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Preface

I hope for this book to serve as a good starting point for students and researchers in
Semantic Web (SW) interested in discovering what Natural Language Processing
(NLP) has to offer. At a time when Open Data is becoming increasingly popular,
there is a pressing demand for tools to help the SW community transform those data
into a shareable, normalized format, making all these data accessible as Linked
Open Data. But a large portion of the data held by organizations seeking to make
their data openly accessible are not stored in tables, but in much less structured
forms, that is, textual forms such as reports, notes, memos, and articles. Manually
generating structured information from them seems like an insurmountable task.
Certainly, NLP can help uncovering the information held in text, thus augmenting
the real content of the Semantic Web in a significant and lasting way.

My main goal is not just to foster interest in NLP in the readership, but
awareness of how useful it can be to the Semantic Web community. I will not delve
very deeply into linguistic principles, but instead focus on how NLP approaches
different kinds of problems and provides solutions to them. My aim is also to show
how, for the past 40 years, researchers in NLP have been interested in problems
closely related to the ones faced by the Semantic Web community. Problems such
as ambiguity and linking of knowledge are not specific to one field or the other, but
central to both.

This book covers the basics of Natural Language Processing (NLP), with a focus
on Natural Language Understanding (NLU). Here, understanding refers to semantic
processing, Information Extraction, and knowledge acquisition, which I see as the
key links between the SW and NLP communities. Much emphasis will be placed on
mining sentences in search of entities and relations. In our quest in NLU, we will
encounter challenges for various text analysis tasks, including part-of-speech tag-
ging, parsing, semantic disambiguation, Named Entity Recognition, and Relation
Extraction. I will present the standard algorithms associated with these tasks so as to
provide an understanding of the fundamental concepts. Furthermore, I chose to
emphasize the importance of experimental design and result analysis, and for doing

v



so, most chapters show small experiments on corpus data with quantitative and
qualitative analysis of results.

I assume that readers are familiar with the Semantic Web and are looking to
learn about NLP in order to expand their horizons. That being said, the book
provides enough information for a reader new to both fields to understand their
underlying principles and the challenges they face. Also, the reader should be
familiar with algorithms and simple programming principles, as this book will often
use algorithms to describe problem-solving approaches.

Since I chose to cover a small number of simple algorithms in details, I do
include a Further Reading section in most chapters for links to relevant
state-of-the-art research in which readers can find more complex algorithms.
I believe that understanding the fundamentals within basic algorithms is the best
preparation for understanding more complex algorithms. I hope that through this
book, important challenges in NLP will become familiar to the reader and that the
book will stimulate the reader’s interest in investigating them further.

Montreal, Canada Caroline Barrière
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Chapter 1
Introduction

Natural Language Processing (NLP) is a large research field, and although it has
evolved over recent decades,many of the fundamental difficulties being tackled today
are similar to those people were grappling with fifty years ago. The introduction of
electronic corpora in the early 1990s, combined with the rise of internet accessibility
in the later part of the decade, causedNLP to take a sharp statistical turn toward corpus
analysis, increasing its overlap with the fields of machine learning and information
retrieval. These changes led to the surfacing of new challenges, such as question-
answering using large corpora, as well as new data-oriented statistical views on
linguistic problems, such as measuring distributional similarities between words.
Although these changing tides have had positive effects on the field of NLP, some
underlying problems related to the understanding of language remain to this day.

In my view, language understanding implies the transformation of text into a
deeper representation, one on which reasoning can occur. Admittedly, this view is
more in line with the traditional view of artificial intelligence (AI) than with current
trends in NLP, but this is not to say that the content of this book will be old-fashioned.
On the contrary, it is intended to introduce current available resources and up-to-date
algorithms, and to revisit the fundamental goal of Natural Language Understanding
(NLU) from the point of view of the research field as it is today.

1.1 Scope

Since this book is primarily concerned with exploring what NLP has to offer to the
SemanticWeb community (and other research communities interested in knowledge
representation), there are many subfields of NLP that will not enter into the discus-
sion. These include Machine Translation, text summarization, text categorization,
and others. The subfield that will be central to this book is Information Extraction
(IE). It is through the study of IE that this book can show the important contribu-
tion that NLP can make to the Semantic Web community that of providing methods
toward the transformation of unstructured data (e.g., textual information) into struc-
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2 1 Introduction

tured data (e.g., the SemanticWeb datastore), being particularly helpful for ontology
population.

IE is a well-established area of study in NLP, with important research results
dating back to the Message Understanding Conferences (MUC) of the 1990s. IE is
also quite wide reaching, ranging from the acquisition of structured information from
text involving company mergers to text presenting biographical facts about people. It
even has modern-day commercial applications, such as the extraction of dates from
e-mail messages for the purpose of automatically suggesting calendar events.

Common to all research in IE is the need to extract two important types of infor-
mation: entities and relations. Each of these is important and complex enough in
itself to have an entire subfield of NLP research devoted to it. In the study of entities,
the fields of Named Entity Recognition and Entity Linking are highly active today.
The primary focus of Named Entity Recognition is searching for dates, locations,
organizations, and other types of entities in text. Entity Linking involves linking
particular mentions of entities in text back to their definitions. These definitions of
entities are often taken from Wikipedia, an incredibly vast and openly accessible
source of knowledge. As for the study of relations, the task of Relation Extraction
is concerned with attempting to find occurrences of relations in text, in order to bet-
ter link entities. For example, Relation Extraction could find information in text that
would lead to the conclusion that a particular person is the director of a movie, not
its leading actor.

This bookwill focus on both entities and relations. Through the use of IEmethods,
we will aim to extract both from text, in order to express them within a structured
representation.

1.2 Approach

Although we have reduced the scope of this book to focus mainly on Information
Extraction (IE), this subfield is itself quite large and diverse, and attempting to capture
both its depth and its breadth in a single book would be ambitious to say the least.
For this reason, we will adopt a breadth coverage approach in this book, meaning
we will complete a general investigation of most areas of the field, but will not delve
into the finer details of any one. The reader will be introduced to several problems
facing IE and will learn a few simple algorithms for approaching each one.

For each topic that is covered, rather than providing the details of the multiple
algorithms in current research, I will focus on the intuitions that inform them. It is
crucial to grasp the underlying principles, general trends, and baseline algorithms if
we hope to gain a solid general understanding of the field of IE. This will also provide
us with the knowledge necessary for informed consideration of current research.
That said, for the reader who is interested in learning more about particular topics,
each chapter will include a Further Reading section to gather pointers to research
surveys and relevant research articles. These sections will also serve to consolidate
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all references for the algorithms and elements of discussions presented within their
corresponding chapter, making this information easier to find at a later date.

An important feature of this book is a focus on experimentation and analysis of
results. Much current research in NLP is experiment-driven, an approach that is pro-
moted by the various international competitions that have emerged in recent years
(these cover various NLP tasks including Word Sense Disambiguation, Question
Answering, and Machine Translation). This book will follow this trend and empha-
size the design of experiments, as well as the analysis of results, even when it
comes to the simplest of approaches. During our analysis of experiments’ results,
emphasis will be put on the importance of performing both qualitative analysis and
quantitative analysis, so as to both understand the reasons for which algorithms
succeed or fail, and provide measures of their performance.

Another commonality among the various chapters is the use of Wikipedia as a
source of textual information. In order to perform Information Extraction, we require
text to analyze, and from which to extract information. Being free, accessible and
of considerable size makes Wikipedia the ideal resource for the learning examples
presented in this book. That being said, we will discuss throughout the book how
Wikipedia only covers one genre of text (informative texts) which might not be
appropriate for all extraction tasks.

1.3 Prerequisite Knowledge

This book promotes a very hands-on approach to the study of Natural Language
Processing, which rests on the assumption that readers have a certain amount of
previous knowledge of algorithms and software programming. Most NLP strategies
will be explored through the use of algorithms, and as such, the reader is assumed
to be capable of reading and understanding individual steps of algorithms, and of
programming them for analysis of results.

No knowledge of NLP is assumed on the part of the reader. This book is intended
to take the reader from an initial introduction of the basic concepts of NLP, gradually
toward an eventual understanding of the more advanced concepts that appear in its
later sections.

A certain amount of knowledge about the SemanticWebwill be assumed.As such,
I steer readers less familiar with the Semantic Web to Appendix A, which provides
a concise overview of the required material. Appendix A also introduces the query
language SPARQL,which is useful for finding informationwithin the SemanticWeb.

Being that the focus of this book is on language analysis as opposed to mathemat-
ical models, it is accessible to a large audience and does not assume any preexisting
knowledge of advanced mathematics. As a consequence of this, machine learning
approaches are excluded (except for mention of word embeddings in Chap.10), even
though they have a large influence on current researchmethods. This is not to say that
these machine learning approaches are unimportant. On the contrary, they are highly
relevant in today’s world of NLP, and those readers who are interested are strongly

http://dx.doi.org/10.1007/978-3-319-41337-2_10
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encouraged to complement the knowledge containedwithin this bookwith additional
knowledge ofmachine learning. Here though, the only statistical models wewill con-
sider are those that are required for corpus analysis. Furthermore, when considering
these models, details of the mathematical processes involved will be explicitly pro-
vided, in order to accommodate the range of mathematical backgrounds among the
readership.

1.4 Structure

This book is divided into four parts, each containing three chapters.
Part I, Searching for Entities in Text, is dedicated to the search for entities in

textual data. It begins with Chap. 2, Entities, Labels, and Surface Forms, which
discusses the fundamental many-to-many relationship between concepts and lexical
units, as well as the multiple ways language has of referring to concepts. Then
Chap. 3, Searching for Named Entities, expands the search for individual entities
to the classes of entities. This chapter also introduces a common and essential tool
of NLP, regular expressions. Finally, Chap. 4, Comparing Surface Forms, presents
two algorithms (Edit Distance and Soundex) used for discovering surface forms in
text that have been altered by typographic errors.

Part II, Working with Corpora, is dedicated to an investigation of corpora as
valuable resources for NLP work. Chapter 5, Exploring Corpora, discusses the
various types of corpora and provides a sense of how words behave inside them. It
takes us through both a quantitative exploration of corpora using word frequency
measures and a qualitative exploration using a concordancer. Secondly, Chap. 6,
Words in Sequence, provides a brief introduction to probabilistic modeling of word
sequences, revealing the often predictable nature of words’ occurrences in text. The
ideas presented in the first two chapters are transposed to a bilingual context in
Chap. 7, Bilingual Corpora, toward applications of automatic language detection
and term equivalent search.

Part III, Semantic Grounding and Relatedness, is focused on the process of
linking surface forms found in text to entities in resources. Its first chapter,Linguistic
Roles (Chap.8), introduces NLP processes of tokenizing, part-of-speech tagging,
and parsing, in order to shed light on the linguistic nature of words. Determining the
linguistic nature of aword can be thought of as the first step toward its disambiguation
(e.g., to cook versus a cook). Next, Chap. 9, Definition-Based Grounding, tackles
the problems ofWord Sense Disambiguation and Entity Linking, which occur within
a particular part of speech (e.g.,mouse as a computer device versus a small animal, or
Paris as the city in France or the name of a person). This chapter adopts a definition-
based approach, since it considers the similarity between the context of occurrence of
a surface form and the definitions of all the possible word senses or entities it can be
linked to. In order to help disambiguation, additional contexts of occurrence in a text
can be discovered through coreference analysis, which is a very difficult NLP task of
whichweonly skim the surface. Finally,Chap. 10,Relatedness, takes us back into the

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_4
http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_7
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_10
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realm of statistical corpus analysis, in order to discover relatedness between words.
Knowledge of words’ relatedness can be beneficial in many different NLP tasks, and
we show one example of this by revisiting the definition-based grounding algorithm
from the previous chapter and use word relatedness to increase its performances.

Part IV, Knowledge Acquisition, delves into the world of relations and Relation
Extraction. First, Chap. 11, Pattern-Based Relation Extraction, looks into pattern-
based approaches to Relation Extraction in text. It revisits regular expressions as
possible implementations of lexical and lexico-syntactic pattern searches. The under-
lying purpose of the task will be ontology population, also called knowledge base
expansion. Chapter 12, From Syntax to Semantics, first introduces dependency
grammars for performing syntactic analysis, then moves on to an exploration of
semantic frames as providing a structured representation for the semantic interpre-
tations of sentences. The path from dependency graphs to semantic frames is a chal-
lenging one and is the focus of the remainder of the chapter. In Chap. 13, Semantic
Types, we consider the constraints that semantic relations or semantic frames impose
on their participants. For example, when defining a relation between an employee
and an employer, that relation requires that the employee be of type Person and the
employer of type Organization. Named Entity Recognition will be introduced as
one possibility for identifying standardized semantic types in text, such as Location,
Person and Duration. As for less standardized semantic types (e.g., Food or Con-

tainer), we will investigate their presence in various resources, as well as strategies
for automatically discovering instances of these particular types through searches in
text.

This book also includes three appendices.Appendix A, A Look into the Semantic
Web, provides a brief overview of the Semantic Web. It is intended to bring readers
less familiar with the Semantic Web up to speed, so that they too can fully benefit
from the material of this book. Appendix B, NLP Tools and Platforms, provides
information about NLP platforms and tools. Appendix C, Relation Lists, gathers
lists of relations under different categories, showing how relations can be varied and
serve different purposes.

Finally, this book provides an extensive Glossary of terms. The glossary consoli-
dates the definitions of all the NLP-related terms used over the course of the book and
is to be used as a reference whenever necessary. Throughout the text, the reader will
find terms emphasized but not necessarily completely defined when first mentioned,
perhaps because they refer to concepts explained in a later chapter. In such cases,
the reader can minimally use the glossary to find short definitions to help his/her
comprehension of the material.

1.5 Learning Paths

This book is structured to comprise an incremental study of NLP. We will construct
the more advanced knowledge found toward the end of the book out of the simpler
pieces of knowledge we gather over the beginning sections. This means that later

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_13
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chapters will often refer back to material from earlier chapters. However, so as not to
force a linear reading of the book, many references to previously learned knowledge
will bemade explicit, allowing the reader to seekout themissingpieces of information
when desired.

I recognize that goals, aims, and reasons for approaching this book can vary
among readers. While one person may be looking for a thorough, all encompassing
understanding of Information Extraction, someone else may desire a shorter, more
concise overview of only the key elements, perhaps to complement their studies in
another area. For this reason, I have outlined various learning paths one could follow
through this book. The shortest path covers only crucial chapters, while the longer
ones include additional chapters that deal with particular interests or niche areas of
NLP. The hope is that, in this way, each reader can get out of this book what he or
she is seeking.

For the reader seeking to work through the material of this book in a more con-
centrated fashion, the short path (7 chapters) may be the best option. Begin with
Chaps. 2 and 3, to grasp the fundamentals of searching for entities in text. Next, move
on to Chap.5, to learn about corpora. Corpora provide the source material (text) for
IE to apply its algorithms on. Then, skip right to Chaps. 8 and 9, which together will
provide the basics of linking surface forms found in corpora to entities described in
resources. Lastly, Chaps. 11 and 12will provide important knowledge about Relation
Extraction and semantic interpretation of sentences.

A slightly more thorough route would be to take the longer semantic exploration
path (9 chapters). This path adds Chaps. 10 and 13, which provide additional insight
aboutword relatedness and semantic types, both quite important for Entity Linking
and semantic interpretation of sentences.

Then, there are three additional chapters, corresponding tomore specific interests.
The reader interested in applying IE on noisy texts (e.g., e-mails, sms, and blogs)

would do well to add Chap.4 to their reading. This chapter provides algorithms for
comparingwords that are similar sounding, as well as those that contain orthographic
errors.

The reader wanting to learn basics in statisticalmodels of language can addition-
ally read Chap.6, in order to gain an understanding of sequence models, commonly
used in word prediction, error correction, and even Machine Translation.

Finally, Chap. 7 contains pertinent information for those interested in bilingual
corpora as it provides the statistical tools for finding information in a bilingual
parallel corpus, such as term equivalents, which are terms in different languages
linking to the same concept.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_10
http://dx.doi.org/10.1007/978-3-319-41337-2_13
http://dx.doi.org/10.1007/978-3-319-41337-2_4
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_7


Part I
Searching for Entities in Text

Our starting point is a knowledge base within the Semantic Web that contains a
certain amount of information about select entities. Our objective will be to search
in text for further information about those entities.

Below are three entities, provided by three URIs (Uniform Resource Identifiers)
taken from DBpedia.1 All three refer to specific instances of people or places.

http://dbpedia.org/resource/Mount_Everest
http://dbpedia.org/resource/Wolfgang_Amadeus_Mozart
http://dbpedia.org/resource/Ireland

We will also see the term entity used to refer to generic objects, such as those
seen below. These do not refer to a specific mobile phone or one particular Chinese
cabbage bought on a certain day, but rather to anymobile phone orChinese cabbage.

http://dbpedia.org/resource/Mobile_phone
http://dbpedia.org/resource/Chinese_cabbage

The information we seek regarding specific and generic entities can be quite
varied, as demonstrated by the following questions:

What is the height of Mount Everest?
When was Wolfgang Amadeus Mozart born?
What is the capital of Ireland?
When were mobile phones invented?
What is the typical color of a Chinese cabbage?

Answers to these questions may very well be somewhere in the Semantic Web
datastores, but they may not be. For example, answers to the first two questions
are available within DBpedia, but answers to the last three are not.2 In cases where
DBpedia (or any other datastore) does not provide the answer, we hope that tex-
tual data will contain an answer which can be uncovered through the process of
Information Extraction.

1DBpedia is an important resource of the Semantic Web and can be accessed at http://dbpedia.org.
2The inclusion of these predicates in DBpedia was validated in the summer of 2015.

http://dbpedia.org/resource/Mount_Everest
http://dbpedia.org/resource/Wolfgang_Amadeus_Mozart
http://dbpedia.org/resource/Ireland
http://dbpedia.org/resource/Mobile_phone
http://dbpedia.org/resource/Chinese_cabbage
http://dbpedia.org
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In Information Extraction, the first step toward finding answers to questions like
the ones above is to find mentions of the relevant entities in text. Given that entities
often have multiple names; however, our quest into text should account for this by
searching them in their various surface forms. For example, if we are searching for
information about Mozart, we might also search his other names, such as Wolfgang
Amadeus Mozart and W.A. Mozart. Likewise, a search for Chinese cabbage should
include synonyms such as bok choy. Entities and their multiple surface forms will
be the focus of Chap. 2, Entities, Labels, and Surface Forms.

Certain information in text is better searched for based on the type of information
it has. For example, a search for when Mozart was born would involve searching
for textual information corresponding to the specific entity type Date. On the other
hand, a search for the capital of Ireland would seek information corresponding to
a Location, or more precisely a City. There are various entity types that are quite
common, such as Person, Duration, and Organization, and other less common ones,
such as Politician and Symphony. Furthermore, certain entity types such as dates have
particular, predictable formats (i.e., May 2 2015 or 15 June 2014), which make them
easier to find in text relative to other, less predictable ones. To search for entities with
predictable formats, we can use regular expressions, a very powerful text search
tool that is commonly used in Natural Language Processing. One goal of Chap. 3,
Searching for Named Entities, will be to demystify regular expressions.

In Chap. 4, Comparing Surface Forms, we will learn how to address instances of
surface forms that contain typographic errors, for example, musician misspelled as
misicien, by matching them to existing words in our vocabulary. This matching can
be accomplished via anEdit Distance algorithm, looking at letter deletion, insertion,
and substitutions. Another algorithm, called Soundex, relies instead on the sounds
of words for resolving cases of typographic error. We will also explore Soundex in
this chapter and compare it with Edit Distance.

The knowledge we acquire over the course of the following three chapters will
provide us with the necessary tools for Searching for Entities in Text.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_4


Chapter 2
Entities, Labels, and Surface Forms

The starting point for Information Extraction (IE) is textual data in the form of a
document, a set of documents, or even a set of individual sentences in which we will
search for information. For now, let us refer to any such textual data as a corpus.1

Let us set our first IE goal as to find all sentences from a corpus in which a particular
entity is mentioned.

In this chapter, we will look into a first obstacle toward this seemingly sim-
ple IE goal: the fact that entities do not have normalized names. Instead, entities
can be referred to by many different surface forms. For any entity searched (e.g.,
dbr:Wolfgang_Amadeus_Mozart), there could be various associated surface forms
present in the corpus (e.g.,W.A. Mozart, Amadeus Mozart, Mozart), and knowledge
of these surface forms is necessary to achieve our goal. We will introduce a measure
called recall measure to evaluate the extent to which a set of known surface forms
suffices for retrieving all of an entity’s textual mentions.

The search in the corpus for a particular surface form is likely to output sentences
unrelated to the entity we are looking for. That is due to polysemy. Polysemy is the
word used to describe the fact that a surface form (e.g., Mozart) can be associated
with many entities (e.g., Wolfgang Amadeus Mozart, Café Mozart, Mozart Street).
We will introduce a secondmeasure called precision measure, to evaluate the extent
to which the sentences retrieved from the corpus actually lead to the desired entity.

Which surface forms are available to the IE process largely influences its precision
and recall.Wewill exploreDBpedia as a resource inwhich surface forms can be found
and further provided to the IE process. DBpedia contains surface forms explicitly
stated through the standard naming predicates (e.g., rdfs:label, foaf:name). But
we will shift our attention toward a non-standard naming predicate, the predicate
dbo:wikiPageRedirects, as to explore a larger, but more eclectic set of candidate
surface forms. Studying this eclectic set reveals semantic variations (e.g., quasi-

1We will further discuss definitions of the word corpus in Chap.5, Sect. 5.1.
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synonym, related word), lexical variations (e.g., plural, singular), and orthographic
variations (e.g., capitalization of the first letter, use of hyphen) as surface forms to
be expected to occur in text.

We will suggest generative rules to construct some of an entity’s associated
surface forms automatically, as to provide the IE process with an even larger set of
surface forms. We will then briefly look at surface forms from a multilingual point of
view, as provided by DBpedia. Finally, we will discuss the most problematic surface
forms: pronouns. Mentions of entities in text through the use of pronouns such as
it, them, or he make it very difficult for IE.

2.1 A First Surface Form: Entity Label

I am interested in the composer Ludwig van Beethoven. I find an entity referring to
him in DBpedia under the URI dbr:Ludwig_van_Beethoven. The Semantic Web
provides a network ofUniversal Resource Identifiers (URIs) to uniquely identify con-
cepts.2 Such normalization is necessary for the sharing of information and is ideal
for communication amongmachines. In IE, on the other hand, the source of informa-
tion to analyze textual data has been written by humans for human consumption. In
such human-to-human communication channel, there is no notion of normalization,
quite the opposite actually, as creativity is usually valued in such communication.
Therefore, for an IE process to search in text, it requires knowledge of the surface
forms likely to be used by the writers of text to refer to various concepts, surface
forms that are also likely to be understood by readers of these texts.

The Semantic Web contains a certain number of naming predicates that provide
alternate surface forms for entities. Some commonly used naming predicates are
foaf:name or rdfs:label as in the following examples3 providing two different
names for the desired entity:

(dbr:Ludwig_van_Beethoven, rdfs:label, “Ludwig van Beethoven”)
(dbr:Ludwig_van_Beethoven, foaf:name, “Beethoven, Ludwig van”)

These surface forms can be provided to the IE process to search for their occur-
rences in the BeethovenCorpus, which contains 12 sentences, as shown in Table2.1.

The IE process finds the first surface form Ludwig van Beethoven in sentences
{1,4,8}. We can then assume that this set of sentences contain information about our
entity of interest. If we provide the second surface form Beethoven, Ludwig van to
the IE process, it leaves us with an empty set. Although a valid surface form, it is not
one commonly used in text and no sentences of the BeethovenCorpus contains it.

So, how successful is the IE process so far? It might seem early in our quest to
think of evaluating our method, but it is not. It is never too early.

2An introduction to the Semantic Web is provided in Appendix A.
3Prefixes associated with various Semantic Web data provider sites are listed at the beginning of
this book.
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Table 2.1 The small Beethovencorpus

No. Sentence

1 The Andante favori is a work for piano solo by Ludwig van Beethoven.

2 The other great passion of the young Mirabehn was the music of van Beethoven.

3 L.V. Beethoven spent the better part of his life in Vienna.

4 Charles Munch conducted the symphony no. 9 of Ludwig van Beethoven in 1962.

5 Among the few composers writing for the orphica was Ludvig von Beethoven.

6 Betthoven, too, used this key extensively in his second piano concerto.

7 Naue went to Vienna to study briefly with von Beethoven.

8 Bonn is the birthplace of Ludwig van Beethoven (born 1770).

9 Johann van Beethoven joined the court, primarily as a singer, in 1764.

10 Camper van Beethoven were inactive between late 1990 and 1999.

11 Beethoven, meanwhile, runs after a loose hot dog cart and ends up on a merry-go-round.

12 Beetehoven hit theaters in april 1992.

2.2 Experiment — Searching for Beethoven

Evaluation is a major focus of NLP, and new methods presented by researchers are
always regarded relative to other methods or established baselines. So far, we can
consider that we have defined a baseline algorithm, meaning a first simple method.
Our baseline algorithm for finding information about a particular entity consists of
searching in text using the surface form provided by the predicates rdf:label and
foaf:name. Once we have evaluated the performance of this baseline algorithm, we
will move on to suggest new ideas and hope these will lead to improvements.

Themost common evaluationmeasures are based on a comparison between a gold
standard and an algorithm (or system). The gold standard defines what is correct
and incorrect, and our system tries to mimic it.

A contingency table, as shown in Table2.2, summarizes the system’s various
possible results in relation to the gold standard. If the system turns up a correct
answer, we have a true positive (TP). If the system thinks an answer is correct but it
is not, then we have a false positive (FP). If the system thinks the answer is incorrect
when in fact it is correct, we have a false negative (FN). Lastly, if the system rightly
identifies an answer as incorrect, then we have a true negative (TN).

Table 2.2 Contingency table

Gold standard

correct incorrect

System correct true positive (TP) false positive (FP)

incorrect false negative (FN) true negative (TN)
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Typical evaluation measures derived from the contingency table are as follows:

Recall = T P

T P + FN

Precision = T P

T P + FP

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall

Reject = T N

T N + FP

Accuracy = T P + T N

N
N = T P + T N + FN + FP

In Natural Language Processing, the first three measures, recall, precision, and
F1, are themost commonly used. As youwill see throughout this book, we constantly
try to balance the precision and recall of algorithms as we search for information in
text.We hope for high recall as an indication that our algorithmdid notmiss important
information and we hope for high precision as an indication that the algorithm did
not dilute the important information among many irrelevant candidates. Sometimes,
an application dictates whether high recall or high precision is more important, but if
that is unknown, then the F1 measure is a good compromise, since it combines both
measures by calculating the harmonic mean between recall and precision.

In our example, assumingwe use theBeethovenCorpus to define our gold standard,
the entity dbr:Ludwig_van_Beethoven is referred to in sentences 1 to 8, making
these sentences positive examples. Sentences 9 to 12 are negative examples referring
to three other entities with very similar names. We compare our baseline algorithm,
searching using the surface form Ludwig van Beethoven, against this gold standard.
Since our algorithm identifies only the three sentences {1,4,8} as correctly relating
to the entity dbr:Ludwig_van_Beethoven, it provides 3 true positives. The full
contingency table is shown in Table2.3, and the derived precision/recall measures
follow.

Table 2.3 Contingency table for baseline algorithm of Ludwig van Beethoven search

Truth (Gold standard)

correct incorrect

Baseline search correct 3 0

incorrect 5 4

Precision = 3

3
= 100%

Recall = 3

8
= 37.5%

F1 = 2 ∗ 100 ∗ 37.5

100 + 37.5
= 54.5%

These results show that our baseline algorithmprovides a high degree of precision,
but unfortunately it comes at the expense of recall, which is low. We missed many of
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the positive sentences from the gold standard in which the entity’s full surface form
was not used. Let us see in the next section how recall can be improved, hopefully
without loosing in precision.

2.3 Looking for Additional Surface Forms

As in any search problem, the goal is to improve on our precision and recall. So far
we have a good level of precision in our baseline algorithm, because our query is
very specific. To obtain higher recall, we will have to relax the query somewhat, or
add alternative names. The predicate dbo:wikiPageRedirects found in DBpedia
is a good place to find alternative names, since it provides all the redirect links used
in Wikipedia to access a desired page. It shows us the various ways humans attempt
to find a particular Wikipedia page, and we can assume that the same ones would
apply to text.

Through the DBpedia SPARQL endpoint, we can find the redirect links using the
following SPARQL query, which returns 53 variations4:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

select ?X where {

?X dbo:wikiPageRedirects dbr:Ludwig_van_Beethoven .

}

Table 2.4 Examples of redirect links to dbr:Ludwig_van_Beethoven and matching sen-
tences from BeethovenCorpus

No. Redirects Sentences retrieved

1 Beethoven 1, 2, 3, 4, 5, 7, 8, 9, 10, 11

2 Beethovens

3 Baytoven

4 Beeethoven

5 Beetehoven 12

6 L.V. Beethoven 3

7 Ludvig von Beethoven 5

8 Ludwig van Beitoven

9 van Beethoven 1, 2, 3, 8, 9, 10

10 von Beethoven 5, 7

The second column of Table2.4 shows a sample of these variations. As you can
see, these surface forms vary in their nature. Some are abbreviations, some are short

4Information about SPARQL can be found in Appendix A. The DBpedia SPARQL endpoint is at
the address http://dbpedia.org/sparql. The number of variations returned by the query is likely to
vary depending on the date you access the site, as DBpedia is expanding every day.

http://dbpedia.org/sparql
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forms, and others include orthographic errors. We will look more closely at these
variations in the next section, but for now let us focus on the impact of using them
in our search on the BeethovenCorpus.

Assuming we include all variations in our search, how does this influence our
results? The third column of Table2.4 shows the sentences retrieved by each surface
form. We can summarize the results in the contingency table shown in Table2.5, and
the equations that follow show the new precision, recall, and F1 results.

Table 2.5 Evaluation of search using surface forms provided by the redirect links

Truth (Gold standard)

correct incorrect

System correct 7 4

incorrect 1 0

Precision = 7

11
= 63.6%

Recall = 7

8
= 87.5%

F1 = 2 ∗ 63.6 ∗ 87.5

63.6 + 87.5
= 73.7%

Using all variations, our recall is now at 87.5%, but our precision has dropped to
63.6%. This is typical of a query expansion process in information retrieval, which
is precisely the process we have engaged in. This trade-off between precision and
recall is often the struggle in searches for information in text, whether they involve
entities, as seen here, or relations, which we will investigate in later chapters. Our
strategy will therefore depend on our ultimate purpose. If the goal is really to not
miss anything, assuming a human reviewer will later filter the results, we should
aim for high recall. On the other hand, if we are less concerned with capturing every
possibility andmore with presenting tailored, quality results to a user, then we should
aim for high precision.

In our example, the surface form vanBeethoven leads us to include sentences about
the rock band Camper van Beethoven, as well as one about Johann van Beethoven,
Ludwig’s father. The surface form Beethoven included sentences about the movie
Beethoven, which features a dog named Beethoven. This could be problematic if we
intend to use these results as the basis for a later fact extraction algorithm. Including
sentences about the rock band and/or the movie is bound to lead to errors or even
ridiculous facts.

We are now confronted with the significant problem of polysemy. Surface forms,
especially those that aremadeupof singlewords, havemultiplemeanings. The longer
form Ludwig van Beethoven ensured that we were finding relevant sentences. Relax-
ing our query to Beethoven also returned relevant sentences, but with them many
other, less relevant ones which we will have to somehow filter out. One important
approach to dealing with polysemy is to develop disambiguation algorithms, some-
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thing we will look at in Part III of this book, investigating Semantic Grounding and
Relatedness.

Before moving on, there are a couple of things we should take note of. First,
notice that when we apply an all encompassing pattern such as Beethoven, all the
more precise variations are subsumed by it and defining them becomes less useful.
Also, although we had many variations to search for, sentence 6 is still missing
from our results. That sentence contains the misspelled form Betthoven which was
not included in the known variations. We will further explore misspelling errors in
Chap.4.

For now, let us continue on our exploration of name variations.

2.4 Categorizing various Surface Forms

As we search for information in text, we may be interested in specific entities (e.g.,
Ludwig van Beethoven) as we have seen thus far, or our interest could be geared
more toward generic entities (e.g., garden, laptop computer). Similar to specific
entities, the surface forms provided by naming predicates for generic entities are
usually insufficient for searches in text. For example, if we want to know about
mobile phones, the only label provided in DBpedia is Mobile phone.

However, people tend to be very creative in how they refer to particular concepts.
To demonstrate this point, Table2.6 shows a subset of the results returned by the
following SPARQL query:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

select ?X where {

?X dbo:wikiPageRedirects dbr:Mobile_phone .

}

Table 2.6 Examples of dbo:wikiPageRedirects for the URI of Mobile_phone in DBpedia

Cell_phone Cellular_mobile Cellular_telephone

Celluar_telephone Cellular_Radio Cellular_phones

Mobile_cellular Handphone Mobile_Phones

Cell_telephones Cell_phones Hand_phone

Cell_phone_carrier Cellular_radio How_mobilephones_work?

Mobile_telecom Cell_Phone Cellphones

Cell-phone Cellular_telephones Mobile_phones

Mobile_communications Mobile_Phone Cellular_phone

Flip_phones Mobile_telephone Wireless_phone

Mobile_telephones Cellular_Telephone Cell_Phones

Cell_phone_dance Cellphone Cellphone_video

http://dx.doi.org/10.1007/978-3-319-41337-2_4
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To be sure, not all the variations in Table2.6 are proper synonyms for mobile
phone. So what are they? Should we include them all in our search, or not? Let us
begin to answer these questions by characterizing the variations found in the table.

Real synonyms Many of the variations are real synonyms ofmobile phone, meaning
the two surface forms are completely interchangeable in a sentence. Many variations
also show that mobile phone has a compositional meaning, formed by the individual
meanings of mobile and phone. Being that it is compositional, mobile phone allows
for variants of both components of the expression. The first word, mobile, has the
variants cell and cellular, and the second word, phone, has the variant telephone.
Together, these variants lead to multiple possible combinations.

Quasi-synonyms Flip phone, hand phone, and wireless phone are loose extensions
of mobile phone and could probably be used interchangeably with mobile phone
in certain contexts, but not always. Quasi-synonyms are very common in language,
much more so than real synonyms.

Uppercase variations Many variations simply come from using the uppercase for
the first letter of either or both words, such as in Cell phone or cell Phone.

Orthographic variations Different ways of combining the words lead to ortho-
graphic variations. Examples here include the use of a hyphen in cell-phone, the use
of a space in cell phone, and even the two words being combined into a single word
in cellphone.

Plural form Some variations come from the use of the plural, such as cell phones
and mobile phones.

Typographic error Some variations included in the redirect links are simply to
ensure that the Wikipedia entries are reached even if the user makes a typographic
error, such as in celluar telephone.

Related topics Variations such as How mobile phones work?, Cell phone carrier,
cellphone video, cellular radio, and Mobile telecom are certainly related to mobile
phone, but they are neither synonyms nor quasi-synonyms.

Given all of these variations, which one(s) should we use to expand our search
in text? As we have seen, anything we add will increase recall but runs the risk of
decreasing the precision of our results.

It is safe to say that real synonyms should be used in a search. The more precise
the synonym, the less likely it is to introduce noise and lower the overall precision
of our algorithm (e.g., cellular phone). On the other hand, introducing a synonym
like mobile in our search is very likely to create noise, given its polysemous nature.

As for quasi-synonyms, they canbe tricky.There are timeswhenwe should include
all of them in a single search, especially if our goal is to search for information at a
general level. Other times though, we will want to understand the difference between
quasi-synonyms, in which case they should be searched for individually.

Typographic errors are fairly important for searches in noisy corpora (e.g., Web,
e-mails, etc.), but much less so for searches in books or Wikipedia. Chapter 4, Com-
paring Surface Forms, looks at algorithms to automatically evaluate the distance

http://dx.doi.org/10.1007/978-3-319-41337-2_4


2.4 Categorizing various Surface Forms 17

between two strings, such as Celuar and Cellular. Such algorithms are very helpful
in analyzing text, since predicting all possible typographic errors ahead of time is
not possible.

When it comes to uppercase and plural forms, as a rulewe should probably include
them in our search. The exception would be in searches for company names (e.g.,
Apple versus apple), where the differentiation lies in the first letter being capitalized.
Contrarily to typographic errors, variations such as plural or uppercase forms are pre-
dictable, which makes it possible to write algorithms for generating these variations
ahead of time. That is the topic of the next section.

2.5 Expanding the Set of Surface Forms with a Generative
Approach

Despite being listed as wikiPageRedirects, certain surface form variations of entities
can be generated automatically, and doing so will allow us to obtain a more complete
list of variations. For example, ifMobile phone and cell phones are included on our
list, why should not Cell phones, Cell phone, Mobile phones, and mobile phones
also be there? It would be possible to generate all of these variations with only two
rules, one for changing the first letter to uppercase and another for adding the plural
marker ‘s’.

Rather than listing all variations, we can write generative rules in order to derive
all variations from a subset of elements. These generative rules are most valuable
since they can be applied generally, to all Wikipedia entries (not just mobile phone).
A rule for first letter capitalization is a good example of one that would be generally
applicable. Other examples are rules for orthographic variations (hyphens, spaces,
single word) as well as ones for plural variations, even though plural rules must be
adapted to word endings (e.g., story/stories).

Since rules can be applied systematically to generate all forms, using them is
likely to lead to more reliable coverage of a larger number of variations. This is
much more straightforward than attempting to compile an exhaustive list one form
at a time, where we could easily forget to include one or several forms.

Table2.7 provides examples of generative rules for different types of variations.
Some of these rules can be combined to generate further variations. Then, Table2.8
takes us back to our example of Ludwig van Beethoven and suggests some generative
rules for proper nouns.

Table 2.7 Examples of generative rules applied to cell phone

Variation type Rule Derived form

plural Add ‘s’. cell phones

capitalization Put first letter of first word in uppercase. Cell phone

capitalization Put first letter of all words in uppercase. Cell Phone

orthographic Put hyphen between words. cell-phone

orthographic Remove space between words. cellphone
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Generative rules can be put in opposition to normalization rules, perhaps more
commonly used in NLP. A typical example of a normalization rule is lemmatization
which tries to find a word’s base form, called a lemma. For example, lemmatization
would transform chosen and choosing into a single base form choose. This will be
part of our exploration into linguistic processes in Chap.8 looking at Linguistic
Roles.

Table 2.8 Examples of generative rules applied to Ludwig van Beethoven

Variation type Rule Derived forms

abbreviation Gather the first letter of each word
separated by periods.

L.V.B.

spaced abbreviation Apply abbreviation rule and add space
in between letters.

L. V. B.

first names initials Apply abbreviation rule except on the
last word.

L.V. Beethoven

skip middle noun Remove the middle name. Ludwig Beethoven

Generative rules derive multiple surface forms which are then stored in a resource
as possible variations for an entity. At search time, all forms can be used to find
relevant sentences in text. Normalization rules take the opposite approach of going
through the text at search time and attempting to map all encountered forms onto a
limited number of normalized forms held in the resource. Both of these processes
will be useful at different times, depending on our application.

2.6 Multilingual Surface Forms

Let us now make a small incursion into multilingual surface forms and look at labels
and surface forms provided in the SemanticWeb for languages other than English. As
an example, we discuss the multilingual DBpedia, defining a conceptual system in
each language, and then relating concepts using the owl:sameAs predicate. In theory,
the owl:sameAs should be used to establish an equivalence between concepts (URIs).
If two concepts are equivalent, then we could assume that their respective labels, as
provided by the usual naming predicates, would correspond to translations of each
other.

The problem, though, is that the same variations seen in Sect. 2.1 exist in every
language. There are even languages that would contain more variations based on
grammatical case, for example, having a different form of a word corresponding
to its accusative case (direct object of the verb) or dative case (indirect object of
the verb). These variation types, similar to differentiation between plural forms,
verb forms, or even abbreviations, cannot be captured with a rdfs:label naming
predicate andwould require an encoding format able to capture linguistic information
about words. I encourage the reader to follow the pointers to the lemon model and

http://dx.doi.org/10.1007/978-3-319-41337-2_8
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the initiative of Linguistic Linked Open Data in Sect. 2.9, for more information about
encoding linguistic information in the Semantic Web.

Besides variations within languages, there are problems related to the linking of
information between languages. For example, things become quite complex with
the spilling over of some English information into the naming information of other
languages. Ifwe follow the owl:sameAs link for dbr:United_Kingdom to theFrench
DBpedia, we find different labels, as shown below.

(dbr:United_Kingdom, owl:sameAs, dbpedia-fr:Royaume-Uni)
(dbpedia-fr:Royaume-Uni, rdfs:label, “Royaume-Uni”)
(dbpedia-fr:Royaume-Uni, rdfs:label, “United Kingdom”)
(dbpedia-fr:Royaume-Uni, rdfs:label, “Regne Unit”)
(dbpedia-fr:Royaume-Uni, rdfs:label, “Reino Unido”)
...
(dbpedia-fr:Royaume-Uni, foaf:name, “United Kingdom”)
(dbpedia-fr:Royaume-Uni, dbo:frenchName, “Royaume Uni”)

The same predicate, rdfs:label, leads to different surface forms, corresponding
to different languages, but without explicit indication of which language. Then, how
could an automatic system find the French name assigned to UK, given all this
information? The dbo:frenchName predicate could help select the correct label, but
this predicate is not consistently used to name entities. Unfortunately, the lack of
coherence within this multilingual labeling will cause this information to be very
difficult to use in NLP, if we wish to expand, for example, our entity search to texts
written in different languages.

Ensuring resource coherence is a challenge in itself, either for experienced lex-
icographers, terminologists, or domain experts in the case of curated resources,
or for community contributors in the case of collective resources such as Wikipedia.
From an NLP point of view, it is important to be aware that resource coherence will
have an impact on any automatic process that tries to use it.

2.7 The Most Ambiguous Surface Form: Pronouns

In the last section of this chapter, I wish to introduce the most ambiguous surface
forms: pronouns. Below is a short made-up text in which I highlighted the use of
pronouns.

Lora Bruntelli earns income from publication of her works and from public performances.
She also depends on the generosity of a particular patron,Mr. Zelig, for income. Lora is lucky
that his wife, Clara, especially loves her music. He often commissions her compositions to
be played in private performances to which they invite friends.

Pronouns are short surface forms most often used in text to refer to previously
mentioned entities. Once the entity Lora Bruntelli is established in the first sentence,
the following mentions of she and her can be associated with Lora Bruntelli. Then,
once the entity Mr. Zelig is introduced in the second sentence, the pronoun his and
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he can be used to refer to Mr. Zelig. The use of pronouns allows for fluidity in text,
avoiding the repeated use of names of people, location, or objects. But fluidity for
human consumption of text adds an additional heavy burden on NLP, since pronouns
quickly become very ambiguous in who or what they refer to.

In our example, when the entity Clara is introduced in the third sentence, it
also permits the use of her to refer to Clara. Now, having two entities Lora and
Clara possibly referred to by her creates ambiguity. Seemingly easy for humans,
disambiguating the reference of a pronoun is one of the most difficult tasks in NLP,
called anaphora resolution. In anaphora resolution, we try to automatically find the
entity previously mentioned in the text to which a pronoun corresponds.

The use of coreferences is a related language phenomenon also included in the
example above. The use of Lora in the third sentence links back to Lora Bruntelli in
the first sentence. Automatically finding such links is called coreference resolution,
perhaps a slightly more approachable task than anaphora resolution, but still in the
realm of the research NLP world. We will come back to the task of coreference
resolution in Chap.9.

Another related but much less frequent language phenomenon is called
cataphora, as shown in the following example:

Knowing he tends to be late, Brandon always sets his clock fifteen minutes early.

Notice how the pronoun he is used before the name Brandon is mentioned. The
associated NLP task is called cataphora resolution, but it is not studied as much as
anaphora resolution given the much less frequent use of cataphora in text.

Some NLP tasks that will be mentioned throughout this book are considered
mature problems, meaning that they have implementations in software packages that
are usable, out of the box, with reasonable performances. Anaphora and cataphora
resolutions are not among those tasks, as they are still very much in the realm of NLP
research. Most IE systems do not attempt to perform those tasks and simply ignore
sentences inwhich pronouns occur (except for the very easy cases of non-ambiguity).
Not dealing with sentences containing hidden forms (e.g., his, him, he) is most often
compensated by using a larger corpus, in which we hope to find sufficient explicit
mentions.

2.8 In Summary

• Both specific entities and generic entities are referred to by multiple surface forms
in text.

• Precision and recall of an entity search process will be influenced bywhich surface
forms were used in the search.

• Not all the variations found through the dbo:wikiPageRedirects are to be con-
sidered as valid surface forms for entity search.

• Many variations of lexical units can be generated automatically (e.g., plural, cap-
italization).

http://dx.doi.org/10.1007/978-3-319-41337-2_9
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• Generative rules can also be developed for proper nouns (e.g., generating initials
from a person’s name).

• In a multilingual setting, we should use with care the predicate rdf:label as
indicative of surface forms for each language.

• Pronouns are the most ambiguous surface forms, making Information Extraction
difficult on sentences containing them.

2.9 Further Reading

Beyond labels: In this chapter, we have used foaf:name and rdfs:label as naming
predicates, but the Semantic Web contains many other predicates used for labeling
purposes (see Ell et al. (2011)). Still these various predicates do not provide an
integrated and agreed-upon model in which entities are related to surface forms.
But, in recent years, there has been various efforts toward a “linguistically aware”
SemanticWeb. One such major effort, called lemon—The LexiconModel for Ontolo-
gies, is worth paying special attention to. This suggested model for encoding lexical
information is quite rich, allowing us not only to link word forms to word senses,
but also to express variations in word forms (see http://lemon-model.net, McCrae
et al. (2012)). I also encourage the reader to look into efforts in Linguistic Linked
Open Data, as there is growing interest in formalizing linguistic information as part
of the Linked Open Data cloud (http://linguistic-lod.org/). There is also effort in
standardization of linguistic processes and resources, through the Natural Language
Processing Interchange Format (NIF) described in Hellmann et al. (2013).

DBpedia/Wikipedia: DBpedia will often be referred to in this book. The article
by Lehmann et al. (2012) describes its extraction process from Wikipedia, another
resource largely used in this book. In The People’s Web Meets NLP, Gurevych and
Kim (2013) show various usages of the community resourceWikipedia for NLP, and
vice versa.

Anaphora resolution: It is interesting to compare an early survey on anaphora reso-
lution (Mitkov 1999) to a recent one (Poesio et al. 2010). For a survey on coreference
resolution, see Elango (2006).

2.10 Exercises

Exercises 2.1 (Entity search evaluation).

a. Among all the possible surface forms provided by the dbo:wikiPageRedirects
predicate for Beethoven, ten are listed in Table2.4. Can you find the remaining
ones? If you use all of them, what is the impact on precision/recall of the entity
search applied to the small BeethovenCorpus provided in Table2.1.

http://lemon-model.net
http://linguistic-lod.org/
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b. Reflect on why precision and recall are favoured in NLP for reporting on search
experiments, rather than the other measures of reject and accuracy. All the equa-
tions are given in Sect. 2.2.

Exercises 2.2 (Variations in surface forms).

a. Look up DBpedia for the generic entity Cat, at dbr:Cat. Go through the list of
its dbo:wikiPageRedirects and classify the entries, provided the classification
from Sect. 2.4. You will notice that some variations do not quite fit within our
classification. Identify newcategories of variations, give themaname, and provide
examples for them.

b. Look up DBpedia for the specific entity Paris, at dbr:Paris. Again, go through
the list of its dbo:wikiPageRedirects and classify the entries according to the
classification in Sect. 2.4 enriched with the new categories you defined in the
previous exercise.

Exercises 2.3 (Generative rules).

a. Write a software program that can take a word as an entry and generate variations
implementing the rules from Table2.7. Which ones are easier to program? Why?

b. Adapt your code from exercise (a) to work for noun compounds. A noun com-
pound is composed of two or more words, such as kitchen appliance, Japanese
rock garden, or laser printing. Does your programwork for all of these examples?
What are its limitations?

c. Moving on to specific entities, implement the rules in Table2.8 and add a few
more rules of your own. Test your rules on the names of ten famous people,
companies, or organizations of your choice. Are the rules generating likely-used
surface forms? How would you test if a surface form is actually a likely one to
exist in text?

Exercises 2.4 (Multilingual surface forms).

a. Go to the Spanish DBpedia, following the owl:sameAs predicate from theUnited
Kingdom entry in the English DBpedia, found at dbr:United_Kingdom. In terms
of use of naming predicates, does it resemble what we saw in the FrenchDBpedia,
in Sect. 2.6? Discuss. Try another language of your choice and observe again.

Exercises 2.5 (Use of pronouns).

a. Take a news article at random fromanewspaper of your choice. Find the pronouns.
Do you find them easy to solve to earlier mentions? Howwould you quantify their
use: frequent or infrequent? For a single explicit mention, are there many further
anaphoric mentions?



Chapter 3
Searching for Named Entities

In the previous chapter,we searched for the specific composerLudwig vanBeethoven.
But what if we wanted to find sentences about any classical music composer, or even
more generally, about any composer? So far our strategy has consisted of starting
with a URI, finding possible alternative surface forms, and looking for sentences
in which they occur. If we follow the same strategy in the case of composers, we
can find the URI dbr:Composer in DBpedia and discover some of its surface forms
(e.g., music composer, musical composer, and even author) through the predicate
dbo:wikiPageRedirects.

Would a search in a corpus for sentences containing these surface forms be likely
to lead us to information about composers? Perhaps it would, but it is certain that the
recall performance of such approach will be quite low. For example, if we attempt
the above strategy on the BeethovenCorpus from the previous chapter (see Table2.1
in Sect. 2.1), we find a single sentence (sentence no. 6) among the 10 sentences about
composers, which explicitly uses the word composer.

An alternative approach, presented in this chapter, is to consider Composer as an
entity type, also referred to as entity class. An entity type, or entity class, represents
a set of individuals, and we will develop text mining strategies for finding the
individuals which belong to this class.

The first strategy is using a list of the individuals in the class. For example, we
can gather a list of composers, such as L.V. Beethoven, W.A. Mozart, and J.S. Bach,
and search for them in text. In NLP, such list is often referred to as a gazetteer.

The second strategy is to search for regularities in the way of expressing the
individuals in the class. The type Composer is likely not the best candidate for this
strategy, although being a subclass of Person, we can expect the same regularity in
a composer’s name than in a person’s name. Such regularity could be a sequence
of two capitalized words (e.g., [F]rank [Z]appa), although we can imagine such
regularity leading to many other entity types than Person, such as City (e.g., [N]ew
[Y]ork) or Country (e.g., [S]ri [L]anka). Other entity types, such as Date or Time,
are better candidates for this regularity detection strategy.

© Springer International Publishing Switzerland 2016
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We will look at various entity types in this chapter, as well as the use of gazetteers
and the detection of regularities through a very powerful tool, regular expressions.
We will also continue with the experiment-based learning approach promoted in this
book, by defining an experiment to test the precision and recall of regular expressions
in search of Date in a corpus.

3.1 Entity Types

Composer is simply an example of an entity class, also called an entity type, a
semantic type, or a category. Symphony would be another example, as would be
Author, Company, and City. Entity types are at the core of knowledge organization,
since they provide a structure for our understanding of the world.

And because entity types play a central role in our quest for information, we will
often return to these notions, and even debate their definitions. For example, is cell
phone an entity type? Not in the same way as Composer is, yet we can talk about
cell phones in general, and individual phones do exist under the broader umbrella of
CellPhone. Although in our quest for information, we would rarely be interested in
the specific phone Mr. X owns, but we might be interested in a particular Samsung
or Nokia phone, just being put on the market. My purpose here is not to enter in
a philosophical debate about ontological commitment or separation of classes and
individuals. I simply want to bring awareness to the impact the difference between
searching for entity types versus individuals can have on searching strategies and
search results.

Compared to the previous chapter, in which we discussed generic and specific
entities, notice how the current chapter introduces a different terminology, more
commonly used in NLP and in the Semantic Web, of individuals and entity types. In
the previous chapter, we used the term specific entity to refer to an individual and
generic entity to refer to an entity type.

Interest in individuals and entity types is pervasive in the Semantic Web and NLP
communities. The term Named Entity Recognition, abbreviated NER, refers to
an important field of research within NLP aiming at recognizing named entities in
corpus. We yet introduce another term: named entity which sense is closest to what
we had called specific entity. In a strict sense, a named entity is an instance of an
entity class, uniquely identified via a name. In this same strict sense, named entities
are unique individuals. People, organizations, locations, and dates are all examples of
things that are unique in our world. But a NER searchmight be interested in detecting
other important information in a text, such as amounts of money or quantities. This
extends the definition of named entity toward a less strict sense including individuals
as well as other precise and important information.

As the reader, you might find this confusing to be introduced to many similar
terms having partially overlapping meaning. It is confusing, but it is important to
know about all these terms, since you are likely to encounter them in different books
and research articles written over many years. The effort to define types of named
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entities and recognize them in text goes back twenty years to The Sixth Message
Understanding Conference during which an NER task was introduced. At that time,
the named entities to be recognized were given one of three possible labels:

• ENAMEX: Person, Organization, Location

• TIMEX: Date, Time

• NUMEX: Money, Percentage, Quantity

Later, efforts were made to define more fine-grained lists of entity types, some
examples being:

• PERSON: actor, architect, doctor, politician

• ORGANIZATION: airline, sports_league, government_agency, news_agency

• LOCATION: city, country, road, park

• PRODUCT: car, camera, computer, game

• ART: film, play, newspaper, music

• EVENT: attack, election, sports_event, natural_disaster

• BUILDING: airport, hospital, hotel, restaurant

• OTHER: time, color, educational_degree, body_part, tv_channel, religion,

language, currency

Beyond these more generic entity type lists, efforts have also been made in indi-
vidual domains to define entity types specific to them (e.g., gene and protein in
biology).

Once entity types are defined, how would we devise a text mining process to
identify in a corpus sentences mentioning these types. A first strategy is to use lists
of individuals belonging to these types, as we see next.

3.2 Gazetteers

One approach to finding named entities in text is to have lists of the individuals,
often referred to as gazetteers. On the Web (e.g., in Wikipedia), we can find lists of
just about anything imaginable: varieties of rice, car brands, romantic symphonies,
countries, and so on. Let us take art museums as an example. The following query
submitted to DBpedia SPARQL endpoint would provide a long list of hundreds of
museums:

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

select ?X where {

?X rdf:type dbr:Art_museum .

}
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This list could easily become a gazetteer for an ArtMuseum entity type to be used
for searches in text. Table3.1 provides some examples. Each of the entities has a
variety of surface forms, all of which could be used in a search.

Table 3.1 Gazetteer for ArtMuseum

No. Museum label

1 Berkshire Museum

2 The Louvre

3 Museum of Modern Art, Antwerp

4 Hirshhorn Museum and Sculpture Garden

5 Museum of Fine Arts of Lyon

6 Kosova National Art Gallery

7 Art Gallery of Algoma

8 National Gallery of Canada

9 Museu Picasso

Similarly, using the following query into DBpedia SPARQL endpoint, we can
find many composers classified under the Viennese Composers category in Yago.1

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>

prefix yago: <http://dbpedia.org/class/yago/>

select ?X where {

?X rdf:type yago:VienneseComposers

}

Results of the query can be used to generate a gazetteer for the VienneseComposer

entity type, as in Table3.2. This list would include many contemporaries of Ludwig
van Beethoven, the individual of our earlier investigation.

Table 3.2 Gazetteer for VienneseComposer

No. Composer label

1 Wolfgang Amadeus Mozart

2 Franz Schubert

3 Johann Strauss I

4 Franz Lehar

5 Ludwig van Beethoven

6 Johannes Brahms

7 Joseph Haydn

8 Anton Webern

9 Alban Berg

10 Arnold Schoenberg

1Yago is a large Semantic Web resource, described at http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/yago/.

http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
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An unfortunate drawback to all lists is that they are likely to be incomplete and
thus insufficient. Despite this, lists are important in the search for named entities,
and are widely used, most often in combination with other strategies. In Chap.13, as
we revisit entity types as constraints for relation search, we will investigate voting
strategies to combine gazetteers with other methods of entity type validation.

For now, let us explore a second strategy for finding mentions of an entity type in
a corpus, using regular expressions.

3.3 Capturing Regularities in Named Entities: Regular
Expressions

Certain entity types have fairly regular ways of expressing their individuals, which
we can easily detect. The individuals for the entity type ArtMuseum, as shown in
Table3.1, do include a few words that appear repeatedly (museum, fine art, art
gallery), but still, we would have to consider more data to better convince ourselves
of regularity within that class. What about an entity type Symphony, to continue on
our musical theme, would that contain regularities?

Table 3.3 Examples of instances of the Symphony type

No. Symphonies

1 Symphony no. 8

2 Beethoven’s symphony no. 6

3 Symphony no.4, op. 47

4 Symphony no 5 in b flat

5 Symphony no. 1 in d minor

6 Schubert’s Symphony no. 4

7 Symphony “pathetique”

8 Symphony no. 3 in b-flat minor

9 Abel’s Symphony no. 5, op. 7

Consider a short list of individuals, belonging to the Symphony type, as shown in
Table3.3. As you can see, there is still quite a lot of variation within these examples,
but we can identify certain patterns emerging. In an attempt to concisely capture and
represent the variations seen here, we turn to regular expressions.

Regular expressions provide a concise way of expressing particular sequences of
text. Although they can seem intimidating at first, it is essential to master them for
NLP, since they provide a very flexible and powerful tool for text search. Most
programming languages define text search libraries allowing the use of regular
expressions. The best way to become familiar with writing these expressions is

http://dx.doi.org/10.1007/978-3-319-41337-2_13
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simply to practice. The process is comparable to learning a new language, practice
is key.2

Below are examples of what regular expressions can capture in text:

• single character disjunction: [tT]able → table, Table
• range: [A-Z]x → Ax, Bx, Cx, Dx, ... Zx
• explicit disjunction: [a-z|A-Z] → all letters
• negation: [ˆSs] → everything except uppercase and lowercase ‘s’
• previous character optional: favou?r → favor, favour
• repetition of 0 or more times: argh* → arghhhhhhh, arghh, arg
• repetition of 1 or more times: x+ → x, xx, xxx
• wildcard on a single character: ax.s → axis, axes
• specification of number of characters: x{2,4} → xx, xxx, xxxx
• escape for special characters: \(a → (a

As you can see, the language provided by regular expressions includes five impor-
tant aspects: repetition, range, disjunction, optionality, and negation. As we can
combine these aspects in various ways and apply them on either single characters
or groups of characters, there is an infinite number of text segments which can be
captured with regular expressions. That explains how regular expressions capture the
representation of very long lists within a single expression.

Granted, for the Symphony type, it may be possible to list all the existing sym-
phonies, but what about entity types such as Date, PhoneNumber, or EmailAddress?
Regular expressions allow for the concise representation of variations within these
non-enumerable entity types. Table3.4 shows examples of different regular expres-
sions to recognize particular entities.

2There are some online regular expression testers, such as Regexpal, available at http://regexpal.
com/ which allow you to write regular expressions and use them to search in text. You can also use
the regular expression matcher libraries within your favourite programming language to write and
test the search capacity of regular expressions.

http://regexpal.com/
http://regexpal.com/
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Table 3.4 Examples of regular expressions for specific entity types

RegEx Examples

Abbreviated winter month, optional final period

(Jan|Feb|March).* Jan. / Feb

Any year between 1000 and 3000

[12][0–9]{3} 1977 / 2015

Postal codes in Canada

[A-Z][0–9][A-Z][0–9][A-Z][0–9] H2X3W7 / Q1Z4W8

Avenue names

(1rst|2nd|3rd|[4–20]th) (Avenue|Ave.|Ave) 3rd Avenue / 6th Ave.

Any street name

[A-Z][a-z|A-Z]* (Street|St.|St) Wrench St. / Lock Street

North American phone numbers

\([1–9]{3}\) [1–9]{3}(-*| )[0–9]{4} (456) 245–8877 / (123) 439
3398

Symphony name

[Ss]ymphony [Nn]o.* *[1–9] Symphony no.4 / symphony
No 5

Notice how we require repetition for capturing sequences of 3 digits in a row for
telephone numbers, range for capturing the notion of a digit (1–9), disjunction to
provide alternatives for months, and optionality to allow street names to contain a
period after St or not. Out of the five aspects of regular expressions, only negation
is missing in Table3.4.

Now, let us design an experiment to put regular expressions to the test and study
their behavior in an entity type search.

3.4 Experiment — Finding DATE Instances in a Corpus

Let us now tackle the problem of finding dates. Dates are important in Informa-
tion Extraction, since we often want to know when things happen. Moreover, they
represent a type of entity for which the enumeration of instances would be much
too lengthy to be practical. Because of this, Date is an entity type where regular
expressions should prove quite useful.

3.4.1 Gold Standard and Inter-Annotator Agreement

First, we need to establish a gold standard against which we can evaluate our algo-
rithm through its phases of development. Table3.5 provides such a possible gold
standard.
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Table 3.5 Examples of sentences containing (or not) a Date

No. Sentence Date instance?

1 He was born on the 8th of July 1987. Yes

2 Cancel the flight 2000 by Sept. 10th to avoid paying fees. No

3 A date to remember is August 10, 1999. Yes

4 I wrote “10/04/1999” on the form, next to my name. Yes

5 Class 20–09, that was a nice course. No

6 The wedding was in 2008, on April 20th exactly. Yes

7 Flight Air Canada 1987, is 6th in line to depart. No

8 The expiration date is 15/01/12. Yes

9 Your appointment is on October 31, 2012. Yes

10 It is Dec. 15 already, hard to believe that 2011 is almost over. Yes

11 November 1986, on the 7th day, the train departed. Yes

12 There was 5000mm of rain in 7 days. No

13 He was in his 7th year in 1987. No

14 The product code is 7777–09. No

15 He arrived 31st in rank at the 2005 and 2008 runs. No

16 The event happens March 10–12 2015. Yes

17 The big day is November 20th, 2017 Yes

When creating a gold standard, it is tempting to include only target sentences. In
our case, this would mean exclusively including sentences that contain dates. The
problem with this approach is that it would not allow us to evaluate the number of
false positives produced by our algorithm. After all, if all the sentences qualify for
our search, then we have not given the algorithm the chance to falsely identify one
as qualifying when it does not. And, as we saw in Chap.2, Sect. 2.2, identifying false
positives is an important part of the evaluation of an algorithm’s precision.

For this reason, we should intentionally include non-date sentences in our gold
standard. To further ensure the precision of our algorithm, we should contrive these
negative examples to differ only slightly from the positive ones. You can think of
this as testing the algorithm’s precision by including sentences that are almost, but
not quite, what we are looking for, and seeing whether it ‘takes the bait’.

In the last column of Table3.5, you will notice that I have marked examples as
either positive or negative. Do you agree with my decisions? We might agree on
some, but probably not all examples. Since there are many possible interpretations
of what qualifies as a positive or negative example of an entity, annotators (human
judges) are rarely in full agreement until the task is very well defined. I will reiterate
my classifications below (Judge 1) and invent another hypothetical set, which I will
attribute to a fictive other judge (Judge 2).

Judge 1: {1, 3, 4, 6, 8, 9, 10, 11, 16, 17}
Judge 2: {1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 17}

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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What we now have before us is a problem of inter-annotator agreement. Within
NLP,we talk of inter-annotator agreement to represent the degree towhich twohuman
judges agree on a particular annotation task. In the current example, the annotation
was to determine Yes/No for each sentence, as containing an instance of a Date or
not. Inter-annotator agreement is an important concept to understand, since it will
come back again and again in the development of NLP evaluation sets.

Certain measures have been proposed for the specific purpose of determining
levels of inter-annotator agreement. One such measure is Cohen’s Kappa. This
measure requires a matrix similar to the contingency table we used earlier (see
Sect. 2.2) for comparing an algorithm to a gold standard. Table3.6 shows where
we (Judge 1 and Judge 2) agreed and disagreed in our earlier classifications of date
and non-date sentences.

Table 3.6 Judge comparison for Date search example

Judge 2

correct incorrect

Judge 1 correct
incorrect

10
3

0
4

The Kappa measure also requires that we account for agreement that could occur
by chance alone. In other words, what is the probability Pr(e) that closing our eyes
and marking Yes/No beside the various sentences would result in agreement? Once
we know the value of Pr(e), we can compare our actual agreement Pr(a) against
it. Both Pr(a) and Pr(e) are part of the Kappa measure, as shown in Eq.3.1.

κ = Pr(a) − Pr(e)

1 − Pr(e)
(3.1)

Since we only have two classes in this case (Yes/No), our probability Pr(e) of
agreement by chance is 50%. If there were ten different classes, the probability of
two judges agreeing would be reduced to 10%. In cases of open set of annotations,
when the number of classes is not set in advance, measuring such agreement becomes
quite difficult.

Our actual agreement Pr(a) is the number of times both judges said Yes (10
times) + the number of times both judges said No (4 times) divided by the total
number of examples (17).

Pr(a) = (10 + 4)

17
= 0.824

Pr(e) = 0.5

κ = (0.824 − 0.5)

1 − 0.5
= 0.65

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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So, does a κ of 0.65meanwe agree?How shouldwe interpret this result?Although
there is no universal standard for interpreting Kappa scores, the scale below is often
used.

κ < 0 would indicate no agreement
0 > κ < 0.20 slight agreement
0.21 > κ < 0.40 fair agreement
0.41 > κ < 0.60 moderate agreement
0.61 > κ < 0.80 substantial agreement
0.81 > κ < 1.00 almost perfect agreement

Basedon this scale,wehave attained substantial agreement. This is not a bad result,
but we could do better. A less-than-perfect measure of inter-annotator agreement can
be taken in two ways: either the task is not well defined or the task really is highly
subjective. In our case, we could potentially reach a higher level of agreement if we
refine the definition of our task. In order to accomplish this, we should ask ourselves
certain questions: What does it mean to find dates? Are we only interested in finding
full dates that we can map to a calendar day? Do we want year only mentions to be
included? Do we want to include ranges of dates?

The answers to these questions will be determined by how we intend to apply
our results. To clarify this intention, we should consider why we are extracting dates
and what will we do with them once we have them. In our current experiment, we
have not yet defined a particular application, but we can still try to be as specific as
possible in defining our task. My criterion for answering Yes in Table3.5 was that
the sentence must contain a date specific enough that I can map it to a calendar day.
Knowing this, do you now agree with my classifications? If so, what would our new
Kappa be?

3.4.2 Baseline Algorithm: Simple DATE Regular Expression

For our first exploration, let us come up with two regular expression baselines, one
generic (high recall) andonevery specific (highprecision), anddefine them.Although
up to now we have mostly seen regular expressions written as one long string, when
programming them we can take advantage of the fact that programming languages
allow us to use variables to contain strings. This further allows us to define partial
elements of the regular expressions and to later combine them in different ways.
In the example below, I first define regular expressions for months, years, and days
and then I show how to combine them using a string concatenation operator (+), to
generate the two baselines:

Year = [12][0–9]{3}
Month = (January|February|March|April|May|June|July|

August|September|October|November|December)
DayNum = ([1–9]|[1–2][0–9]|30|31)
Baseline 1 : Year
Baseline 2 : Month + ” ” + DayNum + ”, ” + Year



3.4 Experiment — Finding Date Instances in a Corpus 33

The regular expression for Year allows a range from year 1000 to 2999, forcing
the first digit to be 1 or 2, and then requiring 3 consecutive digits, each in the range
0–9. The regular expression forMonth is simply a list of possible month names. The
regular expression forDayNum allows a range of 1 to 31, by combining 4 subranges:
between 1 and 9, or between 10 and 29, or 30, or 31.

The baseline 1 for high recall only uses the regular expression for the Year. The
baseline 2 for high precision requires a sequence of Month followed by a space,
followed by a Day, a comma, another space, and a Year (e.g., January 5, 1999).

Table3.7 displays theYes/No results of these two baseline algorithms, in compari-
sonwith the gold standard defined by Judge 1 earlier. Table3.8 shows the contingency
tables for both algorithms.

Table 3.7 Results of two baseline algorithms for the extraction of Date instances

No. Sentence Judge 1 Baseline 1 Baseline 2

1 He was born on the 8th of July 1987. Yes Yes No

2 Cancel the flight 2000 by Sept. 10th to avoid paying
fees.

No Yes No

3 A date to remember is August 10, 1999. Yes Yes Yes

4 I wrote “10/04/1999” on the form, next to my name. Yes Yes No

5 Class 20–09, that was a nice course. No No No

6 The wedding was in 2008, on April 20th exactly. Yes Yes No

7 Flight Air Canada 1987, is 6th in line to depart. No Yes No

8 The expiration date is 15/01/12. Yes No No

9 Your appointment is on October 31, 2012. Yes Yes Yes

10 It is Dec. 15 already, hard to believe that 2011 is
almost over.

Yes Yes No

11 November 1986, on the 7th day, the train departed. Yes Yes No

12 There was 5000mm of rain in 7 days. No No No

13 He was in his 7th year in 1987. No Yes No

14 The product code is 1111–09. No Yes No

15 He arrived 31st in rank at the 2005 and 2008 runs. No Yes No

16 The event happens March 10–12 2015. Yes Yes No

17 The big day is November 20th, 2017 Yes Yes No

Table 3.8 Contingency table for baseline algorithms

Judge 1 (Gold standard)

correct incorrect

Baseline 1 correct
incorrect

8
1

6
2

Baseline 2 correct
incorrect

2
7

0
8
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From Table3.8, we can evaluate recall, precision, and F1 measures for both algo-
rithms, as following:

Baseline 1—High recall

Recall = 8

9
= 88.9%

Precision = 8

14
= 57.1%

F1 = 2 ∗ 88.9 ∗ 57.1

88.9 + 57.1
= 69.6%

Baseline 2—High precision

Recall = 2

9
= 22.2%

Precision = 2

2
= 100.0%

F1 = 2 ∗ 22.2 ∗ 100

22.2 + 100
= 36.4%

As expected, the first baseline shows quite high recall, and the second baseline
shows low recall but high precision. We now try to refine our regular expressions to
maintain a high recall, but not at the expense of a low precision.

3.4.3 Refining the DATE Expressions

At this point, we will have to engage in what is essentially a process of trial and
error, where we observe the data and try to find expressions that maximize both
recall and precision. Both the individual elements defined earlier (the patterns for
months, years, and days) and the patterns of combination can be refined to create
different options. Here are some ideas:

Year = [12][0–9]{3}
Month = (January|February|March|April|May|June|July|

August|September|October|November|December)
MonthShort = (Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec).*
DayNum = ([1–9]|[1–2][0–9]|30|31)
DayEnd = (1rst|2nd|3rd|[4–9]th|1[0–9]th|21rst|22nd|

23rd|2[4–9]th|30th|31rst)
RegExDate1 = ”(” + Month + ”|” + MonthShort + ”)” + ” ” +

”(” + DayNum + ”|” + DayEnd + ”)” + ”, ” + Year
RegExDate2 = DayNum + ”/” + MonthNum + ”/” + [0–9]{2}

How far did that refinement take us? Well, an extraction process relying on both
RegExDate1 and RegExDate2 now finds August 10, 1999, 10/04/19, 15/01/12,
and October 31, 2012 and provides a recall of 33%. Although this is still not high,
it is higher than baseline 2, which had recall of 20%. The precision is now at 75%,
right between baselines 1 and 2. I will leave it as an exercise for the reader to verify
the precision/recall of this extraction process, and more importantly, to continue the
iterative cycle of development and evaluation, as to further refine the set of regular
expressions used for extracting instances of Date.

At the end of this iterative refinement process, the real test for our strategywould
come from gathering a completely new and unseen set of sentences, generate a new
gold standard by annotating the sentences as to their mention Yes/No of a Date,
perform the extraction process on that new set of sentences, and evaluate the results
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against the new gold standard. Since we used the set of sentences from Table3.5
during the refinement cycle, we should refer to these sentences as our development
set. It is too lenient to evaluate strategies on the development set, since that is the
set on which we tried to optimize both precision and recall. The final evaluation of a
strategy should be on a test set, never seen during the refinement cycle. It is important
to understand the difference between the two sets and the variation on results which
can occur, depending onwhich set we evaluate on. Being aware of this differentiation
can help sometimes understand why results presented in research articles may vary
widely, not just because of their variation in terms of strategies, but also in terms of
their evaluation method.

When test sets are not available, an approximation of an algorithm’s performance
in test condition can be measured using a cross-validation approach. The idea in
cross-validation is to separate the development set into N subsets, develop the rules
based on N−1 subsets, and test them on the Nth subset, repeating such process
N times and averaging the results. Cross-validation is most often optimistic in its
evaluation, as it is based on a somewhat artificial setting, which in theory is valid,
but where in practice, “pretending” that we have not seen part of the data either for
rule development or feature development (in machine learning approaches) is not
realistic. Still, cross-validation is widely used as an evaluation approach for many
different categorization tasks.

3.5 Language Dependency of Named Entity Expressions

In Chap.2, Sect. 2.6, we discussed the fact that entities themselves are referred to
differently in different languages. But what about entity classes? Well, if we were to
try to find information about an entity class in a multilingual setting (e.g., Composer),
using gazetteers of entities (e.g., L.V. Beethoven and W.A. Mozart), we would find
ourselves once again faced with the original problem, this time generalized to all
entities of a class.

When it comes to classes that are better represented by regular expressions (e.g.,
non-enumerable entities), there is equal potential for linguistic and/or cultural varia-
tion. When searching in different languages and/or in text written in different coun-
tries, we should be aware that this variation affects even the simplest of writing
practices. Dates, for example, can be represented in many different ways, and a men-
tion like 11/12/2016 could refer to the 11th day of the 12th month, or to the 12th day
of the 11th month, depending on the country.

Dates are just one example. The writing of numbers can vary as well, with some
countries using a comma to represent decimals, and others using a period (e.g., 2.54
versus 2,54). Other examples include elements of daily life in text, such as phone
numbers and zip/postal codes. These too have different formats depending on the
country.

If we wish to define and test regular expressions for particular entity types, and
if we aspire to have them work in a multilingual setting, it is essential that we create

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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a gold standard that contains positive and negative sentences from the languages we
intend to cover. This process might begin with writing regular expressions that are
language independent, but they would eventually be refined to be language specific.

3.6 In Summary

• The term named entity can be interpreted in a strict sense to mean entities that can
be uniquely identified, or in a looser sense to mean any identifiable information
that would be of importance in text understanding.

• Different authors have proposed varying lists of named entity types, some more
coarse-grained, others more fine-grained.

• Regular expressions serve as a good alternative (or complement) to lists/gazetteers,
which themselves are never complete.

• Regular expressions provide a powerful way of expressing certain entity types, in
order to search for them in text.

• An iterative refinement process can be used for the development of regular expres-
sions, which aims at maximizing both recall and precision on a development
dataset.

• When it comes to classification tasks, people are not always in agreement.Cohen’s
Kappa is useful for evaluating inter-annotator agreement.

• Low inter-annotator agreement can be interpreted in two ways: either the task is
not well defined or the task is very subjective.

• In a multilingual context, entities are often expressed in slightly different ways.
We should not assume that previously defined regular expressions are simply
transferable from one language to another.

3.7 Further Reading

Entity types: Early definitions of named entities, in the Message Understanding
Conference (MUC-6), are found in Sundheim (1995). An example of a fine-grained
list, the Extended Named Entity list, is presented in Sekine et al. (2002) and further
described at http://nlp.cs.nyu.edu/ene/version7_1_0Beng.html. Some examples of
entity types presented in this chapter are taken from another fine-grained list used in
Ling and Weld (2012).

Named Entity Recognition: A survey of NER is presented in Nadeau and Sekine
(2007). In Ratinov and Roth (2009), the emphasis is on challenges and misconcep-
tions in NER. In Tkachenko and Simanovsky (2012), the focus is rather on features
important to the NER task. The references above will at one point mention the use
of gazetteers as an important element in NER.

Inter-Annotator Agreement: Cohen’s kappa is presented in the Wikipedia page
http://en.wikipedia.org/wiki/Cohen’s_kappa which also describes some variations.
The Kappa interpretation scale presented in this chapter was proposed by Koch and
Landis (1977).

http://nlp.cs.nyu.edu/ene/version7_1_0Beng.html
http://en.wikipedia.org/wiki/Cohen's_kappa
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3.8 Exercises

Exercise 3.1 (Entity types)

a. In Sect. 3.1, we presented a fine-grained list of entity types. For each entity type
in the list (e.g., actor, airline, religion, and restaurant), determine which of the
two approaches, either gazetteers or regular expressions, would be the most appropriate
in an extraction process. Discuss your choices and provide examples to support them.

Exercise 3.2 (Regular expressions)

a. Go to the site http://regexpal.com/, which allows you to enter regular expressions
and test them on different texts. You can also use the regular expression matcher
libraries within your favourite programming language if you prefer. Make up
test sentences and try the regular expressions defined in Table3.4 to extract vari-
ous type of information. Try new expressions. Play around a little to familiarize
yourself with regular expressions.

b. Write a regular expression that would be able to detect URLs. Then, write another
one for emails and a third for phone numbers.

c. Find ways to make the regular expressions in Table3.4 more general. How would
you go about this?

d. Go back to Table3.3 and write regular expressions to cover all the variations
shown.

Exercise 3.3 (Gold standard development and inter-annotator agreement)

a. What would be the impact of choosing negative examples for the entity Date that
do not contain any numbers? Discuss.

b. Assuming you have access to a large corpus, what could be a good way of gath-
ering sentence candidates for positive and negative examples for the Date entity
type?

c. In assessing the presence of dates in the examples of Table3.5, assume a third
judge provided the following positives: {1, 3, 4, 5, 6, 8, 10, 11, 15, 16, 17}. What
would be her level of agreement with the other two judges?

Exercise 3.4 (Iterative development process)

a. Continue the development of regular expressions for finding dates in Table3.5.
Try to achieve 100% recall and 100% precision on that development set. Then,
develop a new test set, including positive and negative examples, or better yet, to
be completely unbiased, ask one of your colleagues to build that test set for you.
Try the set of regular expressions you had developed. Do you still achieve good
recall and precision? How much does the performance drop? Discuss.

b. Assuming we want to extract a person’s birthdate from the short abstract (in
DBpedia) describing that person’s life. Write a set of regular expressions which
automatically extract the birth date from the abstracts for some well-known peo-
ple. Develop the regular expressions in your program using a first development

http://regexpal.com/
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set of 10 famous people and then perform a final test of your program using a
new test set of 10 other famous people.

c. Choose 5 entity types fromExercise 3.1 forwhich you thought regular expressions
would be appropriate. Gather examples for these types from DBpedia (or another
resource). For each type, gather 10 examples for your development set, and 10
examples for your test set. Use your development set to create regular expressions.
Then, test your regular expressions on the test set. Do results vary depending on
the entity type? Discuss.



Chapter 4
Comparing Surface Forms

In our quest for information about Ludwig van Beethoven in Chap.2, we started
with a Semantic Web entity provided by the URI dbr:Ludwig_van_Beethoven

and used its various surface forms to search for occurrences of the entity in text.
We saw that we could obtain a list of surface forms either through the predicate
dbo:wikiPageRedirects or through generative approaches (e.g., plural, capital-
ization, or abbreviation formation rules).

Using these two methods, we gathered a variety of surface forms including
Beethovens, Beetehoven, L.V. Beethoven, van Beethoven, and others. Even with all
these variations however, our search in the BEETHOVENCORPUS (see Sect. 2.3) obtained
a recall of 87.5% or 7 out of 8 sentences. The missing sentence was the following:

Betthoven, too, used this key extensively in his second piano concerto.

Why did we miss this one? The answer is simply that this particular variation
was not on our list of surface forms. The problem with using pre-compiled lists
of surface forms from resources is that it is virtually impossible to anticipate every
possible variation that could present itself. Beyond the example above, should our list
have included Beathoven, Betovhen, or even Beetowen? Even if we included every
possible variation we could think of, there would almost certainly be at least one we
neglected to consider.

InChap.3,we discussed how regular expressions could be used to detect particular
named entities in text. Perhaps we could use this same approach to capture the
variations of the name Beethoven then? A regular expression like the one shown
below would allow for many variations, including Beeeethoven, Beetoven, bethovan,
and Beethovan.

[Bb]e+th?ov(e|a)n

The expressiveness of regular expressions can be seen here as a single expression
explicitly captures typical orthographic variations such as the first ‘e’ repeated, a
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possibly missing ‘h’ and a change of the last ‘e’ into an ‘a’. Here again though,
we are sure to overlook certain possibilities for variations when predefining these
expressions.

An alternative approach, explored in this chapter, is to consider methods for com-
paring the surface forms found in text to a limited list previously gathered. This way,
the task becomes one of matching the variations found in text to the known surface
forms, as opposed to attempting to formulate (through regular expressions) or gather
(through a pre-compiled list) an exhaustive list of all possible variations. This follows
a normalization strategy, as opposed to a generative one.

We will explore two string comparison algorithms to try to match surface forms,
one based on the written form, called Edit Distance, and one based on sound equiv-
alence, called Soundex. We will devise an experiment in which Soundex and Lev-
enshtein Distance (a popular variation on the Edit Distance) compete in the same
entity search task. This comparative setting will highlight, as expected, that both of
these algorithms have their own strengths and limitations.

4.1 Edit Distance — A Dynamic Programming Algorithm

Given the large number of variations of surface forms that humans generate, it is
highly beneficial to be able to automate the process of finding words that are close
variations of each other. One popular algorithm for doing exactly that is Edit Dis-
tance. In the context of this algorithm, distance between words is defined by the
nature and number of missing letters (e.g., driveway versus drivway), or letters that
have been interchanged (e.g., driveway versus drivewya).

When comparing words based on their written forms, we go through a process
of comparing their characters one by one in order to determine whether and to what
extent they are the same. Edit Distance allows us to characterize the number of editing
steps required to transform the first string into the second (or vice versa) and thus
determine their level of closeness or similarity.

The three operators used in Edit Distance are insertion (adding a letter), dele-
tion (removing a letter), and substitution (interchanging two letters). Looking at
two example strings, table and tiles, we could go from the first to the second by a
substitution from ‘a’ in table to ‘i’, then a deletion of ‘b’, followed by an insertion
of ‘s’. The word table would thus go though the following transformations:

table → tible → tile → tiles

As we required three steps in the transformation from table to tiles, the Edit
Distance between the two words would be equal to 3, since standard Edit Distance
attributes a cost of 1 to each step. In a variation on the Edit Distance, known as the
Levenshtein Distance, the costs are slightly different. When comparing words, it
seems appropriate to consider substitution at a higher cost than deletion or insertion.
A substitution can be seen as a deletion followed by an insertion, justifying to bring
the cost of a substitution to 2, as is done in the Levenshtein Distance. We use the



4.1 Edit Distance — A Dynamic Programming Algorithm 41

followingnotation L(Word1,Word2) to represent theLevenshteinDistancebetween
Word1 and Word2. If we go back to our example of table versus tiles, we would
obtain L(table, t iles) = 4.

How do we automatically discover which steps are needed for transforming
Word1 into Word2. With our small example, it was easy to do it mentally, but
what if the two words were calendar and rollerblade, or dragonfly and raffle? You
might still be able to do it mentally, but alreadywe see that the number of possibilities
of operations is becoming quite large, in fact growing exponentially with the lengths
of the words.

How can we explore such a large number of possibilities in an efficient way?
Luckily, a very useful general class of algorithms called dynamic programming
helps us do this. The main idea of dynamic programming is simple, but powerful.
It suggests to first think of solving a complex problem by recursively solving its
simpler subproblems, and then solving these subproblems by solving their simpler
sub-subproblems, and then solving the sub-subproblems by solving their even sim-
pler sub-sub-subproblems and so on, until we reach very small problems for which
solutions are trivial. When we have reached that point, dynamic programming sug-
gests to construct back the solution to the complex problem by combining all the
small pieces of solution.

A dynamic programming approach requires three important building blocks:

1. A definition of what constitutes a subproblem.

2. One or more solutions to trivial problems.

3. A combination strategy for constructing the final solution from the partial solutions.

We adapt the dynamic programming building blocks for the Levenshtein Distance
as follows:

1. A subproblem will rely on splitting a string into substrings.

2. The trivial problems forwhichweknowsolutions correspond to the three basic operations
defined in Edit Distance: deletion, insertion, and substitution.

3. The combination strategy will consists in adding the distances calculated on the sub-
strings.

Let us now go back to our example comparing table and tiles to illustrate the three
building blocks:

1. Possible subproblems of L(table, tiles), are L(ta, tiles), or L(tab, t), or L(t, ti).

2. L(xy, x) = 1, L(x, xy) = 1 and L(x, v) = 2 are respectively examples of trivial cases
of deletion, insertion, and substitution.

3. L(table, tiles) = L(tab, til) + L(le, es) is one possible combination among many,
another one being L(table, tile) = L(ta, ti) + L(ble, les).

To be able to express the many substring decomposition possibilities in a concise
manner, let us first introduce variables to represent possible letter positions of both
words being compared. Let us use i to indicate a position in the first word, Word1,
and j to indicate a position in the second word, Word2. Then, let’s introduce the
notation D(i, j) to represent the Levenshtein Distance between the substring from
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Word1 ending at position i , and the substring from Word2 ending at position j.
Notice that only ending positions are required in defining D(i, j), as we assume that
all substrings start from the beginnings of the words.

Let us look at some examples of how D(i, j) denotes the comparison of substrings
of table and tiles, at various word positions i and j :

(i = 5, j = 5) → D(5, 5) = L(table, tiles)
(i = 2, j = 4) → D(2, 4) = L(ta, tile)
(i = 3, j = 1) → D(3, 1) = L(tab, t)
(i = 0, j = 3) → D(0, 3) = L(|, til)
(i = 4, j = 0) → D(4, 0) = L(tabl, |)

Notice in the examples above how we use the position 0 to mean the empty string,
represented as |. Now, let us see how we calculate the Levenshtein Distance between
two words using the dynamic programming approach given above. To do so, we will
use a matrix D to contain all the partial distances, meaning all the D(i, j) for all
possible i and all possible j . If we define the length of the first word as I , and the
length of the second word as J , then we construct a I x J matrix, with 0 < i < I and
0 < j < J .

Our first step is to initialize D, as shown in Table4.1. See how on the first row
of D, for example, L(|, til) is equal to 3, as it requires three insertions to go from
an empty string | to the substring til. Then in the first column of D, we have for
example L(tabl, |) equal to 4, as it takes four deletions to go from the substring tabl
to the empty string |.

Table 4.1 Initializing Levenshtein matrix D for comparing table and tiles

| (0) t(1) i(2) l(3) e(4) s(5)

|(0) L(|, |) = 0 L(|, t) = 1 L(|, ti) = 2 L(|, t il) = 3 L(|, tile) = 4 L(|, tiles) = 5

t(1) L(t, |) = 1 . . . . .

a(2) L(ta, |) = 2 . . . . .

b(3) L(tab, |) = 3 . . . . .

l(4) L(tabl, |) = 4 . . . . .

e(5) L(table, |) = 5 . . . . .

From this initialization, we build the rest of the matrix D using the dynamic
programming algorithmpresented inAlgorithm1which assign to each cell of D(i, j)
the minimal Levenshtein Distance between the two substrings ending respectively at
position i and j . For each D(i, j), to decide on minimal distance, we must consider
3 possibilities corresponding to the three operations: insert, delete, substitute. This
step is shown in Algorithm 1 as a selection of a minimum value between the three
operations.
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\\ 1. Define a matrix D of size I by J
Define D[I,J] ;
\\ 2. Initialize the matrix D containing all partial distances
for each i=1..I do

D(i, 0) = i ;
end
for each j=1..J do

D(0, j) = j ;
end
\\ 3. Calculate the minimal distance for each pair i , j .
for each i=1..I do

for each j=1..J do
D(i, j) = MINIMUM between the following:

D(i − 1, j) + 1 (deletion)
D(i, j − 1) + 1 (insertion)
D(i − 1, j − 1) + 2 (substitution, Word1(i) �= Word2( j))
D(i − 1, j − 1) + 0 (equality, Word1(i) = Word2( j))

end
end
D(I, J ) contains the minimal distance.

Algorithm 1: Levenshtein Distance Algorithm

At the end of the algorithm, D(I, J ) will contain the minimal distance between
the two words. Table4.2 provides an example of the matrix calculation for our earlier
words table and tiles. The end result (last row, last column) shows that L(table, t iles)
equals 4.

Algorithm1 produces a distance between two strings but it does not tell uswhether
these two strings actually refer to the same entity or not. This will require further
empirical processing, as we will see next.

4.2 From Distance to Binary Classification — Finding
Thresholds

Let us return to our trusty example of Beethoven. Let us assume that the surface form
Beethoven is the correct one against which we compare possible variations found
in text, using the Levenshtein Distance we just learned about. Table4.3 provides
examples of misspellings for the name Beethoven. Each variation X is given in the
second column, alongwith its LevenshteinDistance toBeethoven, L(X, Beethoven)
in the third column.
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Table 4.3 Levenshtein Distance for misspellings of Beethoven

No. Misspelling (X) L(X, Beethoven)

1 Beethoven 0

2 Beethovens 1

3 Baytoven 5

4 Beeethoven 1

5 Beetehoven 2

6 Betoven 2

7 Baethoven 2

8 Bethoven 1

A distance-based approach naturally leads to a ranking of alternatives. By looking
at their Levenshtein Distance measures, we can quickly compare misspelling scores
and determine which are closer and farther from the correct form. For example, we
can say thatBeetovens, given L(Beetovens, Beethoven) = 1, is closer toBeethoven
than Betoven is, with L(Betoven, Beethoven) = 2.

Sometimes though, we will want the distance measures of variations to lead to
a binary decision, that is, a Yes/No classification instead. For example, if I find
Baethoven in a sentence, does this sentence refer to Beethoven, yes or no? Or more
formally, given the value L(X, Beethoven) for a particular variation X , can we say
that a sentence containing X refers to Beethoven, yes or no? In an Information
Extraction pipeline, this Yes/No answer will determine whether or not the sentence
is sent on to the next process. This next process, for example, could be a relation
extractor module trying to extract biographical facts from sentences.

One approach to transforming a measure into a binary decision is simply to insert
a threshold in the measure. The yes’s would fall on one side, and the no’s on the
other. For the Levenshtein Distance, given a threshold T , we define:

L(Word1,Word2) ≤ T ⇒ Word1 ≡ Word2

L(Word1,Word2) > T ⇒ Word1 �= Word2
(4.1)

And, in the specific case of categorizing a variation as being Beethoven or not,
we would have the following rules, where X represents any variation:

L(X, Beethoven) ≤ T ⇒ X ≡ Beethoven

⇒ interpret as Yes (positive)

L(X, Beethoven) > T ⇒ X �= Beethoven

⇒ interpret as No (negative)

(4.2)

This leads to the question of what would be an appropriate threshold T for our
Levenshtein Distance measure.
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A general strategy for determining a good threshold T for an algorithm A, is to
work with a development set1 against which we try to optimize the performances of
A. As A is dependent on T , varying T will make A’s performance vary, and we will
select T so as to maximize A’s performances.

Let us explore this strategy for our Beethoven example. First, we gather a develop-
ment set as shown in the first three columns of Table4.4. The third column provides
the binary classification, determining the equivalence between the variation X (sec-
ond column) and Beethoven.

Table 4.4 Binary classification of name variations for Beethoven

No. Variation (X ) Yes/No (X ≡ Beethoven?) L(X, Beethoven)

1 Beethovens Yes 1

2 Baytoven Yes 5

3 Beeethoven Yes 1

4 Beetehoven Yes 2

5 Betoven Yes 2

6 Baethoven Yes 2

7 Bethoven Yes 1

8 Aeethoben No 4

9 Brativen No 7

10 Brochowen No 8

11 Beatolen No 5

12 Bathavan No 7

13 Topoven No 8

14 Beetleman No 6

Remember how, as we have discussed before, human judges often disagree on
their evaluation of positive and negative examples? Perhaps youwould like to classify
the examples in Table4.4 differently?

A reason for differences in classification, in the current case, is that I chose negative
examples to be near-misses of the positive examples, making it harder for human
judges to agree. For example, it would be easier to agree that Rudolf is not equivalent
toBeethoven than it is to agree on the fact thatBeatolen is not equivalent toBeethoven.
It is important during development to put your algorithm in hard conditions, so as to
aim toward boosting precision and recall through refinement of your algorithm.

It is even harder to agree given that the examples in Table4.4 are taken out of
context. It would be quite different if the variations were shown within their sentence
of occurrence. I purposely did not do that, so as to focus the discussion on the

1See Sect. 3.4.3, where we introduced the idea of a development set for the refinement of regular
expressions. Other concepts from Sect. 3.4 will be revisited in the current section, such as inter-
annotator agreement (Sect. 3.4.1) and the importance of including near-misses negative examples
in the development set (Sect. 3.4.3). I encourage the reader to go back to the experimental design
in Sect. 3.4 for a review of these concepts.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_3
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misspellings themselves (and not on contextual cues) and to encourage the reader to
challenge my annotations and reflect on the difficulty of establishing and agreeing
on gold standards.

That said, let us continue on our threshold search and devise a method to find it.
The idea is to simply iterate through various thresholds, and for each one, apply the
categorization rules in Eq.4.2 on the variations in the development set (column 2 in
Table4.4) to obtain classification results. Then compare these classification results
against the required answer (column 3 in Table4.4) to calculate the F1 measure.2 At
the end, we select the threshold, among all those tried, which maximizes F1.

Table4.5 shows the recall, precision, and F1 scores for possible thresholds from 1
to 8. The numbers in the second column refer to the misspellings identifiers provided
in the first column of Table4.4. Notice that results for precision decline as those for
recall increase, as is usually the case.

Table 4.5 Calculated F1 at different thresholds for accepted misspellings

Threshold Accepted misspellings Recall Precision F1

1 {1,3,7} 0.571 1.0 0.727

2 {1,3,4,5,6,7} 0.857 1.0 0.923

3 {1,3,4,5,6,7} 0.857 1.0 0.923

4 {1,3,4,5,6,7,8} 0.857 0.857 0.857

5 {1,2,3,4,5,6,7,8,11} 1.0 0.778 0.875

6 {1,2,3,4,5,6,7,8,11,14} 1.0 0.7 0.823

7 {1,2,3,4,5,6,7,8,9,11,12,14} 1.0 0.583 0.737

8 {1,2,3,4,5,6,7,8,9,10,11,12,13,14} 1.0 0.5 0.667

Being the highest (the closest to 1.0), the most favorable F1 for this dataset has a
threshold of 2 (both 2 and 3 are in equality, at 0.923, so we arbitrarily choose 2).

Would this be a valid threshold for all applications? Certainly not, since we have
only calculated it for this small made-up sample containing a single entity. Still, we
will put our threshold to the test in Sect. 4.4, as we compare a binary classifier based
on Levenshtein Distance, with a Soundex algorithm, on a name search comparison
task.Now, let us introduce theSoundex algorithm, so as to understand both competing
algorithms.

4.3 Soundex — A Phonetic Algorithm

Many mistakes in text stem from people having heard words before, but not nec-
essarily having seen them in their written form. When searching for them in text,
we make guesses at the written form of words we have never seen. As well, in the
current world of text messages, writers (texters) often want to generate their message

2Notions of precision, recall and F1 measures were introduced in Sect. 2.2.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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quickly, and therefore approximate the spelling of one word using a shorter, similar
sounding word (e.g., cuz for because).

An algorithm called Soundex, patented as early as 1918, was developed for the
purpose ofmatching similar soundingwords in English. The idea is to perform sound
encoding for words, transforming each one into a Soundex Code. The resulting
codes can then be compared to each other, to determine whether they are similarly
sounding words.

Before we go into the details of the algorithm, let us look at Table4.6 to first
experience examples of pairs of real words and made-up words with their Soundex
codes.

Table 4.6 Comparing words through Soundex Codes

Word 1 Code 1 Word 2 Code 2

Robert R163 Rupert R163

Chardwddonnay C635 Chardoney C635

Although A432 Alto A430

Baken B250 Bacon B250

Cauliflower C414 Califoler C414

Bryce B620 Price P620

Testing T235 Testify T231

Archive A621 Arkiv A621

Bad B300 Bat B300

Prawn P650 Drawn D650

Bored B630 Board B630

Puffy P100 Pop P100

Some pairs, such as (archive,arkiv), (baken,bacon), when pronounced out loud,
do sound very similar, and their Soundex codes, unsurprisingly are the same. But
Table4.6 also shows some slightly different sounding words, such as the pairs
(Robert,Rupert), (Puffy,Pop) which also map to a unique code. Let us look further
into the Soundex algorithm to understand why that is.

The Soundex algorithm relies on the following rules and observations:

1. The first letter of a word is important.

2. Certain groups of letters sound the same or similar, and should be merged. For example
{b,f,p,v} are similar, and so are {m,n}.

3. Double letters should be reduced to one.

4. Vowels are often confused with each other and can be removed.

The algorithm in its entirety is shown below (Algorithm 2). It is surprisingly
simple, and essentially consists of a series of replacements. By generally keeping
the first letter of words, allowing for similar sounding letters to be interchanged,
allowing one letter to stand in for a double letter and removing vowels all together,
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the algorithm can reduce words to their fundamental sounds and in so doing develop
a sound code for them.

Starting with a word of size N letters;
\\ 1. Remember the first letter of the word
Set First Letter to word[1];
\\ 2. Build a first version of the code.
Set Code to Word[2..N ];
\\ 2a. Perform a series of consonant replacements.
In Code, replace all (b,f,p,v) by ’1’ ;
In Code, replace all (c,g,j,k,q,s,x,z) by ’2’ ;
In Code, replace all (d,t) by ’3’ ;
In Code, replace all (l) by ’4’ ;
In Code, replace all (m,n) by ’5’ ;
In Code, replace all (r) by ’6’ ;
\\ 2b. Remove letters h,w.
In Code, replace all (h,w) by ” ;
\\ 3. Refine code by removing adjacent doubles of ’1’ to ’6’.
for char x = ’1’ to ’6’ do

In Code, replace all multiple consecutive occurrences of x by a single one;
end
\\ 4. Remove the vowels. We must wait till this step to remove them, as their presence
is important in determining consecutive presence or not of codes in previous step.
In Code, replace all (a,e,i,o,u,y) by ” ;
if length of Code < 3 then

Add paddings with ’0’ at the end;
end
else if length of Code > 3 then

Set Code to the first 3 letter;
end
Set final Code to be First Letter kept earlier + Code[1..3];
\\ At the end, Code contains the Soundex code.

Algorithm 2: Soundex Algorithm

Let us now put this Soundex algorithm to the test in a comparative experiment
described in the next section.

4.4 Experiment — A Comparative Setting for Misspelling
Detection

With two algorithms in our toolbox, we now have the interesting opportunity to
compare their performances. To carry out our comparison, we will need to situate
the two algorithms together in an experimental setting.

Our task of misspelling detection can be formally stated as the following. Given
a gold standard of N entities, e1..eN , each one with a corresponding correct surface
form s1..sN , we are presented, for each entity ei , with a set of Ki possible mis-
spellings, ei (1)..ei (Ki ). For each possible misspelling, ei ( j) we must determine if it
corresponds (Yes/No) to si .
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Our comparative setup for our algorithms will be as follows:

1. The two algorithms to test are Soundex and Levenshtein Distance.

2. We will use these algorithms as binary classifiers in the misspelling detection task.

• For Levenshtein Distance, the distances less than or equal to the previously deter-
mined threshold of 2 (see Sect. 4.2) will count as positives. All others will count as
negatives.

• For Soundex, only words having the same code will count as positive.3

3. We will measure the individual performance of each algorithm on the same pre-defined
gold standard.

4. We will compare the results of the two algorithms.

Certainly, this setupmay appear unnecessarily formal for such a small experiment.
My main reason for insisting on the necessity of defining an experimental setting
clearly is that uncertainty is inherent to NLP. Since we rarely have deterministic
answers that are universally agreed upon, the notion that ‘it depends...’ is almost
always lurking somewhere beneath the surface of our results. In the face of such
uncertainty, it is good practice to err on the side of modesty when presenting results
that are valid within a particular experimental setting, but not necessarily seen as
the universal truth. It is therefore important to decide on a particular experimental
setting and to understand its reach and limitations.

It is also important that the experimental setting be determined before performing
an evaluation. If we had not specified ahead of time that we were to use a threshold
of 2 for our evaluation of Levenshtein Distance for example, we could potentially
be tempted to change the threshold when testing our algorithm. This would be less
than honest, since we would effectively be further adapting our algorithm to our test
set, when the threshold was defined on the development set (see Table4.3). Even
when there is room for improvement on an algorithm, it is important to ‘freeze’ it
in particular incarnations, stand back, and measure its performance. In a way, this is
similar to freezing code in software design, when we assign it version numbers (e.g.,
1.1, 1.5 etc.) at certain stages of development, and then continue to improve on it.
This process of freezing and measuring provides us with benchmarks along the road
of development, which help us objectively evaluate our improvement over time.

4.4.1 Gold Standard

Let us pretend we are given Table4.7 as gold standard, being told that lists found in
the third column are all recognized misspellings (ei (1)..ei (Ki )) for the entity which
normalized surface form (si ) is found in the second column. Notice how the surface
forms are given in a compressed way to make them compatible input for our two

3We have not discussed partial matching of Soundex codes. I leave it to be explored as an exercise
(see Exercise4.2).
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algorithms. Eventually, the algorithms should be adapted to work with compound
nouns as to make them more flexible (see Exercise4.4).

Table 4.7 Gold standard for acceptable surface form variations

Num. (i) Correct surface form (si ) Variations (ei (1)..ei (Ki )

1 Chardonnay Chardonnay, Chardenay, Chardenai, Chardenet, Chardennet,
Chardonay, Chatenait, Chaudenet, Chaudent

2 CzechRepublic CzechRepublic, CeskoRepublika, CheckRepublic, CeskaRe-
publika, CechRepublic, CzechiRepublika, CzechoRepublic,
TjechRepublic, TscheRepublic, ChezRepublic

3 ElvisPresley ElvisPresley,ElvisPresely,ElvisPressley,ElvisPressly,Elvis-
Prestly, ElvisPrestley

4 Hirshhorn Hirshhorn, Hishorn, Hishon, Hichorn, Hirsshon, Ichon, Irsh-
horrn

5 Italy Italy, Itàlia, Italia, Italie, Itali, Italië, Italija, Italio, Yitalia

6 KeithJarrett KeithJarrett, KeteJarrett, KeithJaret, KeithJarret, KateJarrett,
KeyJarrett

7 Mehldau Mehldau, Meldau, Meldauh, Melhdau, Meldaugh

8 Mozart Mozart, Moatzart, Mosart, Motzart, Mozzart

9 TheBeatles TheBeatles, Beatle, Beetals, TheBeatals, TheBeetals, The-
Beetles, TheBealtes, DieBeatles

10 VanGogh VanGogh, VanGoh, VanGoth, VanGough, VanGo, VanGogh,
VanGhoh, VanGooh

Having seen in the previous chapters the need for including both positive and
negative examples in a gold standard, you should recognize that this is not a quality
gold standard, since it only contains positive examples.

This gold standard will only allow for the measure of recall. Why? Remember
that precision requires the number of false positive in its calculation (the number of
‘no’ falsely tagged as ‘yes’), which cannot occur when we are only provided with
positive examples in the first place.

If we had known that recall was the measure to be used for testing our algorithms,
we would have optimized our threshold T (Sect. 4.2) for the Levenshtein Distance
on recall instead of F1. But we did not know. I am presenting this hypothetical
scenario to demonstrate the way things often unfold in the real world. I gathered this
gold standard test set from the predicate dbo:WikiPageRedirects, which was the
first source of surface forms we explored in Chap.2. This predicate leads to positive
examples ofmisspellings. Although less than ideal, a gold standardmade up of solely
positive examples is sometimes all there is available for an NLP task, and researchers
then try to be creative in making up negative examples.

For our current experiment, let us only keep the positive examples provided, and
compare our algorithms using the recall measure, as we see next.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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4.4.2 Looking at Results

Table4.8 shows the average recall obtained for each name by the Levenshtein and
Soundex algorithms, as well as the difference between them.

Table 4.8 Recall results for both algorithms: Soundex and Levenshtein Distance

Num. (i) Correct surface form (si ) Lev. Dist Soundex Difference

1 Chardonnay 0.22 0.67 0.45

2 CzechRepublic 0.3 0.3 0.0

3 ElvisPresley 1.0 1.0 0.0

4 Hirshhorn 0.286 0.143 −0.143

5 Italy 0.222 0.556 0.334

6 KeithJarrett 0.5 0.833 0.333

7 Mehldau 0.8 0.8 0

8 Mozart 1.0 0.6 −0.4

9 TheBeatles 0.5 0.5 0

10 VanGogh 1.0 0.375 −0.625

Average 0.583 0.578 0.005

The average results, presented on the last row of the table, indicate the two algo-
rithms arriving almost ex aequo at the finishing line. But looking at the individual
results in Table4.8, we observe that one algorithm performs better than the other in
some cases and less well in others. For example, Soundex’s performance was bet-
ter for the name Chardonnay, but worse for VanGogh. This could be an indication
that there is a complementary relationship of sorts between these algorithms, which
could incite us to combine them in order to obtain amore global solution. In Chap.13,
Sect. 13.4.3, we will introduce the idea of voters and vote combination, which could
very well apply in our present case, making Soundex and Levenshtein algorithms,
both voters for the same task.

There are also possible variations on the Edit Distance, which will make the algo-
rithm perform very similarly to the Soundex, as we discuss next within an analysis
of the algorithms in a broader multilingual setting.

4.5 Soundex and Edit Distance in a Multilingual Setting

Our previous section defined a task of misspelling detection, which more accurately
should have been called a task of Englishmisspelling detection. Comparative results
on a French, Spanish, or German misspelling task, with the same two algorithms
would have led to quite different results. Changing to a language other than English
would actually not be fair to Soundex, since it was specifically developed for the
English language and the replacements it suggests are therefore based on groups of

http://dx.doi.org/10.1007/978-3-319-41337-2_13
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letters that sound similar in English. This may not be the case for other languages.
For example, in French, a final ‘t’ is often silent, meaning thewordsPinot andPineau
would be pronounced in the same way, given also that an ‘eau’ sequence in French
has an ‘o’ sound. Unfortunately, the Soundex algorithm would encode these words
differently (P530 for Pinot and P500 for Pineau), in spite of the fact that from a
French speaker standpoint, they sound virtually identical.

The Edit Distance algorithm, on the other hand, provides a language-independent
approach, simply considering operators (insertion, deletion, substitution) on letters.
But to actuallymake the Edit Distance perform better, we need tomodify it a bit to not
be so agnostic to the content of the words. Numerous variations to the algorithm have
been suggested over the years, on the theme of weighted Edit Distance meaning
that various weights can be assigned to the different operators and varied based on
the letters on which the operators are applied. It might be more intuitive to think of
a weight as a cost of an operation, since our final goal is to calculate a distance, and
that distance will be the sum of the weight (or cost) or each operation.

Below are some examples of ways to vary the costs of operations in Edit Distance.

• First letter: Assign a higher cost to a change in the first letter of a word.
• Vowels versus consonants: A substitution involving two vowels could be assigned
a lower cost than one involving a vowel and a consonant.

• Letter matrix: We could construct a full matrix to represent the cost of sub-
stitutions between any letter and any other letter. This would constitute a very
fine-grained variation of the cost, possibly learned from typical writing mistakes
in different languages.

• Close keyboard keys: Letter changes involving keys that sit close together on the
keyboard could be assigned lower costs.

• Close sounds: Similar sounding letters (e.g., b, p, v) could be assigned lower costs.
• Repeated letters: Reduce or completely remove the cost of insertion when it
involves the doubling of a letter.

Some variations are related to the application or type of text to be analyzed. If
we hope to search for names in very informal blogs for example, we can expect
many keyboard typing mistakes, and attempt a weighted Edit Distance adapted to
take into account the close keyboard keys. But most variations, such as suggesting
different costs for different letter pairs, address aspects intrinsic to the language, and
would require adaptation to each language to perform adequately. Given that each
language has its own writing rules, its own common and less common sounds, its
own set of characters, it is certain that word comparison algorithms, whether pho-
netic or character-based, will not be language independent and will require language
adaptation.
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4.6 In Summary

• Edit Distance is a very useful algorithm for comparing strings. It relies on basic
operators for insertion, deletion, and substitution of characters.

• The Levenshtein Distance is a commonly used variation on the Edit Distance,
where the cost of an insertion or deletion is 1, and the cost of a substitution is 2.

• Soundex is a phonetic-based algorithm used for comparing strings, which works
nicely for spelling errors involving variations of similar sounding letters and
phonemes.

• The change from a distance measure to a Yes/No classification implies the use
of thresholds. We can learn to establish appropriate thresholds by optimizing the
threshold-dependent algorithm on recall, precision, or F1 using a development set.

• When comparing algorithms, we should look beyond average results, at the indi-
vidual results, which might hint at their complementarity.

• There are many possible variations of the Edit Distance algorithm. Most would
consist in changing the weights (costs) of different operators, and adapting these
weights to particular letters, letter pairs or the position of letters in words.

• When used in a multilingual context, string comparison algorithms should be
adapted properly to the phonetic and orthographic particularities of each language.

4.7 Further Reading

Edit Distance and Soundex description and variations: The best starting point for
further exploration of the Edit Distance is simply its own Wikipedia page, whereas
for Soundex it is better to start from the higher level description of phonetic algo-
rithms, at https://en.wikipedia.org/wiki/Phonetic_algorithm which will also point to
more recent phonetic algorithms such as the NYSIIS, the Metaphone and Double
Metaphone.

Competitive trend in NLP: The emphasis on experimental setup in this chapter can
be related to the competition-oriented trend increasingly present in NLP over the past
15 years. As one example, theNational Institute of Standards and Technology (NIST)
regularly hosts a TAC (Text Analysis Conference) in which various competing tracks
are suggested (http://www.nist.gov/tac/2016/KBP/index.html) covering topics from
sentiment analysis to Entity Linking and knowledge base population.

4.8 Exercises

Exercises 4.1 (Levenshtein Distance)

a. Program the Levenshtein Distance algorithm, shown in Algorithm 1. Make sure
your program is correct by testing it on the different variations in Table4.4.

https://en.wikipedia.org/wiki/Phonetic_algorithm
http://www.nist.gov/tac/2016/KBP/index.html
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b. Gather possible surface forms of five entities of your choice in DBpedia, using the
predicate dbo:WikiPageRedirects. Discuss how appropriate the Levenshtein
Distance is for expressing the closeness of these forms to the one found through
the rdfs:label. To help your discussion, go back to Chap.2, Sect. 2.10, to Exer-
cise2.2, and go through the surface form variation categories you had defined. Is
the Levenshtein Distance more appropriate for some categories than others? Use
examples from your five chosen entities to illustrate your point.

Exercises 4.2 (Soundex)

a. Program the Soundex encoding algorithm, shown in Algorithm 2.Make sure your
program is correct by testing it on the different variations in Table4.6.

b. Try your Soundex program on the variations of Beethoven in Table4.4. Do they
all lead to the same Soundex Code? If not, which ones are different?

c. Modify your program above to work with noun compounds. If you look at the
noun compounds in Table4.7, do the results change between applying the original
algorithm on the condensed versions (e.g., ElvisPresley) or your new version on
the real name (e.g., Elvis Presley)?

d. Our approach to the use of Soundex in this chapter has been very strict: either
the codes match or they do not. You probably noticed a similarity between the
codes of similar words. Think of how to express code similarity using Soundex.
Discuss.

Exercises 4.3 (Threshold search and Edit Distance variations)

a. Program the threshold search algorithm, discussed in Sect. 4.2. Test it using the
data in Table4.4 to make sure it works correctly.

b. Modify the Levenshtein Distance algorithm to (a) increase the penalty for opera-
tions on the first letter, (b) only penalize changes in vowels by 1, and (c) have no
penalty for the insertion of a letter that results in a double letter (e.g., inserting
a k after another k). Redo the threshold search, programmed above, using the
new Levenshtein Distance algorithm to optimize the threshold. Is the result very
different?

Exercises 4.4 (Experimental Setting)

a. Be critical of the experimental setup we described in Sect. 4.4. What do you think
of the names chosen in the gold standard? Do you think they will bias the results
toward Soundex or Levenshtein? Is 10 examples enough? Do you agree that all
variations provided are possible variations of the entity’s correct name? Why is
only measuring recall problematic?

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_2


Part II
Working with Corpora

Given the preponderance of statistical problem-solving approaches in current NLP
research, as fostered by the online availability of large corpora, it is important, for our
exploration of NLP and more specifically of Information Extraction (IE), to spend a
bit of time exploring what corpora have to offer and how we can devise even simple
statistical methods to extract information from them. This is our goal in this Part II
of the book, Working with Corpora.

We will first spend time in Chap. 5, Exploring Corpora, to discuss different
types of corpora and to get a sense of how words behave in them. We will look at
quantitative approaches, relying onmeasures inspired from the field of information
theory and qualitative approaches through the use of a concordancer, allowing to
view words in their immediate contextual environment, within a corpus.

We will then look at words in corpus as they form predictable sequences. These
sequences are at the core of statistical languagemodels, so useful inNLP for various
tasks from Machine Translation to error correction. Chapter 6, Words in Sequence,
will provide a brief introduction to probabilistic modelling of word sequences and
will use the models in a misspelling correction task.

We then venture into a bilingual comparative setting in Chap. 7, Bilingual Cor-
pora. We will look at bilingual term extraction, using the methods from Chap. 5,
inspired from information theory, to find term equivalents in bilingual corpora. We
will also show how the language models from Chap. 6 can be applied for automatic
language detection.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_7
http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_6


Chapter 5
Exploring Corpora

In previous chapters, we have worked with very small corpora. Some were even
constructed manually to specifically illustrate a particular point, and they have gen-
erally contained ten to twenty sentences each. These have been sufficient for our
purposes of familiarizing ourselves with the learning material (e.g., variations in
surface forms, the use of regular expressions to find entity types, measuring Leven-
shtein Distance between surface forms), but much larger corpora are available in the
real world, and it is important for us to explore the behavior of surface forms in this
broader context as well.

We will start this chapter by providing alternate definitions for the word corpus
and then further characterizing the documents which can be included in a corpus,
through different criteria such as genre and domain.

We then provide a brief overview of various corpora resources, so as to show
the availability and the diversity of corpora, and incite readers to further look for
resources corresponding to their needs. The reader can find references to all resources
and software tools mentioned in this chapter in Sect. 5.10, as part of the Further
Reading material.

We then investigate two different ways of exploring the content of corpora: quan-
titative exploration and qualitative exploration.

For our quantitative exploration, we will look at measures of word frequency, as
well as measures provided by the field of information theory, such as Information
Content and Mutual Information, which respectively help to determine which
words or combinations of words are more informative than others in a corpus.

For our qualitative exploration, we will build a concordancer, which is a tool
designed to provide a concise viewof corpuswordswithin their immediate contextual
environment.
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5.1 Defining Corpora

Theword corpus, or its plural form corpora, has become such an integral part ofNLP
today that its definition is rarely explicit within research articles describing corpus-
based experiments. But really, what is intended by the word corpusmight vary from
one article to the other, a variation that is likely influenced by the publication year
and the subdiscipline (e.g., NLP in medicine, NLP in humanities) of the article.

To discuss these variations, let me make up a few definitions, which could corre-
spond to various implicit definitions of the term corpus as used in research articles.

(a) A corpus is a set of electronic documents.
(b) A corpus is a large number of documents.
(c) A corpus is a set of documents freely available online.
(d) A corpus is a set of annotated documents.
(e) A corpus is a set of documents selected based on particular criteria.

Definition (a) is probably the one most often assumed by current NLP research.
We often think of a corpus as being, quite simply, a set of electronic documents.
However, the criterion of availability in electronic form is not essential for a set of
documents to be called a corpus. Corpora existed before the electronic age, and a set
of paper documents can still be a corpus. Unfortunately, such a corpus is not directly
accessible as input for NLP study, unless it is processed through an OCR (optical
character recognition) program, which depending on its quality, would result in more
or less recognizable and therefore analyzable text. OCR is a field of study in itself,
playing an important role in the conservation and study of historical texts.

The criterion of size, as emphasized in definition (b), is also not essential for a set
of documents to be called a corpus. That being said, we would probably not refer to
a group of only two documents as a corpus, but rather assume it consists of at least
a few. Working with very large corpora is a common trend in current NLP research,
going hand in hand with the trend of using statistical approaches which require large
amount of text to generate realistic probabilistic models.

The criterion of free access, as emphasized in definition (c), is not essential
either. There are plenty of corpora that are made available by different organizations
at varying costs through varying licensing agreements. However, free access is often
a factor in the popularity of a corpus since researchers will generally tend to choose
corpora which are free of cost. This is such a pervasive phenomenon that it has
created a bias in research over the years, since researchers have focused more on free
availability than anything else in their choice of corpora. This has meant that certain
corpora are used extensively simply because they are free and not because they are
particularly well constructed or well suited to specific tasks.

Definition (d) serves to highlight the difference between raw and annotated texts.
Raw text refers to text in its original, untouched form. Annotated text, on the other
hand, here refers to text into which humans have manually inserted information such
as part-of-speech tags (e.g., noun, verb, adjective) or sense numbers taken from a
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dictionary. Examples of annotated text are the Penn Treebank corpus for part-of-
speech tagging (discussed in Chap. 8) and the SemCor corpus, which is annotated
with WordNet senses (discussed in Chap.9). Annotated texts are costly, since they
required many human annotation hours to be generated. They are commonly used
in NLP for the development of supervised machine learning models which require
annotated data for their model learning.

My reason for including the final definition (e) was to focus our attention on
the fact that a corpus is not necessarily just a random selection of texts, but that
selection can be based on document characterization criteria. In earlier work on
corpus linguistics, selection criteria were always stated and explicit, since the very
idea of a corpus was dependent on these criteria. An unqualified group of documents
would, at one time, not have been considered a corpus. Let us further explore, in the
next section, the different ways in which documents can be characterized.

5.2 Characterizing Documents

There are multiple ways of characterizing a document. Language, country of origin,
domain, text genre, medium, language level, and purpose are all examples of char-
acteristics reflecting variations in the form and content of a document. Below is a
list of these seven characteristics which provides more information about each one,
along with examples.

• Any text is written in a particular language, whether it is English, French, Spanish,
Mandarin, or any other language of the world. In multilingual studies, we are
interested in looking at corresponding texts in different languages.

• Beyond the actual language, the country of origin of the writer can affect the
resulting corpus as well, in terms of its style, its cultural references (which are
ever present in text), or the choice of vocabulary.

• The domain of a text refers to its subject matter or its central topic. There are texts
belonging to countless domains, including medicine, computers, gardening, food,
and automobiles.

• The text genre, also referred to as the text type, characterizes the intent and the
formatting of the text, rather than the topic. Examples of genres would be technical
reports, blogs, recipe books, scientific articles, and news articles. Each text genre
implies a particular style of writing, a factor which will influence the approach we
take for extracting information from it.

• The medium of a text refers to how the text came about, whether through speech
or writing. Spoken corpora are made up of transcriptions of speech. Most often
consisting of dialogues, these require particular methods of analysis and entail
many speech-specific elements of language, including pauses, repetitions, and
false starts. We will deal exclusively with written corpora in this book.

• The language level of a text is often directly related to its genre. For example,
familiar, colloquial language is characteristic of a blog, but we would expect to
find more formal language in a scientific article.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_9
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• The purpose of a text refers to the intention behind its being written in the first
place and its intended audience. For example, the purpose of a news story is to
inform, whereas the purpose of a textbook is to teach, and the purpose of publicity
text is to sell.

There is so much to say about each of the aspects of text described above that each
one could become the subject of an entire book. The purpose of this brief overview is
simply to familiarize the reader with some of the terms that are used when describing
corpora. It will also contribute to building an awareness of the variability of corpora.
This awareness will serve us well when it comes to deciding where to search for
information, as well as how to adapt our Information Extraction tools for searches
on different types of corpora.

5.3 Corpora Resources

There are many corpora available to us for download and exploration. The most
important element of working with a corpus, however, is knowing whether it is
appropriate for the task at hand. To discover the extent of the variability in corpora
in terms of not only size, but domain, language, and more, I encourage the reader
to look into corpora repositories such as the Linguistic Data Consortium (LDC).
Another good place to look for corpora is among the list of resources provided by
the Stanford NLP group, as well as the Corpora4Learning site which provides
links to various corpora and the tools needed to explore them.

Below is a tiny sample of currently available corpora, of interest from an NLP
point of view. The sample aims to provide an eclectic survey of corpora and illustrate
the degree to which one can differ from the next. The best way to familiarize yourself
with these corpora is to explore them yourself both qualitatively and qualitatively,
with the tools we will develop in the further sections. Through the presentation of the
corpora, I sometimes mention research topics related to these corpora, even if they
are outside the scope of this book. So as not to divert the reader too much toward
further explanations of these topics, I preferred to include definitions for them in the
Glossary, at the end of this book.

British National Corpus (BNC): The BNCwas one of the first widely used corpora
in NLP and is still used today. It is a collection of samples of spoken and written
language texts, totaling 100 million words. It can be downloaded in full for your
own research and exploration with a license agreement, or it can be searched directly
online through their Web search tool. Table5.1 shows the usage of the surface form
mobile phone, our example from Chap.2. The codes in the first column represent
specific documents from specific sources within the BNC. The purpose in showing
this table is to heighten the reader’s awareness toward the eclectic content of sentences
found in general language corpus, containing day-to-day language of a narrative
nature, as opposed to an encyclopedic corpus, containing formal and definitional
sentences, such as Wikipedia.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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Table 5.1 Examples from BNC for mobile phone

AJ6/275 Close behind his PA, the formidable Helen Liddell, kept her mobile
phone clamped to her ear and an anxious eye on her watch.

BM5/287 Some mobile phone retailers are now supplying the once popular car
phone free, bar an installation charge, and rely on bill-related
bonuses to make up the entire profit.

CB8/1590 Answer our survey and you could receive a free mobile phone on the
Cellnet Lifetime service.

CBC/8249 It used to be only the City yuppie, but now most people can afford
a mobile phone.

CBG/4873 But I’ve got the mobile phone, the furry coat and the big cigar.
CEK/6346 When she discovered that he had called her repeatedly on a mobile

phone she flew into a rage.
CH6/8859 Di has frequently told friends she fears that her conversations were

bugged and uses a mobile phone more and more.
CRC/2981 For surveyors and civil engineers, relief workers and war

correspondents, the ultimate mobile phone looks like a bargain.
HGJ/274 He picks up his mobile phone, dials his stockbroker in Tokyo.
K1H/889 A federation representative is on call 24 hours a day by mobile phone.

Wikipedia archive: The Wikipedia archive is more commonly referred to as the
Wikipedia dumps, so as to express the fact that on a regular basis, a few times per
year, all the contents of all the pages ofWikipedia are “dumped” into large files, freely
available for download.Wikipedia dumps are probably the most widely used corpora
in current NLP research. An easy explanation for this is that Wikipedia dumps are
both free and of significant size (gigabytes of text), two favorable criteria for corpus
selection as we have discussed in the previous section. We follow the trend in this
book by selecting multiple illustrating examples from Wikipedia. Although easy to
access, Wikipedia dumps are not trivial to store and process locally (on your own
computer) because of their large size. Wikipedia dumps are better explored locally if
storedwithin an information retrieval system, such asmade possible by the popular
freely available indexing software Lucene, commonly used in NLP.

Reuters: Automatically determining the central topic of a text is an important task
in NLP, known as text categorization. A useful corpus for testing approaches to
categorization is the Reuters-90 categories corpus, which contains close to 13,000
documents, split into 90 classes, or domains. The domains include fuel, corn, cocoa,
lumber, and oat. In this chapter, you will make use of the Reuters corpus to perform
comparative studies of domain-specific corpus word frequencies (see Exercise5.2).

Gutemberg project: The Gutemberg project contains a large set of freely available
e-books. Although the Gutemberg project is better known in the digital humanities
for language studies than inNLP, I believe it is an important repository to know about,
and it can be a useful place to acquire knowledge and information about particular
subjects, if performing domain-specific Information Extraction. For an ontology
expansion task in the domain of gardening for example, one of the Gutemberg
project e-books, the A-B-C of Gardening, would be a good source of information.
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Google Books n-grams: This is an example of a preprocessed resource based on
a very large corpus. The resource contains n-gram probabilities as precalculated on
the Google Books. These n-grams are either available for download or for online
consultation through the Google Books n-gram viewer. An n-gram is a text segment
made of n consecutive words. For example, a large cat is a trigram (three words),
whereas large cat is a bigram (two words). An interesting part of Google Books
n-grams is that they allow for diachronic studies, as they provide the n-grams for
particular years. This means that they gathered, for each year, all books published in
that year, and then extracted the n-grams for that year-specific corpus.

Let us continue, in the next section, with the Google Books n-gram viewer to
perform a first comparative quantitative analysis of surface forms in corpus.

5.4 Surface Form Frequencies in Corpus

For our first quantitative exploration, let us revisit our example of mobile phones
from Chap.2. Remember that there were various surface forms for the entity
dbr:Mobile_phone. When searching for different surface forms in a corpus, we
cannot expect to find them all with equal frequency, since some are bound to be
more popular than others.

Let us investigate the popularity of individual forms. A useful tool to help in this
endeavor, as introduced in the last section, is the Google Books n-gram viewer.

Table5.2 shows a list of surface forms for mobile phone, in decreasing order of
probability, for the year 2008.1

Table 5.2 Google Books frequencies for various surface forms of mobile phone

Surface form Google Books percentage

cell phone 0.0005950%

mobile phone 0.0001922%

cellular phone 0.0000335%

cell-phone 0.0000142%

cellular telephone 0.0000128%

cell telephone 0.0000003%

celluar phone N/A

The numbers, in the second column of Table5.2, must be interpreted as the per-
centage of all possible bigrams found in the Google Books, which explains why they
are all quite small. Clearly, cell telephone is much less common than cell phone. But
in theory, if phone and telephone are synonyms, why wouldn’t it be as likely to find

1The year 2008 is the latest year indexed in the Google Books n-gram viewer at the time of writing.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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cell phone and cell telephone in corpora? A quantitative view of this corpus reveals
that although certain variations are equally possible from a compositional point of
view, they differ in terms of actual usage. The further study of why certain surface
forms prevail over others in communication within a society is one of the topics of
interest in the field of terminology.

As we saw earlier, corpora vary widely along various axes (genre, domain, pur-
pose, etc.). When studying surface forms in a corpus, it is important to understand
the nature of the corpus itself. In the case of Google Books n-gram viewer, the corpus
is comprised of books indexed by Google. It comes at no surprise then that searching
for the typographic error celluar phone yields no result, as shown in Table5.2.

This does not mean the error never occurs, but simply reflects the fact that books
are edited to eliminate such errors before being published. The situation is radically
different on the Web. A search for the correct form cellular phone on the Google
search engine returns over nine million hits, but a search for the typographic error
celluar phone still returns over four million hits (see Table5.3). In the scheme of
things, this is not such a large difference. It goes to show that theWeb-as-corpus is a
much noisier place than Google Books, and each of these corpora provides evidence
for different linguistic phenomena.

Table5.3 also shows that single words (e.g., cell) are orders of magnitude more
frequent thanmulti-words (e.g., cell phone). From this, we can extrapolate that due to
this high frequency, single-word synonyms are likely to be very polysemous, as they
can take onmany different senses by being part of othermulti-words (e.g., cell prison,
battery cell, body cell). Although high frequency is not necessarily synonymous with
polysemy, the two are often correlated. By likely being polysemous, single words
will introduce noise if they are used as surface forms for an entity search in text.

Table 5.3 Google hit counts for different synonyms of mobile phone

Surface form Google hit counts

mobile 5.9 billions

phone 4.4 billions

cell 1 billion

mobile phone 252 millions

cellular telephone 12 millions

cell phone 219 millions

cellular phone 9 millions

celluar phone 4 millions

It is interesting to explore the relative frequencies of different surface formswithin
a corpus, and it can be equally interesting to explore them between corpora. We can
compare corpora along any of the axes mentioned earlier (domain, language level,
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purpose, etc.) and thus obtain relative frequencies. I chose country of origin as the
criterion for comparison in the example below. Even within a single language, there
can exist variations from country to country. Table5.4 contrasts the use of cell phone
and mobile phone in the USA, the UK, and Australia as obtained by specifying a
country of origin in the Google search engine.

Table 5.4 Google hit counts for country preferences for synonyms of mobile phone

Label USA UK Australia

cell phone 186 millions 2.7 millions 27 millions

mobile phone 116 millions 44 millions 557 thousands

We can observe thatmobile phone is a much more popular form than cell phone in
the UK, which seems to be the opposite in Australia. The numbers are not completely
obvious to compare since they are not normalized. A normalized measure would take
into account the total number of words in each corpus (or country for our example).
The Information Content, which we explore next, is a normalized measure which
will allow for more direct comparison between corpora.

5.5 Information Content

An important measure that can be derived from corpus frequency (or estimated
based on it) is a word’s self-information, or Information Content. The Information
Content of a word, IC(w), refers to the level of surprise that its presence in text
offers, based on its probability of occurrence. Take the words the, large, bird, and
chiropteran as examples. Intuitively, since it is the least common of the four, we
can say that chiropteran is the word we would be most surprised to find in text. In
contrast, finding the word the in a text does not bring with it any level of surprise.
The is a word that is likely to occur in the vast majority of texts, and thus, each of its
occurrence in text carries little Information Content.

Equation5.1 shows the definition of IC(w), in whichP(w) refers to the probability
of a word w to occur in text.

IC(w) = log
1

P(w)
= − logP(w) (5.1)

Unfortunately, we cannot estimate a real P(w) which would refer to the overall
probability of w to occur in any possible text available in the world. We instead
approximate the probability of occurrence of a word through its observation in a
specific corpus. This approximation, called P̂(w), will always be affiliated with the
corpus within which it was observed.
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Equation5.2 shows how to calculate this approximate probability of word occur-
rence, where freq(w) represents the number of occurrences of a word w in a given
corpus and N represents the total number of words in that corpus.

P̂(w) = freq(w)

N
(5.2)

In the early days of corpus linguistics in the 1990s, the Brown Corpus was often
used to perform frequency counts. It contained 1 million words from 500 texts, each
limited to 2000 words. Although this seemed large at the time, frequency evaluations
today are performed on much larger corpora. Let us continue with our four earlier
example words (the, large, bird, and chiropteran), to understand why small corpora
can be problematic for probability estimations.

Table 5.5 Examples of word frequency and Information Content in the Brown Corpus

word (w) freq(w) P̂(w) IC(w)

the 69967 0.069967 2.66

large 359 0.000359 7.93

bird 32 0.000034 10.35

chiropteran 0 ∞ N/A

Table5.5 shows their frequencies in theBrownCorpus, aswell as their Information
Content (IC), as calculated using Eq.5.1 based on the approximateword probabilities
calculated using Eq.5.2. Notice how the rare word chiropteran is absent from the
corpus, and therefore, no probability and no IC can be estimated on it. This is referred
to as the sparse data problem. Sparse data are issues for single-word frequencies,
but become even more problematic for n-gram estimations, as we will discuss in
Chap.6.

Let us now perform a comparative study of the Information Content of words
using two domain-specific corpora. We will see how the top words in each corpus,
ranked according to their IC, can actually tell us about the nature of the corpora.

5.6 Experiment — Comparing Domain-Specific Corpora

In Part I of this book, Searching for entities in text, our experiments focused on find-
ing information about particular entities or entity types in text.Our current experiment
will approach things from another angle and assume that corpora contain information
of their own that wewant to discover.Wewill use frequency analysis and Information
Content as our tools for this endeavor.

Let us establish a comparative setting, so as to explore word frequencies and IC
for two domain-specific corpora. We will keep this process quite exploratory and not

http://dx.doi.org/10.1007/978-3-319-41337-2_6
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restrict ourselves by setting it in the context of a particular evaluation task. This will
be our first experiment following a knowledge discovery approach.

Let us divide our experiment into the following four steps:

1. Build domain-specific corpora.
2. Tokenize the text.
3. Calculate the frequency and IC for each token.
4. Observe and compare the results.

5.6.1 Building Domain-Specific Corpora

Thus far,we have had access toword frequencies through online viewers into already-
built corpora. It will be important to perform a quantitative analysis of our own corpus
as well, but first we must build one. Although we could simply download a corpus
from one of the sites listed in Sect. 5.3, we really should learn how to build our own.
Doing so will have the added benefit of affording us more control over the choice of
our rawmaterial. Remember that Information Extraction starts with a corpus. Having
control over the nature of that corpus will affect later tool development and therefore
our results.

For our current comparative study, domain is our criterion of interest. We will
need two corpora, each within a different domain. In keeping with our examples of
Ludwig van Beethoven and mobile phone from Chap.2, let us use classical music
composers and mobile telecommunications as the respective domains for our two
corpora. These domains are far enough apart that they should provide an interesting
comparative setting.

One way of developing a domain-specific corpus is to make use of theWikipedia
categories. InWikipedia, most pages are assigned one or more categories, represent-
ing their content. Specificity of categories varies widely, such as illustrated by the
following list, sampled from the categories assigned to Ludwig van Beethoven: 1770
births, 1827 deaths, 18th-century classical composers, 18th-century German people,
Burials at the Zentralfriedhof, Composers for piano, and Deaf classical musicians.

InDBpedia, the predicate foaf:primaryTopicOf links individual entities to their
corresponding Wikipedia page titles, and the predicate dct:subject links them to
their list of Wikipedia categories. We can therefore use the SPARQL query below, as
performed at the DBpedia SPARQL endpoint,2 to retrieve all the page titles for the
category Classical-period_composers. You could adapt this query to fit the category
of your choice.

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

select distinct ?Y where {

2Information about SPARQL and the DBpedia endpoint can be found in Appendix A.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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?X dct:subject dbr:Category:Classical-period_composers .

?X foaf:isPrimaryTopicOf ?Y .

}

The query above results in a list of Wikipedia page titles. From there, you can use
your preferred programming language to write a program which will download and
clean the content of each page in the list. For the download step, most programming
languages contain libraries which allow us to easily connect to a URL and download
its content. Note that this approach of page-by-page download should be used with
caution and ONLY be attempted for short lists of pages, less than a few hundreds,
since it puts much burden on the Wikipedia server. The pages should be downloaded
once and stored to be used locally. For building larger corpora, as we will do in
Chap.6, we must make use of the Wikipedia dumps, earlier described in Sect. 5.3.

As for the cleaning step, commonly called boiler plate removal when it comes
to Web pages, this step can be difficult, depending on how noisy the downloaded
Web pages are. Many programming languages offer open source libraries for boiler
plate removal, which should remove all html tags and metadata and provide readable
text. This removal process is not trivial, and we should not expect the results to be
perfect. The outputted text will be somewhat “clean” as it would mainly be made
of uninterrupted paragraphs of texts, but it might still contain some metadata and
html tags. The process might also have removed parts of the text that should have
been kept. When building corpora, we often underestimate the time needed for this
cleaning step, or the negative impact on the results if we neglect it, especially if we
wish to further use linguistic tools on the resulting text (see NLP pipeline in Chap. 8).
Linguistic tools usually require cleaned text data to achieve good performances.

The domain-specific corpora would be the result of a concatenation (merging) of
all downloaded and cleaned pages. Let us refer to them as ClassicalComposer and
MobileTel corpora. Table5.6 shows the number of Wikipedia pages falling under
each of our two chosen domains and provides examples of Wikipedia page titles
for each (excerpts of the resulting corpora can be found in Tables5.10 and 5.11, in
Sect. 5.8).

Table 5.6 Domain-specific corpora corresponding to Wikipedia categories

Category Nb Pages Nb Tokens Examples of pages

Classical Period Composers 310 420,468 Domenico Alberti,

Muzio Clementi, Franz
Lauska,

Wolfgang Amadeus Mozart

Mobile Telecommunications 180 247,213 Mobile translation,

Bulk messaging,

Transcoder free operation,

4G, Microcell

http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_8


70 5 Exploring Corpora

Table5.6 also includes the total number of tokens found in each corpus. Notice
how I say tokens and not words. That is because corpora are made of words, but also
punctuation marks, symbols, and numbers. Let us investigate this word versus token
issue a bit further, in the next section.

5.6.2 Tokenizing the Corpora

When we set our experiment in the context of knowledge discovery, as we are doing
now, a new and significant challenge emerges: determining word boundaries in a
corpus. This challenge stems from the fact that we no longer have a specific surface
form that we are searching for in a corpus. Let me elaborate a bit on this search
versus discovery issue as it is important both for the development of NLP methods
and for their evaluation.

In search, we know ahead of time what we are looking for. For example, we look
for cell phone, cellular phone, and mobile phone as possible surface forms for the
URI dbr:Mobile_phone. A programming language would store these surface forms
in a string data structure. The corpus in which we search would also be stored as a
long string. The programming language will further provide a very useful substring
match operator. Using this operator, we can relatively easily determine at which
positions in the corpus would each surface form be matched.

In discovery, on the other hand, we do not know ahead of time what we are
looking for. We wish to discover in the corpus some interesting information. An
example of “interesting” information could be additional surface forms for mobile
phone. These cannot be found with any substring match operator, as there is nothing
to match. We want these forms to emerge from the corpus. The only knowledge that
the programming language has is that the corpus is a long string. It does not know
about words. Much of NLP work is trying to make the corpus reveal information,
using various strategies inspired by linguistic and statistical studies of language.Most
strategies minimally assume that the long string which represents the corpus can be
broken up in smaller pieces, each one more easily analyzable. That is the purpose of
a tokenizer.

A tokenizer splits a string into substrings (tokens), using a specified list of sepa-
rators. The choice of separators will therefore have a major impact on the resulting
list of tokens. Table5.7 illustrates this point, by presenting two possible lists of tokens
derived from the same original sentence, but which were obtained using different
separators.

John listened to Beethoven’s Symphony No.2 over the week-end.

There is much more to tokenizing than what we have seen here, but we will save
themore detailed discussion for Chap.8, which deals with Linguistic Roles. For now,

http://dx.doi.org/10.1007/978-3-319-41337-2_8
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Table 5.7 Different separators for tokenizing

Separator NbTokens Resulting tokens

space only 9 John, listened, to, Beethoven’s,
Symphony, No.2, over, the, week-end

apostrophe, punctuations, dash 12 John, listened, to, Beethoven, s,
Symphony, No, 2, over, the, week, end

let us assume that we have a basic tokenizer, using spaces, apostrophes, punctuations,
and dashes as separators, as shown in Table5.7 and move on to finding frequencies
for the resulting tokens in our domain-specific corpora.

5.6.3 Calculating Frequencies and IC

Once we have our list of tokens, we can calculate their frequency and Information
Content (IC). We do this by going through the text and gathering occurrence counts
for each token, as shown in Algorithm 3.

\\ 1. Initialise total count of tokens to 0;
TotalCount = 0 ;
\\ 2. Keep a table of token counts
Initialise TableTokenFreq ;
\\ 3. Go through the text to capture the occurrences of all tokens.
for each token in the text do

Increment TotalCount ;
if TableTokenFreq contains token then

Add 1 to its count in TableTokenFreq ;
end
else

Insert new token in TableTokenFreq and set its count to 1 ;
end

end
\\ 4. Calculate the IC for each token.
for each token in TableTokenFreq do

Calculate its IC with −log( TableTokenFreqTotalCount ) ;
end

Algorithm 3: Evaluating frequency and IC for corpus tokens.

As you can see, the algorithm goes through all the tokens, incrementing the fre-
quency count for each one as it encounters it. It also keeps track of a total count
of tokens, so as to use it, at the end, to evaluate the IC for each token (see Eqs. 5.1
and 5.2).

Even without any further NLP processing, the resulting list of frequencies and IC
will provide insight into the content of a corpus, as we will see in the coming section.
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5.6.4 Observing and Comparing Results

Having built our two domain-specific corpora, ClassicalComposer and MobileTel,
and ran Algorithm 3 on them, the final result would be a list of tokens with their
frequencies and ICs. Table5.8 shows the top twenty highest frequency tokens for
each corpus.

The total number of tokens for each corpuswas previouslymentioned in Table5.6,
showing 420,468 for the ClassicalComposer and 247,213 for the MobileTel. These
numbers help explain the differences in frequencies in Table5.8. With the total num-
ber of tokens for the MobileTel corpus being significantly smaller, it follows that
frequencies of individual words are also lower.

Table 5.8 Top 20 tokens in ClassicalComposer and MobileTel
ClassicalComposer MobileTel

Token Frequency IC Token Frequency IC

the 16356 3.25 the 9549 3.25

in 11804 3.57 and 5309 3.84

of 11068 3.64 of 5111 3.88

and 8807 3.87 to 4577 3.99

to 5831 4.28 in 3997 4.12

wikipedia 4507 4.54 mobile 3155 4.36

his 4456 4.55 is 2162 4.74

was 4174 4.61 for 1943 4.85

for 3800 4.71 on 1629 5.02

with 3619 4.76 with 1468 5.13

he 3600 4.76 by 1455 5.14

by 3286 4.85 as 1435 5.15

major 3037 4.93 phone 1385 5.18

at 2442 5.15 from 1254 5.28

from 2405 5.16 this 1232 5.30

as 2390 5.17 retrieved 1220 5.31

articles 2187 5.26 wikipedia 1176 5.35

music 2088 5.31 that 1104 5.41

this 2001 5.35 or 1075 5.44

on 1976 5.36 are 986 5.52

is 1953 5.37 at 934 5.58

composers 1775 5.47 network 927 5.59

page 1755 5.48 be 894 5.62

identifiers 1628 5.55 use 783 5.75

that 1308 5.77 page 780 5.76

no 1253 5.82 lte 739 5.81

classical 1246 5.82 phones 706 5.86

works 1141 5.91 may 661 5.92

op 1127 5.92 it 651 5.94

composer 1103 5.94 was 648 5.94
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Word ICs on the other hand, which in their calculation imply a normalization
respective to the total token frequencies of each corpus, are directly comparable
between corpora. For example, we see that the word the is equally unsurprising (low
IC) in both corpora. Let us categorize the different unsurprising words which made
it to the top 20 of both corpora as shown in Table5.8.

Stop words: This small experiment highlights the fact that the most common words
in language, including but not limited to determiners (e.g., a, the), conjunctions (e.g.,
with, or), and prepositions (e.g., on, at, of ), are also the most frequently used tokens
in a corpus, regardless of the domain. As a group, these common words are most
often referred to as stop words. Stop words are in opposition to content words (e.g.,
nouns, verbs, adjectives).

Source-specific words: Certain tokens simply identify sources of information. For
example, the tokensWikipedia and page were specific to our earlier corpus building
strategy, made entirely of Wikipedia pages. When building a corpus, there will gen-
erally be a number of tokens that appear on every page (e.g., copyright information,
resource provider) and therefore end up on the list of high-frequency tokens. Another
example would be a corpus of patents, for legal information search. In such corpus,
chances are that among the top tokens would appear the words invention, disclosed,
and claims, all being part of the patent description terminology.

Common verbs, auxiliaries, and pronouns: Auxiliary verbs (e.g., may, can) and
common verbs (e.g., be, have) are likely to have high frequencies and may even be
included on some lists of stop words. As much as they could appear to carry little
valuable information, we should be wary of dispensing with them all together. For
example, a higher occurrence of was over is might indicate that the domain is more
relevant to the past (ClassicalComposer) than the present (MobileTel). This example
may seem simple, but it is designed to illustrate the point that we never know when
and in what way certain tokens may become useful. We should therefore not assume,
as a rule, that stop words and common verbs will prove to be unhelpful for all tasks.

Now, let us focus on the tokens which made it to the top of the lists but which are
different from one corpus to the other. For our comparative setting of domain-specific
corpora, those are the tokens of interest since they usually reveal the domain of the
corpus. In ClassicalComposer, the tokens composers, classical,works, and composer
emerge, and in MobileTel, the tokens mobile, phone, network, and phones emerge.
We call those domain words or single-word terms.

We see how a comparative frequency analysis could become a baseline algorithm
for an application of term extraction, which aims at discovering domain terms in
specialized corpora.

Let us continue and add yet another tool to our toolbox for quantitative corpus
exploration. In the next section, we will investigate how to go about measuring the
likelihood that certain words, or tokens, will be found together in text.
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5.7 Mutual Information and Collocations

In corpus exploration, beyond discovering individual token frequencies, it can be
interesting to also discover how and when certain tokens appear together. Groups
of words that consistently appear together are called collocations. Collocations
can reveal multi-word expressions or multi-word terms. The term multi-word
expression is more encompassing than the term multi-word term, as the lat-
ter would refer to domain-related terms made of more than one word (e.g., laser
printer, mobile telecommunication network), but the former would also include
any expression in text, such as fixed expressions (e.g., brake a leg, meaning good
luck) or verb-particle compounds (e.g.,moving on, lie down). Although collocations
can contain any number of words, we will limit our exploration to groups of two
words.

Collocations would further reveal habitual combinations of words, which seem
to be favored by native speakers for no other reason than just common usage. For
example, do we say rapid car or fast car? Do we refer to yeast as being fast rise
or quick rise? Because they are synonyms, fast, quick, and rapid are theoretically
interchangeable in relation to rise or car. But corpus exploration would show that
some combinations are more likely to occur than others. This is reminiscent of our
earlier discussion in Sect. 5.4, when we observed that although cell phone and cell
telephone are equally possible from a compositional point of view, their usages are
quite different.

One fairly often used measure of collocation strength is called Mutual Infor-
mation (MI) and is derived from words’ joint probability. We earlier saw how to
estimate a word’s probability P̂(w) through its frequency (see Eq.5.2). Similarly,
the joint probability of two words w1 and w2 can be estimated by observing their
joint frequency, and theMutual Information of two words is defined by the following
equation:

MI(w1,w2) = log2(
P(w1,w2)

P(w1) ∗ P(w2)
)

= log2(
P̂(w1,w2)

P̂(w1) ∗ P̂(w2)
) (5.3)

The quantity resulting from Eq.5.3 is more accurately called Point-wise Mutual
Information (PMI) since it only considers joint occurrences (P(w1,w2)). The more
general Mutual Information formula also requires to find out the probability of two
words not occurring together (P(¬w1,¬w2)).

Let us continue exploring our examples of car and rise and calculate the Mutual
Information between all possible combinations with fast, quick, and rapid to deter-
mine if any combination will be put to the forefront. To perform these measures,
we need to decide on the corpus on which we will calculate word and word pairs’
frequencies.



5.7 Mutual Information and Collocations 75

Let us go for the largest there is, this time, and use theWeb-as-corpus. Our access
to this gigantic corpus will be rather indirect, possible through search engines, such
as Google, Yahoo, or Bing. These search engines only provide us with hit counts,
meaning the number of pages containing a word or expression. Still, hit counts can
serve as an approximation of frequencies (see Exercise5.1).

The second column of Table5.9 shows Google hit counts for the words taken
individually and in combination.3 We need one last number to be able to estimate
word and word pair probabilities, and that is the total numbers of words (or in this
case Web pages) in the corpus. Again, unfortunately, we have no direct access to this
number, and instead, we will use the Google hit counts for the common words a, the,
or of as an approximation of the total number of pages on the Web, following the
assumption that these common words would be present in all pages. The hit counts
for these common words is given as the first line of Table5.9.

Table 5.9 Collocation strength evaluation using Mutual Information based on hit counts

w1 or (w1,w2) Google hit counts P̂(w1) or P̂(w1,w2) PMI(w1,w2)

the, a, of 25,270,000,000 1

car 3,410,000,000 0.1394

fast 2,880,000,000 0.1140

quick 2,040,000,000 0.0807

rise 746,000,000 0.0295

rapid 467,000,000 0.0185

fast car 7,640,000 0.0003 0.0196
rapid car 351,000 0.000014 0.0056

quick car 428,000 0.0000017 0.0016

fast rise 404,000 0.0000016 0.0047

rapid rise 2,570,000 0.0001 0.1864
quick rise 348,000 0.0000013 0.0058

The results in the rightmost column of the table show that rapid rise has a higher
PMI than its competitors, fast rise and quick rise. This means that rapid rise is a more
likely collocation than either of the other two options. Likewise, the PMI of fast car
is high in comparison with the alternatives rapid car and quick car. Collocations are
interesting from the point of view of language acquisition, sincewhile the appropriate
form would be obvious to a native speaker, it is likely to appear completely arbitrary
to a non-native speaker.

3Numbers were obtained by performing a Google search on the individual words and combinations,
March 2015.
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ThePoint-wiseMutual Information is not the onlymeasure of collocation strength.
Several other measures are commonly found in the NLP literature, and three of them
are shown hereafter: dice coefficient (Dice(w1,w2)), χ2-test (χ2(w1,w2)), and log-
likelihood ratio (LLR(w1,w2)).

E(w1,w2) = f (w1) ∗ f (w2)

N

Dice(w1,w2) = 2 ∗ f (w1,w2)

f (w1) + f (w2)

χ2(w1,w2) = f (w1,w2) − E(w1,w2)
2

E(w1,w2)

LLR(w1,w2) = 2 ∗ log2(f (w1,w2)
2)

E(w1,w2)

(5.4)

Notice that all of the measures above use the same basic information of individual
word frequencies, f (w1) and f (w2), as well as the joint frequency f (w1,w2). The
first equation E(w1,w2) is called the expected value, E(w1,w2), and is used in both
χ2-test and log-likelihood ratio.

I leave experimentation with these newmeasures as an exercise for the reader (see
Exercise5.3), as we now continue toward a different kind of exploration of corpora:
qualitative exploration. We will see that by observing words in their context, we will
also learn about probable collocations.

5.8 Viewing Candidate Collocations through
a Concordancer

Now that we have learned how to gather statistics about word occurrences and mea-
sure strengths of collocations, the time has come to dig a little deeper into the corpus
itself and observe words in use.

A concordancer is a very helpful tool for exploring a corpus, used for viewing
words, terms, and even semantic relations (as we will explore in Part IV of this
book). A concordancer also has the benefit of being simple and easy to program.
What exactly is a concordancer? It is a tool that allows for a combined view of
the multiple occurrences of a particular term of interest in a corpus, with the term
becoming the center of attention.

Table5.10 shows the typical output of a concordancer, this one resulting from a
search for the term mobile phone within the MobileTel corpus built in Sect. 5.6.1.
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Table 5.10 Example of the output of a concordancer, showing mobile phone in MobileTel

study to access their NHS and mobile phone records. Participants are cont
ctive. Australia introduced a mobile phone recycling scheme.[63] Conflic
provocation of subjects with mobile phone related symptoms". Bioelectro

h.[60] Environmental impact A mobile phone repair kiosk in Hong Kong This
s 15 and 24 participated in a mobile phone research study; 387 males, 557
2013) A display of bars on a mobile phone screen A mobile phone signal (

ting that bundling iPhone and mobile phone service could be violating the
to offer, free or subsidized mobile phone service in exchange for subscr

nes ˆ "Emirates offers first mobile phone service onboard A380 Aircraft"
n the high levels of societal mobile phone service penetration, it is a k
are much more expensive than mobile phone services and provide slow data

f ring tones, games and other mobile phone services. Such services are us
ges, contacts and more. Basic mobile phone services to allow users to mak
arah (10 November 2009). "NFC mobile phone set to explode". connectedplan
"Are some people sensitive to mobile phone signals? Within participants d
.[26][27] This designation of mobile phone signals as "possibly carcinoge
? ????????? ˆ "BBC News - Jam mobile phone signals in prisons, says inspe
e Sure Signal - boosting your mobile phone signal". Vodafone.ie. Retrieve
User Identity Module Typical mobile phone SIM card GSM feature phones re

(May 2010) A roaming SIM is a mobile phone SIM card that operates on more
ient one-charger-fits-all new mobile phone solution."[34] The ITU publish
group to improve the CDMA2000 mobile phone standard for next generation a
pers Mobile viewComparison of mobile phone standards - Wikipedia, the fre
(August 2007) A comparison of mobile phone standards can be done in many
in each country Comparison of mobile phone standards Equipment: Cellular

As you can see, the concordancer has simply gathered all occurrences of the term
of interest in the center of a fixed-size context window. A context window is a
designation of how much information on either side of the term of interest is to be
considered relevant for context. The limits of the window are defined by how far the
context extends, in terms of numbers of characters, to the right and left of the term.

In Table5.10, the context window was defined as spanning thirty characters to
the left and right of the relevant term mobile phone. Keeping the context window to
a consistent size, regardless of the boundaries of sentences, allows us to focus on
the term in the center of the window and observe how other words vary around it. A
concordancer is said to display aKWIC, or a keyword in context, and is an important
tool for corpus exploration among translators, terminologists, and language teachers.
By displaying words in their contextual surroundings, concordancers can also help
reveal a word’s possible collocations, as we touched on in the previous section.

So, how would we go about programming such a tool? Think back to our discus-
sion of regular expressions in Chap.3. A regular expression can be used to define
the limits of context around a word, which is the first step in programming a concor-
dancer.

Below is an example of a regular expression, to center the term mobile phone
within a 30-character context window.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
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.{30} mobile phone .{30}

Remember that in regular expressions, ‘.’ refers to any character, and the number
in the curly brackets indicates the number of repetitions. So, the regular expression
above represents any character (‘.’), repeated thirty times (30), followed by a space,
followed by the term mobile phone, and followed by another space and again by any
character repeated thirty times.

Applying this regular expression to our MobileTel corpus yields the context win-
dow results shown in Table5.10.

A closer look at Table5.10 may lead to the observation that the words on the right
of mobile phone have been sorted alphabetically. A concordancer typically allows
for either a right context sort or a left context sort, to give us a better grasp of what
tends to come before and after our term of interest. Sorting emphasizes repetition
in the surrounding context, since the same words preceding or following end up
grouped together. For example, in Table5.10, sorting has highlighted the fact that
mobile phone services, mobile phone signals, and mobile phone standards are all
quite common and are likely to be three-word terms. Mobile phone SIM card could
even be a four-word term, in the domain of mobile telecommunication.

The specifications for sorting are essential and must be included in the program-
ming of a concordancer (see Exercise5.4).

Table5.11 shows the results of a left context sort which happens to be centered
around the word works. To provide some variation on possible collocations, I have
only included examples in the table of collocations that repeat at least three times.My
motivation for investigating the word works stemmed from our quantitative explo-
ration. If you look back to Table5.8, which displays the most frequent units within
the ClassicalComposer corpus, you may see how this list can be a source of ideas for
further exploration. Among all the words on the list, I was most curious about works,
which seemed somehow out of place alongside other, seemingly much more fitting
words, such as composer and music. However, our search using the concordancer
has confirmed that works is indeed at the center of the classical music domain, and
furthermore, that it has multiple collocations.
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Table 5.11 Example of the output of a concordancer, searching forworks inClassicalComposer

o the study of Rousseau’s life and works Works by Jean-Jacques Rousseau at
with notes on Steibelt’s life and works"(diss.Eastman School of Music,1975

ter Park (1760{1813): the life and works of an unknown female composer, wit
oard sonatas, and numerous chamber works, including string quartets, piano
alia found that Schubert’s chamber works dominated the field, with the Trou
masses and operas, several chamber works, and a vast quantity of miscellane
ificant number of vocal and choral works, particularly in the last few year
ondos and dances, cantatas, choral works, and airs. He died in Schwerin, ag
is often recognized for his choral works, such as Go Congregation Go! and S
ing project to record his complete works, led by Miklós Spányi?(de) on the
ical catalog of Michael’s complete works using a single continuous range of
ed a 26-CD box set of the complete works for solo piano on the German recor
46, borrowed much from his earlier works, a method that was to re-occur thr
utilized by Rossini in his earlier works, and marks a transitional stage in
ivals and revisions of his earlier works. But then in 1772 came Antigona|an
edited and sometimes conducted his works. Lambert had already launched the
y foremost rank. He considered his works excellent as studies for practice,
upils { they continued copying his works. The St. Cecilia Mass (CPM 113) wa
y melodic style differentiates his works from those of his family. He compo
of performances of his orchestral works can be found on 18th-century progr

ated by two large-scale orchestral works, although he continued to produce
and continuo in F major Orchestral works BR C1 \ Symphony in C major (F 63)

The concordancer points to what I would call candidate collocations, in the sense
that their joint occurrence is highlighted but not their collocation strength yet, for
which we need measures, such as PMI , presented earlier. For chamber works may
be a candidate which turns out to have a strong collocation strength, telling us it
might even be an important term within the classical music domain. But his works
might be a candidate highlighted by the concordancer just because his is a common
high-frequency word, and its connection to works is not necessarily any stronger
than it is to any other word.

Notice that we have come full circle with this last example of works. First, using
quantitative exploration, we discovered that it is a frequently recurring token in
the ClassicalComposer corpus. Then, using qualitative exploration, we observed its
candidate collocations using a concordancer. Finally, we circled back to quantitative
exploration, pointing out that we could measure the strength of these candidate
collocations using PMI or other measures.

Quantitative and qualitative corpus explorations should be used in tandem. Each
has its own value and contributes in its own way to our understanding of language.

5.9 In Summary

• A corpus can be characterized in terms of its domain, language level, purpose,
medium, and genre.
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• Many corpora are available online at various research center or university Web
sites, as well as in large corpus repositories where we can search for those that
correspond specifically to our needs.

• We can perform a simple and useful quantitative exploration of a corpus through
the use of token frequency and Information Content.

• Not all surface forms for a particular entity are equally common, as observed
through corpus frequency.

• Information Content expresses the level of surprise brought on by a particular
surface form in a particular context.

• Performing search in a corpus assumes we have defined ahead of time what we
are looking for. This is in contrast to being in discovery mode, where we instead
explore a corpus with tools to help us get insight as to its content.

• One approach to building a domain-specific corpus is to take advantage of the
existing system of categorization in Wikipedia and gather pages belonging to a
certain category.

• Tokenizing may seem simple at first glance, but it can be approached in many
ways. The choice of separators will have an impact on the resulting tokens.

• Mutual Information is a measure of collocation strength, commonly used in NLP.
• Other measures of collocation strength are the log-likelihood ratio, the dice coef-
ficient, and the χ2-test.

• Using a concordancer to explore a corpus is a good way to discover candidate
collocations and also to study words behavior.

• A concordancer is the tool of choice for exploration of language in use and is
widely used by terminologists, translators, and language teachers.

5.10 Further Reading

Web genre: The study of Web genre covers multiple dimensions of characterization
of text which we covered in this chapter. For an early exploration on Web genre,
with a categorization of various genres (e.g., concert review, product information,
demographic data), see Crowston and Williams (1997). For a more recent collection
of papers on the subject, see the book Genres on the Web (Mehler et al. 2010).

Corpora repositories:

• Linguistic Data Consortium (LDC) is available at https://www.ldc.upenn.edu/.
• At http://www-nlp.stanford.edu/links/statnlp.html, we find the list of resources
gathered by The Stanford NLP group.

• The site http://corpora4learning.net/resources/materials.html proposes a list of
corpora and corpus exploration tools.

Annotated corpora:

• Penn Treebank corpus, a series of part-of-speech annotated texts, is available at
https://catalog.ldc.upenn.edu/LDC95T7 for a substantial amount.

https://www.ldc.upenn.edu/
http://www-nlp.stanford.edu/links/statnlp.html
http://corpora4learning.net/resources/materials.html
https://catalog.ldc.upenn.edu/LDC95T7
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• TheSemCor corpus, available at https://web.eecs.umich.edu/~mihalcea/downloads.
html, is a corpus semantically annotated with WordNet senses. SemCor is one of
the resources made available on this site by researcher Rada Mihalcea, from Uni-
versity of Michigan, very active in the area of computational semantics.

Early general language corpora:

• Word frequency lists extracted from the Brown Corpus (Francis and Kucera 1982)
can directly be downloaded from http://www.lextutor.ca/freq/lists_download/.

• The British National Corpus is available at http://www.natcorp.ox.ac.uk/index.
xml and is free for research purposes.

• The American National Corpus (ANC) was the American counterpart to the BNC
and originally also contained 10 million words. A newer version (second release)
is available at LDC https://catalog.ldc.upenn.edu/LDC2005T35 for a small cost.

Eclectic list of corpora:

• Wikipedia dumps are available at http://dumps.wikimedia.org/. They are updated
regularly.

• The Reuters-90 categories corpus (referenced as reuters21578) is available at
http://kdd.ics.uci.edu/databases/ among many other corpora used for categoriza-
tion tasks, not necessarily based on text data.

• The Gutemberg project is found at http://www.gutenberg.org/.
• Google Books n-grams are available at https://books.google.com/ngrams (follow
the raw data download link), and the Google Web 1T n-grams is available at LDC
https://catalog.ldc.upenn.edu/LDC2006T13.

Indexing tools: I highly recommend to readers interested in working with large
corpora to become familiar with Apache Lucene (https://lucene.apache.org/), which
is an extremely useful and freely available indexing tool. As we hope to work with
larger portions or even the totality of Wikipedia in future chapters, Lucene can be
used to efficiently index all its pages locally.

Collocations and term extraction: Early work on collocations using PMI is found
in Church and Hanks (1990). Another pioneer work on collocation search is found in
Smadja (1993).Variousmeasures, such as dice coefficient,χ2-test, and log-likelihood
ratio, are largely used in research on term extraction. Term extraction is an area of
study in itself aiming at discovering important termswithin a domain-specific corpus.
See Kageura and Umino (1996) for an early survey on term extraction and Drouin
(2003) for term extraction using a corpus comparison approach. This research field
having started in the years 1990s, it is valuable to go back to the early papers before
exploring current methods, which will likely be sophisticated variations inspired
from the earlier methods.

GoogleBooksn-gramViewer: Being a very useful corpus exploration tool, I encour-
age readers to explore the multiple search options it offers as explained at https://
books.google.com/ngrams/info.

https://web.eecs.umich.edu/~mihalcea/downloads.html
https://web.eecs.umich.edu/~mihalcea/downloads.html
http://www.lextutor.ca/freq/lists_download/
http://www.natcorp.ox.ac.uk/index.xml
http://www.natcorp.ox.ac.uk/index.xml
https://catalog.ldc.upenn.edu/LDC2005T35
http://dumps.wikimedia.org/
http://kdd.ics.uci.edu/databases/
http://www.gutenberg.org/
https://books.google.com/ngrams
https://catalog.ldc.upenn.edu/LDC2006T13
https://lucene.apache.org/
https://books.google.com/ngrams/info
https://books.google.com/ngrams/info
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Web-as-corpus: We do not have access to the full set of documents on the Web,
and the closest is probably the resource called CommonCrawl (http://commoncrawl.
org/). Iwould suggest towait until you are very familiarwithNLPandare comfortable
with large datasets before venturing into this extremely large dataset. For example, the
ClueWeb12 Dataset (http://lemurproject.org/clueweb12/) is available for a medium
cost and covers over 700 million Web page crawled. Then, if you simply wish to
get a sense of word and collocation frequencies through hit counts, you can use
commercial search engines, such as Google (http://google.com/) or Bing (http://
bing.com/).

Concordancer: If you are not writing your own concordancer, you can still explore
some of the corpora mentioned in this chapter (e.g., Brown, BNC) through the use
of an online concordancer available at http://www.lextutor.ca/conc/, as part of a set
of tools for corpus analysis.

5.11 Exercises

Exercise 5.1 (Word frequencies and hit counts)

a. Go to the Google Books n-gram viewer, and experiment with a few alternate
synonyms for different entities of your choice. Choose your entities (use URIs
on DBpedia), find their various possible surface forms (using the predicate
dbo:WikiPageRedirects, and then search for them within the n-gram viewer.
Explore differences when using capitalization, flexible endings, and other varia-
tions the viewer allows to search for.

b. Are the synonyms laptop computer and portable computer used in equal propor-
tion in Canada, the USA, England and Australia? Use the country restriction in
the commercial Google search engine to find out.

c. Download the bookA-B-CofGardening, or anyother bookof your choice from the
Gutemberg Project site. Write your own tokenizer using space and punctuations
as separators. Tokenize the text, and perform a frequency and IC analysis on it.
What kind of tokens do you find at the top of your list (most frequent)? Experiment
using different separators for your tokenization. Do they change your results?

d. It was mentioned in Sect. 5.7 that word frequency can be approximated by a Web
hit count. Discuss why the hit count is an approximation and not an exact word
frequency.

e. Take a subset of 20 words found in exercise (c) through your frequency analysis.
Choose words at different frequency ranks (e.g., 1, 2, 5, 10, 20, 50). Search
for each word’s hit count through a search engine and rank the hit counts by
decreasing frequency. Compare the ranking obtained to the one you started with
as calculated on your local corpus. Discuss.

http://commoncrawl.org/
http://commoncrawl.org/
http://lemurproject.org/clueweb12/
http://google.com/
http://bing.com/
http://bing.com/
http://www.lextutor.ca/conc/
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Exercise 5.2 (Comparative study of corpora)

a. Build the two corpora for classical music composers (ClassicalComposer) and
mobile telecommunications (MobileTel) discussed in Sect. 5.6.1. Make sure to
store the corpora locally as to limit querying theWikipedia server for your down-
loads.

• Clean the corpora using open source boiler-plate removal software available
in the programming language of your choice.

• Perform a frequency analysis on both corpora to obtain their respective lists
of token frequencies.

• Write an algorithm to automatically gather a list of stop words from the two
individual token frequency lists.

• Using your newly built list of stop words, filter the individual lists to remove
the stop words from them. Do you find that more domain terms become part
of the top 20 highest frequency words? Discuss.

b. Try building a new domain-specific corpus, for a domain totally unrelated to
those we explored in this chapter. Examples of domains could be berries (Cate-
gory:Berries) or cars (Category:List_of_car_brands). Perform frequency counts
on your new corpus. Do your highest frequency tokens resemble those from Clas-

sicalComposer and MobileTel corpora? Are the results significantly different if
you filter your results with your list of stop words previously built in exercise (a)?

c. Download the Reuters-90 corpus for a term extraction experiment. First, build a
domain-specific corpus from the files in each category. Then, using the methods
you have developed in (a) for removing stop words, extract the domain-specific
terms for each category. Do they correspond to the domain-related words as
suggested by category names, such as oil, cocoa, corn, and lumber?

Exercise 5.3 (Mutual Information)

a. Program the PMI , Eq. 5.3, and the other collocation measures: dice, χ2, and LLR,
Eq. 5.4. Use the raw frequencies in the second column in Table5.9 to test your
measures. Do the measures yield comparable results?

b. Be critical of the results in Table5.9. Are we sure rapid rise has more collocation
strength than the two others? (hint: rise is ambiguous). Suggest how to adapt the
Web search to obtain hit counts that provide better estimates.

c. Using the ClassicalComposer corpus, measure the strength of the possible col-
locations highlighted by the concordancer in Table5.11 (e.g., chamber works,
orchestral works, life and works, his works, complete works, and earlier works).
Use the various measures you programmed in (a). Discuss your results.

Exercise 5.4 (Concordancer)

a. Write your own concordancer. Start by including a regular expression allowing
to obtain a list of context windows surrounding aword of interest. Then, program
the right context sort. Next, work on the more complicated task of sorting the left
side of the context window. Hint: You will need to first tokenize the left context
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and then build a temporary list of strings containing the words in reverse order,
so that you can sort on that list rather than the original string.

b. Start from the list of high-frequency tokens derived from the book you down-
loaded in Exercise5.1 (c). Search for domain-specific words and use them as
input for your concordancer. Do you see any candidate collocations emerge? If
so, validate and compare their collocation strength using the various measures
you programmed in Exercise5.3.



Chapter 6
Words in Sequence

We saw in the previous chapter that certain words are more likely to be found in
combination than others. For example, we established that fast car is a more likely
combination than rapid car. This finding was based on the mutual attraction of the
two words. In this chapter, our focus shifts to word sequences as we explore the
predictability of certain words following others.

There is great interest in the predictability of word sequences in NLP. After all,
text does not only involve words in isolation or randomly dispersed in corpora,
but it involves sequences of words that, when strung together in a particular order,
form sentences. Sentences are of course more than sequences, in that they must
obey certain grammatical constraints and in doing so display a particular syntactic
structure.Wewill study syntactic structures in Chap. 8, but for now,wewill consider
sentences in terms of sequences of words, not relying on grammar rules. Through
probabilistic languagemodels, wewill be able to determine the likelihood of certain
word sequences based on probabilities. Although thesemodels have their limitations,
by solely looking at words, they bring with them an element of simplicity and have
the advantage of being language independent, meaning we can apply them to any
language.

The hypothesis behind the use of language models is that sequences repeat within
a language, enough that we can determine the word that is most likely to occur after
a particular sequence of words. For example, various possibilities might spring to
mind for a word to follow the sequence he was late for…. Examples might be work,
school, and lunch. The probabilities of these words completing the given sequence
are most likely to be fairly high. The probability of certain other words, however,
such as apple, finishing the same sequence would be close to zero. On the other hand,
apple would be a good contestant for completing the sequence I ate an…, whereas
the earlier words work and school fare much less well in this case.

In this chapter, we will discover just how useful the predictability of words
can be. After presenting the idea itself, and the equations associated with proba-
bilistic language models, we will demonstrate the usefulness of this predictability,
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in conjunctionwith the Edit Distancemeasure (see Chap.4), in the context of spelling
correction.

6.1 Introduction to Language Modeling

Let us define a sequence S as beingmade up of n words, themselves referred to asw1,
w2, w3, all the way to wn . In a language model, we are interested in the probability
of certain words occurring one after the other, in a particular order. One way of
building a model is to assume that we will go through the entire sequence, from the
first word to the last. This means that the probability of a word occurring in position
i (the probability of wi ) will depend on the probability of the entire sequence up to
the word occurring right before it, at position i − 1, that is w1..wi−1. The equations
below show this process, starting from a sequence of two words, building to three,
four, and all the way to n words.

P(w1,w2) = P(w2|w1) ∗ P(w1)

P(w1,w2,w3) = P(w3|w1,w2) ∗ P(w2|w1) ∗ P(w1)

P(w1,w2,w3,w4) = P(w4|w1,w2,w3) ∗ P(w3|w1,w2) ∗ P(w2|w1) ∗ P(w1)

...

P(w1,w2, ...wn) =
∏

i

P(wi |w1, ...,wi−1) (6.1)

As stated earlier, these equations assume that a word’s probability is conditional
on the entirety of the sequence up to that point. Is this really necessary though?
Perhaps, for practicality’s sake, we could calculate our probability more efficiently.

Returning to our earlier example he was late for…, the full sentence might have
been Every day, John sets his alarm for 8:00am, but he has a hard time waking up,
and as usual this morning he was late for... Does having this additional information
make predicting the last word any easier? It could be said to benefit us by eliminating
certain possibilities such as lunch, but this benefit is slight, and the fact is that taking
this whole sentence into account would be unrealistic from a computational point of
view.

Let us try to understand why. One may think that, containing a total of 25 words,
our example sentence is unusually long. Not quite so, since sentences are often
this long or longer. Assuming a vocabulary V of English words containing 100,000
words (|V | = 100,000), the number of possible sequences of 25 words would be a
staggering 100,00025. This would be an impossibly large number for a computational
model to handle.

For this reason, conditioning the probability of wi on all preceding words, as is
done in Eq.6.1, is unrealistic. A better approach is to limit the size of the condition-
ing sequence. In this vein, researchers often work with bigram, trigram, or 4-gram

http://dx.doi.org/10.1007/978-3-319-41337-2_4
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models, which use one, two, and three previous words, respectively, for predicting
an upcoming word. Reducing too far can result in the loss of information, however,
as is shown below. Notice what happens when we move from a 5-gram to a unigram
(no previous word) model on our example.

5-gram → he was late for wi
4-gram → was late for wi
3-gram → late for wi
2-gram → for wi
1-gram → wi

In general, models like these are called n-gram models, where n varies and we
use the synonyms unigrams, bigrams, and trigrams to indicate 1-gram, 2-grams, and
3-grams, respectively. In our discussion and model presentation, the number before
gram refers to the number of previous words in the sequence being considered plus
the word that is being predicted. The numbering might be used differently by other
authors, so it is worth noting.

A unigram model corresponds to the probability of a word wi , P̂(wi ), as we
estimated in the previous chapter through its corpus frequency ( f req(wi )), divided
by the total number of words in the corpus (N ). A bigrammodel is likely to be highly
ambiguous, since the first word (for, in our example) could lead to many different
possibilities. With such little context, the possibilities for sequences are much more
open ended. A trigram model already provides significantly more context, and we
start to see a significant reduction in the set of possible words to follow.

Returningnow toour estimationof theprobability of a sequence,Eq. 6.2 represents
a trigram model, since it considers two previous words for predicting the third.

P(w1,w2, ...wn) =
n∏

i=1

P(wi |wi−1,wi−2) (6.2)

This trigrammodel, as opposed to a full sentence model (Eq.6.1), largely reduces
the number of possibilities to calculate. Assuming our earlier vocabulary V of
100,000 words, we would now have to keep track of 100,0003 possibilities. Although
this is still a very large number, it is orders of magnitude smaller than our previous
100,00025. Throughout this chapter, we will see that most of these theoretically
possible sequences do not in fact exist.

6.2 Estimating Sequence Probabilities

In order to calculate a sequence’s probability, we have to access the n-gram esti-
mations for its subsequences. We will go through the process of calculating these
estimations ourselves in the next section, but for now, let us useGoogleBooks n-gram
viewer, which we introduced in the previous chapter (Sect. 5.3).

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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Assume our example sentence is the student is late for school. Let us consult
the Google Books n-grams to estimate the probability of this sequence, using both
a bigram and a trigram model. In Table6.1, the leftmost column shows the actual
bigram (e.g., the student), the second column shows the bigram’s coverage percentage
provided by the viewer.1 The third and fourth columns show the conditioning unigram
(e.g., the) and its coverage percentage, and the final column shows the results of the
conditional probability, P(wi |wi−1), as obtained from P(wi−1,wi )

P(wi−1)
(e.g., 0.001643

4.63 for
P(student |the)).

Table 6.1 Subsequences in a bigram model for the student is late for school

Bigram
wi−1,wi

Bigram prob
P(wi−1,wi )

∗100
Unigram
wi−1

Unigram prob
P(wi−1)

∗100
Conditional prob
P(wi |wi−1)

the student 0.001643 the 4.63 P(student |the) =
0.0003548

student is 0.0001737 student 0.008573 P(is|student) =
0.020261

is late 0.0000543 is 0.8236 P(late|is) =
0.00000659

late for 0.000250 late 0.01360 P( f or |late) =
0.01838

for school 0.0002399 for 0.6541 P(school| f or) =
0.0003667

Table6.2 contains the same information as Table6.1, for a trigram model.

Table 6.2 Subsequences in a trigram model for the student is late for school

Trigram
wi−2,wi−1,wi

Trigram prob
P(wi−2,wi−1,wi )

∗100
Bigram
wi−1,wi

Bigram prob
P(wi−1,wi )

∗100
Conditional prob
P(wi |wi−1,wi−2)

the student is 0.00007346 the student 0.001643 P(is|the, student)
= 0.04471

student is late 0.0000001253 student is 0.0001737 P(late|student, is)
= 0.000721

is late for 0.000003210 is late 0.0000543 P( f or |is, late)
= 0.05911

late for school 0.000007316 late for 0.000250 P(school|late, for)
= 0.02926

1Remember that the Google Books n-gram viewer does not give raw frequencies for words, but
rather percentages of the total number of either unigram, bigram, or trigram, depending on which
applies.
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Given the results of either model, the next step is to multiply the conditional
probabilities in the final column to obtain the sequence probabilities, as shown in
Eq.6.3.

Pbigram (w1,w2, ...wn) = P(the) ∗ P(student |the) ∗ P(is|student) ∗ P(late|is)
∗ P(school| f or)

= 0.0463 ∗ 0.0003548 ∗ 0.020261 ∗ 0.00000659 ∗ 0.01838

∗ 0.0003667

= 1.479E − 017

Ptrigram (w1,w2, ...wn) = P(the) ∗ P(student |the) ∗ P(is|the, student)
∗ P(late|student, is) ∗ P( f or |is, late) ∗ P(school|late, f or)

= 0.0463 ∗ 0.0003548 ∗ 0.04471 ∗ 0.000721 ∗ 0.05911

∗ 0.02926

= 9.158E − 013 (6.3)

What does this tell us? Is the bigram model a good model for sequence proba-
bility estimation? Is the trigram model better? Well, absolute values are often not
that meaningful in and of themselves, but they become much more informative when
placed in a comparative setting. For example, we should test our bigram and tri-
gram models by comparing their probability estimates of our sequence the student
is late for school to their probability estimates of a sequence such as the student
school for late is, which includes the same words in a random order. The better
model, meaning the model with more accurate predicting capability, should pro-
vide greater differentiation between the random sequence and the actual sequence
(see Exercise 6.1).

One thing the absolute values of Tables6.1 and 6.2 do show is how small the
sequence probabilities become when we start multiplying small numbers by other
small numbers. It follows then, that the longer the sequence, the smaller the prob-
ability. This can be problematic, likely leading to computer underflow. Computer
underflow occurs when a number that is being manipulated by a computer becomes
so small that it is beyond the level of precision that the program allows, and thus
is considered as zero. To counter this problem, we can opt to work in a different
mathematical space, the log-space instead of the linear space. In log-space, a num-
ber is replaced by its logarithm. For example, in log-space using a base 10, the
very small number 0.0000001 can be replaced by its log10(0.00000001) = −8.0,
and a slightly larger but still very small number 0.00000005 can be replaced by its
log10(0.00000005) = −7.3. The resulting numbers (−8.0 and −7.3) will be easier
for the computer program to manipulate.

The reason we can perform such transformation with no impact on our sequence
probability result analysis is that in probability estimation, as we mentioned before,
we are interested in relative probabilities. We analyze various sequence probabilities
by comparing their values and not by looking at their absolute values. In that sense,
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the numbers in the log-space (−8.0 versus−7.3) keep the same relation to each other
(the second one being larger than the first one) as in the linear space (0.00000001
versus 0.00000005).

For our earlier trigram model, for example, we would modify the earlier Eq. 6.2
to work with the logarithm of the sequence probability, as shown in Eq.6.4 (line 2).
Then, we can perform a further mathematical transformation, as shown in the third
line of Eq.6.4, changing the log of the product (log

∏n
i=1) of individual probabilities

into the sum of the logarithms (
∑n

i=1 log) of the individual probabilities.

P(w1,w2, ...wn) =
n∏

i=1

P(wi |wi−1,wi−2)

log(P(w1,w2, ...wn)) = log
n∏

i=1

P(wi |wi−1,wi−2)

=
n∑

i=1

log P(wi |wi−1,wi−2)

(6.4)

Working in this log-space would lead to the results, shown in Eq.6.5 below, for
the bigram and trigram model probability estimation of the sentence the student is
late for school. Again, these numbers do not carry much meaning in isolation. To get
a better sense for them, they should be compared to the probability of either another
sentence or the same set of words in a random order.

log(Pbigram(w1,w2, ...wn)) = log(P(the)) + log(P(student |the))
+ log(P(is|student)) + log(P(late|is))
+ log(P(school|late))

= (−1.33) + (−3.45) + (−1.69) + (−5.18)

+ (−1.74) + (−3.43)

= −16.83

log(Ptrigram(w1,w2, ...wn)) = log(P(the)) + log(P(student |the))
+ log(P(is|the, student)) + log(P(late|student, is))
+ log(P( f or |is, late)) + log(P(school|late, f or))

= (−1.33) + (−3.45) + (−1.35) + (−3.14)

+ (−1.23) + (−1.53)

= −12.04 (6.5)

Let us now move on to experiment with what we have learned and also explore
how we can obtain bigram and trigram estimations from our own data, rather than
relying on those provided by the Google Books n-gram viewer.
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6.3 Gathering N-Gram Probabilities from Corpora

At this point, we will begin to explore how we can obtain our own n-gram estimates,
using our own corpus, to later build a probabilistic sequence model relying on those
estimates. First, we must create a corpus by gathering a collection of texts. Second,
wemust tokenize the corpus and go through it, gathering the frequency of occurrence
of all combinations of two or three consecutive tokens, so as to have bigramor trigram
estimates. As we analyze our resulting estimates, we will notice various issues which
will be discussed at the end of the section.

6.3.1 Building a Domain-Independent Corpus

In Chap.5 (see Sect. 5.6), we built two domain-specific corpora: one on classical
music composers and the other on mobile telecommunications. We did this for the
purposes of comparing their word frequencies. This time around, wewill assume that
we do not have a particular domain inmind, but insteadwish to cover various domains
within a singledomain-independent corpus.One approach to building such a corpus
is to return to Wikipedia, but gather pages randomly rather than focusing on certain
ones that relate to a particular category.

Building a domain-independent corpus is in many ways simpler than building a
domain-specific one. This is because it is enough to blindly take the first N pages
from the vast archives of Wikipedia or decide to go through the archives selecting
every X page until we have gathered the desired number of pages. Having said that,
since we will require a large number of pages here, we should not attempt to perform
aURL transfer for each page as we did for our earlier domain-specific corpora, which
were very small. We should instead use the Wikipedia article large XML dump file
and extract the pages directly from it.2

For the n-grammodeling results presented in the next section, wewill use a corpus
of 10,000 randomly selected Wikipedia pages, totaling 125 MB. We will call this
CorpusR. Note that all the numbers that will be presented, as results of statistical
analysis of the corpus, will be drawn from that one version of CorpusR. The numbers
you would obtain on your own version of CorpusRwould certainly be different since
your program’s random selection of 10,000 pages would lead to different pages than
mine.

2All dumps are available at https://dumps.wikimedia.org/, and various software packages are avail-
able in different programming languages to parse through the large files. The English version of
Wikipedia used at the time of this writing is enwiki-20150515-pages-articles.xml and contains all
English Wikipedia pages.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
https://dumps.wikimedia.org/
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6.3.2 Calculating N-Gram Probabilities

The algorithm for gathering n-gram frequencies is very similar to the algorithm we
used in the previous chapter (see Sect. 5.6.3) for calculating token frequencies. That
earlier algorithm simply needs to be extended, from unigrams (tokens) to bigrams,
trigrams, and so on, as shown in Algorithm 4.

\\ 1. Determine the size of n-gram to gather;
NgramSize = 3;
\\ 2. Initialize a table to contain n-gram counts
Initialise TableNgramFreq;
\\ 3. Tokenize the text.
Tokenize the text to obtain a set of tokens;
Set TotalNb to the total number of tokens in the text;
\\ 4. Go through the text to capture the occurrences of all the different n-grams.
for tokenPosition = 1 to TotalNb-NgramSize do

\\ 4.1. Combine groups of N tokens into a n-gram, separated by spaces
for i = 0 to NgramSize-1 do

ngram += token at position(tokenPosition + i) + " ";
end
\\ 4.2. Update the n-gram frequency count
if TableNgramFreq contains n-gram then

Add 1 to its count in TableNgramFreq;
end
else

Insert new ngram in TableNgramFreq and set its count to 1;
end

end

Algorithm 4: Gathering n-gram frequencies from a corpus.

Table6.3 shows the total numbers of observed unigrams, bigrams, trigrams, and
4-grams for CorpusR, resulting from applying Algorithm 4 on it to gather the various
n-grams.

Table 6.3 Number of n-grams, per size, in CorpusR

n-gram size Number of different n-grams

unigram 295,062

bigrams 4,158,144

trigrams 9,943,984

4-grams 12,844,945

The total number of tokens in CorpusR is just over 16.5 million (16,594,400).
Meanwhile, the total number of different tokens is indicated in Table6.3 by the
number of unigrams (295,062). This seems like a large number, doesn’t it? Indeed, it
is, but it is not surprising. We should, however, acknowledge that this total includes

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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many tokens other than words we would normally find in a dictionary (e.g., numbers,
serial numbers, misspellings, proper names, and abbreviations). Also, notice that the
numbers of observed n-grams in Table6.3 are much smaller than the maximum
possible numbers, based on a vocabulary size of 295,062. For example, the total
number of possible trigrams would be 295,0623, which far exceeds the 9.9 million
we observed.

Now, let us further look at individual n-gram estimates resulting from apply-
ing Algorithm 4 on CorpusR for the particular example sentence below in order to
highlight both the interesting facts that emerge and the potential problems of these
models.

He walked on the beach for a long time.

Let us start with the unigram (1-gram) frequencies calculated on CorpusR which
are part of our example sentence above. Table6.4 shows each unigram (column
1) with its raw frequency (column 2) and its probability (column 3) which results
from dividing its raw frequency by the total number of tokens (16,594,400) found in
CorpusR.

Looking at the numbers, we can make similar observations to those we made in
Chap.5. Common words such as determiners (e.g., a, the) are the most frequent,
followed closely by prepositions (e.g., on, for) and commonly used content words
(e.g., long, time).

I have presented both the raw frequencies and probabilities inTable6.4 to reinforce
the previously highlighted fact that probabilities are very small numbers. The next
tables will only contain frequencies, which are sufficient for our discussion.

Table 6.4 Unigrams from CorpusR for sentence He walked on the beach for a long time

Unigram
wi

Raw frequency
f req(wi )

Probability
P(wi )

he 51,342 0.00309

walked 147 0.00000885

on 105,593 0.00636

the 1,179,406 0.0711

beach 702 0.0000523

for 137,183 0.00827

a 343,659 0.0207

long 5,853 0.000353

time 19,056 0.00115

Let us now move from unigrams to bigrams. Consider the data in Table6.5. What
do you notice? Combinations of stop words, such as on the are fairly frequent, but
other combinations, such as beach for, show a dramatic drop in frequency.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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Table 6.5 Bigrams from CorpusR for sentence He walked on the beach for a long time

Bigram
wi−1,wi

Frequency
f req(wi−1,wi )

Reversed bigram
wi ,wi−1

Frequency
f req(wi ,wi−1)

he walked 12 walked he 0

walked on 14 on walked 0

on the 33,392 the on 170

the beach 188 beach the 15

beach for 2 for beach 1

for a 8,097 a for 145

a long 1,060 long a 32

long time 182 time long 3

We earlier discussed how absolute frequencies or probabilities in sequence mod-
eling are difficult to interpret, and that we require a comparative setting for interpret-
ing results. The third and fourth columns of Table6.5 are included for a comparative
setting, showing frequencies of the reversed bigrams pertaining to our example sen-
tence. Notice how different the probabilities would have been if we had searched for
bigrams on the same sentence written in reverse.

Moving on, let us look at trigrams (data shown in Table6.6). When we consider
both these data and our previous data for bigrams together, we can observe that there
must be many possibilities for words that follow certain common combinations such
as on the, since as a bigram its frequency was 33,392, but the more specific trigram
on the beach has a frequency of only 30. We can assume that all the other 33,362
occurrences of on the in CorpusR lead to a quite varied list of words, each one with a
small probability. I am pointing this out to illustrate how even trigrammodels, which
in our early investigation seemed to have a good predicting capability, should best
be characterized as having a variable predicting capability dependent on the actual
words. For example, late for has a much higher predicting capability than on the.

Also, notice that a search for trigrams on the sentence in reverse leads to an empty
table, as shown by the zeros in the second column.

Table 6.6 Trigrams from CorpusR for sentence He walked on the beach for a long time

Trigram
wi−2,wi−1,wi

Frequency
f req(wi−2,wi−1,wi )

Reverse trigram
wi ,wi−1,wi−2

Frequency
f req(wi ,wi−1,wi−2)

he walked on 1 on walked he 0

walked on the 9 the on walked 0

on the beach 30 beach the on 0

the beach for 1 for beach the 0

beach for a 1 a for beach 0

for a long 142 long a for 0

a long time 143 time long a 0
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Finally, Table6.7 presents data for the 4-gram model on our example sentence.
Here, even sequences we may have thought would be fairly common, such as he
walked on the, do not occur in our corpus even once. This is evidence of sparse data
estimation, one of four common problems that arise in language modeling, as we
will discuss in the next section.

Now that we have learned how to gather n-gram frequencies from a corpus
and have looked a bit at various 1-gram to 4-gram results, let us summarize the
issues which could impact our further use of these n-gram estimates in probabilistic
sequence modeling.

Table 6.7 4-grams from CorpusR for sentence He walked on the beach for a long time

4-gram
wi−3,wi−2,wi−1,wi

Frequency
f req(wi−3,wi−2,wi−1,wi )

he walked on the 0

walked on the beach 0

on the beach for 0

the beach for a 1

beach for a long 0

for a long time 103

6.3.3 Issues in N-Gram Estimation

Probabilistic sequencemodeling iswidely used inNLP, thanks to its strong predictive
power. This power was illustrated in the previous section, when we observed the
drastic difference between n-gram corpus frequencies for bigrams and trigrams in
the proper order and the same sequence in reverse. Like any other method, however,
probabilistic sequence modeling has its benefits and drawbacks.

We will now explore four of these potential drawbacks: out-of-vocabulary tokens,
sparse data estimation, corpus influence, and lack of modeling power for long-
distance dependencies.

Out-of-vocabulary words: In general, word frequency distributions are long-tail
distributions meaning that there are only a few frequent words, and a very large
number (the long tail) of hapax (words with a single occurrence), that number often
accounting for up to 50% of possible word occurrences.

Let us see whether our current CorpusR follows the same kind of distribution.
In Table6.3, we saw that there are 295,062 possible unigrams in CorpusR. For the
purposes of this discussion, I went ahead and removed all the unigrams that occurred
only once, and the number of remaining unigrams dropped to 148,408. This tells us
that, as would be predicted by the long-tail distribution, almost half of the words
encountered in our corpus occur only once. These hapax can take many forms. They
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could be rarewords, names of places, foreignwords borrowed fromanother language,
or even misspelled words. Below is a sample of hapax taken from CorpusR.

applewood, calnexin, amiri, asunder, genschers, cenomani, massenpunktes, oomycete,
kinzua, biconditionals, amini, lavolta, klaatu, folland

We can extrapolate from this and conceive of how, given that so many words
are rare enough to occur only once in 10,000 pages, a different corpus we intend to
analyze is also likely to contain at least one word that is not found in the original
corpus used to build the probabilistic model. Remember that we build the model
using a corpus, but that corpus does not include the sentence we intend to analyze.
The equations described earlier in Sect. 6.1 will fall short for words that were not
part of the corpus used to build the model, since their frequencies, and therefore their
probabilities, will be zero.

The words we are talking about, those that are unobserved in the original corpus,
are known as out-of-vocabulary words, or OOV’s. Encountering OOV’s is related
to the more general sparse data problem, discussed next.

Sparse data estimation: In Table6.3, we saw that the number of trigrams in CorpusR

is close to 9.9 million, and the vocabulary consists of 295,062 tokens. We also
discussed the fact that if we were to observe all combinations of three tokens, we
would end upwith themuch greater total of 295,0623. At only 10,000 pages, CorpusR
could be considered relatively small for building a language model. That said, even
in the case of an extremely large corpus, it is unlikely that wewill obtain probabilities
for all possible trigrams, or even bigrams.

To convince ourselves, let us return to the Google Books viewer to demonstrate
this phenomenon. Despite the fact that an extremely large corpus has been indexed
in this case (all of the Google books), it still does not contain all possible trigrams.
If we try searching a selection of trigram variations inspired from our sequence the
student is late for school, we will see that certain simple variations are not present,
as shown in Table6.8.

Table 6.8 Google n-gram viewer results, highlighting sparse data problem

n-gram Google n-gram relative frequency

student is late 0.0000000825

student is tall N/A

student is never 0.0000002292

student is writing 0.0000003483

student is funny N/A

One problem with sparse data is that the nature of the missing information cannot
be determined. As we have just seen, legitimate data of plausible sequences will
be missing, but so will nonsensical, arbitrary sequences such as wall horse or cat
schoolbag. Although these two kinds ofmissing data aremissing for entirely different
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reasons, they both fall under the category ofmissing data, and as such become lumped
together.

Missing data are also problematic from the point of view of probability estimation,
since ann-gram that is not in the corpus used to build themodelwill showaprobability
of zero, which will immediately set the probability of the entire sequence at zero.
This is due to the mathematical fact that anything multiplied by zero equals zero.
Since our probability calculations consist of chains of multiplied numbers, if one of
those numbers is zero, the final product will be zero as well.

Probabilities of zero will also cause a problem when working in the log-space
(see Sect. 6.1), since the log of 0 does not exist. One possible approach to counter
this problem, unavoidable in virtually all language modeling, relies on the idea of
smoothing. In smoothing, wemodify the probability estimates in order to redistribute
some of the probability mass to unobserved data (OOV’s). In a technique called
Add-1 smoothing (also known as Laplace smoothing), a count of 1 is added to all
possible n-grams, both observed and unobserved. It is important to remember that
in doing this, the total number of n-grams will increase by the vocabulary size |V |,
since all |V | word counts will be increased by one. The new probability of a word,
when smoothed using Laplace smoothing, is given in Eq.6.6.

Padd−1(wi |wi−1) = f req(wi−1,wi ) + 1

f req(wi−1) + |V | (6.6)

If the vocabulary is quite large, you can imagine that this approach would lead
to significant changes in the probabilities, to the point of altering too much the
original probabilities. This is not desirable, since the results become less and less
representative of the true picture of probabilities. For this reason, researchers have
suggested redistributing a smaller proportion of the probability mass, instead adding
a count of δ to all n-grams, and thus augmenting the total number of n-grams by the
smaller value of δ∗|V |. This δ can be seen as a smoothing redistribution parameter
to be adjusted.

Choice of corpus: I cannot emphasize enough the fact that probabilistic models,
as well as the information theory models presented in the last chapter, are corpus
dependent. The choice of corpus inevitably has an influence on the resulting model.

Afirst approach to countering this corpus dependency is to use a very large amount
of data. By building a model on a corpus that is very large, we have a better chance
of accounting for all domains, genres, language levels, and so on. Another approach
is to acknowledge the problem and work with it, rather than trying to overcome it.
That is, instead of trying to build a large, neutral, all-encompassing corpus, we can
build a corpus that is tailored to be specifically representative of our pending task.
Remember that building a model is not an end in itself, but a means to an end. For
example, if we require predictive languagemodels to analyzemedical texts, certainly
the best idea is to build a large medical corpus to learn a model on it.

In our case, we used he walked on the beach for a long time as our test example
(see Sect. 6.3.2). Thinking critically, one could posit that using a random selection
of Wikipedia pages was not the best choice for building our model in the purpose
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of analyzing such sentence. Perhaps using tourism books or blogs would have been
more appropriate. This may be, but it is difficult to decide on the best corpus based
on a single sentence. These decisions are usually made at the application stage and
not on a per sentence basis.

Long-distance dependencies: The last drawback to probabilistic sequence models
that we will discuss is the fact that they do not capture long-distance dependencies,
meaning dependencies between words that do not appear near each other in a sen-
tence. I will illustrate this with an example. Consider the following four sentences:

Sam walked on the beach.
Sam walked on SandBanks beach.
Sam walked on this beautiful beach.
Sam walked with his dog on this beautiful beach.

The relationship between the words walked and beach is the same in all of these
sentences. Regardless of which beach Sam walked on, or with whom, and regardless
of how beautiful it was, the beach remains the location where the walking happened.
The sentences all express the same dependency between beach andwalked. However,
as you can see, the word beach in the example sentences gets progressively farther
away from the word walked.

As much as n-gram models capture sequences of words, they do not account for
any other type of dependency than a sequential dependency. But sentences, con-
structed using grammatical rules (see Chap.8), allow the expression of syntactic
dependencies, such as subject, object, modifier, and these do not necessarily cor-
respond to a sequential dependency, as we illustrated above. In our case, beach is
a locative modifier for walked, one among the many possible grammatical depen-
dencies which are brought forward by dependency grammars, as we will explore in
Chap.12.

At this point, it is time tomove on to spelling correction, an application that makes
use of the predictive power of probabilistic sequence models.

6.4 Application: Spelling Correction

In this section, we will look at one possible application of probabilistic sequence
models, spelling correction, in which we try to correct a surface form containing an
orthographic error (e.g., choroegraphy) to a proper surface form (e.g., choreography).

Think back to our comparison of the Levenshtein Distance and Soundex algo-
rithms in Chap.4 and the related discussion of finding close matches for misspelled
words. In that earlier experiment, we tried to match erroneous surface forms (e.g.,
Chardenay, Chardenai, Chardenet) to a correct surface form (e.g., Chardonnay),
associated with a particular entity (e.g., dbr:Chardonnay).

When working with long surface forms (e.g., Hirshorn Museum), even if two
errors occur (e.g.,HirshirnMuuseum), the correct entity will definitely be the closest
one in surface form, as estimated through Levenshtein Distance.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_4
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However, shorter surface forms can be problematic in this regard. For example,
the misspelled word raie is equally close to rate, rage, rare, raid, rail, and more. It
is in this kind of a situation that we turn to our sequence modeling approach. The
model can help choose the best fit from a list of candidates, based on the probabilities
of sequences, as conditioned by the previous words.

Table6.9 shows examples of bigram estimates taken from CorpusR, which we
built earlier. To show interesting bigram examples, I have intentionally excluded
bigrams with common preceding words such as on and the. Even a bigram model
can help in deciding among a list of word candidates, for example, by choosing the
more probable rail over rate when the preceding word is commuter, but choosing
rate over rail when the preceding word is growth.

Let us work through a pair of examples from start to finish. First, returning to
our example sequence he walked on the beach for a long time, let us assume the
word beach has been misspelled as beich. We will then compare two existing words,
bench and beach, both of which are one letter away from beich, meaning they would

Table 6.9 Examples of CorpusR bigrams for candidate corrections for misspelled raie

Word Bigram examples

rate growth rate (140), fertility rate (120), birth rate (116), unemployment rate (111),
mortality rate (111), exchange rate (102)

rage single rage (3), jealous rage (3), drunken rage (2), namely rage (2)

rare very rare (83), extremely rare (42), relatively rare (29)

raid air raid (25), bombing raid (7), gunmen raid (5), police raid (4)

rail commuter rail (65), light rail (56), british rail (44), national rail (18), passenger rail (14)

be equally possible from an Edit Distance point of view. Next, let us assume the
sentence He lost track of time. follows the first sentence, and that lost has been
misspelled as lsst. In this case, our Levenshtein algorithm would provide multiple
candidates, among which we would find these three: list, last, and lost. With this,
the two sentences for which we will calculate alternative sequence probabilities are
presented below.

He walked on the (bench, beach) for a long time.
He (last, list, lost) track of time.

To estimate the probability of each sentence, we will use the n-gram models we
built earlier on CorpusR. In addition to themodel, wewill need a smoothing approach
to address sparse data estimations, since we cannot guarantee that ourmodel contains
all the bigrams and trigrams found in the sentences above. Let us experiment using
the Laplace smoothing we introduced in Sect. 6.3.3.

Earlier, we discussed the fact that assuming an extra count of 1 for all unseen
n-grams can have a disruptive effect on the estimates, especially in small corpora.
Given that CorpusR is a small corpus, we will therefore set that count to 0.001 to
all unseen n-grams, rather than 1. I have chosen this number arbitrarily for learning
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purposes, but I could just as easily have chosen another value. I encourage the reader
to experiment with this process using alternative numbers. The chosen count 0.001
is included in Eq.6.7, showing the smoothed probability estimation equation.

Padd−1(wi |wi−1) = f req(wi−1,wi ) + 0.001

f req(wi−1) + 0.001|V | (6.7)

Let us now slightly increase the complexity of our modeling strategy, by using an
interpolation model. We have not yet discussed this idea in this chapter, but as it is
commonly used in language modeling, it is worth introducing here.

An interpolation model is a way to combine the estimates from the individual uni-
gram, bigram, and trigram models in order to obtain an overall sequence probability.
A simple interpolation model linearly combines the individual models, by summing
their weighted results. Each model is assigned a weight ensuring that the sum of the
weights is equal to 1.

Equation6.8 below is the general equation for the linear combination,withweights
ofλtr igram ,λbigram , andλunigram assigned to the trigram, bigram, andunigrammodels,
respectively.

log(P(w1,w2, ...wn)) = λtr igram

n∑

i=1

log P(wi |(wi−1,wi−2))+

λbigram

n∑

i=1

log P(wi |wi−1)+

λunigram

n∑

i=1

log P(wi )

(6.8)

In Eq.6.9, we have the same linear combination model, this time with weights
set to 0.7 for the trigram model, 0.25 for the bigram model, and 0.05 for the uni-
gram model. These weights have been chosen to reflect the fact that the degree of
importance afforded to the models decreases along with their complexity (e.g., the
more complex trigram model is assigned a higher weighting than the simpler uni-
gram model). Again, these weights have been chosen arbitrarily for the purposes of
the example, and I encourage the reader to experiment with different weights and
measure the impact.

log(P(w1,w2, ...wn)) = 0.7 ∗
n∑

i=1

log P(wi |(wi−1,wi−2))+

0.25 ∗
n∑

i=1

log P(wi |wi−1)+

0.05 ∗
n∑

i=1

log P(wi )

(6.9)
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As we will combine the three models, we require unigram, bigram, and trigram
estimates. For example, if we use the second sentence he (list,lost,last) track of time,
we need frequency estimates from CorpusR for the following n-grams:

unigrams : he, list, last, lost, track, of , time

bigrams : he list, he lost, he last, list track, lost track, last track, track of, of time

trigrams : he list track, he lost track, he last track, list track of, last track of, lost track of,

track of time

Normalizing the frequency estimates by the total number of either unigrams,
bigrams, or trigrams in CorpusR, we obtain probabilities to be used in Eq.6.9. This
leads to the results presented in Table6.10.

When working in log-space, we can interpret a difference of 2 (e.g., between
−154 and −156) as a difference of 102 in base 10 or 100. It follows then, that these
results generally show the correct sentences as being 100 times more probable than
the incorrect sentences.

Admittedly, our corpus was small for calculating this kind of estimate. Never-
theless, we obtained some interesting results and were able to see a full application
of two methods we have learned so far in this book: the Edit Distance method from

Table 6.10 Comparing sequence probabilities

Sentence
w1...wn

log-space probability
log(P(w1..wn))

he walked on the beach for a long time −154.73
he walked on the bench for a long time −156.43

he lost track of time −73.35
he last track of time −75.62

he list track of time −76.26

Chap.4 and the language modeling approach from this chapter. Spelling correction
is only one of many applications of language models. The upcoming chapter will
explore yet another one of language detection in a multi-lingual context.

6.5 In Summary

• Words are not randomly dispersed in corpora, but occur in predictable sequences.
• Estimating n-grammodels requires a large corpus, in order to avoid data sparseness
as much as possible.

http://dx.doi.org/10.1007/978-3-319-41337-2_4
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• When choosing a corpus for n-gram estimation, we should take into account the
anticipated applications of the resulting model.

• Although n-gram lists are available online, we can also build our own, using our
own corpora.

• Various problems can arise in language modeling, including data sparseness (n-
grams not found in the corpus) and OOV’s (words not found in the corpus).

• Since data sparseness is virtually unavoidable, it is necessary to have a smoothing
approach in place.

• More complex models (e.g., 4-gram and 5-gram models) are more sparse in their
estimates than less complex ones (e.g., unigrams, bigrams), since the number of
possible combinations of words grows exponentially as n increases.

• Probabilistic sequence models cannot account for long-distance grammatical
dependencies.

• Language models can aid in spelling correction by determining the most prob-
able candidates among the ones detected by algorithms such as the Levenshtein
Distance.

6.6 Further Reading

Languagemodels: Languagemodels are so important in fields such as speech recog-
nition andMachine Translation that there is a whole community of researchers work-
ing with these models. One of the NLP most recognized reference books, Speech
and Language Processing (Jurafsky and Martin 2007), has a full chapter on n-grams
in which they discuss various smoothing techniques (Good–Turing, Kneser–Ney,
Witten–Bell, etc.). The reader can consult this same reference to learn more about
interpolation models, and even automatic estimation of weights in these models.
Studies in language modeling date quite a while back. There is an early survey
(Chen and Goodman 1999) which already refers to multiple smoothing techniques
and compares them in an empirical setting.

Spelling correction: Spelling correction is quite a popular application, included in
most commercial search engines. This topic is covered in the book mentioned above
(Jurafsky andMartin 2007), as well as in a book chapter looking atNatural Language
Corpus Data (Norvig 2009).

6.7 Exercises

Exercises 6.1 (Language modeling)

a. Revisit the example from Sect. 6.3, the student is late for school. Compare the
bigram and trigram sequence probabilities provided for this example with the
probabilities you obtain for a random sequence made up of the same words
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(e.g., the student late for is school). To obtain the estimates for the random
sequence, use the Google Books n-gram viewer, which was also used to gen-
erate the data in Tables6.1 and 6.2. Which of the two models (bigram or trigram)
result in a larger gap between the random and the correct sentences?

b. Come up with a set of 20 short sentences (10 words maximum). Use this set of
sentences to compare the performances of a bigram and trigram models. A good
model should differentiate between a correct sentence and a random or reversed
sentence. Determine which is the model that does the best job of differentiating,
on average. To obtain the bigram and trigram estimates for your models, build a
corpus of 10,000 Wikipedia pages, your version of CorpusR, using the strategy
described in Sect. 6.3.1, and then use the Algorithm 4 shown in Sect. 6.3.2.

c. Repeat the experiment in (b), but obtain bigram and trigram estimates on the
two corpora, ClassicalComposer and MobileTel, which you built in the previous
chapter. How are these models behaving on your 20 sentences? Analyze and
discuss.

Exercises 6.2 (Mispelling correction)

a. Imagine we had found the misspelled word beich in the following sentence:

I love sitting on the (bench/beach) and looking at the ocean.

From a sequence modeling point of view, why is this sentence more challenging
than the examples we used in Sect. 6.4? By challenging, I refer to the capability
of the sequence model to actually choose between bench and beach as a proper
correction for beich. Discuss.

b. Table6.10 only provides final results for the sequence probabilities. For example,
−73.35, for he lost track of time. Details of the calculations were not given.
Perform the calculations yourself, using n-gram estimates fromyour own CorpusR

you built in Exercise 6.1 (b). Given that your corpus will be different than the one
used to obtain the results of Table6.10, for sure your results will be different, but
would you say they are comparable? Discuss.

c. In Sect. 6.4, we used the arbitrary value of δsmoothing = 0.001 for smooth-
ing, to redistribute the probability mass to the n-grams that were unobserved
in the corpus. You can use the set of sentences you developed in Exercise 6.1
(b), as a development set, to decide on a better value of δsmoothing . To do so,
calculate the average probability of all sentences using the interpolated model
(trigram/bigram/unigram) presented in Sect. 6.4, varying the value of δsmoothing

{0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1}.Which smoothing redistribution
parameter δsmoothing provides more differentiation between correct and random
sentences?

d. In the previous exercise, we varied δsmoothing . Another possibility is to vary the
interpolation weights assigned to the three models. Those were also set arbitrarily
in Sect. 6.4 to (λunigram = 0.05, λbigram = 0.25, λtr igram = 0.7). Set up an
experiment for determining “good” weights and discuss your results.



Chapter 7
Bilingual Corpora

So far,wehaveusedEnglish as the language for all our examples, andour explorations
of the behavior of various algorithms have likewise been performed on written text
in English. In this chapter, we will attempt to find relations between texts written
in different languages. Multilingual corpora are useful resources for comparing
languages. These can range from bilingual corpora, made up of documents written
in two different languages, to corpora containing three or more languages. Since
our current exploration will be limited to a comparison of two languages, a bilingual
corpuswill suffice.Wewill start by presenting twocommon types of bilingual corpora
in NLP, namely parallel corpora and comparable corpora.

Next, we will return to the statistical models we have seen in preceding chapters,
namely the information theory inspired model of Mutual Information (Chap. 5)
and the probability inspired sequential language model (Chap. 6). These are two
important models in NLP having a number of different applications. In this chapter,
we will zero in on how they are used in a bilingual context. To do this, we will first
explore the task of language identification using a probabilistic sequencemodel and
later look at finding term equivalents using Mutual Information. Term equivalents
are simply terms in different languages that refer to the same entity.

7.1 Types of Bilingual Corpora

Many researchers in NLP are interested in bilingual corpora, whether it be for de-
veloping Machine Translation models, performing bilingual keyphrase extraction,
bilingual text summarization, or the many other potential applications. The most
common type of corpus for performing these tasks is a parallel corpus. When par-
allel corpora are not available for a particular language pair or domain however,
we turn to comparable corpora. Let us investigate what distinguishes one type of
corpus from the other and in what ways their usages differ.
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Parallel corpora: A parallel corpus contains documents that are translations of each
other. These corpora are commonly used by governments of bilingual (or multilin-
gual) countries or organizations. The bilingual (English and French) transcription
of all parliamentary debates within the Canadian government is a good example of
this. The resulting parallel corpus, called Canadian Hansards, was at the center of
development of early statisticalMachine Translation models. Another example is the
EuroParl corpus, a collection of European parliament proceedings in 21 different
languages.

An initial task that researchers have worked on using parallel corpora is that of
performing automatic sentence alignment, which means to explicitly establish links
between corresponding sentences (translation of each other) within the parallel cor-
pus. A parallel corpus on which sentences have been aligned results in what is called
a sentence-aligned parallel corpus. Table7.1 is an example of an automatically
generated sentence-aligned English–French parallel corpus. The corpus, called the
Giga-FrEn corpus, was initially compiled for a shared task on Machine Transla-
tion,1 but is now widely used within the NLP research community. It contains 2.8
gigabytes of information, which is more than adequate for performing experiments.

Table 7.1 Example sentences as found in a parallel corpus

No. English French

1 Software for hearing aid fitting Un logiciel d’ajustement des aides auditives

2 The laptop computer had gone missing one
year before.

L’ordinateur portatif avait disparu un an
plus tôt.

3 Did the student receive a medical diagnosis? L’élève at-il été évalué par un spécialiste?

4 LEO/GEO merge allows event location with
as few as two LEO location points.

La fusion des systèmes LEO/GEO permet
de déduire l’emplacement d’un incident à
partir de seulement deux points de
positionnement LEO.

5 Use your own re-usable coffee cup, rather
than a disposable cup.

Prenez votre café dans une tasse réutilisable
plutôt que dans un gobelet jetable.

Comparable corpora: A comparable corpus contains documents that concern the
same subject matter, in two or more languages. Because these documents are not
translations of each other however, they are likely to contain different information.
Besides being on the same subjectmatter,we can further impose that the documents in
each corpus match a set of criteria to further increase their level of comparability. By
criteria, I refer to genre, language level, medium, or other document characterizing
criteria described inChap.5 (see Sect. 5.2). For example, we could have a comparable
corpus of spoken English and Spanish documents on the topic of fuel cells. The fact
that the documents share a common topic (fuel cells) is the minimum requirement

1A shared task is a type of competition, open to all researchers, for which a particular corpus is
provided, as well as a well-defined task that is to be performed on it. Participating research teams
compete to obtain the best results on the task. As another example, SemEval is a shared task related
to semantic analysis presented in Chap.9, Sect. 9.1.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_9
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for qualifying as a comparable corpus. The fact that they both use the same medium
(spoken) would be an additional restriction making their content further comparable.

Wikipedia is the most widely used comparable corpus in NLP today. To contrast
the information from a parallel corpus shown in Table7.1, let us consider short
excerpts of the Wikipedia pages for cell phone in English and French.2 Table7.2
shows the excerpts, consisting of the first few lines of the history section from the
relevant pages.

Table 7.2 Example of information found in a comparable corpora

A hand-held mobile radiotelephone is an old dream of radio engineering. In 1917, Finnish inventor
Eric Tigerstedt filed a patent for what he described as a ”pocket-size folding telephone with a very
thin carbon microphone”. Among other early descriptions is one found in the 1948 science fiction
novel Space Cadet by Robert Heinlein. The protagonist, who has just traveled to Colorado from
his home in Iowa, receives a call from his father on a telephone in his pocket. Before leaving for
earth orbit, he decides to ship the telephone home ”since it was limited by its short range to the
neighborhood of an earth-side [i.e. terrestrial] relay office.”

Le téléphone mobile est le résultat de différentes technologies qui existaient déjà, pour la plupart,
dans les années 1940. Son invention est attribuée audocteurMartinCooper, directeur de la recherche
et du développement chez Motorola qui en a fait la démonstration dans les rues de New-York le 3
avril 19734. Le premier téléphone mobile commercial est lancé le 6 mars 1983 par Motorola, avec
le Motorola DynaTac 80005. Ces premiers appareils analogiques à la norme AMPS ont ensuite
été remplacés par des appareils utilisant les normes numériques américaines D-AMPS et CDMA
et les normes d’origine européenne GSM, UMTS puis LTE.

Despite the fact that these excerpts are written in the same encyclopedic style
and concern the same subject matter, the information they provide is quite differ-
ent. For example, the English version credits the Finnish inventor Eric Tigerstedt
with the invention of the cell phone, whereas the French version credits Dr. Martin
Cooper. Since the information contained within them differs, their sentences can-
not be aligned. When using comparable corpora, we must first search for sentences
that appear to have similar content and attempt to further extract the information
from there. Although it is much more difficult to use comparable corpora for NLP,
researchers have not given up trying. This continued effort is due to the persuasive
argument for using them, which is that parallel corpora are often hard to come by, es-
pecially when it comes to less common languages and rare topics. In this chapter, for
a first introduction into bilingual corpora, we will limit our focus to parallel corpora.

7.2 Exploring Noise in Bilingual Corpora

There is a tendency in NLP research today to gather corpora from the Web, given
that it is a gigantic source of information. But the Web is a noisy place in which not
all sources are trusted. By source, I refer to a person or an organization publishing

2Excerpts were taken in August 2015 and may have changed if searched at a later time.
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Web pages for people to consult. For example, a reliable sourcewould be an official
government site in which we are sure to find well-written documents.

But corpora are sometimesgenerated automatically throughWebcrawling,which
involves a robot navigating theWeb and automatically downloadingWeb pages from
different Web sites. If the Web sites are selected randomly, the crawled Web pages
are bound to contain noise. Although noise can be due to encoding or formatting,
in this section, since we are interested in bilingual corpora, we will focus solely on
noise related to the bilingual content.

Table7.3 provides examples of noisy sentences taken from the parallel corpus
Giga-FrEn (introduced earlier), which is itself derived from a Web crawl. The ta-
ble includes sentences exemplifying different types of noise, which we now take a
moment to characterize.

Table 7.3 Noisy examples from Giga-FrEn corpus

No. English French

1 The persistence of these archaic attitudes
and patterns of behaviour contradicts reality
and the present day image of the woman
liberating herself and claiming full equality.

French: III.

2 Finnish women were the first in the world to
be granted both the right to vote and the
eligibility for office.

Lors des premières élections générales de
1907, 10% environ des élu(e)s étaient des
femmes.

3 Le numéro du premier trimestre de 2008 de
la publication Statistiques laitières, vol.

Ce rapport est publié conjointement par
Statistique Canada et Transports Canada.

4 In addition, the other ILECs were directed
to show cause why the same regime applied
to Bell Canada should not apply in their
respective territories.

In addition, the other ILECs were directed
to show cause why the same regime applied
to Bell Canada should not apply in their
respective territories.

5 Steps to achieving viable operators Alison
Gillwald 2002-02 Open file

Steps to achieving viable operators Alison
Gillwald 2002-02 ouvrir le fichier

6 Ontario Ann Montgomery is an associate
midwife and preceptor with the Midwifery
Collective of Ottawa.

Ontario Ann Montgomery est sage-femme
associée et préceptrice au Midwifery
Collective of Ottawa.

Sentence alignment: Examples 1 and 2 show problems with sentence alignment.
This either means that the original corpora contain errors (some of their docu-
ments are not exact translations of each other), or that the sentence alignment
algorithm applied on the parallel corpora generated errors. In Example 1, even some-
one who does not speak French can suspect that the alignment is off, simply by
noticing the dramatic difference in sentence length between the English and French
sentences. In Exercise7.3, you will be asked to develop a corpus filter based on dif-
ferences in sentence length. A filter of this kind is an efficient tool for removingmany
errors of sentence alignment from parallel corpora. Example 2 is harder to identify
(for both human and an automatic system) as a sentence alignment problem since
not only are the sentence lengths comparable, but the topics are similar (e.g., women
and elections).
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Wrong language: In Example 3, the English side is actually not in English at all, but
in French, and in Example 4, the French side is actually in English. This problem is
common enough to motivate the development of a language identification filter. We
will do exactly this in the coming section, basing our procedure on the probabilistic
sequence modeling ideas we explored in Chap.6.

Untranslated links and proper names: Many sentences taken fromWeb pages will
contain not only flowing text (e.g., paragraphs), but also menu items, most likely
hyperlinks that lead to other Web pages. As in Example 5, these menu items often go
untranslated, most likely because the document they are linked to is in the original
language (English, in this case) and remains itself untranslated. Example 6 shows
another situation, where the names of people and organizations are not translated,
perhaps by mistake, or perhaps by conscious choice.

Automatic translation: These days it is becoming less and less of a reliable as-
sumption that Web pages are written, or translated, by humans. Sentence 6 is a good
example of a sentence that is likely to have been automatically translated, since est
sage-femme is not correct French (a francophone would know to say est une sage-
femme). The prevalence of this type of noise has increased in recent years, as it has
become common practice to use statistical Machine Translation software to generate
Web content in different languages. This type of noise can be quite hard to detect
for an automatic system, since the sentences are often almost correct but not quite
perfect.

Unfortunately, we do not have the time or space to explore solutions to all of the
problems listed above in this book. We will instead zero in on one particular strategy,
automatic language identification, which could help preprocess a parallel corpus
in identifying sentences written in the wrong language so as to remove them before
further processing.

7.3 Language Identification

In order to further process bilingual corpora, a situation may arise where we want to
automatically validate that the texts we are investigating are written in the languages
that we think they are. For example, we may ask ourselves if a given text that is
supposed to be written in Spanish is, in fact, in Spanish. This involves a process
known as language identification, in which, as the name suggests, we automatically
identify the language of a given text.

For our language identification algorithm, we will rely on the principles of prob-
abilistic modeling of words in sequence, seen in Chap.6, now adapted to letters in
sequence.

http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_6
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7.3.1 Estimating Letter Trigram Probabilities

One approach to language identification is to start by building a probabilistic lan-
guage model for each language of interest, which captures the particularities of that
language. So, if we have L different languages, we build L modelsM1..ML using L
monolingual corpora, one for each language.

How can we capture the particularities of a language? Well, something as simple
as sequences of letters can accomplish this. Table7.4 shows the top 20 most probable
letter trigrams for English, French, and Spanish, as estimated based on three different
corpora, one for each language. Letter trigrams are very good indicators of a language,
since certain sequences of letters are permissible in, or characteristic of, certain
languages, while being less likely or even forbidden in others.

Table 7.4 Most common trigrams for different languages

English Prob French Prob Spanish Prob

‘ th’ 0.0091 ‘ de’ 0.0112 ‘ de’ 0.0155

‘the’ 0.0082 ‘es ’ 0.0111 ‘de ’ 0.0123

‘he ’ 0.0072 ‘de ’ 0.0093 ‘os ’ 0.0065

‘ed ’ 0.0048 ‘e d’ 0.0061 ‘ la’ 0.0065

‘ion’ 0.0044 ‘le ’ 0.0058 ‘la ’ 0.0056

‘ in’ 0.0042 ‘ le’ 0.0057 ‘ en’ 0.0056

‘ of’ 0.0040 ‘ion’ 0.0055 ‘el ’ 0.0055

‘and’ 0.0040 ‘er ’ 0.0054 ‘es ’ 0.0055

‘on ’ 0.0039 ‘ co’ 0.0052 ‘ co’ 0.0054

‘of ’ 0.0038 ‘on ’ 0.0051 ‘as ’ 0.0052

‘ an’ 0.0037 ‘ent’ 0.0044 ‘en ’ 0.0045

‘nd ’ 0.0035 ‘tio’ 0.0042 ‘ent’ 0.0041

‘tio’ 0.0035 ‘nt ’ 0.0039 ‘ el’ 0.0040

‘ co’ 0.0035 ‘ la’ 0.0038 ‘ión’ 0.0038

‘er ’ 0.0034 ‘re ’ 0.0038 ‘ es’ 0.0037

‘es ’ 0.0034 ‘e c’ 0.0038 ‘e l’ 0.0036

‘in ’ 0.0033 ‘s d’ 0.0037 ‘o d’ 0.0036

‘ing’ 0.0032 ‘les’ 0.0037 ‘ón ’ 0.0034

‘ re’ 0.0031 ‘e l’ 0.0035 ‘aci’ 0.0034

‘ to’ 0.0029 ‘ati’ 0.0034 ‘a d’ 0.0033

Let us investigate how these numberswere obtained. Thinking back to the previous
chapter, we saw that the first step to building a probabilistic model is to obtain a
corpus. In Sect. 6.3.1, we learned how to automatically build a random corpus from
Wikipedia, simply by choosing N pages at random from the overall set of pages. This
approach to building a corpus is not restricted to English, but can also be used for
French, Spanish, and virtually all languages covered inWikipedia. Wikipedia dumps
are available in all languages, allowing us to build corpora for most any one.

http://dx.doi.org/10.1007/978-3-319-41337-2_6
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So, using three monolingual corpora (let us call them CORPUSENGLISH, CORPUS-

FRENCH, and CORPUSSPANISH), each built from 1000 randomly chosen Wikipedia
pages for its respective language, we can obtain the numbers seen in Table7.4. To do
this, we would go through the corpus for each language and cumulate the frequencies
for each possible trigram. The algorithm ultimately transforms the frequencies into
probabilities, by dividing each trigram frequency by the total number of trigrams in
the corpus.

Such algorithm is very similar to Algorithm4 from Chap.6, used for gathering
word trigrams from text (see Exercise7.1 for adapting the algorithm). When NLP
researchers speak of trigrams, or any n-gram for that matter, they are most likely
speaking of sequences of words. However, we can also speak of n-grams of letters,
which are particularly useful for tasks such as language identification. All of the
methods seen in Chap.6 for working with word n-grams can be adapted to work
with letter n-grams.

Notice that, simply by looking at the top 20 trigrams for each of the three languages
in Table7.4, we can see that French and Spanish are more similar to each other in this
respect than either one is to English. English does share certain common trigrams
with the other two languages (e.g., ‘ es’), but Spanish and French share a greater
number (e.g., ‘ de’, ‘ la’, ‘ co’). It is also worth noting that spaces are included as
valid characters in the trigrams. Doing so allows a differentiation between letters
occurring at the beginning of a word (usually preceded by a space) from the ones
occurring at the end of a word (followed by a space). A differentiation means that
they will be assigned different probabilities, providing a further refinement that will
be taken into account by the probabilistic model.

At this point, it is an arbitrary decision to include the space in the trigrams. We
could also include (or not) punctuation marks or even differentiation between lower
case and upper case letters. Decision on which trigram probabilities to calculate
should be based on the impact of that decision on the language identification capa-
bility of the probabilistic model which will rely on these estimates. Let us look at
how to build such trigram probabilistic model in the next section.

7.3.2 Testing a Letter Trigram Model for Language
Identification

Now that we have gathered the trigram probabilities for different languages, we
can use them to estimate the probability of a sentence emerging from one of those
languages. We wish to build three language modelsMSpanish ,MEnglish , andMFrench .
To do so,wewill adapt Eq.6.4 from the previous chapter to take characters at different
positions in a sequence and calculate the overall probability of a sentence based on
the probabilities of the trigrams it contains. The adapted equation is shown in Eq.7.1.

log(Pm(c1, c2, ...cn)) =
n∑

i=1

logPm(ci |ci−1, ci−2) (7.1)

http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_6
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Notice that we have also added an index m to represent the language used in
the estimate Pm(c1...cn). For our three languages, we will have PSpanish(c1..cn),
PEnglish(c1..cn), and PFrench(c1..cn), corresponding to our three language models
MSpanish ,MEnglish , andMFrench . Each one provides the language-specific probability
of the sentence containing the characters c1..cn .

Now let us see how well our models are able to predict the language of a sen-
tence. As a small example experiment, we will consider the three sentences shown
in Table7.5.

Table 7.5 Example of three parallel sentences from three languages

Language Sentence

SEnglish The project was labeled as a historic and important step in reducing carbon pollution
from power plants.

SFrench Le projet a été étiqueté comme un événement historique et important pour la
réduction de la pollution au carbone dans les centrales électriques.

SSpanish El proyecto fue etiquetado como un paso histórico e importante en la reducción de la
contaminación de carbono de las centrales eléctricas.

Table7.6 shows the probability of each sentence, as estimated by each of the three
language models. For each sentence, the correct language is estimated as the most
probable by the corresponding model for that language, indicating that our models
successfully detected the language of the sentences. The highest probability for each
sentence is indicated in bold in the table.

Table 7.6 Results of a small language identification experiment

Sentence log(PEnglish(c1..cn)) log(PFrench(c1..cn)) log(PSpanish(c1..cn))

SEnglish −753.79 −825.41 −833.08

SFrench −938.11 −824.28 −927.49

SSpanish −983.78 −932.91 −853.48

At this point, we have seen a very basic implementation of language identification,
through an experiment involving only one sentence in each of the three languages.
A reliable evaluation will require multiple sentences in each language, as suggested
to perform in Exercise7.1.

Nevertheless, applying a language identification algorithm like the one presented
above can serve as a preprocessing step to the use of bilingual corpora.

7.3.3 Language Identification as Preprocessing Step

Using a language identification as a preprocessing step will help remove from the
parallel corpus sentences which are not in the correct language. This will provide a
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cleaner corpus, to be used in a subsequent task, such as finding term equivalents, as
we will describe in Sect. 7.4.

Algorithm5 presents the steps required in corpus filtering. The algorithm removes
all sentences forwhich the language detector evaluates thewrong (opposite) language
as being the most likely (e.g., French for English, or English for French).

Initialize ListPairs to contain all pairs of sentences in Giga-FrEn;
Initialize FilteredListPairs to contain the pairs which are in correct languages ;
\\ Go through all sentences in the target language to gather possible equivalents.
for each sentence pair S in ListPairs do

Assign SEnglish to the English side of S;
Assign SFrench to the French side of S;
\\ Test both models on the two sides.
Apply English language model on SEnglish to obtain PEnglish(SEnglish);
Apply French language model on SEnglish to obtain PFrench(SEnglish);
Apply English language model on SFrench to obtain PEnglish(SFrench);
Apply French language model on SFrench to obtain PFrench(SFrench);
if PEnglish(SEnglish) > PFrench(SEnglish) AND PEnglish(SFrench) < PFrench(SFrench)
then

Add S to FilteredListPairs;
end

end

Algorithm 5: Bilingual corpus filtering with language identification

Table7.7 shows the impact on corpus size of applying the language identification
filter. We can calculate the reduction in corpus size by dividing the total number of
filtered pairs (e.g., pairs tagged as being in the opposite language, totaling 1,215,168)
by the total number of pairs before filtering (22,520,400). In this case, the result is
0.054, meaning that filtering based on language identification reduced the size of our
corpus by 5.4%.

Table 7.7 Impact of language identification filtering on number of sentence pairs in the corpus

Pair description Nb Pairs

Total before filtering 22,520,400

Where English side is tagged as “French” 473,574

Where French side tagged as “English” 741,594

Where either French or English side tagged as opposite language 1,215,168

Remaining after filtering 21,305,232

Note that we are not actually evaluating the language identification algorithm
by showing the reduction impact. We are simply noting that the preprocessing step
does find about 5% of the sentences that it thinks are not in the correct language.
To properly evaluate what is in these 5% of sentences, we would require a proper
sampling of these pairs to get a sense of what is actually filtered (See Exercise7.3).

Let us move on to the next task of term equivalent search, assuming our pre-
processing step has helped in leaving us with a cleaner corpus.
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7.4 Searching for Term Equivalents in Parallel Corpora

A typical task performed using parallel sentence-aligned corpora is the development
of translation models for use in Statistical Machine Translation (SMT). SMT is an
important field in NLP (see references in Sect. 7.7), to which many research groups
devote the entirety of their efforts. We make a very small incursion into the field
through our exploration of term equivalents in a parallel corpus. Term equivalents
are terms in different languages that refer to the same entity.

As an example, if we do not know the different surface forms corresponding to the
term cell phone in French, we could attempt to find them using a parallel corpus. Let
us see whether Table7.8 which provides a small sample of English/French sentence
pairs couldhelpus.Restricting the set ofEnglish-side sentences to theones containing
the term cell phone allows us to observe variations for that term on the French side.

Table 7.8 Examples from Giga-FrEn corpus for the term cell phone

No. English French

1 Cell phone number Numéro de téléphone cellulaire

2 Cell Phone Replacement Batteries Piles de remplacement des téléphones
portables

3 Keep a cell phone for emergencies. Gardez votre cellulaire pour les urgences.

4 Cancellation of account (after Cell phone) Tous les dossiers sont restitués

5 Identification requirements for cell phone
services

Exigences relatives à l’identification pour
obtenir des services de téléphone cellulaire

6 Cell phone use is, however, not entirely
risk-free.

Toutefois, le cellulaire n’est pas tout à fait
sans risque.

7 SAR alerting by cell phone (9-1-1): Appels de détresse SAR par téléphone
cellulaire (9-1-1)

8 Outside the capital, cell phone coverage is
often unavailable.

Les réseaux de téléphonie cellulaire sont
souvent inaccessibles en dehors de la
capitale.

9 Cell phone reception outside of townsites is
unreliable.

Les téléphones cellulaires ne fonctionnent
pas bien à l’extérieur des agglomérations.

10 Also, cell phone carriers and mp3 carriers
are popular.

Une tuque est une bonne idée en raison de
la prochaine saison.

11 Cell phone use is prohibited in the research
centre.

L’utilisation du téléphone cellulaire est
interdite au centre de recherche.

12 For safety’s sake, don’t use your cell phone
while driving.

Pour un maximum de sécurité, n’utilisez
pas votre téléphone cellulaire lorsque vous
conduisez.

An ideal situation for quickly finding the French equivalent to cell phone would
be that all target side (French side) sentences would contain a single repeated term,
téléphone cellulaire, which would for sure be the answer we are looking for. An
algorithm searching for a repeated string on the French side would find it. Unfor-
tunately, this ideal situation would imply that language is normalized, which would
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mean that a single term in French is allowed for a particular entity. But French is no
different than English in that matter; French does contain multiple surface forms for
each entity. Let us further use the examples in Table7.8 to discuss how the lack of
normalization in language is likely to causemuch interference to a redundancy-based
equivalent search algorithm.

Synonymy: Interestingly, we have come back to our discussion from Chap. 2 about
the existence of various surface forms for a particular entity, only this time in a
bilingual context.We sawat that time that the entity (URI)mobile_phone hasmultiple
synonyms in English (cell phone being among them), and now we see that there are
likewise multiple synonyms in French, such as téléphone cellulaire (Sentences 1, 7,
9, 11 and 12), téléphone portable (Sentence 3), and cellulaire (Sentence 6).

Compositionality: Due to the compositional nature of terms, cell phonemay appear
in certain sentences as a component of a longer term. For example, Sentence 1 refers
to a cell phone number, which translates to the French term numéro de téléphone
cellulaire. In this example, all the English components are directly translated to pro-
duce the French equivalent (number/numéro, cell/cellulaire, and phone/téléphone).
Sentence 5 is similar, with all the components of cell phone services, being translated
to produce services de téléphone cellulaire. Neither of these examples is problematic,
since each English component corresponds neatly to its French equivalent. However,
a term such as cell phone coverage (Sentence 8) becomes réseaux de téléphonie
cellulaire in French, which is not quite as direct a translation since it includes a
shift in emphasis from one language to the other (the English sentence emphasizes
coverage, while the French sentence emphasizes the underlying phone networking,
réseaux de téléphonie). Such variation in the components of compositional terms
will generate noise for our equivalent search algorithm. Without knowledge of these
larger terms, in a case like this, the algorithm would embark on the fruitless search
for an equivalent for cell phone in the French sentence.

Implicit/explicit information:Althoughnot necessarily a problematic phenomenon,
it is worth mentioning that the amount of explicit information is not always the same
from one language to another. Sentence 6 is a good example of this. The English
version of this sentence mentions cell phone use, emphasizing the use of the phone
as potentially risky, whereas the French version assumes that the usage is implied
and simply states that the cell phone is not entirely without risk.

Degree of nominalization: In writing, people may choose to convey certain infor-
mation in noun form or instead decide that the same information is best expressed
using a verb. When comparing two languages, there are bound to be times when a
noun was chosen by the source language writer, but a verb was used by the translator
(or vice versa). The process of changing a verb into its noun form is called nom-
inalization. Sentence 9 provides an example of this, when the English writer uses
a nominalization, cell phone reception, but the French translator opts for a verb to
convey the same notion. Technically speaking, if we were to translate directly, the
French verb should have been reçoivent, but the more general verb fonctionnent was
chosen, which literally means works or functions. As a second example, the English

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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word use appears in its noun form in Sentence 11, but in its verb form in Sentence
12. In this case, the French side is the same, showing utilisation (a noun) in Sentence
11 and utilisez (a verb) in Sentence 12.

Beyond these variations in surface forms, there can also be much noise in the data
(see Sect. 7.2) such as noise generated by the sentence alignment process. Sentence
10 is an extreme example of this, with the English and French sentences being
completely unrelated (the word-for-word translation of what appears on the French
side would be A hat is a good idea because of the upcoming season).

Yet, even with the surface form variations and possible sources of noise we have
seen so far, it is still evident that the word cellulaire appears in several of the French
sentences in Table7.8. This repetition of a particular string in the target language is
still something we can try to exploit to make some candidate terms emerge. Since
we do not have much more than this redundancy to go with, we can hope that if the
corpus is large enough, repetition of correct term equivalents will occur.

Let us devise a term equivalent search which will require two steps:

1. Index a sentence-aligned parallel corpus.
2. Adapt thePoint-wiseMutual Information algorithm (Chap. 5) toworkonbilingual

corpora.

7.4.1 Obtaining and Indexing a Parallel Corpus

Since it is freely available and large enough to provide us with interesting results, we
will use the Giga-FrEn corpus as the parallel corpus for our example. We will further
refer to this corpus as GIGACORPUS. Its size warrants the use of indexing software,
such as Lucene3 to allow for quick searches in it. We could also build our own index,
by going through the corpus and keeping track of where (e.g., in which sentences)
we find each word or bigram of interest.

Regardless of whether we use open-source indexing software or choose to build
our own index, we will require an index table such as the one shown in Table7.9.
This index table should include the language (column 1), all n-grams of interest
(column 2), and for each n-gram, a list of sentence IDs in which it occurs (column 3).

An indexed corpus will be necessary to run the algorithm described next, which
searches for term equivalents.

Table 7.9 Sentence indexed corpus GIGACORPUS

Language word / n-gram Sentence IDs

English cell 8, 12, 40, 127, 256

English cell phone 12, 256, 386

English genome 677, 800, 1240, 1241

French cellulaire 12, 127, 256, 350, 425

French genome 800, 1241, 1300

3Lucene is available at http://www.lucene.apache.org.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://www.lucene.apache.org
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7.4.2 Adapting PMI for Term Equivalent Search

The Point-wise Mutual Information (PMI) measure was presented in Chap.5 as a
means of finding collocations in amonolingual corpus. Collocations are wordswhich
tend to occur together frequently. We will now transpose this idea to a bilingual
context and attempt to find English and French words (or n-grams) which are similar
(or share Mutual Information) in the sense that they tend to occur in sentences with
similar meanings.

A parallel sentence-aligned corpus is essential for putting this idea into practice,
since the sentences within it comprise the units in which we will look for these
similar words. The underlying assumption here is that both sentences of every Eng-
lish/French pair carry the samemeaning, by virtue of being translations of each other.
If the meaning of the parallel sentences is the same, then the words they consist of
must have something in common or share Mutual Information.

For example, in Table7.9, the words cell and cellulaire share sentences 12, 127,
and 256. Identifying the sentences that certainwords have in common is a key element
in the calculation of the Mutual Information of those words.

Equation7.2 represents the Point-wise Mutual Information (PMI) between two
words of different languages. Rather than specifying the language in the equation
(English/French), the equation has beenmademore general by introducing the notion
of a word appearing in a source language wS or a target language wT . A source
language is the original language, the language from which we translate, and the
target language is the language to which we translate. So, if we start with an English
sentence and translate it to French, English is the source language and French is the
target language.

In Eq.7.2, SentProb(wS,wT ) refers to the number of sentence pairs in which wS

and wT co-occur, divided by the total number of sentences in the corpus. Similarly,
SentProb(wS) refers to the number of sentence pairs in which wS occurs, divided
by the total number of sentences in the corpus. SentProb(wT ) is calculated in the
same way as SentProb(wS), but for wT . Here, as we have seen in previous chapters,
we are working in logarithm space to avoid dealing with very small numbers.

PMI(wS,wT ) = log(
SentProb(wS,wT )

SentProb(wS) ∗ SentProb(wT )
) (7.2)

This equation is central to Algorithm6 which searches for the term equivalent of
a particular source word, or n-gram.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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\\ Use the sentence pair index;
Assign IndexPairs to link to the index of GIGACORPUS;
Assign TotalSent to be the size of the number of pairs in GIGACORPUS;
\\ Decide on an English word to test;
SourceWord = “cell phone” ;
\\ Retrieve sentence pairs from the index.
Assign ListPairs to gather pairs from IndexPairs containing SourceWord;
\\ Set a list to gather all possible source language ngrams.
Initialize NgramList ;
\\ Set a limit to the size of candidates being explored.
InitializeMaxNgramSize to 3;
\\ Set a minimum to the number of occurrences of a candidate within ListPairs.
InitializeMinSentCount to 0.1 * size of ListPairs;
\\ Go through all sentences in the target language to gather possible equivalents.
for each target sentence S in ListPairs do

for each group of consecutive tokens of size 1 to MaxNgramSize do
if NgramList does not contain the ngram then

Include the ngram in NgramList ;
end

end
end
\\ Assign a list to contain the candidates and their PMI.
Initialize CandidateNgramList ;
\\ Find the frequency of each candidate in the whole corpus
for each ngram in NgramList do

Assign FreqXY = number of pairs in ListPairs containing this ngram;
if FreqXY > MinSentCount then

Assign FreqX to be the number of pairs it is part of on the target side using
IndexPairs ;

Assign PMI = log((FreqXY/TotalSent)
((FreqX/TotalSent)∗(FreqY/TotalSent))) ;

Put the ngram with its PMI in CandidateNgramList
end

end
Sort CandidateNgramList in decreasing order of PMI .

Algorithm 6: Term equivalent search on a parallel corpus.

Youwill notice two arbitrary parameters in the algorithm:MaxNgramSize (max-
imum n-gram size) andMinSentCount (minimum sentence count). The purpose of
the first parameter, MaxNgramSize, is to determine the maximum size of candi-
date terms on the target side, with size referring to the number of words contained
in the term. In the algorithm, the MaxNgramSize has been set to 3, which means
we will search for terms comprised of a maximum of three words. The second pa-
rameter,MinSentCount , limits the search time, by stipulating that only candidates
on the target side that occur a minimum number of times with the source word will
be investigated. In the algorithm, that MinSentCount is set to 10%, meaning that
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candidates must appear with the source word in a minimum of 10% of the sentences
in order to qualify. These filters can be changed and experimenting with them will
demonstrate their impact on the results. Now, let us see, through an experiment, how
well the algorithm can actually do.

7.5 Experiment — Term Equivalent Search

Even if we are not expecting perfect results, given all the possible types of corpus
noise (Sect. 7.2) and target language variations in surface forms possibly hindering
our Algorithm6, we still put it to the test in this section.

The corpus used for our experiment is the GIGACORPUS which we assume would
be indexed such as described in Sect. 7.4.1.

We will go through the following steps:

1. Decide on adataset to use for testing, run the algorithm, andperforman aposteriori
evaluation.

2. Challenge the evaluation through a discussion on inter-annotator agreement.
3. Assess our term equivalent search algorithm.

7.5.1 Dataset and a posteriori Evaluation

Since this will be our first experiment using our new technique, and since our main
goal is to determine where it succeeds and where it fails, let us start by simply
coming upwith a list of Englishwords to test. Our list will be composed of single- and
multi-word terms ranging from common to specific, including nouns, verbs, people’s
names, and even conjunctions. Covering a wide range of words with different natures
and corpus frequencies will help stimulate discussion. The list of words appears in
the first column of Table7.10.

Ideally, we would develop a gold standard containing the French equivalent terms
for our list of English words. This is not an easy task however, since it would be
a challenge to come up with all possible candidates ahead of time. As we have
just discussed in the previous section, there are likely multiple surface forms in
French, or in any other language for that matter, to refer to entities. Even if we
were to include téléphone cellulaire as a known equivalent for cell phone, it is quite
possible, maybe even likely, that we would overlook other valid equivalents, such
as téléphone portable in this case. If that were to happen, and if we were to go on
to evaluate our algorithm with traditional precision/recall measures, the algorithm
would pay the price. It would be penalized for finding candidates that may actually
be correct, simply due to their not appearing in the gold standard.

When searching for information in text, we are often uncertain of being able to
provide an exhaustive list of correct answers in the gold standard. In such cases, we
can opt for an a posteriori evaluation. In an a posteriori evaluation, the evaluation
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is performed after the system has generated its results. First we obtain the results and
then we manually assess them to determine which are right and which are wrong.

Let us consult Table7.10 for the results of an a posteriori evaluation that I per-
formed on our dataset, consisting of the list of words in column 1. The second column
of the table shows the number of sentence pairs in GIGACORPUS that contain the Eng-
lish term in the English sentence. The third column shows the top 5 results obtained
using Algorithm 6 on the GIGACORPUS. Because we set the maximum n-gram size to
3, for each English term our search allows for unigrams, bigrams, and trigrams on
the French side. The candidates I deemed as being correct are indicated in bold in
the table.

7.5.2 Inter-Annotator Agreement

Let us challenge my a posteriori evaluation, of results in Table7.10. It is debatable
whether or not my assignments would be accepted by other judges.We discussed this
notion of inter-annotator agreement (IIA) in Chap.3, as well as the kappa measure
that is used for determining levels of agreement.

Our current example typifies an evaluation that would benefit from discussion
between judges. In a case like this, it would be important to have several judges
perform their own a posteriori evaluation and tomake note of their level of agreement
or disagreement using the kappameasure. This is especially important when running
a larger experiment, since low IIAmight be an indicator of the judges having different
interpretations of the task.

The problem of boundary detection can be seen in the results of Table7.10, as
evidenced by the fact that some candidates vary by a single determiner, such as in
le diagnostic médical, un diagnostic médical, and diagnostic médical. This problem
also extends to other NLP tasks, such as Named Entity Recognition (see Chap. 3)
in which we look for named entities, and we must determine in the text, where they
begin and end.

Here, the question becomes, where does the term equivalent start and end? For
example, is un téléphone cellulaire correct or not (e.g., is it a valid equivalent for cell
phone)? The literal translation would be a cellular phone, due to the inclusion of the
determiner un. Le, la, un, and une are all determiners in French. Given how often
they appear in the table, the decision of how to evaluate the candidates that include
them (e.g., correct or incorrect) will significantly change the results. That said, there
is no right answer, since the decision may be contextual, based on the intended use
of the equivalent search module.

Assuming my evaluation is accepted (although I do encourage the reader to con-
sider and criticize it) and that all candidates indicated in bold in Table7.10 are in fact
correct answers, we can now perform result analysis, as we see next.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_3
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Table 7.10 Results for French equivalents using PMI

English term Nb Sent French equivalent candidates

jaywalking 2 passages réservés ou (−0.69) peines sévères relativement
(−0.69) cracher de fumer (−0.69) traversée illégale de (−0.69)
hors des passages (−0.69)

italian restaurant 16 carmello (−1.79) carmello ottawa total (−2.08) italian restaurant
(−2.77) quartier animé du (−2.77) un restaurant italien (−2.77)

coffee cup 26 servie ou achètent (−3.26) est servie ou (−3.26) achètent une
tasse (−3.26) café en carton (−3.48) coffee cup (−3.55)

parental guidance 38 milieu familial et (−7.34) milieu familial (−9.11) familial et
(−9.41) parental (−10.05) des parents (−11.12)

critical condition 109 terminale ou dans (−4.90) phase terminale ou (−5.43) terminale
ou (−5.78) un état critique (−6.84) état critique (−6.93)

chamber music 273 chamber music society (−5.64) chamber music (−5.71)
musique de chambre (−6.06) music society (−6.93) de
musique de (−7.72)

medical diagnosis 285 le diagnostic médical (−6.20) un diagnostic médical (−6.26)
diagnostic médical (−6.56) un diagnostic (−9.30) diagnostics
(−10.14)

flashlight 321 une lampe de (−6.26) lampe de poche (−6.30) lampe de
(−6.43) une lampe (−7.16) lampe (−7.59)

hearing aid 449 prothèse auditive (−6.55) une prothèse (−7.31) prothèses
auditives (−7.39) prothèse (−7.70) auditives (−8.44)

cell phone 910 téléphone cellulaire (−8.21) cellulaires (−9.49) cellulaire
(−10.04) téléphones (−10.34) cellulaires (−10.88)

laptop 913 un ordinateur portatif (−7.25) ordinateur portatif (−7.40)
ordinateurs portatifs (−8.32) portatif (−9.21) portable (−9.63)

merge 1301 fusionner (−8.42) de fusionner (−8.44) fusion (−11.69) deux
(−15.41) se (−15.97)

cup 4263 coupe du (−8.95) tasse (−9.10) la coupe (−9.38) coupe
(−10.12) du monde (−12.55)

coffee 6033 café et (−8.95) de café (−9.00) café (−9.37) thé (−10.33)
produits (−15.29)

wrong 9374 pas (−15.68) ne (−15.75) fait (−15.80) si (−15.80) il (−16.04)

reside 5326 résider (−9.86) résident (−12.15) dans (−16.37) sont (−16.42)
ou (−16.70)

parental 12070 congé parental (−9.82) parental (−10.01) parentales (−10.05)
parentale (−10.11) de maternité (−10.80)

james 20085 james (−10.35) et (−18.25) la (−18.35) de (−1000.00)

india 25174 inde (−11.05) en (−17.21) le (−17.63) la (−17.68) et (−17.74)

nevertheless 25333 néanmoins (−11.41) toutefois (−14.35) il (−16.19) pas
(−16.33) que (−16.68)

guidance 60074 document (−14.62) sur (−16.76) aux (−17.01) des (−17.02)
pour (−17.08)

table 182917 table (−12.43) table des (−12.54) tableau (−12.83) des
(−17.25) le (−17.77)
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7.5.3 Result Analysis

To continue emphasizing variability in evaluation, let us look at four slightly different
ways of obtaining results which lead to quite different numbers.

The first one, shown in the second column of the Table7.11, only considers the top
1 candidate, meaning the candidate with the highest PMI score. For 13 words of the
22 found in the dataset, the algorithm does find a correct candidate at the top of the
list, for a 59.1% precision (Precision A). If we give further chance to the algorithm,
and let it look in the top 5 of the list, results go up, as shown in the third column of
Table7.11 with 18 English terms for which there is a correct French terms among
the top 5, giving a precision of 81.8% (Precision B).

Now, let us further look at the top 5 candidates. We can also try to see how many
correct candidates there are among them. The fourth column shows that among a total
of 110 candidates (22 terms * 5 candidates each), only 42 of them are correct answers,
providing a precision of 38.2% (Precision C). And finally, let us be evenmore critical
of the discovery capability of our algorithm and look at how many different term
equivalent it provided. There are only 25 different French term equivalents among
the 110 possibilities. The numbers are in the fifth column with a precision of 22.7%.

Table 7.11 Different precision results for French equivalent search using PMI

Precision A Precision B Precision C Precision D

Absolute
numbers

13/22 18/22 42/110 25/110

Percentage 59.1% 81.8% 38.2% 22.7%

Which of Precision A, B, C, or D is the actual precision of the algorithm? They
all are. We can say that Precision B is an optimistic evaluation, in the sense that it
allows the algorithm place for errors (considering the top 5 results instead of the top
1 as in Precision A). On the other hand, we can say that Precision D is an pessimistic
evaluation, in the sense that it assumes that there should be 5 different various French
surface forms for each English term, which might not be the case.

The quantitative evaluation we have just performed certainly gives us the sense
that our algorithm is accomplishing valuable work, but it can often be difficult to
interpret the resulting precisions.

Still, our optimistic precision is quite high for such a simple term equivalent search
performed using the PMI measure. Knowledge about this approach can prove useful
for discovering surface forms in different languages, which could be included within
a multilingual dictionary or even knowledge base. When working with an approach
that is not 100% certain however, as for most tasks in NLP, we can always turn to
human validation post-processing. Although this may seem like a bothersome extra
step, going this route is still quite efficient, since choosing among the term equivalent
candidates suggested by an algorithmwill always be easier for a human than to come
up with the correct term equivalents from scratch.
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7.6 In Summary

• A parallel corpus contains documents which are translations of each other.
• A comparable corpus contains documents in different languages relating to the
same subject matter. These documents are not translations of each other, but are
assumed to appear in their original language.

• For a bilingual corpus to be considered comparable, we can add further restrictions
on the documents, such as all being of the same genre, or language level.

• There are many potential types of noise in a corpus compiled from unknown Web
sources. One that is important to consider when dealing with multilingual corpora
is the presence of sentences not written in the language they are supposed to be in.

• A language identification model can be built as a character sequence model. To
build the model, we can use a relatively large monolingual corpus and find the
probability of each n-gram of characters within it.

• To perform language identification of a sentence, we can measure the probability
of that sentence according to different language models built for various languages
and then choose the most probable one.

• Language identification can be performed as a preprocessing step prior to the use
of a bilingual corpus.

• An interesting and useful use of parallel corpora is in the search of term equivalents.
Term equivalents are terms which have the samemeaning in both source and target
languages.

• We can use Mutual Information to capture term equivalents in a sentence-aligned
bilingual corpus.

• A search for term equivalents will generally be more successful for terms that
occur a minimum number of times in a corpus. Measures of detection, including
PMI and others, are probabilistic and will not work well for rare words.

• A single polysemous term on the source language side (e.g., English cup referring
to coffee cup or soccer cup) can become two different terms on the target language
side (e.g., French tasse and coupe), corresponding to two different meanings.

• Variability in the surface forms of a term in both the source and target languages
willmake it difficult for a statistical approach to correctly identify term equivalents.

7.7 Further Reading

Parallel corpora: The CanadianHansards is available at http://www.isi.edu/natural-
language/download/hansard/. The site http://www.statmt.org/europarl/ gives access
to the EuroParl corpus (1996-2011). The Giga-FrEn corpus was used in a machine
translation shared task, described at http://www.statmt.org/wmt09/translation-task.
html. The corpus can be downloaded from that site.

http://www.isi.edu/natural-language/download/hansard/
http://www.isi.edu/natural-language/download/hansard/
http://www.statmt.org/europarl/
http://www.statmt.org/wmt09/translation-task.html
http://www.statmt.org/wmt09/translation-task.html
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Statistical Machine Translation Rather than suggesting a particular article, I refer
the reader to the site http://www.statmt.org/ providing a set of tutorials, software,
and available corpora.

Sentence alignment: One of the first sentence alignment algorithms, still in use
today, is described in Gale and Church (1993). As sentence alignment in parallel
corpora is almost considered a solved task, some recent work focuses rather on
searching for parallel sentences but within comparable corpora Smith et al. (2010).

Comparable corpora: The workshop BUCC, Building and Using Comparable Cor-
pora, is collocated, every year with major conferences in Natural Language Process-
ing, and it is a good place to look for recent research. See the 2016 edition for example
at https://comparable.limsi.fr/bucc2016/.

Term equivalent search: In this chapter, we assumed that the English lexicon was
available and we were looking for French equivalents. Some research rather assumes
that neither lexicon exists and from a bilingual corpus tries to build a bilingual
lexicon. Early work on bilingual lexicon extraction task using parallel corpora can
be found in Dagan and Church (1994), and work using both parallel and comparable
corpora, can be found in Fung (1998). More recent work in bilingual terminology
mining using comparable corpora can be found in Bouamor et al. (2013).

7.8 Exercises

Exercise 7.1 (Language identification).

a. Adapt Algorithm4 from Chap.6 (Sect. 6.3.2), originally written to gather word
trigrams, to gather letter trigrams instead. Run your algorithm to build language
models for 3 languages of your choice (e.g., English, French, and Spanish). As
language-specific corpora for gathering letter trigrams, you will require 3 mono-
lingual corpora, one for each language. To build these corpora, use Wikipedia
pages from each language, building a corpus with a random selection of 1000
pages. You had already performed this process in Exercise6.1, in Chap.6, to
build a small English corpus. You can adapt your code to work with theWikipedia
dumps provided for the other two languages.

b. First, program the language identification strategy described in Sect. 7.3. Then,
devise an experimental setup to test the language identification strategy, using 20
sentences for the 3 languages that you have trigrammodels for. Again a good place
to find sentences of each language is in Wikipedia pages. Gather 20 sentences of
different lengths from these pages to form your test set. Make sure any sentence
in the test set is not included in the corpus used to build the language model.
Perform your tests. Discuss results.

c. Vary the information in your trigrams, including or excluding punctuation, includ-
ing or excluding spaces, considering upper case letters or not. Do these variations
impact the results of the previous experiment?

http://www.statmt.org/
https://comparable.limsi.fr/bucc2016/
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_6
http://dx.doi.org/10.1007/978-3-319-41337-2_6
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d. How does the trigram model compare to a 4-gram model? Expand your code
from exercises (a) to be able to build a 4-gram model and use it in language
identification. Compare the results using the experimental setup you defined in
exercise (b). Do the results improve?

Exercise 7.2 (Finding term equivalents).

a. Program the algorithm given in Sect. 7.4.2 to be able to perform your own term
equivalent searches.

b. Adapt the measures Dice, χ2-test, and likelihood ratio, from Sect. 5.7 in Chap.5
to be used for finding term equivalents. Provide them as alternatives in your
program.

c. Using the measures above, perform comparative tests using the dataset from
Sect. 7.5.1. Since you might not be familiar with French, use the answers marked
as correct in Table7.10 as your gold standard. Using this gold standard will be
different than the a posteriori evaluation we performed in Sect. 7.5.1. Discuss this.

d. As an alternative dataset, start with the correct French terms shown in Table7.10.
This means you need to perform your equivalent search using French as source
language and English as target language. Adapt your code to do so. Evaluate your
results.

Exercise 7.3 (Corpus filtering).

a. Write a sentence length matching filter for the Giga-FrEn corpus which will be
able to remove sentence pairs in which the English and French sentences differ
in their length by more than a standard deviation away from their average length
difference. To do so, perform the following steps:

1. Calculate the average sentence length difference between English and French
sentences for all pairs.

2. Calculate the standard deviation of the differences.
3. Go through each sentence pair, test the length difference, and only keep the

pairs which vary in length less than the average plus or minus the standard
deviation.

Did that filter many sentences? If youmanually sample through 20 removed pairs,
are they all alignment problems?What if you change the threshold to be less than
two standard deviations away, does that provide better or worst results?

http://dx.doi.org/10.1007/978-3-319-41337-2_5


Part III
Semantic Grounding and Relatedness

In Part I, as we searched for entities in text, we explored different surface forms
for entities, and how they can be found in text. In Part II, as we looked at corpora,
we further examined the behavior of entity’s surface forms in text, by themselves, in
conjunction with others, and in different languages.

In Part III, Semantic Grounding and Relatedness, let us try to link back the surface
forms found in text to the actual entities which they represent. Our main obstacle will
be that not only do entities have multiple surface forms, but many of these surface
forms are polysemous, meaning they could link to various entities. This part of the
book looks more closely at this major challenge of polysemy.

Chapter 8, Linguistic Roles, introduces the NLP processes of tokenization, sen-
tence splitting, lemmatization, part-of-speech tagging, and parsing. This pipeline
of processes forms what is sometimes referred to as theNLP stack or NLP pipeline.
This will give us insights into the linguistic nature of words as well as the rules guid-
ing the organization ofwords into sentences.Wewill see that analyzing surface forms
linguistic nature can be a first step into disambiguation. We will look at the contrast
between to cook and a cook as an example to illustrate this point.

Chapter 9, Definition-Based Grounding, looks at word sense disambiguation
and Entity Linking, meaning determining a surface form semantic nature through
its contextual surrounding so as to link it to a particular entity. For example, take the
word Paris, as it is found in different sentences in Wikipedia:

The group consisted of lead singer Priscilla Paris.

Ohio Paris is an unincorporated community in Northwestern Paris Township, Ohio.

He visited Paris and London.

Paris metro line 7 is one of sixteen lines of the Paris metro system.

Paris Hilton endorses the clothing line.

The different occurrences of the surface form Paris in text do not refer to a single
entity but to multiple possible entities. Chapter 9 explores text comparison methods
to determine which entity is the most likely one.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_9
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Chapter 10, Relatedness, looks at how we can automatically extract related terms
from corpora. The chapter provides a first incursion into the popular NLP field of
distributional semantics, as we use statistical measures of word co-occurrences in
corpora to infer their relatedness. We will explore one possible use of word relat-
edness, slightly modifying the definition-based grounding algorithm defined in the
previous chapter to obtain better performances.

http://dx.doi.org/10.1007/978-3-319-41337-2_10


Chapter 8
Linguistic Roles

In Chap.2, we saw that entities can be expressed in many different ways. A mobile
phone can be referred to as a cell phone, a cellular phone, or even simply as a cell.
This last surface form is quite problematic, since it is highly ambiguous. Just think
of the many possible meanings of cell: a battery cell, a skin cell, a prison cell, just to
name a few. This phenomenon of a single surface form referring to many meanings
is known as polysemy.

This chapter will focus on one particular type of polysemy, when surface forms
take on several linguistic roles (e.g., verb, noun, adjective). For example, the word
cook can be used as a verb, as in My friend likes to cook, or as a noun, as in The
restaurant hired a great cook.We can refer to these linguistic roles as parts of speech
(POS). And as you can see, the single surface form cook has taken on two different
parts of speech.

So, how would we go about searching for a particular word with a specific part
of speech in text? How can I find sentences in which cook is used as a verb? Un-
fortunately, sentences do not explicitly provide the part of speech for the words they
contain. This means that some kind of processing must be applied to the text be-
fore we can perform any direct search for verb occurrences of cook. This is where
Natural Language Processing (NLP) comes in, to render the content of sentences
explicit from a linguistic point of view.

This chapter will introduce five main NLP processes which make up for a typical
NLP stack or NLP pipeline: tokenization, sentence splitting, lemmatization,
part-of-speech tagging and parsing. Our purpose will be to explore these processes
at a high level of understanding and develop the analytical skills needed to consider
results generated by current NLP software.

Continuing the experimental path taken in this book, we will define a linguistic-
based disambiguation task relying on the output of a POS tagger. This will allow
us to discuss two important types of evaluations in NLP: intrinsic evaluation and
extrinsic evaluation. In the intrinsic evaluation, we will measure the performance
of the POS tagger for its own purpose, that of performing part-of-speech tagging,
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where as in the extrinsic evaluation, we will measure the performance of the POS
tagger indirectly through its impact on the performance of another task relying on it.
That other task, in our case, will be a linguistic-based disambiguation task.

8.1 Tokenization

The first NLP process to look into is tokenization. We have already explored tok-
enization in Chap.5, more specifically in Sect. 5.6.2, when we discussed performing
word frequency analysis as to get insight into the content of a corpus. It would have
been hard to get this far into a Natural Language Understanding book without intro-
ducing tokenization, since it is one important process that triggers our thinking of
the difference between strings (surface forms) and lexical units (words or groups of
words with a particular meaning).

We would hope for tokenization to split a text into a list of lexical units, but not
quite so. Tokenization is the first major challenge in analyzing text, since lexical unit
boundaries are not that easy to find. For example, in the sentence below, week-end is
a lexical unit, so isU.S., and so is Las Vegas, but their boundaries are not explicit (one
contains a dash, another contains periods, and the third includes a space between its
two parts).

During his last trip to the U.S., Lucy’s father spent two week-ends in Las Vegas.

From the point of view of text processing, this sentence is no more than a contin-
uation of characters, just one long string. The most common approach to processing
such sentence is to first split the series of characters into tokens, which can some-
times be words, but can also be digits, punctuation marks, or other symbols. Next,
we attempt to reconstruct lexical units using these tokens.

Tokenization refers to the process of finding tokens. A tokenizer takes a longer
string and splits it into substrings (tokens), using a specified list of separators. A
separator is an actual character within the string where the split should happen. The
list of separators is a very important element in the process, since it acts to produce
the tokens which become the building blocks for later steps in text processing. The
space is the basic separator, but there are many others, including punctuation marks
(period, comma, colon, semicolon, etc.), quotation marks, apostrophes, and dashes.
To understand the impact of the various separators within the tokenization process,
Table8.1 shows the lists of tokens that result from three possible sets of separators.

What at first glance seems to be a simple process has suddenly become quite
complicated. The main issue is the variability in the ways in which lexical units are
written, and the fact that specific variants conflict with what we might call “typical”
boundaries of lexical units. All separators are only possible separators, not definite
ones. Let us briefly explore the variations highlighted in the example above.

Noun compounds: These are lexical units made up of multiple words. Named enti-
ties, such as people’s names and city names, are often noun compounds. For example,

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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Table 8.1 Impact of different separators on tokenizing results

Separator Resulting tokens

Space only during, his, last, trip, to, the, U.S., Lucy’s, father, spent, two, week-ends,
in, Las, Vegas

Punctuations during, his, last, trip, to, the, U, S, Lucy’s, father, spent, two, week-ends,
in, Las, Vegas

Apostrophe, dash,
punctuations

during, his, last, trip, to, the, U, S, Lucy, ’s, spent, two, week, ends, in,
Las, Vegas

Los Angeles, Las Vegas, and New York are all city names which are also noun com-
pounds. Noun compounds, or more generallymultiword lexical units, are so complex
that a significant amount of research in NLP is devoted specifically to them.We touch
on them regularly throughout this book, especially in connection to their composi-
tionality. The notion of compositional meaning was introduced in Chap. 2 with the
example of mobile phone being a compositional noun compound.

Possessive and contraction marker: In English text, possession is often expressed
through the apostrophe, such as John’s hat, or Lucy’s father. The apostrophe also
serves as a contraction marker, such as we’re, let’s or hasn’t. These phenomena are
less problematic than noun compounds, however, since there is more regularity in
their usage.

Abbreviations: Abbreviations are very common in text, since communication is
made more efficient through the use of short forms. Rather than continually repeat-
ing long forms of expressions in text, it is very common for authors to suggest an
abbreviation that they will proceed to use in the remainder of their text. This is known
as explicit abbreviation, since the long form of the expression is first stated and only
later abbreviated. Another way in which abbreviations are used is when a long form
refers to a concept that is assumed to be known by the reader (e.g., United States). In
these cases, authors will not hesitate to simply use an abbreviation (e.g., U.S.) from
the beginning, without defining it. This is known as implicit abbreviation, since the
long form is not necessarily stated. Abbreviation expansion is a topic that is studied
bymany researchers in NLP, and the two forms just mentioned (explicit and implicit)
lead to the development of different algorithms for understanding them.

Orthographic variations: We have already seen these variations in Chap. 2, in the
context of lexical units having various equivalent forms. These forms include a one-
word form, a dash-separated form, and a space-separated form (e.g., weekend, week-
end, week end). We even went as far as discussing rules for automatically generating
such variations. It is important to be aware of whether or not the tokenizer being used
separates on the dash (-), so as to correctly perform a subsequent text search.

The task of tokenizing can become quite difficult with the many variations and
inconsistencies in language. A particular list of token separators might work well in
one application but not in another. The space is an essential separator, but can also be

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_2
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quite problematic. It is the default separator, but it is also found in many multiword
lexical units, especially proper nouns (city names, country names, company names,
etc.). Then, the period (.) is also a problematic separator. It should not be considered
as a separator when occurring within abbreviations, but it should be considered a
separator when indicating the end of a sentence.

There are several open source tokenizers for different languages (e.g., English,
Spanish), in various programming environments (e.g., python, java, scala). In our
current exploration, we will neither favor one tool over another, nor seek to demon-
strate the particular strength or weakness of any given tool. For the purposes of
discussion and reflection, I have chosen to carry out our exploration in the context of
a well-known software platform, but I strongly encourage readers to explore other
tools, in the programming language of their choice. In this book, we will work with
the Stanford CoreNLP software, which has been developed over many years and is
widely used within the world of NLP, thanks to its implementation of state-of-the-art
approaches.

Table8.2 shows the results of applying the Stanford CoreNLP tokenizer to the
sentence from our earlier discussion of tokenization, repeated below.

During his last trip to the U.S., Lucy’s father spent two week-ends in Las Vegas.

Table 8.2 Tokenizing with Stanford CoreNLP tokenizer

Position Token Lemma POS

1 During during IN

2 his he PRP

3 last last JJ

4 trip trip NN

5 to to TO

6 the the DT

7 U.S. U.S. NNP

8 , , ,

9 Lucy Lucy NNP

10 ’s ’s POS

11 father father NN

12 spent spend VBD

13 two two CD

14 week-ends week-end NNS

15 in in IN

16 Las Las NNP

17 Vegas Vegas NNP

18 . . .

After observing the resulting tokens (column 2) in Table8.2, we can see that this
tokenizer did use the space as a separator, but seemingly did not use the period. This
would explain why U.S. stayed as one unit whereas Las and Vegas were separated.
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Also, the ’s was separated from Lucy, meaning that the possessive marker was recog-
nized, but week-end remained one piece, indicating that the dash was not used as a
separator. Notice that we are hypothesizing about the nature of the algorithm based
on its results, while not knowing for sure.

Even if for most NLP task we would not write our own tokenizer, but simply
use one provided by open source software, I encourage the reader to do so (see
Exercise8.1) for two reasons. The first reason is simply for learning purposes, to get
a better sense of token variations caused by different separators. The second reason
is to acknowledge that sometimes special situations do require to go outside of what
is provided by open source software. An example of a special situation is the analysis
of unusual types of text containing many abbreviations, or uncommon combinations
of characters (e.g., “00-X1.08”). In this case, typical separators would probably be
insufficient, and open source software might not perform well. A second example is
when working on less common languages for which NLP tools do not already exist.
In such case, we actually have no other choice than to write our own tokenizer.

Now, going back to Table8.2, we see that it also provides the results of lemma-
tization (column 3) and part-of-speech tagging (column 4). These tasks will be the
topics of further sections, as we continue our journey through the NLP pipeline. But
first, let us see how tokenization is an important step for the task of sentence splitting.

8.2 Sentence Splitting

Sentence splitting is perhaps the best NLP task to become aware that a trivial human
process becomes quite complex to capture within an algorithm. Our first intuition to
segment sentences is simply to use end-of-sentence punctuation marks as separators,
such as interrogation point (?), exclamation point (!), and period (.). But similarly to
lexical unit boundaries being hard to find, sentence boundaries are also hard to find,
due to the fact that end-of-sentence markers are also used for other purposes.

Let us go back to Lucy’s father example, and expand a bit on it.

During his last trip to the U.S., Lucy’s father, spent two week-ends in Las Vegas. That was
a welcome change from his usual days in his office A.405, next to his loud neighbour, Mr.
A.K. Dorr.

Now, it is probably trivial to a human to determine that the example above contains
two sentences, but a naive sentence splitter based on the period as a separator will
actually generate 8 sentences, as seen below.

S1. During his last trip to the U
S2. S
S3. , Lucy’s father, spent two week-ends in Las Vegas
S4. That was a welcome change from his usual days in his office A
S5. 405, next to his loud neighbour, Mr.
S6. A
S7. K
S8. Dorr
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This is an unacceptable result, caused by the polysemous nature of the period
(‘.’). Further examining the context surrounding a possible sentence boundary will
help determine if it really is indicative of a sentence boundary or not. For example,
assume a period found at position pi in a sentence, some factors that we can consider
are as follows:

• Is the word following pi capitalized?
• Is there a space after pi?
• Is there another ‘.’ within X characters before/after pi?
• Is the word following pi part of a dictionary of known words?
• Assuming the period at pi were a real sentence splitter,would the resulting sentence
(before pi ) be of a normal length (within a standard deviation of normal sentence
size)?

• Is there a digit before/after pi?
• Is pi within a known abbreviation, as found in a gazetteer?

These factors can be seen as heuristics to be combined in a rule-based system
(see Exercise8.2). Some of them could be written as a set of regular expressions.
These factors could also become features within a supervised learning approach. A
learning approach, based on annotated data, would learn how to combine and weigh
each factor. Annotated data for this task, contrarily to many NLP tasks, are not too
hard to obtain, as although it can be time-consuming to identify each period in a text
as end-of-sentence or not, it is at least a task for which the inter-annotator agreement
is very high.

Both approaches (rule-based and supervised learning) are used in different open
source software performing sentence splitting. Researchers rarely rewrite their own
sentence splitter unless they work on nonstandard texts (e.g., product descriptions,
patents) for which open source software would not perform well.

Let us move on to the next step, lemmatization, which takes us within the realm
of linguistic analysis.

8.3 Lemmatization

In the following examples, a tokenizer, such as the StanfordNLP tokenizer previously
used, would identify the tokens cooking and cooks. Despite the fact that both refer to
the same concept of cook as a verb (an action), they are still alternate surface forms.
We have to lemmatize the sentences in order to obtain the base form of the verb cook.

Cooking pasta is easy.
The chef at this restaurant cooks pasta al dente.

Lemmatization is a standard task in the NLP pipeline. From the point of view of
processing, its aim is to find a base or canonical form of words encountered in text.
This base form is the one found in dictionaries. Two common variations of words are
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derivations and inflections. Inflection refers to transformation within the same part
of speech, such as different forms of a verb (e.g., arrive, arrived). Derivation refers
to transformation between parts of speech, such as between a noun and adjective or
past participle (e.g., hospital, hospitalized).

Lemmatization is used for inflections and therefore does not change the part of
speech of aword. Lemmatization rules are both part-of-speech specific and language
specific. For example, verb variations in French are much more extensive than in
English, with the conjugated verb forms varying for each person. Table8.3 contrasts
the variations for the verb cook in French and English.

Table 8.3 Verb variations in French and English

Person French (cuisiner) English (to cook)

First singular je cuisine I cook

Second singular tu cuisines you cook

Third singular il cuisine he cooks

First plural nous cuisinons we cook

Second plural vous cuisinez you cook

Third plural ils cuisinent they cook

In the case of nouns, English lemmatization rules would transform plural forms
into singular forms (e.g., symphonies/symphony). As for other parts of speech, al-
though English may not have any variations on them, other languages do. In French
for example, there are different modifications of adjectives, depending on the con-
text. The phrase a nice woman would be written with the feminine version of the
adjective (une femme gentille), whereas the phrase a nice man would take on the
masculine version of the adjective (un homme gentil).

Table8.2, introduced earlier, contains the results of applying theStanfordCoreNLP
lemmatizer to our earlier example about Lucy’s father (column 2). We can see the
past tense spent lemmatized to spend, and the plural week-ends lemmatized to the
base form week-end.

Writing a lemmatizer would require profound knowledge of the language rules
for conjugating verbs, as well as those for transforming nouns and adjectives from
their plural to their singular forms. This would be further complicated by the fact that
certain languages explicitly mark variations based on the role of a particular word
in a sentence. For example, in some languages, a word ending would be different
depending on whether the word is the subject or the object of the verb. Notice
that talking of verb objects and subjects moves us into the realm of parsing, which
involves the consideration of words in relation to each other. A word can be a noun
and a subject, or a noun and an object. We will cover the concept of parsing in a later
section, but for now let us focus on the last column of Table8.2, the POS tag, which
goes hand in hand with the lemma.
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8.4 POS Tagging

POS tagging is the process of assigning a part-of-speech tag to each token in a
sentence. Various sets of tags have been suggested over the years and several different
ones are used today.A tag set can be coarse grained, ormorefine grained.Grouping all
adjectives together would be an action of a coarse-grained tag set, whereas a more
fine-grained set would make more distinctions, between comparative, superlative,
and numeric adjectives for example. A popular tag set today is the Penn Treebank.
This set is used in the Stanford NLP Core and is shown in Table8.4, with examples
to illustrate each tag.

POS taggers can be thought of as classifiers, since they take eachword and classify
it within a set of categories. There are 36 categories in the Penn Treebank (see
Table8.4), which can be characterized as fairly fine grained, since it differentiates
between different types of nouns (e.g., proper, plural) and verbs (e.g., base, past,
gerund).

Since most words can be assigned different tags depending on context, POS
taggers will take context into consideration. For example, a rule-based tagger is
often performed in a two-pass process. In a first pass through the text, default tags
associated with particular words are assigned. For example, the default tag for cook
could be VB (verb). Then, in a second pass through the text, the tags can be changed
based on the word’s context. The tagged context for cook after the first pass can
be {night/NN, the/DT, cook/VB, improvises/VB, new/JJ}. An example of a rule to
change a tag in the second pass would be to look in the tagged context and realize
that there is a determinant (DT) before a verb (VB), which is not possible, and then
change the verb into a noun, generating this new tagged segment: {night/NN, the/DT,
cook/NN, improvises/VB, new/JJ}.

Rules and changes of this kind are manually built into the tagger. Throughout
the development process of a rule-based tagger, the rules are continually refined
and applied against a gold standard to evaluate their performance. In rule-based
tagging, the assumption is that the most likely tag is the correct one 90% of the
time. Correction rules can then be defined to apply in particular situations. These
situations are most often ones where we find other particular tags within a window
of plus or minus N words from the word being tagged. The central problem with
rule-based taggers is that they are a challenge to develop, especially as the number
of rules grows and the amount of interference between them increases. Other POS
tagging approaches are supervised learning approaches requiring annotated data and
using machine learning to learn a classification model.

POS tagging is a fairly low-level NLP process, likely to be used in many different
applications. That said, it is not trivial to carry out, and even state-of-the-art open
source software is likely to make errors, especially when working with sentences
that contain multiple ambiguous words. We will see this through examples in our
experiment in Sect. 8.6. For now, let us study one more module in the NLP pipeline,
the parser.
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Table 8.4 Penn Treebank list of POS tags

Num POS Tag Description Example

1 CC coordinating conjunction or, and

2 CD cardinal number 5, 12

3 DT determiner a, the

4 EX existential there there is

5 FW foreign word coeur

6 IN preposition/subordinating
conjunction

in, for, of

7 JJ adjective large, simple

8 JJR comparative adjective larger, simpler

9 JJS superlative adjective largest, simplest

10 LS list marker 1) 2.

11 MD modal would, should

12 NN noun, singular or mass key, piano

13 NNS noun plural keys, pianos

14 NNP proper noun, singular Denise, Karima

15 NNPS proper noun, plural Canadians, Germans

16 PDT predeterminer both the boys

17 POS possessive ending cat’s, body’s

18 PRP personal pronoun she, you, they

19 PRP$ possessive pronoun his, her

20 RB adverb simply, here, slowly

21 RBR comparative adverb slower

22 RBS superlative adverb slowest

23 RP particle come in, lift up

24 SYM symbol +, &

25 TO to to do, to bake

26 UH interjection ahhhhhh, ohhh

27 VB verb, base form go, eat, look

28 VBD verb, past tense went, ate, looked

29 VBG verb, gerund/present participle going, eating, looking

30 VBN verb, past participle gone, eaten, looked

31 VBP verb, sing. present, non-3d go, eat, look

32 VBZ verb, third person sing. present goes, eats, looks

33 WDT wh-determiner what, where, why

34 WP wh-pronoun whom, which

35 WP$ possessive wh-pronoun whose

36 WRB wh-abverb where, when
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8.5 Constituency Parsing

In parsing, part-of-speech tags become the building blocks in structuring rules, which
dictate how correct sentences should be organized. These grammar rules are lan-
guage dependent and vary widely in their complexity. We will use a few examples to
explore grammar rules and the syntactic processingwhich uses these rules to generate
a phrase-structure tree, or as we call it in NLP, a parse tree. This example-based
approach has for goal to make us become familiar with parsing but not go as far as
unraveling the details of how parsing is performed.

A basic principle of language is that grammar rules allow constituents to be
combined to form larger constituents, in a bottom-up manner, eventually forming
the ultimate constituent that is a sentence. In NLP, parsing a sentence refers to
recovering the set of rules which lead us from a sequence of words to a sentence
(S). The result of this process can be represented in a tree, where (S) is the root,
the phrase constituents (noun phrase, verb phrase, prepositional phrase, etc.) are the
intermediate nodes, and the words, together with their POS tags, are the leaves.

The cook supervises all kitchen staff.
S --> NP --> (DT The)

--> (NN cook)
--> VP --> (VBZ supervises)

--> NP --> (DT all)
--> (NN kitchen)
--> (NN staff)

The parse tree shown above was generated by the Stanford CoreNLP Parser. It
exemplifies four grammar rules, which I have listed below, along with their interpre-
tations.

(1) S → NP, VP
A sentence (S) consists of a noun phrase (NP) followed by a verb phrase (VP).
(2) NP → DT, NN
A noun phrase (NP) consists of a determiner (DT) followed by a noun (NN).
(3) VP → VBZ, NP
A verb phrase (VP) consists of a conjugated verb (VBZ) followed by a noun phrase (NP).
(4) NP → DT, NN, NN
A noun phrase (NP) consists of a determinant (DT) followed by two nouns (NN).

The English grammar within the parser contains many rules such as these.
This would be true for French, Spanish, or any language which requires encod-
ing language-specific grammars. Furthermore, most parsers today are probabilistic
parsers, meaning that they use annotated data1 to learn the contextual cues for as-
signing appropriate weightings on the rules, then allowing their decisions to vary
according to context. By context, we mean the lexical items (the choice of words)
used in the sentence.

Our purpose here is not to learn the entire set of rules in the Stanford CoreNLP
parser, but to familiarize ourselves with the notion of grammar rules more gener-
ally, as well as the ambiguity that is possible in sentences, which can complicate the

1See Chap.5, Sect. 5.1, for a brief introduction to annotated corpora.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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use of these rules. Certainly, two main causes of ambiguity are conjunctional and
prepositional attachment, as we look at below.

Conjunctional attachment problem: One important type of ambiguity, in parsing,
is conjunctional attachment. The problem arises, for example, when words can be
interpreted as nouns or verbs, and then can be in coordination with other nouns or
verbs in the sentence. As shown in the parse tree below, the word cooks is interpreted
as a plural noun (NNS), leading to the somewhat odd semantic interpretation that
both cooks and pottery can be created. The noun phrase (NP) pottery and cooks is
the result of the conjunction between pottery (NN) and cooks (NNS) as allowed by
a grammatical rule NP → NN, CC, NNS.

She continues to write, and also creates pottery and cooks.
S --> NP --> (PRP She)

--> VP --> VP --> (VBD continues)
--> S --> VP --> (TO to)

--> (VB write)
--> ,
--> (CC and)
--> VP --> ADVP --> (RB also)

--> (VBZ creates)
--> NP --> (NN pottery)

--> (CC and)
--> (NNS cooks)

Contextual variability of the parser, as mentioned above for probabilistic parsers,
can be tested by making small lexical changes and observing variations in the result-
ing parse tree. For example, substituting cooks for bakes, we can elicit an interpreta-
tion, shown in the parse tree below, which favors the conjunction she creates pottery
and she bakes, which is semantically more likely.

She continues to write, and also creates pottery and bakes.
S --> NP --> (PRP She)

--> VP --> VP --> (VBD continues)
--> S --> VP --> (TO to)

--> (VB write)
--> ,
--> (CC and)
--> VP --> ADVP --> (RB also)

--> VP --> (VBZ creates)
--> NP --> (NN pottery)

--> (CC and)
--> VP --> (VBZ bakes)

Prepositional attachment problem: A second important type of ambiguity, in pars-
ing, is prepositional attachment. Ambiguity with prepositions is created by the fact
that they can attach to verbs or nouns to form verb phrases (VP) or noun phrases
(NP). To illustrate this point, let us look at Sentence 12 from the CookCorpus (see
the corpus in Table8.5 used in the experiment of Sect. 8.6).
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They’re cooking it for us.
S --> NP --> (PRP They)

--> VP --> (VBP ’re)
--> VP --> (VBG cooking)

--> NP --> (PRP it)
--> PP --> (IN for)

--> NP --> (PRP us)

In the interpretation above, provided by the parser, the prepositional phrase (PP)
for us is attached to the verb cooking through the use of the rule (a) VP → VBG NP
PP. Another possible interpretation is shown below, where the prepositional phrase
is moved inside the noun phrase it for us:

They’re cooking it for us. (alternate interpretation)
S --> NP --> (PRP They)

--> VP --> (VBP ’re)
--> VP --> (VBG cooking)

--> NP --> NP --> (PRP it)
--> PP --> (IN for)

--> NP --> (PRP us)

In the latter case, the rule (b) NP → NP PP was used. Notice how the two
rules, (a) and (b), allow the inclusion of the PP to form larger VP or NP. These two
possible attachments for PP are the source of prepositional attachment ambiguity.
This ambiguity, in most probabilistic parsers today, is resolved based on probabilistic
evidence gathered from annotated training data. In the case above, we can deduct
that the training data provided more evidence for attaching for us to it, than attaching
for us to cooking. This shows how, when using an off-the-shelf probabilistic parser,
we should inquire about the corpora which was used for its training.

In this most recent example, the semantics of both possible parse trees are very
close. Either the cooking is for us, or the result of cooking, it, is for us.

There are caseswhere this kind of variation in prepositional attachment has amuch
larger semantic impact, as in the following variation on the classic NLP textbook
example The fruit flies like yellow bananas.

The fruit flies like yellow bananas. (1)
S --> NP --> (DT The)

--> (NN fruit)
--> (NNS flies)

--> VP --> (VBP like)
--> NP --> (JJ yellow)

--> (NNS bananas)

The fruit flies like yellow bananas. (2)
S --> NP --> (DT The)

--> (NN fruit)
--> VP --> (VBZ flies)

--> PP --> (IN like)
--> NP --> (JJ yellow)

--> (NNS bananas)
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The semantics of interpretation (1) have fruit flies enjoying bananas. Notice how
the fruit flies is held together as one unit in theNP of this interpretation. Interpretation
(2), however, has a particular fruit flying like bananas do. Notice that the NP here is
only made up of the fruit, and the verb has changed from like to flies. The second
interpretation clearly requires a lot of imagination, and its semantics are far fetched,
but from a grammatical standpoint, both interpretations lead to valid (syntactically
correct) sentences. This situation stems from the fact that the word flies can be a
noun or a verb, and at the same time the word like can be a verb or a preposition,
allowing for both sentence interpretations.

This example illustrates the important difference between syntax and semantics.
Syntax concerns the building of correct sentences with respect to specific grammar
rules for combining words. These rules are arbitrary and are defined for each par-
ticular language. The syntactic rules for French, for example, are not the same as
those for English. Syntax is about form, not content. Semantics, on the other hand,
is concerned with the actual meaning of the sentence. Semantics are linked to our
individual and collective knowledge of the world, which allows us to determine what
makes sense and what does not. If we have never encountered flying fruits, we are
likely to decide that interpretation (2) is not semantically viable.

Admittedly, this brief introduction to parsing does not provide us with enough
knowledge to write our own parser. We have learned however, that parsers are a
series of grammar rules applied to construct a tree-like structure and that ambigu-
ity in the language allows multiple possible constructions from a single sentence.
Many sentences can be correct from a syntactic point of view, even if their semantic
interpretations are not all equally probable.

The trees shown in this section have two main names, either phrase-structure
trees, or constituency trees and they are the result of phrase-structure parsers or
constituency parsers.

We now have a full NLP pipeline in our NLP toolbox: the tokenizer, the sentence
splitter, the lemmatizer, the POS tagger and the constituency parser. Going forward,
we should bear in mind that these modules are imperfect, since they will influence
our later results. This knowledge will not prevent us from continuing our exploration
though, or in this case, fromgoingback to our original quest of searching for sentences
containing the word cook in a particular linguistic role. We will return to this original
quest in the next section.

8.6 Experiment — Classifying Groups of Entities

We now turn our sights back to our original goal and to our working example of the
word cook. Let us set up a proper experiment, defining our experiment steps, and
then going through them, one by one.
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1. Define our goal.
2. Define our gold standard and evaluation method.
3. Define and test our approach.
4. Evaluate our results.
5. Analyze and discuss.

8.6.1 Goal of the Experiment

The overall purpose of our task is to link occurrences of surface forms found in text
toward the proper underlying entities which they represent. The small CookCorpus,
shown in Table8.5, contains occurrences of a polysemous word cook which would
link to different entities. Some sentences in the corpus have been used in the previous
section to illustrate parsing ambiguity.

Table 8.5 Dataset CookCorpus

No. Sentence

1 The cook supervises all kitchen staff.

2 Cook joined the expedition here.

3 Dumplings are cooked balls of dough.

4 Stir well and cook for some time.

5 Chicago is also part of Cook County.

6 A lawsuit ensued, which Cook ultimately won.

7 Cook rice by steaming it.

8 It is written in Cook’s book.

9 She continues to write, and also creates pottery and cooks.

10 The two cooks reflected and found a way out.

11 A grill pan cooks food with radiant heat.

12 They’re cooking it for us.

13 Cooking outside in the summer helps keeping the house cool.

Let us now state an assumption which will result into a subgoal that we will work
toward. The assumption is that a linguistic-based coarse-grained disambiguation is
a first step toward a more fine-grained entity disambiguation. This means that before
we even try to differentiate between two senses of cooking (e.g., a grill pan cooking
(ex. 11) versus them cooking (ex. 12)), or between two senses of a person named
Cook (e.g., James Cook (ex. 2) or another Mr. or Mrs. Cook (ex. 6)), we should first
perform a coarse-grained split of the senses based on their linguistic roles. Our three
coarse-grained categories will correspond the following:
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Definitions:
(C1) name Cook : a person or location (a named entity) named Cook
(C2) cooking : the action of cooking
(C3) a cook : a person who is a chef, or who is simply creating a meal

The new subgoal then can be restated as a categorization task, one that must
distinguish between the 3 categories above.

8.6.2 Gold Standard and Evaluation Method

Now that we have defined our goal as a categorization task, we can classify, by hand,
the examples of Table8.5, to obtain our gold standard. We manually assign the 13
sentences into the three categories, as shown below.

Gold Standard:
(C1) name Cook : Sentences 2, 5, 6, 8
(C2) cooking : Sentences 3, 4, 7, 9, 11, 12, 13
(C3) a cook : Sentences 1, 10

How will we evaluate an algorithm’s output in comparison with these category
assignments?We will make use of overall precision, since we can count the number
of sentences properly classified over the total number of sentences. It might be
interesting to further evaluate if the algorithms are particularly good or bad for
certain categories, then evaluating its per-class precision.

8.6.3 Our Method: Classification through POS Tagging

Let us define our method in 4 steps:

1. Establish a correspondence between POS tags from the Penn Treebank and each
category we wish to identify.

2. Use a POS tagger to tag each sentence.
3. Retrieve the POS tag assigned to each occurrence of cook.
4. Classify the sentence in the category corresponding to the POS tag found.

For the first step, let us establish the following correspondences:

POS tags:
(C1) name Cook : NNP (proper noun, singular), NNPS (proper noun, plural)
(C2) cooking : VB (verb, base form), VBD (verb, past tense),

VBG (verb, gerund/present part.),
VBN (verb, past part.), VBP (verb, sing. present, non-3d),
VBZ (verb, third.p.s. present)

(C3) a cook : NN (noun, singular or mass), NNS (noun plural)

For the second step, let us use the Stanford POS tagger. Table8.6 shows the results
of applying the tagger onto the CookCorpus sentences.
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Table 8.6 CookCorpus tagged using the Stanford POS tagger

No. Sentence

1 The/DT cook/NN supervises/VBZ all/DT kitchen/NN staff/NN.

2 Cook/VB joined/VBD the/DT expedition/NN here/RB.

3 Dumplings/NNS are/VBP cooked/VBN balls/NNS of/IN dough/NN.

4 Stir/VB well/RB and/CC cook/VB for/IN some/DT time/NN.

5 Chicago/NNP is/VBZ also/RB part/NN of/IN Cook/NNP County/NNP.

6 A/DT lawsuit/NN ensued/VBN ,/, which/WDT Cook/VBP ultimately/RB won/VBN.

7 Cook/VB rice/NN by/IN steaming/VBG it/PRP.

8 It/PRP is/VBZ written/VBN in/IN Cook/NNP ’s/POS book/NN.

9 She/PRP continues/VBZ to/TO write/VB ,/, and/CC also/RB creates/VBZ pottery/NN
and/CC cooks/NNS.

10 The/DT two/CD cooks/NNS reflected/VBD and/CC found/VBD a/DT way/NN out/RP.

11 A/DT grill/NN pan/NN cooks/NNS food/NN with/IN radiant/JJ heat/NN.

12 They/PRP ’re/VBP cooking/VBG it/PRP for/IN us/PRP.

13 Cooking/NN outside/IN in/IN the/DT summer/NN helps/VBZ keeping/VBG the/DT
house/NN cool/NN.

From these results, we can perform the third and fourth steps, resulting in the
following categorization.

Results:
(C1) name Cook : 5, 8
(C2) cooking : 2, 3, 4, 6, 7, 12
(C3) a cook : 1, 9, 10, 11, 13

8.6.4 Performance Evaluation

Aswe saw in Chap.2, it is important to evaluate even the simplest algorithms in order
to establish a baseline for comparison with later (and likely improved) algorithms.

Table8.7 shows the results of the classification, using individual sentence num-
bers. The columns correspond to the gold standard categories, and the rows show the
algorithm’s results. The two are not always in agreement, as we can see if we take a
closer look at Sentence 2, for example. According to the gold standard, it belongs to
C1 (Cook), but the algorithm assigned it C2 (cooking).

Table 8.7 Classification results for using POS to differentiate senses of cook

Gold Standard

C1 (Cook) C2 (cooking) C3 (a cook)

C1 (Cook) [5, 8]

Algorithm C2 (cooking) [2, 6] [3, 4, 7, 12]

C3 (a cook) [9, 11, 13] [1, 10]

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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The results shown in Table8.7 are summarized in Table8.8. Summarizing the
information allows us to easily see the number of sentences in each category and
makes for easy comparison between the gold standard and the results of the algorithm.

Table 8.8 Classification per-class and overall precisions

Class Assigned Total in GS Precision

C1 (Cook) 2 4 0.500

C2 (cooking) 4 7 0.571

C3 (a cook) 2 2 1.0

Overall 8 13 0.615

The bottom row of Table8.8 provides the overall precision, whereas the previous
three rows provide the per-class precision. These would be of interest if we are
looking for high performance on a particular class, but if we are more interested
in the overall performance of the method, the overall precision score is a more
relevantmeasure.We obtained 8 correct classifications among 13 possibilities, which
translates to an overall precision score of 8/13, or 61.5%. This seems quite low,
especially when compared to the typical POS tagging performance of NLP software,
which is often advertised as falling in the 90% range. We will investigate the reason
for this discrepancy in the following section.

8.6.5 Result Analysis — Intrinsic versus Extrinsic Evaluation

The evaluation we performed in the previous section is not a typical POS tagger
evaluation. What we have just done would be known as an extrinsic evaluation,
since we applied the results of the tagging process to a subsequent task (e.g., sense
classification), and based our evaluation on that data. In contrast to this, the typical
POS tagger evaluation is more likely to be an intrinsic evaluation, meaning that it
would measure the performance of the tagger itself.

It is important to bear in mind the distinction between intrinsic and extrinsic
evaluations, both as a user of NLP and as a potential future developer of NLP tools.
There are times where much effort can be spent refining algorithms for performance
gains on intrinsic evaluations, only to later realize that this has no effect on extrinsic
evaluations.

So, howwould we go about performing an intrinsic evaluation of the POS tagger?
As usual, the first step is to build a gold standard, this time for the tagging task itself.
In this case, this would mean manually assigning a part of speech to each word in
all sentences of the CookCorpus. This seems like a difficult task, doesn’t it? It would
certainly be time-consuming, considering that tagging using the Penn Treebank tag
set is not something we practice everyday, and so we are probably ill-prepared for
such a task.Wewould first have to refer back to Table8.4, master the 36 tags, and then
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call upon the English grammar rules we learned in school to encode the sentences
with permitted sequences of tags. This would all be feasible, but certainly not trivial.

One approach that helps human annotators perform tasks like these more effi-
ciently is to perform output correction, as opposed to full tagging (these are also
known as corrective annotation and full annotation, respectively). In other words,
we begin with an imperfect set of results which we then scan for errors and correct
(output correction), as opposed to attempting to generate the results ourselves, from
scratch (full tagging).

For example, to generate the gold standard in Table8.9, we would start with the
automatically tagged corpus (Table8.6) and correct it. The trade-off between full
annotation and corrective annotation depends on the performance level of the algo-
rithm. Although it is true that corrective annotation is often more efficient, in cases
where a large percentage of the tags generated by the algorithm needs correction, the
burden on us as the user can end up being heavier than if we had generated the results
ourselves. This is not the case in our current situation though, since less than 10%
of the results of the Stanford CoreNLP tagger need correcting. Table8.10 shows the
changes to each sentence that would be necessary to bring the algorithm’s results
into line with the gold standard.

The last line of Table8.10 shows that overall 88 out of a total of 95 words were
tagged correctly. This translates to an overall precision score of 92.6%,which is quite
high, and much more in line with what we would expect for NLP tagging software.

The difference between the extrinsic and intrinsic evaluations here is striking.
Remember, our extrinsic evaluation yielded a precision of only 61.5%, whereas we
have just calculated 92.6% precision for our intrinsic evaluation. Why the big gap? It
is possible that the data we used for our extrinsic evaluation was simply anomalous,

Table 8.9 CookCorpus: manually annotated POS information

No. Sentence

1 The/DT cook/NN supervises/VBZ all/DT kitchen/NN staff/NN.

2 Cook/NNP joined/VBD the/DT expedition/NN here/RB.

3 Dumplings/NNS are/VBP cooked/JJ balls/NNS of/IN dough/NN.

4 Stir/VB well/RB and/CC cook/VB for/IN some/DT time/NN.

5 Chicago/NNP is/VBZ also/RB part/NN of/IN Cook/NNP County/NNP.

6 A/DT lawsuit/NN ensued/VBN ,/, which/WDT Cook/NNP ultimately/RB won/VBN.

7 Cook/VB rice/NN by/IN steaming/VBG it/PRP.

8 It/PRP is/VBZ written/VBN in/IN Cook/NNP ’s/POS book/NN.

9 She/PRP continues/VBZ to/TO write/VB ,/, and/CC also/RB creates/VBZ pottery/NN
and/CC cooks/VBZ.

10 The/DT two/CD cooks/NNS reflected/VBD and/CC found/VBD a/DT way/NN out/RP.

11 A/DT grill/NN pan/NN cooks/VBZ food/NN with/IN radiant/JJ heat/NN.

12 They/PRP ’re/VBP cooking/VBG it/PRP for/IN us/PRP.

13 Cooking/VBG outside/IN in/IN the/DT summer/NN helps/VBZ keeping/VBG the/DT
house/NN cool/JJ.
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Table 8.10 CookCorpus POS tagging intrinsic evaluation

No. Correct tags Nb tags Required changes

1 6 6 –

2 4 5 cook: VB → NNP

3 5 6 cooked: VBN → JJ

4 7 7 –

5 7 7 –

6 7 8 Cook: VBP → NNP

7 5 5 –

8 7 7 –

9 10 11 cooks: NNS → VBZ

10 9 9 –

11 7 8 cooks: NNS → VBZ

12 6 6 –

13 8 10 cooking: NN → VBQ, cool: NN → JJ

Total 88 95

and we can therefore chalk it up to bad luck. Or perhaps we performed our extrinsic
evaluation on a task that did not make proper use of the highly accurate results of
tagging, and so the results do not depict the strength of the tagger. In this case, we
may have simply run into bad luck. The word cook may be particularly difficult to
tag. After all, out of the 7 tagging errors made by the tagger, 6 were on the word cook
and its variations.

So, what can we learn from this experiment? Well, one thing we have seen is that
a randomly selected example (cook) can lead to bad luck and misleading results.
Secondly, we should now understand that we cannot fairly evaluate an algorithm
based on a single example. We should also be cautioned against assuming that the
results of an intrinsic evaluation will transfer directly onto a subsequent task.

8.7 In Summary

• Although tokenization is simple in theory, it leads to significant questioning about
what exactly defines lexical units, and how to determine lexical unit boundaries
in sentences.

• Sentence splitting is a seemingly simple task, which turns out to be complex due
the polysemous roles of end-of-sentence markers, mainly periods.

• Lemmatization transforms an inflected form of a word into its base form. It is a
language-dependent process that requires knowledge of the various word inflec-
tions, based on an understanding of part-of-speech and grammar rules of each
language.
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• POS tagging refers to the process of assigning a POS tag to eachword in a sentence.
A popular tag set is the Penn Treebank tag set.

• Manually performing POS tagging on sentences is time-consuming and far from
trivial. This contributes to the scarcity of available POS-annotated data.

• In phrase-structure grammars, the grammar rules are constituent combination
rules. They outline how to combine constituents, in a bottom-up manner, start-
ing from words, and culminating in a sentence.

• Conjunctions and prepositions are two main causes for ambiguity in parsing. The
prepositional attachment problem is a long known problem in NLP, and it is still
not resolved today.

• Most parsers today are probabilistic parsers, meaning that they learn from tagged
data different probabilities for ambiguous attachments depending on their context
of occurrence.

• Open source NLP pipelines that include tokenizers, sentence splitter, lemmatizers,
POS taggers, and parsers are available for public use. The best way to evaluate
their usefulness for specific applications is to test them on various sentences and
to understand where they succeed, and where they fail.

• Evaluation of NLP modules can be intrinsic or extrinsic. An intrinsic evaluation
is performed on the module itself (e.g., on the POS tagger), whereas an extrinsic
evaluation is performed on the results of a task that depends on the module (e.g.,
classification using the results from the POS tagger).

• POS tagging can be used for coarse-grained disambiguation of words, as it differ-
entiates verb forms from noun forms (e.g., to cook, a cook).

8.8 Further Reading

Annotated corpora:Manually generated aPOS-tagged corpus is costly, as it requires
many work hours by skilled annotators. Some annotated corpora, such as the popular
PennTreebank, are available through theLinguisticDataConsortium, https://catalog.
ldc.upenn.edu/, at a cost.

NLP stack: The best way to understand in more details each process in the NLP
stack is to actually experiment with various open source software which offer all or
part of the pipeline.

• Stanford CoreNLP: The Stanford CoreNLP software, containing multiple mod-
ules, from tokenizer to parser, is available at http://nlp.stanford.edu/software/
corenlp.shtml.

• OpenNLP: amachine learningbased toolkit for text processing, available at https://
opennlp.apache.org/.

• LingPipe: A toolkit for text processing, available at http://alias-i.com/lingpipe/.

NIF: There is an ongoing effort for the development of a standard, called NIF (Nat-
ural Language Processing Interchange Format), to allow interoperability of NLP

https://catalog.ldc.upenn.edu/
https://catalog.ldc.upenn.edu/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
https://opennlp.apache.org/
https://opennlp.apache.org/
http://alias-i.com/lingpipe/
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processing tools, resources and annotations (see http://persistence.uni-leipzig.org/
nlp2rdf/). In this book, I explain ideas and methods without reference to particu-
lar formalisms, but it is important to acknowledge large community efforts devoted
to developing such standards which will benefit both the NLP community and the
Semantic Web community (see Hellmann et al. 2013).

8.9 Exercises

Table 8.11 Small HurtCorpus

No. Sentence

1 No one was hurt.

2 The noise starts hurting.

3 My knees still hurt.

4 Rejected and hurt, John leaves.

5 Sure, this will hurt William, but he will recover.

6 Mississipi John Hurt was also an influence.

7 Hurt was born in Darley Dale.

8 The Hurt Locker was a good movie.

9 The Great Depression hurt O’Neill’s fortune.

10 William Hurt won the Academy Award for Best Actor.

11 Hurt, Rachel begins to defy Frank’s painstaking security measure.

12 Wesley apologizes for getting her hurt, but she blames herself.

13 Even if nobody was hurt, John’s restaurant fire caused a lot of stress.

Exercise 8.1 (Tokenization).

a. Try writing your own tokenizer, programming the different variations for separa-
tors shown in Table8.1. Test your variations on a corpus, such as the CookCorpus

(Table8.5), or the new HurtCorpus (Table8.11).
b. Using the same corpora suggested in (a), try out a few open source tokenizers,

such as the ones included in NLP stack software mentioned in Sect. 8.8.

Exercise 8.2 (Sentence splitting).

a. Go back to the example “During his last trip to the U.S., Lucy’s father, spent
two week-ends in Las Vegas. That was a welcome change from his usual days in
his office A.405, next to his loud neighbour, Mr. A.K. Dorr.” and try a few open
source sentence splitters on this short text, such as the ones included in NLP stack
software mentioned in Sect. 8.8. Are there any differences between them?

b. Gather short paragraphs (containing at least a few sentences) from different text
sources, whichwould represent various text types (news stories,Wikipedia pages,
medical blogs, patents) and test the sentence splitters you used in (a). What do
you notice about performance in relation to text type? Discuss.

http://persistence.uni-leipzig.org/nlp2rdf/
http://persistence.uni-leipzig.org/nlp2rdf/
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c. Programyour own sentence splitter, by developing an algorithm (a rule or a regular
expression) for each of the seven questions put forward in Sect. 8.2. Compare your
sentence splitter to the open source ones, using the paragraphs from the previous
exercise for evaluation. Remember that to be fair, if you have actually used the
sentences from (b) as your development set to program your sentence splitter,
you should find new paragraphs (from the same sources of text) to generate a test
set on which you will test your sentence splitter.

Exercise 8.3 (Lemmatization).

a. To better understand lemmatization, program a lemmatizer for plurals in English.
Take into account the following transformations: remove ‘s’ ending, change ‘ies’
ending to ‘y’, change ‘ves’ ending to ‘f’, and change ‘men’ ending to ‘man.’ Try
your lemmatizer on different words, such as car, woman, child, lamp, baby, news,
story, storey, glossary, gloss, and currency. Are the transformations encoded able
to generate the singular form of all these words? If not, add the necessary rules.

b. Test the combination of your tokenizer from Exercise8.1 and your lemmatizer
from (a) on the HurtCorpus. Discuss how it compares to an open source tokenizer
and lemmatizer.

Exercise 8.4 (Part-of-speech tagging).

a. Go through Table8.4, and familiarize yourself with the various tags by providing
one additional example for each one.

b. To test the Stanford NLP POS tagger we used in Sect. 8.4, try variations for the
fruit fly examplewe presented. The original sentencewasThe fruit flies like yellow
bananas. Try changing flies to insects or bugs, and change like to taste or eat.
You can also remove the determiner at the beginning of the sentence and try the
singular form fruit fly likes. What do you notice? How do the changes impact the
POS tagger?

Exercise 8.5 (Parsing).

a. To test the Stanford CoreNLP parser we used in Sect. 8.5, use the variations you
generated in Exercise8.4(b), as different example sentences to test the parser.
What do you notice? How do the changes impact the parser?

Exercise 8.6 (Entity search).

a. Redo all the steps of the experiment we performed in Sect. 8.6, replacing the
CookCorpus dataset with the HurtCorpus dataset built in Table8.11. We would
like POS tagging to allow the differentiation between the verb to hurt and the
proper noun Hurt. What are the disambiguation performances obtained? Is there
still a large gap between the intrinsic and the extrinsic evaluations, as we had
found in the original experiment?



Chapter 9
Definition-Based Grounding

In Chap.8, more specifically in the experiment of Sect. 8.6, we started our grounding
quest. We used linguistic processing, particularly part-of-speech tagging, to identify
three categories of senses for the word cook, senses related to the verb to cook, the
noun cook, and the proper noun Cook. But linguistic processing can only highlight
distinctions in meaning which are captured by variations in parts of speech. There
are many more distinctions to uncover. For example, the name Cook is a popular
surname, and there are ample different people with that same name. In the current
chapter, we will aim at identifying which Mrs. Cook or Mr. Cook is referred to in
a text. We refer to this process as grounding, since we will try to connect textual
mentions to actual entities found in resources.

This grounding of textual surface forms to actual concepts is a complex semantic
process. It can be referred to as Entity Linking, in the context of searching for
named entities, or as Word Sense Disambiguation, in the context of searching for
common words. The two processes will be individually presented at the beginning
of this chapter. The term grounding, or more precisely semantic grounding, was
not in common usage ten years ago, although it is becoming more and more popular
in today’s world of NLP. The term encompasses both Entity Linking andWord Sense
Disambiguation, irrespective of the actual task at hand.

The task of grounding would be simple, were it not for polysemy. Without the
complications of polysemy, there would be only one concept for each surface form.
Unfortunately, this is not the case. In this chapter, we will expand our understanding
of polysemy and look into disambiguation strategies which make use of the context
of occurrence of mentions in text.

I will introduce a definition-based grounding approach, which requires that
concepts be explicitly defined in a resource. Various resources do provide explicit
concept definitions, and we refer to them as possible grounding spaces for our
disambiguation process. In this chapter, we will look into WordNet and Wikipedia
as possible grounding spaces.
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Our definition-based grounding approach also requires that concept definitions,
as well as the context of the ambiguous surface form, are to be transformed into
bag-of-words representations or simply BOWs for short. The resulting BOWs are
then fed as input into an algorithm we call BOW-Match which will decide on a
specific word sense or entity to be assigned to the surface form.

In this chapter,wewill describe the steps performedby thisBOW-Match algorithm
and test its performances in an Entity Linking experiment, using Wikipedia as a
grounding space.

9.1 Word Sense Disambiguation

Word Sense Disambiguation is the ability to computationally determine which sense of a
word is activated by its use in a particular context. (Navigli (2009))

The classic example of Word Sense Disambiguation, found in most NLP text-
books, is the word bank.

(a) He went to the bank to get 900 dollars to pay his rent.
(b) Charlie sat on the bank, refusing to go in the water.

The two senses of bank implied by the sentences above are quite different. In
Word Sense Disambiguation, or commonly WSD, we wish to automatically find
which sense is appropriate for each sentence. A possible source of senses, commonly
used in NLP, isWordNet. Here are some definitions sampled from theWordNet noun
entry for bank.1

WordNet senses:
1. sloping land (especially the slope beside a body of water)
2. a financial institution that accepts deposits and channels the money into lending activities
3. a long ridge or pile
4. an arrangement of similar objects in a row or in tiers
5. a supply or stock held in reserve for future use (especially in emergencies)
6. the funds held by a gambling house or the dealer in some gambling games
7. a container (usually with a slot in the top) for keeping money at home
8. a building in which the business of banking transacted

The WSD task can be seen as a classification task. In the case of bank, each
example sentence must be classified into one of the possible 8 senses (classes).

Let us try to perform this classification manually. Looking through the eight
possible meanings of bank above, it seems straightforward to associate the example
(b) to definition (1), but what about example (a)? Does it correspond to definition (2)
or definition (8)?

This small example illustrates how far from trivial, even for human judges, this
WSD would be. There will likely be disagreement between human judges. This

1The definitions are found in Version 3.1. of WordNet.
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notion of agreement/disagreement between human judges is formalized in a measure
of what we call inter-annotator agreement.2 Prior to performing any task using an
algorithm, it is important to consider the difficulty the same task would pose for
human beings, and the subjectivity involved. Doing so helps us to maintain realistic
expectations of our algorithms.

Awareness ofWSD’s difficulty and subjectivity has sparked effortswithin theNLP
community to establish common datasets and evaluation processes. In an effort to
provide a focus to the field, an important Word Sense Disambiguation competition
was started in 1998, under the original name SenseEval. The competition is now
called SemEval, as it has evolved to include other challenging semantic processing
tasks.

The value of the competition does not necessarily lie in finding unequivocal an-
swers to questions, or in resolving issues for good. Instead, it lies in bringing together
an entire research community, whose members can then compare systems, discuss
algorithmic problems, and reflect on the underlying difficulties associated with cer-
tain task requirements. At SenseEval-2, competing teams did not achieve very high
results, either in the lexical sample tasks (finding a sense for a few selected words)
or in the all-word tasks (disambiguating all words in a sentence). Nonetheless, this
led to important discussions about the appropriateness of WordNet as a grounding
space for a WSD task.

The resource used in a disambiguation task can be thought as a grounding space,
as being metaphorically related to the real world. In psychology, grounding refers to
the process whereby a reader or hearer maps a word onto a particular object, either
within the real world or a constructed mental world. This object could be something
in the hearer’s surrounding environment or something referred to by the speaker. In
terms of human development, grounding occurs first for physical objects, people,
and locations, and later for more abstract ideas.

Such real world does not exist for computer programs, and we must simulate it
through resources containing knowledge about theworld, aswell as knowledge about
the words used to describe that world. WordNet has been such a lexical-semantic
resource of choice, used as a grounding space for Word Sense Disambiguation for
many years. WordNet’s popularity is due to its ease of use and availability, as well
as its knowledge organization through synsets and semantic links. As a grounding
space, WordNet poses one difficulty, which is due to the fine granularity used in
its sense divisions. We touched on this sense division granularity issue earlier,
mentioning the fineness of the line separating senses 2 and 8 for the word bank.
Researchers have come up with many ways of dealing with this issue over the years.
Adaptations have been made on the resource side, by explicitly providing coarse-
grained senses (grouping some subsets of definitions) or providing domain tags (e.g.,
Medical, Art, and Computer) to definitions, but also in WSD evaluation process, by
allowing algorithms to group or rank senses assigned to a surface form, instead of
choosing a single one.

2See Chap.3, Sect. 3.4.1, for an introduction to inter-annotator agreement and its related κ measure.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
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WSD is a fascinating and active field of research, and I encourage the reader to
further read surveys and articles mentioned in Sect. 9.9. In this chapter, we will limit
ourselves to the investigation of simple approaches, ones that will provide us with
a window into the underlying issues and help reveal why researchers continue to
struggle with WSD, even after 30 years of work on the task.

Now, we look at Entity Linking, a task very similar to WSD. Later, we will
suggest an algorithm that can be used for both WSD and Entity Linking, which we
refer together as semantic grounding tasks.

9.2 Entity Linking

The difference between Entity Linking and Word Sense Disambiguation lies more
in their respective choice of grounding space than in their intent. In Entity Linking,
similarly to WSD, the intent is to disambiguate a surface form by automatically
choosing its contextually most appropriate sense among a set of possible senses
provided by a grounding space. As to the content of that grounding space, in Entity
Linking, we do assume that it will include descriptions of named entities, rather than
solely common words, as expected in WSD.

As opposed to the earlier WSD examples of bank referring to its meanings of
(a) banking institution or (b) river bank, the example sentences to be included in
an Entity Linking task are intended to contain named entities referred to as bank,
such as:

(c) Eva works at the gallery on Bank, near Somerset.
(d) Charlie Chaplin starred in the movie The Bank.
(e) Many artists from BANK presented their work at galleries in London.

An appropriate grounding space for these examples is Wikipedia. A sample of
six of its entries related to bank are shown below.

• LOCATION

1. Bank Street (Ottawa, Ontario)
2. Bank, Iran, city in Bushehr Province, Iran.

• ORGANIZATION

3. BANK (art collective), a 1990 London art collective
4. Bank Street College of Education, a private graduate school for Early Childhood Education,

in New York, NY, U.S

• FILM

5. The Bank (1915 film) The Bank was Charlie Chaplin’s tenth film for Essanay Films.
6. The Bank is an 2001 Australian thriller/drama film starring David Wenham and Anthony

LaPaglia.
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Notice how the entities are grouped by entity types: LOCATION, ORGANIZATION,
and FILM.3 This grouping does offer a coarse-grained classification of senses. A
Named Entity Recognition system, or NER, would try to recognize these types.4

An accurate NER output for the example sentences would assign example (c) as a
LOCATION, example (d) as a FILM, and example (e) as an ORGANIZATION.

The task of Entity Linking would further disambiguate which of the possible
location, film, or organization is meant in each example. An accurate assignment
would find example (c) as sense (1), example (d) as sense (5), and example (e) as
sense (3).

Before the term Entity Linking came about, a more commonly used term was
Named Entity Disambiguation or NED. The term implicitly implies a focus on
named entities for the disambiguating process. Although today, the term Entity
Linking seems more appropriate given that Wikipedia is commonly chosen as the
grounding space for the disambiguation process, and that Wikipedia’s content has
expanded toward covering not only named entities, but also common words, as well
as domain-specific terms. For example, below is a sample of additional definitions
for bank, grouped under particular domains (instead of entity types).

• Biology and medicine

7. blood bank: A blood bank is a cache or bank of blood or blood components, gathered as a
result of blood donation or collection, stored and preserved for later use in blood transfusion.

8. gene bank: Gene banks are a type of biorepository which preserve genetic material.

• Sports

9. Bank shot, a type of shot in basketball

• Transportation engineering, and aviation

10. Bank or roll, in aircraft flight dynamics, a rotation of the vehicle about its longitudinal axis

• Other uses

11. Bank (surname)
12. Data bank, a storage area for information in telecommunications
13. Memory bank, a logical unit of storage
14. Piggy bank, a device for money saving

It is interesting to note that Wikipedia is becoming so common as a ground-
ing space, that it has triggered changes in the definition of some NLP disambigua-
tion tasks. Wikipedia is not the only resource expanding its coverage. As much as
Wikipedia is venturing into providing definitions for common words, WordNet is
venturing into defining a few named entities. There is currently much interest in both
NLP and Semantic Web communities to find correspondence between resources,

3Wikipedia does not actually provide a strict organization by entity types, but rather groups entries
under particular headings. I have associated some headings with possible types for the sake of our
discussion.
4We explored the use of regular expressions in Chap.3 to find named entities, and we will further
look at NER systems in Chap.13.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_13
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so as to benefit from their complementary information. For example, the Babel-
Net project suggests multilingual mappings between Wikipedia and WordNet (see
Sect. 9.9).

From our perspective of performing Entity Linking using Wikipedia as a ground-
ing space, we face a large number of senses, either corresponding to named entities,
to specific-domain terms or to common words. All these senses become a large set
of possible classes into which the Entity Linking task is supposed to categorize a
particular instance. Entity Linking is quite a difficult task, and over time, researchers
have developedmore refined algorithms and have also adapted their algorithms to the
structure of the grounding space and the type of information it contains. In this chap-
ter, we are only touching the surface of the Entity Linking problem. We will attempt
a first algorithm, one which is not dependent on any grounding space’s particular
structure.

Our algorithm does require the presence within the grounding space of definitions
of the entities. These definitions will further be transformed into a commonly used
NLP structure call bag-of-words, which we look at next.

9.3 Bag-of-Words Representation

The bag-of-words representation, or BOW, is very common in NLP, as it offers a
simple representation of a text. Full documents, paragraphs, sentences, and virtually
any segment of text can be transformed into a BOW. A BOW is simply the set of
tokens found in a segment of text. As we know, nothing is ever simple in NLP, and
this section will show how a single sentence can be transformed into very different
BOWs, depending on the choice of text processes to include in the transformation.

As a first hint into the complexity underneath BOW generation, notice how I used
the word token earlier to refer to the content of the BOW, instead of using the word
word, reminding us of the discussion we had in Chap. 8 about the difficulty of even
such a simple task as tokenizing. Since a tokenizer is one important text process
involved in the creation of a BOW, all the issues related to tokenizing will also apply
here.5

Let us revisit the five example sentences introduced in the two previous sections,
to concretely explore the impact of various text processing choices6 on resulting
BOWs.

(a) He went to the bank to get 900 dollars to pay his rent.
(b) Charlie sat on the bank, refusing to go in the water.
(c) Eva works at the gallery on Bank, near Somerset.
(d) Charlie Chaplin starred in the movie The Bank.
(e) Many artists from BANK presented their work at galleries in London.

5For an introduction to tokenization and the impact of separators, see Chap.8, Sect. 8.1.
6Text processing will be performed with the Stanford CoreNLP platform. An introduction to the
different text processes used in this section was presented in Chap.8.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8
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Let us call a baseline BOW, one resulting from doing nothing else than tokenizing
using the space as separator.BaselineBOWs for our example sentences are as follows:

Baseline BOWs, with all tokens:
BOWa = [bank, dollars, get, his, He, pay, rent, to, the, went, 900]
BOWb = [bank, Charlie, go, in, on, refusing, sat, the, to, water, ‘,’]
BOWc = [at, Bank, Eva, gallery, on, near, Somerset, the, works, ‘,’]
BOWd = [Bank, Chaplin, Charlie, in, movie, starred, the, The]
BOWe = [artists, at, BANK, from, galleries, in, london, many, presented, their, work]

I purposely show the content of the BOWs in alphabetical order to highlight one
major drawback of the BOW representation: All sequential information is lost. To
create a BOW from a sentence, we lump all the words together into a set (a “bag”) and
therefore do not retain any information about the order in which the words appeared
in the original sentence.

Let us now go through possible variations in the creations of BOWs. In general,
a variation will either increase the variety of tokens toward a more fine-grained
representation, or on the contrary, it will decrease the variety of tokens, merg-
ing some of them together toward a more coarse-grained representation. We will
consider that a variation has a positive effect on the BOW when it allows to better
differentiate tokens which have similar surface forms but different meanings, as well
as when it groups together tokens which have different surface forms but the same
meaning. On the other hand, we will consider that a variation has a negative effect
on the BOWs when it groups surface forms which should be kept separate given that
they refer to different meanings, as well as when it separates surface forms which in
fact do have the same meaning.

Case sensitivity: A first variation is to make BOWs case insensitive. This can be
done by simply putting all the tokens in lowercase. A case-insensitive BOW is amore
coarse-grained representation of a sentence than the baseline BOW, since tokens
starting with an uppercase letter, and tokens written in all uppercase, will all become
indistinguishable from the lowercase form of the token. In our examples, we can
see that The, from The Bank (ex. (d)) becomes the same the used in other contexts
in other sentences. Furthermore, the words bank, Bank, BANK from the different
sentences now all contain the same token bank.

BOW with case-insensitive tokens:
BOWa = [bank, dollars, get, his, he, pay, rent, to, the, went, 900]
BOWb = [bank, charlie, go, in, on, refusing, sat, the, to, water, ‘,’]
BOWc = [at, bank, eva, gallery, near, on, store, somerset, the, works, ‘,’]
BOWd = [bank, chaplin, charlie, in, movie, starred, the]
BOWe = [artists, at, bank, from, galleries, in, london, many, presented, their, work]

Negative effect: Proper nouns (Bank street, BANK art collective) and common nouns
(river bank) become indistinguishable.

Positive effect: Case mistakes on words (e.g., bank written as bAnk), and words in
sentence starting positions (which have a capitalized first letter) are now correctly
grouped together under the same form.
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Lemmatization: Instead of containing words in their original forms, BOWs content
could rely on lemmas. Lemmatization does result in many changes in the tokens,
which we can see if we compare the new BOWs with the baseline BOWs. For
example, we see that starred is lemmatized to star (ex. (d)), or that refusing is
lemmatized to refuse (ex. (b)).

BOW with lemmas:
BOWa = [bank, dollar, get, go, he, pay, rent, to, the, 900]
BOWb = [bank, Charlie, go, in, on, refuse, sit, the, to, water, ‘,’]
BOWc = [at, bank, Eva, gallery, near, on, Somerset, the, work, ‘,’]
BOWd = [Bank, Chaplin, Charlie, in, movie, star, the]
BOWe = [artist, at, BANK, from, gallery, many, present, they, work]

Negative effect: Using lemmas will render works (ex. (c)) indistinguishable from
work (ex. (e)) which actually refer to quite different meanings, and even to two
different linguistic roles (verb in example (c), and noun in example (e)).

Positive effect: Lemmas are very good at gathering nominal and verbal word forms
whichwere derived from the sameword, and refer to the samemeaning. For example,
now went (ex. (a)) is transformed into go, making it equivalent to go in example (b),
which has the samemeaning. The same for galleries (ex. (e)) lemmatized into gallery,
making it the same as gallery in example (c), both having the same meaning.

POS filtering: The BOWs so far contained all words found in the sentences, as we
have not filtered out any words. A possibility is to reduce the BOW to contain only
words of certain parts of speech. As a possibility, we can focus on nouns and verbs,
and filter all other words (e.g., prepositions, conjunctions, and numbers). We see in
the resulting BOWs below how much the size has reduced.

BOW with lemmas of Noun/Verb only:
BOWa = [bank, dollar, get, go, pay, rent]
BOWb = [bank, Charlie, go, refuse, sit, water]
BOWc = [bank, Eva, gallery, Somerset, work]
BOWd = [Bank, Chaplin, Charlie, movie, star]
BOWe = [artist, BANK, gallery, present, work]

Negative effect: In few cases, removing prepositions or determiners might remove
hints as to the sense of a word. For example, The Bank (ex. (d)), being the movie
title, does rely on the presence of The. Or a different example, not included above,
is the word A, which most often is a determiner, and therefore would be removed if
only nouns and verbs are kept, but in compounds such as Vitamin A, it is important.

Positive effect: POS filtering on nouns and verbs greatly reduces the number of
words and focuses the BOW’s content on semantically significant words. This can
help when comparing BOWs (see next section), since, for example, a word the shared
by two BOWs should not be as indicative of their resemblance as a word gallery.
Removing determiners and other function words from BOWs will prevent possible
matches on less significant words.

Explicit POS tags: Now that we have reduced the content of the BOW, we might
wish to reinject differentiating information, such as explicitly tagging the words with
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their POS tags. In the examples below, I have used a format lemma/POS to represent
the tokens. Given this format, identical lemmas with different POS become different
tokens. For example, work/VBZ and work/NN are two different tokens.

BOW with lemma/POS combinations of content words only:

BOWa = [bank/NN, dollar/NNS, get/VB, go/VBD, pay/VB, rent/NN]
BOWb = [bank/NN, Charlie/NNP, go/VB, refuse/VBG, sit/VBD, water/NN]
BOWc = [bank/NNP, Eva/NNP, gallery/NN, Somerset/NNP, work/VBZ]
BOWd = [Bank/NNP, Chaplin/NNP, Charlie/NNP, movie/NN, star/VBD]
BOWe = [artist/NNS, BANK/NNP, gallery/NNS, present/VBD, work/NN]

Negative effect:There are cases where awordmay appear in different linguistic roles,
but have meanings that are similar nonetheless (e.g., work and go for a work). The
new lemma/POS differentiation would not allow to identify their common meaning.

Positive effect: The two meanings of work as work/VBZ (ex. (c)) and work/NN (ex.
(e)) are now distinguished as they should be.

This last variation shows that a same process can simultaneously result in positive
and negative effects for very similar reasons (various linguistic roles ofwork possibly
leading or not to variousmeanings).When two linguistic roles (POS) lead to different
meanings, we wish for the BOW’s content to differentiate them, but when they
lead to a very similar meaning, we wish for the BOW’s content to merge them
into a single token. But this is unknown information at the time the BOW is being
constructed. What we really want the BOW to be is a “Bag-of-Senses,” but since we
are constructing BOWs from text, all we have are words, and the resulting BOWs
are bound to be ambiguous.

We construct BOWs hoping for them to be useful representations of sentences
for later tasks, which, in our case, is Entity Linking. To perform Entity Linking, we
want to compare BOWs representing the particular text mentions of an ambiguous
surface forms, such as bank to the BOWs representing the possiblemeanings of bank.
We will see in Sect. 9.5 how to compare two BOWs to establish their similarity, but
one important question remains, how can we make these BOWs as content-rich as
possible so that matching has a chance to succeed? We reflect on this question in the
next section.

9.4 Bag-of-Words Content — Looking at Text Cohesion

In the previous section, we assumed mentions of the word bank were in isolated
sentences, and we focused on all the processing steps that will impact the result of
the BOW. But what about neighboring sentences, if they exist, would they be useful
as well?

As seems to often be the case in NLP, the answer is: It depends. It depends on
text cohesion, meaning the extent to which the preceding and following sentences
discuss the same subject matter as the current sentence. For example, assume one of
our previous example sentences is part of the following paragraph.
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It is the same story every month, Eric Brass wakes up one morning to realize he’s late in
paying his rent. So this morning, he went to the bank to get 900 dollars to pay his rent. But
of course, banks are closed on Sunday. Business hours are Monday to Friday only. But Eric
works during those days and he must then run from work at lunch time to finally get the
money from the bank. Why this young man doesn’t use a cash machine like everyone else
is a good question.

This is a very cohesive paragraph since it is on the same subject matter, just telling
different succeeding events in a story related to Eric Brass. Automatic evaluation
of text cohesion is a very complex topic in itself. One possible form of detection
of cohesion is through coreference chains. Coreferences are various mentions in
a text relating to the same entity, and coreference chains are ordered sets of such
coreferences found in a text segment.

In general, coreferences come in different flavors, as we illustrate using the pre-
ceding paragraph.

• repetitions of the exact same surface form (e.g., the bank, the bank)
• pronouns (e.g., Eric, he) (see Sect. 2.7 on anaphora resolution)
• shortened forms (e.g., Eric Brass, Eric)
• hypernyms, entity types or simple descriptions (e.g., Eric, this young man)
• sets (e.g., Monday to Friday, those days)
• generalizations (e.g., the bank, banks)
• implicit (e.g., Bank’s business hours, business hours)

Although some open source software do offer coreference chains detection capa-
bilities, the quality of results is nowhere near that of other processes such as POS
tagging or even parsing. Coreference analysis is very much an NLP research topic
today, and pointers to current research are given in Sect. 9.9.

Finding coreference chains is not the only approach to establish text cohesion.
Finding related vocabulary words in subsequent sentences would be another indica-
tor. We will explore word relatedness in Chap.10 in hope of establishing that words
such as money, bank, dollars, and cash machine are highly related and therefore
certainly indicative of cohesion in the text.

Most often, we see NLP processes use arbitrary segmentation of text into para-
graphs or fixed-sized windows as an alternative to trying to establish text cohesion.
Granted it is not a very satisfactory approach, but it is often a good approximation
for a more complex, time-consuming, and still uncertain approach. Choosing the
paragraph as a good cohesive unit is not totally arbitrary either, as language writing
rules dictate that one should write each paragraph with a single message to convey.

Sometimes, the nature of the text itself reflects on its level of cohesion. In Sect. 9.7,
for example, we will simply assume that Wikipedia pages are cohesive as they dis-
cuss a single topic and therefore build BOWs from full paragraphs without further
validation of cohesion. We will compare such paragraph content to more restricted
content, allowing further discussion on this question of what to actually put in the
BOW.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_10
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Let us move to the last missing piece of our process, the actual method to compare
BOWs once we have decided on the extent of their content (e.g., sentence, paragraph,
or full document) and the type of preprocessingwewill do (e.g., removing stopwords
and lemmatizing).

9.5 Bag-of-Words Comparison

Wewish to compare two BOWs, BOW1 and BOW2, and provide a measure represen-
tative of the similarity of their content. Let us define a word wi as any word contained
in BOW1. The Overlap measure goes through all wi in BOW1 and adds 1 each time
wi is also contained in BOW2. Equation9.1 shows this idea more formally.

Overlap(BOW1, BOW2) =
∑

wi∈BOW1

{
1, if wi ∈ BOW2

0, otherwise
(9.1)

Notice how the choices for BOW representation discussed in the previous section
will have direct impact on the result of this overlap measure. A coarse-grained rep-
resentation, one which merges multiple forms together, will increase the chance of
overlap between two BOWs, which might be desirable in some cases, or undesirable
in others.

One variationwe can doon the basic overlap equation is to include a notion ofword
significance, a word’s Information Content (IC).7 Measuring a word’s IC requires
an external corpus. We previously learned how to gather a corpus and measure IC for
the various words it contains, in Chap. 5. To include the IC in our overlap equation,
we can simply modify the constant “1” being added for each overlapping word to a
varying increment given by IC(wi). Equation9.2 shows the new overlap measure.

OverlapIC(BOW1, BOW2) =
∑

wi∈BOW1

{
IC(wi), if wi ∈ BOW2

0, otherwise
(9.2)

Beyond its word content, the size of each BOW will also influence the overlap
result. Larger BOWsmight havemore chance of havingwords in common.Assuming
N1 is the number of words in BOW1 and N2 is the number of words in BOW2, we
can normalize the overlap measure by dividing its result by the minimum of the two
BOW sizes (minimum of N1 and N2), as shown in Eq.9.3.

OverlapICNorm(BOW1, BOW2) = OverlapIC(BOW1, BOW2)

min(N1, N2)
(9.3)

7Information Content was introduced in Chap.5, see Sect. 5.5.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_5
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We could go on to present many other BOW comparison measures and variations.
But we will stop here, as this brief introduction is sufficient to understand the basic
idea of comparing BOWs. We now have all the elements we need to attempt Entity
Linking, using the BOW-Match algorithm we describe next.

9.6 Grounding Algorithm: BOW-Match

I now introduce our disambiguation algorithm: a bag-of-wordsmatching algorithm
(abbreviated to BOW-Match).

The purpose of the algorithm is to disambiguate a surface form of interest, called
W , occurring within a context C, by grounding W toward one of the N senses of W ,
referred to as S1 to SN . As mentioned in Sect. 9.4, the context C could be a sentence,
a text segment of arbitrarily length, or a cohesive text segment.

The algorithmbuilds on the ideas ofBOWrepresentation, content, and comparison
introduced in the previous sections. As a first step, the context of occurrenceC should
be transformed into a BOW, calledBOWC . As a second step, each definition of senses
S1 to SN should be transformed into BOWs, called BOWS1 ... BOWSN .

As a third step, the disambiguation is performed by finding which of all possible
BOWs, BOWS1 to BOWSN , have the maximum overlap with BOWC . The overlap can
be measured in different ways, as shown in Sect. 9.5. The sense with the maximum
overlap is considered the most likely sense of W within the context C.

The various steps of the BOW-Match algorithm are summarized in Algorithm 7.

Build a bag-of-words BOWC to contain the words in the context of occurrence of the
ambiguous word. ;
for each possible sense s=1..S do

Build a bag-of-words BOWs to contain the words in the definition of sense s.
end
Assign MaxOverlap to 0; Assign BestSense to null;
for each possible sense s=1..S do

Measure overlap = Overlap(BOWC ,BOWs) ;
if overlap > MaxOverlap then

MaxOverlap = overlap; BestSense = S;
end

end
Algorithm 7: BOW-Match algorithm

This BOW-Match algorithm compares a word’s context of occurrence and its pos-
sible definitions. This type of algorithm is often referred to as a Lesk-like algorithm,
although the original Lesk seminal paper addressed the idea of mutual disambigua-
tion of two words, and finding the overlap between their respective definitions.
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Let us take a small example to illustrate the algorithm. Assuming the following
example sentence is C, and bank is the word to be disambiguated, W.

Charlie sat on the bank, refusing to go in the water.

First, we must construct a BOW for this sentence, deciding on text process-
ing choices. Assuming we use the “BOW with lemmas of Noun/Verb only” (see
Sect. 9.3), which results from tokenizing, lemmatizing, and filtering POS to only
keep nouns and verbs, we would have the following:

BOWC = [bank, Charlie, go, refuse, sit, water]

Then, let us assume there are only 2 senses of W , called S1 and S2, and provided
by WordNet, our grounding space.

S1 : sloping land (especially the slope beside a body of water)
S2 : a financial institution that accepts deposits and channels themoney into lending activities

From these definitions, we generate the corresponding BOWs, using the same text
processing steps as for BOWC .

BOWS1 = [slope, land, body, water]
BOWS2 = [institution, accept, deposit, channel, money, lending, activity]

Then, we perform the overlap, using Eq.9.1.

Overlap(BOWC, BOWS1 ) = 1 (the word water is shared)
Overlap(BOWC, BOWS2 ) = 0 no words are shared.

This results in S1 being the chosen sense given it has the maximum overlap with
C. Let us put this algorithm to the test, in the Entity Linking experiment, performed
next.

9.7 Experiment — Disambiguating Beethoven

Now that we have defined a baseline definition-based grounding algorithm for Word
Sense Disambiguation and Entity Linking, we set up an experiment in which we will
test this algorithm. Let us go through our steps.

1. Define a grounding space, a gold standard and evaluation approach.
2. Define the method to be tested.
3. Evaluate the performance of the algorithm.
4. Analyze the results and discuss.
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9.7.1 Grounding Space, Gold Standard, and Evaluation
Method

For our test dataset, we revisit the BEETHOVENCORPUS from Chap.2, but modify it
slightly for our current disambiguation testing purposes. Table9.1 presents amodified
version, called BEETHOVENCORPUSM, inwhich each longer surface form (e.g.,Ludwig
van Beethoven) has been reduced to the shorter, more ambiguous form Beethoven.
This was done for the purposes of further testing our disambiguation algorithm.
Also, in order to limit the grounding problem to two possible entities (composer or
film), I have only kept the sentences that relate to either one of these entities. The
sentence numbers are kept from the original BEETHOVENCORPUS, simply for reference
purposes.

Table 9.1 BEETHOVENCORPUSM — modified for Entity Linking

No Sentence

1 The andante favori is a work for piano solo by Beethoven.

2 The other great passion of the young Mirabehn was the music of Beethoven.

3 Beethoven spent the better part of his life in Vienna.

4 Charles Munch conducted the symphony no. 9 of Beethoven in 1962.

5 Among the few composers writing for the orphica was Beethoven.

6 Beethoven, too, used this key extensively in his second piano concerto.

7 Naue went to Vienna to study briefly with Beethoven.

8 Bonn is the birthplace of Beethoven (born 1770).

11 Beethoven, meanwhile, runs after a loose hot dog cart, and ends up on a merry-go-round.

12 Beethoven hit theaters in april 1992.

As for our grounding space, we use Wikipedia. It has two entries, one for each
sense.

Composer: https://en.wikipedia.org/wiki/Ludwig_van_Beethoven
Film : https://en.wikipedia.org/wiki/Beethoven_(film)

We build our gold standard by manually assigning each sentence in our dataset to
the entity it corresponds to.

Composer: Sentences 1, 2, 3, 4, 5, 6, 7, 8
Film : Sentences 11, 12

Now as to our evaluation method, we will use precision, recall, and F1 measures,
as we often do.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
https://en.wikipedia.org/wiki/Ludwig_van_Beethoven
https://en.wikipedia.org/wiki/Beethoven_(film)
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9.7.2 Testing our BOW-Match Algorithm

Our method to be tested is the BOW-Match algorithm, shown in Algorithm 7 (see
Sect. 9.6).

The algorithm relies on BOW representations of sentences and entities. Since we
will be comparingBOWs to each other, it is important thatwe use the sameprocessing
when creating them. With that in mind, Table9.2 shows the BOWs obtained for the
various sentences in the BEETHOVENCORPUSM, as constructed using the following
steps:

1. Tokenize the sentences.
2. Lemmatize in order to obtain base forms of words.
3. Filter using the POS tagger, keeping only nouns and verbs.

These steps correspond to the variation “BOWwith lemmas of Noun/Verb only”,
from Sect. 9.3. It was chosen since it provides a good compromise between coarse-
grained and fine-grained representations. However, I encourage the reader to test
other variations as well.

Table 9.2 BEETHOVENCORPUSM — BOW representation

Sentence Bag-Of-Words (BOW)

BOW1 [andante, favorus, work, piano, solo, beethoven]

BOW2 [passion, young, mirabehn, music, beethoven]

BOW3 [beethoven, spend, life, vienna]

BOW4 [charle, munch, conduct, symphony, beethoven]

BOW5 [composer, write, orphica, beethoven]

BOW6 [beethoven, key, piano, concerto]

BOW7 [naue, vienna, study, briefly, beethoven]

BOW8 [bonn, birthplace, beethoven, bear]

BOW11 [beethoven, run, loose, hot, dog, cart, merry-go-round]

BOW12 [beethoven, hit, theater, april]

As for representing the entities, we require defining contexts to be transformed
into BOWs. Although the grounding space was decided as being Wikipedia, we did
not specify what part of each entity’s Wikipedia page would be considered as the
defining context of the entity. InWikipedia, we can assume that all the text contained
in a single page does show cohesion, as it discusses the same topic (see discussion
on text cohesion in Sect. 9.4). Let us try two possibilities.

Small Context: Use the first two lines of the Wikipedia page.
Large Context: Use the first paragraph of the page.

The larger context should lead to having more words in our “bag”, meaning not
only more chances for matches, but also more opportunity for noise.

The resulting small and large BOWs are shown in Table9.3.8

8They were built from the first paragraph found in Wikipedia, as of spring 2015.
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Table 9.3 Beethoven, Wikipedia, BOW representation

Entity Variation Bag-Of-Words (BOW)

Composer Small [ludwig, van, beethoven, baptise, december, march, german, composer,
pianist, crucial, figure, transition, classical, romantic, era, western, art,
music, remain, famous, influential]

Large [ludwig, van, beethoven, baptise, december, march, german, composer,
pianist, crucial, figure, transition, classical, romantic, era, western, art,
music, remain, famous, influential, composers, his, best-known,
composition, include, symphony, concerto, piano, violin, sonata, string,
quartet, compose, chamber, choral, work, celebrated, missa, solemni,
song]

Film Small [beethoven, family, comedy, film, direct, brian, levant, star, charle,
grodin, george, newton, bonnie, hunt, alice, series]

Large [beethoven, family, comedy, film, direct, brian, levant, star, charle,
grodin, george, newton, bonnie, hunt, alice, series, it, write, john,
hughe, pseudonym, edmond, dants, amy, holden, jone, story, center, st.,
bernard, dog, name, composer, ludwig, van, nicholle, tom, ryce,
christopher, castile, ted, sarah, rise, karr, emily, stanley, tuccus, vernon,
oliver, platt, harvey, dean, dr., herman, varnick, joseph, gordon-levitt,
debut, student]

The core of the BOW-Match algorithm is to find overlaps between BOWs. In Ta-
ble9.4, we show, for each sentence to be tested, the result of the overlap process be-
tween each sentence from BEETHOVENCORPUSM and both BOWComposer and BOWFilm

using the small contexts. The last column shows when a decision can bemade toward
either the Composer or the Film, depending on which overlap is largest.

Table 9.4 Overlap between BOWs of example sentences and Wikipedia small descriptions

Example BOWComposer BOWFilm Max Overlap

BOW1 (beethoven) (beethoven) —

BOW2 (beethoven, music) (beethoven) Composer

BOW3 (beethoven) (beethoven) —

BOW4 (beethoven) (beethoven, charle) Film

BOW5 (beethoven, composer) (beethoven) Composer

BOW6 (beethoven) (beethoven) —

BOW7 (beethoven) (beethoven) —

BOW8 (beethoven) (beethoven) —

BOW11 (beethoven) (beethoven) —

BOW12 (beethoven) (beethoven) —
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The algorithm results in only 2 examples out of 10 being correctly disambiguated
(e.g., 20%). In only two cases was the overlap with the correct sense larger than the
overlap with the alternative sense, and in most cases, there is no overlap at all.

Let us look at matching results for the larger contexts, in Table9.5:

Table 9.5 Overlap between BOWs of example sentences and Wikipedia large descriptions

Example BOWComposer BOWFilm Max Overlap

BOW1 (beethoven, work, piano) (beethoven) Composer

BOW2 (beethoven, music) (beethoven) Composer

BOW3 (beethoven) (beethoven) —

BOW4 (beethoven,symphony) (beethoven, charle) —

BOW5 (beethoven, composer) (beethoven, composer,
write)

Film

BOW6 (beethoven,piano, concerto) (beethoven) Composer

BOW7 (beethoven) (beethoven) —

BOW8 (beethoven) (beethoven) —

BOW11 (beethoven) (beethoven, dog) Film

BOW12 (beethoven) (beethoven) —

In Table9.6, we put side by side the sense chosen for each example, given the
small or large description being used. From this table, we derive Table9.7 containing
the overall precision and recall of the algorithm using two sizes of entity definitions.

The overall results are quite deceiving providing F1 measures of 31% (small
context) and 53% (large context). Let us further discuss these results in the next
section.

Table 9.6 ComparingEntity Linking results (small versus large definitions) on individual sentences

Example Gold Small descriptions Large descriptions

1 Composer — Composer

2 Composer Composer Composer

3 Composer — —

4 Composer Film —

5 Composer Composer Film

6 Composer — Composer

7 Composer — —

8 Composer — —

11 Film — Film

12 Film — —
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Table 9.7 Comparative Entity Linking results for small versus large definitions

Measure Small descriptions Large descriptions

Overall Precision 66.7% (2/3) 80% (4/5)

Overall Recall 20% (2/10) 40% (4/10)

Overall F1 31% 53%

9.7.3 Result Analysis

If we look at Table9.6, we can see that example 2 remains a true positive, between
small description and large description, but that example 5 has become a false neg-
ative. An additional 3 examples have become true positives (sentences 1, 6, 11) by
using larger descriptions. Among the positive examples, there is at least one that
surely resulted from chance. Example 11 shows a match between dog (Table9.5),
from hot dog, with the actual word dog. Interestingly in this case, an earlier error
in tokenizing (we should have kept hot dog as one lexical entry) has proven helpful
in a later process.

The grounding score is low for both definition sizes, but still using larger-size
BOWs increases the F1 from 31% to 53%. The F1 measure is quite appropriate
here, as it combines the somewhat high precision (0.8 for larger context) with quite
low recall (0.4) providing balanced view. Definition size is not the only factor we
could have varied.Wehave exploredmanyBOWrepresentation variations in Sect. 9.3
which can have an impact on the results, as well as further BOW comparison varia-
tions in Sect. 9.5 which can also have an impact.

But overall, the results are quite deceiving, but they certainly demonstrate yet
again what we have talked about from the outset of this book, that surface forms
vary widely, expressing synonymous or at least similar concepts. The exact string
match, used to establish the overlap between BOWs, fails to capture such variations.
Manually looking at the BEETHOVENCORPUSM bag-of-words in comparisonwith those
of the two senses, we can see many word matching opportunities, by which I mean
words that are not exact matches but that are related and which would be good to
take into account as we measure the overlap.

Some examples of these matching opportunities are the word pairs: piano/pianist,
symphony/music, conduct/music, write/compose, compose/composer, orphica/piano,
piano/pianist, concerto/music, Bonn/Germany, Germany/German, theater/film. As
human readers, we can recognize these pairs as related words. Our Entity Linking
algorithm, however, does not yet have this knowledge about related words. Our next
chapter is entirely devoted to the search of related words in corpus, which we will
use to revisit the current Entity Linking task, hopefully, improving our results.
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9.8 In Summary

• Word Sense Disambiguation is the commonly used term for linking surface forms
of words to dictionary senses.

• Entity Linking is the commonly used term for linking surface forms of named
entities to their unique description, but the term is sometimes relaxed to mean
linking toward any entity described in a resource.

• Grounding, as used in this book, refers to the general process of linking surface
forms in text to their underlyingmeaning described in a particular grounding space.

• The choice of grounding space (e.g., WordNet andWikipedia) will have an impact
on the results of the disambiguation algorithm.

• The granularity of sense division within the grounding space will also affect the
results of the disambiguation process.

• Text cohesion is a difficult concept to define and to measure. Finding coreference
chains in a text is one way to establish text cohesion.

• To best represent the context of occurrence of a word w, a bag-of-words (BOW)
could be made from the cohesive segment of text surrounding w. Given the dif-
ficulty of finding this cohesive segment, we often use windows of arbitrary sizes
around w as the context of w, calling it a context window.

• A BOW representation that is generated from a sentence depends largely on the
preprocessing performed: tokenization, lemmatization, and POS filtering.

• Comparing BOWs can be done with an overlap approach, which can be further
refined by using the IC of words, and normalizing with BOW sizes.

• BOW-Match is a grounding algorithm, which uses a BOW representation for the
context of occurrence of words (BOWC) as well as for the different senses of
words, choosing the sense with the maximal overlap to BOWC .

• BOW-Match provides baseline results, but further algorithms are needed, since
the strictness of exact matching does not allow for all the lexical and semantic
variations within definitions.

9.9 Further Reading

SemEval: Originally started as Senseval (Kilgarriff andRosenzweig 2000), the name
has since been changed to SemEval, and the event has expanded beyondWord Sense
Disambiguation, into various other semantic shared tasks that slightly change from
year to year. To get a sense of the importance of this competition to the world of NLP,
and its broad coverage of semantic processing, I encourage the reader to look at past
years’ competitions, linked from SemEval Wikipedia page http://en.wikipedia.org/
wiki/SemEval.

Word Sense Disambiguation and Entity Linking: A good place to start for WSD
is a wide-coverage survey by Navigli (2009). For a nice overview of the design chal-
lenges in Entity Linking, as well as a comparative study on multiple datasets, see
Ling et al. (2015). For a brief survey of techniques in Entity Linking, and application

http://en.wikipedia.org/wiki/SemEval
http://en.wikipedia.org/wiki/SemEval
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to a domain-specific task of linking gene mentions, see Dai et al. (2012). For a joint
view of both WSD and Entity Linking tasks, see Moro et al. (2014).

Grounding spaces:

• WordNet: Most early papers on WSD will actually use WordNet as a grounding
space. In Banerjee and Pedersen (2002), an adapted Lesk algorithm was used,
comparing words in context and words in definition. Many variations on Lesk
are presented in Vasilescu et al. (2004). I encourage the reader to go back to the
original Lesk paper (Lesk 1986) targeting mutual disambiguation.

• Wikipedia: For WSD using Wikipedia, we can see Mihalcea (2007).
• Semantic Web resources: For two examples of recent work on performing Entity
Linking toward DBpedia, Yago, or other Semantic Web resources, see Usbeck
et al. (2014) and Pereira (2014). Many open source systems and public datasets
are mentioned in these papers.

• BabelNet: BabelNet is an initiative merging WordNet and Wikipedia, which also
could be used as grounding space (Navigli et al. 2010).

• UBY: An initiative to build a large Unified Lexical-Semantic Resource, which
could be used as grounding space (Gurevych et al. 2012).

Text cohesion and coreference: We use the term coreference chains in this chapter
as a general term including lexical chains (Silber and McCoy (2002)) and anaphoric
references (see Poesio et al. (2010)).Many authors talk of coreference resolution (see
a survey by Elango (2006)) to mean both finding elements in a coreference chain
as well as solving to which entity the chain refers to. As mentioned, coreference
is very much a research topic, and the Stanford multi-pass coreference system was
presented at a shared task (Lee et al. 2011) on coreference resolution.

9.10 Exercises

Exercises 9.1 (Grounding space)

a. Look up the word run, in WordNet. There are multiple senses for the noun. What
do you think about the granularity of sense division for this word? How well do
you anticipate humans to be able to ground to the proper sense, provided a context
of occurrence? Illustrate your answer with example sentences, either made-up or
found in a corpus.

b. For the Beethoven example in this chapter, we used Wikipedia as our grounding
space. Could we have used WordNet? Discuss.

c. Try using another resource, such as Wiktionary. How does it describe the word
bank? Would this be an interesting grounding space to explore for Entity Linking
and/or Word Sense Disambiguation? Discuss.
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Exercises 9.2 (BOW-Match algorithm)

a. Program a BOW-Match algorithm to compare the two example sentences con-
taining bank and the list of WordNet definitions provided (Sect. 9.1). Does your
algorithm find the correct sense?

b. Modify your algorithm from (a) to include the WordNet examples in the BOW.
You can find one or two examples for each sense, by searching the entry for bank
through the WordNet online access. Does this change your results?

c. Go through the experimental setup described in Sect. 9.7 and play around with
different variations of BOW construction (see Sect. 9.3). You have acquired suf-
ficient knowledge in the previous chapters, mostly Chap. 8, to implement any of
them, except the segmentation into lexical entries. How do the results vary?

d. Explore the different BOW overlap measures (see Sect. 9.5) for the experiment
in Sect. 9.7. For the measures requiring IC, you can calculate the IC using a
corpus you previously made, for example, the random corpus from Exercise 6.1,
in Chap.6. Is there any impact on results from changing the overlap measure?

e. A variation found in the literature for the BOW-Match algorithm is to extend the
BOW of each word sense by using definitions of the words found in the original
definition. For example, starting with the original BOW for the composer sense of
Beethoven (German, composer, pianist, crucial, figure,…), all words in the BOW
would be searched in the grounding space (WordNet orWikipedia), and the words
found in their definitions would be added to the BOW to make a larger BOW.
What do you think of this idea? What difficulties could arise in implementing it?
What do you see as the pros and cons?

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_6


Chapter 10
Relatedness

Whenwe think of relations,weusually think of specific semantic orworld-knowledge
relations such as capitalOf(France, Paris) or ingredientOf(cake,flour).
Such relations have names and are referred to as predicates within the Semantic
Web. These relations are valuable, informative, and essential for knowledge struc-
turing, as they provide explicit links between entities. The idea of relatedness, on
the other hand, is more vague in its definition. Relatedness refers to some connec-
tion between words, which can be named or unnamed, which can also be weak or
strong.

For example, let us say we have a group of words: pool, goggles, summer, water.
The type of relations underlying each possible pair of words is quite different. Some
of them are easy to name, such as contain(pool,water), but others are harder to
name such as between pool and goggles, or even water and summer. Relatedness
should capture word connections which are hard to name.

Relatedness, in NLP, is often explored using corpora and is then referred to as
distributional similarity. The idea goes back to Firth (1957) who said that “you
know a word by the company it keeps.” In this chapter, we will see how to extract a
word’s company, by looking at its co-occurring words in corpus.We refer to a word’s
company as its co-occurrence vector. For example, eat, bake, cake, peel could be the
co-occurrence vector for the word apple, if we often find these words co-occurring
with apple in corpus.

But the citation to Firth goes back to around sixty years ago, so why are so many
researchers still working on distributional similarity today? First, defining a word’s
company is not as easy as it seems. We will understand why when we explore all
the parameters that can contribute to variations in the co-occurrence vectors. This
will not come as a surprise to the reader, given that we have already covered many
variations in building Bag-Of-Word representation of contexts in Chap.9, Sect. 9.3,
in efforts of word disambiguation through contextual indicators.

Second, even once we have defined a word’s co-occurrence vector, there are many
possibilities on how to use it for measuring relatedness. For example, if the word
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peach has a co-occurrence vector eat, tree, pie, yellow, how do we put that vector in
relation to the one for apple to find relatedness between peach and apple? There are
no single answer to that, and there has been a multitude of relatedness measures
defined by researchers. But, since many of these relatedness measures are based on
similar principles, we will try to understand their underlying principles to provide
the reader with the insights necessary to pursue within that research field, if desired.

Continuing the experimental emphasis of this book, we will explore different
approaches tomeasure relatedness and then perform both intrinsic and extrinsic eval-
uations. The semantic similarity intrinsic evaluation will use a similarity dataset
to compare measures, and for the extrinsic evaluation, we will go back to theEntity
Linking task from the last chapter and see if relatedness can help improve results
for that grounding task.

10.1 Building a Co-occurrence Vector

The first step in distributional relatedness is to obtain a word’s company from a
corpus. Let us restate that first step as wanting to build a word’s co-occurrence
vector by exploring a word’s neighbors in a corpus. How can we do that? Imagine a
windowmoving over the text in the corpus, which only allows to see a few words at a
time. For example, Table10.1 shows a window moving over the following sentence:

A bat approaching a moth will sound louder and louder.

Table 10.1 Moving window on example sentence

wn−2 wn−1 wn wn1 wn+2

— — a bat approaching

— a bat approaching a

a bat approaching a moth

bat approaching a moth will

approaching a moth will sound

a moth will sound louder

moth will sound louder and

will sound louder and louder

sound louder and louder —

louder and louder — —
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Notice how each word of the sentence becomes, one at a time, the center of the
moving window, most often called context window. We define that center position
as n and the word at that position as wn. Then, each column of Table10.1 represents
word positions from n − 2 to n + 2 and the words at those positions, as n varies. The
window used in Table10.1 is a symmetric window of size 2, meaning that it limits
our view to two words on each side of the center word wn.

From all the contextwindows observed, thenwe can build a co-occurrence vector
for each word in the sentence. The co-occurrence vector of a word w, let us call
it Cooc(w), is built from counting the number of times that other words co-occur
withw,whenw is at the center. InTable10.2,we showCooc(w) for the differentwords
in the example sentence. The number besides each word from Cooc(w) indicates the
frequency of occurrence of that word.

Table 10.2 Resulting co-occurrence counts from the moving window on example sentence

w Cooc(w)

a bat 2, approaching 2, moth 1, will 1

bat a 2, approaching 1, moth 1

approaching a 2, bat 1, moth 1

moth a 1, approaching 1, will 1, sound 1

will a 1 moth 1, sound 1, louder 1

sound moth 1, will 1, louder 1, and 1

and sound 1, louder 2

louder will 1, sound 1, and 2, louder 2

You might wonder why I chose a window of two words. That is an arbitrary
decision. Thewindow could be two, five, or fifteenwords. Furthermore, in the current
example, the window is symmetric, being on both sides ofw. That, too, is an arbitrary
decision, as nothing prevents the window from being asymmetric, only considering
words on a single side, either before or after w. These decisions although arbitrary,
are not without consequences, as we will see later. But, regardless of window size
and position, the basic co-occurrence gathering algorithm remains the same.

Algorithm 8 shows the steps for counting co-occurrences of a single chosen word
(e.g., apple). The reader can adapt this algorithm to gather the co-occurrences of
multiple words simultaneously. A common approach is to start from a particular
vocabulary of interest, for example, all the words in WordNet, and then gather all
co-occurrence statistics for those words.
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\\ 1. Determine word of interest
Set SearchedWord = ’apple’;
\\ 2. Establish a window size
WindowSize = 3
\\ 3. Establish a window position: left, right, or both
WindowPos = ’both’
\\ 4. Initialise a frequency table to contain the cumulated word frequencies
Initialise FreqTable
\\ 5. Go through the text to capture the occurrences of all the different tokens.
Tokenize the text to obtain a set of tokens;
for each token position pos in the text do

if token[pos] is SearchedWord then
\\ 5a. Establish the boundaries of the window
if WindowPos is ’both’ then

Set start = pos - WindowSize;
Set end = pos + WindowSize;

end
else if WindowPos is left then

Set start = pos - WindowSize;
Set end = pos;

end
else

Set start = pos;
Set end = pos + WindowSize;

end
\\ 5b. Look at words in window
for each token position p going start to end do

if p not equal to pos then
if word[p] qualifies... then

if FreqTable contains word[p] then
Add 1 to its count in FreqTable;

end
else

Insert new word in TableNgramFreq with a frequency of 1;
end

end
end

end
end

end
Algorithm 8: Building co-occurrence vectors

As Algorithm 8 shows, the basic idea of a word’s distributional representation
through its co-occurrence vector is relatively simple to implement, as we linearly
go through a corpus and gather co-occurrence statistics. The complexity rather
comes from all the possible parameters which we can adjust while compiling co-
occurrences. Notice the line (If word[p] qualifies...) in Algorithm 8 to be replaced
by different types of filtering based on those parameters. Not that it will necessarily
be difficult to add the parameter variations to the basic algorithm, but the interpre-
tation of the multiple resulting co-occurrence vectors can become quite overwhelm-
ing. Remember that we try to produce these co-occurrence vectors to serve as a
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representation of a word, and therefore, a word’s co-occurrence vector should be
informative of its semantic or syntactic nature.

To investigate different parameters, we will perform comparative experiments, in
which we vary one parameter at a time. The purpose of doing so is to qualitatively
evaluate the impact on the resulting co-occurrence vectors. To do our experiments,
we will use three word pairs car/automobile, coast/shore, furnace/stove considered
by humans to be somewhat high in their relatedness. These pairs actually come from
a dataset, produced in an early work in psychology, byMiller and Charles (1991), and
often used in relatedness evaluations in NLP. We later use this dataset in Sect. 10.4
for the intrinsic quantitative evaluation of different relatedness measures.

The parameters we will investigate are corpus size, linguistic and statistical
filtering, window size, and window position.

10.1.1 Corpus Size

The raw material for gathering co-occurrences is a corpus. Therefore, the choice
of our corpus is probably the most important factor influencing the resulting co-
occurrence vectors. Choosing a corpus could mean deciding on the genre, topic,
language level, or other characterizing criteria for its documents.Although important,
we will not focus on these criteria in this section, but rather look at one single criteria,
corpus size. Corpus size is an important criteria since distributional similarity relies
on word statistics, and those statistics will only be significant if the corpus is large
enough to observe word behavior.

We know how to build a corpus, as we have built domain-specific corpora in
Chap.5 and a domain-independent corpus in Chap.6, all from Wikipedia. For our
current investigation, to observe the impact of corpus size, we will randomly choose
pages from Wikipedia, building a small corpus of 10,000 pages (SmallCorpus here-
after), or a larger corpus of a million pages (MillionCorpus hereafter).

From these two corpora, we build co-occurrence vectors using our moving win-
dow algorithm, presented in Algorithm 8. We use a symmetric window of 3 words
(meaning 3 words on each side) and do not perform any other filtering except for
removing punctuations. To illustrate the impact of the corpus size parameter, we
look at the resulting co-occurrence vectors for our first word pair, car/automobile.
Table10.3 shows the top 15 co-occurring words for car/automobile, as sorted in
decreasing order of frequency. The table also shows, in the third column, the number
of occurrences of the words car and automobile, to provide a reference for interpret-
ing the co-occurrence numbers.

What are the differences observed as to corpus size? We see, without surprise,
that the raw frequencies are quite different, taking for example the word in, which
is a companion word of car 320 times in SmallCorpus compared to 5,558 times
in MillionCorpus. In general, corpus frequency in the SmallCorpus are quite small,
especially for the word automobile which only has 392 occurrences even if it could
be considered a quite common English word. Although there are no strict rules for

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_6
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Table 10.3 Comparing co-occurrences between SmallCorpus and MillionCorpus

Corpus w NbOcc Cooc(w)

Small car 3,266 the 755, a 367, in 320, of 256, electric 233,
and 225, sales 163, to 130, retrieved 130, new
127, for 93, with 92, was 89, at 88, is 81

automobile 392 the 58, in 33, of 32, manufacturers 23, and 23,
a 21, an 17, by 13, retrieved 12, association
11, to 10, industry 9, is 7, from 7, propre 6

Million car 36,929 the 11,922, a 9,056, in 5,558, and 4,757, of
3,559, to 3,343, was 2,023, his 1,924, by
1,680, with 1,541, for 1,432, is 1,410, on
1,308, as 1,068, from 1,032

automobile 3,753 the 736, in 613, an 498, and 419, of 383, a
277, to 225, accident 189, for 147, was 138,
by 128, is 110, first 93, with 92, as 88

deciding on corpus size, seeing such small numbers of co-occurrences for common
words like is and from in relation to automobile (see second line in Table10.3) is an
indication that the corpus will lead to much sparseness in the statistical observations.

Sometimes,wedonot have the luxury to choose the corpus size and rather usewhat
is available. In our case, we are able to easily build a larger corpus, theMillionCorpus,
and we will continue with it for our exploration. You might wonder why we do not
use all of Wikipedia then, to have an even larger corpus. Simply, in this book, for a
compromise between processing time and corpus size, to allow the reader to work
through examples without hours of delay in processing time.

Next, we will see if some kind of filter could bring more content words within
the top words of the co-occurrence vectors. By content words, we mean nouns,
verbs, adjectives which are usually what we look for when trying to understand the
semantic nature of aword.Notice how inTable10.3, especially for theMillionCorpus,
we do not know much about the semantic nature of car and automobile from co-
occurring words such as the, a, in, and, to. These words are rather function words
by which we mean determiners, prepositions, conjunctions, and pronouns. Function
words, although essential for the proper syntactic structuring of sentences, are not
informative as to the semantic nature of words they co-occur with.

10.1.2 Word Filtering — Linguistic versus Statistic

A first type of filtering we can perform relies on parts of speech. We have seen in
Chap.8 that part-of-speech (POS) taggers do perform quite well today, and we can
apply such POS tagger on all the sentences from our corpus. Then, in Algorithm 8,
as we build our co-occurrence vectors, we only keep the words which have been
tagged of certain POS. If we wish to focus on content words, then we should keep
words tagged as nouns, verbs, and adjectives.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
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Let us use our second word pair coast/shore to investigate the impact of applying
a POS filtering to generate the co-occurrence vectors. In Table10.4, the first set
of co-occurrence counts is without any filtering on the MillionCorpus, and then, the
second set of co-occurrence counts uses a POS filter1 on the same corpus. Notice how
the sets before and after POS filtering are drastically different. Notice how content
words reflecting a semantic of direction, such as eastern, western, south, north, are
emerging in both Cooc(shore) and Cooc(coast). Remember that we are building
co-occurrence vectors to eventually establish word relatedness. Seeing similarity
emerge in Cooc(shore) and Cooc(coast), knowing that shore and coast are related,
is encouraging.

Table 10.4 Comparing co-occurrences with different filtering strategies

Filter w Cooc(w)

None coast the 13,064, of 5,924, on 2,763, and 1,985, off 1,952, to 1,808, along
1,466, west 1,453, east 1,325, in 1,012, from 896, south 698, north
682, a 440, is 371

shore the 3,718, of 1,591, on 1,302, to 839, and 735, lake 473, from 355,
along 309, a 291, north 254, in 220, at 187, elevation 182, volume
180, eastern 176

POS coast west 1,311, east 1,208, south 353, north 324, North 296, is 292,
Atlantic 282, southern 277, California 265, Pacific 262, eastern 246,
western 239, Sea 235, coast 235, northern 234

shore Lake 327, north 205, elevation 176, eastern 174, western 162, lake
147, southern 136, south 124, northern 123, bombardment 120, is
120, batteries 110, Bay 107, was 78, west 60

Stat coast off 1,952, along 1,466, east 1,325, near 352, island 339, southern
317, sea 314, western 295, coast 285, atlantic 277, pacific 273,
california 273, eastern 272, northern 267, africa 208

shore lake 473, along 309, elevation 182, volume 180, eastern 176, western
166, near 156, off 140, southern 136, bay 129, northern 123,
bombardment 120, batteries 110, close 92, sea 88

The co-occurrence vectors, although POS filtered, still contain two uninteresting
words is and was, which are two conjugated forms of the verb be. These two words
are kept by our content-word-only filter, since they are verbs. They are uninteresting
because they are too common. Remember the notion of Information Content, IC,
from Chap.5 which was based on a word’s probability? Information theory stipu-
lates that very common words have low IC, since their commonality makes them
non-surprising. Most function words have low IC but some common verbs or even
common nouns have low IC as well. This brings us to a second type of filtering
we can do, one based on word frequency (or IC) precalculated from a corpus. For
example, here are the top 50 most frequent words in the MillionCorpus:

1We use the Stanford CoreNLP POS tagger to perform the filtering.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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the, of, and, in, to, a, is, for, on, was, as, that, with, by, it, this, be, at, from, an, not, he, i, are,
his, or, has, have, page, which, new, but, you, center, were, name, also, no, article, its, one,
first, may, they, their, been, date, should, discussion, had.

This list includes the conjugated and infinitive forms of to be since they are very
frequent. We also notice some words, such as page and article, which seem to be
making the top 50 because of the nature of the corpus (Wikipedia pages) and not
because they would be that frequent normally in text. We see how the list is a mix of
determiners, prepositions, common verbs, pronouns, etc. Such a list is often referred
to as a stopword list, and it is very commonly used in NLP. There is no consensus
as to the definition of a stopword, as some consider stopwords to be only function
words, but others do consider stopwords as any frequent words. In any case, before
using a stopword list, one should inquire how it was generated, and on which corpus.

For our purpose, we build a stopword list made of the top 200most frequent words
in MillionCorpus. In our current task, we will use the stopword list as an exclusion
list. In Algorithm 8, we only keep words that are not in the stopword list for the
co-occurrence vectors. We will call this type of filtering a statistical filter, as opposed
to the POS filter we described before.

The third set of co-occurrence counts in Table10.4 shows Cooc(coast) and
Cooc(shore) using the statistical filter. Notice how the results are slightly differ-
ent than the ones resulting from the POS filter. In particular, notice how uncommon
prepositions, such as off and along, are kept in the list, and common verbs is and
was are removed. The directional words western, southern, discussed earlier, are still
there.

One major advantage of a statistical filter is that it is language independent. When
performing statistical filtering, there is no need for POS tagging, we only need to
count, and that, we can do with the same algorithm, in any language. This is one
reason it is often preferred within NLP tasks. Another reason is that not all words
within the same part-of-speech categories behave the same way, and although it is
true in general that function words are less informative, we did see for example that
along, although it is a preposition, could be informative in defining shore and coast.

10.1.3 Window Dependency — Positioning

Let us now look at the actual moving window that we slide along the text to gather
co-occurrences. In our experiments so far, we have used a symmetric window of 3
words, meaning that for any word wn at position n, the window covers from wn−3

to wn+3. Other windows could be asymmetric and cover only words to the left or to
the right side. For this investigation, let us use our third word pair, furnace/stove.
In Table10.5, the first set of results is with a symmetric window (wn−3..wn+3), the
second set is with words on the left (wn−3 to wn−1), and the third set of results is
with the words on the right (wn+1 to wn+3). The difference between the resulting
co-occurrence vectors is not that striking. There are a few words, such as wood and
gas, occurring only on the left side of stove, indicative of the collocations gas stove
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and wood stove. But other words like iron do occur on both sides of furnace, perhaps
coming from iron furnace and furnace of iron.

Table 10.5 Comparing co-occurrences with different window positions

Window w Cooc(w)

Symmetric furnace blast 93, iron 28, gas 19, electric 17, arc 15, built 13, fiery 12, hearth
11, puddling 11, room 10, boiler 9, vacuum 8, down 8, fire 8, large 8

stove pellet 21, gas 20, wood 13, cooking 13, fuel 12, kitchen 12, hot 12,
coal 11, rocket 11, heat 10, tile 10, stove 10, cook 9, metal 8, camp 8

Left furnace blast 91, iron 21, electric 15, arc 13, fiery 12, gas 12, puddling 11,
hearth 8, induction 8, vacuum 7, graphite 7, single 7, large 6, boiler
6, basement 5

stove pellet 19, gas 18, wood 12, kitchen 11, coal 10, tile 9, rocket 9,
cooking 9, hot 8, cook 7, camp 7, pot 6, improved 6, heat 6, rococo 6

Right furnace room 10, built 10, iron 7, gas 7, fire 7, temperature 5, system 5,
operated 5, forge 5, oil 5, chaldees 4, called 4, heated 4, combustion
4, water 4

stove fuel 9, stove 5, company 5, hot 4, designed 4, water 4, heat 4,
cooking 4, parts 3, tablets 3, developed 3, works 3, metal 3, tells 3,
oven 3

Varying window position generates co-occurrence vectors which differences are
subtle and our current observation is not sufficient to anticipate possible impact
for calculating word relatedness, or even for later tasks. Relatedness is rarely a
goal in itself, and we might be interested in knowledge about similar words for
tasks of grounding, of text summarization or even text translation. When insight is
hard to gather with qualitative observation, then only quantitative evaluations on the
particular tasks will reveal the possible differences, and such differences might vary
depending on the task. For now, let us continue with symmetric windows, and rather
look at the impact of varying window size.

10.1.4 Window Dependency — Size

Let us go back to our first word pair car/automobile to investigate the impact of
varying window size on the resulting co-occurrence vectors. Results are presented
in Table10.6. The three sets show results for windows of size 1, 3, and 10.

In general, the resulting co-occurrence vectors are quite similar. One advantage
of a larger window is that it can help counter the data sparseness problem. Notice in
Table10.6 how the same co-occurrences have larger frequencies as the window size
augments. For example, the word industry co-occurs with automobile 72 times, 82
times, and 92 times for window sizes of 1, 3, and 10. Also, larger windows tend to



182 10 Relatedness

capture different surface forms (synonyms) of the same entity, and we find car in
Cooc(automobile) of size 10. The reason for finding synonyms in larger windows is
that although synonyms are rarely used just next to each other, they are often used
separated by a few words, to provide additional information about the same topic.

This is related to the notion of text cohesion, which we discussed in Chap.9,
in Sect. 9.4. Remember how co-reference chains can be indicative of text cohesion.
When writing, as the author presents a particular story or subject, he/she tends to
repeat references to particular people or objects in the story. These repetitions, coref-
erents, are not necessarily provided in the exact same surface form, but there can be
synonyms or shorter forms used. A larger window would capture these coreferents.
But a too large window (beyond the paragraph level) risks enclosing words that are
unrelated to the window’s center word, since cohesion beyond the paragraph level is
usually less strong.

Table 10.6 Comparing co-occurrences with different window sizes

Window w Cooc(w)

1 word automobile accident 189, industry 72, traffic 53, manufacturer 49, factory 38,
manufacturers 35, manufacturing 30, company 28, production 28,
racing 27, engine 23, insurance 21, british 19, engines 18, parts 18

car accident 957, park 929, sports 394, private 386, crash 383, racing
378, race 328, cable 254, stock 219, police 200, parking 187,
touring 178, passenger 173, driver 157, bomb 149

3 words automobile accident 189, industry 82, manufacturer 60, traffic 57, company 51,
factory 48, engine 47, killed 44, manufacturers 39, manufacturing
38, production 33, racing 31, died 28, produced 25, insurance 24

car park 991, accident 986, racing 473, race 453, crash 426, sports 421,
private 404, car 385, driving 355, driver 310, drive 272, killed 270,
police 262, cable 259, died 245

10 words automobile accident 197, company 111, manufacturer 108, engine 105,
automobile 93, industry 92, car 79, production 76, traffic 74, killed
62, factory 53, motor 50, died 48, jpg 48, motors 48

car car 2,602, park 1,169, accident 1,108, race 850, racing 810, cars
726, get 666, driver 623, driving 621, road 559, crash 530, drive
519, killed 518, police 510, sports 504

At the opposite, a very small window of size one will be directly pointing to
collocations, and not only to companion words. Remember in Chap.5, when we
looked at rapid car, versus fast car and quick car? Although rapid, fast, and quick
are synonyms, they are not interchangeable, and some of them, although semantically
correct, do “sound strange.” In our current example, we have two synonyms, car and
automobile, and although these two synonyms seem interchangeable for car accident
versus automobile accident, only car seems acceptable in car park or car crash,
where as automobile is the more acceptable synonym in automobile manufacturer.

http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_5
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As for variations in window position, variations in window size do generate
slightly different co-occurrence vectors, but it is not obvious through qualitative
observation to anticipate an impact on a particular task, or even on relatedness itself,
which is the topic of our next section.

10.2 Measuring Relatedness

In this section, we look at how to establish the relatedness between two words: w1

and w2. As mentioned at the beginning of this chapter, relatedness is not a named
relation, it is more of a strength of association between two words. We will measure
relatedness between two words using their distributed representation, as provided by
their co-occurrence vectors which we learned how to build in the previous section.

10.2.1 First-Level Relatedness

Afirstmethod tomeasureword relatedness is to simply lookwithin the co-occurrence
vectors themselves. The hypothesis is that two words which tend to co-occur must
be related. If a word w2 is part of the co-occurrence vector of w1 (w2 ∈ Cooc(w1)),
then there is some relatedness between w1 and w2. For example, from Table10.6,
we would say that accident, industry, traffic, manufacturer are related to automobile
because they co-occur with it. This is what we call a first-level relatedness, since
we look directly within the word’s co-occurrence vector.

But, for w1 and w2 to be related, we do not want w2 to co-occur only a few times
with w1. We want to measure some sort of co-occurrence strength. To do so, let us
go back again to information theory, and to the Point-wise Mutual Information,
or PMI , measure. PMI previously helped us find collocations in Chap.5 and then
bilingual equivalents in Chap. 7. We use it again to measure relatedness.

Going from collocation strength to relatedness is an easy step since collocations
are really like windows of only plus or minus one to each side of a word. The PMI
equation, repeated below, is based on the number of times two words occur next
to each other (P(w1, w2)), and the number of times each word occur in the corpus
(P(w1) and P(w2)). For relatedness, we relax the criteria of occurring next to each
other, to occurring within the same window. Then, individual occurrences, for our
example, would be the word frequencies in the corpus MillionCorpus.

PMI(w1, w2) = log2(
P(w1, w2)

P(w1) ∗ P(w2)
) (10.1)

Let us look in Table10.7 at our three example pairs automobile/car, coast/shore,
furnace/stove, and see the top ranking words, according to their PMI . We keep a
symmetric window of size 3 and keep co-occurringwordswith aminimum frequency
of 10. Remember how low-frequency words are problematic for PMI (see Chap.5)
as they can lead to very high PMI values that are not statistically relevant.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_7
http://dx.doi.org/10.1007/978-3-319-41337-2_5
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At first glance, the words in the lists of Table10.7 seem to show some relatedness
with the example words. Interestingly, as we mentioned earlier, the related words
seem to be going in all directions and not just illustrate a single type of relation. Let
us take the words related to automobile for example. A dealership sells automobiles,
whereas manufacturers produce them.We can get into an accident in an automobile,
and also be stuck in traffic in them. And typical parts of automobiles are motors
and tires. We have a series of related words, all related to the word automobile in a
different way.

Table 10.7 Applying PMI for our example pairs

Word Top 15 PMI

automobile dealership 7.61, accident 7.09, chrysler 6.57, manufacturer 6.34,
manufacturers 6.30, tires 6.15, advent 5.90, automobile 5.68, manufacturing
5.67, defunct 5.66, factory 5.55, motors 5.47, repair 5.36, traffic 5.35,
manufactured 5.29

car jaunting 8.44, dealership 7.53, dealerships 7.40, parked 7.07, stereos 6.95,
accident 6.46, rental 6.37, getaway 6.14, speeding 6.05, baggage 6.01, drove
6.00, oncoming 5.85, refrigerator 5.84, usac 5.83, pullman 5.78

coast paralleled 6.55, adriatic 6.50, dalmatian 6.38, konkan 6.12, paralleling 5.81,
cruised 5.73, brushed 5.52, ionian 5.49, malabar 5.44, jutland 5.43, patrolled
5.31, pembrokeshire 5.30, off 5.22, aegean 5.14, shipwreck 5.13

shore bombardments 8.18, bombardment 7.27, batteries 7.06, bombarded 6.85,
lough 6.60, caspian 6.25, installations 6.12, elevation 5.87, crab 5.75, loch
5.68, lake 5.56, washed 5.55, depth 5.27, battery 5.16, swim 5.12

furnace puddling 10.70, hearth 9.03, blast 8.90, fiery 8.11, arc 6.74, iron 5.88, gas
5.52, electric 5.19, built 3.65, into 3.30, through 2.79, where 2.73, or 2.43, a
2.42, first 2.02

stove pellet 10.32, cooking 7.39, kitchen 7.10, rocket 6.70, coal 6.26, gas 6.20, fuel
5.97, wood 5.77, hot 5.05, use 3.20, a 2.75, or 2.74, an 2.50, on 2.42, is 2.01

Of course, since the words in Table10.7 are extracted automatically, noise might
appear. We will evaluate how well the PMI measure behaves in a similarity test, in
Sect. 10.4, as compared to second-level measures, which we now introduce.

10.2.2 Second-Level Relatedness

In second-level relatedness, the idea is that words are related, not because they
directly co-occur, but because they co-occur with the same words. For example, car
might be related to accident, at a first-level, if we often see car and accident together
in sentences. But then, we can also establish that automobile is related to car, at a
second-level, if both car and automobile, in their own sentences, tend to co-occur
with accident.

The interest of this second-level relatedness is that we might have words that
never co-occur, but are still related because of the co-occurrences they share. So,
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how do we measure such second-level relatedness? Actually, in so many different
ways that semantic relatedness is itself a current research topic. Let me introduce
only two measures: Cosine Relatedness and Cosine of PMI Relatedness as this
will be sufficient to understand the fundamental idea of comparing co-occurrence
vectors. References to other measures can be found in Sect. 10.7.

For describing these twomeasures, let us introduce the notion of a vocabularyV of
size |V |. V is the set of all possible words that can co-occur with either w1 or w2. Let
us call any word within V as wi. We can then define Freq(wi, w1) as the frequency
of wi within Cooc(w1) and Freq(wi, w2) as the frequency of wi in Cooc(w2). For
example, if we go back to Table10.6, let us assume we wish to measure relatedness
between the pair automobile/car, so we have w1 as automobile and w2 as car. Then,
the word accident is a possible wi part of our vocabulary V . In the first set of results
from the table, we have Freq(accident, automobile) is 189 and Freq(accident, car)
is 2957.

TheCosineRelatednessmeasure (CR(w1, w2)) is given in Eq.10.2, and theCosine
of PMI Relatedness measure (CPMIR(w1, w2)) is given in Eq.10.3. Notice how the
measures are quite similar, either using raw frequenciesFreq(wi, w1) inCosineRelat-
edness as opposed to using PMI(wi, w1) in Cosine of PMI Relatedness. Continuing
our same example, PMI(accident, automobile) is 7.09, and PMI(accident, car) is
6.46, with numbers taken from Table10.7.

CR(w1, w2) =
∑

wi∈V Freq(wi, w1)Freq(wi, w2)
√∑

wi∈V Freq(wi, w1)2
√∑

wi∈V Freq(wi, w2)2
(10.2)

CPMIR(w1, w2) =
∑

wi∈V PMI(wi, w1)PMI(wi, w2)
√∑

wi∈V PMI(wi, w1)2
√∑

wi∈V PMI(wi, w2)2
(10.3)

The word accident is just one example among all the words in the co-occurrence
vectors which would be used in the second-level relatedness measure between car
and automobile.

We now have a few relatedness measures, one for first-level relatedness and two
for second-level relatedness. Before we move on to an intrinsic evaluation of these
measures to compare their performances, let us yet introduce another word repre-
sentation/similarity approach, that of using word embeddings.

10.3 Word Embeddings

It would be hard to present a chapter on word relatedness without mentioning word
embeddings. Word embeddings is a distributed representation of words which has
become so popular in the past few years that they are used in all sorts of applications.

Word embeddings are part of the revived enthusiasm for neural networks, now
more commonly called deep learning. Without going into the details of how neural
networks learn to classify and represent information, let us simply say that word
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embeddings are learned representations of words’ ability at predicting their sur-
rounding context words. So, comparing word embeddings will be similar in spirit to
the second-level similarity presented in the previous section, since comparing word
embeddings is somewhat similar to comparing cumulated contexts of these words.
Imagine that the embedding of a word is some sort of summary of the cumulated
contexts of occurrences of this word as gathered from a very large corpus.

What is interesting for the field of NLP is that even without being expert in deep
learning, we do have access to word embeddings, since many researchers who build
them, also make them publicly available. For example, researchers at Stanford Uni-
versity have released different datasets of embeddings called GloVe, Global Vectors
for Word Representation. As any distributed representation, embeddings depend on
the corpus on which they are learned. GloVe has some datasets trained onWikipedia
2014 + Gigaword 5 (large news corpus) for a total of 6 billion tokens, covering a
400K vocabulary. It has other datasets based on an even larger corpus, the Common
Crawl.

To get an idea of what word embeddings look like, we can see in Table10.8,
the first 5 dimensions and last 3 dimensions of embeddings of dimension 50. As
examples of words, I chose words that will be part of the similarity dataset used in
the next section.

Table 10.8 Example of GloVe of dimension 50

Word D1 D2 D3 D4 D5 ... D48 D49 D50

food −0.1648 0.91997 0.22737 −0.4903 −0.0018 ... −0.0679 1.50720 0.60889

car −0.1684 −0.5382 0.31155 −0.5321 0.26678 ... 0.39684 1.73400 −0.7078

coast −0.7045 −0.1734 0.97958 −0.4942 −0.0683 ... 0.41082 0.89916 −0.1065

brother 0.44172 −0.4223 0.16875 −0.7307 0.11421 ... −0.5258 −0.2190 −1.1951

hill −0.2231 −0.0503 0.05087 0.21333 −0.2767 ... 0.01969 0.89648 0.10250

boy 0.89461 0.37758 0.42067 −0.5133 −0.2829 ... −0.1366 0.04035 −0.8415

The dimensions in such vector representation are not directly interpretable, as
they are in some sort, combined and reduced dimensions from the initial number of
dimensions which corresponds to the size of the vocabulary. As part of GloVe, we
can find embeddings in dimension 50, 100, 200, and 300, which is quite a reduction
if compared to the 400K vocabulary size mentioned above.

I encourage the reader curious about this exciting field of deep learning and
word embeddings to read through tutorials and also play with open source software
mentioned in Sect. 10.7. If you learn how to build the embeddings yourself, you can
then try the variations discussed in Sect. 10.1, since they will impact the resulting
embeddings. Given that the embeddings are learned condensed representation of the
context-predicting capability of a word, the type of context that was used during
learning (window size, with or without stop words, lemmas or raw surface forms,
etc) will impact the results.

Now, let us put our different representations and similarity measures to the test.
For the word embeddings, since we are not constructing them ourselves, we will
simply use the ones provided as GloVe.
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10.4 Experiment 1 — Relatedness for Semantic Similarity

Now it is time to perform a quantitative evaluation on a semantic similarity dataset
to witness measurable impact of the different variations in building co-occurrence
vectors as well as impact of the different relatedness measures.

First, let us describe the dataset and the evaluation we can perform. Then, we will
show results on a few experiments.

10.4.1 Dataset and Evaluation

Different similarity datasets have been developed over the years by different
researchers and for different purposes. One such early proposal is a dataset by Miller
and Charles (1991), the MC dataset, containing 30 noun pairs which have been
evaluated by human judges as to their degree of similarity. The dataset of word pairs
is shown in Table10.9. Since we have already used three pairs from that dataset,
car/automobile, coast/shore, and furnace/stove to explore different ideas in the pre-
ceding sections, we should remove these pairs from the dataset. When performing
evaluation, it is good practice to use a test set which has not been previously inves-
tigated for the development and tuning of our algorithms.

The human judges were asked to provide for each noun pair a score between
0 and 4. The numbers in the third column of Table10.9 are average scores over all
human judges. If such human judgement is our gold standard, than we hope for an
algorithm that will generate results comparable to the scores in Table10.9. We hope
for our algorithms to judge noon/string (last pair) with low relatedness and gem/jewel
(first pair) with high relatedness.

Unfortunately, the similarity measures generated by our algorithms might not
be numbers between 0 and 4, and therefore, comparing absolute scores between
algorithms and human judges will not be possible. Instead, we will use a correlation
measure, called Spearman correlation which works on ranks. That is why ranks
are provided for the gold standard in the fourth column of Table10.9. Notice how
when two scores are equal, the ranks are adjusted accordingly.

Equation10.4 shows the Spearman correlation ρ where N is the number of data
points and di is the difference in rank between the algorithm tested and the gold
standard for datapoint i.

ρ = 1 − 6 ∗ ∑N
i=1 d2

i

N ∗ (N2 − 1)
(10.4)

For each experiment we will run, we will rank its results and then compare the
ranked results with the ranked gold standard using the Spearman correlation. The
highest the correlation, the better our algorithm is at evaluating relatedness. Between
experiments, difference in correlation can vary widely. Statistical significance for
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the Spearman correlation is determined using Eq.10.52 and we will refer to it in our
comparisons. As we have 27 datapoints (N = 27) in our dataset of Table10.9, any
difference of 0.124 (as calculated with Eq.10.5) between results of two experiments
would be considered significant.

σ = 0.6325√
N − 1

(10.5)

Table 10.9 The MC dataset

Word 1 Word 2 score rank

car automobile 3.92 –

gem jewel 3.84 1.5

journey voyage 3.84 1.5

boy lad 3.76 3

coast shore 3.70 –

asylum madhouse 3.61 4

magician wizard 3.50 5

midday noon 3.42 6

furnace stove 3.11 –

food fruit 3.08 7

bird cock 3.05 8

bird crane 2.97 9

tool implement 2.95 10

brother monk 2.82 11

crane implement 1.68 12

lad brother 1.66 13

journey car 1.16 14

monk oracle 1.10 15

cemetery woodland 0.95 16

food rooster 0.89 17

coast hill 0.87 18

forest graveyard 0.84 19

shore woodland 0.63 20

monk slave 0.55 21

coast forest 0.42 22.5

lad wizard 0.42 22.5

chord smile 0.13 24

glass magician 0.11 25

rooster voyage 0.08 26

noon string 0.008 27

2The reference for this calculation is given in the Wikipedia page https://en.wikipedia.org/wiki/
Spearman’s_rank_correlation_coefficient.

https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
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10.4.2 Testing Relatedness Measures and Analyzing Results

We saw, in Sect. 10.1, that multiple parameters (e.g., corpus size, window size, win-
dow position, filtering) could be adjusted for building co-occurrence vectors, and fur-
thermore,we saw inSect. 10.2 that thereweremultiple possible relatedness measures.

First, let us only use the MillionCorpus and then limit our window position to be
symmetric. We will rather explore window size and statistical filtering, as well as the
difference between first- and second-level relatedness. Not that other variations are
not interesting to explore, but the purpose of the current section is rather to make the
reader learn about experimentation and comparative result interpretation rather than
provide exhaustive results on every possible parameter setting.

Table 10.10 Comparing similarity results: first-level scores, varying window size

Word pair Window size = 3 Window size = 10

Word 1 Word 2 PMI Rank PMI Rank

gem jewel 5.4939 2 6.1870 2

journey voyage 3.0404 7 4.8322 6

boy lad 3.8579 4 4.8387 5

asylum madhouse 0.0000 19.5 0.0000 22.5

magician wizard 0.0000 19.5 5.9743 4

midday noon 7.3684 1 8.0615 1

food fruit 2.7083 9 4.5977 8

bird cock 4.2238 3 6.0155 3

bird crane 2.7920 8 4.4014 10

tool implement 3.8434 5 4.7597 7

brother monk 2.0882 11 3.6463 12

crane implement 0.0000 19.5 0.0000 22.5

lad brother 0.0000 19.5 0.0000 22.5

journey car 2.4825 10 3.3869 13

monk oracle 0.0000 19.5 0.0000 22.5

cemetery woodland 3.8404 6 4.1281 11

food rooster 0.0000 19.5 3.3361 14

coast hill −1.0655 27 1.2858 17

forest graveyard 0.0000 19.5 0.0000 22.5

shore woodland 0.0000 19.5 4.5144 9

monk slave 0.0000 19.5 0.0000 22.5

coast forest 0.9392 12 2.1759 16

lad wizard 0.0000 19.5 0.0000 22.5

chord smile 0.0000 19.5 0.0000 22.5

glass magician 0.0000 19.5 3.2786 15

rooster voyage 0.0000 19.5 0.0000 22.5

noon string 0.0000 19.5 0.0000 22.5

Spearman −8.87 −7.85
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The first results we look at use first-level relatedness (PMI) with two different
window sizes, a window of size 3 and a window of size 10, as shown in Table10.10.
We see both the PMI scores and the ranks for each pair in the dataset and for both
possible window sizes. The last line of Table10.10 shows the Spearman correlation
between the experimental results and the gold standard (Table10.9) calculated using
Eq.10.4.

The correlation results are not that different between the two window sizes,
although beyond the significance threshold (more than 0.124). One corpus-related
issue is emphasized by the comparison of the two window sizes and that is the issue
of data sparseness. There are 14 pairs, for the window size of 3, which have a relat-
edness equal to zero, which means that the two words in these pairs never co-occur.
Using a larger window brings this number of unseen co-occurrences to 10. In general,
the fact that words do not co-occur is not a problem in itself and that should be true
for most word pairs in the overall English language. But for a similarity dataset in
which word pairs were specifically chosen to show various levels of similarity, that
is problematic.

When looking at second-level similarity, data sparseness should be a bit less of an
issue, since we are not observing direct co-occurrence but rather indirect similarity
through co-occurring words, which we expect, there will be some. Still, let us keep
the larger window for our exploration of second-level relatedness, and this time
rather see the impact of applying a statistical filtering, using the Cosine Relatedness
measure. Results are shown in Table10.11.

Note first that although the Spearman correlation results in Table10.11 are lower
than for first-level relatedness (Table10.10) that we do obtain relatedness measures
for all 27 pairs, having a much larger coverage. Second, we note a large impact from
filtering, which we expected based on our qualitative observation in Sect. 10.1.2.
Remember that the statistical filter keeps significant words in the co-occurrence
vectors, rather than common words. Since filtering with 200 words has such a large
impact, we can further increase the filter to 500 or even 1000 words and measure
the impact. We performed such experiments and show the results in Table10.12. We
see how filtering helps (up to 1000), but then too much filtering starts to remove
important words and does not allow the Cosine to perform as well.

Table10.12 also shows results using the other second-level relatedness measure,
the Cosine of PMI Relatedness. Unfortunately Cosine of PMI Relatedness does not
perform well, and the impact of statistical filtering on it is not statistically significant
(see Exercise10.2).

Now what about the word embeddings, the GloVe vectors we discussed in
Sect. 10.3, howwould they perform on this similarity task? Table10.13 shows results
of performing Cosine similarity between the embeddings of each word in the word
pair, comparing the embeddings of dimension 100 and dimension 300. Interestingly,
the embeddings have full coverage of the dataset as our second-level similarity did,
but provide much better results.

So what can we conclude from these results? Certainly that different choices
regarding how to measure relatedness will have an impact on the results. But with so
many parameters, the number of experiments can grow exponentially, and running
all of them blindly might not be the best way to go (unless we have infinite computer
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Table 10.11 Comparing similarity results: second-level scores, varying statistical filtering

Word pairs Cosine no filter Cosine filter 200

Word 1 Word 2 Score Rank Score Rank

gem jewel 0.0115 5 0.000127 7

journey voyage 0.0086 11 0.000094 12

boy lad 0.0082 14 0.000761 3

asylum madhouse 0.0147 1 0.001044 1

magician wizard 0.0107 8 0.000156 6

midday noon 0.0082 13 0.000913 2

food fruit 0.0049 27 0.000046 20

bird cock 0.0107 7 0.000201 5

bird crane 0.0078 17 0.000124 8

tool implement 0.0056 26 0.000044 21

brother monk 0.0059 25 0.000048 17

crane implement 0.0077 19 0.000028 26

lad brother 0.0061 24 0.000097 11

journey car 0.0072 21 0.000034 25

monk oracle 0.0090 10 0.000038 24

cemetery woodland 0.0077 18 0.000081 13

food rooster 0.0083 12 0.000047 18

coast hill 0.0143 2 0.000107 9

forest graveyard 0.0115 4 0.000063 15

shore woodland 0.0082 15 0.000105 10

monk slave 0.0079 16 0.000041 23

coast forest 0.0113 6 0.000071 14

lad wizard 0.0104 9 0.000286 4

chord smile 0.0071 22 0.000048 16

glass magician 0.0075 20 0.000020 27

rooster voyage 0.0124 3 0.000047 19

noon string 0.0064 23 0.000042 22

Spearman −24.98 −13.29

Table 10.12 Comparative similarity results for various relatedness measures and co-occurrence
vector parameters

Experiment Level Window size Measure Filtering Spearman (ρ)

1 First 3 PMI N/A −8.87

2 First 10 PMI N/A −7.85

3 Second 10 Cosine 0 −24.98

4 Second 10 Cosine 200 −13.29

5 Second 10 Cosine 500 −7.5

6 Second 10 Cosine 1000 −8.75

7 Second 10 Cosine 1500 −10.56

8 Second 10 CosinePMI 0 −23.73

9 Second 10 CosinePMI 500 −23.55
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Table 10.13 Comparing similarity results: Embeddings GloVe 100 and 300

Word pairs dimension = 100 dimension = 300

Word 1 Word 2 Score Rank Score Rank

gem jewel 0.641545 4 0.482555 4

journey voyage 0.768299 2 0.658506 2

boy lad 0.395268 9 0.304399 8

asylum madhouse 0.104345 21 0.013929 25

magician wizard 0.661820 3 0.495469 3

midday noon 0.785331 1 0.687142 1

food fruit 0.573560 5 0.426590 5

bird cock 0.275310 15 0.240727 12

bird crane 0.337193 14 0.292822 9

tool implement 0.389701 10 0.286681 11

brother monk 0.427258 7 0.312645 6

crane implement 0.024722 26 0.010687 26

lad brother 0.229925 17 0.140602 16

journey car 0.348662 12 0.184544 14

monk oracle 0.059876 24 0.047226 22

cemetery woodland 0.475344 6 0.307025 7

food rooster 0.006616 27 0.039065 24

coast hill 0.382474 11 0.165433 15

forest graveyard 0.236179 16 0.111735 18

shore woodland 0.227158 18 0.139701 17

monk slave 0.220865 19 0.088553 20

coast forest 0.410930 8 0.291576 10

lad wizard 0.338028 13 0.202985 13

chord smile 0.203811 20 0.100536 19

glass magician 0.092205 22 0.059616 21

rooster voyage 0.060487 23 0.039767 23

noon string 0.037576 25 0.007039 27

Spearman −10.59 −9.67

processing time). It is best to perform qualitative evaluation, looking at the data, as
we did in Sect. 10.1. Then, it is a good idea to work with a development set, on which
we evaluate quantitatively the variations. This is what we are doing now, using the
older Miller and Charles dataset, on which we try to discover good parameters. We
have not tried so many parameters, but so far, our best results are with windows of
10, using either the first-level PMI or the second-level Cosine.

An important part of deciding on the best parameter setting for evaluating relat-
edness is by measuring their impact on the task for which we need such relatedness.
Discovering relatedness is often not a goal in itself, but we hope for it to help in a
later task, such as in grounding, as we investigate in the next section.
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As for the word embeddings, they do provide a black box solution to word sim-
ilarity, given that all the decisions (window size, lemmatization or not, etc) were
made without our input at construction time. Yet, without any refinement, out of the
box, they do work quite well for this intrinsic task. This makes them quite appealing.
Although we will not carry along with the embeddings for the extrinsic evaluation,
I encourage the reader to try (see Exercise10.4) them.

10.5 Experiment 2 — Relatedness for Entity Linking

In the last chapter, we were trying to ground a surface form Beethoven occur-
ring in different sentences, to one of two possible entities, the composer or the
film (see Sect. 9.7). Unfortunately, but not surprisingly, we had relatively little suc-
cess with our approach. The main problem is that the BOW-Match we developed
(see Sect. 9.6) relies on exact string matching which is quite restrictive. Given the
variations in language, exact matches are unlikely. But we did notice the follow-
ing word pairs that should have contributed to our grounding decision, but were not
exactmatches: piano/pianist, symphony/music, conduct/music,write/compose, com-
pose/composer, orphica/piano, concerto/music, Bonn/Germany, Germany/German,
theater/film. These pairs show diverse relations, perhaps expressed by predicates
such as CapitalOf(Bonn, Germany) or TypicalObject(conduct,music).

We know that distributional relatedness cannot help us define the various nature
of the relations in the above pairs, but it can minimally capture that some relation
exists. If so, it should help the grounding process and improve the results of our
experiment from the last chapter. Let us explore this idea.

10.5.1 Dataset and Evaluation

Table10.14 shows BOWComposer and BOWFilm as constructed from the first lines of
the correspondingWikipedia pages.Wikipedia serves as the grounding space for this
experiment.3

Table10.15 shows the various BOWs extracted from the different test sentences,
with the entity to which they should link.

The evaluation of our new algorithm can be performed through an overall F1
measure, which was highlighted as an appropriate measure for this experiment, in
the previous chapter.

3The experiment using the baseline BOW-Match algorithm is presented in Chap. 9, and I strongly
encourage the reader to revisit that experiment before continuing here.

http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_9
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Table 10.14 BOW representation of the first lines of Beethoven pages in Wikipedia

Entity Bag-Of-Words (BOW)

BOWComposer [ludwig, van, beethoven, baptise, december, march, german,
composer, pianist, crucial, figure, transition, classical, romantic, era,
western, art, music, remain, famous, influential]

BOWFilm [beethoven, family, comedy, film, direct, brian, levant, star, charle,
grodin, george, newton, bonnie, hunt, alice, series]

Table 10.15 BeethovenCorpusM—BOW representation

Sentence Bag-Of-Words (BOW) Link to

BOW1 [andante, favorus, work, piano, solo, beethoven] Composer

BOW2 [passion, young, mirabehn, music, beethoven] Composer

BOW3 [beethoven, spend, life, vienna] Composer

BOW4 [charle, munch, conduct, symphony, beethoven] Composer

BOW5 [composer, write, orphica, beethoven] Composer

BOW6 [beethoven, key, piano, concerto] Composer

BOW7 [naue, vienna, study, briefly, beethoven] Composer

BOW8 [bonn, birthplace, beethoven, bear] Composer

BOW11 [beethoven, run, loose, hot, dog, cart, merry-go-round] Film

BOW12 [beethoven, hit, theater, april] Film

10.5.2 Developing a BOW-Similarity Algorithm

Now, how can we modify the BOW-Match algorithm to include relatedness? Word
relatedness inspires a different algorithm that of finding BOW-Similarity rather than
BOW overlap. We develop a BOW-Similarity algorithm, as shown in Algorithm 9.
Let us go through our example step by step, to understand the algorithm.

We wish to measure BOW-Similarity between BOWC and BOWComposer . To do so,
we take each word w from BOWC and measure its average similarity to all words in
BOWComposer . We repeat that for all words in BOWC and sum all their similarities. For
example, if we start with BOWC containing the words andante, favori, work, piano,
solo (Sentence 1 in Table10.15), we can measure for each word its average similarity
to all words in BOWComposer (German, composer, pianist....). We start with the word
andante andmeasure its individual similarity toGerman, and then composer, and then
pianist, and so on. From all these individual similarities, we compute the average
similarity of andante to the overall BOWComposer by summing all individual word
similarities and dividing by the number of words in BOWComposer . We then move to
the second word in BOWC , favori, and find its average similarity to BOWComposer .
We do the same for the remaining words in BOWC : work, piano, and solo. Then, we
can sum over the similarities found for all words in BOWC , to obtain the similarity
between BOWC and BOWComposer .
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The same algorithm is used to calculate BOW-Similarity between BOWC and
BOWFilm. We will ground the surface form Beethoven to the entity which BOW
generated the largest similarity.

Build a Bag-Of-Words BOWC to contain the words in the context of occurrence of the
ambiguous word. ;
for each possible entity E=1..n do

Build a Bag-Of-Words BOWE to contain the words in the definition of the entity E.
end
Assign MaxR to 0 ;
Assign BestEntity to null; ;
for each possible Entity E=1..n do

Assign EntityR to 0 ;
for each word wS in BOWS do

Assign Total to 0 ;
for each word wE in BOWE do

Measure R = Relatedness(wS, wE) ;
Add R to Total ;

end
Divide Total by the number of words in BOWE ;
Add Total to EntityR ;

end
if EntityR > MaxR then

MaxR = EntityR ;
BestEntity = E ;

end
end

Algorithm 9: BOW similarity

Let us now apply our new BOW-Similarity algorithm on the Beethoven dataset,
and evaluate its results as compared to our baseline BOW-Match algorithm.

10.5.3 Result Analysis

Table10.16 shows the results from applying Algorithm 9 to the each test sentence
from Table9.2. The second column is the gold standard, showing the letter ‘C’, if the
composer sense should be themost appropriate one, and the letter ‘F’ if the film sense
is the most appropriate. Then, for two different measures, the first-level PMI and the
second-level CosineRelatedness, we have three columns for each indicating first, the
score obtained for the composer sense; second, the score obtained for the film sense;
and third, a choice between ‘C’ or ‘F’ depending on the maximum relatedness found.

From this table, we calculate the precision, recall, and F1 measures for each
measure (PMI and Cosine), as shown in Table10.17. Notice that since the BOW-
Similarity provides a similarity score for all examples, the recall will always be equal
to the precision.

http://dx.doi.org/10.1007/978-3-319-41337-2_9
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Table 10.16 Matching BOW representations of examples and Wikipedia descriptions (two sen-
tences)

PMI Cosine (with 500 filter)

No. Gold Composer Film C/F Composer Film C/F

1 C 3.392 1.770 C 0.00031 0.00019 C

2 C 2.869 1.371 C 0.00021 0.00027 F

3 C 1.128 0.705 C 0.000114 0.000108 C

4 C 0.494 0.284 C 0.00013 0.00015 F

5 C 3.922 1.884 C 0.00020 0.00013 C

6 C 3.036 0.904 C 0.00048 0.00015 C

7 C 1.555 0.840 C 0.00009 0.00006 C

8 C 0.793 0.583 C 0.00035 0.00006 C

11 F 1.025 1.245 F 0.00017 0.00023 F

12 F 0.851 1.416 F 0.00014 0.00011 C

Table 10.17 Comparative Entity Linking results for small versus large definitions

Measure PMI Cosine

Overall precision 100% (10/10) 70% (7/10)

Overall recall 100% (10/10) 70% (7/10)

Overall F1 100% 70%

Grounding results, using the PMI , are beyond expectations. They provide a F1
of 100%. The F1 for the Cosine measure is 70%. Both are way beyond the 20%
obtained with the BOW-Match algorithm presented in the previous chapter, certainly
demonstrating a potential impact of our relatednessmeasures. Obviously, we are only
looking at a single example, which does not provide an adequate evaluation, but still,
there is potential is using relatedness in grounding.

One variation we had tried in the previous chapter was to use larger BOWs for
describing the entities, including in BOWComposer and BOWFilm words coming from
the full first paragraph of their Wikipedia page, instead of the first 2 sentences only.
We had done this hoping to augment our chances of finding overlapping words.
Unfortunately, this same variation, using the BOW-Similarity algorithm, decreases
the results of both measures, as shown in Table10.18. Results are still better than
the 40% obtained in the previous chapter for these larger BOWs, but including more
words in BOWComposer and BOWFilm did not help. A possible explanation is that we
chose an averagingmethod inBOW-Similarity for establishing the similarity between
a word W in BOWC and all words from BOWComposer or BOWFilm. Perhaps, averaging
is not adequate for larger BOWswhich will tend to include more good words but also
more noise. A different choice, instead of averaging, could be to find the maximum
similarity, as suggested to experiment in Exercise10.4.
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Table 10.18 Matching BOW representations of examples and Wikipedia descriptions (first para-
graph)

PMI Cosine (with 500 filter)

No. Gold Composer Film C/F Composer Film C/F

1 C 4.986 1.772 C 0.00112 0.00051 C

2 C 2.631 1.454 C 0.00019 0.00018 C

3 C 0.843 0.575 C 0.00012 0.00009 C

4 C 0.904 0.253 C 0.00028 0.00020 C

5 C 4.151 1.724 C 0.00019 0.00016 C

6 C 4.263 0.911 C 0.00133 0.00036 C

7 C 1.613 0.839 C 0.000087 0.000093 F

8 C 0.664 0.693 F 0.00026 0.00031 F

11 F 0.785 1.234 F 0.000213 0.000209 C

12 F 1.024 0.904 C 0.00016 0.00013 C

Precision 80% 60%

In conclusion, we see that relatedness provides a weighted strength of connection
between words which can have a significant impact in a task, such as grounding.
The number of parameters we can vary are enormous, from window size, to various
types of filtering, to different relatedness formula. And that is only for the relatedness
measures. We can also vary the size of Bag-Of-Words for the grounding. All these
variations definitely bring us in a world of uncertainty and experimentation, and it is
the world in which a lot of statistical NLP research lies today.

10.6 In Summary

• Word relatedness is defined as a weighted unnamed relation between words.
• An important building block for relatedness are the co-occurrence vectors, gath-
ering information about co-occurrence of words in a corpus.

• To build a co-occurrence vector, wemove a context window along a text and gather
the number of times different words co-occur within the window.

• The choice of corpus used for building co-occurrence vectorswill have a significant
impact on their content. The corpus must be sufficiently large to provide word
statistics that are significant.

• Although the basic algorithm for building a co-occurrence vector is simple, it can
be modified in various ways, such as changing the window size, changing the
window position (before, after, symmetric), performing POS filtering or statistical
filtering through a stopword list.

• First-level relatedness directly computes the relatedness between two words based
on their direct co-occurrences.

• A typical measure of first-level relatedness is the PMI between two words.
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• Second-level relatedness computes the relatedness between two words based on
the words they co-occur with.

• There exists multiple measures of second-level relatedness, and Cosine Related-
ness and Cosine of PMI Relatedness are two examples.

• Word embeddings are part of the revived enthusiasm for neural networks, now
more commonly called deep learning.

• Word embeddings can be viewed as learned representations of words’ abilities at
predicting their surrounding contexts.

• There exists different datasets to experiment with similarity measures, some older
ones, such as the 30-word dataset of Miller and Charles, dating to psychological
studies on relatedness.

• Word relatedness can be used to help other tasks, such as grounding, and the exper-
imental design used in this chapter showed on a small example that relatedness
could have a major impact.

10.7 Further Reading

Resource-based similarity measures: Although not covered in this book, it is inter-
esting to compare distributional similarity to resource-based similarity, such as can
be calculated onWordNet orWikipedia in various ways. Such a comparison is shown
in Agirre et al. (2009). In Budanitsky and Hirst (2006), we can find a comparative
study of WordNet-based measures, and in Strube and Ponzetto (2006), semantic
relatedness is measured on Wikipedia using its categories.

Distributional similarity measures: An early survey of methods is found in Dagan
et al. (1999). In Bullinaria and Levy (2007), we find investigations into different
aspects of the parameters described in this chapter, such as type of corpus and con-
text window size. A nice tutorial on distributional similarity, given by Stefan Evert,
is available at http://wordspace.collocations.de/doku.php/course:acl2010:schedule.
A much cited paper, is the one from Lin (1998) which calculates similarity not with
word co-occurrences but rather dependency co-occurrences. The reader could come
back to this article after learning about dependencies in Chap.12, Sect. 12.1.

Similarity of verbs: Relatedness research often focuses on similarity of nouns, but
some research, see Resnik and Diab (2000) for example, has investigated the simi-
larity of verbs both using resource-based measures and distributional measures.

Similarity datasets: Among the different datasets available today forword similarity
are:

• WordSim-353 available at http://www.cs.technion.ac.il/~gabr/resources/data/
wordsim353/

• MENTest Collection, available at http://clic.cimec.unitn.it/~elia.bruni/MEN.html

http://wordspace.collocations.de/doku.php/course:acl2010:schedule
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://clic.cimec.unitn.it/~elia.bruni/MEN.html
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• MTurk Dataset, available at http://tx.technion.ac.il/~kirar/Datasets.html

Word Embeddings: For the construction of the GloVe embeddings, see Pennington
et al. (2014). They are available for download at http://nlp.stanford.edu/projects/
glove/. Some of the GloVe embeddings have been learned on Wikipedia (free)
and Gigaword corpus (available at https://catalog.ldc.upenn.edu/LDC2011T07 for
a large fee), and others are learned from the Common Crawl (http://commoncrawl.
org/). One of the first word embedding building approach to be explained,Word2Vec,
is described in Mikolov et al. (2013), and available at https://code.google.com/
archive/p/word2vec/. Different instantiations of word embeddings, trained on differ-
ent corpora, can be downloaded in various places. Many deep learning open source
software discuss them (e.g., TensorFlow https://www.tensorflow.org/versions/r0.7/
tutorials or Deep Learning for Java http://deeplearning4j.org/word2vec). Other pop-
ular open source deep learning software are Torch, Theano, and Caffe, and certainly
more will be available in the future years.

10.8 Exercices

Exercises 10.1 (Building co-occurrence vectors)

a. Build your own version of the MillionCorpus (see Sect. 10.1.1), gathering a ran-
dom set of a million pages from the Wikipedia dump. To do so, simply adapt the
corpus building code you wrote in Exercise6.1 (b), from Chap.6.

b. Implement Algorithm 8 from Sect. 10.1, for building co-occurrence vectors. Use
your program to build co-occurrence vectors for the words car, automobile, coast,
shore, furnace, stove. Allow for modifying the parameters (window size, window
position, POS filtering) in your algorithm. Test various settings of these parame-
ters using your version of MillionCorpus (exercise (a)). Do you obtain results
comparable to the ones shown in the different tables from Sect. 10.1. As your
corpus will not be the same, we do not expect the results to be exactly the same,
but discuss how comparable they are.

c. In Sect. 10.1.4, we experimented with three window sizes: 1, 3, and 10 words. Try
even larger window size of 15 or 20 words. What do you notice on the resulting
co-occurrence vectors for the example pairs (automobile/car, coast/shore, fur-
nace/stove)? Try varying the window size, with and without the statistical filter.
What do you notice then? The program you built in exercise (b) should allow you
to do these tests.

d. An arbitrary number of 200 was used in the statistical filter described in
Sect. 10.1.2. Try changing that number to 500, 1000, and 2000. What would
be the impact on the resulting co-occurrence vectors for the example pairs (auto-
mobile/car, coast/shore, furnace/stove)? Again, the program you built in exercise
(b) should allow you to do these tests.

http://tx.technion.ac.il/~kirar/Datasets.html
http://nlp.stanford.edu/projects/glove/
http://nlp.stanford.edu/projects/glove/
https://catalog.ldc.upenn.edu/LDC2011T07
http://commoncrawl.org/
http://commoncrawl.org/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://www.tensorflow.org/versions/r0.7/tutorials
https://www.tensorflow.org/versions/r0.7/tutorials
http://deeplearning4j.org/word2vec
http://dx.doi.org/10.1007/978-3-319-41337-2_6


200 10 Relatedness

Exercises 10.2 (Similarity datasets)

a. In Tables10.10 and 10.11, we show the Spearman correlation with the Miller and
Charles dataset for two similarity approaches (first-level, second-level), eachwith
two different parameter settings. But as we saw in this chapter, there are many
more parameter settings that could have been tried. Select two more settings for
each approach and test them. Do they obtain better correlation measures with the
gold standard? Discuss.

b. In Table10.12, we see that statistical filtering does not have an impact when using
Cosine of PMI Relatedness. Why is that?

c. Ask two friends to do the Miller and Charles similarity test. Show them the 30
pairs, in random order, and ask them to provide a score between 0 and 4 for each
pair, with 4 being highly similar. If you rank their results and perform Spearman
correlation between their result and the original Miller and Charles results, what
do you obtain? Discuss the results.

d. In previous chapters, we have always worked with precision/recall, discuss why
we cannot use these measures in Sect. 10.4?

e. Get the other datasets WordSim-353 and MEN and run the intrinsic evaluation
on them (see the references in Sect. 10.7). Try a few different parameter settings.
Discuss results within and between datasets.

Exercises 10.3 (Relatedness measures)

a. Implement Dice and Log-likelihood ratio Chap. 5 (see Eq.5.4 from Sect. 5.7)
as alternatives for the PMI for first-level relatedness. Test their result using the
intrinsic evaluation (Miller andCharles) from this chapter. Howdo thesemeasures
perform?

b. Also try the measures (Dice, LLR) from exercise (a) on the dataset WordSim-353
and MEN. How do they perform?

c. Download theGloVeword embeddings (see the references in Sect. 10.7). Program
a Cosine measure to be used between them to measure similarity. How do they
perform on the WordSim-35 and MEN datasets in comparison with the other
methods you implemented for first-level relatedness. Think of other measures
for calculating the similarity between word embeddings and implement these
measures. Do they perform better?

Exercises 10.4 (Relatedness for Entity Linking)

a. When we introduced grounding in Chap.9, we looked at these two sentences
containing the surface form bank:

a. He went to the bank to get 900 dollars to pay his rent.
b. Charlie sat on the bank, refusing to go in the water.

Find definitions of two senses of bank (financial institution, river bank) in
Wikipedia, and then try to ground the two example sentences using the origi-
nal BOW-Match algorithm from Chap.9 and the new BOW-Similarity approach,
described in Algorithm 9. Which algorithm succeeds? Try a few different para-
meters for relatedness and discuss which ones help.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_9
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b. In the BOW-Similarity algorithm, we calculate for each w in BOWC , its average
similarity to allwords inBOWComposer andBOWFilm. Instead of the average,modify
the program to use the maximum similarity. Does that impact the grounding
results for the Beethoven test sentences (Table9.2)? What about the grounding
of the word bank from the previous question, does average or maximum perform
better?

c. How would the GloVe embeddings behave in the extrinsic evaluation performed
in Sect. 10.5. Are they also making the BOW-Similarity algorithm work much
better than the previous BOW-Match one? Show results on the Beethoven test
(Table9.2) and the bank example (exercise (a)).

http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_9


Part IV
Knowledge Acquisition

In this Part IV, Knowledge Acquisition, we venture into the world of relations and
the acquisition of these relations from corpora.

In Chap. 11, Pattern-Based Relation Extraction, we will investigate pattern-based
approaches to relation extraction from text. Pattern-based approaches require explicit
mentions of relations in text. For example, was born in is an explicit mention of the
relation birthdate which we could find in text, in a sentence such as Julie was
born in 1995. But similarly to entities, relations can be expressed through various
surface forms, and each surface form likely leads to different relations. Language, at
the level of both entities and relations, is bound to contain synonymy and polysemy,
making the relation extraction task quite challenging. Still, we take on that challenge
and spend a large part of the chapter revisiting regular expressions as possible
implementations of patterns. Using regular expressions, we will build both lexical
and lexico-syntactic patterns, which we will put to the test in an experiment for the
acquisition of synonyms from Wikipedia pages.

In Chap. 12, From Syntax to Semantics, we will start on the syntactic side and
introduce dependency parsers. We then jump to the semantic side and introduce
frames as a knowledge representation formalism allowing for semantic interpreta-
tion of sentences. Frames are used to describe all kinds of events, some very concrete
events such as cooking and self-motion, to othermore abstract events such as attempt-
ing something or opposing to something. Each frame comes with a set of frame
elements or semantic roles which are the important elements to take into consider-
ation in describing the events. We will explore the resource FrameNet, containing
the definition of many frames with their associated frame elements. The rest of the
chapter will be spent on understanding the in-between steps necessary to go from a
syntactic interpretation of a sentence, to a frame-based semantic interpretation
of a sentence. At the end of the chapter, we show how searching for semantic roles in
text is quite similar to the relation extraction task, presented in the previous chapter.

In Chap. 13, Semantic Types, wewill discuss the importance of identifying seman-
tic types in text, in order to largely constrain the semantic interpretation of sentences.
For example, the sentence Julie was born inMontreal. takes on quite a different inter-
pretation than the previous sentence Julie was born in 1995. Based on the semantic
type of Montreal as a City rather than a Date. For the identification of types such
as Person, Organization or Location, we can turn toward Named Entity Recogni-

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_13
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tion (NER) systems, particularly targeted for these types. We will revisit the task of
NER, which we had touched on much earlier in Chap. 3, as we searched for Date

instances in text. For more specific semantic types, such as ArtMuseum, Food or
even Container, we will investigate how different resources can provide gazetteers
for these types, in particular looking at WordNet and FrameNet. This chapter will
also explore how textual resources can themselves become sources of gazetteers,
showing how to automatically construct a gazetteer from text. This allows us to come
full circle within this part of the book as we go back to the lexico-syntactic pattern
approach of Chap. 11 and the syntactic pattern approach introduced in Chap. 12, this
time to search for explicit mentions of hypernymy.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_12


Chapter 11
Pattern-Based Relation Extraction

A fundamental problem for Relation Extraction is that relations, being no different
than entities in that matter, are expressed in text through various surface forms. For
example, the relation studyAt(Zoe,University_of_Ottawa) is expressed in three
different ways in the sentences below.

Zoe is a graduate student at University of Ottawa.
Zoe studies law at University of Ottawa.
Zoe goes to University of Ottawa for her studies.

These sentences further share the fact that they express explicitly the relation we
are looking for. If we make use of variables S and U to replace Zoe and University
of Ottawa, we have the following:

S is a graduate student at U .
S studies law at U .
S goes to U for her studies.

The remaining snippets of text can be seen as possible patterns that would be
indicative of the studyAt relation. This is quite different from implicit relations,
such as in a noun compound wood table which refers to a relation made-of(table,

wood) but without explicit text to emphasize the relation. The current chapter dis-
cusses pattern-based Relation Extraction, and already, we can state that an important
prerequisite for such approach is the explicitness of the relation. We start this chapter
by discussing this notion of explicitness as it relates to various types of relations
and also types of texts.

We thenmove on to the actual definition of patterns asways of searching in text for
instances of relations. There have been different names given to this idea of pattern
search: rote extractors, knowledge patterns, and knowledge probes. The last one,
knowledge probes, is less commonly use, but it does well express the fact that we are
probing the text for information. The types of patterns we will look at in this chapter
are lexical patterns and lexico-syntactic patterns. As our main probing approach,
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we will revisit regular expressions first introduced in Chap.3 to search for entity
types. Regular expressions will provide the flexibility required to properly express
both lexical and lexico-syntactic patterns, and the search capability required to look
for instances of these patterns in text.

We then zoom in on one relation, synonymy, which is likely to be expressed
explicitly in informative texts, such asWikipedia.Wewill work on the development
of lexical and lexico-syntactic patterns for this relation, and put our patterns to the
test in a synonym extraction experiment, continuing on the experimental path put
forward in this book.

Pattern development in this chapter is done manually, as a valuable way of under-
standing the richness and complexity of relations’ surface forms. Yet, this manual
exploration should inform our quest toward more automatic systems. That quest is
the topic of the last section of this chapter.

11.1 Relation Types and Textual Resources

Many types of relations exist in order to represent various types of connections
between entities. To get a sense of the variability of relations, I suggest looking at
Appendix C, Relation Lists, which provides an overview of relations, grouped in
nine categories, ranging from lexical relations to definitional relations, all the way
to the infinite list of relations favoured in Open Information Extraction.

In this section,we look at a few types of relations: IS-A relations,world knowledge
relations, common knowledge relations, lexico-semantic relations, categorized as
such for the purpose of discussing the likelihood of discovering them in different
types of textual resources through pattern-based approaches.

IS-A relations: The IS-A relation is central to knowledge representation and lan-
guage understanding. In NLP, we often talk of the IS-A relation to mean either of
two different relations within the Semantic Web, that of subclass and that of instan-
tiation. The first relation would be used in ontologies to describe how a particular
class of entities is contained within another class, and the second relation, that of
instantiation, would rather be expressed by assigning a type to an individual.

In the Semantic Web, the rdf:type predicate is used between instances and
classes, where as rdfs:subClassOf, is used between classes. For example:

(dbpedia:Romain_Gary, rdf:type, dbpedia-owl:Writer)
(dbpedia-owl:Writer, rdfs:subClassOf, dbpedia-owl:Artist)
(dbpedia-owl:Artist, rdfs:subClassOf, dbpedia-owl:Person)

In text, a is-a formulation can express both instantiation and subclass relations:

Romain Gary is a writer.
A writer is an artist.
An artist is a person.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
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Much of the early work on pattern-based Relation Extraction focused on the IS-A
relation, suggesting just about any text would likely contain explicit patterns for this
relation. Patterns such as X1, X2, and other Y or Y such as X1, X2 would make it
possible to extract instances of the relation from text.Wewill revisit the IS-A relation
in Chap.13 and even suggest a pattern-based Relation Extraction experiment for it
(see Sect. 13.3).

Encyclopedic knowledge relations: Many relations found in the Semantic Web
are of encyclopedic nature, meaning that they are used to describe entities in the
world, such as cities, famous scientists, and famous artists. For example, the predicate
dbo:country(dbpedia:Bonn,dbpedia:Germany) would be used to describe the
city ofBonn as being part ofGermany. This type of information is somewhat expected
to be part of an encyclopedic text in a very explicit wayBonn is a city in Germany, but
news stories, mentioning Bonn, would likely write In Bonn, Germany, this incident…
Many other encyclopedic relations, describing city’s populations, composer’s date of
birth, or organization’s founding years, are likely to be present in encyclopedic text,
but not necessarily in news stories. Encyclopedias, along with textbooks, would be
considered informative texts specifically intended to explain information.Narrative
texts, on the other hand, such as news articles, blogs, and novels, intend to tell stories.

Common knowledge relations: In contrast to the previous type of relations likely
found in encyclopedia, there are relations linked to common knowledge that is quite
likely not described anywhere explicitly in a generic way, but rather always seen
through its instances. For example, we might be unlikely to see mentions of films are
played in theaters, but likely to see Starwars plays at Cinema 9. Similarly, we are
unlikely to see mentions of a conductor conducts music, but likely to see Nagano
conducted Bruch’s Symphony. If the Relation Extraction task is to extract instances,
so as to populate a knowledge base, than it is likely to succeed, as there will
be many mentions of such instances in appropriate texts (e.g., newspaper). On the
other hand, if the Relation Extraction task is toward the expansion of an ontology,
trying to automatically find possible relations between generic entities (e.g., films and
theaters), then it is not obvious that this information would ever be written anywhere,
as it is part of common knowledge which people have, but do not talk about.

Lexico-semantic relations: In English, there exists some regular lexical transfor-
mations that represent a regular shift in semantic, and these can be referred to as
lexico-semantic relations. For example, for any musical instrument, there will be a
player of that instrument, and that player’s name can be derived from the instrument’s
name.Wewould have piano/pianist, violin/violinist, harp/harpist. And for countries,
we usually assume that people will reside in it and have a name for the residents that
can be derived from the country’s name, Germany/German, Canada/Canadian, and
Japan/Japanese. The construction rules, as we can see, are not as strict for coun-
try/resident as for instrument/player. These lexico-semantic relations are expressed
through lexical changes and are not likely to be explicitly expressed in text, unless in
children’s school-related material, in definitional forms such as A pianist is a person
who plays the piano.

http://dx.doi.org/10.1007/978-3-319-41337-2_13
http://dx.doi.org/10.1007/978-3-319-41337-2_13
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At this point, we have awareness of how a type of relation might influence its
chances of being found in different types of texts. We now move on to the actual
definition of patterns and the variability of relations’ surface forms.

11.2 Lexical Patterns

In this section, we explore a first type of pattern, the lexical pattern, made up solely
of words in their various forms. In lexical patterns, linguistic information such as
part of speech is not included. Pure string patterns would not even include any
notion of words, but we will rather explore lexical patterns, in which notion of word
boundaries will be useful.

Let us take a relation actor-in, as an example. Assume we especially like the
Coen brothers movies and gather a small corpus, ActorCorpus, about who plays in
their different movies. ActorCorpus is shown in Table11.1.

Table 11.1 Small ActorCorpus

No. Sentence

1 The film Burn After Reading stars George Clooney.

2 The Big Lebowski stars John Turturro in the main role.

3 The movie Unbroken revolves around the life of Louie, portrayed by Jack O’Connell.

4 Fargo also features Frances McDormand.

5 True Grit produced by the Coen brothers and starring Jeff Bridges, opened in 2010.

6 In Inside Llewyn Davis, Llewyn (Oscar Isaac) is a struggling folk singer.

As we did in the introduction of this chapter, let us first explore what remains of
the sentences after we replace the participants in the relation by variables. We take
each sentence of ActorCorpus and replace the film’s title and the actor’s names by
variables F and A. This will give us a sense of the explicitness of the relation in text.

1. The film F stars A.
2. F stars A in the title role.
3. The movie F revolves around the life of Louie, portrayed by A.
4. F also features A.
5. F produced by the Coen brothers and starring A, opened in 2010.
6. In F , Llewyn (A) is a struggling folk singer.

These examples show a nice range of explicitness, as well as lexical variations.
But should these snippets of text become the actual lexical patterns? They could, but
they would certainly benefit from generalization to be more usable. What is at stake
here is the precision/recall capability of a pattern.

As in any information retrieval and text mining task, ambiguous queries and
patterns will lead to high recall but low precision, and very specific queries and
patterns will have high precision but low recall. A good pattern would be general
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enough to have high recall, but be precise enough to have high precision. As we
know, that is quite hard to achieve.

As a first generalization strategy, we could delimit our pattern to the segment of
text contained in between the two entities (variables) of interest. The middle text
is often sufficient as a pattern, but not always. For example, F stars A is a valid
pattern, but the words the film on the left (Sentence 1) and in the title role on the right
(Sentence 2) do provide additional restrictions, making the patterns more precise.

The single-word pattern F stars A will have very high recall, but for sure will
bring a lot of noise. For example, the sentence Some stars shine. will lead to the
instance actor-in(shine, some) which is totally possible from a lexical point of
view. The word star is particularly polysemous, both at the linguistic level, e.g., a
star and to star, as we explored in Chap.8, and within the same part of speech, e.g., a
star (astronomy) versus a star (popular person). Since patterns are based on words,
they will inherit this polysemy, unless many other contextual cues become part of
the pattern. This means that lexical patterns relying on very polysemous words, such
as stars, will tend to be quite noisy and might benefit from the additional right or left
contexts as part of the patterns.

On the other hand, some text between variables of interest is overly specific.What
are the chances of finding revolves around the life of Louie, portrayed by in a corpus.
This patternmight have very high precision, but veryminimal recall. In this sentence,
the film and actor entities are at a considerable distance from each other (8 words
between them). We would like to introduce the notion of a multi-word wildcard (*)
generalization in the pattern, resulting in something like revolves around *, portrayed
by which has better chance at occurring more than once in text.

There are other sentences above containingparts thatwe can imagine to beoptional
at the word level. For example, also seems optional in also features (Sentence 4).
Other parts seem like they would have valid alternatives, such as the title role being
replaced by the secondary role (Sentence 2). We can further imagine optionality and
alternatives at the character level, such as in stars versus starred.

Possibilities of generalization are endless, and as we develop our patterns, our
goal will be to introduce generalizations which will capture positive instances of a
relation, without introducing false positives. This will be quite a challenge.

As for the generalization mechanisms, notice how we have talked of optionality,
alternatives, and replacement of groups of words which are all possible operators
within regular expressions, making regular expressions, as we will see next, a natural
choice for the representation of lexical patterns.

11.2.1 Regular Expressions for Lexical Patterns

In Chap.3, we discussed regular expressions, or regex for short, as a powerful tool
for finding entities or entity classes in text. Let us revisit regular expressions here;
this time exploring how they can be used for searches of the lexical patterns discussed
above.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_3
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First, we must have a way, in regular expressions, to capture the entities we are
looking for. Fortunately, regular expressions contain within their defining language
the idea of capturing groups. By explicitly grouping a subset of a regular expression
with parentheses, we can then retrieve the content of the parentheses as a specific
group. Groups can even be named and are then called named capturing groups.
We can then retrieve a group by its name. Various programming languages include
different ways of defining and searching for capturing groups in their matching
libraries. In the regex presented in this chapter, I will indicate with <F> the Film
capturing group and with <A>, the Actor capturing group. For example, the regular
expression belowwill extract singlewords lowercase asmovie titles or actor’s names.

The film (<F>\b[a-z]+\b) stars (<A>\b[a-z]+\b).

But we require more than single words, since both movie titles and actor’s names
can be compound nouns. Let us define a few short regular expressions that will
become reusable lexical components, such as words and multi-words, to be used in
larger patterns. Table11.2 shows the regex corresponding to each component (col-
umn 2) and examples of coverage (column 3). I use the surrounding dollar signs to
indicate a defined component. In a programming language, you would define vari-
ables to refer to the components and then create larger regular expressions using
a string concatenation operator (+) to combine them. But for the sake of presen-
tation, I will simply include the components ($W$, $MW$ or any other defined
component) within the regular expression of the larger pattern, as shown in the sec-
ond line of Table11.2.

Table 11.2 Regular expressions of lexical components

Component Lexical pattern Example

word ($W$) \b[A-Z|a-z]+\b Burn

multi-word ($MW$) ($W$ ){0,2}$W$ Burn After Reading
George Clooney
George

We can now use the components to rewrite more general regular expressions.
Remember how regex expressions are good at representing lists, alternatives, and
optionality. These three possibilities becomepart of the lexical patternswhich capture
the actor-in instances from ActorCorpus.

1. [T|t]he film (<F>$MW$) star[s|red] (<A>$MW$)

2. (<F>$MW$) stars (<A>$MW$) in the [main|secondary] role

3. [T|t]he movie (<F>$MW$) revolves around ($W$ ){0,8}$W$, portrayed by

(<A>$MW$)

4. (<F>$MW$)( also){0,1} features (<A>$MW$)

5. (<F>$MW$) produced by $MW$ and starring (<A>$MW$)

6. [I|i]n (<F>$MW$), $W$ \((<A>$MW$)\) is

As we see, we are able to define components and larger regular expressions to
capture various expressions of the relation actor-in. It is not necessarily easy to



11.2 Lexical Patterns 211

define these patterns, and our manual attempt allowed us to reflect on pattern speci-
ficity issues and level of desired generalizations with respect to precision and recall.
We will later discuss the idea of semi-automatic pattern definition (see Sect. 11.5)
and examine where and how human effort can best be combined with algorithmic
effort in a Relation Extraction process.

For now, we continue our manual exploration, as we now turn to lexico-syntactic
patterns.

11.3 Lexico-Syntactic Patterns

To define lexico-syntactic patterns, we require a few processing modules in the NLP
pipeline (see Chap.8): tokenization, lemmatization, and part-of-speech tagging. We
will see that introducing lemmas, and part-of-speech information in patterns, can
play both ways by sometimes making themmore generic and some other times mak-
ing themmore precise. In any type of pattern representation, issues of precision/recall
will come up.

Let us look at the example sentences from ActorCorpus, after tokenization,
lemmatization, and POS tagging using the Penn Treebank.1 As a representation
of each sentence, let us use the symbol ‘/’ to divide a lemma from its POS, and the
symbol ‘;’ to separate tokens.

1. the/DT;movie/NN;burn/VB;after/IN;read/VBG;star/NNS;George/NNP;Clooney/NNP;./.;

2. the/DT;big/JJ;Lebowski/NNP;star/NNS;John/NNP;Turturro/NNP;in/IN;
the/DT;main/JJ;role/NN;./.;

3. the/DT;movie/NN;unbroken/JJ;revolve/VBZ;around/IN;the/DT;life/NN;of/IN;
Louie/NNP;,/,;portray/VBN;by/IN; .....Jack/NNP;O’Connell/NNP;./.;

4. Fargo/NNP;also/RB;feature/VBZ;Frances/NNP;McDormand/NNP;./.;

5. true/JJ;grit/NN;produce/VBN;by/IN;the/DT;Coen/NNP;brother/NNS;and/CC;star/VBG;
Jeff/NNP;Bridges/NNP;,/,; .....open/VBD;in/IN;2010/CD;./.;

6. in/IN;inside/IN;Llewyn/NNP;Davis/NNP;,/,;Llewyn/NNP;-lrb-/-LRB-;Oscar/NNP;
Isaac/NNP;-rrb-/-RRB-;be/VBZ; .....a/DT;struggle/VBG;folk/NN;singer/NN;./.;

The new representation captures word variations as it generalizes from words to
lemmas. For example, feature/VBZ (Sentence 4) would capture verb tense variations
(e.g., features, featured). Notice, however, that POS tagging, such as any linguistic
processing, is unfortunately not perfect. For example, the word stars is not correctly
tagged in both sentences 1 and 2. This means that a pattern requiring star to be a
verb will miss these examples. Ambiguous words, especially ones with high a priori
probabilities for a particular part of speech, such as noun for star or verb for cook,
are hard for POS taggers. We had already experienced this difficulty in Chap.8 as
we tried POS tagging to perform disambiguation between to cook, a cook, and Mr.
Cook, with limited success.

1For an introduction to the tags in Penn Treebank, and POS tagging, see Chap.8.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8
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That being said, POS-tagged sentences do have nice features, and not all words are
as ambiguous as stars. Let us explore these features as we define the lexico-syntactic
patterns necessary to mine information from POS-tagged sentences, again through
the use of regular expressions.

11.3.1 Regular Expressions for Lexico-Syntactic Patterns

By concatenating (linking together) all the lemma and part-of-speech information
for each words, in the examples above, we actually obtain a long string represen-
tation which we can look into with regular expressions. We must adapt the regular
expressions to work with these formatted strings. Let us look at an example.

[a-z]+/DT;([a-z]+/[JJ|NN];){0,2}[movie|film]/NN;

The regex above would allow all variations a great film, the nice movie, the movie,
a funny film, combining a determinant (DT), followed by zero to 2 words tagged as
either adjective (JJ) or noun (NN) followed by either the word movie or film tagged
as noun.

Similarly to lexical patterns (see Table11.2), let us define reusable components
for lexico-syntactic patterns. Given knowledge of part-of-speech information, we can
provide a slight refinement to the previous lexical components (word, multi-word)
and define lexico-syntactic components as shown in Table11.3. For example, we
define $NO$ to represent any word tagged as a noun, and $CN$ to represent any
compound noun, which we define as made of zero or one determiner (DT), followed
by zero, one or two adjectives (JJ), or nouns (NN), finishing with a noun (NN). Still,
sometimes we might want sequences of words regardless of their POS, and we also
define those components in Table11.3.

Table 11.3 Regular expressions of lexico-syntactic components

Component Lexico-syntactic pattern Example

determinant ($D$) [a-z]+/DT; the/DT;

noun ($NO$) [a-z]+/NN; movie/NN;

compoundNoun ($CN$) $D$([a-z]+/[JJ|NN];)
{0,2}$NO$

a/DT;funny/JJ;movie/NN;
the/DT;film/NN;

film/NN;

any Word ($W$) ([a-z]+/.{2,3};) burn/VB;

sequence of 1–3 words ($MW$) $W${1,3} burn/VB;after/IN;reading/VBG;

We can now use the components in the patterns for our 6 examples, including
named capturing groups identified as <F> and <A> as we discussed for lexical
patterns in Sect. 11.2.1.
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1. the/DT;movie/NN;(<F>$MW$)star/.{2,3};(<A>$MW$)

2. (<F>$MW$)$star/.{2,3};(<A>$MW$)in/IN;the/DT;[main|secondary]/[JJ|NN];

role/NN;

3. the/DT;movie/NN;(<F>$MW$)revolve/VBZ;around/IN;$W${1,8},/,;portray/VBN;

by/IN;(<A>$MW$)

4. (<F>$MW$)([a-z]+/RB;){0,1}feature/VBZ;(<A>$MW$)

5. (<F>$MW$)produce/VBN;by/IN;$CN$and/CC;star/VBG;(<A>$MW$)

6. in/IN;(<F>$MW$),/,;$CN$-lrb-/-LRB-;(<A>$MW$)-rrb-/-RRB-;be/VBZ;

In Exercise 11.1, you will get a chance to compare the lexical and lexico-syntactic
patterns we have developed for the extraction of instances of the actor-in relation.
Let us learn how to perform such comparative evaluation for a different relation, the
synonymy relation, in the next section. A shift from the actor-in relation to the
synonymy will also provide further examples of the variability of relations’ surface
forms, evenwithin a contrived context of searching for synonyms inWikipedia pages.

11.4 Experiment — Pattern-Based Synonymy Relation
Extraction

Let us define our goal as the automatic acquisition, using a textual resource, of
synonyms for a predefined set of terms. The purpose of the experiment is to evaluate
the performance of lexical patterns and lexico-syntactic patterns, in achieving this
goal. To perform our experiment, let us go through the following steps:

1. Establish a development set, representative of the task at hand.
2. Devise a pattern-based search strategy for synonym acquisition.
3. Establish a test set and a corresponding gold standard for performance evaluation.
4. Perform synonym search on the test set using our defined strategy.
5. Analyze the results.

11.4.1 Development Set

Wikipedia is an encyclopedic text, an informative text, providing definitions and
descriptions of entities as well as other historical facts about them. In such a resource,
we are likely to find synonyms, listed as equivalent surface forms to be used for
referring to an entity. We can confirm this statement by looking at Table11.4 which
provides examples of the first sentences in randomly selectedWikipedia pages (page
titles are indicated in bold).

An initial observation after reading through these examples is that their sentences
do contain multiple synonyms. Table11.5 provides a list of these synonyms, which
have been manually extracted from the definition sentences.

The Wikipedia sentences and the extracted synonyms will be used as our devel-
opment set. A development set is a dataset used to develop and refine algorithms, so
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as to maximize their performances on that set. In this experiment, we will not go as
far as trying to maximize performances of our lexical and lexico-syntactic patterns
on the development set, but rather simply use it as an inspiration for the development
of patterns, which we look at next.

Table 11.4 Presence of synonymy in Wikipedia

No. Definition

1 A mobile phone (also known as a cellular phone, cell phone, hand phone, or simply a
phone) is a phone that can make and receive telephone calls over a radio link while
moving around a wide geographic area.

2 A prison cell or holding cell or lock-up is a small room in a prison.

3 A database administrator (DBA) is an IT professional responsible for the installation,
configuration, upgrading, administration, monitoring, maintenance, and security of
databases in an organization.

4 Tetragonia tetragonioides is a leafy groundcover also known as Botany Bay spinach,
Cook’s cabbage, kõkihi (in Mõaori), New Zealand spinach, sea spinach, and tetragon.

5 Cymbopogon, commonly known as lemongrass is a genus of Asian, African, Australian,
and tropical island plants in the grass family.

6 The tomatillo is also known as husk tomato, Mexican husk tomato, or ground cherry.

7 A bicycle, often called a bike or cycle, is a human-powered, pedal-driven, single-track
vehicle, having two wheels attached to a frame, one behind the other.

8 A train station, railway station (in Commonwealth English), railroad station (in American
English), depot (in North American English), or simply station, is a railway facility where
trains regularly stop to load or unload passengers or freight (often freight depot).

9 Rapid transit, also known as metro, subway, underground, or colloquially as “the train,”
is a type of high-capacity public transport generally found in urban areas.

10 Carpooling (also car-sharing, ride-sharing, lift-sharing, and covoiturage) is the sharing of
car journeys so that more than one person travels in a car.

Table 11.5 Synonyms found in Wikipedia

No. Term Synonyms

1 mobile phone cellular phone, cell phone, hand phone, phone

2 prison cell holding cell, lock-up

3 database administrator DBA

4 tetragonia tetragonioides Botany Bay spinach, Cook’s cabbage, kõkihi, New
Zealand spinach, sea spinach, tetragon

5 Cymbopogon lemongrass

6 tomatillo husk tomato, Mexican husk tomato, ground cherry.

7 bicycle bike, cycle

8 train station railway station, railroad station, depot, station

9 rapid transit metro, subway, underground, “the train”

10 carpooling car-sharing, ride-sharing, lift-sharing and covoiturage
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11.4.2 Defining a Synonym Search Strategy Using Lexical
and Lexico-Syntactic Patterns

For our pattern development, we will make use of previously defined lexical and
lexico-syntactic components from Sects. 11.2 and 11.3, more specifically the multi-
word component, $MW$, and the compound noun component, $CN$. We see the use
of these components in Table11.6, as part of six patterns for two search strategies,
whichwe refer to as Lexical Strategy and Lexico-Syntactic Strategy. The first column
provides a pattern number. The second column provides an approximate “readable”
pattern, in which the variable X is inserted to represent the position of the word
to be extracted. Then, third and fourth columns show, respectively, for lexical and
lexico-syntactic patterns, a regular expression associated with the readable pattern.

Note that since we already know one of the synonyms (the page title), we only
require one capturing group, <S>, for the information to be extracted through the
regular expression.

Table 11.6 Set of lexical and lexico-syntactic patterns for test

PId “Readable”
pattern

Lexical Pattern Lexico-syntactic pattern

1 also X also (<S>$MW$) also/IN;(<S>$CN$)

2 or X or (<S>$MW$)) or/CC;([a-z]+/RB;){0,1}
(<S>$CN$)

3 also known as X (also){0,1} known as
(<S>$MW$))

(also/RB;){0,1}know/
VBN;as/IN;(<S>$CN$)

4 called X called (<S>$MW$) ([a-z]+/RB;){0,1}call/
VB.?;(<S>$CN$)

5 as X as (<S>$MW$) as/IN;(<S>$CN$)

6 X, or X ((<S>$MW$), ){1,2} or
(<S>$MW$)

((<S>$CN$),/,;){1,2}or/
CC;(<S>$CN$)

Compared to the lexical and lexico-syntactic patterns we developed in Sects. 11.2
and 11.3 for the actor-in predicate, the synonymy patterns presented here are not
as much centered around verbs as we had before (e.g., stars, features, portrayed
by). In general, synonymy is a very difficult relation to search for through a pattern-
based approach, as its patterns tend to be very generic. Such generic patterns are
likely to have a very high recall, but a low precision, if not used within a controlled
environment, explaining our choice of Wikipedia’s first sentence as our controlled
textual setting.

Notice that the lexico-syntactic patterns are more specific in their definition than
the lexical patterns. I included adverbs, such as in Pattern 2, to allow variations (e.g.,
or X and or possibly X). I encourage the reader to spend a bit of time trying to
understand the patterns. As mentioned in Chap. 3, when we first introduced regular
expressions, those regex are quite uninviting, and we need to read them over and

http://dx.doi.org/10.1007/978-3-319-41337-2_3
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over, and play with them (make small changes and evaluate the impact), to finally
grasp their power.

Let us move on to defining a gold standard on which we will test these two
strategies.

11.4.3 Defining a Gold Standard and Evaluation Method

As our test set for this experiment, we will use the sentences from Table11.7. These
sentences do resemble the ones in Table11.4, as they also come from the first sen-
tences of diverse Wikipedia pages. It would actually be unfair to suddenly test our
extraction patterns on completely different sentences, coming fromunknown sources.
Although we might, in future experiments, wish to test the level of adaptability of
our patterns, and for doing so, we would require text from different sources.

Table 11.7 Synonymy test sentences from Wikipedia

1 A laptop or a notebook is a portable personal computer with a clamshell form factor,
suitable for mobile use.

2 A system administrator, or sysadmin, is a person who is responsible for the upkeep,
configuration, and reliable operation of computer systems; especially multi-user
computers, such as servers.

3 Solanum quitoense, known as naranjilla in Ecuador and Panama and as lulo in Colombia,
is a subtropical perennial plant from northwestern South America.

4 The onion, also known as the bulb onion or common onion, is a vegetable and is the most
widely cultivated species of the genus Allium.

5 An insect repellent (also commonly called bug spray) is a substance applied to skin,
clothing, or other surfaces which discourages insects (and arthropods in general) from
landing or climbing on that surface.

6 A bus (archaically also omnibus, multibus, or autobus) is a road vehicle designed to carry
many passengers.

7 A taxicab, also known as a taxi or a cab, is a type of vehicle for hire with a driver, used by
a single passenger or small group of passengers, often for a non-shared ride.

8 Yogurt, yoghurt, or yoghourt is a food produced by bacterial fermentation of milk.

9 Maize, known in some English-speaking countries as corn, is a large grain plant
domesticated by indigenous peoples in Mesoamerica in prehistoric times.

10 Watercolor (American English) or watercolour (Commonwealth and Ireland), also
aquarelle from French, is a painting method.

Starting from the chosen test set, we manually extract the synonyms found in
the sentences. The extracted list of synonyms becomes our gold standard. Table11.8
shows the gold standard. For each sentence in the test set, the table shows the word
being defined (column 2), and its synonyms. There are from one to three synonyms
for each entry, for a total of seventeen synonyms among the ten sentences.
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Table 11.8 Gold standard — manually extracted synonyms

No. Term Synonyms

1 laptop notebook

2 system administrator sysadmin

3 Solanum quitoense naranjilla, lulo

4 onion bulb onion, common onion

5 insect repellent bug spray

6 bus omnibus, multibus, autobus

7 taxicab taxi, cab

8 yogurt yoghurt, yoghourt

9 maize corn

10 watercolor watercolour, aquarelle

As for our evaluation method, we will use precision and recall. Notice how this
evaluation will be biased. Why? Our gold standard lacks negative examples. It will
therefore not allow us to get a clear picture of how many false positives the patterns
would bring back if applied on sentences not containing synonyms. Recall will not be
affected as it does not rely on negatives, but precisionwill. Our precisionmeasurewill
be very optimistic as it will be based only on false positives found within sentences
containing synonyms. Exercise 11.1 will revisit this issue.

11.4.4 Testing Lexical and Lexico-Syntactic Patterns

Now, we apply the patterns defined earlier in Table11.6 onto the sentences of the test
set shown in Table11.7. Doing so will generate a set of candidate synonyms which
are shown in Table11.9.

Since there is a lot of result information to capture in little space, Table11.9 is
a compact representation of the results which includes the pattern id (column 1), a
readable form of that pattern (column 2), the sentence number in which a synonym
was found using that pattern (column 3), and the actual synonym found either with
a lexical pattern (column 4) or a lexical-syntactic pattern (column 5). To emphasize
the comparison between lexical and lexico-syntactic patterns, their results are put
side by side (columns 4 and 5).

From this table, we see how the Lexical Strategy, not having any notion of part of
speech, can consider any group of words as possible synonyms. This is what happens
with the first pattern (also X), which leads to candidates such as known as the. This
is definitely a false positive for that strategy. On the other hand, the Lexico-Syntactic
Strategy, requiring synonyms to be noun compounds, rightly rejects known as the as
a possible synonym. The Lexico-Syntactic Strategy, by imposing particular part-of-
speech sequences, will be very susceptible to the results of the tagger. For example,
omnibus is tagged as an adjective (JJ) and aquarelle is tagged as an adverb (RB),
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Table 11.9 Synonym Candidates extracted by a Lexical Strategy and a Lexico-Syntactic Strategy

PId “Readable”
pattern

Sent Lexical Strategy Lexico-Syntactic Strategy

1 also X 4
5
6
7
10

known as the
commonly called bug
omnibus
known as a
aquarelle from French

–
–
–
–
–

2 or X 1
2
4
5
6
7
8
10

a notebook is
sysadmin
common onion
other surfaces which, climbing on that
autobus
a cab, small group of
yoghourt is a
watercolour

a/DT;notebook/NN;
sysadmin/NN;
common/JJ;onion/NN;
–
autobus/NN;
a/DT;cab/NN; small/JJ;group/NN;
yoghourt/NN;
watercolour/NN;

3 also known
as X

3
4
7

naranjilla in ecuador
the bulb onion
a taxi or

naranjillum/NN;
the/DT;bulb/NN;onion/NN;
a/DT;taxi/NN;

4 called X 5 bug spray bug/NN;spray/NN;

5 as X 2
3
4
7
9

servers
naranjilla in ecuador, lulo in colombia
the bulb onion
a taxi or
corn

–
naranjillum/NN; lulo/NN;
the/DT;bulb/NN;onion/NN;
a/DT;taxi/NN;
corn/NN;

6 X, or X 5
6
8

applied to skin, clothing
archaically also omnibus, multibus
yoghurt

–
multibus/NN;
yoghurt/NN;

explaining why they are not found in the Lexico-Syntactic Strategy, which requires
nouns (NN) as synonyms.

Let us now compare the synonyms found using the pattern search to the synonyms
from the gold standard.

11.4.5 Result Analysis

We compare the pattern search results found in Table11.9 to the gold standard of
Table11.8, which leads to the results presented in Table11.10. The first column gives
the sentence number, the second column lists the synonyms to be found, the third
and fourth columns give the number of correct and incorrect synonyms found by
the Lexical Strategy, and the fifth and sixth columns give the number of correct and
incorrect synonyms found by the Lexico-Syntactic Strategy.
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Table 11.10 Comparative results for synonym search

Gold standard synonyms Lexical Strategy Lexico-Syntactic Strategy

Correct Incorrect Correct Incorrect

1 notebook 1 0 1 0

2 sysadmin 1 1 1 0

3 naranjilla, lulo 2 0 2 0

4 bulb onion, common onion 2 1 2 0

5 bug spray 1 4 1 0

6 omnibus, multibus, autobus 3 0 2 0

7 taxi, cab 2 2 2 1

8 yoghurt, yoghourt 2 0 2 0

9 corn 1 0 1 0

10 watercolour, aquarelle 2 0 1 0

All 17 8 15 1

Summarizing the results even further, we find in Table11.11 the precision, recall,
and F1 measures for both types of patterns.

Table 11.11 Performance evaluation for the Lexical and Lexico-Syntactic Strategies

Found Correct Precision Recall F1

Lexical patterns 25 17 68.0% (17/25) 100% (17/17) 80.9%

Lexico-syntactic
patterns

16 15 93.8% (15/16) 88.2% (15/17) 91.0%

We notice, even on our tiny dataset, how the Lexical Strategy has a lower precision
but higher recall than the Lexico-Syntactic Strategy. This was expected given the
way patterns were defined. The lexical patterns were written with less restrictions
than the lexico-syntactic patterns and therefore retrieved instances which are false
positives. Still, notice how the results are quite good, particularly when using the
lexico-syntactic patterns, which is certainly due to the fact that the test sentences
(Table11.7) are taken from the same source (Wikipedia) and therefore are written in
the same style as the development sentences (Table11.4). So, in this case, the human
effort put in pattern development, as inspired by the development set, was effort well
spent, knowing that we can now apply our strategy to all Wikipedia pages in the hope
of automatically finding synonyms.

But pattern development, especially through the use of regular expressions, is a
hard task for humans. Domain experts will prefer to annotate at the level of instances.
They will find it much easier to validate that insect repellent is a synonym of bug
spray than to write a regular expression to find it. A semi-automatic system, as we
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will see in the next section, would allow for various combinations of human and
algorithmic efforts.

11.5 Toward a Semi-automatic Process of Knowledge
Acquisition

Overall, through this chapter, we have seen that the development of patterns was far
from trivial. Pattern development is part of the challenging task of knowledge acqui-
sition, which contains many non-trivial steps. An interesting approach to knowledge
acquisition is an iterative approach, also called bootstrapping approach. Algo-
rithm 10 shows the typical steps of an iterative approach for a single relation R.

Define a corpus C .
Define a relation R.
Define a set of seed instance pairs Sseed for R
Initialize S = Sseed
Initialize P , the set of patterns, to the empty set.
while S and P keep expanding do

(a) Find a set of sentences K , in corpus C , which contain any pair from S.
(b) Extract a set of patterns P ′ from K .
(c) Filter the incorrect patterns, to reduce P ′.
(d) Perform generalization patterns in P ′ to increase recall.
(e) Use P ′ to discover a new set of instance pairs S′ in C .
(f) Filter the discovered instance pairs, to reduce S′.
(g) Add S′ to S, and add P ′ to P .

end

Algorithm 10: Iterative Relation Extraction Algorithm

The main problem of the iterative approach is called semantic drift. Semantic
drift occurs when the filtering steps (c) and (f) in Algorithm 10 have kept incorrect
patterns or instances, which then impacts the following iteration, and the next, and
the next, leading to more and more incorrect patterns and instances. If the iterative
approach is meant to be semi-automatic, human annotation would be very beneficial
to these filtering steps.

I put forward ten questions that should be asked before embarking on a knowledge
acquisition task, as these questions will orient our path toward the development of
a semi-automatic system and make us consider the interaction between human and
algorithmic efforts, within the iterative approach presented above.

1. What are the relations of interest? Which relation instances we hope to find
in text is entirely dependent on our initial motivation for performing an extraction
task. By motivation, I mean, why do we want to perform Relation Extraction and
how do we plan to use the extracted instances? As an example, let us assume we
have an interest in the medical domain, and our motivation is to “populate a medical
knowledge base.”
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If we start from an already-existing medical knowledge base (e.g., UMLS or
other), it will already contain multiple relations in its ontology (e.g., may_treat,
contraindicated_drug, and has_body_location). The extraction task does not
need to cover all of them, and we can zoom in on a few of these relations.

For our discussion, we will work with may_treat. And, at times, we will also go
back to our earlier motivation to “populate a movie knowledge base”with actor-in

as our relation of interest.
I point the reader to Appendix C for exploring other types of relations which could

correspond to differentmotivations.We can even challenge the prerequisite of having
relations of interest, as is done in Open Information Extraction (see Sect.C.9) based
on a breadth-coverage discovery motivation. Open Information Extraction does not
start with a particular relation list, but rather assumes that any frequent verb in a
corpus can serve as a predicate.

2. What is our apriori knowledge about the instances? If we focus on the
may_treat relation, the medical knowledge base might already contain valid
instances. For example, the pairs cimetidine/heartburn, clonidine/hypertension, and
clozapine/schizophrenia could be part of our medical knowledge base. If these pairs
are to be used to gather a development set (as we have done in Sect. 11.2) or start a
bootstrapping process (Sseed in Algorithm 10), it is crucial for them to be valid pairs.
Seed pairs found in curated knowledge bases published by recognized organizations
(such as the National Library of Medicine (NLM) publishing UMLS) can be trusted.
Seed pairs found in collective-based, non-curated knowledge bases should further
be validated through other sources.

Knowledge of even just a few instance pairs is quite useful, as it provide the
starting point (Sseed ) to search for explicit information in text. But that brings a related
question. What are the known surface forms for the instance pairs? This question
takes us back to the beginning of this book, to our first exploration of surface forms
in Chap.2. Knowledge of variations in surface forms is important when searching
for entities in text. For example, knowing that hypertension and high blood pressure
are synonyms will allow to search for either one in text, in relation to clonidine.

We hope for various forms to be provided in the knowledge base. And if not, then
we might need to embark on another knowledge extraction process, one of synonym
search, as we performed in our experiment in Sect. 11.4.

3. What is our apriori knowledge about the semantic types? In step (f) of Algo-
rithm 10, we filter instance pairs just retrieved by our set of patterns. A good filtering
approach, to limit semantic drift, is to restrict these instances to particular semantic
types.

For example, UMLS predefines different semantic types in its ontology, such
as Anatomy, Device, Disorder, Drug, Gene, and Procedure. Among these semantic
types, the relation may_treat is restricted to occur only between a Drug and a
Disorder. We can then filter the instance pairs which are not of these types. But that
would suppose that we can actually recognize those types. This is exactly the type
of semantic processing we hope to have access to, as we will discuss in Question 8.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
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4.What are the available and/or appropriate textual resources? In Sect. 11.1, we
discussed the interdependence between relation type, degree of explicitness expected,
and textual resources. The choice of corpus is sure to impact the output of the system,
as it provides the rawmaterial for the knowledge acquisition process. Our motivation
and our set of relations should guide our choice of corpora.

Hopefully, to search for instances of may_treat, we would have access to a
corpus of medical texts. The medical domain is quite important and does contain
numerous scientific publications. But we might be tempted to just try the Web-as-
Corpus (see Chap.5) approach, since, for sure, we will find medical information
among such large amount of data. Perhaps, but such choice will come at a cost. A
larger and more diverse corpus implies more ambiguity and more noise, meaning
that generic patterns will likely be unusable. For example, imagine how the pattern is
indicated for would be a good indicator of the may_treat relation if applied to drug-
related information, but it would become useless in a corpus covering all kinds of
information. Unless we have access to other semantic processing tools (see Question
8) able to correctly identify the semantic type of the instance pairs to filter out the
ones that do not correspond to the required Drug and Disorder types.

Another issue with the Web-as-Corpus is trust. The Web will contain many non-
expert opinions on medical topics. It is certainly a good place to discover may_treat
instance candidates, but human validation will be required before including any of
the extracted information into a knowledge base.

5. What is the a priori knowledge about the patterns? As we worked through
the actor-in example earlier in this chapter, to manually identify which part of a
sentence would constitute a pattern, we had to rely on our a priori knowledge of
word meanings. For example, knowing that the words role and stars have semantic
significance in the world of movies and actors is a priori knowledge which suggests
that we should keep these words as part of the patterns. For example, knowing that
role is a trigger word would justify the following pattern F has A in the role, rather
than simply taking the middle context F has A which is overly ambiguous.

Without this a priori knowledge, it is very hard to delimit which part of a sentence
should be kept as part of a pattern. That explains why it is common to simply take
the middle context, already delimited on each side by the entities from the instance
pair. To this middle context, we might arbitrarily add one or two words to each side
of the entities.

As for the actual set of patterns, Algorithm 10 starts with an empty set and will
use the seed pairs to find its first patterns. Assume our corpus C is Wikipedia,
and our seed pairs Sseed are cimetidine/heartburn, clonidine/hypertension, cloza-
pine/schizophrenia. The following sentences are found:

Cimetidine is largely used in the treatment of heartburn and peptic ulcers.
Clonidine is a medication used to treat high blood pressure.
Clozapine, is mainly used for schizophrenia that does not improve following the use of other
antipsychotic medications.

Notice the synonym high blood pressure is found, as an alternative to hypertension
(see information about surface forms in Question 2). Taking the middle context

http://dx.doi.org/10.1007/978-3-319-41337-2_5


11.5 Toward a Semi-automatic Process of Knowledge Acquisition 223

provides our first patterns in which instances are replaced by their required semantic
types (Question 3).

Drug is largely used in the treatment of Disorder
Drug is a medication used to treat Disorder
Drug, is mainly used for Disorder

6. What linguistic tools are available for analyzing the textual resources? We
have seen through our pattern development that the choice of pattern representation
will directly influence the search capacity of a pattern. Our first patterns for the
may_treat relation, shown in the previous question, are simply lexical patterns,
requiring no linguistic processing at all. In this chapter, we have also seen lexico-
syntactic patterns, relying on the output of a few modules in the NLP pipeline:
tokenization, lemmatization, and POS tagging. POS taggers are available for English,
but that is not true of all languages. The simpler we keep the representation, the more
language independent it is.

Furthermore, a knowledge extraction process relying on linguistic processing
should take into consideration the tools performance and typical mistakes. We saw,
in Sect. 11.3.1, how the POS tagging of stars can be mistaken from verb to noun,
impacting the results of search patterns requiring the POS of stars to be a verb.
The same could happen with the verb treat useful to find may_treat relations, but
possibly mistaken for the noun treat which conveys a very different meaning.

Still, lexico-syntactic patterns can be quite powerful for Relation Extraction, and I
would suggest that if you have access to linguistic tools, then you could compare them
to lexical patterns to evaluate their relative performances before making a decision.

7. What generalization can be performed on patterns? Pattern generalization is
a complex step which is entirely dependent on the pattern representation chosen.
Assume we decided on a lexical representation, then the possibility of generalization
through parts of speech is just not possible. Each representation brings with it some
possible generalization operators. For lexico-syntactic patterns, we can generalize a
word to its lemma, or its part of speech. For lexical patterns, generalization operators
can be wildcards for the replacement of a word in a pattern, or a set of words, or
just a word ending. For example, inserting two wildcards in the first pattern from
Question 5 allows a newly generalized pattern to cover examples it has never seen
before, increasing its recall.

Starting pattern: Drug is largely used in the treatment of Disorder
Generalized pattern : Drug is * used * the treatment of Disorder
Possible sentence coverage :
Drug is largely used in the treatment of Disorder
Drug is mostly used in the treatment of Disorder
Drug is largely used for the treatment of Disorder
Drug is often used for the treatment of Disorder
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But unfortunately, the same generalization now also allows:

Drug is not used for the treatment of Disorder
Drug is never used in the treatment of Disorder

Negation words (not, never) are problematic in generic patterns and will for sure
decrease precision, leading to semantic drift. Human validation of instances can
prevent this semantic drift. In Exercise 11.4, you will have a chance to program and
test generalization operators.

8.What are the other semantic processingmodules available?ARelation Extrac-
tion systemwill best perform if it can work in tandemwith other semantic processing
tools, especially tools focusing on entity search. Aswementioned inQuestion 3, rela-
tions such as may_treat have specific restrictions on their participants. The relation
may_treat requires a Drug and a Disorder. Our previous example of actor-in

requires a Person and a Movie.
Named Entity Recognition (NER) aiming at recognizing instances of particular

entity types in text is quite a popular task and NER software does exist. NER soft-
ware usually targets common types such as Person, Date and Organization. More
specialized Named Entity Recognizers would be required for entity types such as
Drug, Device, Procedure, or Gene defined in UMLS.

We will further explore the difference between various entity types in Chap. 13,
and we will discuss the use of NER software and gazetteers to find particular entity
types in text.

9.What human annotation effort can be used in the process? To prevent semantic
drift, human annotation is very valuable for filtering both patterns and instances,
corresponding to steps (c) and (f) of Algorithm 10. Depending on their expertise,
they might feel more at ease filtering instances than patterns.

Many research publications address this question of semantic drift and propose
methods to counter it without human intervention. Notice that the human can do
the validation without negative examples, but an automatic process could not, as it
requires false positives for evaluating precision measure. We have not yet discussed
the use of negative examples in this chapter, and that is left to Exercise 11.1(b) for
you to explore.

10. What are the evaluation criteria for measuring the success of our process?
At the end of our Relation Extraction process, how would we measure its success?

Our typical recall, precision and F1 measures are based on the capability of an
algorithm to retrieve what we know should be found (what we put in the gold stan-
dard). But in a discovery task, such as Relation Extraction, we do not know ahead of
time what we are looking for. One evaluation approach is to simulate discovery by
“hiding” part of our knowledge, and measuring how good the algorithm is at retrieve
this hidden information.

Assume we have a set of 100 valid instances of the relation may_treat. Then we
take a random set of 10 instances, as our seed set Sstart required by the algorithm.
We allow the algorithm to perform its iterations, and then validate whether it found
the other 90 instances.

http://dx.doi.org/10.1007/978-3-319-41337-2_13
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Following the idea of cross-validation (see Chap.3, Sect. 3.4.3), we repeat our
experiment 10 times, varying the seed set each time, and measuring the performance.
At the end, we average the results over the 10 experiments.

Such evaluation strategy is not entirely satisfying as it does not account for the
algorithm’s capability at discovering instances not included in the initial set. Yet, we
forecast that an algorithm with high precision/recall on the initial set will be likely
to bring valid new instances, certainly more so than an algorithm with low results on
the initial set.

11.6 In Summary

• Not all forms of text are equivalent from an Information Extraction standpoint.
The type of text we should focus on depends on the type of information we are
looking for.

• Not all relations are as likely to be discovered through pattern-based approaches.
The underlying hypothesis for pattern-basedRelation Extraction is that the relation
is explicitly stated in text.

• Informative text provides information about a certain topic, whereas narrative text
tells a story.

• Wikipedia is widely used as a resource in NLP, due to its encyclopedic nature and
widespread availability.

• Performing a manual analysis of data is a good way of getting insight into a
problem, and the possible solutions to be explored.

• There is a high degree of variability in the expression of synonymy in text, even
in the very restricted setting of the first sentence of a Wikipedia page. We expect
even more variability in the language at large.

• Regular expressions are naturally a good tool for lexical pattern search.
• For lexico-syntactic patterns, concatenating results of the lemmatizer and part-of-
speech tagger into a large string allows the use of regular expressions for search.

• Lexical patterns will tend to provide higher recall but lower precision than lexico-
syntactic patterns.

• Lexico-syntactic patterns results will be dependent on the linguistic tools used to
process the textual data to be searched on.

• Bootstrapping approaches to knowledge acquisition suffer from the problem of
semantic drift.

• To better define a semi-automatic process of knowledge acquisition, we can go
through a set of questions to guide us.

http://dx.doi.org/10.1007/978-3-319-41337-2_3
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11.7 Further Reading

Survey of relations: A nice overview of different types of relations is presented in
Nastase et al. (2013). Appendix C also points to various relation lists.

Pattern-Based Relation Extraction: Given the popularity of this research field, I
only provide a few important articles to look at and encourage the reader to find
many more, particularly in line with their specific interest. I must acknowledge
Hearst (1992) and her much cited work on Automatic Acquisition of Hyponyms
from Large Text Corpora, and Brin (1998) also much cited for putting forward an
iterative approach called DIPRE (Dual Iterative Pattern Relation Expansion). For
early work on large text collections, see Agichtein andGravano (2000). The term rote
extractor was used inAlfonseca et al. (2006).More specific goals, such asworking on
biographic facts, are presented inMann andYarowsky (2005), or attemptingQuestion
Answering through the use of surface patterns is presented inRavichandran andHovy
(2002). For the specific relation of synonymy, exploring Web-as-Corpus, see Turney
(2001).

UMLS expansion: UMLS is available at https://www.nlm.nih.gov/research/umls/.
For research on instance search for UMLS relations, see Halskov and Barrière (2008)
and Barrière and Gagnon (2011).

Text types: I briefly introduced the idea that different types and genres of text will
contain different information and be more or less likely to be useful in knowledge
extraction. An article by Roussinov et al. (2001) discusses the idea of genre-based
navigation on the Web. This article would be a good starting point for the reader
interested in this topic and would lead to many other references.

11.8 Exercises

Exercise 11.1 (Lexical and Lexico-Syntactic Patterns)

a. Write a program to test the actor-in lexical and lexico-syntactic patterns defined
inSects. 11.2 and11.3.Write the regular expressions andvalidate that they retrieve
all six instances of the relation from ActorCorpus.

b. Think of how to further relax the actor-in patternswritten in exercise (a) tomake
them more generic. Write new regular expressions corresponding to your ideas
(2–3 new regular expressions for both Lexical and Lexico-Syntactic Strategies).
Test your regular expressions on the ActorCorpus. Do you still get 100% recall
on the corpus? To evaluate if you are introducing many false positives with the
more generic patterns, you must test them on sentences which should NOT lead
to instances of actor-in. For example, test your patterns on sentences from
Table11.7. Any false positive found in those sentences?

https://www.nlm.nih.gov/research/umls/
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Table 11.12 Small ActorTestCorpus

No. Sentence

1 Raising Arizona is a 1987 American black comedy film starring among others Nicolas
Cage and Holly Hunter.

2 Miller’s Crossing is a 1990 American neo-noir gangster film, starring Gabriel Byrne,
Marcia Gay Harden, and John Turturro.

3 Barton Fink written, produced, directed and edited by the Coen brothers, is set in
1941, and stars John Turturro in the title role.

4 In the film The Hudsucker Proxy, Tim Robbins portrays a naïve business-school
graduate.

5 Billy Bob Thornton stars in the title role of the movie The Man Who Wasn’t There,
which also features Scarlett Johansson.

6 The film Intolerable Cruelty, directed and cowritten by Joel and Ethan Coen, stars
George Clooney and Catherine Zeta-Jones.

c. As a better source of negative examples, gather ten sentences from biographies,
book descriptions, or even symphony descriptions fromWikipedia. Test the orig-
inal actor-in regular expression patterns from exercise (a). Do these patterns
extract many false positives? What about your new patterns in exercise (b), do
they extract many false positives?

d. Use the ActorTestCorpus shown in Table11.12 to further test your set of patterns,
from exercise (b). What is the overall precision/recall if the test set includes the
six sentences from ActorTestCorpus and ten sentences from exercise (c)?

Exercise 11.2 (Synonym resources)

a. To gain an appreciation of the value of Wikipedia as a textual resource for syn-
onym search, go through both Tables11.5 and 11.8 and identify the synonyms
that are already part of Semantic Web datastores, such as DBpedia. To find syn-
onyms, use the label predicates (e.g., rdfs:label) or the redirection predicates
(dbpedia:WikiPageRedirects). Use this information to quantify Wikipedia’s
contribution to the set of synonyms.

b. What about alternative textual resources? Search for other online textual
resources that include the synonyms found in Table11.5. Do you find any? If
so, what are they? Could they be downloaded to be used as corpora?

Exercise 11.3 (Synonym search)

a. Program the regular expression for eachof the lexical patterns shown inTable11.6.
Test them on the sentences from Table11.7. Are the results comparable to those
for Table11.10?

b. Repeat exercise (a), but for lexico-syntactic patterns.
c. Experiment with the POS tagger from the Stanford CoreNLP. Try tagging the

sentences from both Tables11.4 and 11.7. Get a sense of the variability in tagging
results. Discuss how this can impact the development of lexico-syntactic patterns.
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d. Develop a new dataset for evaluation. First, think of twenty words and write them
down, and then gather the first sentence for each word from its Wikipedia page.
Manually prepare a test set from these sentences. Using this new test set, test out
the patterns you programmed in exercises (a) and (b). How do they perform?

e. In this chapter, we defined patterns for the first sentences of Wikipedia pages. Let
us see if these patterns are likely to work on noisier data. First, let us gather sen-
tences from the Web containing the synonyms from Table11.5 and/or Table11.8.
Using your favorite search engines, search for pages containing each pair (e.g.,
insect repellent/bug spray, notebook/laptop). Explore the documents returned,
and manually gather sentences containing both words. Once you have found ten
sentences covering at least 5 different pairs, use them as a new “noisy” test corpus.
Test out the patterns you programmed in exercises (a) and (b) on this new corpus.
How do they perform?

Exercise 11.4 (Pattern generalization)

a. Let us use DBpedia to gather instance pairs and textual information about the
actor-in relation. Use the following SPARQL query to automatically gather 20
sets of (actorname, filmname, abstract) through the DBpedia SPARQL endpoint.

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <$http://www.w3.org/rdf-schema/>
select ?actorname ?filmname ?abstract where {

?film dbo:starring ?actor .
?actor rdfs:label ?actorname .
?film rdfs:label ?filmname .
?film dbo:abstract ?abstract .

}

Use a slightly different query, replacing actor by director (predicate
dbo:director) to obtain a negative set of 20 sentences. Then, take 20 sentences
(10 positive, 10 negative) as your development corpus and hide the other 20 for
a later use as test corpus.

1. Manually develop your own lexical patterns and refine them until you obtain
good performances on the development corpus. Decide on what you think
good performances are and justify your decision.

2. Using the same development corpus, automatically develop different sets of
patterns. The patterns will range from very specific to more general. Here are
different sets of patterns you can automatically build.
• Set 1 : Lexical patterns “as is” (no changes - full sentences).
• Set 2 : Lexical patterns from text segments in-between the film and actor.
• Set 3 : Same as Set 2, but adding two words on the right and left of the
film and actor.

• Set 4 : Same as Set 2, but adding the text segment to the left or right
up to trigger words. Automatically find trigger words by calculating word
frequency on your development corpus, and assume the top five content
words are trigger words.
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• Set 5 : Lexical patterns including random one-word wildcards.
• Set 6 : Same as Set 5, but with wildcards included only where 2 patterns
from Set 2 differ by a single word. For example, if both A stars in the
funny movie F and A stars in the great movie F are included in Set 2,
than generalize to A stars in the * movie F .

3. Compare the different sets of patterns on the development corpus using preci-
sion/recall measures. How does your manual set compare to an automatically
generated set?

4. Same question as 3 but now on the test set.
5. Adapt sets 1 to 6, for lexico-syntactic patterns, and test them. How do the

results compare to the lexical patterns?

Exercise 11.5 (Semi-automatic knowledge acquisition)

a. Perform a semi-automatic Relation Extraction experiment for the may_treat

relation, following the iterative algorithm shown in Algorithm 10. Here are guide-
lines for your experiment.

1. Start with the three seed pairs cimetidine/heartburn, clonidine/hypertension,
and clozapine/schizophrenia presented in Sect. 11.5.

2. As your corpus, use the list of essential medicines from the Word Health
Organization. Gather the Wikipedia pages assigned to the Wikipedia cat-
egory https://en.wikipedia.org/wiki/Category:World_Health_Organization_
essential_medicines. You can adapt the code you wrote in Exercise 5.2 (a), in
Chap.5, which was for building domain specific corpora on composers and
mobile phones.

3. To automatically generate the patterns from the sentences (step (b) in Algo-
rithm10), use variousmethods explored in Exercise 11.4, inwhichwe created
various sets of patterns.

4. To filter the patterns and the instances, I suggest to include yourself as a
human annotator.

b. Discuss the process, the results obtained and the experience of being a human
annotator. Do you think you were essential in the semi-automatic process to
prevent the semantic drift?

https://en.wikipedia.org/wiki/Category:World_Health_Organization_essential_medicines
https://en.wikipedia.org/wiki/Category:World_Health_Organization_essential_medicines
http://dx.doi.org/10.1007/978-3-319-41337-2_5


Chapter 12
From Syntax to Semantics

A language’s syntax provides a set of grammar rules for properly organizing the
words in a sentence to make it semantically interpretable. A sentence such as John
gives a book to Mary, because of its construction using proper English grammar
rules, is semantically interpretable, as opposed to an arbitrary sequence ofwords John
Mary a gives to book which leaves us puzzled as to the underlying interpretation.
An example of a grammar rule would state that a verb phrase (gives a book) can be
constructed by combining a verb (gives) and a noun phrase (a book).

Note that semantically interpretable does not infer semantically plausible. For
example, the sentence The desk gives a sun to Zoe. is semantically interpretable, but
within our current world, the interpretation of a desk being an animate object able of
giving, and a sun being something the desk can give, is, to say the least, challenging.
To rephrase this last statement using the terminology introduced in Chap. 9, we can
say that the entities (desk, sun) in the sentence The desk gives a sun to Zoe. are quite
difficult to ground to our mental grounding space.

The purpose of this chapter is to understand this gap between syntax and semantics
and developNLP approaches which try to fill it. To do so, we start with an exploration
of the syntactic side, then jump to an exploration of the semantic side, and then look
at the in-between steps necessary to go from a syntactic interpretation of a sentence
into a semantic interpretation of a sentence.

On the syntactic side, this chapter introduces a common type of grammar used for
syntactic processing in current NLP research: dependency grammars. Dependency
parsers are different in their output than the parse trees generated by constituency
parsers, which we presented in Chap.8. Dependency parser results can be shown
in predicate-like form, made of a grammatical relation, a source, and a target term.
For example, nsubj(eats,John) would be obtained from the sentence John eats. and
express explicitly the dependency between the verb eats and its subject John. Such
representation will be familiar to the Semantic Web audience.

Jumping to the semantic side, we look at a formalism for semantic sentence inter-
pretation, called semantic frames. Semantic frames define typical events and the
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semantic roles performed by the participants in the event. For example, a frame
describing a driving event would include semantic roles such as driver, path, destina-
tion, and vehicle used. The resource FrameNet contains hundreds of such semantic
frames, and it has become a very valuable resource within the NLP community for
researchers interested in frame-based sentence interpretation.

We will then provide a link between syntax and semantics, by suggesting a
semi-automatic method for the acquisition of syntactic realizations of semantic
roles. These syntactic realizations are grammatical dependencies likely associated
with the expression of a semantic role in a sentence. We will then test our method
within a semantic role labeling experiment, in which we will process sentences into
a frame-based semantic interpretation.

We end this chapter by bridging the gap between frame-based sentence interpreta-
tion andRelation Extractionwhichwas the topic of Chap. 11.Wewill show how the
syntactic realizations used for semantic role labeling can become syntactic patterns
for Relation Extraction, providing an alternative to the lexical and lexico-syntactic
patterns presented in the previous chapter.

12.1 Dependency Grammars

In Chap.8, Sect. 8.5, as part of the NLP pipeline, we introduced constituency pars-
ing, which generates as output a phrase-structure tree. These trees are very good at
highlighting the actual grammatical rules underlying the structure of a sentence, but
they seem remote from semantics. There is a different kind of grammatical represen-
tation, called dependency graphs, whose purpose, as its name suggests, is to show
the different types of dependencies between words. We will see in this chapter that
these dependencies bring us a step closer to a semantic interpretation.

When parsing a sentence with a dependency parser, the resulting graph is a set of
dependencies, each involving a headword and a dependentword from the sentence.
Let us look at the resulting dependency graph for an example from the CookCorpus

introduced in Chap.8, The cook supervises all kitchen staff. as generated using the
Stanford CoreNLP Dependency Parser.

The cook supervises all kitchen staff.
root(ROOT-0, supervises-3)
det(cook-2, The-1)
nsubj(supervises-3, cook-2)
det(staff-6, all-4)
compound(staff-6, kitchen-5)
dobj(supervises-3, staff-6)

Important dependencies are nsubj and dobjwhich correspond to the grammatical
subject and grammatical object of a verb, not to be confused with the notion
of subject and object of predicates familiar to the Semantic Web community. It is
better to use the terms head and dependant to refer to the subject and object of a
grammatical dependency.

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8


12.1 Dependency Grammars 233

Within the dependency graph, a number is attached to each word, indicating its
position in the sentence. This is necessary as to differentiate betweenword forms and
word occurrences. For example, the phrase the cook is in the kitchen contains two
occurrences of a single word form the. An explicit numbering, as in the-1 cook-2 is-3
in-4 the-5 kitchen-6, allows the two occurrences (the-1, the-5) to be differentiated.

Notice in the dependency graph, how words can be both heads and dependants in
different dependencies. Notice also the presence of a root dependency, providing an
entry point into the graph, leading most often to the main verb of the sentence. This
is different from the phrase-structure tree in which the root of the tree is the overall
constituent S, representing a sentence.

In the example above, we observe that cook-1 is the subject (nsubj) of supervises-3
and that staff-6 is the object (dobj) of supervises-3. We also observe that The-1 is
the determiner (det) for cook-2 and all-4 is the determiner (det) of staff-6. Notice
also that compound nouns are made explicit via the compound dependency, as with
kitchen staff becoming compound(staff-6,kitchen-5).

Any dependency grammar will define many types of dependencies. Analyz-
ing sentences from the CookCorpus presented in Chap.8, using Stanford CoreNLP
Dependency grammar, provides a good overview of various dependencies avail-
able in that grammar. Table12.1 shows examples of different types of dependencies
resulting from that analysis. The first column specifies the identifying number for
the sentence in CookCorpuswhich was analyzed. The second and third columns give
the short and long names of the dependency. Columns four and five provide the head
and modifier for each dependency. The last column gives the sentence segment from
which the dependency was extracted.

Table12.1 is not an exhaustive list of the dependencies found in analyzing Cook-

Corpus. The table rather contains a sample of the dependencies, chosen to illustrate a
variety of dependency types. We see that human interpretation of these dependencies
is easier than the analysis of phrase-structure grammar results. We move one step
away from the actual constituents and part-of-speech tags, and focus on the relation
between words. What is highlighted in those dependencies is how words relate and
that provides an easier link toward semantic. Below, we compare the constituency
tree and the dependency graph for Sentence 10, The two cooks reflected and found a
way out. from CookCorpus.

• Constituency Parsing

S --> NP --> (DT The)
--> (CD two)
--> (NNS cooks)

--> VP --> VP --> (VBG reflected)
--> (CC and)
--> VP --> (VBD found)

--> NP --> (DT a)
--> (NN way)

--> PRT --> (RP out)

http://dx.doi.org/10.1007/978-3-319-41337-2_8
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• Dependency parsing

root(ROOT-0, reflected-4)
det(cooks-3, The-1)
nummod(cooks-3, two-2)
nsubj(reflected-4, cooks-3)
nsubj(found-6, cooks-3)
cc(reflected-4, and-5)
conj:and(reflected-4, found-6)
det(way-8, a-7)
dobj(found-6, way-8)
compound:prt(found-6, out-9)

Table 12.1 Types of dependencies with examples from CookCorpus

Sent Dependency Name Head Dependent Segment

3 dobj object cooked balls cooked balls

3 nsubjpass passive form
subject

cooked dumplings dumplings are
cooked balls

3 nmod:of prepositional
modifier

balls dough balls of dough

3 auxpass passive form
auxiliary

cooked are are cooked

4 advmod adverbial
modifier

stir well stir well

4 conj:and conjunction stir cook stir well and cook

4 nmod:for prepositional
modifier

cook time cook for some
time

4 det determiner time some some time

7 dobj object cook rice cook rice

7 advcl adverbial clause cook steam cook by steaming

9 nsubj subject continues she she continues

9 xcomp verbal
complement

continues write continues to write

10 nummod numeral modifier cooks two two cooks

10 compound:prt verb compound found out found a way out

11 amod adjectival
modifier

heat radiant radiant heat

12 aux verb auxiliary cooking are they are cooking

12 nmod:for prepositional
modifier

cooking us cooking for us

13 nmod:in prepositional
modifier

outside summer outside in
summer

13 xcomp verbal
complement

helps keeping helps keeping

13 compound noun compound cool house keeping the house
cool
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Notice in the dependency graph that cooks as subject is distributed to both verbs
reflected and found, in the dependencies nsubj(reflected-4, cooks-3) and nsubj(found-
6, cooks-3). This distribution of conjunctions in individual dependencies renders
explicit the fact that cooks found as well as cooks reflected. Such distribution is valu-
able when searching for information in text, as it captures long-distance relations
which would not be found in sequence models.1 The conjunction is present in the
phrase-structure tree (CC and), but not explicitly distributed. Another type of depen-
dency nicely captured is the compound verb, found out, which was hidden within
found a way out. Again, the phrase-structure tree contains it, but the dependency
graph makes it explicit in the dependency compound(found,out).

The dependencies found are still not semantic dependencies. Knowing that a word
is the subject of a verb is still a step away from knowing the role that this word is
playing in the action. Typical roles can be expressed in semantic frames, which we
explore in our next section, as we jump on the semantic side.

12.2 Semantic Frames

We now jump from syntax to semantics. On the syntactic side, we explored depen-
dency graphs, while also revisiting phrase-structure trees as we examined the type
of output produced by dependency parsers in comparison with constituency parsers.
On the semantic side, the topic of this section, we will focus on one semantic inter-
pretation of sentences, the one provided by semantic frames.

There has been interest in frames since the early days of artificial intelligence and
knowledge representation. A reference to early work by Fillmore (1968), The Case
for Case, is required, to pay tribute to his work. He suggested that a sentence is a
verb plus one or more noun phrases (NPs) and that each NP has a deep-structure
case. Such case can be agentive, instrumental, dative (recipient), factitive (result),
locative, or objective (affected object). These early ideas later evolved into frame
semantics in which deep-structure cases have become frame elements, which have
quite diversified and been adapted to the different frames defined.

Also, today, when thinking of frame semantics, we think of the large endeavor
of FrameNet, developed at the Computer Science Institute of Berkeley, California,
being very much active and in use. Exploring FrameNet, we find thousands of frames
for events and activities of varied specificities. Each frame contains frame elements,
which refer to the different semantic roles played by the different elements used to
describe the event.

Table12.2 shows a few frameswith some of their frame elements. The first column
provides the frame name, and the second column lists a few frame elements for that
frame. Frame elements can also be referred to as semantic roles. In Table12.2, we
can see a variety of semantic roles, as they vary from being active participants (e.g.,
Judge) to passive locations (e.g., Location). As we observe in Table12.2, we are
not any more in the realm of syntax and grammatical relations. We are fully in the

1For a presentation of sequence models, see Chap.6.

http://dx.doi.org/10.1007/978-3-319-41337-2_6
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realm of semantic, where frames are defined to provide semantic interpretations of
sentences. The last column of the table identifies, in example sentences, the presence
of the frame elements (semantic roles).

Table 12.2 Examples of semantic frames

Frame Frame Elements Example

Apply_heat Cook
Food
Duration

[CookHelen] cooked the
[Foodpotatoes] for
[Duration10min].

Being_employed Employee
Employer
Location
Task

[EmployeePaul] is working as a
[Taskcarpenter] at [EmployerQW
Builders].

Facial_expression Conveyed_emotion
Expression
Possessor

[PossessorHe] was
[Expressionsmiling] with
[Conveyed_emotionpride].

Fall_asleep Sleeper [Sleeper John] fell asleep early.

Growing_food Food
Grower

The [Grower farmer] planted
[Foodbroccoli].

Memorization Cognizer
Pattern

[CognizerLucy] learned the
[Patternalphabet].

Use_vehicle Driver
Goal
Path
Vehicle

The [Driver captain] safely
sailed to [GoalBarcelona].

Let us further develop one frame, that of Apply_heat, which is one of the possible
frames for interpreting the examples in the CookCorpus discussed earlier. FrameNet
provides a short definition of the frame elements it contains,2 as shown in Table12.3.
The table also shows a short form (column 2) which we will later use to refer to

Table 12.3 Frame elements for Apply_heat

Frame element Short form Definition

Container Container The Container holds the Food to which heat is applied.

Cook Cook The Cook applies heat to the Food.

Food Food Food is the entity to which heat is applied by the Cook.

Heating_instrument HeatInst The entity that directly supplies heat to the Food.

Temperature_setting TempSet The TempSet of the HeatInst for the Food.

Beneficiary Beneficiary The person for whose benefit the Food is cooked.

Duration Duration Duration is the amount of time heat is applied to the Food.

Place Place This identifies the Place where the heat application occurs.

2In FrameNet, the list of frame elements is divided into core and non-core elements. We will not
go into this differentiation for our current exploration, as the approach we develop is indifferent to
such characterization.
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the frame elements. We can see, in this table, how all the elements are explained in
reference to the roles they play within the activity of applying heat.

This section was a very brief introduction to semantic frames, which provide one
possible representation formalism for sentence representation. We now turn to the
challenge of processing sentences in order to generate frames.

12.3 From Sentences to Semantic Frames

From a NLP point of view, the frame representation presented in the previous section
provides the end-goal of a sentence analysis process. To reach this end-goal, wemust
go through two challenging tasks, one of automatic frame identification, and one
of semantic role labeling. Let us explore these challenges further.

12.3.1 Automatic Frame Identification

Automatic frame identification is the task of automatically determining which
frame to use to interpret a particular text segment. The main obstacle to this task
is the many-to-many relation between surface forms and entities, as we have talked
about over and over during the course of this book. Again, we face polysemy and
synonymy as our challenges.

Let us continue on our earlier example of cooking and look at the possible frames
associated with that word. First, we find out that FrameNet contains five lexical units:
cook up.n, cook.v, cook.n, cooking.n, cooking.v. And these lexical units are linked to
five different frames, as we show in Table12.4. The table provides the name of the
frame (column 1), the possible lexical units for each frame (column 2), and then, to
complicate things further, other possible lexical units for each frame (column 3).

Table 12.4 Various cooking-related frames and lexical units

Frame Lexical units Other possible lexical units

Coming_up_with cook up.v coin.v, concoct.v, design.n, design.v,
devise.v, improvise.v, invent.v, think up.v

Cooking_ creation cook.n, cook up.v,
cook.v, cook.n

concoct.v, fix.v, make.v, preparation.n,
prepare.v, put together.v, whip up.v

People_by_vocation cook.n actress.n, architect.n, carpenter.n, clerk.n,
engineer.n, farmer.n, journalist.n

Apply_heat cook.v, cooking.n bake.v, barbecue.v, blanch.v, boil.v, deep
fry.v, fry.v, melt.v, poach.v, simmer.v

Absorb_heat cook.v bake.v, boil.v, braise.v, broil.v, brown.v,
char.v, grill.v, parboil.v, poach.v, simmer.v
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Given these five possible frames, how would we decide which to elicit when the
word cook appears in a sentence? We described in Chap.8, a method to perform a
coarse-grained linguistic-level disambiguation, using POS tags. This method could
provide a coarse-grained differentiation between the verb set (Coming_up_with,
Cooking_creation, Apply_heat, Absorb_heat) and the noun set (Cooking_creation,
People_by_vocation, Apply_heat). Unfortunately, the two sets are not disjoint, and
further disambiguation is required.

Such disambiguation could perhaps rely on the grounding strategies, presented in
Chap.9, but unfortunately, those are unlikely to perform well here. The BOW-Match
algorithm or even the refined BOW-Similarity algorithm3 we previously explored,
aimed at differentiating unrelated entities, such as Beethoven (Film) and Beethoven
(Composer). The algorithms relied on the fact that the entities in the grounding space
would be defined using words pertaining to different topics. In the present case of
the many frames for cook, the meaning difference between most frames is too fine
grain for such algorithms to work. The frames’ respective definitions are likely to
contain many related words, from the same subject matter, making our BOW-Match
or BOW-Similarity algorithms unable to decide which frame can best serve as a
semantic interpretation of a contextual occurrence of cook.

One possible disambiguation approach is to consider all frames referenced by
the lexical unit cook as candidate frames and then make an attempt at sentence
interpretation with each one trying to perform semantic role labelingwithin each of
the possible candidate frames. Since each frame specifies a different set of semantic
roles, the result of semantic role labeling on each frame will be different. We can
then select the frame for which the semantic role labeling task was most successful.
We do not pursue specifically on the disambiguation task in this chapter, but we do
focus next on identifying semantic roles.

12.3.2 Semantic Role Labeling

Semantic role labeling is the task of automatically assigning semantic roles to
sentence words. Our starting point for tackling this task is to take a closer look at
syntactic realizations provided in FrameNet. A syntactic realization is a particular
grammatical dependency, found in a sentence, which expresses a semantic role.

For many frames, FrameNet contains human annotation of sentences, where syn-
tactic realization of semantic roles is explicitly tagged. In Table12.5, we see exam-
ples of such annotations (column 2). Since we are more familiar in this book with
the dependencies listed in the Stanford CoreNLP parser (see Table12.1), I provide
the corresponding Stanford dependencies (column 3), which we will work with in
the remaining of the chapter. For example, the first line of the table shows that the
nmod:in dependency is a possible syntactic realization of the Container frame ele-
ment.

3See Chap.9, Sect. 9.6 for an introduction to the BOW-Match algorithm. The BOW-Similarity
algorithm was later presented in Chap.10, in Sect. 10.5.2.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_9
http://dx.doi.org/10.1007/978-3-319-41337-2_10
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Table 12.5 Syntactic realizations of Apply_heat frame elements

Frame Element Realizations in FrameNet Stanford CoreNLP Dep

Container PP[in].Dep nmod:in

Cook PP[by].Dep nmod:by

Duration PP[for].Dep nmod:for

Food NP.Obj dobj

HeatInst PP[in].Dep, PP[on].Dep nmod:in, nmod:on

TempSet PP[over].Dep, PP[on].Dep nmod:over, nmod:on

Based on these syntactic realizations, we can discover frame elements. A first
semantic role labeling algorithm consists in directly linking each occurrence of a
syntactic realization to its corresponding frame element. For example, if we parse
a sentence in which a dependency dobj(cook,potatoes) is found, we could tag the
semantic role of potatoes as Food since dobj(cook) is a syntactic realization of Food.
Now, what if we find nmod:in(cook,bowl), then do we tag bowl as Container or as
HeatInst?

Here is a problem of ambiguity again. Syntactic realizations are polysemous,
in the sense that they link to multiple possible semantic roles. In Table12.6, we
highlight this ambiguity. The first column shows the ambiguous syntactic realization,
the second column provides two alternative frame elements for each realization, and
the third column shows an example of the syntactic realization for each possible
frame element.

Table 12.6 Polysemy of grammatical dependencies

Syntactic realization Frame Element Example

nmod:in Container
HeatInst

Cook the vegetables in a saucepan.
Cook the vegetables in the microwave.

nmod:on HeatInst Cook all these things on the barbecue.

TempSet Cook all these things on full power.

nmod:for Duration Cook the rice for about 5min.

Beneficiary Cook the rice for your mother.

Notice how the example sentences look very similar to each other except for the
actual semantic role filler they contain. The role filler is the word (e.g., saucepan)
which can “fill the semantic role” (e.g., Container). This is equivalent in meaning
to saying that we perform a semantic labeling of a word (e.g., saucepan) with a
label (e.g., Container). That saucepan is a possible filler for Container, and not for
HeatInst, is a direct consequence of the intrinsic nature of the filler, which is not
capture by the grammatical dependency.
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Disambiguation among the possible semantic roles for each dependency will
require knowledge of their semantic types. Semantic types can be used to constrain
the nature of the semantic role fillers. For example, a Beneficiary should be a Person,
whereas aDuration should be a TimeLength. Semantic types play an essential role in
knowledge representation and knowledge extraction from text, and our next chapter,
Chap. 13, is entirely dedicated to that topic.

The next two sections will focus on developing and testing a strategy to extract
semantic role fillers, whether they are ambiguous or not. This will provide a set of
candidate fillers to be filtered out by semantic type constraints, in the next chapter.

12.4 Semi-automatic Acquisition of Syntactic Realizations

Now that we highlighted the fact that syntactic realizations are on the critical path
toward the discovery of semantic roles in sentences, let us look at how we can
acquire these syntactic realizations. Let us develop a strategy for the semi-automatic
acquisition of syntactic realizations for particular semantic roles, which I refer to
as Dependency-To-Role rules. I purposely opt for a semi-automatic method, as
to continue to emphasize the delicate balance between human annotation effort
and algorithmic effort toward generating interesting solutions. We first discussed
semi-automatic approaches in Sect. 11.5 in connection with the development of
semi-automatic Relation Extraction systems targeting different knowledge acqui-
sition goals.

The strategy I suggest can be divided into two steps, the first step requiring human
annotation effort and the second step requiring algorithmic effort.

1. A human will write prototype sentences illustrating a particular semantic role
within a sentence.

2. The prototype sentences will be automatically processed by a dependency parser
to generate dependency graphs, which will further be processed to find the short-
est path between a frame’s lexical unit and the semantic role filler word.

It is that shortest path that becomes a possible syntactic realization of the semantic
role. Let us go through both steps, in details, as to understand the human annotation
effort and the algorithmic effort involved.

12.4.1 Human Annotation Effort — Writing Prototype
Sentences

The idea of using prototype sentences to obtain dependency rules comes from the
hypothesis that humans would be better at writing short sentences than directly
writing dependency rules. For example, assume three possible syntactic realizations
for the Cook role in the Apply_heat frame are as follows:

1. nsubj(bake,X)
2. nmod:agent(barbecue,X)
3. nsubj(V,X) + xcomp(V,boil)

http://dx.doi.org/10.1007/978-3-319-41337-2_13
http://dx.doi.org/10.1007/978-3-319-41337-2_11
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Our hypothesis is that humans would have an easier time writing the three sen-
tences below than the dependency rules above:

1. John bakes a cake.
2. The fish was barbecued by our guests.
3. They prefer to boil potatoes.

Each sentence contains a lexical unit indicative of the Apply_heat frame (see third
column of Table12.4 for examples of such lexical units) and the semantic role Cook
which we want to capture. But, the information in the above sentences is insufficient
to automatically generate the syntactic realizations desired. We actually need the
annotator to explicitly indicate three things: the frame’s lexical unit, a semantic role,
and a semantic role filler. Let us establish a format for specifying this information
which is easy to use for annotators and easy to detect for a software program. Let us
set the lexical unit to be in capital letters, and the semantic role filler to be directly
followed by a‘/’ and the name of the role. With these requirements, what a human
annotator would need to write looks like the following:

1. John/Cook BAKES a cake.
2. The fish was BARBECUED by our guests/Cook.
3. They/Cook prefer to BOIL potatoes.

Now that we have specified a format for how to write prototype sentences, the
main issue remains: What sentences should we write?

A first rule is to trust corpus data more than our imagination. That means that the
prototype sentences should not just come from the top of our head, but rather, they
should be inspired by real corpus sentences in which a frame’s lexical unit is present.
For example, if we need inspiration for prototype sentences for the Apply_heat
frame, we would search in a corpus for sentences containing the words bake, blanch,
broil or any other lexical unit associated with that frame. Remember our concor-
dancer, developed inChap. 5? It can becomehandy for this exploration. For example,
Table12.7 provides many sentences containing the lexical unit bake. And although
there is much noise in that data, the set of sentences gives a sense of the expected
variability in the surface forms associated with the expression of semantic roles.

http://dx.doi.org/10.1007/978-3-319-41337-2_5
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Table 12.7 Exploration of frame-related lexical units with a concordancer

then plated with sour cherries and baked. During the baking process the cherrie
Murren are coated with eggyolk and baked at 210C (410F) for 20 minutes, until i
to as much as a gram a cookie) are baked into the product in careful steps, so
rench petit four), and popcorn are baked in large batches to serve to guests an
localized to Southeast Asia with a baked rice dish called Curry Zazzle.[23][24]
vegetables and herbs. These can be baked, fried or cooked in wine. Rolitos is a
h powdered sugar. Egyptians either bake it at home or buy it in the bakery. Thu
. Delivering poor results and half-baked ideas, it’s my regret to call Aliens v
tly getting into trouble with half baked plans [from which he] is regularly res
or fried, boiled or steamed. It is baked, traditionally, in open-wood-fire to a
he fish is often served steamed or baked.[130] Pork leg cooked with rock candy
00 loaves of bread a day that they bake in their solar-powered bakery, and is b
chili oil. Another variation is to bake the cream and fry it with bacon, which
ne, domesticated girl who likes to bake cakes for her best friend Yumiko. She h
large rootstock (a tuber) that was baked in a fire pit. The spelling is derived
wine and a hundred cakes of wheat baked in honey. All three stand up to claim

) or wooden barrels where the wine bakes in the sun for several years until it
bati, which are spicy lentils with baked balls of wheat with lots of ghee. The

It is worth mentioning that even before relying on concordancers for inspiration,
a first place to look is the resource FrameNet itself. FrameNet contains manual
annotation of syntactic realizations which provide many example sentences that can
be turned into prototype sentences for our purposes.

Let us now move to the algorithmic side of the semi-automatic method, assuming
the human effort has been performed, and a set of prototype sentences are ready to
be transformed into syntactic realizations.

12.4.2 Algorithmic Effort — Processing Prototype Sentences
into Syntactic Realizations

Let us go back to our three prototype examples, written earlier, and repeated here:

1. John/Cook BAKES a cake.
2. The fish was BARBECUED by our guests/Cook.
3. They/Cook prefer to BOIL potatoes.

First, we should write a small program to recuperate from these prototype sen-
tences the information shown in Table12.8. The format we imposed on human anno-
tators in the writing of the prototype sentences was to allow this automatic step to be
done easily.
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Table 12.8 Information from prototype sentences

Ex. Lexical unit Semantic role Role filler Sentence to parse

1 BAKES Cook John John bakes a cake.

2 BARBECUED Cook guests The fish was barbecued by
our guests.

3 BOIL Cook They They prefer to boil potatoes.

The sentences in the last column would then be given as input to a dependency
parser (here the Stanford CoreNLP parser), which would output the following depen-
dency graphs.

(1) John bakes a cake.
root(ROOT-0, bakes-2)
nsubj(bakes-2, John-1)
det(cake-4, a-3)
dobj(bakes-2, cake-4)

(2) The fish was barbecued by our guests.
root(ROOT-0, barbecued-4)
det(fish-2, The-1)
nsubjpass(barbecued-4, fish-2)
auxpass(barbecued-4, was-3)
case(guests-7, by-5)
nmod:poss(guests-7, our-6)
nmod:agent(barbecued-4, guests-7)

(3) They prefer to boil potatoes.
root(ROOT-0, prefer-2)
nsubj(prefer-2, They-1)
mark(boil-4, to-3)
xcomp(prefer-2, boil-4)
dobj(boil-4, potatoes-5)

Notice how the resulting dependency graphs contain both the lexical units and the
semantic role fillers, but they also containmuch additional information corresponding
to dependencies involving the other words in the sentence. We must filter out all
this additional information and keep only the necessary dependencies required to
capture the syntactic realization. Doing this corresponds to finding the shortest path
in the dependency graph which connects the lexical unit with the semantic role filler.
Explaining shortest path algorithms is outside the scope of this book, and we will
assume that the dependency parser we use does provide a search for the shortest path
within its functionalities. The Stanford CoreNLP dependency parser does provide
such functionality.

Below, we show the shortest paths found for the three examples:

(1) nsubj(bakes-2, John-1)
(2) nmod:agent(barbecued-4,guests-7)
(3) nsubj(prefer-2, They-1) + xcomp(prefer-2, boil-4)
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Now, these shortest paths are abstracted to become syntactic realizations, where X
corresponds to the semantic role filler for the Cook semantic role. The shortest paths
are sometimes reduced to single dependencies, but they can include intermediate
nodes, as in the third example below.

(1) nsubj(bakes,X)
(2) nmod:agent(barbecued,X)
(3) nsubj(Y,X) + xcomp(Y,boil)

We now have our strategy for the semi-automatic acquisition of syntactic real-
izations of semantic roles, which we will put to the test, in the experiment in the
following section.

12.5 Experiment — Semantic Role Labeling of Cooking
Sentences

For our semantic role labeling experiment, we will follow these three steps:

1. Define our gold standard and our evaluation approach.
2. Clearly establish our semantic role labeling strategy.
3. Perform the strategy, evaluate the results, and discuss.

12.5.1 Gold Standard and Evaluation

To generate our gold standard, let us first gather some test sentences which would
elicit the Apply_Heat frame. Table12.9 shows sentences about baking. Our dataset is
too small to obtain any quantitative results that are significant, but it will be sufficient
for discussion and observation of the pros and cons of our strategy.

Now, we must annotate these sentences to obtain our goal standard. We have
seen that the Apply_heat frame has multiple frame elements, but for our exper-
iment, we will focus on the following subset: Container, Cook, Duration, Food,
Heating_instrument, Temperature_setting, Beneficiary, and Location. We therefore
take each sentence of Table12.9, find the semantic roles it contains, and annotate
them. Performing manual annotation of sentences is usually very insightful as to the
difficulty of the task. If you try tagging the sentences in Table12.9, is it difficult?
Remember, in Chap.8, we discussed the difficulty of assigning parts of speech to
words. Unless they are trained linguists, humans are not used to performing part-
of-speech tagging. On the other hand, our current task of assigning frame elements
is actually closer to the kind of semantic interpretation that we are doing on a daily
basis in conversation, and therefore, it is easier to do.

http://dx.doi.org/10.1007/978-3-319-41337-2_8
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Table 12.9 Sentences for Gold Standard

No. Sentence

1 Instead, consumers bake the pizzas at their homes.

2 Italian and Polish bakeries bake fresh bread and various traditional pastries.

3 The scones you baked for me are just delicious.

4 If you overcook, or bake too long you might lose nutrients.

5 Place the muffin tin in the oven and bake for one hour.

6 Nana tried to bake a chocolate cake for Yuichi’s birthday.

7 Spread the dough on a square baking sheet, and bake it in a moderate oven.

8 At Zoe’s Cafe, the chef bakes the best cheese cake.

Table 12.10 Annotated Sentences Gold Standard

No. Sentence

1 Instead, [Cookconsumers] bake the [Foodpizzas] at their [Locationhomes].

2 [Cook Italian and Polish bakeries] bake fresh [Foodbread] and various traditional
[Foodpastries].

3 The [Foodscones] [Cookyou] baked for [Bene f iciaryme] are just delicious.

4 If [Cookyou] overcook, or bake [Duration too long] you might lose nutrients.

5 Place the muffin [Container tin] in the [Heat I nstoven] and bake for [Durationone hour].

6 [CookNana] tried to bake a [Foodchocolate cake] for [Bene f iciaryYuichi]’s birthday.

7 Spread the dough on a square [Containerbaking sheet], and bake [Food it] in a
[T empSetmoderate] [Heat I nstoven].

8 At [LocationZoe’s Cafe], the [Cookchef] bakes the best [Foodcheese cake].

Now, does your tagging match the semantic tagging done in Table12.10? Most
often, there is inter-annotator agreement as to the roles being identified, but there
could be many variations, between annotators, as to the boundaries of the textual
elements corresponding to the roles. For example, in example 7, is the container
a square baking sheet, a baking sheet or simply a sheet? This might seem like a
tidious question, but it is not when the results of different algorithms are compared
in large-scale quantitative evaluations. In such evaluations, extracted information
is automatically compared to gold standard information with pure string matching,
and therefore, an answer such as baking sheet would not match a gold standard
sheet. Boundary issues come up in many Information Extraction tasks, as we already
experienced in bilingual term search (see Chap.7) and entity type detection (see
Chap.3), and now in semantic role labeling.

For this experiment, let us consider that if the extracted information is contained
in the gold standard information, then the output is deemed correct. This means that
we would accept cake as a correct answer even if cheese cake is the answer found in
the gold standard.

http://dx.doi.org/10.1007/978-3-319-41337-2_7
http://dx.doi.org/10.1007/978-3-319-41337-2_3
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Table12.11 shows the semantic roles present in the tagged sentences from
Table12.10. This constitutes our gold standard,with a total of 24 roles to be identified.

Table 12.11 Expected Semantic Roles

No. Roles Expected

1 Cook=consumers, Food=pizzas, Location=homes

2 Cook=bakeries, Food=bread, Food=pastries

3 Food=scones, Cook=you, Beneficiary=me

4 Cook=you, Duration=too long

5 Container=tin, HeatInst=oven, Duration=hour

6 Cook=Nana, Food=chocolate cake, Beneficiary=Yuichi

7 Container=baking sheet, Food=it, TempSet=moderate, HeatIns=oven

8 Location=cafe, Cook=chef, Food=cheese cake

Total 24 roles

As for the evaluation method, we will use our usual recall and precision methods.

12.5.2 Define our Semantic Role Labeling Strategy

As to perform Semantic Role labeling, we will define two steps:

1. Define a set of syntactic realizations for each semantic role.
2. Use the syntactic realizations as search patterns into the test examples to extract

semantic role fillers.

For our step (1), we use the strategy developed in Sect. 12.4 in which we were
trying to balance human annotation and algorithmic effort toward the semi-automatic
acquisition of syntactic realizations of semantic roles.

Our human effort is to come up with prototype sentences for each of the semantic
roles we wish to cover. In our current experiment, the annotated FrameNet sentences
for the lexical units involved in the Apply_heat frame served as our development
set, being the source of inspiration for the development of prototype sentences. As
you have learned by now, we should not use the sentences in Table12.9 for such
development since these sentences are the test sentences. Table12.12 shows the
prototype sentences (column 2) assigned to each semantic role (column 1). For a
slightly more concise version of prototype sentences, the specific semantic role is
not repeated, but rather shown by the variable X . Notice also that all prototype
sentences and their derived syntactic realizations are shown as using the lexical unit
cook as indicative of the frame, but this lexical unit can be replaced by any other
lexical unit (e.g., bake, boil, blanch) that could be used in a Apply_heat sentence as
well.
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Table 12.12 Generated syntactic realizations from prototype sentences

Frame Element Prototype sentence Syntactic realization

Container They cook in a saucepan/X. nmod:in(cook,X)

Cook They/X cook their food.
They/X prefer to cook food.
I ate the pizza cooked by John/X.

nsubj(cook,X)
nsubj(V,X) + xcomp(V,cook)
nmod:agent(cooked,X)

Duration It cooks until al dente/X.
They cook for 5min/X.
It cooks about 5min/X

nmod:until(cook,X)
nmod:for(cook,X)
nmod:about(cook,X)

Food Potatoes/X are cooked.
They cook their food/X.
They cook a lot of pasta/X.
I like the taste of tomatoes/X cooked.

nsubjpass(cooked,X)
nobj(cook,X)
nmod:of(Y,X) + dobj(cook,Y)
nmod:of(Y,X) + nsubj(cooked,Y)

HeatInst They cook in the microwave/X.
I cook on our barbecue/X.

nmod:in(cook,X)
nmod:on(cook,X)

TempSet Potatoes cook over high heat/X.
Potatoes cook on full power/X.

nmod:over(cook,X)
nmod:on(cook,X)

Beneficiary He cooks for his friend/X. nmod:for(cook,X)

Location He cooks at home/X. nmod:at(cook,X)

As for the algorithmic effort, we follow the steps described in Sect. 12.4.2 to
transform prototype sentences into syntactic realizations. The extracted syntactic
generalizations are shown in the third column of Table12.12. We have a set of 17
syntactic realizations for our 8 semantic roles.

Step (2) of the strategy consists in parsing the test sentences from Table12.9
and then using the 17 syntactic realizations as search patterns within the resulting
dependency graphs of the test sentences to extract the semantic role fillers.

12.5.3 Result Analysis and Discussion

Table12.13 shows the obtained results for our strategy, using the 17 syntactic real-
izations. These roles are compared with the gold standard roles (see Table12.11) to
calculate the recall and precision shown in the second and third columns.

The precision results are already quite high, but could further be improved if we
impose some semantic constraints on the semantic roles, as well as rules for non-
duplications of semantic roles. In sentence 5 for example, the Beneficiary role is
not too likely to be associated with the filler hours, much less likely than the role
Duration would. Applying semantic constraints on semantic roles is the topic of the
next chapter, Chap. 13.

As for the recall results, Table12.13 shows that our set of rules is not sufficient for
an exhaustive extraction of the semantic roles, as we only obtain 58% recall. This low
recall is somewhat disappointing, but not that surprising giving the limited number

http://dx.doi.org/10.1007/978-3-319-41337-2_13
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Table 12.13 SRL strategy’s output

No. Roles found (incorrect ones in italic) Recall Precision

1 Cook=consumers, Food=pizzas, Location=homes 3/3 3/3

2 Cook=bakeries, Food=bread 2/3 2/2

3 Food=scones 1/3 1/1

4 Cook=you 1/2 1/1

5 Duration=hour, Beneficiary=hour 1/3 1/2

6 Food=cake 1/3 1/1

7 Food=it, HeatInst=oven, Container=oven 2/4 2/3

8 Location=cafe, Cook=chef, Food=cake 3/3 3/3

Total 14 correct roles found 14/24
(58.3%)

14/16
(87.5%)

of sentence prototypes we have, and the large variety of ways different semantic
roles can be expressed. Certainly, the two main parts of our strategy, the definition
of prototype sentences and the analysis of prototype sentences with a dependency
parser, could be revisited if we were to improve our results, as in their own way, they
both contribute to the performance of our strategy. For the prototype sentences, we
could expand the list in Table12.12 by writing more varied sentences. Inspiration
could be found with the use of a concordancer, as we had mentioned in Sect. 12.4.1.

As for the dependency parser, our results are totally dependent on its behavior.We
will discuss this issue a bit more, as we expand the idea of using syntactic realizations
for identifying semantic role fillers into using syntactic realizations as patterns for
Relation Extraction.

12.6 Syntactic Realizations as Patterns for Relation
Extraction

The use of frame semantics for sentence interpretation may seem remote from the
goal of knowledge base expansion, as we presented in Chap. 11. But in fact, the
overall process of using syntactic realizations to identify semantic roles is very close
to the process of Relation Extraction required for knowledge base expansion.

For example, if we were to think of semantic frames from a Semantic Web per-
spective, we can imagine transforming frames and frame elements into amore typical
predicate(subject,object) format, such as:

Frame-like representation
[CookHelen] cooked the [Foodpotatoes] for [Duration10minutes].

Predicate-like representation
nlusw:frameInstance(nlusw:f1, frameNet:Apply_heat)
nlusw:cook(nlusw:f1, “Helen”)

http://dx.doi.org/10.1007/978-3-319-41337-2_11
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nlusw:food(nlusw:f1, “potatoes”)
nlusw:duration(nlusw:f1, “10 minutes”)

Granted, events describing how potatoes are cooked are not the most interesting
events to include in a knowledge base, but there are many more interesting events.
Within the knowledge bases of the Semantic Web, many entities are events, such as
Olympic games or any other sport events, also political events or historical events.
One could even argue that almost anything that can be situated in time can be con-
sidered an event with various properties (e.g., start date, end date, people involved).

Even the actor-in(X,Y) relation, which we looked at in the previous chapter,
can be seen as a role in an event. FrameNet defines a frame called Perform-
ers_and_roles inwhich various roles are defined:Performance,Performer,Audience,
Script, Performance type (e.g., dance, theater, movie). With this view, searching for
actor-in(X,Y) is the same as searching for the two semantic roles Performer and
Performancewithin thePerformer_and_Roles frame, assuming thePerformance type
has been restricted to be a movie.

Let us look at an example sentence, very similar to the examples from Chap.11
used to develop lexical and lexico-syntactic patterns, but now interpreted within the
Performer_and_Roles frame.

Frame-like representation
[Per f ormer JohnTurturro] stars in the [T ime1991] [Per f ormanceT ypemovie] [Per f ormanceBarton
Fink] as a [Rolewriter].

Predicate-like representation
nlusw:frameInstance(nlusw:f2, frameNet:Performer_and_roles)
nlusw:PerformanceType(nlusw:f2, “movie”
nlusw:Performer(nlusw:f2, “John Turturro”)
nlusw:Time(nlusw:f2, “1991”)
nlusw:Performance(nlusw:f2, “Barton Fink”)
nlusw:Role(nlusw:f2, “writer”)

Let us even push further the comparison between frame representation and Rela-
tion Extraction, and see whether we can also write prototype sentences to capture
the Performer/Performance relation. We used to identify a single role at a time in our
prototype sentences (see Sect. 12.4.1) but what if we now identify pairs of semantic
roles, as in the sentences below.

1. [John Turturro]/Performer STARS IN [Barton Fink]/Performance.
2. [Fargo]/Performance FEATURES [Frances McDormand]/Performer.
3. [The Big Lebowski]/Performance stars [Jeff Bridges]/Performer in the main ROLE.

Notice that I carried over the idea of annotating in uppercase the lexical unit
corresponding to the frame, such as stars in, features, and role. Including such a
mandatory indicator within a sentence corresponds to the use of trigger wordswithin
patterns for Relation Extraction. We had discussed trigger words in Sect. 11.5 in the
previous chapter.

The prototype sentences can then automatically be processed by a dependency
parser. The resulting dependencies for the first prototype sentence are shown below.

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
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root(ROOT-0, stars-3)
compound(Turturro-2, John-1)
nsubj(stars-3, Turturro-2)
case(Fink-6, in-4)
compound(Fink-6, Barton-5)
nmod:in(stars-3, Fink-6)

From the dependency graph, the last step toward generating a syntactic realization
of a semantic role was to search for the shortest path between the lexical unit (or
trigger word) and the semantic role. We can extend this idea to be the shortest path
between the two roles (Performer/Performance) which includes the trigger word.

For example, the shortest path for the first example sentence would be the follow-
ing:

nsubj(stars-3, Turturro-2)
nmod:in(stars-3, Fink-6)

The resulting syntactic pattern will be the following: nsubj(stars,A);nmod:in
(stars,F). This patterns requires the trigger word stars to provide a link between
the actor A (Performer) and the film F (Performance). Three syntactic patterns
corresponding to the three examples sentences are shown below.

1. nsubj(stars, A);nmod:in(stars, F)
2. nsubj(features, F);dobj(features, A)
3. nsubj(Y, F);dobj(Y, A);nmod:in(A, role)

Notice how sometimes, as in the third example, the trigger word (role) is not
really on the shortest path, but rather included as an additional dependency constraint.
Furthermore, we would in general also need to extend the words found for A and
F to their including compounds within the dependency graph. This would allow to
retrieve John Turturro and not only Turturro, as both words are part of the same
compound.

At the end of our experiment in the previous section, we concluded by pointing out
to limitations associated with the use of dependency parsers. Whether dependency
parsers are used as a component in a semantic role labeling task or in a Relation
Extraction task, they will for sure make good contributions, but also introduce noise.
This reinforces what we often discussed in this book that any use of a linguistic tool
within a processing pipeline should come with a warning. Linguistic tools are very
useful but also error prone, especially when dealing with ambiguous words.

For example, we should know that the relation actor-in(X,Y) will be particu-
larly difficult for a syntax-based approach to Relation Extraction, since movie titles
are among the hardest elements to throw at a parser. Movie titles can be made of any
combination of parts of speech, and these combinations will be hard to process by
parsers. For example, a sentence like Burn After Reading stars George Clooney. is
very hard to interpret if we do not consider the words Burn, After and Reading as
part of a single entity name.

This suggests a strategy in which we should help the parser by recognizing movie
titles ahead of time. This idea of recognizing (or validating) the semantic types of
entities taking part in semantic relations or frames is the topic of our next chapter.
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12.7 In Summary

• Dependency graphs, resulting from an analysis with a dependency parser, show
grammatical relations betweenwords, such as subject, object,modifier, determiner,
compounding.

• From dependency graphs, we can jump toward semantic interpretation, if we have
a set of rules (syntactic realizations) for transforming each dependency into a valid
semantic role within the particular sentence at hand.

• FrameNet is an ambitious project, at Berkeley University, California, creating a
large resource containing a multitude of semantic frames.

• A frame defines a particular event, action, or state. A frame contains different
frame elements, each one playing a semantic role within the frame.

• A semi-automatic approach to writing syntactic realization for semantic roles
consists in the following: (1) writing prototype sentences in which semantic roles
are explicitly tagged, (2) parsing the sentences with a dependency parser, and (3)
finding the shortest path within the result dependency graph which connects the
semantic role filler and the lexical unit indicative of the frame.

• The set of prototype sentences for various semantic roles of a frame could be
inspired from the use of a concordancer to show occurrences of the frame lexical
units in real corpus contexts.

• Since parsing is not perfect, and prone to lexical variations, a semantic role labeling
strategy based on parsing will be influenced by the parser’s performance and
variability.

• Many dependencies, especially prepositional modifiers (nmod:in, nmod:for, etc.),
are very ambiguous, as they can lead to multiple semantic roles.

• FrameNet is a good resource not only to find frame definitions, but also lists of
lexical units which are trigger words for each frame, such as cook and bake for
the Apply_heat frame.

• Relation Extraction is related to the task of semantic role labeling, most likely
looking at the relation between two semantic roles for a unique event.

• Syntactic realizations for semantic roles can be adapted into syntactic patterns for
Relation Extraction.

12.8 Further Reading

Dependency parsers: The Stanford CoreNLP software, containing multiple mod-
ules, from tokenizer to parser, is available at http://nlp.stanford.edu/software/corenlp.
shtml. It allows for both constituency parsing and dependency parsing.

Frames and FrameNet: Early work on frames can be found in The Case for Case
(Fillmore, 1968). FrameNet, developed at theComputer Science Institute ofBerkeley,
California, can be explored online at https://framenet.icsi.berkeley.edu and request
for full access to the FrameNet database for research purposes can be made as well. I

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
https://framenet.icsi.berkeley.edu
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encourage the reader to visit the site and explore the frames to discover the richness
of FrameNet.

Annotated semantic roles: The corpus PropBank (Proposition Bank) available at
https://github.com/propbank/ is an annotated corpus of semantic roles (Palmer et al.
2005) which could also be very useful as a source of prototype sentences.

Frames and the Semantic Web: Links between frames and the Semantic Web have
been discussed in the literature. For example, see Lassila and Mcguinness (2011),
Narayanan et al. (2002), ormore recently Exner andNugues (2011) performing event
extraction from Wikipedia.

Sentence interpretation and Semantic role labeling: Some early methods on
Semantic Role Labeling (SRL) are described in Gildea and Jurafsky (2002). There
has been a revival of interest in the recent years. I encourage the reader to look
at the tutorial on semantic role labeling from NAACL’2013 (Palmer 2013). To see
how SRL is put in relation to Open Information Extraction, see Christensen et al.
(2011). For semantic interpretation using not only FrameNet, but also VerbNet
(http://verbs.colorado.edu/~mpalmer/projects/verbnet.html) and Wordnet (https://
wordnet.princeton.edu/), see the SemLink project described in Palmer (2009).
Another large effort into semantic representation is called Abstract Meaning Repre-
sentation (AMR), with information available at http://amr.isi.edu/. For the develop-
ment of parsers for AMR, see Vanderwende et al. (2015).

Syntactic patterns for Relation Extraction: In Bunescu andMooney (2005), short-
est paths in dependency graphs are used as Relation Extraction patterns. Sometimes,
it is not the shortest path, but rather partial trees (or subtrees) that are used as poten-
tial patterns (Sudo et al. 2003; Culotta and Sorensen 2004). Sentences to analyze are
compared to the tree-based patterns by measuring their similarity. Although much
of the work using dependency trees is within a supervised machine learning view
of Relation Extraction, the underlying idea of using dependency parsers to help in
pattern definition is similar.

12.9 Exercises

Exercise 12.1 (Dependency parsing)

a. Go back to the CookCorpus introduced in Chap.8, Sect. 8.6.1. Parse the corpus
using the Stanford CoreNLP dependency parser and analyze the results. Do the
resulting parses lead to semantically viable interpretations? Try to parse the
same sentences using a different parser and compare their output. See Sect. 8.8,
Further readings, of Chap.8 for references to linguistic tools.

b. Go back to the BeethovenCorpus, in Chap.2 and parse its sentences, using both
a phrase-structure parser and a dependency parser. How do the parsers behave?
Does the dependencyparser provide explicit information not foundby the phrase-
structure parser? Give some examples.

https://github.com/propbank/
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
https://wordnet.princeton.edu/
https://wordnet.princeton.edu/
http://amr.isi.edu/
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_2
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c. An underlying hypothesis for parsing is that weworkwith grammatically correct
sentences. What about the sentences from the ActorFilmCorpus introduced in
the previous chapter (Sect. 11.2)? Are those difficult for parsers? Try replacing
the movie title in each sentence by “the film” and parse the sentences again. Any
improvement in the results?

Exercise 12.2 (Exploring FrameNet)

a. Take the time to explore FrameNet, looking at different frames and frame ele-
ments. Identify the frame elements which were not included in Table12.2 given
the examples of frames provided. Write example sentences in which these other
frame elements would be present.

b. The best way to become familiar with frames is to try tagging sentences with
frame elements. First, investigate the Exporting frame in FrameNet. Then, look
at the ExportCorpus in Table12.14, which gives sentences related to export. Take
each sentence within the ExportCorpus, and tag it with the appropriate semantic
roles from the Exporting frame.

Table 12.14 ExportCorpus

No. Sentence

1 The region exports a number of crop products including broccoli, onion, Chinese cabbage,
sweet corn, and celery.

2 China, the main supplier of wolfberry products in the world, had total exports generating
US$120 million in 2004.

3 They weave out tons of coir carpets, door mats, and jute items every month for exports.

4 A series of successful international business ventures include Champion Pet Foods that
exports around the world.

5 Maggi also owns the Amaggi Group, a large company that harvests, processes, and
exports soybeans.

6 Until 2000, Nepals’ tea exports accounted for only about 100–150 tons per annum.

7 Shock Records distributes, markets, and exports CDs by Australian artists in all styles of
music.

8 The house is now successfully headed by Jean-Pierre Cointreau and exports 65% of its
production to more than 70 countries.

9 As a major supplier of fish and crustaceans, its exports reach buyers as far as Hong Kong,
Japan, and China.

10 Indonesia and Malaysia both continued to show a trade surplus because of their heavy raw
material exports to Japan.

Exercise 12.3 (Semantic role labeling)

a. Go back to the MillionCorpus you built in Chap.10 (see Exercise 10.1 (a))
which was a random gathering of a million pages from Wikipedia. Explore that
corpus using the concordancer you developed in Chap.5 (see Exercise 5.4 (a)).

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_10
http://dx.doi.org/10.1007/978-3-319-41337-2_10
http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_5
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Search for sentences containing the word bake or cook. Is there a large variety
of sentences? Do you find many sentences that refer to the Apply_heat?

b. From the sentences found using the concordancer in the previous question,
choose 10 sentences which match the Apply_Heat frame. Then perform the
semantic role labeling experiment we set up in Sect. 12.5.

1. Tag the sentences with the semantic roles we explored in Table12.12
(Container,Cook,Duration,Food,Heating_instrument, Temperature_setting,
Beneficiary, Location). The sentences become your test data.

2. Write a program that puts in place the semantic role labeling strategy devel-
oped in Sect. 12.5.2 to extract frame elements automatically.

3. Test your program using the prototype sentences found in Table12.12. The
program should automatically generate syntactic realizations from the pro-
totype sentences, which can then be applied on the test data gathered in
(1).

4. How does the strategy work? Evaluate the recall of the algorithm.

c. Continue on the experiment from question (b) by adding five more prototype
sentences. Re-evaluate the results. Any changes? Discuss.

d. Use the five new prototype sentences from question (c) on the sentences from
Table12.9. How do the results compare with the results shown in Table12.13?

e. Use everything you have learned in this chapter to perform semantic role labeling
for the sentences in the ExportCorpus (Table12.14) using the Exporting frame.
Use yourmanual tagging fromExercise 12.2 (b) as your gold standard.Make sure
to not use the ExportCorpus for the development of your prototype sentences.
Discuss how you will build your development set. Discuss the obtained results
on ExportCorpus.

Exercise 12.4 (Relation Extraction with syntactic patterns)

a. Go back to Table11.1 in Sect. 11.2 and develop syntactic patterns to extract
the Performance and Performer roles in them, as to reconstruct the actor-in

relations. Test your patterns on the sentences in Table11.12, in the exercise
section of Chap.11.

b. Compare your newly written syntactic patterns with lexical and lexico-syntactic
patterns written in the last chapter. What do you see as advantages and disadvan-
tages of using syntactic patterns? What could be the impact of using syntactic
patterns on precision/recall?

c. Develop a dependency-based synonym extraction. Even if the relation cannot be
mapped to a frame, you can still use the same ideas of prototype sentences and
trigger words to develop your patterns. You can use the sentences in Table11.4
to develop your patterns, and then test them on the sentences in Table11.7. Both
tables were introduced in the previous chapter, in Sect. 11.4. How do these new
syntactic patterns compare to the lexical and lexico-syntactic patterns you had
before?

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11


Chapter 13
Semantic Types

Our exploration of frames, in the previous chapter, has pointed at the importance
of determining the semantic constraints for particular semantic roles involved in a
frame. For example, in the Apply_Heat frame we could require the Cook role to be
a PERSON and the Heating_instrument role to be within a set of possible instruments
used for heating food which we could define as the HEATINSTR type.

The first semantic type, PERSON, is quite generic, and in fact so common that it
is part of standard entity types or entity classes normally included in Named Entity
Recognizers, along with ORGANIZATION, LOCATION, and DATE. We earlier talked, in
Chap.3, on using regular expressions to automatically search for DATE instances in
text. In this chapter, we will explore an open source Named Entity Recognition
(NER) software to do so.

The second semantic type, HEATINSTR, is on the other hand, very specific and
perhaps only useful within a few contexts related to eating and cooking. Standard
NER tools do not search for these specific types when analyzing text. Neverthe-
less, recognizing specific semantic types can be very important for sentence under-
standing. As we have seen in the previous chapter, dependency grammars can bring
us so far as to identify the dependencies between the elements of the sentence,
such as nmod:for(cook,oven) and nmod:for(cook,pot). But semantic types will be
required to determine that these grammatically identical dependencies can be fur-
ther disambiguated into semantic roles of Heating_instrument(cook,oven) and Con-
tainer(cook,pot).

This chapter will show that definitions of specific semantic types and possible
instances of these types can be found in different lexical and semantic resources,
such as WordNet and FrameNet. Textual resources can also contain instances of
semantic types, but we must uncover them through knowledge acquisition methods.
To do so, we will revisit pattern-based approaches, both lexico-syntactic approaches
(Chap. 11) and dependency-based approaches (Chap.12) for automatically building
gazetteers from text.

As we build gazetteers for various semantic types using different approaches,
and use these gazetteers within a semantic role labeling task, we will see how they

© Springer International Publishing Switzerland 2016
C. Barrière, Natural Language Understanding in a Semantic Web Context,
DOI 10.1007/978-3-319-41337-2_13

255

http://dx.doi.org/10.1007/978-3-319-41337-2_3
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_12


256 13 Semantic Types

individually are noisy and have limited coverage. This will lead us to explore ways
of combining their information, and present a vote combination approach so as to
benefit from multiple resources.

13.1 Common Semantic Types — Exploring NER Systems

Named Entity Recognition (NER) is a very active field of research, aiming at recog-
nizing instances of predefined types of named entities in text.Methods for doingNER
vary widely, from pattern-based search, to machine learning approaches, performing
sequence learning. In Chap.3, we focused on a pattern-based approach as we wrote
regular expressions in search of DATE instances. We mentioned how the type DATE

was a good candidate for regular expressions given the regularity underlying the
writing of dates in text. Other entity types would be less detectable through regular
expressions and should be helped with gazetteers or even be approached with more
refined machine learning methods.

In this section, we explore how we can take advantage of a refined tool, freely
available, and included in the Stanford CoreNLP platform, which we have used over
and over in this book. A first example of the output of the NER module is shown
below, resulting from the analysis of the sentence John cooked the rice for 6 minutes.
Each line shows the actual word, its lemma, its part of speech and finally its named
entity type, or O if none can be assigned to a word.

John John NNP PERSON

cooked cook NN O

the the DT O

rice rice NN O

for for IN O

six six CD DURATION

minutes minute NNS DURATION

. . . O

The example above illustrates PERSON and DURATION. Two other types, ORGANI-

ZATION and LOCATION, are illustrated by the following example: Ottawa’s Diabetes
Association collects clothing for people in need.

Ottawa Ottawa NNP LOCATION

’s ’s POS O

Diabetes Diabetes NNP ORGANIZATION

Association Association NNP ORGANIZATION

collects collect VBZ O

clothing clothing NN O

for for IN O

http://dx.doi.org/10.1007/978-3-319-41337-2_3
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people people NNS O

in in IN O

need need NN O

. . . O

Even if we are not going to dig into the details of the algorithm used in the
StanfordCoreNLPNERmodule, it is a good idea to get an intuition for its strength and
weaknesses, by performing small changes in test sentences, and observing the impact
on the named entity tagging results. For example, by changing Diabetes Association
to Good Hope, the ORGANIZATION is no longer recognized, whereas changing to a
name Good Foundation does trigger an ORGANIZATION tag. We can hypothesize that
the terms Foundation or Association are prominent features or patterns use by the
NER module.

Also notice, in the example above, how the common noun people is not identified
as a PERSON. NER usually focus on named entities, meaning specific instances of
particular types. Genericwords, such asmother, people, children, would therefore not
be identified, as they are rather subclasses of PERSON and not instances of the class.
We hinted at this instantiation versus subclass differentiation earlier, in Chap.11 (see
Sect. 11.1) as we discussed the IS-A relation.

In the next section, we will look into possible resources to help us build gazetteers
both for generic types, (e.g., PERSON), aswell asmore specific types (e.g., CONTAINER).
Finding the resources for specific types is especially important since those types are
not covered by NER systems.

13.2 Specific Semantic Types — Exploring
Lexico-Semantic Resources

Lists of words (gazetteers), corresponding to either instances or subclasses of par-
ticular semantic classes, can be found in diverse resources. As we first introduced
gazetteers, in Chap.3 (see Sect. 3.2), we explored the use of DBpedia, as a good
source for gazetteers. As an example, we queried DBpedia, to obtain a list of muse-
ums instances for the class dbpedia:Art_museum.

In the current section, we will focus on two additional resources from which we
can extract gazetteers: FrameNet and WordNet.

13.2.1 Semantic Types in FrameNet

As part of FrameNet (presented in Chap.12), some of the semantic roles defined
are found in multiple frames, corresponding to the Who did What When Where How
questions we typically ask when analyzing narrative texts. Among these recurrent

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_3
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semantic roles, some can be assigned semantic constraints corresponding to common
named entities (e.g., Who/PERSON, When/DATE, Where/LOCATION).

But other semantic constraints could be much more specific. For some of them,
such as Container, FrameNet does explicitly define a type CONTAINER1 to be used.
Furthermore, FrameNet also lists over a hundred lexical entries corresponding to
the type CONTAINER, some of which are given below as examples:

amphora.n, backpack.n, bag.n, barrel.n, basin.n, bin.n, bottle.n, bowl.n, box.n, briefcase.n,
bucket.n, can.n, canister.n, canteen.n, capsule.n, carton.n, cartridge.n, case.n, cask.n, cas-
ket.n, casserole.n, cauldron.n, cooler.n, crate.n, creamer.n, crock.n, crucible.n, cruet.n, cup.n,
drawer.n, envelope.n, glass.n, goblet.n, jar.n, jug.n, knapsack.n,mug.n, pail.n, pot.n, pouch.n,
punch bowl.n, purse.n, ramekin.n, satchel.n, suitcase.n, thermos.n, vase.n, wallet.n, wine
bottle.n

This list can verywell correspond to our CONTAINER gazetteer.However,we should
be aware that no matter how extended this list might be, it is likely incomplete, as any
list would be. For example, among the hundred containers listed, pan and saucepan
are not present in the list. I underline this fact simply to show that no matter how
much human effort is put into resources (and FrameNet is a good example of this),
there will still be information missing, which might just happen to be the information
we need for a particular problem.

Another good source of instances of semantic types is the set of annotated exam-
ples, provided in FrameNet. We discussed these annotated examples in Chap. 12 as
sources of syntactic realizations of semantic roles, but let us look at how these anno-
tations can further become part of our gazetteers.

For example, I gathered annotations2 for a few lexical entries (e.g., bake, blanch,
boil, cook, fry, grill) corresponding to the frame Apply_heat. Table 13.1 shows the
annotation found for CONTAINER, HEATINST, and other semantic roles.

Table 13.1 Annotation of semantic roles for Apply_heat frame

Semantic Type Examples

COOK the patients, they, I, mother and I, Mrs Files, you, Elke, she, the boys, Betty

FOOD food, pasta, sandwich, duck, beef, potatoes, things, dumplings, rice, onion,
aubergines, tart, spanakopita, eggs, cabbage, vegetables

CONTAINER baking sheet, moulds, pan, saucepan, casserole, dishes

DURATION until all dente, until thickened, until browned, for 12 minutes, for about 40
minutes, for half an hour, briefly

HEATINST microwave, pit barbecue, oven, water, camp stove, open fire

1These types further correspond to frames themselves, but we will not go into such further details
within the current discussion.
2The annotations were gathered in summer 2015 though the FrameNet online system, and might
be different at a different search date.

http://dx.doi.org/10.1007/978-3-319-41337-2_12
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Notice however, that human annotation, although usually reliable, is not perfect.
For example, we can see in Table 13.1 that water, was included by mistake in the list
of HEATINST. It does not make the data unusable, on the contrary, as any annotated
data can be a valuable resource if properly used. We should simply be aware, when
using such data, that it could contain a certain level of noise and therefore assess
whether that noise will have an impact or not on our task.

As we will see in the next section, a resource content or organization rarely
matches our need exactly, but we still make use of it. The resource we present next,
WordNet, is a very widely used resource for all kinds of tasks.

13.2.2 Semantic Types in WordNet

WordNet is perhaps the most commonly used lexical-semantic resource within the
NLP community. There are a few factors which make WordNet so popular for NLP
research. First, its availability.WordNet is free of charge. Second, its design.WordNet
is more than a dictionary, since it provides an organization of senses through the
clustering of entries in synsets (groups of related senses) which are further linked
to each other via semantic relations. For example, we show three senses of the noun
green below.

1. Green (an environmentalist who belongs to the Green Party)
2. green, putting green, putting surface (an area of closely cropped grass surrounding the
hole on a golf course)
3. greens, green, leafy vegetable (any of various leafy plants or their leaves and stems eaten
as vegetables)

The first sense has only one member in its synset (Green), but senses 2 and 3
each have 3 synonyms in their synset. The list of synonyms is followed by a short
definition, called a gloss.

Among the semantic relations included inWordNet (e.g., meronym (part-of), sim-
ilar to, pertaining to, antonym), let us focus on one which is at the core of knowledge
organization: hypernymy. Hypernymy expresses the relation between a specific
entity and a more general entity. For example, grain is a hypernym of rice or wheat.
We call the opposite relation hyponymy, and therefore can say that rice and wheat
are hyponyms of grain.

The three senses of green would each have their list of hypernyms, as we go up
to more and more generic classes.

1. Green → reformer → disputant → person
2. putting green → site → piece of land → geographic area → region → location
3. greens → vegetable → produce → food

The opposite relation, hyponym, is likely to help us gather gazetteers for
semantic types, using our class of interest as a starting point. For example, if we
go back to our semantic role Container, we’re happy to find a WordNet lexical entry
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with that same label. Gathering the hyponyms of the lexical entryContainer provides
a possible gazetteer.

bag, bin, bowl, box, can, capsule, case, cup, cylinder, dish, drawer, glass, mailer, package,
pot, receptacle, shaker, thimble, vessel, watering can, workbag

Unfortunately, many other specific roles do not have such a direct mapping. For
example, the Heating_Instrument role is perhaps best mapped to the lexical entry
kitchen appliance, which is the hypernym of both microwave and oven in WordNet.
Two lexical entries having the same hypernym are called sister terms. Investigating
other sister terms of microwave and oven, under the hypernym kitchen appliance,
leads us to the following list:

coffee maker, garbage disposal, food processor, hot plate, ice maker, microwave, oven, stove,
toaster, toaster oven, waffle iron.

The list contains appliances not possibly involved in heating food, such as garbage
disposal, food processor or ice maker.

This example shows that although a resource has been well thought of, being
manually created following solid knowledge organization principles, it might not
‘fit’ our own knowledge organization needs for the task at hand. Even our earlier list
of CONTAINER did not quite fit the set of food containers we need to constrain the
semantic role Container in the Apply_heat frame. The list contains containers that
are totally unrelated to food usage (e.g., drawer, thimble, watering can).

This means that we must be wise in how we use resources, since they are likely
to suffer from both limited coverage and noise. Textual resources are another place
to explore in search of instances of semantic types, as we see next.

13.3 Building Gazetteers from Textual Resources

In Chap.11, we saw how we can search in text for explicit mentions of semantic
relations. That chapter investigated three quite different relations, the actor-in, the
synonym and the may_treat relations. In this chapter, we look yet at another relation,
the IS-A relation, that we hope to find through a pattern-based approach. Searching
for instances or subclasses of semantic types to build a gazetteer can be reframed as
a IS-A relation search task.

Remember that an underlying hypothesis for pattern-based search is the explicit
presence of the relation in text. Let us look at a few explicit markers for the IS-A

relation in text:

(1) A gazpacho is a kind of soup.
(2) She made pilafs and other types of food.
(3) They caught pike and other fish.
(4) The soup contains many vegetables such as carrots.

From these sentences, we could extract pairs of related entities, within our own
space (nlusw):

http://dx.doi.org/10.1007/978-3-319-41337-2_11
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(1) nlusw:isa(nlusw:gazpacho,nlusw:soup)
(2) nlusw:isa(nlusw:pilafs,nlusw:food)
(3) nlusw:isa(nlusw:pike,nlusw:fish)
(4) nlusw:isa(nlusw:carrot,nlusw:vegetable)

I purposely mention this mapping from textual information to our own nlusw
space, since the actualmapping to another resource is far from trivial.Aswediscussed
earlier, each resource defines knowledge through their own organization, and for sure,
new information found in text is not likely to ‘fit’ within these organizations.

In the current example, the mapping to WordNet is quite close, but the level of
generalization varies, as we see in following the hypernymic chains:

gazpacho → soup
pilaf → dish → nutriment → food
pike → percoid fish → spiny-finned fish → teleost fish → bony fish → fish
carrot → root → plant organ → plant part → natural object

As expected, the match is not exact, since different sources of information will
define their knowledge organization based on different properties. Not being able to
find correspondences between resources does not mean we cannot use the resources
in combination, as we will do in Sect. 13.4, for our experiment.

To build gazetteers from textual resources, we should perform knowledge acqui-
sition on trusted sources of the appropriate genre. The explicit markers presented
earlier are likely to be stated in informative texts, such as dictionaries, encyclope-
dia, and textbooks3. Those would be good sources of information for our current
endeavor.

Let us see how we can perform the extraction of information from the textual
resource.

13.3.1 Lexico-Syntactic Patterns

In Chap.11 we had looked at purely lexical patterns, but also at lexico-syntactic
patterns which required tagging of the sentences and concatenating the resulting
information into a long string (see Sect. 11.3). As a review, let us look at the result
of this process for the example sentences presented earlier.

(1) a/DT;gazpacho/NN;be/VBZ;a/DT;kind/NN;of/IN;soup/NN;

(2) she/PRP;make/VBD;pilaf/NNS;and/CC;other/JJ;type/NNS;of/IN;food/NN;

(3) they/PRP;catch/VBD;pike/NN;and/CC;other/JJ;fish/NN;

(4) the/DT;restaurant/NN;serve/VBZ;dish/NNS;such/JJ;as/IN;spicy/NN;noodles/NNS;

The resulting lexico-syntactic patterns will be highly dependent on the POS tag-
ger. We continue using the Stanford CoreNLP platform for the current exploration.
In Table 13.2, we show four patterns, as possible abstractions of the sentences above.

3In Chap.11, Sect. 11.1, we discussed the interdependence between semantic relations and text
types.

http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
http://dx.doi.org/10.1007/978-3-319-41337-2_11
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Notice how the first line of the table defines a regular expression representing a com-
pound noun, which we call CN , and which is further used within the four patterns4.

Let us now present different patterns for the same task, which would more deeply
rooted in syntax.

Table 13.2 Lexico-syntactic patterns for the IS-A relation

No. Readable form Lexico-syntactic pattern

– Compound noun
($CN$)

([a-z]+/DT;)0,1)([a-z]+/[JJ|NN];)0,2[a-z]+/NN;

1 X is a kind of Y ($CN$)be/VBZ;a/DT;kind/NN;of/IN;($CN$)

2 X and other
type(s) of Y

($CN$)and/CC;other/JJ;type/[NN|NNS];of/IN;($CN$)

3 X and other Y ($CN$)and/CC;other/JJ;($CN$)

4 Y such as X ($CN$)such/JJ;as/IN;($CN$)

13.3.2 Dependency Patterns

In Chap.12, we introduced dependency grammars to highlight grammatical depen-
dencies in sentences. We also introduced the idea of using syntactic realizations,
as search patterns for Relation Extraction (see Sect. 12.6). Let us revisit this idea of
transforming grammatical dependencies into relation search patterns, and adapt it for
the is-a relation. For example, the dependency graph for the first example sentence
A gazpacho is a kind of soup. would look like:

root(ROOT-0, kind-5)

det(gazpacho-2, A-1)

nsubj(kind-5, gazpacho-2)

cop(kind-5, is-3)

det(kind-5, a-4)

case(soup-7, of-6)

nmod:of(kind-5, soup-7)

In the example above, the words gazpacho and soup are linked by the fact that
gazpacho is the subject of kind (nsubj(kind-5, gazpacho-2) and soup is a modifier for
kind (nmod:of(kind-5, soup-7)). What we just expressed is the syntactic realization
of a hypernym relation between gazpacho (the hyponym) and soup (the hypernym).
The shortest path between them in the dependency graph corresponds to the syntactic
realization of their hypernymic relation.

Let us write, for each of the four sentences, the shortest path between the hyponym
and the hypernym words in the sentence

4In Sect. 11.3, we had previously defined reusable components for regular expressions.

http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_11
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(1) nsubj(kind-5, gazpacho-2) nmod:of(kind-5, soup-7)
(2) conj:and(pilafs-3, types-6) nmod:of(types-6, food-8)
(3) amod(fish-6, other-5) conj:and(pike-3, fish-6)
(4) nmod:such_as(dishes-4, noodles-8)

In Table 13.3, we show a generalization of these patterns, so as to capture any
IS-A relation, expressed in a similar way. The dependency patterns in Table 13.3
provide an alternative to the lexico-syntactic patterns defined in Table 13.2, and both
could be tested side by side on the same task.

Table 13.3 Dependency patterns for the IS-A relation

No. Readable form Syntactic realization (dependency pattern)

1 X is a kind of Y nsubj(kind, X) nmod:of(kind, Y)

2 X and other type(s) of Y conj:and(X, type) nmod:of(type, Y)

3 X and other Y amod(Y, other) conj:and(X, Y)

4 Y such as X nmod:such_as(Y, X)

13.3.3 Comparing Approaches

At this point, we should definitely perform a baseline experiment, and test our two
search methods, lexico-syntactic patterns and dependency patterns, on a corpus. For
doing so, I did prepare a small corpus, as shown in Table 13.4.

Table 13.4 Examples of explicit IS-A relations

No. Sentence

1 Sub-irrigated planters (SIP) are a type of container that may be used in container
gardens.

2 When cool, the meat can be transferred to a canning jar or other container.

3 Use a tub, trough, or other container for water.
4 An appropriate solvent is poured into a glass beaker or any other suitable transparent

container.

5 Honeypot is literally: A pot, jar or other container used to store honey.

6 Growing plants in pots or other containers, rather than in ground.
7 There are a total of 168 jars, cups and other containers in the mural of various sizes

and colors.

8 Later witch bottles were made from glass bottles, small glass vials, and a variety of
other containers.

9 The tribe produces excellent winnowing baskets, rattan hammocks, and other house-
hold containers.

10 This requires good containers such as pottery, baskets, or special pits.
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In the corpus of Table 13.4, notice how I highlighted the sentence elements that
we hope for our methods to find, our gold standard, against which we will measure
precision, recall and F1 of the two search methods. The resulting list would contain:

planter, jar, tub, beaker, pot, jar, cup, bottle, vial, pottery, basket, hammock, pit

This list would represent a small gazetteer for CONTAINER as automatically
extracted from text. It is debatable whether we really want pottery or pit to be
included, but that would be making a judgment on whether these elements are actu-
ally containers or not, and it would not be a judgment onwhether our search approach
performs adequately.

Our exploration into textual data would provide, yet another list of containers,
different (but with overlap) with the lists of WordNet and FrameNet. Still, it could
be automatically built, starting from a single word container, using NLP techniques.
As previous lists, it has limited coverage and is noisy, which means we should use it
with care and evaluate the impact of its noise on our task.

At this point, you have everything needed for pursuing the current knowledge
extraction task, which I leave to do as Exercise 13.2.

The IS-A relation pattern-based extraction process presented in this section is gen-
eral enough to be used for any of the seven semantic roles in the Apply_heat frame:
Cook, Food, Container, Location, Duration, Beneficiary, Heating_instrument. How-
ever, this process might not be the best approach for all of them. Before embarking
on a knowledge acquisition task, we should investigate the presence of entity types
in available resources, and take advantage of the human effort which was put into
constructing them. Also, some entity types are best found through NER systems,
such as DATE and PERSON, and again, we should take advantage of the effort put into
their design. Let us pursue this exploration in the experiment of the next section.

13.4 Experiment — Using Semantic Types to Filter
Semantic Roles

The purpose of the experiment suggested in this section is to explore the combined
use of resources and algorithms as providers of semantic constraints to apply on
semantic roles.Wewill explore how to combine the different resource and algorithms
output through a voting system. Let us go through our steps:

1. Define our task.
2. Define a gold standard for testing and an evaluation method.
3. Define our strategies to be tested.
4. Evaluate our strategies.
5. Discuss diverse issues highlighted by the results.
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13.4.1 Task Definition

Let us go back to the semantic role labeling task, performed in the previous chapter.
Using various syntactic realizations of frame elements, we were able to generate a set
of candidates for the semantic roles extracted from different sentences. The semantic
role candidates are shown in Table 13.5. The sentences from which these roles were
extracted are shown in Table 12.9 of the previous chapter (see Sect. 12.5), but we do
not require them to pursue the current task.

Table 13.5 Candidate roles

No. Candidates

1 Cook=consumers, Food=pizzas, Location=homes

2 Cook=bakeries, Food=bread

3 Food=scones

4 Cook=you

5 Duration=hour, Beneficiary=hour

6 Food=cake

7 Container=oven, HeatInst=oven

8 Location=cafe, Cook=chef, Food=cake

Our starting point is a set of candidate semantic role fillers (Table 13.5), and our
task is to establish the semantic validity of each candidate semantic role filler, so as
to filter out the improbable ones. This would mean that for each candidate semantic
role, we want to evaluate how plausible it is from a semantic point of view. Let us
write out the question explicitly for a few examples.

Can consumers be Cook?
Can pizzas be Food?
Can homes be Location?
Can hour be a Beneficiary?
Can oven be a Container?

Now, let us see howwewill define our gold standard, in relation to these questions.

13.4.2 Defining a Gold Standard

Since the questions asked (e.g., Can consumers be COOK?) in our current task lead
to Yes/No answers, we should define the gold standard also as Yes/No answers, as
shown in the last column of Table 13.6. The table shows each possible role (column
1), followed by a short explanation of the meaning of that role (column 2), followed
by the instance to validate (column 3) which we will refer to as the candidate filler,
and the Yes/No annotation (column 4).

http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
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Table 13.6 Candidate roles defined in a gold standard

Role Definition Filler Gold

Cook the entity doing the cooking consumer Yes

bakery Yes

chef Yes

you Yes

Food the entity being cooked pizza Yes

bread Yes

scones Yes

cake Yes

Container the entity to hold the food while cooking oven No

Location where the cooking happens cafe Yes

home Yes

Duration how long the cooking lasts hour Yes

Beneficiary the entity benefiting from the cooking hour No

HeatInst the entity providing heat for the cooking oven Yes

Evaluation will be done through the usual recall, precision, and F1 measures.

13.4.3 Combining Resources and Algorithms within Voting
Strategies

For our problem solving strategy, we will gather a set of voters who would have
an opinion on questions such as ‘Can oven be a CONTAINER?’. As gazetteer building
from text extraction (Sect. 13.3) was introduced but left as an exercise to complete,
we will not make use of the results of this approach as a voter.

We will actually limit ourselves to three voters, based on the resources WordNet
and FrameNet, explored in Sect. 13.2 and the NER algorithm explored in Sect. 13.1.
The voters will output a Yes/No vote to the question. We will further allow the voters
to remain silent on the questions for which they have no opinion. For example, a NER
module would only know about generic types (e.g., PERSON, LOCATION), so it will
remain silent on questions involving other semantic types. This means that voters
will output Yes, No, or Silence.

Let us introduce our voters.

• Voter 1—Stanford CoreNLP NER module
• Voter 2—FrameNet human annotations
• Voter 3—WordNet hyponyms of predefined types

Let us specify how each voter will arrive at a Yes/No/Silence decision, and that on
each of the 7 semantic roles:Cook, Food, Container, Location, Duration, Beneficiary,
Heating_instrument.
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Voter 1 – Stanford CoreNLP NER module: This voter uses the NER module
described in Sect. 13.1. This module will be able to say Yes/No on four roles only:
Cook, Location, Duration, and Beneficiary. For each of these roles, we pre-assign
a particular named entity type. Cook must be a type PERSON, Location must be a
type LOCATION, Duration must be type DURATION, and Beneficiary must be of type
PERSON. This voter will process the test sentence using the NER module to tag all
the candidate fillers. Then, for each candidate filler, the voter will verify if the tag
assigned by the NERmodule is of the required type. If so, then the vote is Yes, and if
not, the vote is No. For the three more specific types: Food, Container, and HeatInst,
this voter remains silent.

Voter 2 –FrameNet humanannotations: This voter uses an explicit gazetteer for five
possible semantic roles: Cook, Food, Container, Duration and HeatInst. These five
roles were the ones annotated by FrameNet human annotators as shown in Table 13.1
(see Sect. 13.2.1). The lists shown in Table 13.1 would be the only knowledge avail-
able to this voter. For each candidate filler, this voter verifies if it is listed in the
gazetteer for the role it aspires to. If so, the answer is Yes, and otherwise (not in the
list), the answer is No. For the two remaining types: Location and Beneficiary, this
voter’s answer is Silence.

Voter 3 –WordNet hyponyms of predefined types: This voter relies on information
within WordNet. It first requires for each semantic role, the WordNet lexical entry
which would best capture the semantic constraints to apply on it. As wementioned in
Sect. 13.2.2, the matches are only approximate. Let us manually assign the following
(semantic role / lexical entry constraint) pairs: (Cook, PERSON), (Food, FOOD), (Loca-
tion, BUILDING), (Duration, TIME UNIT), (Container, CONTAINER), (HeatInst, KITCHEN

APPLIANCE). In WordNet each lexical entry leads to a set of hyponyms. So, for each
candidate filler, this voter verifies if it is a hyponym of the lexical entry corresponding
to the role it aspires to. If so, the answer is Yes, and otherwise (not in the list), the
answer is No. Since we assigned a lexical entry for each of the seven possible roles,
this voter is never silent.

Let us take a few examples, to illustrate the decision of each of the three voters. In
Table 13.7, we show 4 questions (column 1), and for each voter (column 2), we give
its decision (column 3), as well as a short explanation of how the voter arrived at that
decision (column 4). For the FrameNet vote, we refer to the lists from Table 13.1.
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Table 13.7 Candidate roles

Role/Entity Voter Decision Explanation

Can consumer be Cook? NER tagger No consumer is not tagged as a PERSON

FrameNet No consumer is not in COOK gazetteer

WN hypo Yes hypernym(consumer,person) is true

Can pizza be Food? NER Silence not knowledgeable about this type

FrameNet No pizza is not in FOOD gazetteer

WN hypo Yes hypernym(pizza,food) is true

Can oven be Container? NER Silence not knowledgeable about this type

FrameNet No oven is not in CONTAINER gazetteer

WN hypo No hypernym(oven,container) is false

Can cafe be Location? NER Yes cafe is tagged as LOCATION

FrameNet Silence not knowledgeable of this role

WN hypo Yes hypernym(cafe,building) is true

Provided we have three voters, each giving a Yes/No/Silence answer, we must
further combine these votes into a single decision. For doing so, we must decide on
three issues which will impact the final results. Let us first understand the issues, and
then devise voting strategies.

1. Vote combination: By vote combination, we mean the actual mechanism to
generate a vote from the multiple ones provided by the voters. A first option is to
simply opt for a majority vote. A second option is to consider that Yes answers
have a different value than No answers. For example, as soon as a voter says
Yes, we consider that sufficient for the overall vote to be Yes. These are only two
possible options, but we could imagine different options adapted to the nature of
the voters.

2. Silence interpretation: We can choose to ignore the silence or to assign it a Yes
or No default value. If we decide to ignore silent votes, this means that the number
of votes is reduced, and the vote combination strategy will be performed on the
reduced number of voters.

3. Tie solving: Even though we start with three voters, given that some remain
silent for some decisions, we might end up with only two voters, and then have
the likelihood of a tie. Ties can be treated different, by either providing a default
answer (Yes or No), or allowing the overall vote to be silent.

Let us define two different strategies, which are likely to lead to quite different
results and give rise to later discussions.

1. Voting Strategy 1 (VS1): The vote combination will be a majority vote. A silent
voter will be removed from the majority vote. A tie will lead to an overall silent
vote.

2. Voting Strategy 2 (VS2): The vote combinationwill take a singleYes as sufficient
to generate a Yes final vote. A silent voter will not be taken into account. Given
the chosen vote combination strategy, ties will not be possible.
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The voting strategies decided upon are somewhat arbitrary, and as usual, I encour-
age the reader to challenge them, by trying to come up with different strategies and
ideas.

13.4.4 Evaluation of Voting Strategies

We gather the decisions from each voter into Table 13.8, as well as the overall votes,
as obtained by the two voting strategies. Silences are indicated by ‘–’ in the table,
for easier reading.

Table 13.8 Results of applying semantic constraints on semantic roles

Role Entity Gold NER FrameNet WordNet VS1 VS2

Cook consumer Yes No No Yes No Yes

bakery Yes No No No No No

chef Yes No No Yes No Yes

you Yes No Yes No No Yes

Food pizza Yes – No Yes – Yes

bread Yes – No Yes – Yes

scones Yes – No Yes – Yes

cake Yes – No Yes – Yes

Container oven No – No No No No

Location cafe Yes Yes – Yes Yes Yes

home Yes No – No – No

Duration hour Yes Yes No Yes Yes Yes

Beneficiary hour No No No No No No

HeatingInst oven Yes – Yes Yes Yes Yes

In Table 13.9, we summarize the precision, recall and F1 measures for each indi-
vidual voter and for the two voting strategies.

Table 13.9 Precision, Recall and F1 measures for semantic constraints voters and voting strategies

Voter Name Nb Voted Precision Recall F1

1 NER module 8 37.5% (3/8) 21.4% (3/14) 27.2%

2 FrameNet annotations 12 33.3% (4/12) 28.6% (4/14) 30.8%

3 WordNet Hyponyms 14 71.4% (10/14) 71.4% (10/14) 71.4%

VS1 Voting Strategy 1 9 55.5% (5/9) 35.7% (5/14) 43.4%

VS2 Voting Strategy 2 14 85.7% (12/14) 85.7% (12/14) 85.7%

The second voting strategy (VS2) provides much higher precision and recall than
the first voting strategy (VS1). We also notice that the voter relying on WordNet
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hyponyms alone is better than the first combination strategy. As we often mentioned
throughout this book, the actual numbers in our small experiment are not significant
to provide a proper evaluation of our strategies. Nevertheless, these number are
sufficient to trigger discussion on various issues. It is the understanding of those
issues which allow researchers to adapt systems (individual voters, voting strategy)
to various different tasks.

13.4.5 Result Analysis and Discussion

There are two types of issues to discuss, first, voting strategy issues and second,
issues related to language and knowledge representation.

Let us start with the voting strategy issues:

• Vote combinations: Although a majority vote seems like a good intuitive choice,
such strategy relies on the underlying assumption that Yes andNo decisions should
equally pull the vote in one direction or another. For algorithms, that is not always
the case. For example, Voter 2 (FrameNet annotations) relies on a very small list of
annotated examples, which are provided by humans, and are therefore very likely
correct. This voter is able of high precision on the Yes side only. A Yes, based on
these small but highly reliable gazetteers should be considered of greater value
than a very likely No answer, based on the fact that the word was never seen by
annotators. A majority vote will not take this into account. Another voter might
on the other hand, have a different behavior, and be certain of its No answers. We
should consider the voter’s strengths and the respective trust of their Yes/No to
devise a proper voting combination approach.

• Parallel versus sequential vote:We presented the idea of combining votes, mean-
ing that all voters are considered in parallel. A different approach is to ask a first
voter, and then based on their decision, decide to move on to a second voter, and
so on. For example, assume we think the NER module is very reliable on its Yes
answers (precise but prone to silence), then we try it first, and only when it says No
do we move on to another voter. Again, knowledge of the actual voters will allow
to decide on whether we should combine their votes or use them in sequence.

Besides many variations possible as to our voting strategies, the results also high-
light issues related to language and knowledge representation which we discuss
below:

• Class correspondence: In order to use WordNet in our task, we had to assign a
lexical entry to correspond to a particular semantic constraint. For example, we
decided that the Location role would be best represented by the Building entry in
WordNet. That decision allowed for a Yes decision as to the candidate entity cafe,
since cafe is a hyponym of Building, but it generated a No decision for home, since
home is not a hyponym of Building. On the other hand, home is an hyponym of the
entry Location. We might have added Location as another lexical entry, but then,
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would we have generated a set of possible hyponyms that is too large to properly
constrain the semantic role Location? This question relates to the difficulty of
making resources and tasks, or even resources among themselves, correspond
in terms of their organization of knowledge. This is a very hard problem, dealt
with since the days when researchers were doing knowledge acquisition from
machine readable dictionaries, at the time discussing how difficult it was to match
entries provided by different dictionaries. Matching classes in different ontologies
is difficult, the same as matching any knowledge resource to each other.

• Type constraint specificity: Although it is important to make use of semantic
constraints in order to find semantically plausible roles in a sentence, it is also
possible that these constraints prevent interpretation that are less probable but still
possible. People use a lot of metaphorical construction in their language, and
strict semantic constraintwill not allow for that.One specific language construction
of interest is the metonymy, in which we replace one entity by another related
one. Such a metonymy construct was used in our example of bakery as agent of
cooking (example 2, in Table 13.5), where as the interpretation assumes that it is
the people working in bakery doing the cooking and not the actual bakery itself.
With a semantic constraint imposing PERSON as the required semantic type for the
role Cook, we then prevent restaurants, or bakeries, to be assigned to this role.
But then, loosening the semantic constraint too much would allow for too many
candidate entities to become plausible role fillers, when they should not be.

These last two issues touch on fundamental difficulties in language understanding
and knowledge representation, emphasizing that there is always subjectivity in the
organization of knowledge, and that humans are quite good at making inferences
and navigating through a bit of ambiguity in text. Humans are quite good at Natural
Language Understanding, but algorithms, as we have seen throughout this book,
must just keep trying to get better at it. I count on the readers of this book, to help
the NLP research field in taking on that challenge.

13.5 In Summary

• Semantic types are important for semantic role validation and disambiguation in
sentence understanding.

• NER modules can be used to recognize common semantic types such as DATE,
DURATION, PERSON, ORGANIZATION, and LOCATION.

• More specific semantic types, e.g., CONTAINER, can also be useful in semantic
interpretation.

• Human annotation of FrameNet semantic role fillers can be used to build gazetteers
corresponding to these roles.

• We can use WordNet to gather gazetteers for various semantic types.
• Textual presence of IS-A can be expressed by explicit markers, for example X is

a kind of Y, or Y such as X.
• Both lexico-syntactic patterns and dependency patterns can be used in searching
for IS-A relations in text.
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• When we have access to various algorithms with limited coverage, and/or noise,
we can try to combine them within a voting system.

• The parameters usedwithin the voting strategy (voter’s weights, combination strat-
egy, decisions on ties and silences) can largely influence the final result.

• Metonymy allows for changes in semantic types which are likely to render invalid
previously assigned semantic constraints.

13.6 Further Reading

Gazetteer construction from text: Early work on gazetteer construction can be
found in Riloff and Jones (1999). For gazetteer construction within the Open Infor-
mation framework (see Appendix C, Sect.C.9), see Etzioni et al. (2005). For a
focus on Wikipedia to build gazetteers, see Toral and Mu (2006) and Kazama and
Torisawa (2007). Related work is found under taxonomy expansion (Ponzetto and
Strube (2007)) or learning of domain knowledge (Yangarber et al. 2000). As this
field is very rich and active, the reader could further find multiple articles, inspired
from the early work by Hearst (1992) by following citations to her work.

Semantic types in patterns: Some authors have presented the use of semantic types
as restriction on the patterns themselves, by including named entities in the patterns
(Yangarber (2003)), or semantic categories (Stevenson and Greenwood (2005)).

Named Entity Recognition: By providing an evaluation of multiple systems, Mar-
rero et al. (2009) indirectly provide a survey of tools. Nadeau and Sekine (2007)
provide a survey of Named Entity Recognition and classification. An overview is
also part of the Design challenges and misconceptions in NER by Ratinov and Roth
(2009). As the field of NER is booming, there will continue to be many articles
describing various systems.

WordNet: The online version, “About WordNet”, Princeton University, is available
at http://wordnet.princeton.edu. See Fellbaum (1998) for a book reference.

Resource mapping: Since the early days of knowledge extraction from machine
readable dictionaries have researchers highlighted the difficulties of mapping infor-
mation from one resource to another (Ide and Véronis 1990). The current field of
ontology matching is dedicated to this task, extending the mapping to the relational
knowledge between entities as well (Otero-Cerdeira et al. 2015).

13.7 Exercises

Exercise 13.1 (Named Entity Recognition)

a. Set up an experiment to test the Named Entity Recognition module from Stan-
ford CoreNLP. Ideally, search for another NER system to be able to perform a
comparative study. The comparative study would require the following steps:

http://wordnet.princeton.edu
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1. Gather a dataset, by using the three following corpora: the BEETHOVENCORPUS,
in Chap.2, the COOKCORPUS, in Chap.8 and the EXPORTCORPUS, in Chap.12.

2. Generate a gold standard of named entities to be found by performing a
manual annotation of a set of types ahead of time, PERSON, DATE, DURATION,
ORGANIZATION, LOCATION.

3. Perform the NER using your different modules.
4. Perform the evaluation using the precision, recall, and F1 measures.
5. Analyze and discuss the results. For example, how do you deal with word

boundaries in the evaluation? Are some types of entities more prone to errors
than others, and why?

b. The EXPORTCORPUS from Chap.12 contains many country names and company
names. Write your own NER module which would find these two types in the
corpus. You NER module will include a gazetteer for the COUNTRY type and
regular expressions for the COMPANY type.

1. To build your gazetteer of country names, you can perform a DBpedia
SPARQL query. Write the query and perform it at the DBpedia endpoint.
How many countries are part of your gazetteer? How would you include all
alternate names for the countries? How many surface forms do you have?

2. To help you build regular expressions for COMPANY, think of words which
would be part of company names such as Org., Inc., Association, Cie., etc.
Include those in your regular expressions.

3. Test your NER modules on the EXPORTCORPUS. How does it perform?
4. Gather a new test corpus on import/export. To do so, use the concordancer

you built in Exercise 5.4, Chap. 5, to search for sentences containing the
words export or import in them. As a corpus to search on, you can use the
MILLIONCORPUS (or a smaller version) you built in Exercise 10.1 in Chap.10,
containing a random sample of a million Wikipedia pages. Gather 20 new
sentences for your test corpus, and evaluate your NER modules on them.
What are the results?

Exercise 13.2 (Gazetteer acquisition from text)

a. Using the knowledge acquisition strategy developed in Sect. 13.3, program your
own IS-A pattern-based extraction system to test both dependency patterns and
lexico-syntactic patterns. Test both approaches against the gold standard shown
in Table 13.4. What are the results?

b. Set up an experiment to further test IS-A pattern-based extraction from text.
Assume we wish to automatically build a gazetteer of book authors from text.
The following steps would be required.

1. Write a Sparql Query to gather 20 book abstracts from DBpedia. One idea
is to use the predicate rdf:type(X,yago:Novel106367879) to search for
novels for which you could find the abstract.

http://dx.doi.org/10.1007/978-3-319-41337-2_2
http://dx.doi.org/10.1007/978-3-319-41337-2_8
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_5
http://dx.doi.org/10.1007/978-3-319-41337-2_10
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2. Develop your set of both lexico-syntactic patterns and dependency patterns
using a development set of 10 abstracts (choose 10 and do not look at the
others). Within that development set, you will annotate the author names.

3. Then take the 10 abstracts left aside, and annotate them for the right answers.
4. Evaluating your patterns on this test dataset.

c. Based on the experiment you performed above, and the slightly different experi-
ment you performed in Exercise 12.4 from last chapter, reflect on the following
question: is there a differencebetween searching for the relation author-of(X,Y)
and searching for the relation isa(X,author)? Discuss.

d. Assumeyouwish to automatically build gazetteers from text for the other semantic
roles of the Apply_heat frame: Cook, Food, Container, Location, Duration, Ben-
eficiary, Heating_instrument. Which roles are more likely to have their instances
expressed through explicit markers in text? Notice how I said explicit markers,
and not IS-A explicit markers, as sometimes gazetteers are easier built through
other relations (see question (c) above). Choose two roles and set up an experi-
ment to find them in text through dependency patterns. You can be inspired by
Exercise 12.3 from the previous chapter and combine ideas from the last chapter
and the present one for your knowledge acquisition task.

Exercise 13.3 (Semantic role constraints through semantic types)

a. Go back again to the EXPORTCORPUS, in Chap.12. In Exercise Sect. 12.9, Exer-
cise 12.2, you had annotated this corpus with frame elements from the Exporting
frame. This can be considered your gold standard, given that all identified roles
are correct.

1. Go through the voters (see Sect. 13.4) we presented in this chapter, and adapt
their behavior to best be useful for each possible semantic role within this
Exporting frame.

2. Use each voter to decide on the semantic viability of each semantic role.
What is their individual precision/recall on your gold standard?

3. Combine your voters within different vote combination strategies which you
should define and justify based on the voter’s individual performances as
measured in the previous question.

4. Analyze and discuss the voting strategy results.

http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12


Appendix A
A Look into the Semantic Web

The official view on the Semantic Web is provided by W3C (World Wide Web
Consortium),1 and I encourage the reader to visit the W3C Website to gather infor-
mation about the Semantic Web.

In this appendix, I suggest a simple perspective on the Semantic Web as that of
a large structured knowledge resource. In this book, Natural Language Processing
algorithms will make use of this resource to help analyzing textual data. Natural
Language Processing can also enrich the Semantic Web through the structuring of
extracted information from text.

A.1 Overview of the Semantic Web Structure and Content

In the Semantic Web, we can think of the most basic unit of knowledge as a URI
(Universal Resource Identifier). URIs uniquely define the existence of entities, pred-
icates, or classes (all which can be seen as resources) by assigning to each one a
unique identifier on the Web. For example, here are two URIs:

http://dbpedia.org/resource/Eiffel_Tower
http://dbpedia.org/resource/Paris

Each URI is made of two parts: the name of the resource provider and the
resource’s reference. Our example above shows a single resource provider, DBpe-
dia, and two entities, the Eiffel Tower and the city of Paris. The resource provider
DBpedia makes its entities available at the address http://dbpedia.org/resource/.

To avoid repeating the long string corresponding to the name of the resource
provider, we use a PREFIX allowing further references to the site name through
an abbreviated form, as shown below. From this point on, to make the examples in
this appendix more concise, I will assume any PREFIX defined in an example to

1https://www.w3.org/standards/semanticweb/.
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be available in later examples and will only write the prefixes of newly introduced
resource providers.

PREFIX dbr: http://dbpedia.org/resource/
dbr:Eiffel_Tower
dbr:Paris

As much as the URIs above are readable, meaning that they correspond to English
words, it is not required of a URI to be readable. For example, a research group at the
University of Mannheim (http://wifo5-04.informatik.uni-mannheim.de/drugbank/)
makes drug-related information available, such as the drug below referenced by
DB00280.

PREFIXdrugbank: http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugs/
drugbank:DB00280

Without further information, it is hard to knowwhat drugbank:DB00280 is about.
For human consumption of the Semantic Web, the actual naming of entities is very
important. One predicate, the rdfs:label predicate, allows such naming. This pred-
icate is part of the RDF-S (Resource Description Format Schema) standard defined
by theW3C. Another fundamental aspect of an entity’s definition is to specify which
class it belongs to. This is possible to represent through a predicate called rdf:type,
which is part of the RDF (Resource Description Format) standard of which RDF-S
is an extension. Anything published on the Semantic Web must minimally follow
the RDF standard.

The example below introduces two prefixes for the W3C as a resource provider
for both RDF and RDFS. It also introduces the triple format for encoding structured
information. A triple is composed of a subject, a predicate, and an object.

PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
PREFIX rdfs: http://www.w3.org/rdf-schema/
(drugbank:DB00280, rdf:type, drugbank:drugs)
(drugbank:DB00280, rdfs:label, “Disopyramide”)

Predicates can express relations between entities (drugbank:DB00280), classes
(drugbank:drugs) and literals (“Disopyramide”). In a triple, predicates and subjects
must be URIs, but objects can be literals. A literal is a string, an integer or another
simple data type. The above two triples tell us that the entity drugbank:DB00280 is
an instantiation of the class drugbank:drug and that it is named “Disopyramide.”

As much as drugbank is specialized in medical drug information, it will provide
many classes of entities, such as enzymes, drug interactions, and dosage forms.
The definition of these classes and their interrelations will be part of the med-
ical drug domain ontology which defines how “the world is organized” within that
domain. Ontologies can be used to organize knowledge in any domain. For exam-
ple, in the world of human-made constructions, the DBpedia ontology states that a
dbo:Building is a subclass of an dbo:Architectural_Structure which is itself a sub-
class of a dbo:Place.

Below, we go back to the example of the Eiffel Tower. The first triple defines
dbr:Eiffel_Tower as an instantiation of a dbo:Building. The other two triples use the

http://dbpedia.org/resource/
http://wifo5-04.informatik.uni-mannheim.de/drugbank/
http://wifo5-04.informatik.uni-mannheim.de/drugbank/resource/drugs/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/rdf-schema/


Appendix A: A Look into the Semantic Web 277

predicate rdfs:subClassOf, part of RDF-S standard, to state the relation between
dbo:Building, dbo:Architectural_Structure, and dbo:Place.

PREFIX dbo: http://dbpedia.org/ontology/
(dbr:Eiffel_Tower, rdf:type, dbo:Building)
(dbo:Building, rdfs:subClassOf, dbo:ArchitecturalStructure)
(dbo:ArchitecturalStructure, rdfs:subClassOf, dbo:Place)

Now let us introduce a few more facts about the Eiffel_Tower in the example
below.

PREFIX dbp: http://dbpedia.org/property/
PREFIX yago: http://dbpedia.org/class/yago/
PREFIX umbel: http://umbel.org/reference-concept/

(dbr:Eiffel_Tower, dbp:height, “300”(xsd:integer))
(dbr:Eiffel_Tower, rdfs:label, “Eiffel Tower”@en)
(dbr:Eiffel_Tower, dbo:location, dbr:Paris)
(dbr:Eiffel_Tower, rdf:type, yago:Skyscraper)
(dbr:Eiffel_Tower, rdf:type, umbel:Skyscraper)

The first triple states that the dbr:Eiffel_Tower is 300 meters high. Notice how the
predicate dbp:height comes from yet another ontology, one which defines various
properties of entities. The object of the predicate dbp:height is not a URI, but rather
a literal of a predefined type integer. The object in the second triple is also a literal,
providing the label “Eiffel Tower”, in English (@en). From an NLP perspective, this
label information will be very useful for mining entity mentions in text.

The third triple establishes the location of the dbr:Eiffel_Tower in dbr:Paris. This
time dbr:Paris is provided not as a literal, but rather as a URI uniquely identifying
the city of Paris and not other possible entities with that same name. URIs, contrarily
to words, are disambiguated, as they represent a single entity. That is why, when
providing structured information as triples, objects of predicates should be provided
as URIs as much as possible. Before writing an ambiguous literal (e.g., “Paris”),
we should choose, if it exists, the appropriate disambiguated URI (dbr:Paris) corre-
sponding to the desired entity.

The last two triples assign the dbr:Eiffel_Tower as an instance of two new classes,
the yago:Skyscraper class defined in the YAGO ontology and the umbel:Skyscraper
class defined in the UMBEL ontology.

Why two Skycraper classes?Well, different providing sites actually contain infor-
mation on similar domains, and each one defines its own ontology, according to its
view of the world. Given that the Semantic Web is not a normalization place (it
does not force any view of the world), it rather allows various views and provides
mechanisms to establish equivalence links between them. Two type of equivalence
links exist, one between entity classes, using the predicate owl:equivalentClass,
and one between instances using the predicate owl:sameAs.

PREFIX schema: http://schema.org/Place
PREFIX owl: https://www.w3.org
PREFIX geodata: https://www.geonames.org
(dbr:Eiffel_Tower owl:sameAs geodata:Eiffel_Tower)

http://dbpedia.org/ontology/
http://dbpedia.org/property/
http://dbpedia.org/class/yago/
http://umbel.org/reference-concept/
http://schema.org/Place
https://www.w3.org
https://www.geonames.org
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(dbr:Eiffel_Tower, rdf:type, dbo:Place)
(dbo:Place, owl:equivalentClass, schema:Place)

In the example above, the first triple states that the entity dbr:Eiffel_Tower defined
inDBpedia is the same entity as the geodata:Eiffel_Tower part of yet another resource
provider. Such a simple link is quite powerful. We now not only have access to the
information about theEiffel Tower from the perspective of DBpedia, but we also have
additional geo-localization information about the same entity stored in the geodata
knowledge base. This possibility of connecting entities across providing sites opens
to the gathering of information kept in a distributed manner.

The third triple in the example above shows that linking can also happen at the
class level, as the dbo:Place class defined inDBpedia ontology is said to be equivalent
to the schema:Place class defined in another important vocabulary resource provider
called Schema.org.

A.2 Querying the Semantic Web through SPARQL
Endpoints

One way of accessing Semantic Web resources is through the use of SPARQL end-
points, which “expose” to the Web the actual resource from the resource provider.
Those endpoints can be queried using a particular query language, which we refer to
as SPARQL queries. The full specification of SPARQL queries can be found at http://
www.w3.org/TR/rdf-sparql-query/. There are also various tutorials about SPARQL
queries on the Web, which go well beyond the basic knowledge provided in this
appendix.

If you are familiarwith database queries, youwill see a resemblancewithSPARQL
queries. Imagine that the Semantic Web triples we described in the previous section
are a set of rows in a long table of rows, each having three columns: subject, predicate,
and object. Using SPARQL queries, you will be able to specify restrictions on the
elements contained in these rows so as to return only a subset of them.

To define a basic query, the important parts are as follows:

• Define the prefixes of the resources used.
• Use “select” to define which element(s) (which column(s)) you wish to retrieve.
• Indicate restrictions through the use of a “where CONDITION.”

For example, the following querywould search for all buildings in the city of Paris.
The query says that the information searched for (?X) must be of type dbo:Building
and must be located in dbr:Paris. The resulting replacement for the variable ?Xmust
satisfy both constraints.

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
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select ?X where {

?X rdf:type dbo:Building .

?X dbo:location dbr:Paris .

}

Now, suppose you wish to submit this query to the DBpedia SPARQL endpoint
to actually obtain the list of buildings in the city of Paris. First, using your favorite
browser, access the DBpedia SPARQL endpoint, at http://dbpedia.org/sparql and
second enter the query defined above in theQueryText space of theVirtuosoSPARQL
Query editor. Then, submit the query using the RunQuery button. You are done. Here
are 10 among over 70 results returned by the query.

dbr:Hôtel_de_Ville,_Paris
dbr:Bridgeman_Art_Library
dbr:Carrousel_du_Louvre
dbr:Les_Mercuriales
dbr:Stade_Bergeyre
dbr:Castille_Paris
dbr:Les_Échelles_du_Baroque
dbr:Opéra_Bastille
dbr:Les_Halles
dbr:Petit_Luxembourg

SPARQL queries can be quite complex, but in this book, we will only make use
of very simple queries, such as the one above.

http://dbpedia.org/sparql


Appendix B
NLP Tools, Platforms and Resources

This appendix lists a few software tools, platforms, and resources we encounter in
the NLP literature. This is far from an exhaustive list, and I encourage the reader
to search online for additional resources. As the interest in NLP and the Semantic
Web grows over the years, there will be for sure additions to this list. Additional
references to corpus exploration tools and corpora resources were provided in the
Further Reading section (Sect. 5.10) of Chap.5, Exploring Corpora.

NLP Pipeline: Toolkits and platforms usually allow to perform a series of tasks,
sometimes referred to as the NLP stack (tokenization, sentence splitting, lemmati-
zation, POS tagging, parsing).

• Stanford CoreNLP: A pipeline containing multiple modules, from tokenizer all
the way to Named Entity Recognition and coreference analysis.
– http://nlp.stanford.edu/software/corenlp.shtml.

• OpenNLP: An Apache project. A machine learning based toolkit for text process-
ing.
– https://opennlp.apache.org/

• LingPipe: A toolkit for text processing.
– http://alias-i.com/lingpipe/

Information Annotation Platforms: Platforms with a more general view than the
NLP pipelines, sometimes allowing multiple NLP tasks, but presented and used
within an annotation framework.

• GATE: A General Architecture for Text Engineering.
– https://gate.ac.uk/

• UIMA: A platform for Unstructured Information Management.
– https://uima.apache.org/

Information Extraction: Platforms and APIs dedicated to the ongoing extraction
of information from the Web or large corpora.

• Ollie: Open Information Extraction Software.
– https://knowitall.github.io/ollie/
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• NELL: Never-Ending Language Learning, a Read the Web research project at
Carnegie Mellon University.
– http://rtw.ml.cmu.edu/rtw/

Indexing: For efficient storage and retrieval of locally stored large corpora.

• Lucene: indexing and search technology
– https://lucene.apache.org/

Lexical, Linguistic, and Semantic Resources:

• WordNet: From Princeton University, a lexical-semantic resource widely used in
the NLP community, mostly for semantic processing. It organizes information into
synsets which are groups of synonyms put together to form a single entry for which
a small definition, called a gloss, is provided.
– https://wordnet.princeton.edu/

• Wikipedia: A large collectively created encyclopedia, free of charge, and fre-
quently used in NLP. Wikipedia is an amazing textual resource exploitable in lan-
guage processing. It provides a category system (see bottom of Wikipedia pages)
to tag pages. TheWikipedia dumps are the set of filesmade available byWikipedia,
containing all the information (articles, titles, categories, etc.) found inWikipedia.
These files combined form a large corpus widely used in NLP.
– https://dumps.wikimedia.org/.

• FrameNet: A large frame semantics project from the Computer Science Institute
in Berkeley, California.
– https://framenet.icsi.berkeley.edu/fndrupal/

• VerbNet:A largeverbdescriptionproject, initiated andmanagedbyMarthaPalmer,
University of Colorado at Boulder.
– http://verbs.colorado.edu/~mpalmer/projects/verbnet/downloads.html.

• BabelNet: A large multilingual project, integrating multiple other resources, such
as WordNet, Wikipedia, VerbNet, and GeoNames.
– www.babelnet.org

• UBY:A large-scale unified lexical-semantic resource, fromTechnischeUniversität
Darmstadt, merging various resources.
– https://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/

• Lemon UBY: A Semantic Web version of UBY, collaborative work with John
McCrae (CITEC, Universität Bielefeld) and Christian Chiarcos (ACoLi, Goethe-
University Frankfurt am Main).
– http://www.lemon-model.net/lexica/uby/

• Linguistic Linked Open Data: There is growing interest in formalizing linguistic
information as part of the Linked Open Data cloud. There are various develop-
ments for representation and interoperability formats (e.g., NIF Natural Language
Processing Interchange Format).
– http://linguistic-lod.org/

http://rtw.ml.cmu.edu/rtw/
https://lucene.apache.org/
https://wordnet.princeton.edu/
https://dumps.wikimedia.org/
https://framenet.icsi.berkeley.edu/fndrupal/
http://verbs.colorado.edu/~mpalmer/projects/verbnet/downloads.html
www.babelnet.org
https://www.ukp.tu-darmstadt.de/data/lexical-resources/uby/
http://www.lemon-model.net/lexica/uby/
http://linguistic-lod.org/


Appendix C
Relation Lists

This appendix offers a classification of relations with some examples of relation lists
provided by different authors, for different tasks, for use in different contexts, or to
represent different types of knowledge. The purpose of providing this classification
is to supplement Part IV of this book, on knowledge acquisition, and encourage
the reader to reflect on appropriate methods for finding occurrences of these differ-
ent types of relations in text, taking into account the likelihood of finding explicit
expressions of such relations in various types of textual resources.

C.1 Lexical Relations

Lexical relations aim to describe relations between lexical units. For example, in
UMLS (Unified Medical Language System),1 lexical relations allow to explic-
itly express the relation between the different surface forms of the same concept.
TableC.1 shows some examples of lexical relations in UMLS.

Table C.1 Examples of lexical relations in UMLS

Lexical relation Subject Object

has_expanded_form Abdmnal pain unspcf site Abdominal pain, unspecified site

has_permuted_form 2-Acetolactate Mutase Mutase, 2-Acetolactate

has_alias immunoglobulin heavy locus IGH

has_translation tidylcholine tidilcolina

has_adjectival_form heart cardiac

1The Unified Medical Language System (UMLS), published by the US National Library of Medi-
cine, is available at https://www.nlm.nih.gov/research/umls/.
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C.2 Web Content Metadata Relations

Although Web data could basically be anything, it is important to highlight a major
development of classes and properties done in Schema.org2 to try to represent the
major contributors of actual Web presence: organizations. This initiative was started
in 2011, by large commercial search engine companies (Google, Microsoft), to allow
webmasters to mark up their pages and improve the display of there results. Describ-
ing organizations leads to almost infinite ramification in the schema, and the number
of classes and properties defined is quite large. There are different types of orga-
nizations (health organizations, government organizations, restaurants), they create
different things (products, creative work, events), they reside in different places, they
behave in different ways (opening hours, types of operations), they have different
internal structures, they hire people, etc.

As Schema.org evolves, there is a parallel effort to map all the classes and proper-
ties of Schema.org to LinkedOpenData ontologies used in recognized LODdatasets,
such as DBpedia3 and Dublin Core.4 Examples of mappings, which are not neces-
sarily one-to-one, are shown in TableC.2.

Table C.2 Examples of mappings between different ontologies

Ontology Property Property in Schema.org

Dublin Core dct:issued schema:datePublished

Dublin Core dct:extent schema:duration

Dublin Core dct:contributor schema:musicBy

schema:director

schema:actors

DBpedia dbpedia:club schema:team

DBpedia dbpedia:albumRuntime schema:duration

dbpedia:filmRuntime

dbpedia:runtime

DBpedia dbpedia:restingDate schema:deathDate

DBpedia dbpedia:language schema:inLanguage

2Schema.org is found at http://schema.org.
3DBpedia is found at http://dbpedia.org.
4Dublin Core is found at http://dublincore.org.

http://schema.org
http://dbpedia.org
http://dublincore.org
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C.3 People and Social Interaction Relations

As much as Schema.org was developed for structuring the Web content of organi-
zations, there is now a larger presence of individuals on the Web, and one particular
vocabulary, named FOAF (Friend-of-a-Friend),5 was developed to capture informa-
tion about people’sWeb presence, social networks, friendship, and associations (link
to university or work). TableC.3 shows some of its relations.

Table C.3 Examples of FOAF relations

Relation Domain/Range Description

foaf:familyName,
foaf:firstName

Person/literal Provide a name to the person

foaf:knows Person/Person Link a person to other people they know

foaf:homepage Thing/Document Link a person/organization to a homepage

foaf:mbox Agent/Thing Provide an e-mail address for a person/organization

foaf:group Group/Agent Link a group (such as a group of employees) to a
person/subgroup/organization part of that group

foaf:depiction Thing/Image Provide a link to a representative image for anything

C.4 Domain-Specific Relations

Many relation lists are domain specific. Any domain’s ontology requires careful
definition of classes and properties to provide the best model for expressing the
knowledge found within that domain. One only has to look at the Datahub site6 to
see the diversity of ontologies and datasets published around the world. TableC.4
shows a few examples of properties within domain-specific ontologies.

5FOAF is found at http://xmlns.com/foaf/spec/.
6Datahub is found at http://datahub.io/.

http://xmlns.com/foaf/spec/
http://datahub.io/
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Table C.4 Examples of domain-specific properties

Domain Properties

Wine

http://www.w3.org/TR/owl-guide/wine.rdf madeFromGrape, hasSugar, hasMaker,
hasColor, hasBody

Museum Art

http://collection.britishmuseum.org curatorial_comment, is_documented_in,
has_current_keeper, has_dimension

Teaching

http://linkedscience.org/teach/ns/ courseTitle, teacherOf, weeklyHours, grading,
academicTerm

Music

http://www.musicontology.com/specification/ genre, origin, imdb, interpreter, performed_in

Medical

http://www.nlm.nih.gov/research/umls/ has_physiologic_effect,
may_inhibit_effect_of, has_finding_site

E-commerce

http://www.heppnetz.de/projects/goodrelations/ hasInventoryLevel, hasManufacturer,
hasOpeningHours

Geo positioning

http://www.w3.org/2003/01/geo/wgs84_pos# latitude, longitude, altitude

C.5 General Knowledge Organization Relations

Some relations are useful to describe and organize knowledge, independently of a
particular domain. A very useful vocabulary, containing multiple relations aiming at
organizing knowledge, is SKOS (Simple Knowledge Organization System).7 Some
examples of types of relations are shown in TableC.5.

Table C.5 Examples of relations in SKOS

Purpose Examples

Grouping concepts skos:Collection, skos:OrderedCollection

Matching between concepts skos:exactMatch, skos:closeMatch,
skos:broadMatch

Naming concepts skos:prefLabel, skos:altLabel

Express a semantic relation between two
concepts

skos:related, skos:broaderTransitive,
skos:broader, skos:narrowerTransitive,
skos:narrower

Documenting concepts skos:definition, skos:example,
skos:editorialNote, skos:scopeNote

7See http://www.w3.org/2009/08/skos-reference/skos.html for SKOS Schema description.

http://www.w3.org/TR/owl-guide/wine.rdf
http://collection.britishmuseum.org
http://linkedscience.org/teach/ns/
http://www.musicontology.com/specification/
http://www.nlm.nih.gov/research/umls/
http://www.heppnetz.de/projects/goodrelations/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.w3.org/2009/08/skos-reference/skos.html


Appendix C: Relation Lists 287

C.6 Definitional Relations

A good example of the design of a set of relations, for the purpose of defining words
and relating word senses, is the one found for EuroWordNet, a European project,
completed in the summer of 1999, which aimed at designing a multilingual database
on a similar model asWordNet. From information found in Vossen (1998), TableC.6
gathers a list of definitional relations. Although not illustrated in the table, relations
have a corresponding inverse relation, e.g., isCausedBy and Causes.

Another example of a set of definitional relations is from the influential work
by Pustejovsky (1995) on the Generative Lexicon. In his work, he divides in four
important parts the content of a definition: formal relations, constitutive relations,
telic relations, and agentive relations. Influenced by such work, the EU-project SIM-
PLE (Semantic Information for Multi-functional Plurilingual Lexica) (Lenci et al.
2000) defined a list of definitional relations. Some examples are shown in TableC.7
(taken from Madsen et al. (2001)).

Table C.6 Examples of relations in EuroWordNet

Group Relation Example

synonymy near_synonym (not same synset) tool/instrument

antonymy antonymy good/bad

hyponymy has_hyponym vehicle/car

part-whole relations has_mero_part hand/finger

has_mero_member fleet/ship

has_mero_made_of book/paper

has_mero_portion bread/slice

has_mero_location desert/oasis

cause relations results_in to kill/to die

for_purpose_of to search/to find

enables_to vision/to see

subevent relations is_subevent_of to snore/to sleep

involved/role relations involved_agent to bark/dog

involved_patient to teach/learner

involved_instrument to paint/paintbrush

involved_location to swim/water

involved_source_direction to disembark/ship

involved_target_direction rincasarse/casa

involved_result to freeze/ice

involved_manner to shout/loudly
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Table C.7 Examples of relations in SIMPLE

Pustejovsky’s role Relation in SIMPLE Example

formal relation is_a yacht/boat

constitutive relations (to express the
internal constitution of an entity)

is_a_member_of senator/senate
has_as_member flock/bird

has_as_part airplane/wings

instrument paint/brush

resulting_state die/dead

is_a_follower_of marxist/marxism

made_of bread/flour

has_as_colour lemon/yellow

produced_by honey/bee

concerns hepatitis/liver

contains wineglass/wine

quantifies bottle/liquid

measured_by temperature/degree

successor_of two/one

has_as_effect storm/thunder

causes measles/fever

telic relations (to express the typical
function of an entity)

indirect_telic eye/see
purpose send/receive

object_of_the_activity book/read

is_the_habit_of smoker/smoke

used_for crane/lift

used_against chemoterapy/cancer

used_as wood/material

agentive relations (to express the origin
of an entity)

result_of loss/loose
agentive_prog pedestrian/walk

agentive_experience fear/feel

created_by book/write

derived_from petrol/oil

C.7 Noun Compound Relations

Noun compounds are intricate lexical units since they capture semantic relations,
which are non-stated and implicit, yet understood by readers based on their a priori
knowledge. For automatic text analysis tools, they are difficult, since their underlying
syntactic property is simple, usually noun–noun, and sometimes adj–noun, but their
underlying semantics can only be captured by world knowledge.

For example, compound nouns such as laser printer or tea pot hide different
implicit relations of uses-technology(printer, laser) or contains(pot, tea). The order
is important, as we would know the difference between a dance school and a school
dance.
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One early proposal of a relation list, especially for noun compounds, is the one
of Levi (1978). Levi’s recoverably deletable predicates, as she calls them, are shown
in TableC.8 with a few examples taken from her list.

Other lists of relations for noun compound analysis include those of Vanderwende
(1994), Girju et al. (2005), O Seaghdha (2008), andKim andBaldwin (2005), as cited
in Nastase et al. (2013). Some of the relations presented in this section overlap with
relations presented in Sect.C.6.

Table C.8 Levi’s relations

Relation Examples

Cause1 tear gas, growth hormone, disease germ

Cause2 drug deaths, heat rash, laugh wrinkles

Have1 apple cake, fruit tree, lace handkerchief

Have2 lemon peel, government land, enemy strength

Make1 song bird, music box, sap tree

Make2 water drop, glass eye, worker teams

Use steam iron, hand brake, milieu therapy

Be soldier ant, cactus plant, canine companion

In field mouse, adolescent turmoil, childhood dreams

For horse doctor, coke machine, cooking utensils

From olive oil, cane sugar, coal dust

About price war, abortion vote, budget speech

C.8 Event-Based Relations

A lot of work has been done and is currently done on event-based relations, or what is
more recently called semantic role labeling. Looking at FrameNet (https://framenet.
icsi.berkeley.edu), there are thousands of frames, for events and activities of varied
specificities. For example, a more general frame would be Activity_stop, where as
a more specific frame would be for Attending and an even more specific would be
Bail_decision.

As FrameNet was covered in Chap. 12, I refer the reader to Sect. 12.2, for further
information.

C.9 Infinite Relation List

The following quote from Etzioni et al. (2006) captures the research endeavor to try
to extract from text, an infinite list of relation, by which I mean a list that has not
been decided in advance and that is discovered along the way.

https://framenet.icsi.berkeley.edu
https://framenet.icsi.berkeley.edu
http://dx.doi.org/10.1007/978-3-319-41337-2_12
http://dx.doi.org/10.1007/978-3-319-41337-2_12
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Yet Machine Reading is not limited to a small set of target relations. In fact, the relations
encountered when reading arbitrary text are not known in advance! Thus, it is impractical to
generate a set of handtagged examples of each relation of interest.

In a large Information Extraction project, called Open IE (Banko et al. 2007;
Etzioni et al. 2011), the purpose is to develop methods for discovering relations
between any pair of identified entities, by using weakly supervised methods of
knowledge discovery. Given that it has no other a priori information, one under-
lying hypothesis of this Open IE approach is the notion that redundancy is a good
filter.

This recent proposal does not define any list of relations, but rather assume that
any verb found (or particular syntactic structure) can act as a predicate. Still, if we
gather the verbal predicates per entity to which they pertain, we can compare them
to other lists of relations having these same entities as their subject. In TableC.9, we
show examples (taken fromBanko (2009)) of relations found inDBpedia ontology, in
Yago, and in TextRunner (OpenIE ran on the Web) for three types of named entities.

Table C.9 Examples of OpenIE relations

Entity (Domain) DBpedia Ontology Yago TextRunner (Web)

Politician occupation, birthPlace,
birthDate, children,
residence, title,
knownFor

bornIn, livesIn, isLeaderOf,
influences,
interestedIn, hasWonPrize,
isCitizenOf

has headed, ran for
seat in, has been
critic of, served as Z
with, married Z
in:date, campaigned
in

Country currency, capital,
language, anthem,
governmentType,
latitudeNorthOrSouth,
largestCity

participatedIn,
establishedOnDate,
hasCapital,
hasOfficialLanguage,
hasCurrency

has embassy in, has
not ratified,
welcomed, has rate
of, acceded to, is ally
of, intervened in

Company location, products,
industry, type,
revenue, locationCity,
parentCompany

established on:date,
has website, has number of
people, created, has motto,
has product,
is of genre

has shipped, should
buy, has licensed,
introduced version
of, has announced
that, acquired Z
in:date, should make



Glossary

This glossary contains brief, sometimes informal definitions of all the terms that
have been introduced in this book. It is meant to be used as a quick reference for the
reader.

Abbreviation A surface form corresponding to a shortened form of a word. For
example,Ont is the abbreviation ofOntario, and b/c is the abbreviation of because.

Acronym A surface form made up of a series of letters taken from a compound.
The acronym is usually constructed from one or more letters of each component
word of the compound. For example, AKA means also known as, and CEO means
chief executive officer.

Abbreviation/Acronym expansion The process of automatically disambiguating
an abbreviation or acronym into its expanded surface form, appropriate to the
context of occurrence. For example, the acronym NLP has at least two possible
expansions: neuro-linguistic programming and Natural Language Processing. In
the context of this book, the second expansion is the appropriate form.

Ambiguity A phenomenon that arises when words appear in a context that allows
for more than one possible interpretation. Although the terms ambiguity and
polysemy are often used interchangeably in NLP, there is a subtle difference in
meaning between the two. A word can be intrinsically polysemous (it can have
many possible meanings), whereas ambiguity arises only when a word is used in a
sentence.Aword is ambiguouswhen there is insufficient contextual information to
make a decision about its possible interpretations. For example, the interpretation
of the polysemous word bank is clear in a sentence such as He took money out of
the bank., but ambiguous in the sentence I love that bank.

Anaphora A pronoun used to refer to a particular concept or entity already men-
tioned in text. For example, in the sentence Ann cooked a delicious meal, and all
the guests loved it., the pronoun it is the anaphora.

Anaphora resolution The process of automatically linking an anaphora to the
earlier mention of the concept or entity to which it refers. For example, in the
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sentence Owen bought a new car and drove it home., the pronoun it can be
resolved to the previously mentioned car.

Annotated text (also annotated example) Any segment of text to which human
annotation is added. This annotation could be of a linguistic nature such as part-
of-speech tags, or a semantic nature such as word senses.

A posteriori evaluation Anevaluationof the results of an experiment that requires
running the experiment first, in order to later evaluate the output of the system
manually. This is in contrast to using a predefined gold standard.

Automatic frame identification Within frame semantics, the process of auto-
matically determining the appropriate frame for the interpretation of a sentence.
For example, the sentence John rides his bicycle. would be best understood under
the Operate_vehicle frame.

Bag-of-words (BOW) (also BOW representation) The representation of any seg-
ment of text by the set of all the words it contains, with no consideration of the
sequential order of those words. For example, the sentence John works from home.
generates the bag-of-words {John, works, from, home}.

Bag-of-words overlap A simple algorithm which will find the set of common
words between two BOWs.

Baseline algorithm (also baseline approach). A naïve or simple method used
to solve a particular NLP task. Its outcome is used for setting a minimum per-
formance value. Outcomes of newly developed algorithms are compared to this
minimal value to estimate their gain in performance. Sometimes, a random guess
is used as a baseline approach.

Bigram A unit commonly used in NLP of two consecutive words occurring in
text. A bigram can also refer to two consecutive letters in a word. For example,
the sentence John works from home. generates 3 word bigrams: John works,works
from, and from home. The same sentence generates many letter bigrams: “Jo”,
“oh”, “hn”, “n ”, “ w”, “wo”, “or”, and so on.

Bigram model In probabilistic sequencemodelling, using a bigrammodel would
involve conditioning the probability of a word purely on the word that precedes
it. P(wn|w1...wn−1) is thus reduced to P(wn|wn−1).

Bilingual corpus A corpus containing documents in two languages. It can be a
parallel corpus or a comparable corpus.

Binary decision A Yes/No decision, with only two choices.

Boiler plate removal The process by which all metadata information in Web
pages is removed to output solely its actual textual content.

Boundary detection Certain NLP tasks such as term extraction or Named Entity
Recognition require determining surface form boundaries for the terms or entities
of interest. For example, the boundaries of the entity in the sentence The color



Glossary 293

laser printer is not functioning. should be defined as either color laser printer, or
simply laser printer.

Breadth coverage A way of exploring a set of ideas or problem solutions by
investigating the basic elements of each one before exploring a single one in more
detail. This is in contrast to depth coverage.

Cataphora A pronoun used to refer to a particular concept or entity mentioned
later in text. This is an uncommon phenomenon in language, rarely used in text.
It is studied less often in NLP than the anaphora.

Cataphora resolution The process of automatically linking a cataphora to the
later mention of the concept or entity to which it refers. For example, in the
sentence It is always leaking, this new garden hose we bought., the cataphora it
can be resolved to garden hose.

Category In certain contexts, a category can refer to a semantic type or entity
type. It can also refer toWikipedia categories, or any class used in a classification
task. Note: This word is so polysemous that its usage should be avoided whenever
possible.

Categorization task (also Classification task) The task of assigning one class
from a set of predefined classes to some data. In NLP, this data may take the
form of a word, a sentence, a document, or any segment of text. There are many
classification tasks in NLP, such as assigning a domain (medicine, sociology,
farming, etc.) to a document, or assigning a sentiment (positive, negative, neutral)
to a review.

Coarse-grained representation A representation thatmergesmany elements into
a single equivalence class. For example, if all part-of-speech variations of nouns
(proper noun, common noun, singular noun, plural noun) were merged into a
single equivalence class called noun, we would say that the noun class provides a
coarse-grained representation. This is in contrast to fine-grained representation.

Collocation A sequence of words whose probability of appearing together in text
is higher than what would be expected by chance. Such probability is usually cal-
culated relative to semantically equivalent alternatives. For example, the bigram
fast car ismuchmore frequent in text than rapid car,making fast car a collocation.

Communicative setting The various elements that influence the nature of a com-
munication, including the message support (spoken versus written), the mes-
sage intention (inform versus influence), and the characterization of interaction
between the writer/speaker and the reader/listener. For example, the communica-
tive setting of a textbook is written support, informative, with expert/novice as
the writer/reader relation.

Comparable corpus A corpus containing documents in two or more languages.
Documents are not translations of each other but often have certain properties in
common, such as subject matter (medicine, environment etc.) and writing style
(news stories or encyclopedia pages).
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Compositionality The property of a compound which makes its meaning deriv-
able from the combination of the meanings of its components. Compounds can
have varying degrees of compositionality and can hide certain implicit semantic
relations between their components. For example, a floor lamp is a lamp that is
placed on the floor, a reading lamp is a lamp used for reading, and a projector
lamp is part of a projector.

Compound A group of words that makes up a single lexical unit. We most often
refer to compounds by specifying their grammatical nature, such as a noun com-
pound (e.g., computer keyboard), or a verb compound (e.g., take off ).

Computational Linguistics A quasi-synonym of the term natural language
processing, with an emphasis on computational aspects of the field.

Concept This term is used rather loosely in NLP and is highly ambiguous. It may
refer to a word sense in a lexicographic resource, to a class in an ontology, or
even to a unique entity in a knowledge base.

Concordancer A tool often used by language learners and translators to better
understand particular word usages (such as collocations, which are difficult to
grasp for non-native speakers). The concordancer is used to search for a target
word in a corpus and generate a list of context windows, which include the word
of interest at the center of each context. Using this tool, these contexts can also be
sorted based on the word appearing to the right or to the left of the target word.

Conjunctional attachment problem A main source of ambiguity for parsers,
this refers to the fact that conjunctions are not explicit in what they link. For
example, in the sentence They use large plastic containers and boxes., there is
ambiguity as to what the noun boxes is coordinated with. Is it plastic [containers
and boxes] or [plastic containers] and boxes?

Constituency parser See Phrase-structure parser.

Content word A word that conveys subject matter, usually a verb, noun or adjec-
tive. In the sentence The bottle dropped to the floor., the words bottle, drop and
floor are all content words. This is in contrast to a function word.

Context window A fixed-size segment of words or characters. In distributional
similarity, context windows form the text segments that are used for finding co-
occurrences of words. They are also used in concordancers, to show words in
fixed-size text segments.

Contingency table Amethod of reporting results that summarizes the results of a
certain system in relation to a gold standard. In the case of a binary classification
(true/false), the table contains four possibilities:

• True Positive (TP): Both system and gold standard say true.
• False Negative (FN): System says false, but gold standard says true.
• False Positive (FP): System says true, but gold standard says false.
• True Negative (TN): Both system and gold standard say false.
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Co-occurrence The joint occurrence of two words within a particular segment of
text, whether it be a sentence or simply a context window. Within the The dog
barks constantly., the words dog and barks co-occur.

Co-occurrence vector A representation of words in which each word is repre-
sented by its set of co-occurring words and their respective frequencies, as mea-
sured in a corpus. This is useful in distributional semantics.

Coreference chains Ordered sets of variousmentions in a text relating to the same
entity.

Coreference resolution The task of automatically linking different references to
the same entity within a document, or sometimes across documents. For example,
a text might refer to Paris using the references Paris, the city of Paris, the capital
of France, La Ville Lumière, as well as through multiple anaphoric references (it).
Linking all these by their reference to a common entity is coreference resolution.

Corpus (plural corpora). A group of texts brought together along some selection
criteria, and usually intended for a particular type of study. Note: This definition
has loosened over time. Today, the term corpus can simply refer to any group of
texts.

Corrective annotation An annotation task that is performed by humans, and is
based on the output of a software system rather than performed directly on the
raw text data. Humans must approve or correct the system’s output. This type
of annotation is used for tasks that are difficult for humans, but which systems
perform reasonablywell, such as part-of-speech tagging. It shortens the correction
time as compared to a human performing the full annotation from scratch. This
is in contrast to full annotation.

Data sparseness See sparse data.

Datastore See knowledge base.

Dependency pattern A type of pattern used in Information Extraction for the
acquisition of knowledge (relations or entities) that is based on the dependency
representation provided by a dependency parser. A pattern could take the form
obj(eat, X), which would be used when looking for objects of the verb eat. Depen-
dency patterns are an alternative to lexical patterns and lexico-syntactic patterns.

Dependency parser A type of parser that describes dependencies between words
in a sentence. Typical dependencies include subject-of, object-of, modifier-of, and
so on. Dependency parsers have become quite popular in recent years, as opposed
to the more traditional phrase-structure parsers.

Depth coverage The approach of exploring a set of ideas or problem solutions by
pursuing each one in detail before moving on to the next one. This is in contrast
to breadth coverage.
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Derivation (also derivational variation). A lexical relation which not only cre-
ates a variation in the form of the word, but also a change in its part of speech.
For example, complaint (noun) becomes complaining (verb), or phrase (noun)
becomes phrasal (adjective). This is in contrast to inflection.

Design of experiment See experimental setting.

Development set A set of annotated examples used in the development and
refinement of an algorithm. In the case of parametrized algorithms, the devel-
opment set is used for the optimization of their parameters.

Diachronic study A study that takes into account the time at which events
occurred, in order to investigate their evolution over time. For example, one could
compare the change in frequencies of various surface forms of a word from 1950
to 2000.

Dice coefficient In the context of corpus statistics, a measure of the strength of
co-occurrence of two words. Similar to Point-wise Mutual Information, this
measure takes into account the joint and individual frequencies of the words in
question.

Discovery See Knowledge discovery.

Distributional semantics A take on semantics which views the meaning of words
in terms of their behaviourwithin large corpora. It is assumed that theway inwhich
words behave is important to the understanding of their nature and relations to
each other.

Distributional similarity Within distributional semantics, similarity ismeasured
either in terms of the strength of co-occurrence between words (first-level simi-
larity), or through comparison of their co-occurrence vectors (second-level simi-
larity).

Document characterization The process of characterizing a document using a
set of different features, such as genre, domain, purpose, and so on.

Domain In NLP, this term often refers to the subject matter of a text (medicine,
environment, arts, etc.) Contrarily, in the SW, it refers to the class to which the
subject of a predicate belongs.

Domain experts Specialists within a domain (such as geology, medicine, and the
like), who would be qualified to develop a terminology or an ontology of that
domain (subject matter).

Dual Iterative Pattern Relation Expansion (DIPRE) An approach presented in
Brin (1998) for developing a set of patterns for Relation Extraction. Relation
instances known as tuples are used as the starting point. For example, the tuples
(Paris, France) and (Berlin, Germany) could be the starting points of the DIPRE
process for a relation city-in. The process discovers patterns in text that express the
relation between the known tuples and then uses these patterns to extract further
tuples, which are then used to find more patterns, and so on.
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Dynamic Programming Amethod of programming whose approach is to solve a
large problem by splitting it into its subproblems and optimizing the solving time
by solving each subproblem only once. This method is used in the Edit Distance
algorithm.

Edit Distance A measure of the orthographic distance between two words or text
segments, inwhich basic operations (insertion, deletion, substitution) are assigned
a cost. For example, the Edit Distance between car and chat is two, since we
require one insertion (“h” between “c” and “a”) and one substitution (“r” becomes
“t”) to transform car into chat.

Entity Ageneral termdesignating a commonword (e.g.,mobile phone) or a named
entity (e.g., Mozart) that is defined within a grounding space.

Entity class See entity type.

Entity Linking The grounding of a mention of an entity in text to its unique
identifier within an external resource (e.g., word sense or URI).

Entity resolution See Entity Linking.

Entity type A designation of a semantic category for an entity. Certain entity
types are most commonly targeted in Named Entity Recognition tasks, such as
(PERSON, ORGANIZATION, LOCATION, and DATE)

Equivalence classes When two classes are merged as if they represented a single
class, they become equivalent classes. For example, if all numbers in a text were
replaced by the symbol NUM, we would consider all occurrences of NUM as
forming a single equivalence class, and individual numbers would no longer be
differentiated.

Evaluation method The method defined before running an experiment for the
evaluation of the performance of a system.

Experimental setting An important aspect of NLP work is to perform studies
using real data. The experimental setting refers to the preparation of these studies,
including elements such as the choice of data, the choice of algorithm to be tested,
and the evaluation method.

Explicit mention Information that is given explicitly through words found in text.
For example, a branch is a part of a tree explicitly expresses a part-of relation
through the explicit mention is a part of. This is in contrast to implicit mention

Extrinsic evaluation The evaluation of an algorithm through a measure of its
impact on a subsequent task or application.An example of thiswould be evaluating
a dependency parser based on its impact on the subsequent task of Relation
Extraction. This is in contrast to intrinsic evaluation.

False negative See contingency table.

False positive See contingency table.
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Fine-grained representation A representation of information which allows for
a higher degree of differentiation between classes within a given category. For
example, a fine-grained representation of the noun category would distinguish
between different types of nouns (plural, singular, common, proper). This is in
contrast to coarse-grained representation.

Frame (also semantic frames) A knowledge structure that allows for the represen-
tation of an event (e.g., cooking a meal), in which different entities are assigned
various semantic roles (e.g., Cook, Food, Beneficiary, Heating Instrument, and
Container)

Frame semantics A semantic representation framework which organizes infor-
mation around frames.

FrameNet A large semantic representation project based on frames.

Full annotation An annotation task in which human annotators are provided with
raw textual data and must perform the annotation without any help from a system.
This is in contrast to corrective annotation.

Function word Aword which provides the “glue” between content words. Deter-
minants, conjunctions, and prepositions are all function words. For example, in
the sentence The screen and the keyboard are both old., the words the, and, and
both are all function words.

Gazetteer A list of surface forms corresponding to a particular semantic type. For
example, a CITY gazetteer would be a list of many city names (Paris, New York,
Montreal, London, etc.), and a MEASURE gazetteer would list all possible units of
measurement (kilogram, centimeter, liter, etc.). Today, gazetteers are often used
for the task of Named Entity Recognition.

General language corpus A corpus made up of texts that contain everyday lan-
guage on various topics. This is in contrast to a specialized language corpus.

Generative rule A rule that generates various surface forms from a single one.
For example, a rule for obtaining the variations (e.g., L.V. Beethoven and L. van
Beethoven) from the single form (Ludwig van Beethoven). This is in contrast to a
normative rule.

Generic entity An entity that, for knowledge acquisition, is usually of most inter-
est at the class level (e.g., a generic maple tree) rather than the instance level (e.g.,
the maple tree in Mr. Black’s garden). This is in contrast to a specific entity.

Gold standard A dataset which has been annotated with correct answers, against
which algorithms are compared for evaluation of their performance.

Grammar rules A set of language-dependent rules that define the ways in which
words can be combined to form correct sentences.
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Grammatical subject/object A dependency parser provides the dependencies
subj-of and obj-of of a verb, which express the grammatical subject and gram-
matical object of that verb. For example, in the sentence Amy eats an apple.,
subj-of(eats,Amy) expresses that Amy is the grammatical subject of eats. Note:
This is not to be confused with a predicate’s subject and object as defined in the
Semantic Web.

Grounding The task of linking surface forms to the entities to which they refer,
as represented in a grounding space. Grounding encompasses both Word Sense
Disambiguation and Entity Linking.

Grounding space A representation of the real world in which entities are defined.
At a minimum, a grounding space includes descriptions of entities (a dictionary)
and sometimes also relations between those entities (a knowledge base).

Hapax An event that occurs only once. For example, when running corpus statis-
tics, a hapax is a word with a single occurrence in the corpus.

Hit count The number of Web pages a search engine returns in response to a
particular query.

Hypernymy The semantic relation that exists between a specific concept (dog)
and a more general concept (animal). We say that animal is the hypernym of dog.
This is the antonym to hyponymy.

Hyponymy The semantic relation that exists between a general concept (animal)
and a more specific concept (dog). We say that dog is the hyponym of animal.
This is the antonym to hypernymy.

Idiom Agroup of words whichmeaning is not at all compositional. Typical exam-
ples of idioms are bite the dust or kick the bucket.

Implicit mention Information that is given implicit mention is assumed to be
known by the reader and is therefore not stated explicitly in text. For example, in
the sentence With a flat tire, Erika couldn’t drive to work., there is no mention of
the fact that a tire is part of a car. Although this information is necessary for the
understanding of the sentence, it is not explicitly provided. This is in contrast to
explicit mention.

Inflection (also inflectional variation) The change that is made to the form of a
word in order to express a linguistic phenomenon, such as plural (cat/cats), or
gender (actor/actress). In inflection, the transformed word maintains the same
part of speech as the original word. This is in contrast to derivation.

Information Content (IC) A measure that has been suggested within the field of
information theory, to express the level of surprise attached to a piece of informa-
tion. The IC of a word is inversely proportional to the logarithm of its frequency.

Information Extraction An important subfield of NLP, whose main area of inter-
est is the uncovering of information in text. The information being sought usually
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involves entities and the relations between them and often corresponds to answers
to the typical questions of “Who did What, When, Where, and Why?”

Information retrieval The task of finding themost appropriate documents among
a large collection of documents, in response to a particular user query.

Informative text A text whose purpose is to inform, such as a textbook or an
encyclopedia entry. This is in contrast to narrative text.

Interpolation model In probabilistic sequence modelling, the idea of creating a
complex model through the linear combination of several simpler ones. Simple
models could include bigram models and trigram models.

Intrinsic evaluation An evaluation of an algorithm that is performed on the actual
task for which the algorithm was devised. This is in contrast to extrinsic evalua-
tion.

Iterative refinement process A process involving various steps, repeated in a
loop. For example, the steps involved in an iterative refinement of an algorithm
would be to devise the algorithm, evaluate it, test it, refine it, re-evaluate it, retest
it, and so on. Each iteration is aimed at bringing the results one step closer to what
a development set has defined as perfect performance.

Keyword in context (KWIC) To show a word in context, a concordancer places
its multiple occurrences in the middle of a text window. The expression KWIC is
used to describe this type of presentation.

Knowledge acquisition The process of extracting knowledge from text to cre-
ate, enhance, or augment a knowledge base, an ontology, or a lexical-semantic
resource.

Knowledge base Sometimes called datastore. The actual instantiations of classes
and relations as defined in an ontology. A knowledge base can be seen as a
repository of information structured by an ontology.

Knowledge base expansion See ontology population.

Knowledge discovery A process involving the quest for information that is not
known ahead of time. It is implied that such informationwill emerge from textwith
the application of statistical discovery approaches. For example, term extraction
is a process of knowledge discovery aimed at finding important domain terms in
text. In the context of text analysis, knowledge discovery is in contrast to a search.

Knowledge pattern (also knowledge probe or rote extractor) A pattern that is
defined to search for particular information in text, most often instances of a
relation. For example, is also known as is a knowledge pattern used to find of
instances of the synonymy relation in text.

Knowledge probe See Knowledge pattern.
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Knowledge representation A general term that refers to the study of how to best
represent knowledge for automatic processing, so as to make it as explicit as
possible, as well as accessible in a standardized and structured form.

Language dependent (also language specific)Algorithms,methods, or processes
are said to be language dependent when they require modification or adaptation
each time they are applied to a different language.

Language identification The process of automatically identifying the language
used in a text (e.g., English, Russian, and German).

Language independent Algorithms, methods, or processes are said to be lan-
guage independentwhen they can be applied to different languageswithout having
to be modified. This is in contrast to language dependent.

Language level When it comes to document characterization, language level can
refer to both the formal/informal distinction and the scientific/layman distinction.

Language model (See also probabilistic sequence modelling) A statistical view
(model) of word sequences. The term language model is used because these
sequences are usually measured within a specific language and are representative
of the kinds of sequences that are found in each language.

Language understanding See Natural language understanding.

Laplace smoothing In order to compensate for the sparse data problem in lan-
guage modeling, Laplace smoothing suggests adding 1 to the corpus frequencies
of every element of the vocabulary, regardless of whether or not a given element
was present in the corpus.

Lemma The base form, or root of a word. For example, the lemma of the past
tense verb went is the infinitive form go.

Lemmatization The process of automatically finding the lemma of a word. For
example, transforming studying into study or carrots into carrot.

Levenshtein Distance A popular variation on Edit Distance, in which the cost of
a substitution is increased to 2. For example, the Levenshtein Distance between
car and chat is 3, since the transformation from one to the other requires one
insertion (“h”) at a cost of 1, and one substitution (“r” for “t”) at a cost of 2.

Lexical pattern Patterns aimed at finding instances of relations, defined solely
using lexicalized surface forms. For example, is used to is a lexical pattern possibly
indicative of an instrument relation. If applied to the sentence A saw is used to cut
wood., the pattern could retrieve an instance of an instrument relation between
saw and cut wood. Lexical patterns are an alternative to lexico-syntactic patterns
and dependency patterns.

Lexical unit Any designation (word, compound, term, phrase) that refers to a
concept and could be included in a dictionary. Note: Notice the use of could
rather than would in this definition. The criteria for inclusion in dictionaries are
debatable and sometimes depend on the focus of the particular dictionary.
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Lexical resource Any resource that is organized around lexical units.

Lexical-semantic resource Any resource which contains information about both
words (lexical information) and senses (semantic information). WordNet is a
typical example of a lexical-semantic resource.

Lexicographer A person interested in the study of words as lexical units, their
definitions, meanings, surface forms, usages, and so on.

Lexico-syntactic pattern Patterns aimed at finding instances of relations, defined
using lemmas andparts of speech. For example,be/VBZ;use/VBZ;to/IN is a lexico-
syntactic pattern possibly indicative of an instrument relation. This kind of pattern
should be applied to sentences that have already been processed with lemmatiza-
tion and part-of-speech tagging. Lexico-syntactic patterns are an alternative to
lexical patterns and dependency patterns.

Linked open data The open data which is available using the Semantic Web
format, within the Semantic Web linked datastores.

Machine Learning (ML) Afield of studywith a focus on creating algorithms that
automatically build predictive models from data.

Machine Translation (MT) A field of study with a focus on developing algo-
rithms meant for the automatic translation of language. Statistical MT relies
largely on language models.

Meronymy The semantic relation between an entity and the larger entity of which
it is a part. We would say that tire is a meronym of car, since it is part of the larger
entity car.

Metonymy A linguistic phenomenon which makes it possible to refer to an entity
using a related entity and assume the reader will be able to reconstruct the missing
link. A typical example of metonymy is The ham sandwich left without paying
the bill., in which the ham sandwich actually refers to the related entity of the
person eating the ham sandwich.

Multi-word expression (MWE) A general term that refers to a compound, a col-
location, or an idiom. This includes any group of words which refers to a con-
cept, with no stipulation regarding syntactic category. For example, skin care,well
aware, and bite the dust are all multi-word expressions.

Mutual Information See Point-wise Mutual Information for an explanation of
the type of mutual information presented in this book.

Named entity A lexical unit which refers to a uniquely identifiable entity that
has a particular name. Examples of named entities are Dublin (CITY), Coca-Cola
(COMPANY), International Monetary Fund (ORGANIZATION), and Max Bruch
(COMPOSER). Use of this term is often expanded to include dates, numbers, and
other entities that belong to identifiable classes.
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Named Entity Type The semantic type of a named entity. Common types include
PERSON, LOCATION, and ORGANIZATION.

Named Entity Disambiguation (NED) The process of linking the surface form
of an entity found in text to its conceptual description found in a grounding space.

Named Entity Recognition (NER) The process of identifying in text the men-
tions of particular predefined named entity types (e.g., ORGANIZATION, LOCA-
TION).

Narrative text A text, such as a novel, whose purpose is to tell a story. This is in
contrast to informative text. Note: A news story is usually partly narrative and
partly informative.

Natural Language Processing (NLP) A field of study with a focus on the auto-
matic processing of text. This automatic processing could be intended for various
purposes, including Information Extraction, text summarization, text classifica-
tion, Machine Translation, and others.

Natural Language Understanding (NLU) AsubfieldofNLP that focuses specif-
ically on the processing of text toward the generation of a semantic interpretation
of that text.

NLP stack (also NLP pipeline) A series of NLP analysis modules through which
data are run sequentially for the purposes of text analysis. The stack (or pipeline)
could include modules such as a sentence splitter, a tokenizer, a part-of-speech
tagger, and a syntactic parser.

N-gram (also written ngram) A sequence of N consecutive tokens. These tokens
are usually words in NLP, but can also be letters. Language modelsmay concern
bigrams (2-grams), trigrams (3-grams), as well as 4-grams and 5-grams.

Nominalization The transformation of a verb (or verb phrase) into a noun (or noun
phrase). For example, constructed a house becoming the house’s construction or
takes off becoming the taking off of.

Non-deterministic algorithm An algorithm that includes a degree of probability-
based random decision making. The output of this kind of algorithm may differ
from one application to the next, even if it is applied on the same input.

Noun compound (also complex noun, multi-word noun, and nominal com-
pound). A group ofwords forming a noun that refers to a single entity. An example
of a three-word noun compound is skin care cream.

Normalization rules Rules designed to reduce the various surface forms of enti-
ties found in text to a set of normalized forms found in a resource (e.g., dictionary).
These are in contrast to generative rules.

Ontology A formal representation of a domain that includes concepts, relations,
and logical descriptions. For example, a wine ontology would encode knowledge
about grape varieties, soil types, wine-making processes, perhaps wine producers,
and so on.
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Ontology expansion A knowledge discovery process aimed at automatically
expanding the set of entities and relations in an ontology.

Ontology population A knowledge discovery process aimed at automatically
expanding the set of class instances and relation instances in a knowledge base
structured according to an ontology.

Out-of-vocabulary (OOV) Words encountered during a corpus analysis task
which had not already been seen during the development phase.

Open Data Data that is freely available and which can be reused and redistributed
freely. Such data could be published by organizations and governments of all
levels (e.g., municipal, federal).

Open Information Extraction An approach to relation extraction which does not
presuppose an existing list of predicates, but rather explore all verbs as possible
predicates. Predefined entity types are sometimes used so as to gather verb pred-
icates around these entity types.

Optimistic evaluation An evaluation that is favorable to the algorithm. For exam-
ple, an evaluation that attributes a success to any correct answer found among the
top 20 results of an algorithm is a more optimistic evaluation than one that only
considers the top 1 or 2 results. This is in contrast to pessimistic evaluation.

Orthographic error An error which comes from the misspelling of a word, such
as choroegraphy instead of choreography. This is in contrast to a typographic
error.

Parallel corpus A bilingual corpus (or multilingual corpus) in which the doc-
uments are translations of each other. This type of corpus is widely used for the
development of statistical Machine Translation models.

Paraphrase A text segment (sentence or phrase) which, although written differ-
ently, expresses the same meaning as another segment. For example, He left the
door open. is a paraphrase of He didn’t close the door.

Parser See phrase-structure parser or dependency parser.

Parse tree An explicit representation of the grammatical structure of a sentence,
expressed as a tree. The processing of a phrase-structure parser on a sentence
results in a parse tree.

Part of speech (POS) The grammatical role a word takes on in a sentence (e.g.,
verb, noun, adjective, adverb, determinant, preposition, and conjunction).

Part-of-speech tagger (POS tagger) The process of assigning a part of speech
to each token in a sentence.

Pessimistic evaluation An evaluation setting which puts the model or algorithm
that is being tested at a disadvantage. An example of this would be to take a
probabilistic sequence model whose learning was done on a corpus of scientific
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articles and evaluate it on a corpus of blogs, where the language is quite different.
This is in opposition to optimistic evaluation.

Phrase A group of words within a sentence that plays a particular syntactic role.
For example, a determiner (the) and a noun (glass) together form a noun phrase
(the glass), which can play the role of subject in a sentence (The glass broke).
Phrase-structure parsers divide sentences into their various phrases, including
noun phrases (NP), verb phrases (VP), prepositional phrases (PP), and others.

Phrase-structure parser (also constituency parser) Amethod of sentence analy-
sis designed to uncover the constituents (phrases or simple words) of a sentence,
as well as the grammatical rules that were applied during the construction of the
sentence to bring together those constituents.

Phrase-structure tree See parse tree.

Point-wise Mutual Information In the context of corpus statistics, a measure of
the strength of co-occurrence of two words. Similar to the Dice coefficient, this
measure makes use of the words’ joint and individual frequencies, as found in a
corpus.

Polysemy The ability of surface forms to refer tomultipleword senses or entities.
A typical example of a polysemous word is mouse, which can refer to either a
small animal or a computer device.

Precision (also precision measure). A common method of evaluation in NLP,
which involves comparing an algorithm’s classification results to a gold standard.
Precision relies on the measures found in a contingency table: true positive (TP)
and false positive (FP) and is defined as T P

T P+F P . It is often used along with recall.

Predicting capability The ability of a language model to accurately predict
sequences. When evaluating models against each other, we want to measure their
predicting capabilities for a given sequence of words in an unseen corpus.

Prepositional attachment problem Amain source of ambiguity for parsers, this
refers to the fact that prepositions are not explicit in what they link. For example,
in the sentence He made a soup with vegetables., the prepositional phrase with
vegetablesmodifies the noun soup (prepositional attachment to the noun),whereas
in the sentence He made a soup with his friend., the prepositional phrase with
friends modifies the verb made (prepositional attachment to the verb).

Probabilistic language model See language model or probabilistic sequence
modelling.

Probabilistic sequence modelling The use of probabilities for the interpretation
of words in sequence. The underlying hypothesis is that the order of words in text
is to some degree predictable.

Qualitative result analysis Amethod of analyzing the results of experiments that
does not include any measure, but is instead based on observing and describing
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results (e.g., finding similarities between examples and noting special cases). This
is in contrast to quantitative result analysis.

Qualitative exploration A method of exploring data (most often a corpus, in
NLP) without quantitative measures, but with tools, such as a concordancer, that
facilitate observation of the data. This is in contrast to quantitative exploration.

Quantitative result analysis A method of analyzing the results of experiments
that compares a system’s output to a gold standard, using quantitative measures
such as recall and precision. This is in contrast to qualitative result analysis.

Quantitative exploration A method of exploring data (most often a corpus, in
NLP) using quantitative measures, such as word frequencies, co-occurrences,
and others. This is in contrast to qualitative exploration.

Quasi-synonym A lexical unit whose meaning is almost equivalent to that of
another lexical unit. Quasi-synonyms are not always interchangeable in text, since
they can have subtle variations in meaning based on language level, intensity, and
other factors.

Ranking Although a general word, in NLP it often refers to the process of sorting
the results of an experiment in decreasing order of correctness.

Raw text A text in its original, untouched form. This is often used in contrast to
annotated text, which has been annotated by humans for a particular task.

Recall (also recall measure) A commonmethod of evaluation used in NLP, which
involves comparing an algorithm’s classification results to a gold standard. Recall
relies on themeasures in a contingency table: true positive (TP) and false negative
(FN) and is defined as T P

T P+F N . It is often used along with precision.

Reference Although highly ambiguous, this word is used frequently in NLP. Its
most common use is for the designation of a textual reference, meaning a mention
of an entity or concept in a text. However, it can also designate the entity that is
referred to by a surface form.

Regular expression (informally, regex) An artificial formal language developed
for searching in text. Regular expressions have a broad expressive power. They
allow the searchof particular characters, ranges of characters, particular sequences,
negations of sequences, and so on. They include operators for defining lists,
optionality, and disjunction, which can be applied to characters or sets of charac-
ters.

Related words Words that appear to be semantically close, but whose relation
has not been specified. Related words could have the relation of meronymy or
hypernymy, but could also simply occur together frequently in text, or be topically-
related (e.g., teacher and homework).

Relatedness measure A measure of the strength of the connection between
related words.
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Relation The general term used to designate a named association between con-
cepts or words.

Relation Extraction The process of mining corpora in search of instances of
semantic relations.

Resource Any source of information that can be used when analyzing a text. A
resource in NLP can take the form of a lexical resource, a gazetteer, a knowl-
edge base, or a corpus, among others. Note: This term takes on quite a different
meaning within the SemanticWeb, where it can mean an entity, class, or predicate
referenced with a Uniform Resource Identifier (URI).

Rote extractor See Knowledge pattern.

Search Searching in a text assumes we know ahead of time what we are looking
for. For example, using a gazetteer of car names would allow us to search a
corpus for sentences about cars. In the context of text analysis, this is in contrast
to discovery.

Semantic drift An iterative Relation Extraction approach, which at each iter-
ation, extracts instances less and less semantically related to the seed instances
used at the start of Relation Extraction process. Semantic drift is due to cumulative
errors both on extracted patterns and on instances.

Semantic frame See frame.

Semantic interpretation The process of automatically uncovering the semantic
information that underlies the surface form of a sentence. Certain knowledge
representation formalisms, such as frames, can be used to express this semantic
interpretation.

Semantic relation A relation between two word senses that is used to describe a
semantic phenomenon, such as meronymy or hyperonymy.

Semantic role A role that is defined in relation to an event, most often used in
representation formalisms such as frames. Certain semantic roles, such as Loca-
tion, Agent, and Beneficiary, are valid in multiple frames (e.g., cooking, giving,
and working).

Semantic role filler A word that can fulfill a particular semantic role within a
frame. For example, in the sentence John drives his car., John can serve as a
semantic role filler for the semantic role Driver in the frame Operate_vehicle.

Semantic role labeling The process of analyzing a sentence to automatically
assign its semantic role fillers within a frame.

Semantic type See entity type.

Semantic type restriction The entity type that is required for an entity to take
part in a semantic representation, either a frame or a semantic relation. For
example, the semantic type restriction for the entities X and Y in the relation
works-for(X,Y) would be PERSON and ORGANIZATION, respectively.
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Semantically interpretable The description of a sentence fromwhich a particular
meaning canbe extracted. Some sentences are only semantically interpretablewith
the help of imagination, as they might not be semantically plausible within our
current world. For example, the sentence The flowers are swimming in the arms
of the terrace. is not semantically plausible, but it is interpretable.

Semantics A field of study that focuses on the senses of words, phrases, or any
other kind of representation or expression of ideas.

Sentence alignment The process of automatically finding the sentences that cor-
respond to each other in a parallel corpus.

Sentence splitter An NLP module used to find sentence boundaries within a text.
A sentence splitter is usually part of an NLP pipeline.

Separator Within the context of tokenization, a separator is one of the many
possible characters (e.g., space, comma, and period) that can be used for boundary
detection between tokens. The positions of separators in a string are used to split
that string into tokens.

Short form In a text, a short form is often used for referencing an entity previously
referred to by a longer surface form. For example, the short form Beethoven
in the second sentence of Ludwig van Beethoven composed many symphonies.
Beethoven was quite prolific. comes after the long form used in the first sentence.
Given that the short form is more polysemous, the previous use of the long form
provides the information necessary for disambiguation.

Sister terms (also co-hyponyms). Two terms which have the same hypernym. For
example, car and bicycle are sister terms under the hypernym vehicle.

Smoothing In languagemodels, we refer to smoothing as amethod of distributing
a portion of the probabilitymass onto unseen events. Smoothing ismade necessary
by the sparse data problem.

Soundex An algorithm that measures the similarity of words based on established
equivalence classes for sounds of consonants and vowels. For example, “b” and
“p” are considered part of the same equivalence class, making words such as pat
and bat similar from a sounding point of view.

Source language In translation, the source language is the language of the original
document that is to be translated. This is in contrast to target language.

Sparse data The fact that in language, most sequences will never be found in
a particular corpus. For example, a vocabulary of V words would generate V 3

different possible trigrams. We encounter the sparse data problem when using a
particular corpus to estimate trigram probabilities, since the corpus is likely to
contain only a subset of these possibilities, and the size T of that subset is bound
to be much smaller than V 3. Smoothing techniques are used to attenuate this
problem.
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Spearman correlation A measure of correlation based on ranked values. This
type of correlation can be used to compare the results of two ranking algorithms,
such as algorithms that establish relatedness between pairs of words.

Specialized language corpus A corpus made up of texts that contain language
particular to a specific domain, such asmedicine, agriculture, or computer science.

Specific entity Most often referred to in the literature as an instance of an entity
class, or as a named entity, such as a specific city (e.g., Minneapolis) or building
(e.g., Empire State Building). This is in contrast to generic entity.

Spelling correction The task of automatically correcting a word that contains a
typographic error or an orthographic error. For example, correcting computr to
computer.

Stop words Usually short, commonwords such as conjunctions, prepositions, and
determiners. For example, in the sentence The dogs bark at each other in the yard.,
the words the, at, each, other, and in are all stop words.

Surface form A word, compound, abbreviation, or acronym used in text to refer
to a particular entity.

Synonymy The relation that exists between surface forms that have the same
meaning. For example, car and automobile are synonymous surface forms.

Syntactic analysis (also syntactic interpretation) A type of sentence analysis that
is performed in order to uncover the syntactic structure of the sentence. Phrase-
structure parsers and dependency parsers are used for syntactic analysis.

Syntactic realization The syntactic manifestation of a particular semantic role in
a frame.

Syntax The set of grammar rules of a language which stipulate how sentences
should be constructed in order to be semantically interpretable.

Target language In translation, the target language is the language of the trans-
lated document. This is in contrast to source language.

Taxonomy A type of knowledge organization in which concepts are related to
each other through hypernymic links.

Term A term is a lexical unit that refers to a particular meaning within a special-
ized domain. This word is often used more loosely, to refer to any lexical unit,
but the stricter definition requires the contextualization of a lexical unit within a
domain. For example, the lexical unit nanotube is a term within the domain of
nanotechnology. A word such as dog, even if it is a common lexical unit, could
also become a term if it is considered within the domain of zoology.

Term equivalent Given a term in a particular language (e.g., ordinateur, in
French), a term equivalent would be a term in another language (e.g., computer,
in English) which refers to the same concept.
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Terminology The terminology of a domain is the set of concepts and their asso-
ciated terms (possibly provided in different languages) that are important to the
definition of that domain, whether it is mechanics, law, geology, or music.

Test dataset A set of annotated examples that is used after the development of an
algorithm, to evaluate it. A fair evaluation of an algorithm would be performed on
a test set that is similar in nature to the development set, but novel to the algorithm,
so that its performance could not have been optimized on it.

Text cohesion The extent to which a text contains sentences which are related to
each other by the fact that they contain information on the same subject matter.

Text corpus See Corpus.

Text genre The characteristic of a text which describes the way it is written and
its intended readership (e.g., police report, brochure, film review, and blog).

Text mining The process of searching in text for information and rendering it
explicit or making use of it for a particular task (e.g., sentiment analysis and
Relation Extraction).

Text type See text genre.

Token Astring of arbitrary size, resulting from the process of tokenization. Tokens
can correspond towords, parts of words, punctuation symbols, numbers, and other
strings.

Tokenization The process of splitting a text segment into tokens, using a list of
separators which indicate token boundaries. The space is the default separator
in tokenization, meaning that a phrase such as a large bird would result in three
tokens a, large, and bird.

Tokenizer The implementation of an algorithm used for tokenization. The tok-
enizer is the first module in theNLP pipeline, and variations in its implementation
are therefore likely to influence the results of the whole pipeline.

Trigram model In probabilistic sequence modelling, a trigram model conditions
the probability of a word on the two words that directly precede it, meaning that
P(wn|w1...wn−1) is reduced to P(wn|wn−2,wn−1).

True negative See contingency table.

True positive See contingency table.

Typographic error An error in a word that results from a typing mistake (e.g.,
tempersture instead of temperature). Errors of this kind often occur between two
letters that lie close together on the keyboard.

Unigram model In probabilistic sequence modelling, a unigram model condi-
tions the probability of a word only on the word itself, excluding the context in
which it appears. This means that P(wn|w1...wn−1) is reduced to P(wn).
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Voting strategy (also voting system, or voting scheme) An approach to problem
solving in which we first develop different modules to provide independent solu-
tions to a problem and then combine their solutions to form a single solution. We
say that the algorithms “vote” for their solution as they put it forward to be con-
sidered along the other solutions. As part of the voting strategy, we must develop
a vote combination approach, to determine how the votes will be considered
toward the final solution.

Vote combination approach The method used to combine the votes in a voting
strategy. For example, a combination approach based on majority voting would
take as the final solution to problem, the solution put forward by the majority of
“voters” (algorithms).

Web as corpus An expression meaning that the whole Web becomes a very large
corpus, to be searched and used for Information Extraction or other NLP tasks.

Weighted Edit Distance An Edit Distance algorithm in which the cost of dele-
tions, insertions, and substitutions is weighted according to some criterion (e.g.,
consonants versus vowels and close keyboard keys).

Window size Although a fairly general term, in distributional semantics, this
refers to the size of the context window. Given that we study the behaviour of
words within context windows in order to find their co-occurrences, the size of
these context windows will have a major impact on the results.

Word The word word has become imprecise within the field of NLP, although
most often it refers to a token that exists within a particular language. Words
are also sometimes referred to as tokens, terms, or labels. To avoid ambiguity
and more precisely represent the language unit we wish to describe, it is best to
refer to various surface forms encountered in text as a token, term, lexical unit,
compound, or phrase.

Word boundary The boundary of a word determines where it starts and ends in
a sentence. This becomes problematic for surface forms of entities with various
spellings. For example, half-baked ideas and half baked ideas could be seen as
two or three words, depending on the separators used for tokenization.

Word frequency The number of occurrences of a word in a particular corpus.
Finding word frequencies in a given corpus is a very simple but effective quanti-
tative approach to getting a sense of its content.

Word sense A possible meaning (sense) of a lexical unit.

Word Sense Disambiguation (WSD) The process of grounding a surface form
found in text to its appropriate meaning (word sense) in a dictionary or other
lexical resource.



References

Agichtein E, Gravano L (2000) Extracting Relations from Large Plain-Text Collections. In: Pro-
ceedings of International Conference on Digital Libraries, vol I, pp 85–94

Agirre E, Alfonseca E, Hall K, Kravalova J, Pas M, Soroa A (2009) A Study on Similarity and
Relatedness Using Distributional and WordNet-based Approaches. In: Human Language Tech-
nologies: The 2009 Annual Conference of the North American Chapter of the ACL, Boulder,
Colorado, June, pp 19–27

Alfonseca E, Ruiz-Casado M, Okumura M, Castells P (2006) Towards Large-scale Non-taxonomic
Relation Extraction : Estimating the Precision of Rote Extractors. In: Proceedings of the second
workshop on ontology learning and population, Coling-ACL’2006, 1999, pp 49–56

Banerjee S, Pedersen T (2002) An Adapted Lesk Algorithm for Word Sense Disambiguation Using
WordNet. Computational Linguistics and Intelligent Text Processing 2276:136–145

Banko M (2009) Open Information Extraction for the Web. Doctoral thesis, University of Wash-
ington

BankoM, Cafarella MJ, Soderland S, BroadheadM, Etzioni O (2007) Open Information Extraction
from the Web. In: International Joint Conference on Artificial Intelligence (IJCAI’2007), pp
2670–2676

Barrière C, Gagnon M (2011) Drugs and Disorders : From Specialized Resources to Web data. In:
Workshop on Web Scale Knowledge Extraction, 10th International Semantic Web Conference,
Bonn, Germany

Bouamor D, Semmar N, Zweigenbaum P (2013) Using WordNet and Semantic Similarity for
Bilingual TerminologyMining fromComparable Corpora. In: Proceedings of the SixthWorkshop
on Building and Using Comparable Corpora, pp 16–23

Brin S (1998) Extracting Patterns and Relations from the World Wide Web. In: The World Wide
Web and Databases, pp 172–183

Budanitsky A, Hirst G (2006) Evaluating WordNet-based Measures of Lexical Semantic Related-
ness. Computational Linguistics 32(1):1–35

Bullinaria Ja, Levy JP (2007) Extracting semantic representations from word co-occurrence statis-
tics: a computational study. Behavior research methods 39(3):510–26

Bunescu RC, Mooney RJ (2005) A Shortest Path Dependency Kernel for Relation Extraction. In:
Proceedings of Human Language Technology Conference and Conference on EmpiricalMethods
in Naural Language Processing (HLT/EMNLP), Vancouver, Canada, October, pp 724–731

Chen SF, Goodman J (1999) An empirical study of smoothing techniques for language modeling.
Proceedings of the 34th annual meeting of the Association for Computational Linguistics pp
310–318

© Springer International Publishing Switzerland 2016
C. Barrière, Natural Language Understanding in a Semantic Web Context,
DOI 10.1007/978-3-319-41337-2

313



314 References

Christensen J, Soderland S, Etzioni O (2011) An analysis of open information extraction based on
semantic role labeling. Proceedings of the sixth international conference on Knowledge capture
(K-CAP’11)

Church KW, Hanks P (1990) Word association norms, mutual information and lexicography. Com-
putational Linguistics 16(1):22–29

CrowstonW,WilliamsM (1997) Reproduced and emergent genres of communication on theWorld
Wide Web. In: Proceedings of the 13th Annual Hawai International Conference on System Sci-
ences, pp 201–205

Culotta A, Sorensen J (2004) Dependency Tree Kernels for Relation Extraction. In: Proceedings of
the 42nd Annual Meeting of the Association for Computational Linguistics (ACL’04)

Dagan I, Church K (1994) Termight: Identifying and translating technical terminology. In: Proceed-
ings of the 4th Conference on Applied Natural Language Processing (ANLP’94), pp 34–40

Dagan I, Lee L, Pereira FCN (1999) Similarity-Based Models of Word Cooccurrence Probabilities.
Machine Learning 32:43–69

Dai Hj, Wu Cy, Tsai RTH, HsuWL (2012) From Entity Recognition to Entity Linking : A Survey of
Advanced Entity Linking Techniques. In: The 26th Annual Conference of the Japanese Society
for Artitifical Intelligence, pp 1–10

Drouin P (2003) Term extraction using non-technical corpora as a point of leverage. Terminology
9(1):99–115

Elango P (2006) Coreference Resolution: A Survey. Tech. rep., UW-Madison
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