstrated by Joule long ago, that energy may leave and
enter systems either as heat or as work. This is sufficient to demonstrate that q and w
are not state variables and hence that dq and dw are not exact differentials. However,
it will be best to elaborate on this point somewhat and at the same time increase our
understanding of these terms.

There are many configurations for the operation of moving a force through a
distance, depending upon whether electric, magnetic or gravity fields, surface tension,
and so on are involved. As stated earlier, though, we may consider for now that these
sources of work are not present, leaving only the most common sort of work in
geological environments, pressure-volume work.

Consider a thermostatted piston-cylinder arrangement as shown in Figure 4.6.
The cylinder is fitted with a number of devices which can hold the piston in position
at various levels. When the piston is held stationary, the pressure of the gas, Pint,
is of course exactly balanced by the pressure exerted by the stop devices. Perhaps
more exactly, the force exerted by the stops plus the force exerted by the piston mass
divided by the area of the piston gives a pressure (Pext) equal and opposite to the gas
pressure when the piston is held still. If the stops are removed, then all of a sudden
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FIG. 4.7. External pressure (Pext) versus volume (V) plot for the irreversible expansion of
the gas in Figure 4.6.

Pext is reduced to that produced by the piston mass only, Pint > Pext, and the piston
moves up until it encounters more stops—WHAP!—and all of a sudden Pjrat = Pext

once more, though at a different (lower) pressure (the experiment has been arranged
such that the gas pressure is 100 pressure units at the upper stops, which is position 2,
and 200 pressure units at the lower stops, position 1). Real gases tend to cool during
expansion, so some heat will flow from the thermostat into the cylinder.

If the piston is well-lubricated and well-constructed, we can ignore friction effects,
and the pressure-volume history of the change can be illustrated as in Figure 4.7. The
external pressure during expansion is constant, since it is fixed by the mass of the
piston. The work done during the expansion is2

where A is the area of the piston and A£ the distance it travels, which is seen to be
the area under the path of expansion or expansion curve in Figure 4.7. If we repeat
the process, but this time we place a weight on the piston (Figure 4.8), exactly the
same thing will happen, but as shown in Figure 4.9, more work is done because a
greater mass was lifted through the same volume.

Note that the negative sign in equation (4.2) is required to comply with our
sign convention—that energy or work added to a system is positive. If a system is

2The work done will also include a term (^mv2) for the work done in accelerating the piston. If we let
the stops be part of the system, this kinetic energy is returned to the system at the upper stops, and can he
neglected. [Kivelson and Oppenheim (1966)].
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compressed at constant pressure so that V2 < Vi and work is done on the system,
then the negative sign is required to maintain w > 0.

If another weight is added for the next expansion, we may have a total weight that
is too great to allow the piston to reach the upper stops (position 2) and it will come
to rest (equilibrium) somewhere in between. Then if the second weight is removed,
the piston will proceed upward again as before, giving an expansion path as shown
in Figure 4.10. Then if we use a lot of weights and remove them one at a time, letting
the piston come to rest after each step, we will get a path such as shown in Figure
4.11.

Clearly we are approaching a limit of maximum work obtainable from the ex-
pansion of our gas, and clearly too, the maximum will be when we take an infinite
number of infmitesimally small incremental steps from Vi to ¥2.

Since we have been letting the piston come to rest or equilibrium after every
weight removal, in the limit we will have an infinite number or continuous succes-
sion of equilibrium states, giving us another example of a reversible process. In this
particular case the name "reversible" is particularly appropriate since at any stage in
the expansion the direction of movement can be reversed by changing the external
pressure infinitesimally.

In the limit when infinitesimal increments of V are taken, the work of expansion
is (see Figure 4.12)

Here we need make no distinction between Pcxl and Pint because they are never

FIG. 4.8. Irreversible expansion of a gas from external pressure Pext, to Pext,2- During
expansion, pressure is fixed at P".
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FIG. 4.9. External pressure (Pext) versus volume (V) plot for the process in Figure 4.8.

FIG. 4.10. External pressure (Pext) versus volume (V) for a two-stage expansion of gas.
After an initial expansion at Pext, some weight was removed from the piston and the expansion
continued at Pext.
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FIG. 4.12. Pressure versus volume for the reversible expansion of a gas. The limiting case
where an infinite number of constant Pext steps are taken, giving the maximum area under
the curve. During the expansion, internal pressure and external pressure are never more than
infinitesimally different, or Pint = Pext at all times.

78

FIG. 4.11. External pressure (Pext) versus volume (V) for a multi-stage expansion of gas.
After each constant (—Pext) expansion, some weight was removed, allowing a further expan-
sion.
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more than infinitesimally different in our continuous succession of equilibrium states.
Again, note the negative sign required to comply with the scientific sign convention.

Since the end positions 1 and 2 of our expansion in every case consisted of our
gas at stable equilibrium at a fixed P and T, then according to the First Law there is a
fixed energy difference AU between the two states. We have gone to some length to
show that there is no fixed "difference in work," or work available from the change
from one state to the other. Thus we are led to believe that the amount of heat flowing
into our thermostatted cylinder must at all times, once equilibrium was established,
have compensated for the variations in work performed, giving a total q + w the same
in every case. We could verify this of course by making calorimetric measurements,
but this is basically what Joule and many other workers have already done.

Our intent here is not so much to illustrate the constant energy change between
states, but that this energy change, while accomplished by heat and work, can be
made up of an infinite variety of combinations of heat and work. When the process is
made reversible, we get the maximum work of expansion, and this will be given by
equation (4.3), but even so, we are unable to calculate this amount of work (evaluate
the integral) without more information.

This is because P dV is not an exact differential.3 We pointed this out in Chapter 2,
where we spoke of differentials in the form x dy not being exact. We showed (Figure
2.7) that another way of saying the same thing is to say that the path of integration
of x dy in x—y space is not fixed, there being no functional relation given between x
and y. Exactly the same comments apply to the physical parameters P and V.

Taking the differential form of (4.3), for example, although we may equate P dV
with a certain quantity of work,

that quantity of work is not fixed; we can write the integral (4.3), but we cannot
integrate it to get the total amount of work without specifying P as a function of V.
The simplest such function that P can be is P = constant, allowing integration, and
giving

in a constant pressure change of volume, as in equation (4.2).
The next simplest function relating P and V is the ideal gas equation, P = nRT/V,

giving, on integration of (4.3) from Vi to V?.,

for the work performed during an isothermal (note T was held constant during in-
tegration), reversible volume change of an ideal gas. This equation would give the

3Note, however, that P is an integrating denominator for Dwrev.
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work done in our example (Figure 4.12) provided that the gas in the cylinder was an
ideal gas. Real gases have different functional relationships between P and V, often
quite complicated, and this function would have to be known for the particular gas
used to evaluate (4.3).

Another thing worth emphasizing is that in any real or non-reversible expansion,
as shown in our example, the work obtained is less than the maximum obtainable
(from a reversible expansion). Thus in general, rewriting (4.3),

where the < part of the < sign refers to any irreversible change in V. Thus for an
irreversible expansion from V] to Va, (4.6) becomes

This can also be expressed as

or

For the opposite case of compressing the gas from 2 back to 1, the inverse series
of steps can be employed. Thus, if at position 2 a heavy weight is placed on the
piston, it will whap down to the stops at 1 describing a path such as in Figure 4.13.
Obviously, much more work has had to be done in compressing the gas than we
obtained, even in the reversible case, from expansion. However, by adding a larger
number of smaller weights one at a time we can reduce the amount of work required
for the compression, gradually approaching the stable equilibrium curve from above,
rather than from below as before. In the limit, of course, we find that for a reversible
compression the work required is exactly the same as the work available from a
reversible expansion.

4.6.2. Heat

It might be expected that since

and

perhaps there is a very similar story for the heat transfers in the gas expansion cases
we have been considering. That is, perhaps
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FIG. 4.13. External pressure (Pext) versus volume for the irreversible compression of gas at
constant Pext-

where Z is some property of the gas. Then just as P is an integrating denominator for
wrev,T would be an integrating denominator for qrev. This is indeed the case (except
for a sign change), but we must await the development of the Second Law, which will
introduce us to entropy (—Z in the above equation). We can then attempt a discussion
of the relation between the flow of heat in a calorimeter and the entropy, somewhat
analogous to the discussion above on the relation between work and volume changes
(§5.2.3).

4.7. THE MODEL AGAIN

In this chapter we have discussed some veiy practical operations. There is nothing
particularly theoretical about gases expanding in cylinders and performing work. It
happens countless times every day all over the world. Equations such as (4.2) belong to
the real world. However, the result of the limit-taking, when the number of expansions
or compressions in a single cycle is increased without limit, is a reversible process
that belongs not to the real world but to the thermodynamic model.

The equation
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is an extremely simple one, considered mathematically. If P can be expressed as an
integrable function of V, then the integration is carried out and wrev is determined
for a given change from Vi to V2. This presents absolutely no conceptual difficulties
(beyond those in understanding calculus) if P and V are mathematical variables.
However, if P and V represent measured pressures and volumes from a real system
in the real world, then even if P has been determined as an integrable function of
V for a number of individual measurements of P and V, the integration represents a
variation of P with V which is impossible to carry out in the system. It is however
simple to carry it out in the mermodynamic model, which is essentially mathematical
and in which P as a function of V is simply a line in P - V space. This line represents a
reversible process, a perfectly simple and understandable facet of the thermodynamic
model.

As we said in Chapter 3, reversible processes are represented by mathematical
functions that have physical parameters as variables. The fact that they are continuous
functions means that the processes they represent cannot be carried out in the real
world.

PROBLEMS

1. Calculate the value of R, the molar gas constant, from the ideal gas equation
(PV = nRT). See Appendix A for the answer.

2. Show that Jbar"1 is a volume term, and calculate the conversion factor
from J bar~' to cm3. See Appendix A.

3. Verify that Vo/(V100 - V0) is about 2.73 (actually 2.7315) (§4.3.1), using
the ideal gas law.



5
THE SECOND LAW OF THERMODYNAMICS

Arguments based on heat engines have little appeal to chemists.

McGlashan (1979), p. 111.

5.1. FALLING BRICKS

We have seen that the first great principle of energy transfers is that energy is con-
served. The essence of the second principle or law has to do with energy availability,
or with the "directionality" of these transfers (processes). In other words, it is ob-
served that once the constraints on the beginning and ending states are decided upon,
processes can only proceed spontaneously in one direction between these states and
are never observed to proceed in the other direction unless they are "pushed" with an
external energy source.

For example, a brick can fall off a table onto the floor. The potential energy
it has on the table is converted to kinetic energy and then to a certain amount of
heat and mechanical deformation (work) upon impact. According to the first law, the
energy expended on impact will exactly equal the energy the brick had on the table.
Bricks have never been observed to spontaneously cool themselves, convert this heat
energy into kinetic energy, and fly from the floor to the table. Such events could
exactly satisfy the first law, which clearly has nothing to say about why they don't
happen—just that if they did happen, energy would be conserved. It would obviously
be very useful to have a method of predicting which way a given process would go
under given conditions. It would open the way towards systematizing chemical and
mineral reactions, for one thing. We could start to predict which minerals would form
under given metamorphic conditions, for example, and perhaps even predict their
compositions, because all such changes are simply processes that can be considered
to go from one equilibrium state to another.

Possibly the greatest single step forward in the history of the development of
thermodynamics was the recognition and definition of a parameter, the entropy, which
enables such predictions and systematizations to be made.

5.2. THE KELVIN AND CLAUSIUS FORMULATIONS

The traditional way to approach the subject is to state the Second Law as it has been
deduced on the basis of years of experience, and then show through use of the Carnot
cycle the logical consequences (such as the existence of the entropy and an absolute
scale of temperature). Two logically equivalent ways of stating the Second Law are

• The Kelvin formulation:
It is impossible to construct an engine that, working in cycles, shall pro-
duce no effect other than the extraction of heat from a reservoir and the
production of work.

83
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For example, you cannot have an engine that will extract heat from the
sea and use that energy to power a ship across the ocean, leaving a trail of
icebergs in its wake.

• The Clausius formulation:
It is impossible to construct an engine that, working in cycles, shall produce
no effect other than the transfer of heat from a colder to a hotter body.
For example, you cannot even heat the cabins on the ship by extracting heat
from the sea. This slightly simpler formulation eliminates considerations
of heat-to-work transfers.

We have regretfully eliminated at this point a discussion of Carnot cycles (a
combination of reversible adiabatic and isothermal expansions and compressions of
a gas or any other "working substance" arranged in cycles and producing work),
which leads to the result that

for any heat engine operating reversibly, absorbing an amount of heat q\ at temperature
TI, losing an amount of heat qi at a lower temperature T2, and doing some work in
between. Two fundamental conclusions can be deduced from this equation. Neither
is immediately obvious, unless you are already steeped in the subject.

5.2.1. Absolute Temperature

The first conclusion is that a Thermodynamic temperature scale exists which has fixed
ratios of temperature between any two equilibrium states. Fixing the temperature of
any one equilibrium state then fixes the temperature of all others. This follows from the
fact that q\ /<& is a fixed number for any two equilibrium states, being independent of
the size, shape, or working substance of the (hypothetical) Carnot engine used. These
conclusions follow from the derivations we have omitted.

All that need be done is to measure q\ and g2 for a Carnot cycle operating between
any two equilibrium states having different temperatures, then arbitrarily choose a
number for the temperature of one of these states. The temperature of the other state
will then be established, and these two temperatures establish a linear scale according
to which all other equilibrium states can be measured with a suitable thermometer.

Unfortunately, real Carnot cycles do not exist, so we cannot measure q\ and
Q2, although approximate values could be determined by expending great efforts.
Fortunately, we don't have to do this, because the ratio Vi/Va or P\jPi of an ideal
gas at two equilibrium states 1 and 2 is also equal to T\jTi, and hence to q\/q2- Ideal
gases don't exist either, but the ratio (V!/V2 or P\/P2) can be measured for real
gases at various pressures and the value for P = 0 (where it will be equal to that of
an ideal gas) determined by extrapolation. This is the way the ratio q\/q2 or T\jTi is
determined.

When the two equilibrium states are the freezing and boiling points of water,
this ratio is about 1.3661, a perfectly fixed, if imperfectly known number. If the
temperature of the ice point is called 1000° A (degrees Anderson), the steam point is
then 1336.1°A, and this is a valid thermodynamic temperature scale. However not
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many scientists use °A, perhaps because it is felt that for historical reasons it would
be much better to have exactly 100 divisions between the ice and steam points. Thus
with

and

it turns out that T\ - 373.15 and T2 = 273.15. Since the triple point of water is 0.01
degrees above the ice point, 273.16 was therefore chosen as its temperature, fixing
the Kelvin scale, as discussed in the last chapter.

Clearly, any number of thermodynamic scales exist, but one must be chosen, and
the Kelvin scale is that one. Equally clearly, any number of empirical scales exist
that are not thermodynamic scales, since for them q\ /q2 i- Ti/T2. For example, the
Celsius scale is not a thermodynamic scale since 100/0 is not even close to 1.3661.

5.2.2. The Entropy

The second fundamental conclusion following from

is that

for a single reversible cycle, or

for a number (z) of linked reversible cycles.
This is sufficient to suggest the existence of a state variable equal to (^)rev, since

this function is conserved in heat engine cycles carried out reversibly. This new state
variable is of course the entropy, S, where

for a single reversible process represented by the A, or more generally,

and

Then, after invoking one of the formulations of the Second Law, it can be shown that
for irreversible processes
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and in general
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Equation (5.4) can also be written for summations of steps, which can of course
be made as small as we like. Thus (5.4) becomes

For a single step at temperature T, this is essentially the same, except for a sign
change, as equation (4.9) in §4.6.2.

This commonly cited result (5.4 or 5.5) is one of the many ways of looking at
sntropy, and not a very easily understood way in view of the unfamiliar nature of
reversible heat engines. It does follow though from (5.4) or (5.5) that if q = 0 (i.e. for
adiabatic processes)

and here we seem to have something much more useful. According to our deriva-
tion, the "equals" sign applies to reversible processes and the "greater than" sign to
irreversible or spontaneous processes. Thus, under adiabatic conditions (q = 0), S
can apparently be used to tell in which direction a given process will be spontaneous
(A —> B or B —> A). A —>• B will be spontaneous and B —> A impossible if
SB - SA > 0, or SB > SA, and vice versa. Equation (5.6) is often referred to as the
Entropy Law. Thus we have defined a state variable that performs the function we
were looking for—it gives us the "directionality" of processes. According to the equa-
tions we have so far, though, we have no way of measuring it apart from reversible
processes, and it is only really useful in adiabatic processes, so we apparently have
some way to go before it is a very practical quantity.

5.2.3. Examples of Entropy Change

To make expression (5.5) more understandable, let's consider the freezing of water and
melting of ice near 0°C. When one gram of water freezes spontaneously (irreversibly)
at 272 K, about 333.5 Joules of heat are liberated (q = —333.5 J), or according to
(5.5),

or

and when one gram of ice melts spontaneously at 274 K, about 333.5 joules are
absorbed (q = 333.5 J), or
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or

At the equilibrium temperature of 273.15 K no calorimetric measurement is possible,
but the equilibrium AS has been determined to within 1% by two measurements of
irreversible processes.

As another example, consider the problem of determining the change in entropy
of a substance X between 300 K and 350 K at one bar. We will suppose that the
heat capacity of X is constant at exactly 1 J K"1 g"1, so that 50 J are required to
heat one gram of X from 300 to 350 K, 25 J to heat it from 300 to 325 K, and so
on. It follows that on heating one gram of X from 300 to 350 K in a thermostat (of
essentially infinite heat capacity) at 350 K,

and on cooling back to 300 K in a similar thermostat at 300 K

from which we conclude that

or

which means we have determined the A 5 to about one part in six with two measure-
ments. To improve our precision, we could double the number of measurements, and
heat and cool in two stages each. That is, because

then

or

Given enough patience, we could make 50 measurements at one degree intervals, in
which case

Clearly we are approximating an integral, which in a later chapter we will find is

or
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which in this case becomes

This type of calculation is similar to the one we did for work using the piston-
cylinder arrangement, in the sense that we approach the reversible process by taking
more and more steps. We reiterate that the physical operation implied by the integral
f(Cp/T) dT is a reversible process, which is impossible. This doesn't bother us,
however, because the integration involves surfaces in the thermodynamic model, not
physical reality. It is helpful though to see, as above, what sequence of physically real
measurements could lead to the same result.

It has now been demonstrated how considerations of work and heat changes in
cyclical processes combined with a statement of the Second Law lead to the devel-
opment of a quantity that can distinguish possible from impossible processes under
certain conditions. The next step is to combine this with a statement of the First Law
to get our first look at a "fundamental equation".

5.3. THE FUNDAMENTAL EQUATION

To begin the development that leads to making S more useful, consider again equations
(5.2) and (5.3):

and

or

and at constant T,

In Chapter 4 we saw thai

or, at constant P,

Combining these equations ((5.8) and (4.5)) with the First Law

we have
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we have

or its molar form
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This is probably the single most important: equation in Thermodynamics, and for
this reason is called the fundamental equation.1 It is a truly remarkable equation, the
understanding of which is the central theme of this book. This understanding is partly
on a theoretical, conceptual level and partly on a more practical level, in the sense
that a great deal of data collection and manipulation of equations is aimed directly at
allowing the integration of this equation.

At this point we will simply outline some relationships of immediate use, leaving
more detailed discussion of this equation for later chapters. From (5.10) and (5.11)
we see that

and

or

and

And finally, recall that we have shown that for adiabatic (q = 0) processes,

We placed no restriction on whether or not work was done during this process, so
we derived this relation for a closed, perfectly insulated system but not necessarily
an isolated system. Isolated systems have adiabatically insulating walls as well, so
evidently (5.6) atrolies in isolated systems as well as closed, adiabatic ones.Lll^ilLlJ' (

Thus

The subscripts U,V mean that the process that AS refers to takes place at constant
energy content and constant volume, which means that no heat or mechanical work
flows in or out; i.e., the system is isolated. Equation (5.16), which is a product of
deduction from the Second Law in this chapter, is used as a postulated beginning
point for deductions in Section 5.4.

1 It is actually one of a number of equally fundamental equations, to be more fully discussed in Chap-
ter 14.
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The Meaning of AS

We pause here to point out once again the presence of the concept of metastable
systems in what we have just written. Equation (5.16) refers to a process taking place
adiabatically between an initial state and a final state. For S to be defined in both states,
both states must be equilibrium states. If the initial state was a stable equilibrium
state at a given U and V, no spontaneous change could possibly take place. Therefore,
the initial state must be in our terms a metastable equilibrium state, having at least
one constraint in addition to U and V. When this constraint is released, the system
spontaneously changes to the final equilibrium state, which has the same U and V as
the initial state, but no added constraint. An example might be some water and NaCl
held separately in an isolated system. The fact that they are separated constitutes the
added constraint. On releasing this constraint2 the salt dissolves (resulting in some
change in P and T), and the system reaches stable equilibrium at the same U and V.

5.3.1. The Sign of Entropy

Although the recognition by Clausius and others that the quantity / Dq/T was
uniquely important was an all-important step in the development of thermodynamics,
it is a pity, in retrospect, that it was used to define a state variable in the sense of
equation (5.2). That is, if equation (5.2) were

instead of

a small blight on the symmetry of thermodynamics would be removed. This will
appear in the next section, when we will see that the entropy is just one of a number
of state variables that can be used under given conditions to tell which way processes
will proceed spontaneously, but they all have the opposite sign to entropy because of
equation (5.2). That this is the case is thus a sort of "historical accident."

5.4. THERMODYNAMIC POTENTIALS

Consideration of idealized heat engines (largely omitted), combined with a statement
based on experience (the Second Law), allows us to define a parameter, the entropy,
which has the useful property of always increasing in adiabatic spontaneous processes.
We would like to have similar parameters for other kinds of processes, i.e., to have

2Releasing the constraint would be a neat trick if the system was truly isolated. However, all we are
really considering is a comparison between the initial and final states of the system, which have the same
U and V. What happens in between doesn't matter. In other words, the isolation could be broken, the
constraint removed, and isolation restored at the same U and V.
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directionality parameters for processes that are not necessarily adiabatic. There are
several of these, and there are many ways to derive them, once the "entropy law"
(equation (5.6) or (5.16)) has been established. In this section we derive them using
the Legendre Transform, introduced in Chapter 2, not only because of the elegance
and simplicity of the procedure, but because it helps to show that all the directionality
parameters are alike—they are like the various facets of a single cut stone. We also
wish to show in what sense they are potential quantities, i.e., why they are called
thermodynamic potentials.

5.4.1. Duhem's Law

We should, however, introduce two simple concepts to smooth the way. The first of
these is the fact that a system affixed composition will have its stable equilibrium state
determined by fixing a maximum of two state variables. In a simple mechanical system
such as illustrated in Figure 3.1, there is only one way of changing the (potential)
energy of the ball (by changing its elevation), so only one variable (elevation) need
be fixed to fix the energy state of the system. In thermodynamic systems, there are
two ways of changing the energy level (work and heat), so two variables must be
fixed. Stable equilibrium is stipulated, because, as we have seen, metastable states
have extra constraint variables.

This is referred to as Duhem's law or principle (and incidentally is the origin of
the "2" in the phase rule). For example, all of the properties of a system at equilibrium
will be fixed at a stated temperature and pressure, or temperature and volume, etc. If
the system is capable of changing composition, then of course there are additional
compositional variables. The law refers to systems of fixed composition and only the
usual thermodynamic variables are included (ignoring electrical and magnetic fields,
etc.). The word "maximum" occurs to take care of those cases where, due to the
existence of more than one phase, the system is univariant or invariant, as we will
discuss in connection with the phase rule.

5.4.2. Potentials

The second concept we should be familiar with is that of potentials, or potential quan-
tities. It will be best first to introduce the concept in the sense in which it is used in
mechanics, and then see how it can be generalized and used in thermodynamics. Po-
tentials are also used in other areas, such as those involving force-fields (electrostatic,
magnetic, etc.), hydrodynamics, and so on, but we will consider only mechanics. In
mechanics, a body's potential is identified with its potential energy. A body has a
potential or potential energy because a force is acting on it that is capable of causing
the body to move. The potential energy is a function of the position of the body, its
mass and the force acting on the body.

The force is generally a vector quantity, but if we restrict ourselves to one di-
mension, the functional relationship between the potential energy of a body Ep, its
position r, and the force F is
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Since the potential Ep is a result of the force F and will decrease if the body is allowed
to move, the terms are given opposite signs. Thus one definition of force could be
that it is (the negative of) a space rate of change of energy, and the functional form
in equation (5.17) is common to all potential quantities. Any change in the potential
will appear as work, either done on the body to increase the potential, or by the body
in lowering its potential. Thus

where r\ and r^ are two positions of the body, and work is considered negative when
done by the body.

In the case of a brick of mass m on a table of height h above the floor, the potential
Ep is thus

where g is the gravitational constant, mg the total force on the brick, and h is measured
from the brick to the floor. If g is considered constant

and

or

If we have a very high table, we may need to consider changes in g as the brick falls.
Simply from the form of equation (5.1) and recalling Chapter 4, one might at this

point wonder whether the internal energy, U, is some kind of potential, since

and

so that if S and V could be considered analogous to distances, T and P would be
analogous to forces. We will see that this is the case.

Evidently thermodynamics is more complex than mechanics due to the existence
of energy transfers in the form of heat as well as work, so that analogies can be
dangerous. However, it will be useful to recognize that among the thermodynamic
extensive variables there are a number that are clearly energy terms, such as U and its
transforms, and others that have been termed "configuration properties," notably S,
V, and mole numbers (n), or composition terms generally. Configuration properties
are those that depend on the internal arrangement of a system (it will do no harm to
leave this definition somewhat vague for the present). That V and n are configuration
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properties is more or less evident, but that S is also a configuration property will
only be clear after the discussion in the next chapter of its basis in the statistics of
the particles making up a system. These configuration properties can reasonably be
thought of as the more complex analogies of the simple linear configuration property
distance (h or r) in our discussion of potential energy.

That the thermodynamic intensive variables P and T (and in fact all the other
intensive variables) can be thought of as analogous to mechanical forces is made
reasonable by remembering that at equilibrium, no gradients in these properties exist.
Therefore, gradients, either within the system or between the system and its surround-
ings, are an impetus for change, for energy transfer, just as force is an impetus for
change in position of the brick. We need not insist too much on the analogy, but it is
useful to have this mental classification of thermodynamic variables, and to remember
that thermodynamic potentials are energy terms having the form

^(energy or potential)
— = intensive variable (thermodynamic force)

(/(configuration)

Potentials are of particular interest in their extremum values, that is maxima or
minima, since this indicates a sort of limit on the system concerned. In the case of a
ball rolling (without friction) in a parabolic trough that we considered in Chapter 3
(Figure 5.1),

and

where K is a constant that depends on the shape of the parabola as well as the mass of
the ball, and r is the horizontal distance of the ball from the apex (the lowest point)
of the parabola.

In thermodynamics we are generally interested in stable or "most stable" con-
figurations of systems, corresponding to lowest energy positions. According to the
calculus, an extremum (maximum or minimum) is attained when

or, more simply,

In the case of the rolling ball,

i.e., when the ball is at the bottom of the trough. We know it is a minimum rather than
a maximum because
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FIG. 5.1. A mechanical analogy for stable (or metastable) equilibrium states (from Figure
3.1), emphasizing the fact that the potential energy of the ball achieves a minimum at the bottom
of the valley. This is expressed by the relation dEp = 0 (Ep is at an extremum at equilibrium),
which is closely analogous to thermodynamic relationships such as dGr,p = 0 at equilibrium.

which says that Ep increases for points on the curve away from the bottom of the
trough. Note, again, that the expression dEp = 0 has no necessary connection with
infinitesimals. It says simply that at the bottom of the curve, the tangent to the curve
is horizontal, and that therefore no matter what the size of r (measured along the
tangent), Ep will not change.

Keep this analogy in mind when we discuss equations such as dGx,p = 0, dUs,v =
0 in the following sections. When we say that G, U, and the other potentials achieve
a minimum at equilibrium, it is exactly this "ball in trough" analogy that gives you
the best mental picture of what we mean.
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5.4.3. Thermodynamic Potentials

To generalize somewhat about what we have said concerning potentials, it appears
that a potential is a capacity for effecting change, usually a capacity for doing work.
In fact, in mechanics, the change in potential is a measure of the work done. When
the potential is minimized, the system is in a stable position. For example, the rolling
ball in Figure 3.1 is a simple mechanical system having a variable potential energy
that is a measure of its capacity for change or for doing work. When this potential is
minimized at its lowest level, the ball is in its most stable position at the bottom of
the lower valley and can do no work.

It would clearly be a wonderful thing to have analogous potentials for chemical
systems. A potential for a chemical system would tell us which of two equilibrium
states was the more stable, and would thus be the "directionality" parameter we have
been looking for. A system could change spontaneously in the direction of decreasing
such a parameter, but never in the other direction, any more than the ball could
spontaneously roll uphill. This is exactly what we have already developed in the
entropy, but so far it only works for adiabatic processes.

5.4.4. Entropy as a Thermodynamic Potential

To begin the development of other directionality parameters, we must describe our
entropy function a little more completely. This statement about the entropy can also
serve as another statement of the Second Law, and is paraphrased from Callen (1960).
It contains some aspects of the entropy that we have not explicitly stated before, and
reflects Callen's "postulational" approach to thermodynamics.

There exists a homogeneous first order state variable, the entropy, which
for isolated systems (those having constant U and V) achieves a maximum
when the system is at stable equilibrium. Entropy and its derivatives are
single-valued, continuous and differentiate functions of the other state
variables. Entropy is a monotonically increasing function of the energy U.

For those who skipped Euler's theorem in Chapter 2, the expression "homoge-
neous first order" in this definition simply means that we are defining S rather than
S (i.e., total entropy rather than molar entropy). The fact that the entropy achieves
a maximum rather than a minimum is the result of a sort of historical accident, as
discussed in §5.3.1. It disturbs the "symmetry" of the thermodynamic potentials, since
all the others achieve minima, but this creates no serious problems.

We define the new function S 3 and its derivatives as continuous and differentiable
to avoid the possibility that even though maximized, it might be A-shaped rather than
n-shaped. This would be mathematically inconvenient.

The mathematical statement that S achieves a maximum for given, U,V, is

3 We may speak of S either as a parameter or as a function, since all system parameters or state variables
have functional relations with all the others.
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FIG. 5.2. A composite, isolated system. The movable partition is impermeable to matter but
conducts heat. Volume V = V] + V2

and

We inserted the postulate that S is a monotonically increasing function of U to
ensure that Su,v is the only thermodynamic potential exhibiting a maximum; all the
others will exhibit minima. To illustrate this and some other things, let us choose a
system and look at the stable equilibrium surface.

We must choose a system capable of having states other than the stable equilibrium
state, preferably an infinite number of them, and the simplest possible one is probably
the gas and piston arrangement previously used in Chapter 3 and repeated in Figure
5.2. The exterior wall is impermeable to energy and rigid, so the system is of constant
U and V. The piston is movable and can be locked in any position. It is impermeable
to the gas but it conducts heat so that the two sides are at the same temperature.
According to our definition of S, the equilibrium position of the piston (that is, when
the system has no additional constraints and the piston is free to move) is one of
maximum entropy for the system, and any other position has lower entropy. If the
two sides have equal amounts of the same gas, the curve illustrating this will be
symmetrical.

Then if we consider the same situation but with successively greater energy con-
tents U', U", and U'", we will have the entropy-volume curves as in Figure 5.3 since
S increases with U. In Figure 5.4a, the curves of Figure 5.3 are drawn in three di-
mensions, and one can now see that the condition that at equilibrium S is a maximum
for given U,V implies the condition that U is a minimum for given S, V at a given
equilibrium point such as A in Figure 5.4b. (Note that the section here is made at
constant total volume, V = Vi + V2). The curves of Figures 5.3 and 5.4, although
mathematically rather simple, are in one respect very curious. For example, at point
A in Figure 5.4, we see that cPSu,v < 0, i.e., the curve slopes down on both sides,
and we have proposed that our system have these positions by altering the position
of the piston. But experience tells us that the piston will move spontaneously in one
direction and has to be pushed in the other. Thus the curves, which are just lines in
space to the mathematician, have a directionality to the physical scientist.

Thus a system at point A will never spontaneously leave A and go to B (Figure
5.4b); work must be expended to push it there. The system at point B, however, will



THE SECOND LAW OF THERMODYNAMICS 97

FIG. 5.3. Entropy (S) versus volume (Vi) for the system in Figure 5.2 at three different energy
levels, where U'" > U" > U'. Volume V is constant.

travel towards A spontaneously when the piston is unlocked. This difference has led to
the identification of processes like A—»B, which seem to be implied by statements like
cPSu,v < 0, as virtual processes and Reiss (1965) has a particularly lucid discussion
of this point.

The surfaces in Figure 5.4 must not be confused with the stable equilibrium
surface. Only the locus of points at maximum S or minimum U such as A are at
stable equilibrium and this locus forms a contour on the stable equilibrium surface as
shown in Figure 5.5. All the other points on the surfaces in Figure 5.4 are metastable
according to our definitions and would appear at higher U and lower S values having
the same total volume V, such as point B in Figure 5.5.

5.4.5. The Legendre Transform

In practical applications we rarely have occasion to deal with isolated systems, i.e.,
those having constant U and V, although in many discussions of entropy, the system
plus its "surroundings" are tacitly assumed to be equivalent to isolated systems. We
will develop this thought further in a later section.

It turns out, though, to be quite simple to develop additional thermodynaraic
potentials that give directionality information for systems having other types of con-
straints, using the Legendre Transform introduced in Chapter 2. This section follows
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FIG. 5.4. Entropy (S) - Volume (Vi) - Energy (U) plot for the system in Figure 5.2. A
three-dimensional version of Figure 5.3 (a) shows constant-U contours. Total volume V is
also constant, (b) constant U, V contour and constant S, V contour through the same stable
equilibrium point A. Point B represents a metastable equilibrium.

closely the development by Callen (1960).
To start with, we note that in theory we can extract U from the function

and change it from its status as independent variable to dependent variable, thus

Incidentally, although the exact nature of the functional relationship between U, S,
and V is not needed here, it has been discussed in §5.3 as the "fundamental equation,"
equations (5.10) and (5.11).

Internal Energy and Volume

We rely on the discussion and diagrams of the preceding section to convince the reader
that U is a thermodynamic potential exhibiting a minimum for systems of given S
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FIG. 5.5. Stable equilibrium surface in entropy (S)-total volume (V)-energy (U) space for a
simple homogeneous system. The system in Figure 5.2, having a fixed volume, is represented
by the contour through point A. Metastable point B is not on the surface.

and AUSjv < 0 for spontaneous processes in systems having the same S and V
before and after the process. To complete the "symmetry," we might mention that V
is equally well a potential for systems of given U and S.

Now, since we know from §5.3 that (cHJ/<9S)v = T and (<9U/SV)S = -P, it is
clear that Legendre transforms of U(S, V) will lead to functions having more useful
variables of constraint (T and P).

Helmholtz Energy

Transforming first the entropy variable, we have

and V. Thus
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where we use the new symbol A (the Helmholtz work function) to represent the new
function. We could rely here on our previous discussion of these transforms to be
assured that A is a function of T and V, but it will be useful to develop this here as
well.

Since A is defined in terms of state variables, it is itself a state variable, and its
differential is exact. From the definition, the differential dA is

Substituting T dS - P dV for dU,

showing that A is indeed a function of V and T. Since dA is exact,

So that evidently

and

It follows from (5.20) that

and thus A exhibits an extremum at equilibrium for systems of given T and V; it i:
therefore a thermodynamic potential of the kind we have been looking for, i.e., on<
having more convenient variables.

Since A is a transform of U, it will also exhibit a minimum, rather than a maximum
as will the other transforms to be developed from U.

Thus

for spontaneous processes in systems having the same T and V before and after the
process.

Enthalpy

Next, we can transform the other variable in the expression U = U(S, V). Thus we
have a new function, the enthalpy H, where

which, if all goes according to plan, should be a thermodynamic potential for systems
at given S and P.
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To demonstrate this, we write

also

so that

arid

arid

Also HS,P exhibits a minimum, and AHs;p < 0 for spontaneous reactions in systems
having the same S and P before and after the reaction. Thus H is a function of S
and P and is a thermodynamic potential for systems of constant (S, P). We will see
however, that H is much more useful in a completely different context.

Gibbs Energy

Finally, if we transform both S and V, we have the Gibbs free energy function, G,
where

and

and since

then

and

and
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where GT,P exhibits a minimum, and G is a thermodynamic potential for systems of
given T and P.

Thus AGT;p < 0 for spontaneous processes in systems having the same T and
P before and after the process.

We now have five (six counting volume) thermodynamic potentials denned in
terms of U, S, V, T and P for use in various situations, and there are many others that
could be defined. However, we do not even use all the ones we have defined so far, so
there is little point in going on, at least until compositional variables are introduced.

To reiterate, systems at stable equilibrium must be described in general in terms
of two fixed state variables. If two different equilibrium states having the same values
of two state variables exist, then either both are metastable, or one is stable and one
is metastable, and the metastable states in fact should be described in terms of three
or more constraint variables. Usually, however, the third constraint is an activation
energy barrier and is not thought of as a third variable (though in principle it is).
For each choice of the two state variables that the two states have in common, there
exists a function (another state variable) that is minimized or maximized at stable
equilibrium; therefore, by comparing values of this variable one can tell which of
the two states is more stable. Note finally that although we have many potentials, the
existence of the entropy parameter is the fundamental fact that allows us to define
them all. It appears in one way or another in all thermodynamic potentials.

The problem at the moment is that these thermodynamic potentials will have no
"feeling of reality" for a reader new to the subject. That is, what is the entropy or free
energy, how does one measure these things? Only by actually using these concepts
will one become familiar with them. The next section is a first attempt at describing
these potentials in more familiar terms.

5.5. POTENTIALS FOR WORK AND HEAT

As indicated earlier, potentials generally are a measure of how much work systems
can perform, and this is true for thermodynamic potentials as well, with the exception
of entropy. Systems that change at constant U, V can evidently perform no work at
all since there is no change in energy and no volume change, but they can increase in
entropy. The simplest examples involve gases expanding into a vacuum or into other
gases. This type of change shows the effect of entropy in its "pure" form, unalloyed
by changes in energy level. With other types of change, one has changes in U or V
or both, and hence the capacity for doing work, and in each case the thermodynamic
potential shows how much work can be done.

Internal Energy

Recall that

where the equality refers to a reversible process and the inequality to all others (i.e.,
all real, irreversible processes). Combining this with
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we have

Therefore, if dS (hence AS) is zero, q is zero, and all energy change must therefore
appear as work (since AU = q + w). In irreversible isentropic processes, even though
AS remains zero, q is not zero but negative (since qirrev < TAS), and will share
the energy transfer process with w. Thus AU < w for real (irreversible) isentropic
processes; placing negative signs on both sides of the inequality (to give - AU > —w),
we see again that the decrease in U is the maximum work obtainable from any such
process (recall that work, heat, and energy outputs are negative in sign). In other
words, the actual work obtained from any real isentropic process will always be less
than the theoretical limit set by — AUret,. Alternatively we could say that the work
input required to make some real isentropic process go will always exceed the amount
calculated by the ideal quantity AUre«. In either case the efficiency of the real process
is less than the ideal.

We shall see below that the other thermodynamic potentials also serve as upper
limits for the work or heat output of real processes in completely analogous fashion.
This makes intuitive sense—we might expect any real process with frictional losses
and so on to behave less efficiently than a perfectly ideal hypothetical model. This
also is one of the limitations of thermodynamics—it can only predict the maximum
output (or minimum input) of any process and does so using the idealized model of
a perfectly reversible, but ultimately unattainable, process.

Helmholtz Energy

Let us now repeat the above exercise, but this time allow entropy to change at constant
T. Then we have again equation (5.22), and if we are gifted mathematically, we

For constant entropy processes

where the equal sign refers to a reversible process. Thus

if A and B are the beginning and final states of the system. Comparing this with
the equation developed earlier for mechanical potentials we see that for constant S
systems, U is a potential for reversible work. Strictly speaking it is only a potential
for work in reversible processes, but it is sometimes just called a potential for work,
since a decrease in U is an upper limit to the amount of work available (—w) from an
isentropic process (equation (5.23)).

This can be made to seem intuitively reasonable rather than a result of manipula-
tion of equations by recalling that the "upper limit" for work transfer is a reversible
process, and for this case,



where the subscript V is added because if no work is done, then no pressure- volume
type work is done, and AV must be zero in this case. This equation says that A will
decrease in any spontaneous reaction at fixed T and V, which does not surprise us
since this agrees with the definition arrived at through the Legendre transform. We
might emphasize here that we are using the terms "spontaneous" and "irreversible"
synonymously so that the < symbol in equation (5.25) refers both to irreversible and
spontaneous processes.

Enthalpy

As alluded to above, chemical systems undergoing change (i.e., in which reactions
occur) can do various kinds of work. For instance, batteries can do electrical work.
While undergoing these reactions, the chemical system invariably has some change
in volume, because it is most unlikely that the reaction products would have exactly
the same volume as the reactants. This change in volume AV takes place under
some ambient pressure P, so that PAV work is done during the reaction regardless
of whether any other kind of work is done or not—if the reaction is to take place,
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immediately recognize the right hand side of (5.22) as the change in A at constant T,
since

hence

and

Integrating between unspecified limits represented by the beginning and final
equilibrium states,

and hence from (5.22)

for processes at constant temperature. Thus the Helmholtz function, A, is a potential
for (reversible) work in isothermal processes. As before then, the decrease in A is
an upper limit to the work available from isothermal processes. Since the change
in the Helmholtz potential during an isothermal, reversible process equals the total
work (whether mechanical, electrical, or whatever) performed, it is often termed the
Helmholtz work function.

Again, it is perhaps better to be able to see the truth of this by simply looking
at equation (5.24) rather than by agreeing with the logic of the manipulations. Thus
since TAS is the maximum heat that can be transferred in a constant T process
(<7rei> = TAS) then AU — TAS will be the energy available as work in a reversible
isothermal process (w = AU — q); according to our previous discussion, work output
is maximized in this case. We note, too, that if w - 0, then the inequality w > AAT

requires that



Thus enthalpy is a potential for (reversible) work in a constant S, P process, and
will always decrease in spontaneous processes in such systems, only PAV work
being allowed. Again, the fact that H is a potential for (isobaric, reversible) work
is almost self-evident from looking at equation (5.27), since PAV is the maximum
pressure-volume work available and AU is the rest of the energy change available. In
fact, the restriction of constant entropy is not necessary for H to be a work potential.
If AS is not zero, the amount of energy available for work will be reduced but still
maximized in a reversible process.

Gibbs Energy

Finally, since
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it cannot be avoided. This "work against the atmosphere" (or against the confining
pressure, whatever it is) usually is not useful, it simply takes place whether we like
it or not, and at atmospheric pressure is often a rather small part of the total energy
change. While we can decide to eliminate electrical work or other kinds of mechanical
work from our systems, we cannot eliminate this PAV work (unless we consider only
constant volume systems, which is not usually very practical). So while AA<r;v is a

useful measure of total work, we need a measure of the work available other than
this useless PAV work.

Net work other than PAV work can be written

since WPAV = —PAV. Recalling inequality (5.22),

then

Now, since

which looks almost like the right hand side of (5.26). With the additional restriction
of constant entropy, AS = 0, the right hand side of (5.26) is then equal to AHs>p. If
all kinds of work other than PAV work are eliminated, (w + PAV) = 0, then
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and

and by reasoning similar to the foregoing,

Gibbs free energy is a potential for reversible work in constant T-P processes, and
always decreases in spontaneous processes. By comparison with (5.26) it is clear that
G is a measure of the net work or non-PAV work. This function therefore contrasts
with the Helmholtz work function, which measures total work, including mechanical
PV work. The Gibbs free energy is a particularly useful measure of the electrical
or chemical work attainable from a process and is used a great deal with chemical
systems where PV work is often unimportant.

5.5.1. Heat Potentials

Since work and heat are equally valid means of transferring energy to and from
systems, all these potentials can be construed as heat potentials under some conditions,
but only two can be conveniently treated so. Thus, for example, rearranging (5.22)
and substituting a = TAS, w = —PAV, eives

and

and U is a potential for reversible heat transfer in constant volume processes.
However, the only heat potential of much interest is the enthalpy, and in fact we

could say that the only practical interest in the enthalpy is that it is a potential for
heat in constant pressure processes. As before, if the only work is PAV in a constant
pressure process (and remember that at constant P, work is exactly equal to -PAV,
not < -PAV), then

and since

therefore

Thus it happens that in constant pressure processes, the enthalpy change is exactly
equal to q, the total heat flow. Or putting it the other way around, q admits a potential
H in constant pressure processes. Please note that because H is a state variable, AH is
perfectly well-defined between any two equilibrium states. But when the two states
are at the same pressure, it becomes equal to the total heat flow during the process
from one to the other, and in fact AH is in practice rarely used except in these cases
(another kind of use, isenthalpic expansions, is discussed in Chapter 8).
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We should emphasize that strictly speaking, U, A, H, and G should be spoken
of in each case as reversible work potentials, rather than as work potentials, since it
is only in the reversible case that the work is equal to the change in the potential,
analogous to (5.17). Note though, that H is a potential for heat in isobaric processes,
reversible or not.

Finally, we should point out that in fact the products TS and PV are also potential
quantities, and are both the products of a "thermodynamic force" term (T, P) and a
"configuration" term (S,V). Both have dimensions of energy, and are rather analogous
to U in that

where the equality obtains at equilibrium, and the inequality for spontaneous pro-
cesses.

and

These potentials also have interesting properties, but further discussion would
carry our discussion of thermodynamic potentials beyond what we consider useful
for our purposes. The interested reader is referred to Badger (1965) (the source of
much of this material) for a thorough discussion.

This ends the development of the therrnodynamic potentials as indicators of pro-
cess direction and as work and heat potentials. Although apart from textbook problems
the only "direction parameter" used is the Gibbs free energy, and the only heat poten-
tial is the enthalpy, it is interesting and useful in a general sense to see the interrelations
and the overall "symmetry" involved in these parameters. We should now have a rea-
sonable grasp of the theoretical meaning of these terms. It only remains to introduce
the statistical meaning of the entropy for this to be complete. It is also a great help
to know something about how these terms are measured, and we will consider this
briefly, too.

5.6. SUMMARY

We have postulated the existence of a function of state, the entropy, which achieves a
maximum at constant U and V for a system at equilibrium. Using Legendre transforms
we have derived the additional functions of state from the following "fundamental
equation":

Partial derivatives:

extrema:
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The derived functions are:

A = A(T, V) Helmholtz work function

H = H(S,P) Enthalpy

G = G(T, P) Gibbs free energy

With the exception of entropy, each of these functions reaches a minimum at equi-
librium, and each decreases during spontaneous processes (at constant values of the
subscripted variables). Thus each serves as a thermodynamic potential, or as a mea-
sure of the capacity for a system described by the subscripted variables to undergo
some change or process. These thermodynamic potentials also provide a measure of
the maximum work or heat output available from a process:

Thus the maximum work obtainable from real (irreversible) processes is always
less than the theoretical limit given by the appropriate thermodynamic potential for
ideal (reversible) processes. Alternatively, the work or heat input required to make a
real process go is always more than the amount given by the thermodynamic potential
for the ideal (reversible) process. Don't forget, if the > sign in the work equations
looks backwards to you, the sign convention we adopted in §4.6 means that — w is
the work obtainable from a system, so that w > Ax is the same as — w < -Ax, and
is read "—w is less than or equal to the decrease in x".4

Finally, we observed that the enthalpy change of constant pressure processes
exactly equals total heat flow:

5.7. THE ENTROPY OF THE UNIVERSE

Let us introduce a commonly used alternative way of discussing entropy by consid-
ering a pail of water sitting on the floor of your back porch on a winter day. During
the night, the temperature goes down to —2°C, but when you go out onto the porch
in the morning, you find the water has not frozen. You kick the pail, and the water
begins to freeze, and within a short time (a time governed by how fast the heat of
crystallization can escape from the pail) the water at — 2°C changes to ice at — 2°C,

4Because the numerical values of both w and the A-terms can be either positive or negative, it is
easy to become confused by these sign manipulations. If you do, take a numerical example. Thus if AA^
is —1000 J (A decreases by 1000 J), then uvr!0 = —1000 J, i.e., a maximum of 1000 J is available as
work. However, WirrRV > —1000 J. For example Wirrev might be —500 J, where —500 > —1000, i.e.,
500 < 1000.
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i.e., a spontaneous, irreversible process has occurred. However, it is well known that
the entropy of ice is less than the entropy of water under these conditions, so that our
spontaneous process has occurred with

i.e.,

which seems to conflict with our previous derivations that insist that entropy increases
in spontaneous processes. What has happened?

Within the framework of our discussion, what has happened is that we have
ignored our carefully formulated qualification that entropy increases in spontaneous
processes in isolated systems, or at least those for which q - 0. Remember, ASu, v > 0
requires that U and V be the same before and after the process. Since the pail of water
can only freeze if a considerable amount of heat leaves the pail, clearly q is not zero if
the water itself is our system. The two states we are comparing (water at T = —2°C,
P = 1 atm, and ice at T = —2°C, P = 1 atrn) have the same T and P, and do not have
the same U and V. Therefore, in our terms, instead of examining the entropy change
we should examine the Gibbs free energy change involved to see which is the more
stable phase. This is because AG^.p < 0 applies to constant T and P processes. Sure
enough, we find that

under these conditions, indicating that ice is the stable phase, water the metastable
phase, and we released the activation energy constraint on nucleation in the system
by kicking the pail. Another way of looking at the situation is to say, in effect, that
the entropy law

applies to all systems, including our pail of water, but that you must take into account
the entropy change of the system and its surroundings. The "surroundings" of our pail
of water is evidently the rest of the universe, that is, the universe minus the pail of
water. Then, the story goes, although the entropy of the contents of the pail decreases,
the escape of heat from the pail increases the entropy of the surroundings according
to

so that since heat is added to the rest of the universe at a fixed T(—2°C), the entropy
of the "surroundings" must increase. Then it is shown that this increase in entropy
of the surroundings is greater than the decrease in entropy within the pail, so that the
overall AS is positive. This generally leads on to a repetition of Clausius's famous
dictum to the effect that although the energy of the universe is constant (First Law)
the entropy of the universe is tending towards a maximum (Second Law).

Our view is that it is a mistake to use Clausius's brilliant aphorism as a basis
for teaching the concept of entropy, at least as exemplified above, because the "sur-
roundings" of systems is such a vague concept, and its vagueness is transferred to theh
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understanding of entropy. This sort of explanation, following a derivation linked to
physically impossible Carnot cycles, has done much to give entropy its well-known
shroud of mystery.

It may well be true that the entropy of the universe is increasing (see Chapter 6), but
whatever it is doing is quite irrelevant to the study of thermodynamics here on Earth.
The difference between the two ways of looking at AS presented above essentially
involves two different definitions of "the system." In our preferred explanation, the
system is the water in the pail, and its entropy decreases spontaneously. In the other
view, the system is the universe, by implied hypothesis a closed composite adiabatic
system, and the pail a portion of this composite system separated from the rest by
diathermal walls. In the overall system, entropy increases. In this view, the choice of
system is effectively taken from us—we must choose the universe as our system to
preserve the dictum that entropy increases in spontaneous processes.

Needless to repeat, we don't favor this view.

5.8. DIFFERENTIAL INEQUALITIES

We derived equation (5.10) by combining a statement of the First Law

with

and

obtaining

or, dividing by the number of moles in the system,

At first glance, these equations would seem to be restricted to reversible processes,
but it is not difficult to see that they are not. The terms U, S, and V in (5.10) are
all state variables, and hence the change d\J or dU can be carried out any way at
all, and still be equal to TdS — P dV. The inequalities introduced by considering an
irreversible change, i.e.,

and

must cancel out, so that equations (5.10) and (5.11) are quite general. Consider now
equation (5.29)

or its differential form,
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Because G is defined as U — TS + PV, we can write

and

Combining (5.30) and (5.31), we have

or

in which < refers to irreversible processes and = to reversible ones.
We seem to have a contradiction here. First we said that (5.10) could be applied

to any change in U, S and V, reversible or irreversible, and now in (5.32), otherwise
identical, a < sign has crept in for irreversible processes. What's going on? The
difference is that in equation (5.10) we were considering only stable equilibrium
states, where specifying two variables is enough to fix all the system properties. If
the beginning and ending states of a process are both stable equilibrium states, then
equation (5.10) is valid. Such processes are illustrated in Figure 3.3. It doesn't matter
whether the system properties stay on the surface during A —> B (reversible process)
or leave the surface at A and return to it at B (irreversible process), as far as equation
(5.10) is concerned. An example would be changing a crystal of calcite from 25°C,
1 atm to 50° C, 2 atm.

In this chapter, however, we have been considering irreversible processes of a
different sort—those that proceed from a metastable state towards a stable state, like
a ball rolling down a hill. In these cases, the < sign comes in, because the potential
quantities (thermodynamic potentials) are decreasing during the irreversible change.
An example would be aragonite at 25°C, 1 atm changing (irreversibly) to calcite at
25°C, 1 atm.

5.8.1. Controlled Metastable States

If you write AGx,p < 0, the meaning is quite clear: a macroscopic difference between
two quantities, Ginitiai and Gfinai. But the differential form dGr,p < 0 is less clear.
It implies that there is a function G of which dG is the differential. If dG refers to
an increment of a process leading from a metastable state (having three constraint
variables) to a stable state (having two constraint variables), this in turn implies that
we have a functional relationship between G and the three constraint variables. This
should have the form

or
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It is very instructive to consider this function explicitly. To do this we need an appro-
priate system.

Consider a binary alloy of fixed composition in which there are two types of
crystallographic sites (geologists may prefer to consider the K-feldspars, which have
variable ordering of the Al atoms in tetrahedral and octahedral sites). The two types of
atoms may arrange themselves so that each occupies only one type of site (complete
order); they may be distributed at random (complete disorder); or there may be a
degree of disordering specified by a parameter </>.

In any given stable equilibrium state, the degree of disorder of the atoms on the
sites will be such that S will be maximized compared to any other degree of disorder
at the same U and V, G will be minimized with respect to any other 0 at the same T
and P, H will be minimized with respect to other </> values at the same S and P, and
so on. The following discussion could be carried out using any of the thermodynamic
potentials with their associated state variables, but we have chosen S, U, and V so
as to refer directly to equation (5.32).

Experimentally, it might be difficult to measure the properties of the system as
a function of the degree of disorder, but one can imagine changing </> at an elevated
temperature where the order-disorder process proceeds rapidly, then cooling quickly
to the desired conditions with <j> "frozen-in." Of course, this is irrelevant to the ther-
modynamic model, in which we have no trouble manipulating 5, V, <p, and other
variables. 0 is simply an additional constraint on the system (that is, additional to our
chosen S and V, or U and V). We may therefore speak of the system as achieving
equilibrium (no observable changes no matter how long we wait; return to original
conditions after slight temporary changes in constraint parameters) with respect to
two constraints (minimum U for given S and V—stable equilibrium) or with respect
to three constraints (minimum U for constant S, V and <j>—metastable equilibrium),
and as U is now a function of S, V, and 0, the function relating them is

or

and

This simple system may be represented in thermodynamic state space by a surface
(Figure 5.6) on which every point represents a state of the system at stable equilibrium.
At every point on the surface the system has a value of <p, and these values may be
contoured as shown. These <j) values are the percentage of disorder in the alloy when
it has reached stable equilibrium, i.e., minimum U for given S, V. If <j> is controlled
independently of S, U, and V, then the alloy may have either more or less disorder
than the stable equilibrium value at a particular S and V, and in either case the energy
U must be greater than the stable equilibrium U. Therefore there are surfaces below
(on the low S, high U side of the stable equilibrium surface representing the energy
of the crystal at various values of S, V, and 0. These are metastable equilibrium
surfaces in accordance with the definitions in Chapter 3.
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FIG. 5.6. Schematic stable equilibrium surfaces in S — U — V space for a particular alloy
sample. </> values (contoured) are a measure of atomic disorder in the crystal. The axes are
arranged for easy representation of the surface, which continues beyond them.

Now considering a particular metastable alloy having a certain S and V, but a
degree of disorder (p either greater or less than the equilibrium value at that 5, V,
a change in </>, d<f>, towards the stable equilibrium value may be either positive or
negative (disorder may increase or decrease), but U must decrease if the process is
spontaneous. Therefore dUs,v is negative, as is (dU/d<j>)s,vd4> by equation (5.37),
and in conformity with equation (5.33).

But degree of disorder is only a particular example of a third constraint that might
prevent a system from reaching stable equilibrium, and d(j> is an increment of that extra
constraint, an increment of the progress of the system towards stable equilibrium. We
could generalize this concept of systems approaching stable equilibrium in increments
by denning a progress variable, £, which begins at 0 in the initial state and ends up
with a value of 1 (or other convenient number) in the final state. The differential d£
is therefore an increment of any spontaneous reaction, or more exactly, an increment
of any quasistatic irreversible reaction, and the general fundamental equation, which
includes processes off the stable equilibrium surface as well as those on the surface,
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IS

or

It follows then that whatever the nature of the metastable state from which the spon-
taneous reaction is proceeding, towards the stable equilibrium surface, there will be
(at least) one extra term on the right side of dU = T dS — P dV that gives the change
in U per increment of change (or progress) of the system from the metastable state to
the stable state, and this extra term will always be negative. If this term is not explic-
itly included, then we can only write dU < T dS — P dV for the same irreversible
reaction.

5.8.2. The Affinity

The quantity (dU/d£)s,v turns out to be quite useful and has been given its own
name and symbol, the affinity, A, where5

Thus

When we write the equation in this form it is understood that irreversible processes
are being considered; we should perhaps always write

for clarity, but this is not the usual practice. The affinity has units of calmol"1 or
Jmol"1, as does U, and (5.40) balances dimensionally because £ is dimensionless.
We can also write

and

which also balances if £ has units of moles, i.e., is extensive.
We will return to this subject in connection with chemical potentials (§14.5), with

which the affinity is more commonly connected.

5Do not confuse A with the Helmholtz energy, A
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PROBLEMS

1. Unknown to most physical scientists, there exists another important mean-
ing for the °C symbol—degrees Crerar. The Crerar Scale has a single,
fixed equilibrium state—an aqueous solution 3 molal in NaCl, 0.001 mo-
lal in H2S, at a pH of 4 and saturated with sphalerite (ZnS) at atmospheric
pressure and a molality of zinc of exactly 10~~5. This state has been found to
have a temperature of 100°C on the Celsius scale, and is defined as 1234°C
on the absolute Crerar Scale. Find the temperature of freezing water on the
Crerar scale. Is the Crerar Scale a Thermodynamic one?

2. If it was decided by an international body that the Crerar Scale should be
changed such that it had a value of 100° C at the ice point, how many degrees
would it have between the ice and steam points?

3. Calculate ArH°, ArG° and ArU° for the reaction NaAlSiO4 + 2SiO2 =
NaAlSi3O8 at 25°C, 1 bar (data in Appendix C). Note that ArC/° constitutes
the major part of the other two.

4. Look at Appendix C. Why is A/G°for all compounds negative? Why is
5° for everything but aqueous ions positive? Why is A/G°for all elements
zero, except for a few like S2(g), and why are they not zero?

5. Calculate the entropy of formation from the elements of corundum.

6. Is corundum or gibbsite more stable in the presence of water at 25°C, 1 bar?
(To do things like this, you must first write a balanced reaction involving
the constituents you are interested in-—in this case corundum, gibbsite and
water, and then see which way the reaction will go).

7. Which of the three Al hydroxides listed is the most stable in water?



6
STATISTICAL INTERPRETATION OF ENTROPY

How awkward is the human mind in divining the nature of things, when forsaken by
the analogy of what we see and touch directly.

L. Boltzmann, quoted in Bent (1965), p. 176.

6.1. THE CONCEPT OF ENTROPY

As we have seen, thermodynamics is based for the most part on the idea of the
conservation of energy (First Law) and the concept of entropy (Second Law). The
conservation of energy gives little problem intuitively, but it is quite another story
with entropy. Entropy can be considered from the point of view of idealized heat
engines operating in cycles, or by deriving some of its inherent properties (Chapter
5). We will see how it is measured and tabulated in Chapter 7. This is all very useful,
but doesn't help much in gaining an intuitive grasp of entropy, such as we have for
the other thermodynamic parameters.

Just what is entropy, anyway? There may not be any definitive short answer to
this question. If we had to rely on classical thermodynamics for an answer, we would
talk at some length about the availability of energy, e.g., the fact that in spite of
the tremendous quantity of energy in the ocean, we cannot use any of it to power
a ship or to do anything else; the ocean's thermal energy is unavailable unless we
provide a reservoir for heat at a lower temperature. This is of course perfectly true,
and many useful discussions of the meaning of entropy follow this line of thought, but
somehow after all these discussions, the entropy remains somewhat elusive. There
is, however, another way to think of entropy that is by far the most useful, and that
is from the statistical/probability point of view. This requires that we consider matter
from the point of view of the individual particles (atoms, molecules, ions) rather
than as macroscopic, homogeneous bodies, and is therefore not a part of classical
thermodynamics, but of statistical mechanics.

In this chapter we present the rudiments of this approach, not so that the reader
can become proficient in statistical thermodynamics (a considerably more thorough
introduction is required for that) but to show how entropy is related to statistical
considerations. Statistical mechanics does not exactly explain what entropy is, but
rather provides a model, quite different from the thermodynamic model, that contains
a parameter identical to the entropy of the thermodynamic model in every measurable
respect. Equating a parameter in one model with a parameter in another model may not
be completely satisfactory as an explanation, but there is no doubt that the statistical
point of view is of considerable help in gaining an intuitive grasp of entropy. There is
no doubt in our minds that a familiarity with this point of view is essential to a good
understanding of thermodynamics. As Nash (1972) says:

. . . statistical mechanics offers us the immense intellectual satisfaction of
rendering transparent what thermodynamics leaves opaque: that is, statis-

116
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FIG. 6.1. Expansion of a gas into a vacuum.

tical mechanics casts a brilliant light of interpretation throughout most of
the realm in which classical thermodynamics can afford us little more than
phenomenological description.

6.2. ENTROPY, PROBABILITY, AND DISORDER

We begin by demonstrating that there is in fact a relationship between entropy and
probability. Consider the expansion of an ideal gas containing NQ molecules from an
initial volume and pressure, V i and P\, into an adjacent evacuated chamber of volume
V2 as illustrated in Figure 6.1. The final volume is Vt + V2. After expansion the
probability of finding one particular molecule in the original volume is Vi /(Vi + V2).
The probability of finding all NO molecules in the original volume Vi at the same
time without being constrained to be there is [Vi/(Vi + VI)]N° (since there are NO
molecules and probabilities are multiplicative). Therefore the probability of the initial
state arising spontaneously after expansion is

This is an extremely small probability. For example if Vi / (Vj + V2) is 0.5, it is about
l/(2'°23).
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After the expansion, the probability (pfinal) of finding all NO molecules in the
final volume Vi + ¥2 must be 1.0. The ratio of these two probabilities is

We will see in Chapter 10 that the expression for the entropy change in this
expansion process is

where n is the number of moles of gas. Comparison of (6.1) and (10.13) gives '

or

where

The number of molecules divided by the number of moles is Avogadro's number, Na,
so that

Thus there seems to be a relationship between entropy and probability. In the example
mentioned above where Vi/(Vi + ¥2) = 0.5, (6.2) becomes, for one mole of gas,

(1023 is an abbreviation for Avogadro's number, 6.02 • 1023.) It is also a fact of common
experience that there is a relationship between probability and disorder or degree of
randomness. In fact, in looking for a definition of these terms (disorder, randomness),
you will invariably wind up defining them in terms of the probability of the occurrence
of a given state within a number of possible states. A disordered state of a group of
objects is more probable because there are more ways in which a disordered state may
be achieved. For example, the probability of receiving cards from all four suits in a
bridge hand is much greater than the probability of receiving thirteen spades, simply
because there are many different ways that thirteen cards can be selected from a deck
of 52 to give at least one card from each suit, but only one way of selecting thirteen
spades (the fact that the cards are all spades of course has nothing to do with it, except

'Equation 10.13 actually has only V2 in the numerator, but it is equivalent to what we are here calling
V, -f V2.
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to a bridge player; there is only one way to select any specific thirteen cards).2 Because
the thirteen spades, or any such given arrangement, is a highly ordered arrangement
compared to the other, less ordered arrangements, and the probability of its occurrence
can be calculated, we have (if the entropy-probability relationship shown above is
generally true), a relationship between entropy, probability and disorder in systems.
In other words, shuffling an ordered deck of cards increases its entropy, just as mixing
two gases increases the entropy of that system. This relationship is the most easily
grasped significance of the entropy, but a bit more remains to be said about it.

6.2,1. Thermodynamic Probability

We were able to calculate a probability change for the gas in Figure 6.1 because
although there was a large number of molecules, each was considered in only two
states, Vi before the change and Vi + ¥2 after. Suppose there are more possibilities?
We can define the probability of a state in a given system (where the system here
is simply a group of objects that have a finite number of possible arrangements, or
stales) as the number of ways that state can be achieved divided by the total number
of possible states. For example two dice, each having six faces, have a total number
of 62 or 36 possible arrangements. Rolling a 2 can be done in only one way (each die
must show a 1), so the probability of getting 2 in a random throw of the dice is 1/36
or 0.0278. However, there are six ways of throwing a 7 (6 + 1, 5 + 2, 4 + 3, 3 + 4,
2 + 5,1 + 6) so that the probability of rolling a 7 is 6/36 or 0.167. Probabilities defined
in this way (the normal way) thus range from 0 (e.g., the probability of throwing a 1
with two dice) to 1.0 (e.g., the probability of throwing a number between 2 and 12
inclusive).

Of course we are more interested in natural systems such as rocks and minerals
than in cards and dice (during working hours, anyway), and these tend to be somewhat
more complicated. It is the magnificent achievement of statistical mechanics to show
that essentially the same ideas lead to all the usual thermodynamic relationships,
when applied to atoms and molecules in their various possible energy levels or quan-
tum states. Thus the probability of a given distribution of molecules among energy
levels could be defined as the number of waiys of realizing that arrangement divided
by the total number of arrangements. In such systems the total number of possible
arrangements is an inconveniently large number, so the denominator is eliminated and
a "thermodynamic probability" (W) is defined as the number of ways of achieving a
given distribution or state of the system.

Inspection of equation (6.2) reveals that for the entropy of each state, there is
apparently a relation

2"Order" vs. "disorder" is thus seen to be inescapably subjective, unless the rules are clear (Denbigh
and Denbigh, 1985). To most people, the concept of a well-ordered room has a fairly clear meaning, and
there are limitless ways of disordering the room. But if Mr. X likes to keep his shoes on top of the dresser
and the rug on the bed, this constitutes perfect order for him. However even for him, there is only one way
of achieving perfect order and limitless ways of disordering the room. In either case, the disordered state
of the room is more probable.
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so, for our thermodynamic probability W, this becomes

This is the equation made famous by Boltzmann in 1896, and inscribed on his
tombstone in Vienna. It of course has a more rigorous derivation than the one we have
given.

6.2.2. Calculating Configurational Probabilities

Consider the following problem: How many different ways can N distinguishable par-
ticles be assigned j different energy levels?3 Let'scall these energy levelsei, 62, • • • ,£j
and put NI molecules into e i, JVj into 62 and so on up to N in ej. One such arrangement
is shown in Figure 6.2 (using 35 molecules and j energy levels). Any one arrangement
we have called a configuration, and the probability of a configuration is simply the
number of ways it can be achieved. There are AH ways of distributing all N particles
among j energy levels.4 However, rearranging or permuting the particles in any one
energy level will not change the overall configuration. Stated differently, the order
in which particles were put into a level makes no difference, just the total number it
contains. Placing molecule number 32 to the left of number 31 in level e/j of Figure
6.2 makes no difference; more importantly, any two different molecules could be
exchanged for numbers 31 and 32 and there would still be two molecules in level
e/j. Thus we must divide N\ by the number of permutations of particles, Nl in each
level. The total probability of any one configuration is then the number of ways it can
be achieved, or

This equation is illustrated in Figure 6.3 which shows the 12 different ways in which4
molecules can be put into 4 different energy levels such that level e\ contains any two
molecules, e2 none, and €3 and e4 contain one each. For this particular configuration
equation (6.4) correctly predicts 12 possible arrangements:

3For the term "particles" we could substitute "molecules," "atoms," "ions", "subset of the total system,"
etc. For the term "energy levels" we could substitute "vibrational, rotational, electronic,..., energy levels."
The assumption that the particles are distinguishable and that there are no restrictions as to how many
particles go into any energy level are quantum mechanical approximations; for statistical applications this
usually is not a problem. We might for example distinguish the same atoms on different sites in a crystal
lattice. For details, see Fowler and Guggenheim (1939) or Mayer and Mayer (1940).

4Therc are N ways of picking the first particle, TV — I ways for the second, N — 2 for the third, and a
total of N(N - 1 )(N - 2) • • • (1) = N\ ways for all N particles.



FIG. 6.2. One way of arranging 35 distinguishable molecules (denoted by number) among j
different energy levels.

171
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(Note that 0! = 1.) Notice that rearranging the two particles within level ei makes
no difference. In the jargon of statistical mechanics, each of these 12 arrangements
is a microstate; all 12 microstates are simply variations of the single configuration
ei 14 ! 4 ' M • The number of microstates comprising any given configuration gives
its thermodynamic probability.

Now for this particular example of 4 molecules and 4 energy levels there are
44 = 256 possible microstates and 35 configurations.5 Some of these configurations
might be

and so on. Each would have a specific probability as given by (6.4). Whatever con-
figuration has the largest probability will obviously occur most frequently, and those
with low probabilities should occur much less often.

In the present case we can use our knowledge about the relation between entropy
and randomness and predict a priori that 4 configurations,

tie for last place since they are the most ordered (lowest entropy). These should all
occur least often. The most random configuration is

so it should have the highest entropy and occur most often. Applying equation
(6.4), the thermodynamic probabilities, W, of these two limiting configurations are

5In general, there are mN ways of putting N distinguishable objects in m boxes (if there is no limit
on the number of objects per box). The joint conditions of distinguishable objects and boxes of limitless
capacity are the basis ofBoltzmann statistics. Alternatively, the number of configurations can be calculated
by again placing no restriction on the number of objects in each box, but this time making the objects
indistinguishable. The appropriate formula for the number of ways of putting N indistinguishable objects
in m boxes is then (m + N — l)!/((rra — l)!jV!), giving 35 in our example (m = 4; N = 4). Statistical
methods based on these two conditions are called Base- Einstein statistics. To calculate the number of ways
N indistinguishable objects can be placed in m boxes with no more than one object per box, use Fermi-
Dirac statistics and the formula m!/((m — l)\N\). For more details and a particularly clear presentation,
see Tinoco et al. (1978, Chap. 11).
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FIG. 6.3. The 12 different ways of achieving that configuration which has 2 molecules in
energy level e\, none in £2, and 1 each in €3 and £4. The system contains a total of 4 molecules
designated by symbols o, •, xand A.

4!/(4!0!0!0!) = 1 and 4!/(l!l!l!l!) = 24, so the most random configuration will
occur 24 times more often than the most ordered.

6.2.3. The Predominant Configuration

Now comes a very important point in statistical mechanics. For very large TV (num-
ber of particles) the probability of one configuration will typically predominate so
completely over all others that the others can be ignored. This single predominant
configuration is considered the equilibrium state. Such a simplification is most helpful
since, as we have just seen, one mole of a substance containing roughly 1023 particles
would produce an absolutely prohibitive number of configurations; instead we have
just stated that we need deal only with one predominant configuration. The appear-
ance of a predominant configuration at large values of N can be illustrated simply by
tossing a coin enough times.6 Thus as shown in Figure 6.4, there are 24 = 16 equally
probable outcomes of tossing a coin 4 times (since there are 2 possible outcomes
each toss). These correspond to the microstates of our previous example; we can
also distinguish 5 configurations (see footnote 4 and Figure 6.4). The thermodynamic
probability of each configuration can be calculated from equation (6.4) and equals
the number of microstates each contains. Clearly configuration III (with 50% heads)

6This example is treated in more detail by Nash (1972, Chapter 1). Another quite different and helpful
example is given by Callen (1960, Appendix B).
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FIG. 6.4. The possible outcomes of tossing a coin 4 times. H = heads, T=tails.

should predominate over II (with 75% heads) and for JV = 4 tosses the probabilities
are

Instead of 4 tosses, let us see what happens when we set N = 6 • 1023 which is
Avogadro's Number. The relative chance of getting 50% heads(H) after 6 • 1023

tosses is given by (6.4):

Similarly, the chance of getting 75% heads would be

These factorials can be evaluated using Stirling's formula for large N :

The probability ratio of the two configurations now becomes

or

This number is beyond the range of your calculator, and in fact is literally inconceiv-
ably large, and similar numbers are obtained whatever ratio of heads to tails is used in
the denominator. In other words, the 50% heads configuration predominates by such
an enormous margin at large values of N that all other configurations are extremely
unlikely to occur. Therefore, when working with macroscopic systems containing
large numbers of molecules we need only consider one predominant configuration.
A rigorous discussion of this point is given by Mayer and Mayer (1940).
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6.3. THE BOLTZMANN DISTRIBUTION

We now see that the equilibrium configuration of molecules in a system will have the
maximum probability as calculated by equation (6.4). It will have the greatest number
of microstates, the most random distribution of molecules, and the highest entropy
permitted by the constraints (T, P, V, etc.) of the system. Recall also that entropy is
related to the probability or degree of disorder, W, by equation (6.3).

In none of the foregoing discussion have we said anything about the actual energies
of the energy levels themselves—just that if we know how many molecules there are
in each level (as in Figure 6.3) we can calculate the number of possible arrangements
(microstates), and the probability and entropy of that configuration. We can take
a great step forward at this point by recognizing that quantum mechanics tells us
(in principle) the allowed energy levels for these molecules. In fact, many of these
levels can be measured directly by spectroscopy. If we know what these energy levels
ei , 6 2 , . . . , £j are, then we should consider a new problem: how will the N particles of
the most probable molecular configuration distribute themselves throughout a set of
allowed energy levels? This problem was solved, once again, by Ludwig Boltzmann.
The result is the Boltzmann distribution—the keystone of statistical mechanics.

The mathematical solution finds that set of energy-level occupation numbers
N\,N2,...,Nj which maximizes the probability W of a configuration as given in
(6.4), subject to the following two constraints: the total number of particles and the
total energy (E) must remain constant,

This is a problem in constrained extremals that can be solved using Lagrange's
method. The constraining equations (6.6) and (6.7) are multiplied by two arbitrary
constraints a and /3, added to the logarithm of (6.4) and the desired maximum is given
by

This is the most general form of the Boltzmann distribution. It tells us that the
fraction of molecules in an energy level e, increases exponentially with temperature
and decreases exponentially with the energy of that level. This is as important for
macroscopic systems as the Schrodinger equation is for individual atoms or molecules.
The Schrodinger equation, for example, shows that energy levels (Is, 2s, 2p,...) are

Omitting the intervening algebra, the solution is
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possible for a single hydrogen atom; the Boltzmann distribution says that for a large
(macroscopic) number of hydrogen atoms, some specific fraction will have the Is1

configuration, another fraction the ls°2s', and so on.
The parameter g that crept in somewhere between equations (6.8) and (6.9) is

necessary to correct for the total degeneracy of each energy level. This is the total
number of states (particles, molecules, electrons, or whatever) that can have one
particular energy e^. For example, in the Schrodinger model of the hydrogen atom, s,
p, and d orbitals are 2-, 6-, and 10-fold degenerate, respectively. An energy level that
is g-fold degenerate can have a population g times larger than a single level; therefore,
we must multiply equation (6.9) through by the degeneracy, g, of each energy level.

6.3.1. The Partition Function

The denominator in equation (6.9) is called the partition function z:

This is one of the most important parameters in statistical mechanics since it is
directly related to the thermodynamic properties of a system. The summation in (6.10)
is made over all energy states, so z is a function of the partitioning of all particles
among all energies for the equilibrium configuration.

It is important to understand the physical meaning of the partition function since
it appears in one form or another in many different applications. The book Entropy
and Energy Levels by Gasser and Richards (1974, Chapter 3) covers this point clearly
and in detail. We can briefly develop some insight here by considering what happens
at very low temperatures as all molecules or particles drop to the lowest energy level,
or "ground state," CQ = 0. Let 7V0 represent the number of molecules in the ground
state, and Ntotai the total number of molecules. The Boltzmann distribution (6.9) can
be written

or, since in this case EJ = CQ = 0

To simplify matters, let us say that there is only one unique ground state with a
degeneracy, go = 1. Then

For this limiting case, z = 1, since all molecules are in the ground state (eo = 0) and
Ntotai = NQ. At higher temperatures, some of these molecules will jump up to higher
energy levels, reducing the number, NO, in the ground state and raising z accordingly.
In fact z can rise to extremely high values at very high temperatures as almost all
molecules leave the ground state and a great number of higher energy levels become
accessible. So the partition function ranges from 1 to oo. It measures the distribution



Table 6.1 The Boltzmann Distribution

Tpmnp.ratnrp T

Level e/kT
No.

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 10

e-£/fcT TV;

1.0
0.3679
0.1353
0.0498
0.0183
0.0067
0.0025
0.0009
0.0003
0.0001
0.0000

for
N = 1000

632
233

86
31
12
4
2
1
0
o
n

e/2kT

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Tpmppratnrp 7T

e-f/2kT N.

1.0
0.6065
0.3679
0.2231
0.1353
0.0821
0.0498
0.0302
0.0183
0.0111
0.0067

for
N = 1000

395
240
145
88
53
32
20
12
7
4
3

e/3/cT

0.0
0.33
0.67
1.00
1.33
1.67
2.00
2.33
2.67
3.00
3.33

Tpmpp.ratnrp. 3T

e-C/3kT N.

1.0
0.7165
0.5134
0.3679
0.2636
0.1889
0.1353
0.0970
0.0695
0.0498
0.0357

for
TV = 1000

291
208
149
107
77
55
39
28
20
14
10

Partition Function 1.58195 2.53111 3.43755
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FIG. 6.5. The Boltzmann distribution for three different hypothetical temperatures. Data from
Table 6.1.

of molecules among available energy levels, and gives the ratio of the total number
of molecules in all levels to those occupying the ground state.

An example of a Boltzmann distribution is shown in Table 6.1 and Figure 6.5 for
a set of energy levels with g = 1 equally spaced a distance kT apart, for three dif-
ferent temperatures. Note the concentration of particles in the lower levels, gradually
spreading to higher levels as T is increased. The meaning of the partition function is
particularly easy to see in this example.

Because the partition function is related to the number of particles occupying
energy levels above the ground state, it can be used to calculate the average internal
energy, I, of a particle. From equations (6.6) and (6.7) the average energy is

Substituting (6.10) into (6.9) gives the more common form of the Boltzmann
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distribution:

Then combining (6.11) and (6.12)

and because

and d(l/(fcT)) = -dT/(kT2), it turns out that

The constant volume restriction is imposed because the dependence of Ci on volume
is not taken into account in this formulation.

6.3.2. The Partition Function and Thermodynamic Properties

J.Willard Gibbs first recognized that the partition function could also be applied on a
macroscopic scale by considering a large number of "particles," where each particle
is a system containing one mole (or a large amount) of a substance being studied. The
result is a direct link between statistical mechanics and thermodynamics. The idea
is that the average properties of such an ensemble of systems would be the same as
the properties of a single system consisting of molecular particles acting in the same
way. Let's therefore consider a large number of systems, each containing one mole
of the substance of interest. If the allowed molar energy levels of the systems are
E} , £2, • • • , EJ, the average energy will be

Letting

where 7

then

'This is the relationship between Z and z for an assemblage of identical but distinguishable units.
Other relationships between Z and z obtain for other kinds of systems. The evaluation of the macroscopic
partition factor Z is the main task in the application of statistical thermodynamics to real systems.



130 THERMODYNAMICS IN GEOCHEMISTRY

In Chapter 4 we considered that the total energy of a system is given by relativity
theory as Er = me2 and that the internal energy of thermodynamics is some unspeci-
fied smaller quantity such that Er = U + constant. In statistical mechanics the energy
of a particle or an energy level is generally taken as the difference in energy between
the level considered and a "ground state" of zero energy, quite frequently the state of
zero particle vibration, rotation, and translation, i.e., 0 K on the absolute temperature
scale. Thus systems have zero energy at 0 K. Thus the E of statistical mechanics is
also related to U by E = U + constant, but the constant is different. Therefore the E
term in (6.14) is actually a A£ term, and can also be written

The heat capacity at constant volume is defined as Cv = (8U/dT)v, or, because
U = E + constant (Chapter 4), Cv = (dE/dT)v. Differentiating (6.14) gives

Thus the internal energy and heat capacity are simply related to the change in the
partition function with temperature. For certain simple systems such as gases at low
temperatures, the partition function can be estimated theoretically. For most systems
of geological interest such as minerals and concentrated salt solutions, additional
experimental information is required. This might take the form of spectroscopic data
on electronic or molecular vibrational frequencies, or direct measurement of some of
the non-ideal thermodynamic properties themselves.

6.3.3. Entropy and the Partition Function

We should be able to relate S and z because the partition function and Boltzmann
distribution were originally derived by combining equation (6.7) for the energy of a
system with equation (6.4) for the probability of its equilibrium configuration, W,
and we already know that entropy and probability are related by

Substituting equation (6.4) for W into (6.3), and applying Stirling's approximation
(6.5) for the factorials of large numbers gives

Substituting version (6.12) of the Boltzmann distribution for N, and (6.10) for the
partition function and simplifying, we obtain

or
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Letting N be Avogadro's number, the entropy per mole is

where Z = zNa .
This is the desired link between S and Z and between the molecular world of

statistical mechanics and the macroscopic systems of thermodynamics. All other
thermodynamic functions can be calculated if we know Z (over a range of temperature
and pressure), since E is given by equation (6.14) and S by (6.16). For example, the
Helmholtz work function is A = E - TS or

The Gibbs free energy would be simply AG = AA + PAV, and so on.

6.4. ENTROPY AND SPONTANEITY

In Chapter 5 we said that Carnot's classic model of an idealized heat engine resulted
in the following properties of the entropy function:

where the equals signs refer to reversible processes and the inequalities to all real,
spontaneous processes. We observed that the increase in entropy for real processes
in isolated systems was an all-important criterion of spontaneity. Then this property
was used to derive the other useful criteria of spontaneity (which apply to other types
of systems): AGr,p < 0, A.AT,V < 0> AH$,p < 0, etc. We can now re-examine
equations (6. 1 8)-(6.20) in a different light. The following approach was developed
by L.K. Nash (1972). We will give an abbreviated, slightly modified version of his
treatment.

6.4. 1 . Entropy Increase in Isolated Systems

Let us look at the most important relationship, equation (6.20), first. This time around
we know that S = k In W. For real chemical systems of geological interest, W is
usually far too complicated to estimate theoretically, but the concept it expresses —
the degree of disorder — remains invaluable. We have seen that in the equilibrium
state, W is maximized since the most random configuration is the most probable.
Once again, consider the simple process of mixing two substances contained in an
isolated box and initially separated from each other by a barrier. As we have observed,
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the total entropy of the two subsystems immediately after removing the barrier would
be

where W\ and W2 represent the relative disorder (or probability) of each initial
subsystem. For the combined systems, mixing or redistribution will occur if there is a
possible new equilibrium state with still higher total Wtotai- W 'total cannot decrease
as this would constitute unmixing to a less probable state (for example, two gases
separated by a vacuum). At the least, W may remain constant — this would happen,
for example, if the two gases were initially identical in every aspect (the equilibrium
condition). Thus as the barrier or constraint is lifted,

or

The inequality refers to the approach to equilibrium, and the equality to equilibrium (or
real and reversible processes, respectively). The subscripts denoting constant U and
V are necessary because the total system is isolated. Therefore equation (6.20) tells
us something we already know intuitively — that any process in a completely isolated
box will stop or equilibrate at the state of maximum probability. That seems self-
evident, but we also realize now that this state represents the maximum permissible
disorder or randomness, and the maximum attainable entropy.

6.4.2. dS versus Dq/T

Next let us see how the relationship dS = Dqrev/T can be derived statistically. This
time we consider the change in W of a system as its energy is increased by reversible
input of an infinitesimal amount of heat at constant T, V and total composition
(therefore a closed system). Presume that the system adjusts simply by redistributing
its molecules among the allowed energy levels. Neither the energy nor the degeneracy
of any of these levels is allowed to change.

The probability of the initial configuration is given by equation (6.4), and each
individual Ni can be calculated from the Boltzmann distribution. This will then give us
an equation relating W to the energies and molecular population of each energy level.
Differentiating this equation should produce the desired change in W with the tiny
change in total energy and accompanying adjustment of the molecular configuration.

The logarithm of equation (6.4) is

Differentiating and holding the total number of particles TV constant yields
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Introducing Stirling's approximation (6.5) for the factorials of large numbers, gives
for the differential of each In Ni on the right hand side,

and therefore,

The Boltzmann distribution (6. 12) for the ratio of the number of particles in any two
states i and 0 is

If we let subscript o represent the ground state with energy CQ = 0, then we may
rewrite (6.24) as

Substituting (6.25) for In Ni into equation (6.23) gives

Note that NO is considered fixed by choice of the original configuration for this
summation, and the degeneracies ^ and go remain constant. The first term on the
right hand side of (6.26) vanishes because the total composition of the system is
fixed:

and therefore

The second summation in equation (6.26) represents the differential of the total en-
ergy: E = Y^i NiCi, and dE = £V ejdJVj. (The e^ are constant since we are not
permitting any change in the energies of each energy level, but simply a redistribu-
tion of molecules among the original levels.) With these substitutions, equation (6.26)
becomes

This is the desired relationship for the molecular readjustment or change in W
caused by a small and reversible change in internal energy at constant temperature,
volume, and composition. As would be expected, the relative disorder, W, increases
with internal energy.

Now this was a constant volume process, which rules out P&V work. According
to the First Law, dE = Dq + Dw, the change in internal energy in this case is entirely
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due to flow of heat, Dq. Recalling that S = k In W, we can now rewrite equation
(6.27) in terms of entropy and heat, as originally desired:

Thus we have observed that the expected increase in disorder with increasing
internal energy expressed by equation (6.27) is directly related to the thermodynamic
definition (6.18) of the entropy. It now should make intuitive sense that adding heat
to a system will increase its disorder, hence its entropy.

To briefly summarize, we have rederived equation (6.18) by combining the relation
S = k In W - k ln(Nl/UNi\) with the Boltzmann distribution for the energy of the
TV molecules in all i levels. This gave equation (6.27), which directly relates W (or
S) and energy, E. An increase in internal energy, caused by adding heat, necessarily
raises both disorder and entropy.

While this provides the conceptual link we wanted between entropy, disorder,
and heat, we still have some tidying up to do in our derivation of equation (6. 1 8). As
things stand now, this equation only applies to the very restricted kind of process for
which it was derived (constant V, T, N, and degeneracy) It remains to be shown that
equation (6.18) applies to reversible processes in general.

Imagine two systems A and B separated by a heat-conducting barrier and isolated
from the rest of the universe (this might look like the two boxes in Figure 6. la). Let
system A be subjected to exactly the same constraints just used to derive equation
(6.18). For system B though, let's lift all restrictions save one — N remains constant,
so no chemical reactions are allowed. Heat will flow one way or the other through the
barrier until both systems equilibrate. As we observed in rederiving equation (6.20),
the two systems will equilibrate at a state of joint maximum probability, WA • WB. If
this is a reversible process, the condition for the maximum is

or

Substituting S = k In W,

Because system A meets all conditions used to rederive equation (6.18), we can
substitute dSA = Dqrev/T in equation (6.28). The only heat flow allowed was from
A to B or vice versa, so DqA = —Dq^. Finally, at thermal equilibrium, both systems
will have the same temperature. Thus we can now rewrite equation (6.28) as

or

or
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FIG. 6.6. Reaction chamber (A) within a large heat sink (C and B), capped by a sliding piston
(B).

Unlike system A, system B is quite general, so the condition (6.18) must also apply
to more general cases, which completes the derivation. Thus,

applies to any closed system, provided no chemical reactions occur, and the process
is reversible.

6.4.3. AS versus q/T

Finally, by generalizing still further and removing all restrictions (including reversibil-
ity), we should be able to use the statistical approach to rederive equation (6.19),

This time, imagine a chamber in which any kind of physical or chemical process
occurs. As shown in Figure 6.6, this could take the form of a deep hole (A) drilled
in a large metal block (B) and capped by a heavy metal piston (C). This apparatus
might be placed inside a rigid box (D) that is perfectly insulating and impermeable
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to matter, so that the contents of the box are thermodynamically isolated from the
surroundings. The piston is frictionless and free to slide up and down the hole, and
it, together with the metal block act as a heat sink or reservoir.

Next, imagine that any kind of process occurs in the reaction chamber. This might
be quite irreversible if we want, so let's place an ignited firecracker in the hole and
seal everything up. If the firecracker is not too large, it will blow the piston further
up (but not out of) the hole. The heat of the explosion will be absorbed by the metal
block and piston. At this point we must impose two hypothetical conditions. First,
the heat sink must be so enormous, relative to the reaction, that it does not change
temperature significantly. Second, the heat of reaction must be transferred reversibly,
by infinitesimally small increments, to the piston and block. It doesn't matter that this
is impossible, because we are calculating a hypothetical limit. What does matter is
that the process in the reaction chamber can be as real (and irreversible) as we wish
to make it.

Using the statistical argument once again, we have just seen that for any real
process in an isolated system,

and

In other words, the state of disorder can only increase in a spontaneous change. We
also know that W for the total system is the product of its individual parts:

Again, this is because W measures probability (as well as randomness), and proba-
bilities are multiplicative. For our present three-part system, the mechanical (PAV)
work done in raising the piston should have no effect on its molecular configura-
tion. However, the heat absorbed by both piston and block will certainly change their
configurations, so we will lump both together as WBC. We fully expect some change
of molecular configuration inside chamber A, so the total probability parameter is
Wt0tai = WA • WKC- Combining this with relation (6.29), we have for the sum of all
processes in the isolated system, A(ln WA • WBC) > 0 or

Since S = k In W, we can rewrite (6.31) as

Because heat is transferred reversibly to B and C, equation (6.19) can be substituted
forASec,

Finally, the heat lost by reaction chamber A must be exactly that gained by heat sinks
B and C, so q\ = — QBC and (6.32) becomes
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or

which is the desired relation for the reaction chamber.
Thus we have shown, based on a statistical argument that for any spontaneous,

real process, the entropy change or total disorder will always exceed that predicted
from heat flux alone. Relationship (6.18), dS = Dqrev/T, is therefore a lower limit
to this change, applicable only to ideal, reversible processes.

6.4.4. Summary and Cautionary Note

Using the statistical mechanical approach, we have been able to rederive equations
(6.18)—(6.20) without any mention of steam engines or idealized Carnot cycles. These
equations form the basis for much of the rest of thermodynamics, as we have already
begun to see in Chapter 5. These few relationships are so useful because they serve
as pointers or criteria for the spontaneous direction of any process. Hopefully the
statistical approach clarifies much of this, in the sense that we conceive of entropy as
a measure of disorder or randomness. The most random permissible state is also the
most probable statistically. It is self-evident that spontaneous processes head in the
most probable direction; by doing so, they maximize entropy.

However, we should emphasize that when we refer to disorder or probability, we
include not only the distribution of gas molecules in a mixture or cards in a deck,
but also the distribution of the energy quanta among permissible energy states in
the system. If we are shuffling cards or rolling dice this energy distribution does not
change, so that entropy change is given by the configuration of the objects themselves.
However, in processes in which an energy change takes place, a great deal of the
entropy change is accounted for by the changing distribution of energy quanta within
the molecules of the system, and the molecules themselves may or may not change
their ordering in the same direction. In other words, spontaneous processes, having a
positive AS, and even in isolated systems, can be associated with an apparent increase
in order at the molecular level.

One example will suffice. Consider a kilogram of supercooled water plus vapor
at -10° C in an isolated system. When the water spontaneously freezes to ice, the heat
released warms the system to 0°C, at which point the process stops at equilibrium.
Clearly the system at equilibrium (water plus ice at 0°C) would be said by most
observers to be more ordered than the initial state (water at -10°C). We could also use
a mass of water to start with such as to give only ice and vapor at equilibrium. This type
of situation is common to all supercooled liquids and supersaturated solutions, and in
all cases there is no doubt about the increase in entropy, nor in the apparent increase
in order. The problem is of course that the entropy change (given by f(Cp/T)dT)
is accounted for almost entirely by the change in the energy distributions in the
molecules, which have warmed up. In other words, we can be fooled by looking at
molecular ordering, while ignoring relatively small temperature (energy) differences.

Thus although there is a relationship between entropy and disorder, it is not always
on the macroscopic scale, i.e., it does not always accord with what human observers
would call disorder, especially when energy changes are involved. Nevertheless, it is
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a measure of disorder, and this is usually apparent even on the macroscopic scale, so
that it is a useful way to think of entropy.

6.5. THE THIRD LAW

6.5.1. Background

According to the Boltzmann relation,

the entropy of a perfectly ordered substance must be zero, since there should only be
one way of arranging the atoms, ions, or molecules in a perfect crystal (W - 1). It
seems reasonable to expect that the chance of creating a perfect crystal might improve
at temperatures approaching absolute zero where molecular motion ceases. In fact,
as T —> 0 K, all molecular and electronic energies should drop to the ground state. If
the ground state is completely unique then equation (6.4) predicts W = Nl/HNil =
Nl/Nl = 1 and S = 0.

Arguments such as these suggest but do not prove that the entropy of pure crys-
talline substances must be zero at 0 K. In fact, it can be proved from the Second Law
that absolute zero temperature itself is unattainable (although it has been approached
very closely); it is also debatable if the ground state of energy is truly unique for
complex crystals. However, experimental evidence does support the general idea that
the entropies might either vanish or reach a minimum at absolute zero. Even if there
were no experimental data whatsoever, it would still be convenient to define a refer-
ence point of S = 0 at 0 K on the entropy scale, analogous to absolute zero on the
temperature scale.

Historically, Nernst originally postulated in 1906 that at T = 0 K, the entropy
change accompanying any process vanishes.8 This statement was refined by Planck
in 1912, and then by G.N. Lewis in the 1920s, who formulated the Third Law as we
know it today: The entropy of all pure, crystalline, perfectly ordered substances is
zero at absolute zero, and the entropy of all other substances is positive.

Entropy, alone among the thermodynamic functions, is therefore measured on an
absolute scale having the reference point zero at 0 K for pure, perfectly crystalline
materials. As we shall see, the other functions (G, H, A, U) are measured against an
arbitrary standard state and are assigned relative, rather than absolute values. (That
is why entropy is designated by an absolute symbol, 5°, and all others by relative
symbols, e.g., A/G°, in thermochemical tables, as we shall see in Chapter 7). Apart
from this, most of thermodynamics as presented here would survive intact if the Third
Law had never been discovered.

6.5.2. Tests of the Third Law

There are two ultimate experimental tests of the third law. The first might compare
the entropies in the limit as T —> 0 K of perfectly and poorly crystalline forms of the

8An interesting first-hand account of the historical development of the Third Law is given by Lewis
and Randall, 1st edition, (1923, Chapter 31).
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same compound. The entropy of the perfect crystal should approach zero, while that
of the imperfect form should have a "frozen in" residual entropy attributable to the
disorder in its lattice. The Third Law also predicts that the entropies of two different
perfectly crystalline forms of the same compound (such as graphite and diamond)
should be identically zero at absolute zero, even though one of them is metastable at
higher temperature. If the entropy of two such crystals is identically zero, then there
should be no entropy change, A So, when one transforms to the other in the limit as
T -> 0 K.

In fact, it is not possible to make the necessary measurements for these tests
at temperatures approaching absolute zero. Instead, heat capacity data at cryogenic
temperatures (but still well above 0 K) are extrapolated to 0 K and higher temperature
data on phase transformations can be used indirectly as shown in Figures 6.7a and
6.7b. This approach is possible because changes in thermodynamic functions of state
such as S depend only on the initial and final states, not on the process used to connect
these states.

Referring to Figure 6.1 a, we want to know the entropy change for process A —> D
(the difference in entropy between crystalline and non-crystalline glassy glycerol).
Since we cannot perform this particular experiment, we use the circuitous route
A —> B —> C —> D, which ultimately leads to the same initial and final states. For
the process A —> B we must know or extrapolate the heat capacity Cp of glycerol as
a function of temperature from its melting temperature Tm, down to absolute zero.
Because dS = Dq/T and Dq = CpdT, we calculate the entropy change for heating
glycerol from 0 K to Tm by

Next, crystalline glycerol must be melted at Tm, which involves the heat of fusion
Amff and the entropy change

Finally, liquid glycerol is frozen to glass (hence no heat of fusion), and cooled from
Tm to 0 K, and for this,

The entropy change for this whole cycle A --> B —> C —> D must be identical to
the direct process A —> D (since S is a function of state). The experimental result is
AA^D^ = 4.6 calK""1 mol"1. As expected, the glass has a higher entropy than the
crystal because it is more disordered. If the Third Law is correct, and the crystal truly
perfect, it will have zero entropy at 0 K, and the glass will have a residual entropy
Sd = 4.6 cal K^1 mol" L due to frozen-in defects or randomness.

The second common example, depicted in Figure 6.7b, is less obvious, but really
a better test of the Third Law. Here we wish to know if there really is no entropy
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FIG. 6.7. Indirect calculation of the difference in entropy between crystalline and amorphous
glycerol (a), and between monoclinic and rhombic sulfur (b) at absolute zero temperature, after
Dickerson(1969).
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difference between monoclinic and rhombic sulfur at 0 K as predicted. There clearly
must be some difference at higher temperatures because the metastable monoclinic
form spontaneously changes to the rhombic structure. Once again, we cannot do this
experiment at absolute zero, so we follow the hypothetical cycle E —> F —> G —> H :
Rhombic sulfur is heated to 368 K, converted to monoclinic sulfur, and then cooled
back down to absolute zero. AS for this cycle is 7.81 + 0.26 - 9.04 = 0.03 ±
0.15 calK"1 moP1. It does appear that the entropy change for transformation of
rhombic to monoclinic sulfur is zero at 0 K within experimental error.

6.5.3. Exceptions to the Third Law

There do exist some minor difficulties in practical application of the Third Law.
One interesting problem is statistical mechanical in nature and could never have
been predicted on the basis of classical thermodynamics alone. As noted above, the
ground state of energy must be unique to give W = 1 (and S = k In W = 0). If
it is degenerate in any way (if different but energetically equivalent configurations
in geometry, or molecular, electronic, and even nuclear energies are possible), then
W > 1 and S > 0. In fact different nuclear spins are allowed at T —> 0. As a
simple example, frozen H2 molecules have a residual entropy at 0 K depending on
the ratio of two possible nuclear spins. Isotopes of the same element pose another
difficulty. Water, for example, typically contains four common isotopes, 'H, 2H,
16O, 18O. Since atoms of the different isotopes are distinguishable and can occupy
the same sites in the crystal lattice of ice interchangeably, different arrangements or
configurations must be possible in isotopically mixed water (and other compounds) at
absolute zero. These different arrangements will give rise to a residual configurational
entropy at 0 K. Finally, there are some cases where the molecules of a crystal may
exist in more than one possible arrangement at absolute zero. This happens with
compounds such as CO, NO, and NaO where the energy differences (ei — £2) between
arrangements such as (NNO NNO NNO) and (NNO ONN NNO) are so slight that their
relative probability, e~(£| ~f^/kT is essentially unity even at low temperatures. Again
a random configurational entropy is typically frozen in near 0 K and reflected in the
heat capacities measurements from which low-temperature entropies are calculated.

We can easily calculate the maximum value of the residual configurational entropy
at absolute zero either in the case of HI or nitrous oxide in which there are two possible
arrangements per molecule (two nuclear spins for hydrogen, two geometric positions
for N2O). If the system contains Avogadro's number, Na, of molecules, there are
2 possible states for each, for a total of 2Na possible arrangements in the crystal.
Because S = HnW\ we calculate S = CR/ATa) In 2^° = .Rln2= 1.38calKr' mol"1.
This is a small, but not negligible effect.

6.5.4. Entropies of Ideal Mixing

The above example is simply a special case of the problem of computing entropies
of ideal mixtures, which is very important in dealing with solutions in gases, liquids,
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and even solids. We can generalize by considering first a mixture of two kinds of
molecules A and B. Once again applying equation (6.4), we obtain

for the total number of different ways of arranging these molecules in a mixture. It is
assumed here that all NA molecules of species A are indistinguishable, the same for
]VB, and that TV = NA + N#. Applying equation (6.3) for the entropy of this mixture,

Introducing Stirling's approximation (6.5) for factorials of large numbers,

Now we can simplify this by defining a mole fraction as

which reduces (6.34) to

Since k = R/N, if we set TV equal to Avogadro's number in (6.35) then it becomes

Where S is the entropy per mole on mixing two components in the proportion
X&/XB = N^/Nz- We could rederive this expression in the same way for a mixture
of any number n of components, giving the general equation

This gives the configurational entropy of mixing for any number of components.
It can be used to calculate residual entropies at absolute zero due to impurities,
imperfections, nuclear spin, isotopes, etc., simply by considering the imperfections
as one component of a mixture. Equation (6.37) applies equally well to ideal mixtures
at higher temperatures, as we shall see in Chapter 10.

As an example of the first application, we can use equation (6.37) to calculate the
residual entropy of H2 at absolute zero due to the normal abundance of its two stable
isotopes 'H = 99.9844%, 2D = 0.0156%.
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Interestingly, this is a much smaller effect than that arising from nuclear spin
multiplicity in solid F^ calculated above (1.38 calK""1 mol"1).

Finally, we should point out that, while the exceptions to the Third Law noted
above may be a headache for scientists who measure calorimetric properties of ma-
terials, they pose no practical problems in most chemical applications. Chemical
reactions alone do not change nuclear spin, and in many cases do not alter isotope
ratios significantly, so that configurational contributions to the entropy of reactants
are normally balanced by those of the products in a reaction. In most cases these
effects are thermodynamically minor or insignificant.

6.6. THE ENTROPY OF THE UNIVERSE REVISITED

Clausius' statement of the Second Law, "The entropy of the world (universe) tends
towards a maximum," has stimulated more discussion than he could have possibly
imagined. Thanks in large part to the statistical interpretation, which allows entropies
to be calculated from arrangements and probabilities rather than from measured heat
capacities, the concept of entropy has found its way into virtually every field of
investigation, where it is applied with varying degrees of rigour. For example it has
been used to show that Shakespeare's style has roughly half the entropy of Thomas
Mann's (e.g., Gasser and Richards, 1974, p. 129). The usefulness, and even the
meaning, of many of these applications is somewhat questionable.

In the latter part of the 19th century Clausius' law was also used to predict the
"heat death" of the universe. Just as gas molecules left to their own devices in a closed
box will reach a state of maximum randomness, it was argued the same thing would
ultimately happen to the universe. At some distant time, the entropy of the universe
would be maximized, a state of final equilibrium would prevail, and all processes
would cease. This rather bleak outlook was shattered in 1929 when Edwin Hubble
discovered that the universe is expanding. In a constantly changing universe, total
equilibrium is unattainable and entropy must keep changing.

6.6.1. The Standard Model of the Universe

Since Hubble's time, and chiefly in the past decade, a theory for the origin and growth
of the universe has become so widely accepted that it is now called "the standard
model." Very briefly, this model states that the cosmos originated with the "big bang"
in which all energy/mass exploded outward from an initial, unthinkably hot and
dense fireball. We observe the aftermath of this explosion 10 to 20 x 109 years later
in the continuing expansion of the universe and the decline of the cosmic background
temperature to its present value of 3 K. Depending on the average density of the
cosmos (which is not sufficiently well known) the expansion should either continue
ad infinitum or the whole system will slow down, reverse, and contract ("open" arid
"closed" universes). In the latter case the universe would collapse to another fireball
and then possibly explode again, oscillating between expansion and contraction over
great periods of time.

For present purposes let's consider only the first of these two alternatives—the
open, perpetually expanding model. Roughly 10~2 seconds after the big bang the
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universe contained a random mixture, mostly of electrons, positrons, neutrinos, an-
tineutrinos, and photons with a tiny, one part per billion admixture of heavier neu-
trons and protons. At that point, the temperature was 1011 K and the density about
4 x 109 g cm~3. The ratio of roughly 109 photons per nuclear particle (or nucleon) has
continued to the present day. After roughly 3 minutes, the universe cooled to ~ 109 K;
the positrons had essentially disappeared (leaving a slight excess of electrons in their
wake), and neutrons and protons began to combine as simple nuclei (]H, 2H, 3He,
4He). Finally after ~ 700,000 years, the temperature fell to 3000 K, cool enough for
electrons to associate with nuclei as atoms; at this point stars and galaxies began to
form. Living organisms appeared near at least one of these stars after an additional
1010 years (very approximate). The universe will continue to expand; in the distant
future, the nuclear processes of stars will slowly die out, leaving behind black dwarf
and neutron stars, black holes, and innumerable cold planets.

6.6.2. The Expanding Universe versus the Second Law

One of the many interesting features about the standard model of the cosmos is that
it seems, at first sight, to contradict the Second Law of thermodynamics in every
detail. The universe begins in a state of maximum apparent disorder and maximum
temperature, and then proceeds systematically toward states of ever-increasing order.
Very early on, positrons and an equivalent number of electrons are annihilated; some
three minutes later, neutrons and protons combine as nuclei, then after ~ 700,000
years, nucleons soak up the few remaining electrons to make atoms. The atoms
combine as molecules and then as clumps of matter ranging from dust up to stars,
galaxies, and galaxy superclusters. The lighter nuclei combine to make all the heavier
ones in stellar nucleosynthesis reactions. The galaxies ultimately collapse as black
holes. In the midst of all this, the intricately structured processes of life begin on Earth
and probably elsewhere. Finally, the background temperature decreases constantly,
asymptotically approaching absolute zero, where the Third Law informs us entropy
will be zero or minimized. We cannot get out of this conundrum using the simple
analogy of particles expanding in a fixed space (for which entropy does increase)
because space itself is expanding: any volume expanding along with a homogeneous
region of space contains a constant number of particles and massless particles (or
quanta), hence this volume retains constant entropy. This is somewhat analogous to
the adiabatic expansion of an ideal gas, for which AS = 0.

Living organisms from Protozoans to Homo sapiens 'are the most highly complex
and elaborately ordered chemical systems known, at least to us. The internal arrange-
ment of molecules in an organism is necessarily so critical and precise that very few
alternatives are allowed. Mutation or random rearrangement of even a single strand
of DNA, for example, can have a devastating impact on an entire organism. Since
few alternative molecular states are permitted, living things must have extraordinarily
low entropies according to (6.3).

If the universe is becoming more ordered in all these ways, how can its entropy
"tend toward a maximum"? This is obviously a good riddle, and in recent years it
has, in one form or another, attracted the attention of various eminent physicists (see
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reviews and discussions by Weinberg, 1977; Davies, 1977; Islam, 1979; Dyson, 1979;
Frautschi, 1982).

A detailed account of these problems is beyond the scope of this book, despite their
fascination. Many aspects of the arguments are accessible only to specialists, but even
a superficial reading of the above sources makes it clear that most cosmic events such
as nuclear fusion, element formation, and formation, coalescence, and decay of black
holes actually generate enormous amounts of entropy, relative to processes familiar
to us on Earth. The major factor responsible for this, omitted in simplified accounts
such as given above, is that we must take into account not only neutrons, protons,
etc., but the enormous number of massless particles generated, such as photons and
neutrinos. When this is done, the entropy balance is profoundly changed.

As for the appearance and evolution of life, it is extremely unlikely that this
represents a violation of the Second Law because although living matter has a low
entropy, the Earth, on which life developed and evolved, is not an isolated system.
Although the problem cannot be quantified in the same way, the production of low-
entropy living matter is probably no more a violation of the Second Law than the
production of low-entropy ice in the bucket in §5.7. As Nash (1971) has pointed out,
the existence of highly ordered living organisms is "only a minute upstream eddy in
the ongoing torrent of increasing entropy."

6.6.3. Conclusion

There is something inherently fascinating about problems relating to the origin and
development of life and of the universe, and the entropy problem has long occupied
an important role in discussions of them. This has been made possible to a large
degree by the enlargement of our understanding of entropy through linking it to the
statistical and probability concepts discussed in this chapter.

Discussion of these problems will continue, and presumably our understanding
of them will increase, but at the present time it seems that we are justified in using
the Second Law at all scales, from microscopic to cosmic.
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THERMODYNAMIC PROPERTIES OF SIMPLE SYSTEMS

Thermodynamics is an experimental science and not a branch of metaphysics.

McGlashan (1979) p. 111.

7.1. PROBLEM— NO ABSOLUTE ENERGIES

We have now introduced several thermodynamic parameters that are useful in dealing
with energy transfers (U, H, G, etc.). We wish now to see how these quantities are
measured and where to find values for them. In later chapters we will see how they
are used in detail.

However, we have an immediate problem in that we cannot measure the energy
parameters U, H, G and A, as discussed in Chapter 4. Because we do not know the
absolute values of either the total or molar version of these variables, we are forced
to deal only with their changes in processes or reactions of interest to us. But we
obviously cannot tabulate these changes for every reaction of potential interest; there
are too many. We must tabulate some sort of energy term for each pure substance so
that the changes in any reaction between them can be calculated. In the example in
§5.7 of water at — 2°C changing to ice at — 2°C, we said that AG was negative. How
can we know this without carrying out a research program on the thermodynamic
properties of ice and supercooled water? We begin by explaining how this is done.

7.2. FORMATION FROM THE ELEMENTS

The problem created by not having absolute energy values is handled very con-
veniently by determining and tabulating, for every pure compound, the difference
between the (absolute) G or H of the compound itself and the sum of the (absolute)
G or H values of its constituent elements. In other words, AG or AH is determined
for the reaction in which the compound is formed from its elements (in their stable
states). These differences can be determined experimentally in spite of not knowing
the absolute values involved. For example, the "Gibbs free energy of formation" (i.e.
formation from the elements) of water is

and that for ice is

These are the free energies of reaction (ArG) for the reactions

146
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and

The subscript / signifies formation from the elements and the superscript ° signifies
standard conditions of some kind, normally a pressure of one bar and pure substances,
but any specified temperature.1 If both these quantities (that is, the free energies of
formation of water and of ice) are known for our conditions of —2°C and one bar,
then for the reaction

we write

and we find, as discussed earlier, that this quantity is negative and that therefore ice
is more stable than water at —2°C, one bar. It is important to note here that for any
balanced reaction, the elements always cancel out. Thus

In other words, the comparison we are making is really between the absolute quantities
G°H2o(s) and G°H2o(i)'not between arbitrary functions of these quantities. Determin-
ing the differences between G or H of compounds and their constituent elements thus
allows convenient tabulations to be made which facilitate calculation of AG or Aff
for any reaction.

Note too that we write the free energy of oxygen as GQ, and not GQ or f Go3-
GO is not a different way of writing jGO2 but signifies the Gibbs energy of a mole
of pure nascent oxygen, and GOs is the Gibbs energy of ozone. "Formation from the
elements" normally means formation from the elements in their stable states, except at
temperatures above the boiling or sublimation temperature of the reference elements.
For example, sulfur properties are taken as those of orthorhombic sulfur up to 368.54
K, monoclinic sulfur from 368.54 K up to the melting point at 388.36 K, and liquid
sulfur up to the boiling point at 716.9 K. Above the boiling point sulfur exists as a
gas containing a mixture of species such as S, S2, S4, S6, S8, etc., the proportions
varying with temperature, but the reference state is chosen as a hypothetical ideal gas
composed only of S2 because it happens that the properties of such a gas are known
more accurately than those of the real equilibrium gas phase. Most other elements
above their boiling points are treated as ideal monatomic gases.

Finally, we might emphasize that in spite of numerous statements to the contrary,
the (absolute) enthalpies and free energies of the elements themselves are not assumed

'We will have a great deal more to say about these "standard conditions" in connection with activities,
at which point their importance will become clearer. For the moment, the superscript ° basically means
that the property is that of a reference substance, i.e. a specially chosen pure substance at some P and T.
The P is usually one bar and the T is usually 298.15 K, but both can be any value.
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to be zero, or set to zero by convention. The H(= U + PV) and G(= U - TS+PV) of
both elements and compounds have finite, large absolute values as discussed earlier.
We merely work with the differences between these quantities, and this involves no
arbitrary conventions at all. It is however true that this leads to the result that A/G°of
the elements themselves in their stable reference states is zero. For example,

Tabulated values of A/G° and A f H ° for the elements in their reference states at var-
ious temperatures therefore appear as a column of zeros — see Table 7. 1 for example.
This of course does not mean that the absolute values G and H are zero.2

Tables 7.1 and 7.2 are copied directly from the thermodynamic compilation of
Robie, Hemingway and Fisher (1978), abbreviated as RHF. Many of the other standard
thermodynamic data sets discussed later in this chapter are arranged in a similar
fashion. We can now begin to examine some of the features of these tables a little
more closely. First, we have just observed that A/G° and A/.ff ° for the formation of
02(5) "from the elements" is zero at all temperatures because this is just the difference
between the G (or H ) of oxygen and the G (or H) of the elements making up oxygen,
which is the same thing. We have not yet defined the equilibrium constant K (see
Chapter 13), but for completeness we should point out that it is 1.0 and log K = 0
for the reaction for the formation of oxygen from itself, giving us another column of
zeros. Note too that the entropy of O2(#), S°T, given in Table 7.1 is not equal to zero
at any temperature shown; these are absolute entropies, not entropies of formation
from the elements, as discussed in Chapter 6 and again later in this chapter. Table 7. 1
is typical of data tables for the elements.

Table 7.2, for halite (NaCl) is more complicated and more typical of natural
compounds. As with 02(5) and all other substances, the entropy S°T here is the
absolute value for the forms of NaCl listed at the top of the Table — pure crystals for
temperatures up to 1073.8 K, and liquid NaCl at higher temperatures. Now, however,
the free energy, enthalpy, and log Kf for formation of NaCl from its elements are all
non-zero because they refer to the reaction

This appears simple enough, but raises a point of possible confusion concerning the
reference state used for the elements. As already noted, this is usually taken to be the
most stable form of the elements at each T. For Cl this is simply C\2(g) over the entire
temperature range shown. However, Na poses a problem because it melts at 370.98 K
and boils at 1175 K; hence the most stable reference phase for Na changes from
solid to liquid to gas across this temperature range. Similarly, because NaCl melts

2Although the "formation from the elements" convention does not in turn require a convention that
the free energy (or enthalpy, etc.) of the elements is zero, the convention adopted for the properties of the
aqueous ions does. But even in this case, the convention is adopted to simplify things; it is not necessary
(see Chapter 17).
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at 1073.8 K, the RHF tables list thermodynamic properties for solid NaCl below the
melting point and liquid NaCl above it.

The temperatures of all these phase transitions are noted in the footnotes to the
Table (for the constituent elements) or in the title (for the compound itself). The phase
changes are also indicated by horizontal dashed lines at the appropriate temperatures.
The dashed line for the melting point of NaCl goes across the entire table, because all
the thermodynamic properties listed refer to solid NaCl at lower T and liquid NaCl
at higher T. The dashed lines for phase changes of the elements extend only across
the right hand side of the Table, which gives the properties for formation of NaCl
from the elements. All other properties in the remaining columns refer to NaCl alone
and are hence not affected by changes in the constituent elements. As we shall see,
it is necessary to include the enthalpy of melting and vaporization for transitions in
the reference states of the elements when calculating A/G° etc., so these enthalpies
are also given in the footnotes. The fact that the reference elements can undergo
phase transitions as temperature is changed means that the tabulated values of A/G°
or A/ff° of compounds will have discontinuities at these temperatures, as shown in
Figures 7.1 and 7.2. This is an inconvenience in fitting functions to the properties and
in interpolation of intermediate values. There are also of course discontinuities at the
transition temperatures of the compound itself. It will be pointed out when we discuss
phase transitions that two phases of the same composition at equilibrium with each
other will have different values of H, but the same values of G (§ 14.2.4). Thus A/7J°
values for compounds as a function of temperature have discontinuities at the phase
transition temperatures both of the compounds and of their constituent elements, while
A/G° values have changes in slope at these temperatures, as illustrated in Figures
7.1 and 7.2. A/G° values also have discontinuities where the properties of one of
the constituent elements are not those of the stable form of that element, as discussed
above for sulfur vapor (Figure 7.3).

Discontinuities resulting from phase transitions in the reference elements can
pose difficulties when interpolating from RHF-type tables, where enthalpies and free
energies of formation are usually tabulated for temperature increments of 100°C. The
problem can be circumvented to some extent by using the "Gibbs energy function"
or Giauque function, —(G^ — H%9S)/T, which is listed in the fourth column of these
tables. The G and H symbols in this function refer to the absolute properties of the
compound itself (not to the reference elements). Neither the G nor the H term is
known, but the difference can be determined (§7.5.4), and since H%9S is a constant
and Gy is continuous (changing slope at phase transitions of the compound), the
Gibbs energy function itself must be continuous. It can then be used to calculate free
energy changes for reactions given Ar£f|98, (the standard enthalpy change for the
reaction at 298 K), obviating the problems associated with changes in the reference
elements because these are not involved. This is discussed in more detail below.

7.3. ENTROPY TABULATION

Entropy differs from enthalpy and free energy in that absolute, rather than relative,
values can be tabulated. This is possible because of the Third Law, introduced in



Table 7.1. Thermodynamic properties of oxygen as tabulated by Robie et al. (1978). Note
that all properties representing formation from the elements are zero.

Oxygen (Reference State) Formula Weight 31.999

O2: Ideal diatomic gas 298.15 to 1800 K.

Formation from the Elements

Temp. —
HT~H298J

T

K J/mol • K

298.15
Uncertainty

400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

0.000

7.560
12.176
15.420
17.867
19.799
21.376
22.694
23.818
24.792
25.644
26.399
27.072
27.678
28.226
28.726

Melting Point
Enthalpy of Melting
ff° H°•"298 ^O

CO»T
(o?-HS»)

T
J/mol • K J/mol • K

205.15
0.04

213.87
220.70
226.47
231.48
235.93
239.94
243.58
246.92
250.01
252.88
255.56
258.08
260.45
262.69
264.82

54.35 K
0.444 kJ
8.682 kJ

205.15
0.04

206.31
208.52
211.05
213.61
216.13
218.56
220.89
223.10
225.22
227.24
229.16
231.01
232.77
234.46
236.09

r°LP
J/mol • K

29.37

30.13
31.16
32.12
32.95
33.67
34.29
34.82
35.29
35.69
36.05
36.36
36.64
36.89
37.11
37.31

Gibbs
Enthalpy Free Energy Log Kf

kj/mol kj/mol

0.000 0.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

Boiling Point
Enthalpy of Vaporization
Molar Volume 2478.

0.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

.000

90.18K
6.816kJ

,9200J/bar
24789.200cm3

Transitions in Reference State Elements

Heat Capacity Equation

Cp = 48.318-6.9132 x 10~4 - 4.2066 x 102 T"0-5+4.9923 x 105T~Z

(Equation valid from 298-1800 K)
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Table 7.2. Thermodynamic properties of halite (NaCl) as tabulated by Robie et al. (1978).

Halite Formula Weight 58.443

NaCl: Crystals 298.15 to melting point 1073.8 K. Liquid 1073.8 to fictive boiling point 1791 K.

Formation From the Elements

(l
Temp. —

K J

298.15
Uncertainty
400
500
600
700
800
900

1000
1073.80
1073.80
1100
1200
1300
1400
1500
1600
1700

JT-H°n)
T

/mol • K

0.000

13.100
21.124
26.775
31.070
34.515
37.389
39.877
41.702
67.925
67.934
67.964
67.965
67.943
67.903
67.847
67.779

Melting Point
Enthalpy of Melting
T T O T T O
n298 "O

co VaT

J/mol • K J,

72.12
0.21

87.22
99.09

109.12
117.88
125.71
132.82
139.37
144.11
170.33
171.89
177.83
183.27
188.29
192.93
197.26
201.30

1073. 8 K
28.158kJ
10.611 kJ

r*° R° 1f*T~H-m)
T

/mol • K

72.12
0.21

74.12
77.97
82.34
86.81
91.20
95.43
99.49

102.41
102.41
103.96
109.87
115.30
120.35
125.03
129.41
133.52

c°<-p
J/mol • K

50.51

52.34
54.14
55.94
57.73
59.53
61.33
63.12
64.45
68.55
68.46
68.14
67.82
67.50
67.17
66.85
66.53

Enthalpy

kj/mol

-411.260
0.110

-413.461
-413.024
-412.352
-411.456
-410.352
-409.064
-407.593
-380.693
-352.535
-377.527
-472.918
-470.082
-467.285
-464.521
-461.794
-459.103

Gibbs
Free Energy Log Kf

kJ/mol

-384.212
0.110

-374.837
-365.229
-355.730
-346.356
-337.136
-328.064
-319.133
-313.098
-313.098
-310.967
-302.951
-288.905
-275.089
-261.445
-248.002
-234.720

67.313
0.019

48.949
38.155
30.969
25.846
22.013
19.040
16.670
15.231
15.231
14.767
13.187
11.608
10.264
9.104
8.096
7.212

Boiling Point 179 I K
Enthalpy of Vaporization 164. 787 kJ
Molar Volume 2.7015 J/bar

27.015cm3

Transitions in Reference State Elements
Sodium M.P. 370.98, B.P. 1175 K.

Heat Capacity Equations

Cp = 45.151 + 1.7974 x 10~2 T

(Equation Valid from 298—1073.8 K)

Cp = 72.008 - 3.2228 x 10~3 T

(Equation Valid from 1073.8—1791 K)
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FIG. 7.1. Enthalpy of formation of NaCl from the elements as a function of temperature.
Data from Robie, Hemingway and Fisher (1978).

FIG. 7.2. Gibbs free energy of formation of NaCl from the elements as a function of temper-
ature. Data from Robie, Hemingway and Fisher (1978).

152



THERMODYNAMIC PROPERTIES OF SIMPLE SYSTEMS 153

FIG. 7.3. Gibbs free energy of sphalerite from the elements as a function of temperature.
Data from Robie, Hemingway and Fisher (1978).

Chapter 6, which states that the entropy of perfect crystalline solids tends towards
zero as absolute zero temperature is approached. This sets a baseline against which
the entropy of any substance can be determined from measured heat capacities and
the relationship

The entropies so computed are termed "Third Law," "absolute," or "conventional"
entropies, and designated S° or S^ . These are not at all comparable to enthalpies
and free energies of formation, A///° and A/G° , which instead refer to reactions
forming the compound from its elements. For example, A/H° and A/G° for an
element such as 02(5) at 25° C are both necessarily zero, while the absolute entropy,
Sf98, is 205.15 JK"1 mol~ l. (see Table 7.1).

Entropies of formation from the elements, A/S0, can of course be computed for
compounds, and as we shall see below they are used to calculate A fG° from enthalpy
and entropy data, but they are not normally tabulated.
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7.4. AG AND Aff AT HIGH T AND P

The definition and use of free energies and enthalpies of formation from the elements
as (for example)

and 

where A2B is a compound formed from the elements A and B, and Tr, PT refer to
reference temperature and pressure (normally 298.15 K and 1 bar) lead naturally
to the definition and use of free energies and enthalpies of formation at elevated
temperatures as

and

where T, Pr refers to any elevated temperature at 1 bar pressure. One might suppose
that for conditions at elevated temperatures and pressures, we would use

and

However, while the definitions in equations (7.2) and (7.3) are extensively used, those
of equations (7.4) are never used. It is often a difficult task to determine the change
of G and H of elements with changing pressure at high temperature, and since the G
and H of the elements always cancels out in balanced reactions, there is no real need
to do so.

7.4.1. Standard Free Energies and Enthalpies of Formation at T and P

Free energies and enthalpies at high temperatures and pressures can thus be defined
as

and
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In other words, the free energy and enthalpy of formation of a compound at T
and P are calculated from the difference between the absolute G and H values of
that compound at T and P and its constituent elements at T and Pr (one bar). The
right-hand sides of both these equations are calculated from the known properties of
the substance and its elements at 298 K and 1 bar, plus the equations for the change
in these properties with T as described below,

These definitions are in common use at the present time, but the fact that the
properties of the elements always cancel out in balanced reactions raises the question
of why we bother to use the high temperature properties of these elements (equations
(7.3) and (7.5)). Would it not be simpler to use the properties of the elements at 298
K, since it would make no difference?

7.4.2. Apparent Free Energies and Enthalpies of Formation at T and P

The high temperature properties of the elements have discontinuities as mentioned
above that make interpolation very inconvenient in some temperature ranges. Why
not define free energies and enthalpies so as to leave the elements at 298 K? Since
they cancel out in all balanced reactions, it would make life simpler. Unfortunately
there are two conventions for doing this at the present time.

The Benson-Helgeson Convention

The first of these, suggested by Benson (1968) and introduced to the geochemical
literature by Helgeson et al. (1978), takes the straightforward approach of defining
"apparent" G and H of formation from the elements as the difference between the
absolute G or H of a compound at T and P and its constituent elements at Tr,
Pr, normally chosen as 298.15 K and 1 bar. Thus for compound A2B formed from
elements A and B,

and

The subscript a rather than subscript / distinguishes these quantities from the
traditional A/G°, A/#°. It is naturally important not to use apparent and traditional
properties of formation in the same calculation. Equations (7.6) can also be written

and
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FIG. 7.4. Schematic representation of the absolute G of NaCl and the absolute G of (Na+ \ C\2)
as a function of temperature. The difference between the two curves results in Figure 7.2.

The quantities A/GAzB and AaGA2B change in opposite senses as temperature is
raised because, although G of all compounds and elements decreases with increasing
T, G of compounds generally decreases more slowly than the total G of the constituent
elements, making the difference A/GA B less negative as T increases (Figure 7.4).
A0GA,,B on the other hand is increasingly negative with temperature because the
elements are fixed at 298 K (Figure 7.5). A plot of A0G° vs. T therefore accurately
shows the variation of absolute Gj with T, whereas A/G° vs. T does not.

The Berman-Brown Convention

Although straightforward, the G and H denned by the Benson-Helgeson convention
do contain some "excess baggage" in the sense that they contain the entropies of the
elements at Tr,Pr, which are contributing nothing to the usefulness of the concept.
In other words, equation (7.6) can be rewritten

Thus

where i/i is the stoichiometric coefficient of the elements i appearing in the formation
from the elements reaction. The Berman-Brown definition can also be written
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FIG. 7.5. (a) Schematic representation of the absolute G of NaCl as a function of temperature,
and the difference between this and the absolute G of (Na + \Ch) which is fixed at its 298.15
K value. This difference we call the apparent free energy of formation, (b). Schematic repre-
sentation of the difference function AaG^aci from Figure 7.5a, as a function of temperature.

Both the Benson-Helgeson and Berman-Brown conventions are in common use
at the present time. Both are far more sensible than what we have called the standard
formation from the elements convention, but there is little to choose between them.
Hopefully, one will become dominant in the near future.

The differences between the various definitions we have been discussing is quite
often confusing on a first encounter. The best way to understand what is going on
is to see how these properties are measured and calculated, which is covered in the
following sections.
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7.4.3. (H° - H^r ) and (G°T - H^r )/T

Two other functions that allow calculation of high temperature AH and AG without
the inconvenience of having phase transitions in the elements are the "heat content"
(H? - .ff£ ) and the Gibbs energy or Giauque function (G^ - H^/T. Both of these
functions refer to the compound itself and not formation from the elements. They
vary slowly and smoothly between transition states of the compounds considered, and
calculation of products minus reactants in chemical reactions leads to the quantities
A-fiTJ - AH^r and AGJ - AH^ , so that evidently AH^ for the reaction must be
known in order to use these functions at T. This is not usually a problem. Tr in these
equations is usually 298.15 K but can be 273.15 K.

Because the quantities H^, H%, , G^, and G^. refer to the substance of interest
(compound, mineral, element), H^ — H^ and G^ — H%, are not formation from the
element functions. The ArG° and ArH° they give rise to are of course identical to
ArG° and ArH° obtained from using high temperature values of A/G° and AfH°
or A0G° and AaH°, and s'mce(H^ - H^) and (G ,̂ - H^r)/T are commonly
tabulated for elements and compounds along with traditional AjG° values, they may
be used to convert A/G° ,AfH° to AaG°,AQflr° or vice versa. For example, to
calculate the apparent free energy of formation of quartz at T K, AaG^Q^, given

the traditional free energy of formation, A/G^g*2, T, we have

Thus to convert traditional to apparent properties of formation or vice versa, one
need only look up the properties (G^ -H^)/T and (G^ - H^ )/298 (or (H% - H^ )
in the case of AH) for the constituent elements.

7.4.4. Formation from the Oxides

A convention in common use as an alternative to energies and enthalpies of formation
from the elements is energies and enthalpies of formation from the oxides. Thus
instead of having

and
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from which for the reaction

we get

We could also have

and

as before.
This convention is somewhat more limited in its application than is formation

from the elements. For example, it could not be used for many reactions involving
non-oxides such as

However, for the large range of geologically interesting reactions involving sili-
cates, oxides, carbonates, and sulfates it has one advantage over the formation from
the elements convention, and that advantage is that uncertainties associated with for-
mation from the oxides are generally smaller, because the uncertainties associated
with forming the oxides from their elements are not included. One must be very
careful, of course, not to mix two conventions in a single calculation.

For oxides such as the silicate minerals, the RHF tables list thermodynamic prop-
erties twice; first as formation from the elements, and second as formation from the
oxides. Table 7.3 is an example for the mineral jadeite showing properties on the
right-hand side calculated for formation from the oxides; these are marked with an
asterisk as a reminder not to confuse them with formation from the elements.

7.5. PROPERTIES DERIVED FROM CALORIMETRY

7.5.1. The Measurement of Thermodynamic Properties

It is very helpful in understanding thermodynamics to know how the thermodynamic
data for various materials are actually obtained. In fact, the thermodynamic properties
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Table 7.3. Thermodynamic properties of jadeite as tabulated by Robie et al. (1978). The
three right-hand columns represent formation from the oxides (not the elements): ^Na2O+
2SiO2 + f A12O3 = NaAl(SiO3)2

Jadeite Formula Weight 202.140

NaAl(SiO.i)2: Crystals 298.15 to 1300 K.

Formation From the Oxides

(H°T-H°^} (G°-H°) Gibbs

Temp. V
 T > S° - V

 T ' C° Enthalpy Free Energy LogKf

K J/mol • K J/mol • K J/mol • K J/mol • K kJ/mol kj/mol

298.15 0.000 133.47 133.47 159.95 -162.740* -159.000* 27.856
Uncertainty 1.25 1.25 2.380 2.400

400 44.725 184.87 140.14 188.44 -163.140* -157.660* 20.588
500 75.266 228.87 153.60 205.34 -163.737* -156.232* 16.321
600 97.977 267.40 169.42 217.10 -164.622* -154.644* 13.463
700 115.656 301.56 185.90 225.98 -165.873* -152.891* 11.409
800 129.906 332.22 202.31 233.09 -167.547* -150.935* 9.855
900 141.711 360.02 218.31 238.99 -169.505* -148.716* 8.631

1000 151.696 385.47 233.77 244.05 -169.975* -146.390* 7.647
1100 160.297 408.94 248.64 248.47 — — —
1200 167.813 430.74 262.93 252.42 — — —
1300 174.461 451.09 276.63 255.99 — — —

Melting Point K Boiling Point K
Enthalpy of Melting kj Enthalpy of Vaporization kJ
H|98-H° kJ Molar Volume 6.0400 J/bar

60.400cm3

Transitions in Reference State Oxides
Na2O M.P. 1193K
SiO2 Alpha-Beta Transition 844 K

Heat Capacity Equation

Cp = 3.0113 x 10Z + 1.0143 x 10~ZT- 2.0551 x 103T-°lS -2.2393 x 104T~7

(Equation valid from 298-1300 K)
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of substances can be determined by an enormous variety of experimental approaches.
For example, that simple measurement of the vibrational spectra of crystals over a
range of temperatures can be used to derive fundamental thermodynamic properties,
including those of different isotopes of the same element. The temperature dependence
of the electromotive force in redox reactions provides similar information, as we shall
see in Chapter 18. Other sources include calorimetry, phase equilibrium and solubility
studies, volume and density measurements, electrical conductivity and capacitance,
many different spectroscopic techniques, electrochemical techniques, and so on. The
list is almost endless, and limited only by the ingenuity of experimentalists.

All these techniques can be seen as various ways of measuring the change in
the energy content (Af7) of a system in one form or another, and since the energy
content can be changed by using either heat or work, the experimental methods
manipulate q, w, or U. For example, many spectroscopic procedures permit direct
measurement of energies, whether vibrational, electronic, nuclear, or kinetic. The
other thermodynamic properties such as entropy, heat capacity, enthalpy, and Gibbs
free energy are then derived from this measurement as outlined in Chapter 6. Another
class of experimental procedures is designed to look at the work term w, usually
through the AV term in PAV. For example, density or molar volume measurements
on gases and liquids at different temperatures give rise to fugacities, partial molar
volumes, and so on. A third class of techniques is concerned with the measurement
of q, or the transfer of energy as heat. These include the many different techniques
that are lumped together under the general term "calorimetry."

7.5.2. Calorimetry

Of all available methods, calorimetry has been the most important source of thermo-
dynamic data on complex materials, including minerals. For this reason we will focus
on the topic of calorimetry in rather general terms, describing how thermodynamic
parameters are extracted from calorimeters, and how they are combined to give the
tables of data we find in the literature. In this chapter we omit most experimental
details for the sake of simplicity. An old, but still useful general reference on the
subject is the book edited by McCullough and Scott (1968). The many different kinds
of calorimeters are in general designed to measure the heat capacity, Cp, of single
materials, or the heat of reaction of mixtures. Knowledge of the heat capacity for a
range of temperatures gives the other thermodynamic properties such as S and H
directly from the relations dH = CpdT and dS = (Cp/T)dT\ Gibbs free energies
are then given by AG = Aff — TAS1. It is this kind of direct determination of the
fundamental thermodynamic variables that makes calorimetric procedures so use-
ful. Individual kinds of calorimeters are designed for specific temperature intervals
ranging from temperatures approaching absolute zero up to magmatic conditions (al-
though no one instrument could span anywhere near this entire range). In general,
they are operated at fixed pressure, usually 1 bar.

Unfortunately, calorimeters have not yet been designed to operate over the tremen-
dous ranges of pressures of interest to Earth scientists; this means that they cannot
provide direct information on the change in thermodynamic properties with pressure
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(or on the work term w). Hence these P V-related properties must typically be derived
by some other procedure.

The major types of calorimetry to be considered here are:

• Solution calorimetry

a. HF solution calorimetry

b. High temperature oxide melt calorimetry

• Drop calorimetry

• Cryogenic calorimetry

Solution Calorimetry

The object in solution calorimetry is to measure the heat liberated when a compound
dissolves, then to measure the heat liberated when its component elements or oxides
dissolve to give the same final solution composition as did the compound. Thus one
has two reactions

crystalline compound + solution' — > solution" + heat(AHi)

component elements + solution' — > solution" + heat(AH2)

As long as both solution' and solution" have the same compositions in both reactions,
the reactions may be subtracted giving

component elements — » crystalline compound +

where AH$ = AHi — AjE/2 and is the heat of formation of the compound from its
elements.

At ordinary temperatures, the only reasonably convenient solvent capable of dis-
solving silicate minerals is hydrofluoric acid, HF. At higher temperatures, various
oxide melts may also be used, and although the techniques are totally different, the
principle is the same.

HF Solution Calorimetry. Actual practice in solution calorimetry is never quite
as simple as the two-reaction scheme outlined above, because at least some of the
component elements are not suitable for placing directly into a calorimeter. Oxygen,
for example, can only be used in the form of oxides, so the heat of formation of the
oxides must generally be known by some other method. Alkali metals such as Na and
K are highly volatile in the pure form and difficult to handle, and so are used in other
forms such as NaCl and KC1. Other elements such as Al and Si could be used in the
pure elemental form, but are usually used in other forms such as AlCls .6H2O and
SiO2, so that the heats of formation of these compounds must be obtained in other
experiments. The heats of reaction involving gaseous components such as
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and

are usually determined in a "bomb calorimeter," where the gaseous element is placed
in great excess under pressure so that the reaction, which is sometimes explosive
or at least highly exothermic, will be sure to go to completion. Once completed
satisfactorily, the results are then used in all subsequent HF solution calorimetry
measurements.

Then since chloride salts are used, the heats of ionization reactions such as

must be determined, and similarly with other heat terms such as heats of dilution from
one concentration to another, and the heat required to warm various solutions from
one temperature to another. Thus to determine A/ffy for a single silicate mineral it
is not unusual to have to add algebraically the Ar.ff of 10 or 12 different reactions. It is
therefore imperative that all of them be known with the highest possible precision and
accuracy. The art of solution calorimetry is a highly exacting quest for the continual
elimination of ever-smaller but ever-present errors, and the construction of ever-
improved calorimeters. HF solution calorimetry is described in detail by Robie and
Hemingway (1972).

High Temperature Oxide Calorimetry. Calorimetry at temperatures of 600° C to
above 900°C using "micro calorimeters" (i.e. apparatus much smaller than con-
ventional HF solution calorimeters) having fused salts such as 2PbO.B2O3 or
3Na2O.4MoO3 as solvents has been developed extensively in recent years (see review
in Navrotsky, 1977). These melts dissolve refractory oxides and silicates quite readily,
so that determination of the heat of formation of compounds from their oxides can be
measured directly. Heats of formation from the elements are not normally attempted
by this method. The method is simpler but less precise than HF calorimetry.

Drop Calorimetry

The amount of heat required to raise the temperature of a mole of substance from Tr

to T at constant pressure is simply HT — Hfr (or HT — HTr for a standard reference
substance); again, a difference between two unknown quantities. This quantity is
conveniently measured by cooling the substance from T to Tr (usually 298 K, but
sometimes 273 K) in a calorimeter and measuring the amount of heat given up by
the substance during this process. To do this, a calorimeter is placed directly under a
furnace and the sample is dropped from the furnace where it has temperature T, into
the calorimeter, where it gives up its heat and achieves temperature Tr, or close to it.
Small corrections are then applied to bring the total heat change to HT — Hxr. The
procedure is described in detail by Douglas and King (1968).

Values of HT — HTT can be combined to give A/JPfor substances at high
temperatures. Thus for any substance



164 THERMODYNAMICS IN GEOCHEMISTRY

FIG. 7.6. (HT — #298) as a function of temperature. The slope at any point is Cp.

where A/ refers to the reaction in which the substance is formed from its elements.
For example.

and therefore

This is the way the tabulated values of A/fPare actually constructed, but of
course before this is done, the experimental values of (HT — H^r) for the substance
and its elements must be smoothed and interpolated to give values at even temperature
intervals. To do this, they are fitted statistically to a function, which is commonly

Once the "best fit" values of A, B, C, and D are calculated, (H? - H%,r) may be
computed for any desired temperature.

The Heat Capacity. The slope of the plot of (fl£ - H^) versus T is the heat
capacity, Cp (Figure 7.6). Thus

or simply

since HT , although an unknown quantity, is certainly a constant, so that
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Thus

or

where

This is the Maier-Kelley equation for heat capacities (Maier and Kelley, 1932).3

Several other equations are also commonly used to fit the heat capacity (see for
example Tables 7.1, 7.2 and 7.3). Rather than try to present the rest of the equations
in this chapter for all current versions of this equation, we continue to use the Maier-
Kelley equation as an example. Commonly used equations derived using other heat
capacity expressions are presented in Appendix B.

In machine computations, enthalpies are most conveniently calculated by storing
values of a, b, and c for various substances and using the integrated form of the
Maier-Kelley equation.

For instance, for the formation of fluorite from its elements we write

For each of Ca, ¥2, and Cap2 there is a set of Maier-Kelley coefficients, a, b and c,
so that

and

where

3This equation is sometimes written with a +cT 2 term instead of the —cT~2 term as shown in (7.12).
If tabulated values of c are positive, as in Appendix C, equation (7.12) is being used. If they are negative,
the +cT~2 term is being used.



If in this equation A.ffrr is AfH°T and Aa, Aft, and Ac are as above, then AHT

is AfH°r, the standard enthalpy of formation of fluorite at temperature T.
To calculate the apparent enthalpy of formation at elevated temperatures, we need

the a, b, c values only for the compound of interest and not for its elements. Thus

Cryogenic Calorimetry

Cryogenic or low-temperature calorimetry is concerned with the measurement of the
heat capacity of substances below 298 K, often to within a few degrees of 0 K. This is

Effect of Phase Transitions

Equation (7.13) is a perfectly general relationship, but the integration in terms of fit
coefficients is not. Fit coefficients such as the a, b, c of Maier-Kelley are only valid
for the regions of smoothly changing heat capacity from which they were derived,
which means between phase transitions. If between Tr and T the compound of interest
goes through a phase transition (polymorphic change, melting, etc.) there is an abrupt
change in Cp, and hence in AH and AS, and the fit coefficients are different above
and below the transition temperature. A more complete expression is therefore

where AtH is the enthalpy of transition, and Tupper and Tiower are the upper and
lower temperature limits of the temperature ranges in which T varies smoothly. For
example, if there is one transition at temperature Tt, the expression is

166

Integrating

we have
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accomplished by equilibrating the sample at some low T, then introducing a known
quantity of heat by means of an electrical heater and observing the resulting change
in T, usually a few degrees. Then after correcting for heat losses to the calorimeter,
the heat introduced (which is negligibly different from A/f because the A(PV) term
is almost zero) divided by AT is plotted against T, from which values of (dH/dT)
or Cp are retrieved.

Cp/T is then computed at each T, an extrapolation performed from the lowest
measured temperatures to 0 K, and the integral

evaluated, usually by integrating an orthogonal polynomial fitted to the CP/T versus
T data.

Then since

and

The assumption that the entropy of the measured substance at 0 K (Sr=o) is zero then
allows one to give a numerical value for the "absolute" entropy of the substance at
298 K. Alternatively, ST=O can be evaluated or estimated if it is not zero.

Again, if there are phase transitions, a more complete expression would be anal-
ogous to (7.14). For one transition at temperature Tt between T = 0 and T, this
becomes

dT +The variation of CP/T with T is illustrated in Figure 7.7.
After &Tr has been determined for elements as well as compounds, A^S^, the

entropy change for the reaction in which a compound is formed from its elements, is
easily calculated if required.

The cryogenic calorimeter which has been in operation at the U.S. Geological
Survey for many years has been described by Robie and Hemingway (1972).

7.5.3. Entropies above 298 K

For temperatures above 298 K, entropies can be calculated by combining S^r and the
(Hj, - H%,r) measurements previously described. Since we know Sj,r, all we need
are values of S%, — S^r, which equals (H^ — Hj,)/T.

Thus
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FIG. 7.7. Cp/T as a function of temperature. The area under the curve between 0 and 298 K
gives ̂ g.

so

The right-hand side is integrated by parts, giving

Since (HZ — HZ ) and therefore (HZ - HZ )/T2 is known as a function of T, the
^ J- J-r J J r '

integral can be evaluated, and SZ values calculated for elevated temperatures. As in
the case of A.H° values, an alternative method usually preferred by Earth scientists
using computer programs is to calculate SZ values, or more likely ArS° values, at
elevated temperatures by means of the Maier-Kelley heat capacity coefficients. In
other words, since

then
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where ArS° refers to the entropy change of a balanced chemical reaction. Integrating,

Combining this with the Maier-Kelley equation

we have

or

In this equation A,.̂  refers to the entropy change of any balanced chemical
reaction at temperature T. If the reaction is the formation of a compound from its
elements, Ar,Sy becomes A/S£.

The apparent entropy of formation can be calculated from

where C° /T refers to the compound only. Thus in the CaF2 example

7.5.4. Calculation of(G°T - H^)/T

Values of (G^ - H^r)/T are calculated from tabulated values of H%, - H^ and S£
from the relation

7.5.5. Calculation of A/G^ , A/G^, and AaG^

Standard free energies of formation from the elements at 298 K are computed from

and at higher temperatures from
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where as before, A/ refers to the reaction in which the compound is formed from its
elements.

Calculation of the apparent free energy of formation of a compound at elevated
temperatures from A/G^ and (G^ — H^/T values was discussed earlier in this
chapter. A more direct approach is to write for any compound i

The integration in the last term is performed by parts. That is

where

This results in

which, after substitution of

and

and collection of terms, results in
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This equation could of course also be adapted to the calculation of ArG°by
substituting Aj.5^ for S£r ; and Ara, Ar&, and Arc for a*, bi, and d, where Ara,
etc. are the usual product — reactant terms. Thus

A special case would be the reaction in which i is formed from its elements, in
which case A,-^ becomes A/5£r {, Ara becomes A/a,, and so on, and equation
(7.26) then gives the traditional free energy of formation as a function of T.

7.6. PROPERTIES OF SOLIDS AT ELEVATED T AND P

Thus far all equations have been derived for conditions of elevated temperature but
with the pressure fixed at Pr, normally one bar. For conditions of elevated pressure as
well as temperature, an additional term must be added. Equation (7.21) thus becomes,
for compound i,

for apparent free energies, and should become

for standard free energies of formation.
However, while the temperature integral can be evaluated using A/a,, A/&i, and

A/CJ for the reaction forming i from its elements, resulting in equation (7.25), the
pressure integral (which involves both i and its elements) can only be conveniently
evaluated for solids. Thus for compounds in which some of the elements are gases at
one bar, the evaluation of the pressure integral in (7.28) becomes a decided nuisance,
if not impossible, and in fact it is never used. Even for those cases where the reference
elements are carried up to T from 298 K, they are left at one bar, and only the compound
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FIG. 7.8. The conceptual difference between A0G° and A/G°.

of interest itself is considered at elevated pressures. In other words, equation (7.28)
becomes

In this case A/G^ p is not exactly what it claims to be. That is, it is not the
AG of formation of a compound i from its elements, all of which are at temperature
T and pressure P. It is the AG of the reaction in which iatT,P is formed from
its elements which are at T, Pr, and is therefore a sort of apparent free energy
of formation. The fact that the pressure integration for the elements is neglected
when it becomes difficult points up very well the futility of bothering to include the
temperature integral of the elements. The elements might just as well be left back
at 298 K, since they all cancel out anyway in all practical applications. This is why
apparent free energies and enthalpies as defined earlier are being used increasingly
in high T, P applications. As mentioned earlier, carrying the elements up to T from
298 K in A/G° is not only unnecessary but complicates the fitting and interpolation
of high-temperature properties by introducing numerous elemental transition states.
The difference between A/G^ p and AaG^ p is illustrated in Figure 7.8.

7.6.1. Thermal Expansion and Compressibility

As shown previously, the derivative of G with respect to P is V, i.e.
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so that to calculate the effect of P on G< we must know how Vt varies as a function
of P. Now the variation in volume with temperature and pressure is most commonly
measured as the thermal expansion at constant P

and the compressibility at constant T

where V can be the molar, specific, or total volume, because the volume units cancel.
(The l/V term is often replaced by 1/Vb, where V0 is the volume in some reference
state.) When substance i is a solid phase and thus has relatively small variation of V
with both P and T (relative that is to liquids and gases), very little error is introduced
by assuming that Vi is a constant at all P, T values. If pressures exceed 10 Kb or so,
one may wish to include a compressibility term to allow for the decrease in Vi, but in
fact compressibilities and thermal expansions are both poorly known for substances
at high P, T. Fortunately, when both P and T are elevated, the errors introduced by
the assumption that V is not affected by P or T tend to cancel one another, especially
for reactions having solids as both products aind reactants. As a result, the assumption
of constant V for solids is often adopted for mineral reactions at high P and T, and
results in

where Vi is the molar volume of the solid phase in Jbar^1, calbar"1, or equivalent
units and Pr = 1 bar. The apparent free energy of a solid phase at elevated P and T
is therefore given by equation (7.25) plus this Vt(P — 1) term, thus

Similarly, the (so-called) free energy of formation from the elements is



174 THERMODYNAMICS IN GEOCHEMISTRY

Should it be necessary to calculate apparent enthalpies or entropies of minerals
at elevated P and T, the assumption that (8V°/dT)p = 0 plus the general equations

and

leads to (for apparent enthalpies)

and (for standard enthalpies of formation from the elements)

and (for entropy)

or (for standard entropies of formation from the elements)

All these equations are for solid phases for which V° has been assumed to be
constant. For gases and supercritical fluids, this assumption is obviously not reason-
able. The variation of the free energies of these gases and fluids is most conveniently
handled in a completely different way, that is, by the introduction of a new function,
tiiefitgacity (see Chapter 11).

7.6.2. Solid Volumes Not Considered Constant

The assumption that the volumes of the solid phases are constant is not always ac-
ceptable. For example, in reactions involving only solids, both ArV and ArS will be
small, and because these represent the slope of ArG versus P and T, small errors in
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either ArV or Ar5 will mean relatively large errors in ArG and hence in the T and
P of computed phase transitions (Anderson, 1976; Helgeson et al., 1978). There are
very few attempts at a systematic treatment of solid volume variations at high T and
P, the most useful probably being that of Herman (1988). Berman fit the available
data for rock-forming minerals to the expression

where v\—v4 are fit parameters. The equation has no theoretical basis, and Berman
cautions against its use at conditions beyond those used in the derivation of the
parameters. Nevertheless, it should lead to improved accuracy of phase equilibrium
calculations in the majority of geological situations. To get the change in G from
Pr,T to P,T, we need JVdP from Pr to P at temperature T, where V is given by
(7.39). Thus

This is considerably simplified by letting Pr = 1. Integrating and collecting terms
then results in

The right-hand side of equation (7.40) can now be substituted for V°(P - 1) in
equations like (7.31) and (7.32).

We remind the reader at this point that all the expressions involving a, b, and c
in this chapter are derived using the Maier-Kelley expression for the variation of Cp

as a function of T. Several other equations are in common use, which will of course
change the derived equations. Obviously we cannot derive all the equations for each
case; the important thing is to see the dependence of the various functions discussed
here on the heat capacity. In Appendix B we present the essential equations for several
versions of the heat capacity expression.

7.7. SOURCES OF DATA

For Earth scientists, concerned primarily with the properties of minerals, silicate
melts, aqueous solutions and gases at elevated temperatures and pressures, sources of
data for thermodynamic calculations presents an unending challenge. This challenge
is at two levels—first, do the necessary data exist, and second, if there are several sets
of data, which one to choose, i.e., which is "the best"?

In addition to the primary research literature, there is a rather wide range of sources
of data in the form of compilations, reviews, and critical comparisons. In an excellent
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summary of these sources, Nordstrom and Munoz (1985, Appendix F) list 206 sources
for all substances except water, and 40 for water alone. Zemaitis et al. (1986, Appendix
C) give numerous sources for aqueous systems. Some of the more frequently used data
sets are: the Joint Army-Navy-Airforce (JANAF) Thermochemical Tables (Stull and
Prophet, 1971, with periodic supplements up to 1982); Robie, Hemingway and Fisher
(RHF, 1978); Helgeson, Delaney, Nesbitt and Bird (HDNB, 1978); Herman, Brown
and Greenwood (BBG, 1985); Berman (1988); the National Bureau of Standards
Tables (Wagman et al. 1982); Helgeson, Kirkham and Flowers (HKF, 1981); and
Sillen and Martell (1964, supplement 1971). These data sets differ in many ways.
HDNB, RHF, and HKF were prepared by Earth scientists, so they concentrate on
naturally occurring compounds (minerals) and solute species, and they are just as
concerned with high temperature and pressure conditions as with 25°C, one bar. The
others are more comprehensive (Wagman et al. for example contains data for some
26,000 properties of 14,300 substances), but most of these are never found in nature,
and their properties are given for the most part only at or close to 25°C.

Another major difference is that HDNB, BBG, and HKF are intended to be used in
conjunction with a computer program, rather than as written tables, and this is probably
the trend of the future. All modern compilations take great pains to be "self-consistent"
in that the values published satisfy the basic thermodynamic relationships among
themselves and are consistent with all the experimental data used in deriving them,
but again, HDNB, BBG, and HKF being primarily by and for Earth scientists place
much more emphasis on high temperature and pressure data in deriving the tabulated
values. Thus the data for minerals in HDNB and BBG are consistent with a large
body of experimentally-derived phase relations at high temperatures and pressures not
considered in the other compilations. A particularly clear discussion of the different
approaches, with their advantages and disadvantages, and some of the experimental
problems, is.given by Hemingway, Haas, and Robinson (1982).

7.8. SIMULTANEOUS EVALUATION OF DATA

The HDNB tables strive for internal consistency by analyzing groups of experimen-
tal data for reactions and compounds considered together instead of one at a time.
This is a fundamentally different approach from RHF, JANAF and many other ther-
modynamic sources in which compounds are considered individually. Simultaneous
numerical analysis of groups of data for different compounds ensures that derived
thermodynamic properties will be internally consistent, simply because they are de-
rived together. This has both advantages and potential disadvantages. A very practical
advantage is that phase relations computed from such data sets will be absolutely con-
sistent internally, meaning that thermodynamic relationships in one part of the T-P
region considered will be consistent with those in another. A disadvantage is that in
practice, the process is so complex that only the originator of the data set can update
it. Probably the most difficult part of such work is deciding which one of conflicting
data sets to include in the analysis, and it is virtually certain that different investiga-
tors will make different choices, and arrive at different internally consistent data sets.
There are also various methods of data analysis, weighting and smoothing.
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The method used to prepare the HDNB tables is summarized by Helgeson et al.
(1978, pp. 34-35). A particularly clear, simplified illustration of this approach is
given by Nordstom and Munoz (1985, pp. 417-418). A working knowledge of linear
algebra is a distinct advantage in understanding this approach.

7.8.1. Simultaneous Analysis of All Available Data for Single Compounds

A second, quite different method for evaluating thermodynamic data makes full use of
the fact that all the thermodynamic functions of state (U,G,H,S, A, etc.) are directly
related to the heat capacity, Cp. M any of these relationships have been derived already
in this chapter. For any one compound, a search of the literature might turn up an
enormous variety of measured thermodynamic quantities—enthalpies, entropies, free
energies, and so on. Because these seemingly disparate quantities are actually related
through Cp, it is possible to analyze them all at once and derive the function Cp = f ( T )
which provides the best agreement with the entire data set. A statistical procedure
using simultaneous multiple regression analysis has been developed for this specific
kind of application by Haas and Fisher (1976). The method has been used to compile
a thermodynamic data base for minerals characteristic of basalts (Robinson et al.,
1982), among other systems.

In their approach, Haas and Fisher added two additional terms to the Maier-Kelly
heat capacity equation (7.12) to give

This is then related to the thermodynamic functions G, H, S, etc., by the equations
listed in Appendix B. As we have already observed (with the simpler Maier-Kelly
equation above) these functions are all obtained by integrating the heat capacity
equation between two temperatures. In practice, considerable care must be taken
in fitting regression equations to different kinds of thermodynamic data for single
compounds, and the data should be examined quite critically for potentially inaccurate
points, because the results can be quite sensitive to inaccurate input data.

7.8.2. Derivation of Internally Consistent Data Bases Using Linear Programming

Yet another type of internally consistent thermodynamic data base makes full use of
phase equilibrium data as well as all other available thermochemical and physical
measurements. The most complete example at present is the Berman, Brown and
Greenwood (BBG) data base, described by Berman et al. (1984, 1985, 1986). Like
the methods just described, the BBG approach analyzes all data simultaneously and
produces an internally consistent set of thermodynamic data. However, the method
differs significantly in using the mathematical technique called linear programming
to deal with "bracketed" phase equilibrium data.

This particular application of linear programming was introduced and has been
succinctly summarized by Gordon (1973, 1977), and we use one of his examples
to illustrate the general method here. For details, see the texts by Harbaugh and
Bonham-Carter (1970, geologically relevant examples), and Gill et al. (1981, full
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FIG. 7.9. Phase diagram for the reaction kyanite - andalusite showing the experimental data
of Richardson et al.(1969). The straight line represents estimated equilibrium conditions for
which ArG = 0.

mathematical approach), as well as Berman et al. (1986). The kyanite ̂  andalusite
reaction is a typical example; the data by Richardson et al. (1969) shown in Figure 7.9
show how the real phase boundary is usually bracketed by experimental points. These
experiments are usually carried out by holding material of an appropriate composition
at high T and P for a sufficient period of time that complete or at least considerable
reaction occurs. The high-pressure vessel is then rapidly quenched and the products are
identified. Typically either one mineral or the other is produced, and the experiments
are repeated until the brackets are as close together as is feasible experimentally. The
same thing happens with multi-phase experiments where more than one mineral or
phase occurs on either side of the equilibrium boundary. The experiments should also
be reversed, to show that assemblage A can react to form B and vice versa.

Now the position of the equilibrium boundary could be estimated simply by
drawing a line through the brackets, and this is how phase diagrams are usually
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constructed. Unfortunately, the true boundary could lie anywhere within each bracket,
and the mid-point of the bracket is no more probable than any other point in the
bracket. To make things worse, derived thermodynamic properties are very sensitive
to the slopes of these estimated phase boundaries. These bracketing data not only
place limits on the position of the equilibrium boundary, they also tell us the sign
of the Gibbs free energy for the particular reaction at those P, T conditions. For the
reaction kyanite ̂  andalusite, ArGT,p is negative for all points in the andalusite
field, positive everywhere in the kyanite field, and exactly equal to zero on the true
equilibrium curve:

For each experimental point we can write one such inequality or constraint. We
probably can find additional information on this reaction; for example, the molar
volume and the heat capacity of each mineral might be available:

The linear programming method deals with exactly this kind of data set—one that
includes linear inequalities as well as fixed constraints.

Let's see how this works when the free energy of reaction at T and P is written
out in full. Consider a reaction involving several different phases, such as

For this, the apparent molar Gibbs free energy change of reaction at P and T is simply

The parameters Vi are stoichiometric reaction coefficients. Now if S°P T and
A.fH°p T are the Third Law entropy and the enthalpy of formation of each pure
phase at a reference pressure and temperature Pr and Tr (usually 1 bar and 298.15
K), the free energy of reaction at a general P and T in (7.46) is given by the equation
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This is similar to equation (7.21). It expresses the change in free energy as pressure
and temperature are raised from some reference state Pr and Tr to the P and T of
interest. The activity term (o,j) is introduced to allow for compositional effects, and
is discussed in Chapter 11.

For each data point, we can write one version of equation (7.47) with ArGp:T
less than or greater than zero, depending on whether products or reactants are stable.
(This corresponds to the inequalities 7.42). To this we can also add other constraining
equations, such as known molar volumes of different phases, and perhaps known heat
capacities at T and P (corresponding to equations (7.43) and (7.44)).

These equations can then be analyzed for the range of conditions that satisfies all
constraints. This gives the best estimates of the unknown thermodynamic parameters
in equation (7.47) for each phase. For example, we might know everything in (7.47)
butAfH°p T and 5° P T which would then be given by the linear programming
procedure. The thermodynamic properties found in this manner are the best estimates
consistent with the experimental data. In Terry Gordon's (1977) words, "The resulting
values are those that do the least violence to the experimental results."

7.9. APPROXIMATIONS

The equations derived thus far have been based on an explicit formulation of the
variation of heat capacity with temperature (that is, the Maier-Kelley formula). It has
led to some rather lengthy equations.

There are occasions when heat capacity data are not available, or when the ultimate
accuracy is not required. In these cases one may assume that AC; is not a function
of temperature, i.e., that

or even that

Assuming that AC; has a constant value equal to its value at 298 K leads to the
expressions

and

which are of course considerably simpler than the corresponding more exact expres-
sions derived earlier, involving the Maier-Kelley coefficients a, b, and c. In fact,
however, these equations are little used. It seems that if one goes to the trouble of
considering heat capacities at all, one generally goes all the way. Much more popular
is the practice of not considering heat capacities at all, i.e., of assuming that AC; = 0.
This of course leads to the supposition that Aff£ = A.ff£r and AS? = A5^;, greatly
simplifying equations. For example, the free energy of reaction at high T, normally
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FIG. 7.10. Heat capacities of calcite and aragonite, showing that ACp varies much less than
either C°p.

becomes

which means that ArG can be approximated at any T simply by knowing ArH and
A.rS at 298 K. The constant volume assumption for solid phases is not affected by
this procedure, so that for high temperatures and pressures (7.50) becomes

This equation has been widely used for reactions involving only solid phases,
because the AC° = 0 assumption is surprisingly good for many reactions if only
solids are involved. As an example the variations of the heat capacities and entropies
of calcite and aragonite with temperature are shown in Figures 7.10 and 7.11 (RHF
data). Notice that S and Cp for both minerals vary considerably with temperature,
but that they vary in parallel. On the same diagrams we have plotted Ar5 and ArCp

for the calcite—aragonite reaction. Neither ArS nor ArCp is exactly constant with
temperature, but both are reasonably so, and the value of ArCp is also reasonably
close to zero.
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FIG. 7.11. Entropies of calcite and aragonite, showing that A5° varies much less than either
5°.

This approximation can also fail dismally when liquids, gases or aqueous solutes
are involved. As always with approximations the results should be checked to see if
they appear reasonable. However, in these cases, other approximations are available,
which will be discussed in Chapters 8 and 13.

PROBLEMS

1. Explain to yourself the distinctions between G, ArG, ArG°, A/G0, AQG°.

2. Calculate the (traditional) enthalpy of formation from the elements of halite
at 1000 K using values of (HT - H2w)/T and A/J/^g in Table 7.2 and
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compare it with the value listed. From the same tables of data you will
find [(HT - #298)/T]Na = 23.428 Jmor1 K~' and [(HT - H29S)/T]Ch =
25.565 JmoPl K~l for T = 1000 K.

3. Calculate the apparent enthalpy of formation from the elements of halite at
1000K.

4. Calculate the (traditional) Gibbs free energy of formation from the elements
of halite at 1000 K from the values of A/ff£9g and (G°T - H^)/T and
compare it with the value listed. From the same tables of data, you will find
-[(G°T - H^)/T]m = 71.02 Jmor1 K"' and -[(G% - H^s)/T]Ch =
241.19 JmoP1 K-1 for T = 1000 K.

5. Calculate the apparent Gibbs free energy of formation from the elements of
halite at 1000 K. -[(G% - F2°9o)/T]Na = 51.30 Jmor1 K"1 and -[(G^ -
#2°98)/T]Ci2 = 233.080 Jmol"' K"1 for T = 298.15 K.

6. Calculate A///^ for halite from the heat capacity formula at the bottom
of Table 7.2. The heat capacity formula for Cl2(g), valid for 298-1800 K, is:
C°ci2 = 46.956-0.0040158 T+9.9274xlO-7T2-204.95T-°5. Sodium

melts at 370.98 K. At that T, [(HT - H29&)/T]m(S) = 5.808 Jmor1 K"1,
and At#3°71 (/wszon) = 2.598 kJ mor1. Below 370.98 K, the heat capacity
formula is C° ^ = 16.82 + .0376T, and above 370.98 K, it is C° ... =

r (S) P Na(t)

37.482 - 0.019183T + 1.0644 x 10~5T2. You can check your integration
in Appendix B.

7. Using data in Appendix C, calculate ArH° at 900 K for the reaction in
which andalusite is formed from the oxides, i.e.

The a — j3 quartz transition at 848 K contributes AtHa-p qtz =
290calmol~1.

8. Holm and Kleppa (1966) made some calorimetric determinations of the
heats of formation of kyanite, andalusite, and sillimanite from their con-
stituent oxides (quartz and corundum) in an oxide melt calorimeter at 968
K. For andalusite, the result for the reaction given above was ArH96$ =
— 1.99 kcalmol"1. Calculate A/tf^s f°r andalusite, using values of
A/#298 f°r 1uartz and corundum and heat capacity coefficients from Ap-
pendix C.



8
APPLICATIONS TO SIMPLE SYSTEMS

There is no way whatever of being sure that any of the ordinary objects of daily
life do not have other polymorphic forms into which they may sometime change
spontaneously before our eyes. Bridgman (1941) p. 119.

8.1. USEFUL APPLICATIONS

Thus far we have developed just about all the thermodynamic concepts required by
Earth scientists with the exception of those needed to deal with solutions. Since all
naturally occurring substances are solutions of one kind or another (although some
can usefully be treated as pure substances), this is quite an important limitation, and
we will proceed to discuss the treatment of solutions in Chapter 10. However, a
great deal can be done with the thermodynamics of pure systems, and in this chapter
we discuss a couple of applications of the concepts so far developed which are of
particular interest to Earth scientists—the thermal effects associated with adiabatic
volume changes, and the T-P phase diagrams of pure minerals.

8.2. ADIABATIC VOLUME CHANGES

All systems experience a change in volume in response to changes in pressure. We
have discussed this mostly from the point of view of the work accomplished by iso-
baric volume changes in Chapter 4, but it is even more informative to consider the
temperature changes accompanying volume changes. The best way to do this is to
consider only cases uncomplicated by heat entering or leaving the system, i.e., adi-
abatic processes. Such processes, although yet another "hypothetical limiting case,"
serve as useful end-members in considering actual processes in real systems. The
most familiar everyday example is the hand-held bicycle pump, which most cyclists
at least know gets quite warm during pumping (compressing air). This process, while
not strictly adiabatic (bicycle pumps are not well insulated) is sufficient to show that
volume changes can be associated with temperature changes, and it is not difficult to
see in this case why—a great deal of energy in the form of work is being added to
the gas, and some of it is being used to warm the gas. It seems reasonable to suppose,
too, that by reversing the process—suddenly expanding the gas—it would experience
a temperature decrease. This much may seem intuitively reasonable, perhaps even
obvious. What is not so obvious is the fact, first investigated by Joule and Thompson
in 1853, that some substances do not warm but cool during compression, and that
in fact all substances have a range of conditions where they warm on expansion and
another where they cool on expansion. When the expansions are at constant enthalpy,
these two ranges are separated by the Joule-Thompson inversion curve.

From the First Law, At/ = q + w, we see that adiabatic processes (q = 0) are
those for which At/ = w. Thus the final state achieved after such a change will
depend entirely on the work done during the change, or conversely, for any two states

184
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Table 8.1 Thermodynamic Data for Water at T and P. Values in Figures 8.1 and 8.4 [from
Adcock (1988)]

Point

A (2000b,700°C)
B (1027b, 600°C)
C (870b,600°C)
D (693.5b, 600°C)
E (991.5b, 600°C)

AC/0

Jmol"1

-235911
-237480
-235910
-233728
-237155

Atf°
Jmor1

-232426
-236372
-234800
-232426
-236058

V°
Jbar™1 mol"1

3.601
4.6995
5.5506
7.2397
4.8571

S°
JK-'mol-1

155.71
155.71
158.479
162.472
156.317

connected by an adiabatic path, w is fixed. This leaves quite a variety of possibilities.
These fall into two categories, reversible and irreversible. Since there is only one
case of reversible adiabatic volume change to consider and an infinite number of
irreversible ones, we will start with the reversible case. We will use HiO at high
temperatures and pressures as an example and the P-V-T conditions considered sire
shown in Figure 8.1 and Table 8.1.

8.2.1. Reversible Adiabatic or Isentropic Volume Changes

As explained in Chapter 4, a reversible volume change can be imagined as one in
which the pressure in the system is always exactly balanced by a free frictionless
piston, which has infinitesimal amounts of weight added to it or subtracted from it
(approximated by grains of sand in Figure 8.2a) until the change is accomplished
(Figure 8.2a).

It therefore passes through a continuous succession of equilibrium states, a sit-
uation which as we have mentioned is very convenient mathematically. While this
volume change is taking place, other restrictions may be imagined with no extra
effort, such as that the change must take place isothermally or adiabatically. If the
reversible change is adiabatic, it is a constant entropy or isentropic process, because
Dqrev/T = dS, and of course Dqrev is zero. Systems will always cool during an
isentropic expansion, because (referring to Table 2.1)

and because T, Cp, and (dV/dT)p are intrinsically positive, decreasing P at constant
S will mean a decrease in T. This is also shown in Figures 8.3 and 8.4. A reversible
expansion accomplishes the maximum amount of work, so that for a given isentropic
adiabatic expansion w will have its maximum negative value (work done by the
system on the environment) and At/ will also therefore have the maximum negative
change possible for a given decrease in P. That means the expanded state will have
less energy than the initial state, and less than any other possible adiabatic expansion
to the same P or T.
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FIG. 8.1. Pressure versus volume for water, showing the 700° C and 600° C isotherms. The
effects of various types of adiabatic expansion are shown, starting from point A at 700°C, 2000
bars. A-B: isentropic; A-C: isoenergetic (AC/ = 0); A-D: isenthalpic; A-E: isobaric. Data in
Table 8.1.

To plot the course of this expansion on a P-V diagram we need to have a function
for (dP/dV)s and be able to integrate it. This function is (using Table 2.1)

For an ideal gas this works out to be



FIG. 8.2. Schematic cartoons illustrating various types of adiabatic volume changes. In each
case the points on the PV diagram correspond to those in Figure 8.1. (a) Reversible, Isentropic.
(b) Joule Expansion, (c) Joule-Thompson Expansion.

187
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which has the solution

if 7C is constant (Pippard, 1966, p. 62). However, in most real cases the equation of
state of natural fluids is either not known or too complex to integrate conveniently.
This is certainly the case with water under most conditions, so we have plotted the
adiabatic expansion paths for water starting at 2000 bars, 700°C in Figure 8.1 by
finding the appropriate points by trial and error, using the program H2O, written by
S.W. Adcock, based on the equation of state of Haar, Gallagher and Kell (1984).
For example at 600°C, water at 1027 bars (point B) has the same entropy as water
at 700° C, 2000 bars (point A), so an isentrope passes through these two points (see
Table 8.1 for the data at points in Figure 8.1).

To calculate the work done during the isentropic expansion between these two
points, we calculate the change in apparent internal energy, AC/, between the two
points, which is

This is less than half the work that an ideal gas would do under the same conditions.

FIG. 8.2. (d) Isenthalpic Boiling.
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FIG. 8.3. Entropy of water as a function of temperature and pressure. Contours are labelled
in calKT1 mol~'. The slope is always positive, showing that isentropic expansion will always
cool the fluid. [After Helgeson and Kirkham (1974a)].

The volumes at points A and B are VA = 3.60 Jbar mol and VB =
4.70 Jbar~1moP1 (1 cm3 = 0.10 Jbar—1, Appendix A). Approximating the in-
tegral / P dV by the area of a trapezoid we get

which shows, as expected, that the area of the trapezoid is slightly greater than the
actual area under the adiabat between A and B. The point is that the work done In
this process is in fact shown by the area under the curve, in contrast to the cases
considered next.
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FIG. 8.4. Entropy versus pressure for water. Points A and B correspond to Figure 8.1.

8.2.2. Irreversible Adiabatic Volume Changes

There are an infinite number of irreversible adiabatic volume change paths that might
be considered, but to keep the book to a reasonable size we will restrict ourselves to
three. Each is instructive in its own way.

Joule Expansion (At/ = 0)

One of the many different kinds of experiments that Joule and others performed in
the mid-nineteenth century was to expand gases into an evacuated chamber. This free
expansion performs no work, and if adiabatic as well must clearly result in a state
having the same internal energy as the initial state. It turns out that water at 600°C, 890
bars (point C in Figure 8.1) has the same apparent internal energy, -235911 JmoP1,
(and therefore the same internal energy) as water at 700° C, 2000 bars, and so line
AC could be labelled At/ = 0 (as in Figure 8.2b). This line appears to outline an area
on the PV plot that could be evaluated as we did above to give an approximation to
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— J P dV. Clearly this would be a large finite quantity, while on the other hand we
are quite sure that the work done is zero. What we have forgotten is that work only
equals - / P dV in a reversible process, where P is the system pressure at all times.
We can legitimately join points A and C with a line that is the locus of points having
Aaf7 = —235911 Jmol"1, but this does not mean that a gas expanding from A to C
follows this locus of conditions. To use the analogy of Chapter 3, the little red light
goes out at point A when the gas starts expanding, and the red light at C does not
come on until the gas has settled down in its new conditions. In between, the gas is
not represented by points on the diagram.

Joule-Thompson Expansion (Aff = 0)

The Joule-Thompson expansion is interesting not only because it represents a constant
enthalpy process, and so falls neatly into the family of expansions we are considering,
but because it is conveniently performed experimentally and has proven highly useful
commercially. This type of expansion is illustrated in Figure 8.2c. It is a "throttling"
process, whereby a fluid is pushed through an orifice (originally a "porous plug")
into a chamber at a lower pressure. In order for this process to be isenthalpic, it must
not only be adiabatic but the pressures on the two sides of the orifice must remain
constant, so that the expansion is from one equilibrium state to another. Consider a
given mass of gas at pressure P\ on the high pressure side of the orifice. As it is pushed
through the orifice, the piston pushing it sweeps out a volume (A V) which we can call
Vi , so the work done in pushing the gas is PI V\ (positive because work is done on the
gas). On the other side, this same mass of gas pushes the other piston back at constant
pressure through a volume (or a AV) V2, doing work — P2V2 (negative because it is
work done by the gas). The total work for the process is therefore PI Vj — P2V2. We
equate this with the AJ7 as before, giving

so

or

In Figure 8.1, we show that H2O at 693.5 bars, 600°C (point D) has the same
apparent enthalpy of formation (-232426 JmoF1) as at 2000 bars, 700°C (point A),
so these two points are joined by an isenthalp. The work done in this case is
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meaning that more work is done in pushing the gas on the high pressure side than is
gained on the low pressure side. The reader may verify that the same result is obtained
by calculating PD^D — P\V^.

Of course there are other ways of achieving a constant enthalpy expansion. All
that is required is to do the appropriate amount of work for the given change in U,
but the orifice arrangement is the most convenient because it automatically gives
the required conditions. Other expansions will in general not be isenthalpic unless
carefully designed to be so. The essence of the Joule-Thompson expansion is that
it is a flow process, pushed from one side. It should not be confused with ordinary
piston-cylinder expansions where the system pressure varies during the expansion.

To investigate the variation of temperature during an isenthalpic change of
pressure, one is naturally interested in the derivative (dT/dP)n, called the Joule-
Thompson coefficient, /ZJT. An easy way to derive an expression for this quantity is
to use Table 2.1. From Table 2.1, (dT)H = -V + T(dV/dT)P, and (dP)H = Cp.
Then

or,

where a is the coefficient of thermal expansion, (dV/dT)p/V, and Cp is the isobaric
heat capacity. Since both V and Cp are intrinsically positive quantities, the sign of the
derivative (dT/dP)H clearly depends on (Ta — 1), which in turn depends on Ta.

As shown by Waldbaum (1971), all minerals have values of a so small that
Ta <C 1 for all Earth conditions, so that (dT/dP)H is always negative, and rocks
will always be warmed by isenthalpic expansions (dP negative, dT positive). For
most common minerals, the effect is about 20 to 30 degrees per kilobar of pressure
change, although if this pressure change is due to a change in depth in the Earth, the
effect is less (Ramberg, 1971).

For fluids, which have much larger values of a, (Ta - 1) can be positive or
negative. Because fluids become less dense and hence show greater thermal expansion
at higher temperatures and lower pressures, this is the range of conditions where they
exhibit positive values of //rr. For gases, with the largest a values, this transition
takes place at very low temperatures and is of limited interest to Earth scientists. It
means, though, that gases invariably have a positive /ijx under ordinary conditions.
The most important Earth fluid, water, has a very interesting behaviour in this as in
many other respects. In Figure 8.5 we show contours of constant apparent enthalpy
of formation of water as a function of P and T. Where the contours have a negative
slope, water warms on adiabatic expansion and cools if adiabatically compressed.
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FIG. 8.5. Enthalpy of water as a function of temperature and pressure. Isenthalps are labelled
in kcalmol"1. The Joule-Thompson inversion curve is the locus of conditions where the
isenthalps change slope from positive to negative. After Helgeson and Kirkham (1974a). The
effect of adding NaCl is from Wood and Spera (1984).

Where they have a positive slope, water cools on adiabatic expansion and warms if
adiabatically compressed, and the two regions are separated by the Joule-Thompson
inversion curve. Much the same information is contained in the enthalpy-pressure
diagram (Figure 8.6), where it can be seen that constant enthalpy changes in pressure
lead to increases in temperature in one region and decreases in another. The effect of
dissolved NaCl on the Joule-Thompson coefficient has been calculated by Wood and
Spera (1984), and the effect will be similar for other electrolytes. Because the addition
of most electrolytes to water results in a decrease in V and in a, /ZJT is smaller, and the
net effect is to move the inversion curve to higher temperatures, as shown in Figure 8,5.

As an example of how the Joule-Thompson coefficient might be used, consider
some hot spring fluids (approximated by pure water) rising vertically in the crust.
When boiling begins, the pressure is 165 bars and the temperature is 350°C. At this
point, Vk2o = 31.35 cn^mo!"1 = 0.7493 calbar"1 mol"1, a = 0.01037 K~l, and
C° = 43.60 calK-1 mol" ',and
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FIG. 8.6. Enthalpy versus pressure for water. Points A and D correspond to Figure 8.1.

meaning that the fluid is cooling at the rate of 0.094°C per bar change in pressure
as it rises, simply due to adiabatic decompression. If the water has risen under a
hydrostatic head for two kilometres, the pressure change is about 200 bars, giving
200 x 0.094 w 19 degrees of cooling. Actually, the change is less (about 12°C),
because //jj is not constant but decreases with increasing pressure in this range.

Isenthalpic Boiling. A special case of adiabatic isenthalpic volume change of par-
ticular interest to geologists concerned with fluids in the upper levels of the Earth's
crust is the case where a phase change, especially boiling, occurs along the cooling
path of the fluid. The onset of boiling in a hot aqueous fluid in the crust is the cause
of a number of important changes in the properties of the liquid phase because of the
partitioning of the aqueous constituents between the two phases. In addition there is
a new factor in the heat budget, the heat required to vaporize the liquid to steam, i.e.,
the heat of vaporization.

Whatever the means of cooling the fluid to the point of phase separation (boiling),
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the boiling process is generally thought to be fast relative to the conduction of heat
through the walls of the fluid reservoir, so that the fluid must itself supply the heat
of vaporization, with no help from the wall rocks. This would result in essentially
adiabatic conditions and the fluid would therefore be cooled as a result of boiling. Quite
possibly the steam-water system would be confined at a constant pressure, exerted by
the overlying column of water, so that the steam would expand at a constant pressure
and the water would also be at the same constant pressure (illustrated in Figure 8.2d).
These are the conditions required for isenthalpic expansion, and the boiling process
is quite commonly assumed to be isenthalpic.

This does not of course mean that the water and steam have the same enthalpy.
As shown in Figure 8.6 there is quite a large difference between the enthalpy of
water and steam at equilibrium. At 300°C, 85.8 bars for example, &aHwater =
-263505 JmoP1 and A.aHsteam = -238200 Jmol"1. This increase in enthalpy
of the steam must come from the system itself, which is cooled as a result, but the
enthalpy of the water + steam remains the same. For example, if mole fraction Xw

of the water vaporizes at 300° C, and the resulting water + steam is thereby cooled to
T°C, then the energy balance is

where subscripts w and s refer to water and steam respectively. To solve this we
must know either T or Xw. If we know that the system cooled to 275°C, where
&.a.Hw = -265918Jmol~1 andAaHs = -237555 Jmol-1 then Xw is 0.92. In other
words, when only 8 mole percent of the water boils isenthalpically the temperature
drops 25°C. This subject is treated in more detail by Henley et al. (1984).

Constant Pressure Adiabatic Expansion (AP == 0)

To round out this discussion, we consider a constant pressure irreversible adiabatic
expansion from A to E. This is similar to the expansions considered in Chapter 4 (see
Figure 4.8), except that now the piston-cylinder arrangement is perfectly insulated,
so that 9 = 0. This expansion is called "constant pressure," although the difference
between this expansion and that discussed above as isenthalpic boiling should be
carefully noted. In this case the expansion takes place at constant pressure, but this
pressure is quite different from the pressure of the initial state. It is strictly speaking not
a constant pressure process because there is a large pressure drop between the initial
point A and the pressure during the expansion. This pressure was chosen as 991.5
bars so as to have the end point of the expansion on the isotherm at 600°C. Any other
pressure could have been chosen with correspondingly different final temperatures.
The work done by the expansion is
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SO

which checks very closely with the actual A0C/ of water at this P, T (Table 8.1).

8.3. COMMENTS ON GEOLOGICAL APPLICABILITY

The systematics of adiabatic expansions that we have presented can be seen as simply
an exercise in manipulating thermodynamic concepts, but in fact the extent to which
fluids circulate at elevated temperatures and pressures in the Earth's crust means that
volume changes, both adiabatic and non-adiabatic, are often important in constructing
models explaining fluid behavior. Applications of isenthalpic expansion to minerals
and rock masses, discussed by Waldbaum (1971), are possible, but to date none have
been documented convincingly.

On the other hand, fluids rising through fissures in the upper few kilometers of the
crust might well pass by an obstruction, which would have the effect of "throttling"
the fluid, hence cooling it whether or not boiling was involved. Of special interest is
the fact that there are two different fluid regimes in the crust, an upper regime where
fluid pressure is fixed by the mass of the overlying water column, and a lower regime
where the fluids are trapped in pores and grain boundaries where they are not free to
circulate and where the pressure is fixed by the prevailing stress pattern in the rocks.
This stress is thought to be homogeneous at depths where the rocks behave plastically,
but may be far from this in the region where the rocks are brittle. The boundaries
between these various regimes is a continuous topic of debate, and does not concern
our treatment of the thermodynamics involved. The point is that it is unlikely that
fluids can pass reversibly between the two regimes; at some point there will be an
irreversible release of pressure, with its attendant thermal effects. This change need
not be adiabatic, of course, and the question of the heat flow to and from geological
processes is one that receives much attention.

8.4. CALCULATION OF SIMPLE PHASE DIAGRAMS

We should recall first of all that we are interested in knowing ArG° or ArG for
reactions among minerals because if we know either quantity for a mineral reaction
over a range of T and P, we can predict which mineral or group of minerals is stable at
any particular T and P. This implies that boundaries between mineral stability fields
may be calculated in T, P space, and the diagrammatic representations of these are
widely used as "phase diagrams." The importance of the Gibbs free energy in these
calculations results from our predilection for thinking in terms of the temperature
and pressure of various environments on and in the Earth's crust rather than the
temperature and volume (in which case the thermodynamic potential of interest would
be A), or the entropy and pressure (in which case it would be H), and so on. Some
of us take comfort in the fact that should scientists suddenly change their thought
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framework to one of these other combinations, thermodynamics stands ready for the
challenge.

8.5. THE CALCITE-ARAGONITE PHASE DIAGRAM

The simplest type of phase diagram involves a single component that can exist in
more than one crystalline form, that is, a mineral having two or more polymorphs.
For example, CaCOs can exist either in the form of calcite or aragonite. Using the
equations we have derived, we can calculate either A/G^ p or A0G^ P for both
phases at a number of T, P values, and then at each T, P we can combine them to
obtain their difference. In other words, at any T, P we can calculate the free energy
of reaction for the reaction

Then we can examine these values of ArG- Where ArG is negative, evidently
^caidte < ^aragonite an^ calcite is the stable phase, and where ArG is positive,
G°caicite > Garagonite an^ aragonite is stable. We could then divide the diagram into
two regions, calcite stable and aragonite stable, with a line joining those points for
which ArG = 0. We could even contour the diagram with A,rG values. In this sense,
a phase diagram is a sort of free-energy map.

Before proceeding with these calculations, we should note two things. First, we
can economize on calculations by directly calculating the locus of T, P conditions
for ArG = 0, rather than by calculating ArG for a number of randomly chosen T,
P conditions and subsequently noting where ArG = 0 occurs. And second, we can
usually deduce the form of the diagram without doing any calculations by looking at
the S (or AH) and V values for products and reactants. By the form of the diagram,
we mean whether the phase boundary (ArG = 0) has a positive or negative slope,
and whether the products or reactants for the reaction as written lie above or below
the boundary. Thus for a simple polymorphic phase change like calcite-aragonite,
there are four possibilities (Figure 8.7). However, LeChatelier's Principle tells us that
reactions will generally occur in a direction that tends to absorb the force causing
the reaction. Thus high pressures favor smaller molar volumes and high temperatures
favor larger entropies and enthalpies.

Since aragonite has the smaller molar volume and calcite has the larger entropy
and enthalpy of formation (at 298 K, 1 bar, see Tables 8.2, 8.3), then assuming that
these relations hold at other T, P values, Figure 8.7a is the only possibility. The
occurrence of aragonite in high pressure, relatively low temperature metamorphic
rocks of the blue-schist facies would tend to be consistent with this, but the aragonite
found in the shells of some organisms on the sea floor must then be metastable,
showing that pelecypods and gastropods are ignorant of the laws of thermodynamics.
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T(K)

298.15
400
500
600
700
800

CO
calcite

91.71
118.36
140.88
160.43
177.70
193.19

CO

aragonite

87.89
113.75
135.23
153.23
170.68
185.86

AS0

3.82
4.61
5.65
6.47
7.02
7.33

C° , .
y calcite

83.87
97.00

104.54
109.87
114.16
117.88

C°
P aragonite

82.32
92.67
99.81

105.77
111.18
116.29

AC£

1.15
4.33
4.73
4.10
2.98
1.59

avg.=3.15

Table 8.2 Entropies and Heat Capacities for calcite and aragonite. All units are in J K~' mol '

FIG. 8.7. Four possible configurations of the calcite-aragonite phase boundary, but only (a)
is in agreement with LeChatelier's Principle.

8.5.1. The Clapeyron Equation

Entropy and molar volume can be quantified using a well-known equation describing
the slope of any two-phase reaction boundary on a pressure-temperature diagram.
From equation (8.2) it follows that

on this boundary. From Chapter 5 we know that



Table 8.3 Thermodynamic Data for calcite and aragonite

qo
|3298,1

cal R-1 mol"1

V°
cm3 mol"1

calbar~' mor1

J bar"1 mor1

a (cal K"1 mo!"1)
fe(calK-2mor')
c (cal K-1 mor1)

A/G2°98,.
cal mol"1

Jmor1

A/G4°00,1
cal mol" '
Jmor1

A/G5°oo,
cal mol '
Jmor1

A/G6V,
cal mol l

Jmor1

A/G7°00,1
cal mor [

Jmor1

A/G800,1
cal mor1

Jmor1

A/G9°00,,

cal mol '
Jmor1

A/G298,,

Jmor1

A/G400,,

Jmor1

Af(7°
^/^SOO.l

Jmor1

ArG°ii/1-1 600,1

Jmol"1

A/G700,,

Jmor1

calcite

22.15

36.934
0.88276
3.6934

24.98
5.24 • ICT3

6.20 • 105

-270100

-272685
-1140913

-275809
-1153984

-279437
-1169164

-283505
-1186186

-287966
-1204581

-292780
-1224993

-1128842

-1102155

-1076292

-1050723

-1025427

aragonite

21.56

34.150
0.81622
3.4150

20.13
10.24 • 10~3

3.34 • 105

HDNB

- 269875

-272391
-1139685

-275423
-1152369

-278934
-1167062

-282869
-1183526

-287186
-1201585

-291850
-1221099

RHF

-1127793

-1100691

-1074310

-1048132

-1022160

ArG°
f~10 f^O
Kal ~ '-'arag

Jmor1

-941

-1228

-1615

-2103

-2660

-3266

-3894

-1049

-1464

-1982

-2591

-3267

P
(-ArG°/AV)+ 1

bars

3381

4412

5802

7555

9554

11731

13986

3767

5258

7118

9306

11734
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for both minerals, and therefore

or

Rearranging this gives

or for a reaction in general,

which is known as the Clapeyron equation. This is an extremely useful relationship,
particularly when dealing with multicomponent systems (with many possible reac-
tions between phases), although the A5 and AV terms may each be more complex.

8.5.2. The Required Equations

The procedure for calculating a phase boundary is, as just mentioned, to calculate the
locus of P, T conditions such that ArG = 0 for the reaction involving the phases on
either side of the boundary. To do this we must be able to calculate the apparent or
standard free energies of formation of the phases as a function of P and T, as outlined
in Chapter 7. This is done for compound i with the equations

For a reaction involving a number of phases or compounds or species as reactants
and products, ArG is simply the sum of the individual AT.G terms (AaG or A/G)
for each compound. (In the following example and those in the next few chapters,
each i will be a distinct phase, but in general i may be any constituent of the system).
Thus equation (7.27) becomes
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where £V signifies summation for all compounds or phases i in the reaction, and z/j
is the stoichiometric coefficient of each compound i, counting products as positive
and reactants as negative. For example, if the reaction is

equation (8.4) becomes

Since ̂  ̂ AG° and ̂  z/jG° can both be written as ArG°, equation (8.5) can
also be written

This (or equation 8.5) is the general form for the calculation of the free energy of
any reaction at T and P, where no changes in phase composition are involved.

Without wanting to be too repetitious, we recall here that in the preceding sentence
the "free energy of any reaction" is a short-hand way of saying the difference in Gibbs
free energy between products and reactants of the reaction as written. We recall too
that except at the equilibrium P and T, one side of the reaction will have a total G
that is greater than the other side, i.e., ArG will be positive or negative. In order to
make this comparison, we must consider each set, products and reactants, as separate
equilibrium states, one of which is necessarily metastable with respect to the other.
The metastable assemblage has one constraint in addition to the designated P and T,
the activation energy, which prevents it from sliding down the energy gradient to the
stable assemblage.

Inserting the Numbers

Phase boundaries are calculated from equation (8.6), with the additional knowledge
that ArG = 0 on the boundary. For the reaction

we write
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or

At 298 K, the temperature integral in (8.6) is zero, so we proceed to the pressure
integral. In general,

and for solid phases with ASV^ constant,

Now

and

Thus evidently the rate of change of Gcaicit(, with P is greater than that of
Garagonite, and since it starts off at a lower value, there must be some elevated
P where they become equal, as illustrated in Figure 8.8.

So

and the pressure integral (8.7) is 0.2784(P-1) JmoF1 or0.06654(P - l)calmol ,
where P is the pressure required for calcite-aragonite equilibrium at this temperature.

We now have

from which P = 3381 bars (HDNB data, Table 8.3) or

from which P = 3767 bars (RHF data, Table 8.3).



APPLICATIONS TO SIMPLE SYSTEMS 203

FIG. 8.8. G as a function of P for calcite and aragonite.

This gives us one point on the calcite-aragonite phase boundary. To obtain others
at temperatures above 298 K we must include the temperature integral in equation
(8.6), which may be easily accomplished by using S^r and a, b, c coefficients for
each phase as discussed in Chapter 7.

The temperature integral in (8.6) may be written

and this may be evaluated by rewriting equation (7.25) as

where

The complete expanded form of equation (8.6) for the calculation of phase bound-
aries when only pure solids are involved is therefore
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Equation (8.9) would be the procedure used with the HDNB data set, or any other
set that gives standard thermodynamic parameters at 298 K, 1 bar, plus Maier-Kelley
heat capacity coefficients. The RHF tables list A/G° at various temperatures above
298 K at one bar, so that these can be used directly to give the first two terms on the
right-hand side of equation (8.6). In other words

which can be obtained from the tables. Then

or

from which P may be calculated as before. The results using both procedures for
several temperatures are listed in Table 8.3 and shown in Figure 8.9. These results
illustrate the difference between the RHF and HDNB data sets. That is, HDNB data
will always give a phase boundary that passes through a set of experimentally deter-
mined brackets for that boundary, while RHF data may or may not. This is because
the HDNB data were calculated using the experimental brackets as constraints, while
the RHF data are mostly from other sources such as calorimetric studies. The reader
is cautioned not to conclude at this point that because of this the HDNB data set is
therefore better for geological or any other purpose. For one thing, there may well be
conflicting results from high pressure and temperature experimental studies, and the
HDNB data will fit only some of them. And, of course, the nature of the mineral phases
used in the phase equilibrium may well have been slightly different,and one cannot
always say that those used by the phase equilibrium experimenters are always "better"
for geological purposes. There are also by now several other self-consistent sets of
data for minerals in the literature, produced using different sources and/or methods,
emphasizing the difficulty of knowing the "best " data. Again we remind the reader
that the equations used here depend on the choice of the Maier-Kelley formulation
for the heat capacity. The equations for other choices are given in Appendix B.
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FIG. 8.9. P — T phase diagram for CaCOs, showing calculated phase boundaries and exper-
imental brackets.

8.5.3. Effect of Approximations on Calculated Phase Boundaries

To see the effect of the AC° = 0 and AC° = constant approximations on the
calculated position of the calcite-aragonite phase boundary, we use equation (7.50)
to generate high temperature ArG values. Thus
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SO

which reduces to

if ACp = 0. This is simply another form of equation (7.50), as can be seen by
substituting ArG^r = A#£r - TrAS^ into equation (8.12).

Use of equations (8.11) (constant AC°) and (8.12) (AC° = 0) results in the data
in Table 8.4, which are plotted in Figures 8.10 and 8.11. As expected, including a
constant AC° gives somewhat better results than assuming AC° = 0, but the errors
introduced can be quite serious for phase boundary calculations, as shown. For a AT
of only 400°C (from 298.15 to 700 K) the phase boundary is in error by more than a
kilobar whether AC° is constant or zero.

Another more satisfactory alternative is to use the average AC^ over the AT
considered, rather than AC° for 298.15 K. The results using this assumption are also

Table 8.4 ArGS, For the calcite-aragonite reaction

T
K

298.15
400
500
600
700

ArG?,
Jmor1

(RHF)

-1049
-1464
-1982
-2591
-3267

ArG5,
Jraor1

(8.11)
AC/>298

-1049
-1456
-1885
-2337
-2809

&rG°T

Jmol"1

(8.11)
ACPa°vg

-1049
-1488
-1999
-2573
-3200

&TG°T

Jmor1

(8.12)

-1049
-1438
-1820
-2202
-2584

P

bars
(8.11)

AQ,°98

3767
5231
6772
8359

10091

P
bars

(8.11)
AQ,a

0
vg

3767
5346
7181
9243

11495

P
bars

(8.12)

3767
5166
6538
7910
9283

P
bars

Table 8.3

3767
5258
7118
9306
11734

AC, = 1.15 Jmol-'K"1
'P298

AC/>avg =3.15 J m o l ~ ' K ~ '
A5298 = 3-82 Jmol ' 'K '

For the variation of Ar5° with temperature, we have

so



FIG. 8.10. ArG as a function of temperature, showing effect of approximations. Data in
Table 8.3.
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FIG. 8.11. P — T phase diagram for CaCOs, showing the effect of various approximations
on the calculated phase boundary.

shown in Figure 8.11, and clearly the errors introduced are quite small. However, if
one has enough information to calculate an average heat capacity, it should be possible
to also use the Maier-Kelley formulation discussed previously (or one of the several
alternatives), and this is preferable.

PROBLEMS

1. Show that the work done by an ideal gas in an adiabatic reversible expansion
is (P-iV-i — P\Vi)/(-j - 1). Verify the statement in the text that an ideal
monatomic gas with 7 = 1.667 would do more than twice the work between
points A and B (Table 8.1).
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2. Calculate PD^D — PbV\ for the Joule-Thompson expansion considered in
the text, and verify that the result is the same as U^> — U\.

3. Repeat the Isenthalpic Boiling calculation in the text using the Steam Table
data and the equation on p. 4 in Henley et al. (1984), and verify that you
get the same result.

4. (a). Calculate the Al2SiO5 phase diagram using data from Appendix
C, by calculating at least three points on each of the three phase
boundaries. Assume the phases are incompressible,

(b). Calculate the same diagram assuming AC^ = 0.
(c). Calculate the same diagram using data from Robie, Hemingway

and Fisher (1978).

5. What pressure is required to change graphite to diamond at 25°C? Would
this pressure increase or decrease at higher temperatures?

6. The origin of red-bed sandstones, in which the grains are coated with minute
amounts of hematite, has long been controversial. A key question in the
controversy is whether hematite is stable in water at low temperatures.
Calculate whether hematite or goethite is stable in the presence of water at
25°C according to the data in Appendix C. At what temperature would the
other become stable?

7. If the slope of a phase transition of a mineral from phase a to phase 0 is
-21.0 barK"1 at a temperature of 600 K, the t\a^0V of the transition is
+0.150 calbar"1, and A/F^ K of phase a is -17000 calmol"1, what is
A//fg00 K of phase /?? Sketch and label the phase diagram.
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PARTIAL AND APPARENT MOLAR PROPERTIES

Thermodynamics is the kingdom of deltas. Truesdell (1980, p. 1)

9.1. ESSENTIAL TOOLS

To this point we have developed a method of dealing with processes involving for
the most part material (phases) of fixed composition. To progress further, we need
to develop ways of dealing with the properties of dissolved substances, and with
phases of variable composition. In other words, we need to deal with solutions. We
have seen that the properties of homogeneous substances (usually, but not necessarily
pure) are either total or molar properties (neglecting, as usual, specific properties).
But obviously substances change drastically when they dissolve. How can we obtain
properties for the dissolved substance alone, as opposed to the solution of which it
is a part? Properties of dissolved substances are called apparent molar and partial
molar properties, and these are the tools we need to discuss the thermodynamics of
solutions in the following chapters.

9.2. PARTIAL MOLAR PROPERTIES

Partial molar properties are defined by partial derivatives (equations 2.22,9.7), which
does not provide a very easy route to understanding them. There is however a highly
intuitive way of thinking about partial molar properties. We will use volume as an
example because it is readily visualized, but all relations derived can be used equally
well for any other state variable.

9.2.1. Molar Properties as Derivatives

It will be useful to begin by realizing that we can also use derivatives to define molar
properties of pure phases; this mathematical treatment is discussed in Chapter 2.
Consider first the volume of a crystalline phase such as NaCl. The volume occupied
by the salt, V, varies directly with the quantity of salt, so that a plot of volume
versus number of moles of salt is a straight line (Figure 9.1). The slope of this line,
dV/dnwaci, is obviously equal to the volume of one mole of salt, i.e., the molar volume
^Naci' m tms case 27 cm3 moF1. Similarly, the volume occupied by one kilogram
of water (1001.4 cm3 at 25 °C) added to the volume occupied by the salt changes all
the numbers on the Y-axis by 1001.4 cm3 but does not change the slope or the molar
volume of salt (Figure 9.2).1 However, if we now dissolve the salt in the water we
find that the volume of the two mixed together is not equal to the sum of the two
separately, because of electrostatic interactions between the charged Na+ and Cl~
ions and the H2O molecules. Also, we find that the total volume of the salt solutions

1 This is the molar volume of salt in a "mechanical mixture" of salt and water, in the sense discussed in
Chapter 10
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FIG. 9.1. The volume occupied by crystalline NaCl as a function of the number of moles of
NaCl.

FIG. 9.2. The volume occupied by 1 kg F^O plus (separately) crystalline NaCl ("mechanical
mixture").

is no longer a linear function of the number of moles of salt, but a complex function,
which results in a curve as in Figure 9.3. The question still is, what is the volume of
a mole of salt in a salt solution of a given composition? Or the volume of a mole of
water for that matter? Consider a NaCl solution consisting of 1 mole of NaCl in a
kilogram of water (a 1 molal solution). The molar volume is still given by the slope
of the V curve at that concentration ([dV/dnN^Ci]ntiaa=i) because this is the rate of
change of V per very small addition of NaCl, expressed in cm3 mol~' of NaCl, or
in other words, the change in volume of the system per mole of NaCl added when
only a small amount of NaCl is actually added. If a mole of salt is actually added, the
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FIG. 9.3. The volume occupied by 1 kg H2O plus dissolved NaCl.

FIG. 9.4. A roomful of 1 molal salt solution. The observer at the tube sees the change in
volume caused by adding one mole of salt, which is the partial molar volume of salt in the 1
molal solution.

change in volume is quite different because the concentration of NaCl changes from
1 molal to 2 molal. We wish to have the molar volume of NaCl in a solution of fixed
composition.

9.2.2. Partial Molar Volume

A better way to look at this is to consider not one kilogram of water, but an extremely
large quantity of water—say enough to fill a large room (Figure 9.4). Now let's add
enough salt to make the concentration exactly 1 molal, and adjust the volume of the



PARTIAL AND APPARENT MOLAR PROPERTIES 213

solution so that the room is full, and a little excess solution sticks up into a calibrated
tube inserted into the ceiling. By observing changes in the level of solution in the
tube, we can accurately record changes in the V of the solution in the room.

Now, when we add a mole of NaCl (58.5 g of NaCl occupying 27 cm3) to the
solution, the change in concentration is very small. In fact, if we can detect any change
in concentration by the finest analytical techniques available, then our room is too
small, and we must find and inundate a larger one. Eventually, we will fill a sufficiently
large room with salt solution that on adding 58.5 g of NaCl we are unable to detect
any change in concentration—it remains at 1.000 moles NaCl/kg H2O. But although
the concentration remains unchanged, the volume of course does not. The salt added
cannot disappear without a trace. The level in the tube in the ceiling changes, and the
AV seen there is evidently the volume occupied by 1 mole of NaCl in a 1 molal NaCl
solution, in this case about 15 cm3 mol of NaCl. This is, in quite a real sense, the
volume occupied by a mole of salt in that salt solution, and has a right to be thought of
as a molar volume (just as much as 27 cm3 mol is the molar volume of crystalline
salt) rather than as an arbitrary mathematical construct. It is referred to as the partial
molar volume of NaCl in the salt solution, V^aci. The reader will be well advised to
think of partial molar properties in this sense, i.e., as molar properties of solutes in
solutions of particular compositions, rather than in terms of the partial derivative that
defines them mathematically (equations 2.22, 9.7).

9.2.3. Total Volume as the Sum of the Partial Molar Volumes

Clearly we could also add a mole of water (18.01 g occupying 18.0 cm3) to our
roomful of salt solution and determine its partial molar volume (Vn2o) as well. This
turns out to be about 17 cm3 mol . Since we now know the volumes occupied by
both the H2O and the NaCl, we could calculate the total volume of the solution if we
know the masses and hence the number of moles of each component from

This will seem like a reasonable conclusion to anyone who recalls our discussion of
Euler's Theorem for homogeneous functions in Chapter 2, since V is homogeneous
in the first degree in the masses (or mole numbers) of the components NaCl and t^O.
It is, in other words, an extensive state variable.

Equation (9.1) can be seen to be a reasonable conclusion from another point of
view as well. This time let's consider not the total volume of the system but the molar
volume, which is

and plot V against the mole fraction of NaCl as in Figure 9.5a. The mole fraction of
NaCl in a one molal NaCl solution is 1/(1 + 55.51) or 0.018, and drawing a tangent
to the curve at this value of -X"Naci we obtain the intercepts x and y as shown in Figure
9.5a. Now dividing each term in equation (9.1) by (nNaci + ^H2o) we obtain
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where XNaC\ is the mole fraction of NaCl (= nNaci/(nNaci + nH2o)- By inspection of
Figure 9.5a we see that the molar volume at our tangent point (the one molal solution)
is

so that evidently x = VH2oandy = V^aci^Thus equations (9.1) and (9.2) express sim-
ilar relationships, i.e., that we can split the volume of a system into compositionally-
weighted values of the partial molar volumes. By implication this is also true for any
state variable and any number of components. Thus in general

and

where Z is any state variable and Z its molar counterpart. Equation (9.4) and the
corresponding version of Figure 9.5a will be particularly useful in our discussions
involving free energies of solutions.

It will also prove useful to have the equation of the tangent itself. From Figure
9.5b we see that this is (following the general equation of a straight line, Y = slope •
X + intercept)

or, as an equation for VNSCI we have

2If you have difficulty seeing the truth of equation (9.3) by inspection, consider the similar triangles A
and B (Figure 9.5b), in which

so

or

and

because
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FlG, 9.5. (a) Molar volume of aqueous NaCl solutions as a function of XNaci- (b) Detail
(distorted for visibility) of the tangent to the molar volume curve at 1 molal concentration.

For a generalized binary solution A — B, this is

where again Z is any molar state variable and Z is its corresponding partial molar
property.

9.2.4. The Formal Definition

Changing to the generalized state variable Z, we recall from Chapter 2 (equation
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(2.22)) that the formal definition of a partial rnolar quantity is

which emphasizes, as we have not so far, that it is a quantity at fixed pressure and
temperature, and that all constituents other than i in the solution have fixed values
(this is signified by the symbol fii). If you think about it, and especially if you note that
the derivative is taken of the total quantity, Z, not the molar quantity, you can see that
the definition is equivalent to our discussion above. However, it's not exactly obvious,
and we repeat that you cannot go wrong if you think of partial molar quantities as
simply molar quantities of dissolved substances, which, of course, vary with the
concentration of the substance.

9.2.5. Partial Molar Free Energy

The equations developed for the partial molar volume and enthalpy can be generalized
to all state variables, but given the importance of the Gibbs free energy function, it
will be convenient to have some of these equations in their free energy form here.

First we note that because of this importance, the partial molar free energy is given
its own name (chemical potential) and symbol (/it). Equation (9.7) then becomes, when
Z becomes G,

and equations (9.4), (9.5), and (9.6) become respectively

and

These relationships are illustrated in Figure 9.6a, which in principle is similar
to Figure 9.5, but there are two important differences. The first is that in 9.6a there
are no numbers on the G-axis, because of course no values for G of any substance
are known. Nevertheless, we can know the shape of the curve, once the positions of
(jL°^ and //g are chosen, because the difference between G of the solution and a line
joining //^ and //g is a measurable quantity. This is the subject of the next chapter.

The other difference is that at both ends, the curve for G of the solution is asymp-
totic to the vertical axes, which is not the case for the volume curve. This means that
at XB = 0, yUB = -oo. This is a consequence of the functional relationship between
Hi and Xi to be explored in succeeding chapters.



FIG. 9.6. (a) Variation of the molar free energy (G) of an ideal binary solution A-B. Tangent
intercepts give the partial molar quantities, as in Figure 9.5. (b) Free energy of mixing, from
Figure 9.6(a).
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The difference mentioned above between G of the solution and a line joining /z^
and /j,g is often plotted as shown in Figure 9.5b. Here we can have numbers on the
vertical axis, because it is a AG.

Readers will see many instances in the literature of numbers being assigned to /z
or to G, e.g. "/XA = -1234 Jmol"1." In all such cases, the /j, or G referred to is an
abbreviation for a A/z or AG, often by considering the free energy of elements to be
zero (which, of course, they are not).

9.2.6. The Gibbs-Duhem Relation

Since Zi is homogeneous in the zeroth degree in ni, n2,..., etc., Euler's theorem
(Chapter 2) gives the Gibbs-Duhem equation:

This is a very useful equation relating the partial molar quantities of the components
of a system. In a two-component system

If we fix the quantity of solvent as 1000 g of water, n\ is fixed at 55.51, and the ratio
U2/n\ becomes the molality, m2, or simply m, so we can write •

The lower limit of integration, m = 0, represents pure water, or an infinitely dilute
solution of component 2. Integration gives

or

where the superscript ° indicates the pure substance (water). Thus if we know Z2 as
a function of m,, we can evaluate Z\ over the same range of compositions.

Unfortunately, the complexities increase rapidly with added components. A useful
reference for three-component systems is Schumann (1955).

9.3. APPARENT MOLAR QUANTITIES

Although partial molar quantities are in principle measurable from slopes or inter-
cepts as in Figures 9.3 and 9.5, they are not actually measured in this way. In practice,
apparent molar quantities are determined, and the corresponding partial molar quan-
tities are calculated from these. It is standard practice to let component 1 refer to the
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FIG. 9.7. Total volume of a solution as a function of solute concentration showing the dif-
ference between partial molar volume and apparent molar volume.

solvent and component 2 to the solute. Then apparent molar quantity (f>z is defined
by

or using volume as an example,

As illustrated in Figure 9.7, the apparent molar volume is the volume that should be
attributed to the solute in a solution if one assumes that the solvent contributes the
same volume it has in its pure state. Alternatively,

and, dividing by (n\ + 712),

and (pv can be seen (Figure 9.8) to be the intercept on the solute axis, which allows
calculation of the molar volume of the solution using the lever rule and the molar
volume of pure solvent, rather than the partial molar volume of the solvent.

From equations (9.17) or (9.18), we see that the apparent molar volume is known as
accurately and as easily as the molar volume or the total volume of a solution whose
composition is known, whereas finding the partial molar volume always involves
some manipulation of the raw data (such as determining a tangent) and requires a
knowledge of a range of compositions, not just a single one.
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FIG. 9.8. Molar volume of a binary solution versus mole fraction showing the difference
between partial molar volume and apparent molar volume.

9.3.1 . Measurement of Apparent Molar Volume

If the apparent molar volume is determined for a range of compositions, the partial
molar volume may be calculated by differentiation. Suppose measurements of <pv are
fitted to the equation

where a, b, and c are constants that fit values of <j>v to the molality, TO. Differentiating
equation (9.18) we have

and hence

which in the case of (9.20) becomes

which allows calculation of V2 at any concentration m. There is absolutely no theo-
retical rationale for the choice of a second-order polynomial in TO (equation (9.20))
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to represent the (j>v data, beyond the fact that it is able to fit the data fairly closely.
Another equation with no theoretical basis that has been found to fit the data well,
especially in the dilute range, is the Masson equation

where (f>y is <pv when m = 0, and Sv is the slope of 4>v versus m 2 .
In fact, many partial molar properties other than V are also found to be linear

functions of TO 2 over considerable ranges of concentration, so that graphical repre-
sentation of partial molar quantities normally uses m? as the abscissa. However, for
various reasons, the partial molar quantity of greatest theoretical interest is the partial
molar quantity at infinite dilution (m2 = 0), Z%, or V£ in the case of volume. (This is
the molar volume of the solute in pure solvent, generally water, where the only solute
interaction is with the solvent, none with itself. That is, there are solvent-solute inter-
actions but no solute-solute interactions, since the solute species are so dilute.) Thus
the extrapolation of <p data as a function of m back to TO = 0 places great emphasis
on measurements in very dilute solutions, as well as on the functional relationship
between (f> and m, and the mA relationship is not generally used here, being entirely
empirical. An accurate extrapolation of </> to m = 0 should be based on an adequate
knowledge of the theoretical relationship between 0 and TO, and all modern treatments
use variations of the Debye-Hiickel Theory (§17.4) for this purpose.

9.3.2. Integral and Differential Heats of Solution

So far we have considered only the volume as a partial molar quantity. But calculations
involving solutes will require knowledge of all the thermodynamic properties of
dissolved substances, such as H, S, Cp, and of course G, as well as the pressure and
temperature derivatives of these. These quantities are for the most part derived from
calorimetric measurements, that is, of the amount of heat released or absorbed during
the dissolution process, whereas V is the result of volume or density measurements.

Another difference between V and other properties such as H and G is that
absolute values of V are obtainable, whereas they are not for H and G, so that we
deal always with values of AH and AG. These deltas or differences can mean more
than one thing, and it is important to be clear about the nature of the difference in
each case.

For instance, if we add a mole of NaCl to a kilogram of pure water and measure
the heat absorbed, rather than the volume change, we find that about 917 calories are
required to keep the temperature constant at 25°C. That is

If we add another mole of NaCl, we find that this time about 749 cal are required,
i.e.,

1 mola,l NaCl solution + 58.5 g NaCl = 2 molal solution; AH = 749 cal

Also, we expect to find, since H is a state variable, that adding 2 moles of NaCl to a
kilogram of water gives the same result as the two above operations combined, i.e.,
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1666 cal will required. The complete curve for NaCl additions to water is shown in
Figure 9.9. These heats of solution are called "integral heats of solution." The slope
of this curve at any particular concentration, dAE/dn^a, is called the "differential
heat of solution," and is in fact the partial molar heat of solution of NaCl in a solution
of that composition. This quantity is represented by AH, where the A refers to the
difference in enthalpy between a very large quantity of solution, and that quantity of
solution plus one mole of NaCl. Thus for a one molal solution

whereas at infinite dilution,

Partial molar enthalpies of solution also appear as intercepts of tangents on plots
of integral heat of solution versus mole fraction, as illustrated in Figure 9.10. A
practical consideration in conducting calorimetric heat of solution measurements is
that it is frequently much simpler and more accurate to measure heat flows associated
with diluting solutions, rather than with making them more concentrated. Dissolving
NaCl in a concentrated solution of NaCl in water is a rather slow process, so that
the heat is absorbed over a long period of time, and it is difficult to know when the
process is complete. Adding water to a concentrated NaCl solution is on the other
hand accomplished fairly quickly and the same information can be deduced from
these dilution measurements as from "solution" measurements. Of course, what is
"dilution" and what is "solution" is to some degree quite arbitrary—a "heat of dilution"
on adding water to a NaCl solution could be considered a "heat of solution" of water
in the system NaCl—F^O. Normally, however, water is considered the solvent, and
adding water is called dilution. Figure 9.11 shows heats of dilution of HC1 • 3H2O,
or in other words, integral heats of solution of F^O in HC1 • 3H2O.



PARTIAL AND APPARENT MOLAR PROPERTIES 223

FIG. 9.9. Integral heat of solution of NaCl in water as a function of moles of salt added to 1
kg water. Slopes of tangents are differential heats of solution of salt at that concentration.

9.3.3. Heats of Solution from Experimental Data

Apparent Molar Enthalpy

Calorimetric data for solutions are handled in a number of different ways, which can
be confusing. In addition to integral and differential heats of solution and the partial
molar enthalpy of solution, we also have the apparent partial molar enthalpy, the
relative partial molar enthalpy, and the relative apparent partial molar enthalpy. To
see how these terms arise, consider the following.

According to equation (9.4) the enthalpy of a two-component solution can be split
into partial molar enthalpy terms for the solvent and solute.
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FIG. 9.10. Integral heat of solution as a function of mole fraction. The tangent intercepts are
the partial molar heats of solution.

At infinite dilution, as 0, this becomes

where the superscript ° indicates an infinitely dilute solution. The enthalpy can also be
split into two terms involving the apparent molar enthalpy, as was volume in equation
(9.18)

(illustrated in Figure 9.12).3

Again considering the case where n2 — > 0 we can write from (9.26)

Comparing (9.25) and (9.27) shows that

Relative Partial Molar Enthalpy

Thus measuring <J>H and extrapolating to infinite dilution would seem to offer a method
for determining H2,

 me most commonly desired quantity. Except for one problem,
that is. As emphasized in earlier chapters, absolute values for H and hence H2, fin,
etc. are unknown and unknowable, since the definition of H is

3Recall that at infinite dilution of component 2, H? (in equation 9.26)= H? (in Figure 9.12).
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FIG. 9.11. Heats of dilution of HCI • 3H2O.

and U is unknown. We can deal only with differences in U and H, as we have done so
far with the integral and differential heats of solution. Therefore in order to be able to
use partial molar and apparent molar enthalpies, the infinitely dilute solution is used
as a reference point, and subtracting (9.25) from (9.24) we get

Defining

and

we have

where L is the relative enthalpy of the solution, and Li the relative partial molar
enthalpy of component i.

Subtracting (9.27) from (9.26) we find

and by definition

Thus
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FIG. 9.12. Enthalpy as a function of number of moles of solute. Compare with Figure 9.7.
The difference is that volumes are measurable whereas absolute enthalpy is not.

where <$>L is called the relative apparent molar heat content or enthalpy. Differentiating
equation (9.32) gives

which (finally) gives a theoretically useful quantity (L2 = H2 — -ff|) in terms of a
measurable quantity, <f>L- (We recall the important fact that H2 does not refer to pure
component 2, but to the value of H2 when the quantity of component 2 in solution
becomes extremely small.)

L2 is one of the more commonly measured calorimetric quantities in solution
chemistry, and equation (9.33) is the fundamental basis for these measurements. As
mentioned earlier, this is commonly done by measuring heats of dilution rather than
of solution. It is related to the temperature derivative of the activity coefficient, as
shown in SI2.5.1.
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PROBLEMS

1 . In the next chapter, we show (equation 10.2) that the equation for the curve
in Figure 9.6a is

Show that the slope of this curve, dG 'solution /dX%, is /^B ~ A*A +

RTln(XB/X^.

2. Show that the minimum in this curve, at dGsoiution/dX^ = 0, is at

3. To draw Figure 9.6a, n°^ and /iB were arbitrarily assigned values of 100 and
500 calmoF1 respectively, and T was chosen as 298.15 K. Find (a), the
slope of the tangent at XB = 0.4. (b). The value of XB at the minimum, (c).
The tangent intercepts (use equation 9.11).
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IDEAL SOLUTIONS

Let us not grace loose thinking with the word 'model'. HJ. Greenwood (1989).

10. 1 . SOLUTIONS, MIXTURES, AND MODELS

The chemical constituents of a solution can be varied — added, subtracted and in-
terchanged or substituted for each other — within limits ranging from complete (e.g.,
gases) to highly restricted (trace components in quartz). Adding or subtracting chemi-
cal constituents to or from a phase involves changes in energy, which will be discussed
in the following sections. For example, if two components A and B are mixed to-
gether, the Gibbs energy of a solution of the two mixed must be less than the sum of
the Gibbs energies of the two separately for the spontaneous reaction

to take place. That is, if we mix UA moles of component A and n% moles of component
B, their combined total G is (n^G^ + n^G^) where GA and GB are the molar free
energies of A and B. If G(A,B) is the total free energy of the resulting solution, then
necessarily

if the solution took place spontaneously. ' Alternatively, dividing through by n

where X\ and X-& are the mole fractions.
Thus if A is albite and B is anorthite, then (A,B) is plagioclase, and we say that

the plagioclase solid solution is more stable than a "mechanical mixture" of grains of
albite and anorthite. On the other hand if A is diopside and B is anorthite, little or no
mutual solution takes place because in this case

so that no spontaneous solution reaction takes place. The term "mechanical mixture"
in this context nicely conveys the idea of quantities of mineral grains mixed together
and not reacting, but does not work quite so well if A and B are other things such as
water and halite, or water and alcohol. Nevertheless, the term is traditionally used no
matter what the nature of the solution constituents, and no harm is done as long as
we remember that "mechanical mixture" means that the constituents considered do
not react with each other, whatever their physical nature.

'if A and B are in their pure reference states, GA and GK are GA and G^, but in general A and B can
be anything at all.
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It will be helpful to recall our discussion of rnetastable systems in Chapter 3, where
we explained that constituents that are together but do not react or interact in any way,
such as those separated by a partition, or those having an activation energy barrier,
are examples of rnetastable systems. Metastable systems have an extra constraint that
prevents their constituents from reacting to achieve their lowest potential. In the case
of the "mechanical mixture" albite-anorthite it is the activation energy; for water-
halite it could be a partition in a composite system. In this chapter, for lack of a better
term, we use "mechanical mixture" for this kind of rnetastable state.

In the following sections we will quantify some of the thermodynamic properties
of mechanical mixtures and ideal and non-ideal solutions. As we detail the properties
of ideal solutions, it will become clear that they are strictly hypothetical; another
thermodynamic concept, like "true equilibrium", which is a limiting state for real
systems. Ideal solutions, in other words, are another part of the thermodynamic model,
not of reality. It is a useful concept, because real solutions can be compared to the
hypothetical ideal solution and any differences described by using correction factors
(activity coefficients) in the equations describing ideal behavior. These correction
factors can either be estimated theoretically or determined by actually measuring the
difference between the predicted (ideal) and actual behavior of real solutions.

10.2. TYPES OF IDEAL SOLUTIONS

10.2.1. Ideal Gaseous Solutions

Before proceeding with our numerical treatment, it is helpful to consider the physical
picture of an ideal solution. What are the properties of true ideal solutions and why do
real solutions not behave this way? The picture differs for gases, liquids, and solids.

Taking the simplest case first, an ideal gas consists of hypothetical, vanishingly
small particles that do not interact in any way with each other. They are unaware of
the existence of the other particles and there are no forces or energies of attraction
or repulsion. An ideal gas must obey the ideal gas law, PV = nRT, where n is
the number of moles, T is related to the movement and individual energies of the
particles, V is the volume occupied by the particles, and P comes from the only
interaction allowed in the system—particles bouncing off the walls or boundaries.
A solution of two ideal gases will also obey the ideal gas law since the particles of
the different constituents remain unaware of all other particles, just as with an ideal
single-component gas. Of course, real gases do interact at the atomic scale and can
only be expected to approach ideal behavior at very low densities and pressures, or
in the limit as P —> 0.

10.2.2. Ideal Liquid Solutions

Liquids are necessarily more complicated than gases. To start with, they have much
greater cohesiveness than gases; for example, a liquid equilibrated with its gaseous
vapor develops a meniscus. This boundary has a measurable surface tension caused
by the asymmetry of particle interactions in the liquid and minimal interaction of
particles in the gas phase above it. Hence a liquid must have significant interaction
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among its particles—if it did not, it would disperse and become a gas. There is no
such thing as an equation of state for the ideal liquid, as there is for the ideal gas.
The term "ideal liquid solution" therefore is used in an entirely different sense than
the term "ideal gaseous solution." It refers not to the liquid as such but to the mixing
properties of the components. In other words, we are concerned simply with changes
as the composition of the solution is varied. Recognizing that any liquid must have
significant interatomic or intermolecular interactions, an ideal liquid solution will
have the following properties:

• The forces of interaction between all molecules, whether of one type or
another, must be exactly the same. For example in a liquid solution of
constituents A and B, interactions A-A, A-B, and B-B must be identical.
This means that all constituents A,B,.. . , must have the same molecular
properties (size, charge, polarity, bonding characteristics).

• An ideal liquid solution must obey Raoult's Law and the Lewis Fugacity
Rule (just like an ideal gas solution).

• The volume of the solution must equal the sum of the volumes of the pure
components before mixing, and no heat is absorbed or given off when the
solution is prepared (because such effects are caused by changes in the
particle interactions, which we have just ruled out).

Note that ideal gases (and gaseous solutions) have a complete absence of inter-
molecular forces, while ideal liquid solutions have a complete uniformity of forces.

10.2.3. Ideal Solid Solutions

We shall see shortly that the ideal and non-ideal properties of gaseous, liquid, and
solid solutions are all treated in numerically similar fashion. However, the concept
of ideal solid solutions is as different from ideal liquid solutions as the liquid is from
the gas. This is because a solid is rigid and its component molecules, ions, or atoms
are confined to varying degrees to specific structural sites. The degree of structure
varies, of course, from glassy to fully crystalline materials, but there is always some
ordering of constituents. Whereas ideal gases and gaseous solutions have a complete
absence of inter-particle forces and ideal liquid solutions have a complete uniformity,
solids must have highly specific interactions between different constituents. We speak
of specific sites in crystals, such as tetrahedral silicon-oxygen bonds and octahedral
aluminum sites, and the same is true (although to a lesser extent) of glassy solids. The
interactions between Si-Si, Si-O, Si-Al, O-O, and Al-O in an aluminosilicate are all
quite different. However, within the framework of a perfectly crystalline compound
it is frequently possible to substitute one element for another. This substitution and
the corresponding solid solution would be ideal // the two substituting elements or
species were completely indistinguishable. The closest approximation to an ideal
solid solution would be the substitution of two isotopes of the same element on the
same crystal site. Like ideal gaseous and liquid solutions, an ideal solid solution will
also obey Raoult's Law and the Lewis Fugacity Rule (presuming vapor pressures
of any constituents could be measured); there would be no heat evolved on mixing
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the components and the total volume of the solution must simply be the sum of the
volumes of the pure constituents before mixing.

1 0.3 . THERMODYNAMICS OF IDEAL SOLUTIONS

Despite the dissimilarities in these hypothetical models of ideal gaseous, liquid, and
solid solutions, we see that they share a number of important properties. All ideal
solutions, no matter what the phase, have no heat of mixing when prepared from their
components, and total volumes must simply be the sum of the individual volumes of
the components before mixing.

These relationships, and others, follow directly from the relationship between the
partial molar free energy (chemical potential) of a constituent and its mole fraction
in an ideal solution

where //» is the chemical potential of some constituent and n° is (in this equation)2

the chemical potential of the constituent in its pure (Xi = 1) form. We will see shortly
that (10.1) is all that Is necessary to define an ideal solution.

From (9.10), the molar free energy of the solution is the weighted sum of the
chemical potentials of all components, i.e.

Inserting (10.1),

At this point we can simplify things by considering a process in which two or
more pure components are first mixed together mechanically (brought together in a
composite system having a constraint that prevents their mutual interaction), and then
allowed to dissolve (the constraint is released) forming a single, ideal solid solution.
Before the dissolution, the total free energy of the mechanical mixture has to be the
sum of the chemical potentials (or molar free energies) of each of the pure components
in the proper proportions:

This allows us to break equation (10.2) into two very important parts. One part
describes the free energy contribution due solely to the mechanical mixture or sum
of free energies of the substances being mixed. This is the first term on the right side

2This equation is given a more generalized form in the next chapter.
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of (10.2). The remaining term on the right side of (10.2) must describe a change in
the total free energy arising from the dissolution process itself, which we could call
AGideai dissol'n, so that

and

"Ideal dissolution" is often called "Ideal mixing."

10.4. ENTROPY OF IDEAL SOLUTIONS

Something new has crept in here, since nothing we have said so far about ideal
solutions included a free energy contribution from the solution process itself. What
gives rise to this term and what are its physical implications?

We have already observed the answers to these questions in Chapter 6. While
there is no volume or enthalpy change when a mechanical mixture dissolves to form
an ideal solution, i.e.

and

there is a change in entropy. We can figure out exactly what this change in entropy
must be by combining (10.5), (10.8) and the relation AG = AH - TAS1; thus

and
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As in all the preceding equations, the entropy of a mechanical mixture is simply the
sum of entropies of the pure, unmixed components:

so (10.10) becomes

Note that the Gibbs free energy of ideal dissolution (10.5) depends on temperature
while the entropy of ideal dissolution (10.9) does not. This has important physical
implications which are considered below.

In Chapter 6, equation (10.9) for the entropy change of this dissolution process
was derived statistically, starting with

The entropy of ideal dissolution (10.9) can also be easily derived using classical
(as opposed to statistical) thermodynamics. This is worth doing here since it provides
further insight into the problem. The derivation for ideal gases is very simple, and
that for liquids and solids only slightly more complicated. Because we want to look
at the effect of volume and pressure changes at constant temperature, we' start with
the exact differential of S with respect to T and V,

In an isothermal process, the dT term drops out, but just for the record (dS/dT)v is
CV/T (just as (dS/dT)p is CP/T (§7.3, §7.5.2), and the other derivative (dS/dV)T

is equal to (dP/dT\. This is one of Maxwell's equations (§14.3.2). Therefore the
equation becomes

which, for an ideal gas, is

For a constant temperature process and because PV = nRT for ideal gases, this
becomes after integration,



234 THERMODYNAMICS IN GEOCHEMISTRY

FIG. 10.1. Hypothetical processes in which two ideal gases A and B, originally separated
by a partition, mix to form an ideal gaseous solution with a change in molar entropy equaling

Consider the process shown in Figure 10.1 where two ideal gases (originally separated
by a partition) mix, forming an ideal solution at fixed total pressure and temperature
in an adiabatic container. After mixing, the partial pressure of each gas is given by

where P is total pressure (cf. equation (11.22)). This is Dalton's Law of partial
gas pressures (which, as might be expected, only works exactly for ideal gaseous
solutions). According to (10.13) and (10.14), the entropy change on expanding both
gases from the initial pressure P to their final partial pressures Pi in the solution will
be

or

Dividing by (nA + nB) gives
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which, on generalizing to any number of components, becomes

as previously derived.
The hypothetical dissolution process illustrated in Figure 10. 1 need not apply only

to solutions of ideal gases. It works equally well for ideal liquid and solid solutions.
For example, forsterite might be on one side of the partition, fayalite on the other;
mixing could then form a (nearly) ideal olivine solution by diffusing and exchanging
Fe2+ and Mg2+ ions. As we noted in Chapter 6 (§6.5.4), equation (10.9) gives what is
termed the configurational entropy change of such mixing processes.

Next we will derive equation (10.9) one final time, generalizing to all ideal solu-
tions, whether gaseous, liquid, or solid. Recall that

and, for an ideal solution,

Hence the partial molar entropy of a component of an ideal solution is

The entropy of the solution is given by the sum

Dividing through by ̂  rij we have

as previously derived. Equation (10.9) follows directly from this.
We have just observed that there is an entropy change given by equation (10.9)

when two or more components dissolve to make a solution. Because AG = AH —
TA.S, there is a corresponding change in the Gibbs free energy as well. The physical
implications make good intuitive sense and are illustrated in Figure 10.2a,b. First,
equation (10.3) for a mechanical mixture of two components A and B is a straight
line connecting the molar free energies of each of the pure components. The term
'^2iXiRT\nXt in (10.4) for the free energy of the dissolution process itself will
always be negative since X; < 1. So, according to (10.5) the free energy of an ideal
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FIG. 10.2. G — X, V — X, and H — X diagrams for ideal and nonideal solutions.

solution will always be lower than that of a mechanical mixture, or

always. This makes good sense thermodynamically because the most stable state of a
system must always have the lowest free energy. For those cases where a solution is
more stable than a mechanical mixture of its components, it will have the lower free
energy, as in Figure 10.2a. If instead the mixture is more stable, it will have the lower
free energy as in Figure 10.2b. The entropy of the dissolution process itself makes
the solution more stable than the mixture — at least for ideal solutions. We shall see
below that if the solution is non-ideal, it may have a positive A/J of dissolution; this
often overwhelms the entropy contribution, making the solution less stable than the
mixture, (since AC = AH — TA5). The entropy of dissolution may be thought of as
a sort of driving force pushing towards the stability of solutions. However, its effect
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may not always be sufficient to produce a true solution if other parameters such as
enthalpy work too strongly in the opposite sense.

10.5. ENTHALPY AND VOLUME OF IDEAL SOLUTIONS

We have stated above that the enthalpy and volume change involved in forming an
ideal solution from its pure components is zero (equations (10.6) through (10.8)). This
makes good intuitive sense and could be given as a definition or criterion of ideal
solutions. Both conditions follow from equation (10.1), which is all that is needed to
define ideal solutions.

Considering the volume first, differentiate (10.1) with respect to pressure:

This shows that the partial molar volume Vt of a component of an ideal solution
is equal to the partial molar volume of that component in its pure state, V° , which of
course is also equal to the molar volume in the pure state, V°. It follows that there
is no volume change when the pure components dissolve in one another to form the
solution, i.e.

It also follows that the volume of an ideal solution is the same as that of a mechanical
mixture of the components (a mixture in which no dissolution takes place), and
because the volume of such a mixture is

it follows that

or

The lack of volume change on ideal dissolution will be referred to in Chapter 1 1
(§11.9.4) as Amagat's Rule.
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For the enthalpy change upon forming an ideal solution, differentiate (10.1) with
respect to temperature, after first dividing by T:

therefore

and

This result has many applications to which we will return in subsequent chapters.
It parallels the Van't Hoff equation which is used to predict the variation of equilibrium
constants with temperature, as we shall see in Chapter 13. Again, this tells us that the
partial molar enthalpies of the components in solution are identical to those of the
pure components at the same T and P. The enthalpy of the solution is simply the sum
of enthalpies of the pure components and there is no enthalpy change on making up
the solution from its pure components:

These relationships are illustrated schematically in Figures 10.2c,d.

10.6. SUMMARY: IDEAL SOLUTIONS

All ideal solutions obey the same set of rules and equations, whether they be solid,
liquid, or gas (an exception is the ideal gas law, obeyed only by ideal gases). The
activity coefficient always equals 1 .0; the volume and enthalpy changes on dissolution
are zero; the total volume and total enthalpy equal the sums of those of the original
components mixed together to make the solution; the entropy and Gibbs free energy
of dissolution are not zero because the components are more dispersed in the solution
than before being mixed together; ideal solutions obey Raoult's Law, Henry's Law,
and the Lewis Fugacity Rule. For quick reference, the primary equations describing
ideal solution behavior are summarized in Table 10.1. Each equation is given the
same number used in the text.
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Table 10.1 Summarized Properties of Ideal Solutions

10.7. SPECIES, COMPONENTS, AND CONSTITUENTS

It is now time to amplify our comments in Chapter 3 on the terms used to describe
the composition of solutions.

A liquid solution is a mysterious thing. Solids that disappear into liquids, like
sugar into tea, obviously must have very different properties in the dissolved state
than in the crystalline state, and a great proportion of the effort of physical chemists has
always been directed towards identifying the molecular and ionic species in solutions,
and the structure of solutions. We now know quite a lot about the dominant species
in many solutions, so that, for example, when calcite dissolves into water it is useful
to consider that we do not get an aqueous CaCO3 species but Ca2+ ions and CO\~
ions, which hydrolyze (react with water) to varying degrees depending on the solution
composition, temperature, and pressure.

To use "classical" Thermodynamics we need absolutely no knowledge of such
things. We need only measure macroscopic properties of the bulk solution, such as
its bulk composition, and from these we will be able to calculate molar properties of
dissolved substances (partial molar properties) just as we do for pure substances.

For example, consider what happens when calcite dissolves in water. When cal-
cite and water are placed together, a spontaneous reaction takes place in which the
composition of the calcite is not changed, but the composition of the fluid phase is
changed. After a while the reaction stops when the system has reached equilibrium.
When calcite dissolves there is no change in its ratio of Ca:C:O, so that we can repre-
sent the composition of the dissolved part by CaCO3(ag) (Figure 10.3). The solution
therefore has a composition that can be represented by some proportions of t^O and
CaCO3(aqr), no matter what the nature of the actual species in the solution, and we

Amagat's Rule:
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FIG. 10.3.
lution.

Alternative ways of expressing the equilibrium between calcite and aqueous so-

can represent the dissolution reaction by

Considering this reaction from the point of view of thermodynamic potentials
already developed, we say that the system pure water plus calcite is able to lower
its Gibbs free energy at constant pressure and temperature by reacting, that is, some
of the calcite dissolves into the water. When the Gibbs energy reaches a minimum,
equilibrium is achieved and the reaction stops. During this dissolution process, the
CaCO3(ag) content of the liquid increases and stops increasing at equilibrium. Simi-
larly we know that if the solution was supersaturated with CaCO3(ag), some calcite
would precipitate until the same equilibrium was achieved.3

Thus we should consider that CaCO3(ag), the dissolved calcite, has a certain
Gibbs energy per mole that varies with its concentration in the fluid phase. At equi-
librium, G for the system is minimized, which can only be true if G of the dissolved
CaCO3 (aq) equals the G of calcite. If it is not equal, the system can lower its overall G
by either dissolving or precipitating calcite. As mentioned earlier, we need to develop
methods for representing and measuring the properties of dissolved substances such
as CaCO3(a#), but we can always represent the dissolved substance by its bulk com-
position, as in this case, and we don't need to concern ourselves with what "really"
happens to the solute. In other words we can deal with the component CaCO3(a<?) in
the aqueous phase rather than the various species (Ca2+, CO^~ , HCOj" , CaOH+, etc.)
which are known or believed to exist.

Note too, that although H2O is the other component in this two-component system,
and although it makes up the major part of the solution phase, it does not appear in
equation (10.24). We do not write

3 Because of the importance of the CaCO3 — HzO system in ocean chemistry, a great deal of experi-
mental work has actually been done on the solution and precipitation of calcite in water. In this discussion
we omit reference to a number of experimental problems that are encountered in this work.
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where x and y are mole numbers or mole fractions. That is, our reactions will never
be written in such a way as to try to represent the composition of phases. The belief
that chemical reactions are written using phase compositions as reacting entities is
one of the most common errors made by students.

Having made the point that we can write reactions using components, as in (10.24),
we should next point out that reactions are also often written between reacting species,
e.g.

In (10.25) we are concerned with what "really" happens to the aqueous or dissolved
calcite, rather than with its bulk properties. Actually, what "really" happens includes
several other reactions as well, as mentioned earlier, such as

and

Thus in writing (10.25) we by no means imply that CO2" and Ca2+ are the only ions
in solution, or even that they are the major or dominant ones. They could be quite
minor ones. We imply only that they exist, and that when calcite is in equilibrium with
aqueous solution, the dissolution of calcite to produce Ca2+ and COj~ ions will stop.
While calcite is dissolving, the CO2" ions produced are reacting to produce HCO^
and H2CO3, and conceivably dozens of other reactions between species major and
minor are also taking place, but they all come to equilibrium when calcite equilibrates
with the solution. In fact, if one reaction has not equilibrated, then none of them have,
in the sense discussed in Chapter 3.

Also, continuing the considerations we had concerning minimizing the Gibbs
potential of the solution, evidently we could say that the molar Gibbs energy of the
aqueous Ca2+ ion plus that of the CO2- ion must equal that of calcite at equilibrium.
Otherwise calcite would continue to dissolve to produce more ions, or the ions would
combine to precipitate calcite.

Combining equations (10.24) and (10.25), we find we can also write

We have described CaCO3(og) as the total dissolved calcite, with no consideration
of how it is split up. But CaCO3(ag) exists as a species in low concentrations, and
equation (10.28) is a perfectly valid expression of the idea that species CaCO3(ag)
must also equilibrate with the ions Ca2+ and CO2", and with everything else in
the solution. Equation (10.24) can be understood in two ways — either involving
CaCO3(ag) component, or CaCO3(aq) species. From now on we will distinguish
these by using CaCO3(ag) for the neutral species, so that

and
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express two different concepts, though in the same equilibrium system. The idea that
the CaCO3 species, in vanishingly small concentration, can have the same molar
Gibbs energy as crystalline calcite or as component CaCO3(ag) may seem a little
strange at first, but is perfectly valid. However, its other properties such as volume,
heat capacity, and so on are quite different, as are its standard state properties.

Also, we note the fact that this point of view (i.e., regarding CaCO^og) as either
a component or a species) is not transferable to solid or crystalline solutions. Thus
when we write

to represent the equilibrium between the albite component of the plagioclase solid
solution and the albite component in a silicate melt of granite composition, we may
regard NaAlSisOg (in melt) either as a possible species in the melt or as simply one
of the melt components, but clearly this choice is not available for NaAlSi3C>8 in the
plagioclase. In the crystalline phase we know there is no such thing as a NaAlSisOg
species or a CaAi2Si2Og species, only the two components of a crystalline solution.4

Note again that we do not attempt to represent the composition of the plagioclase or
the melt in equation (10.30).

Thus far, we have discussed solutes as either components or species. However,
the term "component" has a very definite meaning in thermodynamics, and there are
many reactions in which not all the chemical formulae can represent "components"
in the true sense. For example, consider coexisting orthopyroxene and olivine, both
solid solutions with Mg and Fe end members. An "exchange reaction" can be written

In this case both Fe2SiC>4 and Mg2SiO4 are components of the olivine solid solution,
and FeSiO3 and MgSiO3 are components of the enstatite solid solution. But when
olivine and pyroxene equilibrate there are not four components, but three, since
only three concentrations can be chosen independently, the fourth being fixed by the
exchange reaction (10.31). Thus use of the term "component" to characterize the
entities in chemical reactions often involves a certain ambiguity, if one adheres to the
strict meaning of that term as we intend to do. In (10.31) for example, the terms are all
components if olivine and pyroxene were considered separately, but not when they
equilibrate. And even then, they represent only one possible choice of components,
in the sense that one might choose other compositional variables to represent the
system, such as MgO, FeO and SiC>2. Similarly in our albite example, NaAlSiaOg is
certainly one possible choice as a melt component, but there are others.

Because of this ambiguity, and because of the ambiguity involved when species
and components can be represented by the same formula, we will usually refer to
chemical reactions between constituents of phases. A constituent of a phase or system
is any combination of elements in the system in any stoichiometry. Some constituents

4Our usage is to restrict the term species to liquids and gases, but as we noted in §3.8, mineral species
is sometimes used for end-members of solid solutions and pure minerals. Other terms are also used.
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would be useful choices as components; some represent the dominant species in
solution; some represent hypothetical species; some are none of these. All systems
therefore contain a very large number of constituents. Our choice of constituents
to consider in our chemical reaction equations is governed by our knowledge of the
system and our purposes in writing the reactions, and not least by our scientific insight.

PROBLEM

1. Calculate the entropy of ideal mixing (dissolution) involved in combining
the three major components of air—79 wt.% NI, 20 wt.% O2, and 1 wt.%
Ar.



11
FUGACITY AND ACTIVITY

The comprehension of the laws which govern any material system is greatly facil-
itated by considering the energy and entropy of the system in the various states of
which it is capable. Gibbs (1875). From the Dover edition (1961), p. 55.

11.1. THE GIBBS ENERGY OF FLUIDS

In Chapter 7 we saw that the fact that minerals are to a good approximation incom-
pressible means that the effect of pressure on the Gibbs free energy of solid phases is
very easily calculated. Thus, in general

and, because V for solids can often be considered independent of P,

This, combined with the more complex integration of dG over a temperature
interval at one bar pressure, allowed us to calculate the position of phase boundaries
at high pressures and temperatures. The next question is how to evaluate the pressure
integral (11.1) when a fluid such as H2O or CC>2 is involved, either in the pure
form, mixed with other fluid components, or reacting with solid phases? Obviously,
assuming that the molar volume of a fluid is a constant is not even approximately
true, and is unacceptable. A possible way to proceed would be to express V as a
function of P in some sort of power series, just as we did for Cp as a function of T
(equation 7.12). VdP could then be integrated, and we could determine the values
of the power series coefficients for each gas or fluid and tabulate them as we do for
the Maier-Kelley coefficients.

11.2. DEFINITION OF FUGACITY

Fortunately, thanks to the insight of G.N. Lewis, we can proceed in a simpler and
completely different fashion. Lewis in 1901 defined a new function, the fugacity,
which can be thought of as a kind of idealized or thermodynamic pressure, which
expresses the value of f V dP single-handedly. To see how the inspiration for such a
function might have arisen, we consider the form of the volume integral / V dP for
an ideal gas. Thus, substituting RT/P for V in (11.1) we have

244
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If PI is 1 bar and this is designated a standard or reference state denoted by a
superscript °, then

Thus for ideal gases RT In P all by itself gives the value of fp=l dG, or in other words

of /p=1 V dP. Unfortunately, this doesn't work for real gases although it's not a bad
approximation at low pressures and high temperatures where real gases approach
ideal behavior. However, the form of the relationship

is sufficient to suggest that we could define a function such that the relationship would
hold true for real gases. This function is the fugacity, /, where

and

Since / appears as a ratio in (11.6), this equation cannot serve as a full definition of
/. We must specify how to determine the fugacity at some P and T, then the integral
can be used to calculate it at other pressures at that T. To complete the definition,
it would be convenient for / to approximate P for gases that behave more or less
ideally, that is, at low values of P. We accomplish this by stipulating that

the ratio //P is called the fugacity coefficient, 7/.
This means that for an ideal gas, / = P, and for gases at low pressures, / « P.

Equations (11.7) plus (11.5) or (11.6) make up the definition of fugacity.

11.3. MEASUREMENT OF FUGACITY

It is obvious from the preceding equations that to measure fugacity, we need to
measure the molar volume as a function of P. In other words we have to measure
gas densities. Also we should measure these densities down to very low pressures—
pressures sufficiently low that we can say / = P to whatever degree of accuracy is
required. The greater the accuracy the lower the pressure. But at these low pressures,
the volume of a given mass of gas becomes very large and very difficult to measure
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accurately. Thus, while in principle evaluating f V dP is straight-forward, in practice
it is difficult when the lower limit of integration is a very low pressure. To avoid
evaluating this integral at very low pressures where V — > oo , it has been found
convenient to define the function

Thus a is the difference between the molar volume of the gas and the volume it
would have if it behaved ideally. Then

and

Integrating from P0 to P

where P0 means some unspecified value of P, sufficiently low such that P = / to a
good approximation. Thus in (11.8) at this low value of P, the two terms In fpa and
In Ppa are equal, so that the equation becomes

To integrate (11.9) we still need values of V at low pressures, but evaluation of the
integral is now easier, since even though both RT/P and V tend to oo as P — > 0,
their difference does not tend towards zero, but generally to some finite value which
becomes constant at low P. Integration, either graphically or by fitting a simple
integrable function to a as a function of P, can then be carried out right from P = 0
to P, and leads directly to values of / as a function of P at temperature T.

Equation (11.9) is also useful in providing a one-equation definition of fugacity,
rather than the two-equation one we gave above. Substituting (RT/P — V) for a and
rearranging, we have
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This is the equation given by Tunell in his classic paper on fugacity (1931), in which
he points out some difficulties with the definition as we have presented it, and shows
that equation (11.10) is preferable as a definition of fugacity from a mathematical
point of view. Our presentation, which follows the original one by Lewis and Randell
(1923), seems preferable from a pedagogical point of view.

The introduction of the a function should not be allowed to obscure the fact that
fugacity is obtained by evaluating the function / V dP. The a function only simplifies
this evaluation.

For a gas in a mixture of gases, the same procedure may be followed, but at each
P and T what is required is not the molar volume but the partial molar volume of the
gas in the mixture.

11.4. THE COMPRESSIBILITY FACTOR

It has been observed that the compressibility factor Z, which is defined as

is the same for most gases, if the comparison is made when each gas has the same
relation to its critical point (principle of corresponding states). This was first suggested
in the last century by van der Waals. If we define a "reduced temperature"

where T is the gas temperature (K) and Tc is its critical temperature (K), and a
"reduced pressure"

where P is the gas pressure and Pc is its critical pressure, then most gases have the
same Z at a given Pr,Tr, within certain ranges.

Now, since

Then from (11.9)

This shows that f/P, the fugacity coefficient, can be calculated as a function of Z, the
compressibility factor, and since Z is known and is the same for most gases in terms
of their Pr and Tr, then f / P can be calculated for any gas given its Pc and Tc. Several
authors have prepared charts showing f / P as a function of Pr at various Tr. This is
a useful device for obtaining fugacities of gases in the lower range of geologically
interesting P — T conditions. The charts do not extend far into the metamorphic range
of P — T conditions.
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11.5. FUGACITY IN EQUILIBRIUM CALCULATIONS

Assuming now that we have access to tables of fugacities or fugacity coefficients
for a range of P, T conditions, we now have a means of conveniently evaluating the
integral /p

2 V dP at any temperature T for a fluid species such as H2O or CO2. A
large and important class of mineral reactions involves only solid minerals and either
water or CO2, such as

or

Therefore we need only split the volume integral in our previous equations (Chap-.
ter 8) into two parts—one for the solids and one for the fluid. Suppose we have a
reaction

where

where ASV means AV(solids), or the volume difference between the solid con-
stituents only, in this case VB ~ VA- Hence

The pressure integral for the solids is then evaluated using the constant A.V
approximation, and that for the fluid is evaluated using fugacities. Thus

For the muscovite breakdown reaction given above, we can start with equation
(8.6)

Since we have a, b, and c Maier-Kelley coefficients for water and other fluids as
well as for solids, the temperature integral is evaluated as before. Now
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and

Therefore all we need to do to calculate phase boundaries for this reaction and
any other involving only pure solids and a pure fluid is substitute

for ArV(P — 1) in equation (8.9). This then becomes

In this formulation, one small computational problem that did not arise in Chapter
8 is that since f fluid is a function of P as well as T, one cannot solve equation (11.15)
directly for P having chosen T. One must estimate P, find f fluid for that P, solve
for P (call it P') in (11.15), get a new jjluid for P', solve again for P (P"), find
///u»d for P", and so on until there is an insignificant difference between Pn/ and
p(n+\) -pjjjs usuajiy requires only four or five iterations, but is still only feasible by
machine calculations. A function for determining f fluid as a function of P and T
must of course be included in the calculation.

Another point that should be mentioned is that we have been referring throughout
to reactions involving pure solids and fluids (e.g., pure water or pure COi, but not
a mixture of the two), and we have continued to use the ° superscript to indicate
this. However the ° superscript actually has a considerably wider meaning, which we
consider in the following chapter. You will then discover that so far we have been
implicitly assuming that the standard states for all reactants and products are the pure
phases at the T and P of interest.

1 1 .6. ALL CONSTITUENTS HAVE A FUGACITY

The development of the fugacity concept in equations (11.1) to (11.7) is directed
toward real gases, using the ideal gas as a model. No mention is made of whether the
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gas is a pure compound (COa, N2, etc.) or a gaseous solution, and the fugacity could
be used for either. In fact of course, fugacities of pure constituents are invariably
what is required, as in our examples above. In real applications however, whether in
industry or in nature, gases rarely occur in the pure form, so that the determination
of fugacities of individual gases in mixtures of gases becomes of importance. In this
section we show not only that individual gases in mixtures of gases have fugacities,
and how to measure them, but more importantly, that the fugacity concept is not
limited to gases, but can be applied to any constituent in any phase.

Integrating (11.5) between P\ and P2 we have

which is the fugacity equivalent of (11.2), but whereas (11.2) is restricted to ideal
gases, (11.16) holds for any gas. In this equation, as mentioned above, G refers to
the molar free energy of either a pure gas or of a mixture of gases. To deal with the
case of an individual gas in a mixture of gases we need only have the appropriate free
energy term, as evidently the fugacity ratio term will refer to whatever the free energy
terms refer to. In other words, if we have a AG term for the free energy change of an
individual gas in a mixture, then the (///) term will also refer to that change for that
individual gas. The appropriate molar free energy term for a constituent of a solution
is of course the partial molar free energy, which is given the special symbol fj,. As
emphasized in Chapter 9, it is important to realize that //j and Gt have essentially
the same meaning: both refer to the free energy per mole of some constituent i; it is
just that when that constituent is in a solution, its free energy depends not only on T
and P but also on its concentration, which necessitates a slightly more complicated
definition.

Accepting then that gases in solution can have their free energy changes measured,
and accepting too that the change involved need not be restricted to a simple change
in pressure but could be a change between any two states (after all, free energy is a
state variable), equation (11.16) becomes

where i is the pure gas solution constituent in question, and' and " are any two stable
equilibrium states. If we now accept as well the simple extension of our conclusion
(§8.5) that the molar free energy of a constituent (CaCOs) is the same in two phases at
equilibrium to the equality of fj-i in all phases at mutual equilibrium (fully discussed
in Chapter 14), it follows immediately that if the two states ' and " are in equilibrium
with each other, $[ = f" because /^ = P-'i- This provides one method of determining
the fugacity of a gas in a mixture of gases; one need only equilibrate the pure gas
with the mixture through a membrane permeable only to the pure gas in question
as in Figure 11. la. The fugacity of the pure gas being in principle measurable as
we have discussed above, the fugacity of that gas in various mixtures could then be
determined. Alternatively, one could perform sufficient density measurements on the
gas mixture as a function of P, T, and composition to determine its partial molar
volume (Vi) as a function of P and T, and carry out the calculations described above,
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but substituting VJ for V. In practice, because of the shortage of such data, it is
more common in the Earth Sciences to assume that gas mixtures are governed by
the Lewis Fugacity Rule, which amounts to assuming that the gases mix together
ideally, and which permits calculation of the fugacities of the gaseous constituents of
a mixture from its composition without performing difficult density measurements.
Alternatively, various algorithms have been suggested to calculate fugacity. Further
discussion of this topic is found in Chapter 16.

Fugacities are of practical importance only in gaseous and vapor phases, and hence
also for phases equilibrated with them. This is obviously because the measurement
methods involve measuring gas densities. Nevertheless, equation (11.17) makes clear
that the meaning of the fugacity is not restricted to gases. From (11.17) (combined
with (11.7)) we can say that any constituent i that can be assigned a partial molar
free energy (/j,j) likewise has a fugacity, and in Chapter 14 we will conclude that this
means in fact any constituent in any system.

For liquids and solids the fugacity of the constituents in the condensed phase would
evidently be approximately equal to their partial pressures in the vapor phase, since
the pressure on the vapor is quite low and in the range where / « P. Alternatively,
any individual constituent of a condensed phase may be imagined as equilibrated
with a vapor phase of the pure constituent through a membrane permeable only to
that constituent, as in Figure 11.1 b. For example, the fugacity of constituent AISi in
albite would equal the partial pressure of AISi species in the vapor equilibrated with
albite. Fugacities of solid phases or of individual constituents in solid solutions are
not generally known, but it will be useful to recall that they can be thought of as vapor
pressures, either with or without membranes as above.

Nevertheless, while it may often be useful to think of fugacities as partial or
vapor pressures because in many systems they are approximately equal, in many
other systems they are not, or there may be no vapor pressure at all. Therefore it is
best to realize that the fugacity is a parameter in the thermodynamic model, not always
an approximation to some real pressure. This idea is taken up again in connection
with the oxygen fugacity (§18.5.1).

11.7. FUGACITIES: A SUMMARY

The fugacity is a property of systems and of system constituents that was invented in
order to facilitate the evaluation of f dG for gaseous constituents. However, the fact
that its only practical use is for gases does not change the fact that in principle it is
a property of all system constituents. Each constituent fugacity is therefore a system
property or state variable, whether measurable or not. (Our insistence on this point is
connected with our development of the concept of activities).

Fugacity is often described as an "escaping tendency," but in most solid and liquid
systems it is more intuitively thought of as a vapor pressure. In gaseous systems it can
be thought of as (approximately) a partial pressure. Its dimensions are the dimensions
of pressure, and it is most often measured in bars or pascals. In spite of its appearing
as a ratio in one of its equations of definition (11.6), it is nevertheless an absolute
quantity for a given constituent in a given system, as is G, thanks to the other equation
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FIG. 11.1. (a) Mixture of gases having total pressure Pt. Membjanes are permeable to only
one gas, allowing equilibration of the gas across the membrane, (b) Solid AB at pressure Pt.
Membrane is permeable only to vapor A. PA is so low that PA = JA •

of definition, (11.7). In other words, fugacities do not have standard states in the way
that activities do. They are absolute system properties.

11.8. ACTIVITY

Let us summarize our development of the concept of the fugacity, /. Starting with
the definition

and

we found
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which expresses the relationship between the free energy and fugacity of a gas at
two different pressures at the same T. Generalizing from a single gas to a gas i in a
mixture of gases, and from two states at different pressures to any two states ' and ",
this becomes

One implication of this is that the fugacity of i is the same in any two states
or phases that are in mutual equilibrium. Another implication is that the fugacity,
although conceived for use with gases, is actually applicable in principle to any
constituent of any system, solid, liquid, or gas.

Of course, for most constituents of liquids and especially of solids the usefulness
of (11.17) would seem to be very limited, because the fugacities are far too small to
measure, and are unknown. However, even in systems where constituent fugacities
are unknown, the ratio of a constituent fugacity to its fugacity in some other state is
quite often a measurable and useful quantity called the activity.

Rewriting (11.17) so that state " is any (unsuperscripted) state and state ' is a
reference state designated by superscript °, we have

It is important to see that this is a simple generalization of ( 1 1 . 1 6), and hence a direct
result of the definition of fugacity. We now define the activity of constituent i as

where fa and f° are the fugacities of i in the particular solution or state of interest to
us and in some reference state at the same temperature. Thus

The nature of this reference state will be the subject of considerable discussion in
Chapter 12. The fact that activity is defined as a ratio of two quantities, one of which
refers to an arbitrary reference state and both of which, in many cases, are unknown,
leads to many sources of confusion in using it. A further difficulty is that the same
quantity is also defined in a completely different way for dilute solutions, often leaving
the erroneous impression that activities come in several varieties, depending on what
kind of system one is dealing with. We will take some pains to show that there is only
one activity concept, but that it is applied differently to different types of systems,
i.e., only the choice of reference state changes. The flexibility of the activity concept
is both an indicator of its usefulness and a source of confusion.

11.9. ACTIVITY AND MOLE FRACTION

In this section we will see how the activity, arrived at in such a seemingly abstruse
way, turns out to be equal to the mole fraction in ideal solutions, so that

and how varying the choice of reference state allows convenient application to many
types of systems. We do this by examining several laws relating to ideal solutions.
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11.9.1. Dalton'sLaw

The simplest imaginable system other than a vacuum is undoubtedly an ideal gas.
One mole of ideal gas occupies 22.711 at 0°C, 1 atm, so that (from the ideal gas law)
one mole of ideal gas occupying one liter at 0°C would have a pressure of 22.71 bars
(Figure 11.2a). It was an early discovery (Dalton, 1811) that mixtures of gases would
exert a pressure equal to the sum of the pressures that each of the constituent gases
would have if each alone occupied the same volume. This was established using gases
at relatively low pressures where they behave close to ideally, and in fact it is only
strictly true for mixtures of ideal gases, which are also then ideal gases. Thus for each
constituent gas 1,2,3, etc.

and for the gas mixture

Thus

or,

P\, PI, etc. are called the partial pressures of the solution constituents and equa-
tions (11.22) are now normally used as the definition of partial pressure even though
in real, non-ideal solutions they give a quantity that is not equivalent to the original
meaning, i.e., the pressure a gas would exert if it alone occupied the total volume.
If a membrane were available which was permeable to only one of the gases in the
system (Figure 11.2b) so that we could measure the pressure in a pure gas that is at
equilibrium through the membrane with the same gas in the mixture, we would find
that for ideal gases the pressure on the pure gas would be the same as the partial
pressure defined above. If a membrane were available for each of the ideal gas solu-
tion constituents, the total of the pure gas pressures would equal the pressure on the



FIG. 11.2. (a) One mole of an ideal gas at 0°C has a pressure of 22.7 bars, (b) An ideal gas
solution. 0.7 moles of gas A has a partial pressure of 0.7 x 22.7 = 15.9 bars. 0.3 moles of gas
B has a partial pressure of 0.3 x 22.7 = 6.8 bars. The partial pressure of each gas is the same as
the pressure on the pure gas at equilibrium with the solution through a membrane permeable
only to that gas. (c) A non-ideal gas solution (PV ^ nRT). The partial pressures are denned
as 0.7 x 18 = 12.6 and 0.3 x 18 = 5.4, but these pressures are not observed on the pure gases
at equilibrium with the solution through the membranes, and the membrane pressures do not
add up to the total pressure.
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FIG. 11.3. The original conception of Henry's law. Gas i is in contact with a liquid of another
composition, and dissolves in it. Xi is directly proportional to Pi. The vapor pressure of the
liquid contributes a small partial pressure in the gas phase, which is ignored.

solution. In a non-ideal solution the pressures on the pure gases would not add up to
the total pressure, nor would they equal the pressure each gas would have if it alone
occupied the total volume (Figure 11.2c).

11.9.2. Henry's Law

Another very early discovery (Henry, 1803) involved the solubility of gases in liquids.
It was found that the amount of gas that dissolved in a liquid in contact with it was
directly proportional to the pressure on the gas (Figure 11.3). Thus

where Pj is the pressure on the gas i, Xi is the mole fraction of i in the liquid, and
hi is a constant (the Henry's Law constant) which varies with temperature and with
the nature of the gas i and the solvent. As shown in Figure 11.3 the slope of the
solubility curve is a constant at sufficiently low values of Pj and Xi but is usually
found to deviate to higher or lower values as P,; and Xi get larger. In this experimental
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situation, it will be noted that the total pressure is not strictly speaking P;, because
some of the liquid solvent will evaporate into gas i, so that the piston is supported
partly by gas i and partly by vaporized liquid. In other words there are always at
least two partial pressures in a gas in contact with a liquid. However, if the vapor
pressure of the liquid is small compared to the gas pressure, it can be neglected, and
the pressure on the piston equated with Pi. This was the case in the early experiments
of Henry and others.

11.9.3. Raoult'sLaw

The liquid-vapor equilibrium situation with two or more components was not fully
investigated until much later (Raoult, 1887). After a great deal of experimental work,
which extended well into the 1900s, the relationship between vapor partial pressures
and liquid compositions was well established, and forms what is now the best avenue
of introduction to the understanding of activities.

The reader at this stage might well wonder why, if gas solutions are fairly simply
treated by the ideal gas law and fugacities, and the next step is to understand liquid and
solid solutions, we start now considering liquid-vapor systems. Why not just liquid
systems? The reason is that having an understanding of the vapor phase, which at low
pressures we can treat as an ideal gas mixture, we can use it as a tool to investigate
the liquid phase by equilibrating the two phases. Thus by measuring the composition
of the vapor phase and calculating the partial pressures of the components, we are in
fact measuring the escaping tendencies (fugacities) of the liquid components. This
technique of investigating a complex system, which you don't understand, by equili-
brating it with a simpler system, which you do understand, is now a classic technique
that has found wide use in chemical and geochemical experimentation.

This work was done by mixing two or more liquid components in known propor-
tions, then equilibrating the liquid with its own vapor and measuring the composition
of the vapor. Because the total vapor pressure (also measured) was relatively low
(generally well below one atmosphere) the vapor behaved as an ideal gas solution,
and the partial pressures of the components could be calculated from their composi-
tions using Dalton's Law. Of the many systems investigated, a very few were found
to exhibit a particularly simple relationship between the vapor partial pressures and
the liquid composition. In these systems, for all compositions, the partial pressures
of the gas constituents were found to be a linear function of their mole fractions in
the liquid. That is, in the binary system A-B,

where P° is the vapor pressure of component i in equilibrium with pure component
i. A pressure-mole fraction of liquid diagram can therefore be drawn with straight
lines as in Figure 11.4b. The experimental situation for one particular composition is
shown in Figure 11.4a. The relationship between liquid and vapor compositions that
results from these relations is shown in Figure 11.4c. For example, a liquid having



FIG. 11.4. (a) Ideal liquid solution. Pure component A has a vapor pressure of 10 (units are
not important—could be millibars). Pure component B has a vapor pressure of 5. The vapor
phase above the liquid consists only of the same components, A and B. The pressures on the
pure gases through the hypothetical membranes would equal the partial pressures, (b) Observed
total pressure and calculated partial pressures in the vapor phase. Pressures observed in Figure
11.4(a) are indicated, (c) Compositions of coexisting liquid and vapor phases, (d) Normalized
total pressures and partial pressures. Figure 11.4(b) is converted to this diagram by dividing
the partial pressures of each gas by the vapor pressure of the pure gas. The mole fraction axis
can now refer to the vapor or to the liquid.
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XA = 0.7andXB = 0.3 will have PA = 7andPB = 1.5, a total pressure PA+PB = 8.5,
and Xlapor = 7/8.5 = 0.82 and X™por = 1.5/8.5 = 0.18.

As mentioned earlier, the only way these simple relationships can hold is for the
intermolecular forces between A-A, B-B and A-B to be identical, so that a molecule
A behaves in the same way whether it is surrounded mostly by A or mostly by B.
Solutions in which this happens are called ideal solutions , and the relation

is a form of Raoult's Law. The "ideal" in this term of course refers to way in which
the solution components interact with each other, not to any of the pure components.
"Ideal" in fact means "ideal mixing", as noted before.

To facilitate discussions to follow, we should emphasize that the normal Raoult's
law diagram (11.4b) shows vapor partial pressures plotted against liquid composi-
tions. Obviously we cannot substitute x^apor for X^qui in this diagram as they are
not equal. Their relationship is shown in Figure 11 Ac. However by "normalizing"
the vapor partial pressures to the vapor pressures of the pure components, we obtain
a diagram (11.4d) in which we can use X%quid or X™por.

There are not many systems that even approximately follow Raoult's Law. Even
those systems that do approximately follow Raoult's Law such as benzene-toluene
and ethylene bromide-propylene bromide will be found to have small deviations if
very accurate measurements are made. Raoult's Law is an ideal concept that real
systems are compared to.

Most liquid systems in fact deviate considerably from Raoult's Law behavior
because the A-A, B-B and A-B forces are all quite different. In these cases (Figure
11.5) the deviations can be in either a positive or a negative sense, but a region of
particular interest is the dilute solution region at each side of the diagram. In dilute
solutions, i.e., those at low values of the solute mole fraction, it had earlier been
discovered that the (partial) pressure of a gas was proportional to its mole fraction
in solution (Henry's Law, Figure 11.3), so that it was not surprising to find that in
most cases the partial pressure of the component present in smaller quantity was a
linear function of its mole fraction for some range of concentration. The constant of
proportionality (the Henry's Law constant) was different in every case, and of course
different from that required for Raoult's Law to hold (in which case the Henry's
Law constant hi = P°). It can be shown that for solutions in which the solutes obey
Henry's Law, the solvents obey Raoult's Law. Solutions of this kind in which all
solutes obey Henry's Law (another ideal concept) are unfortunately also called Ideal
Solutions, although they are obviously different from solutions in which solutes and
solvents obey Raoult's Law, and we must be explicit in each case as to whether we
refer to "Raoultian" or "Henryan" ideality.

11.9.4. The Lewis Fugacity Rule

A useful and widely-used variation of Raoult's Law is obtained by expressing it in
terms of fugacities instead of pressures. Thus in some homogeneous (one phase)
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FIG. 11.5.. ivi. ii~,. Total vapor pressures and partial pressures in liquid-vapor systems showing (a)
negative deviation and (b) positive deviation from Raoult's law.

systems it is found that

where /j and fPure are the fugacity of i in the mixture having mole fraction Xi, and
the fugacity of pure i respectively. A binary gas system in which both components
obey this relationship is shown in Figure 11.6.

As shown by Prausnitz (1969), this relation follows from "Amagat's Rule," which
describes the mixing situation where the volume of the solution is the same as the
total volume of the individual pure components. In this case the AV of mixing is
zero, and the partial molar volume V$ is equal to the molar volume of pure i, yPure

t

as discussed in Chapter 9. This can be demonstrated by first rewriting equation (11.9)
for a pure component i as
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FIG. 11.6. A binary system (solution) that obeys the Lewis Fugacity Rule. The solution can
be liquid, solid, gas, or supercritical fluid, although generally this rule is used for the latter two.

and the equivalent equation for component i in a gas solution

Comparing (11.27) and (11.28) we see that if Vi = Vt
pure, then

and

This relationship, the Lewis Fugacity Rule, is a kind of variation of Dalton's Law,
and has been widely used to estimate fugacities in gas mixtures (Prausnitz, 1969).

An interesting geological example of this type of solution was demonstrated by
Barnes and Ernst (1964) who showed that NaOH in water at 2 Kb and high temper-
atures follows the Lewis fugacity rule to a rough approximation. Neither NaOH nor
H2O is remotely like an ideal gas under these conditions, but the largely undissoci-
ated NaOH dipole and the water dipole have sufficiently little interaction that their
volumes change little on mixing. It is likely that many solutes behave approximately
in this way at these pressures and temperatures.

Although the Lewis Fugacity Rule is generally used for gas or supercritical so-
lutions, it is particularly interesting to see what results when a condensed phase in
equilibrium with such a phase is considered, just as we first considered Dalton's Law
and then a condensed phase in equilibrium with a solution obeying Dalton's Law.

11.9.5. Ideal Mixing and Activity

Comparison of equations (11.19) and (11.26) shows that for solutions that obey the
Lewis Fugacity Rule
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FIG. 11.7. Normalized fugacities in a binary system obeying the Lewis Fugacity Rule. Figure
11.6 is converted to this diagram by dividing the fugacity of each component by the fugacity
of the pure component. The mole fraction axis can now be used for the original system or for
a phase equilibrated with it.

as long as we let f° - f?ure which is to say that we let pure i at the temperature of
the system be the reference state for i, which is the usual case. This is illustrated in
Figure 11.7. Combining this with (11.20) we get

This "normalized" fugacity relationship, where each fugacity is divided by the fu-
gacity of the pure component, can now be used for condensed phases in equilibrium
with a gas, just as we saw when considering Raoult's Law (Figure 11.4d), and in fact
equation (11.29) is considered another form of Raoult's law. Perhaps surprisingly,
a number of crystalline solution systems can be adequately described by equation
(11.29); that is, they exhibit ideal mixing. Figure 11.8 shows away of visualizing this
situation.1

Similarly, crystalline solutions that show deviations from Raoult's Law (Figure
11.9) will also show adherence to Henry's Law in the dilute solution region where
the measured activities are proportional to but not equal to the mole fraction.

To summarize, the laws of Raoult and Henry, originally established for liquid-
vapor and liquid-gas systems, give rise to useful generalities for all solutions, gas,
liquid, or solid, when restated in terms of fugacities and activities. If fugacities are
available, the activity concept is unnecessary. Activity becomes useful in systems
where fugacities are unknown, as it can be measured in other ways. Nevertheless,

1A crystalline solution in which a; = Xf can be considered to be following Raoult's Law in its original
sense, and not merely the Lewis fugacity rule, because the vapor pressures of solids are so low that the
partial pressures of constituents in the vapor phase would undoubtedly equal their fugacities. Where the
vapor phase consists entirely of particles having the same composition as the condensed phase (with no
complications due to polymerization, dissociation), the fugacity of the condensed phase would equal the
vapor pressure itself. This is the situation assumed in Figure 11.8 for pure crystalline A and B.



FIG. 11.8. Ideal crystalline solution in equilibrium with its own vapor. Pure crystal A has a
fugacity (assumed equal to its vapor pressure) of 10 • 10~'° (units are not important, could be
bars), and pure crystal B has a fugacity of 5 • 10"10. The diagram is therefore similar in all
respects to Figure 11,4a.

FIG. 11.9. Activities in a non-ideal crystalline binary solution. Activities become proportional
to mole fraction in the dilute region, in conformity with Henry's law.
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however it is measured or calculated, it is useful to remember that it always equals a
fugacity ratio, because this helps in understanding the relationship between activities,
free energy changes and standard states, to be discussed in the next chapter.

11.10. ACTIVITY COEFFICIENTS

The real usefulness of the ideal solution or ideal mixing concept is that it serves as a
model with which real solutions are compared. Solute activities are compared to the
activities they would have if the solution were ideal, and this ratio is called an activity
coefficient . Care is required in using this number, however, because the two types of
ideal solution behavior described above give rise to two types of activity coefficients
(still more types will be introduced later).

An activity coefficient of a constituent in a system is a number (always dimen-
sionless) which when multiplied by the ideal activity (the concentration) gives the
real activity. To illustrate this let's examine a system of the type in Figure 11.9 in
more detail (Figure 11.10). In this binary system, B shows positive deviation from
Raoultian behavior, so the Raoultian activity coefficient will be greater than one.
Solutes that obey Raoult's Law have a,; = Xj,, so the Raoultian activity coefficient
7/j is defined as

In system A-B in Figure 11.10, when X& = 0.3, <ZB = 0.5, so

Note that the activity of B (0.5) is measured on the scale defined by Raoultian behavior,
on the left-hand axis.

On the other hand B shows negative deviation from Henry's Law, and will there-
fore have a Henryan activity coefficient less than one. A Henryan scale of activities
is created by extending the Henry's Law slope defined by dilute solutions of B in A
right over to the pure B axis. This intercept is then called unit activity, and this defines
a new scale of activities shown on the right-hand axis. This new Henryan activity
scale also has Oj = Xi for ideal systems, but the activity scale is different, so that
now the real or measured activity at XB = 0.3 is 0.2, measured on the scale defined
by Henryan behavior, the right-hand axis. Thus the Henryan activity coefficient, 7//,
defined as

is in this case
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FIG. 11.10. The behavior of component B of Figure 11.9 in more detail, showing the differ-
ence between the Raoultian and Henryan activity scales.

If pure B has a fugacity of 5 • 10 10 bars, as shown in Figure 11.8, this defines
for Raoultian behavior. Thus on the Raoultian scale

so that at XB = 0.3
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However on the Henryan scale, which is 2.5 times longer than the Raoultian scale,
we have a hypothetical fugacity for pure B of 2.5 x 5 • 10~10 bars, so that on the
Henryan scale

so that

as before.
Obviously we could choose any point on the right-hand axis to call unit activity, to

fix our activity scale, and the activities and activity coefficients will vary accordingly.
Fugacities are however independent of these choices, and our problems would be
greatly simplified if they were always measurable. What we have been doing, in
moving the point we refer to as unit activity up and down the right-hand axis, is in
fact changing the reference state for the activity term. We have more to say about this
in Chapter 12.

A major difference between the two kinds of activity coefficients which should be
noted is that 7^ — > 1 as X — > 1, but 7^ — > 1 as X -> 0. Thus ^H is generally more
useful for constituents having low mole fractions, that is, solutes in dilute solutions.

11.10.1. A Real Example

Somewhat more important than the system A-B in geochemistry is the system COi-
H2O. At high temperatures and pressures these components are completely miscible,
and form a solution that shows a small positive deviation from Raoult's Law. Bowers
and Helgeson (1983) present calculated fugacities of both H2O and CC>2 at a number
of temperatures and pressures, from which we have constructed Figure 11.11. The
data points are calculated from the data in Bowers and Helgeson (1983), and are
shown in Table 11.1. The lines are fitted to the data points by the Margules equations,
discussed in Chapter 15. The Henry's Law slope is inconveniently steep in this case,
so we do not show its intersection with the pure CC>2 axis. Very commonly this is not
required anyway, because in aqueous solution work, the region of interest is the lower
left-hand corner, i.e., the dilute-solution region. This topic requires more discussion,
which we present in the next chapter.



FIG. 11.11. Raoultian activities of H2O and CO2 in the binary solution at 600°Cand 2 kb. Data
from Bowers and Helgeson (1983). The curved lines are fit to the data with Margules equations,
discussed in Chapter 15. The inset refers to a discussion of standard states in Chapter 12.

Table 11.1 Fugacities and activities of H2O and CO2 in solution at 600° C, 2kb. Fugacities
from Bowers and Helgeson (1983).

XC02

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pco2
bars

0.0
200
400
600
800

1000
1200
1400
1600
1800
2000

7/,co2

5.026
3.371
2.664
2.303
2.097
1.973
1.896
1.848
1.820
1.805
1.801

/C02

bars

0.0
674.2

1065.6
1381.8
1677.6
1973.0
2275.2
2587.2
2912.0
3249.0
3602.0

«C02

0.0
0.1872
0.2958
0.3836
0.4657
0.5478
0.6316
0.7183
0.8084
0.9020
1.0000

7fl,CO2

2.791
1.872
1.479
1.279
1.164
1.096
1.053
1.026
1.011
1.002
1.000

7/,H2O

0.474
0.483
0.503
0.528
0.555
0.583
0.612
0.641
0.671
0.702
0.732

/H2O
bars

948.0
869.4
804.8
739.2
666.0
583.0
489.6
384.6
268.4
140.4

0.0

aH2o

1.0
0.917
0.849
0.780
0.703
0.616
0.516
0.406
0.283
0.148
0.000

7fl,H2O

1.0
1.019
1.061
1.114
1.171
1.230
1.291
1.352
1.416
1.481
1.544
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PROBLEM

1. In a solution consisting of only water and COa at T and 2000 bars., /H2o is
527 bars, /Co2 is 333 bars, and Xn2o is 0.5. (a). Show that neither component
is an ideal gas. (b). If they are mixing ideally, what is the fugacity of pure
H2O and CO2 at T, P?



12
STANDARD STATES

Thermodynamics is not difficult if you can just keep track of what it is you are talking
about. W. F. Giauque, quoted in Bent (1972).

12.1. USEFULNESS OF THE ACTIVITY

At this point we have introduced the activity as a ratio of fugacities (Chapter 11).
The fugacity of a constituent, in turn, we saw was a quantity very much like a vapor
pressure or partial pressure, which is directly linked to the Gibbs free energy of that
constituent, such that a ratio of fugacities leads directly to a difference in free energies.
The fugacity was introduced as a means of dealing with gases and gaseous solutions,
and it is measured by measuring gas volumes or densities. Nevertheless, there is
nothing restricting its use to gaseous constituents, and we suggested that it is very
useful to regard the fugacity as a state variable; as a property of any constituent of
any system, solid, liquid, or gas, whether equilibrated with a gas or not, and whether
measurable or not.

This leads to the easiest approach to understanding activities. The activity of
a constituent is the ratio of the fugacity of that constituent to its fugacity in some
other state, which we called a reference state. We then showed through consideration
of the Lewis Fugacity Rule, which is an extension of Dalton's Law, that for ideal
solutions of condensed phases, the activity of a constituent equals its mole fraction,
if the reference state is the pure constituent at the same P and T. Deviations from
ideal behaviour are then conveniently handled by introducing Henryan and Raoultian
activity coefficients.

The utility of these relations would be quite sufficient for retaining the activity in
our collection of thermodynamic parameters, but in fact the activity can be applied
to a much wider range of conditions, simply by varying the choice of reference state.
We now examine the various possible choices of this reference state, and the resulting
equations and applications.

In the most general sense, the fugacity and activity concepts satisfy the need
to relate system compositions to free energy changes. That a single parameter, the
activity, can do this for essentially any system is a tribute to its tremendous versatility.

12.2. ACTIVITIES AND STANDARD STATES

In deriving equation (11.18),

we said simply that superscript ° designated a reference state, the nature of which
would later be examined in some detail. It is now time to do this.

269
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The only mathematical restriction on fj,° and /? in equation (12.1) is that they
both refer to the same integration limit, or in physical terms, that they refer to the
same equilibrium state. This state has been referred to in various places thus far as
a reference state, which it is. We now consider it in more detail, with a more exact
definition, and we refer to this more precise concept as a standard state. The exact
nature of this state is completely a matter of definition, although a few definitions have
themselves become "standard" because of their utility. We have used it in discussions
of thermodynamic properties such as G°, H°, etc. to signify that the substance is in
its pure state, and we have seen in the two conventions discussed in Chapter 7 that the
pressure and temperature of the standard state could be different in different cases.
With the introduction of the activity concept, standard states take on added importance
because of their use in a wide variety of solutions, temperatures, and pressures, both
fixed and variable, and we must now pay more attention to their definition than we
have done so far.

Standard states are simply a special sort of reference state for physical properties,
made necessary, as we have mentioned several times, by our lack of knowledge of
absolute values for the properties U, G, H, and A. Standard states are therefore
systems or states of matter under specified conditions. The definition must be suffi-
ciently complete as to determine the thermodynamic parameters of the substance, and
therefore must have at least four attributes: 1. temperature 2. pressure 3. composition
4. state of aggregation (solid polymorph, liquid, gas, ideal gas, ideal solution, etc.).
Thus "25°C, 1 bar" is not a standard state. The question is, what system at 25°C,
Ibar?.

Because the goal of the definition is to specify the thermodynamic parameters of
the substance, it frequently happens that the standard state chosen is a hypothetical,
perhaps physically unrealizable state, because the thermodynamic parameters of such
a state are often either well-known or determinable. The importance of these states lies
in our knowing their properties, not in being able to actually achieve them. Certain
standard states are so commonly used that one need not always elaborate on the
definition, i.e., it may be obvious from the context. In other cases it is necessary to be
quite specific, and it might even be necessary to specify other factors such as grain
size, defect structure, degree of disorder, amount of strain, etc., in order to sufficiently
define the system being used as a standard state.

Standard states are either stated or implied in any quantitative discussion or tab-
ulation of free energies, enthalpies, internal energies, or activities, but the following
discussion will be based on the use of standard states for activities because of the
much wider range of possibilities encountered. Standard states for tabulated free en-
ergies, etc. generally do not get any more complicated than the cases already dealt
with in Chapter 7.

In the following discussion of standard states we must distinguish between the
properties of the standard state (T°, P°, m°, etc.) and those of the state of interest
(i.e., the equilibrium state in which the activity of some component or species is of
interest to us; T, P, m, etc.) because the two slates are often completely different.
We will also refer to the state of interest as "the system."
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12.3. VARIABLE TEMPERATURE STANDARD STATES

The first thing to note about the standard state as used with activities is that the
standard state and the state of interest are virtually always at the same temperature
(T = T°). Because we are often interested in a series of equilibrium states at different
temperatures, we therefore have a corresponding series of standard states, one for
each temperature. This can be regarded rather as a single standard state having a
variable temperature.

The reason why T must generally equal T° can be seen by considering the inte-
gration of

or, for solutions,

which, if the lower limit of integration is state ° and the upper limit is unsuperscripted,
gives

or

During integration, T is held constant, so that /j and f° necessarily refer to states
at the same temperature. As temperature is often variable in a set of experimental or
theoretical results, this naturally gives rise to a variable temperature standard state.
This means that the comparison being made (in this case between /z of i in some state
of interest, and \JL of i in its standard state) is always between two states having the
same T.

But not only are fa and f° necessarily at the same temperature, we must also note
that G° (or /u°) and f° are independent of the system pressure. That is to say, they
depend on P° but not on P. This can be seen by integrating (12.2) indefinitely rather
than between limits as we have done. This gives

where, by comparison with (12.1), we see that both [i° and f° are constants, and
therefore independent of parameters that are allowed to vary during integration, such
as the system pressure (P). Once the standard state is chosen, it is a function only of the
value of T, held constant during the integration. In physical terms, the value of f° and
of p°, which are state variables of the standard state, depend on the temperature (T° ~
T), pressure (-P0), and composition of the standard state, but they are independent
of P, the pressure in other states of interest to us, which may be compared to the
standard state.

It might be pointed out too, that there is no logical necessity to be restricted to
using equation (12.1) and hence the variable temperature standard state. That is, if
for some reason you preferred a fixed temperature standard state, you could modify
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equation (12.1) to include a term accounting for the variation of //? with temperature.
To the best of our knowledge this has never been done, because it adds to the difficulty
with no great benefit.

12.3.1. Standard States Using Fugacities

We can also see from the same equation why it often proves convenient to choose a
standard state for i, which is not only not its most stable state, but one that is extremely
hypothetical. If f° is set to 1.0, equation (12.1) becomes

which is a very convenient form of the equation, provided that fugacities of i are
available or measurable. The physical significance of setting the denominator to 1.0
is that constituent i is said to be in a state in which the fugacity is 1.0 at all temperatures.
The only substance for which this is true is an ideal gas at P = 1, so equation (12.3)
implies the choice of "ideal gaseous i at one bar and temperature T" as the standard
state. This perhaps seems reasonable enough for a gas, but it can be used for any
substance including solids and liquids. The only reason it is not universally used is
that fugacities (/j) are not known for many constituents of interest, especially solids1

and dilute solutes. The idea of using "ideal gas i" as a standard state for solid i or
liquid i or a dilute solution of i takes some getting used to, but there is no logical
reason not to do it. There are practical reasons of course, as noted.

To put this in other terms, if you have the fugacity of some substance i in some
system, then RT In j\ is the difference in Gibbs free energy per mole of i in the system
at T and i as an ideal gas at T. Whether i could ever come close to existing as an
ideal gas is irrelevant. Other examples of hypothetical standard states are discussed
below.

12.4. VARIABLE PRESSURE STANDARD STATES

12.4.1. Standard States Based on Raoult's Law

To see how standard states having variable pressure as well as variable temperature
arise, we first go back to equation (12.1), which for a pure ideal gaseous component
1 having a standard state of "ideal gas at T and 1 bar" (so that f° = 1 and /,; = P)
becomes

or

where V\ is the molar volume of component 1. Now

1 Interest in the condensation of solids from the solar nebula is rapidly making the fugacity of solids a
more relevant topic.
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where V is the total volume occupied by n\ moles of component 1, so

If into this volume we now introduce n-i moles of ideal gaseous component 2, we
have seen that this mixture is also an ideal gas, so that now

Substituting for V in equation (12.7) we have

or

where

Note that in changing from a pure substance (equation (12.7)) to a solution (equation
(12.9)), even though an ideal solution, we change from G\ to HI- We still want to
express the Gibbs free energy per mole of component 1 , but in solutions this can only
be done with fj,.

Equation (12.10) can also be used for non-ideal gases as well as for liquid and
solid solutions by introducing the Raoultian activity coefficient, thus

or

or in general,

or, even more generally,

which of course becomes

in the case of the ideal solution.
With the change in form of our equation from (12.1) to (12.14) we should note

a corresponding change in the standard state normally used. Because (12.14) can be
used for solids and liquids as well as gases, it is clearly more convenient to use as
standard state the pure phase (X± = I;TR = 1) at the temperature and pressure of
interest. In this case a pure phase will have an activity of one at all temperatures and
pressures, which is very convenient in many calculations.

Comparing equations (12.14) and (12.1) we see a distinct similarity, but one
important difference. When Oj is used in the form (fi/f°), the standard state free
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energy is G° (or /^°) and is independent of P, the pressure on the system. When a^
is converted to Xi , the standard state free energy is G* , which is a function of P (as
well as T) as shown by equation (12.11).

Equations (12.10) and (12.14) are examples of expressions that use a variable
pressure standard state. Although it is theoretically possible to keep P° fixed and to
simply add (RT In P) to the (n — n°) term for each different P considered, in practice
one usually considers that the pressure of the standard state ( P°) and the pressure on
the system or state of interest (P) are the same, so that /j,° is a function of the system
pressure.

12.4.2. Standard States Based on Henry's Law

Because the activities of solutes in dilute solutions can be more closely approximated
with Henry's Law than with Raoult's Law, they are traditionally treated separately
and use standard states different than those we have so far encountered. There are
two variations of usage here, both of the variable pressure type, one required when
using mole fractions, and another when using molalities.

Mole Fractions

We derived equation (12.12) from equation (12.10) simply by saying that 7^ could
be introduced to take care of deviations from Raoult's Law. Deviations from Henry's
Law are similarly accounted for by introducing 7^ instead of 7/2, thus

or again, more generally,

Just as we then switched to a standard state having Xi = 1 and 7# = 1, (the
pure phase at T and P), we switch here to one having Xi = 1 and 7^ = 1. But
7// equals 1 only at infinite dilution of i, so that this standard state is necessarily
hypothetical. It is a state, at the T and P of the system of interest, in which pure
i has the same properties it has at infinite dilution in the system. On an activity-
mole fraction diagram it is represented by the point of intersection of the Henry's
Law tangent with the X^ = 1 axis. Two possible relationships between the resulting
Henryan activities with Raoultian activities are shown in Figures 12.1 and 12.2. This
standard state is commonly used in metallurgical and ceramic studies involving solid
and liquid solutions.

Molalities

Studies of aqueous solutes traditionally use molalities, which implies use of still
another standard state. To develop this subject we will resort to using Euler's theorem,
which makes the derivation less than completely intuitive, but basically we are just
looking for the relationship between fj, and rn, the solute molality, in the dilute solution
region where Henry's Law is obeyed.
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FIG. 12.1. One possible relationship between Henryan and Raoultian activities (essentially
the same as Figure 11.10).

Partial differentiation of equation (12. 12) with respect to the number of moles of
the second component, n^, gives

We wish to consider first solutions in which the solute obeys Henry's Law, and it
can be shown that in these solutions the solvent must obey Raoult's Law, i.e., JR = I .
If we also assume that n2 is so much smaller than n\ that it may be neglected in the
(ni + n2) term, then

Now since the chemical potential of the solute (//2> is homogeneous in the zeroth
degree in the masses of the components, and hence in n\, n2, we have by Euler's
theorem
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FIG. 12.2. Another possible relationship between Henryan and Raoultian activities.

Thus

or

If we let

where MI is the gram formula weight of component 1 , n2 becomes the molality of
component 2, which we call simply m. Thus

Integrating between two arbitrarily chosen molalities m' and m", we have
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for solutions in which our assumptions are valid. As ni gets larger these assumptions
are no longer valid, and again a correction term, the Henry's Law activity coefficient,
is applied to the concentration terms, giving us

This equation is analogous to equation (11.17), and we can proceed in exactly the
same way as we did in that case, that is, by defining the state represented by the
denominator as the standard state, thus

In this equation, n° is again a function of both the temperature and the pressure on
the state of interest (T = T° , P = P°) because only m was allowed to vary during
the integration. This means that for every change in pressure or temperature of the
state of interest, there is a different standard state. (We will not retain the special
superscript (*) introduced before to indicate that the standard state is a function of
pressure as well as temperature, but will use ° for all standard states, whatever their
definition.)

12.4.3. Activities Independent of Units for a Given Standard State

Let's now recall equations (12.1), (12.15), (12.17) and (12.19):

Now recall that fa is a state variable with a fixed absolute value for any system
at equilibrium. The same is true of course for /z°, except that the state is arbitrarily
chosen and sometimes does not physically exist. Nevertheless, when the standard
state is chosen, /n° has a fixed value. It follows that for a given state of interest and a
given standard state, ( fa — /u°) is a fixed quantity and therefore

In other words we have not introduced new activity terms, just redefined the old one in
units more convenient for use in different situations. The reason that the equivalence
noted in (12.20) is not cited more commonly is that usually, on changing from one
type of system to another we do not retain the same standard state, but choose a
different one. For example we don't usually use the ideal gas as a standard state for an
aqueous solute, but if we did, (12.20) would hold. We pursue this idea a little further
below, with the help of Figures 12.3 and 12.4.
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FIG. 12.3. Hypothetical fugacities of solute B dissolved in water, as a function of molality
ofB.

1 2.4.4. The Ideal One Molal Standard State

We have already seen that in the fugacity definition of activity (equation (12.1)), /°
can quite commonly take on a wide range of values. It is often defined as 1.0, but is
sometimes defined as the fugacity of a pure component (giving that component when
pure an activity of 1.0 at all pressures and temperatures). We must now consider
possible values for (7# ra)°. The most obvious thing to do turns out to be not only the
best thing but (almost) the only thing to do. That is, it would seem that setting (7^771)°
equal to 1.0 would simplify things, just as it did in the fugacity definition of activity.
This still leaves the question of the individual values of JH and m, but we can start by
supposing them both to be 1 .0. The result is the "hypothetical ideal one molal" standard
state ("ideal" with respect to Henry's Law, not Raoult's Law, being understood), and
the relation

The physical meaning of this choice
11.10. There we have a solute B that
using our "Raoultian" activity scale
system from a molality point of view
H2O/kg), so that n\ = 55.51. At X
23.8, far beyond the concentration at
in water. In other words we cannot

can be illustrated by returning first to Figure
has an activity of 0.5 at a mole fraction of 0.3,
based on fugacities. We can look at the same
by letting component A be water (55.51 moles
^ = 0.3, B then has a molality (WB) of about
which most solid substances become saturated
simply let Figure 11.10 represent an aqueous
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FIG. 12.4. The same system as Figure 12.2, with activities referred to the ideal one molal
standard state.

solution. Rather few solids show complete miscibility with water, and those mostly
at high pressures and temperatures, so that the mole fraction scale is just not suitable
for aqueous solutions.

To discuss the molality scale standard state therefore we move to Figure 12.3,
which shows the activity of B at various concentrations in water up to about one molal.
We will attempt to show the relationship between the fugacity and molality activity
scales by assuming that we not only know the fugacity of pure B (f^ure = 5 • 10~10),
as in Figure 11.8, but that we have been able to measure the fugacity of B in the
aqueous solutions of B. We have found that the fugacity of B is directly proportional
to its molality (it obeys Henry's Law) up to about 0.2 molal, with a slope less than the
Raoult's Law slope (the fugacities predicted by Raoult's Law are of course given by
^B/fi"re)- Extrapolation of the Henry's Law slope shows that if B continued to otjey
Henry's Law up to one molal, it would have a fugacity of 3 • 10^12 bars, whereas
its measured fugacity at one molal is 4.5 • 10~~'2 bars and its fugacity if it obeyed
Raoult's Law would be 9 • 10~12 bars. If we now ask the question "what is the activity
of B at a concentration of 0.5 molal?" we can answer in various ways. The measured
fugacity of B at 0.5 molal is 2 • 10~12 bars so the activity of B using the ideal one
molal standard state (recalling that we mean Henryan ideality) is
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Changing "ideal" to mean "Raoultian" ideality, the ideal one molal standard state
would give

Using a standard state of pure crystalline B we would get

Using a standard state of ideal gaseous B we would get

Obviously there are many possible choices if one knows the fugacities involved,
but of course if we did know the fugacities, we would not use activities and their
bothersome standard states at all, we would use the fugacities themselves.

The real situation is of course that in this type of solution no fugacity data are
available for the solute, but activity coefficients indicating the deviation from Henry's
Law can be either calculated or measured, and they allow us to calculate exactly the
same activities and hence (^i — n°) values using the ideal one molal standard state. For
example at 0.5 and 1.0 molal the activity coefficient (JH) is 1.33 and 1.5 respectively,
so the activities of B using the ideal one molal standard state (a^ = 7/77713) are 0.67
(compare equation (12.22)) and 1.5 respectively. These values are plotted in Figure
12.4, on a scale that gives the standard state an activity (7^ • m)° of 1.0 rather than
a fugacity of 3 • 10"12 bars.

Figure 12.4 corresponds to reality. The lengthy introduction by way of the fictitious
Figure 12.3 is simply to emphasize that activities using the ideal one molal standard
state are really no different from any other activities. They can be thought of as
fugacity ratios, and they are simply another of the wide range of choices available for
standard states.

12.4.5. Mole Fraction—Molality Conversion for Henryan Activity Coefficients

Because of the fact that molality is not exactly directly proportional to mole fraction
except in the limit of infinite dilution, a straight line on an activity-mole fraction dia-
gram (e.g. Figures 12.1, 12.2) will be slightly curved on an activity-molality diagram
(e.g. Figures 12.3, 12.4). Therefore a solution that obeys Henry's Law (fugacity or
activity exactly proportional to mole fraction) will appear to be slightly non-ideal
when plotted on a molal basis. In other words, Henryan activity coefficients based
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on a molal concentration scale will not exactly equal Henryan coefficients based on
a mole fraction scale. We avoided this problem in going from equation (12.18) to
(12.19) by simply assuming that the 7# introduced in connection with mole fractions
in (12.17) would be unchanged in the new situation.

The relationship between Henryan coefficients measured on the two concentration
scales can be derived as follows. Consider an aqueous solute having a mole fraction
X and a molality m. Because the chemical potential of this solute is the same whether
we measure concentrations in mole fractions or molalities, we write

where p,°x is the chemical potential of the solute described above in connection
with (12.17), i.e., pure solute having the properties of infinitely dilute solute, fj,°n is
the chemical potential of the solute in the ideal one molal solution, and 7# is now
recognized as having two variants denoted by the subscripts X and m. Thus

and

As m — > 0, both 7#x and 7//m — > 1, so (rjHmrri)/(lHxX) — > (m/X). Now the
mole fraction of an aqueous solute measured in molal units is by definition

where 55.51 = 1000/18.0153, 18.0153 being the molecular weight of water. So

and

Therefore

Substituting this in (12.26), we have

but m/X = m +55.51, so m/55.5lX =• 1 +m/55.51 and
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or

where the conversion factor is

For all but large values of m, the difference between ^HX and 7Hm is quite small,
and the conversion is often neglected. Nevertheless activity coefficients based on
mole fractions are generally more coherent with the rest of thermodynamics, and are
to be preferred in situations where the choice makes any difference.

12.4.6. Why One Molal? Why Ideal?

Before leaving this subject there is one final detail to be considered. Having arrived
at a molality-based definition of activity (equation (12.20)), we chose a standard state
such as to make the denominator disappear, i.e. (7^771)° = 1-0, by defining both 7^
and m as 1 .0. Might there be situations where one or other of these could usefully
have some other value? This could include cases where the product was still 1.0 as
well as cases where the product was some other value. As far as we are aware, no
such cases have been presented in the literature, and it is indeed difficult to see how
they might arise. The only exception seems to be that occasionally cases involving
the determination of the stability constants of aqueous complexes in solutions of
constant ionic strength (used to keep activity coefficients constant) are treated by
using a standard state of 1 molal in the solute of interest, but with an ionic strength
chosen such that activity coefficients cancel out. This could be called a non-ideal one
molal standard state.

The main reason that the only really useful choice is to have 7# equal to 1.0 in
the standard state is that values of 7/7 in real solutions approach 1.0 in very dilute
solutions, so that many properties of ideal solutions can be estimated by measuring
them as a function of concentration, and then extrapolating to zero concentration
to get their value in an ideal solution, i.e. where jn = 1.0. These are then called
"standard state values" of partial molar volume, or partial molar enthalpy, etc. There
is no way of deriving properties of solutions with other values of 7^ . The choice of m
as 1.0 does not have the same degree of necessity. Any value could be used, adding a
constant factor to all attendant values of solute activities and (/u — /x° ) values. The very
dilute or infinitely dilute solutions themselves (m very small or zero) would make
rather poor standard states, because although 7^ values would be 1 .0, consideration of
equation (12.20) shows that very small or zero values for (7//m)° would be decidedly
inconvenient.

In summary, a value of 1 .0 for 7^ allows us to obtain values for the properties of
the standard state, which we mentioned earlier is the essential factor in the choice of
standard state. As for m°, any value could be used, but none has any advantage over
1 .0. Therefore the hypothetical ideal one molal standard state is in universal use for
dilute solution (molality-based) activities.
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12.5. EFFECT OF TEMPERATURE AND PRESSURE ON ACTIVITIES

The change in activities as a response to changes in temperature and pressure of the
system naturally depends to a large extent on the standard states involved. Note too,
that any variation of activity with change in T or P is actually due to variation of
the activity coefficient, because these effects are normally calculated for constant
composition conditions.

12.5.1. Temperature

We have by now defined activity in four different but equivalent ways, useful, gener-
ally speaking, for gases, solids, liquids, and solutes respectively. That is,

where

or

or

or

Differentiating with respect to temperature, we have

where % may be 7/, 7/j , or 7^-. Thus the temperature derivative of the activity is
a simple function of the relative partial molar enthalpy, Lt , which was discussed
in Chapter 9 (§9.3.3). The numerical value of Li of course depends on the form of
activity being used, because this determines the value of H° . For standard states based
on Raoult's Law, that is, where the standard state is the pure substance i at T and P,
H° is the same as H°, the molar enthalpy of the substance (an unknown quantity, but
as usual it appears in a difference term, so we don't need to know its absolute value).
For the ideal gaseous standard state, H° is evidently the molar enthalpy of an ideal
gas. For standard states based on Henry's Law, where 7^ —> 1 as X or m — > 0, H°
is the partial molar enthalpy of the solute in the hypothetical pure substance having
7/7 = 1 or the hypothetical ideal one molal solution respectively. Substances in these
strange states have partial molar enthalpies (and volumes) equal to that at infinite
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dilution, hence providing a method of measurement. This can be seen by considering
equations (12.27) and (12.28), which show that Hf becomes equal to Hi when 7$
is 1 .0. Therefore for Henryan standard states where % •—> 1 as J*Q or m — » 0, H°
must be the partial molar enthalpy of i at infinite dilution, and for Raoultian standard
states where 7$ — > 1 as Xj — > 1 , J5"° must be the partial molar enthalpy (the molar
enthalpy) of pure i (confirming what we stated by simple inspection, above). (Note
that in the case of multicomponent solutions infinite dilution means infinite dilution
of all components, not just of component i). Thus the Henryan standard states, which
seem so unattainable, are actually convenient because some of their properties are the
same as those of the infinitely dilute solution, and these are obtainable by extrapolation
from measurements at finite concentration.

12.5.2. Pressure

In considering the effect of pressure on activity, we must recall that the standard state
pressure (P°) is not always the same as the system pressure (P), so that the differen-
tiation with respect to pressure is not always completely analogous to differentiation
with respect to temperature. First of all, for variable pressure standard states, those
that do have P° = P, we have

where % may be 7/, 7^, or 7^, and V° is either the molar volume of pure i or the
partial molar volume of i at infinite dilution, depending on the standard state used
(see above). Integration of this expression requires a knowledge of the variation of
the relative partial molar volume Vi — V° with pressure for which there is no general
expression. There is also no special symbol for Vi — V° as there is for Hj — H°.

However for the fixed pressure standard states,

because changing P does not change the pressure on the standard state (P°). Therefore

A case of particular interest to us is the activity of solids, for which in many
cases the assumption that Vi is unaffected by pressure (solid i is incompressible) is
reasonable. If Vi is a constant, then



STANDARD STATES 285

Furthermore, if P\ = 1 bar and the standard state of i is pure i at T and one bar, then
pure i at PI has an activity of 1, and

or for pure solids

This permits calculation of the activity of a pure mineral at any pressure, relative to
the same mineral at one bar.

For example, consider calcite and aragonite at equilibrium at 3767 bars and 25°C,
from our example in Chapter 7. The activity of calcite is, from equation (12.31),

so

and the activity of aragonite is

so

Thus CaCO3 in the form of calcite and aragonite, at 3767 bars (according to the
data of Robie et al., 1978) and 25°C, although having the same chemical potential
has two different activities because there are two different standard states. Recalling
that activity is the ratio f i / f ° , we see too that the physical meaning of an activity of
calcite of 274 is that the fugacity of calcite is increased by a factor of 274 when it is
squeezed from 1 bar to 3767 bars. We know this without knowing either / at 3767
bars or f° at one bar for calcite.

12.6. ACTIVITIES AND STANDARD STATES: AN OVERALL VIEW

We have now said everything necessary about activities and standard states, but the
overall effect for the newcomer is often one of confusion at this stage. To try to draw
the various threads together we consider in Figure 12.5a a hypothetical three-phase
equilibrium at temperature T and pressure P. A solid crystalline solution of B in A is
in contact with an aqueous solution of A(aq) and B(aq), which is in turn in contact with
a vapor phase containing A(v) and B(v) in addition to water vapor. We can suppose
the dissolution of (A,B)(s) to be stoichiometric so that the ratio of A to B is the same
in all three phases, but this is irrelevant to our development as we consider only
component A. Let's say that for a solid solution composition of X^ = 0.5, X^ = 0.5,
the concentration of A(aq) at equilibrium (m/^) is 10~2 molal, and the fugacity of A
in the vapor (/A) is 10~5 bars. Assuming activity coefficients in the solid and liquid



FIG. 12.5. (a) A hypothetical three-phase system at equilibrium at pressure P and temperature
T. (b) The top part of the histogram of chemical potentials in kilocalories. The length of the
bar for each phase is fixed when the standard state is chosen, and the chemical potential of A
in the equilibrium system is represented by a line across the histogram at a level depending on
the amount of B in the system. The lengths of the bars shown on the left represent traditional
standard states, but any position for the top of the bar could be chosen, such as the one shown
on the right, thus defining a new standard state.
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phases to be one, the activity of A in the solid solution (using a standard state of pure
crystalline A at T and P) is 0.5, the activity of A in the aqueous solution (using a
standard state of the hypothetical ideal one molal solution of A at T and P) is 10~2,
and the activity of A in the vapor (using a standard state of pure gaseous A at T and
one bar) is 10~5. Because the system is at equilibrium, the chemical potential of A
(MA) is the same in each of the three phases, but because the three standard states are
different, the standard chemical potential of A (MA) is different for the three phases.
The difference (MA — MA) 's calculable from the equations we have just derived. Thus,
letting T = 25°C,

It is instructive to consider these differences on a histogram (Figure 12.5b) in
which the ordinate is a scale of kcal mol~', on which we plot the absolute chemical
potentials of A. These absolute potentials may be very large, so we look at only the
tops of the bars in the histogram, and we unfortunately don't know the values of the
absolute potentials individually, so we can't put an absolute scale on the ordinate.
But we can plot the relative positions of the tops of the bars, and the position of the
equilibrium chemical potential of A in the system.

If we now consider systems having more and more B in the solid solution (and
hence in the other two phases), but always at equilibrium, the histogram bars stay
where they are (because we are not changing standard states) but the level of the
(absolute) chemical potential of A is lowered, increasing the distance between the
top of the histogram bar for each phase and the level of //A, that is, increasing the
(negative) value of (MA — MA) as ̂ e activity of A is lowered.

This diagram is worth careful thought. It illustrates several things that are useful in
understanding activities, chemical potentials, and standard states, such as the absolute
nature of chemical potentials and the necessity of using differences, the equality of
chemical potentials in each phase, and the arbitrary nature of the standard state.
To further illustrate the last point, suppose we choose a new energy level for the
standard state more or less at random, such that (/IA — ,UA) when X\ is 0.5 is 5000
calmor1. This implies a value of OA of 10~3'67, and this in turn defines the physical
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characteristics of the state we have chosen. If this state is used as a standard state for
the vapor, then

but

so therefore

so that the standard state is hypothetical ideal gaseous A at T and 0.047 bars.
If it is used for the aqueous phase, then

but

so therefore

so that the standard state is a hypothetical ideal 46.77 molal solution of A in water.
If it is used for the solid phase, then because a mole fraction of A of 0.5 has an

activity of 10~3'67, a mole fraction of 1.0 has an activity of twice this, or 10~3'37.
This implies that the standard state is hypothetical solid A having a fugacity 0.00043
times the normal fugacity of pure crystalline A.

These weird standard states have one very attractive feature, which is that because
they all have the same value of /iA, the activity of A would always be the same
in all three phases at equilibrium. The three standard states could also coexist at
equilibrium, if they could exist at all. As mentioned earlier, there is no reason why other
concentrations or pressures could not be chosen for the standard states, that is, other
than one molal or one bar, as long as ideal behavior is still part of the definition. But
these other concentrations or pressures would then appear in all activity calculations
and all equilibrium constants, and we would have to give up the convenience of being
able to think of gaseous activities as approximate or "thermodynamic" pressures, and
of aqueous activities as approximate or "thermodynamic" concentrations. It seems
generally more convenient to add a little diversity to standard states, and keep activity
expressions simple, as is the present custom.

We hope that this brief glance at other possible standard states, like a science
fiction story about other possible worlds, will not only clarify the present way of
doing things, but make it more acceptable in the sense that although standard states
are a little weird, they could be worse.
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12.6.1. Changing From One Standard State to Another

Suppose you have the activity of a constituent with respect to a particular standard
state, but you need its activity using some other standard state. For example, you
might know /Co2 in a fluid, which is equivalent to knowing its aco2 using an ideal
gaseous CO2 at T, 1 bar standard state, but you want to do speciation calculations so
you need aco2 using the ideal one molal standard state.

There are two ways of making such a change, for say constituent A:

1. Find /XA
 new — /LtA' old, and subtract it from your activity expression. Thus,

An example of this procedure is used in the Problems at the end of the
chapter.

2. Calculate aA directly. To do this you need to know either 7H or 7R over
a range of compositions. Knowing one usually allows calculation of the
other, which is the main requirement in changing standard states.

To illustrate the second method, consider the system H2O - CO2 at 600°C, 2000
bars, illustrated in Figure 11.11. Let's say you need aco2 using the ideal one molal
standard state for ̂ co2 =0.01 (mco2 = 0.56). The data in Table 11.1 are insufficient
to provide this directly, but they have been fitted with Margules equations (see Chapter
15), and the following data calculated from the fit coefficients. The details are ex-
panded upon in the Problems sections of Chapter 15. The Henry's law slope of the CO2

activities at Xco2 = 0.0 is calculated to be 2.652, and the CO2 activity according to
Raoult's Law at XCo2 = 0.01 is 0.02564. If CO2 obeyed Henry's Law at XCo2 - 0.01,
its activity would be 0.01 x 2.652 = 0.02652, so 7^ = 0.02564/0.02652 = 0.967,
and aco2 = 0.967 x 0.56 = 0.54 using the ideal one molal standard state, the desired
result.

12.7. EFFECT OF SIZE OF THE MOLE ON ACTIVITIES

We will see in discussing the Phase Rule that the choice of components in studying or
discussing systems is often not a simple matter. One aspect of this choice which is best
presented in the context of activities is the choice of the mole of a solute component,
a factor that is important particularly in the case of crystalline solutions.

In the case of gaseous and liquid solutions, the molecular structure of a solute
species can often be determined, and it is often best to choose as a component of the
solution the species thus determined. For example, nitrogen in the air exists as dimers
of N2, and for most purposes one would use N2 as one of the components, there being
no advantage to using N, NS, or N4. In fact for such a solution if we write
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we would undoubtedly be referring to a possible reaction between actual species of
nitrogen in the gas. The activity of each of these species, if available, would be referred
to the "ideal gas at one bar" standard state, and could therefore be represented by its
fugacity. The fugacity (and therefore the activity) of species N2 would undoubtedly
be much greater than that of species N4, and there would be no simple relationship
between n° for N2 gas and that for N4 gas. That is, //£,,, refers to the Gibbs energy of
a mole of pure N2 gas at T and one bar, and JJL^ refers to the Gibbs energy of a mole
of pure N4 gas at T and one bar. The equilibrium constant would be

However, as we tried to make clear in Chapter 10, equations like (12.32) can
refer to species or to components. If equation (12.32) did refer to components N2

and N4 rather than to species, the situation is completely different. It is unusual to
write a reaction between two different choices of component for the same element or
combination of elements, because their relationship is not in question, it is known;
but it is just this relationship that we wish to point out now. Obviously a reaction such
as equation (12.32) written between two components of the same bulk composition
has no physical reality; N2 and N4 are two different ways, among an infinite number,
of representing nitrogen, or actually of choosing a nitrogen component. We should
perhaps not write their relationship as a reaction; there is no need to do so. What is
important is that however nitrogen actually occurs, the Gibbs free energy per mole of
component N4 is exactly twice the Gibbs energy per mole of component N2, because
there is twice the mass in N4 that there is in N2, and because in this case we are
not comparing N2 gas with N4 gas as before, but two different ways of representing
the same gas. Similarly, component N2 and component N4 have the same standard
state—pure nitrogen gas acting ideally at T and one bar. Component N4 just needs
twice as much of it to make up one mole. In fact there is exactly twice the quantity
of all extensive parameters, both in the standard state and in any system. Therefore,

and

It follows that

and that

where N2 and N4 are components, and by extension of the argument

This relationship is entirely formal and contains no information about nitrogen
itself.
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12.7. 1 . What Is a Mole ofOlivine?

We derived this relationship for a gas species because it is possible to differentiate
between the species N2 and the component N2. In crystalline solutions there are no
species, but there certainly is a wide choice of components. Consider for example
the forsterite-fayalite crystalline solution. Normally we write forsterite as Mg2SiO4
arid fayalite as Fe2SiO4. Is this the best choice of components, or should we choose
MgSi0.5O2 - FeSio.5O2, or Mg4Si2O8 - Fe4Si2O8, or . . . ? 2

From the discussion of the nitrogen case, we know that

The critical part of this derivation is the fact that component Mg2SiC>4 has twice the
mass and therefore twice the Gibbs energy of component MgSio.sO2 . This fact is
easier to understand in the case of a crystalline solution than in the nitrogen case con-
sidered above, because there is no possibility of confusing components with species.
Component Mg2SiC>4 obviously contains twice as many atoms as MgSio.sO2, but
they share exactly the same crystal structure, so the only difference between them is
the number of atoms chosen as the mole.

The question now is, what practical difference does this make? Perhaps the easiest
way to show this is to consider Raoult's Law, which for a crystalline solution (equation
(11. 29)) says that

Now you have to realize that the mole fraction X is unaffected by the choice of
component problem we have been considering, that is,

so that if

we have a problem. Obviously, a» and ao.s, cannot both be equal to Xi. If ao.sj gives a
straight line when plotted against Xi , obviously a« will give a parabola (Figure 1 2.6).
Raoult's Law apparently isn't quite as simple as it appeared.

This problem can only be resolved experimentally. That is, the activity of forsterite
and fayalite over a range of compositions can be determined, and this will show which
formulation of activity (i.e., a, a2, etc.) gives a straight line relationship with mole
fraction. For this system, this was done by Nafziger and Muan (1967), who found
that the activities of components MgSio.5O2 and FeSio.sO2 came closest to giving
straight lines when plotted against X. The reason for this is simply that individual
Mg atoms exchange with individual Fe atoms on the Mg-Fe sites of the crystal, so the

2There may be some who are bothered by having "half an atom of silicon" in a component formula.
Components are simply the minimum number of algebraic formulae units which can be combined to
represent the composition of all parts of a system. (They could thus even be negative quantities or contain
negative subscripts). More important in this case, a mole of a component is Avogadro's number of formula
units of atoms, so that MgSio.sCh does not imply half an atom of silicon, but half of Avogadro's number
of silicon atoms.
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FIG. 12.6. Activities which would be observed in the forsterite-fayalite system if Raoult's
Law were followed. If components are MgSio.sCh — FeSio.sCh, a mole fraction of 0.5 would
have an activity of 0.5. If components are Mg2SiC>4 — FeaSiCM, a mole fraction of 0.5 has an
activity of (0.5)2. All sets of components follow Raoult's Law, but only one plots as a straight
line on an a — X diagram.

components should be written with a single Mg or Fe. If there existed Mg-Mg pairs
which exchanged with Fe-Fe pairs in the crystal, we would undoubtedly find that
components Mg2SiC>4 — Fe2SiO4 would be a better choice, that is, they would come
closest to producing straight lines on the a — X plot. It is for exactly the same reason
that N2 is a better choice of component than N4. However, as such dimer species
don't exist in crystals (at least not in any that we will consider), we can assume that
the "best" choice of component for exchange reactions in crystals will always be that
containing one atom of the exchanging species. Note that this means we would make
a different choice depending on which atom of a mineral was being exchanged. For
example, if we were interested in substitution of germanium for silicon in forsterite,
we would probably consider the components Mg2SiO4 and Mg2GeO4, while if it were
sulfur for oxygen (!) we might use Mgo.sSio.zsO — Mgo.sSio.asS.

The problem is more difficult in other systems. How does one choose compo-
nents in a complex silicate melt, for example? In a melt there are no stoichiometric
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restrictions to be observed, but the formal relationship between the activities of var-
ious component choices that we have discussed remains true. So if you measure the
activity of some component in a melt, and determine the deviations of these activities
from Raoult's Law by calculating activity coefficients, the question is, what part of
these activity coefficients represents non -ideal behavior, and what part represents a
poor choice of components? Generally speaking, extremely large or extremely small
activity coefficients mean that the component involved has been badly chosen, which
is to say that it does not come very close to representing the "real" situation in the
system. In these situations, thermodynamics provides no help whatsoever. It points
out the consequences of choices relative to each other, and from there on the investi-
gator is on her own. In other words, the choice of components, as much as the choice
of system to investigate, is a part of the "art of doing science," that part which relies
on skill and intuition, and can never be taught.

PROBLEMS

1. Consider crystalline A to be in equilibrium with water saturated with A at
a pressure of 1234.0 bars and a temperature of 567.0°C. A is very slightly
soluble (0.001 moles/Kg H2O) so that Pn2o = ^totai- The vapor pressure of
crystalline A varies with temperature according to the relation

Its molar volume is 22.7 cm3 mol and is essentially constant in the pres-
sure range under consideration. The fugacity coefficient for water at this P
and T is 0.541.

1. What is the activity of crystalline A, using the following standard
states:

(a), pure A(s) at T, P.
(b). pure A(s) at T and a pressure of 1 bar.
(c). pure A(s) at T and under its own vapor pressure.
(d). pure ideal gaseous A at T and one bar.

2. What is the activity of water, using the following standard states:
(a), pure water at T and P.
(b). pure water at T and a pressure of 500 bars (fugacity

coefficient is 0.747).
(c). ideal gaseous water at T and a pressure of 123.456

bars.
(d). Hypothetical ice at T and a pressure of 1 bar. (Sug-

gest how this could be done, without performing any
calculations).

3. What is the activity of A(aq) (7\(aq) assumed to be 1.0) using
the following standard states:
(a), an ideal one molal solution of A at T and P.
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(b). a 17.2 molal solution of A having an activity coefficient
of 0.123, at T and P.

4. (a). Under what conditions is /M(s) = MA(a<j)?
(b). Under what conditions is /xA(g) = //A(og)?

5. Calculate the difference in chemical potential between dissolved
A at T and P and dissolved A in standard state 3(a).

6. Experiments show that at 9.7 Kb, 1080°C, the system SiO2-
H2O shows a second critical end point at which quartz and a
supercritical fluid of composition 75 wt. % SiO2,25 wt. % H2O
coexist at equilibrium. What is the activity of SiO2 in this fluid,
referred to a standard state of quartz at 1080°C and one bar?

2. In §12.3 it says that if you wished to have a constant T standard state, you
need to include a term accounting for the change in fj,° with T. Is this not
backwards? Explain.

3. Equation (15.42) for a CO2 - H2O fluid at 600°C, 2000 bars is

where WG^Q = 1751.294 and WGc02 = 7081.006. What is the activity of
CO2 in a CO2 - H2O fluid having XCo2 = O.Olat this T and P, using a
standard state of pure CO2 at the same T and P? What is its fugacity? See
Table 11.1 for data.

4. What is the standard state used in the "aco2" column in Table 11.1?

5. According to Wellman (1969)3, the fugacity of NaCl in equilibrium with
nepheline (NaAlSiO4) and sodalite (3NaAlSiO4 • NaCl)at 600°C, 1 bar,
is lo~10-566 bars, and the fugacity of pure halite at the same T,P is
1Q-5.780 b^ Thus the activity of NaCl at nepheline-sodalite equilib-
rium at these conditions is 10~4-786 bars, using a pure halite at T,P stan-
dard state. If A/C^aCKa?)is -393133 Jmol"1 (ideal 1 m standard state),
and A/G^aci, Hahte is -384138 Jmol"1, what is the activity of NaCl at
nepheline-sodalite equilibrium using the ideal one molal standard state?

3Geochim. Cosmochim. Acta, v. 33, pp. 1302-1304.
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THE EQUILIBRIUM CONSTANT

It is possible to know thermodynamics without understanding it.

Dickerson (1969), p. 387.

13.1. THE MOST USEFUL EQUATION IN THERMODYNAMICS

Consider a chemical reaction, involving any number of reactants and products and
any number of phases, which may be written

where Mi represents the chemical formulae of the reaction constituents and i/i repre-
sents the stoichiometric coefficients, negative for reactants and positive for products. '
An example would be

where, if MI is SiO2(s), M2 is H2O, and M3 is H4SiO4(ag), and v\ = —I, i/2 = —2,
and z/3 = 1 , the reaction is

Now let's recall (from Chapter 3) what we mean by an equation such as (13.3).
If there are no constraints placed on the system containing MI, M2, and M3 other
than T and P (or T and V; U and V; S and P; etc.) then MI, M2, and M3 react until
they reach an equilibrium state characterized by a minimum in the appropriate energy
potential as indicated by expressions like dGx,p = 0. A corollary of this equilibrium
relationship, to be fully developed in the next chapter, is that the sums of the chemical
potentials of the reactants and products must be equal. In the example, this would be

or

or in general terms,

No notation is necessary for the phases involved because ̂  must be the same in every
phase in the system.

1 We discuss in the next chapter the fact that the quantities Mi are not restricted to species or components,
but may be constituents (denned in Chapters 3 and 10). However in this chapter our examples are confined
to minerals and aqueous species.

295
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However, if more than the minimum two constraints apply to the system, then any
equilibrium state achieved will be in our terms a metastable state, (14.25) does not ap-
ply, and the difference in chemical potential between products and reactants is not zero.
In our example, a solution might be supersaturated with FLtSiCU but prevented from
precipitating quartz by a nucleation constraint, so that MH4sio4 — Msio2 ~ 2/LtH2o > 0.

To simplify the notation in the next few equations, let's use a, b, c instead of
v\,V2,V3, and A,B,C instead of Mi.Mj.Ms, so that the example reaction is now

Now because for each constituent

i.e.

then whatever the number of constraints on the system, products minus reactants can
be expressed as

In general notation, this is

which expresses the difference in chemical potential between any two equilibrium
states containing constituents i in terms of a standard potential difference and a term
involving the activities of the products and reactants in a balanced chemical reaction
between constituents i. The Hi &"* term is given the symbol Q, so that

As we have just noted, Ar/u, is not necessarily zero, and is not if the system is
in a metastable state, but when the system achieves equilibrium with respect to the
minimum two constraints (what we have called stable equilibrium), Ar/z becomes
zero, the activities in the Q term take on their stable equilibrium values, and fT^ a%*
is called K instead of Q. Thus at stable equilibrium,
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or

Standard states usually refer to pure substances (except for the aqueous standard
states) in which /j, = G, so this equation is often written

This equation has been called, with some reason, the most useful in chemical
thermodynamics, and it certainly merits the most careful attention. Several things
about it need comment.

First and most important is the fact that the activity product ratio (K) on the
right-hand side is independent of variations in the system composition. It is equal to
a difference in standard state free energies, and so is a function only of the variables
that affect the standard states involved. Once the physical and compositional aspects
of the standard state are chosen, the only variables that affect the standard states are
temperature or temperature and pressure, because as we have seen, standard states
are always defined as of fixed composition. Therefore K must be independent of
the individual values assumed by the activities in the reaction, which is to say it is
independent of the system composition. In some cases it is also independent of the
system pressure, but this depends on the standard states involved. It is a constant for
a given system at a given temperature or temperature and pressure, and is called the
equilibrium constant. Its numerical value for a given system is not dependent on the
system actually achieving equilibrium, or in fact even existing. Its value is fixed when
the standard states are chosen, which is not to say that its value is always known. A
great deal of experimental effort is expended in determining equilibrium constants,
and often through them, of standard state free energies of reaction.

A curious fact about this equation (13.8) is that the two sides of the equation
refer to completely different physical situations. It is a numerical equality only. The
left-hand side refers to a difference in free energies of a number of different physical
states, which may individually be almost anything, but one thing they never are; they
are never at mutual equilibrium. The right-hand side, on the other hand, refers to a
single system, the constituents of which have achieved mutual equilibrium, or more
exactly, to the activity product ratio that would be observed if the system reached
equilibrium.

The great usefulness of equation (13.8) lies in the fact that knowledge of a few
standard state free energies allows calculation of an indefinite number of equilibrium
constants. In case we didn't mention it, the tabulated properties, both apparent and
standard, discussed in Chapter 7 are all standard state properties. Furthermore these
equilibrium constants are very useful pieces of information about any reaction. If
K is very large, it shows that a reaction will tend to go "to completion," i.e., mostly
products will be present at equilibrium, and if K is small, the reaction hardly goes at all
before enough products are formed to stop it. If you are a chemical engineer designing
a process to produce some new chemical, it is obviously of great importance to know
to what extent reactions should theoretically proceed. The equilibrium constant of
course will never tell you whether reactants will actually react, or at what rate; there
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may be some reason for reaction kinetics being very slow. It indicates the activity
product ratio at equilibrium, not whether equilibrium is easily achievable. Another
very useful thing about K is that its variation with temperature and pressure is related
to the enthalpy and volume changes of the reaction considered, as will be discussed
later in this chapter.

13.2. SPECIAL MEANINGS FOR K

Equilibrium constants are also sometimes equal to system properties of interest, such
as vapor pressures, solubilities, phase compositions, and so on. This is because quite
often it can be arranged that all activity terms drop out (are equal to 1 .0) except the one
of interest, which can then be converted to a pressure or composition. In Chapter 14
we will see that wherever this is the case, we are dealing with a "buffered" reaction,
and the subject is developed further there.

13.2.1. K Equal to a Solubility

Quartz- Water Example

In our quartz example (13.3), the equilibrium constant is

At this point the expression is perfectly general, valid for any conditions, and K
is calculable from equation (13.8) if we know the standard state free energies of the
three constituents. If the system we are considering is simply quartz in water at T and
P, and if we define our standard states to be pure quartz and pure water at T and P,
and ideal one molal H4SiO4 at T and P, then both quartz and water have activities
of 1.0, and

because (7H4sio4 • mn4sio4)° has been defined as 1.0. Then we need only estimate,
calculate, or measure 7H4sio4 in order to get mH4sio4, the solubility of quartz, starting
from values of AG°. Note that on the left-hand side (of 13.8) we entered the free
energy of H4SiO4 at a concentration of one molal, and on the right hand side calculated
its equilibrium concentration, usually a few ppm. Conversely a measurement of quartz
solubility could be used to calculate the free energy of H4SiO4 in an ideal one molal
solution.

Albite-Nepheline Example

Next consider the reaction
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Using the same standard states, that is, the pure minerals and water at T and P, the
equilibrium constant expression for this reaction also reduces to

Let's suppose that a measurement of quartz solubility has been used to obtain
the free energy of formation (standard or apparent) of H4SiO4 in the ideal one molal
standard state. This number can then be used (with A/G° terms for the minerals) to
calculate the equilibrium constant of the albite-nepheline reaction (equation (13.11)),
giving the equilibrium silica concentration in a solution that may never have been
experimentally determined, or perhaps never existed, and in which quartz is not stable.
Thus knowing the solubility of quartz, one could in a similar way calculate the silica
concentration in fluids in contact with a variety of mineral assemblages.

This is one demonstration of the power of thermodynamics. But with great power
come great possible pitfalls. In this case the possible pitfalls are associated with the
extent of our knowledge about the speciation of aqueous SiC>2. We measured the con-
centration of aqueous silica in equilibrium with quartz, which we called H4SiO4, and
we attached a standard state free energy value to this constituent. Then we wrote the
albite-nepheline reaction so as to produce the same constituent ("ELjSKV). Therefore
what we calculate from equation (13.12) is not necessarily the silica concentration
in water equilibrated with albite and nepheline, but the activity in this solution of
whatever species is produced by quartz solubility, which we have called H4SiO4. In
other words, in the albite-nepheline system, there might be other aqueous species
involved, which are not provided for in equation (13.11). We can only calculate the
properties of constituents for which we have data. This is self-evident, but can be
forgotten.

While we are on the subject, let's look at the same situation in a different way, as
another illustration of the use of activities. If we write

we can calculate the activity of silica in the assemblage albite plus nepheline. Thus

Using standard states of the pure minerals albite, nepheline, and quartz at T and P,
arid with a system consisting of pure albite and nepheline, this reduces to

This will produce a value of aSio2 of less than one, because quartz is not stable in this
system. Suppose asio2 works out to be 0.3. What does this mean? How can we have
the activity of a mineral in a system where it does not exist? Well, in the first place,
we are not actually calculating the activity of quartz. Quartz would have an activity
of one in this system, if it were there. 0.3 is the activity of component SiC>2 in the
system, and could be thought of as the mole fraction of SiC>2 in a mineral composed
of SiC>2 and XC>2, where SiC>2 and XC>2 form an ideal solution. In other words, for
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quartz to exist in this system, it would have to be diluted with XO2 to a considerable
extent.

Now having the activity of SiO2 in the albite-nepheline system, we can calculate
the H4SiC>4 activity from equation (13.7). Where previously the silica activity was
1.0 (presence of quartz), now it is 0.3 (presence of albite + nepheline). Thus

since the activity of water is 1.0. In this case if the SiO2 activity is 0.3, we calculate
that the silica concentration in equilibrium with albite-nepheline is 0.3 times the
concentration in equilibrium with quartz. All we have done really is to break up
reaction (13.11) into two separate reactions:

but doing it the second way helps to show that it doesn't really matter what we call the
silica solute. Whatever it is, we can calculate its activity in the albite-nepheline case.
This being the case, we could stop the pretense of knowing what it is ("H4SiO4") and
just call it "aqueous silica," SiO2(aq), and write

instead of equation (13.3). The properties of SiO2(a^) will evidently differ from those
of H4SiO4 by exactly twice the corresponding property of water, but the calculations
are unaffected by this. This is the approach taken by Helgeson and co-workers (e.g.,
Walther and Helgeson, 1977), and works fine except in those cases where it is the
speciation of aqueous silica that is in question. Thus equation (13.13) is evidently not
very useful if you are investigating the state of hydration of the silica complex.

13.2.2. K Equal to Fugacity of a Volatile Species

Another common use of the equilibrium constant is to arrange for it to equal the
fugacity of a gaseous species in equilibrium with a mineral assemblage. This usually
has reference to dehydration, decarbonation, or desulfidation reactions, where all
reacting constituents are minerals except one, which is the gas species. For example,
consider one of the simplest and most studied reactions

We will use the subscripts 6, p, and w to refer to Mg(OH)2, MgO and H2O respectively.
The equilibrium constant for this reaction is
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If the standard states for the minerals are the pure phases at T and one bar, then at a
pressure on the system of one bar the pure minerals will have activities of one at all
temperatures, and

If the standard state of the water is ideal gaseous water at T and one bar, then /£ = 1
at all temperatures, and

Thus for this and any similar reaction, the equilibrium constant can always be made
equal to the gas fugacity at equilibrium with the (pure) minerals in the reaction. The
physical situation is illustrated in Figure 13.la. The equilibrium constants at various
temperatures have been calculated from the data in Robie et al. (1978) (referred to here
as RHF) and are shown in Tables 13.1 and 13.4 and plotted in Figure 13.2. We should
perhaps emphasize that although K is completely independent of the compositions
of the minerals or of the gas phase, it only equals the water fugacity in equilibrium
with brucite and periclase when those two minerals are pure.

Note (Table 13.1) that the water fugacity in equilibrium with pure brucite and
periclase, while very low (5.47 x 10~7 bars) at 25°C, rises rapidly with increasing
temperature to quite high values. At each temperature the water pressure is approx-
imately the same as the fugacity. Since the pressure on the solid phases is only one
bar, obviously water having a pressure of greater than one bar cannot coexist with
the solids, either stably or metastably. In the situation pictured in Figure 13.1, water
at greater than one bar pressure would simply pass through the membrane and exert
its pressure on the solids, so that the equilibrium situation implied by the calculations
at 300°C and above cannot exist. However, as shown in Figures 13.Ib and 13.2, at
about 265°C the water fugacity is such that the water pressure is one bar, and the
three phases can coexist at the same pressure. With water pressure fixed at one bar,
265°C is evidently the temperature above which brucite would react spontaneously
to give periclase and water, and below which the reverse reaction would apply.

13.2.3. Miscellaneous Special Equilibrium Constants

Equilibrium constants in a number of other cases assume special meanings and have
been given special names. For example ionization constants, stability constants, sol-
ubility product constants, hydrolysis constants, and so on are all simply equilibrium
constants. In a couple of other fairly common circumstances, approximations to
equilibrium constants (made by ignoring activity coefficients) have also been given
special names. Thus metamorphic petrologists often use "Distribution Coefficients"
(KD), which are ratios of mole fractions of some constituents in coexisting miner-
als. These are usually related to equilibrium constants through activity coefficients
that are omitted because they are unknown and assumed equal to one. Distribution
coefficients can be useful, for example by being uniform throughout an area, hence
indicating achievement of chemical equilibrium, and by being compared from one
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FIG. 13.1. (a) Water having a fugacity (and therefore approximately a pressure) of 10 6'26

bars at equil ibrium with pure brucite and periclase through a membrane permeable only to water.
The system is at 25°C. (b) The same system at 265°C. At this temperature the equilibrium
water fugacity is one bar, so that water can coexist with the minerals as a phase.

locality to another. They are empirical rather than thermodynamic parameters. Aque-
ous chemists also avoid dealing with activity coefficients in some cases by keeping
the ionic strength of their solutions constant. This supposedly keeps activity coeffi-
cients constant so that variations of solution constituents can be investigated by using
"stoichiometric equilibrium constants," which are simply equilibrium constants using
molalities instead of activities. They are useful at the ionic strength at which they
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FIG. 13.2. Log of the water fugacity for brucite-periclase equilibrium as a function of recip-
rocal absolute temperature, at one bar (Table 13.1) and at higher pressures (data for 2000 bars
in Table 13.4), using RHF data.

were measured, but would be different at any other ionic strength. They are widely
used in the study of complexing reactions.

13.3. CHANGE OF K WITH TEMPERATURE

To find an expression for the effect of temperature on the equilibrium constant, we
differentiate In K with respect to T. Thus

To integrate this expression, we need to know how ArH° varies with temperature, a
subject we investigated in Chapter 7. At that time we had not yet discussed the full
implications of the superscript °, but because we have decided that the standard state
will always have the same temperature as the system and we need not distinguish
between T and T° , the conclusions about effects of temperature reached in Chapter
7 will apply to all standard state properties.

A simple way to visualize the contributions of log-Kr,., and ArC° to
the variation of logK with T is shown in Figure 13.3. Imagine the firing of a gun,
where log Kfr represents the elevation,
the curvature of the trajectory.

the inclination, and A,.(7° controls
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FIG. 13.3. How log KTT , Ar^T° and Ar(7p contribute to the variation of log K with tem-
perature.

13.3.1. &rC°=0

To start with the simplest possibility, we could suppose &.rH° to be unaffected by
temperature, i.e., to be a constant during integration. This assumption is never true, but
is often sufficiently close to the truth (i.e., ArH° varies little with temperature) that
the results are useful, at least for small temperature intervals, and for some purposes.
Integrating from T\ to TI with ArH° constant, we have

Another commonly used expression embodying the same assumption is obtained by
substituting Ar#° - Tr AS0 for ArG° in equation (13.8), giving

Equations (13.17) and (13.18) are the equations of a straight line having a slope of
-Arff°/R on a plot of InK versus 1/T. On such a plot, if A,.H° is in fact not
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Table 13.1 Calculation of the equilibrium constant and standard enthalpy of reaction for the
reaction Mg(OH)2 = MgO + H2O at one bar pressure, from the data in Robie et al. (1978). The
log K terms refer to the reaction forming the compound (b, p, w) from the elements, as
described in connection with Table 7.2

298.15
400
500
600
700
800
900
1000

3.354
2.500
2.000
1.667
1.429
1.250
1.111
1.000

99.721
72.887
57.180
46.712
39.239
33.636
29.280
25.757

40.044
29.236
22.883
18.629
15.580
13.285
11.494
10.058

146.027
104.771
80.640
64.572
53.113
44.533
37.870
32.541

-6.262
-2.648
-0.577
0.769
1.706
2.388
2.904
3.274

5.47E-07
0.00225
0.265
5.875

50.816
244.34
801.68
1879.3

298.15
400
500
600
700
800
900

3.354
2.500
2.000
1.667
1.429
1.250
1.111

-601.490
-601.501
-601.302
-601.031
-600.762
-600.528
-600.351

-241.814
-242.836
-243.820
-244.758
-245.634
-245.444
-247.185

-924.540
-924.416
-923.482
-922.180
-920.691
-919.108
-917.475

81.236
80.079
78.360
76.391
74.295
73.136
69.939

constant, the slope at any temperature is (still) given by

In Figure 13.2 we see that the change in ArH° of about 11 kJ (Table 13.1) over
the temperature range 298 to 900 K results in a slight curvature in the In K versus
103/T plot, the slope of which at each temperature is equal to —ArH°/R at that
temperature. Nevertheless, over short temperature intervals the plot is fairly linear.
Furthermore it is evident that with greater uncertainty in the plotted values of In K,
the nature of the curvature would become uncertain, and one would be justified in
approximating the plot with a straight line having a slope giving about the average
ArH° over the temperature interval.

Using the ArC° = 0 (ArH° constant) approximation for aqueous reactions
such as ionization constants can lead to very poor results because these reactions
commonly have heat capacity terms that vary considerably with temperature. A useful
observation is that for a great many aqueous reactions, ArC^ can be made much
closer to zero, hence giving a much straighter line on a logK versus l/T plot, by
transforming the reaction into the "isocoulornbic" form. "Isocoulombic" refers to

T(K) 1000/T log-FCp logKw \ogKb loSKr K = /H2o

T(K) 1000/T A/H° ^fHy, &fHt, &"-H°
kJmor1 kJmol"1 kJmor1 kjmol~'
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FIG. 13.4. log K for several ionization reactions plotted as a function of the reciprocal of
absolute temperature.

an aqueous reaction having the same total charge among the products as among the
reactants. For example, consider the reaction

which has one negative charge on each side, and therefore a smaller value of Ar C°. It
is now "isocoulombic," and its log K versus 1/T plot is shown in Figure 13.5, along
with some others. After extrapolation in this form, the ionization constant of water
at higher temperatures must be subtracted to recover the original constant, but this is
no problem as the ionization constant of water is reasonably well known. Use of the
ArC° = 0 approximation for reactions involving ions should always be preceded by
this transformation if possible.

and we have

Log K for this reaction is plotted with some others in Figure 13.4. Note that it has a
nositive and a neeative charee. both on the rieht hand side. Add to this the reaction
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FIG. 13.5. The same reactions as in Figure 13.4 after conversion to the isocoulombic form.
Note the much closer approximation to a straight line.

13.3.2. ArC? = constant

The Ar-Cp = 0 approximation is an obvious choice of options if there are no data
whatsoever available for ArC°, and can give acceptable results in favorable cir-
cumstances. The next possibility is that ArC° is known at 25°C but not at higher
temperatures. In this case it is generally better to assume that ArC° is constant as
temperature increases. We have already seen the effect of this assumption on the vari-
ation of G with T in the calculation of the calcite-aragonite equilibrium in Chapter
8. Because we have an expression for ArG° as a function of T that includes the
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Ar C° = constant assumption (equation (8 . 1 1 )) , it is a simple matter to combine this
with ArG° = —RT In /f(13.8) to derive an expression for the variation of In K with
T. This turns out to be

If the various constant terms are combined, we have the expression

where a, b, and c are constants with the values

13.3.3. The Density Model

Another option for calculating K at high temperatures (and in this case high pressures
as well) has been suggested by R. E. Mesmer (1985), who found empirically that the
variation of many ionization constants in water along the liquid-vapor coexistence
curve is accounted for rather well by an expression incorporating the density of the
solvent, water, having the form

where p\, P2, and ^3 are constants and p is the density of water at T and P. He
suggested, too, that it would work quite well in the supercritical range, because the
density term is not restricted in any way to liquid-vapor coexistence.

Because In K is proportional to ArG°(13.8) and In p is specified at specific values
of T and P, it follows that an expression relating In K and In p is logically equivalent
to one giving ArG°as a function of T and P. In the next chapter we will see that
an equation giving ArG°as a function of T and P is called a fundamental equation,
and that it implicitly contains information on the variation of all thermodynamic
parameters with T and P. Therefore there are implicit relationships between the
parameters p\, P2, and p$ and all other thermodynamic parameters. Anderson et al.
(1991) show that for the heat capacity, this relation is
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where a is the coefficient of thermal expansion of H^O (and V is the molar volume),

and &.rC°T is the standard heat capacity of reaction in a chosen reference state. The
parameters p\,p2, P3 have the values

and

and the complete expression for In K is

These and other relationships that follow from the model are summarized in Table
13.2. This empirical formula apparently works well because (da/dT) as a function
of temperature for water is U-shaped, which gives to the expression for A.rC° (if
A(7p is negative) an inverted-U shape with a maximum around 100°C, which is the
same shape that the C° of many aqueous ions have (see Chapter 17). Furthermore
the variation of AC° at higher pressures is also fairly faithfully modeled by the
expression for AC°.

To use the equation, one needs only the values of In K, A/f °, and AC° for the
reaction at the reference conditions, (which will frequently be 25° C, 1 bar, but could
easily be some other conditions in cases where experimental data at high temperatures
or pressures are involved), as well as the density of the solvent, water, at the desired
P, T conditions. To obtain estimates of ArV™ and ArCp for the reaction at T, P,
values of a and (3 for the solvent are also required. As an example we show in Figure
13.6 the measured and predicted values of log K for the ionization of water to 300° C.
Several other examples and additional details are given by Anderson et al. (1991).
For reactions for which logK, AH°, and A.C° at 25°C are available but little else,
the Density Model is one of the best ways of obtaining estimates of log K and other
parameters at higher temperatures and pressures.

13.3.4. ArC° Known

If the variation of ArH° with temperature is known, that is, if an expression for &rC°
as a function of temperature is available, integration of equation (13.16) results in a



310 THERMODYNAMICS IN GEOCHEMISTRY

more accurate but more cumbersome expression. For example, if the Maier-Kelley
expression for &rC°r is used, the result is

The results for other formulations of the heat capacity expression are listed in Ap-
pendix B.

Don't confuse ArH° and Ar H. It is important to remember that the enthalpy term
given by the slope of log K versus 1/T (e.g., Figure 13.2) is a standard state enthalpy
of reaction (A^ff0), the meaning of which is determined entirely by the standard
states of the reaction constituents, and may or may not correspond to an enthalpy
that is directly measurable (Ar£T). In Figure 13.2 the slope is exactly equal at all
temperatures to the A.H° calculable from the tables of Robie et al. (1978) (Table
13.1) because we did not change their standard states in calculating K. Anderson
(1970) considers the difference between these terms in more detail.

13.4. CHANGE OF K WITH PRESSURE

We have seen that unlike T and T° , the pressure of the standard state (P° ) may or may
not be the same as the system pressure (P). Therefore differentiating with respect to
system pressure may not be the same as differentiating with respect to standard state
pressure. Differentiating In K with respect to system pressure, we have

Now, if all standard states involved in the reaction have been denned as being at a
constant pressure P, normally 1 bar, these states are unaffected by changes in system
pressure P, and

and

Thus in this case the equilibrium constant K is independent of P.
On the other hand, if even one of the reaction constituents has a standard state with

a variable pressure, normally P° = P, then equation ( 1 3 .27) is not true, and integration
of equation (13. 28) requires a knowledge of how ArG° varies with pressure. We will
simplify the following discussion by assuming that reaction constituents having the
same physical state (solid, liquid, gas, solute) will have the same kind of standard



Table 13.2 The Density Model Equations

The above equations are for reactions involving aqueous species only. For reactions involving minerals
and aqueous species:

where a, b, c are Maier-Kelley heat capacity coefficients and AC^refers to aqueous species only.
In these equations, p is the density of pure water

311
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FIG. 13.6. log K for the ionization of water as measured by Sweeton et al., and as calcu-
lated by the Density Model, using as reference parameters log^Ggg = —13.993; Aff^s =
13340 calmoP1; ACp298 = -55.3 calKT1 mol"1.

state. In practice, this is invariably the case. We first take equation (13.26) a little
further by writing

The integration of the standard free energy of reaction in this equation is best done after
breaking it up into separate free energy terms for each of the main types of physical
states involved in reactions, i.e., condensed phases (solids and liquids), gases and
solutes (usually aqueous in our cases). Thus we can write

For example, in a reaction such as
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and

Now we have seen that the change of ArG° with pressure is in general

For condensed phases for which the constant volume approximation is appropriate
(§10.6.1), this results in

where ASF° is the volume analogue of G in equation (13.32).
For gases and supercritical fluids, fugacities are normally used, and the standard

state is normally chosen as the ideal gas at the system temperature (T) and one bar,
i.e., a fixed pressure standard state (P° = 1 bar), so that normally

If however P° = P, then /° for each gas is not 1.0 but the fugacity of the pure
gas at the system T and P, and / is less than f° because of the presence of other
components. In this case it is best to refer to the activity of each gas ( = ///°), and
the change in standard state free energy of the gas components is

where Q(g) is a term having the form of an equilibrium constant, but involving only
the standard state fugacities of the gaseous constituents of a reaction. For example in
reaction (13.31)

At high temperatures /° at PI is usually 1.0 (even though the standard state is the
real gas and not an ideal gas), so
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Note that when the standard state is fixed at one bar for all gases Q(g) = 1, so (13.38)
becomes zero as previously noted (13.37).

For solutes no general expression exists to substitute for the volume integral. To
integrate partial molar volumes as a function of pressure one must have an analytical
expression for the effect of P on V, either derived empirically or from some model
(see HKF model, Chapter 17). We are left with the general expression

where as before ArV°(ag) is the volume analogue of ArG°(aq) in equation (13.34).
Thus in general terms, for the change in K with pressure, integration of (13.29)

gives

or

Normally of course the expression for the variation of K with P is simpler
than this, perhaps because all three states of matter may not be present, but also
because it is quite unusual to use a variable pressure standard state for constituents
whose fugacities are known or sought, (because this adds complexities rather than
simplifying matters), and the In Q(g) term is therefore essentially never required.
To take a real example, let's consider the brucite-periclase reaction again. We have
discussed the variation of the equilibrium constant for the brucite-periclase-water
reaction with temperature at one bar, and showed that the equilibrium temperature
for the reaction at one bar is about 265°C. Calculation of the equilibrium temperature
of dehydration reactions such as this one at higher pressures was discussed briefly
in §13.2.2. Here we will discuss the reaction in different terms to demonstrate the
relationships between activities, standard states and equilibrium constants.

What is the equilibrium constant for this reaction at say 2000 bars and 25 °C?

Case 1:

Consider first the case where the activities of brucite, periclase, and water have their
standard states fixed at one bar. According to our discussion above and equation
(13.28), the equilibrium constant for the reaction at 2000 bars will be the same as at
1 bar, i.e., 10~6262 (Table 13.1). However, the activities of brucite and periclase are
not the same as at one bar. They are calculated from equation (13.31) (and shown in
Table 13.3):
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and

At 2000 bars, then

so

The activity of water we have calculated (10~5i793) is in fact the water fugacity,
because all standard states are fixed at one bar, which means that /£, is fixed at 1.0.
From this example one can see that because we know the equilibrium constant as a
function of T at one bar and it is independent of P, we therefore know it at all Ps and
Ts, and because we can calculate the activities of the solid phases at any P and T,
we are able to calculate the fugacity of water required to maintain brucite-periclase
equilibrium at any P and T. In the particular case above, squeezing the crystals to
2000 bars raises the water fugacity in equilibrium with the two phases by roughly a
factor of three.

Case 2:

Next, consider the case where the mineral standard states are of the variable pressure
type, that is, the standard states for brucite and periclase are taken to be the pure phase
at the system P and T, while water continues to have a standard state of ideal gaseous
water at T and one bar. Because there is essentially no mutual solution between the
three phases they are essentially pure when at mutual equilibrium, and the mineral
activities are therefore 1.0 at all Ps and Ts, This is only an apparent simplification,
because now the equilibrium constant varies with pressure. Its value at 2000 bars,
25°C can be calculated from equation (13.42), thus

Note that /£, in the In Q(g) term is one, so that term drops out. Now we have a different
value for the equilibrium constant because of the different standard states, but this
time K equals the water fugacity required for brucite-periclase equilibrium (equation
(13.15)).
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Case 3:

Finally, consider the case where all three constituents have as their standard states
the pure phase at P and T. Now the activities of all three components when pure are
one at all Ps and Ts, and K = 1 along the univariant equilibrium curve. Activities
less than one in any of the phases are attainable by diluting the phase with another
substance, but activities greater than one are not possible (except in the case of small
grain size or other metastable factors). Naturally, pure water cannot be in equilibrium
with pure brucite and periclase except along the univariant curve. At temperatures
below the univariant equilibrium, water must be diluted if it is to equilibrate with
the pure minerals. The water fugacities found for brucite-periclase equilibrium in the
first two cases considered above are converted to this case simply by dividing by the
fugacity of pure water at the particular P and T considered. In equation (13.42) this
is accomplished by including the In Q(g) term, which of course requires knowledge
of the fugacity of pure water as a function of P and T. For this purpose we have used
the values of Haar et al.(1984). Thus at 2000 bars, 25°C,

These calculations are summarized for a pressure of 2000 bars in Table 13.3 and
illustrated in Figure 13.2.

13.5. FINDING THE UNIVARIANT CURVE USING #

We discussed the determination of the univariant (in this case three-phase) equilibrium
curve in Chapter 8 in terms of finding the locus of P and T for ArG = 0. This is always
the most general method, and other methods for doing this will be discussed in more
detail in Chapter 19, but it is useful here to point out that as long as ArG = ArG°,
which is to say as long as 1 . the standard states are the pure phases, and 2. the phases at
equilibrium are fairly pure; then # = 1 can also be used as criterion for the univariant
equilibrium. Thus K can be calculated along isobars (as in Table 13.3) or isotherms
and the T or P for K = 1 found by interpolation.2

When this is done for the calculations based on RHF (1978) that we have been
doing (Table 1 3.3), we find that the univariant curve does not coincide with the best
available experimental evidence (which in this case is probably the data of Barnes
and Ernst, 1963). The calculated curve lies about 30°C to the low-temperature side
of the experimentally determined position. If we perform the same calculations using

2In Table 1 3.3 this has been done by finding the least-squares parameters a, b and c of the second order
polynomial In K = a( \ /T)1 + b(\ /T) + c and finding T for In K = 0. The slope of In K versus 1 /T
(= -AH°/R) then is 2a(l/T) + ft.



Table 13.3 Brucite Dehydration Calculation using RHF data

T(K)

298.15
400.00
500.00
600.00
700.00
800.00
900.00
902.15

1000.00

looo/r

3.354
2.500
2.000
1.667
1.429
1.250
1.111
1.108
1.000

T°C

25.00
126.85
226.85
326.85
426.85
526.85
626.85
629.00
726.85

logK
1 bar

-6.262 :
-2.648
-0.577

0.769
1.706
2.388
2.904

3.274

ap

IQOOb

1.477
1.966
.717
.569
.472
.402
.351
.350

1.311

ab

2000b

7.288
4.395
3.269
2.683
2.330
2.096
1.931
1.928
1.808

/»
2000b

1.61E-06
5.03E-3
5.04E-01
l.OOE+01
8.05E+01
3.65E+02
1.15E+03

2.59E+03

log/™
2000b

-5.793
-2.299
-0.298

1.002
1.906
2.563
3.059

3.414

f°j in
bars

0.1287
7.212

60.78
217.1
483.6
810.8

1134.1

1411.5

log/W/°

-4.903
-3.157
-2.081
-1.335
-0.779
-0.346

0.005
0.000
0.264

slope

-1918
-2121
-2240
-2319
-2375
-2418
-2451
-2451
-2477

Ar-ff°
Jmor1

36722
40603
42876
44391
45473
46284
46915
46927
47420

Artf0

calmol"1

8777
9704

10248
10610
10868
11062
11213
11216
11664
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the data of HDNB (1978), we expect the calculated curve to correspond exactly to
the experimental data, because the data of Barnes and Ernst were part of the data
set used by HDNB to deduce the properties of brucite and periclase. The water data
they used (Helgeson and Kirkham 1974a) is not the same as the Haar et al. data used
here, but the differences are small. These calculations are summarized for 2000 bars
pressure in Table 13.4, and Figure 13.7 shows that the calculated univariant curve
does indeed agree with the experimental data. In Figure 13.8 we also show contours
of water activity, calculated in the same way as the univariant curve, that is by finding
by interpolation at each pressure the temperature at which certain values of (/«,//£,)
occur. These curves show by how much the univariant curve would be displaced
if the water activity were to be changed from 1.0 to lower values, for example by
dilution. It is relatively easy to calculate these curves for given activities; what is much
more difficult is to know what aqueous solution compositions will actually give these
water activities. The determination of the activities of constituents in solutions is the
problem of "mixing models," discussed in Chapter 15.

The work of Barnes and Ernst (1963) provides some information on this, because
they experimentally determined the position of the brucite-periclase equilibrium not
only in pure water but in 5m and 12.5m NaOH solutions. The NaOH does not enter the
reaction in any way except to dilute the water, so that we can compare the experimental
and theoretical curves, and thus determine the activity of water in 5m and 12.5m NaOH
solutions at the P and T values determined by Barnes and Ernst. This comparison is
made in Figure 13.8 and Table 13.5, where we see that, as pointed out by Barnes and
Ernst, water and NaOH mix in a fairly ideal way under these supercritical conditions,
the activity coefficient of water being generally about 0.7 to 0.8. Despite the value
of these results, we should point out that if the mixing properties of water-NaOH
solutions is the primary interest (it was only one of several goals for Barnes and
Ernst), determination of displaced univariant curves is not the most direct way of
proceeding. One would normally want to perform experiments on the densities of
these solutions, and extract fugacities as described in Chapter 11. This is more easily
said than done, however.



FIG. 13.7. Brucite-periclase-water equilibrium temperatures predicted from RHF and HDNB
data at various pressures compared to the experimental brackets of Barnes and Ernst (1963).
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Table 13.4 Brucite Dehydration Calculation using HDNB data

T(K)

298.15
373.15
473.15
573.15
673.15
773.15
873.15
935.15
973.15

1073.15

Table 13.5

Pressure

bars

2000
1500
1000
500

1000/T T°C

3.354 25
2.680 100
2.113 200
1.745 300
1.486 400
1.293 500
1.145 600
1.069 662
1.028 700
0.932 800

logK
Ibar

-6.262
-3.627
-1.225

0.302
1.347
2.099
2.659

3.089
3.426

Calculation of Water Activity

Eqbm T°C

5m
H2O NaOH

662 635
641 613
615 588
572 558

12.5m
NaOH

595
578
560
538

ap

2000b

2.477
2.064
1.771
1.603
1.494
1.419
1.363
1.335
1.320
1.287

in NaOH

f°JVJ

H20

1240.8
828.9
631.0
344.3

ab

2000b

7.288
4.889
3.496
2.810
2.410
2.151
1.970
1.884
1.838
1.736

Solutions

fw log fw fS,
2000b

1.61E-06
5.59E-04
1.18E-01
3.51E+00
3.59E+01
1.90E+02
6.59E+02

1.71E+03
3.60E+03

at eqbm temps

5m
NaOH

1158.8
869.4
615.7
367.7

12.5m
NaOH

1034.7
785.3
569.5
354.2

log/W/2, slope
2000b bars

-5.793
-3.253
-0.930

0.546
1.555
2.280
2.819

3.233
3.556

Calc'

H2O

1240.8
828.9
631.0
344.3

0.1287
3.194

38.23
163.3
403.4
720.8

1050.6

1342.7
1577.9

-4.903
-3.757
-2.512
-1.667
-1.051
-0.578
-0.202

0.000
0.105
0.358

-1666
-1955
-2198
-2356
-2467
-2549
-2613
-2645
-2663
-2704

d /TO for b/p eqbm. Xw x /£,

5m
NaOH

939.7
589.4
460.7
287.7

12.5m 5m
NaOH NaOH

602.8 1063.0
373.3 797.5
325.2 564.8
220.2 337.3

12.5m
NaOH

844.6
640.9
464.8
289.1

Artf°
J mol~ '

31890
37423
42072
45099
47266
48803
50019
50642
50985
51771

7 = jw/(^

5m
NaOH

0.88
0.74
0.82
0.85

ArH°
calmol^1

7622
8944

10055
10779
11287
11664
11955
12104
12186
12374

*w X /£)

12.5m
NaOH

0.71 §
0.58
0.70
0.76



FIG. 13.8. Brucite-periclase equilibrium temperatures as a function of pressure for various
water activities. The standard state is pure water at the system P and T. Also shown (dashed
lines) are the positions of the brucite-periclase equilibrium in 5m and 12.5m NaOH solutions
from the data of Barnes and Ernst (1963). Superposition of the two sets of curves allows
determination of the activity of water in the NaOH solutions.
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PROBLEMS

1. Oxygen-free nitrogen is often prepared by passing N2 gas over hot copper.
Assuming that the dominant reaction is 2Cu(s) + ^02(5) = Cu2O, what
would be the /o2 of the nitrogen after reacting with copper at 600°C (a).
assuming ArC° = 0. (b). Using the Maier-Kelley coefficients.

2. Calculate the vapor pressure of water at 25 and 100°C.

3. Calculate the solubility (i.e., the concentration of SiO2(aq)) of quartz and
of amorphous silica in water at 25°C.

4. (a). The fugacity of 82 in equilibrium with pyrite and pyrrhotite at
602° C, 1 bar is 10~L95 bar. The pyrrhotite in this equilibrium is
Feo.92S, which may be considered as a solid solution composi-
tion in the system FeS — 82- The activity of FeS in this pyrrhotite
is 0.46 based on a standard state of pure stoichiometric FeS at
the same P and T. The pyrite is pure stoichiometric FeS2. Cal-
culate ArG° for the reaction forming pyrite from pyrrhotite and
S2 gas at this P, T.

(b). Is the pyrrhotite involved in this free energy term FeS or Fe0.92S?
(c). The fugacity of sulfur in equilibrium with iron and stoichiomet-

ric FeS at 602°C, 1 atm. is 10~12'5 atm. Calculate the standard
free energy of formation of pyrite from its elements at 602° C, 1
atm.

5. A wollastonite-bearing contact metamorphic zone is observed adjacent to
a granite which has intruded a quartz-bearing limestone horizon. Heat-flow
calculations indicate that the maximum temperature achieved at a given
distance from the contact is given by

where T is the temperature in °C, and d is the distance in feet. Stratigraphic
considerations put the pressure at the time of intrusion at 2000 bars. If the
contact zone is 50 feet wide, what was the /Co2 in the pore fluid of the
limestone? If you assume that the pore fluid was a H2O - CO2 solution,
what do you need to know to calculate its composition?

6. If the solubility of quartz in water at 600° C, 4000 bars is 0.208 m, calculate
the silica content of water in equilibrium with albite and nepheline at the
same T,P.

1. Calculate the pressure of the plagioclase-omphacitic jadeite-quartz equi-
librium at 500 K if the activity of albite in the plagioclase is 0.9 and the
activity of jadeite in the omphacite is 0.7.

8. The SiO2 concentration of seawater is about 7 ppm. If you assume that
radiolaria tests composed of amorphous silica are in equilibrium with sea-
water, calculate the Gibbs free energy of formation from the elements of



14
HETEROGENEOUS AND OPEN SYSTEMS

I have heard the (mischievous) argument that every natural system has as many
components as elements in the periodic chart—we only need analyze for them.
The corollary is that all natural systems have somewhere in the neighbourhood of
100 degrees of phase rule freedom, discounting isotopes. My reply is that this is
nonsense—natural systems don't have components—only our models do, and if
we're sensible, we choose model components that have predictive value for the
problem at hand. T.M. Gordon (personal communication, 1989)

14.1. INTRODUCTION

Up to this point, with minor exceptions, we have discussed only closed systems, that
is, systems having a fixed composition, and have for the most part not bothered to
consider whether the system was homogeneous (one phase) or heterogeneous (more
than one phase). We must now explicitly consider the implications of having more
than one phase, and of the transfer of matter between phases and into and out of the
system.

14.2. OPEN SYSTEMS

There are two kinds of open systems that concern us, illustrated in Figure 14.1. In the
first kind, the open system is simply a separate phase in a system that is closed overall,
illustrated in Figure 14.la. The phases are free to change composition by exchange
of components in response to changes in the conditions (say P and T) of the closed
system. The phases in a crystallizing magrna are examples of open systems in this
sense. In the second kind we distinguish the system from an environment, joined by
means of a membrane permeable only to certain components (Figure 14. Ib). This en-
ables the system to change composition in response to conditions in the environment,
which may be quite different from those in the system. The membrane may be real,
as in the case of experimental systems in which hydrogen, having an externally con-
trolled fugacity, diffuses into the system through the platinum walls of the system, or
it may be imaginary, as when it is used to help clarify our thinking about metasomatic
processes. Of course, if you think carefully about it, the difference between the two
cases is not always very clear-cut. For example in the crystallizing magma, quartz and
the melt in which it is crystallizing could be considered as the "environment" for the
other crystallizing phases, controlling their chemical potential of SiO2. Nevertheless,
the distinction is usually clear enough for our purposes. We will first consider open
systems in the first sense in the derivation of the phase rule, and then consider cases of
"membrane" or "osmotic" equilibria, which is the kind that the term "open system"
has generally come to mean in geochemistry.
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FIG. 14.1. Two types of open systems, (a) A closed heterogeneous system in which each phase
is an open system, (b) A closed composite system which is separated into two subsystems by a
membrane permeable only to one or some components. One subsystem is called "the system"
and the other "the environment."

14.2.1. Thermodynamic Potentials in Open Systems

We saw in Chapter 5 that the function U = U(S, V) expressed as a total differential
is1

In this equation we implicitly consider the system to be capable of changes in U,
S, and V, and hence can be heated, cooled, or squeezed, but it always has the same

'it will be convenient to begin first with the parameters for the total system (i.e., U rather than U, and
then explicitly show the changes introduced by using molar properties.

and that because (dU/dS)v = T and (dU/dV)s = —P, it may also be written
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composition. To consider what happens when we add or remove matter, we need to
consider the function

where n means n [, n,2,.. • , nc (all components), nj refers to any individual component
i, and TT,J refers to all components except /ij. This equation still represents a plane
tangent to a stable equilibrium surface as described previously, except that there are
now a number of added dimensions, that is, another dimension for every component.

Similarly, we could write for the functions

and

The integrated form of equation (14.2) can be found by considering a single phase that
is enlarged in size, its temperature, pressure, and composition remaining unchanged.

Under these conditions the values of ( J r ~ ] are also unchanged. Integration of
\ o n i /S ,V,f t j

(14.2) between any two equilibrium states gives

where ni,ri2,...,nc are the number of moles of the c independent compositional
terms (components) 1, 2, and so on in the system. The exact differential of this
function is

and

the exact differentials

or
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Let the original values of the internal energy, etc., of the system be U, S, V and n. If
the system is enlarged to k times its original size, the final values of these parameters
(which are all extensive, or homogeneous degree one in the masses of the components)
will be fcU, feS, fcV, and fen. Thus

and similarly for AS and AV. Substituting in the above equation, we have

and, dividing through by (fc - 1),

(this derivation from Denbigh, 1966, p. 93)
Analogous integration of equations (14.3) to (14.5), recalling that dT and dP are

zero, gives

A number ot interesting relationships are inherent in me equations written tnus
far; in fact, they contain or imply just about everything there is to be said about
(model) heterogeneous equilibria.

First, consider equations (14.6) and (14.9). Because we have defined

and

it follows that

and of course similarly for . These are entirely equiva-and

lent expressions for the chemical potential, although because of our fondness for the
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G function, we tend to emphasize the partial molar property f J^ J . It follows

that equations (14.2) to (14.5) can be rewritten

and in their integrated forms

Equation (14.17) is also the result of Euler's Theorem applied to G as a function
homogeneous in the first degree in the masses of the components.

We next point out that equation (14.17) emphasizes what we said in Chapter 9
about the chemical potential. We said that it should be thought of as the free energy
per mole of a dissolved substance, and should not be thought of in terms of derivatives
or infinitesimal quantities. Equation (14.17) emphasizes this by showing that the total
free energy of a system is simply the sum of the number of moles of each component
in the system (n$) times the free energy per mole of that component (ju;).

14.2.2. Conditions of Equilibrium

Suppose now that we have a system containing a number of phases that may exchange
matter in response to changing conditions, but that the system as a whole is of fixed
composition. From Chapter 5, we know that if a closed system is constrained to a
constant entropy and constant volume, then its energy content will seek a minimum
value, and the system will be at equilibrium when dUs,v = 0. In the present case we
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still want to consider a system that is closed overall, but within which matter is free
to move between phases, i.e., in which the phases are open. Still, because the system
is closed overall, the same criterion (cflJSjV = 0) applies. If we denote the various
phases in the system by accents, we can consider that during any increment of change
of energy d\J the various phases contribute dU', d\J", etc., so that

Now if dUs,v = 0, then from (14.10) and (14.18)

For the system, S, V, and the quantity of each component are constant, so that

For this to be true it is necessary and sufficient that

Equations (14.21) express the conditions for thermal, mechanical, and chemical equi-
librium of the system, i.e., that temperature, pressure, and the chemical potential of
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every component must be constant throughout. We will return to the importance of
the equality of chemical potentials at equilibrium shortly.

In this derivation we have tacitly assumed that all components are capable of
being independently added or subtracted from every phase, i.e., that all dnt terms can
be positive or negative. Another way of saying this is that all components have been
assumed to be in all phases, and that they are free to enter or leave each phase. If this
is not the case for some components in some phases, though, nothing is changed. If
component 1 does not exist in phase ', or more exactly if it cannot be transferred to
or from phase ' , then dn\ is zero, the y!\dn\ term is missing from equation (14.19)
and the dn'\ term from (14.20), and there is no change in the general conditions of
equilibrium, equations (14.21), except that the //', term is missing.

14.2.3. Equality of Chemical Potentials for All Constituents in All Phases

It is important to realize that although the above derivation refers exclusively to
independent components, the conclusion that Hi is the same in all parts of the system
is true not only for components but indeed for all constituents. This is true because
although the HI, 712,.. • , nc terms in equation (14.19) are independent components,
we could rewrite the equation expanding the number of compositional terms to include
as many constituents as we like, as long as for each constituent added beyond the
number of independent components, we add an additional equation of constraint.
These normally take the form of equation (14.25), as we will show below. For example,
for a system having components A,B,C, equation (14.19) becomes

where ̂  signifies summation over all the phases. If we choose to include constituent
AB in the equation, it becomes

but we must impose an additional constraint

which keeps the number of possible independent variations in composition the same
as before, i.e., three. However, the conclusion in equations (14.21) about the equality
of Hi m all phases now includes constituent AB.

Clearly, as there is no restriction on how many constituents may be included in
this way, the conclusion that Hi is me same in all parts of the system holds for all
constituents. This is a fairly liberating concept, as it means, eventually, that one is
free to write any conceivable balanced reaction and form the equilibrium constant for
it, whatever the nature of the system. Whether the reaction is useful or can even be
investigated is up to the investigator, not thermodynamics.
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14.2.4. Chemical Potentials Balanced in All Reactions

It follows from (14.13) and dGT<P = 0 that

for systems at stable equilibrium. We have just seen that these terms in i need not
be restricted to components, as long as an additional constraint is imposed for each i
beyond the number of components. We now show what this constraint is. Consider
now any balanced reaction in this system, which can be represented by

where i/$ are the stoichiometric coefficients, positive for products and negative for
reactants, and M, are the chemical formulae of constituents in the reaction (see §13.1
for an example). This equation is simply a mass balance, as is the fact that for this
reaction,

which expresses the fact that at equilibrium, changes in the mass of one constituent
must be reflected by proportional changes in all the others. From (14.24) we can
express changes in all constituents in terms of the first one. Thus

Combining this with (14.22) we get

from which

or

which, as we have seen, is applicable to any balanced reaction among any constituents
of a system at equilibrium, and expresses the general condition, dGx,p = 0, for par-
ticular reactions. In other words, the chemical potentials in all conceivable balanced
reactions among system constituents are balanced (the algebraic sum is zero) at sys-
tem equilibrium. Only a tiny proportion of these are ever considered important enough
to think about or to warrant investigation, but every now and then someone shows
the usefulness of a new one, such as when a new complex species is found, or when
a new way of writing components is suggested (such as the exchange operators of
Thompson, 1982).
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14.3. FUNDAMENTAL EQUATIONS

Equations (14.10) to (14.13) have a special significance that needs discussion, but
first we note that all of them have at least one extensive property as a differential
term. We can obtain an equation having only differentials of intensive properties by
differentiating any of the integrated forms of these equations, i.e., (14.14) to (14.17),
and subtracting the corresponding differential form, (14.10) to (14.13). The result is
the celebrated Gibbs-Duhem relation, or "Gibbs 97," as that is the number it has in
Gibbs' original 1875 publication. It is

or

Gibbs 97 (14.26) shares with equations (14.10) to (14. 13) the remarkable property that
if it is integrable, that is, if sufficient experimental data are available (heat capacities,
activity coefficients, partial molar volumes, etc.) that each of the individual terms in
any one of the equations can be integrated over the range of conditions of interest,
then all thermodynamic properties are known for that phase. The distinction between
equations that are and that are not fundamental may be seen by comparing an equation
between

which is (14.13), with one between

i.e., with one between

Obviously, knowing G as a function of T we can calculate (dG/dT) or — S, but
knowing G as a function of (dG/dT) will not permit calculation of T. Changing any
of the independent variables in one of the fundamental equations reduces the amount
of information it can convey. Equations (14.10) to (14.13) and (14.26) are therefore
known as fundamental equations, and (14.13) in particular is the basis for almost all
the rest of this book.

The reader will not fail to note that the fundamental equations (14.10) to (14.13)
are relations that unite the state variables U,A,H,G with those independent vari-
ables that enable them to act as thermodynamic potentials, i.e., U(S, V, n\,n2, . . .);
G(T,P,ni,n2, . . .); and so on. Thus one might say that (14. 13) is a fundamental equa-
tion because G(T, P, n\ , n2, . . .) is a thermodynamic potential, and that an equation
relating the variables in (14.27) is not fundamental because G(S, P, n\ , n2, . . .) is not
a thermodynamic potential.

Before proceeding, we note again that the equations thus far have been entirely
in their extensive form. Each can be converted to the intensive form by dividing each
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term by (m + n2 + «3 + • • • + nc). S thus becomes S, V becomes V, etc., and the
Hi terms become mole fractions, Xi. Equations (14.10) to (14.13) and (14.26) thus
become

and (14.17) becomes

All applications to real systems use the intensive form.

14.3.1. Maxwell' s Equations

For closed systems (dXt = 0), applying the reciprocity relation (§2.2.6) to equations
(14.28)-(14.31) results in the set of "Maxwell's equations," which are often useful in
manipulating thermodynamic equations. These are
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14.4. CONDITIONS FOR MASS TRANSFER

There remain a couple of things to say about the conditions of equilibrium, equations
(14.21). One is that just as inequalities (gradients) in T or P are driving forces for
the transfer of heat and work, a chemical potential gradient is a driving force for
the transfer of matter. Consider for example equation (14.13) in the case of two
coexisting phases at a constant T and P, each of which is a homogeneous solution of
two components. Thus

If the system is closed, any matter that leaves one phase must enter the other, so that

Therefore, because dG = dG' + dG",

For the system as a whole, which is closed, the general relation

still holds, so

As before, we see that the condition of equilibrium (dG = 0) is that //, = ///.
But in addition we see that for dG to be negative (< 0), which is the criterion for
spontaneous change, either

or

In either case, spontaneous change calls for the transfer of mass (in this case com-
ponent 1) from the phase in which it has a higher potential to the phase in which it
has a lower potential. Thus the chemical potential is aptly named, as it tends to cause
matter to transfer to regions of lowest potential. As usual, we point out that although
there is this tendency, real systems may contain factors that prevent such change from
taking place, thus preventing stable equilibrium from being realized.
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14.5. THE AFFINITY AND CHEMICAL POTENTIALS

It is appropriate at this point to expand on a concept introduced in Chapter 5—the
affinity. We said that irreversible processes begin from some metastable state and
end either at stable equilibrium (or "on the stable equilibrium surface") or perhaps in
another metastable state closer to stable equilibrium than the first one. As an example
we used a binary alloy with varying degrees of disorder </>, and we concluded that the
expression

for irreversible reactions can be expanded to

where, by the normal properties of exact differentials, A = —(dU/d£)s,v, and where
£, the progress variable, indicates the degree of advancement of the system from the
initial metastable state towards the final state on some convenient scale. In the alloy
example, <i£ was identical to d<j>, i.e., increments of reaction were in fact increments
of change in the degree of order of the alloy. The reaction must always be, in our
terms, a quasistatic reaction, that is, an infinite succession of (metastable) equilibrium
states along an irreversible path, and to achieve this, the system must be subject to at
least one constraint in addition to the two required by Duhem's Law.

In considering open systems, we have introduced the idea of components moving
from place to place until they are of uniform potential and balanced throughout the
system (14.21; 14.25). But if we consider a metastable state where the chemical po-
tentials are under some constraint and are not balanced, then releasing that constraint
allows an irreversible redistribution of potentials to occur. This was in fact one of
our examples of metastable systems in Chapter 3. (§3.6.1). Now imagining that this
irreversible reaction takes place in a series of very small increments (d£ in moles)
gives us another (much more general) way of understanding the affinity.

Comparing (14.10) and (5.42),

we see that

or
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To see what this means, we need a relationship between dn,; and d£. We have already
mentioned reaction increments in this chapter, although we didn't call them that.
We said (§14.2.4) that because reactant and product constituents are related by fixed
stoichiometries, changes in their masses are related by (14.24),

But the only natural cause of such changes in these masses is a spontaneous or
irreversible reaction such as we are now considering, so it appears natural to identify
the increments in (14.24) with increments in the progress variable, d£. Thus

from which it follows that

In other words, increments of £ are now in moles rather than degree of disorder
and the rate of change of each constituent in a reaction is its (dimensionless) stoi-
chiometric coefficient. This may be quite opaque on first reading, but will become
almost trivial when understanding dawns. If for example we have a mole of A that
wants to change spontaneously into 5 moles of B, the reaction is A = 5B, and
(dn\/d£) = — 1 ; (dn^/d^) = 5. This just says that for every mole of A that disap-
pears, 5 moles of B must appear. This fairly obvious relation now allows us to link £
with the chemical potentials. From (5.39) we have

and by a simple transformation of variables (§2.2.7, especially equation 2.18), and
summing across all i constituents,

and because

it follows that

Comparing this with (14.25) we see that A = 0 is another way of expressing the
rfUs.v = 0 (or dG'p,p = 0) criterion of equilibrium.
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For example, for the reaction C>2 + 2H2 = 2H2O,

In a metastable mixture of oxygen and hydrogen, A then expresses the amount by
which the chemical potentials could be lowered by spontaneous reaction on release
of the metastable constraint, and is in fact the "driving force" of the reaction. The
driving force becomes zero when 2yuH2 + Mo2 = 2//H2o-

Another useful relation involving A is obtained by combining ( 14.4 1 ) with ( 1 1 .20),

Multiplying by n, and summing across all i constituents, we get

or

where Q = Hi ̂  as explained in § 13.1. It is a term with the form of the equilibrium
constant, but in which the activity terms do not have their equilibrium values, but
some metastable values. Then by (13.8),

From what we have said, equations (14.10) through (14.13) can also be written
as

We have tried to show that the affinity is a convenient representation of how far a
system is from stable equilibrium, and increments in the progress variable allows us
to consider the system at various stages as it progresses towards stable equilibrium.
This "progress" is a part of the model we call a quasistatic reaction — a continuous
succession of metastable equilibrium states in an overall irreversible reaction.

Also we might mention again here a point we have made before (Chapter 2) but
which can easily be forgotten, and that is that the differential quantities in all our
equations, such as (14.43) through (14.46), are not necessarily infinitesimals, and can
be of any magnitude. Prigogine and Defay (1954) in their classic treatise emphasize
this point explicitly by often using a 6 instead of d in their equations. Equation (14.43)
for example would become
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We have not resorted to special notation, but remind the reader at intervals that
differentials are denned as of any size.

So far we have considered the progress variable and the affinity in connection
with single reactions. It is much more useful to include many simultaneous reactions,
in which case the progress variable most conveniently refers to the rate-limiting
reaction, i.e., the slowest, of the series of reactions considered (Helgeson, 1979). By
calculating the mass changes of all species of interest after each irreversible increment
of this £, a whole new world of geochemical modeling opens up, which we consider
in Chapter 19.

14.6. THE PHASE RULE

The phase rule is a subject at once simple and complex, depending on how you look
at it. It receives rather little attention in chemistry texts, because when applied to
simple systems in laboratory situations, it is fairly simple. It receives a great deal
more attention from geochemists, who find it much more complex to use, because
they are interpreting much more complex systems with complex histories millions of
years old. Because the requirements of the equilibrium model are so well defined, it
is invariably used as a base or starting point in interpreting the petrogenetic history
of suites of related rocks, with the effects of thermal, pressure, or chemical gradients
superimposed. The phase rule is one of the tools most useful in defining the equilibrium
state (textural observation is another), and hence in developing petrogenetic models.

14.6.1. Phases and Components

In Chapter 3 we defined a phase as a homogeneous body of matter, generally having
distinct boundaries with adjacent phases, and generally physically separable from
them. Shape and position are irrelevant, so that a phase can occur in one or many
places in a system, and can be of just about any size and shape. Liquids and gases
often conform quite closely to this definition, and individual minerals are also usually
regarded as phases, despite not being really homogeneous. We will discuss some of
the difficulties this introduces after explaining the Phase Rule.

The components of a system are the smallest number of formulae required to de-
scribe all the phases in the system. The word "formula" refers here to any assemblage
of elemental symbols, each having any stoichiometry, positive or negative. The prob-
lem here is, what are we to regard as the composition of the phase? Do we include
trace elements? Again, we postpone discussion, and will discuss the Phase Rule for
fairly simple cases where these problems do not appear to arise.

A system having a fixed composition may have a number of equivalent sets of
components. For example, the compositions of all phases in the system ABC can be
described by the components (A,B,C); (A,ABC,AC); (A2B,B,B_iC); or any other
three points lying in the ABC plane. Any two compositions are insufficient and any
four are too many, because one of the four could always be described by a suitable
combination of the other three. ABC is therefore a three-component system.

We continue to use the term constituent in the sense denned in Chapters 3 and
11. A constituent is any combination of the components of a system, in other words,
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any formula that can be devised from the elements comprising the system. Systems
therefore have an essentially infinite number of constituents, and all components are
constituents but not vice versa. We use the term constituent in order to preserve the
term component for use in its strict or "Phase Rule" sense, and because the term
"species" is not applicable to solids.

14.6.2. Derivation of the Phase Rule

A single homogeneous phase such as an aqueous salt (say NaCl) solution has a large
number of properties, such as temperature, density, NaCl molality, refractive index,
heat capacity, absorption spectra, vapor pressure, conductivity, partial molar entropy
of water, partial molar enthalpy of NaCl, ionization constant, osmotic coefficient,
ionic strength, and so on. We know however that these properties are not all inde-
pendent of one another. Most chemists know instinctively that a solution of NaCl in
water will have all its properties fixed if temperature, pressure, and salt concentration
are fixed. In other words, there are apparently three independent variables for this
two-component system, or three variables which must be fixed before all variables
are fixed. Furthermore, there seems to be no fundamental reason for singling out
temperature, pressure, and salt concentration from the dozens of properties avail-
able, it's just more convenient; any three would do. In saying this we have made
the usual assumption that "properties" means "intensive variables," or that the size
of the system is irrelevant. If extensive variables are included, one extra variable is
needed to fix all variables. This could be the system volume, or any other extensive
parameter.

This intuitive conclusion is fortunately entirely in accord with our fundamental
equations. If it is true that a fundamental equation can represent all possible varia-
tions of the thermodynamic properties of a homogeneous system, it must have the
right number of independent variables. Equation (14.26) (Gibbs 97) contains c + 2
intensive variables (c chemical potentials, T and P) and the equation is a relationship
between them, so there are evidently (c + 2 - 1) or c + 1 independent variables in
any homogeneous phase, consistent with our intuition in the water-salt system above.
If extensive variables are included, equations (14.10) to (14.13) show that there are
c + 3 variables in each case, with one linking equation, giving c + 2 independent
variables. Note that we do not count the coefficients as variables (e.g. T, P, and ̂
in (14.10)) because they are simply derivatives of the other variables and hence are
not independent of them. Note too that the same conclusions are reached if we start
with the intensive form of the equations, (14.28) to (14.32). We need only recall that
the terms n\, ni, r i j , , . . . , nc represent c independent compositional terms, whereas
X\, X2, Xi,.... Xc represents only c — 1 compositional variables, the final mole
fraction being fixed if all but one are given. Thus in (14.28) for example there are
c — 1 independent compositional variables, plus three other intensive variables (U,
S, and V), and one linking equation (equation (14.28)), giving c — 1 + 3 — 1 or, as
before, c + 1 independent variables in a single homogeneous phase.

Now consider two phases at equilibrium, say solid NaCl and a saturated salt solu-
tion. Again, intuition or experience tells us that we no longer have three independent
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variables, but two, because for example we cannot choose the composition of the salt
solution once T and P are fixed—it is fixed for us by the solubility of NaCl in water.
If we then consider the possibility of having a vapor phase in equilibrium with the
salt and the solution, we see that we lose another independent variable because we
can no longer choose the pressure on the system independently once the temperature
is chosen—it is fixed by the vapor pressure of the system. So it would seem that in
general we restrict the number of independent variables in a system by increasing
the number of phases at equilibrium. This is also predictable from (14.26), because
in a multi-phase system while there are still only a total of c + 2 variables (T, P and
all the n terms being the same in all phases) there are now a number of relations
linking them equal to the number of phases, there being one equation (14.26) for each
phase. Therefore if there are p phases, there are c + 2 — p independent variables at
equilibrium. These independent variables are also called "degrees of freedom," / ,
and the result is the Phase Rule,

We emphasize that the "degrees of freedom" include only intensive variables, and
inasmuch as there is a functional relationship, known or unknown, between any
intensive variable and all the others, the quantity c — p + 2 refers to any combination
of the intensive variables of a system. Naturally, in practice, these are normally T, P
and concentrations.

Degrees of freedom can also be described as the number of intensive variables that
can be changed (within limits) without changing the number of phases in a system.
This point of view is perhaps more useful to someone looking at a phase diagram;
thus divariant, univariant, and invariant systems correspond to areas, lines, and points
in a P-T projection. We prefer however to emphasize the fact that coexisting phases
reduce the number of independent variables, and that some systems have all their
properties determined. This fact is very useful, as we will elaborate on below, and its
explanation in terms of the Phase Rule is a very beautiful example of the interface
between mathematics and physical reality.

14.7. BUFFERED SYSTEMS

A great deal of the power and usefulness of the Phase Rule in geochemistry comes
from its demonstration of which systems are divariant, and which therefore have all
their properties fixed at a given T and P. What do we mean by this? Duhem (Chapter
5) said that any closed system has all properties fixed by fixing only two of them,
e.g., at fixed T and P. Thus our homogeneous NaCl solution at fixed T and P has
definite fixed values of all its dozens of properties, and this is still true no matter
how many components are present; thus sea water also has all its properties fixed
at a given T and P. But these systems only have fixed properties by virtue of be-
ing closed, which eliminates all changes in bulk composition; this is not what we
mean by divariant. A divariant system in our sense at a given T and P will have
all its properties fixed including the composition of all phases in the system, regard-
less of changes in the bulk composition of the system (i.e., changes in the amounts
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of the components used to define the system, not adding more components). For
example, our saturated NaCl solution at T and P has a fixed aqueous phase compo-
sition. Changing the number of moles of water or of salt in the system will change
the masses of the solid and aqueous phases, but will not change the composition
or the properties of either phase. The same cannot be said of seawater. Changing
the bulk composition of seawater, which is saturated with one or even with several
phases, does change the properties of the system. Divariant systems are of course
those that have the same number of components and phases. Because the presence
of a certain number of phases fixes all the properties of the system at given T and P,
including the compositions of all phases, the system has a certain resistance to any
process attempting to change these properties, and it will continue to resist change
until the process in question succeeds in decreasing the number of phases. The sys-
tem is therefore said to be "buffered". For example, a rock consisting of gypsum
(CaSO4 • 2H2O) and anhydrite (CaSO4) has two phases and two components, so its
properties are fixed at a given T and P. Thus the activity of water is fixed through
the relation

for which

If the standard states for the solid phases are the pure phases at T and P, their
activities are both one, and the equilibrium constant equals the activity of water, i.e.,
the activity of water is a constant (fixed) as long as (pure) gypsum and anhydrite
coexist. Water introduced along cracks in this rock will tend to change the activity
of water in the system, but no change will in fact take place (at least in the model)
until all the anhydrite is converted to gypsum, at which point the system is no longer
buffered and the water activity can assume a new value fixed by the introduced
water.

Systems having fewer than two degrees of freedom (that is, one or zero) are also
of course buffered in the same way. A pure component at its melting point for example
(c = l,p = 2,f= 1) is buffered against changes in temperature or pressure. If heat is
added, the temperature does not rise until the solid phase has disappeared. Divariant
systems at a given T and P are also in principle buffered against changes in T and P,
but unless reactions with a large AH or AV are involved, which generally means a
melting or vaporization reaction, the buffering effect will be small. Thus the principle
of buffering should not be confused with the buffering capacity, which depends on
the reactions involved and the proportions of the phases. Univariant systems are
particularly important in metamorphic petrology where they are known as isograds.
Invariant systems are quite rare in nature but at least one is fairly common in the
laboratory; the ice-water-water vapor triple point is frequently used in the calibration
of thermometers at 273.16 K.

This property (of resisting change) of systems having two (or fewer) degrees of
freedom has been known for over 100 years, so one could be forgiven for being
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surprised at the great change (it's probably exaggerating to call it a revolution) in
geochemical thought and practice brought about when Hans Eugster drew attention
to its usefulness in experimental and theoretical work. The original application was
a demonstration that the assemblages hematite-magnetite-water, quartz-fayalite-
magnetite-water, nickel-nickel oxide-water and others could be used in experimen-
tal work to control the oxidation state of experimental systems by separating the
"buffering system" (one of the above) from the experimental system by a membrane
(platinum) permeable to hydrogen. The buffer system, having the same number of
components as phases, as well as having an element (Fe, Ni) in two different valence
states, fixed the properties of each of its phases, and in particular fixed the oxygen
and hydrogen fugacities in the water. The hydrogen diffused through the membrane
and controlled the oxidation state of the experimental system, which also included an
aqueous phase. This arrangement is illustrated in Figure 14.2. The buffer system thus
"imposes" its oxidation state on the experimental system, and will continue to do so
for some time even if the experimental system consumes hydrogen or oxygen in its
reactions. Since then, innumerable buffering systems and experimental arrangements
have been devised, the details of which are not of interest here. What is interesting is
the way that the concept of buffered systems has pervaded geochemistry. It is hardly
possible today to discuss a geochemical problem without mentioning a buffering re-
action of some sort, whereas before Eugster, such reactions were hardly mentioned,
and numerous experiments were performed with results of very limited or zero use-
fulness because the experiments were not buffered, and the experimental conditions
were hence not completely defined.

The buffering capacity of systems with / < 2 explains only part of their sig-
nificance in geochemistry. Perhaps even more importance lies in the fact that their
properties being fixed, they are thus in principle determinable, and a great deal of
effort has been expended in determining these properties. One cannot determine the
properties of "granite," only of specific granites, but the (equilibrium) properties of
coexisting quartz, albite, and K-spar in the system SiC>2 — NaAlSisOg — KAlSisOg
at a given T, P are fixed and determinable. Buffered systems exist not only in the lab-
oratory, but in nature as well, and other natural systems can be seen to have properties
intermediate between those of certain buffered systems, so that the buffering concept
provides a framework for thinking about natural systems. For example, hematite and
magnetite coexist in many iron formations, and rocks containing magnetite but not
hematite or wiistite (FeO) are thought of as lying between the magnetite-hematite
and magnetite-wustite buffers in terms of oxidation state. Similarly syenites contain-
ing no quartz and no nepheline can be thought of as lying between the quartz and
albite-nepheline buffers for SiOa.

In view of the fact that the majority of experimental applications of the buffering
principle have been in the control of specific gaseous or aqueous species, we should
perhaps reiterate that in a buffered system all properties are fixed, and that completely
solid systems are no exception. Thus for example although the assemblage hematite-
magnetite buffers the activity of oxygen through the reaction
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FIG. 14.2. Double-capsule technique designed to hold an experimental system at a fixed,
known oxidation state. This arrangement is held in a pressure vessel containing a fluid at high
temperature and pressure. The pressure is transmitted to the experimental system by the flexible
walls of the gold and platinum tubes, and at the experimental temperature hydrogen, but not
other components, is able to diffuse through the metals.

it also buffers the FeO activity through

the C>3 activity through

as well as the activity of any others of the infinite number of constituents in the
Fe O system. The system having at least as many phases as components could

the Fe artivitv throiiprl
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be thought of as a kind of "absolute" buffer. That is, the properties of all phases are
absolutely determined once the remaining variables are chosen, and of course once
equilibrium is achieved. The system properties, dozens of them, are state variables,
are independent of the system's history, and in principle are determinable, given
enough data. We add to this statement once more the cautionary note that in nature
a buffering assemblage may not in fact have buffered anything, because of being
present in too small a quantity, i.e., the buffering capacity may have been negligible,
or because of unfavorable kinetics. Such assemblages are nevertheless always of
interest in interpretations of geological history, because they are locations where
thermodynamic parameters have a fixed and often known relationship.

Many systems having / = 3 or more are also spoken of as buffers. The most
common examples are of course the aqueous buffers so commonly used in chemistry,
usually to control the pH of a solution. For example, a solution containing sodium
acetate and acetic acid will resist changes in pH when an acid or base is added due
to the common ion effect. The pH does not change as much as it would if the NaAc
and HAc were not there, but it does change, because the system is not an "absolute"
buffer in the sense we have been using. Nevertheless, it does resist change and so is
buffered. Other systems can be buffered simply due to the large mass involved. Thus
the chlorine concentration of the ocean is not controlled by any process or reaction,
but pouring salt into the ocean doesn't change it at all; it is buffered by the sheer size
of the system.

14.7.1. Activities in Buffered Assemblages

It is often useful to be able to calculate the activity of components of mineral as-
semblages, for example the activity of SiC>2 in the assemblage forsterite-enstatite
(Mg2SiO4 — MgSiC>3), or the activity of Na2O in the assemblage albite-andalusite-
quartz (NaAlSiaOs — A^SiOs — SiC>2). For one thing, the activity of silica in var-
ious assemblages has been proposed as a useful way of classifying igneous rocks
(Carmichael et al. 1974), but there are as well some geochemical problems where
such a calculation is necessary. We discuss here only the calculation of activities
of buffered components; the relation between activities, concentrations, and activity
coefficients for unbuffered constituents is discussed elsewhere.

For buffered components, the method has already been used above, in the dis-
cussion of the activity of water in the assemblage gypsum-anhydrite. In principle,
all components, no matter how chosen, are fixed when the variance is zero, which
in geological examples is usually when T and P have been chosen for a divariant
system. For this type of system, one only has to write the buffering reaction and find
the required free energy data to calculate the activity of any component using the
equilibrium constant. It is not a question of finding out if the buffering reaction ex-
ists; it does. To take a different example, consider the system SiO2 - A12O3 at 25°C,
where we will suppose that the only stable compound is andalusite, A^SiOs. With two
components, both the assemblages quartz + andalusite and corundum + andalusite are
divariant, and hence buffered at 25°C, 1 bar. In Figure 14.3a, this is shown in terms
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of the G — X section. The free-energy loops shown are entirely hypothetical, as none
of these minerals has as yet been shown to deviate from perfect stoichiometry.

To find the activity of A12O3 in the assemblage quartz + andalusite, we need only
write

for which the equilibrium constant is

When pure quartz and andalusite having unit activities coexist,

Similarly when corundum and andalusite coexist,

K is calculated from

Using data from RHF,

Thus the activity of A12O3 in andalusite + quartz (and the activity of SiO2 in
andalusite + corundum) at 25°C is 0.093 (pure corundum standard state). The activity
of A12O3 in andalusite + corundum is of course 1.0.

It is instructive to note that the activity of A12C>3 is also related to a chemical
potential difference by (equation (11.20))

and because the standard state substance for A12O3 is corundum,



FIG. 14.3. (a) Absolute Gibbs free energy versus mole fraction for the system AhOa-SiCh
at fixed P and T. The width of the hypothetical free energy curves for each mineral is greatly
exaggerated, (b) Gibbs free energies of formation for the same system at 25°C, 1 bar. Note that
the free energy of andalusite is 1/2 the tabulated value, because the mole fraction axis requires
that the mid-point contain 1/2 a mole of AUOa and 1/2 a mole of'SiCh. The difference between
corundum and the intersection of the extrapolated quartz-andalusite join is greatly exaggerated
for visibility.

345
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and therefore

This quantity is the difference between corundum and the intercept of the quartz-
andalusite tangent with the A^Oj axis in Figure 14. 3a. In Figure 14.3b we see that
this relation also holds when free energies of formation are used rather than absolute
molar free energies as in Figure 1 4.3a. The equivalence of the left-hand side of (14.50)
with ArG

0 in (14.49) is made clear by realizing that by equation (14.25)

SO

Substitution of this in the left-hand side of (14.50) gives the free energy of reaction.
In other words the free energy of reaction of any buffering reaction such as (14.48) is
equal to the difference between the free energy of a pure component and the "buffering
tangent intercept" in a diagram like Figure 14.3, which in turn is directly related by
an equation like (14.50) to the activity of the buffered component.

14.8. OSMOTIC SYSTEMS

We return now to a discussion of open systems, which we said were of two types.
The first type is simply the various phases in a heterogeneous closed system, consid-
eration of which allowed us to develop the full form of the fundamental equations.
The second type consists of a system and an environment, connected by a membrane
or membranes permeable to selected constituents of the system. The system is thus
"open" to its environment because certain constituents can enter or leave the system,
and these constituents can have their activities controlled by the environment rather
than by the system. This arrangement has obvious geological applications in metaso-
matic and alteration zones, where a fluid is introduced into a rock (the system) from
somewhere else (the environment).

The thermodynamics of this situation has been worked out independently by
D.S.Korzhinskii and J.B.Thompson, Jr., and we follow their ideas here. We can begin
by showing that a new thermodynamic potential can be derived for this type of system .
Consider the osmotic system in Figure 14.4, where we represent the environment by a
piston-cylinder arrangement containing pure component B connected to the system,
which contains a homogeneous solution of A and B, by a membrane permeable only
to B. This system + environment is in fact a composite system as defined in Chapter
3, i.e., a system made up of two sub-systems. In the following discussion we will
refer to the part containing both A and B as "the system," and the whole thing as
"the composite system" or "the system plus environment." Both the system and the
environment have the same temperature, T, but the pressure on the system, Pu>iai,
and the pressure on the environment, P^, are independent of one another. Obviously
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FIG. 14.4. The second type of open system (Figure 14.1b) where the system contains two
components A and B, and the environment contains pure component B. The temperature is
the same in both but the pressures are independent, so that the chemical potential of B in the
system (A,B) is controlled by that in the environment.

there is one extra degree of freedom compared to the system (A,B) considered as a
closed system (/ = 4 instead of 3), because now two pressure terms instead of one
must be fixed to completely determine the system, and we will return to this fact
shortly. For now, consider the fundamental equation (14.13) applied to this system,
with Pfotai abbreviated to P. Thus

The closed system criterion for equilibrium is dG-r.p = 0, but this is obviously
inappropriate in this case because /v,B is certainly not zero and dn^ is not necessarily
zero because we have said nothing about P'B . There are in fact no conditions pertaining

T, P, and n^ in the system are fixed, so this reduces to
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only to the system that will specify the equilibrium state when the environment is
attached to it. This is essentially self-evident. A thermodynamic potential appropriate
for the system plus environment must evidently contain terms referring to both parts
of the composite system. In Figure 14.4 the required four parameters would be either

or alternatively

because /UB is completely defined by T and PB • The second set is more commonly
used, because of the fact that /ZB could in general be changed by processes other
than by changing PB on the pure phase B. The pressure on the environment could
be kept constant, for example, and //B controlled by adding other components to
the environment, the membrane still being permeable only to B. The experimental
buffering system in Figure 14.4 is an example of such an arrangement.

So the problem is to find a thermodynamic potential for a (composite) system
having the independent variables T, P (represented by Ptotai in Figure 14.4), nA, /UB-
The easiest way to do this is by a Legendre transform of a potential already established
for other parameters. Starting with

we want a new function, which Thompson (1970) has called L, which preserves the
potential qualities of G but has different independent variables; i.e., we want

As in Chapter 2 we find the Legendre transform by subtracting from G the product
of the old variable and the derivative of the old function with respect to that variable.
Thus

or

To see more clearly that we indeed now have the function we wanted, we can
write, again following the procedure of Chapter 2,

Adding to this

we get
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showing that L has (T, P, nA, MB) as independent variables. L is a function that is
minimized at equilibrium for given values of T, P, nA and /^B, in exactly the same
way that G is minimized for given values of T, P, nA and nB. It follows too, that
because (from (14.17))

and

that

At constant T, P, and nA , (14.51) becomes

Since nB is not zero, dL is clearly only zero when d/iB is zero, which will of
course be when /ZB is the same in the system and in the environment.

Generalized forms of (14.51) and (14.54) are

and

where ]PA and J^B represent summation overall "system components" and "environ-
ment components" respectively. These could now be listed with our other fundamental
equations, (14.55) with (14.10) to (14.13), and (14.56) with (14.14) to (14.17).

Similarly, the intensive forms,

and

can be listed with the other intensive forms, (14.57) with (14.28) to (14.32) and (14.58)
with (14.33).

Having derived the open system potential quantity, L, we must now admit that it
is not much used, any more than are the other thermodynamic potentials apart from
G. You never see tables of AL in the way that you see tables of AG or AH (you
never see tables of At/ either, but that doesn't mean it's not important). It is not used
probably because it is unfamiliar, and the number of real applications may be limited.
One application is discussed by Ghiorso (1987) and used by Ghiorso and Carmichael
(1987). They used L to calculate the equilibrium composition of melts at given values
of T, P and jiQ2; i.e., values of /o2 fixed by various buffer assemblages.
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14.9. THE PHASE RULE IN OPEN SYSTEMS

We return now to our observation that the open system in Figure 14.4 has one extra
degree of freedom (/ = 4) compared to the homogeneous fluid phase (A,B) by itself,
i.e., if it were not connected to the environment. A number of components could be
controlled externally in this way, each with its own membrane, and each would add
one degree of freedom to the composite system. That is, each must have its chemical
potential specified before the composite system can be fully defined. Therefore if
we separate components into two types, those whose potentials are fixed within the
system (call them ci9)and those whose potentials are fixed in the environment (ce) (the
nomenclature of these two types of components will be discussed separately below),
the phase rule as derived previously (14.47) would be written

and adding a degree of freedom for each externally controlled component, we have

which can be called an open system Phase Rule.
Natural systems, which can exist over a range of temperatures and pressures (such

as a granite), must have at least two degrees of freedom (i.e., T and P). Combining
the relation / > 2 with the Phase Rule, (14.47), gives

This says that the maximum number of phases to be expected in any naturally occur-
ring system is given by the number of components in that system. This is called the
"Mineralogical Phase Rule," and was pointed out by Goldschmidt in 191 1. In open
systems,

so that the Mineralogical Phase Rule becomes

where cs = c — ce. This simply says that the maximum number of phases expected
in an open system is the number of components whose potentials are controlled by
the system rather than by the environment. As applied to rocks, these are deceptively
simple relationships because of the difficulty of distinguishing the two types of com-
ponents. However, speaking in fairly general terms, the Mineralogical Phase Rule
(14.60) shows why most rocks have a relatively small number of phases, relative,
that is, to the large number of phases that could be formed from the components
present. Similarly, (14.61) shows why metasornatic and altered rocks tend to have
fewer phases than their unaltered equivalents.

14.10. MORE ON COMPONENTS AND PHASES

Before proceeding to a discussion of the applications of the Phase Rule in geology, we
must unfortunately return to the question of the definition of components and phases.
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FIG. 14.5. Some types of components suggested by various authors.

14.10.1. Components

Figure 14.5 shows a number of the types of components introduced over the years.
This profusion of names reflects the difficulty geologists have encountered in applying
the Phase Rule to naturally-occurring systems. In one sense, there is only one kind
of component—the components we finally choose to include in our genetic models.
We subscribe completely to the thought expressed by Terry Gordon at the head of
this chapter, i.e., that components are part of the thermodynamic model (as is the
Phase Rule), and not part of rocks, and in that sense there is no need to worry about
whether trace elements are components or not. If your model needs them, they are;
if not, they are not. However, saying this does not completely solve the problem of
choosing your components in a specific system. Therefore we include a discussion
of the various types of components with the hope of clarifying the choices that must
be made. We should also mention that this is one of the topics where the use of linear
algebra is most helpful.

To begin with, we note the fairly extensive terminology proposed for those com-
ponents we have called "system" and "environment." This reflects a dissatisfaction
with the early definitions of Korzhinskii and Thompson ("mobile") because it was
realized, not least by Korzhinskii and Thompson, that in fact the mobility of compo-
nents was irrelevant to the distinction actually being made. For example, the activity
or chemical potential of SiO2 could be fixed within the system by the presence of
quartz, yet SiC>2 might be quite mobile in the aqueous phase, even escaping into the
environment. The real distinction is whether the chemical potential of the component
is fixed within the system, and hence by the masses of the components in the system,
or fixed in the environment, by whatever means. We apologize for adding yet more
names to the list, but we do not suggest that the names we have used are in any
way better or more suited to real problems than the others. We used them simply
because they were suggested by the arrangement in Figure 14.5, and they should
probably not be used outside of the present context. All component types other than
those equivalent to our "environment" components are various types of "system"
components.
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The following definitions are from Korzhinskii (1959).

Trace Components are those components, usually chosen as elements, that occur at
very low concentration in the minerals of the system (e.g., V, Cr, Co etc. in a granite),
and are not an essential part of any phase in the sense that their concentrations could
be varied over wide ranges without changing the number of phases. Each therefore
could represent a degree of freedom, but it is usually one that doesn't interest us.

Accessory Components. Some components occur almost entirely in one phase,
and at essentially trace levels in all other phases. The commonest examples are P2Os
in apatite; TiC>2 in rutile, sphene, or ilmenite; ZrC>2 in zircon; and Fe2O3 in hematite.
In each case the presence of the component causes a phase to exist, but no degree of
freedom is added (changing the amount of Ti in a rock containing rutile, for example,
will change the amount of rutile but no other properties of the rock, including the
trace levels of Ti in the other phases, assuming equilibrium).

Isomorphous Components are those that substitute freely for one another on a
lattice site. If the substitution is truly ideal, i.e., if the mineral properties are unaffected
by the substitution, then the two components act as one and can be counted as a single
component. No two elements are exactly alike, however, so mineral properties are
never completely unaffected by substitution. The question is whether the change is
sufficiently small that the two components can be counted as one for the purposes of
the Phase Rule. Figure 14.6a illustrates the problem.

Excess Components are those which occur in the "pure" form, as well as in some
or all of the other phases in the system. For example SiO2 occurs in all the silicates
present as well as in the form of quartz in many rocks. The difference between an
excess component like SiO2 and an accessory component like TiO2, which might
also occur in the pure form (rutile), is that apart from the rutile, TiO2 occurs only in
trace quantities, while SiC>2 is an essential component (meaning they could not exist
without it) of many other minerals. Ignoring TiC>2 and rutile is like removing all rutile
from the rock, or pretending not to see it. Ignoring quartz and SiC>2 is like projecting
a diagram from the SiO2 apex of the system; all phases are saturated with quartz, but
quartz does not appear in the diagram.

H2O has also sometimes been treated as an excess component. Although obviously
not a phase in the rocks as we see them now (fluid inclusions don't count), many rocks
have assemblages that are consistent with the former presence (during metamorphism)
of an aqueous phase. Unfortunately, they are also consistent with the possibility that
water, although present, did not exist as a phase, because the mineral assemblage
could be the same in either case. Most metamorphosed pelitic rocks are of this type
(an example of a mineral assemblage that is not the same in these two cases is described
below). However, the general observation that the water content of metamorphosed
rocks decreases as the grade of metamorphism increases shows that water escapes
from rocks during metamorphism. Whether it escapes as a nearly pure water phase, and
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FIG. 14.6. Two coexisting solid solution series m — n and o — p in the system ABC. (a).
Components B and C behave identically in both solid solutions, so that any single pair of solid
solutions needs only two components, e.g. A and (B,C). If phase q appears, three components
are needed, (b). A and B do not behave identically,and three components are needed in all parts
of the system.

is therefore an excess component, or whether it diffuses out along grain boundaries
with //H2o less than maximum cannot be distinguished by use of the Phase Rule.
If it was a phase, it is no longer there; if it was not a phase, its potential was not
controlled by the mass of water in the rock but by the nature of the escape channels
and the enclosing rocks; i.e., it was environmentally controlled, and the number of
mineral phases is the same. Other evidence may of course be brought to bear on
the question, such as the demonstration of /xn2o gradients in certain directions, but
generally speaking for those rocks in which water is not a determinative component,
the Phase Rule is satisfied either by water as "excess," or water as "environmental."
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Determinative Components are those left after subtracting all the components in
the above categories. They are thus the set of independent components the abundances
of which control the nature and proportions of the phases, other than those eliminated
from consideration. The determinative components are those that are used in plotting
diagrams of the phase relations.

As shown in Figure 14.5, we have not yet completed the consideration of terms
used to describe components. Thompson (1959) considered components in the context
of a series of metasomatic zones, and in addition to the terms actual and possible
used by Gibbs, introduced the terms inactive (n', changed in 1970 to buffered , and
called Cmin by Weill and Fyfe, 1964), ultimate (n"), and nonvariable. (Gibbs also
occasionally used the term "ultimate components," but defined only by the context
and slightly different from Thompson's usage).

All these terms for various kinds of components are perhaps useful, and the
discussions of Thompson, Weill and Fyfe, and Korzinskii are recommended reading
for those particularly interested in this topic. We prefer however to offer the discussion
on applications, which follows, unburdened by the details of the definitions and
discussions by these authors. Our discussion could only get more difficult to follow
if we introduced these terms, which are in fact not much used. Our point of view with
respect to the disagreements expressed by these authors should be apparent from our
discussion.

14.10.2. Phases

Because "component" is an abstract concept, it is fairly easy to accept the idea that
components are part of the thermodynamic model. "Phases," on the other hand, are
generally regarded as physical objects, such as coexisting water and ice (two phases),
or the grains of quartz in a granite (one phase). Actually, however, the word "phase"
is used in two senses (not to mention other meanings in other fields). We cannot now
change common usage, in which the word is used to mean physical entities as in
the examples just given. However, in the thermodynamic model, phases are defined
as physically distinct, homogeneous, mechanically separable, and sufficiently large
that surface energy is not significant. Each of these criteria presents problems when
looking at natural phases.

Minerals show inhomogeneities of many types. Some of these, such as solid and
fluid inclusions, alteration products, and so on can be regarded as separate phases, but
compositional zoning is very common, as are structural defects and surface features of
many types. "Physically separable" is also a troublemaker in some cases. Is a colloidal
solution one phase because ordinary filtering will not separate the suspension? And if
a method is found to separate a given colloidal suspension, the more general question
is how small must particles be, or how large must nuclei get before we have one phase
or two phases respectively? A more mineralogical example is exsolution lamellae—
how fine must they be to be called one phase? Then there are the mixed-layer clays,
where compositional differences can be gradational down to the unit cell level. These
questions may be thought to be like asking "when does a stream become a river?,"
but they are not. There is in principle a phenomenological difference between one
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phase and two phases, where the "phenomena" are megascopic and can be checked
against the Phase Rule. Zen (1962) discusses this problem and suggests a couple of
tests (phenomena to look for) in the case of the mixed-layer clays.

There are also cases where matter, even pure matter, exists, yet is not a phase.
The best known geological example is perhaps intergranular water, i.e., water that
exists along the grain boundaries of a rock. In rocks water is of course not the only
substance to accumulate along the boundaries of crystals, and this zone is one of the
more interesting relatively unexplored areas of geochemistry. Nevertheless, even if
it were pure, water would only be a phase in this position if it exhibited the same
properties as would bulk water at the same T and P. The properties of intergranular
water have never been measured, but it is certain that they would depend on factors
such as the nature of the boundary crystals and the thickness and nature of the water
layer. It is also certain that until the layer of water attained some critical thickness,
its fugacity would be less than that of bulk water at the same T and P (otherwise
it would be a phase) and it is this that most clearly shows its non-phase nature. As
usual, we find that nature is very complicated, but the thermodynamic model is quite
simple.

We have already mentioned (§3.3.5) some of the reasons that real equilibrium
states are only approximations to the true equilibrium state required by the thermo-
dynamic model. These had to do with imperfections in minerals, and by the same
reasoning minerals themselves are not part of the model. That is, they are not phases
in the thermodynamic sense, despite common usage. However, just as natural systems
approach true equilibrium sufficiently closely that thermodynamics can be applied to
them, so naturally occurring phases such as minerals approach thermodynamic phases
sufficiently closely that thermodynamics can be applied to them; e.g., they usually
obey the Phase Rule. Obviously, some minerals approximate a thermodynamic phase
more closely than do others; e.g., almost any quartz crystal is more homogeneous
than a zoned plagioclase. But on close examination, it will be found that no minerals,
and perhaps no solids, satisfy the requirements of the thermodynamic model. Ther-
modynamic phases are just as much an abstraction as thermodynamic components or
thermodynamic equilibrium, or any other part of the thermodynamic model.

14.11. APPLICATIONS OF THE PHASE RULE

Interpretation of the origins of rocks formed by complex processes millions of years
ago at high temperatures and pressures, and in which no trace of any fluid phase,
if once present, may now remain, is obviously not easy. These ancient systems are
considered to have been of both open and closed types, sometimes both at different
stages in their development. There are no rules to aid in distinguishing these two kinds
of ancient systems, only insight based on geological knowledge and experience,
guided by thermodynamic principles. As in many areas of science, two different
investigators are very likely to develop two different hypotheses based on the same
observations of physical reality. Because a large part of this problem is geological and
not thermodynamic, any discussion on our part is necessarily only an introduction,
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but we can discuss some examples, which at least shed light on the thermodynamics
involved.

To begin with, recall the Mineralogical Phase Rules, (14.60) and (14.61), which
can also be written

and

Thus the maximum number of phases to be expected in a natural system is de-
creased by one for each "environmental" component, compared to the same system
having that component as a "system" component. In other words, systems having
/ < 2 will lose one phase for every component that is given an arbitrary potential.

14.11.1. CaS04-H20

This is very well illustrated by G — X diagrams such as Figure 14.7b, for the
CaSC>4 — H2O system shown in Figure 14.7a. The coexistence of the two phases
gypsum and anhydrite fixes or buffers //H2o> as mentioned earlier. This is a specific,
exact value of /UH2o (which of course must be less than fj, for pure water), which is
extremely unlikely to be chosen if /xn2o is chosen at random. In fact if the points
representing gypsum and anhydrite in Figure 14.7b are truly points and not areas, the
probability of its being picked at random is precisely zero. Therefore if the chemical
potential of water is fixed in the environment, with no reference to the requirement
for gypsum-anhydrite equilibrium, it will not be fixed at the value required for that
equilibrium. Depending on whether its value is greater or less than the value required
for gypsum-anhydrite equilibrium, either gypsum or anhydrite respectively will be
the stable phase in the system, but the point is that only one phase instead of two will
exist in this two-component system at fixed T and P, as a direct result of //H2o being
fixed externally.

Extensive beds of both gypsum and anhydrite are found in nature, and occurrences
of both phases together are not rare. Generally speaking these occurrences are entirely
consistent with a surface origin for gypsum, followed by dehydration to anhydrite
on deep burial, followed by rehydration to gypsum if erosion brings the deposit back
close to the surface. Occurrences of both phases together could represent areas where
the dehydration or rehydration process did not reach completion, or where the system
became closed. Usually in this case the system is considered as open and gypsum
as stable in the wet surface environment and anhydrite as stable in the dryer depth
environment, but of course each occurrence should be considered on its own merits.

14.11.2. A12O3 - SiO2 - H2O

In a ternary system, G — X diagrams become difficult to draw, but can be imagined
as having planes tangent to three free energy loops.2 Instead of attempting this, let's

2One of our favorite recollections is of Prof. J.W. Grcig lecturing on ternary phase equilibria using
beach balls as (inverted) free energy loops and a sheet of Plexiglas as a tangent plane.
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FIG. 14.7. (a) The system CaSC>4 — H2O with the chemical potential of water controlled
externally, (b) G — X diagram for this system, showing that for gypsum and anhydrite to
coexist, a specific value of/xn2o is required, which will not obtain if /LiH2o is selected at random
in the environment, or in other words is fixed by some process other than gypsum-anhydrite
equilibrium in the environment. Coexisting water and gypsum fix /Ltcaso4 at a value too low for
anhydrite to exist, and a low value of /XH2o does not allow gypsum to exist.

consider the system A^Oa — SiO2 — H2O in a different way. The possible mineral
phases in this system are shown in Figure 14.8. The arrangement of stable joins be-
tween these phases depends on the temperature and pressure; we show an arrangement
consistent with most of the data of Zen (1961). First let's consider what assemblages
one might expect if the system is closed. Given that each assemblage must be capable
of stable existence over some range of T and P, no more than three phases should
coexist. If water is one of these, then the other two can only be kaolinite-corundum
or kaolinite-quartz. All other assemblages lie in the "water-deficient region" (Yoder,
1952), and cannot coexist with a pure water phase. The chemical potential of water
is of course buffered in any of these three-phase assemblages.

Suppose now one found a rock having only two of these phases, say kaolinite and
quartz. You could not conclude necessarily that water was a phase during metarnor-
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FIG. 14.8. The system AhCb — SiOa — HaO and some of the phases stable under low
grade metamorphic conditions. If water exists as a phase, only corundum+kaolinite or
quartz+kaolinite can coexist. Three-mineral assemblages preclude the existence of pure water
as a phase. Chemical potentials and mole fractions of water along the section A-B are shown
in Figure 14.10.

phism, because you do not know the bulk composition at that time. If it lay within
the H2O-kaolinite-quartz triangle, water would have been a phase, but perhaps the
composition lay (as it does now) on the kaolinite-quartz join. In this case the system
requires only two components, not three, for a complete description of the composi-
tion of all phases, so that two phases would be the maximum expected. The assertion
that a water phase existed would have to be based on other evidence. Similarly, other
two-phase assemblages can be considered as two component systems, but a different
set of components is required in each case, and if these assemblages are found in
geologically close proximity, one has to decide whether one is dealing with a num-
ber of two-component systems or with one three-component system. "Geologically
close proximity" is a purposely vague term, because no criteria other than mutual
contact are available for distinguishing (what was formerly) a single system from
two separate systems. For example, Figure 14.9 represents what one might see in a
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FIG. 14.9. Thin section of a rock containing three minerals, A, B, and C. A and C both have
contacts with B, but A and C are never in contact. Is this one system or two systems?

thin section consisting of three minerals, A,B, and C. Mineral B occurs only at one
side and C on the other side. Both coexist with A but B and C never coexist. Are these
two systems AB and AC, or one system ABC? There is no way of knowing, given
only this evidence, but geologists usually put together evidence from many sources.
For example the spatial distribution of the assemblages and their relationship to other
features such as sources of heat, compositional gradients, etc. would be expected to
fit into some overall hypothesis of origin. In other words, the existence of a number
of different two-component systems in close proximity, all of which belonged to the
same three-component system, would call for some explanation.

One explanation could be that the system was not closed, but open to water. If
the chemical potential of water was set by the environment, only two phases would
normally coexist in the three-component system. Consider the section A-B in Figure
14.8, along which we have plotted both Xn2o, the mole fraction of water, and /^HZO
, its chemical potential, in Figure 14.10. Each three-phase assemblage has a fixed
//e2o but a range of Xu2o, and each two-phase assemblage has the reverse, a fixed
Xu2o but a range of ^n2o values over which it can exist. This illustrates the fact that
if nn2o is the controlled variable, only two phases can coexist, whereas if Xn2o is
the deciding factor, three phases will coexist. If the mineral assemblages formed in
an environment having a gradient in HHZO caused by some regional factor, one would
expect to find a series of two phase assemblages arranged in a sequence of increasing
or decreasing //H2o- Interpreting these assemblages as a series of closed two-phase
assemblages would not violate the Phase Rule, but one would be expected to come
up with an explanation for such a remarkable occurrence in terms of closed systems.

14.11.3. Pyrophyllite Example

The reason for presenting this hypothetical analysis of the Al2C»3-SiO2-H2O system
is that just such a study was made by Zen (1961) of seven pyrophyllite deposits in
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FIG. 14.10. Chemical potential and mole fraction of water for the numbered assemblages
shown in Figure 14.8. Random choice of /^H2o results in a two-mineral assemblage and fixes
Xn2o', random choice of mole fraction results in a three-mineral assemblage and fixes fj,H2o-

North Carolina. Many of the minerals found in these deposits do not belong to this
system, but each mineral not belonging to the system requires the presence of one
additional component (e.g., muscovite-K^O; paragonite-NaaO; clinozoisite-CaO;
chloritoid and/or chlorite-FeO and MgO; hematite—Fe2C>3; fluorite-F; ilmenite-Ti;
pyrite-S and so on), so each is an accessory phase as defined above and can be
ignored. The phases in the A^Os-SiC^-t^O system found in the deposits occurred
for the most part in assemblages of two and three phases; rarely (twice) four phases
were seen in a single thin section, but no more than three phases were ever seen
in contact. The common and widespread occurrence of three-phase assemblages is
inconsistent with their formation in an open system with Hn2o externally controlled,
and the two-phase assemblages showed no consistent spatial relationship that might
indicate control by fJ,n2o- These observations helped Zen to conclude that the previous
hypothesis of origin, hydrothermal alteration of volcanic slates, was incorrect, and to
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FIG. 14.11. Sketch of a road-cut exposing a deformed layer of diopside in dolomite. The
diopside has zones of tremolite and calcite at its contact. Quartz occurs interstitially. Five
minerals, five components. No problem?

propose a hypothesis based on the closed system metamorphism of weathered slates.
Note that the meaning of the "water deficient region" takes on a slightly different
meaning if open system conditions are considered. The fact that assemblages in
this region cannot coexist with a pure water phase is not changed, but there could
theoretically be an indefinite amount of water in the system, as long as its potential
was controlled externally (or more exactly, as long as Hn2o did not have its maximum
value). However in the absence of another volatile component, which would permit
the existence of a fluid phase in which the water could be dissolved (but which would
give a total of four components instead of three), water can only exist in the hydrous
minerals and along grain boundaries where its properties are poorly known, but where
its fugacity is less than that of pure water as a phase. Thus in most such cases the
term "water deficient region" retains its original meaning in open as well as closed
systems.

14.11.4. Marble Example

Another example is taken from the study of Cermignani and Anderson (1973) of a
zoned silicated dolomitic marble. This rock occurs in several outcrops, each showing
ridges of coarse diopside separated from the host dolomite by a zone of tremolite
and a zone of calcite (Figure 14.11). Minor calcite and quartz occurs interstitially in
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the diopside and tremolite zones. All phases are very pure. Very minor amounts of
other phases (phlogopite, pyrite) also occur but can be ignored as accessory phases.
Dolomite, calcite, diopside, tremolite and quartz represent compositions in the five-
component system CaO — MgO — SiC>2 — f^O — CC>2. These five phases often oc-
cur in the same (zoned) hand specimen, and with five components the hand specimen
system would be divariant, so there is no "Phase Rule reason" to doubt closed system
metamorphism. The zoning would then presumably be attributed to compositional
differences in the pre-metamorphic rock. However, no more than four of these min-
erals were ever observed in close proximity, e.g., in the same thin section. This could
also be accounted for by closed system metamorphism, where one of the phases was
a (supercritical) fluid, and now no longer present. In this case "the system" would
be smaller than the zoned hand specimen. However (again) these four phases were
only observed once, and in that case the diopside was not fresh but highly altered,
and perhaps thus the remnant of an unstable phase. This could be interpreted to mean
that in domains of local equilibrium, which would be quite extensive laterally but
only centimetres in thickness, only three solid phases are ever found coexisting sta-
bly. If this is the case, the Phase Rule permits the interpretation that there were four
phases (three solids and one fluid) and three degrees of freedom: T, P, and /J,n2o
or /-ico2> i-e-> open system conditions. The authors preferred this interpretation for
various non-thermodynamic reasons, such as the difficulty of explaining the sym-
metrical compositional zoning by closed system metamorphism, the likelihood that
the competent diopside would fracture providing channels for water migrating from
adjacent rocks, and also accounting for the symmetrical zoning, and the occurrence
of tremolite-calcite veins not discussed here.

Our point here is not at all whether Cermignani and Anderson (1973) or Zen
(1961) were right or wrong in their interpretations. Our point is that the Phase Rule is
a useful tool in petrogenetic interpretations, but that it is only a tool. The crucial parts
of any interpretation are made by the investigator, not the Phase Rule or any other
tool. Obviously, in the cases cited, a crucial decision is choosing the system in which
local equilibrium prevails. In metamorphic rocks it often appears to be smaller than
the hand specimen in at least one dimension. In hydrothermally altered zones it can
be very large. The difference seems to be related to the existence or non-existence of
a fluid phase during the rock-forming or altering process, but considerations like this
are irrelevant to the thermodynamic model.

PROBLEMS

1. In this question we use absolute free energies. Their relative magnitudes are
more or less reasonable, but of course in real life you never get to deal with
quantities like these. The exercise is useful, however, because you should
get used to the idea that free energies and chemical potentials are finite,
absolute quantities, even if unknown.
Mineral a-ABC has the following hypothetical absolute properties, in
units moP .
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°C bars GABC GA G°B G°c

25

25

T

T

1

P

1

P

470

1550

180

1260

300

1000

90

850

150

500

30

400

30

100

10

90

(a) Calculate the Gibbs free energy of formation (A/G°) of a-
ABC at T and P from the elements (A, B and C) according to
the "traditional" convention, and according to the convention
adopted by Helgeson (Benson - Helgeson convention).

(b) Define a third convention and calculate A/G°using it.
(c) Show that cc-ABC is stable with respect to its elements at both

25°C,lbarandT,P.
(d) What is unrealistic about the data?
(e) Calculate the equilibrium constant for this reaction at T, P. Use

R = 0.1 units K^1 mol .
(f) Ifthemolarvolumeofa-ABCat25°C, 1 bar is 0.5 units bar™1 mol

calculate P. If T is 500°C, calculate SABC (assumed constant).
(g) A polymorph, /3-ABC, has a smaller molar volume and a higher

entropy. What would you expect the P-T phase diagram for
ABC to look like, if at 25°C, 1 bar

(0 Gtt_ABC < G/3_ABC

(ii) Ga_ABC > G,g_ABC

(h) (i) If a-ABC is equilibrated with element AatT. P, what
is the chemical potential of A in ABC?

(ii) If a-ABC is equilibrated with both elements A and B
at T, P, what is the chemical potential of each in ABC?

(iii) What happens if you try to equilibrate ABC with A, B
andC?

(iv) What is the chemical potential of B in ABC which is
equilibrated with A and C at T, P?

(i) Calculate the activity of B in the assemblage (ABC + A +
C) at T, P using two different standard states for B. Use
T = 500°C; R = 0.1 unitsK"1 mol"'.



15
SOLID SOLUTIONS

It is questionable, however, that any one physical model will prove appropriate for
the great variety of crystalline solutions in nature. E. Jewett Green (1970)

15.1. TYPES OF SOLUTIONS

Real solutions of practical interest to Earth scientists do not behave ideally, although
some do come fairly close. The problem of course lies in the stringent and unrealistic
physical models we have prescribed for ideal solutions. The molecules of a gas do
interact with each other, molecular forces within mixed component liquids really
are non-uniform, and the different ions substituting for each other in solids are never
exactly alike. So why bother defining an ideal solution in the first place if real systems
do not behave that way? In fact, the ideal solution is a very useful artifice. It is
something simple against which the behaviour of real solutions can be measured and
compared.

Our most fundamental definition of an ideal solution was1

With this as our reference, we can define a non-ideal solution as one for which the
activity coefficient of each component i differs from unity

The activity coefficient is the single quantity that expresses all deviations from
non-ideality for each component of a solution. As we shall see, parameters other than
the activity coefficient itself are frequently used to describe non-ideal behavior, but
these could, if we wished, be related back to (15.1). Note that we say 7, ^1.0 in
general; there are times when 74 = 1.0 for specific conditions (one set of T, P, Xi,
etc.) even in highly non-ideal systems. This is just coincidental and certainly does not
mean that the system is ideal at that particular point—the activity coefficient would
have to be unity under all possible conditions for that to be the case.

In this chapter we will describe some of the non-ideal properties of solids, and
the set of Margules equations commonly used for solid solutions. However, although
solid solutions have been the main area of application of the Margules equations in
the Earth Sciences to date, they work equally well for non-ionic liquid and gaseous
solutions. Aqueous electrolyte solutions are sufficiently different that we will give
them a later chapter of their own (Chapter 17).

' The use of activity always implies a standard state, a; = Xi implies that the standard state of i is pure,
stable i at the T and P of interest.

364
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We will examine two types of real solid solutions in this section — representing
both slight and extreme non-ideal behavior. Recall that

Now for an ideal solution, deai dissoi'n - 0 and

The relationship between G, H, and S of ideal solutions is shown in Figure 15.1.
This uses the binary (or two-component) olivine system as an example. This system
is relatively ideal, so the three ideal curves of Figure 15. la should approximate reality
in this case.

15.1.1. Regular Solutions

Next imagine that the two substituting ions (Mg2+ and Fe2+) have significantly dif-
ferent bonding energies, but that their charges and radii remain similar. If they still
can disperse fairly randomly through the crystal lattice, then their ASdissoi'n will
remain close to ideal. A good knowledge of the crystal structure and the nature of the
cations is required to allow educated guesses as to whether this might be true. Also,
the volume change, AVdiSSOi'n, for different Mg/Fe ratios should remain relatively
ideal, since the radii of the cations are about the same (once again, in real life there
could be a slight change because the different bonding energies might distort the
lattice). However, in contrast with entropy and volume, if the bonding energies of the
two ions are different, the enthalpy and free energy of dissolution are certainly going
to be non-ideal.

This new, non-ideal model is only one step removed from an ideal solution.
All restrictions remain the same except that the intermolecular forces are no longer
uniform (hence G and H will be non-ideal, but S should remain ideal, and V nearly
so). The special conditions we have just described define what is called a regular
solution.



FIG. 15.1. Energy-composition diagrams for two-component mixtures or solutions, (a) Ideal
solution at 1000 K between the two components A and B. Molar enthalpy, Gibbs free energy,
and TS are solid lines, and properties of mechanical mixtures are dashed lines, (b) Similar to
(a), except enthalpy is non-ideal, producing non-ideal free energy curve, (c) Similar to (b) but
at a higher T. (d) Similar to (b) but Hhx (= Hnan ,;dr,ai — HmKl:h mix) is smaller.
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Here the subscript "reg dissol'n" refers to the difference between the property of
a regular solution and a mechanical mixture of its components. Thus

where Z is any solution property.
This could refer, for example, to the volume change involved in mixing up a reg-

ular solution from its original, pure end-member components. As might be expected,
these conditions (15.2) are also too stringent to apply to most solutions, although
they work better than the ideal solution model. For example, it has been found that
many non-ionic liquids do approximate regular solution behavior. The best examples
are simple binary solutions of organic liquids such as benzene-toluene or benzene-
cyclohexane. It has also been suggested that silicate liquids (magmas) might behave
like regular solutions to a rough approximation (see summary by Carmichael et al.,
1974, p. 194). In liquids, the various constituents of the solution can disperse more ran-
domly (producing near-ideal entropies of dissolution), and if the sizes of the different
molecular components are sufficiently similar, the volume change on mixing should
be relatively small. True regular solution is less likely in solids, particularly in crystals,
where non-uniform molecular interactions can create preferred ion exchange sites,
which produce non-ideal volume and entropy changes. Many other non-ideal models
in addition to that of the regular solution have been proposed by physical chemists
over the past 50 years (see reviews by Guggenheim, 1952, and Saxena, 1973). Most of
these are of limited practical use for Earth scientists (although historically they helped
understand solution behavior in general). However, the regular solution model has
been used to a considerable extent by geochemists and mineralogists, chiefly because
of its simplicity, and we shall refer to it again below.

At this point we can write out the defining equations of a truly non-ideal solution
(equations (15.3)). This would be one for which all properties in addition to the
enthalpy differ from the ideal values. Here again, the subscript "non-ideal dissol'n"
refers to the difference between a non-ideal solution and a mechanical mixture of its
pure components:

where again Z is any solution property.
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Returning to Figure 15.1, let us see how a non-ideal regular solution of two
components behaves at different temperatures and compositions. In Figure 15. Ib,
we have indicated that the solution enthalpy is more positive than the ideal model in
Figure 15. la, and entropy remains the same. Since AG = AH — TAS, the free energy
increases with AH. Here, AH is so large that it overwhelms the TAS term. The
heavy line representing Gnon-ldeai is now more positive than Gmechanicai mixture
for all compositions. This means that a mechanical mixture is now more stable than a
solution, and in this case the two end-member minerals would coexist as completely
immiscible phases. This is extreme non-ideal behavior—the complete opposite of
the case in Figure 15.la. Positive enthalpy of mixing (HEX) indicates a repulsion
between the two components. Figure 15.1c is another extreme example, this time
for a similar system at very high temperature. This is drawn for the same degree of
non-ideal enthalpy and for ideal entropy at higher T. But now the entropy term in
AG = AH — TAS overwhelms the enthalpy, and the picture is reversed. The free
energy of the solution is now lower than that of the mechanical mixture and the solution
has become stable for all compositions from pure A to pure B. This time entropy is the
predominant influence because the temperature has increased sufficiently. Intuitively
this seems reasonable because particles move faster at higher temperatures and tend
to be more randomly ordered (have higher entropy). The entropy of ideal dissolution
as given by equation (10.9) is independent of T, reaching a maximum of 5.763
JmoP'K^1 at a mole fraction of 0.5. The entropy contribution to the total free
energy of the system is given by — TAS. As indicated in Figure 15.2, this changes
by almost an order of magnitude from 298 to 2000 K. That is why solubilities and
the stabilities of solutions tend to increase at higher temperatures.

Figures 15.1b and c illustrate the two opposite cases where either enthalpy or
entropy dominates the free energy function. The most difficult situation is that shown
in Figure 15. Id, where entropy and enthalpy approximately balance each other. This
produces a peculiar double-humped free energy curve as illustrated. Here the total
free energy of the system is always lower than that of a mechanical mixture of the
two pure end-members. However, this time there cannot be a complete solid solution
from pure A to pure B as in the previous case. This is because we can draw a tangent
(abed on the figure) that touches the free energy curve at two points (b and c). This
means that two phases can coexist (having compositions X^ and X£) in which the
chemical potentials of each component are the same. That is, the chemical potential
of A in both phases is given by the intercept a, and the chemical potential of B in
both phases is given by the intercept at d.

Figure 15.3a is an enlargement of this free energy curve. It is sufficiently impor-
tant (and complicated) that much of the rest of this chapter will be spent discussing
it. Look first at the tangent abed to the free energy curve in Figure 15.3a. In Chapter
9 (§9.2.3) we showed that a partial molar quantity of a constituent in a solution is
given by the Y-intercepts of the slope (dZ/dXi) of property Z versus composition
Xi at the composition of interest. Thus we could find the partial molar free energy of
components A and B in binary solutions or mixtures by drawing a tangent to the free
energy curves in Figures 15.1 or Figure 15.3. In Figure 15.3a, we can draw a single
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FIG. 15.2. Gibbs free energy of dissolution for ideal binary solutions from 0 to 2000 K.
AGideai diaaoi'n and Gideai aoi'n decrease markedly at higher T, making solutions more
stable.

tangent that touches the free energy curve at the two points b and c. The chemical
potentials p,^ and //g are read directly at point d; those for nb

A and ̂  are read at point
a. The superscripts b and c refer to solutions with intermediate compositions X% (for
point b) and X£ (for point c) as shown on the horizontal axis. For all compositions
between b and c, a mechanical mixture of these two solutions has the lower free
energy and is therefore more stable (line ab). Outside these compositions, a single
solution is more stable. For example, between points a and b, the total free energy
curve lies below line gb (which represents the free energy of a mechanical mixture
of pure A and the solution at b).



G - X Section at 1000 K :

FIG. 15.3. (a) Enlargement of the free energy curve in Figure 15. Id, illustrating range of
compositions for which a mechanical mixture is more stable than a solution, and vice versa.
Between points b and c, a mechanical mixture of intermediate compositions X% and X% is
more stable than a solution. Between a and b and between c and d, a solution is more stable.
Intermediate compositions X^ and X£ are shown on the composition axis. Si and 62 are
spinodal points, (b) T — X phase diagram showing intermediate compositions X% and X% at
1000 K from above figure. Shaded area represents region where a single solution is stable. Two
solutions exist inside the solvus curve (unshaded region) with compositions given at each T by
horizontal tie lines (e.g., at 500 K, two immiscible solutions coexist at compositions x and y.
Solvus is solid line, spinodal is dashed line. Tc is critical temperature or consolute point.

370
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•15.1.2. The Solvus

These conditions can also be shown on a conventional T — X binary phase diagram as
in Figure 15.3b. For the single temperature, 1000 K of the top figure, we can place two
composition points on the phase diagram at b (X^) and c (X£). Between b and c two
immiscible solutions of these two compositions coexist as a mechanical mixture. To
the left of b and right of c a single solution is stable at this temperature, as indicated
by the shaded region. If we increase the temperature, the single solution tends to
become more stable, as we have just seen; the two coexisting solutions dissolve
more readily in each other and their compositions become increasingly similar, until
at the critical temperature Tc (or consolute point) they become fully miscible. At
and above this temperature we have a single, homogeneous solution. This would
correspond to the hypothetical high-temperature case of Figure IS.lc. Conversely,
at lower temperatures, the two coexisting solutions become less miscible, and their
compositions move apart. At temperature 500 K on our schematic phase diagram,
coexisting compositions at points x and y have moved so far apart that they are almost
pure A and B. At very low temperatures, we would approach the extreme condition
of complete immiscibility of A and B shown in Figure 15. Ib. The curve traced out by
the changing compositions of the two coexisting solutions at different temperatures
is called the solvus. This is also often called the binodal curve because it marks the
points of the double tangents to the free energy curve. It is possible to have phase
diagrams of this type for liquids as well as solids. Much work has been done, for
example, denning the solvus for coexisting silicate and sulfide-rich magmatic liquids
since it is thought these can produce metal sulfide deposits such as the Sudbury nickel
ores.

15.1.3. The Spinodal Curve

The double-hump shape of the free energy curve in Figure 15.3a has one other im-
plication of interest to Earth scientists, metallurgists, materials scientists, and other
people who work with solid solutions. This is a more subtle point, important in grow-
ing synthetic crystals or in analyzing exsolution properties in minerals. The two points
marked S\ and 6*2 are flex points of the free energy curve. Flex points (like the center
point in the letter S) can be found from the second derivative of the curve, i.e., where

Consider the line bSie drawn on Figure 15.3a. Between b and Si the free energy curve
lies below this line. If a solution with a composition somewhere between these two
points were cooled to 1000 K (as on the diagram) or lower, the mechanical mixture b+c
might not exsolve as expected. This is because, for very narrow composition ranges
between b and Si, Gsoin < Gmech mix- The solution might persist as one metastable
phase to lower temperatures despite the fact that a mechanical mixture is really more
stable. To nucleate two immiscible phases, as it is supposed to thermodynamically, the
original solution would have to diffuse ions and change composition slightly. A slight
change in composition would actually raise the total free energy up towards line bS\.
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It would take a major change in composition, such as somehow nucleating another
phase with composition over towards point c, before phases would spontaneously
exsolve. In general, for compositions between the point b and Si (and similarly 82
and c on the other side), exsolution will be sluggish and might not occur at all. In
contrast, for all compositions between Si and S2 any possible mechanical mixture has
a lower free energy than the bulk solution (line S\ e for example). Here a slight change
in composition produced by diffusion and nucleation drops the system to a lower
free energy and a mechanical mixture should spontaneously exsolve. The solution is
unstable relative to this mixture even for the slightest change in composition. This all
presumes, of course, that the solution is cooled sufficiently slowly for nuclei to form
and that diffusion of ions in the solid is rapid enough that the unstable structure is
not frozen in. These are really kinetic, rather than purely thermodynamic questions.
The compositions Si and 62 are called spinodal points or spinodes. The trace of their
composition with changing temperature is called the spinodal curve and roughly
parallels that of the solvus as shown in Figure 15.3b. Inside the spinodal curve,
exsolution should occur in a cooling solution (provided there are no other kinetic
problems). Between the spinodal and solvus curves, metastable single solutions are
likely to persist in place of exsolved mechanical mixtures.

There is a possible point of minor confusion here which we should clarify. The
spinodes can be found from the second derivative (15.4) of the free energy curve.
However, the solvus points a and b do not lie exactly on the minima of this curve, and
cannot be found by setting the first derivatives equal to zero. This is apparent from
the geometry of the tangent abed in Figure 15.3a. For most practical applications the
differences involved here are likely to be small. A plot of Ghx (instead of G) will
have the required value of zero for the same first derivatives at the binodal points
(since GEX is zero for both pure components, and the slope of the line joining the
two end-members is zero).

15.1.4. Further Thoughts on Non-ideal Enthalpies, Entropies, and
Chemical Potentials

Figure 15.3a illustrates quite nicely one of the essential conditions for chemical
equilibrium derived in Chapter 14. The chemical potentials of any one component or
constituent must be exactly the same in all coexisting phases at equilibrium, no matter
what the composition. Note that in this figure two phases of composition X% and X%
coexist between points b and c. The chemical potential of component A is identical in
both of these phases, and so is that of component B. This is apparent from the slope of
the tangent abed and its intersections a and d with the vertical composition axes where
A = MB an<^ A* A = A*A- We have said above that the ideal entropy of dissolution or of
mixing any number of components to make a solution is given by —R J^i Xi In Xj
(equation 10.9). This is independent of both pressure and temperature. The increasing
importance of entropy at higher temperatures and its effect on making solutions more
stable comes from the -TAS in the expression for AG. All non-ideal entropies
must be less than —R^XilnXi because this represents complete randomness. In
olivines, for example, it has been found that there is a slight distortion of the ideal
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lattice so that Mg ions prefer one site and Fe ions another to a very slight degree
(Runciman et al., 1973). This means that olivines must have dissolution entropies
somewhat lower than the ideal quantity, and slightly non-ideal free energies as have
been calculated by Nafziger (1973). Since entropy drives solutions towards increased
stability, any crystal where there is a high preference for different, specific ions on
different sites should have a tendency toward reduced solid solution.

Non-ideal enthalpies of dissolution can be either negative or positive, and there is
no fixed allowable maximum as with entropy. Negative enthalpies of dissolution tell
us that the solution gives offbeat as it forms and that there must be an attractive force
between the substituting species, or an energy preference for specific ions on specific
lattice sites. This tends to make solutions more stable, according to AG = AH — TAS.
When the enthalpies are unusually negative an intermediate compound might form.
Positive enthalpies of dissolution work exactly the opposite way — the solutions are
endomermic, the substituting constituents repel each other, and a mechanical mixture
may be more stable than the solution (as we saw in Figure 15. Ib).

15.2. ACTIVITIES OF COMPONENTS IN SOLID SOLUTIONS

We should insert a reminder here to be careful when calculating activities of compo-
nents in crystalline solutions that you use consistent chemical formulas. Recall from
Chapter 12 (§12.7) that

for component i, where n is the number of exchangeable sites and 7^ is the activity
coefficient. As we have seen, the value of n depends on the formula used for the
solution itself. For example, if we write the formula of olivine as (Fe, Mg)2SiO4 then
the activity of the end-member component FeaSiC^ in olivine is calculated with n = 2
since the formula contains 2 exchangeable sites. If we write the formula instead as
(Fe, Mg)Sio.5O2, then n = 1 for the activity of FeSio.sO2 in olivine. Think of n as
representing the number of times the exchanging constituent occurs in the formula
written for the solution. One must also be careful when selecting the standard state
thermodynamic properties to be used in such calculations that they agree with the
formula for the mineral. For example, the free energy at 298 K given by Robie et
al.(1978) forfayalite written as Fe2SiO4 is -1379.375 kJmoP1. In calculations where
the formula is halved, and written with one exchangeable site as FeSio.5O2, the free
energy is also halved and equals -689.687 kJmoP1. The same applies to all other
thermodynamic properties — their tabulated values depend on the formula chosen to
represent one mole of the substance.

15.2. 1 . Activities with Multi-site Mixing

With olivine the substitution of Mg2+ and Fe2+ occurs on the same crystal site (to a
good approximation). What happens if there is more than one type of site on which
mixing can occur? This is very common with silicates such as micas, hornblendes,
garnets, and so on. With olivine of the composition and formula (Feo.vsMgo. 25)2^04,
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and presuming ideal mixing (completely random arrangement of Mg and Fe), the
configurational entropy is given by (15.3) and (15.5), i.e.,

Here the activity of FeSi0.5O2 would be 0.75 according to (15.5). The activity of the
fayalite component written as Fe2SiO4 is (0.75)2.

Next let's take a mineral such as garnet where substitution can occur on two
different groups of sites instead of one. The general formula for garnet can be written
X3Y2Si3Oi2 (remember that this choice for the formula now fixes our choice of n
in equation (15.5)). The X sites are cubic (8-coordinated) and we will assume they
accept A13+ and Fe3+ ions. The Y sites are octahedral (6-fold), and let's assume they
accept only Mg2+, Fe2+, and Ca2+. The Si site is tetrahedral (4-fold), and it can also
hold A13+ ions. The total configurational entropy for this mineral must be the sum of
the entropies on all three of these sites, or

Here n equals 3, 2, and 3 on the cubic (X), octahedral (Y) and tetrahedral (Si) sites,
respectively.

One can see from this that a general equation for the configurational entropy or
entropy of dissolution involved in forming a solution is

Here k is the total number of non-equivalent sites (3 for the X, Y, and Si sites in this
example); nj is the number of times the constituent in question appears in the formula
for the j'th site in the solution (when considering single ions such as Mg2+, Fe3+, and
Si4+, etc., as in this example, n = 3 for the X sites, 2 for the Y's, and 3 for the Si sites);
Xi,j is the mole fraction of the ith constituent (or ion in this example) on the j'th site
(X, Y, or Si site). One thing to watch for in applying this equation is to make sure that a
charge balance is maintained. In other words, the substitutions should be independent
of one another. See Ulbrich and Waldbaum (1976) for a detailed discussion of this
topic.

For garnet, if we wish to calculate the activity of some molecular species or end-
member component such as pyrope (Mj^A^SisO^), the situation is one step more
complicated than it was with olivine. The partial molar Gibbs free energy of pyrope
in the garnet solution (or its chemical potential ̂ ), like total entropy, must sum the
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dissolution energies from each of the exchanging X, Y, and Si sites, or

Thus

In other words, n = 1 in (15.5) for the activity of the component pyrope in garnet,
because this species appears once in the formula as written for garnet. To express
pyrope activity in terms of the individual ions we need to use the product above and
the values n = 3,2, and 3 for the X, Y, and Si sites; as before, this is because the
ions occur 3 times in the X sites, 2 times in the Y, and 3 times in the Si sites for
the formula X3Y2Si3O]2 chosen to represent garnet. Nordstrom arid Munoz (1985,
p. 156) give an example calculation. Keep in mind, too, that so far we are assuming
ideal solutions, or ideal mixing of components.

15.2.2. Substitution of the Same Cation on Several Non-equivalent Sites

In the olivine example above, two different cations exchange on one equivalent site.
With garnet we had three different sites (X, Y, and Si) each of which could exchange
different ions; here, A13+ could substitute on either the octahedral Y sites or the
tetrahedral Si sites. To round out the possibilities, we should discuss how to handle
such situations, where one species (ion, molecule, or whatever) substitutes on two or
more different sites in a crystal — something which is very common in minerals.

This time we will use the mineral orthopyroxene, (Fe, Mg)SiO3, as an example.
In nature, this forms a nearly pure binary solution of the two end-member minerals
eristatite (MgSiO3) and ferrosilite (FeSiO3). The crystal structure contains two differ-
ent octahedral sites, Ml and M2, over which the Mg2+ and Fe2+ ions are distributed.
Using exactly the same reasoning as with the garnet example, we can write the for-
mula for orthopyroxene as (Fe, Mg)2Si2O6. We might also think of this in terms of
the two structural sites, MlM2Si2O6, where both sites contain some of the total Mg2+

and Fe2+. Then the activity of the ferrosilite end-member, written as Fe2Si2O6 would
be

If you prefer to write the formulas for orthopyroxene and ferrosilite with the more
conventional stoichiometries (Fe, Mg)SiO3 and FeSiO3, then the activities become
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This is because the structural formula for this stoichiometry would have to be
written as Mlo.jMZo.gSiOs, making n = 1/2 in equation (15.5). In these examples,
as always, a,; = X^i and the j^'s have been omitted for simplicity. In these cases of
multi-site mixing, 7,; can differ for each specific site.

Using the above reasoning, we can write a general equation for the activity of a
cation i (or of its pure end-member) distributed over j different crystal sites:

where rij is the number of times cation i appears in the formula for the jth site.
Let's continue one step further with this example and calculate the total entropy

of dissolution

This is the entropy change involved in mixing the two pure end-member com-
ponents (FeMiFeM2)SJ2O6 and (MgMiMgiv^SbOg to make a pyroxene solution of
some intermediate composition. We will use equations (15.3) for non-ideal entropy
and (15.7) for activities of the individual ions on each site, thus

The free energy of dissolution is calculated from

We have actually come full circle here, and equation (15.8) is really the same
as (15.6) for multi-site solutions, with one important adjustment: in (15.8) we have
divided the concentrations by 2. This is because we have added the mole fractions
for two sites together and the concentration used in (15.6) or (15.3) must be that in
the total crystal. For example, if the two sites here contained nothing but Fe2+, we
would get the impossible mole fraction of 2 for total Fe in the crystal, without this
step. You could also think of the two concentration terms in the square brackets of
(15.8) as the average mole fractions of Fe2+ and Mg2+ relative to the other cations in
the total crystal.

What we have just done suggests a new and more general form of equation (15.6)
for configurational entropy or entropy of dissolution in multi-site, multi-component
crystalline solutions, which is
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Here i refers to cation i; j is the jth crystal site; fcj is the maximum number of sites
on which ion i can substitute; HJ is the number of times ion i appears in the formula
for site j, and Ojj and Xitj are the activity and mole fraction of ion i in site j. This
formula allows for ions that substitute on different numbers of sites. Our previous
warning about maintaining a charge balance still applies.

In carrying out calculations for multi-site mixing such as this, you can either use
equation (15.10) directly, or work through the problem stepwise and ion by ion as with
( 1 5 .8); the two methods are equivalent. Further details are given by Powell ( 1 977). It is
possible using analytic techniques such as X-ray diffraction, Mossbauer spectroscopy
and infra-red, Raman and UV-visible spectroscopy to analyze for the concentration of
different ions on specific crystal sites. Thus the activities, configurational entropies,
and other such properties of solid solutions can often be calculated. This provides
detailed information on the stability and structure of crystalline solutions.

15.3. EXCESS THERMODYNAMIC FUNCTIONS

We have now seen that for real non-ideal solutions all the thermodynamic properties
such as G, S, H, V and the internal energy U can differ significantly from the ideal
values. This deviation from ideality can be conveniently expressed as a difference
from the ideal quantities. The differences are called excess thermodynamic functions:

The excess free energy and excess enthalpy are shown on the energy-composition
diagrams of Figures 15.1b and c. If there is some way of measuring the real properties
of a solution, then the excess properties can be calculated very easily. At first sight,
this may appear to be an unnecessary new set of equations or a new notation for old
variables. However, excess properties actually simplify notation enormously. This
is because we can treat all excess functions entirely like the usual thermodynamic
functions, using exactly the same equations and relations. We do not have to write
out the right-hand sides of equations such as (15.14) and (15.15) but can simply use
the excess functions alone. For example, we can rewrite the fundamental equation
(5.11) as
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and similarly,
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All other thermodynarnic relations can be written with excess quantities in this manner,
simply substituting the excess property for the usual variable. As with all thermody-
namic variables, this permits us to completely determine all excess properties simply
by measuring a necessary minimum number of properties. Therefore if excess vol-
umes, free energies, and enthalpies are known for a solution at different temperatures
and compositions, then all other properties can be calculated for a range of T, P,
and composition. Similarly, if we have measured excess free energies over a range of
temperatures, it is not necessary to measure the excess entropy; it is already known
from

15.3.1. Relationship Between Excess Properties and the Activity Coefficient

Excess properties are just another way of representing the activity coefficient and are
used because they tend to simplify notation. We now derive the relationships between
the activity coefficient and excess free energy, enthalpy, entropy, and volume.

Taking the free energy first, consider an ion i in any non-ideal solution. Startingla
with

we can write (15.1) as

tor real solutions, ana as

for ideal solutions. Now, defining

analogous to our quantity

the relationship between 7^ and Gfx is then

1 he excess partial molar entropy, enthalpy, and volume can now be obtained from
familiar partial derivatives of free energy as follows:
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wSo the remaining partial molar excess quantities can all be expressed as simple func-
tions of the activity coefficient.

We could write all non-ideal properties of solutions in terms of activity coeffi-
cients. For electrolyte (salt) solutions we usually do use activity coefficients, but for
solid and gaseous solutions Earth scientists have traditionally used other approaches
based on excess properties. This is not to say the other approaches are fundamentally
different or better. They are simply different ways of representing the same physical
properties. However, we have just seen that using excess functions instead of activity
coefficients can simplify notation, and this is always an advantage. The next section
discusses the method most commonly used to express the activity coefficients and
excess functions of solid solutions.

1 5 .4. THE MARGULES EQUATIONS

There is a practical problem in using either activity coefficients or excess functions
to describe non-ideal solid solutions — they are both dependent on composition. For
example, the activity coefficient of a solution is a function of T, P, and composition,
as is the excess free energy. To properly describe the behavior of a solution in terms
of these variables, we would have to specify the exact values of 7$ or Gfx for each
composition at every T and P. With the advent of computers this is no longer the
problem it once was. The variation of 7, with T, P and Xi can be described by
an equation that is fitted to available data by statistical regression analysis or some
other procedure. The trick now is to find the most compact equation with the proper
mathematical form for the data. If the data have the shape of a parabola, then we should
use a parabolic equation and not something like an exponential function. The best
equation will give a closer fit to the data, require fewer coefficients, and can often be
extrapolated with less uncertainty than some other, less appropriate function. As might
be imagined, there have been a great many suggestions over the years for equations
representing the non-ideal properties of solid solutions. Many of these approaches
have been summarized by Guggenheim (1952), Prigogine and Defay (1954), Saxena
(1973), and Grover (1977). A good short summary is in Brown (1977). In most of
these examples the regression parameters are not dependent on composition (although
they may depend on T and P). For example, we might use the polynomial

where the coefficients a, b, c, etc., depend on T and P alone. We could then fit this
equation to activity coefficient data for a range of compositions at each T and P.
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The set of equations most frequently used in the Earth sciences to represent non-ideal
solid solutions evolved over the past century from a study first published in 1885 by
Margules. While Margules' original work was on the partial vapor pressures over
binary solutions, his general method is now used widely in the materials sciences and
in metallurgy and became popular with mineralogists through the work of James B.
Thompson, Jr. and his colleagues since the 1960s. Thompson (1967) has provided a
detailed review and derivation of what are called the Margules equations, and a useful
summary has been written by Grover (1977). Here we will try to show somewhat
unconventionally how the Margules equations can be developed from a good guess
at an appropriate, compact equation for regular solutions. With one assumption, we
will then expand this into a more general equation for truly non-ideal solutions. Next
we will show that the general equation has the same form as the virial equation of
state, which works well for gas mixtures, suggesting that this is why the Margules
equations also work with solid solutions.

15.4.1. Margules Equations and Slightly Non-ideal, Symmetric Solutions

Let's begin with the simplest kind of non-ideal solution, one which is practically
ideal. As a model we might use the regular solution defined by equations (15.2), with
ideal entropy, near-ideal volume, and slightly non-ideal enthalpy and free energy.
We need the simplest equation that adequately describes the excess free energy or
activity coefficient of such solutions, an equation with the same geometric shape
as the properties themselves. GEX for a regular solution will have something close
to a parabolic shape — this can be seen from Figures 15. Ib and 15. Ic. That means
we need some kind of y = a x1 function. Since excess properties are zero for pure
components, this function should approach zero as the mole fraction, XA or XB of
either of the two components, approaches 1.0. Finally, with a regular solution of two
similar components such as benzene and toluene, we might expect the solution to
be most non-ideal when the components are mixed in equal proportions (because
that's when non-uniform interactions between the two species are maximized). That
means the equation should have a maximum or minimum at the 1 : 1 composition. The
simplest equation which satisfies all these conditions is

This is one of the Margules equations for a symmetrical, regular (or slightly non-ideal)
solution. It gives the total excess free energy per mole as a parabolic function of con-
centration of the two components, and is therefore often called a two-suffix Margules
equation. You may also see this referred to as a one-parameter Margules equation
because of the single coefficient WG- It is symmetrical about the 1:1 composition of
the two components. As an example, the schematic solvus we have drawn in Figure
15. 3b is symmetrical about XA = X B = 0.5, each side being a mirror image of the
other. If we were to draw the excess free energy curve for this example, it would have
a shape similar to the solvus, and so would all the other excess properties.

The parameter WG has units of energy and is independent of composition, but
varies with T and P. It can be thought of as the energy necessary to interchange a
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mole of A with one of B in the mixture, without changing composition. Similar to
the enthalpy of dissolution described above, if WG is positive, then molecules A and
B repel each other (or prefer energetically to be with molecules of the same type);
this can lead to immiscibility and exsolution. If WG is negative, there is an energy
preference for A and B to associate in the solution, and this can produce intermediate
compounds. The solution, which fits a two-suffix Margules equation, can be regular as
defined by equations (15.2) (with ideal entropy), but this is not absolutely necessary;
it just has to have symmetric behavior. This has caused some minor confusion in
the literature because many authors say that any solution conforming to (15.22) is
"regular," by which they probably mean "slightly non-ideal". Thompson (1967), in his
paper marking the beginning of Earth science interest in this subject, got around this
problem by distinguishing strictly regular solutions from ordinary regular solutions—
the latter need only fit equation (15.22) while the former also have to satisfy equations
(15.2).

By analogy with (15.22) we can now write the other excess functions for this
symmetric slightly non-ideal solution as

We have already seen that the excess properties relate to each other in exactly
the same way as do the usual thermodynamic functions. The same thing now applies
to the Margules parameters, since they are simply another way of writing excess
properties. Thus, as we showed with the excess functions, we can now write relations
such as the fundamental equation (5.11) to interrelate Margules parameters:

And all the other thermodynamic relations also apply, such as

and

15.4.2. Activity Coefficients in Symmetrical Solutions

All these W parameters should also be independent of composition. This gives them
a built-in advantage over the activity coefficient, which, as we noted above, is nec-
essarily dependent on composition as well as on T and P. Remember that there is
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nothing mystical in all this. We have not suddenly gotten rid of bothersome variables
such as T, P, and composition. What we are doing is analogous to fitting a regression
equation such as

to free energy (or other) data. We are then using the regression parameters a,b,c,...,
which are independent of X, T, and P if the equation fit our data adequately.

Next we can finally see how the activity coefficient relates to the Margules equa-
tions for this case. Recall from Chapter 9 that the partial molar quantity of one
component in a binary solution can be obtained graphically from the tangent (as with
the chemical potentials //g and /UA in the coexisting solutions of Figure 15. 3a). From
equation (9.6), the partial molar free energy or chemical potential of component A in
a solution of A and B is given by

where G is the free energy per mole of the solution. We can obtain G from (15.15)
and (15.22):

Applying (15.27) to (15.28), inserting XB = (1 — XA) and remembering that chemical
potentials are the same as molar (for pure substances) or partial molar free energies
one obtains

Now, from (15.16) we know that for non-ideal solutions,

and from (15.18) we have the relationship between 7,; and Gfx,

Combining the above three equations, we can finally write the relationship between
the activity coefficient and the Margules parameter WG '•

This has the same parabolic form as equations (15.22) to (15.26), with the change
that only one component appears in the Margules term, rather than both. The excess
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free energy of one component is directly related to the squared concentration of the
other. We will see with the analogous equation for asymmetrical solutions below that
(15.30) has the form of a truncated virial equation, which is known to work well for
gas mixtures. Notice also that here we have the (partial molar) excess property of one
component in a binary solution, whereas equations (15.22) to (15.26) were for the
excess property of the total solution. Equation (15.30) is a very simple and convenient
way of getting the activity coefficient, but few solutions can be expected to behave so
neatly. In fact, the two-suffix equations do work fairly well with nearly ideal liquid
solutions such as benzene-toluene. Unfortunately though, most real solutions (and
particularly most solid solutions) are asymmetric. Something more complicated than
a simple parabola is necessary to fit this kind of behavior. One possibility would be
to extend (15.30) to a polynomial such as

where the series is carried out to the power that best fits the data. This approach is
called the Redlich-Kister expansion and works quite well for many non-ideal systems
(for further details, see Prausnitz et al. 1986).

15.4.3. Margules Equations and Non-ideal, Asymmetric Solutions

Because most real solutions do not follow the parabolic, symmetrical form of the
two-suffix Margules equations, it is necessary to add more flexibility to the equations
by adding more coefficients and more terms. One way to do this is to simply define
a second WG term of the type in (15.22), then combine the two WG terms in a
linear equation in X. This can be imagined as the "mixing" of two solutions, each
symmetrical but having different WG'S:

Now mix X2 moles of the first solution with X\(= 1 - X2) moles of the second, stir
well, and make a new solution, which is described by the sum of (15.31) and (15.32):

What we have now is the (weighted) sum of two parabolic equations to describe
a non-ideal, asymmetric solution. Because of the second parameter, this is frequently
called a two-parameter Margules equation. It seems reasonable that this might have
an appropriate form because (15.33) still goes to zero as either X\ or X2 approaches
1 .0 (the excess free energy must be zero for pure substances); also with two parameters
and two parabolas we should be able to fit a distorted parabolic shape, and that's what
we might expect the excess free energy to look like for many real systems. In fact,
two-parameter equations of this type do fit experimental data on real systems quite
closely, and even work well with minerals that are sufficiently non-ideal that they
have miscibility gaps (or a solvus region). We might also expect these two-parameter
Margules equations to have the shape of non- ideal solutions because they are similar
in form to virial equations of state. To show how and why this is so, we first have to
discuss virial equations.
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15.4.4. The Virial Equation

The virial equation of state was originally developed to describe the P — V — T
behavior of non-ideal gases. Like the Margules equations, it appeared in the literature
around the turn of the century in forms such as that given by Kammerlingh-Onnes in
1901:

where B(T), C(T) and D(T) are the second, third, and fourth virial coefficients, etc.
The "first" virial coefficient is the gas constant R.

At first sight this looks like nothing more than a polynomial expansion of the ideal
gas law. However, it turns out to have real physical significance, and the form of the
equation follows directly from statistical mechanics. The details can be found in most
textbooks on statistical mechanics (see, for example, Mayer and Mayer, 1940; Hill,
1960, Chapter 15). We will outline the underlying theory very briefly here because
virial equations (or similar approaches) appear several times in this book—see for
example the discussion of the Pitzer equations for the non-ideal properties of salt
solutions in Chapter 17 and Chapter 16 on gas mixtures.

Remember that ideal gases should have no inter-particle interactions. This gives
the "first" virial coefficient, R, and the ideal gas law. Unfortunately, the atoms or
molecules of real gases do interact. The energy E of one mole of a real gas is the sum
of the kinetic and intermolecular potential energies of all its molecules, E = K + u.

In theory, if we knew the functional form of each kind of molecular interaction
(such as coulombic interactions oc r~ ' , dipole interactions oc r~6, interaction be-
tween neutral particles oc r~6, "overlap" repulsion at very close distances oc r~9

to r~12, and so on, where r is a distance), then we could sum these all up for all
particles in the system. We would then plug this into the Boltzmann equation (6.9)
or the partition function (6.10), and then, as we observed in Chapter 6, we would
know all thermodynamic properties of our gas. This sounds too good to be true,
and unfortunately it is. We do not yet know all the functions for all the potentials
or energies between real molecules and atoms. Even if we did, we could not solve
the unthinkable number of equations necessary to express all interactions between
all Avogadro's number of particles in a mole of solution—this would be worse than
the notorious n-body interaction problem because we have more than one kind of
interaction. In recent years there has been considerable progress with this kind of
problem using computer simulation methods based on molecular dynamics (putting
TV particles in a hypothetical box and simulating their behavior over time given cer-
tain molecular interactions). However, for present purposes we need to find some
approximate mathematical solution—one equation that, at least in theory, describes
all non-ideal interactions. To do this we start by writing the partition function (6.10)
of the Boltzmann equation as

The kinetic term here can be evaluated from temperature and particle mass, and it
is the second summation that causes the problems. Because we are working with an
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enormous number of particles, we can write the molecular potentials u as continuous,
integrable functions, rather than worrying about discrete, quantized energy levels:

Z' is called the configuration integral. The integration is made over the x, y, z coor-
dinates for each of the N molecules, so there are 3N separate integrations in (15.36).
Quite obviously, if N is even a fraction of Avogadro's number we need to simplify
this somehow. One method is to factor the total energy u into sets of terms, each
representing the interaction energy of a certain number of molecules or "clusters."
These clusters can be written for the interaction of particles in pairs, in groups of
three, four, and so on. The configuration integral can then be approximated by the
sum of these separate terms:

Now the remarkable thing about virial equations is that the coefficients B, C,
D, etc. in (15.34) are related to the clusters or sums. For example, the second virial
coefficient is related to the term summing pairwise interactions in (15.37) by

where V is the volume of the system. This relationship is used to estimate the inter-
action potentials Uy of very dilute, nearly ideal gases. If (15.37) is truncated after
the pairwise term, it gives the van der Waals equation for non-ideal gases mentioned
in the next chapter (equation 16.6). In a virial equation such as (15.34), the first term
describes ideal behavior (PV = RT for a gas); the second term (B) describes non-
ideal interactions of pairs of molecules; the next term (C) applies to interactions of
molecules considered three at a time, and so on. The general form of a virial equation
is the (P-V-T-X) equation of state for an ideal substance followed by an ascending
polynomial in one of the variables.

Unfortunately, there are so many different kinds of molecular interactions, and
many of them poorly known, that (15.37) cannot be used to estimate the properties
of real gases in general. However, this does mean that virial equations have the
appropriate form to describe or fit real gases. The combined virial equations for two
or more gases in a mixture often describe mixtures or solutions of gases quite well. It
does not require too much of a leap of faith to suggest that virial equations might have
the proper form to fit liquid and solid solutions as well. We shall see in Chapter 17
that the Pitzer equations for electrolyte solutions have the virial form and can be used
to describe extremely complex aqueous salt solutions. It turns out that the Margules
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equations (both symmetric and asymmetric) also have the form of a virial equation
and this is probably why they work so well at fitting solid solutions.

To show that the Margules equations have the form of a virial equation, rearrange
(15.33) for the total excess free energy of a real, asymmetric solution, remembering
that X\ = \ - X2:

Because excess free energy is zero for ideal solutions, this has exactly the required
form—the first term on the right hand side (zero) is the value of GBX for an ideal
solution, and the remaining terms are an ascending polynomial in the variable X2.
This is a virial equation carried to the fourth coefficient. For symmetric solutions,
WG2 = WG, and (15.39) reduces to

This is a virial equation carried only to the third coefficient (which is why it doesn't fit
more general, asymmetric solutions). It is interesting that Margules wrote equations
such as these before virial equations first saw the light of day, and certainly long before
the virial coefficients were interpreted in terms of molecular interactions. Margules'
initial equation (which you can find reproduced by Grover, 1977, p. 74) turned out
to be a very good, educated guess for an expression giving partial vapor pressures
over binary solutions; this obeyed Raoult's and Henry's laws at low concentrations
of either component.

15.4.5. Activity Coefficients in Asymmetric Systems

We can find the activity coefficient of one component in a solution described by
(15.33) using the same reasoning as above for solutions that fit the single-parameter
equation (15.22). First, as with (15.28), we need to write out the expression for the
total free energy per mole of such a solution:

Next we find the chemical potential of either component as before by applying equa-
tion (15.27) to (15.41), then using relationships (15.16) and (15.18), rearranging, and
remembering that X\ - 1 — X2 :

This is convenient because, like equations (15.30) it gives the activity coefficient
(or excess free energy) of a non-ideal solution for different concentrations in terms



where /^ refers to the standard state discussed in connection with equation (12.17),
and represented by the point of intersection of the Henry's law slope at Xi = 0 with
the Xz = 1 axis (point 1 in Figure 12.1, if we let component B be component 2). At
this same composition (Xz = 1), a standard state of pure component 2 at T, P, would
result in fj,z — fi% = R-T m -^-2 = 0, where /i2 refers to this new standard state (point 2
in Figure 12.1) Subtracting /X2 — /u-2 = 0 from nz — /z£ = Wc2 gives \i\ — ̂ 2 = Wo2,
and similarly for WG, • Therefore the WG coefficients are related to the difference
in free energy between these two standard states. Similar relations hold for the other
parameters WH , Wy and so on.

15.4.6. Margules Equations for Ternary and Higher Order Systems

In the examples so far, we have used binary (two-component) solutions exclusively.
Exactly the same reasoning may be used to derive equations for ternary, quaternary,
and even more complex solutions. The equations become more unwieldy with each
added component, and the properties they represent cannot be illustrated in two-
dimensional graphs. However, the equations can be used in computer programs to
generate properties of multicomponent systems for given conditions, and they should
continue to fit real solutions adequately for the same reasons discussed above. The
main problem with these higher order systems is not in using the Margules equations,
but that a lot of experimental data are required if the fit is to be useful, and rather few
solid solutions have been sufficiently investigated in this respect.

Rather than writing out all equations for all properties, we will save space by
deriving only the free energy equations for ternary systems. The same approach
can then be used to derive equations for other properties or for solutions containing
more than three components. First, for a ternary symmetric solution, we can follow
the analogous procedure used to derive (15.33) and imagine three regular binary
solutions with a total of three components (1+2; 1+3; 2+3) being mixed to form a
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of the two Margules coefficients Wo2 and WG., , which are constants for any T and P
(they are independent of concentration but vary with T and P). If the fit is satisfactory,
this obviates any need to tabulate activity coefficients (and related properties) as a
function of concentration. Note that (15.42) also has the form of a virial equation.

If excess free energies have been fit with equation (15.41) to derive WG, and
Wo2, then these are the WG, and WGZ values which appear in both equations in
(15.42). However, it is also possible to use (15.42) to fit independently calculated
activity coefficients or partial excess free energies, in which case WG, and Wo2 will
have different values in the two versions of (15.42). This was the procedure followed
in calculating the curves in Figure 11.11.

Equation (15.42) also shows the interesting fact that when X\ = 1 (X^ = 0),
RT\nj2 = Wo2- The same is true in the symmetrical case, equation (15.30). But
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single ternary regular solution (1+2+3). The total excess free energy is the sum of the
two-suffix equations (15.31) for each of these three solutions:

Similarly, we can derive the analogous equation for a ternary, asymmetric solution
by summing expressions (15.33) for a mixture of three asymmetric binary solutions
of the same three components:

The brackets here show the original three asymmetric binary solutions we have
"mixed." Equation (15.44) is also used with a seventh term, a constant, on the right-
hand side.

Noticethat(15.44)reducesto(15.43) by setting WGii = WGji and that symmetric
models therefore have half the number of W coefficients. A slightly more complex
version of this equation, where the three terms are weighted in proportion to molar
composition is proposed by Grover (1977, p. 81); this is similar to the weighting
technique used to derive the binary, asymmetric equation (15.33) above. Notice that
the number of Margules W parameters increases three times relative to a binary
system for both the symmetric and asymmetric equations. For a quaternary system
they would increase four times, and so on. This means that we are going to need
a great many data points in multi-component systems so as not to over-fit the data.
For example, you would not want to fit 7 data points in a quaternary system with
an 8-parameter Margules equation analogous to (15.44). In practice, this imposes an
upper limit on the number of components one might wish to consider if data for a
system is limited.

Fortunately, it is not often necessary to consider solid solutions of more than
three or four components. Many minerals have fewer than four major components.
Minor components do not have a very significant effect on excess properties of the
overall solution, as you can see from equations (15.43) and (15.44) for ternary systems
above. For more detail, see Guggenheim ( 1952), Prigogine and Defay (1954), Saxena
(1973), Thompson (1967), and Grover (1977). An algorithm for computer calculation
of Margules equations based on higher degree virial equations and applicable to
multicomponent systems is given by Berman and Brown (1984).

15.5. APPLYING THE MARGULES EQUATIONS

The Margules equations such as those in Table 15.1 can be fitted by standard least-
squares regression analysis to data for real solutions. For example, if data for the total
free energy of a binary asymmetric solution is available over a range of compositions
at different T and P, you could fit equation (15.41) for Great (or the equation for
GEX in Table 15.1) and obtain WGl and Wc2 as regression parameters. The same
could be done with the equations for excess enthalpy, entropy, and so on. This permits
construction of phase diagrams and determination of thermodynamic properties based
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on the best statistical analysis of experimental data. However, this kind of complete
thermodynamic analysis is possible only with fairly extensive data sets.

15.5.1. Estimating Margules Parameters: Symmetrical Solvi

In Figure 15.3, two phases of composition b and c coexist within the solvus at 1000
K. Recall that the chemical potential of any one component must be the same in all
coexisting phases at equilibrium. Therefore,

The superscripts ' and " denote the two phases, and A and B are the two components.
Combining (15.45) and (15.29) gives

Rearranging and using X% = 1 — X\, we can solve for

A completely analogous equation applies to component B.
From (15.46) we are able to estimate WG from the known compositions of two

coexisting phases within a solvus at each temperature. Note that WG will be different
for every temperature. Plugging WG into (15.28) then gives the Greai - Gideai of
the solution at each temperature. The chemical potential of either component at T
(fj, - fj,°) comes from (1 5.29). The excess free energies or activity coefficients of either
component in each mineral is given by (15.30). If we solve for WG at all temperatures
along the solvus for which there are data, and write WG as a function of T, then we
could obtain Ws from

and WH from

Recalling that H = U + PV and that WH = Wu + PWV, we can also write the
approximation Wu ~ WH because the PV term for solids is generally negligible
at low pressure (1 bar) relative to U and H. Note that this requires that our solvus,
hence WG and WH were all measured initially at a sufficiently low P, such as 1 bar.
We now have estimates for WG, Ws, WH, and Wu, based on the variation of solvus
composition with temperature. If we also need to know the properties of the system
as a function of pressure, several options are available. With luck, there might be data
for the solvus at different pressures. We could then find WG as a function of P, and
by analogy with (15.47), calculate Wv :

Alternatively, we could estimate VEX(= Vreai — Vldeai} from X-ray data on the
single-mineral solid solution just above the solvus (more on this below). Knowing



390 THERMODYNAMICS IN GEOCHEMISTRY

VEX as a function of P, we can then get Wy by fitting (15.23) to our data. Finally, if
neither solvus nor volume versus P data are available, you could make the relatively
safe assumption (used above to estimate W\j from WH) that the PV (or PWy) energy
term for crystals is negligible at 1 bar or low pressures, and ignore it altogether. If so,
you should test this assumption with a trial calculation, using data from a tabulation
such as Robie et al. (1978).

One way or another, we now have estimates for WG, Ws, WH, W\j, and Wy. If
our regression equations fit the data nicely, and if the data are good, then our initial
assumption about the T and P dependence of these parameters should hold fairly
well: WG varies with T and P, WH with P, and the others are independent of T
and P. This means we should be able to write an equation of state for the behavior
of this binary mineral system over a range of T and P using the general equation
G = U + PV — TS with coefficients on the right-hand side that do not change with
T and P. Given

we can write

using the relations between the excess functions and the W coefficients in Table
15.1. This single equation can be used to generate phase diagrams and to predict
the thermodynamic behavior of our mineral system. We should add the warning
that if thermodynamic properties such as activities are derived from solvi in this
manner, there is also a possibility of considerable error. This is because we have
implicitly assumed in deriving Ws and WH from WG and the solvus, that the entropy
and enthalpy functions fit the Margules equations without any real experimental
verification. In the absence of real data on these other functions, the procedure outlined
above is a best guess. However, if enthalpy, entropy, volume or other data are available,
then they should certainly be used in preference to derive the WH, Ws, Wy Margules
parameters directly.

15.5.2. Estimating Margules Parameters: Asymmetrical Solvi

The above procedure required that we have a symmetrical solvus to work with.
We have already observed that the feldspars, as most minerals, show asymmetrical
behavior and we need to extend the same methods to this more general case. This
follows exactly the same reasoning as the above section, but the equations turn out
to be much less convenient to use.

Starting with an asymmetrical solvus, we wish to calculate the two Margules
parameters WG, and Wc2 in (15.33). Once again, the chemical potentials of each
component must be the same in all coexisting, equilibrated phases (equations 15.45).
This time, the excess free energy is given by (15.41) rather than (15.28). Combining
(15.45) and (15.41), and remembering that



SOLID SOLUTIONS 391

gives the following two equations in the two unknowns WGl and WG2 (changing
from components A and B to components 1 and 2):

Given the compositions of the two coexisting phases, the above two equations can be
solved for WGl and WG2. You could simply use one of many generalized linear/non-
linear equation solvers available for computers, or use rearranged versions of (15.52)
and (15.53), which give WGl and WG2 directly in terms of composition (see Thomp-
son, 1967, p. 355; and Eugster et al., 1972, p. 164, for example). From this point on,
the procedure could be identical to that described for symmetrical solvi, except that
the asymmetrical equations (15.41) (total free energy), (15.42) (activity coefficients),
and (15.51) (chemical potentials) are required. Note also that we now have two W
parameters for each thermodynamic variable and they should be treated separately.
Thus (15.47) for an asymmetric solution becomes

and

This applies to all steps such as (15.48), (15.49) and so on, which are used to calculate
one Margules parameter from another. Finally, a general equation of state such as
(15.50) could be derived to describe the mineral system, using the same assumptions
and with the same warnings about accuracy.

1 5.5.3. Calculating Solvi, Spinodal Curves, and Consolute Points

Once a general equation of state involving WG versus P and T such as (15.50) is
available, it can be used to calculate a statistically smoothed solvus. This is the solvus
that provides the best least-squares fit to the experimental data. With caution, it can
also be used to extrapolate beyond the T and P range of the experimental data (this
is safer if the excess properties such as WH and Wv are derived directly from real
data and not calculated from WG or otherwise estimated). First, an equation for the
total free energy of the system as a function of T, P, and concentration is derived
using (15.50) for GEX and the relation

The solvus or binodal curve is obtained from the first derivative of the excess free
energy,
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Referring to Figure 15.3b, you can see this is because the two immiscible solutions
(labeled b and c in the figure) are caused by two depressions in the free energy curve.
If the solvus is only to be calculated at the same fixed P as the data points, then the
derivative in Table 15.1 suffices. If you need the solvus over a range of T and P, then
it will be necessary to use a full equation such as (15.50).

As already discussed above, the spinodal points at T and P are calculated from
the second derivative to the total free energy curve (15.39):

The derivative equals zero because the spinodes are flex points in the free energy
curve (see points S\ and 62 on Figure 15.3a, for example). Again, if the spinodal
curve is only required for the P at which the experimental data were collected, then
the derivative in Table 15.1 is sufficient; otherwise an equation based on (15.50)
and (15.15) is necessary for G. Finally, the consolute point may either be calculated
simply by filling in the entire solvus or by setting the second and third derivatives of
the total free energy equal to zero and solving simultaneously (see Thompson, 1967,
p. 356; Grover, 1977, p. 78; and Thompson and Waldbaum, 1969, Appendix B). As an
example, we have reproduced the solvus and spinodal curves for the two-mica system
muscovite (KAl3Si3Oio(OH)2) and paragonite (NaAl3Si3O10(OH)2) from a study by
Eugster et al. (1972), which uses practically the same method outlined above—see
Figure 15.4. These two micas are partially miscible at temperatures below about
800°C. In this study, the two coexisting micas were synthesized experimentally and
then analyzed by electron microprobe. The volumes of both minerals were measured
for a range of intermediate compositions. These two data sets were fitted to regression
equations from which the Margules parameters for G, U, S, H, and V could be
derived. The theoretical approach differed only slightly from that outlined above: the
minerals were synthesized at sufficiently high pressures (2 kbar) that Wij could not
be approximated by WH (1 bar) but was calculated from Wu = WH — PWy. From
this limited data set an equation similar to (15.50) was calculated for muscovite—
paragonite solid solutions as a function of P, T and composition:

This equation permits cautious extrapolation to conditions beyond the T, P range
of the data base. It also gives the best least-squares fit to the experimental data, as
illustrated in Figure 15.4. Without this theoretical analysis it would be dangerous at
best to "eyeball fit" the solvus, particularly near the consolute point where there are
no data, and the spinodal could not be calculated at all. Extrapolating the solvus and
spinodal to other P, T conditions would be practically unthinkable. This illustrates the
great power of thermodynamics at extracting maximum information from physical
observation. In this case, a complete equation of state for a two-component mineral
solution was extracted from the compositions of six pairs of coexisting minerals and
from limited information on their volumes.
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FIG. 15.4. Calculated solvus and spinodal curve for muscovite-paragonite at 2.07 kbar. Ex-
perimental data are the solid dots. After Eugster et al. (1972).

15.5.4. Conclusion

The use of Margules equations in dealing with solid solutions is largely a matter of
empirical curve-fitting, and is best learned through practice. It is not of much help in
actually understanding solid solutions, nor in dealing with the really complex solid
solutions common in geology, such as the amphiboles. It is best at systematizing rel-
atively simple binary solutions, fluid and solid, and when data are sufficient, ternary
solutions. Beyond this, the notation gets very cumbersome, and the data required be-
come very great. Nevertheless, within its range of usefulness, the Margules approach
is very useful indeed, as witnessed by the large literature on the subject. Many dif-
ferent ways of expressing the relationships and different notations have been used;
in fact the equations are chameleon-like in their variety of appearances, which can
be confusing. There are also a number of similar approaches by other authors which
we have not tried to cover. They all share one feature, however, and that is that in the
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absence of sufficient data the thermodynamic parameters they give can be quite er-
roneous, and there can be considerable differences in the results given by the various
models.

Better than any textbook or summary such as we have presented is the series of four
papers by Thompson and Waldbaum on the synthesis of data for the alkali feldspars
(Thompson and Waldbaum, 1968, 1969; Waldbaum and Thompson, 1968, 1969).
This elegant blend of critical thermodynamic thinking with the Margules approach
should be studied by anyone interested in this subject.
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Table 15.1 Margules Equations

Symmetric, slightly non-ideal binary solutions ("Regular")

Asymmetric binary solutions ("Sub-Regular")

Ternary solutions
Symmetric



where P is in bars and T in Kelvins. Calculate and plot GmiXing as a function
of X from pure Ab to pure Or at T = 200, 300, 400, 500, 648, 800°C, 1
bar. Do the same for the activities of the Ab and Or components. Get the
binodal points by drawing tangents to the curve minima. Compare these
with calculated dG/dX^ = 0 points. Construct the T— Xsolvus. Compare
your curves with those in Waldbaum and Thompson (1969). Best done in
a spreadsheet program using lots of compositional points, to get smooth
curves.

2. Calculate G^o2 for the 11 data points in Table 11.1. This is best done with
a computer spreadsheet, but can be done by hand.

3. Fit these GEX values to equation (15.42). This is best done with a mul-
tiple linear regression program, using X(-O2 and X^O2 as the independent
variables. Comparing the fit coefficients with (15.42), calculate Wcc02 and
WCH 0 for CO2. Answers in Problem 3 at the end of Chapter 12.

4. Show that Wcm is the same as fi° — p* as discussed in the text.

PROBLEMS

1. Waldbaum and Thompson (1969) found the following equation for the
Ab-Or solid solutions:

Asymmetric

Symmetric

Asymmetric

Quaternary solutions
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Table 15.1 Continued

• • • and so on for higher order systems.



16
GASEOUS SOLUTIONS

Theories, as we all know are almost by definition mathematical, and surely come only
after a body of experimental and observational knowledge has been accumulated and
digested. There is no way to create a 'theory of nature' without first understanding
nature in terms of observation and experiment. Nature is about magnets, currents,
falling bodies, steam engines, spectral lines, and the like, not about groups, bifurca-
tions, and invariances. Felix Bloch as a young man once told Heisenberg that space
is a field of linear operators. 'Nonsense', replied Heisenberg, 'space is blue and birds
fly through it.' Kac (1982)

16.1. METHODS OF DESCRIBING GASES

The procedures described in Chapter 15 are well suited to solid and liquid solutions
and could also be applied to gases, but in fact, other approaches are generally used.
The main reason for this is partly historical; much work was done early in the history
of physical chemistry on the behavior of gases, and these methods have continued to
evolve to the present day.

We have also just seen that the Margules equations become very unwieldy with
multi-component systems. Because true gases are completely miscible, natural gases
often contain many different components, so the Margules approach is not very suit-
able. Unfortunately, the most successful alternative methods described in this section
are also quite unwieldy; however, they do not become much more complicated for
multi-component gases than they are for the pure gases themselves, and this is a
definite advantage. We have seen that with real, non-ideal gases, all the thermody-
namic properties are described if we know the T, P, and the fugacity coefficient. For
gaseous solutions, the fugacity coefficient for each component generally depends on
the concentrations and types of other gaseous species in the same mixture. All gases,
whether pure or multi-component, should approach ideality at higher T and lower P;
conversely, non-ideality is most pronounced in dense, low-temperature gases where
intermolecular forces are strongest. The challenge here is to find an equation of state
that can adequately cover this range of conditions for gases of many different con-
stituents.

In the following discussion we first briefly outline some of the equations of state
used to describe pure gases. We will introduce these from the molecular point of view
since this helps understand the physical basis (and limitations) of each model. Each
of these equations of state can then be applied to mixtures of gases using a set of rules
which we describe at the end of this section.

397
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FIG. 16.1. Cubic box containing one mole of ideal gas and coordinate system showing
movement vx, —vx, vy, —vy, vz, —vz of molecules each second.

16.2. SOME EQUATIONS OF STATE FOR PURE GASES

16.2.1. Ideal Gas

The ideal gas law may be derived from a simple picture of molecular motion shown
in Figure 16.1. Consider a cubic box of volume V(cm3) containing one mole, or
Avogadro's number N, of ideal gas molecules. The only interactions allowed are
collisions with the container walls. The molecules move in all directions, but let's
simplify things by assuming that at any one time each face has 1/6 of the molecules
heading towards it with an average velocity v (cm sec" '). A 1 cm2 face will therefore
be struck by 1/6 of the molecules in the adjacent prism of volume 1x1 x v(cm3)every
second, each molecule having the momentum Mv/N (where M is molecular weight).
There should be N(v/V) molecules in this prism, of which Nv/(6V) are heading
towards this one face. Since the gas is ideal, we can presume that the molecules
bounce perfectly off the wall, returning with exactly the same velocity in the opposite
direction, for a total change in momentum of 2Mv/N per molecule. Now what we
think of as pressure is the outward force per unit area on the walls of this box exerted
by these impacting molecules, or the total change in momentum per second per cm2

for the outer face of our prism. (The rate of change of momentum d(Mv)/dt equals
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mass times acceleration (M dv/dt) which is force, and force per unit area equals
pressure.) Hence

This is interesting because Mv2/2 is kinetic energy. Temperature is a measure of
molecular motion or kinetic energy, (Mv2/2 oc T) and if we write this proportionality
as

where R is a constant, then (16.1) becomes the ideal gas law,

Equation (16.2) has some interesting implications. First, it requires that the kinetic
energy of an ideal gas be exactly the same at a given temperature, regardless of the
nature of the gas. For example, all gases should have the same kinetic energy regardless
of their molecular weights when P is sufficiently low or T sufficiently high that they
approach ideality. The magnitude of this energy is actually quite significant: At 25°C
it is (3/2)(8.3147)(298) = 3.720 kJmor1 and it is 15.88 kJmor1 at 1000°C. This is
the translational (lateral) energy of a molecule, and for monatomic gases like Ar and
He it is the total kinetic energy. Polyatomic gases also have additional rotational and
vibrational energies. The velocities of the molecules themselves may be calculated
from (16.1) and these too are considerable: The average speed of H2 molecules at
25 °C is 1770 m sec"' which is about as fast as a rifle bullet.

If we differentiate (16.2) with respect to T, we obtain

This is at fixed volume because we are considering a specific container of gas.
The relationship between Cv and Cp can be seen by using Table 2.1 to derive an

expression for (6U/dT)v, which is Cv. This turns out to be

which for an ideal gas is simply

In other words, the heat capacities Cv and Cp are constants for ideal gases. This
takes us quickly into the worlds of statistical mechanics and the kinetic theory of
gases, but also raises several points of direct thermodynamic interest. First, (16.4)
and (16.5) apply only to monalomic ideal gases; these can move independently (or
have three degrees of translational freedom) along each of the three orthogonal axes,
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so each translation contributes roughly R/2 to Cv. Polyatomic molecules may also
rotate and vibrate, and to an approximation each such motion should also add R/2
to the heat capacities. This is a possible way to estimate heat capacities of gases. In
fact, the approximation works quite well for monatomic gases, all of which have Cv

close to the predicted value of 12.5 Jmol"1 deg"1; however, it does not apply well
to polyatomic gases except at very high temperatures, and is particularly bad with
rotational and vibrational motions.

Equations (16.2) and (16.4) can also be used to help understand the physical
significance of heat capacity. Temperature may be thought of as a measure of molec-
ular motion or of the kinetic energy of molecules. Energy is stored by molecules
as rotational, vibrational, and translational movements. For ideal gases, the increase
in this motion (or temperature) with the addition of energy is always the same and
given by (16.4). For real substances with specific intermolecular interactions, this
will vary from one substance to another in general, and will often vary with T and
P (which influence molecular interactions). Substances with higher heat capacities
will not show as strong an increase in molecular motion (or T) as those with low heat
capacities for the same heat input ([/). Crystalline materials should have the highest
heat capacities and monatomic inert gases the lowest, because with the former, more
heat energy has to be added to cause the same degree of particle motion (due to the
tightly bound nature of the lattice itself).

16.2.2. The van der Waals Equation

The ideal gas law does not work well for real gases at even moderate pressures.
Two of its main problems were recognized by van der Waals in the last century, and
appropriate corrections were incorporated into his famous equation of state of 1873:

The quantity V — b corrects for the volume occupied by molecules of finite
volume (molecules of an ideal gas are supposed to be vanishingly small). The pa-
rameter b is called the excluded volume per mole, since the volume available for
movement of any one molecule is V minus the volume b of all other molecules
in the same space. This crowding raises the pressure relative to an ideal gas ac-
cording to P = RT/(V — b); b may be thought of as a correction for crowding or
repulsion of squeezed molecules. The second term in (16.6) corrects for intermolec-
ular attractions. As illustrated in Figure 16.2, the forces between all gas molecules
somewhere in the center of a container should be the same in all directions, on the
average. However, the average forces on molecules at the outer wall of the con-
tainer are directed inward; this must reduce the pressure exerted by these outermost
molecules on the wall. The concentration of the outermost zone of molecules is pro-
portional to the gas density, or to 1 /V, as is the concentration of molecules in the
next inward zone (presuming concentrations in both zones are the same—a potential
source of error). The inward attraction is proportional to the number of molecules
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FIG. 16.2. Intermolecular forces within a real gas separated from a vacuum by a solid face.
Within the center of the gas, average forces on each molecule are uniform. At the face, forces
are all inward, reducing effective gas pressure outward.

in both zones or to l/V2. Introducing the proportionality constant a, this inward
pull should reduce the outward force or pressure by ~a/V2, and this is the second
term in (16.6). Thus the van der Waals equation added a repulsive correction (first
term and parameter 6) and an attractive correction (second term and parameter a)
to the equation of state for an ideal gas. The van der Waals equation fits the P—
V-T behavior of real gases better than the ideal gas law, but still fails at moderate
to high pressures where intermolecular forces are stronger. We would expect it to
work a little better for two reasons: First, it is based on a simplistic, but not un-
reasonable physical picture of a real gas and should therefore have an appropriate
mathematical shape. Second, it contains two adjustable parameters a and b which can
be fitted to data by regression analysis or other procedures. This gives it flexibility
and "personalizes" it for different gases. You can judge for yourself how well the
van der Waals equation works for a relatively simple, non-polar gas such as CC>2 in
Figure 16.3.
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FIG. 16.3. Observed behavior of COz near the critical point and behavior predicted by the
van der Waals equation of state. After Barrow (1966).

There have been hundreds of modifications of the van der Waals equation over the
intervening century. Most of these follow the same approach, correcting for repulsive
and attractive forces. The Redlich-Kwong equation considered below is one of the
more successful modifications, and now it too has been modified a great many times.
Historically, this is one of the two main directions taken in the search for increasingly
better gas equations of state.

The second direction has been statistical-mechanical. This usually follows the
kind of reasoning described above for virial equations of state (equation 15.34). The
interactions of all particles are calculated by summing interactions of pairs, triples,
quadruples, and so on. In fact, what results is another regression equation with an
appropriate shape and adjustable parameters with possible physical significance. Such
equations are fit to real data; at the present time it is not feasible to calculate the
parameters theoretically and then predict the behavior of a specific gas (except for
highly idealized systems). With the advent of very fast computers it has been possible
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to develop molecular dynamics simulations in which the behavior of all particles
in a hypothetical box are calculated for successive small increments of time. These
methods offer great promise for understanding molecular interactions and structures,
but do not give an equation of state of practical use in thermodynamic calculations.

The simplest equation of state applicable to real gases is based on the, principle of
corresponding states already described in § 11.4. This uses the compressibility factor,
Z = PV/RT (equation 11.11), and reduced temperature and pressure. With this
method you can estimate fugacity coefficients and the P-V-T properties of gases
in the lower range of geologically interesting P-T conditions. Unfortunately, the
method does not work well at higher densities (or pressures).

16.2.3. The Redlich-Kwong Equation and its Modifications

The equations of state most commonly used at the present time to represent gas
behavior at moderate to high pressures are based on a simple modification of the van
der Waals equation published by Redlich and Kwong in 1949:

As you can see, this retains the first term of the van der Waals equation but modifies
the second term. Intuitively, one might expect that the attractive term of the van der
Waals equation is based on too simplistic a model (Figure 16.2) and that a more
complicated function is probably required. To quote Redlich himself (1976, p. 48),

There is no really good theoretical justification for the two changes in
the denominator of the a-term but the agreement with observed data is
considerably improved . . .

In other words, the form of equation (16.7) is more like that of real gases than the
van der Waals equation. By adjusting the van der Waals equation in this way, any
physical significance the a and b parameters might originally have had becomes even
more remote (but does not completely disappear—see Vera and Prausnitz, 1972).
We will refer to the attractive and repulsive terms of the Redlich-Kwong (RK) and
modified Redlich-Kwong (MRK) equations for convenience and to be consistent with
the literature. However, it is really more appropriate to think of (16.7) as an empirical
regression equation with a good shape for fitting the P-V-T data of gases.

In the original RK equation, the parameters a and b were constants, independent
of P and T. Since the RK equation first appieared in print, it too has undergone many
modifications in an attempt to further improve its fit. Many of these modified Redlich-
Kwong equations are summarized by Holloway (1977) and Kerrick and Jacobs (1981),
and involve writing the a and b parameters as a function of T, P, or both T and P.
The MRK equation of Kerrick and Jacobs fits most of the data for H2O and CC>2 at
elevated P and T to better than ±1% and is chosen for discussion here.
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The MRK equation of Kerrick and Jacobs keeps b constant but writes a as a
function of both P and T :

where y = b/4V (b is constant) and a(P, T) = c(T) + d(T)/V + e(T)/V2 and z(T) =
z\ + z{F + z^T3 (where z is c, d, or e).

Here you can see that the repulsion term holds b constant but is more complicated
(which gives it better flexibility). The a parameter in the attraction term is written as
a simple polynomial function of l/V (hence of P) and of T. This is a MRK equation
with 10 adjustable parameters, so naturally it fits real data considerably better than
the original RK equation, which has only two parameters.

As a final point, notice that the van der Waals equation (16.6) and its modifications
such as the RK and MRK equations are written with T and V as independent variables.
This is inconvenient for Earth scientists since we usually have some idea of P and T,
but rarely V. Calculating P given V and T is trivial with all these equations; however,
calculating V given P and T becomes a (small) exercise in numerical analysis and
requires a computer. For equations such as (16.7) or (16.8) you might do this by
successive iteration. As an example, rewriting (16.7) with V on the left-hand side
gives

This can be solved for V at given P and T by plugging T, P, and an initial guess
at V in the right-hand side. Using the new, improved V for the second guess, repeat
until successive calculated Vs stop changing significantly.

16.2.4. Estimating the van der Waals and Redlich-Kwong Parameters from
Critical Conditions

The a and b parameters in the RK and van der Waals class of equations are best
estimated from a regression fit to an overall P—T—V data set for a gas, as described
above. However, there is a much quicker way of estimating the same parameters based
on the critical behavior of the gas. If these critical data are known with sufficient
accuracy and precision, the estimates should be very good, and this approach is used
quite frequently when the utmost accuracy is not required. Recall that the critical
properties of a gas can also be used to estimate fugacities using the principle of
corresponding states discussed in Chapter 11.

You can see from Figure 16.3 that the critical point at the top of the two-phase
region occurs at a flex point in the critical isotherm of 31 °C. In addition, the tangent
to the top of the two-phase region should be horizontal. Thus the first and second
derivatives of the critical isotherm must both be zero at the critical point. The van der
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Waals equation itself should also work at the critical point, so we can write the three
following equations:

Thus the a and b constants in both the van der Waals and the RK equations can be
calculated quite easily given sufficiently good data on the critical temperature and
pressure of a fluid. Alternatively, you can calculate the critical conditions for a gas
directly from the a and b parameters for either equation of state.

16.3. APPLYING EQUATIONS OF STATE TO GASEOUS MIXTURES

With ideal gases Dalton's and Amagat's laws apply, as described in Chapter 11, and
the fugacity of each component exactly equals its partial pressure. Thus we can write

and

and

and

where

Solving these three equations for the critical constants gives

and solving for the van der Waals parameters, we find

We can apply exactly the same reasoning to the RK equation (16.7) and obtai
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These approximations can only be used for real gases at very low pressures, as we
have already observed.

Moving one step closer to reality, the Lewis Fugacity Rule (described in Chapter
11) is frequently used to approximate the behavior of real gas mixtures

This means that if you know the fugacity of one of the pure components of a gas
solution at the same total P and T as the solution itself, then you can calculate
its fugacity in the solution. This is analogous to Dalton's Law, but uses fugacities
rather than pressures. It is a fair approximation for components at low concentrations
and pressures, but presumes that fugacities are independent of the types of gases in
the mixture. This is a real problem — for example, we cannot expect the fugacity of
H^O to be the same in H2O-CH4 and H2O-HC1 gaseous solutions (the molecular
interactions should differ quite significantly). For more accurate estimates something
more rigorous is going to be necessary.

This more detailed approach typically uses one of the equations of state for pure
gases mentioned above. Using the van der Waals equation (16.6) as an example, the a
and b parameters must be known for each of the pure components. If no experimental
data are available for the mixture of these components, then we might be able to devise
some means of estimating new values of a and b that could apply to the mixture. Many
so-called mixing rules have been devised to do this (see, for example, Prausnitz et
al. 1986), but the most popular remain those originally suggested by van der Waals.
Since the repulsive b parameter is supposed to be a measure of the volume of the
molecules, a simple averaging over all m different gas species might work here:

The a (molecular attraction) parameter for the mixture is obtained by averaging over
all possible kinds of molecular pairs:

where

In the last two equations, ajk is supposed to describe the interaction between one
molecule of type j and another of type k. For j = k, a,jj is simply the van der Waals
a parameter for the pure gas j. The problem here is how to find a term a,jk(j ^ k)
for the interaction between unlike molecules when there are no data on the mixture
itself. Berthelot suggested the geometric mean assumption of equation (16.11) in
the last century on strictly empirical grounds, and it was used by van der Waals in
his own work on gas mixtures. For some cases this assumption can be theoretically
justified (Prausnitz, 1969, p. 45), but why it works is still a bit of a mystery. As can
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be imagined, there has been much discussion and controversy over this point (see
Prausnitz, 1969, p. 156, for details). We recommend that you use it as a last resort
when you only have data on the pure gas components for a mixture. If there are some
data for the gas mixture, then it is safer to use (16.9) and (16.10) to define amix and
bmix and to derive the a^ parameters by regression, ignoring (16.11) entirely.

The same mixing rules can be applied to the other equations of state mentioned
above. For the RK and MRK equations there is no change whatsoever since the a
and 6 parameters can be handled exactly as with the van der Waals equation. Thus
equations (16.9) to (16.11) can be used to calculate the a and b parameters for a gas
mixture described by a RK or MRK equation.

The mixing rules for a virial equation of state are similar but slightly more compli-
cated, because the equation itself has a different basis than the various outgrowths of
the van der Waals equation. Writing a virial equation in terms of the compressibility
factor Z, we have

Given a mixture of m different gaseous components i, j, k, . . . one equation (16.12)
can be written for each of the pure gases. We can write an equation for the mixture by
combining the B, C, D, . . . parameters for each gas according to the following rules:

The sums here are made over all the m different species in the gas mixture. The fourth
and higher virial coefficients continue in an analogous fashion.

Notice that these parameters for mixtures work the same way as with pure gases:
the Bmix coefficient takes into account interactions of all pairs of molecules, the Cmix

coefficient all triples, and so on. This is absolutely rigorous, and no assumptions are
introduced in (16.13) and (16.14) that degrade the statistical-mechanical basis of the
virial equation (see Hill, 1960; Prausnitz, 1969, p. 99). As with the RK and MRK
equations, the same difficulty arises in evaluating the parameters representing inter-
action between different gas species. For example, expanding (16.14) for a mixture
of two gases i and j gives

Here the coefficients Cm and Cjjj are those for the pure gases, but the coefficient
Cnj refers to interactions between two molecules of i and one of j, and Cijj refers
to a similar i-j-j interaction. You might attempt to calculate these coefficients from
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data for pure gases by an assumption such as (16.11) but this is questionable in the
first place and would also upset the theoretical basis of your virial equation. Again,
it is far preferable to derive these interaction parameters from regression analysis of
real data for two- and three-gas systems if the data are available.

A potential major advantage of the virial equation over RK and related equations
is that it might be possible to describe complex gas mixtures of many components
without having data for the interactions of all species in the mixture. Virial equations
such as (16.12) are always ascending polynomials that are truncated at some point.
We will see in Chapter 17 that the Pitzer virial equations used to describe multi-
component aqueous salt solutions can be cut off at the third (C) term, yet still work
remarkably well with solutions containing many more than three components. In other
words, it is usually not necessary to consider anything more complicated than three-
particle interactions with complex salt solutions. Since the non-ideal interactions of
gases should be simpler, we might expect the same truncation to work with gases.
For example, suppose data are available for binary and possibly ternary mixtures of
10 different gases. If a virial equation to the fourth coefficient C adequately describes
the mixture of all 10 gases, then the BmiX and Cmix parameters could be derived
from data on binary and ternary combinations of these gases. Data would not be
required on the P-V-T-X properties of the 10 component system itself (which is
good because that would be a formidable undertaking). This should be tested for
geologically interesting gases. Unfortunately, obtaining P-V-T data simply for pure
gases at elevated T and P of geological interest has proven formidable enough,
and there are almost no data on binary gas mixtures for similar conditions at the
present time. However, virial equations could be tested on lower-P systems such as
volcanic and geothermal gases and the atmosphere itself, where they should work
quite well.

16.3.1. Calculating Fugacities from Gas Equations of State

A complete P-V-T-X equation of state contains sufficient information to describe
many of the thermodynamic properties of a system. For a gas, the thermodynamic
property of greatest interest is usually its activity or fugacity; this is required for
all calculations in which the gas is involved in chemical reactions. We have already
mentioned some of the simpler methods of estimating gas fugacities for ideal or nearly
ideal gases (Dalton's law, the Lewis fugacity rule, and the principle of corresponding
states), and these are summarized in Table 16.1. For gases at higher densities it is
necessary to use a more rigorous equation of state such as a virial, van der Waals, RK,
or MRK equation. As we have pointed out above, these are written with T and V as
independent variables (rather than T and P as usually preferred by Earth scientists).
We have chosen to write the thermodynamic functions used in this book in terms of T
and P wherever possible. However, most of these functions can be rederived using T
and V as independent variables; methods for interchanging variables in this manner
are outlined in Chapter 2, and more information can be obtained from Beattie and
Stockmayer (1942), Beattie (1955), Prausnitz (1969), and Prausnitz et al. (1986). As
derived by Prausnitz (1969, p. 41), the fugacity coefficient for a pure species is given
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by

For a species of a gas mixture, the fugacity coefficient is

As usual, Z is the compressibility factor Z = PV/RT. To solve for the fugacity,
substitute P into (16.17) or (16.16) using the above equations of state for gases with
T and V as independent variables. The integration gives an equation for the fugacity
coefficient for a species of a gas mixture. It is essential that the mixing rules (such
as 16.9 to 16.11) used in evaluating this integral be exactly the same as those used
in defining the original equation of state for the mixture (this might seem obvious,
but has caused some problems—see Flowers (1979) for a discussion). The results are
given in Table 16.1, which includes expressions for fugacity based on the van der
Waals (16.6), virial (16.12), RK (16.7), and MRK (16.8) equations of state.

The fugacity equations in Table 16.1 are arranged in order of increasing complex-
ity. The RK and MRK expressions for fugacity are particularly difficult to work with.
This is unfortunate, because it means that estimating the fugacity of a gas component
in a mixture is a small research project in itself at the present time. The procedure
here requires that you first fit your choice of MRK equation to data for pure gases,
deriving expressions for the a and b parameters. With the Kerrick and Jacobs MRK
(16.8) as an example, you then calculate the parameters a, b, c, d, and e for the mixture
using the mixing rules (16.9) to (16.11). If sufficient data exist for the gas mixture
you should derive these parameters directly from a regression fit to the data since
the mixing rules themselves are questionable. Whichever route you choose, the MRK
equation for the mixture would be (16.8) with am, bm, cm, dm, and em for the mixture
substituted for a, b, c, d, and e for the pure gases. You must then solve (16.8) for Vm

(molar volume of the mixture) at the T—P-X conditions of interest; this has to be
done by a numerical method such as successive iteration on Vm as described above.
All parameters are then plugged into the last equation in Table 16.1 to calculate the
fugacity of one gas species in this mixture at this particular T, P, and concentration.

The MRK equations for fugacity are unwieldy because of the required integration
(16.17) of the original equation. There is clearly room for improvement here. Hope-
fully future research will provide more tractable equations of state for gas mixtures.
For example, it would be helpful to start with an equation which gives a simpler
integral. One promising approach might be to use a virial equation, which gives the
relatively simple expression for fugacity in Table 16.1. This has several further advan-
tages as already mentioned above—it is based on a reasonable statistical-mechanical
model, and it should be applicable to complex mixtures using mixing parameters de-
rived from simpler systems. At the present time, alternatives to MRK equations (such
as virial equations) have not received sufficient attention in geological applications.
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Aside from their inconvenience, overly complex equations have a potential built-
in source of error. To paraphrase Prausnitz (1969, p. 46), more complicated equations
with more adjustable parameters may work better for pure gases, but simpler equations
frequently work better for gas mixtures. This is because mixing rules (such as 16.9
to 16.11) are required to predict the properties of mixtures from those of the pure
gases, and the rules themselves are uncertain. The more parameters you have, the
more mixing rules you will require. Also, in extrapolating multi-parameter equations
beyond the region of experimental data you must be sure that the equation continues
to behave smoothly (or has the proper shape). There is always a possible problem
in regression analysis that equations with many parameters might behave erratically
outside the field of real data.

With these warnings in mind, let's now look at several examples using different
equations of state. The first example, from Prausnitz (1969, p. 45) considers the
fugacity of hydrogen at 50°C and 300 bars total pressure in a mixture of 20 mole %
H2,50% CH4, and 30% ethane. Referring to Table 16.1, the ideal gas law and Dalton's
law of partial pressures give a hydrogen fugacity of 60 bars, the Lewis fugacity rule
gives 71 bars, and the van der Waals equation 113 bars. The van der Waals estimate is
preferred, of course, and the error of 60% to 90% involved in the other two estimates
shows how careful you should be with these approximations. A second example from
Prausnitz (1969, p. 172) compares the measured and estimated solubilities of liquid
decane in nitrogen gas at 50°C as calculated from decane fugacity and the Henry's
Law coefficient (Figure 16.4). The virial equation exactly fits experimental data while
the ideal gas, and Lewis fugacity rule approximations fail badly.

Calculations for COa-H^O mixtures using the MRK equation of Kerrick and
Jacobs are illustrated in Figure 16.5a. The effect of adding methane to this system is
illustrated in Figure 16.5b. These diagrams were calculated as described above from
the fit of the MRK equation (16.8) to data for the pure gas systems, and checked
against existing data for the binary systems H2O-CO2 and H2O-CH4. Unfortunately,
there are no data for the ternary system at high P and T, and data for the binaries is
limited, so that all three diagrams contain unverified extrapolations.

We should now have sufficient insight to be able to explain the predicted behav-
ior of these gas mixtures qualitatively. Looking at the two CC^-F^O diagrams, for
example, you can see that both gases display positive deviations from ideality. This
is expected because the two molecules are quite dissimilar, and in fact the calculation
at 400°C shows a miscibility gap at 20 and 30 kbar (see following discussion). No-
tice also that for each diagram non-ideality increases at higher pressures and lower
temperatures. This is also expected since intermolecular interactions become more
intense at higher P (and density) and lower T. The CO2 molecule is linear and non-
polar while H2O is highly polar and interacts through hydrogen bonding; this explains
in part why F^O displays a greater departure from ideality than CO2 on all diagrams.
Finally, you can see that both F^O and CO2 approach ideal Raoult's Law behavior
as they become the predominant component in the solution.

Figure 16.5c shows the calculated effect of CTLt on the predicted activities at
400°C and 25 kbar. Notice that the effect on water at these conditions is essentially
zero (at higher T"s water activity increases slightly at higher CFL). concentrations).



Table 16.1 Gas Fugacities for Various Equations of State

where Z = PV/RT (compressibility factor). Z is similar for most gases at low to moderate P-T
conditions when P and T are expressed as the reduced variables Pr, Tr (see Chapter 11). This can be
extended to gas mixtures using the pseudocritical approximation described by Pitzer and Brewer (1961,
Appendix 2).

Virial Equation

where the Bij and djk parameters are given by the mixing rales (16.13) and (16.14). V is the molar
volume and Zmix the compressibility factor of the mixture. The number of different species is m, and 7;
is the fugacity coefficient.

van der Waals Equation

where the a and 6 parameters for the mixture and for each component are defined by the mixing rules
(16.9), (16.10), and (16.11). Zmix is the compressibility factor and V the molar volume of the mixture.
The number of different species is m, and 7; is the fugacity coefficient.

Redlich-Kwong Equation (original, unmodified)

where a and 6 parameters are defined by the mixing rules (16.9) and (16.10) but not by (16.11). Other
parameters as above.

4 1 1

Dalton's Law

Lewis Fugacity Rule

Ideal Gas

where

Ideal mixture of real gases

Principle of Corresponding States, pure gas



Table 16.1 (continued)

Modified Redlich-Kwong Equation of Kerrick and Jacobs (a) Pure Gas

Parameters y, b, c, d, and e are defined in (16.8). Other variables as above,

(b) Gas Mixture

ym and bm for the mixing are derived from y^ and fc,; for each pure gas species from (16.9). The remaining
parameters crn, dm, and c,m are evaluated from r,;, d.j, and c.j for each pure gas species and the mixing
rules (16.10) and (16.11). Other variables as above.

412



GASEOUS SOLUTIONS 413

FIG. 16.4. Solubility of liquid decane in nitrogen gas at 50°C, calculated from Henry's Law
coefficient and decane fugacities based on ideal gas and Lewis Fugacity Rule approximations
and the virial equation. Experimental data are solid dots. After Prausnitz (1969).

However, CH4 significantly reduces the activity of CO2 in these mixtures. The CO2

and CH4 molecules are similar and non-polar, and both are quite different from H2O.
Jacobs and Kerrick (1981) attribute the predicted activities to simple dilution of CO2
by CH4 (lowering its effective activity); the H2O molecule presumably interacts in
somewhat similar fashion with both CO2 and CH4 so that a change in the CO2/CH4
ratio should have little effect on water activity. The addition of CH4 to CO2-H2O
fluids has geological implications evident in this figure. First, the predicted CO2-H2O



FIG. 16.5. Activities in CO2-H2O gas mixtures predicted by a MRK equation, after Kerrick
and Jacobs (1981). (a) 400°C and 1-30 kbar. Dotted lines indicate predicted miscibility gap
(coexistence of H2O-rich liquid and CO2-rich vapor), (b) Predicted H2O and CO2 activities in
H2O-CO2-CH4 mixtures at 400°C, 25 kbar. Calculated for CH4 mole fractions of 0.0, 0.05,
and 0.20. Dotted curves imply a miscibility gap of H2O-rich liquid and CO2-rich vapor. After
Jacobs and Kerrick (1981).
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FIG. 16.6. (a) CO2-H2O solvus at 1 kbar. Solid line is fit of a MRK equation to experimental
data (solid dots). After Bowers and Helgeson (1983). (b) Effect of 12 wt.% NaCl on the
CO2-H2O solvus at 1 kbar. After Bowers and Helgeson (1983).
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miscibility gap disappears at this T and P with the addition of only a trace of CH4.
The lowering of CO2 fugacity by CH4 means that decarbonation reactions can persist
to significantly higher CO2 pressures if CH4 is present in the fluid. This means that
fluid compositions should be well characterized before reactions involving CO2 are
used to estimate T and P of mineralization. The comparable effect of NaCl on the
CO2-H2O solvus is displayed in Figure 16.6a,b from Bowers and Helgeson (1983).

Here Figure 16.6a shows the solvus predicted above for pure CO2-H2O systems
occurring as low as 1 kbar at temperatures below 300° C, in agreement with experi-
mental data. To obtain this fit Bowers and Helgeson used a MRK equation that differs
from that of Kerrick and Jacobs. It is essentially the original RK equation (16.7) with
the a parameter written as a function of T (but not P). To extend this MRK equation
to systems containing NaCl, they fit pseudobinary H2O-CO2 systems at different salt
concentrations, solved for the a and b MRK parameters each time, and then wrote
an expression for the variation of a and b with NaCl content. This trick is necessary
because the RK class of equations is intended for gases (or low-density fluids) and
cannot be applied to liquids, particularly those as non-ideal as NaCl-H2O solutions.
As expected, the effect of NaCl on CO2-H2O solutions is quite dramatic—compare
Figure 16.6aand 16.6b. For the same total pressure of 1 kbar, 12 wt. % NaCl raises the
two-phase immiscibility region by roughly another 200°C. This makes sense because
a NaCl-H2O solution must be considerably more non-ideal than H2O alone due to
strong, ionic solvent-solute interactions; the NaCl-H2O rich liquid phase will be-
come even more unlike the relatively simple CO2 phase, and immiscibility will occur
over a wider range of conditions. Again, the geological implications are considerable,
because activities of both CO2 and H2O are changed by the addition of NaCl; this in
turn affects the conditions for which any reactions involving either component occur.

16.4. SOME CONCLUDING COMMENTS

We have seen in this chapter that the behavior of both gaseous and solid solutions can
be described with equations of state fitted by regression analysis to observed data.
The more rigorous (and complicated) of these equations can be extrapolated with care
beyond the field of experimental data. The equations of state most commonly used
have appropriate mathematical forms to describe observed P—T—V-X behavior. This
is because they are based on reasonable, if simplistic, models of molecular interaction.

At the present time, the equations of state used for gas mixtures are more unwieldy
than those used for solids. This is a paradox because the behavior of gases is generally
much simpler than that of solids (e.g., miscibility gaps are not possible with true
gaseous mixtures). Also, the equations for solids make full use of the interrelationships
between thermodynamic variables while the equations most commonly used for gases
do not. For example, we have observed that all Margules parameters are related by
the same equations as the primary thermodynamic variables (such as WG = Wu +
PWV - TWs). This is not practical with the van der Waals, RK, MRK, and related
equations.

It seems that the equations most often used to describe solid solutions have de-
veloped or evolved further than those used to describe gases. Why should this be so?
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The difference probably stems from the fact that an equation of state can be written
for an ideal gas, but that nothing like this is possible with a liquid or solid (we even
remarked above that defining an ideal, one-component liquid or solid is not really
feasible or useful). Starting with PV = RT, other more realistic equations of state
for gases evolved by simple adjustments, each giving improved descriptions of the
P—V—T behavior of gases. Unfortunately, these modified equations (from the van
der Waals equation on to MRKs) have to be integrated (as in 16.16 and 16.17) to give
fugacities and activities, and this can produce very complex expressions. With solids
and liquids there was nothing like the ideal gas law to begin with, and development of
equations of state for these phases followed a different (and, in some ways, opposite)
route. Here we start by defining deviation from ideality through excess functions, and
then go on to derive the P-V-T equation of state.

There will always be room for improvement of any general equation of state, but
at the present time this would be most useful for gases. It might be possible to start,
as with liquids and solids, by defining excess functions of suitable form (such as a
virial equation), and develop these into more practical, and less complex, equations
of state for gases and gas mixtures. This is not a straightforward problem by any
means. Recall that Margules' original equations were actually designed to describe
vapor pressures over liquid solutions. The development of the Margules equations
roughly followed the path we have just outlined, and they should apply quite well
to simple gas solutions. Yet something other than the Margules kind of approach is
really required for gas mixtures because the number of adjustable parameters and
the equations themselves become too cumbersome with multi-component systems.
The virial approach looks promising because of its proven effectiveness with simple
gases and with very complicated aqueous electrolyte solutions, but here there is a
problem selecting mixing rules for molecular interactions of unlike species. We close
this chapter leaving these unresolved problems as a challenge for the future.



17
AQUEOUS ELECTROLYTE SOLUTIONS

Of all known liquids, water is probably the most studied and least understood...

Franks (1972, p. 18)

17.1. INTRODUCTION

In dealing with the thermodynamic properties of ions we have one difficulty in addi-
tion to those encountered in dealing with compounds and elements. For compounds
and elements we found that although we could measure absolute values for some
properties, others such as enthalpy and the other energy terms contained an unde-
termined constant. We got around this by using the concept of "formation from the
elements." It would of course be very convenient to also have thermodynamic proper-
ties of individual ions, but because positively and negatively charged ions cannot be
separated from each other to any significant extent, their individual properties cannot
be measured. To get around this, we need an additional convention, while retaining
the formation from the elements convention. In addition we have certain problems
in dealing with the activities and activity coefficients of electrolytes and individual
ions.

In the following section we discuss the problems of activities of ionic species.
We follow the presentation of Klotz (1964), and include the HC1 example used by
Pitzer and Brewer (1961), and an expanded consideration of the choice of solute
components. Following that we discuss the conventions used to obtain numerical
values for the state variables of individual ions.

17.2. ELECTROLYTE AND SINGLE ION ACTIVITIES

17.2.1. Algebraic Example

We begin by demonstrating that the basic approach is not arbitrarily chosen by
chemists with a view to confusing students, nor is it dictated by the electrically
charged nature of ions. It is dictated by the algebraic consequence of the fact that
when neutral solute molecules dissociate into charged particles, the number of so-
lute particles is increased. For example, when one mole of the undissociated solute
AB(aq), which can be treated using Henry's Law, Raoult's Law, and the rest of the
equations developed in previous chapters, becomes instead one mole of A(aq) plus
one mole of B(aq), certain consequences develop that have nothing to do with whether
A(aq) and B(aq) are electrically charged or not.

418
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To illustrate this we consider first the simultaneous equations

where k\ and ki are known constants and m, n, and p are three variables. With three
variables and two relations between them, the situation is univariant, and we can solve
for two variables given the value of the third one. It follows too that

or simply

Also, when m is small,

so that

In Table 17.1 we have calculated values of m and n for various values of p, and
you will note that the constant of proportionality between/? and n2 (which is \/kiki)
is truly constant, while the "constant" of proportionality between p and (m+n)2 is not
truly constant but approaches the value \/k\ ki as m gets smaller (this approximation
gets much better as &2 gets larger). These relations are shown in graphical form in
Figure 17.1.

If you can follow this simple scheme, then you understand the basis of one of
the more confusing conventions in thermodynamics. As indicated in headings of
Table 17.1, the particular form of equations (17.1) was chosen to model the situation
shown in Figure 17.2. That is, p represents the fugacity of a solute component AB, m
represents the molality of the undissociated solute species AB°(aq), and n represents
the molality of both species A(aq) and B(aq) (necessarily equal molalities) formed by
the breakdown of AB(aq). (m + n) then represents the molality of solute component
AB as it would be measured by chemical analysis of the solution. The constants k\ and
ki represent respectively the Henry's Law constant (actually its reciprocal) and the
ionization constant of AB. It follows from this argument that for a solute component
such as AB which is highly dissociated into A and B, /AB oc mAB, and the point of
beginning with this purely algebraic example is to show that this relationship has an
algebraic and not a chemical nor a conventional basis.

All we have done, really, is to retain the Henry's Law relation

for species AB°, and to show that in cases where ?TIAB° is a very small fraction of the
total AB in solution,

where TTIAB here is the molality of component AB.



FIG. 17.1. (a) p versus (m + n) for various values of k where m, n, p, and k are related
by the equations in the text, p and (m + n) can be thought of as representing fugacity and
concentration of a binary electrolyte in solution, (b) p versus (m + n)2 for various values of kz
where m, n, p, and fe are related by the equations in the text. Data in Table 17.1.
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Table 17.1 The Algebraic Relationship between Fugacity and (Concentration)2

fcl = m/p = rriAB//AB = 0-1
k2 = n2/m = mAmB/mAB = 10

thermodynamic variable:
/AB 7«AB

algebraic variable:
p m

100
50
10

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.001

10.00
5.00
1.00
0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00

mA

n

10.00
7.07
3.16
1.00
0.95
0.89
0.84
0.77
0.71
0.63
0.55
0.45
0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.17
0.14
0.10
0.03

me

n

10.00
7.07
3.16
1.00
0.95
0.89
0.84
0.77
0.71
0.63
0.55
0.45
0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.17
0.14
0.10
0.03

mA + mAB

m + n

20.00
12.07
4.16
1.10
1.04
0.97
0.91
0.83
0.76
0.67
0.58
0.47
0.33
0.31
0.29
0.27
0.25
0.23
0.20
0.18
0.14
0.10
0.03

1 /fcl fez

p/n2

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

p/(n + m)2

0.25
0.25
0.58
0.83
0.83
0.84
0.85
0.86
0.87
0.88
0.90
0.92
0.94
0.94
0.95
0.95
0.95
0.96
0.96
0.97
0.97
0.98
0.99

To show that the example is in fact representative of real situations, we take the
example of HC1 in water used by Pitzer and Brewer (1961). Pure HC1 is a gas that
on dissolving in water dissociates to a very large degree into the charged particles
(called) H+ and Cl~ . The solubility of HC1 in water is so great that even with very
sensitive techniques, the concentration of HC1 reaches about 4 molal before the vaipor
pressure of HC1 above the solution becomes large enough to be measurable. In Table
17.2 we show some values for the vapor pressure (essentially equal to the fugacity)
of HC1 for solutions from 4 to 10 molal in HC1.

These solutions are a little too concentrated to illustrate the dilute solution prop-
erties we are discussing, but they serve as a basis for calculating the fugacity of HC1
in more dilute solutions. This is done using values of 7± (to be denned shortly; see
§17.2.4), which are measured electrochemically.1

The resultant puci or /HQ values are shown in Table 17.2, and shown plotted
against mHci and m^ci in Figure 17.3. With a dissociation constant of approximately

1 Values of kj± were derived from measured pHci values of 4 to 7 molal HC1 by calculating P^Q /mHci •
These were divided by ~f± at each concentration to obtain a value of k. The average value of k in this range
is 0.000704, and this value was used to calculate /HCI at each concentration as (0.000704 • -y± • m-nci)2-
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FIG. 17.2. A gas AB having fugacity /AB equilibrated with a solution in which AB is largely
dissociated into A and B. The algebraic variables m, n, and p correspond to the thermodynamic
variables as shown.

107 at 25°C, HC1 is clearly a good candidate for the (m + n) = n approximation.
To reiterate, if HC1 dissolved in water as a single undissociated particle, then the

normal Henry's Law formulation would apply, i.e.,

where hHC\ is the Henry's Law constant. But because HCl breaks into two particles,
/HCI is proportional not to mHci but to m^cl. The reason for this is essentially algebraic.

17.2.2. Activities of Electrolyte Components

For non-electrolytes, we saw that the next step was to define a standard state such
that /° was the fugacity of the solute in an ideal one molal solution. Another way of
saying this is that f° is the (Henry's Law) constant of proportionality for /AB ex rnAB



FIG. 17.3. (a) Fugacity of HCI (calculated) versus molality of HCI at 25°C. (b) Fugacity of
HCI (calculated) versus molality of HCI2 at 25°C. Data in Table 17.2.
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Table 17.2 Activities in Aqueous Hydrochloric Acid Solutions at 25°C.

TlHCl 7±,HC1

equivalent algebraic variable:
m + n

O±,HCI /HCl
measured

/HCl
calculated

0.0005
0.0010
0.0020
0.0050
0.01
0.02
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.50
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
12.00
14.00
16.00

0.9750
0.9656
0.9521
0.9285
0.9048
0.8755
0.8304
0.7964
0.7667
0.7560
0.7550
0.7571
0.7630
0.7720
0.7830
0.7950
0.8090
0.8962
1.009
1.316
1.762
2.38
3.22
4.37
5.90
7.94

10.44
17.25
27.30
42.40

0.000487
0.000966
0.001904
0.00464
0.00905
0.0175
0.0415
0.0796
0.1533
0.2268
0.3020
0.3785
0.4578
0.540
0.626
0.716
0.809
1.344
2.018
3.948
7.048

11.90
19.32
30.59
47.20
71.46

104.40
207.00
382.20
678.40

2.377E-07
9.324E-07
3.626E-06
2.155E-06
8.187E-05
3.066E-04
I.724E-03
6.343E-03
2.351E-02
5.144E-02
9.120E-02
1.433E-01
2.096E-01
2.920E-01
3.924E-01
5.119E-01
6.545E-01
1.807E+00
4.072E+00
1.559E+01
4.967E+01 2.426E-05
1.416E+02 7.066E-05
3.733E+02 1.867E-04
9.357E+02 4.640E-04
2.228E+03 1.125E-03
5.107E+03 2.573E-03
1.090E+04 5.600E-03
4.285E+04
1.461E+05
4.602E+05

1.178E-13
4.623E-13
1.789E-12
1.069E-11
4.059E-11
1.520E-10
8.548E-10
3.145E-09
1.166E-08
2.550E-08
4.522E-08
7.105E-08
1.039E-07
1.448E-07
1.945E-07
2.538E-07
3.245E-07
8.960E-07
2.019E-06
7.728E-06
2.463E-05
7.021E-05
1.851E-04
4.640E-04
1.105E-03
2.532E-03
5.404E-03
2.125E-02
7.243E-02
2.282E-01

when the solution is acting ideally, i.e., in very dilute solutions. In other words, for
non-electrolytes in dilute solutions,

and

or for any solution,

Using this same line or thought tor electrolytes, we choose a standard state such
that f° is the constant of proportionality for

a-HCl

P
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Thus

and

In the case of HC1, this becomes

or, in very dilute solution where 7nci — > 1 -0,

17.2.3. Choice of Solute Component

Before going on to define single ion activities and activity coefficients, let's pause
to reflect on the similarity between the case considered here (a completely dissoci-
ated electrolyte in water), and the olivine solid solution case considered in Chapter
12 (§12.7). The physical systems are completely different, but the thermodynamic
problem is almost identical, the only significant difference being that in the olivine
case the concentrations were measured by mole fractions and ideality consisted in
conforming to Raoult's Law, while here concentrations are measured in molality and
ideality is represented by Henry's Law. Apart from that, the problem in both cases
consists in choosing a solute component that is appropriate to the situation.

In Chapter 1 2 we showed the purely formal relation between component activities

and showed that in the case of Mg2SiC>4 — Fe2SiO4 solid solutions, component
Mg2SiO4 plots as a parabolic curve on the a — X plot, while component MgSio-sC^
comes close to plotting as a straight line. In the HC1 — H2O case we find that com-
ponent HC1 is strongly curved on a plot of a versus m, but gives a straight line when
plotted as a versus m2. We are entitled to ask why, in the case of HC1, did we not
behave consistently and plot component Ho.sClo.5 versus m instead of changing the
concentration axis from in to m2? Obviously a^, 5ci0 5 versus TOHCI would result in a

i
straight line too, because a^, 5ci0 5

 = aHcr
We can answer this in two ways. First, we will introduce and use component

Ho.5Clo.5 (and analogous components for other compounds), but it is given a special
symbol (a±) for reasons that will become apparent. The other way to answer the
question is to point out that although we need no knowledge of the molecular nature
of a system to be able to apply thermodynamics to it, we would be silly to ignore
such knowledge when it is available. Our rationale for using m2 rather than TO is
based on overwhelming experimental evidence that many binary electrolytes split
completely into two particles on dissolving in water. This provides the reason why

versus TO^CI works better than aHQ versus TOHCI > just as the observation that
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Mg and Fe exchange as single atoms in olivine provides the reason why aMgSi0.5o2

versus X works better than aMg2siO4 versus X. Thermodynamics doesn't care which
component we use, but points out that if we are pleased by OHCI versus m^a, we can
get the same results from aH0 5ci0 5 versus mna-

In general then, we see again that the choice of components is an important
part of any thermodynamically based analysis or theory. Certain choices will "work
better" or be more appropriate than others, and there will always be a reason for this.
Although the reason may be that the component corresponds closely to the actual
chemical species (N2 certainly works better than N4 in gas mixture equations), this is
not necessarily the case as we have seen in both the olivine and HC1 — H2O examples.

17.2.4. Relationship of Solute Activity to Single Ion Activities

^A plot of a^cl (or aHo 5a0.5»and called a±>Hci in the electrolyte literature) versus mHci
is shown in Figure 17.4 (data in Table 17.2). Appropriately, the activity coefficients
measurable as the ratio a±/m on this diagram are called 7±,HCi- The reason for
using the notation a±?HCi f°r aH0 5a0 5

 can be seen by continuing the molecularly-
based reasoning we were pursuing before we stopped to consider the similarity to the
olivine case. Going back to the relation 2

for the same conditions, because each mole of HC1 breaks down completely to H+

and Cl~. At this point we introduce the concept of activity coefficients for individual
ions, and define them such that they approach 1.0 in infinitely dilute solutions, just
as we did with the activity coefficients of undissociated solutes. They are a useful
mental concept in spite of not being measurable. At infinite dilution, then,

2It is helpful in understanding the relations in this section to keep firmly in mind that HC1 refers to
component HC1. Species HCI would he HC1° (§12.7). mHCI therefore refers to the total or analytical
concentration of HO, sometimes called mtotai-

which holds for infinitely dilute solutions, we can next write

and under other conditions they take on values such tha

remains true. Therefore

or
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FIG. 17.4. Stoichiometric mean ionic activity of HC1 (a±,Hci) versus molality of HC1. Crosses
are data points from Table 17.2; dotted line is Henry's Law, having an activity of 1.0 at 1.0
molal HC1. The Stoichiometric mean ionic activity coefficient at TTIHCI = 0.7 is xy/xz = 0.772.

This defines the equilibrium constant for the reaction between component HC1
and the ions H+ and Cl~. It follows then that for the reaction

As usual, it is best to see the truth of a relationship by understanding it rather than
by seeing no fault with its derivation. In this case this can be accomplished by realizing
that in the ideal one molal standard state to which ArG° refers, the solute component
HC1 consists in solution entirely as H+ and Cl~, therefore the G of component HC1
has no choice but to be identical to GH+ + GQ - > from which it follows that ArG° = 0.

In the solution chemistry literature it is usual to refer to the solvent in a binary
system as component 1, and to the solute (as normally written) as component 2.
Therefore in this case aHci could also be referred to as «2-
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We can now see why aHo 5ci<,.5 is called a± jHci- It comes from the concept of
individual ion activities, because if

then

which means that a± refers to the geometric mean of the activities of the two particles
(+ and — ) resulting from dissociation, which in turn gives rise to its other name, the
stoichiometric mean ionic activity. Similarly,

the stoichiometric mean ionic activity coefficient. The measurable quantity 7±.HCi is
considered to be the geometric mean of two unmeasurable quantities, 7e+ and 7C1- .
Similarly, we define the geometric mean of the ion concentrations as

so that

The great convenience of being able to think in terms of individual ionic properties
means that we always look at ionic solutions this way, rather than as a simple changing
of solute component.

17.2.5. Unsymmetrical Electrolytes

The discussion so far has focused on HCI, but all symmetrical electrolytes will have
the same relationships between m, a, and 7. By symmetrical electrolytes we mean
those in which both ions have the same charge, so that on dissolution equal numbers
of positive and negative ions result. Other examples are NaCl, MgSC>4, HNC>3, and so
on. However some complications develop for unsymmetrical electrolytes, i.e., those
giving unequal numbers of positive and negative ions, such as NaiSC^, AlClj, and
so on. To begin with /, 0,2 and a±, the definitions parallel those for the symmetrical
case. Following our algebraic argument, it is found theoretically that for
/ oc m3, while for AlCls, / oc m4, giving rise to the expressions

and
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which lead for the same reasons as before, to

and

which gives

and

Klotz (1964) points out that these definitions of activity for unsymmetrical salts
imply new and rather strange standard states for these electrolytes. If we insist on
having, for example,

it follows that in the binary system (HaO — Na2SC>4) at very dilute concentrations of
Na2SO4,

This means that we cannot say, as before (§17.2.2), that

because this leads to

unless we let 7Na2so4 —» | as m3 —> 0. In order to preserve the convenience of
having 7 —> 1 as m —> 0 for all electrolytes, the standard state is chosen such that its
fugacity, f°, is 1/4 of /iNa2so4, where /iNa2so4 is the Henry's Law constant for Na2SO4

(see Figure 17.5). This results in 7±,Na2so4 being denned as

and to retain the exoression

we define the stoichiometric mean ionic molality as
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FIG. 17.5. Schematic representation of the fugacity of an unsymmetrical salt (BaCh) versus
mBaci2 > illustrating the fact that the standard state chosen is not given by the Henry's Law slope
at 1.0 m as in Figure 17.3, but 1/4 of this.

This is all quite confusing on the first run-through, but is quite logical. See Klotz
(1964) for additional discussion. Table 17.3 contains a summary of these relationships.

Example: From Robinson and Stokes (1968, p. 478) we find that in a 2.0m
solution, 7±>CaCi2 at 25°C is 0.792. Therefore

The importance of activity coefficients is evident in Figure 17.6, which shows
measured ~f± versus molal concentration for selected salts in 350°C hydrothermal
solutions. Activity coefficient corrections (that is, correction to the concentration
to get the activity) of one to two orders of magnitude such as these are not at all
uncommon in aqueous systems.

17.2.6. General Relationships

These relationships can be looked at more generally by beginning with the equa-
tions for the chemical potential of electrolyte solutes, based on the three different
concentration scales:
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Table 17.3 Stoichiometric Activity and Activity Coefficient Expressions for Single
Dissolved Electrolytes

NaCl

Expanded from Klotz (1964, Table 21.1)

Na2SO4 A1C1;, MgSO4

h
«2

a±
a+
a_
m±

7±

oc m2

= a+a_

= 72
tm

2

(a+a_)2
7±m
7±m

= m

(7+7-) 2
= a±/m±

m3

a2a_

47^ m3

(a2a_)5
27±m
7±m
43rre

(7+7- )J
a±/m±

m4

a+a^

277im
4

(a+al)4
7±m
37±rn
27 Jm

(7+7^.)'
a-t/Tn^

m2 m,"++"-
1/4. i/ —a+a_ a+ a__

7^m2 (^V':-)7±++"-)m(^+-)

(a+a_)5 (a^al-)1/*^"-)
7±m 7±i/+m
7±m 7±f_m

m m(i/£+ 1/- )'/("++"->

(7+7- )i (7^7^)l/(^+.-)

a±/m± a±/m±

Conversion of activity coefficients from one concentration scale to another is
accomplished with the formulae in Table 17.4. These equations are derived by Monk
(1961, p. 32) and Robinson and Stokes (1968, p. 32).

Because the total free energy of the solute must equal the sum of its parts (cations
+ anions),

Expanding the top equation in (17.13),

A_+B,,_

Combining this with
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FIG. 17.6. (a) Mean molal stoichiometric ion activity coefficients for selected salts at 350°C
versus total salt concentration. Note that coefficients of the 1:1 salts are similar but that the
coefficient for CaCk is much smaller. Activity coefficients for all salts at this temperature are
roughly independent of concentration above 2m. (b) Insert shows contributions of electrostatic,
hydration, and association corrections to the measured activity coefficients of NaCl at 25°C.
Symbols are defined in §17.6.1. Data from Wood et al. (1984).

gives

Defining
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Table 17.4 Activity Coefficient Interrelationships

Where v = number of moles of ions formed by ionization of one mole of solute.
WA = molecular weight of solvent; Wj_ = molecular weight of solute.
p = density of solution; po= density of pure solvent.
m = molality (moles solute per kg solvent).
M = molarity (moles solute per litre of solution).
"IHX i 7Hm' ~IHC — mean mole-fractional (or rational), molal and molar stoichiometric
ion activity coefficients, respectively.

Note that the first of these is essentially the same as the equation derived in §12.4.5
(F7 = ln(l + 0.0180153m)) for the conversion of Henryan activity coefficients of non-
electrolytes from the molality scale to the mole fraction scale, the only difference
being the introduction of v.

Note too that our use of vm in the top equation assumes complete ionization. Helge-
son et al. (1981) use m*, which allows for incomplete ionization (see discussion of
the HKF model later in this chapter).

where

and

where v = v+ + i/_. Ine rest or the equations m lable 17.3 follow directly.
These relations can also be expressed generally using the notation of Helgeson et

al. (1981). The terms m and (i/+ +1/_) in the table above are equivalent to m^ and v^
respectively in the following equations.
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where j represents the ions of component k, Vj represents the stoichiometry of ion j,
and

For example, if k is CaCl2,

and

For mixtures of electrolytes, with and without common ions, the notation becomes
more complex. Helgeson et al. (1981) give the most comprehensive set of equations
available.

17.2.7. Stoichiometric versus Ionic Properties

The word "stoichiometric" is included in the names given a±, 7±, and m± to indicate
that they are derived according to the formulae given, which, as we have seen, are
based on the supposition that the electrolyte dissociates completely into ions. If the
electrolyte dissociates only partly into ions, these quantities may still be derived, but
they won't represent what they have been described as representing, i.e., the geometric
mean of the properties of the free ions.

Therefore other classes of activities and activity coefficients are defined ("mean
ionic activities" and "mean ionic activity coefficients," without the "stoichiometric"),
which are related to the stoichiometric quantities by the degree of dissociation, a,
where

Thus

where 7,, is the mean ionic activity coefficient of the jth ion, and for component k,

and similarly for the other properties.
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We have introduced the factor a to account for the degree of dissociation, but as
pointed out quite eloquently by Pitzer and Brewer (1961) in their revision of the text
by Lewis and Randall, the value of a varies with the method used to measure it; a
situation not uncommon in studies of complex phenomena controlled by molecular
interactions. Therefore it is to a large extent up to the investigator whether to use
stoichiometric or ionic properties. Stoichiometric properties may be used whether or
not ionic association is important, and have the advantage of not requiring estimates
of a.

17.3. NUMERICAL VALUES FOR SINGLE-ION PROPERTIES

Having sorted out some definitions of single-ion activities and activity coefficients,
we should now take a look at how numerical values are assigned to the thermodynamic
properties of single ions. In essence, the procedure followed is a slight variation of
the "formation from the elements" procedure discussed in Chapter 7.

It will be convenient to continue with HC1 in water as our example, so that the
question becomes how do we arrive at numerical values for all the thermodynamic
properties of the ions H+ and Cl~? The answer begins with the equation for the
formation of H+ and Cl from the elements,

The standard free energy change for this reaction is found by combining data from
three other reactions. First, the association of hydrogen and chlorine to give HC1 gas
has the properties

(data from Wagman et al., 1982) and the partitioning of HC1 between liquid and vapor
phases gives

Combining these gives

We have already shown that for the reaction
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so it follows that for the reaction we want,

At this point we can go no further without making some arbitrary decision, i.e.,
without formulating a convention for ionic properties. The decision is basically to
define the free energy of formation of the chloride ion as

Once this decision is made for one ion, such as Cl~, the logjam is broken and values
for all other ions can be derived. For example, we know that

so that

Combining this with

we get

so that

and this quantity is called A/G£[a+-
So in general, just as the free energy of formation of a compound is the absolute

free energy of the compound minus the sum of the free energies of the constituent
elements, so the free energy of formation of an ion is the absolute free energy of the ion
minus the free energy of the corresponding element, plus the quantity Zj(^G^2 — Gj°1+),
where Zj is the ionic charge. This is generalized formally as
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where H represents G,H,A,orU, and i represents the pure element, having stoichiom-
etry i/j, corresponding to ion j. Just as with the "formation from the elements" con-
vention for compounds, the "excess baggage" (in this case - ^H^ + Zj(^En2 — HH+))
always cancels out in balanced equations.

The same rules apply for all other thermodynamic properties of ions. For instance,

Of course, for V, S and C° for which absolute values for the elements are available,
"formation from the element" properties are not usually tabulated or used. Thus for
instance

But S^ is known to be 51.210 JK"1 mol"1 and SH2 is 130.684 JK^1 mol"1, so

Therefore just as for compounds, the properties of the elements are not involved in
the definition of the entropies, volumes, and heat capacities of the ions. The formal
statement is

where H represents S, V, or Cp.

17.3.1. Possible Additional Conventions

It is possible to effect some simplification in the equations defining the thermodynamic
properties of the ions by introducing additional conventions (a convention can be
defined somewhat facetiously as a convenient assumption that we know is not true).
If, for example, we decide that the absolute free energies and enthalpies of all pure
elements are to be set at zero, then the defining equation for free energies and enthalpies
(equation 17.21) becomes the same as that for S, V, and Cp (equation 17.22). If in
addition we define all properties of the hydrogen ion as zero, then the conventional
ionic properties become the same as the corresponding absolute properties, and we
could have stopped at equation (17.19).

Another possibility is to assume that
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where G° is the free energy of the electron. This is universally adopted in electro-
chemistry, so as to derive values for half-cell potentials. If (17.23) is adopted, but not
necessarily the assumption of zero free energy for the elements, (17.19) becomes

which is the free energy change for the reaction

which is the simplest and most straightforward representation of the formation of
the chloride ion from the element. Straightforward, that is, if you overlook the fact
that the thermodynamic properties of electrons are unknown, and that it cannot serve
as a basis for measurement. Nevertheless, (17.23) is a convenient and often-used
convention.

We prefer to retain the more complete definitions given here (17.21; 17.22), with
no assumptions regarding the properties of the elements and ions. The simplification
introduced by these assumptions is minimal, and the possibility for confusion is
increased. In addition, it is important to realize that thermodynamics is in no way
dependent on the assumption that the energies or enthalpies of the elements are zero,
which is obviously untrue, and is one of the many factors lending a veil of uncertainty
over thermodynamic proceedings. Nor is it dependent on the truth of equation (17.23),
which will be discussed in more detail in the next chapter.

17.4. THE DEB YE-HUCKEL THEORY

In 1 923 Peter Debye and Erich Hiickel published two remarkable papers that described
an a priori method of calculating the activity coefficient of electrolytic solutes in dilute
solution. Without doubt this was one of the major breakthroughs in electrolyte solution
theory.

The problem addressed by Debye and Hiickel (1923 a,b) was to describe an ionic
solution using the primitive model described above (solvent is an ideal structureless
dielectric fluid; solute ions are spherically uniform particles with charges located at
their centers; the primary interactions are considered to be long-range Coulombic
forces). In a non-ionic solution, thermal motions cause all particles to be randomly
distributed. However, in ionic solutions, long-range Coulombic forces cause each
ion to be surrounded by a fluctuating group of ions of opposite charge, forming an
"ionic atmosphere." Without the thermal motion that is always present, the ions in an
electrolyte solution would actually assume the ordered structure of an ionic crystal.
The model Debye and Hiickel used included the competing effects of thermal motion
(causing disorder) and Coulombic interaction (promoting order).

The complete derivation of the D-H theory is readily available in many standard
references (e.g., Harned and Owen, 1958;Monk, 1961; Robinson and Stokes, 1968;as
well as in an English translation of the original papers).3 It is helpful in using the D-H

3"Thc Collected Papers of P.J. Dcbyc" (1954). Intersciencc Publishers Inc., New York.



The parameters p0 and eQ refer to the density and dielectric constant of pure water at
the T and P of interest. Z+ and Z_ are the valences of the cation and anion constituents
of the salt, a is the D-H distance of closest approach in units of angstroms. The product

where

and

where

and
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theory to understand the physical model arid assumptions used and the corresponding
limitations, but it is too lengthy for inclusion here. The final result is

Na in the above is Avogadro's number. The quantity JM in (17.24) is termed the
"molar ionic strength" and is given by the sum:

Notice that in this form, a mole-fractional (or rational) activity coefficient is calculated
from molar concentrations. To be absolutely rigorous this is how the equation would
be applied. As we have observed above, the molal concentration scale is by far the
most practical for use with aqueous solutions over ranges of T and P. Equation
(17.24) can be rewritten in molal units using the conversions discussed above.

The Debye-Hiickel Equation for mean molal stoichiometric ion activity coeffi-
cients is:
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aB usually approximates unity. The D-H A and B parameters, calculated over a wide
range of P and T are tabulated by Helgeson and Kirkham (1974, pp. 1202 and 1256).
/ is the molal ionic strength, defined by the following sum over all anions and cations:

The D-H equation (17.28), as we have seen, takes into account only long-range elec-
trostatic interactions between ions, and thus cannot be expected to work in solutions
above a certain limiting concentration. It may easily be calculated that only 2 or 3
solvent molecules separate individual ions in a 1 molar solution. In practice the D-H
equation works reasonably well to concentrations of approximately 10~2 to 10~'m
but no higher.

At very low concentrations the second term in the denominator of (17.28) becomes
insignificant and equation (17.28) reduces to

This is called the Debye-Hiickel limiting law and has the advantage of being
simpler and not including the adjustable & parameter; however, because of this, it
cannot be used at concentrations above approximately 10~3 m. It is often used to
calculate the theoretically best slope at the zero concentration axis when extrapolating
experimental data as a function of ionic strength back to zero concentration.

The a parameter is adjustable and is usually determined by regression-fitting the
D-H equation (17.28) to experimental data for individual salts. These have been
tabulated for different compounds by Kielland (1937), and Butler (1964, pp. 434-5).
These compilations give a for both anion and cation; where these values are not the
same, the mean of the a values for cation and anion provides the best fit with observed
activities (Butler, 1964, p. 436), and we recommend this approach, although others
have also been used.

A well-known problem with using an adjustable a parameter for individual salts
or ions is that if this is done for the individual solutes of a multicomponent solution,
dGsolution will not be an exact differential, because the cross-differentiation criterion
applied to the activity terms of the total differential (§2.2.6) will not be satisfied. To
satisfy this criterion, the a parameter, or the aB product, in the denominator of the
D-H equation should be the same for all solute components of a mixed electrolyte
solution. This is one reason why several modifications and extensions of the D-H
equation use a constant (often 1.0) for the aB term (Guggenheim, 1935).

17.5. MEASUREMENT OF ACTIVITY COEFFICIENTS

Many different techniques can be used to measure activity coefficients of electrolytic
solutes, many of which are electrochemical. Most of these methods are reviewed in
standard references (e.g., Harned and Owen, 1958; Monk, 1961; Robinson and Stokes,
1968, Ch. 8). Solutions of geological interest can span considerable temperature
ranges, and it has often proven simplest experimentally to measure the activity of the
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FIG. 17.7. Two experimental techniques for measuring stoichiometric ion activity coefficients
in hydrothermal solutions, (a) Determination by measuring difference in vapor pressures be-
tween solutions of known total salt concentration and pure water, (b) Isopiestic measurement
in which sample solutions containing known weights of salts are equilibrated with a standard
solution for which activity coefficients have been independently measured. In a sealed system
water activity is everywhere the same at equilibrium; measured salt concentrations in each
sample container give the desired activity coefficients from the known activity of water in the
standard salt solution.

solvent (water) and then use that to calculate solute activities. Most of the available
data on activity coefficients of salt components in hydrothermal solutions have been
obtained in this general manner.

In all such methods, the solvent activity is measured over a range of solute concen-
trations. For example, solvent activity for a vapor-saturated aqueous salt solution can
be easily determined from the decrease in vapor pressure of the salt solution relative
to that of pure water, using the apparatus illustrated in Figure 17.7a. This technique
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has been used by Liu and Lindsay (1972), Wood et al. (1984), and others to measure
activity coefficients of many alkali halides and other simple salts to temperatures of
350°C. Another approach termed the isopiestic method is illustrated in Figure 17.7b.
In this example several containers with the salt solution to be measured (NaCl in the
illustration) are hermetically sealed with a container of a different salt solution (KC1
here) for which the water activity is already known as a function of KC1 concentration.
The fugacity of water must be the same everywhere inside the hermetic system at
equilibrium; water will actually enter or leave each container until the water activity
in each is identical. At the end of the experiment, the (changed) KC1 concentration is
measured in that container; this gives the water activity in each of the other containers
for the (changed) concentrations of NaCl .

The theoretical method used in relating the water activity to solute activity in
each of these methods is an interesting application of the Gibbs-Duhem equation
introduced in Chapter 9 (§9.2.6). There are several ways of doing this; for further
details see Liu and Lindsay (1972) and Wood et al. (1984).

17.5.1. Activity Coefficients of Neutral Molecules

The determination of the activity coefficients of species that exist dominantly as
neutral molecules, such as SiO2(ag), H2S(ag) and CO2(a</), is much simpler. In these
cases it is usually possible to establish a two-phase equilibrium between the substance
in its pure state (solid or gaseous) and the substance in its aqueous or dissolved state.
This leads to a simple and rigorous determination of the activity coefficient in solutions
of varying composition.

For example, consider H2S gas in equilibrium with H2S(ag). The first ionization
constant of H2S is about 10~7, so that species other than molecular H2S can be
neglected in this connection. The reaction of interest is

for which the equilibrium constant is

/H2s can either be taken as equal to the partial pressure of H2S or calculated from
this quantity, and rriH2s is measurable as the total sulfur content of the solution. Then
if K is known, 7n2s can be obtained in any solution simply by measuring /H2s and
mH2s- For solids such as SiO2 which dissolve to neutral species, the situation is even
simpler, as the activity of the solid can be taken as 1 .0. Normally, K is obtained
by performing the experiment in pure water, and assuming that in this case, 7^ = 1 .
Therefore, activity coefficients obtained in this way are, actually values of

If the "solution of interest" is a solution of salt B in water, having concentration mB,
there is a simple relationship between 7^ and 7713,
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FIG. 17.8. Activity coefficient of H2S(ag) at various temperatures as a function of NaCl
concentration. Data from Barrett et al. (1988).

where k$ is called the Setchenow coefficient. The TOB term has been replaced in some
treatments by the "true ionic strength" (§17.7.1).

An extensive review of neutral solutes in aqueous salt solutions is given by Randell
and Failey (1927a,b,c. See also Long and McDevit (1952) and Oelkers and Helgeson
(1991)). A recent application of this method is the work of Barrett et al. (1988), who
obtained activity coefficients for H2S in NaCl solutions up to 5m and 95°C (shown in
Figure 17.8), and calculated coefficients for some other gases. As expected, activity
coefficients of this type are much closer to 1.0 than those for charged particles in the
same situation.

Note that we have only spoken of neutral species of the type that can be obtained
as the dominant species in a solution; activity coefficients for the neutral species of
weak electrolytes and other neutral species in a matrix of charged particles constitute
a more difficult problem. Their activity coefficients are usually assumed to be 1.0, or
are taken as equal to those of some other neutral species such as H2S or CO2 under the
same conditions. The activity coefficients of neutral species in electrolyte solutions
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at elevated temperatures and pressures is a subject of continued study (Oelkers and
Helgeson, 1991).

17.6. ACTIVITY COEFFICIENTS AT HIGHER CONCENTRATIONS

Activities predicted by the D-H equation decrease monotonically with solute concen-
tration. Measured activity coefficients typically decrease at first, but then increase at
higher concentrations. This indicates that the simple Coulombic "primitive model"
used by the D-H theory must be inadequate in more concentrated solutions. There
have been many theoretical attempts to model the additional interactions that occur
at high concentrations—see summaries by Friedman (1962), Pytkowicz (1979), and
Helgeson etal. (1981).

17.6.1. Factoring Activity Coefficients into Long- and Short-Range Contributions

Of all the complex interactions which come into play at higher concentrations, two
of the most important are ion hydration and ion association. It is easily shown that
both the long-range coulombic effect (calculated by the D-H equation) and ion asso-
ciation decrease ion activity, while hydration, which effectively reduces the amount
of solvent, increases it. Unfortunately, there is little agreement on hydration numbers
for various ions, but using reasonable literature values, Wood et al. (1984) show that
mean ionic activity coefficients having the right shape can consistently be calculated
at high temperatures and at high concentrations using only these three factors. Using
the notation jf for the electrostatic or long-range ion-ion interaction correction (D-H
effect) for ion i, 7" for the correction for ion association, and 7^ for the hydration
correction, the combined effect is f e f i a = je^/h'ja. The relative contributions of these
factors at 25°C for NaCl are shown in Figure 17.6. Breaking the activity coefficient
into these three factors is thus a useful mental concept, despite the complexity of the
actual situation.

17.7. ESTIMATING ACTIVITIES OF INDIVIDUAL IONS

We pointed out above that activity coefficients of individual cations or anions cannot
be measured because of the requirement that solutions remain electrically neutral.
Instead, the activity coefficient of the total solute (NaCl, CaCl2, etc.) is measured,
and that is used to calculate mean activity coefficients, 7±. These are a kind of
average of the activity coefficients for the individual cation and anion and are not the
true values for the individual ions. This inability to estimate activity coefficients of
individual ions is a problem because it is specific ion activities (rather than activities
of total salts) that are most frequently required in thermodynamic calculations.

One possibility is to use the D-H equation (17.28) or any of its variations for a
single ion. In this case, the D-H equation becomes:
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where 7^, Zj, and a are properties of the specific ion, but / is the ionic strength
(17.31), which includes all ionic species. This approach cannot be expected to apply
rigorously because, as we have seen, the D-H theory was developed for an ion and its
atmosphere of oppositely charged species. Of course, all solutions become more ideal
at lower concentrations, so there is some small justification for using this approach
with very dilute solutions.

17.7.1. Activities of Minor Components in Concentrated Solutions

One of the most difficult problems in working with natural aqueous solutions is assign-
ing activities to trace or minor components that occur in concentrated salt solutions.
An example might be calculating the activity coefficient of ppm (~ 10^5m) concen-
trations of metal ions in hydrothermal solutions containing 1 to 5 molal concentrations
of salts such as NaCl, KC1, and CaCl2.

The approach most frequently used by geochemists over the past several decades
for calculating activities of minor components in concentrated salt solutions was
suggested by Helgeson ( 1 969) . This was an outgrowth of earlier work by other eminent
chemists such as Scatchard and Harned, summarized by Pitzer and Brewer (1961,
pp. 326, 578 and Appendix 4). The idea is to define a deviation function B ("B-dot") as
the difference between observed and predicted activity coefficients for an electrolyte
such as NaCl. This was redefined by Helgeson as

The second term in the numerator is the D-H equation (17.28) and the first term is the
experimentally observed activity coefficient for NaCl at the concentration mNaa of
interest. The ionic strength Ia includes a correction for ion association (formation of
NaCl0) and is called "true ionic strength" by Helgeson. Various methods of calculating
I a are described by Brimhall and Crerar (1987, p. 280).

B has been derived by fitting (17.34) to activity coefficient data for NaCl and
is tabulated as a function of T by Helgeson (1969). Helgeson et al. (1981) provided
revised values called 67 for NaCl and several other salts, and for NaCl as a function
of P as well as T as part of a more comprehensive study. The activity coefficient of
a minor or trace species (say several ppm FeCl+) in a concentrated NaCl solution is
then given by rearranging (17.34):

So (17.35) gives an estimate of the stoichiometric activity coefficient of a trace compo-
nent, 7e/la, which includes the three major non-ideality corrections in a concentrated
NaCl solution. In (17.35), Ia is the association-corrected ionic strength including all
components of the solution, the parameters Zj and a refer to the trace component (not
NaCl), and B is the value for the dominant salt in the solution, NaCl. Because (17.35)
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gives the stoichiometric activity coefficient, the activity of the trace component would
be calculated from its total analytical concentration rriijotai in the solution:

More recently, Helgeson et al. (1981) have revised equation (17.35) so that the B
parameter explicitly includes a hydration parameter derived from the Born equation
and a second parameter for remaining short-range interactions. Some difficulties in
using this approach were discussed by Barrett and Anderson (1988). This approach
will undoubtedly be further pursued in the next few years.

17.8. CONCENTRATED, MIXED-SALT SOLUTIONS

17.8.1. A Statistical Mechanical Approach to a Thermodynamic Problem

Much of the theory underlying the following equations was developed for gases
and extended to electrolyte solutions largely by Joseph Mayer (Mayer and Mayer,
1940; McMillan and Mayer, 1945; Mayer, 1950). For a comprehensive summary, see
Friedman, (1962).

Some of the necessary background has already been discussed in Chapter 15
(§15.4.4), and we will only outline the major points here. Recall that in theory we
could plug expressions for all known interaction energies into the Boltzmann equation
(6.9) and we should then know all thermodynamic properties of our system. In reality
this is unthinkable because we would generate more than an Avogadro's number of
equations for one mole of solution, creating something worse than the famous rt-body
interaction problem.

Mayer discovered an ingenious way out of this conundrum. Recall from Chapter
15 that the thermodynamic properties of a system of N molecules at volume V and
temperature T can be evaluated from the configuration integral Z'

where u is the total molecular interaction energy and the integration is carried out over
the volume V for the coordinates of each molecule. This is an impossible integral,
because it is made over the x, y, z coordinates of each molecule, and we could be
dealing with an Avogadro's number of molecules!

Fortunately, this can be simplified by factoring the total energy U into terms,
each of which represents the interaction energy of a certain number of molecules or
"clusters." We can consider interactions of molecules or clusters in groups of two,
three, four, etc., and rewrite the configuration integral as the sum of these terms.
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Now in Chapter 15 we also introduced virial equations of state, which were
originally developed to describe the P — V - T properties of non-ideal gases around
the turn of the century. An example is the equation

It was discovered four decades later that these equations fit real data so well because
they had the form of a cluster expansion such as (15.37) above. The first term in a
virial equation always represents ideal behavior (PV/RT = 1); in the second term,
I?2 represents the non-ideal contribution from pairwise interactions of molecules; #3
gives the interactions of triples, and so on. The virial coefficients can be calculated
from known interaction potentials, or, alternatively, can be used to estimate these
potentials from observed P — V — T behavior. We observed in Chapter 16 that virial
equations fit the non-ideal behavior of gaseous solutions very well, and in Chapter 15
we saw that the Margules equations used to describe non-ideal behavior within solid
solutions also have the form of virial equations. It should not be too surprising that
expressions with this general form also work well with aqueous electrolyte solutions.

Aqueous solutions can be modeled by writing a virial equation such as (17.37) in
which osmotic pressure replaces pressure. Friedman (1962) describes applications of
cluster expansion theory, which include long-range Coulombic potentials as well as
short-range square-well potentials that operate when unlike ions approach within the
diameter of a water molecule. These models are mathematically quite cumbersome
and are not easily used for routine calculations. They do predict the non-ideal behavior
of simple electrolytes such as NaCl quite admirably at moderate concentrations;
however, they use the square-well potential as an adjustable parameter and so retain
some of the properties of the D-H equation with an added adjustable term. For this
reason these are not truly a priori models.

17.8.2. The Pitzer Equations

In the 1970s, Kenneth Pitzer and his associates developed a theoretical model for
electrolyte solutions combined the D-H equation with additional terms in the form of
a virial equation. This has proven to be extraordinarily successful at fitting the behavi or
of both single- and mixed-salt solutions to high concentrations. Recent summaries
of this model are provided by Pitzer (1979, 1987), Harvie and Weare (1980), and
Weare (1987), and much of the following discussion is adapted from these articles,
particularly those by Harvie and Weare (1980) and Pitzer (1987).

The Pitzer model adds a virial expansion to a simplified version of the D-H
equation and begins by describing the total excess free energy of an electrolyte solution
as
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Here nw is kilograms of water and mj is molality of species i. The term /(/) is a
version of the D-H equation dependent only on ionic strength (with no adjustable
a parameter). The quantities Xij(I) and p,^ are second and third virial coefficients
added to account for short-range interactions at higher concentrations. \ij(I) applies
to interactions of pairs of ions i and j, and /u,;jfe to interactions of ions i,j,k three at
a time (/j-ijk has been found to be independent of ionic strength and equals zero if i,
j, and k are all anions or cations). Pitzer (1987) and Harvie and Weare (1980) note
that higher virial coefficients are required only for extremely concentrated solutions,
so the series (17.38) is stopped at the third coefficient.

Recall that

Equation (17.38)can therefore be rewritten in terms of activity coefficients for specific
ions and the osmotic coefficient of the solvent by taking derivatives with respect to
the number of moles m?; of each ionic constituent per Kg water (see Pitzer, 1 987).
These derivatives contain several functions (B, C, $ and \P) defined below, and are
as follows.

Osmotic Coefficient

Activity Coefficients for Cations:
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Activity Coefficients for Anions

In these equations, mc is the molality of cation c, which has charge zc (and
analogous quantities ma, a, and za apply to anions). The original Pitzer model takes no
explicit account of ion association, so all molalities m^ used in the above expressions
refer to the total analytic concentration of species i. Subscripts M, c, and c' refer to
cations, and X, a, and a' to anions; M and X to the ion being considered, c and a
to ions being indexed or summed, and c' and a' to ions other than c and a. Thus, the
summation ]T}c is taken over all cation species, but the double summation

is made over all distinguishable pairs of different cations c and c' (such as Na+ and
Ca2+, or Na+ and K+, etc.). This unusual notation is simply meant to eliminate the
inevitable pairing an ion with itself if the usual double summation is used. This will
become clear if you work through the example given further on.

The quantities B and C are adjustable parameters derived from measured activity
coefficients on single salt + water solutions. The parameters $ and ty come from data
on aqueous systems containing two salts. Referring to the original virial equation
(17.38), B and $ are combinations of the second virial coefficients AJJ, and C and \Ef
are combinations of the third coefficients Hijk- These parameters are defined explicitly
below.

The last term, first line, in equation (17.40) is a modified D-H equation without
the a parameter; Note that the D-H parameter A® used in the Pitzer equations is
numerically slightly different from that in the usual D-H equation:

where 7v"a is Avogadro's constant, e is the electronic charge, k is the Boltzmann
constant, and po and EQ are the density and dielectric constant of pure water.

In equations (17.41) and (17.42) for the activity coefficients, F is a function
summing the D-H equation and additional terms:
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At 25°C, A1* =0.392 and 6 (= aJ5 in D-H) is taken as 1.2. All other parameters in
(17.43) and (17.44) are as previously defined.

All coefficients BMX in the Pitzer equations (17.40) to (17.42) and (17.44) vary
with ionic strength /. For electrolytes of valence 1-1 and 1 -2 (e.g., NaCl and Na2SC>4)
they are written in terms of two regression parameters specific to the electrolyte, /3(0)

and (3^\ a parameter a which depends on the type of electrolyte (for 1-1, 1-2 and
2-1 salts, a = 2.0), and the ionic strength:

The functions g and g' in the above expressions are:

where x = a/2. The parameters /3jjx and /3 |̂X are derived from regression fits to
osmotic coefficient data for aqueous solutions of single salts (see Wood et al., 1984,
p. 676 for an example).

With electrolytes of higher valence such as 2-2 (e.g., CaSO4), the -B^x ex~
pressions are augmented with an additional term (which is required to account for
increased ion association)

For these higher-valence electrolytes a\ = 1.4 and u-i = 12.0.
The function Z in equations (17.40)-(17.42) is defined as

The parameters CMx in equations (17.40) to (17.42) are related to tabulated
parameters derived from data on aqueous single salt systems
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The parameters $* and MJjjfc are derived from two-salt data and correct for inter-
actions between ions of the same sign. The "f^ parameters are assumed independent
of ionic strength and apply when i and j are different anions and k is a cation, or
when i and j are different cations and k is an anion. The second virial coefficient
terms 5>^ are denned by

The terms B%(/) and E0'ij(I) are functions solely of the ionic strength, and account
for mixing forunsymmetrical electrolytes when the ions i and j have differing amounts
of charge of the same polarity (+ or —). These parameters are zero when i and j have
the same charge. Harvie and Weare observed that including these terms significantly
improved agreement with real data for complex systems such as Na-Ca-Cl-SO4-
H2O. Equations used to calculate these terms are given by Pitzer (1975, 1987) and
summarized by Harvie and Weare (1980). Pitzer (1987, Appendix A) shows these
terms graphically as a function of /, which is useful for checking your calculations.

17.8.3. Summary of the Pitzer Model

We have presented the Pitzer equations describing activity and osmotic coefficients
of multi-component salt solutions, but probably no brief summary will suffice to get
you started if you actually want to use these equations to model real systems. The
most useful summaries are probably Pitzer (in Pytkowicz (1979) and in Carmichael
and Eugster (1987)) and Weare (in Carmichael and Eugster (1987)).

The truly remarkable thing about the Pitzer equations (17.40) to (17.42) is that the
above parameters derived from one- and two-salt systems can be used with extraordi-
nary success to predict behavior in systems containing many more ionic components.
Use of the Pitzer equations to predict activities in very complex salt solutions requires
data for the single-salt parameters fijJx1' $MX' ^MJO an(l ^MX f°r aH possible com-
binations of cations M and X in the multi-component system. For example, if the
system you wish to model contains Na+, K+, C l , and Br~ you would require activity
coefficient determinations (which give the above single-salt parameters) for each of
the salts NaCl, KC1, NaBr, and KBr dissolved one at a time in water. The two-salt
parameters would have to be derived from measurements on systems containing all
combinations of these salts taken two at a time. From these relatively simple measure-
ments, it is then possible to predict the thermodynamic behavior of the Na—K-Cl-Br
system from dilute solutions to quite high concentrations. This approach has been
used for systems containing 10 or more components.

17.8.4. Example Applications to Concentrated Brines

One of the first applications of the Pitzer equations to highly complex natural systems
were made by Weare, Harvie, and their associates on marine evaporites (Harvie and
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Weare, 1980; Eugster et al., 1980; Harvie et al., 1982, 1984; Brantley et al., 1984;
Weare, 1987). These calculations, coupled with the free energy minimization method
for computing chemical equilibria (described in Chapter 19) successfully predicted the
mineral assemblages formed during the evaporation of seawater to almost complete
desiccation. It is difficult to conceive of a more complicated test of the Pitzer model.
Remember that these calculations represent a prediction from experimental data on
systems containing no more than two different salts at a time.

To illustrate the use of the equations, we will take the simpler problem of the
solubility of anhydrite in a concentrated NaCl solution. In natural solutions, such as
evaporitic brines, you can analyze the total Ca content and the total sulfate, along with
everything else, but to compare the ion activity product (aCa2+aso2- ) to the solubility

4

product in order to determine if the solution is over- saturated or under-saturated, you
need the activity coefficients of Ca2+ and SO2." . This is where Pitzer equations come
in. Let's say we want to know if anhydrite is over- or undersaturated in a solution
3m in NaCl and 0.01m in CaSO4. For the activity coefficient of Ca2+ in this solution,
equation (17.41) becomes

The function F is defined in equation (17.44), and on expanding is

The equation giving ln7SQ2- (17.42) looks quite similar. Filling in the values of
the parameters from Table 17.5 and solving, we find 7Ca2+ = 0.3499, 7SO2- = 0.03190,

giving an Ion Activity Product (IAP) of 0.01 x 0.3499 x 0.01 x 0.0319 or 1 . 1 1 x 10~6.
The solubility product Ksp is 4.96 x 10~5, so the solution is undersaturated with
anhydrite. Further details of the calculation are given in the problems at the end of the
chapter. Monnin (1990) has done the calculation for the same solution with a slightly
different result, ((7ca2+7so2+)2 = 0.1 130), because he included provision for a CaSOJ
ion pair after the work of M011er (1988). Many such variations and new applications
are now appearing, because of the evident accuracy and usefulness of this approach.

17.8.5. Application to Other Thermodynamic Properties

The same methods used to describe activity coefficients here can also be applied to
other thermodynamic properties such as excess volumes, enthalpies, entropies, heat
capacities, and so on by manipulating the defining equation (17.38) appropriately (see
Pitzer, 1987). Experimental data useful in deriving the ion-interaction parameters of
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Table 17.5 Parameters for the Pitzer Equations (Pitzer, 1987)

the Pitzer equations can come from such sources as freezing point depression, boiling
point elevation, vapor pressure, isopiestic concentrations, E.M.F., enthalpy of dilution,
enthalpy of mixing, enthalpy of solution, heat capacity, volumetric data, and solubility.
With such data and the general Pitzer model it then becomes possible to quantitatively
describe most physical and thermodynamie properties of complex, multi-component
systems based on data collected in simpler one- and two-solute aqueous solutions.
This represents a truly major advance in our ability to model highly complicated
aqueous electrolyte solutions.

For example, excess volumes can be derived from the derivative

This approach has been used quite successfully, for example, by Christophe Mon-
nin (1989) to model densities of concentrated, multi-component natural brines based
on volumetric data from one- and two-salt systems. Monnin's predictions agree very
well with observations made on natural brines in settings such as the Red Sea and
Persian Gulf sabkha regions.

17.9. THE HKF MODEL FOR AQUEOUS ELECTROLYTES

The other major contribution to the systematization of our knowledge of aqueous
electrolyte solutions at elevated temperatures and pressures takes a completely dif-
ferent approach. This was presented in a series of four papers by H.C. Helgeson and
co-workers between 1974 and 1981, with fairly extensive modifications added by
Tanger and Helgeson (1988). We present here an outline of this model, with some ex-
planation and comparison with the Pitzer model. We refer to it as the HKF or revised

Single Electrolyte Solution Parameter Values

Cation Anion /?£> &L &% C&

Na Cl .0765 .2644 — .00127
Na SO 4 .01958 1.113 — .00497
Ca Cl .3159 1.614 — -0.00034
Ca SO 4 .20 3.1973 -54.24

Common-Ion Two Electrolyte Parameter Values

C c' 9CC, *CC,C1 *CC'S04 *CC'HS04 ^cc'OH I'cc'HCOj *cc'CO3

N a C a . 0 7 -.007 -.055 _ _ . — __

a a' 6aa' *aa'Na *ao'K *aa'Ca *aa'Mg *aa'MgOH *aa'H

Cl SO4 0.03 0.00 -0.005 -0.002 -0.008 —
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HKF model, after the three authors of Part IV of the series of papers just mentioned,
Helgeson, Kirkham, and Flowers.

17.9.1. Overall Structure of the HKF Model

The HKF model is semi-empirical, in the sense that it uses a number of empirical
parameters within a framework suggested by fundamental physics and thermody-
namics. The variation of the Gibbs free energy of individual ions with T, P, and
composition can be represented by writing the total differential of the (partial molar)
free energy of the jth ion, giving

where j is an ion in an aqueous solution of any composition. Changes in Gj due to
changes in T, P or rij are found by integrating this equation,

This is illustrated in Figure 17.9. The first two integrals on the right-hand side take
place at concentration no. If we equate this with the standard state (ideal one molal
solution), then Sj and Vj become S° and V}° respectively. The third integral takes
care of departures from standard state conditions (change of composition) at T and
P. Integration of fT S? dT requires knowledge ofC°., and integration of f™ p,jdnj
(= fj,j — fj°j = RT In a j ) requires knowledge of 7, , so that the minimum information
needed to know how the Gibbs energy of an ion j varies with T, P, and composition is
how C° and V° vary with T and P respectively, and how 7,- varies with composition.

17.9.2. The Born Functions

Born (1920) showed that free energy change associated with removing an ion j of
radius TJ and charge ZjZ from a vacuum and placing it in a solvent of dielectric
constant e is

where JVa is Avogadro's number. For an enlightening discussion of this and related
topics, see Bockris and Reddy (1970). This simple equation, based on coulombic
forces only, predicts enthalpies of hydration that are in reasonable agreement with
experiment. That is, reasonable in the sense that they are of the right order of mag-
nitude, but they are otherwise rather inaccurate. This is not surprising, because the
hydration process must be much more complicated than provided for in the Born
model. However the fact that it succeeds as well as it does suggests that it contains a
large part of the truth, and might serve as the basis of a more satisfactory model. In
fact it serves as the basis of the HKF model, which uses the Born function to provide
the free energy of solvation (or hydration in aqueous solvent) in a strict sense (not
including the energy effects of disrupting the water structure in the neighbourhood
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FIG. 17.9. Representation of the integration ofdGj from reference conditions to conditions of
interest, where j is an ion in an aqueous solution of any composition. The path from Tr, Pr,ng
to T, P, n is represented by equation (17.59).

of the hydrated ion). In other words, the Born function is taken as providing AG for
the process

A number of theoretical difficulties in equating the Born function with this process
are believed to be accommodated in the r,BJ- parameter, which in the Born model is
the ion radius, but in the HKF model is an adjustable parameter called the effective
ionic radius. The re j parameters were originally related to crystallographic ionic radii
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(rZij) and ionic charge Zj in a simple linear fashion in the HKF model, and were
independent of T and P

In the revised model, rej became a function of T and P (Tanger and Helgeson, 1 988),
and is discussed below. An empirical term having several adjustable parameters to
account for all other effects of adding an ion to water is then added to complete the
model.

The Born function for individual ions is calculable theoretically, but as properties
of individual ions are not measurable, it could never be tested experimentally. The
two conventions required to get around this problem have been discussed earlier in
this chapter. First, the properties of anions are taken to be equivalent to those of their
corresponding acids, so that for instance the properties of Cl~" are equivalent to those
of HCl(aq). Therefore we define a "conventional" electrostatic Born parameter as

where 0.5387 is the value of ~2^ri~ for the H+ ion (Helgeson and Kirkham, 1976).
The Born function then becomes

which is the difference between the AG of solvation of ion j (j in vacuum —> j in
water)and the AG of solvation of H+ (H+ in vacuum —> H+ in water). As described
above, in the HKF model, this is equated with the AG of formation of the inner
hydration sphere only. This is sometimes called the conventional AG of solvation,
although since it is the only one we can deal with in a practical way, it is more often
just called the AG of solvation.

The second convention required is that the properties of individual ions are related
to the properties of electrolytes by the additivity rule

where S is any partial molar property and z/^fc represents the stoichiometry of the
jth ion in the M electrolyte. An example would be V^Q = ^0,2+ + 2V^j_. Thus for
example, because the properties (H) of the Cl" ion are identified with those of HC1
they are "known," and 5 for the Ca2+ ion is then obtained from
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In summary, because properties are additive, and the properties of anions are known
by convention, then all ionic properties are kriowable, in the conventional sense.

It follows from the additivity convention that we can write an analogous Born
function for aqueous electrolytes, k, as

where

In other words, ujk for electrolytes is simply the sum of its uij terms, e.g.

(Note that in this summation, the properties of the hydrogen ion cancel out). It follows
too that the fit parameters in the model to be described are also additive, so that the
procedure is to develop the fit parameters for data on electrolytes, then to split them
into additive parameters for individual ions. In the following equations, if there is no
j or k subscript, the equation applies to both, as long as the appropriate parameters
are used.

17.9.3. The rej Term

The (conventional) entropy and volume changes of solvation according to the Born
model are then derived by differentiation, which in the original HKF model was a
simple procedure because rej was independent of T, P, which meant that MJ was
also independent of T, P. Thus in the original model,

and

and
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Note that in regions where g = 0 (essentially where T < 150° C or P > 2000
bars), the T and P derivatives of u> in these expressions become zero (because rKj is
independent of T, P when g = 0), and the solvation terms resume their original fairly
simple forms.

where Y, Q, and X are Born coefficients, i.e., temperature and pressure derivatives
of the dielectric constant of water, derived and calculated by Helgeson and Kirkham
(1974a). However, in the revised model, rej becomes a rather complex function of
T and P, giving rather more complex expressions for the solvation terms, containing
partial derivatives of ujj. It is helpful in seeing the overall structure of this model
to look first at the simple forms of the solvation contributions (above), and then to
regard the more complex forms as unfortunate complications.

In the revised model,

where, as before, Zj is the ionic charge and rxj is the crystallographic ionic radius.
The added term g is a complex function of T and P obtained by regression of volume
and heat capacity data for aqueous NaCl. This results of course in more complex
expressions for the solvation terms, which are (Tanger and Helgeson 1988, Appendix
G)

and
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The rej term in the HKF model essentially takes the place of the a term in the
D-H model, and because it is different for each ion, the overall model suffers from the
problem mentioned in § 17.4, i.e., that dGsoiution is not an exact differential. However,
the authors consider that the error introduced is acceptable in view of other sources
of uncertainty.

17.9.4. The Empirical Part

After defining the Born function as described above, comparison of experimental
values of AV° and AC° with calculated values of AVj,0 and AC° showed that the
discrepancies could be fitted with functions of the form

and

where subscript n stands for non-solvation, and

In the original HKF model, 0 was a fit parameter for each ion having values usually
ranging from about 200 to 260 K. Recent studies of supercooled water reviewed by
Angell (1982, 1983; references in Tanger and Helgeson, 1988) however show that
228 ± 3 K is a singular temperature at which several properties approach ±00, and
in the revised model O takes on the fixed value of 228 K. The \1> parameter is also
fixed at 2600 bars.

17.9.5. The Model for AV° and AC°

Combining the Born and empirical parts of the model gives

for the (conventional) standard partial molar volume of ion j or electrolyte fc as a
function of T and P, and



460 THERMODYNAMICS IN GEOCHEMISTRY

for the (conventional) standard partial molar heat capacity of ion j or electrolyte k as
a function of T only.

No extra effort need be expended to determine the effect of pressure on &.C°
because this information is included in the expression for partial molar volume already
obtained. That is, because

it follows that

which on integration turns out to be

17.9.6. Expressions for AS10, Aff° and AG°

Having expressions for the temperature and pressure effects on C° and V°, straight-
forward, if somewhat lengthy, integration gives expressions for AS*0, A£P, and
AG°, which can refer either to an ion j or an electrolyte k, depending on the fit
parameters used in the expression. Thus

This gives

or
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At this point we have shown how the HKF model develops expressions for the
standard state parameters V° and C° and hence S°,H°, and G° at high temperatures
and pressures. The standard state universally used is the ideal one molal solution,
which means that these parameters refer to the properties of ions or electrolytes in
infinitely dilute solutions. You might suppose that therefore they would not be of much



462 THERMODYNAMICS IN GEOCHEMISTRY

use to geochemists interested in natural solutions, which are often quite concentrated,
but you would be wrong. The standard state properties allow the calculation of the
equilibrium constant for reactions involving ions at high T, P, and thus permit the
general nature of many important processes to be understood, even in cases where
activity coefficients are unknown. Of course for quantitative calculation of ionic
concentrations and mass transfers in such cases, activity coefficients are also required.

17.9.7. Contributions of the Salvation and Non-salvation Terms

A striking feature of the partial molar volumes and heat capacities of aqueous elec-
trolytes is their inverted-U shape as a function of temperature. Experimental data that
cover a sufficiently large range of temperature invariably exhibit a maximum, gen-
erally somewhere between 50 and 100°C. This is illustrated in Figure 17.10, which
shows the HKF representation of the partial molar volume and heat capacity of NaCl.
There is no universally accepted reason for this maximum, although the existence of
singular temperatures for water at -45°C (228 K, Angell, 1982,1983) and 374°C (the
critical temperature) makes it seem entirely reasonable that thermodynamic parame-
ters of solutes in water should approach ±00 at these limits, and therefore reasonable
that they should exhibit extrema (or inflection points) between these temperatures.4

The revised HKF model is constructed such that the non-solvation contribution
to V° and C° dominates at low temperatures and becomes — oo at 228 K, and the
solvation contribution dominates at high temperatures. The contributions of the sol-
vation and non-solvation parts of the partial molar volume of NaCl are compared in
Figure 17.11, and in Figure 17.12 the solvation and non-solvation contributions to
the partial molar heat capacity of NaCl are shown as a function of temperature. This
illustrates quite nicely how the two contributions combine to produce a maximum,
and it can easily be imagined how the shape of the combined curve is controlled by
the fit parameters of the two contributions. Of course, the two contributions do not
always cross in such a pedagogically convenient way. In Figure 17.13 we show the
two contributions to the partial molar volume of HC1 as a function of temperature;
the same features are present, but the relative contributions of the two parts of the
model are quite different.

17.9.8. Illustration of the Equivalence of the Properties of Aqueous HC1 and Cl~

The availability of the HKF model makes simple the demonstration of a feature of
single ion properties that we have explained previously. By convention the properties
of aqueous anions are taken to be those of the corresponding strong acid, unless there
are complicating factors. This means, for example, that the properties of the chloride
ion are those of aqueous HC1, and the properties of the sulfate ion are those of aqueous
H2SO4. The conventions involved in this were discussed in §17.6.1.

In Figure 17.14 we show the HKF representation of the partial molar volumes
of Na+, Cl~, and NaCl, together with the experimental data. The data shown for the

4Don'l confuse the properties of component NaCl in Figures 17.10, 17.14 with the properties of species
NaCl° in program SUPCRT92 (Johnson, ct al., 1992). Properties of component NaCl arc given in the
original HKF publications.
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FIG. 17.10. The standard partial molar volume and standard partial molar heat capacity of
aqueous NaCl as represented by the HKF model, showing the characteristic inverted-U shape
and steep negative slopes at high and low temperatures. 

chloride ion are in fact the same data of Tremaine, Sway and Barbero (1986) for HC1
shown in Figure 17.12, because of course no data for the chloride ion itself exist, or
will ever exist. Some of the data for NaCl are also shown, and it becomes clear then
how "data" for Na+ are derived. The curve for the partial molar volume of Na+ is
derived from the two lower curves from equation (17.62), which in this case is

17.10. COMPARISON OF PITZER AND HKF MODELS

These two models present a fascinating contrast in their approach to a complex
problem. Pitzer stands back, as it were, from the details of ionic interactions, and
builds up an empirical model of complex solutions from data on the simpler binary
systems of which it is composed. No data as to individual ionic processes are required
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FIG. 17.11. Solvation versus non-solvation contribution to the standard partial molar volume
of aqueous Na+ at saturation pressure, according to the HKF model. Labels are T°C.

or derived from the model; they are all buried in the magnitudes of the parameters.
This empirical model works very well at predicting the macroscopic properties of
complex solutions, apparently because the form of the equations he has chosen to use
suits the problem very well. Helgeson, on the other hand, prefers to think about ionic
processes in detail, breaking them down into component parts that can be modeled
and then assembled into a large framework. There are empirical parameters in these
component parts, to be sure, but the component parts are all interrelated by standard
thermodynamic equations.

In a broad way, the approaches are complimentary, because the Pitzer equations
have no provisions for manipulating or adjusting the standard state parameters of
solution components, but concentrate on the effects of changes in concentration.
HKF on the other hand is primarily a model interrelating standard state parameters.
The HKF model does incorporate an activity coefficient model (in Part IV; Helgeson
et al, 1984), but it remains to be seen how useful it is. There are advantages and
disadvantages to both approaches. The magnificent achievements of Harvie and Weare
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FIG. 17.12. The standard partial molar heat capacity of aqueous HC1 as a function of tem-
perature. Squares are the experimental data of Tremaine et al. (1986), and the solvation and
non-solvation contributions, which add to the line fitting the data, are from the HKF model.
Note how the shapes of the two contributions combine to give the inverted-U shape of the
measured heat capacity.

and others in modeling evaporitic brines with the Pitzer model is at the moment
well beyond the range of the HKF model, but in providing standard thermodynamic
parameters for individual ions to high temperatures and pressures the HKF model
is reaction-oriented, and hence fits the way most geochemists think. It has therefore
been more widely used at present. Another difference is that the Pitzer model is best
used within the range of conditions covered by the experimental systems used, while
the HKF model is better suited to extrapolation.

It will be of great interest to follow the progress of these and other models in
advancing our understanding of geochemical phenomena in the years to come.



FIG. 17.13. The standard partial molar volume of aqueous NaCl as a function of temperature.
Squares are experimental data, and the solvation arid non-solvation contributions are from the
HKF model for Cr.
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FIG. 17.14. The standard partial molar heat capacities of aqueous HC1, Na+ and Cl as a
function of temperature. The experimental data for Cl~ are in fact those for aqueous HC1 of
Tremaine et al. (1986) from Figure 17.12, illustrating the fact that the heat capacity of H* is
zero by convention (see discussion in text). The heat capacity of aqueous NaCl is a measured
quantity, and that of aqueous Na+ is obtained from the difference of the NaCl and HC1 (or Cl~)
data.
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PROBLEMS

These problems can be done with a hand calculator, but it can be very frustrating. They
are best done by writing small computer programs, partly because of the complexity
and partly because some of the results are sensitive to round-off errors. If you have
access to the program SUPCRT92, or some other program, you can do the HKF
problems quite easily, but you will not learn much. A useful reference is the book by
Bowers, Jackson and Helgeson (1984). This gives tables from which you can solve
these problems easily, but with the original HKF model. Most results are not greatly
different.

1. Calculate the activity coefficients of Ca2+ and SO2^ using the Pitzer equa-
tions for the example in §17.8.4. The only data not given in the text are

and

me text gives me nnai results; various parameter values are given in Ap-
pendix F.

2. Calculate the values of wCa2+ and wSQ2- at 25°C, 1 bar, and at 300°C,

P = Psat- You will need data for Ca2+ and SO2.̂  from Appendix C, and
equations (17.65) and (17.60). The value of g is 0.0 at 25°C and -0.004651 at
300°C. The quantity Nae

2/2 is often called 77, and has the value 1.66027 x
K^Acalmor1.

3. Calculate AaG°for anhydrite, Ca2+, and SO2.™ at 25 and 300°C, using
equation (17.77) for the ions and (7.25) for anhydrite. The Born parameter
Ypr,Tr is ~5.81 x 10~5 at 25°C, 1 bar, and the dielectric constant e is 19.99
at300°Cand78.46at25°C.

4. Calculate Ksp for anhydrite at 25°C (verifying the value given in the text),
and at 300°C.

5. Calculate the dissociation constant for NaCl(aq) at 25°C, 1 bar. Calculate
this constant at 500°C, 1 and 2 kbar, obtaining the necessary values of e
and Y from Tanger and Helgeson, (1988). A graph of -KNaCi versus T is
shown by Sverjensky (1987).
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The question therefore arises as to what defines Po2 of a complex mineral assemblage
and when and where changes of Po2 are likely to occur during metamorphism.

Eugster(1959),p.423.

18.1. OXIDATION STATE AS A PRIMARY INTENSIVE VARIABLE

Up until this point we have dealt with familiar intensive variables such as temper-
ature, pressure, density, and molar thermodynamic properties (molar entropies, free
energies, and so on). There exists another, equally important intensive variable that
we have used implicitly, but have not yet discussed in sufficient detail—the oxidation
state of a system. This involves concepts and applications so useful to Earth scientists
that we devote a complete chapter to this single variable.

Except for nuclear processes, most chemical behavior is determined by electron
distributions and interactions. From this point of view, the oxidation state of an atom
is among the most fundamental of all its properties. Most elements can exist in mul-
tiple valences with each state usually displaying quite different behavior from the
others. As an example, consider the element sulfur. This has the electron configu-
ration [Ne]3s23p4 and has valences ranging between the two extremes —2 and +6
(which complete the inert gas configurations [Ar] and [Ne], respectively). The chem-
ical differences among sulfur species spanning this range are enurmous, from H2S
through the polysulfides S^~, to elemental S and intermediate oxides such as SOj~
(sulfite) and S2Oj^ (thiosulfate), up to SO;j~. Each of these species occurs in differ-
ent geochemical environments and participates in reactions uniquely determined by
its valence state. Other obvious examples are carbon, the transition metals, and the
lanthanides and actinides. Only the inert gases, halogens, alkali metals, and alkaline
earths are relatively immune to these effects in nature, where they usually retain the
same valence state; however, even these elements produce compounds of unusual
valence well known to inorganic chemists.

18.2. OXIDATION STATES OF NATURAL SYSTEMS

At a given T and P, the oxidation state of a closed system at equilibrium is, in common
with all other properties, determined by the bulk composition, but it is a property that is
remarkably useful in characterizing systems, so it is singled out for special treatment.
Two methods of measuring and reporting the oxidation state of natural systems are
commonly used: the oxidation potential (Eh or pe) and the oxygen fugacity (/o2)-
Oxidation potentials are generally easier to use at Earth surface conditions (near
25°C, 1 atm.) mainly because here it is convenient to use an electrochemical method
for measurement, which gives Eh directly. At higher temperatures electrochemical
cells become very difficult to operate, especially as water is not always present, and
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although redox conditions (however measured) could still be reported as Eh, in fact
it is simpler to use a more direct measure such as /o2, as we will see. At temperatures
roughly in the magmatic range, it is also possible to measure /o2 directly. In this
chapter we discuss both parameters, but at the outset it is important to remember that
these are simply two equivalent ways of expressing the same property—the state of
oxidation or reduction of chemical species within some system.

18.2.1. Oxidation Potential and Eh-pH Diagrams

Without doubt, the most widely used measure of oxidation state in lower temperature
aqueous and sedimentary systems is the oxidation potential, or Eh. The concept of
oxidation potentials has been used by chemists and engineers for close to a century.
However, its widespread use in the Earth sciences began only in the early 1950s, pri-
marily with the work of Robert Garrels. Garrels recognized the need for this variable
in classifying sedimentary environments and he became interested in the work of the
Belgian corrosion engineer Marcel Pourbaix (e.g., Pourbaix, 1949, 1974), who used
Eh-pH diagrams to summarize the aqueous chemistry of quite complex systems.
The usefulness of Eh-pH diagrams for Earth scientists became immediately evident
with publication of a classic paper by Krumbein and Garrels (1952).

The only other intensive variable of comparable significance in aqueous systems is
pH. It too is a function of the bulk composition at a given T and P, but both are closely
related to a large number of important reactions. Therefore it proves natural to use both
as variables in diagrams of systems at fixed T and P, and Eh-pH (or log fo2—pH)
diagrams have become a standard method of displaying and interpreting geochemical
data. In the following sections we outline the theoretical basis for calculating these
diagrams.

18.2.2. Cell Voltage and Free Energy of Reaction

Instead of writing balanced redox reactions such as (18.1) in which both the oxidized
and reduced species appear, it will be convenient to split these into two half-reactions
or half-cells that explicitly include the electron. The reason this will be convenient (in
spite of the resulting hassles with conventions) is that we can devise standard voltages
for half-cells and then mix and match half-cells to make complete cells, in much the
same way that we combine A/G° values of compounds to make complete reactions.
Also, as we will see, the Eh itself is a half-cell voltage. For example, consider the
redox reaction

in which Cu is oxidized to Cu2+ and ^Oa is reduced to O2". These two aspects of
the reaction can be written separately as "half-reactions":
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These half reactions cannot occur by themselves in natural aqueous systems because
they would produce negative or positive charge and something else would oxidize
or reduce to neutralize this. In Nature half-reactions are always coupled, with one
species being reduced while another is oxidized.

For the moment, imagine that half-reactions can occur by themselves. If, as in
(18.2), one mole of elemental Cu were oxidized to a mole of Cu2+ ions there would be
an excess of 2xAvogadro's number worth of electrons in the system. The amount of
electrical charge associated with an Avogadro's number of electrons equals 96,485.3
coulombs and is called the Faraday (F) of charge. Given the size of standard ca-
pacitors, this would require something the size of a small building for storage. Our
hypothetical system would also develop a considerable negative voltage due to the
accumulation of 2 x 6.022 x 1023 electrons. Stored in a two-farad capacitor this would
be ~ 48, 000 volts, so it should come as no surprise that this process would involve
a change in energy. Fortunately we are never obliged to collect electrons like this
because there is always another half-reaction that absorbs them. In fact, in measuring
redox reactions, we go to great lengths to try to balance half -reactions one against
another so that no electrons are transferred, i.e., to reach equilibrium. The voltage
observed between the two balanced half cells is then related to the amount of work
that could be obtained by letting the cell react to completion.

Recall that the electrical work w required to move a charge of f coulombs through
a potential difference £ volts is

where T is the charge per mole of electrons, so if n is the number of electrons
appearing in the reaction as written (e.g. one in (18.2) and (18.3)), there are nJ-
coulombs of charge, and the work is

This electrical work is by definition (Chapter 5) the AG associated with the
process, as long as the electrical work is the only non-PAV work done. Therefore
for any half-cell or complete cell or indeed any electrostatic process in which nF
coulombs are moved through a potential difference £,

or

for standard state conditions. (We must check this later for sign convention; see equa-
tion (18.15)). As applied to electrochemical cells, these equations are more properly
A/J, = nf£ and A/^° = nf£° because many of the individual free energy terms refer
to constituents in solution and hence are partial molar terms.

These equations (18.5, 18.6) connect electrochemistry to the world of thermody-
namics. It only remains to devise some way of determining the voltage associated
with cells and half-cells, and we should then be able to determine free energies and
perhaps other thermodynamic properties of cell reactions.
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FIG. 18.1. Standard hydrogen electrode connected to a Zn/Zn2+ half-cell with a salt bridge
and external direct reading potentiometer.

18.2.3. The Standard Hydrogen Electrode

In fact, equation (18.6) has been used to determine standard thermodynamic prop-
erties by electrochemists throughout much of the twentieth century. We will begin
by discussing a cell containing the "hydrogen half-cell," because this will assume a
special importance later on. Consider the cell shown in Figure 18.1. On the right is
an inert beaker containing the concentration m of an acid such as HC1. Hydrogen
gas is bubbled into this solution. A platinum electrode coated with fine-grained "plat-
inum black" crystals (which catalyze reactions) is connected by a wire to another
cell that contains a metallic zinc electrode and a Zn2+ solution (say ZnCl2). The two
beakers are also connected with a "salt bridge," which is a glass tube containing a
KCl-impregnated gel.

If the wire between both beakers is connected a reaction begins, just as if all
these constituents were mixed together in a single beaker. But as they are separated,
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a current will begin to flow through the wire as the cell reacts. The amount of current
depends mostly on the concentration of zinc and HC1 in the two solutions, but also
on the pressure of the hydrogen gas, the purity of the metals, the temperature, and
anything else that would affect the activities of the constituents in the cell reaction. On
the left side, Zn will spontaneously oxidize to Zn2+ and on the right, H+ will reduce
to H2:

These are the half-reactions or half-cell reactions. The total or whole-cell reaction is
the sum of these, or

As these reactions proceed, electrons flow through the wire from the Zn to the Pt
electrode. This would produce a charge imbalance in both beakers if it weren't for
the salt bridge, which diffuses Cl~ ions into the right hand beaker and K+ into the
left, and completes the electrical circuit.

This apparatus works as an inefficient battery. In fact, all batteries follow the same
principle of connecting one oxidation to one reduction half cell. With an external
voltmeter you would observe that whatever the initial potential difference between
the two terminals of this zinc-hydrogen battery was to start with, it would slowly drop
to 0.0 V as the battery discharges or reacts to equilibrium. You would also observe that
the Zn electrode is negative relative to the Pt side. Because the voltage of this whole
cell or battery falls as reaction proceeds, voltage measurements must be made without
permitting any reaction to occur. The direct-reading potentiometer circuit shown in
Figure 18.1 can be used to adjust potentials in the potentiometer and battery circuits
until they exactly cancel each other. At this point, no current flows (as indicated by
the galvanometer), nothing reacts, and the measured voltage is the maximum the cell
can deliver. At the null point, the cell is acting reversibly as well, since any slight
fluctuation of the potentiometer voltage above or below this setting would cause the
cell reaction to run forward or backward.

Let's say that we set up this cell, balance the potential with our potentiometer,
and read a cell voltage of £ volts. We could next suppose that this voltage is made up
of the sum of the two half-cell voltages, i.e., that

Because there is no way to measure the properties of individual half-cells, we are in
the same position as we were in Chapter 17 with respect to single ion activities. We
must choose a convention; in this case we must choose one half-cell to reference all
the others to. For example if we chose the hydrogen half-cell, we could say then that
the voltage of the zinc half cell was
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Then we could measure a cell containing a copper electrode in a copper solution in
the same way, i.e., a copper-hydrogen cell, and say that

We could then calculate the voltage of a cell with the zinc on side and the copper on
the other simply by adding the two half-cell voltages, because if we arrange things
properly, whatever the voltage of the hydrogen half-cell is, it will cancel out.

Of course it will only cancel out if it was the same in both cases, which means
that the pressure of the hydrogen gas and the activity of H+ in the solution have to be
the same. This is accomplished by standardizing on a fugacity of H2 of one bar, and
an activity of H+ of 1.0, and the hydrogen electrode in this state is called the standard
hydrogen electrode, or SHE. Similarly, the voltages of the zinc and copper electrodes
in this example will change with the zinc and copper ion activities in solution, so they
are tabulated for standard conditions of unit activity of the metal and ion at 25°C, 1
bar. With all reactants and products of a half-cell at unit activity, the half-cell voltage
becomes the standard half cell voltage, £°.

There are some other conventions connected with making sure that the SHE
voltage always cancels out, and we consider these next.

18.2.4. Oxidation and Reduction Sign Conventions

There is obviously a slight problem with the scheme outlined above, and that is that
if we add the voltages in (18.11) and (18.12) we do not get the cell voltage of the
zinc-copper cell (£"cen + £<!eii)' because the hydrogen electrode voltage does not cancel
but is doubled. That's why we qualified the presentation with "if we arrange things
properly".

There are a number of ways to ensure that things "work properly" in combining
half-cell potentials, and unfortunately all of them seem to have been used at one
time or another. The situation was greatly clarified by the universal acceptance of the
conventions adopted by the IUPAC1 at a meeting in Stockholm in 1953; universal,
that is, except for the geochemists. Earth scientists often follow the conventions used
in the influential text by Garrels and Christ (1965). In this chapter we use only IUPAC
conventions, though in Appendix D we present a complete comparison of the three
conventions one is most likely to come across in using Eh. Then too at the close of
the chapter we try to persuade you not to use Eh at all.

The IUPAC recipe for half-cell manipulations is first, half-cells are always written
and tabulated as reductions when combined with the SHE; and second, calculate the
cell voltage as the right (reduction) half-cell voltage minus the left (oxidation) voltage,
whether using the SHE or not. This is the opposite of the way we wrote equations
(18.7) and (18.8) for the zinc-hydrogen cell, so we rewrite them (according to the first
rule) as

'international Union of Pure and Applied Chemistry.
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Whole cell : Zn2+ + H2 -> Zn + 2H+

Considering only standard conditions for now, if E%n is the standard zinc half-
cell potential and £ gHE is the SHE potential, then by the second rule above, the cell
potential is

so that the zinc half -cell potential is

This cell has a measured potential of —0.763 volts (i.e., the standard zinc electrode
is 0.763 volts more negative than the SHE) so

Substituting Cu for Zn we have the copper-hydrogen cell, with

and

The potential of this cell is

so that the potential of the copper-cupric ion half-cell is

The measured potential of the copper-hydrogen cell is 0.337 volts (i.e., the standard
copper electrode is 0.337 volts more positive than the SHE) so

Now considering the zinc-copper cell, which could be constructed by substituting
a copper electrode in a cupric ion solution for the SHE in Figure 1 8. 1 , we could write

with cell reaction
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or, we could write

with cell reaction

Note that in this convention, the sign of the half-cell voltages does not depend on
how the reaction is written (whether as oxidation or reduction), but the sign of the
complete cell reaction does depend on how it is written. This corresponds closely to
actual lab operations, i.e., in the above cell the zinc electrode would be observed to
be negative and the copper positive, however the cell was arranged or written, with
1.10 volts difference between them. But whether this 1.10 V is positive or negative
just depends on whether you look at it from the point of view of the zinc electrode
"looking up" to the copper electrode, or the copper electrode "looking down" on the
zinc electrode.

18.2.5. The SHE Voltage Equals Zero Convention

More importantly, note that the convention is successful at having the SHE voltage
cancel out, no matter how we consider the cell reaction. Naturally, as it always cancels
out, it makes no difference what its voltage is. If we arbitrarily assign a voltage of
zero volts to the SHE, then instead of writing

for the copper-cupric ion half-cell, we could write

which is a little neater. It is important to realize that this is the only benefit conferred
by the £$HE = 0 convention. In view of (18.6), a corollary of £gHE = 0 is that

i.e., that

As we saw in the previous chapter, this same convention is the one required to effect an
equivalent simplification in the definitions of single-ion properties, and these reasons
are sufficient to ensure its universal adoption. Its use is acceptable as long as one
realizes that it is quite unnecessary to the workings of thermodynamics.
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18.2.6. Free Energy of Cell Reactions

In deciding upon conventions, we have various options open when dealing with half-
cells, because they can't be measured separately; they are to some extent fictional. But
complete cell reactions are different because the changes in various thermodynamic
parameters in these reactions can be measured or calculated. For example consider
reactions (18.13) and (18.14). We can look up the values of A/G° for Cu2+ and Zri2+

(65.49 and -147.06 kJmol"1 respectively, Wagman et al., 1982), and we find that

and of course

Comparing these with the voltages produced by applying the IUPAC conventions,

and

we see that we have to modify (18.5) and (18.6) to read

to bring the IUPAC conventions into line with standard thermodynamic calculations.
In practice, applications requiring whole-cell calculations are rare in the Earth

sciences; however, it is essential to understand both half-cell and whole-cell sign
conventions in designing sample and reference electrode combinations for laboratory
or field measurements. This is also necessary to understand how pH, Eh, and specific
ion electrodes really function.

18.2.7. Measuring Thermodynamic Properties of Ions from Half-Cell Potentials

Equations (18.15) allow calculation of the free energy of reaction of cell reactions to
be calculated from measured cell voltages, and the use of the SHE reference and the
IUPAC conventions then allows calculation of individual ionic free energies. If cell
voltages are measured over a range of temperatures, the entropy and enthalpy of the
cell reaction and individual ions can also be calculated. Thus
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and

The heat capacity of reaction could also be calculated from

but as this is a second derivative it is very difficult to get accurate results this way,
and calorimetry is normally used. These procedures have served as a major source
of the thermodynamic data for aqueous ionic species below 100°C, many of these
measurements having been made throughout the first half of this century.

18.2.8. Electrochemical Cells as Metastable Systems

A certain amount of confusion may arise from the fact that electrochemical cells can
reach equilibrium with their external potentiometer circuits, giving a stable, equilib-
rium cell voltage of £ volts, implying a non-zero ArG. How does this fit with our
knowledge that &.TGT,p is zero at equilibrium? It fits very well, if we realize that
the cell at equilibrium is a perfect example of a metastable system according to our
definitions in Chapter 3. The external voltage source is a constraint in addition to
the minimum constraints of constant T and P, which prevents the metastable system
from lowering its G to the minimum possible value. If this constraint is removed by
connecting a wire between the two halves of the cell, the cell reaction proceeds until
it can go no farther, at which point ArG = 0 and 5 = 0. Equilibrium cell voltages
as measured in the lab or the field are measurements that refer to metastable equi-
libria. This does not mean that if you measure an Eh in a swamp, the swamp water
is necessarily a metastable system. It is the cell reaction that is metastable, not the
swamp. This can be so because the cell reaction involves some components (in the
reference half-cell) in concentrations completely different from those in the natural
system whose Eh is being measured.

18.2.9. Calculating Eh

Consider the general cell reaction

Let's say that this reaction reaches equilibrium with an external measuring system
(constraint), giving cell voltage £. If operated under standard conditions, it would
give cell voltage £°, and the corresponding free energies of reaction are
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and

From equation (13.6) we have

where

Recall from Chapter 1 3 that this activity term is referred to as Q rather than K because
it refers to ametastable equilibrium. Substitution of equations (18.15) in their partial
molar form gives

or

This is the Nernst equation, after the physical chemist W. Nernst, who derived a
similar expression (using concentrations rather than activities) at the end of the last
century (Nernst, 1897). As above, n is the number of electrons transferred in the
cell reaction (18.16), T is the Faraday of charge, R is the gas constant and T the
temperature (in Kelvins). The constant 2.3026 is added to convert from natural to
base 10 logs. At 25°C the quantity 2.3026 RT/nF has the value 0.05916, which
is called the Nernst slope. The importance of (18.17) is that it allows calculation of
the potentials of cells having non-standard state concentration (i.e., real cells) from
tabulated values of standard half-cell values or tabulated standard free energies.

Equation (18.16) could also be considered to represent a half-cell reaction, except
that the electron is not shown. If you have followed our discussion of the single-ion
and SHE conventions, you will not be surprised to learn that it does not matter what
value the chemical potential of the electron is considered to have because it always
cancels out in balanced reactions, and that by convention it is given the value zero.
This means that the Nernst equation applies to half-cell reactions as well as cell
reactiohs, as do equations (18.15). And if you have followed all this, you now know
what Eh is, because (18.17) when applied to half-cells is the definition of Eh. Thus

In other words Eh of a solution is its half -cell potential. It is the potential that would
be observed if that solution formed one side of a cell and the SHE were the other
side. For that solution to form such a half-cell, you have to stick an appropriate
electrode into it, and arrange a suitable connection between the two half-cells, and
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we discuss this further on. This is the fundamental equation from which Eh-pH
diagrams are calculated. Recalling the convention that we must use reduction half-
cells when combined with a SHE, the Nernst equation for the Eh of half-cells will
always have the form

18.3. EXAMPLE CALCULATION OF Eh-pH DIAGRAMS

In this section, we will calculate portions of a simple Eh-pH diagram for the system
Mn - H2O and will show what happens when a third component, CO2, is added.
This illustrates most of the problems encountered in calculating such diagrams. If
you wish to add additional components such as SO2." or H2S, the methods are similar
and details are provided by Garrels and Christ (1965).

18.3.1. General Topology of Eh-pH Diagrams

First, let us examine the completed Eh—pH diagram for Mn — HaO in Figure 18.2.
There are typically four different types of boundaries shown on these diagrams. The
top line, labeled O2/H2O, represents conditions for water in equilibrium with O2 gas
at 1 atm. Above this line, a Po2 greater than 1 atm is required for water to exist, so that
because the diagram is drawn for a pressure of 1 atm, water is not stable above this line.
Similarly, the bottom line H2O/H2 represents conditions for water in equilibrium with
H2 gas at 1 atm. Below this line, Pn2 values greater than 1 atm are required for water
to exist, i.e., at 1 atm water is not stable. Therefore the water stability field is between
these two lines. The second type of boundary separates the stability fields of minerals
or solid phases such as hausmannite (Mn^O^ and pyrochroite (Mn(OH)2). These
are true phase boundaries: hausmannite is thermodynamically unstable below the
hausmannite/pyrochroite boundary and pyrochroite is unstable above it. Thus these
first two kinds of boundary represent thermodynamic stability fields for different
substances. Notice that on this diagram they all have the same slope (equal to the
Nernst slope). The remaining two kinds of line are not stability boundaries at all
but refer to concentrations of dissolved ions. For example, the vertical lines within
the pyrochroite stability field represent contoured solubilities of pyrochroite as Mn2+

concentrations running from lO^1 to 10~6 m. Finally, the dashed boundaries between
aqueous species, such as that between Mn2+ and HMnO2~ indicate where the activities
of the two species are exactly equal. To the right of this line Mn2+ remains present in
the solution, but at a lower activity than HMnO2~ , and vice versa.

18.3.2. Sample Calculations

It is possible to look up half-cell potentials for many reactions in physical chemistry
textbooks and compilations of electrochemical data. However, it is usually a better
procedure to choose free energy data, and to use those to calculate Eh and 8° for the
reactions of interest.
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FIG. 18.2. Eh-pH and pe-pH relations in the system Mn-H2O at 25°C, 1 bar. Mn2+ activ-
ities and stability fields of Mn-oxide minerals are included. The pe and Eh axes are related by
the formula pe = 5040Eh/T.

As the first example, we will calculate the two boundaries for the stability field
of water.

For the boundary H2O(ag) — 02(5), the half-cell reduction reaction is

for which n = 4. Using the tabulated A tG° for water (all others beine zero), we find

Because

then
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From the Nernst equation (18.19)

setting /o2 = 1 atm gives the equation for the boundary in terms of Eh and pH.

For the boundary

and

or, with /H2 = 1 atm, and n = 2,

For boundary Mn(OH)2 - Mn3O4,

and, with n = 2,
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Fnr snlnhilitv of Mn^O^ as Mn2+.

Or

This is plotted for selected values of Mtr activity ranging from 10 to 10 in
Figure 18.2.

For equal activity contour of Mn2+ and MnO^",

and where the activities of both aqueous species are equal this reduces to

This boundary lies at high Eh and pH and is illustrated on Figure 18.2.

18.3.3. Addition of Other Components

The above examples cover all four types of borders or contour lines found on simple
metal-water Eh—pH diagrams. As a next step it is possible to add other components
to the system such as CO2 or H2S, which produce new aqueous species and carbonate
or sulfide minerals. We will illustrate this by adding CO2 to our Mn — H2O system.
For details on how to include other components such as H2S/SO4~ and SiO2 see
Garrels and Christ (1965, Chapter 7).

Figure 18.3 is an Eh-pH diagram calculated for the system Mn - H2O-CO2

at 25°C and /Co2 = 10~3-5 arm (the CO2 partial pressure of normal sea-level air).
It differs from Figure 18.2 for the system Mn — H2O only in the appearance of
rhodochrosite, MnCO3, which swamps the fields of Mn(OH)2 and most of Mn3O4. The
calculations are similar to those above, except that the following carbonate equilibria
must be included.
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FIG. 18.3. Eh-pH relations in the system Mn - H2O - CO2 - O2 at 25°C, 1 bar. /Co2 is
1(T3-5 bars.

18.3.4. Carbonate Equilibria

Henry's Law:

First acid ionization, carbonic acid,

so

Second ionization constant, carbonic acid,
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SO

Taking logs (base 10) of (18.27) to (18.29) gives

1 nese expressions tor carbonate species activities can now be substituted into the
appropriate half-cell reactions to give the Eh-pH boundaries for the CO2-containing
system.

For the boundary MnCOs — Mn3O4 :

When plotted, this phase boundary swarnps the held ot pyrocnroite and all but
the uppermost field of hausmannite, showing that rhodochrosite should be the stable
phase at mildly oxidizing to highly reducing conditions even at the low partial pressure
of COa in the Earth's atmosphere (see Figure 18.3).

For equal activity contour of Mn2+ and MnHCOJ :

Substituting (18.32) for aco2- with /co2 = 10 and simplifying gives:

ForaMn2+ = «MnHCO+> l°g%co~ = —2.01, and combining with (18.31) gives
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FIG. 18.4. Measurement of Eh showing construction of Pt electrode and of Ag-AgCl or
calomel electrode.

For all pH < 9.29, the activity of Mn2+ will predominate over that of MnHCO^ and
rhodochrosite solubility can be contoured in terms of Mn2+.

For solubility of MnCOs as Mn2+,

Substituting (18.32) for aCO2-, with fco2 = 10~3'5 gives

This is solved for values of Mn2+ activity ranging from 10 L to 10 6 and plotted in
Figure 18.3 as solubility contours.



REDOX SYSTEMS 487

18.3.5. Calculation of a Metastable Boundary

The examples above appear simpler than you might rind when calculating an Eh—
pH diagram without assistance, because we knew what the final diagrams looked
like before beginning. As we said at the outset, it is always useful to try to find
a related diagram to save yourself time, even though you might be using newer
thermodynamic data. Without this, you will probably waste some effort calculating
metastable boundaries. To illustrate, we will calculate one of these now.

Calculation of the Metastable Boundary MnO2-MnOOH:

or

Referring to Figure 18.2, this boundary plots below the phase boundary for
Mn3O4-MnOOH. If you were to calculate the latter boundary next, it would be-
come apparent that the boundary for Mn(OH)2-MnOOH must be metastable. This
kind of trial and error search for stable boundaries can be avoided by listing your
aqueous species and mineral phases in order of oxidation state. In this case, we
should have observed that the Mn oxides follow the increasing order of oxidation
state Mn(OH)2 < Mn3O4 < MnOOH < MnO2. We need not then have calculated
the metastable boundary.

18.3.6. pe — pH Diagrams

There is a second way of calculating the same kinds of diagrams using the alternative
variable pe rather than Eh. Because this is another way of doing exactly the same
thing, it could be argued that the new variable pe is unnecessary and redundant.
However, the pe and Eh scales differ numerically, and pe calculations are now used
about as frequently as Eh, so it is worthwhile discussing the use of this second
variable.

The concept of pe as a means of describing oxidation potential was popularized
by the Swedish chemist Lars Gunner Sillen in the 1960s (see review by Truesdell,
1968). The idea was to develop an analogy between pH , which refers to hydrated
protons, and pe, which would refer to hydrated electrons. Like the proton, the electron
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would be assigned a standard A/G° = 0. Like pH , pe would be denned in terms of
activity:

To develop the mathematical description of pe, start by considering the half -cell
reduction reaction:

The equilibrium constant for this reaction is

and can be calculated in the usual way from \nK = — ArG°/RT, by assigning a
value of zero to A/G°. We want to use the a™ term separately, so we split up the
activity ratio term into two parts,

where a"' now refers to all products and reactants except the electron. As in any
equilibrium, the activities BJ and ae can take on a large range of values, as long as
(18.40) is satisfied. If we let Q represent the term Y[i ai^ (18.40) becomes

or

If all reactants and products (except the hydrated electron) are in their standard
states, Q = 1, and (18.41) becomes

or

The superscript ° on pe° indicates that the activities of all reaction constituents except
the electron are in their standard states when (18.42) applies. The energy level of the
electron would be different in different half -cells and need not be considered to have
a standard state.

Combining (18.41) and (18.42) produces

which is analogous to (18.18).
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18.3.7. Comparison ofpe and Eh

There is a simple, linear relationship between the two variables pe and Eh, which is
evident in comparing the two denning equations:

Hence

Thus, if you prefer, you can calculate Eh and convert to pe with equation (18.44),
or vice versa. The relationship between the two scales is illustrated on Figure 18.2
where oxidation potential is plotted as both Eh and pe. An Eh-pH diagram looks
exactly like ape-pH diagram, except that the Y axis is shifted by the factor 5040/T.

18.3.8. Example Calculation, pe—pH

Because all pe-pH calculations are similar, we will only use one example to illustrate
the general method.

For boundary Mn(OH)2-Mn3O4,

Therefore

From (18.42)

and from (18.43)

or

pe is calculated from Eh as follows.
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In the above section on Eh, we showed that the boundary Mn(OH)2-Mn3O4 can
be described by the equation

This could be used to calculate an equation for the same boundary in the variables pe
andpH from relationship (18.44):

Substituting (18.44) into (18.24) does reproduce the pe-pH equation (18.45) exactly,
showing that the two variables Eh and pe are interchangeable for practical purposes
and you can choose whichever you prefer to calculate redox boundaries.

18.3.9. On the Physical Meaning ofpe

In the above treatment of the variable pe, we began with the definition

and finished with equation (18.44) relating pe, Eh, and T. We know that Eh, being
a half-cell voltage, is not directly measurable, but it is a component of measurable
cell voltages, and its link with physical reality is reasonably direct. What about pe,
then—is there some specific activity or concentration of aqueous electrons in ionic
solutions, and can we measure this activity with an electrode much as we measure
H+ activity with a pH electrode?

It has been amply demonstrated that hydrated electrons do not exist at equilibrium
in aqueous solutions (except in the presence of high energy radiation). Therefore in
definitions of pe such as (18.38) the electrons are usually referred to as hypotheti-
cal and their physical state is not specified. Hosteller (1984) considers two possible
physicochemical states electrons could have (even if hypothetical) in aqueous solu-
tions: (i) electrons in an inert solid Pt sample electrode (called 6(SE)) and (ii) hydrated
electrons existing as independent species in aqueous solution (e(af;j). He then considers
each of these possibilities in detail, and concludes that neither case can be considered
to be represented by the pe term in equations such as (18.38). In other words, the
quantities pe (in equation 18.44), pe(SE) and pe(aq) are all different quantities, pe in
equation (18.44) must refer to some other completely hypothetical, unspecified state
that we might call pex. Does this mean that pe calculations are in some way physically
unjustified or incorrect?

When it comes to physical meaning, parameters in the thermodynamic model
sometimes have meanings that are difficult to relate to the real world, as we have
seen, particularly in the case of standard states. The example most relevant here is
oxygen fugacity, another measure of the state of oxidation of systems, which we will
consider in a later section. Oxygen fugacity is often used as a parameter in systems
which contain no 02, just as water contains no free electrons. Still, there are other
systems where fugacity approximates partial pressures, and this is a link to reality that
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pe apparently does not have, pe is basically a numerical transformation of Eh, but it
has an appealing analogy to pH, and there is nothing wrong in using it, whatever it
"really" means.

18.4. MEASUREMENT OF Eh

Countless numbers of Eh measurements have been made in natural aqueous and
sedimentary systems since the early 1950s by geochemists, biologists, soil scientists
and others interested in the surface environment. A comprehensive summary of over
6,000 such measurements is available in art often-cited paper by Baas Becking et al.
(1960). Unfortunately, it is possible that many of these measurements have limited
physical significance.

18.4.1. Some Difficulties with Eh Field Measurements

In more recent years it has been recognized that there are a great many problems in-
volved in measuring physically meaningful oxidation potentials in multi-component
natural systems. First of all, natural waters typically contain a great many compo-
nents, many of which can function as independent redox half-cells. Eh measurements
are usually made with a Pt sample electrode and Ag-AgCl or calomel reference elec-
trodes as illustrated in Figure 18.4 and described below. With such electrodes it is
essential that all redox processes occur together simultaneously and reversibly at the
Pt electrode. In general, this is not the case. Imagine, for example, a lake-bottom water
containing many redox couples such as Fe2+/Fe3+, Mn2+/Mn3+/Mn4+, J^S/SO2,^,
NO^" /Na, CO2/CH4, and so on. Some of these couples equilibrate rapidly, and others
very slowly (particularly the last three). If a stable Eh reading should be obtained in
such systems, it is not clear what particular redox couple is involved. Worse still, it
is possible for large organic molecules such as humic acids to adsorb to or "poison"
the Pt electrode, changing its response. Even molecular oxygen is slow to react at
25°C; for example, Baas Becking et al. (1960, p. 247) observed that measured Eh of
seawater was independent of total dissolved O2. Finally, many natural systems are too
dilute or contain redox couples that are so slow to react that it is not possible to obtain
stable readings. Systems of this type are said to be poorly poised. There is an analogy
here with pH measurements in very pure or weakly buffered systems; for example, it
is practically impossible to obtain a stable pH measurement with degassed, distilled
water because the system contains almost nothing to which electrodes can respond.

Therefore in general, Eh measurements in natural systems are quite often of only
qualitative significance (Morris and Stumrn, 1967; Nordstrom and Munoz, 1985;
Drever, 1988), although there are systems where Eh can be quantitatively related to
independently determined redox couples, such as Fe-rich river waters or acid-mine
drainage waters (Crerar et al., 1981; Kleinmann et al., 1981; see also Nordstrom et
al., 1979). Field Eh measurements can be very useful in systems where one redox
couple (such as Fe2+/Fe3+) predominates, but the chemical composition of the solution
should be well characterized before such data are used quantitatively. And in spite of
the difficulties of measurement in natural systems, we will always need some way of
discussing such systems theoretically, and Eh is much used in this way.
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FIG. 18.5.
1000°C.

Oxygen fugacities of selected mineral buffer assemblages at 1 bar and 400°C to

18.4.2. Alternative Measures of Oxidation Potential in Low-Temperature Environ-
ments

We have observed above that Eh measurements in natural systems may be difficult to
interpret quantitatively because all possible redox couples might not have equilibrated
with each other. In simple systems where dissolved Fe is the principal redox-active
component, Eh can sometimes be used to predict the Fe3+/Fe2+ activity ratio, but
this should not be attempted if other redox couples are present. As an alternative to
electrochemical measurements, the activity ratios of interest can often be analyzed
directly. For example, there is often a problem with chromium, zinc and arsenic
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pollution at sites where wood was treated with preservatives. The solubilities of the
oxides and hydroxides of these components are highly dependent on valence state,
which thus determines the environmental hazard. At such sites you can usually obtain
stable Eh readings, but it is not clear to which component they refer. It is therefore
safer to chemically analyze ratios of HAsC^/HjAsCU (arsenious to arsenic acid),
Cr3+/HCrO^~ (chromic/bichromate) and so on, and then to check if redox equilibrium
has been reached among all species. Also, because molecular oxygen is slow to react at
25°C, environmentalists would never use Eh as a measure of dissolved 02, but instead
measure dissolved oxygen directly, or determine related properties such as biological
and chemical oxygen demands (BOD and COD tests). In many such systems, Eh is
better used as a kind of qualitative indicator of redox conditions.

The problems at lower temperatures happen because reactions are slow and sys-
tems are often far out of equilibrium. (The thermodynamically stable state for all the
flora and fauna in any well-aerated lake should be H2O and COa, for example). Re-
action rates increase exponentially with temperature however, and at temperatures of
350°C or higher, even reactions involving molecular oxygen can equilibrate in several
days time. This is fortunate, because free energy data are sparse for aqueous species
at elevated temperatures and it becomes difficult to measure or calculate Eh much
above 100°C. Instead, we can use other reactions between redox-sensitive species to
calculate redox-related parameters at higher temperatures. This is the subject of the
following section.

18.5. OXYGEN FUGACITY

As pointed out in the first section of this chapter, there are many different ways of
representing the same fundamental variable — the oxidation state of a system. Of these
alternatives, the oxygen fugacity is most commonly used in geochemistry, particularly
at higher temperatures.

This is a convenient parameter for a number of reasons. First, many oxidation
reactions can be written to include molecular oxygen as a reactant, for example the
reduction of hematite to magnetite.

Assuming unit activity for the solids, the equilibrium constant for this reaction is
simply

Oxygen fugacities for selected mineral assemblages are plotted versus 1000/T(K)
and a fixed pressure of 1 bar in Figure 18.5 using data from Huebner (1971) and Chou
(1987). Each assemblage is divariant according to the phase rule; restricting the
diagram to a constant pressure produces the univariant lines illustrated here.

To find the oxygen fugacity for pressures different from 1 bar, the standard states
for the equilibrium constant ( 1 8 .47) are most conveniently chosen as pure solids at T



FIG. 18.6. Experimental control and measurement of hydrogen fugacity. (a) Schematic ar-
rangement of an oxygen-buffered experiment, (b) Shaw membrane for external control of
hydrogen fugacity. Apparatus can also be used as a hydrogen sensor to measure H2 pressure
externally, (c) Double capsule method of controlling both oxygen fugacity and HC1 activity
within an inner, Pt capsule.
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and P, and ideal 02(9) at T and 1 bar. From our discussion in Chapter 13 (equation
(13.42)) we find that this results in

or in this case

For the magnetite-hematite assemblage (18.46), Asy = 0.3548 Jbar"1. At T =
1000 K, this works out to a pressure correction to log /o2 of 0.0185 per kbar, which
is small but significant (at 1 bar and 1000 K, log /o2 is —10.86, so this is a change of
+0.17% per kbar).

18.5.1. On the Physical Significance of Oxygen Fugacity

With the exception of the Mn oxides, the other mineral assemblages shown in Figure
18.5 coexist at very low oxygen fugacities or pressures. These fugacities also increase
exponentially with temperature, so at low T, the calculated equilibrium oxygen fu-
gacities can become absurdly low. As an example, calculate the oxygen fugacity at
25°C for coexistence of hematite and magnetite — a common enough assemblage in
iron formations. From (18.47),

To indicate how small a number this is, remember that at 1 bar and 0°C, 1 mole
(or 6 x 1023 molecules) of gas occupies 22.7 liters. A pressure of 10~72 bars would
thus be exerted by about 3 molecules of 02(9) in 1050 liters or 1047 cubic meters of
space — a volume considerably larger than that of a sphere having our Solar System's
diameter. What kind of significance can this possibly have?

Asking this question is one of the many ways of demonstrating the confusion
between reality and the thermodynamic model. The fugacity of oxygen is a parameter
of the thermodynamic model that has no more or no less significance for hematite-
magnetite than it has for air or any other system. The only difference is that in air it is a
parameter with a numerical value very close to that of the partial pressure of oxygen,
while in hematite-magnetite there is no such thing as a partial pressure of oxygen.
Nevertheless, the oxygen fugacity is linked by equilibrium constants to all other
constituent activities in both systems, many of which are physically significant. The
oxygen fugacity is approximately equal to a pressure in many systems, but it is also
a point on a surface in a mathematical model. As such, its logarithm has no difficulty
in sliding down to minus infinity and back if required. It is a parameter that indicates
the oxidation state of a system, much like a thermometer indicates the temperature
of a system. The fact that the fugacity scale chosen (by the limp_^o f/P ~^ 1 part of
our definition) produces some quite low numbers in some cases is immaterial.
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Neither does using oxygen fugacities imply anything about the mechanism of
oxidation or reduction in real systems. Evidently, systems such as reducing sediments
at ordinary temperatures contain essentially no molecular O2, so that redox couples
such as hematite-magnetite will actually react by some other mechanism, such as

or

or any of dozens of other possibilities. But all of these possibilities are linked to the
oxygen fugacity by the thermodynamic model, and none is more significant than any
other, except perhaps to a scientist using the thermodynamic model to help find out
what is "really" happening in nature.

18.5.2. Oxygen Buffers in Field and Laboratory

As mentioned in Chapter 14, mineral assemblages are often used in experimental
studies to control oxidation states, as first proposed by Hans Eugster (1957). This
was used by Eugster and David Wones in their classic studies of the oxidation state
of the Fe-rich mica, annite (Eugster and Wones, 1962), and in a great many different
studies since then (see review by Chou, 1987). The simplest arrangement is illustrated
in Figure 18.6a. An experimental mineral charge is placed with water in a welded
Pt or Ag-Pd alloy tube; this is enclosed in a sealed Au tube that contains a mineral
/o2 buffer (such as hematite-magnetite) + water. Both capsules are then placed in a
high-P autoclave and heated. The inner, Pt capsule is relatively permeable to H2(g),
while the outer Au capsule is not. At equilibrium, /o2 in the inner and outer capsules
is identical and /o2 in the inner sample tube is therefore known.

A variation on this idea connects the inner Pt capsule (which is supported with
something rigid like quartz crystals) to the exterior with a capillary tube. A known H2

pressure can then be introduced from an external tank or reservoir; this was originally
designed by Shaw (1963) and is called a Shaw membrane. The variation by Gunter et
al. (1987) shown in Figure 18. 6b permits H2 pressure generated in the outer sample
tube to be monitored with a sensitive pressure transducer or other device; this is called
a hydrogen sensor and is a way of measuring /H, (and therefore /o2) directly.

Figure 1 8.6c shows a third double-capsule arrangement that is used to control both
/H2 and HC1 activity within the inner, Pt capsule. This was developed by Eugster and
his students in the 1970s. Within the inner tube, chlorine fugacity /ci2 is controlled by
the equilibrium between Ag and AgCl (which are included along with the sample):

The buffer assemblage in the outer capsule fixes /H2 ; this controls HC1 activity in the
inner capsule according to the equilibrium

Modifications of this method are summarized by Eugster et al. (1987).
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Probably the simplest use of /o2 mineral buffers is to include the buffer assem-
blage as part of the total system being studied. For example, the assemblage pyrite +
pyrrhotite + magnetite fixes /o2 at any T and P by the reaction

At the same time, this three-phase assemblage fixes /S2 .

This double /o2 + /s2 buffer has been used to study metal ion complexing in hy-
drothermal solutions in the pyrite + pyrrhotite + magnetite system alone (Crerar et
al., 1978), as well as in more complicated systems containing the same assemblage
plus sphalerite, galena, gold, stibnite, bismuthinite, argentite and molybdenite (Wood
et al., 1987). Buffers like this add two more independent intensive variables to those
(such as T and P) that can be controlled or measured in laboratory experiments.
This extra information is often essential in multicomponent experiments, because
according to the phase rule (/ = c — p + 2) the number of intensive, independent
parameters / required to characterize a system increases directly with c, the number
of components.

18.5.3. Solid Electrolyte Fugacity Sensors

It is also possible to measure oxygen and other gas fugacities with electrochemical
sensors. These methods use the same theoretical principles that apply to measurement
of Eh. The design and operation of such sensors is described in detail by Sato (1971)
and Huebner (1987). We will illustrate the technique briefly, by describing an oxygen
fugacity sensor.

The basic principle of operation of a solid electrolyte fugacity sensor is illustrated
schematically in Figure 18.7. Two chambers are completely sealed from each other
by a solid electrolyte (material through which ions can migrate). The solid electrolyte
used for /o2 measurements is most commonly a solid solution of zirconia (ZrO2)
and 15 mole % CaO or 5-10 mole % Y2C>3. Pure zirconia is an electrical insulator
(conductivity ~ 10~8 ohm^1 cm ). The Ca or Y doping increases the electrical
conductivity to ~ 10"1 ohm"1 cm (at 1000°C) by creating vacant anion sites that
permit migration of O2" ions through the crystal structure. Over a certain range of
/o2 and T, most electrical current in the electrolyte is ionic, and it exhibits Nerns-
tian behavior. (With zirconia electrolytes this happens for —18 < Iog/o2 < 0, and
700°C < T < 1200°C.) If the /O2 standard in the cell shown in Figure 18.7 exceeds
the unknown /o2, then 02(5) will be spontaneously reduced in the standard compart-
ment, and O2~ ions will be oxidized in the sample compartment according to the two
half-cell reactions.
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FIG. 18.7. Schematic solid electrolyte oxygen fugacity sensor, where /o2 (standard) >
/o2 (unknown).

The whole cell reaction is the sum of these two.

In this case £red = £ox so that £whoie ceii = 0 V. This just means that if pure oxygen at
the same T and P is on both sides of the electrolyte, no voltage will be obtained. The
cell develops a voltage from the difference in pressure of oxygen on the two sides.
Therefore

Thus the measured EMF of the cell illustrated in Figure 18.7 gives the /o2 of the
sample relative to that of a standard (which can be air or pure oxygen). When the
circuit is connected in the solid electrolyte cell, O2 molecules in the standard cell (right
side) are reduced at the electrolyte surface to O2~ ions and migrate into the solid. At
the other sample side of the electrolyte, O2~ ions are oxidized to 02(5); the electrons
produced here pass through the external circuit to the right-hand compartment where
they are consumed by O2 reduction. The overall process is analogous to the two-
electrode system of Figure 18.4 used to measure Eh; the solid electrolyte serves
roughly the same purpose as the liquid junction of a calomel or AgCl reference
electrode. Solid electrolyte /o2 sensors have been used to measure /o2 of volcanic
gases and lavas and of mineral assemblages in the laboratory; they are also used
routinely with blast furnaces and in testing automobile and furnace exhaust systems
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FIG. 18.8. log /o2 - pH diagram for the system Mn - H2O - O2 at 25°C, 1 atm.

(Huebner, 1987). Solid electrolyte cells have also been designed to measure other gas
activities such as those of sulfur and the halogens.

18.5.4. Calculation of Oxygen Fugacity—pH Diagrams

Because /o2 and Eh are both indicators of the same thing—oxidation state—it is
possible to draw log fo2-pH diagrams that are analogous to the Eh—pH calculations
we have outlined above. To illustrate this we will construct a log fo2-pH diagram for
the same Mn-H2O-O2 system at 25°C already described. The completed digram is
shown in Figure 18.8 and should be compared with the analogous Eh—pH diagram
of Figure 18.2. The two diagrams are similar except that the phase boundaries on the
Eh-pH diagram have the Nernst slope while those on the log fo2-pH diagram have
zero slope. This is because the Nernst equation is not used in any way to calculate
the /o2 phase boundaries.

The method of calculating log fo2-pH boundaries is illustrated with three ex-
amples. All other boundaries are derived the same way. Our examples include the
boundaries for water stability and for coexisting minerals, and the aqueous solubil-
ity contours of a mineral. Notice that half-cell reactions are not involved in these
calculations.
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For the water stability boundaries, the dissociation reaction of water is

The upper boundary occurs at 1 atm O2 (g) pressure or log /O2 =0. The lower boundary
is at 1 atm H2(</) pressure; from the equilibrium constant (18.53) this corresponds to
I°g/o2 = —83.1. As noted before, water can exist outside of these boundaries, but
only if the pressure of oxygen or hydrogen is greater than 1 bar.

For the boundary Mn(OH)2 -

This is plotted for selected values of Mn2+ activity ranging from 10 "' to 10 6 in
Figure 18.8.

To calculate the equilibrium constant for this reaction,

Hence

For solubility of Mn3O4 as Mn2+,

Or
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18.5.5. Interrelating Eh, pH, and Oxygen Fugacity

The obvious similarity between the Eh-pH and log fo^-pH diagrams of Figures
18.2 and 18.8 suggests that it should be possible to convert directly from one set of
coordinates to the other. This can be done using the half-cell reaction

and its related Nernst equation,

This equation can be used to interrelate the three variables Eh, pH, and /o2 .
At 25°C, the standard free energy for reaction (18.58) is

and therefore £° = 1 .23 V and

Figure 18.9 shows Eh contours calculated from (18.60) drawn on a log /o2 — pH
diagram. The fact that we can do this suggests that the true master variable is redox
or oxidation state and that /o2,/H2> Eh, pe and all other related variables are simply
different ways of quantifying the same thing.

18.5.6. Summary and Comment on Eh versus /o2 as Parameters to Indicate Redox
Conditions

On a broad scale the Earth shows a large range of redox conditions, from the highly
reduced Ni-Fe core through various silicate layers up into the zone of free water and
eventually into the oxygen-rich atmosphere. Therefore an indicator of the redox state
is among the more important of the variables manipulated by geochemists. Like pH, it
is an important parameter because it is intimately linked to a large number of reactions
of interest to anyone trying to understand the Earth, but like pH it is actually no more
or less fundamental than any other intensive parameter. For a closed system at a given
T and P, it is completely determined by the bulk composition, as are all intensive
parameters (Duhem's Law, §5.4.1), and changes in redox state are accomplished by
changing bulk composition. We recommend that students remember Prof. Duhem
when they are tempted to "explain" some phenomenon as due to a change in redox
conditions. It may be that the phenomenon is linked to a change in redox conditions,
but the question is, what changed the redox conditions?

The measurement of redox conditions by means of a cell voltage, where one
electrode has a fixed reference potential and the other is expected to react reversibly
with natural systems, is attended by a number of problems. The platinum electrode
only works well under certain conditions, it is difficult to get the electrode into
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FIG. 18.9. Eh contours (in volts) on log /o2 — pH axes, calculated for 25°C, 1 atm.

reducing environments without allowing some oxidation, and the method is restricted
to ambient conditions except in research laboratories. We put up with these problems
because there is no choice. Oxygen fugacity, on the other hand, although a much
simpler concept, can only be directly measured at high temperatures, which seems to
rule out its use at Earth-surface conditions where redox measurements are so often
required.

Eh has been important in both the measuring and reporting of redox conditions,
but an argument can be made that it should be used only in the measurement and
not the reporting of redox conditions, i.e., that however measurements are made,
results should be reported as /o2 or log /o2 values. There would be two advantages
to this. First, the use of Eh entails the use of a relatively complex set of conventions,
which are quite difficult to remember unless used continuously (see Appendix D for
a complete comparison of conventions). Secondly, and more importantly, Eh is less
useful than /o, because it is so commonly linked in reactions with pH (giving the
"Nernst slope"). This means that a value for Eh without an accompanying value for
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pH is usually meaningless. This is illustrated by any Eh-pH diagram, in which you
can see that an Eh of 0.0 volts for example indicates much more reducing conditions
at pH 2 than it does at pH 10.

The conversion from an Eh-pH point to a log /o2 value is very simple (equation
18.60). We have tried to show that the very low values of fo2 generally obtained at
low temperatures should not be a hindrance to its use, and we advocate its use in the
reporting of any redox conditions.

PROBLEMS

1. If A/G°for Pb2+(aq) is -5832 calmoF1, at what Eh is metallic lead in
equilibrium with 10~6rn Pb2+(ag)?

2. Water draining from abandoned coal mines causes considerable environ-
mental damage because of its iron content and acidity. In an attempt to un-
derstand the chemistry of these waters, the following measurements were
made in water in the Loree #2 shaft near Wilkes-Barre, PA. (Barnes et al.,
USGS Prof. Paper 473-B, 1964).

Sample Depth Eh pH Fe2+ SO2."

No. (ft.) volts (ppm) (ppm)

1 224 +0.322 3.41 34 1260

2 292 +0.533 3.55 478 3320

3 467 +0.568 3.36 488 3650

4 751 -0.02,5 4.0 1073 5800

5 808 -0.103 3.72 1463 6720

Samples 2 and 3 showed a yellow turbidity, the rest were clear. Samples
4 and 5 smelled of rotten eggs, the rest were odorless. Construct an Eh-
pH diagram and use it to answer the following questions: 1. Is the yellow
turbidity due to fine particles of Fe(OH)3? If so, is the mine water more or
less in equilibrium with it or is it actively precipitating? 2. Why is sample
1. clear? 3. Is pyrite stable in any of these samples? 4. In samples 4 and
5 which contain FtjS, are F^S and SO2~ apparently at equilibrium, or is
sulfur being oxidized or reduced? 5. Above what pH might pyrite and ferric
hydroxide coexist? Use -6660 and -166500 calmol"1 for the A/G°of
H2S(ag) and Fe(OH)3 respectively.
The following half-cell reactions will be useful:
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Strictly speaking you should draw several diagrams for the different water
compositions, or several sets of boundaries on one diagram. You must
experiment to determine how many boundaries are necessary to answer
the questions. For example, you could safely draw one Fe2+ — Fe(OH)3
boundary to consider both samples 2 and 3.

3. Calculate the activity of Fe in coexisting magnetite and hematite at 700°C,
1 atm (the relevant equation is shown in §14.7). Calculate aFe for the other
iron-mineral pairs FeO - Fe3O4, FeO - Fe at the same T, P. This should
be sufficient to demonstrate the use of aFe as a redox indicator.

4. Of course, our new aFe indicator is limited to systems containing iron. But
then, /o2 is limited to systems containing oxygen (though not necessarily
O2). True? On the other hand, aFe can also be used as a sulfidation indicator.
Calculate aFe in coexisting pyrite and pyrrhotite in which aFes is 0.9, at 500
K, 1 bar.
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SPECIATION CALCULATIONS

Recent advances in solution chemistry, thermodynamics and computer technology
make it possible to describe quantitatively equilibrium and mass transfer among
minerals and aqueous electrolytes in geochernical processes involving large numbers
of components, phases, and chemical species at both high and low temperatures and
pressures.

Helgeson, H.C., and Kirkham, D.H. (1974)

This chapter focuses on one of the most common questions asked about natural
chemical systems: what are the concentrations or activities of the different species
present in a system at complete chemical equilibrium? We might be concerned, for
example, with oxygen or sulfur fugacities, with the activities of complex ions, or
activity ratios of reduced and oxidized species of the same component.

In practice, these calculations range from trivially simple to enormously complex,
depending on the number of species (and components) in the system. We will follow
roughly this order—from trivial to complex—and outline some of the most common
approaches used in performing speciation calculations.

19.1. ROTE METHOD FOR SIMPLE SYSTEMS

This simplest procedure is probably used most often, and works best with systems
containing relatively few chemical species. As a general rule of thumb, you might
try this if there are fewer than 10 species, but move on to another more sophisticated
method for more complicated systems. As an example, we will solve for the equi-
librium concentrations of all species in an acetic acid + water solution of a given
concentration, m. Specifically, we might be interested in the pH of a 0.1 m HAc solu-
tion, but in calculating this we will also get the activities of all other species, whether
we need them or not. This is one of the simplest examples imaginable, but the method
works exactly the same way with more complicated systems. An excellent reference
on this general approach is Butler (1964, Chap. 3). There are six steps to follow:

1. Write all species of relevance or interest. Count the number of unknown
species. You will need this many equations.

2. Write all known equilibrium constant equations.

3. If there are charged species, write a charge balance equation.

4. Write all known mass balance equations.

5. You should now have the same number of equations as unknown species.
Reduce these by algebraic substitution to one (or two) equations that can
be solved for the unknown concentrations. At first, assume all activity
coefficients are 1.0.

505
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6. If activity coefficient corrections are required, use the concentrations calcu-
lated in step 5 to estimate activity coefficients. Repeat step 5 using these new
activity coefficients. Iterate on steps 5 and 6 until successive concentrations
and activities stop changing within some acceptable limit.

We will work through our example in detail, remembering that exactly the same
procedure applies to more complicated problems. The problem is to calculate all
concentrations (or activities) in an m-molal acetic acid solution. Follow the above
steps in sequence:

1. Relevant species are: H+, OH", HAc°, and Ac". Therefore there are 4
unknowns (TOH+, TOOH- , JTIHAC° . mAc~ ) and we will require 4 equations.

2. Known mass action equations:

3. Charge balance:

4. Mass balance:

Note that to be complete, we should have included HaO as a fifth species above;
in this case equation (19.1) would include water activity as a denominator. Except in
extraordinarily concentrated solutions such as those associated with evaporites, this
is unnecessary, and water activity can be approximated by 1.0.

5. For the next step, count how many times each unknown occurs in each of
the above four equations: mH+ and mAc- occur 3 times, and mOH- and
TOHAC° twice. To reduce these equations to one (or more) equations, start
by eliminating those variables that occur the least number of times.
We begin by eliminating mOH- , rearranging (19.1):

The box is drawn around this equation to remind us that we will return to
it to calculate TOQH- at the end.
Next, substitute (19.5) into (19.3) to give

Next, eliminate mHAc;° from (19.4):
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Substituting (19.7) into (19.2) produces

Next, eliminate TOAC- from (19.6):

Finally, plug (19.9) into (19.8) to obtain one final equation in the one un-
known, me+:

Rearranging (19.10) produces the following cubic equation in the variable

This last equation can be solved by Newton-Raphson iteration or some
other numerical technique. The first time through, it is simplest to set all
activity coefficients equal to 1.0. Equation (19.11) is then solved for TOH+;
then (19.9) is solved for mAc-, (19.7) for TOHAO and finally, (19.5) for mH+.
Notice that this takes us back through each of the equations outlined by
a box; these were the equations produced each time we first eliminated a
variable.

6. These first estimates of the equilibrium concentrations of the species H+,
OH~, Ac~ and HAc can now be used to estimate the activity coefficients.
If the solution is sufficiently dilute, the Debye-Hiickel equation might be
used to estimate 7±; we might estimate 7HAc from the behavior of another
neutral-charge species such as CC>2 at the same ionic strength. For more on
this, see Chapter 17.
With these newly estimated activity coefficients, return to equation (19.11),
and solve for new concentrations of the four aqueous species. This process
is then repeated, or iterated, until successive concentrations and activity
coefficients stop changing significantly.
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19.1.1. Simplifying Approximations

The entire calculation above could have been simplified by making a few chemically
reasonable approximations in the original 4 equations (19.1) to (19.4). For example,
because HAc is a weak acid, we can safely assume mn+ S> TOOH- andranAc ̂  ITT-AC--
This simplifies equations (19.3) and (19.4) to

and

This makes the problem almost trivial. Plug (19.12) and (19.13) back into (19.1)
and (19.2) to obtain

which may be solved for m^c- , and so on. To check your approximations, always
substitute the calculated answers back into the original equations (19.1) to (19.4),
testing that the left side equals the right side in each case. If it doesn't, then the
approximations need to be revised and improved.

19.1.2. Example: Quartz Solubility in Alkaline Solutions

To illustrate an equilibrium calculation of the above type, let's choose an example
of geothermal interest: the solubility of quartz as a function of pH. Dissolved silica
behaves as a very weak acid, H4SiO4, and deprotonates to HsSiO^ only at basic pH.
If we suppose that basic pH is produced by adding NaOH, then the system of interest
is SiO2(qtz)-H2O-NaOH. Running through the rote procedure, the species of interest
are: NaOH0, Na+, H+, OH , H4SiO£, HsSiO^ , and H2SiO;j~. We are presuming that
Na-silicate complexing or ion pair formation is insignificant. With 7 unknowns, we
require 7 equations which are:

• Mass action equations:

• Mass balances:

rriH4sio4
 = silica solubility in pure water at same P and T
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FIG. 19.1. Predicted quartz solubilities as a function of pH, temperature and total sodium
concentration. After Crerar and Anderson (1971)

Charge balance:

One simplifying approximation can be made: for all non-zero concentrations of
NaOH, the pH should be basic and we can omit H+ from the charge balance (19.21).
The above 7 equations can then be reduced to 1 non-linear equation in 1 unknown,
which can be solved by a numerical technique such as Newton-Raphson iteration.
Suitable numerical equation solvers are now available as software for personal com-
puters. The range of solutions to these equations for different NaOH concentrations
and temperatures is illustrated in Figure 19.1. At very high NaOH concentrations we
would also have to consider the doubly deprotonated species H2SiO4~.

While high pHs such as those on Figure 19.1 are rare in nature, the diagram
suggests a potential engineering application. One of the difficulties in harnessing
geothermal power is that silica precipitates within the plumbing systems of power
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plants. The same thing happens sometimes when spent water is reinjected into sub-
surface reservoirs. Many schemes have been proposed to stop, or at least slow down,
silica precipitation. One rather obvious approach is to add small concentrations of
alkali, which raises silica solubility exponentially, as you can see in Figure 19.1. This
particular problem has been discussed in some detail by Fleming and Crerar (1982).

The above example produced 7 equations in 7 unknowns and could be solved
without much difficulty using a small computer. There is going to be an upper limit to
this kind of manual equilibrium calculation, however. That happens when the reduced
equations require too much effort to solve numerically. As an example, rephrase the
above problem to calculate the solubility of quartz in NaOH + NaHS solutions. The
system now becomes SiO2-H2O-NaOH-NaHS and the relevant species are: NaOH0,
Na+, NaHS0, H2S, HS~, S2~, H+, OUT, H4SiO°, H3SiOJ, and H2SiO^. We have
11 species and therefore will require 11 equations. This was solved by Crerar and
Anderson (1971) using the above method. A similar problem summarized by Helge-
son (1964) was to calculate galena (PbS) solubility in NaCl-H2O-HCl solutions.
This required solution of 13 equations, which was also accomplished by the above
method. In both cases the equations could only be reduced to two (rather than one)
quite complicated expressions in two unknowns. The process of reducing the orig-
inal equations is often very time-consuming in such cases, and solution of the final
equations can also be a challenge.

These last two examples come from a time when computer technology and soft-
ware were still in their infancy. Today it would be foolish to solve equilibrium prob-
lems as complicated as these manually because computer programs are now available
to do this quickly and efficiently. In practice, the manual rote method is convenient for
quick calculations involving relatively few species and equations. As a general rule of
thumb, calculations involving fewer than 7 to 10 species can often be done by hand.
With more complicated systems we recommend your nearest computer terminal. The
choices available to you at that point are the subject of the rest of this chapter.

19.2. SPECIATION CALCULATIONS BY COMPUTER

19.2.1. Three Basic Approaches

There are now hundreds of programs designed to compute chemical equilibrium in
complex, multi-component systems. These are too numerous to summarize com-
pletely here, but thorough reviews are available in the literature (Van Zeggeren and
Storey, 1970; Nordstrom etal., 1979b; Wolery, 1979, 1983; Smith and Missen, 1982;
Reed, 1982; Nordstrom and Ball, 1984; Nordstrom and Munoz, 1985, Appendix E;
De Capitani and Brown, 1987).

There are three general categories or types of algorithm used: those that use
equilibrium constants (as in our rote method above); those that use the free energy
of each species and find that set of activities which minimizes the free energy of the
entire system; and those that follow reaction progress in small steps towards a state of
final equilibrium. We will summarize these methods briefly in the following sections.
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19.2.2. Methods Based on Equilibrium Constants

There are two types of program within this category. The first is completely general
and can be applied to any system for which suitable data are available; the reactions
of interest and their equilibrium constants must be supplied by the user for each
particular application. The second type of program starts with a built-in set of specific
reactions and equilibrium constants, and might be designed, for example, to apply
to natural waters ranging from lakes and groundwaters to hydrothermal solutions;
this is convenient if all reactions of interest to you are included in the program. If
you are working with systems or reactions riot included in such programs then it is
usually easier to use one of the general algorithms. The relative pros and cons of both
approaches should become apparent in the following examples.

19.2.3. General Algorithms

These methods essentially follow the rote procedure outlined above. The important
difference is that the mass action, mass balance, and charge balance equations are
written in generalized mathematical notation. They can then be applied to any chemi-
cal system by specifying the reactions and species of interest. The approach we outline
here is described in detail by Crerar (1975). However, we include a change in the mass
action equations which was not in the original paper; this improves the speed of the
method and its chances of success with very complex systems. Consider an arbitrary
system of c components containing TV chemical species. Equilibrium constants are
known for M independent reactions relating some or all of these species.

First, if the system is ionic, write a generalized charge balance:

Here Zi is the valence (including sign) of the ith species, and TO, is its concen-
tration (molality). For example, Z, would be -2 for SO^", +1 for Na+, and 0 for
NaCl°(aq). Next, assume that the total molal concentrations Be of N — M — 1 ele-
ments or atomic species are known for this system. Write N — M — 1 general mass
balances:

Be is the molal concentration of the eth element (such as total Na or total Cl)
in the system. Now each of the N chemical species in the system must contain one
or more of these elements according to its formula. The parameters bei refer to the
number of atoms of each element in the formula of every species; using the formula

as an example, bu = 2,b$ = I , and bo = 4.
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Finally, we can write the M equilibrium constant or mass action expressions in
generalized form as:

Kk is the fcth equilibrium constant. Each v^i represents the number of times the z'th
species occurs in each reaction; it is negative for reactants and positive for products.
For example, with the reaction

VM is -1 , -2, and 1 for the species Fe2+, Cl~, and FeCl^, respectively, and is 0 for any
other species. Activity coefficients, 7, are included in (19.24) but are not necessary
in the mass and charge balances.

We now have 1 charge balance equation (19.22), a total of TV - M — 1 mass
balances (19.23), and M mass action expressions (19.24) for a grand total of N
equations in N unknowns. Because of the mass action equations, this is a non-linear
system. It could be solved by any of a number of numerical techniques. We will use
the Newton-Raphson method in this example.

19.2.4. Newton-Raphson Solution

The numerical solution to the above equations can be simplified by taking the log-
arithm of the expression for the equilibrium constants in equations (19.24). This is
helpful because equilibrium constants for reactions in natural systems are often very
large or small numbers; using logarithms reduces this possible range and increases
the rate at which the iterative method converges. The logarithm (base 10) of (19.24)
is:

The set of equations to be solved is now (19.22), (19.23), and (19.25). These are
marked with boxes above. The Newton-Raphson method requires the complete set of
partial derivatives of all of these equations. Taken in order, these are, for the charge
balance (19.22)

For the mass balances, the partials are
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and it can be solved for S I X N . A first guess is made at the concentrations of all N
species, mf\ This gives all elements in the matrix ^>NXN, and elements in the vector
i&ixN are calculated from the boxed equations (19.25), (19.23), and (19.22) above.
The next (improved) estimate of the concentrations is given by

In the Newton-Raphson method, the system of non-linear equations (19.22), (19.23),
and (19.25) is approximated by the linear system made up of the above partial deriva-
tives.

Finally, the partials of the mass action equations (19.25) are

This is the matrix equation
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or, in matrix notation,

With the new set of guesses ra^ the process is repeated iteratively until successive
estimations of all concentrations stop changing significantly.

Activity coefficient corrections are treated just as with the rote manual method
already discussed. The first time through, all activity coefficients could be set to 1 .0
(or some reasonable estimate). Concentrations of species calculated this way are then
used to estimate a better set of activity coefficients in each successive iteration.

The above procedure has been coded in FORTRAN as the program EQBRM and
a copy suitable for personal computers is included in this book as Appendix E, along
with an example showing the proper format for input data. For different applications it
is necessary to choose among the available methods of estimating activity coefficients.
For example, the Debye-Hiickel equation can often be used for dilute systems such
as rivers and groundwater, but concentrated brines will require the Pitzer equations
or measured coefficients if they are available. For this reason, a subroutine should be
written to calculate activity coefficients for your application.

Figure 19.2 illustrates a typical calculation with EQBRM, from Hennet et al.
(1988). Here we wished to know the relative importance of soluble inorganic and
organic complex ions of Pb in hydrothermal solutions at 100°C. The only organic
component considered for this diagram was acetate; the system contained variable
concentrations of NaCl, CaCl2, and NaHS, and the pH was allowed to vary. This
required considering 25 species: H+, OH", H2S(ag), HS~, Na+, Cl~, NaCl(ag),
NaHS(aq), HCl(aq), Pb2+, PbCl+, PbCl2(ag), PbCl^, PbCl^, PbOH+, Ca2+, CaCl+,
CaC\2(aq), HAc(aq), Ac", PbAc2(ag), PbAc^~, CaAc+, CaAc2(a<?), and NaAc(agr).
The only way to solve an equilibrium problem involving this many species is with a
computer. The appropriate mass and charge balances and equilibrium constants are
tabulated by Hennet et al. (1 988). The results compiled in this figure show that Pb(II)-
acetate complexes can predominate over inorganic chloride and hydroxide species
only at unusually high organic concentrations.

19.2.5. Programs Designed for Specific Systems

The program EQBRM and others of its kind are perfectly general in format, and the
user defines the reactions and species for each application. For the results shown in
Figure 19.2, this kind of program was necessary because the equilibrium constants
for the acetate species were not previously available and had not been written into
any pre-existing program.

As mentioned in the introduction to this section, there is a second class of programs
that solve for chemical equilibrium in pre-defined systems. These contain built-in
equilibrium constants, reactions, and sets of species. Many such programs are cur-
rently available and a good many of these have been summarized by Nordstrom and
Ball (1984). Most of these programs describe chemical equilibria in mineral-water
systems.

We will illustrate this class of programs with one of the earliest, and still most
used, examples-the program WATEQ. This was described originally by Truesdell
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FIG. 19.2. Pb(II) species relative abundance versus pH calculated using EQBRM as de-
scribed in the text and Appendix E. Conditions: 1.50m Cl; 1.00m Na; 0.25m Ca; 0.20?n
acetate; 10^5m Pb, and 100°C (calculated 1=1.50m ±0.05; neutral pH=6.0). Curve A: Pb(II).
Curve B: total Pb(II)-chloro-complexes. Curve C: total Pb(II)-acetate complexes. Curve D:
PbOH+. Note that with more Cl-rich brines the relative proportion of metal-organic species
(Curve C) decreases.

and Jones (1974) and has gone through many modifications since (e.g., Ball et al.,
1980). The program takes as input data total concentrations of all relevant species or
elements (Ca, Mg, Na, K, Cl, SO^', HCO^, SiOa(a?), etc.); field measurements of
temperature and pH; and measured Eh and dissolved oxygen, if available.

The general algorithm used by this program was designed by Garrels and Thomp-
son (1962) for one of the first calculations of the equilibrium speciation of seawater.
We will summarize the original description by Truesdell and Jones (1974) of the
numerical method.

The concentrations or activities of anionic species are calculated first from mea-
sured total concentrations and pH and estimated activity coefficients. Using silica as
an example, the mass balance on dissolved silica species is

The mass action or equilibrium constant expressions for ionization of silicic acid,
H4SiO4, to H3SiO^ and H^SiO^ are
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Substituting the above 4 mass action equations into the mass balance (19.36) gives
a single expression for the Ca2+ free ion concentration:

Inis can be solved tor Ca molality because all quantities on the right hand side
are known. A similar calculation is carried out for all other cations and ion pairs and
complexes of these cations (Na, K, Mg, Fe, etc.).

and

Everything on the right-hand side or mis equation is known trom the input data.
The value of H4SiO4 is then plugged into (19.33) to give HsSiO^, and this in (19.34)
gives F^SiO^". Activity coefficients are calculated from an extended Debye-Huckel
equation and initial estimated ionic strength. The concentrations of all other weak acid
anionic species (phosphate, carbonate, borate, sulfide, sulfate, etc.) are calculated by
the same method.

Cation and ion-pair concentrations are calculated in the next step based on the
above anion concentrations and activities. Taking Ca as an example, the mass balance
on total dissolved Ca is:

The mass action equations for formation of the ion pairs CaOH , CaHCO^,
CaCO3(ag), and CaSO4(a<?) are:

the mass action equations (iy..i4) and uy.jj) can be substituted into me mass
balance (19.32) to solve for FLSiCU.
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The formation of ion pairs such as CaHCO^ and the others considered in equation
(19.36) reduces the concentration of free (unassociated) anions such as HCO^, Cl~,
and SO^". The concentrations of all free anions are therefore reduced at this stage
by the amount of each tied up in ion pairs and complexes. This changes the ionic
strength as well, so new estimates of the activity coefficients must also be made at
this point. The calculation of free cation and ion pair concentrations is then repeated
with these new estimates of anion molalities and activity coefficients. The iteration is
continued until the mass balances for all cations and acid anions (such as equations
(19.32) and (19.36) agree satisfactorily with measured quantities.

WATEQ checks for saturation with respect to specific minerals after these calcu-
lations are completed by comparing computed ion activity products with solubility
products for all minerals listed in the program's data set. For example, the solubility
product for CaSC>4 • 2H2O (gypsum) is

If the predicted ion activity product IAP = aca2+aso2~ exceeds the solubility product
Ksp the solution is supersaturated with respect to gypsum. WATEQ provides the
concentrations and activities of all species considered, plus a list of all minerals that
are supersaturated for these conditions.

As already noted, there are many programs currently available that perform com-
putations similar to WATEQ. One of the more advanced routines is EQ3 (Wolery,
1983). This computes equilibrium speciation using a modified Newton-Raphson al-
gorithm. Recent versions contain data bases applicable at high temperatures, and
also include the Pitzer equations for the activity coefficients of concentrated multi-
component salt solutions. WATEQ, EQ3, and all similar programs come with built-in
data bases for the equilibrium constants of specific reactions. These constants can
usually be changed by the user without too much difficulty. In practice, the programs
typically consider many more species than needed for specific applications; those
species not needed are simply omitted when the program is used. In the user's guide
to EQ3, many different examples are considered (Wolery, 1983, pp. 59-81), includ-
ing the detailed equilibrium speciation of seawater. Recall that this was the problem
tackled by Carrels and Thompson (1962) many years before the development of these
new, highly sophisticated programs.

19.2.6. Methods Based on Free Energies

The second major class of equilibrium-solving routines uses the Gibbs free energies
of all species (at the temperature and pressure of interest) rather than equilibrium con-
stants for reactions among the species. Frequently the only other input data required
is the total amount, or concentration, of each chemical element in the system (i.e.,
total moles of Ca, Na, S, Cl, etc.), and perhaps Eh, pH, and temperature.

There is an important fundamental distinction between the free energy based
programs and those using equilibrium constants, and this often determines which
method to use in specific applications. The free energy programs actually require much
more fundamental thermodynamic information, and this can restrict their usefulness.
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To illustrate this problem, consider a simple reaction involving minerals and dissolved
aqueous species such as

The equilibrium constant for such reactions can be measured experimentally, and that
gives the standard state free energy of the reaction from

There are four species in reaction (19.43) and for the sake of argument we will assume
that the standard state free energies of formation A/G° are well known for Au(c)
and H2(g) but have not been measured for H2S(ag) and HAu(HS)2- This is very
often a problem with high temperature aqueous species for which free energy data
are scarce. If the free energies of all four species were available, then they could be
used to calculate the free energy of the reaction:

Using (19.44) this would give the equilibrium constant for reaction (19.43). The
important point here is that the converse is not true: Without the complete set of
free energies A/G°, it is not possible to calculate either K or ArG°. Equilibrium
constants alone do not contain as much thermodynamic information as complete free
energy data sets.

With this in mind, you should first check whether free energies are available for
all species (at the T and P of interest) before starting a large chemical equilibrium
calculation. With luck you will find all necessary free energies and can then select
a method based either on equilibrium constants or on free energies. If some free
energies are missing, the choice narrows and the free energy methods cannot be used.

Fortunately, thermodynamic data bases are now sufficiently complete that free
energy methods can be applied to many systems of geological interest. There are
currently many powerful algorithms from which to choose; see Smith and Missen
(1982) for summaries and selected computer codes. Several algorithms designed
specifically for geochemical applications are outlined by Harvie et al. (1987) and De
Capitani and Brown (1988). In the following sections we summarize some of the
ways in which these programs have been used.

19.2.7. Composition of the Early Solar Nebula

One of the first applications of major geochemical interest was the calculated equi-
librium composition of the early solar system. This work is summarized in classic
papers by Grossman (1972) and Grossman and Larimer (1974). The method they
used is interesting because they calculated equilibrium constants from available free
energies; this makes it transitional between the two approaches described above.

This calculation begins by finding the free energies for the 70 most important
gaseous species consisting of the 15 elements (H, O, C, N, Mg, Si , . . . , Cl) thought
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to have been the most abundant in the solar nebula — the enormous cloud of gas that
condensed to form our solar system. Temperatures are presumed to have been 1000
K or higher, and pressures used for the calculation are 10~3 to 10~4 atm. Hydrogen
is by far the most abundant element in such interstellar clouds, and H2 is the most
concentrated H-bearing species. The pressure is so low and temperature so high that
the ideal gas law can be invoked and we can approximate total pressure by the partial
pressure of Fb:

and, because PV = nRT,

and

therefore

Here nn2
 and «H,tota; are the total number of moles of H2 molecules and of H atoms

per liter, respectively. If A(X)/A(H) is the abundance of any element X relative to
that of hydrogen atoms in the solar nebula, then the concentration in moles per liter
of element X is simply

We will assume that all species, whether molecules or single atoms, are at com-
plete chemical equilibrium. This means we can write a chemical reaction describiitig
formation of each gas molecule from its constituent gaseous atoms. For water, as an
example, this is

The free energies of all species are known ait this T and P, so the equilibrium constants
can be calculated for all such reactions (as in equations 19.44 and 19.45 above). We
are assuming ideal gas behavior, so activities can be expressed by partial pressures
of each gaseous species. For reaction (19.51) the equilibrium constant would be:

Using the ideal gas law once again, this can be written as

One equation like (19.53) is written for each of the 70 gaseous molecular species,
expressing formation of the species from one or more of the 15 elements considered.

Finally, we know (or have good guesses for) the relative abundances of all 15
elements in the solar nebula. We can therefore write a mass balance for the total
moles or gram-atoms per liter of each element. For the element O, this would look
like
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and there are 15 such mass balances, one for each element. Now substitute all expres-
sions such as (19.53) into each of the mass balances. Notice that the only variables on
the right side of equations (19.53) are the concentrations of monatomic gas species.
Therefore, this gives us a system of 15 simultaneous nonlinear equations in which
the sole unknowns are the concentrations of the 15 monatomic gas species:

The above equations can be solved by successive approximation. Initial guesses
at the concentrations of the 15 monatomic gas species are plugged into (19.55) to
generate improved estimates, and the process is repeated until successive concentra-
tions stop changing significantly. This could be accomplished by rearranging each of
the equations (19.55) to forms such as:

The above calculation determines the concentrations of gaseous species at temper-
atures so high that solid phases are not stable. At lower temperatures, solids begin
to condense out of this gas and a correction must be made for the amount of each
element removed as solids from the gas phase. For example, if the gas is cooled at
10~3 atm to 1758 K, corundum condenses according to the reaction

This is the first phase to condense in significant quantities from the cooling solar
nebula. With the appearance of corundum the concentration of Al and O as this
phase must also be included in the mass balances for total O (19.54) and Al. This
introduces a new unknown, TiAi2o3(s), to the 15 above, leaving us with 15 equations
in 16 unknowns. The required 16th equation is simply the equilibrium constant for
reaction (19.57), calculated from the free energies of Al(gr), O(g), and Al2O3(s) at T
and P.

The solution to this new set of 16 equations therefore gives the concentrations of the 15
monatomic gas species as well as corundum in moles per liter. The concentrations of
the remaining 70 gaseous molecular species such as H2O(.g) are then easily calculated
from the set of equations (19.53)—one for each species.
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It is necessary to test at each stage for precipitation of solid phases such as corun-
dum. When a solid becomes stable, concentration quotients (calculated assuming no
solid) will exceed the equilibrium constant for the gas-solid reaction. For example,
corundum is stable when

Every time a new solid phase appears, its concentration must be added to the appro-
priate mass balance equations and a new equilibrium constant (for formation from its
monatomic gaseous constituents) is included in the system of equations to be solved.

Grossman performed this computation as part of his doctoral dissertation, ulti-
mately including about 300 gaseous species and 100 solid phases in a system compris-
ing the 20 most abundant elements in the solar system. The results are summarized in
a diagram which is now quite familiar in the fields of cosmochemistry and meteoritics.
It shows that the most refractory minerals such as corundum, sphene, melilite, and
spinel all condense, as expected, at the highest temperatures. These same minerals
are commonly found in the most primitive meteorites, the carbonaceous chondrites.
Minerals like the melilites are relatively rare in terrestrial rocks, and it has been sug-
gested that the snowflake-like refractory crystals preserved in such meteorites might
actually represent solid material condensed from the solar nebula during the birth of
our solar system (Grossman, 1975).

The calculations also perhaps explain the difference in composition between the
small, Earth-like inner terrestrial planets and the large outer Jovian planets. The ter-
restrial planets presumably condensed at much higher temperatures and are thus com-
posed of metals, metal oxides, and silicates. The Jovian planets would have formed
at far lower temperatures within the primitive solar nebula and consist predominantly
of frozen volatile compounds such as methane, water, ammonia, and so on. Finally,
a possible case for early layering of the Earth can be drawn from the calculations:
within a cooling nebula metallic Fe and Ni would condense first, followed by spinels,
pyroxenes and olivines, with a final lower temperature layer of alkali feldspar, metal
oxides, hydrated silicates and, of course, water itself at 0°C.

The Larimer-Grossman condensation model has received its share of criticism
in the intervening decade. Much of the debate was raised by the assumption that
all solid and gaseous species fully equilibrated, which seems unlikely, particularly
at lower temperatures. Despite these concerns, the equilibrium picture fits many of
the broad scale chemical features of our solar system remarkably well. It certainly
demonstrates the power of thermodynamic equilibrium models, considering the size
and complexity of the chemical system that is our niche in the universe.

19.2.8. Free Energy Minimization

The above calculation used free energies and the equilibrium constants for specific
chemical reactions. For this reason the calculations apply only to the system, species,
and reactions considered. It is possible to generalize free energy based equilibrium
calculations so that they can be used with systems and species chosen arbitrarily, in
a manner analogous to the program EQBRM described above.
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We observed in Chapter 3 that a chemical system is at thermodynamic equilibrium
when the Gibbs free energy of the system is at a minimum. For a given pressure,
temperature, and bulk composition, at equilibrium there will be one or more phases
in which the concentrations of all species are fixed. Many different methods have
been developed to compute the equilibrium state, as outlined by Van Zeggeren and
Storey (1970) and Smith and Missen (1982). As an illustration, we will summarize an
algorithm derived by Harvie et al. (1987), which has been applied with great success
to geochemical systems.

All generalized equilibrium-solving algorithms based on free energies use some
numerical technique to locate the minimum on the free energy-composition surface.
These are called optimization methods, and there are many from which to choose (see
the summary by Van Zeggeren and Storey, 1970, Ch. 3, for example). The procedure
developed by Harvie et al. (1987) uses Lagrangian multipliers.

Let's state the problem in non-mathematical language first. We need to find the
unique concentrations of species in a system that minimize the total free energy subject
to the following constraints or conditions.

• All mass balance conditions must be met (the concentrations of each com-
ponent or element contained in all species must equal the total concentration
of that component in the system).

• The system must be electrically neutral, so if ions are present, their con-
centrations must satisfy a charge balance equation.

• No species can have a negative concentration.

To phrase the problem mathematically, the same notation used to describe the
EQBRM algorithm above will be used as much as possible. Consider a system con-
taining c components, N chemical species, and </> phases. At equilibrium, the total
free energy is minimized:

This is subject to the following conditions or constraints:

• Mass balance (c equations, one for each component)

« Charge balance (</> equations, one for each electrolyte phase, p)

Non-negative concentration constraints (N equations, one for each species,
i)
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For numerical purposes, the last constraint is better expressed in terms of a
"slack variable" t;,

In the above equations (19.60) to (19.64), G is the total Gibbs free energy of the
system; /j,i is the chemical potential of species i; HI is the number of moles of species
i; N is the total number of species in the system; c is the total number of components
(for present purposes considered as the elements); Be is the number of moles of each
component (or element, e) in the system; bei is the number of moles of component (or
element) e contained in one mole of species i; p refers to a separate electrolyte (ionic)
solution phase, and <p is the total number of these electrolyte phases; Zpji refers to
the valence or charge of the iih species in the pth phase; and t» is the slack variable
denned in (19.64).

The next step is to write the Lagrangian function corresponding to the minimiza-
tion statement (19.60) and the constraints (19.61), (19.62), and (19.64).

In (19.65) we have introduced the Lagrangian multipliers «;, rjp, and MJ, one for
each constraint. This increases our total number of unknowns to TV of rij, c of Ki, <p of
rjp, and TV of MJ for a total of 2N + c + (/> unknowns. We will require the same number
of equations to solve for these variables. This is accomplished by taking the partial
derivatives of the Lagrangian function (19.65) with respect to each concentration
variable, and equating them all to zero.

For example, the partial derivative of (19.65) with respect to the kth species in a
non-electrolyte phase is
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The same partial derivative for an electrolyte phase p must include the charge balance
constraint (19.62).

This gives us a total of N partial derivative equations (19.66) and (19.67), one for
each species in the system. We have c mass balance constraints (19.61), </> charge
balance constraints (19.62), and N non-negative constraints (19.64). Solving these
simultaneously with the JV partial derivatives above gives us the necessary 2N + c+4>
equations in 2N + c + <p unknowns.

This is the basic principle of the Lagrange method for free energy minimization.
In practice, the computation can become quite complex and intricate. Part of the
problem lies in the non-linear relationship between the chemical potential fa and the
concentration in equation (19.60).

Here we have represented concentration by molality, m, (instead of number of moles,
rii) and include an activity coefficient correction, 7^. As with equilibrium constant-
based equilibrium calculations, the activity coefficients can be computed from suc-
cessive estimates of the concentrations.

As input, this model requires the standard state chemical potentials (or free ener-
gies) A/G° of all species and phases, and the bulk composition or total number of
moles of each component, Be. A specific method must always be selected to calculate
activity coefficient corrections.

The program of Harvie et al. (1987) has been applied to extremely non-ideal
evaporite brines (up to 20m concentration), and to equilibria involving silicate melts
and solid solutions. The agreement between prediction and observation is impres-
sive. Figure 19.3 shows one series of equilibrium computations for highly nonideal,
multicomponent, saturated salt solutions. Here the solubilities of different salts are
predicted to high concentrations in the system Na-Cl-SO^-HCOjf-CO^-OH"-
H2O. The Pitzer equations described in Chapter 17 were used to compute activity
coefficients in this highly complex system. The excellent agreement with the mea-
sured points (dots) demonstrates the power of this method. This also shows how well
Pitzer's model for the thermodynamic properties of multicomponent salt solutions
actually works.

Many other algorithms have been devised for solving chemical equilibrium prob-
lems using free energy data bases for all species and phases. One of the most recent
geochemical examples is the program called THERIAK described by De Capitani and
Brown (1987). This minimizes free energy and includes non-ideality corrections, but
differs from the program of Harvie et al. (1987) in using repeated linear and nonlinear
programming steps. The THERIAK algorithm is highly efficient, and is particularly
well suited to complex systems in which phase separation (unmixing) can occur in
more than one phase. An application of this program to equilibrium conditions in a



FIG. 19.3. Salt solubilities in the Na-Cl-SO4-HCO3-CO3 -OH-H2O system. Closed systems.
From Harvie et al. (1984)
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Table 19.1 Free Energy Minimization Calculation of Chemical Equilibrium in a Blast
Furnace. From DeCapitani and Brown (1987). Pressure is 1 atm.

Species

Solid Phases
C(graphite)
Fe(iron)
CaO(lime)
Fes 04 (magnetite)
CaCO3(calcite)
FeO(wiistite

Ideal Gas
02

H2

N2

CH2O
CHO
OH
C02

H2O
CH4

CO

A/G°
(J/mol) at
1050 K

0
0

-529190
-762660
-942450
-193930

0
0
0

-86110
-62550

22590
-395970
-189870

24850
-204640

Bulk
comp'n
(moles)

85.5901
3.5270
0.6063

13.1000
0.1499

20.4600

187.1000

1.7750
2.5540

Stable at Mole fraction
1050K in stable
(moles) gas phase

42.8270
0.7562

282.2639
6.1303-
2.2766 •
6.6286 •
8.3543 •
3.7258 •
2.8093 •
2.3608 •
1.5723-
2.3201 •
2.8918-

10~22

io-2

• 10-'
- io-9

io-9

io-13

10~3

io~3

io-5

10-'

blast furnace operating at 1050 K and 1 atm pressure is summarized in Table 19.1.
Here the first two columns list free energies of all phases and species considered, at the
T and P of interest; column three gives the bulk composition of the system; column
four shows that three phases coexist at equilibrium: solid iron and calcium oxide,
and a gas. The last column shows the equilibrium speciation of the gas phase. This
algorithm can be applied to very complicated systems involving multiple coexisting
immiscible liquids and solid phases, and overall computation times are quite rapid.
The blast furnace calculation, for example, took only 0.43 seconds on a 48 megabyte
1987-vintage mainframe computer.

As free energy data bases become increasingly complete in the future, we can
expect to see much heavier use of equilibrium-solving programs. Software will also
become more widely available as the power of small computers increases; many of
the necessary algorithms can be run on personal computers at the present time. This
kind of quick, fingertip approach to equilibrium conditions in the most complex geo-
chemical systems will certainly change the way we handle thermodynamic questions
in geochemistry, and should ultimately change the nature of the questions we ask.

19.3. REACTION PATH CALCULATIONS

In natural systems, chemical reactions often start far removed from equilibrium, then
progress along towards a final stable (or metastable) state. Chemical weathering is a
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good example: surface waters and freshly exposed rock are normally completely out
of equilibrium when first brought together. Given time, however, they will begin to
react and change composition. These changes will always proceed towards chemical
equilibrium, but many different paths may be followed. In multi-mineral systems
many reactions might occur simultaneously and the overall chemical behavior can
become quite complex. Many processes occur in parallel, for example, when a magma
of one composition is injected into chemically different country rock and begins to
react with pre-existing minerals. Large mineral deposits such as the porphyry coppers
are produced when hydrothermal solutions pass through wallrocks of completely
different chemistry, and so on.

Rather than taking on problems of this magnitude at the outset, let's illustrate the
principles involved with a very simple example—the oxidation of iron to hematite:

Assume this process begins in a chemically closed box containing a random amount
of fresh iron at T and 1 bar total oxygen pressure. Of course, iron and oxygen are
completely out of equilibrium when first exposed to each other. Reaction will progress
spontaneously in the direction that reduces the free energy of the system, as indicated
by the arrow.

In fact, several different processes are possible here, depending on initial amounts
of reactants and the rates of certain reactions. This illustrates, right at the outset, one
of the greatest difficulties in applying these types of calculations to real systems: addi-
tional non-thermodynamic information is often required before choosing geologically
realistic reactions. By writing reaction (19.69) we are presuming this process occurs
in preference to all other possibilities. Elemental iron, when exposed to oxygen, might
react to form wiistite, magnetite, or other possible oxides rather than hematite. For
this example, assume that hematite nucleates more rapidly than the other oxides. This
kind of additional kinetic information is necessary before we can even choose an
appropriate reaction.

Presuming then that reaction (19.69) is what actually occurs (or perhaps the
reaction we wish to model in spite of what actually occurs) we can consider two
different cases:

1. If the initial oxygen/iron ratio is well above the stoichiometric value (3/2)/2
= 3/4 dictated by reaction (19.69), all original iron will be converted to
hematite. In this case the final state would consist of hematite and gaseous
oxygen.

2. If the initial oxygen/iron ratio is below the stoichiometric value, then some
elemental iron will remain, in association with hematite and gaseous oxy-
gen. The /o2 for this assemblage would be'10~86'7 bars (as calculated from
the equilibrium constant for reaction (19.69) at 25°C). This is an interest-
ing situation, because hematite and iron are thermodynamically metastable
under these conditions with respect to magnetite.
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If we drop the restriction that magnetite cannot nucleate, then two additional
processes might occur in case 2 above:

This could ultimately produce magnetite plus residual oxygen gas as the final assem-
blage. Because the end result is so different, we see how important outside kinetic
information is to this kind of reaction path model.

19.3.1. The Extent of Reaction or Progress Variable

For the sake of argument, assume that case 1 above actually occurs. We can speak
of the extent to which this reaction has progressed from the initial nonequilibrium
conditions towards its final state; for example, when half the initial Fe is oxidized, the
reaction has progressed halfway. You can regard some of this material as a concrete
example of the theory discussed in Chapter 14. For any balanced chemical reaction,

where Vi are the stoichiometric coefficients in the chemical reaction and are positive
forproducts, negative forreactants (e.g., forreaction (19.69), z/pe = —2, z/o2 = —3/2,
and ^Fe2o3 = +1 )• Mi represents the molecular weight of the zth species in the reaction.

Assume that the chemical system is completely closed so that no material can
enter or leave. As our initial system of Fe and O2 begins to react it will form a small
amount of Fe2O3; we can express the change in mass of each species for this small
amount of reaction by the equation

where £ is called the "degree of advancement of the reaction", "the extent of reaction"
or "the progress variable," and is described in units of moles. The concept of the
progress variable was introduced by Th. De Bonder in the 1920s. If reaction (19.69)
progresses by some small amount, say e?£ = 0.001 moles, then (19.71) tells us that
the mass of Fe will decrease by dm, = -2(55.8)(0.001) or -0.1125 throughout
the course of this small reaction step. For a generalized reaction such as (19.70) the
differential changes in mass are related to the progress variable by

For reaction (19.69) this becomes
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You can get a better intuitive feeling for the physical significance of the progress
variable by rearranging (19.73) to express explicitly the change in mass of any species
with extent of reaction:

It is apparent here that the progress variable determines how much reactant is de-
stroyed or product created during a step in a chemical reaction. The larger the step
(or d£) the greater these changes in mass. The relative changes in amounts of reactant
and product species are controlled simply by the stoichiometry of the reaction itself
(as expressed by equation (19.73)). Note that like all differentials, d£ can be large or
small, and positive or negative (in which case the reaction runs backwards).

It is often more convenient to deal with moles (and concentrations) rather than
masses in typical applications. For this, simply divide masses of all species i by their
molecular weights Mi .

Then (19.71) becomes

where ni is the number of moles of the ?'th species.
The relationship between reaction progress, change in moles of different species,

and the overall reaction stoichiometry as in (19.72) now simplifies to

or, using reaction (19.69) again as an example,

Finally, integrating (19.77) gives

We can use this equation to plot the "progress" of reaction (19.69). This is il-
lustrated in Figure 19.4a,b for both case 1 (with excess initial Oa) and case 2 (with
excess Fe), as discussed above. Using case 1 as an example, consider a closed system
initially containing 10 moles each of Fe and C>2. After a reaction step A^ = 1, the
system will contain 8 moles of Fe, 8.5 moles of O2, and 1 mole of freshly formed
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FIG. 19.4. Progress of reaction for 2Fe + §02(5) = Fe2O3. (a) Excess initial Oi. Closed
system consisting of 10 moles each of Fe and Q-i(g\ initially. Reaction stops at A£ = 5 with
5 moles of hematite and 2.5 moles oxygen, (b) Excess initial Fe. Closed system containing 10
moles Fe and 6 moles Ch, initially. Reaction stops at A£ = 4 with 2 mole Fe and log /o2 = — 87.
(c) Simultaneous oxidation of Fe and reduction of hematite to magnetite, where rates of both
reactions are equal. Initial moles of Ch, Fe, and Fe2O3=10, and of Fe3O4=0. (d) Same as (c),
except rate of Fe oxidation is twice that of Fe2Oj reduction.

Fe2O3. The reaction ends when all initial Fe is consumed, which occurs for a reaction
progress A£ = 5 (found by solving equation 19.79 for npe = 0).

19.3.2. Multiple Reactions and Relative Rates

The example in Figure 19.4 is simple because only one reaction occurs at a time. In
nature, many reactions can occur at once, and this situation can be treated by extending
the above reasoning to a series of simultaneous reactions. We have already mentioned



SPECIATION CALCULATIONS 531

that if magnetite nucleated quicker than hematite, the following two reactions might
occur instead of (19.69) when an excess of Fe is exposed to C>2.

Both reactions would run simultaneously and this could be described by revising
(19.77) to include these and any other parallel reactions.

where the subscript rxn refers to one of a total of R simultaneous reactions, and Vi,rxn
is the stoichiometric coefficient of the ith species in each reaction. In our example
there are two simultaneous reactions, a and b.

If we assume that the above two reactions run at exactly the same rate, then the
simultaneous changes in all four species with reaction progress can be calculated in
the following manner.

where d£a = d£,b.
This appears fairly simple and would be, except that the same problem of requiring

non-thermodynamic information presents itself again. We encountered this first in
choosing hematite rather than magnetite as the most likely product in reaction (19.69).
In fact, we cannot realistically presume both reactions a and b will run at precisely the
same rate. If the rates are different, then the net reaction path (or changes in species
concentrations) could differ considerably from this simplified case. This means we
need to introduce into the calculation some way of defining reaction rates.

The rate, r, at which a reaction progresses is simply

The reaction rate can also be expressed by the derivative with respect to time of
equation (19.76).
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or

Taking the different reaction rates ra and rb into account, the calculation (19.81) can
then be rephrased in terms of changes with time or relative rates. For example, if
reaction a progresses faster than b, then £0 must increase faster than £{,- The relative
rates can be calculated from

or

The progress or reaction path of our example can then be rewritten to include relative
rates of the two reactions a and b by substituting (19.86) into equations (19.81).

To test the importance of relative rates, we can draw two different reaction path
diagrams: one for the case where rates of reactions a and b are equal, and one for
which the rate of a is twice that of b (d£a/dt = 2d£b/dt, and ra = 2rb). To do this,
equations (19.81) and (19.87) are integrated (to give expressions similar to equation
19.79). The results are plotted in Figure 1 9.4c,dvfor a starting composition of 10 moles
each of O2, Fe, and Fe2O3 and 0 starting moles of Fe3O4. Comparing the two figures,
you can see that the end result in both cases is the same (9.9 moles Fe3O.4; 5.0 moles
Oi; A£ finai = 3.3). However, the paths taken for the two cases are considerably
different. In the second case, where the rates are different, Fe disappears early on in
the progress of the reaction, while it remains to just before the final state when the
rates are equal.

For practical applications this requires, of course, that reaction rates be known
and therefore takes us well outside the realm of thermodynamics into the sister field
of chemical kinetics. In fact, rigorous reaction path computations are an ingenious
blend of kinetics and thermodynamics, as we shall see in the following section.

19.3.3. Application to Mineral-Water Reactions

Reaction path computations of the above general type were first applied to mineral
systems by Harold Helgeson and his colleagues in the 1960s. Much of the early work
is summarized by Helgeson (1979). The program EQ6 developed for the U.S. Dept.
of Energy by Tom Wolery ( 1 979) is a widely used modern version of the original
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FIG. 19.5. Equilibrium activity diagram for the system KiG-AbOs-SiCfe-IfeO at 25°C, 1
bar (after Helgeson, 1979). The reaction path ABCDG represents successive stages in the
hydrolysis of K-feldspar, which correspond to stages ABCDG in Figure 19.6.

programs, which now includes the Pitzer equations for the activity coefficients of
mixed electrolyte solutions (see Chapter 17). A reaction path model is also included
in the program PHREEQE, which was developed to interpret groundwater chemistry
(Plummer et al., 1983). For a discussion of these and other related programs, see
Nordstrom and Ball (1984).

To illustrate applications of reaction path calculations to natural systems, we will
draw heavily from the papers of Helgeson and his co-authors. The notation used
below is consistent with Helgeson's as much as possible, to facilitate reference to his
articles.

We will begin as Helgeson did, by considering what happens when a sample of
pure K-feldspar (KAlSi3Og) reacts with initially pure water. At the outset, we know
that fresh K-feldspar and water are completely out of equilibrium. Figure 19.5 is a
phase diagram for the analogous system K2O — A12O3 — SiC>2 — H2O. This shows K-
feldspar separated from gibbsite A1(OH)3 by stability fields of K-mica and kaolinite.
The model assumes that K-feldspar dissolves congruently when placed in pure water
(i.e., the solute produced by K-feldspar dissolution has the same stoichiometry as the
feldspar), and that incongruent solubility is the result of (eventual) precipitation of a
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different phase or phases from that solution. For the model to be accurate, we must
of course know the nature of the solute species produced on dissolution, and their
thermodynamic properties.

Helgeson et al. (1969) assumed that the only important aqueous species in this
system are K+, A13+, A1(OH)2+, Al(OH)^, H4SiO4, and HsSiO^. If you perform a
speciation calculation of the kind we have been discussing on a solution having K,
Al and Si in the proportions 1:1:3 (as in K-feldspar) at very low concentration, you
find that the dominant species are K+, A1(OH)4 , and H4SiO4. Essentially, Al(OH)^
must dominate the Al species to maintain a charge balance with K+. Therefore the
dissolution reaction of K-feldspar can be approximated by

However, this does not tell the whole story. Also increasing during dissolution of the
feldspar are all the other species produced (A13+, A1(OH)2+, and HsSiO^), though
at lower concentrations. These are shown in Figure 19.6, rising from the lower left
corner with a slope of 1.0. Initially, the concentrations of all these species are so
small that the concentrations of H+ and OH~ remain constant at 10~7. The species all
increase from zero (log TO = — oo) maintaining the overall 1:1:3 stoichiometry, and
would stop when the solution became saturated with K-feldspar. However, before
that happens, the solution may become saturated with other minerals, which will
precipitate as K-feldspar continues to dissolve. This is the essential element of the
reaction path calculations.

To find out whether the solution has become saturated with another mineral, the
solubility products of all minerals in the system considered (i.e., all minerals which
contain any combination of the elements in the system) must be compared against
the corresponding Ion Activity Product (IAP) in the solution after each increment of
dissolution. This can be literally hundreds of minerals in large model systems. In the
relatively simple K-feldspar case, there are only a few minerals that could possibly
form. The first of these, according to the data used by Helgeson et al. (1969), is
gibbsite. The solubility product for gibbsite is

Saturation in gibbsite occurs when its activity product exceeds the solubility product
for gibbsite.

Under the model conditions, this happens at point A on Figure 19.5.
Now if K-feldspar continues to dissolve (or, if you prefer, we continue to perform

speciation calculations for solutions in which K, Al, and Si continue to increase in
the ratio 1:1:3), gibbsite will continue to precipitate, and the remaining solution will
have compositions that follow the path A-^B on Figure 19.5. During this process, the
silica content of the solution continues to increase until at point B, a silica-bearing
mineral (kaolinite) becomes stable. The coexistence of gibbsite and kaolinite buffers
the activity of silica according to
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FIG. 19.6. Number of moles of species in the aqueous phase (solid lines) and minerals (only
gibbsite is shown) produced and destroyed (dashed lines) per kg of water during the hydrolysis
of K-feldspar (after Helgeson et al., 1969, Helgeson, 1979). The increase in kaolinite between
B and G and of muscovite between D and G is omitted for clarity. Letters ABCDG correspond
to Figure 19.5. £ is the progress variable.

Therefore, as K-feldspar continues to dissolve, aqueous SiC>2 does not increase, but
is used to convert previously precipitated gibbsite into kaolinite. K+ continues to
increase, and the net result is the path B—>C. At C, all gibbsite is used up, and the
solution composition can resume increasing in silica content, and follows a path C—-*-D
roughly parallel to its original path (A—>B), only this time precipitating kaolinite rather
than gibbsite. Along C—»D, K, Al, and Si are all increasing in solution, until at D,
K-mica (muscovite) begins to precipitate, because its solubility product is exceeded.
Again, coexistence of minerals buffers a solution parameter, this time (aK+/an+),
through the relation

Because the ratio (aK+/aH+) is fixed, but SiC>2 continues to increase as K-feldspar
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dissolves, kaolinite reacts to form muscovite, and the solution follows path D—>E,
at which point the solution becomes saturated with quartz, and if equilibrium is
maintained, quartz will precipitate. With four components (K2O, A12O3, SiO2, H2O,
a maximum of four phases can coexist at our arbitrarily chosen T and P (25°C, 1
atm) according to the phase rule. With quartz, muscovite, kaolinite and water, this
number has now been reached, and cannot be exceeded (K-feldspar doesn't count; it
is being used as a source of solutes, and has not yet equilibrated with the solution).
Therefore if we continue to add K2O, A12C>3, and SiO2 from the K-feldspar to the
solution, the solution will stay at point E while kaolinite reacts with the solution to
form muscovite, and quartz continues to precipitate. When kaolinite is all used up,
additional dissolution of K-feldspar will drive the solution composition along E—>F,
with the SiO2 content of the solution buffered by the presence of quartz. At point F,
K-feldspar finally becomes stable.

Alternatively, at point E, if quartz does not precipitate, the solution composition
could continue from E to G, where K-feldspar would also become stable, but this time
in a solution oversaturated with quartz. It would coexist metastably with muscovite
and kaolinite, rather than stably with muscovite and quartz. In nature, quartz quite
often does not precipitate at low temperatures, and in computer calculations that
simulate equilibrium, it can be prevented from "precipitating" by removing it from
the list of minerals available to the program.

The reaction path ABCDE traced on Figure 19.5 shows intermediate phases such
as gibbsite first appearing and then disappearing. Along the path BC all three phases
gibbsite + kaolinite + K-feldspar coexist, despite the fact that this is a metastable
assemblage. If the reaction were stopped at this intermediate stage, this three-phase
assemblage would be left behind as the only remnant of an incomplete process. This
kind of arrested reaction is very common in nature, particularly at lower temperatures
where reaction rates are slower. In such situations, reaction path calculations can
provide important insight into the chemical evolution of geological systems that
seem nonsensical in terms of classical thermodynamics.

Quasistatic Reactions

Before going on to just how this kind of calculation is performed, we want to reiterate
here that what we have just described is a perfect example of a quasistatic reaction,
first mentioned in §3.7.2. K-feldspar plus water is an unstable assemblage at 25°C, 1
atm. Unless constrained from reacting either by separating them or simply by slow
kinetics, they will react irreversibly. The process we have discussed above simulates
what would happen if they were allowed to react very briefly (i.e., 0.000001 moles
or some similarly small d£, of K-feldspar is dissolved in water), then the constraint
preventing dissolution is reapplied, and the dissolved constituents achieve equilib-
rium. Then a second small increment of irreversible dissolution is allowed, followed
by equilibration of the solution, etc. After each step, when the constraint is applied,
we have a metastable system, and each time the constraint is released, the resulting
reaction is irreversible, no matter how small in extent. The result is a large succession
of metastable equilibrium states extending from the initial metastable state to some
final stable or metastable equilibrium state. Each intermediate state is often referred
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to as in "partial equilibrium", because the solution constituents equilibrate with each
other, but not with K-feldspar. We prefer to think of the system after each step as
in complete metastable equilibrium because of the extra constraint, not in partial
equilibrium.

Naturally, real reactions may not follow the quasistatic path outlined here. Nev-
ertheless, calculating that path has resulted in increased understanding of natural
processes, which is usually the goal in constructing models.

19.3.4. Summary of the Numerical Model

In this section we briefly outline the numerical method used in a PATH program to
compute reaction paths for mineral-water systems. For complete details we recom-
mend the articles by Helgeson (1968) and (1979), and the notation in these articles is
used below.

Continuing with our example of K-feldspar, we can write a reaction representing
dissolution of feldspar and precipitation of gibbsite; this occurs along the first path
A^B in Figure 19.5. Gibbsite is considered to be in equilibrium with the aqueous
solution, and all dissolved aqueous species are equilibrated.

The quantities n above are the reaction coefficients of each species s. For
convenience, we will require that the system contain 1000 g water, and assign
^KAisi3o8 = — 1- Each ns then represents the change in the number of moles of
the subscripted species s with a reaction step d£:

which is analogous to equation (19.77).
Reaction (19.91), to be completely rigorous, should include all species of sig-

nificance, but some are ignored here for brevity. We might even have written some
species that are really products as reactants, but this will ultimately become evident
from the signs of each ns (negative for reactants, positive for products). The exact
values of the 10 reaction coefficients ns in (19.92) depend on the extent of the reac-
tion, and are therefore unknown at this stage. To solve for each individual ns we will
require 10 equations in the 10 unknowns ns.

We can begin assembling these equations by writing equilibrium constants for 5
independent reactions between the species in (19.91).
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The next step is to take the derivative of each of the above 5 equations with respect to
the progress variable and rearrange. We will illustrate this just for the first equation
(19.93) since the method is identical for the remaining four. The derivative of (19.93)
with respect to £ is

Substituting from (19.93) gives

which simplifies to

Now because as = ̂ sms, equation (19.92) can be rewritten in the form

Substituting from this for (das/d£) in (19.100) gives the desired equation.

Similar manipulation of the remaining four mass action equations gives similar ex-
pressions.
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In the 5 boxed equations above, the concentrations ms of each species are known,
giving 5 equations in the 10 unknowns ns. The remaining 5 equations are simply
mass balances expressing the transfer of the 5 elements in reaction (19.91) relative
to one mole of K-feldspar in a closed system.

Mass Balances

The boxed equations (19.102) to (19.106) and (19.107) to (19.111) constitute
a set of 10 linear equations in the 10 unknowns ns, and can be solved by matrix
algebra. The reaction path calculation is started by assigning a set of (very small)
initial concentrations ms to the 10 species in the original reaction (19.91). The set
of 10 linear equations above is then solved for the 10 reaction coefficients ns. These
coefficients are used to calculate the new concentrations of all species after a small
reaction step A£. This is accomplished with equation (19.79), which we used with
the example of oxides forming on iron (Figure 19.4a,b,c,d).

Here, ms refers to molality of aqueous species, and moles of solid per kg water for
any precipitated minerals. The activity coefficients of all species are computed at each
step; these are used to check whether any solid phases have become supersaturated
by comparing ion activity products with solubility products (as in 19.90). When a
phase precipitates, the set of equations is adjusted accordingly, incorporating the new
product or reactant.

In practice, the reaction coefficients change with reaction progress. For this rea-
son, small increments of £ on the order of 10~5 are advisable. More rigorous path
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calculations provide for these changes by modifying (19.112) to include the derivative
n's = (dna/d£).

This is simply a truncated Taylor's series on ms. The first derivatives n'3 are computed
by expanding the matrix equation above and solving for them as well as for the reaction
coefficients ns. Expressions for the first derivatives are provided by Helgeson (1979).

The path calculation proceeds iteratively, using concentrations mg from each step
to compute new reaction coefficients ns. These in turn give new concentrations for
the next step.

A reaction path calculation gives the concentrations of all aqueous species and
the number of moles of all minerals produced or destroyed at each successive step
of the reaction. Results for the hydrolysis of K-feldspar based on the species and
equations considered above are illustrated in Figure 19.6 (from Helgeson et al, 1969,
and Helgeson, 1979). The letters ABCDE on this figure correspond exactly to the
reaction path shown on Figure 19.5. It is clear that concentrations of aqueous species
and solids alike change by many orders of magnitude throughout the reaction. The
appearance and disappearance of intermediate phases such as gibbsite is modeled
quantitatively. Final equilibrium is attained when the total free energy of the system
reaches a minimum.

This can be tested at each step, and for the K-feldspar example in Figure 19.6 occurs
at the extent of reaction log£ = —4.1 This is, in fact, another way (albeit, more time
consuming) of performing a free energy-based equilibrium calculation. The extra
information obtained makes it worthwhile.

The most recent computations of chemical reaction paths couple chemical kinet-
ics, path calculations, and fluid flow models. This can be accomplished by alternating
between fluid flow and reaction path calculations in small time steps, with reaction
kinetics included as we have described above. Several examples of this type are sum-
marized by Brimhall and Crerar (1987, pp. 302-306). With this kind of approach it
should ultimately become possible to model the detailed physical and chemical evo-
lution of quite complex natural mineral systems. With inclusion of three-dimensional
space as well as temperature and pressure gradients, there are challenges for the
foreseeable future.



APPENDIX A
CONSTANTS AND NUMERICAL VALUES

The SI (Systeme International) Units

Base (fundamental) Units

Physical Quantity

Length
Mass
Time
Electric current
Temperature
Amount of substance

Physical quantity

Velocity (speed)
Acceleration
Force
Pressure
Energy
Entropy
Power
Momentum
Frequency
Electric charge
Voltage (emf)
Electric resistance
Capacitance

SI unit

meter
kilogram
second
ampere
kelvin
mole

SI unit

newton
pascal
joule

joule per kelvin
watt

hertz
coulomb

volt
ohm
farad

Symbol

m
kg
s
A
K

mol

Derived SI Units

Symbol for
SI unit

N
Pa
J
S
W

Hz
C
V
S2
F

Unit in terms
of base units

m/s
m/s2

kg m/s2

kg/(ms2)
kgm2/s2

kgm2/(s2K)
kgm2/s3

kg m/s
s-1

As
kgm2/(As3)
kgm2/(As3)
A2s4 /(kgm2)

Unit in terms
of other SI units

N/kg
J/m

N/m2

Nm
J/K
J/s

VF
W/A;C/F

V/A
C/V
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Fundamental Physical Constants"

Quantity

constant of gravitation
elementary charge
Avogadro constant
Faraday constant
molar gas constant
Boltzmann constant, R/Na

molar volume13

Symbol
in this text

9
e

Na

T
R
k

Vm

Value

6.67259
1.60217733
6.022136

96485.309
8.314510
1.380658
0.02241410

Units

10~',' m3 kg"1 s~2

io-'9c
1023mol-'
Cmor1

Jmor'K-'
10-23JK~'
m3 mol~'

a Cohen, E.R., and Taylor, B.N., 1988, The 1986 CODATA recommended values of the fundamental physical constants:
Jour. Phys. Chem. Ref. Data, v. 17, pp. 1795-1803.
b The volume per mole of ideal gas at 101325 Pa and 273.15 K

Miscellaneous Useful Conversions and Older Units

In 10 2.302585
Inx In 10 x log|0x
leal 4.184J
R 1.987216 calK-'mol-'
f 96485.309 J volt"> mor1

23060.542 cal volt^'mol"1

RT/f 0.02569273 volts (T = 298.15 K)
2.302585 RT/T 0.0591597 volts (T = 298.15 K)
1 bar 10s pascal

14.504 psi
O.lOJcm-3

0.0239006 cal cm~3

1 atm 1.01325 bar
101325 pascal
14.696 psi

1cm3 O.lOJbar"1

0.0239006 cal bar"1

1 A 1 angstrom = 10~8 cm
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APPENDIX B
EXPRESSIONS FOR AG°, AS0, A#°, InK AS FUNCTION OF
TEMPERATURE FOR VARIOUS VERSIONS OF THE HEAT

CAPACITY FUNCTION
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(Maier and Kelley, 1932)

(Haas and Fisher, 1976)
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N.B.: The original Haas and Fisher formula has a 2 in the b term which is here absorbed in our b term,
i.e. A6 here is twice the Haas and Fisher A6.

(Herman and Brown, 1985)
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APPENDIX C
STANDARD STATE THERMODYNAMIC PROPERTIES OF

SELECTED MINERALS AND OTHER COMPOUNDS

These data are included primarily for use In problem sets, such as those in this book
or others set by course instructors. Transition state and other data have been omitted
for simplicity.

The data are mostly from the program SUPCRT92 (Johnson, Oelkers, and Helge-
son, 1992). Entries with an asterisk (*) are from other sources, and have been added
only to broaden the range of problems which may be formulated. No attempt has
been made to make the data self-consistent. Many of the gram formula weights are
slightly inconsistent with the latest values of the atomic weights (DeLaeter, 1988).

A note to the unwary: A column heading of b x 103 means that the column entries
(e.g. 2.82) are equal to b x 103, not that the entry is to be multiplied by 103. Thus in
this case b x 103 = 2.82, or b = 2.82 x 10~3.
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Name Formula

Gram
Formula
Weight

Cp coefficients

« £ G ~ * £ H - S~ V ~ a bx 103 c x l O 1 5

calmol' ' calmol' ' calmol' 'K ; ' cm3 mol; ' calmer ' calmol' ' K ; 2calmor 'K

Elements

*aluminum
*carbon (graphite)
*carbon (diamond)
copper
oxygen

*silicon
sulfur

*sulfur (rhombic)
iron (fi )

Al
C
C
Cu
O2

Si

S2(g)
S(s)
Fe

26.982
12.011
12.011
63.546
31.9988
28.086
64.120
32.060
55.8470

0
0

2900
0
0
0

18953
0
0

0
0

1895
0
0
0

30681
0
0

6:776
5:74
238
7923

49029
4496

54536
760
652

9999
5298
3417
7:113

247892
12056

24789 2
15511
7092

494
403
227
541
7:16
5:70
8:72
358
304

296
1:14

306
150
10
0:70
0:16
624
758

204
154

040
104
090

-060

Oxides

corundum
ferrous oxide
hematite
magnetite
lime
periclasc
K oxide
Na oxide
fi -quart/
fl-quartz
cristobalite
coesite
chalcedony
amorphous silica
spinel

fi - A12O3

FeO
Fe203

Fe3O4

CaO
MgO
K2O
Na2O
SiO2

Si02

SiO2

Si02

SiO2

SiO2 • nH2O
MgAl2O4

101.961
71.846

159.692
231.539

56.079
40.311
94.203
61.979
60.085
60.085
60.085
60.085
60.085
60.085

142.273

-374824
-60097

-178155
-242574
-144366
-136086
-77056
-89883

-204646

-203895
-203541
-204276
-202892
-517006

-397145
-65020

-197720
-267250
-151790
-143800
-86800
-99140

-217650

-216755
-216616
-217282
-214568
-546847

12:18
1452
2094
34 S3
950
644

225
17935
9:88

10372
965
9:88

1434
1927

25575
1200
30274
44524
16:764
11248
4038
2500
22688

25:74
20641
22688
290
39:71

2749
12:122
2349
21 S8
1167
10:18
1851
1825
1122
1441
1398
110
1122
593

36:773

2S2
2072

1860
4820

108
1:74
865
4:89
820
194
334
82
820

4720
6415

838
0:750
355
000
156
148
0:88
289
2:70

3 SI
2:70
2:70

22:7
9:709



water
*steam
cuprite
tenorite

H20(l)
H20(g)
Cu20
CuO

18.015
18.015

143.0794
79.5394

-56688
-54629
-35384
-30568

-68317
-57795
-40830
-37200

16:712
45:11
22<08
10:18

18:1
24789 -2

23437
1222

18fl4
730

14fl8
11 53

246
5:88
1*8

0:76
1:76

Sul fates

anhydrite
*gypsum
barite

CaSO4

CaSO4 • 2H2O
BaSO4

136.138
172.168
233.398

-315925
-429540
-325563

-342760
-483420
-352100

2550
4640
31 60

4594
7469
52:1

16:78

33:80

2360

843

Hydroxides

boehmite
diaspore
gibbsite
brucite

*goethite

AIO(OH)
AIO(OH)
AI(OH)3

Mg(OH>2
FeO(OH)

59.988
59.988
78.004
58.327
88.854

-217250
-218402
-276168
-199646
-116766

-235078
-237170
-309065
-221390
-133683

1158
843

16:75
!5fl9
1443

19535
17:760
31956
2463
20 &1

14435
14435
865

24:147

420
420

456
4f l I2

OflO
OflO
00
6:11

Carbonates

calcite
aragonite
dolomite
magnesite

CaC03

CaCO3

CaMg(C03)2

MgCO3

100.089
100.089
184.411
84.321

-269880
-269683
-517760
-245658

-288552
-288531
-556631
-265630

22:15
2156
37fl9
15:70

36934
34:15
64365
28018

2498
20:13
41557
19:731

524
1024
23952
12539

620
334
9:88
4:748

Sulfidcs

chalcopyrite
bornite
troilite
pyrite

CuFeS2

Cu5FeS4

FeS
FeS2

183.515
501.803

87.907
119.967

-44900
-86704
-24084
-38293

-44453
-79922
-24000
-41000

31:15
9929
1441
1265

42 S3
986
182
2394

20:79
49:76

5:19
17*8

12:80
3508
2640

132

134
135

3fl5pynte



Name Formula

Gram
Formula
Weight

Cp coefficients

A/G°
calmol"1

A rro co

calmol-' calmor'K-'
v°

cm3mol~'
a b X 103

calmol-' calmor'K"2
c x 10~5

calmol ~ 'K

Ortho and Ring Silicates

kyanite
andalusite
sillimanite
gehlenile
grossular
andradite
monticellite
merwinite
akermanite
fayalite
forsterite
cordierite
hydrous cordierite
dinozoisite
zoisite
epidote
lawsonite

Al2SiO5

Al2SiO5

Al2SiO5

Ca2Al2SiO7

Ca3Al2Si30)2

CaFe2Si3Oi2
CaMgSiO4

Ca3Mg(Si04)2

CaMgSi207

Fe2SiO4

Mg2SiO4

Mg2Al3(AlSi5Oi8)
Mg2Al3(AlSi5018) • H20
Ca2Al3Si30,2(OH)
Ca2Al3Si3Oi2(OH)
Ca2FeAl2Si3Oi2(OH)
CaAl2Si2O7(OH)2 • H2O

162.046
162.046
162.046
274.205
450.454
508.184
156.476
328.719
272.640
203.778
140.708
584.969
602.984
622.882
622.882
651.747
314.2

-580956
-580587
-580091
-903148

-1496307
-1296819
-512829

-1036526
-879362
-330233
-491564

-2061279
-2121350
-1549240
-1549179
-1450906
-1073628

-616897
-615866
-615099
-951225

-1582737
-1380345
-540800

-1090796
-926497
-354119
-520000

-2183199
-2255676
-1643781
-1643691
-1543992
-1158324

20.00
22.20
23.13
48.1
60.87
70.13
26.4
60.5
50.03
35.45
22.75
97.33

111.43
70.64
70.747
75.28

55.8

44.09
51.53
49.90
90.24

125.3
131.85
51.47

104.4
92.81
46.39
43.79

233.22
241.22
136.2
135.9
139.2

7101.32

41.3931
41.3108
40.0240
63.74

104.017
113.532
36.82
72.97
60.09
36.51
35.81

143.83
155.23
106.118
106.118
117.622
81.80

6.8165
6.2926
7.3905
8.00

17.013
15.636
5.34

11.96
11.40
9.36
6.54

25.80
25.80
25.214
25.214
12.816
23.36

12.8821
12.3921
11.6741
15.12
27.318
30.889
8.00

14.44
11.40
6.70
8.52

38.60
38.60
27.145
27.145
31.864
16.26

Chain and Band Silicates

wollastonite
Ca-Al pyroxene
jadeite
enstatite
ferrosilite
diopside
hedenbergite

CaSiO3

CaAl2SiO6

NaAl(SiO3)2

MgSiO3

FeSiO3

CaMg(Si03)2

CaFe(SiO3)2

116.164
218.125
202.140
100.396
131.931
216.560
248.106

-369225
-742067
-679445
-348930
-267160
-723780
-638998

-389590
-783793
-722116
-369686
-285625
-765378
-678276

19.60
35.0
31.9
16.2
22.6
34.2
40.7

39.93
63.5
60.4
31.276
32.592
66.09
68.27

26.64
54.13
48.16
24.55
26.49
52.87
54.81

3.60
6.42

11.42
4.74
5.07
7.84
8.17

6.52
14.9
11.87
6.28
5.55

15.74
15.01



anthophyllite
tremolite

Mg7Si8022(OH)2

Ca2Mg5Si8022(OH)2
780.872
812.410

-2715430
-2770245

-2888749
-2944038

128.6
131.19

264.4
272.92

180.682
188.222

60.574
57.294

38.462
44.822

Framework Silicates

analcime
low albite
anorthite
maximum

microcline
nepheline
kalsilite
wairakitc
laumontite

NaAlSi2O6 • H2O
NaAlSi3O8

CaAl2Si2O8

KAlSi3O8

NaAlSiO4

KAlSiO4

CaAl2Si4Oi2 • 2H2O
CaAl2Si4O12 • 4H2O

220.155
262.244
278.210

278.337
145.227
158.167
434.411
470.441

-738098
-886308
-954078

-895374
-472872
-481750

-1477432
-1596823

-790193
-939680

-1007552

-949188
-500241
-509408

-1579333
-1728664

56.0
49.51
49.1

51.13
29.72
31.85

105.1
116.1

97.1
100.07
100.79

108.741
54.16
59.89

186.87
207.55

53.49
61.70
63.311

63.83
35.908
29.43

100.40
123.20

24.14
13.90
14.794

12.90
6.458

17.36
44.47
44.47

8.88
15.01
15.44

17.05
7.328
5.32

16.43
16.43

Sheet Silicates

kaoiinite
pyrophyllite
chrysotile
antigorite
talc
annite
phlogopite
muscovite
paragonite
7-A chlinochlore
14- A chlinochlore
prehnite
margarite

Ai2Si2O5(OH)4

Al2Si4Oio(OH)2

Mg3Si205(OH)4

Mg48Si34O85(OH)62
Mg3Si4Oi0(OH)2

KFe3(AlSi3Oi0)(OH)2

KMg3(AISi3010)(OH)2

KAl2(AlSi3010)(OH)2

NaAl2(AlSi3Oio)(OH)2

Mg5Al(AlSi3010)(OH)8

Mg5Al(AlSi3Oi0)(OH)8

Ca2Al(AlSi3Oio)(OH)2

CaAl2(Al2Si20,o)(OH)2

258.161
360.616
277.134

4536.299
379.289
511.890
417.286
398.313
382.201
555.832
555.832
412.389
398.187

-905614
-1255997
-964871

-15808020
-1320188
-1147156
-1396187
-1336301
-1326012
-1957101
-1961703
-1390537
-1394370

-982221
-1345313
-1043123

-17070891
-1410920
-1232195
-1488067
-1427408
-1416963
-2113197
-2116964
-1482089
-1486023

48.53
57.2
52.9

861.36
62.34
95.2
76.1
68.8
66.4

106.5
111.2
65.07
63.8

99.52
126.6
108.5

1749.13
136.25
154.32
149.66
140.71
132.53
211.5
207.11
140.33
129.4

72.77
79.432
75.82

1228.45
82.48

106.43
100.61
97.56
97.43

162.82
166.50
91.60

102.50

29.20
39.214
31.60

513.76
41.61
29.77
28.78
26.38
24.50
50.62
42.10
37.82
16.35

21.52
17.282
17.58

286.68
13.34
19.31
21.50
25.44
26.44
40.88
37.47
19.60
28.05



 Conventional standard partial molar properties of aqueous species at 25°C and 1 bar, plus some of the coefficients required to calculate
these properties at high T and P using the revised HKF model, and using 9 = 228 K and * = 2600 bars.

Ion AfG° A/H° S° V° lOai 10~2a2 a0 10~4a4 d 10~4c2 rx,j

H+ 0 0 0 0 0 0 0 0 0 0 0
Li+ -69933 -66552 2.7 0.40 -0.0237 -0.0690 11.5800 -2.7761 19.2 -0.24 0.68
Na+ -62591 -57433 13.96 -1.2 1.8390 -2.2850 3.2560 -2.726 18.18 -2.981 0.97
K+ -67527 -60270 24.2 9.06 3.5590 -1.4730 5.435 -2.712 7.40 -1.791 1.33
Mg2+ -108505 -111367 -33.0 -17.7 -0.8217 -8.5990 8.3900 -2.390 20.80 -5.892 0.66
Ca2+ -132120 -129800 -13.5 -15.0 -0.1947 -7.2520 5.2966 -2.4792 9.00 -2.522 0.99
Sr2+ -134760 -131670 -7.53 -17.8 0.7071 -10.1508 7.0027 -2.3594 10.7452 -5.0818 .12
Ba2+ -134030 -128500 2.3 -10.10 2.7383 -10.0565 -0.0470 -2.3633 3.80 -3.450 .34
F- -67340 -80150 -3.15 3.1 0.6870 1.3588 7.6033 -2.8352 4.46 -7.488 .33
Cr -31379 -39933 13.56 21.4 4.0320 4.8010 5.5630 -2.847 -4.40 -5.714 .81
Br~ -24870 -29040 19.8 28.3 5.2690 6.5940 4.7450 -3.143 -3.80 -6.811 .96
OH~ -37595 -54977 -2.56 -4.7 1.2527 0.0738 1.8423 -2.7821 4.15 -10.346 1.40
N0~ -26504 -49429 35.1 29.00 6.6740 8.4530 -0.1563 -4.204 7.70 -6.725 2.81
HC03~ -140277 -164898 23.5 24.60 7.3760 1.6350 2.5770 -3.143 2.17
HS- 2878 -3848 16.3 20.21 5.0860 4.7860 2.2070 -2.847 3.41 -6.046 1.84
SO2" -177930 -217400 4.5 12.9 8.3014 -1.9846 -6.2122 -2.697 1.64 -17.998 3.14
NaCl° -92910 -96120 28.0 24.0 5.0363 4.7365 3.4154 -2.9748 10.8 -1.30
SiO2(aq) -199190 -209775 18.0 16.1 1.9 1.7 20.0 -2.70 29.10 -51.20
C02(aq) -92250 -98900 28.10 33.4 6.2466 7.4711 2.8136 -3.0879 40.0325 8.8004
CO2 -126191 -161385 -11.95 4.0 2.8524 -3.9844 6.4142 -2.6143 -3.3206 -17.1917

Units:

A,G° &ffi° S° V° a, a2 a3 a4 c, c2 rxj

calmol~' calmol~' calmol^'K"1 cm3mol~' cal mol^'bar"1 calmol"1 cal K mol^'bar"1 calKmol"1 calmol~'K~' calKmol"1 A



APPENDIX D
ELECTROCHEMICAL CELL CONVENTIONS

IUPAC Convention Garrels & Christ, etc.

1. The cell is represented by a schematic diagram, e.g.,

2. The cell schematic indicates the direction in which
the cell reaction is to be written. The left-hand
electrode is the reactant and the right-hand electrode
is the product, e.g.,

In cases where an electrode cannot be identified
with a reactant or product:
The left-hand electrode supplies electrons to the
outer circuit (i.e., oxidation takes place).
The right hand electrode accepts electrons from the
outer circuit (i.e., reduction takes place), e.g.,

3. The e.m.f. of the cell is given by:

4. The e.m.f. of a cell is related to the Gibbs free energy
of the cell reaction by:

5. The electrode potential of a half-cell is equal in
magnitude and sign to the e.m.f. of a cell formed with
the electrode in question on the right and the standard
hydrogen electrode (£° = 0) on the left.

6. The standard electrode potentials are tabulated as
reductions, 

However, the electrode potential is a sign-invariant
quantity, i.e.,

7. For the reaction

the Nernst expression is

8. In view of 6., the Nernst expression for a half-cell
is eiven bv

same

same
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The difference between these conventions is basically that G&C and most other geological authors write
half-cell potentials as oxidations (no. 8) whereas the international convention is to write them as reductions
(no. 6). Since the sign of the potential is the same either way, the AG must be of opposite sign in the two
conventions (no. 4), and this affects nos. 7 and 8.
There is an older convention (e.g. Latimer, 1952) in which £° is not sign invariant. This convention has
disappeared, but be careful if using older literature.

An Example

IUPAC Convention Garrels & Christ, etc.

N.B.: In both conventions £°ft refers to £0°xidatlon half.cel, and £?ght refers to f °duction half.c(;11. SHE is not
necessarily one of the half-cells.



APPENDIX E
EQBRM—A FORTRAN SPECIATION PROGRAM

This appendix contains a computer program called EQBRM written in FORTRAN??
which calculates the concentrations of all aqueous species in a system at equilibrium.
The algorithm and some of the theory are outlined in Chapter 19. We describe here
how to use the program, using a simple calculation as an example.

The program calculates activity coefficients of ionic species by calling a subrou-
tine called ACTCF which calculates activity coefficients using the Davies revision of
the Debye-Hiickel equation:

where / is the true ionic strength, representing concentrations of all species as cor-
rected for ion-pair and complex formation:

Subroutine ACTF can be rewritten using other equations if desired.

How to set up data for the program EQBRM

EQBRM was designed to be completely general, letting you define the species, reac-
tions and component concentrations of interest to you. To do this systematically, go
through the following steps:

1 . Write all N species of interest and assign each a number from 1 to N. The
concentrations of these species are the N unknowns.

2. Write out M mass balance or equilibrium constant equations (j =
1 , 2 , . . . , M). These should be written so the lowest activities are in the
denominator to reduce the chances of matrix singularity.

3. Assign the reaction coefficients z/y based on the number of times the zth
species appears in the jth reaction; these coefficients are negative for reac-
tants and positive for products for each reaction as written.

4. Write N — M — 1 mass balances, giving the total concentration of each
element or component Be, (such as total Na, total Cl, or total NHs in the
system.

5. Assign the parameters b£ii which refer to the number of atoms of each
element or component in the formula of each species. For example, from
the formula for the species H2SO4 we can set b\\ = 1, b$ = 1, bo = 4, and
be.i = 0 for all other elements.

555
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6. Write valences, Zi, of all species.

7. Make reasonable first guesses at concentrations of all species.

8. Choose a value for the A term in the activity coefficient expression.

Example worksheet for data input to EQBRM

Here we will solve for the equilibrium concentrations of all species in the 4-
component, 10-species system 0.25m NH4Cl-0.25m NaCl-0.25m KC1-H2O at
300°C and vapor-saturated pressure. Set up a data worksheet following the six steps
outlined above.

Step 1: There are 10 species of interest in this system (knowing that it is acidic and
that TOOH- is negligible). We assign these species numbers, as follows:

Species

Assigned
Number

NH4

1

NH4OH°

2

H+

3

HCI°

4

NH4C1°

5

CI~

6

Na+

7

NaCl°

8

K+

9

KC1°

10

Step 2: There are 5 known mass action equations and equilibrium constants relating
these species:

Step 3: Assign reaction coefficients to each species in each of the above five reactions:

Reaction Coefficients

Species

Rxn 1
Rxn2
Rxn 3
Rxn 4
Rxn 5

NH4

1
1
0
0
0

NH4OH°

-1
0
0
0
0

H+

-1
0
0

-1
0

Her

0
0
0
i
0

NH4C1°

0
-1

0
0
0

cr

0
1
1

-1
1

Na+

0
0
1
0
0

NaCl°

0
0

-1
0
0

K+

0
0
0
0
1

KC1°

0
0
0
0

-1
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Steps 4 and 5: Write the 4 available mass balances and assign the parameters b£ii,
the number of times each component or element (e) occurs in the formula of each
species (z) in each mass balance:

Species («)

^NH3,i

&a,i

^Na i

"K i

NH4

1
0
0
0

NH4OH°

1
0
0
0

H+

0
0
0
0

HC1°

0
1
0
0

NH4C1°

1
1
0
0

a-

0
1
0
0

Na+

0
0
1
0

NaCl°

0
1
1
0

K+

0
0
0
1

KC1°

0
1
0
1

Step 6: Write the charge balance for ionic species, and assign valences, Zi\

Species NH4 NH4OH° H+ HC1° NH4C1° Cr Na+ NaCl° K+ KC1°
Z; 1 0 1 0 0 - 1 1 0 1 0

Step 7: First guesses at concentrations of all species:

Species NH4 NH4OH° H+ HC1° NH4C1° Cl~ Na+ NaCl° K+ KC1°

0.1 0.002 0.002 0.005 0.15 0.2 0.1 0.15 0.1 0.15

Step 8: Choose the A parameter (0.51, 0.53, 0.60, 0.69, 0.81, 0.98, 1.256 at 25, 50,
100, 150, 200, 250, and 300°C, respectively). See Helgeson et al. (1981) for a more
complete list.

Creating the input file

This completes the definition of our system. The above information is then written in
a data file named EQBRM.DAT for use by the program. Enter ./V and M, the number
of species and equilibrium constants, on the first line. Enter the reaction coefficients
for each species from 1 to 10, taking one line for each of the 5 reactions. Enter the
total molality of NH3 on the next line, and the &NH3 , i parameters for species 1 to 10
on the next line. Repeat this sequence of two data lines for each of the mass balances
on Cl, Na and K. Write the log of the equilibrium constants in order on the next line
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or lines, with no more than 8 entries per line. Enter the valences of each species on
the following line. Write the initial guesses at species concentrations on the following
lines, again with no more than 8 entries per line. Finally, on the last line, enter a
value for the Debye-Hiickel A parameter. Here is what the listing looks like, with
comments:

Contents of the file EQBRM.DAT

10,5 N,M (No. species; no. K\)
1,-1,-1,0,0,0,0,0,0,0
1,0,0,0,-1,1,0,0,0,0 signed reaction
0,0,0,0,0,1,1,-1,0,0 coefficients
0,0,-1,1,0,-1,0,0,0,0  forspecies 1,2,. . . ,10
0,0,0,0,0,1,0,0,1,-!
0.25 total NH3 (B\)
1,1,0,0,1,0,0,0,0,0 NHs mass balance parameters (bNH3,i)
0.75 total C1(B2)
0,0,0,1,1,1,0,1,0,1 Cl mass balance parameters (6ci,i)
0.25 total Na(B3)
0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,0 ,0 Na mass balance parameters (fcNa,;)
0.25 total K (B4)
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 K mass balance parameters (&K,J)
4.677,-0.82,-1.013,1.24,-0.735 log(AT3, K4, K5, K6, KT)
1,0,1,0,0,-1,1,0,1,0 valences (Zj)
-0.1,0.002,0.002,0.005,0.15,0.2,0.1,0.15
0.1,0.15 two lines of first guesses at mi.
0.1256 Debye-Huckel A parameter

Shown below is a listing of the FORTRAN?? source code for the main program
EQBRM and for subroutines ACTCF (for the activity coefficients) and LINSOL,
DDECOM and DSOLVE, (which perform the necessary matrix algebra). These should
be compiled and linked, and can then be run provided the data file EQBRM.DAT is
also present.

As written, the program can handle up to 30 species. This can be changed by
altering statement 017 and recompiling, This program is useful for relatively small
model systems, where you want complete control the species and data involed.1 For
Natural systems, where you might be dealing with dozens or hundreds of species,
programs such as EQ3, WATEQ, SOLMINEQ, etc., may be more appropriate.

Program output for the example given is included after the program listings.

1 For a recent example of its use, see Anderson and Cermiguani, Can. Mineralogist, v. 29, pp 965-980,
1991.



001 PROGRAM EQBRM
002 C
003 C PROGRAM TO COMPUTE CHEMICAL EQUILIBRIUM IN GENERALIZED SYSTEMS
004 C GIVEN N CHEMICAL SPECIES RELATED BY M MASS ACTION EXPRESSIONS,
005 C N-M-1 MASS BALANCES AND A CHARGE BALANCE.
006 C
007 C THIS VERSION USES LOG(K) IN MAIN EQUATIONS AND CORRECTS FOR ACTIVITY
008 C COEFFICIENTS OSING SUBROUTINE ACTCF.
009 C REVISED FOR IBM PC, MICROSOFT FORTRAN 77, VERSION 5.0, 29 MAY 1990.

010 C DATA MUST BE ENTERED IN THE FILE EQBRM.DAT AND MAY BE ENTERED
011 C SEPARATED BY COMMAS IN FIELDS NOT EXCEEDING FORMATTED FIELD
012 C LENGTH. LINK WITH SUBROUTINES LINSOL, DDECOM, DSOLVE AND ACTCF.
013 C WRITTEN BY DAVID CRERAR.
014 C
015 IMPLICIT REAL'S (A-H.O-Z.!
016 C NDIM IS MAXIMUM DIMENSION OF ALL ARRAYS AND IS PASSED TO ALL SUBROUTINES

017 PARAMETER(NDIM=30)
018 EXTERNAL LINSOL
019 INTEGER V(NDIK,NDIM),G(NDIM,NDIM),Z(NDIM),IPVT(NDIM)
020 REAL*8 LOCK(NDIM),A(NDIM),C(NDIM,NDIM),Y(NDIM),AOLD(NDIM),
021 1 DELTAA(NDIM),CHOLD(NDIM,NDIM),YHOLD(NDIM),TEST(NDIM),B(NDIM),
022 2 RLV(NDIM,NDIM),WORK|NDIM),ANS(NDIM),BLEEN(NDIM,NDIM),IS,
023 3 GAMMA(NDIM),GAMOLD(NDIM)
024 OPEN(6,FILE='EQBRM.DAT')
025 OPEN(2,FILE='eqbrm.out', status='unknown')
n-jc p

027 C READS ALL INPUT DATA
028 C
029 C READS NUMBER OF CHEMICAL SPECIES OR UNKNOWNS N, AND THE NUMBER OF
030 C MASS ACTION EXPRESSIONS M.
031 C ENTER N, THEN M SEPARATED BY BLANK OR COMMA ON THE SAME LINE.
032 KKAD( 6, JOO) N, M
033 300 FORMAT(2I5)
034 C READS STOICHIOMETRIC COEFFICIENTS V(J,I) OF EACH SPECIES IN
035 C MASS ACTION EXPRESSIONS. I IS THE SPECIES (1=1,...,N), AND J THE
036 C MASS ACTION EXPRESSION (J=1,...,M). THE INTEGER V(J,I) IS NEGATIVE
037 C FOR REACTANT AND POSITIVE FOR PRODUCT SPECIES.
038 C ENTER ALL V|1,J) ON FIRST LINE SEPARATED BY COMMAS, THEN ALL V(2,J)
039 C ON NEXT LINE AND SO ON TO ALL V(J,J) ON THE JTH LINE.
040 DO 2 J=1,M
041 READ(6,301)(V(J,I),1=1,N)
042 301 FORMAT(2014)
043 2 CONTINUE
044 C READS THE MASS BALANCE COMPOSITION COEFFICIENTS G(J,I) AND MASSES
045 C B(.,") IN MOLAL UNITS. 1 REFERS TO SPECIES (1 = 1,...N) AND J TO THE
046 C NUMBER OF MASS BALANCES (J:.-l N-M-1).
047 C ENTER B(l) ON ONE LINE FOLLOWED BY ALL G(1,I) SEPARATED BY COMMAS ON
048 C THE NEXT LINE AND SO ON TO B(J) AND ALL G(J,I) ON 2XJTH LINE.
049 J1=N-M-1
050 DO 4 J=1,J1

051 READ(6,392)B(J)
052 392 FORMAT(FIO.O)
053 READ(6,302)(G(J,I),1=1,N)
054 302 FORMAT(20I4)
055 4 CONTINUE
056 C READS LOG OF ALL EQUILIBRIUM CONSTANTS, LOGK(J), (J=1,...,M).
057 C ENTER ALL LOGK(J) IN ASCENDING ORDER SEPARATED BY COMMAS OR BLANKS
058 C ON ONE OR MORE CONSECUTIVE LINE(S) WITH NO MORE THAN 8 PER LINE.
059 C USE EITHER E,D, OR F FORMAT.
060 READ(6,303)(LOGK(J),J=1,M)
061 303 FORMAT;8F10.0)
062 C READS SPECIES CHARGES FOR CHARGE BALANCE. INTEGER Z(I) IS THE
063 C SIGNED VALENCE OF SPECIES I.
064 C ENTER ALL Z(I) SEPARATED BY COMMAS ON ONE LINE.

559



065 READ(6,301)(Z(I),1=1,N)
066 C
067 C READS FIRST GUESSES AT ALL SPECIES CONCENTRATION, A(I)
068 C ENTER ALL A(I) SEPARATED BY COMMAS ON ONE OR MORE CONSECUTIVE LINES
069 C WITH NO MORE THAN 8 PER LINE.
070 C DATA CAN BE IN F OR D FORMAT.
071 READ(6,304)(A(I),1=1,N)
072 304 FORMAT(SFIO.O)
073 C
074 C read the Debye-Huckel "A" parameter from file
075 C
076 READ(6, 305)dbha
077 305 FORMAT(F10.4!
078 C
079 C PRINTS ALL INPUT DATA
080 WRITE(2,701)N,M
081 701 FORMAT{' ',9X, 'RESULTS',///, 10X, 'NUMBER OF UNKNOWNS = N=' , 13 , / ,
082 110X,'NUMBER OF MASS ACTION EXPRESSIONS=M=',13,///)
083 WRITE(2,702)
084 702 FORMAT(' ',9X,'MASS ACTION EQUILIBRIUM CONSTANTS LOGK(J)',/
085 1 10X,' AND STOICHIOMETRIC REACTION COEFFICIENTS V(J,I)'//,
086 2 3X,'LOGK(J)',15X,'V(J.I)'/)
087 DO 703 J=1,M
088 WRITE(2,704)LOCK(J),(V(J,I),1=1,N)
089 704 FORMAT(1H ,1PD11.3,5X,3013)
090 703 CONTINUE
091 WRITE(2,705|
092 705 FORMAT(' ',///,IX,'MASS BALANCE MOLALITIES .B(J), AND COMPOSITION
093 1 COEFFICIENTS b(J,I)',//,3X,'B(J)',18X,'b(J,I)',/)
094 DO 706 J=1,J1
095 WRITE(2,704)B(J),(G(J,I),I=1,N)
096 706 CONTINUE
097 WRITE(2,707)(Z(I),1=1,N)
098 707 FORMAT!' ',///,26X,'VALENCES Z (I)',//,16X,3013)
099 WRITE(2,714)
100 WRITE)2,708)(A(I),1=1,N)
101 714 FORMATflH ,///,10X,'FIRST GUESSES AT SPECIES CONCENTRATIONS A(I)'
102 1 //)
103 708 FORMAT(1H ,1P2OD11.3//)
104 *
105 * now the Debye-Huckel A parameter
106 *
107 WRITE(2, 719)dbha
108 719 FORMAT!///' DEBYE-HUCKEL "A" PARAMETER: 'Ipdl2.4//)
109 C
110 C SETS COUNTER FOR ACTIVITY COEFF ITERATIONS AND SETS ALL INITIAL
111 C ACTIVITY COEFF'S TO ZERO
112 NUMGAM=0
113 DO 400 1=1,N
114 GAMMA(I)=1.000
115 400 CONTINUE

117 C FILLS OUT THE COEFFICIENT MATRIX C(N,N).
118 C NOTE THAT LINEAR CHARGE AND MASS BALANCE EQUATIONS ARE ASSIGNED FIRST ROW

119 C POSITIONS. THIS IS ESSENTIAL IF BROWN'S GAUSSIAN ELIMINATION METHOD
120 C IS USED IN PLACE OF NEWTON-RAPHSON.
121 C FOR CHARGE BALANCE SUBMATRIX.
122 DO 8 1=1,N
123 C(1,I)=Z(I)
124 8 CONTINUE
125 C FOR MASS BALANCES SUBMATRIX
126 M2=N-M
127 DO 7 J=2,M2
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128 DO 7 1 = 1 , N
129 C(J,I)=G(J-i,I)
130 7 CONTINUE

132 C ACTIVITY COEFFICIENT DETERMINATION - FROM SUBROUTINE ACTCP
133 410 CONTINUE
134 DC 404 1=1,N
135 GAMOLD(Ii=GAMMA(I I
136 404 CONTINUE

138 C NDIM IS MAXIMUM DIMENSION OF ARRAYS (DEFINED IN OPENING PARAMETER
139 C STATEMENT). A AND Z ARE ARRAYS OF SPECIES CONCENTRATIONS AND VALENCES,
140 C N IS NUMBER OF SPECIES, AND GAMMA IS THE CALULATED ARRAY OF ACT. COEFF'S.

141 C
142 IFiNUMGAM.GT.0)CALL ACTCFINDIM,A,Z,N,GAMMA, dbha)
143 NUMGAM=NUMGAM+1
144 IF(NUMGAM.EQ.1000)GO TO 990
145 * WRITE!2,4011NUMGAM
146 * 401 FORMAT!'1',///,5X,'GAMMA ITERATION NUMBER =',I3/)
147* DO 402 1=1,N
148 * WRITE!2,403)I,GAMMA 11)
149 * 403 FORMAT!' ' , 5X, 'GAMMA ( ' , 13 , ' ) = MPD10 . 2 )
150 * 402 CONTINUE
1 -3 1 C

152 C ONLY THE SUBMATRIX OF MASS ACTION EXPRESSIONS CHANGES WITH EACH ITERATION

153 C SO ITERATION ON CONCENTRATIONS BEGINS HERE
-1 Cfl p ,.,

155 NUM = 0
156 900 CONTINUE
157 NUM = N U M t 1
158 IK(NUM.KQ.100)00 TO 990
159 C FOR SUBMATRIX OF MASS ACTION EXPRESSIONS
160 DO 600 J=1,M
161 DO 600 1=1,N
162 RLV(J,I|=V(J,I)
163 600 CONTINUE
164 Ml=M2tl
165 DO 6 J=M1,N
166 DO 6 I=1,N
167 JHOLD=J-M2
168 C(J,I)=0.43429*RLV(JHOLD,I)/A(I)
169 6 CONTINUE
170 C
171 C FILLS OUT THE VECTOR YIN) OF MASS ACTION, AND OF MASS AND CHARGE
172 C BALANCE FUNCTIONS
IT! fi

174 C FOR CHARGE BALANCE IN Y VECTOR
175 HOLD=O.ODO
176 DO 13 1=1,N
177 RLZ=Z(I)
178 HOLD=HOLD+RLZ*A(I)
179 13 CONTINUE
180 Y(1)=-HOLD
181 C FOR MASS BALANCE FUNCTIONS IN Y VECTOR
182 DO 12 J=2,M2
183 HOLD=O.ODO
184 DO 11 1=1,N
185 RLG*G(J-1,I)
186 HOLD=HOLD+RLG*A(I)
187 11 CONTINUE
188 Y(J)=B(J-1)-HOLD
189 12 CONTINUE
190 C FOR MASS ACTION FUNCTIONS IN Y VECTOR.
191 DO 10 J=M1,N

561

131 C -

137 C

151 C



192 JHOLD=J-M2
193 FHOLD=O.ODO
194 DO 9 1=1,N
195 FHOLD=FHOLD+RLV(JHOLD,I)*(DLOG10(A(I))+DLOG10(GAMMA(I)))
196 9 CONTINUE
197 Y(J)=LOGK(JHOLD)-PHOLD
198 10 CONTINUE
199 C
200 C USES MATLIB SUBROUTINE LINSOL TO SOLVE THE EQUATION:

201 C C(N,N1*DELTAA(N)= Y(N). THE DELTAA VALUES APPEAR IN THE

202 C DELTAA MATRIX, THE DETERMINANT APPEARS IN DET.
203 c

204 C MAKE COPY OF COEFFICIENT MATRIX C.

205 DO 3001 1=1,N
206 DO 3001 J=1,N
207 BLEEN(I,J)=C(I,J)

208 3001 CONTINUE
209 CALL LINSOL(BLEEN,Y,N,NDIM,DELTAA,DET,COND,WORK,IPVT!
2 1 f) p

211 C FOR NEW ESTIMATE OF CONCENTRATIONS A(I).
212 DO 14 1=1,N
213 AOLD(I)=A(I)
214 A (I) =DELTAA (I) 4-AOLD (1)

215 C TO PREVENT NEGATIVE CONCENTRATIONS
216 IF(A(I).LE.O.O)A(I)=1.0D-10

217 TEST(I)=DABS((A(I)-AOLD(I) )/AOLD(I) ) * 100.0
218 14 CONTINUE

220 C PRINTS, ON SCREEN, THE Y(N) VECTOR, SOLUTION VECTOR DELTAA(N),
221 C AND THE SET A(N) OF NEW CONCENTRATION ESTIMATES, FOR EACH ITERATION.
222 WRITE!*,7091NUM
223 709 FORMAT(1H ,////,9X, 'ITERATION NUMBER', 13 ,/)
224 WRITE!*,715)
225 715 FORMAT(1H ,//,AX,'DELTAA(J)',4X,'Y(J)',8X,'A(J)'/)
226 DO 716 J = 1,N
227 WRITE!*,996)DELTAA(J),Y(J),A(J)
228 996 FORMATdH , IX, 1P20D11 . 3 / )

229 716 CONTINUE
23Q r-~ ..

231 C WRITES OUT JACOBIAN DETERMINANT OF C(N,N), CALCULATED IN

232 C LINSOL (ABOVE) . IF THIS APPROACHES ZERO, ITERATION MAY NOT CONVERGE
233 p

234 WRITE!*,713)DET
235 713 FORMATflH ,///,9X, 'JACOBIAN DETERMINANT OF C(N,N)=',1PD12.5)

236 C PRINTS ERROR MESSAGES FROM LINEAR EQUATION SOLVING SUBROUTINE 'LINSOL'

237 WRITE!*,723)COND

238 723 FORMATdH , 4X, ' SUBROUTINE LINSOL CONDITION PARAMETER^' ,
239 1D12.5,///,)

241 C IF COND=1, MATRIX INVERTED BY LINSOL WAS PERFECTLY NONSINGULAR;
242 C IF COND=1E32, MATRIX WAS SINGULAR AND ANSWER IS SUSPECT.
24~3 p „

244 C ITERATES ON A(I) IF ANY ONE OR MORE VALUES OF TEST (I) EXCEED CHOSEN
245 C CRITICAL ERROR.
246 DO 15 1=1,N

247 IF(TEST(I) .GT.O.DGO TO 900
248 15 CONTINUE
249 * WRITE(2,722)
250 * 722 FORMATdH ,//, 5X, ' FINAL CONCENTRATIONS')
251 * IS=O.ODO
252 * DO 720 1=1,N

253 * IS=Z(I)*Z(I)*A(I)+IS
254 * WRITE(2,721)1,A(I)
255 * 720 CONTINUE
256 * IS=IS/2.0
257 * 721 FORMATdH , 5X , ' A ( ' , 13 , ' ) = ' , 1PD11 . 3 )
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258 * WRITE;::, 395) is
259 • 39s FORMAT;' •,/,sx,•IONIC STRENGTH^',IPDII.3,ix,-MOLAL-///)
260 1FJNUMGAM.SQ.J:GO TO 410
261 DC 4 21 I - 1,N
2 6 2 TESTI = ! D A B S ( G A M M A ; : ) - G A M O L D I D ) ) / G A M C L D I D n o o . o
263 IFiTESTI.GT.0.1!GO TO 410
264 421 CONTINUE
265 WRITE(2,41i)
266 411 FORMAT!' ',/,5X,'GAMMA ITERATIONS SUCCESSFULLY CONVERGED')
267 GO TO 999
268 990 WRITE(2,700)
269 700 FORMAT(1H ,9X,'ERROR. ITERATED 100 TIMES WITHOUT CONVERGENCE.',
270 I//)
271 999 WRITE(2,401)NUMGAM
272 401 FORMAT;'i',///,sx,-GAMMA ITERATION NUMBER =',13/1
273 DO 402 7=1,N
274 WRITEI2,403)I,GAMMA(I)
275 403 FORMAT!' ', SX, 'GAMMA(', 13,') = ',1PD11.3 )
276 402 CONTINUE
277
278 WRITE(2,722)
279 722 FORMAT(1H ,//,5X,'FINAL CONCENTRATIONS')
280 IS=O.ODO
281 DO 720 1=1,N
282 IS=Z(I)*Z(I)*A!I)+IS
283 WRITE(2,721)1,A(I)
284 720 CONTINUE
285 IS=IS/2.0
286 721 FORMAT(1H , SX, ' A ( ' , 13 , ' ) = ' , 1 PD11 . 3 )
287 WRITEI2,395)IS
288 395 FORMAT!' ' , / , r-X , ' 1 f)N7 0 <;TRF,NGTH= ' , 1 PD1 1 . 1 , IX, ' MOI.AI,'///)
289 Wi<ITK(2, 666!
290 666 FORMAT! ' i ' //)
291 STOP
2 9 2 E N D
293 C = = = = = = = = = = = ="=====.:="- . :=— --:= = = = = = = = = = = = = » = = == = "== = = = = = = = = = = = = = = = === =

294 C
295 SUBROUTINE ACTCFfNDIM,A,Z,N,GAMMA, dbha)
296 C FOR ACTIVITY COEFF FROM DAVIES EXTENSION OF THE DEBYE-HUCKEL EQUATIO>
297 IMPLICIT REAL'S 1A-H.O-Z)
298 REAL*8 IS
299 INTEGER Z(NDIM)
300 DIMENSION A(NDIM), GAMMA(NDIM), GAMLOG(IOO)
301
302 C FOR IONIC STRENGTH
303 IS=O.ODO
304 DO 1 1=1,N
305 IS=IS -, Z(I) **2*A(I)
306 1 CONTINUE
307 IS=IS/2.0
308 DO 2 1=1,N
309 GAMLOG(I) = -(Z(I)**2*dbha*DSQRT(IS))/(1.0+DSQRT(IS))

310 * +0.2*dbha*Z(I)**2*IS
311 GAMMA(I) = 10.0**GAMLOG(I)
312 2 CONTINUE
313 RETURN
314 END
315 C = = = = === = = — == = = — = = ==:= =- = = = = = = =====-= = ~== = -^= = = = = = = = = = = = = — = — ±= = ~— = — = — = = = =

316 C
317 SUBROUTINE DDECOM(NDIM,N,A,COND,DET,IPVT,WORK)
318 C LU-DECOMPOSITION OF A MATRIX
319 INTEGER NDIM.N
320 DOUBLE PRECISION A!NDIM,NDIM),COND,WORK(NDIM),DET
321 INTEGER IPVT(NUIM)
322 DOUBLE PRECISION EK,T,ANORM,YNORM,ZNORM
323 INTEGER NM1 , I , J , K , KP1 , KB, KM1 , M
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324
325
326
327 C
328 C
329 C
330
331
332
333
334
335
336
337
339 C
339 C
340 C
341
342
343 C
344 C
345 C
346
347
348
349
350
351
352
353
354
355 C
356 C
357 C
358
359 C
360 C
361 C
362
363
364
365 C
366 C
367 C
368
369
370
371
372
373
374
375
376
377
378 C
379 C
380
381
382
383
384
385
386
387
388
389

IPVT(N| =1
IFIN.EQ.1IGO TO 80
NM1=N-1

COMPUTE 1-NORM OF A

ANORM=O.ODO
DO 10 J=1,N
T=O.ODO

DO 5 I=1,N
T=T+DABS(A(I,J) )

5 CONTINUE
IF (T.GT.ANORM) ANORM=T

10 CONTINUE

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

DO 35 K=1,NM1
KP1=K+1

FIND PIVOT

M=K
DO 15 I=KP1,N
IF(DABS(A(I, K) ) .GT.DABS(A(M,K) ) )M=I

15 CONTINUE
IPVT(K) =M
IF(M.NE.K) IPVT(N)=-IPVT(N)
T=A(M, K)
A(M,K) =A(K,K)
A(K, K) =T

SKIP STEP IF PIVOT IS ZERO

IFIT.EQ.O .ODD) GO TO 3 5

COMPUTE MULTIPLIERS

DO 20 I=KP1,N
A(I,K) =-A(I,K) /T

20 CONTINUE

INTERCHANGE AND ELIMINATE BY COLUMNS

DO 30 J=KP1,N
T=A(M,J)
A(M, J) =A(K, J)
A(K, J) =T
IF(T.EQ.O.ODO)GO TO 30
DO 25 I=KP1,N
A[I, J) =A(I, J) +A(I,K) *T

25 CONTINUE
30 CONTINUE
35 CONTINUE

SOLVE (A-TRANSPOSE) *Y=E
DO 50 K=1,N
T=0 .ODO
IF(K.EQ.1)GO TO 45
KM1=K-1
DO 40 1=1, KM1
T=T+A(I,K) *WORK(I)

40 CONTINUE
45 EK=1.0DO

IF(T.LT.O.ODO) EK=-1 .ODO
IF(A(K,K) .EQ.O .ODOIGO TO 90
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390 WORK(K)=-(EKtT)/A(K,K)
391 50 CONTINUE
392 DO 60 KB=1,NM1
393 K=N-KB
394 T=O.ODO
395 KPl=Ktl
396 DO 55 I=KP1,N
397 T=T+A(I,K)*WORK(K)
398 55 CONTINUE
399 WORK(K)=T
400 M=IPVT(K)
401 IP(M.EQ.K)GO TO 60
402 T=WORK(M)
403 WORK(M)=WORK(K)
404 WORK(K)=T
405 60 CONTINUE
406 C
4 0 7 Y N O R M = O . O D O
408 DO 65 1=1,N
409 YNORM=YNORM+DABS(WORK!I))
410 65 CONTINUE
411 C
412 C SOLVE A*Z=Y
413 C
414 CALL DSOLVE(NDIM,N,A,WORK,IPVT)
415 C
416 ZNORM^O.ODO
417 DO 70 1=1, N
418 ZNORM = ZNORM + DABS(WORKC ) )
419 70 CONTINUE
420 C
421 C ESTIMATE C O N D I T I O N
422 C
423 COND=ANORM*ZNORM/YNORM
424 IFICOND.LT.l.ODO)COND=1.ODD
425 C
426 C COMPUTE DETERMINANT
427 C
428 DET=IPVT(N)*A(1,1)
429 DO 75 1=2,N
430 DET=DET*A(I,I)
431 75 CONTINUE
432 C
433 RETURN
434 C
435 C 1 BY 1 MATRIX
436 C
437 80 COND=1.0DO
438 IF(A(1,1).NE.O.ODO) RETURN
439 C
440 C EXACT SINGULARITY
441 C
442 90 COND=1.0D+32
443 RETURN
444 END

446 C
447 SUBROUTINE DSOLVE(NDIM,N,A,B,IPVT)
448 C SOLUTION OF DECOMPOSED LINEAR EQUATION MATRIX
449 C
450 INTEGER NDIM,N,IPVT(NDIM)
451 DOUBLE PRECISION A{NDIM,NDIM),B(NDIM)
452 INTEGER KB,KM1,NM1,KPT , I,K,M
453 ROUBLE PRECISION T
45/, C
45S C FORWARD ELIMINATION
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456 C
457 IF(N.EQ.1)GO TO 50
458 NM1-N-1
459 DO 20 K=1,NM1
460 KP1=K+1
461 M=IPVT(K)
462 T=B(M)
463 B(M)=B(K)
464 B(K|=T
465 DO 10 I=KP1,N
466 B(I) =B(I)+A(I,K) *T
467 10 CONTINUE
468 20 CONTINUE
469 C
470 C BACK SUBSTITUTION
471 C
472 DO 40 KB=1,NM1
473 KM1=N-KB
474 K=KM1+1
475 B(K)=B(K)/A(K,K)
476 T=-B(K)
477 DO 301=1,KM1
478 B(I)=B(I)+A(I,K)*T
479 30 CONTINUE
480 40 CONTINUE
481 50 B(l)=B(1)/A(l,1)
482 RETURN
483 END

485 C
486 SUBROUTINE LINSOL(A,B,N,NDIM,C,DET,COND,WORK,IPVT|
487 C SUBROUTINE TO SOLVE SIMULTANEOUS LINEAR EQUATIONS
488 C ADAPTED FROM "COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS"
489 C BY G.E. FORSYTHE ET AL.(1977)
490 C
491 C
492 INTEGER N,NDIM,IPVT(NDIM),I,J,RCODE
493 DOUBLE PRECISION A(NDIM,NDIM),C(NDIM),B(NDIM),WORK(NDIM) , DET,
494 * COND,CONDP1
495 C
496 C COPY MATRIX B (RIGHT HAND SIDE VECTOR) INTO MATRIX C.
497 C B REMAINS UNTOUCHED, C IS DESTROYED AND REPLACED WITH
498 C THE ANSWERS.
499 DO 5 M=1,N
500 C(M)=B(M)
501 5 CONTINUE
502 C
503 C DECOMPOSITION OF THE COEFFICIENT MATRIX, USING SUBROUTINE DDECOM.
504 C NOTE-THIS CALLS AND MUST BE LINKED WITH SUBROUTINES DDECOM AND DSOLVE.
505 C
506 CALL DDECOM(NDIM,N,A,COND,DET,IPVT.WORK)
507 C IF COND^l, MATRIX WAS PERFECTLY NONSINGULAR; IF COND=1E32, MATRIX WAS
508 C SINGULAR AND ANSWER IS SUSPECT.
509 C IF THE MATRIX IS SINGULAR TO WORKING PRECISION THEN EXIT,OTHERWISE CONTIN

UE.
510 C
511 CONDP1=COND+1
512 IF(CONDP1.EQ.COND)RETURN
513 C
514 C SOLUTION OF THE COEFFICIENT MATRIX
515 C
516 CALL D S O L V E 1 N D I M , N , A , C , I P V T )
517 RETURN
518 END
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PROGRAM EQBRM 567

Program Output

The results of each iteration leading to the final result are sent to the screen but scroll
by too fast to read. They are usually of little interest. The final results are written to
a file called EQBRM.OUT. Remember to rename this file if you wish to save it, as it
will be overwritten next time the program is run. The final results in this case are:

GAMMA ITERATION NUMBER = 5

GAMMA( 1 )= 4.04D-01 that is, 7NH4 = 0.404
GAMMA( 2)= l.OOD+00 7NH4OH = 1.0
GAMMA( 3)= 4.04D-01 7H+ = 0.404
GAMMA(4)= l.OOD+00 THCP = 1.0
GAMMA( 5)= l.OOD+00 7NH4C1° = 1-0
GAMMA( 6)= 4.04D-01 7c,_ = 0.404
GAMMA( 7)= 4.04D-01 7Na+ = 0.404
GAMMA( 8)= l.OOD+00 7NaCl° = 1-0
GAMMA( 9)= 4.04D-01 7K+ = 0.404
GAMMA( 10)= l.OOD+00 7KC,0 = 1.0

In this simple scheme, all singly charged ions have the same 7, and all doubly charged
ions would have another 7.

FINAL CONCENTRATIONS

A( 1)= 1.630D-01
A( 2)= 2.844D-03
A(3)= 1.206D-03
A(4)= 1.638D-03
A(5)=8.416D-02
A(6)=4.782D-01
A(7)= 1.385D-01
A(8)= 1.118D-01
A(9)=1.755D-01
A( 10)= 7.450D-02

that is, mNH4 = 0.1830
mNH4oH = 0.002844
mH+ =0.001206
mHci° = 0.001638
r»NH4ci° =0.08416
mc]_ = 0.4782
mNa+ =0.1385
mNaCJ° =0.1115
mK+ =0.1755
"iKCJ = 0.07450

As a check, you might calculate one or two K values, and compare with the input.
For example

log K6 = 1 .24 which is the input value.



APPENDIX F
ANSWERS TO PROBLEMS

Chaptt

2. (a),

(b).

(c).
3. (a), homogeneous 2nd degree in x, y, z. (b). homogeneous 3rd degree in x, y, z.

(c). homogeneous 5th degree in x, y. (d),(e). not homogeneous.

6. (a). Not exact. Integrating factor is \/xy. (b). Not exact. Integrating factor is
1 /x3j/. (c). Not exact. Integrating factor is y2/x. Other integrating factors are also
possible.

7.

8.

Chapter 5

1. 903.3°C. Yes. 2. 36.61 degrees. 3. ArH° = -4139 calmer1; ArG° =
-4144 calmer1; Ar[/° = -4138.99 calmer1. 5. -74.9155 calK^mor' 6.
gibbsite stable. 7. gibbsite.

Chapter 7

2.-407593.5 Jmol"1.3.-371383 Jmol"'.4.-319135 Jmor1.5.-460709Jrnor'.
6. -407576 Jmor1. 7. -1466 calmer". 8. -616456 calmo!"1.

Chapter 8

1. Isentropic work between A and B w = 3558 Jmol"'. 4. Triple point at (a). 3932
bars, 483°C. (b). 2902 bars, 430°C. 5. 64504 bars. 6. hematite stable. About 151 K,
or -122°C. 7. A/ff°j600K = -18890 calmer1.

Chapter 9

3. (a), slope 159.8 calmer1, (b). XE = 0.337. (c). /M = -203 calmol"1 and
MB = ~~43 calmer1

Chapter 10

1. 1.188 calmer1 K~'

Chapter 11

568
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Chapter 12

1. 1. (a). 1.0 (b). 1.4928 (c). 1.4933 (d). 10~14-946

2. (a). 1.0 (b). 1.787 (c). 5.408 (d). Estimate a value for /ice at T by any means,
such as extrapolating fugacities from lower T.

3. (a). 0.001 (b). 0.000472

4. (a). At system equilibrium, (b). When the same standard state is used for both—
system equilibrium irrelevant.

5. -11533 calmor1

6. 7.070 (Same as o|*Q2 using this standard state).

2. In equation 12.1, the value of//0 varies with T. To use a constant T standard state,
you must include the difference between fj,° in this equation and the p,° in the state
you have chosen.

3. 0.02654; 92.36 bars.

4. Pure CO2 at 600°C, 2000 bars.
S r, — m-4.248->• «NaCl - IU

Chapter 13

1. (a). 10-12-30 bars (b). 10~12-58 bars
2. 0.0315 bars; 0.9912 bars
3. 1.0017 x 10"4molal; 1.934 x 10"3rnolal.
4. (a.) ArG° = -5255 calmor1 (b). Pyrrhotite is stoichiometric FeS, not

Feo.92S, because the calculated AG° is between standard states, (c). A/GpeS2 =
-30283 calmol"1

5- /co2 = 135 bars. Need / of pure C(>2 at 749 K, 2 kbar, and activity coefficient of
CO2.

6. flsio2 = 0.321, pure quartz at T, P standard state. Therefore silica concentration
is 0.321 x 0.208 = 0.60669m.

7. 9912 bars, if A?, =0.Op

8. A/G^Si04 = -310882 calmol"1.

Chapter 14

1. (a). Traditional, 1130 unitsmol"1; B-H, 780 unitsmol"1.

(b). Compound and elements at T, P; —80 units mol"1.

(d). Traditional and B-H A/ G° values are always negative, showing that our ele-
mental G° values are too small, relative to G° for ABC.

(e). K = 14.6

(f). P = 2161 bars; S° = 0.61 units K^1 mol"1.

(g). In both cases the phase boundary has a negative slope with a below and (3
above. However in (i), the boundary passes above and to the right of 25°C, 1 bar,
and in (ii) it passes below and to the left.
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(h). (i). 850 units mol"1. (ii). 850, 400 units moP1. (iii) A+B+C react to form
ABC until one of them is used up. (iv). 320 units moP1 (equation 14.25).

(i). aB = 0.355 (std. state pure B at T, P). o,B = 42.5 (std. state pure B at T, 1 bar).

Chapter 17

1. Fora = 2;0(x) = 0.1419;g'(z) = -0.1113

Fora, = 1.4; g(x) = 0.23509; g'(x) = -0.14801

For a2 = 12; g(x) = 0.0045687; g'(x) = -0.0045687

^Nac, = "0.009681; B'Na>SOt = -0.04075; B^ = -0.059097; B^ =
-0.074156;

BCa,ci = 0.5449; -BCa,so4 = 0.70384; C7Naia = 0.0006350;

CNa.so, = 0.001757; CCa,ci - -0.0001202; C1
Ca,so4 = 0.0;

*Na,Ca = -0.01384; $Ci,so4 = -0.05384;

*Na,ca = *ci,so4 = °-01355; F = -1-047296.

2. i^c^,25 = 1.2366 x 105; wCa2%300 = 1.2441 x 10s; wso2-_25 = 3.1924 x 105;
wso-,3,)o = 3-1987><105;

3. AaG°anhydritei300 = -325408 calmer1; AaG°Ca2+i300 = -127082 calmer';
A0G°S02- 300 = -1 72062 calmor1;

4. log Kapt25 = -4.306; log Kapt300 = -9.960

5. logKNaCi,25 = 0.777; log KNaci,5oo, i = -2.262; log KNaCil5oo,2 = -1-287

Chapter 18

1. -0.304V.
2. 1 . Yes. Near equilibrium, because the samples plot almost on the boundary for their

concentration. 2. outside Fe(OH)3 stability range (actually Fe(OH)3 is metastable,
but can be treated as stable here). 3. yes, 4 and 5. 4. sulfate is being reduced. 5. a
little over pH 1.

3. aFe = 10-6-20; 10~2-91; 1.0 for Fe3O4 - Fe2O3, Fe3O4 - FeO, Fe - FeO respec-
tively.

4. True. aFe = lO"5-95.
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in buffered systems, 343-46
effect of pressure, 284-85
electrolytes, 422-26
and fugacity, 252-53
and ideal mixing, 261
individual ions, 444
minor components in concentrated

solutions, 445
and mole fraction, 253
multi-site mixing, 373-77
single ion, 426
in solid solution, 373
unsymmetric electrolytes, 428-30

activity coefficients
in asymmetric solutions, 386
concentrated, mixed salt solutions,

Pitzer equations, 446
effect of temperature, 283
and excess functions, 378
Henryan, 264
Henryan, molality-mole fraction

conversion factor, 280
at higher concentrations, 444
long and short-range contributions, 444
measurement, 440
neutral species, 442
Pitzer equations, 447
Raoultian, 264
stoichiometric mean ionic, 428
symmetrical solutions, 381
in water-CO2 solutions, 266

adiabatic processes, 184
constant pressure, 195
irreversible, 190
reversible, 185

affinity, 114
and chemical potentials, 334

summary, 336
Amagat's rule, 260, 405
apparent enthalpy of formation, 155
apparent free energy of formation, 155
apparent molar properties, 218

apparent molar enthalpy, 223
apparent molar volume, 220

approximations, using heat capacity, 180

Benson-Helgeson convention for
apparent energies, 155

Berman-Brown convention for apparent
energies, 156

Berman equation for volumes of solids,
174

boiling, isenthalpic, 194
Boltzmann distribution, 125
Born functions, 454
Boyle's law, 61
buffered systems, 339-46

activities in, 343
buffering capacity, 340
in experimental work, 341

buffers, absolute, 342

calorimetry, 161
cryogenic, 166
drop, 163
solution, 162

Celsius temperature scale, 64
centigrade temperature scale, 63
chemical potential

and affinity, 334
balanced in reactions, 330
change in, zero at equilibrium, 295
same in every phase, 295

chemical reaction, 4
Clapeyron equation, 198
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Clausius, formulation of second law, 84
closed system, 38
component

accessory, 352
definition, 52, 337
determinative, 345
discussion, 239-43, 350 -51
excess, 352
isomorphous, 352
solute, choice of, 425
trace, 352

composite system, 38
compressibility, 172
compressibility factor, 247
configuration, predominant, 123
configurational entropy of mixing, 142
configurational probability, 120
constituent, 5, 53, 337

buffered, 342
chemical potentials same in all

phases, 329
compared to species, components,

239-43
constraints, 4, 46
continuous functions, 9, 55
conventions

IUPAC half-cell, 474
oxidation-reduction sign, 474
SHE zero voltage, 476
single-ion, 435

cross-differentiation identity, 15
cryogenic calorimetry, 166

Dalton's law, 254,406,411
Debye-Huckel

limiting law, 440
theory, 438

degree of function. See homogeneous
function

degrees of freedom, 8, 44
in phase rule, 339

density model, 308
derivative, defined, 10

extremum value, 11
differential, defined, 10

minimum, meaning, 11
differential inequalities, 110

differential heat of solution, 221
dilution, heat of, 222
divariant, in math, 8
drop calorimetry, 163
Duhem's law, 91

Eh measurement, 491
calculation, 478

Eh-pH diagrams, 470
calculation, 480
comparison -withpe-pH, 489
general features, 480

electrolyte activities, algebraic example,
418

energy
changes, 4
minimum, as equilibrium state, 41
transfers, heat and work, 70
types, 68

enthalpy
apparent molar, measurement, 223
as a potential for heat, 106
as a potential for work, 104
as thermodynamic potential, 100
at high temperature and pressure,

apparent, 155
at high temperature and pressure,

standard, 154
ideal mixing, 238
of formation from the elements, 146
of formation from the oxides, 158
relative partial molar, 224
relative partial inolar, and activity

coefficients, 283
entropy

above 298 K, 167
from Carnot cycles, 85
change, calorimeter example, 86
change, meaning in terms of stable,

metastable, 90
configurational of mixing, 142
of ideal mixing, 141
ideal solutions, 232
increase associated with decrease in

order, 137
increase in isolated systems, 131
law, 86
and partition function, 130
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and probability, 117
sign of, as historical accident, 90
and spontaneity, 131
tabulated values, 149
of the universe, 143
the universe as surroundings, 108

equation of state, 45
gaseous mixtures, 405
of a gas, 61

equilibrium
conditions of, 327
defined, 38
local, 42
metastable, 39
model, 4,42
notation, 5
partial, 41
real vs. model, 42
stable, 39
unstable, 39

equilibrium constant
in brucite-periclase reaction, 314
the density model, 308
derivation, 295
effect of pressure, 310
effect of temperature, 303
special meanings, fugacity, 300
special meanings, miscellaneous, 301
special meanings, solubility, 298
use in calculating univariant curves,

316
equilibrium states, as surfaces, 45
Euler's theorem, 24
exact differential, defined, 14
excess functions, 377

and activity coefficient, 378
exchange reaction, 242
extensive variables, defined, 22
extent of reaction variable, 528

Fahrenheit temperature scale, 61
first law, 72
formation from the elements, 146
formation from the oxides, energies of, 158
free energy, partial molar, 216
free energy at high temperature and

pressure
apparent, 155
standard, 154

free energy of formation from the
elements, 146

apparent, calculation of, 169
from the oxides, 158
standard, calculation of, 169

free energy of reaction
cell reactions, 477
and cell voltage, 470

fugacity
all constituents have, 249
definition, 244
from equation of state, 408
estimation, 247
measurement, 245
oxygen, 493
physical significance, 495
use in calculations, 248

functions, defined, 8
fundamental equations, 4, 88, 331

intensive form, 331

Geophysical Lab temperature scale, 66
Giauque function 158,169
Gibbs

energy as a potential for work, 105
energy as thermodynamic potential,

101
energy function, 158,169
equation 97, 331

Gibbs-Duhem equation, 218

half-cell reactions, 470
heat

as analogous to work, 80
content function, 158
definition, 70
of dilution, 222
potentials, 106
sign conventions, 72
of solution, differential, 221
of solution, integral, 221

Helmholtz free energy
as potential for work, 103
as thermodynamic potential, 99

Henry's law, 256
HKF model for aqueous electrolytes,

453-63
comparison with Pitzer model, 463

homogeneous function, 23
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homogeneous function (continued)
and Euler's theorem, 24

ideal dissolution, 232
ideal gases, 398
ideal mixing, 232

and activity, 261
entropy of, 141

ideal solutions, 228
entropy, 232
gaseous, 229
liquid, 229
solid, 230
thermodynamics of, 231

inexact differential
defined, 14
simplest, 16

integral heat of solution, 221
integrating factor, denominator, 17
integration, defined, 19
intensive variables, defined, 22
internal energy, 67

definition, 69
pond analogy, 71
as a potential for heat, 106
as potential for work, 102
as thermodynamic potential, 98

internally consistent data sets, 177
International Practical Temperature

Scale, 64
invariant, in math, 8
ionic strength

molal, 440
molar, 439
true, 443

irreversible process
defined, 51
notation, 5

isenthalpic boiling, 194
isentropic volume changes, 185
isolated systems, 38

Joule expansion, 190
Joule-Thompson expansion, 191

Kelvin, temperature scale, 64
Kelvin, formulation of second law, 83
Kinetic energy, 68

LeChatelier's principle, 197
Legendre transforms, 4

defined, 26
use in defining potentials, 97

Lewis fugacity rule, 259, 406, 411
line integral

inexact differential needs, 16
meaning, 20

linear programming, 177
local equilibrium, 42

Maier-Kelley heat capacity equation, 165
Margules equations, 379

applications, 388
asymmetric solutions, 383
calculating solvi, 391
parameters from asymmetrical solvi,

390
parameters from symmetrical solvi,

389
symmetrical solutions, 380
ternary and higher order systems, 387

mass transfer, conditions for, 333
Maxwell's equations, 332
mechanical mixture, 228

as constrained state, examples, 47
controlled, 111
definition in terms of constraints, 47
electrochemical cells as, 478
equilibrium, 39
metastable state, 4, 5
as surface, 45

mixing, configurational entropy of, 142

Nernst equation, 479
notation, 4

open system, 38, 323
phase rule in, 350
thermodynamic potential for, 324, 346

osmotic systems, 346
oxidation potential

buffers, 496
calculation, 478
and Eh-pH diagrams, 470
fO2-pH diagrams, 499
oxygen fugacity, 493
physical meaning, 495
solid electrolyte sensors, 497
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oxidation state
of natural systems, 469
a primary intensive variable, 469

partial derivatives
meaning, 11
transformations, 17

partial equilibrium, 41
partial molar property

formal definition, 215
free energy, 216
math definition, 22
volume, 212

partition function, 126
and entropy, 130
and thermodynamic properties, 129

pe, physical meaning of, 490
pe-pH diagrams, 487

comparison with Eh-pH, 489
phase

definition, 52, 337
discussion, 354-55

phase diagrams
calculation of, 196
effect of approximations, 205

phase rule
applications, 355-62
derivation, 338

Pitzer model for activity coefficients
comparison with HKF model, 463
example, 451
summary, 451

potential
extremum value, 93
for heat, 106
potential quantity, 91
for work and heat, 102

potential energy, 68
probability

configurational, 120
thermodynamic, 119

process, 5
adiabatic, 52
definition, 50
irreversible, 51
isobaric, 52
isothermal, 52
quasistatic, 4, 51, 536
reversible, 4, 50

virtual, 51
progress variable, 113, 335, 528
properties, 43

apparent molar, 218
continuous, 55
formation from the elements, 146
from half-cell potentials, 477
as intensive variable, 338
as mathematical variables, 53
molar, 21
partial molar, 210
and partition function, 129
single-ion, numerical values, 435
solids at high T, P, 171
total, 21

quasistatic processes, 4, 51, 536

Raoult's law, 257
reaction path calculations, 526-40
reciprocity relation, 15
Redlich-Kwong equation, 411

estimating parameters, 404
and modifications, 403

reference state, and standard state, 269
regular solutions, 365
Relativity theory, 68
rest energy, 68
reversible processes, 4, 50
reversible work as part of the model, 81

second law of thermodynamics, 83
sign conventions, heat and work, 72
simple system, 38
simultaneous evaluation of data, 176
single-valued functions, 9
solutions, ideal, 228
solvus, 371
sources of data, 175
speciation calculations, 508-43

by computer, 510
rote method, 505

species, 53
compared to constituents,

components, 239
spinodal, 371
stable equilibrium, 39
standard states

based on Henry's law, 274
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standard states (continued)
based on Raoult's law, 272
changing from one to another, 289
definition, 269
and fugacities, 272
ideal one molal solution, 278
independent of units, 277
overall view, 285
size of the mole, 289
variable pressure, 272
variable T, 271

state variables, 43
state space, 45
stoichiometric

coefficients, 5
mean ionic activity coefficients, 428
mean ionic molality, 429
vs. ionic properties, 434

system, 5
defined, 37
open, 323
properties of, 43
types, 38
variance, 44

temperature
absolute, relation to Carnot cycle, 84
Celsius, 64
centigrade, 63
Geophysical Lab, 66
Kelvin, 64
practical, 64
scales, 62

thermal expansion, 172
thermodynamic potentials, 4, 90, 95

entropy as, 95
open systems, 324

thermodynamic probability, 119

thermodynamics
defined, 37
as mathematical model, 57
usefulness, 58

thermodynamic state space, 4, 45
thermometer, 60
third law of thermodynamics, 138

exceptions to, 141
tests of, 138

total differential, 11

univariant, in math, 8
universe, entropy of, 143
unstable equilibrium, 39

van der Waal's equation, 400,404, 411
variables

defined, 8
of state, 43

variable space, in math, 8
variance, 44
virial equations, 384, 411
virtual process, 51
volume

partial molar, 212
as thermodynamic potential, 98

work
definition, 70
electrical, 471
as inexact differential, 79
maximum in reversible processes, 80
piston-cylinder example, 74
sign conventions, 72

zeroth law, 60
zirconia cells, 497-99
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