and Logic Design
A Hands on Approach
by
JAAKKO T. ASTOLA
Institute of Signal Processing,
Tampere University of Technology,
Tampere,
Finland
and
RADOMIR S. STANKOVIĆ
Dept. of Computer Science,
Faculty of Electronics,
Niš,
Serbia

Fundamentals of Switching Theory

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 0-387-28593-8 (HB)
ISBN-13 978-0-387-28593-1 (HB)
ISBN-10 0-387-30311-1 (e-book)
ISBN-13 978-0-387-30311-6 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.
www.springer.com

Printed on acid-free paper

[^0]
Contents

Preface xi
Acronyms xiii

1. SETS, RELATIONS, LOGIC FUNCTIONS 1
1 Sets 1
2 Relations 2
3 Functions 4
4 Representations of Logic Functions 9
4.1 SOP and POS expressions 13
4.2 Positional Cube Notation 16
5 Factored Expressions 17
6 Exercises and Problems 19
2. ALGEBRAIC STRUCTURES FOR LOGIC DESIGN 21
1 Algebraic Structure 21
2 Finite Groups 21
3 Finite Rings 24
4 Finite Fields 25
5 Homomorphisms 27
6 Matrices 30
$7 \quad$ Vector spaces 33
8 Algebra 37
9 Boolean Algebra 38
9.1 Boolean expressions 40
10 Graphs 42
11 Exercises and Problems 44

3. FUNCTIONAL EXPRESSIONS FOR SWITCHING
 47 FUNCTIONS

1 Shannon Expansion Rule 50
2 Reed-Muller Expansion Rules 51
3 Fast Algorithms for Calculation of RM-expressions 56
4 Negative Davio Expression 57
5 Fixed Polarity Reed-Muller Expressions 59
6 Algebraic Structures for Reed-Muller Expressions 62
7 Interpretation of Reed-Muller Expressions 63
8 Kronecker Expressions 64
8.1 Generalized bit-level expressions 67

9 Word-Level Expressions 68
9.1 Arithmetic expressions 70
9.2 Calculation of Arithmetic Spectrum 73
9.3 Applications of ARs 74

10 Walsh Expressions 77
11 Walsh Functions and Switching Variables 80
12 Walsh Series 80
13 Relationships Among Expressions 82
14 Generalizations to Multiple-Valued Functions 85
15 Exercises and Problems 87
4. DECISION DIAGRAMS FOR REPRESENTATION OF
SWITCHING FUNCTIONS

1 Decision Diagrams 89
2 Decision Diagrams over Groups 97
3 Construction of Decision Diagrams 99
4 Shared Decision Diagrams 102
5 Multi-terminal binary decision diagrams 103
6 Functional Decision Diagrams 103
7 Kronecker decision diagrams 108
8 Pseudo-Kronecker decision diagrams 110
$9 \quad$ Spectral Interpretation of Decision Diagrams 112
9.1 Spectral transform decision diagrams 112
9.2 Arithmetic spectral transform decision diagrams 114
9.3 Walsh decision diagrams 115

10 Reduction of Decision Diagrams 119
11 Exercises and Problems 122
Contents vii
5. CLASSIFICATION OF SWITCHING FUNCTIONS 125
1 NPN-classification 126
2 SD-Classification 129
3 LP-classification 133
4 Universal Logic Modules 137
5 Exercises and Problems 145
6. SYNTHESIS WITH MULTIPLEXERS 147
1 Synthesis with Multiplexers 149
1.1 Optimization of Multiplexer Networks 151
1.2 Networks with Different Assignments of Inputs 153
1.3 Multiplexer Networks from BDD 154
2 Applications of Multiplexers 157
3 Demultiplexers 162
4 Synthesis with Demultiplexers 162
5 Applications of Demultiplexers 166
6 Exercises and Problems 168
7. REALIZATIONS WITH ROM 171
1 Realizations with ROM 171
2 Two-level Addressing in ROM Realizations 176
3 Characteristics of Realizations with ROM 180
4 Exercises and Problems 181
8. REALIZATIONS WITH PROGRAMMABLE 183 LOGIC ARRAYS
1 Realizations with PLA 184
2 The optimization of PLA 186
3 Two-level Addressing of PLA 189
4 Folding of PLA 191
5 Minimization of PLA by Characteristic Functions 194
6 Exercises and Problems 196
9. UNIVERSAL CELLULAR ARRAYS 199
1 Features of Universal Cellular Arrays 199
2 Realizations with Universal Cellular Arrays 201
3 Synthesis with Macro Cells 205
4 Exercises and Problems 208
10. FIELD PROGRAMMABLE LOGIC ARRAYS 211
1 Synthesis with FPGAs 221
2 Synthesis with Antifuse-Based FPGAs 222
3 Synthesis with LUT-FPGAs 224
3.1 Design procedure 225
4 Exercises and Problems 233
11. BOOLEAN DIFFERENCE AND APPLICATIONS IN 235 TESTING LOGIC NETWORKS
1 Boolean difference 236
2 Properties of the Boolean Difference 237
3 Calculation of the Boolean Difference 238
4 Boolean Difference in Testing Logic Networks 242
4.1 Errors in combinatorial logic networks 242
4.2 Boolean difference in generation of test sequences 246
5 Easily Testable Logic Networks 250
5.1 Features of Easily Testable Networks 251
6 Easily Testable Realizations from PPRM-expressions 251
7 Easily Testable Realizations from GRM-expressions 257
7.1 Related Work, Extensions, and Generalizations 263
8 Exercises and Problems 265
12. SEQUENTIAL NETWORKS 269
1 Basic Sequential Machines 271
2 State Tables 274
3 Conversion of Sequential Machines 277
4 Minimization of States 278
5 Incompletely Specified Machines 281
$6 \quad$ State Assignment 283
7 Decomposition of Sequential Machines 287
7.1 Serial Decomposition of Sequential Machines 287
7.2 Parallel Decomposition of Sequential Machines 290
8 Exercises and Problems 294
13. REALIZATION OF SEQUENTIAL NETWORKS 297
1 Memory Elements 298
2 Synthesis of Sequential Networks 302
3 Realization of Binary Sequential Machines 304
Contents ix
4 Realization of Synchronous Sequential Machines 306
5 Pulse Mode Sequential Networks 309
6 Asynchronous Sequential Networks 313
7 Races and Hazards 318
7.1 Race 319
7.2 Hazards 320
8 Exercises and Problems 322
References 325
Index 339

Preface

Information Science and Digital Technology form an immensely complex and wide subject that extends from social implications of technological development to deep mathematical foundations of the techniques that make this development possible. This puts very high demands on the education of computer science and engineering. To be an efficient engineer working either on basic research problems or immediate applications, one needs to have, in addition to social skills, a solid understanding of the foundations of information and computer technology. A difficult dilemma in designing courses or in education in general is to balance the level of abstraction with concrete case studies and practical examples.

In the education of mathematical methods, it is possible to start with abstract concepts and often quite quickly develop the general theory to such a level that a large number of techniques that are needed in practical applications emerge as "simple" special cases. However, in practice, this is seldom a good way to train an engineer or researcher because often the knowledge obtained in this way is fairly useless when one tries to solve concrete problems. The reason, in our understanding, is that without the drill of working with concrete examples, the human mind does not develop the "feeling" or intuitive understanding of the theory that is necessary for solving deeper problems where no recipe type solutions are available.
In this book, we have aimed at finding a good balance between the economy of top-down approach and the benefits of bottom-up approach. From our teaching experience, we know that the best balance varies from student to student and the construction of the book should allow a selection of ways to balance between abstraction and concrete examples.

Switching theory is a branch of applied mathematics providing mathematical foundations for logic design, which can be considered as the part

Figure 1. Switching theory and Fourier analysis.
of digital system design concerning realizations of systems whose inputs and outputs are described by logic functions. Thus, switching theory can be viewed as a part of Systems Theory and it is closely related to Signal Processing.

The basic concepts are first introduced in the classical way with Boolean expressions to provide the students with a concrete understanding of the basic ideas. The higher level of abstraction that is essential in the study of more advanced concepts is provided by using algebraic structures, such as groups and vector spaces, to present, in a unified way, the functional expressions of logic functions. Then, from spectral (Fourier-like) interpretation of polynomial, and graphic (decision diagrams) representations of logic functions, we go to a group-theoretic approach and to optimization problems in switching theory and logic design. Fig. 0.1 illustrates the relationships between the switching theory and Fourier analysis on groups. A large number of examples provides intuitive understanding of the interconnections between these viewpoints.

Consequently, this book discusses the fundamentals of switching theory and logic design from a slightly alternative point of view and also presents links between switching theory and related areas of signal processing and system theory. In addition, we have paid attention to cover the core topics as recommended in IEEE/ACM curricula for teaching and study in this area. Further, we provide several elective lectures discussing topics for further research work in this area.

Jaakko T. Astola, Radomir S. Stanković

Acronyms

ACDD	Arithmetic transform decision diagram
ACDT	Arithmetic transform decision tree
BDD	Binary decision diagram
BDT	Binary decision tree
BMD	Binary moment diagram
BMT	Binary moment tree
*BMD	*Binary moment diagram
DD	Decision diagram
DT	Decision tree
DTL	Decision Type List
EVBDT	Edge-valued binary decision diagram
EVBDT	Edge-valued binary decision tree
ExtDTL	Extended Decision Type List
FFT	Fast Fourier transform
FDD	Functional decision diagram
FDT	Functional Decision tree
FEVBDD	Factored edge-valued binary decision diagram
FPGA	Field-programmable gate array
FPRM	Fixed-polarity Reed-Muller expression
KDD	Kronecker decision diagram
KDT	Kronecker decision tree
LUT	Look-up-table
MPGA	Mask programmable gate array
MTBDD	Multi-terminal binary decision diagram
MTBDT	Multi-terminal binary decision tree
PKDD	Pseudo-Kronecker decision diagram
PKDT	Pseudo Kronecker decision tree
PLA	Programmable logic array
PPRM	Positive-polarity Reed-Muller expression
POS	Product-of-Sum expression
RAM	Random-access memory
ROM	Read-only memory
SBDD	Shared binary decision diagrams
SOP	Sum-of-Product expression
STDT	Spectral transform decision tree
STDD	Spectral transform decision diagram
TVFG	Two-variable function generator
ULM	Universal logic module
WDD	Walsh decision diagram
WDT	Walsh decision tree

[^0]: All Rights Reserved
 © 2006 Springer
 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

 Printed in the Netherlands.

