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Preface

Wave propagation is an exciting field having applications cutting across many
disciplines. In the field of structural engineering and smart structures, wave
propagation based tools have found increasing applications especially in the
area of structural health monitoring and active control of vibrations and noise.
In addition, there has been tremendous progress in the area of material science,
wherein a new class of structural materials is designed to meet the particu-
lar application. In most cases, these materials are not isotropic as in metallic
structures. They are either anisotropic (as in the case of laminated composite
structures) or inhomogeneous (as in the case of functionally graded materi-
als). Analysis of these structures is many orders more complex than that of
isotropic structures. For many scientists/engineers, a clear difference between
structural dynamics and wave propagation is not evident. Traditionally, a
structural designer will not be interested in the behavior of structures beyond
certain frequencies, which are essentially at the lower end of the frequency
scale. For such situations, available general purpose finite element code will
satisfy the designer’s requirement. However, currently, structures are required
to be designed to sustain very complex and harsh loading environments. These
loadings are essentially multi-modal phenomena and their analysis falls under
the domain of wave propagation rather than structural dynamics. Evaluation
of the structural integrity of anisotropic and inhomogeneous structures sub-
jected to such loadings is a complex process. The currently available analysis
tools are highly inadequate to handle the modeling of these structures. In this
book, we present a technique called the “Spectral Finite Element Method”,
which we believe will address some of the shortcomings of the existing analysis
tools.

Although the spectral finite element method has been in existence for a
long time under the name of the dynamic stiffness method, its use was lim-
ited to simple vibration studies. It is only in recent times that the potential
of this method to handle a wide range of applications has been realized. This
is evident from the increasing number of publications in the archival liter-
ature. However, we believe that its impact has reached only a small subset
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of scientists/engineers working in these areas due to the non-availability of
a good textbook. The main aim of this book is to reach out to those ana-
lysts/engineers working in new and cutting edge areas to not only highlight
the power of this method, but also to serve as a good reference book for
specialists.

The spectral finite element method is essentially a finite element method
in the frequency domain. In essence, the beauty of the method lies in the fact
that one can easily convert a finite element code to a spectral element code
without much difficulty. In addition, it uses spectral analysis as a basic tool for
element formulation. That is, in the process of element formulation, one can
deeply understand the physics behind wave propagation in complex media
and its interaction with various boundaries. Frequency domain formulation
enables easy and straightforward solution of inverse problems. Hence, the
spectral element method can be used as a tool to post-process experimental
data.

The book mainly addresses the wave behavior in composites and inhomo-
geneous media in addition to its application to structural health monitoring
and active vibration and wave control. The book introduces new methods
for the solution of wavenumbers for propagation in composites and inhomo-
geneous waveguides. For structural health monitoring, waveguide models for
different types of damage are developed. The reader is also introduced to
various damage detection schemes that blend well with the spectral element
method. Towards the end of the book, a chapter on the use of the spectral
element method for active control application is presented.

A step by step modular approach is adopted here in writing this book. A
number of numerical results are presented to not only emphasize the efficiency
and numerical superiority of the method, but also to bring out the physics of
the problem. The reader may notice that in most cases only one element is
sufficient for solution of certain problems, where thousands of finite elements
are required. The material presented in this book can serve as a graduate level
textbook on wave propagation in structures. A separate graduate level course
on the spectral finite element method can be developed using this book. This
book is written assuming that the reader has only an elementary background
in the theory of elasticity, strength of materials, linear algebra and methods
for solving ordinary and partial differential equations.

We would like to thank many of the graduate students who have con-
tributed directly or indirectly towards the development of the book. We would
particularly thank A. Nag, D. Srikanth, A. Garg and A. Singhal for their con-
tributions.

Bangalore, India S. Gopalakrishnan
October, 2007 A. Chakraborty

D. RoyMahapatra
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1

Introduction

Dynamic analysis in structural engineering falls into two different classes,
one involving low frequency loading and the other involving high frequency
loading. Low frequency problems are categorized as Structural Dynamics
problems while those involving high frequency loading fall into the category
of Wave Propagation problems. In structural dynamics problems, the fre-
quency content of the dynamic load is of the order of a few hundred hertz (Hz)
and the designer will be mostly interested in the long-term (or steady-state)
effects of the dynamic load on the structures. Hence, the first few normal
modes and natural frequencies are sufficient to assess the performance of the
structure. The phase information of the response is not critical here. Most
of the dynamic problems in structures will fall into this category. On the
other hand, for wave propagation problems, the frequency content of the in-
put loading is very high (of the order of kilohertz (kHz) or higher) and hence,
short-term effects (transient response) become very critical. Further, many
higher order modes will participate in amplifying the dynamic response. Im-
pact and blast-type of loading fall into this category. The multi-modal nature
of wave propagation makes one parameter very important, and that is the
phase information.

1.1 Solution Methods for Wave Propagation Problems

Dynamic analyses are traditionally performed using the conventional Finite
Element Method (FEM). For wave propagation problems wherein the fre-
quency content of the input is very high, many higher order vibrational modes
participate in the motion. At these higher frequencies, the wavelengths are
very small and hence to capture these modes effectively, FE meshes need to
be very fine. This is due to the requirement that the element sizes should
be of the same order as the wavelength of the signal. For larger mesh sizes,
the element edges will act like a free boundary and start reflecting the initial
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responses from these element edges. A fine mesh, although ensuring accurate
distribution of the inertia, also increases the computation cost enormously.

FE solutions in dynamics are obtained by two different methods [1]; the
modal method and the time marching scheme. Modal methods cannot be
applied to multi-modal problems such as those involving wave propagation
analysis. This is because, unlike structural dynamics problems, here we need
to determine the natural frequencies and the mode shapes of both the low and
high frequency modes. It is well known that the extraction of the eigenvalues
is computationally the most expensive problem in mechanics. Hence, modal
methods are not suited to wave propagation problems. Alternatively we can
use various time marching schemes under the FE environment. In this method,
analysis is performed over a small time step, which is a fraction of the total
time for which the response histories are required. For some time marching
schemes, a constraint is placed on the time step, and this, coupled with very
large mesh sizes, makes the solution of wave propagation problems (under
the FE environment) computationally prohibitive. Hence, we need alternative
methods of solution.

Numerical methods such as FEM are based on some assumed solutions to
the field variable (say displacement). This assumed solution for wave propa-
gation problems gives large system sizes due to its inability to approximate
the mass distribution accurately. Hence, we need to look for a method that
approximates the mass accurately. This can happen only when the assumed
solution satisfies the governing wave equations as closely as possible. If one
is interested in solving the governing wave equation in the time domain, it is
very difficult to assume a solution that satisfies the governing wave equation.
Instead, one can ignore the inertial part of the wave equation, and solve the
static part of the equation exactly and use this solution to obtain the stiffness
and mass matrices. This procedure will ensure that the stiffness distribution
is nearly exact while the mass distribution is still approximate. Elements de-
veloped by this method are called the Super Convergent Finite Element
(SCFE), which are formulated for higher order rods, beams, box-beams and
inhomogeneous beams [2, 3, 4, 5, 6]. According to Reference [7], the error
introduced by approximating stiffness is much higher than the approximate
mass distribution. Hence, one can expect SCFE to give a smaller system size
for wave propagation problems than conventional FEM.

Alternatively, one can transform the governing wave equation to the fre-
quency domain and try to solve it exactly. This is a far easier option since
transformation to the frequency domain removes the time variable from the
governing equation and introduces frequency as a parameter. For 1-D systems,
the transform method reduces a governing partial differential equation(s) to a
set of ordinary differential equation(s), which are easier to solve than the origi-
nal wave equation in the time domain. There are different transforms that one
can use for this purpose, namely the Laplace Transform, the Fourier Trans-
form and the Wavelet Transform. In this method first the wave equation is
transformed into the frequency domain using appropriate forward transforms.
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The governing equation in the transformed domain is then solved exactly or
almost exactly and the results are post-processed to get all the relevant param-
eters in the frequency domain. The time domain solutions are then obtained
by taking an inverse transform on the frequency domain solutions. Two as-
pects are very clear from the above discussion: (1) transform methods will
yield solutions both in the time and the frequency domain; (2) one requires
an efficient way of obtaining inverse transforms, either analytically or numer-
ically, to obtain time domain solutions. If we look at the various available
transforms, obtaining inverse Laplace transforms is not straightforward in
most cases and this has limited its scope in the analysis of wave propagation
problems. On the other hand, numerical versions of forward and inverse trans-
forms are available for both the Fourier and Wavelet Transforms. The Fourier
Transform uses the Fast Fourier Transform (FFT) numerical algorithm, while
in the case of the Wavelet Transform, the Daubechies wavelet basis is com-
monly used for approximation in time. However, the Fourier transform is the
most extensively used transform method for the solution of wave propagation
problems due to its numerical superiority and the ease of implementation of
the FFT algorithm. The Spectral Finite Element Method (SFEM) is a
numerical method evolved from the Fourier Transform based method. More
details on the solution schemes are given in Section 3.4.

There are certain advantages that a transform method can offer over con-
ventional FEM. Unlike the direct problem, wherein one determines the re-
sponse to the given input, inverse problems deal with determining the input
history using the measured responses or determining the system as a whole
from the known input and output. These problems are called force (or source)
identification problems and system identification problems, respectively. Us-
ing a transform method such as SFEM, one can perform inverse problems in a
simple and straightforward manner. This is made possible due to an algebraic
relationship between the output and the input through the system transfer
function (frequency response function). In other words, the transform meth-
ods can give responses in both the time and frequency domain using a single
analysis.

The SFEM was initially conceived by Narayan and Beskos [8]. This was
later popularized by Doyle and co-workers [9]. In recent years, there has been
an increasing number of papers on this method in the archival literature for
various structural applications. Although its application to metallic struc-
tures is well documented, its application to the study of wave propagation in
anisotropic and inhomogeneous structures is not well reported in the litera-
ture. Unlike metallic structures, the wave behavior in anisotropic and inhomo-
geneous structures is quite complex due to the presence of both stiffness and
inertial coupling. These couplings sometimes give rise to newer set of waves.
In addition, the SFEM has potential for use in the application of Structural
Health Monitoring(SHM) and Active Wave Control (AWC), since both
these problems involve loading having a very high frequency content. Hence,
the main objective of this book is to bring out the essential wave characteris-
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tics in these complex structures and show how SHM and AWC problems can
be effectively handled in the SFEM environment.

Studies involving the monitoring, detection and arrest of the growth of
flaws such as cracks constitute what is universally termed Structural Health
Monitoring (SHM). SHM is a type of inverse problem, wherein the presence
of damage needs to be detected from the known input and the measured out-
put. It is well known that the most common method of detecting damage is
through modal methods [10], wherein one can look at the changes in the natu-
ral frequencies of the structure before and after the damage to assess/confirm
the presence of damage. In laminated composites, the most common form of
failure is the delamination of the plies. At the onset of the damage, the stiff-
ness of the structure reduces, but this reduction is negligible for very small
size damage. Hence, modal methods will show negligible change in the lower
energy modes and higher modes may become slightly perturbed. The compu-
tational cost of determining the higher modes limits the use of modal methods
for SHM of composite structures. In summary, small size damage affects only
the higher order modes leaving the lower modes unchanged. This effectively
means that to assess the presence of small size damage, one needs a mathe-
matical model that can capture the high frequency response of the damaged
structure with small problem sizes. In other words, we need a wave propaga-
tion based diagnostic tool for SHM studies. This is one of the fundamental
goals of on-line SHM, and the SFEM is an ideal candidate for this kind of
analysis.

The main requirements for on-line SHM are the following:

• Mathematical models to represent various types of damage. Some of the
common types of damage in laminated composites are delamination (both
single and multiple), fibre breakage, and surface breaking cracks. Also,
models are required for aging composite structures with degraded prop-
erties. One can easily model all types of damage using the conventional
FEM using 2-D or 3-D elements. The singularity near the flaw tip requires
fine mesh discretization. In addition, the high frequency loading require-
ment for SHM studies further increases the mesh density. These obviously
increase the time for solution, defeating the very purpose of on-line SHM.
In this book, we describe simplified but accurate spectral element models
for various types of damage for its use in SHM studies.

• Accurate damage detection algorithms that blend with the mathematical
model used to represent the damage. The success of a damage detection
algorithm depends on the quality of the measured responses. Often these
responses may be incomplete and in most cases they are corrupted by
the presence of high frequency noise. The main requirement is that these
damage detection algorithms should be able to predict the presence of
damage in an uncertain environment.

• Robust sensors and their placement. The sensitivity of the sensor is an ex-
tremely important parameter that determines the quality of the measured
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response. The sensitivity depends on the type of sensor and its placement
with respect to the damage location. Smart sensors made from Piezo-
ceramics (say lead-zirconate-titanate (PZT) or Polyvinylidene Difluoride
(PVDF)) are extremely popular for SHM applications. Sensors made from
magnetostrictive materials (say TERFENOL-D) are also quite popular
due to their large free strain property. Surface Acoustic Wave (SAW) and
Bulk Acoustic Wave (BAW) devices also find usage in SHM applications.
The placement of the sensors is critical for accurate damage estimation.
Normally, sensors are placed in regions of high stress, which are likely
locations for damage initiation. However, these locations are difficult to
determine a priori. Hence, the damage detection algorithm must be able
to predict the location of the damage from the far field responses.

Active wave control is yet another application that deals with inputs that
have high frequency content. Hence, SFEM is again a suitable candidate for
such applications. Vibration reduction in a structure can normally be achieved
passively by identifying the resonant conditions and suitably modifying the
geometry of the structure such that the natural frequency of the system is
far away from the driving frequency of the system. Alternatively, one can do
a detailed analysis and identify the regions in a structure having high vibra-
tion levels and design suitable damping mechanisms to alleviate vibrations.
However, design constraints may not allow any modification to the existing
structure. These exercises can be undertaken only when the frequency con-
tent of the exciting force is small and when it is desired to reduce the modal
amplitudes of the first few modes. Alternatively, one can design a feed back
control system, for which an interrogating signal triggered at a certain fre-
quency is required. This signal can be generated using smart actuators made
from materials such as PZT, TERFENOL-D et al. However, the design of
the control system poses a big problem if the problem sizes are large, as in
the case of conventional FEM. In such cases, one has resort to reduced-order
models for a given FE discretization. The fundamental requirement of any
reduced-order model is that the high energy mode that requires suppression
should be retained in the reduced model. This is a very difficult problem and
requires an experienced analyst to choose the appropriate degrees of freedom
to be retained in the reduced-order model. If the problem is a multi-modal one
where all the higher modes also have significant energy, the FE discretization
is also enormously large and hence to design a feedback control system for
such problems, a reduced-order model of the structure is an absolute neces-
sity. Again here, the choice of appropriate degrees of freedom to be included
in the reduced-order model is more difficult than the earlier case. The SFEM,
due to its inherent property of retaining all modal information within its small
size, can effectively be used in multi-modal wave control. The SFEM does not
require any reduced-order modelling and it can be used effectively with smart
actuators for control applications.
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1.2 Fourier Analysis

The heart of SFEM lies in the synthesis of waves using the Fourier transform.
A time signal can be represented in the Fourier (frequency) domain in three
possible ways, namely the Continuous Fourier Transform(CFT), the Fourier
Series (FS) and the Discrete Fourier Transform (DFT). In this section, only
brief definitions of the above transforms are given. The reader is encouraged
to refer to [9] for more details.

1.2.1 Continuous Fourier Transforms

Consider any time signal F (t). The inverse and the forward CFTs, normally
referred to as the transform pair, are given by

F (t) =
1
2π

∞∫

−∞
F̂ (ω)ejωtdω, F̂ (ω) =

∞∫

−∞
F (t)e−jωtdt , (1.1)

where F̂ (ω) is the CFT of the time signal, ω is the angular frequency and
j (j2 = −1) is the complex number. F̂ (ω) is necessarily complex and a plot
of the amplitude of this function against frequency will give the frequency
content of the time signal. As an example, consider a rectangular time signal
of pulse width d. Mathematically, this function can be represented as

F (t) = F0 − d/2 ≤ t ≤ d/2
= 0 otherwise . (1.2)

This time signal is symmetrical about the origin. If this expression is substi-
tuted in Equation (1.1), we get

F̂ (ω) = F0d

{
sin(ωd/2)

ωd/2

}
. (1.3)

The CFT for this function is real only and symmetric about ω = 0. The term
inside the curly brace is called the sinc function. Also, the value of the CFT
at ω = 0 is equal to the area under the time signal.

Now the pulse is allowed to propagate in the time domain by an amount
t0 seconds. Mathematically such a signal can be written as

F (t) = F0 t0 ≤ t ≤ t0 + d

= 0 otherwise. (1.4)

Substituting the above function in Equation (1.1) and integrating, we get

F̂ (ω) = F0d

{
sin(ωd/2)

ωd/2

}
e−jω(t0+d/2) . (1.5)
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Fig. 1.1. Continuous Fourier transforms for various pulse width

The above CFT has both real and imaginary parts. These are also plotted in
Figure 1.1. From Equations (1.3) and (1.5), we see that the magnitude of both
these transforms are the same, however, the second transform has phase infor-
mation built into it. Further, we see that the propagation of the signal in the
time domain is associated with the change of phase in the frequency domain.
Wave propagation problems are always associated with phase changes, which
occur as the signal propagates. Based on the CFT, one can also determine the
spread of the signal in both the time and frequency domain. For this, one has
to look at the frequencies at which the CFT is zero. This occurs when

sin
(

ωnd

2

)
= 0, or

ωnd

2
= nπ , or ωn =

2nπ

d
,

ω2 − ω1 = ∆ω =
4π

d
.

That is, if the spread of the signal in the time domain is d then the spread
in the frequency domain is ∆ω = 4π/d. Here, ∆ω represents the frequency
bandwidth. Hence, a Dirac delta function, which has infinitesimal width in
the time domain, will have infinite bandwidth in the frequency domain. This
aspect has greater implications in choosing the mesh sizes, when one resorts
to FEM to solve the wave propagation problem. Following are some of the
properties of the CFT:
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• Linearity: Consider two time functions F1(t) and F2(t). The CFTs of
these functions are given by F̂1(ω) and F̂2(ω), then the Fourier transform
of the combined function is F1(t)+F2(t) ⇔ F̂1(ω)+F̂2(ω). Here, the symbol
⇔ is used to denote the CFT of a time signal. Implications for wave
propagation: Here, F1(t) and F2(t) can be thought of as the incident
and the reflected waves, respectively. The linearity property states that
the combined transform of the incident and the reflected waves are equal
to the individual transform of these obtained separately.

• Scaling: If a time signal is multiplied by a factor k to become F (kt), the
CFT of this time signal is given by F (kt) ⇔ 1/kF̂ (ω/k) Implications
for wave propagation: Time domain compression is frequency domain
expansion. This property fixes the frequency bandwidth of the given time
signal.

• Time shifting: If a given time signal F (t) is shifted by an amount ts to
become F (t − ts), the CFT of the shifted signal is given by F (t − ts) ⇔
F̂ (ω)e−jωt. Implications for wave propagation: Propagation in the
time domain is accompanied by phase changes in the frequency domain.

• CFT is always complex: Any given time function F (t) can be split
up into symmetric and anti-symmetric functions Fs(t) and Fa(t). Fur-
ther, using the property of the linearity of the CFT, we can show that
Fs(t) = Real(F̂ (ω)) and Fa(t) = jImag(F̂ (ω)). Implications for wave
propagation: Since the time signals encountered in wave mechanics is
neither symmetric (even) nor anti-symmetric in nature, the CFT is nec-
essarily complex in nature. Hence, wave propagation problems are always
associated with phase changes.

• Symmetric property of the CFT: Since the CFT of a time signal
F (t) is complex, it can be split into real and imaginary parts as F̂ (ω) =
F̂R(ω) + j ˆFRI(ω). Substituting this into the first part of Equation (1.1)
and expanding the complex exponential in terms of the sine and cosine
functions, we can write real and imaginary parts of the transform as

F̂R =

∞∫

−∞
F (t) cos(ωt)dt, F̂I =

∞∫

−∞
F (t) sin(ωt)dt .

The first integral is an even function and the second is an odd function,
that is F̂R(ω) = F̂R(−ω), and F̂I(ω) = −F̂I(−ω). Now, if we consider the
CFT about a point ω = 0(origin), the transform on the right of the origin
can be written as F̂ (ω) = F̂R(ω)+ jF̂I(ω) . Similarly, the transform to the
left of the origin can be written as F̂ (−ω) = F̂R(−ω)+jF̂I(−ω) = F̂R(ω)−
jF̂I(ω) = F̂ ∗(ω), which is the complex conjugate of the transform on the
right side of the origin. The frequency point about which this happens
is called the Nyquist frequency. Implications for wave propagation:
The Nyquist frequency is an important parameter in wave propagation
analysis, especially in the context of using the FFT (to be introduced
later), since the analysis will be performed only up to this frequency.
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• Convolution: This is a property relating to the product of two time
signals F1(t) and F2(t). The CFT of the product of these two functions
can be written as

F̂12(ω) =

∞∫

−∞
F1(t)F2(t)e−jωtdt .

Substituting Equation (1.1) for both these functions in the above equation,
we can write

F̂12(ω) =

∞∫

−∞
F̂1(ω̄)

∞∫

−∞
F2(t)e−j(ω−ω̄)tdtdω̄ =

∞∫

−∞
F̂1(ω̄)F̂2(ω − ω̄)dω̄

or

F1(t)F2(t) ⇔
∞∫

−∞
F̂1(ω̄)F̂2(ω − ω̄)dω̄ .

The above form of CFT is called the convolution. Conversely, we can also
write

F̂1(ω)F̂2(ω) ⇔
∞∫

−∞
F1(τ)F2(t − τ)dτ .

Implication for wave propagation: The first property, using the prod-
uct of two time domain signals, has its use in understanding signal process-
ing aspects. For example, a truncated signal in the time domain is equal
to the product of the original signal and the truncated signal. The sec-
ond (or the converse) property is of great importance in wave propagation
analysis. That is, all the responses (outputs) of a mechanical waveguide to
applied loadings can be represented as the frequency domain product of
the input and the system transfer function. Thus the time responses are
obtained by convolving the transfer functions with the load spectrum.

1.2.2 Fourier Series

Both the forward and the inverse CFT require mathematical description of
the time signal as well as their integration. In most cases, the time signals
are point data acquired during experimentation. Hence, what we require is
the numerical representation for the transform pair (Equation (1.1)), which is
called the Discrete Fourier Transform (DFT). The DFT is introduced in detail
in the next subsection. The Fourier Series (FS) is in between the CFT and
the DFT, wherein the inverse transform is represented by a series, while the
forward transform is still in the integral form as in CFT. That is, one still needs
the mathematical description of the time signal to obtain the transforms.

The FS of a given time signal can be represented as
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F (t) =
a0

2
+

∞∑
n=1

[
an cos

(
2πn

t

T

)
+ bn sin

(
2πn

t

T

)]
(1.6)

where (n = 0, 1, 2, . . .)

an =
2
T

T∫

0

F (t) cos
(

2πnt

T

)
dt, bn =

2
T

T∫

0

F (t) sin
(

2πnt

T

)
dt. (1.7)

Equation (1.6) corresponds to the inverse transform of the CFT, while Equa-
tion (1.7) corresponds to the forward transforms of the CFT. Here T is the
period of the time signal, i.e., the discrete representation of a continuous time
signal F (t), introduces periodicity of the time signal. The FS given in Equa-
tion (1.6) can also be written in terms of complex exponentials, which can
give one-to-one comparison with CFT. That is, Equations (1.6) and (1.7) can
be rewritten as

F (t) = 1
2

∞∑
−∞

(an − bn)ejωnt =
∞∑
−∞

F̂nejωnt , n = 0,±1,±2, ...

F̂n = 1
2 (an − bn) = 1

T

T∫
0

F (t)e−jωntdt, , ωn = 2πn
T .

(1.8)

Because of enforced periodicity, the signal repeats itself after every T seconds.
Hence, we can define the fundamental frequency either in radians per second
(ω0) or Hz (f0 = ω0/2π = 1/T ). We can now express the time signal in terms
of the fundamental frequency as

F (t) =
∞∑
−∞

F̂nej2πnf0t =
∞∑
−∞

F̂nejnω0t . (1.9)

From Equation (1.9), it is clear that, unlike in CFT, the transform given by
FS is discrete in frequency. To understand the behavior of FS as opposed to
the CFT, the same rectangular time signal used earlier is again considered
here. The FS coefficients (or transform) are obtained by substituting the time
signal variation in Equation (1.8). This is given by

F̂n =
F0

T

[
sin(nπd/T )
(nπd/T )

]
e−j(t0+d/2)2πn/T . (1.10)

The plot of the transform amplitude obtained from the CFT and the FS
are shown in Figure 1.2. The figure shows that the values of the transform
obtained by FS at discrete frequencies fall exactly on the transform obtained
by CFT. The figure also shows the transform values for different time periods
T . We see from the figure that the larger the time period, the closer are
the frequency spacings. Hence, if the period tends to infinity, the transform
obtained by FS will be exactly equal to the transform obtained by CFT.
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Fig. 1.2. Comparison of Fourier series with Continuous Fourier Transforms

1.2.3 Discrete Fourier Transform

The Discrete Fourier transform (DFT) is an alternative way of mathemati-
cally representing the CFT in terms of summations. Here, both the forward
and inverse CFT given in Equation (1.1) are represented by summations. This
will completely do away with all complex integration involved in the compu-
tation of CFT. In addition, it is not necessary to represent the time signals
mathematically and the great advantage of this is that one can use the time
data obtained from experiment. Numerical implementation of the DFT is done
using the famous FFT algorithm.

We begin here with Equation (1.8), which is the FS representation of the
time signal. The main objective here is to replace the integral involved in the
computation of the Fourier coefficients by summation. For this, the plot of
time signal shown in Figure 1.3 is considered.

The time signal is divided into M piecewise constant rectangles, whose
height is given by Fm, and the width of these rectangles is equal to ∆T =
T/M . We derived earlier that the continuous transform of a rectangle is a
sinc function. By rectangular idealization of the signal, the DFT of the signal
will be the summation of M sinc functions of pulse width ∆T and hence the
second integral in Equation (1.8) can now be written as
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Fig. 1.3. Time signal discretization for DFT

F̂n = ∆T

[
sin(ωn∆T/2)
(ωn∆T/2)

] M∑
m=0

Fme−jωntm (1.11)

Let us now look at the sinc function in Equation (1.11). Its value depends on
the width of the rectangle ∆T . That is, as the width of the rectangle becomes
smaller, the term inside the bracket of Equation (1.11) tends to unity value.
This will happen for all values of n < M . It can easily be shown that for
values of n ≥ M , the values of the transform is approximately equal to zero.
Hence, the DFT transform pairs can now be written as

F
m

= F (tm) = 1
T

N−1∑
n=0

F̂mejωntm = 1
T

N−1∑
n=0

F̂mej2πnm/N

F̂n = F̂ (ωn) = ∆T
N−1∑
n=0

Fme−jωntm = ∆T
N−1∑
n=0

Fme−j2πnm/N (1.12)

Here, both m and n range from 0 to N−1.
The periodicity of the time signal is necessary for DFT as we begin from

the FS representation of the time signal. Now, we can probe a little further to
see whether the signal has any periodicity in the frequency domain. For this,
we can look at the summation term in Equation (1.11). Hypothetically, let us
assume n > M . Hence, we can write n = M + n̄ . Then, the exponential term
in the equation becomes

e−jωntm = e−jnω0tm = e−jMω0tme−jn̄ω0tm = e−j2πme−jn̄ω0tm = e−jn̄ω0tm .

Hence, the summation term in Equation (1.11) becomes
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∆T

M−1∑
m=0

Fme−jn̄ω0tm .

This term shows that the above summation has the same value when n = n̄.
For example, if M = 6, then the value of the summation for n = 9, 11, 17
is same as the value for n = 3, 5, and 11 respectively. Two aspects are very
clear from this analysis. First, n > M is not important, and second, there
is forced periodicity in both the time and frequency domain in using DFT.
This periodicity occurs about a frequency where the transform goes to zero.
This frequency can be obtained if one looks at the sinc function given in
Equation (1.11). That is, the argument of the sinc function is given by

ωn∆T

2
= πn∆T =

πn

M

where, we have used the relation ∆T = T/M .
Here, we see that the sinc function goes to zero when n = M . It is at this

value of n that the periodicity is enforced and the frequency corresponding to
this value is called the Nyquist frequency. As mentioned earlier, this happens
due to the time signal being real only and the transform beyond the Nyquist
frequency is the complex conjugate of the transform before this frequency.
Thus, N real points are transformed to N/2 complex points. Knowing the
sampling rate ∆T , we can compute the Nyquist frequency from the expression

fNyquist=
1

2∆T
. (1.13)

There are a number of issues in the numerical implementation of the DFT,
which are not discussed here. However, the reader is encouraged to consult
Reference [9] to get more information on these aspects. In all the wave prop-
agation examples given in this textbook, the FFT is used to transform the
signal back and forth from the time and frequency domains and vice versa.
In order to see the difference in different transform representation, the same
rectangular pulse is again used here. There are two parameters on which the
accuracy of the transforms obtained by the DFT depends, namely the sam-
pling rate ∆T and the time window parameter N . Figures 1.4 and 1.5 show the
transform obtained for various sampling rates ∆T and time window parame-
ter N . From the figures, we can clearly see the periodicity about the Nyquist
frequency. For a given time window N , the figure shows that the frequency
spacing increases with decreasing sampling rate. Also, the Nyquist frequency
shifts to a higher value. Next, for a given sampling rate ∆T , the time window
is varied through the parameter N . In this case, the Nyquist frequency does
not change. However, for larger N , the frequency spacing becomes smaller and
hence we get denser frequency distribution.
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1.3 Spectral Analysis

SFEM uses spectral analysis to obtain the local wave behavior for differ-
ent waveguides and hence the wave characteristics, namely the Spectrum and
the Dispersion relation. These local characteristics are synthesized to get the
global wave behavior. Spectral analysis uses DFT to represent a field variable
(say displacement) as a finite series involving a set of coefficients, which re-
quires to be determined based on the boundary conditions of the problem.
Spectral analysis enables the determination of two important wave param-
eters, namely the wavenumbers and the group speeds. These parameters are
not only required for spectral element formulation, but also to understand the
wave mechanics in a given waveguide. These parameters enable us to know
whether the wave mode is a propagating mode or a damping mode or a com-
bination of these two (propagation as well as wave amplitude attenuation). If
the wave is propagating, the wavenumber expression will let us know whether
it is non-dispersive (that is, the wave retains its shape as it propagates) or
dispersive (when the wave changes its shape as it propagates). In this section,
for the sake of completeness, we give a brief outline of spectral analysis for
second- and fourth-order systems. More details can be found in Reference [9].

The starting point of spectral analysis is the governing differential equa-
tion. Consider a second-order partial differential equation given by

a
∂2u

∂x2
+ b

∂u

∂x
= c

∂2u

∂t2
(1.14)

where, a, b, c are known constants and u(x, t) is the field variable, x is the
spatial variable and t is the temporal variable. We first approximate or trans-
form the above partial differential equation (PDE) to the frequency domain
using DFT, which is given by

u(x, t) =
N−1∑
n=0

ûn(x, ωn)ejωnt (1.15)

where, ωn is the circular frequency and N is the total number of frequency
points used in the approximation. Here û is the frequency-dependent Fourier
transform of the field variable. Substituting Equation (1.15) into Equa-
tion (1.14), we get

a
d2ûn

dx2
+ b

dûn

dx
+ cω2

nûn = 0 , n = 0, . . . , N − 1 . (1.16)

From the above equation, we see that a partial differential equation is reduced
to a set of ordinary differential equation (ODE) with the time variation re-
moved and instead, the frequency introduced as a parameter. The summation
is omitted in the above equation for brevity. Equation (1.16) is a constant co-
efficient ODE, which has a solution of the type ûn(x, ω) = Anejkx, where An
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is some unknown constant and k is called the wavenumber . Substituting the
above solution in Equation (1.16), we get the following characteristic equation
to determine k

(k2 − bj

a
k +

cω2
n

a
)An = 0 . (1.17)

The above equation is quadratic in k and has two roots corresponding to the
two modes of wave propagation. These two modes correspond to the incident
and reflected waves. If the wavenumbers are real, then the wave modes are
called propagating modes. On the other hand, if the wavenumbers are com-
plex, then the wave modes damp out the responses and hence they are called
evanescent modes . These are given by

k1,2 =
bj

2a
±

√
−b2

4a2
+

cω2
n

a
. (1.18)

Equation (1.18) is the generalized expression for the determination of the
wavenumbers. Different wave behavior is possible depending upon the val-
ues of a, b, and c. The behavior also depends on the numerical value of the
radical

√
cω2

n/a − b2/4a2. Let us consider a simple case of b = 0. The two
wavenumbers are given by

k1 = ωn
c

a
, k2 = −ωn

c

a
. (1.19)

From the above expression, we find that the wavenumbers are real and hence
they are propagating modes. The wavenumbers are linear functions of fre-
quency ω. At this point, we would like to introduce two important wave
parameters that will determine the wave characteristics, namely the phase
speed Cp and group Speed Cg. They are defined as

Cp =
ωn

Real(k)
, Cg =

dωn

dk
. (1.20)

For the wavenumbers given in Equation (1.19), the speeds are given by

Cp = Cg =
a

c
. (1.21)

We find that both group and phase speed are constant and equal. Hence,
when wavenumbers vary linearly with frequency ω and phase speed and group
speed are constant and equal, then the wave, as it propagates, retains its
shape. Such waves are called Non-dispersive waves. Longitudinal waves in
elementary rods are of this type. If the wavenumber varies in a non-linear
manner with respect to the frequency, the phase and group speeds will not
be constant but will be functions of frequency ω. That is, each frequency
component travels with different speed and as a result, the wave changes its
shape as it propagates. Such waves are called dispersive waves.
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Next, let us again consider Equation (1.18) with all the constants nonzero.
The wavenumber no longer varies linearly with the frequency. Hence, one can
expect dispersive behavior of the waves and the level of dispersion will depend
upon the numerical value of the radical. We will investigate this aspect in a
little more detail. There can be the following three situations:

1. b2/4a2 > cω2
n/a

2. b2/4a2 < cω2
n/a and

3. b2/4a2 = cω2
n/a

Let us now consider Case 1. When (b2)/(4a2) > (cω2
n)/(a), then the radical

will be a complex number and hence all the wavenumbers will be complex,
implying that the wave modes are not propagating and they would damp out
rapidly. For Case 2, where (b2)/(4a2) < (cω2

n)/(a), the value of the radical
will be positive and real and hence the wavenumber will have both real and
imaginary parts, i.e.,, takes the form k = p + jq. Hence, waves having this
feature will attenuate as they propagate. The phase and group speeds for this
case are given by

Cp =
ωn

k
=

ωn√
cω2

n/a − b2/4a2
, (1.22)

Cg =
dωn

dk
=

a
√

cω2
n/a − b2/4a2

cωn
. (1.23)

It is quite obvious that these are not the same and hence the waves could be
dispersive in nature. One can get back the non-dispersive solution by substi-
tuting b = 0 in Equation (1.23). Now, let us see Case 3 where the value of
the radical will be zero and hence the wavenumber is purely imaginary indi-
cating that the wave mode is a damping mode. The interesting point here is
to find the frequency of transition at which the propagating mode becomes
evanescent or a damping mode. This can be obtained by equating the radical
to zero. Thus the transition frequency ωt is given by

ωt =
b

2
√

ac
.

Once the wavenumbers are determined, the solution to the governing wave
equation (Equation (1.16)) in the frequency domain can be written as (for
b = 0)

ûn(x, ωn) = Ane−jknx + Bnejknx, kn = ωn

√
c

a
. (1.24)

In the above equation An represents the incident wave coefficient while Bn

represents the reflected wave coefficient. Solution of the governing equation in
the frequency domain is the starting point for the SFEM.

It is clearly seen how the values of the constants in the governing differen-
tial equation play an important part in dictating the type of wave propagation
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in a given medium. Now let us consider a fourth-order system and study the
wave behavior in such systems. Consider the following governing partial dif-
ferential equation of motion:

A
∂4w

∂x4
+ Bw + C

∂2w

∂t2
= 0 . (1.25)

Here w is the field variable, and A,B,C are known constants. The above
equation is similar to the equation of motion of a beam on elastic foundations.
Let us now assume the spectral form of solution to the field variable, which is
given by

w(x, t) =
N∑

n=0

ŵn(x, ωn)ejωnt . (1.26)

Using Equation( 1.26) in Equation( 1.25), the PDE is transformed to an
ODE as

A
d4ŵn

dx4
− (Cω2

n − B)ŵn = 0 . (1.27)

Again, this equation is an ODE with constant coefficients and it will have
solutions of the form ŵn = Pnejkx. Using this solution in Equation (1.27), we
get the characteristic equation for the solution of the wavenumber, which is
given by

k4 − β4 = 0, β4 =
(

C

A
ω2

n − B

A

)
. (1.28)

The above is a fourth-order equation corresponding to four wave modes, two
of which are for the incident wave and the other two are for the reflected wave.
Also, the type of wave is dependent upon the numerical value of Cω2

n/A −
B/A. Let us now assume that Cω2

n/A > B/A. For this case, the solution of
Equation (1.28) will give the following wavenumbers:

k1 = β, k2 = −β, k3 = jβ, k4 = −jβ (1.29)

In the above equation, k1 and k2 are the propagating modes while k3 and
k4 are the damping or evanescent modes. From the above equations, we find
that the wavenumbers are non-linear functions of the frequency and hence the
waves are expected to be highly dispersive in nature. Also, using the above
expression, we can find the phase and group speeds for the propagating modes
using Equations (1.20) and (1.21), respectively.

Next, consider the case when Cω2
n/A < B/A. For this case, the character-

istic equation and hence the wavenumbers are given by

k4 + β4 = 0 (1.30)

k1 =
[

1√
2

+ j
1√
2

]
β, k2 = −

[
1√
2

+ j
1√
2

]
β , (1.31)

k3 =
[
− 1√

2
+ j

1√
2

]
β, k4 = −

[
− 1√

2
+ j

1√
2

]
β . (1.32)
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From the above equation, we see that the change of sign of Cω2
n/A−B/A has

caused completely changed wave behavior. We find that all the wavenumbers
have both real and the imaginary parts and hence all the modes are propa-
gating as well as attenuating. Also the initial evanescent mode, after a certain
frequency, becomes a propagating mode, giving a completely different wave
behavior. The frequency at which this transition takes place is called the cut-
off frequency . The expression for the cut-off frequency can be obtained if
we equate Cω2

n/A−B/A to zero, giving ωcut−off =
√

B/C. We can see that
when B = 0, the cut-off frequency vanishes and the wave behavior is similar
to the first case, i.e., it will have two propagating and two damping modes.
In all cases, the waves will be highly dispersive in nature.

The solution of the fourth-order governing equation in the frequency do-
main (Equation (1.27)) can be written as

ŵn(x, ωn) = Ane−jβx + Bne−βx + Cnejβx + Deβx . (1.33)

As in the previous case, An and Bn are the incident wave coefficients and Cn

and Dn are the reflected wave coefficients. These can be determined based on
the boundary conditions of the problem.

From the above discussion, we see that spectral analysis gives us a deep in-
sight into the wave mechanics of a system defined by its governing differential
equation. The direct output of spectral analysis are the spectrum relation ,
which is a plot of the wavenumber variation with frequency, and dispersion
relations, which is a plot of the phase speed against frequency. These rela-
tions are absolutely necessary for the spectral finite element formulation. The
spectral analysis procedure outlined here will be used extensively throughout
the textbook for characterization of waves in anisotropic and inhomogeneous
media.

1.4 What is the Spectral Element Method?

The spectral element method is essentially a finite element method formulated
in the frequency domain. However, their methods of implementation are quite
different. The basic differences between SFEM and FEM are highlighted in
the following paragraph.

FEM is based on an assumed polynomial for displacements. These as-
sumed displacement polynomials are forced to satisfy the weak form of the
governing differential equation, which would yield two different matrices,
namely the stiffness matrix and the mass matrix. These elemental matri-
ces are assembled to obtain global stiffness and mass matrices. The assem-
bly process ensures equilibrium of forces between adjacent elements. This
procedure will give the discretized form of the governing equation, given by
[M ]{ü} + [C]{u̇} + [K]{u} = {F (t)}, where [M ] and [K] are the global mass
and stiffness matrix and {ü}, {u̇} and {u} are the acceleration, velocity and
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displacement vector, respectively. Matrix [C] is the damping matrix, which is
normally obtained from the stiffness and mass matrix as [C] = α[K] + β[M ],
where α and β are the stiffness and the mass proportional factors, and the
damping scheme is called the proportional damping scheme. As mentioned ear-
lier, the mode superposition method of solution cannot be used for wave prop-
agation analysis. The preferred solution method is the time marching scheme,
where two different strategies are available, namely the explicit methods and
the implicit methods. For wave propagation and highly transient dynam-
ics problems, explicit methods are normally preferred. In the time marching
scheme, the solution process takes place over a small time step ∆T . The solu-
tion of the dynamic equations will give displacement, velocity and acceleration
histories. The solution process is repeated for N time steps until the total time
T = N∆T is reached. The solution time is directly proportional to the num-
ber of degrees of freedom in the model, which is usually very high for wave
propagation problems.

SFEM on the other hand uses in most cases the exact solution to the
wave equation as its interpolating function. For example, for second- and
fourth-order governing equations, these were given in the last section as Equa-
tions (1.24) and (1.33). One can see, unlike the polynomials in the case of
FEM, here, we need to deal with complex exponentials as the interpolating
functions. The exact solution will have wave coefficients corresponding to the
incident and reflected wave components. If one wants to model an infinite
domain, then the reflected components can be dropped from the interpolating
functions. This gives what is called the throw-off elements. This is a great
advantage that SFEM has over FEM. Using the interpolating functions for
the displacement, the dynamic element stiffness matrix is formulated. One can
formulate this stiffness matrix as in the case of conventional FEM, using the
weak form of the governing equations. This approach will involve complex in-
tegration. Alternatively, one can formulate the dynamic stiffness matrix using
stress or force resultant expressions. This method is normally suitable since it
does not involve complex integration. The basic steps involved in the analysis
using SFEM are as follows. First, the given forcing function is transformed to
the frequency domain using the forward FFT. In doing so, we need to choose
the time sampling rate and number of FFT points to decide on the analysis
time window. Care should be taken to see that the chosen window is good
enough to avoid what are called wraparound problems [9]. The FFT output
will yield the frequency, the real and imaginary part of the forcing function,
which are stored separately. Over a big frequency loop, the element dynamic
stiffness matrix is generated, assembled and solved as in the case of conven-
tional FEM. However, these operations have to be performed at each sampled
frequency. This does not pose a major computational hurdle since the problem
sizes are many orders smaller than conventional FEM. The solution process
is first performed for a unit impulse, which directly yields the Frequency Re-
sponse Function(FRF). The FRF is then convolved with the load to get the
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required output in the frequency domain. This output is then transformed to
the time domain using the inverse FFT.

There are many advantages that SFEM gives over conventional FEM. The
SFEM can give results in both the time and frequency domain in a single anal-
ysis. Obtaining the FRF is a big advantage of the SFEM. This enables one to
solve inverse problems such as the force or the system identification problems
in a straightforward manner. Since many damping properties are frequency de-
pendent, damping in structures can be treated more realistically. Visco-elastic
analysis can be performed without much alteration of the spectral element
code. Since the approach gives the FRF first, responses to different loading
can be obtained using a single analysis. In summary, SFEM is a method in
which the FFT algorithm is an essential part and gives problem sizes many
orders smaller than conventional FEM. SFEM for isotropic waveguides are
already dealt with in Reference [9]. In this book, we address the formulation
of spectral elements for anisotropic and inhomogeneous waveguides and also
show how SFEM can be used to study wave scattering in the presence of flaws
and hence show how it can be applied to SHM problems. As mentioned be-
fore, due to the exact nature of the dynamic stiffness matrix, SFEM can be
directly used in control-related applications without resorting to model order
reductions.

1.5 Outline and Scope of Book

The entire book is organized into 11 chapters. In Chapter 2, we first present
a brief introduction to laminated composite and inhomogeneous structures.
In particular, the homogenization of the constitutive model for composites
and functionally graded material structures are addressed. We also intro-
duce smart materials, their integration with composites and their constitu-
tive model. In Chapter 3, all the necessary tools required for spectral element
formulation are given. In this chapter we outline the general spectral element
formulation and the available approaches to obtain the wavenumber and the
wave amplitudes. Also a brief outline of the spectral element formulation for
isotropic waveguides is given. In Chapter 4, element formulation for 1-D ho-
mogeneous, laminated composite structures is given. Both elementary and
higher order spectral elements are formulated. This chapter describes how
special damping schemes can be handled within the spectral element environ-
ment. A novel spectral element to model a composite tube is also presented.

Chapter 5 addresses wave propagation in 1-D inhomogeneous waveguides.
As in Chapter 4, spectral element formulations for both elementary and higher
order waveguides are provided. Inhomogeneity in both the depth-wise and
length-wise directions is considered. A number of numerical examples are pre-
sented to bring out the essential features of wave propagation. In Chapter
6, wave propagation in homogeneous 2-D laminated composite structures is
addressed. This chapter shows how to use SFEM to study Lamb wave propaga-
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tion in laminated composite. In Chapter 7, wave propagation in 2-D inhomoge-
neous structures is discussed along with the development of a series of spectral
elements to handle mechanical, thermal and coupled thermo-mechanical load-
ing. A number of numerical examples are also provided to highlight the effect
of inhomogeneity on wave behavior.

The last four chapters deal with the applications of the developed spectral
finite elements. In Chapter 8, SFEM is used to solve inverse problems such
as force history identification and material parameters estimation. Chapter 9
and 10 deal with the applications of SFEM to structural health monitoring. In
Chapter 9, various spectral element based damage models for different failure
modes, such as single and the multiple delaminations, fiber breakage, surface
breaking cracks and degraded regions, are presented. Examples are provided
to highlight the nature of wave scattering across a crack front. In Chapter 10,
various damage diagnostic techniques that blend with SFEM are presented.
The final chapter deals with the application of SFEM to active control of
waves. A new numerical model for control called the Active Spectral Element
Model (ASEM) is introduced for this purpose. A case study showing how the
model can be used to control cabin noise in a helicopter is discussed.



2

Introduction to the Theory of Anisotropic and
Inhomogeneous Materials

In this chapter, a very brief introduction to composite materials, the evalu-
ation of material properties and their homogenization techniques are given.
Also, a brief introduction is given to smart composites and the basic consti-
tutive models for composites, where a few standard smart materials can be
embedded. Towards the end of the chapter a brief description of how to obtain
constitutive models for inhomogeneous materials, such as functionally graded
materials, is presented.

2.1 Introduction to Composite Materials

As the name suggests, composite materials are obtained by combining two or
more materials at the macroscale to obtain a useful structural material. Al-
though these materials at the microscopic scale can be inhomogeneous, they
can be considered homogeneous at the macroscopic level. These materials
possess the qualities of each of the constituents and the choice of constituents
depends on the application for which these materials are required. These ma-
terials are normally preferred due to their light weight, high strength, and high
corrosion resistance properties. The two normal constituents of a composite
material are the Fiber and the Matrix. Depending upon how they are bound
together, different types of composite materials can be obtained. Owing to
the difference in the constitutive behavior of these two constituent materi-
als, the constitutive model of the compound material is normally anisotropic.
Composites can be classified into three different categories, namely fibrous
composites, particulate composites and laminated composites.

The fibrous composites consist of fibers or whiskers dispersed in a matrix
to form a structural element. The fibers are normally expected to take all the
load and all the fibers in the structural element are bound together by the
matrix. In addition to binding, the matrix helps in stress transfer and also
to protect the fibers from harmful environmental effects. The matrix material
normally has low stiffness, density and strength compared to the fibers. Some
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of the commonly used fibers are made of carbon, graphite, boron, E-glass etc.
while the most commonly used matrix material is epoxy, which is essentially
a polymer material.

The particulate composite consists of particles of one or more materials
suspended in a matrix of a different material. The particles and the matrix
can be metallic or non-metallic. Concrete is a very good example of a par-
ticulate composite wherein the sand and the granite are bound by a matrix
material (cement). Here the particles are non-metallic. Use of mica in glass
is yet another example of a particulate composite, which is used extensively
as an insulating material in electrical applications. For spacecraft, rocket pro-
pellents are used extensively as a fuel. These propellents consist of aluminum
powder and perchlorate oxidizers mixed in an organic binder. The normal
binder material is polyurethene. This is an example of metallic particles in a
non-metallic composite.

For structural applications, the above two forms of composite are seldom
used; here the common type is the laminated composite. Hence an entire
section is devoted to this form of composite.

2.2 Theory of Laminated Composites

Laminated composites have found extensive use as aircraft structural materi-
als due to their high strength to weight and stiffness to weight ratios. Their
popularity stems from the fact that they are extremely light-weight and the
laminate construction enables the designer to tailor the strength of the struc-
ture in any required direction depending upon the loading directions to which
the structure is subjected. In addition to aircraft structures, they have found
their way into many automobile and building structures. Apart from hav-
ing better strength, stiffness and lower weight properties, they have better
corrosion resistance, thermal and acoustic insulation properties than metallic
structures.

The laminated composite structure consists of many laminas (plies) stacked
together to form the structure. The number of plies or laminas depends on the
strength that the structure is required to sustain. Each lamina contains fibers
oriented in the direction where the maximum strength is required. These fibers
are bound together by a matrix material. The laminated composite structure
derives its strength from the fibers. The commonly used fibers are made of
carbon, glass, Kevler and boron. The most commonly used matrix material
is epoxy resin. These materials are orthotropic at the lamina level while at
the laminate level, they exhibit highly anisotropic properties. The anisotropic
behavior results in stiffness coupling, such as bending axial shear coupling in
beams and plates, bending axial torsion coupling in aircraft thin-walled struc-
tures, etc. These coupling effects make the analysis of laminated composite
structures very complex.
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2.2.1 Micromechanical Analysis of a Lamina

A lamina is a basic element of a laminated composite structure, constructed
from fibers that are bound together by the matrix resin. The strength of the
lamina, and hence the laminate, depends on the type of fiber, their orientation
and also the volume fraction of fiber in relation to the overall volume of lamina.
Since the lamina is a heterogeneous mixture of fibers dispersed in a matrix,
determination of the material properties of the lamina, which is assumed to
be orthotropic in character, is a very involved process. The method used in
the determination of lamina material properties is micromechanical analysis.
According to Jones [11], micromechanics is the study of composite material
behavior, wherein the interaction of the constituent materials is examined in
detail as part of the definition of the behavior of the heterogeneous composite
material.

Hence, the objective of micromechanics is to determine the elastic moduli
of a composite material in terms of the elastic moduli of the constituent ma-
terials, namely the fibers and the matrix. Thus, the property of a lamina can
be expressed as

Qij = Qij(Ef , Em, νf , νm, Vf , Vm) , (2.1)

where E, ν and V are the elastic moduli, Poisson’s ratio and the volume
fraction respectively, and f and m subscripts denote the fiber and the matrix,
respectively. The volume fraction of fiber is determined from the expression:
Vf = (volume of fiber)/(total volume of lamina) and Vm = 1 − Vf .

There are two basic approaches for the determination of material proper-
ties of the lamina. They can be grouped under the following heads: (1) the
strength of materials approach and (2) the theory of elasticity approach. The
first method gives an experimental way of determining the elastic moduli. The
second method gives upper and lower bounds on the elastic moduli and not
their actual values. In fact, there are many papers available in the literature
that deal with the theory of elasticity approach to determine the elastic mod-
uli of a composite. In this section, only the first method is presented. There
are many classic textbooks on composites such as Jones [11] and Tsai [12]
that cover this in detail.

2.2.2 Strength of Materials Approach to Determination of Elastic
Moduli

The material properties of a lamina are determined by making some assump-
tions concerning the behavior of its constituents. The fundamental assumption
is that the fiber is the strong constituent of a composite lamina and hence is
the main load bearing member, and the matrix is weak and its main function
is to protect the fibers from severe environmental effects. Also, the strains in
the matrix and the fiber are assumed to be the same. Hence, a plane section
before the application of bending stress remains plane after bending. In the
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present analysis, we consider a unidirectional, orthotropic composite lamina
to derive expressions for the elastic moduli. In doing so, we limit our analysis
to a small volume element, small enough to show the microscopic structural
details, yet large enough to represent the overall behavior of the composite
lamina. Such a volume is called the representative volume (RV). A simple RV
is a fiber surrounded by matrix as shown in Figure 2.1.
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Fig. 2.1. RV for the determination of longitudinal material properties

First, the procedure for determining the elastic modulus E1 is given. In Fig-
ure 2.1, the strain in the 1-direction is given by ε1 = ∆L/L, where this strain
is felt both by the matrix and the fiber, according to our basic assumption.
The corresponding stresses in the fiber and the matrix are given by

σf = Ef ε1 , σm = Emε1 . (2.2)

Here Ef and Em are the elastic modulus of the fiber and the matrix respec-
tively. The cross-sectional area A of the RV is made up of the area of the
fiber Af and the area of the matrix Am. If the total stress acting on the
cross-section of the RV is σ1, then the total load acting on the cross-section is

P = σ1A = E1ε1A = σfAf + σmAm . (2.3)

From the above expression, we can write the elastic moduli in the 1-direction
as

E1 = Ef
Af

A
+ Em

Am

A
. (2.4)

The volume fraction of the fiber and the matrix can be expressed in terms of
areas of the fiber and the matrix as

Vf = Af/A , Vm = Am/A . (2.5)

Using Equation (2.5) in Equation (2.4), we can write the modulus in the
1-direction as
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E1 = EfVf + EmVm . (2.6)

Equation 2.6 is the well known rule of mixtures for obtaining the equivalent
modulus of the lamina in the direction of the fibers.

The equivalent modulus E2 of the lamina is determined by subjecting the
RV to a stress σ2 perpendicular to the direction of the fiber as shown in
Figure 2.2. This stress is assumed to be the same in both the matrix and the
fiber.
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Fig. 2.2. RV for determination of transverse material property

The strains in the fiber and matrix due to this stress are given by

εf = σ2/Ef , εm = σ2/Em . (2.7)

If h is the depth of the RV (see Figure 2.2), then this total strain ε2 is dis-
tributed as a function of the volume fraction as

ε2h = (Vf εf + Vmεm)h . (2.8)

Substituting Equation (2.7) in Equation (2.8), we get

ε2 = Vf
σ2

Ef
+ Vm

σ2

Em
. (2.9)

However, we have

σ2 = E2ε2 = E2

(
Vf

σ2

Ef
+ Vm

σ2

Em

)
. (2.10)

From the above relation, the equivalent modulus in the transverse direction
is given by

E2 =
EfEm

VfEm + VmEf
. (2.11)
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The major Poissons ratio ν12 is determined as follows. If the RV of width W
and depth h is loaded in the direction of the fiber, then both strains ε1 and
ε2 will be induced in the 1 and 2 directions. The total transverse deformation
δh is the sum of the transverse deformation in the matrix and the fiber and
is given by

δh = δhf + δhm . (2.12)

The major Poissons ratio is also defined as the ratio of the transverse strain
to the longitudinal strain and expressed as

ν12 = −ε2/ε1 . (2.13)

The total transverse deformation can also be expressed in terms of the depth
h as

δh = −hε2 = hν12ε1 . (2.14)

Following the procedure adopted for the determination of the transverse mod-
ulus, the transverse displacement in the matrix and the fiber can be expressed
in terms of its respective volume fraction and the Poissons ratio as

δhf = hVfνf ε1 , δhm = hVmνmε1 . (2.15)

Using Equations (2.14) and (2.15) in Equation (2.12), we can write the ex-
pression for the major Poissons ratio as

ν12 = νfVf + νmVm . (2.16)

By adopting a similar procedure to that used in the determination of the trans-
verse modulus, we can write the shear modulus in terms of the constituent
properties as

G12 =
GfGm

VfGm + VmGf
. (2.17)

The next important property of the composite that requires determination is
the density. For this, we begin with the total mass of the lamina, which is the
sum of the masses of the fiber and the matrix. That is, the total mass M can
be expressed in terms of the densities (ρf and ρm) and the volume fractions
(Vf and Vm) as

M = Mf + Mm = ρfVf + ρmVm . (2.18)

The density of the composite can then be expressed as

ρ =
M

V
=

ρfVf + ρmVm

V
. (2.19)

Once the properties of the lamina are determined, then one can proceed to a
macromechanical analysis of the lamina to characterize the constitutive model
of the laminate.
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2.2.3 Stress–Strain Relations for a Lamina

Determination of the overall constitutive model for a lamina of a laminated
composite constitutes the macromechanical study of composites. Unlike the
micromechanical study, where the composite is treated as a heterogeneous
mixture, here the composite is presumed to be homogeneous and the effects
of the constituent materials are accounted for only as an averaged apparent
property of the composite. The following are the basic assumptions used in
deriving the constitutive relations:

• The composite material is assumed to behave in a linear (elastic) manner.
That is, Hookes law and the principle of superposition are valid.

• At the lamina level, the composite material is assumed to be homogeneous
and orthotropic. Hence the material has two planes of symmetry, one co-
inciding with the fiber direction and the other perpendicular to the fiber
direction.

• The state of the stress in a lamina is predominantly plane stress

Fibers 1

3

2

Fig. 2.3. Principal axes of a lamina

Consider the lamina shown in Figure 2.3 with its principal axes, which
we denote the 1-2-3 axes. That is, axis 1 corresponds to the direction of
the fiber and axis 2 is the axis transverse to the fiber. The lamina is as-
sumed to be in a 3-D state of stress with six stress components given by
{σ11, σ22, σ33, τ23, τ13, τ12}. For an orthotropic material in the 3-D state of
stress, nine engineering constants require to be determined. The macrome-
chanical analysis will begin from here. The stress–strain relationship for an
orthotropic material is given by [11]
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23

γ13

γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

τ23

τ13

τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (2.20)

Here, Sij are the material compliances. Their relationship with the engineering
constants is given in Reference [11]. νij is Poissons ratio for the transverse
strain in the jth direction when the stress is applied in the ith direction, and
is given by

νij = −εjj/εii . (2.21)

The above condition is for σjj = σ and all other stresses equal to zero. Since
the stiffness coefficients Qij = Qji, it follows that the compliance matrix is
also symmetrical, that is, Sij = Sji. This condition enforces the following
relationship among Poissons ratio:

νij

Ei
=

νji

Ej
. (2.22)

Hence, for a lamina under a 3-D state of stress, only three Poissons ratios
namely ν12, ν23 and ν31, are required to be determined. Other Poissons ratio
can be obtained from Equation (2.22).

For most of our analysis, we assume the condition of plane stress. Here, we
derive the equations assuming that conditions of plane stress exist in the 1−2
plane (see Figure 2.3). However, if one has to do an analysis of a laminated
composite beam, which is essentially a 1-D member, the condition of plane
stress will exist in the 1 − 3 plane and a similar procedure could be followed.

For the plane stress condition in the 1-2 plane, we set the following stresses
equal to zero in Equation (2.20), σ33 = τ23 = τ13 = 0. The resulting constitu-
tive model under plane stress conditions can be written as

⎧⎨
⎩

ε11
ε22
γ12

⎫⎬
⎭ =

⎡
⎣ 1/E1 −ν12/E1 0
−ν21/E2 1/E2 0

0 0 1/G12

⎤
⎦
⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ . (2.23)

Note that the strain ε33 also exists, which can be obtained from the third
constitutive equation

ε33 = S13σ11 + S23σ22 . (2.24)

This equation indicates that Poissons ratios ν13 and ν23 should also exist.
Inverting Equation (2.23), we can express the stresses in terms of the strains:

⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ =

⎡
⎣Q11 Q12 0

Q12 Q22 0
0 0 Q66

⎤
⎦
⎧⎨
⎩

ε11
ε22
γ12

⎫⎬
⎭ , (2.25)
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where Qij are the reduced stiffness coefficients, which can be expressed in
terms of the elastic constants as

Q11 =
E1

1 − ν12ν21
, Q12 = ν21Q11 , Q22 =

E2

1 − ν12ν21
, Q66 = G12 . (2.26)

2.2.4 Stress–Strain Relation for a Lamina with Arbitrary
Orientation of Fibers

In most cases, the orientation of the global axes, which we call the x− y axes
and are geometrically natural for the solution of the problem, do not coincide
with the lamina principle axes, which we have already designated as 1–2 axes.
The lamina principal axes and the global axes are shown in Figure 2.4. A
small element in the lamina of area dA is taken and the free body diagram
(FBD) is shown in Figure 2.5.
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2
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�

Fig. 2.4. Principal material axes of a lamina and the global x − y axes

Consider the free body A. Summing all the forces in the 1-axis direction,
we get

σ11dA − σxx(cos θdA)(cos θ) − σyy(sin θdA)(sin θ)
− τxy(sin θdA)(cos θ) − τxy(cos θdA)(sin θ) = 0 . (2.27)

On simplification, the above equation can be written as

σ11 = σxx cos2 θ + σyy sin2 θ + 2τxy sin θ cos θ . (2.28)

Similarly, by summing all the forces along the 2-axis (free body A), we get

τ12dA − σxx(cos θdA)(sin θ) − σyy(sin θdA)(cos θ)
− τxy(sin θdA)(sin θ) − τxy(cos θdA)(cos θ) = 0 . (2.29)

Simplifying the above equation, we get
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Fig. 2.5. Lamina and laminate coordinate system and FBD of a stressed element

τ12 = −σxx sin θ cos θ + σyy sin θ cos θ + τxy(cos2 θ − sin2 θ) . (2.30)

Following the same procedure and summing all the forces in the 2-direction
in the free body B, we can write

σ22 = σxx sin2 θ + σyy cos2 θ − 2τxy sin θ cos θ . (2.31)

Equations (2.28), (2.31) and (2.30) can be written in matrix form as
⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ =

⎡
⎣ C2 S2 2CS

S2 C2 −2CS
−CS CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

σxx

σyy

τxy

⎫⎬
⎭ , C = cos θ , S = sin θ (2.32)

or
{σ}1−2 = [T ]{σ}x−y .

In a similar manner, the strains at the 1–2 axis, can be transformed to the x–y
axis by a similar transformation. Note that to have the same transformation,
the shear strains are divided by 2. They can be written as
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⎧⎨
⎩

ε11
ε22
γ12
2

⎫⎬
⎭ =

⎡
⎣ C2 S2 2CS

S2 C2 −2CS
−CS CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

εxx

εyy
γxy

2

⎫⎬
⎭ or {ε̄}1−2 = [T ]{ε̄}x−y . (2.33)

Inverting Equations (2.32) and (2.33), we can express the stresses and strains
in global coordinates as⎧⎨
⎩

σxx

σyy

τxy

⎫⎬
⎭ =

⎡
⎣ C2 S2 −2CS

S2 C2 2CS
CS −CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

σ11

σ22

τ12

⎫⎬
⎭ , {σ}x−y = [T ]−1{σ}1−2 . (2.34)

⎧⎨
⎩

εxx

εyy
γxy

2

⎫⎬
⎭ =

⎡
⎣ C2 S2 −2CS

S2 C2 2CS
CS −CS (C2 − S2)

⎤
⎦
⎧⎨
⎩

ε11
ε22
γ12
2

⎫⎬
⎭ , or, {ε̄}x−y = [T ]−1{ε̄}1−2 .

(2.35)
Actual strain vectors in both 1–2 and x–y axes {ε}1−2 and {ε}x−y are related
to {ε̄}1−2 and {ε̄}x−y through a transformation matrix as⎧⎨

⎩
ε11
ε22
γ12

⎫⎬
⎭ =

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦
⎧⎨
⎩

ε̄11
ε̄22
γ̄12
2

⎫⎬
⎭ and

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ =

⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦
⎧⎨
⎩

ε̄xx

ε̄yy
γ̄xy

2

⎫⎬
⎭ , (2.36)

{ε}1−2 = [R]{ε̄}1−2 , {ε}x−y = [R]{ε̄}x−y .

Now the constitutive equation of a lamina in its principal directions (Equa-
tion (2.25)) can be written as

{σ}1−2 = [Q]{ε}1−2 . (2.37)

Substituting Equations (2.32), (2.33) and (2.36) in Equation (2.37), we get

[T ]{σ}x−y = [Q][R]{ε̄}1−2 = [Q][R][T ]{ε̄}x−y = [Q][R][T ][R]−1{ε}x−y .
(2.38)

Hence the constitutive relation in the global x–y axes can now be written as

{σ}x−y = [Q̄]{ε}x−y = [T ]−1[Q][R][T ][R]−1{ε}x−y . (2.39)

Here the matrix [Q̄] is fully populated. Hence, although the lamina in its own
principal direction is orthotropic, in the transformed coordinate, it represents
complete anisotropic behavior, that is the normal stresses are coupled to the
shear strains and vice versa. The elements of [Q̄] are given by

Q̄11 = Q11C
4 + 2(Q12 + 2Q66)S2C2 + Q22S

4 ,

Q̄12 = (Q11 + Q22 − 4Q66)S2C2 + Q12(S4 + C4) ,

Q̄16 = (Q11 − Q12 − 2Q66)SC3 + (Q12 − Q22 + 2Q66)S3C ,

Q̄22 = Q11S
4 + 2(Q12 + 2Q66)S2C2 + Q22C

4 ,

Q̄26 = (Q11 − Q12 − 2Q66)S3C + (Q12 − Q22 + 2Q66)SC3 ,

Q̄66 = (Q11 + Q22 − 2Q12 − 2Q66)S2C2 + Q66(S4 + C4) , (2.40)

which gives the constitutive equation of a lamina under plane stress in the
1–2 plane.
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2.3 Introduction to Smart Composites

Laminated composites provide numerous opportunities to tailor the strength
in the required direction and enable placement of embedded sensors and ac-
tuators at any critical location to monitor the performance of the structure.
This facility is not available in conventional metallic structures. Since many
smart materials are available in thin-film or powder form, embedding them
in a laminated composite structure does not pose any serious problem. Those
composites that have an embedded smart material patch are called smart
composite structures. Figure 2.6 shows how a piezoelectric material can be
embedded in a laminated composite.

Fiber Direction

Composite Material
Plies

Slots for leads

Leads

Piezoelectric

Fig. 2.6. Construction of a smart composite

Modeling systems with structures having embedded smart sensors and ac-
tuators is very similar to modeling conventional composite structures, wherein
numerical techniques such as FEM or spectral techniques can be used. How-
ever, the modeling has to take care of the additional complexities arising
due to the material properties of the smart materials. These are reflected in
the constitutive law in the form of electromechanical coupling as in the case
of piezo-ceramic or poly-vinylidine di-fluoride (PVDF) sensors or magneto-
mechanical coupling as in the case of magnetostrictive sensors/actuators such
as TERFENOL-D. From the modeling point of view, these complexities lead
to additional matrices in the FEM/SFEM approach.

Piezoelectric or magnetostrictive materials have two constitutive laws, one
of which is used for sensing and the other for actuation applications. For 2-D
problems, the constitutive model for piezoelectric material is of the form
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{σ}3x1 = [Q](E)
3x3{ε}3x1 − [e]3x2{E}2x1

{D}2x1 = [e]T2x3{ε}3x1 + [µ](σ)
2x2{E}2x1 (2.41)

The first part of this constitutive law is called the actuation law, while
the second is called the sensing law. Here, {σ}T =

{
σxx σyy τxy

}
is the

stress vector, {ε}T =
{

εxx εyy γxy

}
is the strain vector, [e] is the ma-

trix of piezoelectric coefficients of size 3 × 2, which has units of N/V-mm,
{E}T =

{
Ex Ey

}
=

{
Vx/t Vy/t

}
is the applied field in the two coordinate

directions. It has units of V/mm. [µ] is the permittivity matrix of size 2 × 2,
measured at constant stress and has units of N/V/V and {D}T =

{
Dx Dy

}
is the vector of electric displacement in the two coordinate directions. This
has units of N/V-mm. [Q] is the mechanical constitutive matrix measure at
constant electric field. Normally, Equation ( 2.41) is written in the form

{ε} = [S]{σ} + [d]{E} . (2.42)

In the above expression, [S] is the compliance matrix, which is the inverse of
the mechanical material matrix [Q] and [d] = [Q]−1[e] is the electromechanical
coupling matrix, where the elements of this matrix have units mm/V and are
direction dependent. In most analyses, it will be assumed that the mechanical
properties will change very little with the change in the electric field and
as a result, the actuation law (Equation (2.41) can be assumed to behave
linearly with the electric field, while the sensing law (Equation ( 2.41))) can
be assumed to behave linearly with the stress. This assumption considerably
simplifies the analysis process.

The first part of Equation (2.41) represents the stresses developed due to a
mechanical load, while the second part of the same equation gives the stresses
due to a voltage input. From these equations, it is clear that the structure
will be stressed due to the application of an electric field even in the absence
of mechanical load. Alternatively, when the mechanical structure is loaded, it
generates an electric field even in the absence of an applied electric field. In
other words, the above constitutive law demonstrates the electromechanical
coupling, which can be exploited for a variety of structural applications such as
vibration control, noise control, shape control or structural health monitoring.
Actuation using piezoelectric materials can be demonstrated using a plate of
length L, width W and thickness t. Thin piezoelectric electrodes are placed on
the top and bottom surface of the plate as shown in Figure 2.7. Such a plate
is called a bimorph plate. When a voltage is passed between the electrodes
as shown in the figure (which is normally referred to as the poling direction),
deformation in the length, width and thickness directions is given by

δL = d31E1L =
d31V L

t
, δW = d31E2W =

d31V W

t
, δt = d33V .(2.43)

Here, d31 and d33 are the electromechanical coupling coefficients in the di-
rections 1 and 3 respectively. Conversely, if a force F is applied in any of
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Fig. 2.7. Illustration of actuation effect in a piezoelectric plate

the length, width or thickness directions, the voltage V developed across the
electrodes in the thickness direction is given by

V =
d31F

µL
or V =

d31F

µW
or V =

d33F

µLW
. (2.44)

Here µ is the dielectric permitivity of the material. The reversibility between
strain and voltage makes piezoelectric materials ideal for both sensing and
actuation.

There are different types of piezoelectric material that are used for many
structural applications. The most commonly used material is PZT (lead zir-
conate titanate) material, which is extensively used as bulk actuator material
as it has a high electromechanical coupling factor. On the other hand, due to
the low electromechanical coupling factor, piezo-polymers (PVDF) are used
only as sensor material. More recently, a new form of materials called piezo-
fiber composite (PFC) has been found to be a very effective actuator material
for use in vibration/noise control applications.

The constitutive laws (both actuation and sensing) for a magnetostrictive
material such as TERFENOL-D are much more complex than those for piezo-
electric materials. They are highly non-linear in behavior although they have
a similar form to the piezoelectric material, which is given by

{ε} = [S](H){σ} + [d]T {H} , (2.45)
{B} = {d}{σ} + [µ](σ){H} . (2.46)

Here, [S] is the compliance matrix measured at a constant magnetic field H,
d is the magneto-mechanical coupling matrix, the elements of which have
units of m/A, B is the vector of magnetic flux density in the two coordinate
directions. It has units tesla, equal to weber/m3. H is the magnetic field
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intensity vector in the two coordinate directions and has unit oersted, equal
to A/m. It is related to the AC current (I(t)) through the relation H = nI,
where n is the number of turns in the actuator. [µ] is the matrix of magnetic
permeability measured at constant stress and has units of weber/A-m. As in
the case of piezoelectric material, the first equation (Equation (2.46)) is the
actuation constitutive law, while the second equation is the sensing law. The
stress strain relations are different for different magnetic field intensities. The
strain is proportional to stress only for small H. For higher magnetic field
intensities, both sensing and actuator equations require to be simultaneously
solved to arrive at the correct stress–strain relation. This is because changes
in the magnetic field cause changes in the stress, which in turn changes the
magnetic permeability. Hence, the characterization of the material properties
of TERFENOL-D is more difficult than for piezoelectric material.

In Chapter 11, we deal with the modeling of smart composites where we
will use these constitutive models extensively. However, only linear behavior
is assumed for most examples reported in this book. The constitutive model
for smart composites is obtained in a similar manner to that for laminated
composites, where the smart patches are also considered as a lamina to obtain
the averaged properties.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Particle fraction (V
p
)  ; depth z = (2V

p
−1)h/2

Y
ou

ng
s 

m
od

ul
us

 r
at

io
 E

/E
t , 

( 
E

/E
p )

SBS  
exp  
n=0.5
n=1.0
n=1.5
n=2.0

Fig. 2.8. Variation of Young’s modulus for different models



38 2 Introduction to the Theory of Anisotropic and Inhomogeneous Materials

2.4 Modeling Inhomogeneous Materials

Several analytical and computational models are available in the literature (see
References [13] and [14]) that discuss the issue of finding suitable functions for
approximating the modulus variation in an inhomogeneous material. There are
several criteria for selecting them. They are desired to be continuous, simple
and should have the ability to exhibit curvature, both “concave upward” and
“concave downward” [14]. Here, two types of variations are considered, which
generally cover all the existing analytical models. The exponential law, which
is more common in fracture studies of functionally graded materials (FGM)
(see References [15] and [16]), and does not show curvature in both directions,
is given by

P(z) = Pt exp(−δ(1 − 2z/h)) , δ =
1
2

log
(
Pt

Pb

)
. (2.47)

The power law, for commonly adopted Voight-type estimates [14], having all
the desired properties and introduced by Wakashima et al. [17], is given by

P(z) = (Pt − Pb)
(

z

h
+

1
2

)n

+ Pb , (2.48)

where P(z) denotes a typical material property (E,G, α, �). Pt and Pb denote
values of the variables at the topmost and bottommost layer of the structure,
respectively, and n is a parameter, the magnitude of which determines the
curvature. The working range of n is taken as 1/3 to 3, as any value outside
this range will produce an inhomogeneous material having too much of one
phase (see [18]).

Another way of estimating material properties is by the rule-of-mixtures,
which is generally employed for composite materials. A summary of this
method can be found in References [11] and [12]. The concept of equivalent ho-
mogeneity results in different methods, namely, the composite sphere model,
the three phase model, the composite cylinder model and the self-consistent
scheme [19]. The composite sphere and cylinder models can be further im-
proved by the step-by-step (SBS) method as given in Reference [20]. The
method given for the particle reinforced composite material is best suited for
use in the present context. The details are omitted here. In short, inhomoge-
neous materials such as FGM can be treated as a matrix particle mixture of
different particle volume fractions, which vary smoothly vary throughout the
depth of the structure. The two different materials at the top and bottom of
the beam play the role of matrix and particle.

These different models for material property variations are compared in
Figure 2.8, where the variation of the Young’s modulus throughout the depth
is plotted. Top and bottom materials (particle and matrix, respectively for
the SBS method) are taken as steel and ceramic with a Young’s modulus
ratio of 1.857. The figure clearly shows the different trends of distribution
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for different models. In the SBS method, “constant area composition” is used
and the particle volume fraction Vp1, is taken as 0.001. Since, the SBS method
predicts only the elastic and thermal properties, in calculations the inertial
properties are evaluated using the power law model with a suitable value for
the exponent n.

In this chapter, we have presented a detailed introduction to the constitu-
tive laws of fiber reinforced composite laminate and a brief description of the
theory of smart composite. More detailed discussions on smart composite will
be given in Chapter 11. Further, the popular choices of the functional form of
material property variations for inhomogeneous materials are also provided.



3

Idealization of Wave Propagation and Solution
Techniques

In this chapter, all the necessary tools required for the spectral element for-
mulation are derived. The most important of these is the determination of
wavenumbers and wave amplitudes. An nth-order differential equation will
yield an nth-order characteristic equation for the wavenumbers, which are
normally difficult to solve. Here, we adopt some traditional techniques based
on the theory of linear algebra to solve for wavenumbers and wave amplitudes.
This chapter also describes the general spectral finite element formulation pro-
cedure, which is applied to form elements for isotropic waveguides.

3.1 General Form of the Wave Equations

Throughout the book, small letters with bold face are used to represent vectors
and capital letters with bold face are used to represent matrices. The general
form of the linear wave equation is given by

utt =
∑
α,β

uαβ , (3.1)

where the summation is over all possible combinations of α and β.
The wave equation in the structural mechanics context is the conservation

of momentum (dynamic equilibrium) equation

∇ · T = ρü , (3.2)

where T is the stress measure at any point in the body, which is in general
a non-linear function of the displacement vector u = {ux, uy, uz}, (the wave).
A non-linear relation between T and u results in a non-linear wave equation,
which will not be covered in the present discussion. Instead, it will be as-
sumed that there exists a linear relationship between T and the strain (i.e.
the displacement gradient), either in the time domain (linear elastic mate-
rial) or in the frequency domain (visco-elastic material). However, the linear
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coefficient (of the constitutive relation) can be direction (anisotropy) and/or
position (inhomogeneity) dependent. In both cases, the response of homoge-
neous isotropic materials can be retrieved easily from these general material
models.

3.2 Characteristics of Waves in Anisotropic Media

An important characteristic that separates waves in anisotropic media from
its isotropic media counterpart is the direction of energy flow (i.e. group ve-
locity) [21]. For isotropic material, the incident and reflected waves are purely
longitudinal (P) or shear (S). In two-dimensional (2-D) media, for example, if
the wave vector is given by k = (kx, ky), the direction cosines of the normal to
the wavefront would be (kx, ky) and (−ky, kx) for P and S wave, respectively.
However, the situation is much more complex in the anisotropic case, where
the wave directions are material property dependent and they can no longer
be thought of as purely P or S waves. They are called the quasi-P wave and
the quasi-S wave (vertical, QSV or horizontal, QSH). In this case, the three
waves (in three Cartesian coordinate directions) are coupled, and in order
to identify them, one needs to solve a sixth-order characteristic polynomial
equation. Thus, the simplified analysis for the isotropic case based on the
Helmholtz decomposition (possible by virtue of uncoupled P and S motions),
is not practical in the anisotropic case. The wave velocity and direction in
anisotropic material can be obtained from the governing equation and the
plane wave assumption. The governing equation for a general homogeneous
anisotropic media is

∂σik

∂xk
= ρüi , σik = Cik�mε�m , (3.3)

where the constitutive matrix Cik�m is symmetric with respect to � and m.
For the plane wave assumption, the displacement field is given by

ui = Aαie
jk(nmxm−ct) , (3.4)

where nm are the direction cosines of the normal to the wavefront and αi are
the direction cosines of particle displacement. Substitution of the assumed
form in the governing equation results in an eigenvalue problem for the phase
velocity c as

(Γim − ρc2δim)αm = 0 , Γim = Cik�mnkn� , (3.5)

where Γim is called the Christoffel symbol. Solving Equation (3.5), the wave
phase velocity and the wave directions are obtained. From the previous dis-
cussion, it can be said that for a general anisotropic media, α × n and α · n
are never zero.
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3.3 General Form of Inhomogeneous Wave Equations

Compared to the wave propagation in anisotropic media, the waves in inho-
mogeneous media have totally different characteristics. Typically, the wave
motion in the direction of the inhomogeneity is characterized by a reduction
in the amplitude of the wave while it is propagating (see [22], [23]). A wave
of this type is called an inhomogeneous wave. The homogeneous plane wave
has the form (a variation of Equation (3.4))

f = Φ(ω)ej(kxx+kyy+kzz−ωt) = Φ(ω)ej(k·r−ωt) , (3.6)

where Φ(ω) is the wave amplitude (real) and k is the wave vector (real). This
form describes the wave propagation phenomena in homogeneous, linear and
non-dissipative solids. The inhomogeneous wave is described by the above
form with complex Φ and k (see [24]).

These waves were initially observed in media with inbuilt dissipative prop-
erties (like the visco-elastic materials). However, inhomogeneous materials can
also be carriers of this kind of wave, when the inhomogeneity is in the direc-
tion of wave propagation. These waves successfully describe the wave modes,
and their dispersive character, whereby the propagation speed, attenuation
constant and pertinent angles are, in general, dependent on the frequency
(see [25], [26] and [27]). It is known that the time harmonic waves in dis-
sipative media have a complex valued wavenumber. However, it is less well
known that there can be waves with a complex valued wave vector, with real
and imaginary parts k1 and k2 not necessarily parallel. Thus, more precisely,
inhomogeneous waves ([28]) are waves where the wave vector k is complex
valued (k = k1 + jk2), and k1 and k2 are not parallel. Thus the general form
becomes

f = Φ(ω)ej(k1xx+k1yy+k1zz−ωt)−(k2xx+k2yy+k2zz)

= Φ(ω)ej(k1·r−ωt)−k2·r , (3.7)

which describes a plane wave of varying amplitude [29]. It can be shown that
k1 · k2 = 0, which indicates that this wave propagates in the direction given
by the vector k1, and its amplitude decreases in the perpendicular direction.

3.4 Basic Properties and Solution Techniques

This section can be thought of as an extension to Section 1.1. Other than the
FEM, the two most powerful methods of solving linear second-order partial
differential equations are (1) the method of separation of variables and (2) the
method of integral transform. The first method is widely used to find natural
vibration modes (or standing waves), which are again solutions of the wave
equation with homogeneous boundary conditions.
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The method of integral transform is more generally applicable, although
it has some serious drawbacks. The method presumes the existence of a spe-
cial integral transform (forward and inverse), which forms the backbone of
the technique. Successful application of the method depends upon success-
ful choice of the integral transform. Commonly used transforms are Fourier,
Fourier sine and Fourier cosin whereas other transforms, like Laplace, Han-
kel, Melin and Radon transforms also find suitable applications. For a variable
u(x1, x2, . . . , xn) the transformation of the first independent variable will yield

ū(ξ, x2, . . . , xn) =
∫ β

α

u(x1, x2, . . . , xn)K(ξ, x1)dx1 , (3.8)

where K(ξ, x1) is called the kernel. For certain kernels, it is possible to have
an inversion relation (and the solution):

u(x1, x2, . . . , xn) =
∫ δ

γ

ū(ξ, x2, . . . , xn)H(ξ, x1)dξ . (3.9)

The kernels K and H are generally of similar form (identical for the sine and
cosine transform). However, for all commonly used transformations, the do-
mains of integration (defined by α, β, γ and δ) extend to infinity. Thus, the
physical domain also has to be extended to infinity for valid application of inte-
gral transforms. Thus, integral transform based solution techniques work per-
fectly for those variables for which no boundary conditions are specified, i.e.
for boundary value problems the method is inadequate. For one-dimensional
structural problems (rod, truss or beam), for example, the integral transform
is used for the time variable only and the method works perfectly for all kinds
of boundary conditions, although initial conditions like displacement or ve-
locity cannot be accommodated. However, the advantage of these methods is
the availability of closed form solutions.

The most popular and efficient method of solving initial-boundary value
problems that exists today is the finite element method, which belongs to the
class “the method of weighted residual”. Although FEM does not guarantee
a closed form solution, it is applicable to all types of problems. Another ad-
vantage is that it can exploit the exact solution of relatively simple structures
to solve problems for which it is difficult to obtain closed form solutions.

The spectral finite element method is based on the method of integral
transform and thus delivers closed form solutions. However, the method is
structured to have a stiffness matrix (dynamic) like the regular FEM, which
increases its applicability and provides generality, which has so far been en-
joyed only by FEM.

3.5 Spectral Finite Element Discretization

The history of the study of wave propagation dates back several centuries. An
account of these developments can be found in [30]. However, analysis of wave
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propagation by SFEM is a relatively new approach. The SFEM is based on
the method of integral transform [31], in particular, Fourier transform. Ap-
plication of the continuous Fourier transform (CFT) to the solution of wave
propagation problems is quite standard as can be judged by early work [32].
The analysis involves performing an inverse transform (reconstructing the sig-
nal), which is very difficult to do in an exact analytical manner. Consequently,
many approximate and asymptotic schemes have been developed. These are
quite adequate for studying the far-field behavior, e.g. for seismological stud-
ies. However, for structural wave propagation, these schemes are not sufficient
because of heavy loss of information caused by the reflection of the interact-
ing stress waves at numerous boundaries. Further, analytical transforms are
feasible only if the functions to be transformed are relatively simple - which
is not the case for most practical problems. Thus, the absence of a suitable
inversion technique arrested the growth of CFT based methods and paved the
way for the discrete fourier transform (DFT), which is an approximation of
the integral involved in CFT. However, the application of the discrete Fourier
series was quite limited, with some early exceptions being References [33],
[34], and [35]. The reason behind this is the absence of suitable forward and
inverse transform schemes, which are required for processing all general inputs
and outputs. These were explained in detail in Section 1.2.

Thus, the SFEM had to wait for the re-invention (it was known to K.F.
Gauss in 1805, [36]) and publication of a FFT algorithm, popularly known as
the Cooley Tukey algorithm [37], which revolutionized signal processing. The
SFEM, conceived by Doyle [9], is a DFT based analysis of wave propagation,
where the DFT is performed by a FFT algorithm. The unknown variable (can
be scalar or vector), a function of space and time, is approximated as

u(x, y, z, t) =
N−1∑
n=0

û(x, y, z, ωn)e−jωnt , j2 = −1 , (3.10)

where N is the number of FFT points. ωn is the discrete circular frequency,
which is related to the time window T by

ωn = n∆ω =
nωf

N
=

n

N∆t
=

n

T
, (3.11)

where ∆t is the rate of time sampling and ωf is the highest frequency captured
by ∆t. The frequency content of the load decides N and consideration of the
wrap-around problem or aliasing problem decides ∆ω . More details on the
associated problems are given in Reference [9].

Representation of the unknown variable in Equation (3.10), removes one
dimension from the system, i.e., the time t and frequency enters as a parame-
ter. If the structure is a 1-D idealization, then the governing partial differential
equation (PDE) reduces to an ordinary differential equation (ODE). The ODE
has constant coefficients for isotropic and anisotropic homogeneous materials
and for inhomogeneous material graded in the normal direction of wave prop-
agation. Variable coefficients arise for inhomogeneity in the direction of wave
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propagation. For a constant coefficient ODE, the exact solution can be found
for any order of the equation. SFEM employs this exact solution as an inter-
polating function for element formulation. The constants of integration are
made to satisfy the boundary conditions in the frequency domain (FD) and
thus all the requirements are satisfied at each discrete frequency, ωn. Using
the inverse-FFT (IFFT), the time domain data are obtained.

However, there is more to SFEM than just solving PDEs in FD using FFT.
As the name suggests, the method has a resemblance to the FEM. As is done
in FEM, in SFEM, the Rayleigh–Ritz method is employed in FD to obtain the
structural stiffness matrix, known as the dynamic stiffness matrix K̂n. The
matrix vector equation (much like the FEM) that is solved at each frequency
ωn is

K̂nûn = f̂n , (3.12)

where ûn and f̂n are the vectors of unknown variables (displacements) and
known forces, respectively, at frequency ωn. The dynamic stiffness matrix can
also be obtained using regular FEM by taking the Fourier transform of the
governing equation, using the stiffness K and the consistent mass matrix M
as

K̂n = K − ω2
nM , (3.13)

where n in the suffix indicates the formation at ωn. However, K̂n in SFEM
is obtained using the exact solution, whereas K̂n from FEM is just an ap-
proximation. The K̂n in FEM approaches the K̂n from SFEM in the limiting
process of taking the number of FEs to infinity. Further, the matrix–vector
structure of the SFEM gives the flexibility of FE modeling, where large struc-
tures can be assembled in terms of many small spectral finite element (SFE)
waveguides. The assemblage and imposition of boundary condition in SFEM
is the same as is done in FEM, which makes the method more attractive to
the FEM community. Moreover, the Ritz method enables the use of regular
SFE for irregular structures, much like FEM with higher level discretization,
although the number of SFEs is still much lower compared to FE require-
ments. Another advantage is the augmentation of SFE and FE, which enables
the modeling of structures with discontinuities, like cracks or inclusions.

In comparison, the formulation of SFEs for 2-D structural waveguide poses
extra complexity. The reduced equation in the FD is no longer an ODE (but
a PDE or system of PDEs of two space variables). This PDE is not readily
solvable and another transform is necessary to reduce the equation to one
spatial dimension and we move to the frequency–wavenumber domain (FWD).
Thus, the unknown variable is further decomposed, normally using a Fourier
series (FS) representation as

û(x, y, ωn) =
M−1∑
m=0

ũ(x, ηm, ωn)
{

sin(ηmy)
cos(ηmy)

}
, (3.14)

where M is the number of FS points. ηm is the discrete wavenumber related
to the spatial window Y by
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ηm = m∆η =
mηf

M
=

m

M∆y
=

m

Y
, (3.15)

where ∆y is the spatial sampling rate and ηf is the highest wavenumber
captured by ∆y. The spatial variation of the load determines M . Using this
representation, the governing equation becomes an ODE (in x) and again
can be solved exactly for some cases. This exact solution is again used as
the interpolating function for the unknown. Thus, for each frequency ωn and
wavenumber ηm the dynamic stiffness matrix is formed and assembled and
the unknown variable is solved for its FWD amplitude ũn,m as

K̃n,mũn,m = f̃n,m , (3.16)

where f̃n,m is the FWD amplitude of applied load. From ũn,m = ũ(x, ηm, ωn),
û(x, y, ωn) is recovered by the FS and u(x, y, t) is recovered by the IFFT
algorithm.

To obtain the exact solution of the ODE in FD (for 1-D analysis) or FWD
(for 2-D analysis), it is assumed that the solution of û(x, ωn) or ũ(x, ηm, ωn) is
in the form u◦e−jkx, where u◦ is an unknown constant (possibly vector) and k
is the wavenumber (unknown) in the direction of propagation, say, x direction.
This assumption is valid for a constant coefficient ODE or system of ODEs
only. However, it will be seen later that the above assumption may sometimes
yield good approximate solutions even for variable coefficient equations. Sub-
stitution of the solution in the reduced ODE results in a single homogeneous
linear algebraic equation for u◦ (in the case of a single ODE) or a system of
linear homogeneous algebraic equations for u◦ (for a system of ODEs) as

[W(k, ωn, ηm)]u◦ = 0 , W ∈ CNv×Nv ,u◦ ∈ CNv×1 . (3.17)

W is called the wave matrix, which is of the order Nv × Nv, where Nv is the
number of independent variables. For a non-trivial solution of u◦, the wave
matrix must be singular, i.e., its determinant must be zero. This condition
generates the required equation for the solution of wavenumber k, which will
be a polynomial in k, called the spectrum relation. Wavenumbers essentially
determine the type of wave, i.e., dispersive or non-dispersive.

If there are Nk roots of the polynomial equation then the complete solution
is

û(x, ωn) or ũ(x, ηm, ωn) =
Nk∑
i=1

u◦,i exp (−jkix) , (3.18)

where ki is the ith wavenumber and u◦,i is the ith coefficient vector, called
the wave amplitude vector. Thus at the heart of the SFE formulation is the
computation of wavenumber k and u◦,i, whose efficient implementation de-
termines the efficiency of the SFEM.
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3.6 Efficient Computation of the Wavenumber and Wave
Amplitude

The constitutive relation and the displacement field in an anisotropic material
give rise to both stiffness and inertial coupling, which poses great difficulty in
analysis and hence, in the development of SFE. The main difficulty is in the
wavenumber computation (where the order of the polynomial is increased) and
in the wave amplitude vector u◦,i computation (where the order of the wave
matrix is increased). The conventional method of wavenumber and coefficient
computation (see [9]) is not adequate to tackle this kind of situation and there
is a need to improve the existing formalism. The development towards this
end started with the elementary composite beam [38], which needs a sixth-
order polynomial (emanated from the determinant of a 2 × 2 wave matrix)
to be solved for wavenumber computation. The wavenumbers were computed
numerically, where the Newton–Raphson (NR) method was used to find the
single real root. The rest of the roots were expressed in terms of this real
wavenumber. The coefficient vectors were evaluated analytically. The situation
became a little complicated in the first-order shear deformable beam [39],
where the wave matrix had a size of 3×3, although the spectrum relation was
still a sixth-order polynomial. As was done before, the spectrum relation was
solved numerically (by tracking the real root first using the NR algorithm)
and wave amplitude vectors were evaluated analytically. It must be noted that
computation of the wave amplitude vectors required solution of a system of
matrices of size Nv − 1×Nv − 1. The situation became too difficult to handle
in the 3-D beam model and uniform tube model, where Nv = 6. Thus, the
6 × 6 wave matrix generated a 12th-order polynomial, which was required
to be solved at each frequency domain. The strategy applied in these works
was called a subspace averaging scheme, where wavenumbers of the partially
decoupled problems were computed first, e.g., axial–flexure, axial–torsion and
torsion–bending cases. These are essentially represented by the submatrices of
the original wave matrix. Trial roots were obtained by averaging the computed
wavenumbers contributing in the appropriate modes. Thus, the wavenumbers
were computed in a somewhat ad hoc basis and they were approximate in
nature. For computation of the wave amplitude vectors (12 in number), a 5×5
matrix–vector equation needs to be solved each time, which, this time, was
performed numerically. It must be noted that in this matrix–vector equation,
the row space (or column space) of the matrix must be 5, for the solutions to be
unique. However, it is difficult to ascertain that the chosen rows (or columns)
are linearly independent and in the absence of a robust wavenumber solver,
the situation becomes worse. This discussion reveals that the current status
of the SFE formulation demands

1. A robust, generally applicable and accurate wavenumber solving algo-
rithm, which will be applicable to all models, irrespective of the number
of variables, Nv. Further, the solver must be efficient, since the job is to
be performed at each frequency step.
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2. A robust, accurate and efficient numerical scheme for computing the wave
amplitude vectors for a given value of the wavenumber.

It does not take long to identify that the matrix in Equation (3.17) is
a polynomial over k and the problem of finding wavenumber k and wave
amplitude u◦ is a standard polynomial eigenvalue problem (PEP) of finding
nonzero v and k such that

W(k)v = (
p∑

i=0

kiAi)v = 0 ,Ai ∈ C
Nv×Nv ,v ∈ C

Nv×1 , (3.19)

where p is the order of the PEP. Each Ai depends upon the material proper-
ties, frequency and wavenumber (in 2-D). Two different strategies are given
here to solve the PEP.

3.6.1 Method 1: The Companion Matrix and the SVD Technique

In the first method, it is noted that the desired eigenvalues are the latent
roots, which satisfy the condition det(W(k)) = 0 [40]. Further, if ki is any
such root, then there is at least one non-trivial solution for v, which is known
as the latent eigenvector. To find the latent root, the determinant is expanded
in a polynomial of k, p(k), and solved by the companion matrix method. In
this method, the companion matrix L(p), corresponding to p(k) is formed,
which is defined as

L(p) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 .
...

...
...

. . .
...

0 0 0 1
−αm −αm−1 · · · −α2 −α1

⎤
⎥⎥⎥⎥⎥⎦

, (3.20)

where p(λ) is given by

p(λ) = λm + α1λ
m−1 + · · · + αm . (3.21)

One of the many important properties of the companion matrix is that the
characteristic polynomial of L(p) is p(k) itself [41]. Thus, eigenvalues of L(p)
are the roots of p(k), which are obtained readily using any standard subrou-
tine, e.g., LAPACK (xGEEV group).

Once the eigenvalues are obtained they can be used to obtain the eigen-
vectors. To do so, it is to be noted that the eigenvectors are the elements of
the null space of W(k) and the eigenvalues make this null space non-trivial by
rendering W(k) singular. Hence, computation of the eigenvectors is equivalent
to computation of the null space of a matrix. To this end, the singular value
decomposition (SVD) method is most effective. Any matrix A ∈ C

m×n can
be decomposed in terms of unitary matrices U and V and diagonal matrix S
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as A = USVH , where H in the superscript denotes the Hermitian conjugate
[42]. S is the matrix of singular values. For singular matrices, one or more of
the singular values will be zero and the required property of the unitary ma-
trix V is that the columns of V that correspond to zero singular values (zero
diagonal elements of S) are the elements of the null space of A. The SVD
again can be performed by any standard subroutine (e.g. xGESVD group of
LAPACK).

3.6.2 Method 2: Linearization of PEP

In this method the PEP is linearized as

Az = λBz , A,B ∈ C
pNv×pNv (3.22)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0 · · · 0
0 0 I · · · 0
...

...
. . . . . .

...
...

...
. . . . . . I

−A0 −A1 A2 · · · −Ap−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,B =

⎡
⎢⎢⎢⎢⎢⎣

I
I

. . .
I
−Ap

⎤
⎥⎥⎥⎥⎥⎦

, (3.23)

and the relation between x and z is given by z = (xT , λxT , . . . , λp−1xT )T .
B−1A is a block companion matrix of the PEP. The generalized eigenvalue
problem of Equation (3.22) can be solved by the QZ algorithm, the iterative
method, the Jacobi–Davidson method or the rational Krylov method. Each
one of these has its own advantages and deficiencies, however, the QZ algo-
rithm is the most powerful method for small to moderate sized problems, and
is employed in the subroutines available in LAPACK (xGGEV and xGGES
group).

In both of these methods, an eigenvalue solver is employed, where for
the QZ algorithm the cost of computation is ∼30n3 and an extra ∼16n3 for
eigenvector computation (n is the order of the matrix). Since, the order of
the companion matrix in the second method is three times that of the first
method, the cost is 27 times more, which is significant as this computation is
to be performed N × M times.

The PEP admits Nv × p eigenvalues and p eigenvectors. If both A0 and
Ap are singular the problem is potentially ill-posed. Theoretically, the solu-
tions might not exist or might not be unique. Computationally, the computed
solutions may be inaccurate. If one, but not both, A0 and Ap is singular, the
problem is well posed, but some of the eigenvalues may be zero or infinite,
and caution should be exercised in rejecting those roots.

There are advantages and disadvantages of both methods. In the first
method, the determinant of the wave matrix needs to be formed, which for
large Nv is too difficult to obtain. In this case, resorting to the second method
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is advantageous as it obviates the necessity for obtaining the lengthy expres-
sions for αi in Equation (3.21). However, in the second method, there is no
control over the eigenvalues, as we might be interested sometimes in separat-
ing the forward propagating wavenumbers (for the formulation of throw-off
elements). In this case, the first method is the only option.

The existing 2-D SFE formulation has its own share of shortcomings. The
layer elements of Rizzi [43] were formed using Helmholtz decomposition of the
displacement field, which generates two independent Helmholtz equations. Af-
ter obtaining the FWD solutions of the Helmholtz potentials, the FWD rep-
resentations of the displacement field were obtained by expressing them in
terms of the potentials. However, for anisotropic materials there is no guar-
antee that these potentials will exist and thus a general approach in terms of
direct solution for the displacement field is necessary. These are discussed in
great detail in Chapter 6. Next, we will use this procedure to demonstrate the
formulation of SFEs for isotropic 1-D waveguides.

3.7 Spectral Element Formulation for Isotropic Material

In this section, spectral elements are formulated for isotropic homogeneous
one-dimensional structures using the previously described methods.

3.7.1 Spectral Element for Rods

The homogeneous form of the governing equation for an isotropic homoge-
neous rod (with density ρ and modulus E) is

∂2u

∂t2
= c2 ∂2u

∂x2
, (3.24)

where u = u(x, t) is the axial displacement and c2 = E/ρ is the square of the
wave speed in the material. The governing equation is supplemented by the
force (natural) boundary condition

F (x, t) = AE
∂u

∂x
, (3.25)

where A is the cross-sectional area of the rod and F (x, t) is the axial force.
The displacement (essential) boundary condition is the specification of the
displacement u at any value of x. It should be noted that only homogeneous
initial conditions can be tackled with the present method, i.e. initial displace-
ment and velocity are zero.

Assuming a solution of the form

u(x, t) =
N∑

n=1

û(x, ωn)e−jωnt , (3.26)
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time dependency is replaced by parameter ωn. The summation is carried out
up to the Nyquist frequency, ωN . Substituting solution (3.26) in (3.24), the
reduced governing ordinary differential equation becomes

c2 d2û

dx2
+ ω2

nû = 0 , (3.27)

whose solution is of the form u◦e−jkx. On substitution in Equation (3.27) the
discretized form of the governing equation becomes

(−c2k2 + ω2
n)u◦ = 0 , (3.28)

which is the PEP for this model. As the equation suggests, Nv = 1 and
p = 1 in this case. The wavenumber can be computed trivially in this case as
kn = ±ωn/c and for both values, wave amplitude can be taken as 1. Thus,
the complete solution is

û(x, ωn) = C1e
−jknx + C2e

+jknx , (3.29)

where C1 and C2 are coefficients to be determined. These coefficients are
dependent on the displacement and/or force boundary conditions.

Considering an element of length L, with nodes at x = x1 and x = x2,
(|x1−x2| = L), the unknown constants can be expressed in terms of the nodal
displacements û1 = û(x1, ωn) and û2 = û(x2, ωn) as

{
û1

û2

}
=

[
e−jknx1 e+jknx1

e−jknx2 e+jknx2

]{
C1

C2

}
, (3.30)

where the matrix involved is represented as T1.
Similarly, the force in the frequency domain, F̂ (x, ωn) can be evaluated at

x1 and x2 where the nodal forces are

F̂1 = −F̂ (x1, ωn) , F̂2 = +F̂ (x2, ωn) . (3.31)

These forces are related to the unknown constants by
{

F̂1

F̂2

}
= AE(jkn)

[
e−jknx1 −e+jknx1

−e−jknx2 e+jknx2

]{
C1

C2

}
, (3.32)

where the matrix involved is represented as T2. Thus, the nodal forces are
related to the nodal displacements by

{
F̂1

F̂2

}
= T2T1

−1

{
û1

û2

}
, (3.33)

Hence, the dynamic stiffness matrix (DSM) for the rod at frequency ωn is
DSFEM = T2T1

−1. In comparison, the DSM for conventional FEM will be
DFEM = K − ωn

2M, where K and M are the stiffness and mass matrices,
respectively. If these two DSMs are compared, it is found that in the limit of
infinitely many finite elements DFEM → DSFEM [9].



3.7 Spectral Element Formulation for Isotropic Material 53

3.7.2 Spectral Element for Beams

According to the first-order shear deformation (Timoshenko beam) theory,
the governing equations are

GA
∂

∂x

[
∂w

∂x
− φ

]
= ρAẅ ,

EI
∂2φ

∂x2
+ GA

[
∂w

∂x
− φ

]
= ρIφ̈ , (3.34)

where w(x, t) and φ(x, t) are the transverse displacement and rotation of the
mid-plane of the beam, G is the shear modulus and I is the moment of inertia
of the cross-section of the beam. These equations are supplemented by the
boundary conditions

specify w or V = GA

[
∂w

∂x
− φ

]
and specify φ or M = EI

∂φ

∂x
, (3.35)

where V is the shear force and M is the bending moment. Assuming a solution
of the form

w(x, t) = w◦ej(kx−ωnt) , φ = φ◦ej(kx−ωnt) , (3.36)

and substituting them back in Equation (3.34), the PEP becomes
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k2

[
GA 0
0 EI

]

︸ ︷︷ ︸
A2

+k

[
0 −jGA

jGA 0

]

︸ ︷︷ ︸
A1

+
[
−ρAωn

2 0
0 GA − ρIωn

2

]

︸ ︷︷ ︸
A◦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{
w◦
φ◦

}
= 0 ,

(3.37)
where the unknowns are k, w◦ and φ◦. Thus, in this case, the order of the
matrix polynomial p is 2 and Nv = 2. Thus, there are four eigenvalues (k) and
eigenvectors ({w◦ φ◦}). The determinant of the matrix polynomial suggests
that the roots are complex conjugate. Solving by any of the methods outlined
previously, the eigenvectors are arranged in a matrix R, so that

{
kp

2A2 + kpA1 + A◦
}{

R1p

R2p

}
= 0 . (3.38)

The complete solution at frequency ωn is now written as

{
ŵ(x, ωn)
φ̂(x, ωn)

}
=

4∑
m=1

Cm

{
R1m

R2m

}
e−jkmx , (3.39)

where Cm are the unknown coefficients to be determined from the boundary
conditions. Evaluating Equation (3.39) at the nodes, x = x1 and x = x2, the
T1 matrix is formed as
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T1 =

⎡
⎢⎢⎣

R11e
−jk1x1 R12e

−jk2x1 R13e
−jk3x1 R14e

−jk4x1

R21e
−jk1x1 R22e

−jk2x1 R23e
−jk3x1 R24e

−jk4x1

R11e
−jk1x2 R12e

−jk2x2 R13e
−jk3x2 R14e

−jk4x2

R21e
−jk1x2 R22e

−jk2x2 R23e
−jk3x2 R24e

−jk4x2

⎤
⎥⎥⎦ . (3.40)

Similarly, the forces and moments are evaluated at the nodes as

V̂1 = −V (x1) , V̂2 = +V (x2) , M̂1 = −M(x1) , M̂2 = +M(x2) , (3.41)

which can be expressed in terms of Cm by the T2 matrix where

T2(1,m) = −GA(−jkmR(1,m) − R(2,m))
T2(2,m) = −EI(−jkm)R(2,m)
T2(3,m) = +GA(−jkmR(1,m) − R(2,m))
T2(4,m) = +EI(−jkm)R(2,m) . (3.42)

Once these two matrices are obtained, DSFEM is formed as T2T1
−1.

In this chapter, the various solution techniques for wave propagation prob-
lems are highlighted. The general framework of SFEM is presented in detail,
which is applicable to both 1-D and 2-D waveguides. Methods for obtaining
the wavenumbers and wave amplitudes are presented, which are then utilized
to derive SFE for isotropic waveguides. The procedure forms the basis for all
subsequent element formulation discussed in this book.



4

Wave Propagation in One-dimensional
Anisotropic Structures

In this section, first, wave propagation in elementary laminated composite
beams is discussed. The main objective is to bring out the effect of stiffness
and inertial coupling on the overall wave response behavior. Next, the same
is discussed for higher order composite beams. Here, the effect of lateral con-
traction is also introduced. The method of treating various damping schemes
is addressed. The last part of this chapter deals with the spectral element
formulation of layered composite tube. A number of numerical examples are
provided to highlight the wave behavior. For many examples, comparisons of
spectral solutions with regular FEM are provided.

4.1 Wave Propagation in Laminated Composite Thin
Rods and Beams

The effect of impact on laminated composite structures is a crucial issue, which
researchers have tried to address with increasing emphasis. The main reason is
that the way these laminated fiber reinforced structures are constructed con-
tributes to high ratios of longitudinal to lateral elastic moduli, and in addition,
they have significant layer-wise anisotropy due to ply orientations. One of the
critical aspects is that the steep and discontinuous bending stress gradient
at the ply interfaces may cause eventual delamination or de-bonding of the
layers, thus putting the structural integrity in question. Starting from manu-
facturing, and throughout their design life, these structures are vulnerable to
highly transient loading such as tool drop and other kinds of impact. These
loadings have very small duration (µs range). Hence, the energy of the system
is confined over a large frequency band, exciting all higher order modes. Other
than local damage, these disturbances generate stress waves that propagate
through the structure. Also, an initial compressive pulse can develop tensile
stresses due to the effects of local inhomogeneity [44]. The incident stress
waves interact with the joints and boundaries and give rise to totally different
types of waves. In addition, the responses become even more complicated if
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there is cross-sectional asymmetry due to composite ply stacking, which gives
rise to axial–flexural coupling. Therefore, an efficient computational tool be-
comes necessary to study the effect of ply orientation on the dynamic response
and the effect of the exciting frequency range on the propagation of coupled
axial–flexural waves. SFEs are aimed towards this study.

The layer-wise construction of fiber reinforced composite beam has the
great advantage of allowing the embedding of different functional materi-
als, such as piezoelectric ceramic, relaxor and anti-ferroelectric thin films,
magnetostrictive plate strips and particle layers mixed with matrix [45], [46].
Such configurations necessarily lead to cross-sectional asymmetry. The axial–
flexural coupling due to asymmetric construction across the thickness of the
beam or discontinuities in some layers, may give rise to additional progressive
waves, which are unlikely in a beam made up of homogeneous material. There
are very few reports available that consider the axial–flexural coupling in the
dynamics of laminated beams.

For laminated composite beams, it has been well established that shear
deformation and rotary inertia play a key role in the prediction of responses.
In this regard, Kant and Marur [47] have shown the effects of shear deforma-
tion introduced by higher order refined theory on the transient response of
laminated composite beams. However, these effects are dependent on length-
to-depth ratio (L/h) of the beam. As seen in the work of Chandrashekhara et
al., [48], first-order shear deformation theory (FSDT) including rotary iner-
tia, and Euler–Bernoulli theory (EBT) produce identical results for a slender
beam (L/h > 100). In addition, Bhimaraddi [49] has derived one perturbation
solution, which shows that the error in the first natural frequency predicted by
EBT for cross-ply beams with L/h > 20 is well within 5% compared to that
predicted by parabolic shear deformation (PSD) theory. In this chapter, first
the spectral element is derived, based on EBT with rotary inertia neglected.
The wave propagation analysis of thick beams and connected members are
presented in Section 4.6.

4.1.1 Governing Equations and PEP

Considering EBT for a general laminated composite thin beam, the axial and
transverse displacement field can be expressed as

u(x, y, z, t) = uo(x, t) − zw(x, t),x , w(x, y, z, t) = w(x, t) , (4.1)

where uo and w are the axial and transverse displacement of the reference
plane, respectively (as shown in Figure 4.1) and z is measured from the ref-
erence plane. The layer-wise constitutive law is defined as

σxx = Q̄11εxx , (4.2)

where σxx and εxx are the stress and strain in the X direction. The expression
for Q̄11 as a function of ply fiber angle θ is given by
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Fig. 4.1. Coordinate system and degrees of freedom for the spectral element

Q̄11 = Q11cos
4θ + Q22sin

4θ + 2
(
Q12 + 2Q66sin

2θcos2θ
)

, (4.3)

where Qij are the orthotropic elastic coefficients for the individual composite
ply and can be found in [50]. The strain energy and the kinetic energy are
defined as

S =
1
2

∫
σxxεxxdυ , Γ =

1
2

∫
ρ(u̇o2 + ẇ2)dυ , (4.4)

where ˙( ) denotes derivative with respect to time and ρ is the layer-wise den-
sity.

Applying Hamilton’s principle, the governing differential equations are ob-
tained, and can be expressed as

ρAüo − A11u
o,xx +B11w,xxx = 0 , (4.5)

ρAẅ − B11u
o,xxx +D11w,xxxx = 0 (4.6)

and the force boundary conditions are obtained as

A11u
o,x −B11w,xx = Nx , (4.7)

B11u
o,xx −D11w,xxx = Vx , (4.8)

−B11u
o,x +D11w,xx = Mx , (4.9)

where

[A11, B11,D11] =
∫ +h/2

−h/2

Q̄11

[
1, z, z2

]
b dz , (4.10)

h is the depth of the beam, b is the layer width and A is the cross-sectional
area of the beam. Nx, Vx and Mx are the axial force, shear force and bending
moment, respectively. The governing differential Equations (4.5) and (4.6)
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represent a system of coupled linear PDEs, which by virtue of the assumed
displacement field

uo(x, t) =
N∑

n=1

û(x, ωn)eiωnt =
N∑

n=1

(
ũpe

−ikpx
)
eiωnt , (4.11)

w(x, t) =
N∑

n=1

ŵ(x, ωn)eiωnt =
N∑

n=1

(
w̃pe

−ikpx
)
eiωnt , (4.12)

becomes a PEP as

(
k4

p

[
0 0
0 D11

]
+ k3

p

[
0 −jB11

jB11 0

]

+k2
p

[
A11 0
0 0

]
+

[
−ρAω2 0

0 −ρAω2

] ){ ũp

w̃p

}
=

{
0
0

}
(4.13)

where the determinant of the matrix gives the required spectrum and disper-
sion relation. Once the solutions kp and the pairs {ũp, w̃p} are obtained for
each p the explicit form of the solution is

{
û(x, ωn)
ŵ(x, ωn)

}
=

6∑
m=1

Cm

{
R1m

R2m

}
e−jkmx . (4.14)

4.1.2 Spectrum and Dispersion Relations

The main objective here is to bring out the effect of coupling on wave be-
havior. The maximum axial–flexural coupling that one gets from such natural
ply-stacking (other than the inclusion of any other materials in the form of
thin films, fibers or particle layers) is when the cross-plies and 0o plies are
stacked in separate groups. A generalization of the effect of axial–flexural cou-
pling gives some valuable insights, when the spectrum relation (Figure 4.2)
and dispersion relation (Figure 4.3) are studied. AS/3501-6 graphite–epoxy
plies (thickness of each layer 1.0 mm) with three stacking sequences [010]
(r = B2

11/(A11D11) = 0.0), [05/302/603] (r = 0.312) and [05/905] (r = 0.574)
are considered. In Figure 4.2, it can be observed that, corresponding to axial
mode (Mode 1) and flexural modes (Mode 2 and 3), the wavenumbers increase
in magnitude for increasing coupling. However, this increase in Mode 2 (prop-
agating component) is more than that in Mode 3 (evanescent component).
Figure 4.3 also shows the variation of group speed Cg = dω/dkj normalized
with the parameter Co =

√
E/ρ (speed in aluminum). From these plots, it is

clear that the axial speed is reduced by more than 26% due to the presence of
asymmetry arising from cross-ply stacking in groups. Also at around 50 kHz,
the flexural speed of propagation is reduced by 42% for maximum coupling.



4.2 Spectral Element Formulation 59

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Frequency (kHz)

N
on

−
di

m
en

si
on

al
 g

ro
up

 s
pe

ed

C
g1

 /C
o
 , r=0.0

      "    , r=0.312
      "    , r=0.574
C

g2
 /C

o
 , r=0.0

      "    , r=0.312
      "    , r=0.574

Fig. 4.2. Spectrum relation for various axial–flexural couplings — frequency am-
plitude spectrum of a modulated sinusoidal pulse

4.2 Spectral Element Formulation

As mentioned in the earlier chapters, two special cases arise in the dynam-
ics of connected beams. One is the finite length beam that is connected at
both ends. The other is when the member extends to infinity. This will be
referred to as a single node or throw-off element. The behavior of these are
fundamentally different and so will be treated separately. Since the elements
will be derived in the frequency domain, all the conventional nodal measures
such as nodal displacement, strain, stress, force, etc., will correspond to their
frequency domain counterparts, i.e., spectral amplitudes.

4.2.1 Finite Length Element

A 2-node finite element of length L with nodal displacements and forces as
shown in Figure 4.1 is considered. Using the explicit expression for displace-
ment field given by Equation (4.14), the element nodal displacement vector
ûe with entries û1 = û(0, ωn), ŵ1 = ŵ(0, ωn), θ̂1 = ŵ,x (0, ωn), û2 = û(L, ωn),
ŵ2 = ŵ(L, ωn) and θ̂2 = ŵ,x (L, ωn) is expressed in terms of the wave coeffi-
cient vector ũ with entries ũj , w̃j as
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Fig. 4.3. Dispersion relation for various axial–flexural couplings

ûe = T̂1ũ , (4.15)

where ûe = {û1 ŵ1 θ̂1 û2 ŵ2 θ̂2}T and ũ = {ũ1 ũ2 w̃3 w̃4 w̃5 w̃6}T . T̂1 is a
6 × 6 non-symmetric, non-singular matrix, which is a function of frequency,
material properties and dimensions of the element. This matrix represents the
local wave characteristic of the displacements.

Next, using the expressions for force boundary condition from Equa-
tions (4.7–4.9), the nodal forces are related to the wave coefficients ũj and
w̃j through the following force boundary equations:

N̂1 = −N̂x(0, ωn) , V̂1 = −V̂x(0, ωn) , M̂1 = −M̂x(0, ωn) ,

N̂1 = N̂x(L, ωn) , V̂1 = V̂x(L, ωn) , M̂1 = M̂x(L, ωn) . (4.16)

In matrix notation, this can be written as

f̂ e = T̂2ũ , (4.17)

where the element nodal force vector f̂ = {N̂1 V̂1 M̂1 N̂2 V̂2 M̂2}T . The
matrix T̂2 has properties that are similar to T̂1, and it represents the lo-
cal wave characteristic of forces. Combining Equations (4.15) and (4.17), the
equilibrium equation is obtained as
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f̂ e = T̂2T̂−1
1 ûe = K̂eûe , (4.18)

where K̂e is the symmetric dynamic stiffness matrix for an unsymmetric com-
posite beam element as a complex function of frequency.

4.2.2 Throw-off Element

Unlike the conventional finite element, here we derive a special case when the
beam is very long, and application of any transient load at any location causes
no secondary disturbances other than incident waves departing that location.
This simulates a condition wherein the boundaries are at such a distance that
the effect of reflected waves becomes negligible due to attenuation through-
out their long traversal, and do not reach the location under consideration
within the time of observation. In other words, a throw-off element is a non-
resonant single node element that acts as a conduit to allow the propagation
of trapped energy out of the system. Considering only the incident part of
the displacement field given by Equation (4.14), the field variables for the
throw-off element can be written as

{
û(x, ωn)
ŵ(x, ωn)

}
=

[
R11 R13 R15

R21 R23 R25

]⎧⎨
⎩

ũ1e
−ik1x

w̃3e
−ik2x

w̃5e
−ik3x

⎫⎬
⎭ . (4.19)

Using the same procedure as followed in the case of finite length element
formulation in the previous subsection, a 3 × 3 symmetric dynamic stiffness
matrix K̂e as a complex function of frequency can be derived. An impor-
tant property of the dynamic stiffness matrix is that the elements are always
complex.

4.3 Numerical Results and Discussions

4.3.1 Impact on a Cantilever Beam

In order to study the quality of the response obtained from the SFE, the
results are compared with the time domain FE results. For this purpose, a
finite element model is employed where the element has the following mid-
plane displacement field:

uo(x, t) = C1 + C2x , w(x, t) = C3 + C4x + C5x
2 + C6x

3 , (4.20)

which exactly satisfies the static part of the governing differential equations.
A cantilever beam as shown in Figure 4.4 is considered with length L = 1.0

m, width b = 0.01 m, depth h = 0.01 m, and made up of AS/3501-6 graphite–
epoxy, having properties E1 = 144.48 GPa, E2 = 9.632 GPa, G12 = 4.128
GPa, ν12 = 0.3, ρ = 1389 kg/m3. The ply-stacking sequence used is [05/905],
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Fig. 4.4. A AS/3501-6 graphite–epoxy [05/905] composite cantilever beam with an
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which gives a coupling factor r = 0.574. An impact load of 4.4 N and 50µs
duration shown in Figure 4.5 is considered. The figure shows that the load
has a very high frequency content of about 50 kHz.

This impact load is first applied at the cantilever tip in the axial direc-
tion. In SFEM, the whole beam is considered as a single element, whereas in
FEM, the domain is modeled with 1000 elements (overall system size 3000×6
where 6 is the bandwidth of the stiffness and mass matrix). The Newmark
time integration scheme with a time step of 1 µs is adopted. Figure 4.6 shows
a comparison of the axial tip velocities obtained from the SFEM and FEM.
Next, the beam is impacted in the transverse direction at the tip and Fig-
ure 4.7 shows a comparison of the transverse tip velocities. For both cases, the
plots show good agreement. From Figure 4.6, it is clear that the axial wave
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propagates non-dispersively, while the flexural wave (shown in Figure 4.7)
is dispersive. Figure 4.7 also shows that the response obtained by SFEM is
slightly on the higher side. This may be attributed to the different damping
schemes employed by SFEM and FEM. This aspect is studied in more detail
in the next section.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−8

−6

−4

−2

0

2

4

6

8

Time (ms)

A
xi

al
 v

el
oc

ity
 (

m
m

/s
)

SFEM
FEM

Fig. 4.6. Axial response at the cantilever tip due to axial tip load

4.3.2 Effect of the Axial–Flexural Coupling

One of the characteristics of an asymmetric composite beam is the presence
of axial–flexural coupling. That is, an incident axial wave will give rise to a
flexural wave and vice versa. The aim of the following example is to capture
this behavior. In order to see this, it is required that the waves travel non-
dispersively. Hence, for this purpose, a sinusoidally modulated pulse is allowed
to propagate through an infinite beam shown in Figure 4.8.

The pulse is modulated at 50 kHz frequency. The frequency amplitude
of this pulse has been plotted with firm line in Figure 4.2. From this figure,
we see that this modulated pulse contributes zero energy at all frequencies
except over the narrow frequency band centered at 50 kHz, at which the
pulse is modulated. This center frequency is called the modulation frequency.
Since the group speed and phase speed are functions of frequency, only the
modulation frequency governs the propagation characteristics. This property
of the pulse makes it almost non-dispersive even in a dispersive medium. The
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Fig. 4.7. Transverse response at the cantilever tip due to transverse tip load
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Fig. 4.8. AS/3501-6 graphite–epoxy beam with infinite span

infinite beam is modeled using two throw-off elements and one finite length
element. Three ply-stacking sequences having coupling parameters r = 0.0,
0.312 and 0.574 (as used in Section 4.1.2) are considered. The modulated
pulse is first applied in the axial direction at C. The axial and transverse
velocity histories obtained at D, which is 3.0 m away from the application
of load are shown in Figures 4.9(a) and 4.9(b), respectively. In Figure 4.9(a),
the time shifts in the predominant axial mode response for increasing values
of r can be attributed to the reduction in the axial group speed (Cg1 in
Figure 4.2). Also, for r = 0.574, the effect of flexural mode induced in the
axial response is clearly visible around 1.0 ms. The time of occurrence of this
additional mode corresponds to the flexural group speed (Cg2) in Figure 4.2
at 50 kHz, which is the modulation frequency of the applied load. Similarly, in
Figure 4.9(b), the increasing effect of both the modes induced in the flexural
response is visible for increasing values of r, and their times of occurrence
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Fig. 4.9. (a) Axial response and (b) transverse response at D due to axial modulated
pulse applied on the infinite beam at C

0 0.5 1 1.5
−0.8

−0.3

0.2

0.7

1.2

1.7

2.2

2.7

3.2

3.7

Time (ms)

T
ra

ns
ve

rs
e 

ve
lo

ci
ty

 (
m

m
/s

)

r=0.0

r=0.312

r=0.574

0 0.5 1 1.5
−0.8

−0.3

0.2

0.7

1.2

1.7

2.2

2.7

3.2

3.7

Time (ms)

A
xi

al
 v

el
oc

ity
 (

m
m

/s
)

r=0.0

r=0.312

r=0.574

(a) (b)

Fig. 4.10. (a) Transverse response and (b) axial response at D due to transverse
modulated pulse applied on the infinite beam at C
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resemble those in Figure 4.9(a). Next, the same modulated pulse is applied in
the transverse direction on the infinite beam at C. The transverse and axial
velocity histories at D are plotted in Figure 4.10(a) and 4.10(b), respectively.
In Figure 4.10(a), it can be observed that the effect of the axial mode induced
in the transverse response is of negligible order. Here, the time shifts in the
flexural mode response for increasing values of r are greater than those in the
axial mode response due to axial loading, as shown in Figure 4.9(a), which
correlates the fact that for the chosen modulation frequency (50 kHz), the
percentage reduction of flexural group speed (Cg2) is nearly 10% more than
that of axial group speed, as revealed from Figure 4.2. From Figure 4.10(b),
for maximum value of coupling, two propagating pulses can be seen clearly.
The first is due to the axial mode and the second is due to the flexural mode.
It is seen that the magnitude of the flexural mode is slightly higher than that
of the axial mode. A general trend observed from this example is that there
is an increase in the magnitude of the responses for increasing values of r,
and this is attributed to the reduction in the strength of the structure with
more off-axis ply orientations. Hence, by using SFEM, the presence of the
two simultaneously propagating spectram due to asymmetric ply orientations
becomes tractable in both quantitative as well as qualitative forms.

4.3.3 Wave Transmission and Scattering Through an Angle-joint

Often in practice, we come across planar frame structures with complex geom-
etry. Such structures are often used for space applications such as solar panels,
antennas etc., wherein a number of skeletal members are connected by rigid or
flexible joints, thereby creating a complex structural network. The proposed
SFEM can account for such situation with relative ease. In this example, we
consider a rigid angle-joint with three composite members (Figure 4.11) to
analyze the nature of reflected and transmitted waves through the joint. In
particular, it will be interesting to observe how the dynamics of the system
change with the change in joint angle. In addition, it is also important to
know the effect of axial–flexural coupling on the overall response. The SFEM
model has 0.5 m long segments on both sides of the joint along the x-axis,
which are modeled with two finite length spectral elements. The rest of the
semi-infinite segments are modeled with three throw-off elements. In FEM,
these three semi-infinite segments are modeled with 950 elements each, while
the segment AB is modeled with 100 elements. The length of each element is
1.0 cm. This gives an overall system size of 8994 × 9 in banded form.

Each member connected to the joint is made up of AS/3501-6 graphite–
epoxy, as considered in the previous cases, and with ply-stacking sequence
[05/455]. Here, the coupling factor r = 0.213. First of all, to validate the
accuracy of the response obtained from SFEM, an impact load as considered
earlier (Figure 4.5) is applied axially at A for joint angle φ = 30o. The axial
velocity history at the same point A, is computed and compared with the FEM
result, which is shown in Figure 4.12(a). Similarly, the same load is applied
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Fig. 4.11. Rigid angle-joint with AS/3501-6 graphite–epoxy composite members

transversely at A. The axial velocity history at the same point A is computed,
and also compared with the FEM result, which is shown in Figure 4.12(b). In
the above two cases, both results show good agreement.
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Fig. 4.12. (a) Comparison of axial response at A, due to axial impact load applied
at A. (b) Comparison of axial response at A, due to transverse impact load applied
at A

To study the effect of axial–flexural coupling on the dynamic response, the
same rigid joint (Figure 4.11) with an axial loading at point A, is considered
as in the previous case. The angle of the rigid joint φ is taken as 45o. The
non-dimensional coupling parameter r is varied by using different ply-stacking
sequences as taken before. In Figure 4.13(a), the axial velocity (normalized
with PmaxcL/A11) response at A and B (both are at the same distance of 0.5
m from the joint) is plotted. The figure shows that the reflected axial response
at A, as well as the transmitted axial response at B, occur at the same time for
a particular value of r. However, due to the decrease in the values of A11, for
increasing values of r, the axial speed of propagation decreases. As a result,
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both responses occur at a later stage. A separation of 0.24 ms can be seen
between responses due to unsymmetric cross-ply and the symmetric 0o ply
configurations. Also, an increasing level of dispersiveness becomes dominant
after the initial peak, which can be considered as a contribution from Mode 2
and Mode 3, as discussed earlier. Figure 4.13(b) shows the plot of transverse
velocity (normalized with PmaxcLh2/D11) response at A and B. Other than
a similar time lag in the arrival of reflected and transmitted responses as
observed in the case of axial propagation, the smoothness in the response
curves disappears and their transient nature becomes significant for increasing
values of r.
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Fig. 4.13. (a) Normalized axial velocity history and (b) normalized transverse
velocity history at A and B (Figure 4.11), showing the reflection and transmission
response through the rigid joint (φ = 45o) due to an axial impact load at A

These examples have shown the ease with which SFEM allows handling of
the dynamics of complicated networks of connected beams. Unlike the con-
ventional FE formulation, however, the length of the spectral element is not a
limiting factor; each element is formulated exactly, irrespective of its length.
This leads to a substantial reduction in the number of equations that are to be
solved. The work presented in this section has mainly dealt with the behavior
of elementary asymmetric composite beams, without the effects of shear de-
formation and rotary inertia. For this reason, the numerical investigation has
been restricted to slender beams and frames with asymmetry. This is basically
to avoid any appreciable deviation from the actual structural response.

It is seen from the numerical investigation that the main effect of asymmet-
ric ply orientation is alteration of the spectrum and dispersion relations. It is
found that the longitudinal wave mode (Mode 1) is least affected by asymme-
try. However, the flexural wave modes (Mode 2 and 3) are most affected. That
is, the flexural wave speed is greatly reduced (about 20%) due to asymmetry.
The numerical studies have also shown that the results from the formulated
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spectral element agree well with the established FEM. This study, through
SFEM, has clearly brought out the changes that an asymmetric ply configu-
ration can introduce to alter the dynamics of multiply connected composite
beams.

Another big advantage of SFEM is that the solution has very little storage
requirement compared to conventional FEM. In the actual computation of the
angle joint, it has been found that the storage requirement for the formation
of the matrices is approximately 2.05 KB for SFEM in contrast to 1.5MB
for FEM. In the next section, higher order formulations to deal with coupled
wave propagation in composite beams are developed.

4.4 Wave Propagation in Laminated Composite Thick
Beams: Poisson’s Contraction and Shear Deformation
Models

In the last section we demonstrated the versatility of the spectral element
approach in capturing the essential features of wave propagation in elemen-
tary composite beams. Very small system sizes were used for modeling highly
asymmetric ply stacking sequences subjected to a forcing function having high
frequency content. In this section, we extend this approach to study the wave
propagation behavior in thick composite beams based on first-order shear
deformation theory (FSDT). Such a formulation for thick isotropic rod and
beam is available in the literature [51]. It was shown there that higher order
isotropic waveguides introduce a pair of additional propagating modes (called
propagating shear wave modes) above a cut-off frequency. It is of interest to
know how such higher order effects influence the behavior of thick composite
beams with an asymmetric ply-stacking sequence, giving rise to axial–flexural
shear coupling over a wide frequency range of excitation. The present section
will be devoted to capturing this special feature. In addition, a generalization
of the approach towards the development of SFEMs, such as treatment of
damping, distributed loading etc., which were not addressed in the previous
section, will be dealt with in detail in this section.

For thick beams, FSDT was first introduced by Timoshenko [52] (see also
[53]). However, FSDT when used with FE, has its own limitations such as
shear locking. Hence, it becomes difficult to adopt FSDT for thick as well
as thin beams unless proper locking alleviation schemes are employed. To
capture the shear deformation more accurately, higher order beam theories
(HSDT) [54], [55], [56], [50] have been reported. In the finite element context,
these HSDTs need additional degrees of freedom at element nodes. In tran-
sient dynamic analysis, this is a drawback because the system size increases
in multiples of the number of effective nodes. Therefore, in conventional time
domain FE analysis, the question of priority among accuracy and computa-
tional effort becomes important. In addition to this, other complexities due
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to the mechanics of the composite play a role. Due to the high ratios of elas-
tic moduli, prediction of error while applying different beam theories is not
straightforward. The studies reported in [49], [57], [3] show that for thick com-
posite beam with strong asymmetry in the ply-stacking sequence, errors due
to EBT become significant. Comparative studies using FSDT and HSDT in
the presence of asymmetric ply-stacking configuration are not available in the
reported development. Although, for moderately thick composite beams (L/h
up to 20) with symmetric ply-stacking sequence, they match well with 2-D
plane-stress FE analysis [3].

In this section, FSDT is used, which includes the contribution of stiff-
ness and inertial coupling, to study the characteristic wave propagation in
asymmetrically stacked laminated composite beams. One of the important
characteristic features of higher order waveguides is the presence of cut-off
frequencies due to inherent shear constraints. That is, the shear constraints
convert the evanescent flexural mode into propagating shear mode beyond the
cut-off frequency. The appearance of higher order Lamb wave modes above
certain cut-off frequencies have been studied for metallic beams [58], [9], [2],
and for laminated composite plates [59]. In this chapter, the contribution of
the contractional mode along with the shear mode is studied for different
types of structural composites. Expressions for the cut-off frequencies in the
shear and contractional mode in the presence of an asymmetric ply-stacking
sequence are also derived.

4.4.1 Wave Motion in a Thick Composite Beam

The displacement field for the axial and transverse motion based on FSDT
and thickness contraction [2] is given by

u(x, y, z, t) = uo(x, t) − zφ(x, t) , w(x, y, z, t) = w(x, t) + zψ(x, t) (4.21)

where u and w are, respectively, the axial and transverse displacements at
a material point. uo and wo are the beam axial and transverse displacement
of the reference plane. φ is the curvature-independent rotation of the beam
cross-section about the Y-axis. ψ = εzz is the contraction/elongation parallel
to the Z-axis (shown in Figure 4.14). Following conventional notation [50],
the constitutive model for an orthotropic laminated composite beam can be
expressed as ⎧⎨

⎩
σxx

σzz

τxz

⎫⎬
⎭ =

⎡
⎣ Q̄11 Q̄13 0

Q̄13 Q̄33 0
0 0 Q̄55

⎤
⎦
⎧⎨
⎩

εxx

εzz

γxz

⎫⎬
⎭ . (4.22)

Using Hamilton’s principle and Equations (4.21) and (4.22), the governing
wave equations can be obtained as

δu : I0ü
o − I1φ̈ − A11u

o,xx +B11φ,xx −A13ψ,x = 0 , (4.23)
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Fig. 4.14. Beam cross-section in the Y Z plane and degrees of freedom

δψ : I2ψ̈ + I1ẅ + A13u
o,x −B13φ,x +A33ψ −B55 (w,xx −φ,x )−D55ψ,xx = 0 ,

(4.24)
δw : I0ẅ + I1ψ̈ − A55 (w,xx −φx) − B55ψ,xx = 0 , (4.25)

δφ : I2φ̈ − I1ü
o − A55 (w,x −φ) − B55ψ,x +B11u

o,xx −D11φ,xx +B13ψ,x = 0 .
(4.26)

The four associated force boundary conditions are

A11u
◦,x −B11φ,x +A13ψ = Nx , B55 (w,x − φ) + D55ψ,x = Qx , (4.27)

A55 (w,x −φ) + B55ψ,x = Vx , −B11u
◦,x +D11φ,x −B13ψ = Mx . (4.28)

The stiffness coefficients which are functions of individual ply properties,
ply orientation etc. and integrated over the beam cross-section, can be ex-
pressed as [

Aij , Bij ,Dij

]
=

∑
i

∫ zi+1

zi

Q̄ij

[
1, z, z2

]
bdz , (4.29)

which is a slightly generalized form of Equation (4.10). The coefficients asso-
ciated with the inertial terms can be expressed as

[
I0, I1, I2

]
=

∑
i

∫ zi+1

zi

ρ
[
1, z, z2

]
bdz . (4.30)

In Equations (4.29) and (4.30), zi and zi+1 are the Z-coordinate of bottom
and top surfaces of the ith layer and b is the overall width of the beam. It can
be noticed that for asymmetric ply stacking, all four modes; axial, flexural,
shear and thickness contraction, are coupled with each other. This makes the
problem cumbersome to solve accurately using an analytical approach for all
boundary conditions. However, at this stage, different approximate methods
can be used [57], which are computation intensive. Here we use the PEP
technique to solve for the wavenumbers. Two cases are considered, one with
thickness contraction mode and the other without.
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4.4.2 Coupled Axial–Flexural Shear and Thickness Contractional
Modes

For element formulation, a plane wave type solution is sought, where the
displacement field, {u} = {uo , ψ , w , φ}(x, t), can be written as

{u} =
N∑

n=1

{ũ , ψ̃ , w̃ , φ̃}(x)e−jωnt =
N∑

n=1

{ũ(x)}e−jωnt , (4.31)

where ωn is the circular frequency at the nth sampling point and N is the
frequency index corresponding to the Nyquist frequency in FFT.

Substituting the assumed solution of the field variables in Equations (4.23)–
(4.26), a set of ODEs is obtained for ũ(x). Since, the ODEs have constant
coefficients, the solution is of the form {ũ◦}e−jkx, where k is the wavenumber
and {ũ◦} is a vector of unknown constants, i.e., {ũ◦} = {u◦ , ψ◦ , w◦ , φ◦}.
Substituting the assumed form in the set of ODEs, a matrix–vector relation
is obtained which gives the following characteristic equation

[W ]{ũ◦} = 0 , (4.32)

where [W ] is
⎡
⎢⎢⎣

A11k
2 − I◦ω2

n jA13k 0 I1ω
2
n − B11k

2

−jA13k −kII2ω
2
n + A33 + D55k

2 −I1ω
2
n + B55k

2 −jB55k + jB13k
0 −I1ω

2
n + B55k

2 A55k
2 − I◦ω2

n −jA55k
I1ω

2
n − B11k

2 jB55k − jB13k jA55k −I2ω
2
n + D11k

2 + A55

⎤
⎥⎥⎦ .

(4.33)

According to the previous discussion, in this case, the order of the PEP, p = 2
and Nv (size of the [W ]) is 4. Thus, there are eight eigenvalues altogether,
which are the roots of the polynomial (called the spectrum relation) obtained
from the singularity condition of [W ] as

Q1k
8 + Q2k

6 + Q3k
4 + Q4k

2 + Q5 = 0 . (4.34)

The spectrum relation suggests that the roots can be written as ±k1, ±k2,
±k3 and ±k4.

Before solving this 8th-order characteristic equation (obtained by setting
the determinant of the PEP equal to zero), one can obtain an overview of
the number of propagating and evanescent modes as follows. By substituting
ωn = 0 in the characteristic equation and solving for kj , it can be shown that
for the uncoupled case (Bij = 0)

k(0)1,···,6 = 0 , k(0)7,8 = ±

√
A2

13 − A11A33

A55D55
. (4.35)

This implies that six zero roots starting at ωn = 0 correspond to the ax-
ial, flexural and shear modes, whereas the two nonzero roots must be the
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wavenumbers associated with the contractional mode. Here, it is to be noted
that σzz = 0 for EBT and FSDT and the orthotropic constitutive model with
respect to the XY plane, whereas in the presence of thickness contraction,
σzz 	= 0, which requires a plane-stress model in the XZ plane reduced from a
3-D constitutive model. This produces a slight difference in the values of A55

compared to that in FSDT. However, almost all the conventional fiber rein-
forced composites used as structural material have Q11 > Q13, Q33 > Q13,
which implies that the nonzero roots in Equation (4.35) must be imaginary
at and near ωn = 0. Therefore, we have two evanescent (one forward and one
backward) components in the contractional mode in the low frequency regime.
Next, by substituting kj = 0 in Equation (4.34) and solving for ωn, we get
the cut-off frequencies as

ωcut-off = 0 , 0 , 0 , 0 ,

√
A55

I2(1 − s2
2)

,

√
A33

I2(1 − s2
2)

. (4.36)

This shows that initially there are two forward propagating modes (one axial,
one flexural), two backward propagating modes (one axial and one flexural),
two evanescent flexural modes (forward and backward) and two additional
evanescent contractional modes (forward and backward) for ωn > 0. The
shear mode starts propagating after the cut-off frequency corresponding to
A55 in Equation (4.36). The contractional mode starts propagating later, since
A33 ≥ A55.

In Figure 4.15, the wavenumber dispersion is plotted for AS/3501 graphite–
epoxy and glass–epoxy [0]10 composite beam with total thickness h = 0.01 m.
Material properties are taken from [50]. Note that the graphite–epoxy has
very high ratio E11/G13 (≈ 20) and moderate stiffness E11 ≈ 144 GPa. On
the other hand, the glass–epoxy has very low ratio E11/G13 (≈ 6) and very
low stiffness E11 ≈ 54 GPa. For both of these materials, the plot in Figure 4.15
shows that the propagating components before the cut-off frequency in con-
traction are similar to those in Figure 4.16(a) in the absence of the variable
ψ. The latter is studied in more detail in Section 4.4.4. Also the wavenumber
associated with the evanescent components in contractional mode before the
cut-off frequency is much higher than that due to shear, and therefore decays
rapidly. Hence, below the cut-off frequency in contraction (which is always
much higher than shear cut-off since A33 > A55 for a composite), change in
the response due to addition of the contractional mode is negligible. Such
behavior is different from that in metal, as the cut-off frequencies for shear
and contractional modes in isotropic material are very close to each other.
The behavior and the restriction of the isotropic beam waveguide model has
been discussed in the context of a three-mode beam theory and Lamb wave
modes in 2-D cross-section in [9]. To accommodate such higher order effects
in the present asymmetric composite beam waveguide model, the following
corrections can be imposed for high frequency applications.
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Fig. 4.15. Nature of wavenumber dispersion in axial (k1), flexural (k3), and shear
(k6) with cut-off and contraction (k8) with cut-off; ‘o’, graphite–epoxy AS/3501 [0]10
composite; ....., glass–epoxy [0]10 composite; Total thickness h = 0.01 m

4.4.3 Correction Factors at High Frequency Limit

For applications where the beam cross-sectional configuration and the range
of excitation frequency ωmax are such that

ωmax > min

(√
A33

I2(1 − s2
2)

,

√
A55

I2(1 − s2
2)

)
, (4.37)

four correction factors K1, K2, K3 and K4 can be introduced as A55 → K1A55,
D55 → K2D55, I2 → K3I2 and A33 → K4A33. The idea is to estimate these
factors by having an upper bound on the cut-off frequencies from appropriate
Lamb wave modes and by adjusting the propagating wavenumbers from those
of the Lamb wave modes at high frequencies. Now, what appears as a contrast
between the pairs of longitudinal, flexural, shear and contractional modes as
shown in Figure 4.15 with the propagation of the first three pairs of symmet-
ric Lamb wave modes and the first three pairs of antisymmetric Lamb wave
modes in actual 2-D cross-section (the Y Z plane in Figure 4.14) is as follows.
At low frequencies, the pair of propagating longitudinal modes are identical
to the first pair of propagating symmetric Lamb wave modes. Also, at low
frequencies, the pair of propagating flexural modes and the pair of evanescent
shear modes are identical to the first pair of propagating antisymmetric Lamb
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wave modes and second pair of evanescent antisymmetric Lamb wave modes,
respectively. The rest of the symmetric and antisymmetric Lamb wave modes
are evanescent, therefore the effect is highly localized and can be neglected.
At high frequencies, the pair of propagating flexural modes and the pair of
propagating shear modes are respectively given by

k3,4 ≈ ±ωn

√
I0

K1A55
, k5,6 ≈ ±ωn

√
K3I2

D11
. (4.38)

These forms differ slightly from the corresponding first and second pair of
antisymmetric Lamb wave modes. The adjustable cut-off frequencies in shear
and contraction are now

ωcs =

√
K1A55

K2I2(1 − s2
2)

. ωcc =

√
A33

K2I2(1 − s2
2)

. (4.39)

Note from Figure 4.15 the sudden diversion of the propagating longitudinal
modes when they interact with the propagating contractional modes. After
such interaction, at higher frequencies, the longitudinal modes and the con-
tractional modes are respectively given by

k1,2 ≈ ±ωn

√
K3I2

K2D55
, k7,8 ≈ ±ωn

√
I0

A33
, (4.40)

which are not due to the interaction of second and third pairs of propagating
symmetric Lamb wave modes, because they first become complex, just above
the cut-off frequency and break down followed by the addition of the fourth
pair at higher frequencies. This fourth pair of symmetric Lamb wave modes
propagate with similar form to that in Equation 4.40 for k7,8. Now, we denote
the Rayleigh wave speeds cR in the cross-sectional planes Y Z. cR is associated
with the non-dispersive wave propagation along x due to impact at the top or
bottom surface of the beam. However, for general ply stacking, one needs to
compute cR using a plane-stress model and appropriate averaging in the Y Z
plane. As a frequency approximation, we can write

|k1,2| =
ωn

cR
, |k3,4| =

ωn

cR
, ωcs ≈ 1

2
2π

h
cs , ωcc ≈ 2π

h
cs , (4.41)

where πcs/h is the first non-zero cut-off frequency of the antisymmetric Lamb
wave mode pair and 2πcs/h is the first non-zero cut-off frequency of the sym-
metric Lamb wave mode pair. cs is the shear wave speed, h is the depth of the
beam cross-section. Substituting Equations (4.38)–(4.40) in Equation (4.41),
we get

K1 =
c2
R

c2
s

, K3 =
h2I0

π2I2(1 − s2
2)

c2
R

c2
s

, (4.42)

K2 =
h2I0

π2I2(1 − s2
2)K5

c4
R

c4
s

, K4 = 4
A55

A33

c2
R

c2
s

. (4.43)
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In the case of isotropic materials, the above reduces to

K5 =
A55I2

D55I0
= 1 , s2 = 0 ,

c2
R

c2
s

∣∣∣∣∣
ν=0.3

= 0.86 ,
A55

A33

∣∣∣∣∣
ν=0.3

= 0.28 ,

(4.44)
and we recover the so called shear correction factors K1 = 0.86, K3 = 1.216
(discussed in [9], and also previously proposed in [53] as K1 = 5/6, K3 = 1)
for a Timoshenko beam along with K2 = 0.89 and K4 = 0.98, which accom-
modate the second pair of antisymmetric Lamb wave modes (shear modes)
and second pair of symmetric Lamb wave modes (contractional modes) within
the high frequency limit given by the cut-off frequency of the next higher or-
der Lamb wave mode. Hence, for asymmetric laminated composite, as long as
the frequency content of the excitation is below the cut-off in contraction, the
model of coupled axial flexural shear wave modes can be adjusted to obtain
sufficient accuracy.

4.4.4 Coupled Axial–Flexural Shear Without the Thickness
Contractional Modes

When the thickness contraction term ψ is neglected in the displacement field,
and subsequently in the wave equations, the characteristic equation is a 6th-
order polynomial in k. Again, the PEP framework is used to obtain the
wavenumber and hence, the group speeds.

In Figure 4.16, the dispersion of wavenumbers corresponding to axial,
flexural and shear modes are shown. An AS/3501-6 graphite–epoxy beam
cross-section with depth h = 0.01 m is considered. Beside this, to study
how the wave packets travel at different frequencies, the group speeds Cg =
Re[dωn/dkj ] in the axial, flexural and shear modes are plotted in Figure 4.17,
where C0 =

√
A11/I0 is the constant phase speed in axial mode. From these

two plots, only one cut-off frequency appears, above which the shear mode
starts propagating, which is otherwise an evanescent component contributing
to the flexural wave. Figure 4.17 shows that the higher the stiffness coupling
(higher value of r) the higher the group speed of the shear wave above the
cut-off frequency. At the same time, the group speed of the longitudinal wave
drastically falls well before the cut-off frequency. The flexural mode remains
least affected by both stiffness and mass coupling, and remains almost non-
dispersive above the cut-off frequency.

The procedure for spectral element formulation is similar to the procedure
followed for the elementary beam formulation.

Finite Length Element

The displacement field for the two-noded finite length element will have four
forward moving and four backward moving (reflected) components. Hence, the
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displacement field will contain eight constants. They need to be determined
from eight boundary conditions coming from the two nodes. The displacement
at any point x (x ∈ [0, L]) and at frequency ωn becomes

{ũ}n =

⎧⎪⎪⎨
⎪⎪⎩

û(x, ωn)

ψ̂(x, ωn)
ŵ(x, ωn)

φ̂(x, ωn)

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

R11 . . . R18

R21 . . . R28

R31 . . . R38

R41 . . . R48

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

e−jk1x 0 . . . 0

0 e−jk2x . . . 0
...

. . .
. . .

...

0 . . . . . . e−jk8x

⎤
⎥⎥⎥⎦ {a}n , (4.45)

where (kp+4 = −kp , p = 1, . . . , 4). The above equation in concise form can
be written

{ũ}n = [R]n[D(x)]n{a}n, (4.46)

where [D(x)]n is a diagonal matrix of size 8 × 8 whose ith element is e−jkix.
[R]n is the amplitude ratio matrix and is of size 4 × 8. This matrix needs to
be known beforehand for subsequent element formulation. There are several
ways to compute the elements of this matrix. In this formulation the SVD
method, explained in Chapter 3, is followed, which is suitable for structural
models with a large number of degrees of freedom (dof).

Here, an is a vector of eight unknown constants to be determined. These
unknown constants are expressed in terms of the nodal displacements by eval-
uating Equation (4.45) at the two nodes, i.e., at x = 0 and x = L. In doing
so, we get

{û}n =
{

ũ1

ũ2

}
n

=
[

R
R

]
n

[
D(0)
D(L)

]
n

{a}n = [T1]n{a}n , (4.47)

where ũ1 and ũ2 are the nodal displacements of node 1 and node 2, respec-
tively.

Using the force boundary conditions Equations (4.27) and (4.28), the force
vector {f}n = {Nx , Qx , Vx , Mx}n can be written in terms of the unknown
constants {a}n as {f}n = [P ]n{a}n. When the force vector is evaluated at
node 1 and node 2, nodal force vector, {f̂}n, is obtained and can be related
to {a}n by

{f̂}n =
{

f̃1
f̃2

}
n

=
[

P (0)
P (L)

]
n

{a}n = [T2]n{a}n . (4.48)

Equations (4.47) and (4.48) together yield the relation between the nodal force
and the nodal displacement vector at frequency ωn:

{f̂}n = [T2]n[T1]−1
n {û}n = [K]n{û}n , (4.49)

where [K]n is the dynamic stiffness matrix at frequency ωn of dimension 8×8.
Explicit forms of the matrix [T1] and [T2] are given below.

T1(1 : 4, 1 : 8) = R(1 : 4, 1 : 8) (4.50)
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T1(l,m) = R(l − 4,m)e−jkmL , l = 5..8 ,m = 1, . . . , 8 . (4.51)

Similarly,

T2(1, i) = j(A11R(1, i) − B11R(4, i))ki − A13R(2, i)
T2(2, i) = −B55(−jR(3, i)ki − R(4, i)) + jkdD55R(2, i)ki

T2(3, i) = −A55(−jR(3, i)ki − R(4, i)) + jB55R(2, i)ki

T2(4, i) = −j(B11R(1, i) − D11R(4, i))ki + B13R(2, i)
T2(5 : 8, i) = −T2(1 : 4, i)e−jkiL , i = 1, . . . , 8 . (4.52)

Throw-off Element

For the infinite length element, only the forward propagating modes are con-
sidered. The displacement field (at frequency ωn) becomes

{ũ}n =
4∑

m=1

Rm
n e−jkmnxan

m = [R]n[D(x)]n{a}n , (4.53)

where [R]n and [D(x)]n is now of size 4 × 4. The {a}n is a vector of four
unknown constants. Evaluating the above expression at node 1 (x = 0), the
nodal displacements are related to these constants through the matrix [T1] as

{û}n = {ũ1}n = [R]n[D(0)]n{a}n = [T1]n{a}n , (4.54)

where [T1] is now a matrix of dimension 4 × 4. Similarly, the nodal forces at
node 1 can be related to the unknown constants

{f̂}n = {f̃1}n = [P (0)]n{a}n = [T2]n{a}n . (4.55)

Using Equations (4.54) and (4.55), nodal forces at node 1 are related to the
nodal displacements at node 1

{f̂}n = [T2]n[T1]−1
n {û}n = [K]n{û}n , (4.56)

where [K]n is the element dynamic stiffness matrix of dimension 4 × 4 at
frequency ωn. The matrices [T1] = R(1 : 4, 1 : 4) and [T2](1 : 4, i) are the
same as for the finite length element (i = 1 . . . 4). As in the elementary case,
the dynamic stiffness is complex.

4.4.5 Modeling Spatially Distributed Dynamic Loads

In the context of FSDT, under a distributed load p̂(x, ωn) = {p̂x, p̂z, p̂y}T ,
where p̂x, p̂z are the forces per unit length in the longitudinal and transverse
directions and p̂y is the distributed moment, the stationary principle in the
frequency domain [60] is used to compute the consistent nodal load vector.
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Here, we represent the product of spectral amplitudes of the conjugate
quantities as an energy equivalent measure in the frequency domain. Such a
frequency domain energy functional in the context of the virtual work principle
is discussed in the work [60] and it is not the same as the frequency domain
counterpart (in terms of convolution integral) of the time domain energy.
Also, such a measure is different from the frequency domain power [61] and
[45], which is defined as the product of the force vector and the conjugate of
velocity vector. Here, we define the frequency domain strain energy, kinetic
energy and external work, respectively, as

ÛS =
∫

σ̂T ε̂ dΩ , ÛI = −
∫

ω2
nρûT û dΩ , V̂ = −

∫ L

0

p̂T û dx − f̂e
T

ûe .

(4.57)
At each sampling frequency ωn, the continuous system reduces to a sta-

tionary system in Equation (4.57). Applying the principle of virtual work
(PVW) to this stationary system as

δ
(
ÛS + ÛI + V̂

)
= 0 (4.58)

and minimizing the total stationary potential Û = ÛS +ÛI +V̂ with respect to
the unknown displacement coordinate ûe, the equilibrium equation is obtained
as

(∫
BeT Q̄BedΩ −

∫
ω2

nρℵeTℵedΩ

)
ûe = f̂e +

∫ L

0

ℵeT p̂ dx . (4.59)

This minimization procedure is the same as the Ritz method [1] in the fre-
quency domain, where the generic displacement field û(x, ωn) is represented
using a Ritz function (same as the spectral element shape function) ℵ(x, ωn)
and unknown displacement coordinates û in Equation (4.45). Note that upon
choosing û(x, ωn) as the Ritz function, the geometric boundary conditions are
automatically satisfied. In addition, since û(x, ωn) is derived by satisfying the
governing homogeneous wave equations exactly, it can be shown that the dy-
namic stiffness matrix obtained in Equation (4.59) is identical to the spectral
element stiffness matrix K̂e obtained in Equation (4.49), i.e.,

∂2Û

∂ûe
i ∂ûe

j

= K̂e
ij or

∫
BeT Q̄BedΩ −

∫
ω2

nρℵeTℵedΩ = K̂e . (4.60)

Here, B̂e is the complex spectral element strain–displacement matrix given
by

Be =

[
∂
∂x

0 −z ∂
∂x

0 ∂
∂x

−1

]
ℵe . (4.61)

Using K̂e from Equation (4.60) in Equation (4.59), the equilibrium equation
can be solved, which includes the contribution of distributed load vector p̂ on
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the spectral element nodes through a dynamically consistent exact nodal load
vector given by

f̂ed =
∫ L

0

ℵeT p̂ dx . (4.62)

For example, consider a spectral beam finite element subjected to dis-
tributed loading of the form p(x, t) = p0(t) + xp1(t). The spectral amplitude
can be written as p̂(x, ωn) = p̂0 +xp̂1. One can obtain expressions for the ex-
act nodal force vector due to this loading using Equation (4.62). For example,
the nodal force vector due to uncoupled axial dofs can be obtained as

{
f̂1d
f̂4d

}e

=
i
(
1 − e−ikaL

)
(1 + e−ikaL) ka

{
1
1

}
p̂0 +

⎧⎪⎪⎨
⎪⎪⎩

1
k2

a

− i2Le−ikaL(
1 − e−i2kaL

)
ka

iL
(
1 + e−i2kaL

)
(
1 − e−i2kaL

)
ka

− 1
k2

a

⎫⎪⎪⎬
⎪⎪⎭

p̂1 . (4.63)

Similar expressions for the transverse and rotational dofs can also be obtained
in closed form.

4.5 Modeling Damping Using Spectral Element

The damping effect is important for polymer based laminated composites.
The viscosity of the polymer matrix along with interfacial defects and inclu-
sions causes scattering and absorption of energy. As observed in the measured
response, especially in NDT techniques, the idealistic and undamped mod-
els do not tally satisfactorily with what is measured. Hence, it is most often
important to incorporate appropriate damping mechanisms. Damping mech-
anisms can be incorporated under the classifications of (1) proportional and
(2) non-proportional models. Phenomenologically, the mechanisms can be dis-
tinguished as (1) viscous damping, (2) non-viscous damping. In the following
subsections, incorporation of viscous air damping, dry friction and strain rate
dependent damping as proportional damping mechanisms within the frame-
work of SFEM are discussed.

4.5.1 Proportional Damping Through a Discretized Finite
Element Model

In a finite element system, the damping matrix C is most often represented
as a linear combination of the mass matrix M and stiffness matrix K and is
known as Rayleigh damping. It is always advantageous to obtain such a system
because classical normal modes are preserved so that efficient computation can
be performed. To this end, as a generalization of linear damping by retaining
classical normal modes, one can use the Caughey series expressed in terms of
the power of M−1K as
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C = M
∑

j=0,···
αj

[
M−1K

]j
(4.64)

for systems with non-repeated roots [62]. A further generalization to construct
C from classical normal mode synthesis [63] can be written as

C = Mg1

(
M−1K,K−1M

)
+ Kg2

(
M−1K,K−1M

)
(4.65)

where g1 and g2 are frequency dependent functions and can be reduced to
the constant Rayleigh damping coefficients. The above two equations show
that identification of damping coefficient in a distributed flexible structure re-
quires suitable measurements, which in most cases have their own limitations,
such as the large number of sensor measurements and incomplete measure-
ments over a broad frequency band. In many spectral analysis techniques (e.g.,
[64]), eigenvalues, left and right eigenvectors are used to compute the spectral
amplitude vector. Also, handling such a computation over a broad frequency
band becomes computationally expensive. In contrast, the spectral element
does not solve a quadratic eigenvalue problem [65]. Here, in SFEM, we have
a much lower number of finite element nodes due to exact element dynamic
stiffness. But, computation is done at each FFT sampling frequency point
(typically 512 − 8192) irrespective of eigenvalues, and the accuracy depends
on the frequency window. Therefore, like modal analysis, normal mode syn-
thesis is not an issue in SFEM. Now, we look at how the above linear damping
model can be treated in SFEM.

Using Equation (4.47) for the spectral element shape function and Equa-
tion (4.61) for the strain–displacement matrix, a frequency dependent general
mass matrix and stiffness matrix can be defined, respectively as

M̂ =
∫

ρℵeTℵedΩ , K̂ =
∫

BeT Q̄BedΩ . (4.66)

Following Equation (4.65), a frequency dependent damping matrix can be
identified as

Ĉe = M̂ĝ1(ωn) + K̂ĝ2(ωn) . (4.67)

The governing algebraic form including the effect of velocity proportional
damping can now be written as

(
K̂e + iωnĈe

)
ûe = f̂e . (4.68)

Here, the coefficients ĝ1 and ĝ2 are different from those in Equation (4.65)
and need to be identified using broadband measurements having identical
resolution in the FFT used in SFEM. However, in the context of Rayleigh
damping, the same constant coefficients g1 and g2 used for modal analysis can
also be used here.
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Wave Propagation in Lightly Damped Structures

Here, we assume that a small proportional damping in Equation (4.67), per-
turbs the spectral amplitude of the undamped system as

û′e = ûe + ∆ûe . (4.69)

By substituting the above in Equation (4.68) and with the help of Equa-
tion (4.49), we get

K̂e∆ûe + iωnĈeûe + iωnĈe∆ûe = 0 . (4.70)

Since, the damping is small, the above equation along with Equation (4.69)
yields

û′e ≈
(
I − iωnK̂e−1

Ĉe
)
ûe . (4.71)

While solving the spectral finite element system, very fine frequency sam-
pling can be considered without compromising the computational cost. There-
fore, Equation (4.71) will also hold for the analysis of a structure whose eigen-
frequencies are not well separated. In a lightly damped wave propagation
problem, the perturbation of the spectral amplitude by a complex quantity
in Equation (4.71) states that the motion becomes asynchronous. That is,
the motion of any two points is no longer in phase with each other. This is
also shown in [66] and [67] using normal mode analysis, but they are based
on the additional assumption that the eigenfrequencies are not dense and the
perturbation on one of them does not cross over another.

4.5.2 Proportional Damping Through the Wave Equation

Here, first we consider a general damping model to include the combined effect
of dry friction, viscous air damping and strain rate dependent damping (also
called Kelvin–Voigt damping) in the wave motion. The wave equations in
this case can be obtained using Hamilton’s principle with generalized forcing
terms. This leads to a form similar to the axial–flexural shear coupled equation
of motion in FSDT, plus some additional terms as

δuo : Ioü
o − I1φ̈ − A11u

o,xx +B11φ,xx +η1u
o + η6u̇

o +
(∫

η4dA

)
u̇o,x = 0 ,

(4.72)
δw : Ioẅ − A55 (w,xx −φ,x ) + η2w + η5ẇ = 0 , (4.73)

δφ : I1ü
o − I2φ̈ + A55 (w,x −φ) − B11u

o,xx +D11φ,xx −η3φ

+
(∫

η6zdA

)
u̇o,x −

(∫
η6z

2dA

)
φ̇,x = 0 (4.74)

where, η1, η2 and η3 are the coefficient of dry friction in the longitudinal,
transverse and rotational motions respectively. η4 and η5 are the viscous air
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damping coefficients associated with the longitudinal and transverse velocity
vectors respectively. η6 is the coefficient associated with strain rate dependent
damping −η6ε̇xx and has been studied in isotropic beams ([68], [69]). For
simplicity, we assume η4 and η6 are constant for all the plies, irrespective of
the stacking sequence. The characteristic polynomial in terms of wavenumbers
kj becomes

Det (F1(kj) + F2(kj)) = 0 (4.75)

where, Det(F1(kj)) = 0 is expanded as before to get the characteristic equa-
tion and the additional matrix F2(kj), which is diagonal, is given by

F2(kj) =

⎡
⎣ η1 + iωnη4 + A0ωnη6kj 0 0

0 η2 + iωnη5 0
0 0 −η3 − A2ωnη6kj

⎤
⎦ , (4.76)

where [A0 A2] =
∫

[1 z2]dA. Irrespective of small or large dissipation or fric-
tion, let us consider first the uncoupled (B11 = 0) solution for wavenumbers
in axial mode given by

k1,2 = −ωnη6A0

2A11
±

√
1
4

(
ωnη6A0

A11

)2

+
ω2

nI0

A11
−

(
η1 + iωη4

A11

)
. (4.77)

Now imposing kj = 0 in the above equation leads to a new cut-off frequency
in the axial mode, which is given by

ωcut-off =
√

η1

I0
(4.78)

and is independent of η4 and η6. For the conventional stiff composite beam,
such a cut-off frequency is unlikely since η1, which is caused physically by
the distributed horizontal spring effect, must reach the order of ω2

nI0. At low
frequency, such a cut-off frequency may occur in polymer thin film (I0 very
small) and the primary in-plane wave may cease to propagate leaving only
the evanescent waves. However, additional small propagating components will
appear when η4 	= 0, η6 	= 0. In the absence of axial friction (η1 = 0) and
strain rate dependent damping (η6 = 0), and under the assumption that the
viscous damping η4 is small, Equation (4.77) can be approximated as

k1,2 ≈ ±ka

[
1 − i

η4

2ωnI0

]
= ±ka [1 − iη(ωn)] . (4.79)

In the case of isotropic rod, a similar formulation has been discussed in [9]. In
the open literature, several studies related to damped wave propagation use
a similar form k(1− iη) (shown in Equation (4.79)) as a simplification. It can
be shown that in the presence of strain rate dependent damping η6 	= 0, any
additional propagating wave can be blocked completely if the relation
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η4 = η6A0

√
η1

A11
− ω2

nI0

A11
(4.80)

holds for any tailored structural configuration. Next, let us consider the
wavenumbers for uncoupled (B11 = 0) flexural motion given by

k3,···,6 = ±
√

A55

2D11

[
α0 ±

√
α2

0 + 4
D11

A55

(
ω2

nI2

A55
− 1

)(
−ω2

nI0

A55
+

iωnη5

A55

)]1/2

(4.81)
where

α0 =
ω2

n

A55

(
I2 + I0

D11

A55

)
− iωnη5D11

A2
55

, η2 = 0 , η3 = 0 , η6 = 0 . (4.82)

Here, we consider η6 = 0, which otherwise produces a complete 4th-order
complex characteristic polynomial, for which the roots are to be computed
numerically and is not discussed here. Now, by substituting kj = 0 in Equa-
tion (4.81), it can be shown that the cut-off frequency in shear mode given in
Equation (4.36) does not change due to the viscous damping terms. However,
in the presence of transverse and rotational friction (η2 and η3), two cut-off
frequencies can be observed.

In this section we focus on understanding the effect of viscous damping on
the characteristic behavior. We estimate the percentage change in the relative
group speed of the damped wave as

%∆Cg =
C ′

g − Cg

Cg
× 100 (4.83)

where the superscript ′ is for a damped system. Subsequently, if one defines
the change in wavenumber as

∆kj = k′
j − kj (4.84)

then the amplitude of the damped wave coefficients ũ′
j can be expressed in

terms of the amplitude of the undamped wave coefficients ũj as

|ũ′
j | = ψy

d |ũj | , ψd = |e−i∆kj/|kj || , y = |kj |x , (4.85)

i.e., the imaginary part of ∆kj , if negative, will contribute to the decay of
the wave amplitude in the exponential power of the distance x. The real part
of ∆kj will cause lead or lag in the phase depending upon the sign. ψd is
the damping factor in the amplitude of the wave coefficient at a distance
x = 1/|kj |. For numerical illustration, cross-sectional properties are taken for
the AS/3501 graphite–epoxy beam configuration considered earlier.

For a range of η4 = 10−2 to 105, %∆Cg and corresponding ψd in axial mode
are plotted in Figure 4.18 and Figure 4.19 respectively. It can be observed that



86 4 Spectral Finite Elements for Homogeneous Wave

0 20 40 60 80 100 120 140 160 180 200
−14

−12

−10

−8

−6

−4

−2

0

2

Frequency (kHz)

lo
g 10

| %
 ∆

C
g | 

in
 a

xi
al

 m
od

e

η
4
=10−2 

η
4
=10−1 

η
4
=100 

η
4
=101 

η
4
=102 

η
4
=103 

η
4
=104 

η
4
=105 

Fig. 4.18. Plot of percentage change in relative group speed %∆Cg in axial mode
for different values of viscous damping coefficient η4. For η4 ≥ 103, transition of
negative to positive %∆Cg occurs at the mark ’o’. For lower damping, %∆Cg is
positive
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Fig. 4.19. Plot of damping factor ψd in the wave amplitude in axial mode for
different values of viscous damping coefficient η4
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at low damping, the group speed of the damped wave compared to that of the
undamped wave increases and the rate of increase linearly changes with the
order of frequency. Increase in the group speed actually causes delocalization
or deflation of the disturbance over x in the forward and backward directions.
At η4 ≥ 103, the group speed of the damped wave starts decreasing relative
to that of the undamped wave up to a certain frequency and then again
starts increasing. This transition point shifts to higher frequency for higher
damping. This shows that in the presence of very high damping, the group
speed can tend to zero and hence most of the energy can cease to propagate,
thus leaving only an insignificant amount of high frequency components. In
Figure 4.19, it can be observed that in the low frequency region, ψd decreases
rapidly, whereas in the high frequency region, it reaches a near constant value.
Figure 4.16(a) shows that kj increases at higher frequencies and hence decay
of the wave amplitude at low frequency will occur at lesser distance compared
to the distance required for the same amount of damping of wave amplitude
at high frequency. Similar behavior can be observed for the damped flexural
wave plotted in Figs. 4.20 and 4.21 and the shear wave plotted in Figs. 4.22
and 4.23.
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Fig. 4.20. Plot of percentage change in relative group speed %∆Cg in flexural
mode for different values of viscous damping coefficient η5. Transition of negative to
positive %∆Cg occurs at the mark ’o’

Here, the transition frequency for percentage change in the relative group
speed of the damped flexural wave remains the same at low and moderate
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Fig. 4.21. Plot of damping factor ψd in the wave amplitude in flexural mode for
different values of viscous damping coefficient η5

damping, and is < 10 kHz. This tells us that the presence of even a small
amount of damping (in the order of η5 considered in the plots) may cause
significant dissipation of energy since the energy propagates with group speed.
In the shear wave, similar behavior (Figure 4.22) can be observed within 10
kHz just after the cut-off frequency. Also seen in Figure 4.24 is the wavenumber
associated with the backward propagating wave in shear mode before the
cut-off frequency. The corresponding group speed is positive and is shown
in Figure 4.25. Similar relationships between wavenumber and group speed
associated with the forward propagating shear wave can be established. The
opposite sign of kj and Cg in shear mode before the cut-off frequency can be
attributed to the fact that in the presence of damping, energy can propagate in
a direction opposite to the direction of the movement of individual wavefronts
(that is the direction of phase velocity). This is analogous to the movement
of a caterpillar [70]. Note that at very high damping, the shear energy does
not increase much at frequencies less than the cut-off frequency (Figure 4.25),
although the wavenumber and hence the phase speed increases (Figure 4.24).

4.6 Numerical Results and Discussions

In the following numerical examples, the effect of contractional mode is not
included, but is discussed in great detail in the next chapter. Analysis is per-
formed considering the system as undamped. In this section, first the validity
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Fig. 4.22. Plot of percentage change in relative group speed %∆Cg in shear mode
after cut-off for different values of viscous damping coefficient η5. Transition of neg-
ative to positive nature of %∆Cg occurs at the mark ’o’.
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Fig. 4.23. Plot of damping factor ψd in the wave amplitude in the small propagating
shear mode before cut-off and dominant shear mode after cut-off for different values
of viscous damping coefficient η5
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Fig. 4.24. Appearance of real negative wavenumber (the absolute value) associated
with backward propagating wave in shear mode before cut-off due to different values
of viscous damping coefficient η5
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Fig. 4.25. Appearance of positive group speed (energy traveling forward) associated
with backward propagating wave (Figure 4.24) in shear mode before cut-off due to
different values of viscous damping coefficient η5
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of the formulated element is established in two different ways. In the first, the
solutions are compared with standard FEM solutions. In this process, also
the effect of axial–flexural shear coupling on the response as well as on the
wave speeds are illustrated. Next, the existence of axial–flexural shear modes
is shown. The time of occurrence of these modes with respect to wave speeds
is confirmed from the dispersion plots. The last example will demonstrate the
use of this element to handle composite ply-drops.

4.6.1 Comparison of Response with Standard FEM

Comparisons with the results based on a previously reported spectral element
for EBT (Section 4.3), time domain refined finite element for FSDT [3] and
2-D plane stress FEM are presented in this section. The time domain refined
finite element [3] uses a higher order polynomial displacement field, given by

uo(x, t) = C1 + C2x + C3x
2 , w(x, t) = C4 + C5x + C6x

2 + C7x
3 , (4.86)

φ(x, t) = C8 + C9x + C10x
2 , (4.87)

which is based on the exact solution to the axial–flexural shear coupled static
form of governing equation for the laminated composite beam. This FSDT
(FEM) has an exact stiffness matrix, and approximate but consistent mass
matrix. The 2D plane stress FEM used for the comparison is based on a
constant strain triangular element. In the FSDT (FEM) as well as in the 2-
D FEM, Newmark time integration is used. An AS/3501-6 graphite–epoxy
composite cantilever beam of length L = 1 m, depth h = 0.01 m and width
b = 0.01 m is considered. The same broadband pulse as in previous examples
(Figure 4.5) is applied at the free end where the response is also measured.
Stiffness coupling factor r = 0.460 ([0o]10/[45o]10) is considered. A single
element is used in the present FSDT (SFEM) and also in EBT (SFEM) with
32768 FFT points (∆ω = 191.75 rad/s). 2000 elements are used in FSDT
(FEM) with time step ∆t = 0.1 µs in the Newmark time integration. 4000
constant strain triangular elements are used in the 2-D FEM with same time
step. In Figure 4.26, modulation of the axial response after reflection from
the fixed boundary can be seen. The shape of the reflected pulse in the EBT
(SFEM) shows the non-dispersiveness, whereas in the FSDT (FEM) and the
FEM results, it is dispersive, a phenomenon that can be attributed to the
combined effect of the shear and axial–flexural coupling. The initial history of
SFEM matches well with the FEM result based on the FSDT. However, the
peak amplitude of the reflected response is slightly smaller than that predicted
by FEM. This may be attributed to an approximate mass distribution of the
FE solution. In addition, the undamped nature of the response causes never-
ending motion within the selected time window. Hence, we get distortion of
the actual response during inverse FFT. To avoid this, a small amount of
damping η is introduced to the wavenumbers as kj → kj(1− iη), which cause
the response amplitude to decay towards the end of the time window. In the
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present case η = 0.7 × 10−2 has been used to remove the maximum amount
of distortion. In the transverse response plotted in Figure 4.27, the onset of
reflection is much earlier in EBT than in FSDT and the 2-D plane stress
model. This is because of the combined effect of the higher flexural speed in
EBT, which exists due to the infinite shear stiffness and the absence of rotary
inertia in the EBT-based prediction. To minimize the effect of distortion in
the time window, the same value of η as in the axial velocity history is used.
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Fig. 4.26. Comparison of axial response of a cantilever beam with [0]10/[45◦]10 ply
stacking and L/h = 50, predicted by SFEM and standard FEM

The reflected history predicted by FSDT (SFEM) has lower amplitude due
to the introduction of the artificial damping. However, the two plots show
that EBT-based prediction can be reliable enough, even for a moderately
thick beam, to obtain the initial response. And in most damped systems, such
an initial peak can be expected to cause structural failure. However, accurate
estimation of wave reflection at the later stages of time has its own importance
in identifying the localized effect in complex skeletal structures under impact
loading. The SFEM developed is well suited to analyzing such aspects using
the frequency response as well as the temporal response.
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Fig. 4.27. Comparison of transverse response of a cantilever beam with [0]10/[45o]10
ply stacking and L/h = 50 predicted by SFEM and standard FEM

4.6.2 Presence of Axial–Flexural Shear Coupling

To simulate the effect of stiffness coupling due to asymmetric ply stacking
on the different wave modes, an infinite beam made of AS/3501-6 graphite–
epoxy is considered as shown in Figure 4.28. A sinusoidal pulse modulated at

 C

 Z

X

2m D

Fig. 4.28. An infinite beam to study the propagation of a modulated pulse in
different wave modes

120 kHz is applied at C. One property of such a modulated pulse is that the
pulse propagates non-dispersively even in a dispersive media. As a result, the
shape of the pulse remains unaltered during propagation and hence is useful
in the present context to study the occurrence of dispersive flexural and shear
modes. The response is measured at point D, 2.0 m away from point C. Three
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different ply stackings [0o]5/[0o]5, [0o]5/[60o]5 and [0o]5/[90o]5 are considered,
which yield stiffness coupling factor r = B2

11/(A11D11) = 0.0, 0.667 and 0.757
respectively. Figure 4.29 shows the axial and transverse response at D under
axial loading at C. Figure 4.30 shows axial and transverse response at D
under transverse loading at C. In the axial velocity plot in Figure 4.29, the
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Fig. 4.29. Axial and transverse velocity history at D due to axial modulated pulse
applied at C

bigger blobs in three cases are the dominant axial mode. Clearly, the speed of
the longitudinal wave does not increase linearly with axial–flexural coupling
(characterized by the parameter r). This resembles the non-dispersive nature
of axial group speed in Figure 4.16(b). Here, it is noticed that the loading
frequency is 120 kHz which is well above the shear cut-off frequency (≈ 95
kHz) for all three ply configurations. Note from Equation (4.36) that the
cut-off frequencies are functions of inertial coupling factor (s2) only, not the
stiffness coupling factor (r). However, it is clear from Figure 4.16(b) that
along the frequency axis, for increasing coupling, the shear speed crosses over
first the flexural and then the longitudinal wave speeds, and remains almost
non-dispersive for r = 0.667 and 0.757. Due to this constant value and the
almost non-dispersive nature of the shear speed, the initial small blobs in both
responses (r = 0.667 and 0.757) evolve at the same time (0.5 ms). Similarly,
the flexural mode appears at the same time (1.35 ms) for these two coupling
factors, but with much lower speed. Similar inferences can also be drawn from
Figure 4.30. These times of arrival for individual modes match exactly with
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Fig. 4.30. Axial and transverse velocity history at D due to transverse modulated
pulse applied at C

those computed numerically from the expression for the group speed Cg. In
addition, this figure also shows the relative scale of magnitude of the shear
mode (at 0.5 ms) in the transverse velocity history.

Laminated composite materials show a greater amount of damping than
metals. Hence, for signal measurement purposes, it becomes important to shift
a suitable distance away from the point of excitation where the travelling non-
dispersive pulse (as used above or other solitary waveforms) in an individual
mode can be detected. In the context of viscous damping (Equations (4.83)–
(4.85)), an idealistic estimate can be obtained of the damped wave amplitude
by ψy

d . For example, let us consider the type 3 wave (propagating flexural
wave) (see Figure 4.16(a)). At the loading frequency 120 kHz, k3 ≈ 4.5/h =
450 m−1 and for 1% damping, we get ψd ≈ 0.998. Hence at a distance x = 2
m, the wave amplitude will be reduced to approximately ψk3x

d ≈ 0.165 times
the undamped wave amplitude. Arrival time remains the same since %∆Cg

is of the order of +10−13 (see Figure 4.20). Note that if the pulse was a
low frequency one, typically below 10 kHz, nothing would have reached the
measuring point. Therefore precise estimation of the optimal measurement
point as well as the capacity of the sensors is crucial for application in such
problems in NDT and micro-electro-mechanical systems (MEMS).
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4.6.3 Parametric Studies on a Cantilever Beam

The response of the same cantilever beam considered above is studied here
for different ply-stacking sequences. The same broadband pulse loading as
shown in Figure 4.5 is applied at the cantilever tip. Axial velocity history
under axial loading is plotted in Figure 4.31. For maximum possible stiffness
coupling (due to [0o]/[90o] plies in group) r = 0.757, peak axial velocity at the
loading initiation is nearly 1.5 times greater than for the unidirectional ply
configuration (r = 0.0). The locations of the reflected pulse change due to the
variation of the group speed with r. Another interesting feature noticed is the
dispersiveness of the reflected wave. This dispersion increases with increase
in the coupling. In Figure 4.32, transverse velocity history under transverse
loading is plotted, and shows increasing dispersion of the reflected waves for
increasing stiffness coupling. For [0o]/[90o] ply stacking (r = 0.757), the peak
transverse velocity at the loading initiation increases by 20% compared to
that for the unidirectional ply configuration.
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Fig. 4.31. Axial tip response of AS/3501-6 graphite–epoxy cantilever beam with
different asymmetric ply-stacking configuration under axial loading at the tip

4.6.4 Response of a Beam with Ply-drops

Very often in composite structural components, a tapered profile is provided
by ply-drops. Sometimes, such a configuration also becomes necessary to meet
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Fig. 4.32. Transverse tip response of AS/3501-6 graphite–epoxy cantilever beam
with different asymmetric ply-stacking configuration under transverse loading at the
tip

cost-effective design requirements. This can be achieved in the case of com-
posite beams by reducing the number of plies along the longitudinal direction
at appropriate locations. This example demonstrates the use of the developed
SFEM to estimate the effects of ply-drops in a composite beam subjected
to impact loading. Figure 4.33 shows the geometrical representation of an
AS/3501-6 graphite epoxy cantilever beam with ply-drops for the purpose of
numerical illustration. The beam has thickness 0.025 m at the root and 0.01
m at the tip. The broadband pulse loading of Figure 4.5 is applied at the free
end and the response is measured at the same location.
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Fig. 4.33. Composite cantilever beam with ply-drops along the length
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The axial velocity history at the free end under axial loading is shown in
Figure 4.34. It can be observed from this plot that there are four reflected
pulses occurring after the incident pulse. The first three are reflections from
points where there is a change in thickness. Also, the magnitude of the ve-
locity peaks changes with the change in stiffness across the discontinuity. For
asymmetric ply stacking (for [+45o]/[−45o] in group, r = 0.460), there is a
significant delay in the arrival of the reflected pulses. Figure 4.35 shows the
transverse velocity history at the free end under transverse loading. Presence
of reflected pulses due to change of thickness along the beam can clearly be
seen in this plot. It can also be observed that the reflection from the fixed
boundary arrives at near 1.2 ms. Similar to the axial velocity history, even
here the occurrence of the reflection is little delayed for r = 0.460. This can be
attributed to the reduction in the axial as well as the flexural stiffness, which
reduces the speed of propagation in both modes.
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Fig. 4.34. Axial velocity history at the tip of cantilever beam with ply-drops under
axial loading at the tip and for different ply stacking

In this section, SFEM for axial–flexural shear coupled wave propagation
in thick laminated composite beams with arbitrary ply-stacking sequence is
developed. The phase and group dispersion for different stiffness coupling
and inertial coupling are studied over a broad frequency range. The range of
validity of the first-order shear deformation is investigated in light of higher
order thickness contractional wave modes and higher order Lamb wave modes.
The study shows that the accuracy of the predicted response is restricted by
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Fig. 4.35. Transverse velocity history at the tip of cantilever beam with ply-drops
under transverse loading at the tip and for different ply stacking

the cut-off frequency of the higher order Lamb wave modes. Correction factors
for the present model are derived based on the high frequency approximation
of the Lamb wave modes in actual 2-D beam cross-section.

Next, linear damping models are formulated for the SFEM environment.
Numerical studies of the effect of viscous damping on group speed and wave
amplitude are performed. The results help us to explain situations, wherein
the energy ceases to propagate under certain conditions. Also the plots reveal
a caterpillar-like effect on the shear wave in the presence of viscous damping.
Results from the developed SFEM based on FSDT are compared with SFEM
based on EBT, with a time domain beam FE based on refined FSDT, and
also with a 2D plane stress triangular FE model. However, window distortion,
which is one inherent drawback of the Fourier transform, limits the accuracy of
the predicted long duration response for undamped system. Some applications,
such as wave propagation in composite beams with ply-drops, are also studied.

4.7 Layered Composite Thin-walled Tubes

In the previous section, wave propagation in connected composite waveguides
of solid cross-section were studied in detail. In those studies, the complex-
ity was gradually increased from elementary waveguide models to shear de-
formable waveguide models. In the present section, wave propagation in a
slender cylindrical composite tubular structure is addressed. In such studies,
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in addition to shear deformation, various other effects, such as cross-sectional
ovalling, will come into play. The overall dynamics will be further complicated
due to the coupling between various modes and this aspect will be studied in
greater detail in this section.

Metallic tubular structures are used extensively in piping and skeletal com-
ponents. There is an increasing usage of fiber-wound and laminated composite
cylinders and tubes in automobiles, aircraft and spacecraft. Owing to their
high strength, high stiffness and lightweight properties, graphite–epoxy com-
posite strut tubes have been chosen for the International Space Station (ISS)
Freedom [71]. Due to the high load carrying ability under pressurized condi-
tions, such tubular beams are useful in inflatable space structures [72]. Signif-
icant research has been reported in the literature addressing issues related to
vibration and noise transmission [73], impact dynamics, fatigue and damage
in such structural components. In problems related to high frequency vibra-
tion, noise transmission and impact, many analytical and numerical methods
based on wave motion have also been reported. The present section deals with
the development of a spectral finite element for efficient analysis of broadband
wave propagation in uniform composite tubes and connected skeletal struc-
tures. Also, special emphasis is given to model coupled wave propagation in
such uniform tubular elements due to variation in the angle of laminated
composite ply orientation and fiber winding.

Composite tubular structures can be modeled in two ways. (1) The general
method is to use cylindrical shell kinematics. Various theories (e.g., [74], [75],
[76] and later [77], [78] and [79] for a composite shell) in this direction have
been reported, which are based on the simpler and computationally tractable
framework and observations of infinite order frequency spectral characteris-
tics from 3-D analysis [80]. Xi et al. [81] used a 3-D elasticity solution and
shell radial displacement from finite strip element analysis to develop a semi-
analytical model to study the characteristic waves, their phase and group dis-
persion in a laminated composite cylindrical shell. (2) For a closed cylindrical
shell, often it is useful to represent an equivalent thin-walled beam kinemat-
ics and this latter approximation based on non-axially symmetric first-order
shear kinematics is used in the present work.

For uniform circular cylinders, singly curved shell kinematics is sufficient.
For coupled wave propagation analysis, the displacement field in this case
requires in-plane displacements, bi-directional bending and rotation about
the shell normal. For a thick shell, transverse shear deformation becomes
significant and 30% or higher error in deflection and natural frequencies may
occur when the effect of such shear is neglected [82]. Considering first-order
shear deformation in laminated anisotropic shells, finite element results and
exact results for simply-supported boundary conditions have been reported
in [83], [84], [85], [82]. In high frequency vibration analysis, it is essential to
consider the waveband, and the representation of the entire modal group is
important compared to the accuracy of one or two specific vibration modes.
Therefore, analysis in the wavenumber space (k space) is found most suitable.
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It was pointed out in [86] and [45] that the wave amplitudes for in-plane
and flexural (circumferential) motions have significant scale difference. How-
ever, it has been shown that [87] in the presence of ring stiffeners, wave energy
flow has stop bands, which are broadband and can be tuned to a required fre-
quency band. It can be seen from the expression for the ring frequency [86]
given by ωR = (1/R)

√
E/ρ(1 − ν2) (for flexural wave motion in cylindrical

isotropic shell) that natural frequency increases as the radius of curvature R
decreases. This tells us that for closed circular cylinders with short span and
high thickness-to-radius ratio, the flexural vibrational modes transit from a
low frequency to high frequency zone and fall in comparable scale with in-
plane motion. In addition, the rotation about the shell normal causes overall
torsional motion in such a tubular structure and interacts with the in-plane
and flexural motion depending upon the geometrical parameter η = h/R,
where 2h is the shell thickness. This length-scale interaction has significance
for coupled wave propagation in laminated or fiber-wound composite tubular
structures due to the wide range of tailorability. Further, for broadband wave
propagation (waves with low as well as high group speeds for axial, flexural
and torsional motion in a composite tube), a time scale τ = Rc−1

g character-
izes the dynamics, where cg(= dω/dk) is the group speed of a particular type
of wave. Kaplunov et al. [88] discussed the wave motion in thin-walled elastic
bodies considering the above scale effects.

Although there are many important applications of high frequency vi-
bration and elastic wave propagation in composite thin-walled structures in
rotorcraft, turbomachinery, piping and skeletal structures, efficient and au-
tomated modeling strategies and computational simulations need further de-
velopment. In most cases, attempts to solve the problems in closed form be-
come enormously complex. On the other hand, while using standard finite
element methods, much care is needed to ensure appropriate mesh and solu-
tion schemes using a large number of cylindrical shell elements or thin-walled
beam elements to capture higher order vibrational modes. Wang et al. [89]
developed a theoretical solution for an orthotropic thick cylindrical shell un-
der impact load based on the finite Hankel transform and Laplace transform
and validated the results using an axisymmetric finite element model. Fre-
quency domain based spectral analysis of wave motion in thin-walled bodies
has been discussed in [9]. Also, structural acoustics of a complete cylindrical
cavity has been studied here by solving the Helmholtz equation in cylindrical
coordinates.

Several studies on free and forced vibration of composite thin-walled bodies
have been reported. Song and Liberescu [90] modeled composite thin-walled
closed-section beams considering non-classical effects such as primary and
secondary warping. Rand [91] carried out closed-form analysis of thin-walled
beams with arbitrary cross-sections and out-of-plane warping under static
loading. Effects of bending twist coupling and extension bending coupling for
different lamination angles have been investigated in the above work. The in-
fluence of similar coupling effects on the free vibration response of anisotropic



102 4 Spectral Finite Elements for Homogeneous Wave

thin-walled closed-section beams have been reported in [92] and [93]. Ferrero
et al. [94] studied uncoupled torsional motion in thin-walled composite beams
with mid-plane symmetry. In this section, we consider coupling between axial,
flexural and torsional wave modes in a first-order shear deformable composite
tube in a general form, and present a computational strategy to deal with
broadband wave propagation.

4.7.1 Linear Wave Motion in Composite Tube
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R
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Fig. 4.36. Coordinate system and degrees of freedom in the spectral finite element
for a uniform composite tube. Two finite element nodes are shown with solid circles

Considering the reference X-axis of the cylinder (Figure 4.36) as passing
through the center of the annular cross-section, the displacement field can
be written in terms of three primary displacements uo, vo and wo and three
cross-sectional rotations θx, θy and θz at the center as follows:

u(x, y, z, t) = uo(x, t)+z

[
1 +

ξ√
y2 + z2

]
θy(x, t)+y

[
1 − ξ√

y2 + z2

]
θz(x, t) ,

(4.88)
v(x, y, z, t) = vo(x, t) − zθx(x, t) , (4.89)

w(x, y, z, t) = wo(x, t) + yθx(x, t) , (4.90)

where u, v and w are the longitudinal, lateral and transverse displacements,
respectively, at a material point (x, y, z). θx, θy and θz are the torsional, trans-
verse bending and lateral bending rotations. ξ is the radial distance of a ma-
terial point measured from the mid-plane reference contour. We assume that
any straight line representing the mean diameter of a circular lay-up remains
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straight during deformation. This leads to the first-order shear flexibility of
the annular cross-section. Such shear flexibility can be considered when an
appropriate shear correction factor is introduced and will be discussed later.
It is important to note that primary warping for a circular contour is zero and
only secondary warping can occur, which can be derived from the formulations
given by Song and Liberescu [90]. As seen in the expression for axial displace-
ment field (u(x, y, z, t)) in Equation (4.88), the non-linear terms appear as the
combined effect of bending and radial displacement (circumferential mode) of
the reference contour, and is termed ovalling. Also note that in the above
higher order cylindrical bending model, displacement continuity at the mid-
plane contour is ensured. The bending rotations θy and θz are independent
of the curvature and assumed constant throughout the cross-section as in the
case of the Timoshenko beam model. Further details regarding similar higher
order models for thin-walled closed section beams can be found in [92] and
[90]. The global bending mode has multiplicity of two due to cross-sectional
symmetry about the Y -axis and Z-axis. The circumferential modes consist of
anti-symmetric and symmetric thickness stretching. Resonant wavenumbers
for the anti-symmetric thickness stretching of a complete circular cylindrical
shell simply-supported at the ends is k = 2mπ/S, S being the arc-length [86].
Symmetric thickness stretching is a local higher order effect due to the Pois-
son’s ratio and is of significance only for large η = h/R and is not considered
in the present thin-walled beam modeling. For uncoupled flexural motion of
the cylindrical shell surface, the associated natural frequency is the same as
the ring frequency.

The constitutive relation in the element coordinate system (X,Y,Z) is first
expressed as ⎧⎨

⎩
σxx

τxz

τxy

⎫⎬
⎭ = ¯̄Q

⎧⎨
⎩

εxx

γxz

γxy

⎫⎬
⎭ , (4.91)

where

¯̄Q =

⎡
⎣1 0 0

0 sin φ cos φ
0 cos φ − sin φ

⎤
⎦
⎡
⎣ Q̄11 0 Q̄16

0 Q̄55 0
Q̄16 0 Q̄66

⎤
⎦
⎡
⎣1 0 0

0 sinφ cos φ
0 cos φ − sin φ

⎤
⎦ , (4.92)

and φ is the polar angle of a material point in the cross-sectional plane YZ
(shown in Figure 4.36). Expressions for the elements of the matrix Q̄ are ob-
tained from the elasticity matrix C (given in [50]) for transversely orthotropic
plies in the fiber-local coordinate system, then by rotating in the ply-local
system (x, s, ξ) and then imposing plane-stress conditions on the thin-walled
surface (radius of curvature R) as σξξ = 0, τsξ = 0 and τxξ = 0 as discussed
in [91]. This gives rise to the matrix Q̄, whose elements can be expressed as

Q̄11 = Q11−
1
∆

Q12 (Q13Q23 − Q33Q12)+
1
∆

Q13 (Q22Q13 − Q12Q23) , (4.93)
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Q̄16 = Q16 +
1
∆

Q26 (Q12Q33 − Q13Q23) , Q̄55 = Q55 −
Q2

45

Q44
, (4.94)

Q̄66 = Q66 +
1
∆

Q26 (Q26Q33 − Q23Q36) , ∆ = Q2
23 − Q33Q22 (4.95)

and
Q = ΓT CΓ (4.96)

is the transformation of the elasticity matrix C from fiber-local coordinates
to ply-local coordinates, where θ (shown in Figure 4.36) represents the fiber
orientation in the ply-local coordinate system.

Shear moduli Q̄44, Q̄55 and Q̄66 are multiplied by a shear correction factor
(K ′), which can be computed from the expression proposed by [53]:

K ′ =
6(1 + ν)(1 + h′2)2

(7 + 6ν)(1 + h′2)2 + (20 + 12ν)h′2 , h′ =
R − h

R + h
, (4.97)

where ν = ν23, ν13 and ν12 corresponding to Q̄44, Q̄55 and Q̄66 respectively. In
the process of deriving the governing equations of motion and force boundary
equations, we come across many higher order stiffness and mass coefficients,
which in compact notation, are expressed, respectively, as

Ajl =
∫ 2π

0

∫ R+h

R−h

¯̄QjlΨ
T Ψ r dr dφ , M =

∫ 2π

0

∫ R+h

R−h

ρΨT Ψ r dr dφ ,

(4.98)
where

Ψ =
{

1 y z ȳ z̄ ȳ,y ȳ,z z̄,y z̄,z
}

, (4.99)

ȳ = yR
(
y2 + z2

)−1/2
, z̄ = z

{
2 − R

(
y2 + z2

)−1/2
}

, (4.100)

y = r cos φ , z = r sinφ , r = R + ξ . (4.101)

Note that in Equation (4.98), Ajl is a 9×9 matrix for each ¯̄Qjl, and hence, we
shall use two additional subscripts after jl while expressing a single stiffness
coefficient in the following derivations. The explicit forms of Ajl and M are
given by

(Ajl,M) =
∫ 2π

0

∫ R+h

R−h

(
¯̄Qjl, ρ

)
Υrdrdφ , (4.102)

where

Υ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 y z ȳ z̄ ȳ,y ȳ,z z̄,y z̄,z
y2 yz yȳ yz̄ yȳ,y yȳ,z yz̄,y yz̄,z

z2 zȳ zz̄ zȳ,y zȳ,z zz̄,y zz̄,z
ȳ2 ȳz̄ ȳȳ,y ȳȳ,z ȳz̄,y ȳz̄,z

z̄2 z̄ȳ,y z̄ȳ,z z̄z̄,y z̄z̄,z
sym. ȳ,2y ȳ,y ȳ,z ȳ,y z̄,y ȳ,y z̄,z

ȳ,2z ȳ,z z̄,y ȳ,z z̄,z
z̄,2y z̄,y z̄,z

z̄,2z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and
¯̄Q11 = Q̄11 , ¯̄Q15 = Q̄16 cos φ , ¯̄Q16 = Q̄16 sin φ ,

¯̄Q55 = Q̄55 sin2 φ + Q̄66 cos2 φ , ¯̄Q56 =
(
Q̄55 − Q̄66

)
sinφ cos φ ,

¯̄Q66 = Q̄66sin
2φ + Q̄55cos

2φ .

Now, the six coupled wave equations derived using Hamilton’s principle per-
taining to six primary displacement variables, can be arranged as follows:

δuo : 0 = M11ü
o + M15θ̈y + M14θ̈z − A1111u

o,xx −A1611v
o,xx −A1511w

o,xx

−(A1512 − A1613)θx,xx −A1115θy,xx −A1114θz,xx −(A1519 + A1618)θy,x
−(A1517 + A1616)θz,x ,

(4.103)
δvo : 0 = M11v̈

o − M13θ̈x − A1611u
o,xx −A6611v

o,xx −A5611w
o,xx

−(A5612 − A6613)θx,xx −A1615θy,xx −A1614θz,xx −(A5619 + A6618)θy,x
−(A5617 + A6616)θz,x ,

(4.104)
δwo : 0 = M11ẅ

o + M12θ̈x − A1511u
o,xx −A5611v

o,xx −A5511w
o,xx

−(A5512 − A5613)θx,xx −A1515θy,xx −A1514θz,xx −(A5519 + A5618)θy,x
−(A5517 + A5616)θz,x ,

(4.105)
δθx : 0 = (M22 + M33)θ̈x − M13v̈

o + M12ẅ
o − (A1512 − A1613)uo,xx

−(A5612 − A6613)vo,xx −(A5512 − A5613)wo,xx

−(A5522 − 2A5623 + A6633)θx,xx −(A1525 − A1635)θy,xx

−(A1524 − A1634)θz,xx −(A5529 + A5628 − A5639 − A6638)θy,x
−(A5527 + A5626 − A5637 − A6636)θz,x ,

(4.106)

δθy : 0 = M55θ̈y + M15ü
o + M45θ̈z − A1115u

o,xx −A1615v
o,xx −A1515w

o,xx

−(A1525 − A1635)θx,xx −A1155θy,xx −A1145θz,xx +(A1519 + A1618)uo,x
+(A5619 + A6618)vo,x +(A5519 + A5618)wo,x +(A5529 + A5628 − A5639

−A6638)θx,x +(A1648 + A1549 − A1557 − A1656)θz,x +(A5599 + 2A5689

+A6688)θy + (A5579 + A5669 + A5678 + A6668)θz ,
(4.107)

δθz : 0 = M44θ̈z + M14ü
o + M45θ̈y − A1114u

o,xx −A1614v
o,xx −A1514w

o,xx

−(A1524 − A1634)θx,xx −A1145θy,xx −A1144θz,xx +(A1517 + A1616)uo,x
+(A5617 + A6616)vo,x +(A5517 + A5616)wo,x +(A5527 + A5626 − A5637

−A6636)θx,x +(A1557 + A1656 − A1549 − A1648)θy,x +(A5579 + A5678 + A5669

+A6668)θy + (A5577 + 2A5667 + A6666)θz ,
(4.108)

and the associated force boundary equations can be obtained as

A1111u
o,x +A1611v

o,x +A1511w
o,x +(A1512 − A1613)θx,x +A1115θy,x

+A1114θz,x +(A1519 + A1618)θy + (A1517 + A1616)θz = Nx ,
(4.109)

A1611u
o,x +A6611v

o,x +A5611w
o,x +(A5612 − A6613)θx,x +A1615θy,x

+A1614θz,x +(A5619 + A6618)θy + (A5617 + A6616)θz = Vxy ,
(4.110)
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A1511u
o,x +A5611v

o,x +A5511w
o,x +(A5512 − A5613)θx,x +A1515θy,x

+A1514θz,x +(A5519 + A5618)θy + (A5517 + A5616)θz = Vxz ,
(4.111)

(A1512 − A1613)uo,x +(A5612 − A6613)vo,x +(A5512 − A5613)wo,x
+(A5522 − 2A5623 + A6633)θx,x +(A1525 − A1635)θy,x

+(A1524 − A1634)θz,x +(A5529 + A5628 − A5639 − A6638)θy

+(A5527 + A5626 − A5637 − A6636)θz = Mx ,

(4.112)

A1115u
o,x +A1615v

o,x +A1515w
o,x (A1525 − A1635)θx,x +A1155θy,x

+A1145θz,x +(A1559 + A1658)θy + (A1557 + A1656)θz = My ,
(4.113)

A1114u
o,x +A1614v

o,x +A1514w
o,x +(A1524 − A1634)θx,x +A1145θy,x

+A1144θz,x +(A1549 + A1648)θy + (A1547 + A1646)θz = Mz .
(4.114)

We solve the wave Equations (4.103)–(4.108) exactly in the frequency domain.
The solution for wavenumber and wave amplitudes are quite complex here and
the PEP based method must be used. The PEP will result in a 12th order
polynomial for k. The details are skipped here because of the complexity.
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Fig. 4.37. Plot of wavenumbers kj for an AS/3501-6 graphite–epoxy composite
tubular cross-section with fiber angle θ = 0o, h = 0.002 m, η = h/R = 0.1

Wavenumber dispersion curves are plotted in Figure 4.37 for an AS/3501-
6 graphite–epoxy composite tubular cross-section with fiber angle θ = 0o,
h = 0.002 m, η = h/R = 0.1. The material properties used are: elastic moduli
E11 = 144.48 GPa, E22 = 9.632 GPa, E33 = 9.412 GPa, G23 = 6.516 GPa,
G13 = 7.457 GPa, G12 = 4.128 GPa; Poisson’s ratio: ν23 = 0.49, ν13 = 0.3,
ν12 = 0.3 and density ρ = 1389.2 kg/m3. In Figure 4.37, only the positive
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wavenumbers (forward propagating and evanescent modes) are plotted. Neg-
ative wavenumbers with the same amplitudes also exist and they represent
backward propagating or evanescent modes. One order of scale difference be-
tween the wavenumbers associated with propagating axial, shear and propa-
gating flexural, torsional modes can be seen. The plot also shows that at any
material point, there will be additional propagating shear wave modes due to
shear deformations γxz and γxy above the respective cut-off frequencies. The
cut-off frequencies satisfy DetF(0) = 0. Below these cut-off frequencies, the
shear waves are evanescent in nature.

4.8 Spectral Finite Element Model

The formulation of the finite length and throw-off elements are very similar
to previous formulations and hence not given here. Each node in this tube
element has six dof and the size of the stiffness matrix for a finite tube is
12 × 12 while that for the throw-off element is 6 × 6.

4.8.1 Short and Long Wavelength Limits for Thin Shell and
Limitations of the Proposed Model

From the kinematic assumptions (Equations (4.88)–(4.90)) in the proposed
higher order cylindrical bending model, it is clear that there are restrictions
on using this model for wave propagation in very thin as well as very thick
shells. Typically, for thin shells, one would expect the shell transverse mo-
tion to be the predominant one compared to that due to bending rotation
of the shell cross-section. In thin cylindrical shells, therefore, the axisym-
metric radial motion becomes important. On the other hand, in thick cylin-
drical shells, one would expect the propagation of higher order Lamb wave
modes (first and higher symmetric stretching modes, and third and higher
anti-symmetric modes) apart from the propagating longitudinal, flexural and
shear wave modes. For thick cylindrical shells, therefore, the spectral band
should be limited to below the cut-off frequencies of the higher order Lamb
wave modes that are not included in the kinematics of the present model. The
short and long wavelength limits for thin shells (based on Love’s thin shell
theory), beyond which significant deviation of the proposed model from the
actual behavior may occur, are discussed below.

Let us consider a cylindrical thin shell segment as shown in Figure 4.38,
where u, v and w are the longitudinal, tangential and radial displacements,
respectively. By neglecting the effect of bending moment, transverse shear
deformation and rotation of the shell normal, the thin shell kinematics [95]
can be written as

εxx = u,x , εφφ =
1
R

(w + v,φ ) , γxφ = v,x +
1
R

u,φ . (4.115)
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Fig. 4.38. Coordinate system and degrees of freedom for a laminated composite
thin shell (h << R)

The orthotropic constitutive model in the ply-local coordinate system can be
expressed as ⎧⎨

⎩
σxx

σφφ

τxφ

⎫⎬
⎭ =

⎡
⎣ Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

⎤
⎦
⎧⎨
⎩

εxx

εφφ

γxφ

⎫⎬
⎭ . (4.116)

Substituting Equations (4.115) and (4.116) in the energy components and
applying Hamilton’s principle, the coupled wave equations for the composite
thin shell can be expressed as

−I0ü + Ā11u,xx +Ā12
1
R (w,x +v,xφ ) + Ā26

1
R2 (w,φ +v,φφ )

+Ā16( 2
Ru,xφ +v,xx ) + Ā66

1
R (v,xφ + 1

Ru,φφ ) = 0 ,
(4.117)

−I0v̈ + Ā12
1
Ru,xφ +Ā22

1
R2 (w,φ +v,φφ ) + Ā16u,xx

+Ā26
1
R (w,x +2v,xφ +u,φφ ) + Ā66(v,xx + 1

Ru,xφ ) = 0 ,
(4.118)

I0ẅ + Ā12
1
R

u,x +Ā22
1

R2
(w + v,φ ) + Ā26

1
R

v,x = 0 , (4.119)

where (
Ājl, I0

)
=

∫ +h

−h

(
Q̄jl, ρ

)
dz . (4.120)

To obtain the characteristic equation, the spectral form of the displacement
variable u = {u , v , w}T in k-space can be assumed, which is

u =
∑

û(φ)e−j(kx−ωnt) , (4.121)
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where k is the wavenumber in the longitudinal direction. For displacement
continuity of the circumferential motion, û(φ) = û(2π + φ). Therefore, for
circumferential wave propagation, we can write

u =
∑

ũ(φ)e−j(kx+γφ−ωnt) , (4.122)

where γ is the integer wavenumber in the tangential direction. Coupling be-
tween the longitudinal and tangential modes for different fiber angles θ (Fig-
ure 4.38) is preserved through the wave coefficient vector ũ. Substituting
Equation (4.122) in the thin shell wave Equations (4.117)–(4.119), the char-
acteristic equation becomes

DetG(k, γ) = 0 . (4.123)

Since our objective here is to determine restrictions of the proposed model as
the shell becomes very thin h << R, the fundamental axisymmetric modes
and pure tangential modes need to be studied at the limits of the short and
long wavelengths.

The fundamental axisymmetric modes (longitudinal and radial) and van-
ishing tangential mode are recovered from Equation (4.123) by substituting
η = 0 and solving for k. In this case, we get a fourth-order characteristic
equation in k given by

ak4 + bk2 + c = 0 , (4.124)

where

a = ω2
nI0(−Ā11Ā66 + Ā2

16) + 1
R2

(
Ā11Ā22Ā66 − Ā11Ā

2
26 − Ā2

16Ā22

+2Ā12Ā16Ā26 − Ā2
12Ā66

)
,

(4.125)

b = ω4
nI2

0 (A66 + A66) − ω2
nI0

1
R2

(
A11A22 + A22A66 − A2

12 − A2
26

)
, (4.126)

c = −ω6
nI3

0 + ω2
nI0

1
R2

A22 . (4.127)

In the short wavelength limit, k → ∞ ⇒ a = 0

⇒ ωs = ωn =
[
(A11A22 − A2

12)A66 + 2A12A16A26 − A11A
2
26 − A22A

2
16

R2I0(A11A66 − A2
16)

]1/2

(4.128)
is the frequency at which the wave dispersion has a singularity. That is, the
cylinder experiences resonance at ωs in the axisymmetric radial mode. In the
long wavelength limit, k → 0 ⇒ c = 0

⇒ ωl = ωn = 0 ,
1
R

√
A22

I0
(4.129)

is the frequency after which the axisymmetric radial mode again starts propa-
gating and is also the cut-off frequency for the axisymmetric wave propagating
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in thin shell. For the isotropic case, this becomes (1/R)
√

E/ρ(1 − ν2) and is
called the ring frequency, which was discussed in the introductory discussion.
Also, for the isotropic case, ωs becomes simply (1/R)

√
E/ρ and smaller than

the ring frequency. Hence, for isotropic as well as orthotropic materials, it can
be said that the axisymmetric radial mode first becomes resonant at ωs and
cease to propagate and then again starts propagating at a little higher fre-
quency, that is at ωl. For h = 2 mm and η = 0.1 as considered in Figure 4.37,
these limiting frequencies are ωs = 20.954 kHz and ωl = 21.017 kHz.
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Fig. 4.39. Plot of wavenumbers in axisymmetric modes (1 - longitudinal, 3 - radial)
for different η(= h/R) (0.05 to 0.25) for θ = 0o AS/3501-6 graphite–epoxy composite
shell

Figure 4.39 shows the location of the singularity and cut-off in the ax-
isymmetric radial mode (marked 3) in a graphite–epoxy composite shell with
different η(= h/R) and θ = 0. The non-dispersive longitudinal modes (marked
1) remain unchanged for all values of η. Figure 4.40 shows the separation be-
tween the singularity (ωs on the lower side along the frequency axis) and the
cut-off frequency following the new propagation of the axisymmetric radial
mode (ωl on the higher side along the frequency axis). Therefore, to exclude
the effect of the unaccounted radial mode (as in the case of the proposed new
tubular element), the best comparable behavior of a cylindrical tube (when
modeled as a beam) can be obtained for a certain range of η, such that the
applied forcing frequency band falls below ωs < ωl. As a special case for cer-
tain orientation of the fibers, a second frequency band between ωs and ωl

(Figure 4.40) can be obtained, within which the axisymmetric radial mode
vanishes. This can be clearly seen from Figure 4.41, which shows that almost
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Fig. 4.40. Plot of wavenumbers in axisymmetric modes (1 - longitudinal, 3 - ra-
dial) for different fiber angles θ for η = 0.1 h = 2 mm AS/3501-6 graphite–epoxy
composite shell

35 kHz bandwidth is available with vanishing axisymmetric radial mode for
a tube cross-section having η = 0.1 and fiber angle θ = 60◦. This is the so
called stop-band for the radial mode, which is an important design parameter
for composite shells for controlling vibration and buckling. However, it should
be noted that for the composite tube when designed to behave mainly as a
thin-walled beam structure, the beam motion is less likely to be affected by
the radial mode (as the motion of the beam axis remains unaltered), unless a
circumferential normal pressure type loading is applied.

The fundamental cross-sectional warping mode consisting of coupled tor-
sional radial motion is recovered by substituting k = 0 in Equation (4.123)
and solving the fourth-order polynomial in γ given by

a′γ4 + b′γ2 + c′ = 0 , (4.130)

where
a′ = −ω2

nI0
1

R4
A22A66 + ω2

nI0
1

R3
A2

26 , (4.131)

b′ = ω4
nI2

0

1
R2

(A22 + A66) − ω2
nI0

1
R4

A22A66 , (4.132)

c′ = −ω6
nI3

0 + ω4
nI2

0

1
R2

A22 . (4.133)

In the short wavelength limit, γ → ∞ ⇒ a′ = 0

⇒ ωs = ωn = 0 or R =
A22A66

A2
66

→ ∞ , (4.134)



112 4 Spectral Finite Elements for Homogeneous Wave

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

θ (degree)

Li
m

iti
ng

 fr
eq

ue
nc

y 
(k

H
z)

w
s

w
l

(w
l
−w

s
) 

Fig. 4.41. Separation between the short and long wave limiting frequencies (ωl −
ωs) for different fiber angles θ for η = 0.1, h = 2 mm AS/3501-6 graphite–epoxy
composite shell

which shows that for a smaller radius cylindrical tube, the wavelength of the
radial mode becomes longer and vanishes beyond the long wavelength limit ωl,
which is also the cut-off frequency for such propagation. This long wavelength
limit is obtained for γ → 0 ⇒ c′ → 0

⇒ ωl = ωn = 0 ,
1
R

√
A22

I0
, (4.135)

which is the same as the cut-off frequency of the radial mode in the axisym-
metric case (Equation (4.129)). Figure 4.43 shows the decreasing nature of
γ (hence increasing wavelengths) for the tangential and the radial modes for
increasing η. Also, the cut-off frequency of the radial modes shifts towards
higher frequencies for increasing η (smaller radius for a given shell thickness).
Figure 4.42 shows a similar shift in the cut-off frequency of the radial mode (as
in the above case) for increasing fiber angles θ for η = 0.1. However, the tan-
gential or torsional mode has a symmetry about θ = 45o and is non-dispersive.
Such cross-sectional warping is already present in the proposed model (see the
kinematics), where propagation of the radial mode induced by torsional load
is not restricted due to any additional kinematical assumptions.

The above analysis shows that the main limitation of the proposed tubu-
lar element while capturing the behavior of composite thin cylindrical shells,
is that the axisymmetric radial mode induced by longitudinal load is ab-
sent in the element. Also, the circumferential normal pressure load on the
cylindrical cross-section cannot be modeled. The best comparable thin shell
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Fig. 4.42. Plot of wavenumbers in tangential-radial modes (2 - tangential, 3 -
radial) for different fiber angles θ for η = 0.1 h = 2 mm AS/3501-6 graphite–epoxy
composite shell. Only integer values of the wavenumbers γ are admissible

Fig. 4.43. Plot of wavenumbers in tangential-radial modes (2 - tangential, 3 - radial)
for different η(= h/R) (0.05 to 0.25) for θ = 0◦ AS/3501-6 graphite–epoxy composite
shell. Only integer values of the wavenumbers γ are admissible



114 4 Spectral Finite Elements for Homogeneous Wave

behavior can be captured over a frequency band below the limiting frequency
of short wavelength ωs and over the stop-bands (ωl − ωs) for specified values
of η(= h/R) and fiber angle θ for axisymmetric modes. On the higher side of
η and smaller L/R, one needs to consider the effect of parabolic transverse
shear stress variation across the shell thickness and vanishing normal stress
at the shell surfaces in the kinematics, which are not included in the present
model. Therefore, for accurate results, application of the present tubular ele-
ment needs to be restricted to forcing frequency bandwidths below the lowest
of the new cut-off frequencies of any of these unaccounted modes (i.e., higher
order anti-symmetric Lamb wave mode due to parabolic transverse shear,
and symmetric Lamb wave mode due to vanishing normal stress at the shell
surfaces). However, it can be seen that for both axisymmetric and torsional
excitations in very thick cylindrical shell and rod [80], the lowest longitudi-
nal and torsional modes remain non-dispersive and they are preserved in the
present model. The studies on characteristic wave behavior reported in [81]
for higher thickness and anisotropy can be adopted to determine the thickness
limit for a particular application while using the present SFE.

4.8.2 Comparison with Analytical Solution

Although many theories based on potential functions as well as first-order and
higher order shear deformable shell kinematics have been reported in the liter-
ature as discussed earlier, most of the wave propagation studies are focused on
the analysis of the frequency spectrum and harmonic analysis in modal space
and these are difficult to apply for transient dynamic analysis. For validation
of the results from the present SFEM, which is highly suited to broadband and
impact type loading on composite tubes, we consider the analytical solution
for impact induced response of a semi-infinite membrane shell [95] for unidi-
rectional (θ = 0o) composite. The kinematics is given in Equation (4.115).
Additional approximations that can be made under longitudinal impact are
∂

∂φ ( ) = 0 and v → 0. Starting with shear deformable kinematics also, the
same approximation remains valid (except near structural boundaries across
the span) under longitudinal impact, and the wave equations take the form

−I0ü + A11u,xx +A12
1
R

w,x = 0 , (4.136)

I0ẅ + A12
1
R

u,x +A22
1

R2
w = 0 , (4.137)

subjected to initial condition u̇(x, 0) = 0 at t = 0, the boundary conditions
u = u(x, t) and w = w(x, t) prescribed at a particular x or

−A11u,x −A12
1
R

w = Nx , (4.138)

where Nx is the applied longitudinal impact. Assuming the solution of the
field variables u transformed into their time uncoupled Fourier coefficients
(spectral amplitude) û as done earlier, we can write
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u =
∑

n

ûeiωnt , û = ũ1e
−jk̄x + ũ2e

jk̄x , (4.139)

w =
∑

n

ŵeiωnt , ŵ = w̃1e
−jk̄x + w̃2e

jk̄x , (4.140)

where the wavenumber

k̄ =

√
ω2

nI0
1

R2 A22 − ω4
nI2

0

ω2
nI0A11 − (A11A22 − A2

12)
1

R2

(4.141)

is obtained by solving the characteristic equation derived from Equations (4.136)
and (4.137). ωn is the sampling frequency used for forward and inverse FFT
and is the same as the sampling frequency of the impact loading spectrum
N̂x(ωn) (Figure (4.5)) used to excite the structure. Considering the free-end
of the semi-infinite complete cylindrical membrane shell under impact load
is at x = L and the other end is at x = −∞, the displacement spectrum û
finally becomes

û = ũ1e
−jk̄x , ũ1 =

N̂x/(2πR)
(−jk̄A11 + A12

1
RR21)e−jk̄L

, (4.142)

where

R21 =
−jA12

1
R k̄

−ω2I0 + A22
1

R2

. (4.143)

The short impulse type loading used for longitudinal impact is shown in Fig-
ure 4.5. The peak amplitude used in this case is 100 N, whereas, the time
duration remains same as 50µs. Fine discretization of the frequency spectrum
with Nyquist point N = 16384 (∆t = 1µs) is made while the inverse FFT of
the analytically computed velocity spectrum jωnû (Equation (4.142)) is taken
to obtain the velocity history at x = L. Graphite–epoxy unidirectional com-
posite (θ = 0o) with material properties as considered earlier is used here. The
velocity history from the analytical result is plotted in comparison with the
velocity history from SFEM in Figure 4.44. It can be seen from the analytical
result that the initial impact has produced a non-dispersive longitudinal wave
coupled with radial motion after the initial incidence. Although the tube is
semi-infinite along x, the almost stationary axisymmetric radial motion has
a non-decaying effect, which has caused window distortion. This numerical
problem inherent to the FFT is evident from the initial non-zero values in the
analytical response before the initial incidence at around 100µs (Figure 4.5).
The non-dispersive nature of the longitudinal velocity after incidence, which
is due to coupling with radial motion, could not be captured by the SFEM
as the DOFs associated with axisymmetric radial motion are absent in the
model. Also, the peak velocity estimate from SFEM is higher than that from
the analytical result.
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Fig. 4.44. Comparison of the mid-plane longitudinal velocity from SFEM and the
analytical result at the free end of a semi-infinite graphite–epoxy unidirectional
(θ = 0o) composite membrane shell (h = 0.002 m, h/R = 0.1) with a short pulse
(Figure 4.5) applied in the longitudinal direction

4.9 Numerical Simulations

As discussed in the introduction, many solution methods and fundamental
studies have been reported in the literature on wave propagation in cylindrical
shells. Although few studies are on composite shells and thin-walled bodies,
they focus on in-plane and flexural wave motions separately. In this section,
numerical simulations are carried out considering a single cantilever graphite–
epoxy tubular element.

4.9.1 Time Response Under Short Impulse Load and the Effect of
Fiber Orientations

The short impulse load history used to excite the clamped–free graphite–epoxy
composite tube at its free end is shown in Figure 4.5. The time duration is
approximately 50µs with peak amplitude of 100N . Such a broadband load
also encompasses the propagating shear wave modes (see Figure 4.37). The
SFE is formulated considering an undamped system. However, in composite
structures, damping is a common phenomenon. Different approaches to in-
clude the effect of proportional and non-proportional damping in SFEM have
been proposed in the previous section and in [96]. In the following simula-
tions, we assume a small amount of damping in the form kj → kj(1 − iηd),
where the damping coefficient (also called the loss factor) ηd = 0.001. Also,
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improved numerical stability and reduced effect of frequency window distor-
tion can be achieved by using such artificial damping in an undamped model
when accurate time responses need to be post-processed.

First, we simulate the dynamic response of a clamped–free tube (L = 1 m,
L/R = 50, η = 0.1, θ = 0◦) by applying the above short pulse at the free end
separately in global X and Z directions and a similar moment of 100 N-m
about the X-axis.

For load applied in the X-direction, the deformed outer surface (ξ = h)
geometry is snapped at t = 0.5 ms in Figure 4.45. One limitation of the model
is clearly visible from this simulation; the absence of any axisymmetric surface
undulations on the axially compressed rings. Such a small-scale effect can be
obtained through general shell kinematics as discussed in Section 4.8.1. For
three different sets of fiber angle, the axial displacement and the axial velocity
histories at the point (1, 0, R + h) on the free-end are shown, respectively,
in Figure 4.46 and 4.47. After the initial incidence of the impact, repeated
reflections from the clamped end of the tube can be seen in both responses. It
is interesting to note that the θ = [0o]10/[90o]10 configuration, which generates
maximum thickness asymmetry along the local ξ direction, is less responsive
than the θ = [+45o]10/[−45o]10 configuration.

x 
y 

z 

Fixed−end 

Fig. 4.45. Snap of the outer surface geometry at t = 0.5 msec for the graphite–
epoxy composite clamped–free tube (L = 1 m, L/R = 50, η = 0.1 with θ = 0◦

lay-up). A short pulse load (Figure 4.5) is applied uniformly at the free end along
the X-direction. Scale-factor for displacement amplification is 1 × 108

For load applied in the Z-direction, the deformed outer surface (ξ = h)
geometry is snapped at t = 0.5 ms in Figure 4.48. The effect of ovaling near
the mid-length of the tube can be observed. For three different sets of fiber
angle, the transverse displacement and transverse velocity histories at the
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Fig. 4.46. Longitudinal displacement history u(t) at a point on the outer top-
surface (y = 0, z = R + h) at the free end (x = 1 m) of the cantilever composite
tube for different fiber angles. -.-.- θ = [0◦]20; —– θ = [+45◦]10/[−45◦]10; - - -
θ = [0◦]10/[90◦]10

point (1, 0, R + h) on the free end are shown, respectively, in Figure 4.49
and 4.50. Unlike the axial responses shown earlier, here, the responses are
dispersive. After the initial incidence of the impact, one reflection from the
clamped end of the tube can be seen in both responses, which arrive at the
measurement point at about t = 1.4 ms. Compared to the axial response,
here the θ = [0◦]20 configuration generates the maximum transverse response.
There are small distortions in the predicted responses before the incidence
of impact (before t = 50µs), which are due to the frequency window wrap-
around during inverse FFT and is inherent to any analysis in the transformed
finite domain.

For torsional load applied about the X-axis, the deformed outer surface
(ξ = h) geometry is snapped at t = 0.5 ms in Figure 4.51. It can be seen that
the rings through which the torsional waves have propagated towards the
clamped end have bulged almost axisymmetrically, which can be attributed
to the combined effect of anti-symmetric thickness stretching and rotational
inertia of the tube cross-section. For three different sets of fiber angle, lateral
displacement and lateral velocity histories at the point (1, 0, R+h) on the free
end are shown, respectively, in Figures 4.52 and 4.53. Although the torsional
waves are non-dispersive for θ = 0o (see the dispersion curve in Figure 4.37),
the lateral flexural waves are dispersive and finally, the combined effect (Equa-
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Fig. 4.47. Longitudinal velocity history u̇(t) at a point on the outer top-surface (y =
0, z = R+h) at the free end (x = 1 m) of the cantilever composite tube for different
fiber angles. -.-.- θ = [0◦]20; —– θ = [+45◦]10/[−45◦]10; - - - θ = [0◦]10/[90◦]10
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Fig. 4.48. Snap of the outer surface geometry at t = 0.5 msec for the graphite–
epoxy composite clamped–free tube (L = 1 m, L/R = 50, η = 0.1 with θ = 0o

lay-up). A short pulse load (Figure 4.5) is applied uniformly at the free end along
Z-direction. Scale-factor for displacement amplification is 1 × 107
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Fig. 4.49. Transverse displacement history w(t) at a point on the outer top-surface
(y = 0, z = R+h) at the free end (x = 1 m) of the cantilever composite tube for dif-
ferent fiber angles. -.-.- θ = [0◦]20; —–θ = [+45◦]10/[−45◦]10; - - - θ = [0◦]10/[90◦]10
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Fig. 4.50. Transverse velocity history ẇ(t) at a point on the outer top-surface (y =
0, z = R+h) at the free end (x = 1 m) of the cantilever composite tube for different
fiber angles. -.-.- θ = [0o]20; —– θ = [+45o]10/[−45o]10; - - - θ = [0o]10/[90o]10
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tion (4.89)) in the lateral motion on the outer top surface becomes attenuating
in nature. For this reason, the incident peaks and the reflected peaks are vis-
ible only in the velocity history (Figure 4.53) that has dimensional similarity
with the phase velocity of the dispersive waves. The displacement and the
velocity histories corresponding to θ = [+45◦]10/[−45◦]10 configuration are
respectively 2 and 3 orders smaller than those from the two other configura-
tions. As in the plots of transverse responses against transverse loading, even
here we see small errors due to the window distortion in the initial responses
(before t = 50 µs). However, these errors are within an acceptable range and
do not alter the nature of the response significantly. Also, these errors can be
eliminated by expanding the length of the frequency window with appropriate
resolution.

x 
y 

z 

Fig. 4.51. Snap of the outer surface geometry at t = 0.5 msec for the graphite–
epoxy composite clamped–free tube (L = 1 m, L/R = 50, η = 0.1 with θ = 0o

lay-up). A short pulsed torsional loading of peak amplitude 100 N − m (similar
to Figure 4.5) is applied uniformly at the free end about X-axis. Scale-factor for
displacement amplification is 1 × 106

In this chapter, the dynamics of 1-D laminated composite waveguides of
varying complexities are discussed. The numerical examples given in this chap-
ter show the ease with which SFEM handles such complex problems. Advan-
tages and limitations of various models relating to the approximations involved
in the theory are explored in detail. The procedure for the evaluation of var-
ious correction factors associated with approximate theories are outlined in
detail. The next logical step is to extend the SFEM to yet another class of
difficult problems, namely the wave propagation analysis of inhomogeneous
structures. This is addressed in the next chapter.
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Fig. 4.52. Lateral displacement history v(t) at a point on the top surface (y = 0,
z = R+h) at the free end (x = 1 m) of the clamped–free composite tube for different
fiber angles. -.-.- θ = [0◦]20; —– θ = [+45◦]10/[−45◦]10; - - - θ = [0◦]10/[90◦]10
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Fig. 4.53. Lateral velocity history v̇(t) at a point on the outer top surface (y = 0,
z = R+h) at the free end (x = 1 m) of the clamped–free composite tube for different
fiber angles. -.-.- θ = [0◦]20; —– θ = [+45◦]10/[−45◦]10; - - - θ = [0◦]10/[90◦]10
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Wave Propagation in One-dimensional
Inhomogeneous Structures

It is now well-known that the homogeneous plane wave has the form u =
Aej(k·x−ωt), where the wave amplitude A and the wave vector k are real.
When A and k become complex numbers, as happens for the linear and
dissipative (visco-elastic) system, A decreases with propagating distance and
u is called an inhomogeneous wave [24]. Although the inhomogeneous wave
is defined in a strict sense for two- or three-dimensional media, the definition
can be extended to the one-dimensional situation.

Although it is known that a plane wave solution does not exist for hetero-
geneous media and only approximate methods can be employed for analysis,
the present chapter discusses the possibility of an approximate plane wave
solution with a complex wavenumber (wave vector in one dimension) for the
wave propagating in the direction of inhomogeneity. This wave is called herein
the inhomogeneous wave, whose behavior is similar to that of a wave prop-
agating through visco-elastic material, although the inhomogeneous material
(functionally graded material) considered in this chapter is linear elastic.

With the advent of FGM in several structural applications, it is essential
to know their behavior under high frequency mechanical and thermal load-
ing, to which they are frequently subjected. However, two different cases are
considered; first, a wave propagating in the direction of gradation and second,
propagation in the direction normal to the gradation. The first case gives
rise to the inhomogeneous wave, where the wave amplitude decreases while
propagating. This characteristic is missing in the second case, which we will
refer to as the homogeneous wave case. The analysis procedure is the same as
that normally done for anisotropic materials, except for one important differ-
ence. In FGM, asymmetric (about the reference plane) gradation in density
may result in a first mass moment, which is absent from anisotropic mate-
rials. The literature is minimal on aspects of wave propagation analysis in
one-dimensional heterogeneous waveguides.

In this chapter, the derivation and subsequent application of SFEs to 1-D
FGM waveguides are presented. To establish the characteristics of the in-
homogeneous wave, a simple inhomogeneous rod SFE is formulated. In the
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absence of an exact solution, it is shown how approximate plane wave solu-
tions can be obtained and approximate wavenumbers can be defined for inho-
mogeneous wave propagation through heterogeneous media. The principle of
virtual work (weighted residual method) in the frequency domain is employed
for SFE formulation. It is shown in [97] that approximate spectral elements
can be formulated by using this principle for a structure with variable cross-
section. The same procedure is applied here to derive an approximate SFE for
length-wise graded waveguide. A new kind of idealization is introduced to get
an approximate dispersion relation, which, when solved, results in a complex
wavenumber that has non-trivial real and imaginary parts. Alternatively, as
the governing equation for most of the inhomogeneous 1-D waveguides are
devoid of any singularities, a series solution of the governing equation can be
obtained and such a solution can be used to get new approximate spectral
elements. This approach is followed in this chapter to derive a highly conver-
gent spectral element. Thus, a series of approximate SFEs is formulated to
analyse wave propagation in heterogeneous media.

The length-wise graded rod waveguide is further extended to a first-order
shear flexible length-wise graded beam waveguide, where exponential variation
of material properties are assumed. It is shown that for this kind of variation,
an exact solution can be obtained for the one-parameter family of gradation
and approximate solutions can be obtained for the two-parameter family of
gradation.

In addition to these, another SFE is developed for beams with depth-
wise gradation under FSDT with lateral contraction, already discussed in
the previous chapter (Section 4.4.1). This beam can be reduced to FSDT
under the limiting condition of negligible depth-wise variation of transverse
displacement. Because of the high temperature environment in typical FGM
applications, the effect of temperature is important and changes in material
properties at elevated temperature should be taken into account. However, to
avoid complications and to remain in the domain of linear analysis, the effect of
temperature is introduced in the most simple fashion in the formulation of this
SFE. Here, thermal stresses are introduced by solving the thermal equation
separately to obtain the depth-wise temperature variation. This thermal field
is then imposed as an externally applied distributed body and surface force
along with the applied mechanical loading.

5.1 Length-wise Functionally Graded Rod

The governing differential equation for an inhomogeneous 1-D rod waveguide
is derived as follows. A rod with different materials along the length and
thickness, shown in Figure (5.1) is composed of essentially three types of
materials. Material 1 and 2 are homogeneous (material properties do not vary
with spatial coordinates), whereas the FGM has varying material properties
in the X direction. Moreover, material properties of the FGM are those of



5.1 Length-wise Functionally Graded Rod 125

X

Y

E(x,z) , 

Z

NN  12u 2 , u 1,

ρ ( x,z) 

Material 1
FGM

Material 2

Fig. 5.1. Frequency domain finite element

material 1 at the left edge and those of material 2 at the right edge. As far as
the spatial variation is concerned, the following expressions are assumed for
Young’s modulus E and density ρ,

E(x, z) = E◦f(x)g(z), ρ(x, z) = ρ◦s(x)t(z) , (5.1)

where E◦ and ρ◦ are constant over the length and thickness of the rod. Since
only longitudinal motion is considered, only the stress σxx and the longitudinal
displacement u are involved. The stress is related to the displacement gradient
by

εxx = ux, σxx = E(x, z)ux , (5.2)

where, as before, x as subscript denotes first derivative with respect to the
spatial variable x. Applying Hamilton’s principle , the governing partial dif-
ferential equation for the FGM rod, in the absence of body force, is

(A11f(x)ux)x = I◦s(x)ü , (5.3)

where, for simplicity, cross-sectional area A is assumed constant over the
length, and dot over a variable denotes differentiation with respect to time.
A11 and I◦ are depth-wise (z) integrated properties and are defined as

A11 = E◦
∫

A

g(z) dA, I◦ = ρ◦
∫

A

t(z) dA . (5.4)

The natural boundary condition, obtained from the variational principle, is

A11f(x)ux = F , (5.5)

for the nodal points x = 0 and x = L, where F is the applied concentrated ax-
ial load at the boundary. Although, g(z) and t(z) introduced in Equation (5.1)
can have arbitrary variations, in subsequent studies they are kept constant,
i.e., there is no depth-wise variation for E and ρ. The length-wise variation
is described by f(x) and s(x), which, for polynomial variations, are described
as:
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f(x) = (1 + αx)n
, s(x) = (1 + βx)n

, (5.6)

and for exponential variation:

f(x) = eαx, s(x) = eβx . (5.7)

The easiest way to solve Equation (5.3) together with the boundary condi-
tion (5.5) is to apply the FE procedure. The details of FE development can be
found in [98], [99]. However, the standard FE procedure can also be extended
to the frequency domain, which generates approximate and exact SFEs.

Assuming a solution of the form, u(x, t) =
∑

n ũ(x, ωn)e−jωnt, Equation
(5.3) then becomes

(A11f(x)ũx)x + I◦s(x)ω2
nũ = 0 , (5.8)

for each value of ωn. The equation is a classical example of the Sturm–Liouville
(SL) boundary value problem or SL system whose generic form is

−d
[
p(x)dy/dx

]
/dx + q(x)y = λr(x)y , p(x) > 0 , r(x) > 0 , x ∈ [a, b] . (5.9)

The non-negative requirements for p(x) and r(x) are automatically satisfied
for exponential variations laws (Equation (5.7)). For a linear variation, these
requirements are satisfied by suitably choosing the values of α and β. The
associated boundary conditions are

a1y(a) + a2p(x)y′(a) = 0 , b1y(b) + b2p(x)y′(b) = 0 . (5.10)

For a cantilever rod problem, e.g., a1 , b2 = 1, a2 = 0 , b1 = 0, the system
is only satisfied for a discrete set of eigenvalues λj with j = 0, 1, . . ., and
corresponding eigenfunctions yj(x). The SL problem can be solved efficiently
using the Prüfer transformation (see [100]), whose details can be found in [98]
and are omitted here.

5.1.1 Development of Spectral Finite Elements

Introducing the homogeneous wavenumber k◦, Equation (5.8) becomes

f(x)ũxx + f ′(x)ũx + k2
◦s(x)ũ = 0, k2

◦ = I◦ω2/A11 . (5.11)

This equation in terms of the linear and exponential material variation laws
takes the forms

Linear (n = 1) : (1 + αx)ũxx + αũx + k2
◦(1 + βx)ũ = 0 , (5.12)

Exponential : ũxx + αũx + k2
◦e

γxũ = 0, γ = β − α . (5.13)

There is no closed form solution for the polynomial variation, even in the
particular case of n = 1 given by Equation (5.12), which is the only case in
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the polynomial variation discussed further. Reference [101] gives this solution
in terms of the solution of the degenerate hypergeometric equation, which is
again another complicated series solution. For the exponentially varying ma-
terial property (Equation (5.13)), the exact solution is also given in [101] and
is expressed in terms of the Bessel function of fractional order. This solution
gives no notion of wavenumber, which is essential for wave propagation stud-
ies and no conclusion can be drawn regarding the effect of inhomogeneity on
the dispersion (dependence of wavenumber on frequency) relation. Hence, we
develop an approximate propagating wave solution preserving the notion of
wavenumber, which is expected to be easily implementable in generic finite
element type matrix methodology giving the required accuracy when a suf-
ficient number of elements is used. The basis for forming the matrix–vector
equation in the frequency domain is the PVW (see Equation (4.58)) given by

∫
Ω

(σ̃klδε̃kl − ρω2ũiδ(ũi)) dΩ −
∫

Ω

f̃iδũi) dΩ −
∫

Γ

t̃iδũi) dΓ = 0 , (5.14)

where ũ, σ̃ and ε̃ are the frequency dependent displacement, stress and strains,
ρ is the density and Ω and Γ denote the domain and boundary of the structure.
In the present case, the PVW takes the form

∫ L

0

A11f(x)ũxṽx dx −
∫ L

0

I◦s(x)ω2ũṽ dx

−

boundary terms︷ ︸︸ ︷[
A11f(x)(ũx)ṽ

]L

0
= 0 , (5.15)

where ṽ is any arbitrary admissible weight function (virtual displacement) in
the frequency domain.

Homogeneous Solution as an Interpolating Function

Since Equations (5.12) and (5.13) cannot be solved exactly, the nearest so-
lution is taken as an interpolating function, namely the homogeneous rod
solution

ũ(x, ω) = Ae−jk◦x + Be+jk◦x . (5.16)

A and B are related to the nodal displacements ũ1 and ũ2 by
{

A
B

}
=

1
∆

[
−e+jk◦L 1
e−jk◦L −1

]{
ũ1

ũ2

}
, ∆ = −e+jk◦L + e−jk◦L . (5.17)

Substituting Equations (5.17) and (5.16) into Equation (5.15), we obtain
{
[K(ω)] − ω2[M(ω)]

}
{û} = {f̂} , (5.18)

where {û} and {f̂} denote the nodal values of the displacement and axial
force, respectively, at frequency ω. This equation is solved for different values
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of ω and the IFFT gives the time domain history. The expressions for the
dynamic stiffness matrix [K(ω)] − ω2[M(ω)] for both linear and exponential
material property variation are given below, and are obtained by using Equa-
tions (5.12) and (5.13) in Equation (5.15). In subsequent sections, elements
with a linearly varying material property will be referred to as SEL1 (spectral
element with linear material property variation) and the elements with expo-
nentially varying material property will be referred to as SEE1. The elements
of SEL1 (to be pre-multiplied by [C]T and post-multiplied by [C], where [C]
is the matrix given in Equation (5.17) and k = k◦) are

KSEL1(1, 1) = (−1/4)j(2e(−2jkL)A11k
3 +

2e(−2jkL)A11k
3αL − je(−2jkL)A11k

2α +

2e(−2jkL)Ioω
2k + 2e(−2jkL)Ioω

2βkL −
je(−2jkL)Ioω

2β − 2A11k
3 + jIoω

2β + jA11k
2α − 2Ioω

2k)/k2 ,

KSEL1(1, 2) = A11k
2L − Ioω

2L + (1/2)A11k
2αL2 − (1/2)Ioω

2βL2 ,

KSEL1(2, 2) = (1/4)j(2e(2jkL)A11k
3 +

2e(2jkL)A11k
3αL + je(2jkL)A11k

2α +

2e(2jkL)Ioω
2k + 2e(2jkL)Ioω

2βkL +

je(2jkL)Ioω
2β − 2A11k

3 − jIoω
2β − jA11k

2α − 2Ioω
2k)/k2 .

The elements of SEE1 (to be pre-multiplied by [C]T and post-multiplied by
[C]) are

KSEE1(1, 1) = −j(jIoω
2e(−L(2jk−β))α + 2Ioω

2e(−L(2jk−β))k +

jA11k
2e(−L(2jk−α))β +

2A11k
3e(−L(2jk−α)))/(jβ + 2k)/(jα + 2k) +

j(jIoω
2α + 2Ioω

2k + jA11k
2β + 2A11k

3)/(jβ + 2k)/(jα + 2k) ,

KSEE1(1, 2) = −(−e(αL)A11k
2β + e(βL)Ioω

2α)/α/β − (A11k
2β − Ioω

2α)/α/β ,

KSEE1(2, 2) = −j(jA11k
2e(L(2jk+α))β − 2A11k

3e(L(2jk+α)) − 2Ioω
2e(L(2jk+β))k +

jIoω
2e(L(2jk+β))α)/(−2k + jα)/(jβ − 2k) + j(jA11k

2β − 2A11k
3 −

2Ioω
2k + jIoω

2α)/(−2k + jα)/(jβ − 2k) , k = k◦.

Series Solution of Differential Equation

Alternatively, the series solution of the differential equation can be taken as
interpolating function. The series solution for Equation (5.12) is

û(x) = û(0) + Dû(0)x +
(
− αDû(0)/2 − k2

◦û(0)/2
)
x2 +(

α2Dû(0)/3 + αk2
◦û(0)/3 − k2

◦Dû(0)/6

−k2
◦βû(0)/6

)
x3 , Dû(0) = ûx|x=0 , (5.19)
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which is the solution up to cubic order. Substituting û1 for û(0) and solving
for Dû(0) by evaluating û at x = L and equating that to û2, û can be written
in terms of nodal values as

û(x ) = û1 − p2 x

p1
+

(
1
2

α p2
p1

− 1
2

k◦2 û1

)
x2

+
(
− 1

3
α2 p2
p1

+
1
3

α k◦2 û1 +
1
6

k◦2 p2
p1

− 1
6

k◦2 β û1

)
x3

p1 = L − 1
2

L2 α +
1
3

L3 α2 − 1
6

L3 k◦2

p2 = û1 − 1
2

L2 k◦2 û1 +
1
3

L3 α k◦2 û1 − 1
6

L3 k◦2 β û1 − û2 .

This equation can be used to formulate another spectral element, which, al-
though approximate, is expected to capture the essential wave propagation
behavior when a sufficiently large number of elements is used. The dynamic
stiffness matrix formulated from this interpolating function is given below,
where k denotes k◦. This element will be further referred to as SEL2.

KSEL2(1, 1) = (−1/60)(40A11α
2k2L4 + 20ω2Iok

2L4 + 8ω2IoL
5βk2 +

10ω2IoL
5βα2 + 20ω2IoL

3β − 100ω2IoL
3α − 28ω2IoL

4βα +

32ω2IoL
4α2 + 2ω2Iok

4L6 + 80A11α
2L2 + ω2Ioβk4L7 −

60A11α
3L3 + 120A11Lα − 6ω2IoL

6βαk2 − 240A11 −
14ω2IoL

5αk2 − 10A11αk4L5 − 20A11k
4L4 + 80ω2IoL

2)/

L/(−2 + Lα)2 ,

KSEL2(1, 2) = (1/60L)(3ω2IoL
5αk2 − 8ω2IoL

4α2 − 40ω2IoL
2 − 60A11α

3L3 +

40ω2IoL
3α − 5ω2IoL

5βα2 − 20ω2IoL
3β + 2ω2IoL

6βαk2 +

80A11α
2L2 − 240A11 + 20A11α

2k2L4 + 22ω2IoL
4βα −

10ω2Iok
2L4 − 6ω2IoL

5βk2 + 120A11Lα)/(−2 + Lα)2 ,

KSEL2(2, 2) = (−1/30L)(6ω2IoL
4α2 + 40ω2IoL

2 − 30A11α
3L3 + 40A11α

2L2 −
30ω2IoL

3α + 5ω2IoL
5βα2 + 30ω2IoL

3β − 120A11 + 60A11Lα −
24ω2IoL

4βα)/(−2 + Lα)2 .

Similarly, the equation for exponential material variation (Equation (5.13))
is solved, and the solution up to cubic order is given by

û(x) = û(0 ) + Dû(0 ) x +
(
− 1

2
αDû(0 ) − 1

2
ko2 û(0 )

)
x2

+
(
− 1

6
ko2 β û(0 ) +

1
6

α2 Dû(0 ) +
1
3

α ko2 û(0 ) − 1
6

ko2 Dû(0 )
)

x3 .

Proceeding in a similar fashion and solving for nodal displacements u1 and
u2, the solution becomes
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û(x ) = û1 − p2 x

p1
+

(
1
2

α p2
p1

− 1
2

ko2 û1

)
x2

+
(
− 1

6
ko2 β û1 − 1

6
α2 p2
p1

+
1
3

α ko2 û1 +
1
6

ko2 p2
p1

)
x3 ,

p1 = L − 1
2

L2 α +
1
6

L3 α2 − 1
6

L3 ko2 ,

p2 = û1 − 1
2

L2 ko2 û1 − 1
6

L3 ko2 β û1 +
1
3

L3 α ko2 û1 − û2 .

The spectral element can be formulated in the usual way and this element
will be referred to as SEE2. The elements of the stiffness matrix are

KSEE2(1, 1) = (24gω2Ioα
3k2Lβ − 8gω2Ioα

5L2β2 − 16hA11β
5α3L −

4ω2Ioα
4L2β3 + ω2Ioα

5L4β4 − 4ω2Ioα
3L3k2β3 +

2ω2Ioα
4k2L4β3 − 4ω2Ioα

4L3β4 + 4ω2Ioα
3L2β4 +

8ω2Ioα
3β3L + 12gω2Ioα

3k4L3β + 48gω2Ioα
4k2L −

36gω2Ioα
4k2L2β − 8gω2Ioα

3k2L2β2 − 8gω2Ioα
3β2 +

24gω2Ioα
5βL − 2gω2Ioα

3k4L4β2 − 24gω2Ioα
3k4L2 +

8gω2Ioα
4k2L3β2 − 24gω2Ioα

4β + 16gω2Ioα
4Lβ2 −

24gω2Ioα
5 + hA11β

5L4k4α2 − 4hA11β
5L3k2α3 −

24hA11β
5k2Lα + 4hA11β

5α4L2 + 16hA11β
5L2k2α2 +

8hA11β
5k4L2 − 4hA11β

5L3k4α + 20hA11β
5α2 −

20A11β
5α2 + 24ω2Ioα

5 + 4ω2Ioα
4k2L3β2 −

4ω2Ioα
5L2β2 − 24ω2Ioα

3k2Lβ − 12ω2Ioα
4k2L2β +

8ω2Ioα
4Lβ2 + 8ω2Ioα

3β2 + 24ω2Ioα
4β − 48ω2Ioα

4k2L +

24ω2Ioα
3k4L2 + 2ω2Ioα

3k4L4β2 + 12ω2Ioα
3k4L3β −

16ω2Ioα
3k2L2β2 − 4A11β

5L3k4α + 24A11β
5k2Lα − 8A11β

5k4L2 −
A11β

5L4k4α2 + 8A11β
5L2k2α2)/α3/L2/(−2 + Lα)2/β5 ,

KSEE2(1, 2) = −(4hA11β
5α3L2 − 12hA11β

5k2L + 20hA11β
5α − 16hA11β

5α2L +

8hA11β
5L2k2α − 2hA11β

5L3k2α2 + 2gω2Ioα
2L3k2β3 −

10gω2Ioα
4L2β2 − 8gω2Ioα

2L2k2β2 + 24ω2Ioα
4 + 12gω2Ioα

2k2Lβ −
18gω2Ioα

3L2k2β + 6gω2Ioα
3L3k2β2 + 24gω2Ioα

4βL +

20gω2Ioα
3Lβ2 − 24gω2Ioα

3β − 24gω2Ioα
4 − 8gω2Ioα

2β2 +

4gω2Ioα
2Lβ3 − 6gω2Ioα

3L2β3 + 2gω2Ioα
4L3β3 − gω2Ioα

3L4k2β3 +

24gω2Ioα
3k2L − 20A11β

5α − 6ω2Ioα
3L2k2β − 24ω2Ioα

3k2L +

4ω2Ioα
3Lβ2 − 4ω2Ioα

2L2k2β2 + 24ω2Ioα
3β + 4ω2Ioα

2Lβ3 −
2ω2Ioα

4L2β2 − 2ω2Ioα
3L2β3 + 12A11β

5k2L + 4A11β
5L2k2α −

12ω2Ioα
2k2Lβ + 8ω2Ioα

2β2)/α2/L2/(−2 + Lα)2/β5 ,

KSEE2(2, 2) = −(−4gω2Ioα
2β4L3 + 24gω2Ioα

3 − 24gω2Ioα
3βL +
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24gω2Ioα
2β + 12gω2Ioα

3β2L2 − 4hA11β
5α2L2 +

16hA11β
5Lα − 4gω2Ioα

3β3L3 − 24gω2Ioα
2β2L +

gω2Ioα
3β4L4 + 8gω2Ioαβ2 + 12gω2Ioα

2β3L2 +

4gω2Ioαβ4L2 − 8gω2Ioαβ3L − 20hA11β
5 + 20A11β

5 −
8ω2Ioαβ2 − 24ω2Ioα

2β − 24ω2Ioα
3)/α/L2/(−2 + Lα)2/β5 ,

where g = eβL, h = eαL and k = k◦.
In addition to the above methods, Equation (5.13) is solvable in another

approximate way incorporating a refinement of the homogeneous wavenumber.
This is discussed in the next section.

Naive Wavenumber

The solution of a differential equation with constant coefficients can be written
in the form e−jkx. In the present case, the equation has a variable coefficient.
We naively assume that the solution of Equation (5.13) still can be written
as e−jkx and try to find k. Substituting this assumed solution into Equa-
tion (5.13), the dispersion relation becomes

k2 + jkα = k2
◦e

γx . (5.20)

The wavenumber k is a function of both x and frequency ω, and it is implicitly
assumed that ∂k/∂x is negligible. We assume that the solution k has a real
part a and an imaginary part b. Then the governing equations for a and b are

a2 − b2 − αb = k2
◦e

γx , αa + 2ab = 0 , a, b ∈ R . (5.21)

The solution can then be written as

k1,2 = ±Υ − jα/2 , Υ =
√
|k2◦eγx − α2/4| , (5.22)

so that the solution of Equation (5.13) is

ũ(x) = eαx/2(Ae−jΥx + Be+jΥx) . (5.23)

Following the same procedure as presented above, the dynamic stiffness ma-
trix for this case can be formulated but the analytical integration will be too
tedious. Thus, we make an approximation in the displacement by substituting
xc for x in Υ , where xc is any constant value and can be taken as the center
location of the element, i.e., L/2. The wavenumber becomes constant and the
standard procedure yields the dynamic stiffness matrix. With this approxi-
mation, for exponentially varying FGM, the axial wavenumber becomes

k̆ = k◦
√

|(eγxc − α2/4k2◦)| − jα/2 , (5.24)

that is, FGM supports an inhomogeneous wave (nonzero imaginary part).
The element formulated using this solution is referred to as SEE3, where the
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dynamic stiffness matrix (to be pre-multiplied by [C]T and post-multiplied by
[C]), is

KSEE3(1, 1) = (−Ioω
2e(L(β−2jk+α))α + (1/8)A11e

(2L(α−jk))α2β +

jIoω
2e(L(β−2jk+α))k + (1/8)A11e

(2L(α−jk))α3 −
(1/2)A11e

(2L(α−jk))k2β + jA11e
(2L(α−jk))k3 −

3/2A11e
(2L(α−jk))k2α − 1/2jA11e

(2L(α−jk))kαβ −
3/4jA11e

(2L(α−jk))kα2 + Ioω
2α − 1/8A11α

2β −
jIoω

2k − 1/8A11α
3 + 1/2A11k

2β − jA11k
3 +

3/2A11k
2α + 1/2jA11kαβ + 3/4jA11kα2)/

(βα − jβk − 3jkα − 2k2 + α2) ,

KSEE3(1, 2) = (1/8)(−8Ioω
2αe(L(β+α)) + 4A11e

(2αL)k2β +

4A11e
(2αL)k2α + A11e

(2αL)α2β +

A11e
(2αL)α3 + 8Ioω

2α − 4A11k
2β −

4A11k
2α − A11α

2β − A11α
3)/(β + α)/α ,

KSEE3(2, 2) = (−1/2A11e
(2L(α+jk))k2β − Ioω

2e(L(β+2jk+α))α −
jA11e

(2L(α+jk))k3 − jIoω
2e(L(β+2jk+α))k −

3/2A11e
(2L(α+jk))k2α + 1/2jA11e

(2L(α+jk))kαβ +

3/4jA11e
(2L(α+jk))kα2 + 1/8A11e

(2L(α+jk))α2β +

1/8A11e
(2L(α+jk))α3 + 1/2A11k

2β + Ioω
2α +

jA11k
3 + jIoω

2k + 3/2A11k
2α − 1/2jA11kαβ −

3/4jA11kα2 − 1/8A11α
2β − 1/8A11α

3)/

(βα + 3jkα + α2 + jβk − 2k2) ,

where k = k̆.
In the following section, the elements and techniques developed so far

for the analysis of inhomogeneous rod are studied, and the smoothing effect
of graded materials is demonstrated for waves generated by high-frequency
loading.

5.1.2 Smoothing of Reflected Pulse

When a structure has two dissimilar materials bonded together, reflection
(and transmission) of waves occur at the interfaces. This happens due to the
mismatch in modulus and density (impedance mismatch in acoustic terms).
The reflected pulse can be as strong as the incident pulse, which again depends
on the properties of the material encountered by the wave. This reflection
is generated in addition to that from the physical boundary. Thus it may
be desirable to eliminate these extra reflections, which otherwise, will cause
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Fig. 5.2. Smoothing of reflected pulse in bimaterial rod : * denotes theoretical
predictions, solid lines – exponential variation and dashed lines – linear variation

enhanced stresses in the structure. Graded materials can be used with great
success in this situation. Instead of directly joining the two different materials,
one graded material can be inserted at the material interface. In the graded
material, properties vary smoothly from that of one material to another. Thus
there cannot be any impedance mismatch as there is no jump in material
properties. This advantage of graded materials is shown in this example.

A bi-material cantilever rod of aluminum (E = 70 GPa and ρ=2600 kg/m3)
and alumina (E = 390 GPa and ρ=3950 kg/m3) with unit length and a cross-
section of 0.01 m2 is assumed. The unit pulse loading of Figure 5.3 is applied
at the tip and the axial velocity response at the same point is measured.
The FGM zone between the two materials is increased gradually from 0 to
100% of the rod length. The FGM is always placed in the center position of
the rod and the other two materials are placed symmetrically, where in the
fixed-end-side the material is aluminum and at the free-end-side the material
is alumina. The response of the rod for various percentages of FGM is shown
in Figure 5.2. The 0% FGM plot corresponds to the bi-material rod when no
FGM is applied. The first peak corresponds to the load. The second and third
peaks correspond to the reflection and re-reflection that occur in the alumina
zone. Since the longitudinal wave speed in alumina is almost twice (1.915)
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Fig. 5.3. Load applied at the tip (inset shows time history)

that of aluminum, the second reflection from the interface comes at the free
end before the reflection from the fixed end arrives, which is the fourth peak
with negative velocity. These observations can be put in a more concrete way
if the arrival time is calculated in each case. Since the longitudinal velocity
in alumina is c1 = 9.9365 km/s (obtained from the formula

√
A11/Io), time

taken by the incident pulse to travel 1.0 m (0.5 m forward and backward) is
1.0/c1 plus the initial padding of 100 µs, which amounts to 200.6 µs. This is
the time of occurrence of the second peak. Similarly for the third peak, the
required time is 2/c1 + 100 µs = 301.28 µs. Finally, as the longitudinal wave
speed in aluminum is c2 = 5.1887 km/s, the time taken by the incident pulse
to reach the tip after being reflected from the fixed end is 1/c1 + 1/c2 + 100
µs, i.e., 393.36 µs. These values are marked with stars in the bi-material
response, showing clearly the agreement between the theoretical prediction
and the element behavior. It is also clearly seen in Figure (5.2) how the FGM
gradually smooths the reflections occurring at the material boundary in the bi-
material case. Both linear and exponential zones perform almost similarly in
this reflection smoothing case. The full FGM configuration shows no reflection
but the speeds are reduced as demonstrated by the uppermost curve. This is
an expected result.

In summary, the governing wave equation with variable coefficients is
solved approximately using several numerical techniques. The main objective
is to find the solution of the elastodynamic equation governing the behavior
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of a heterogeneous material. It is shown how an approximate plane wave so-
lution can be obtained for inhomogeneous materials. It is also shown that, for
an inhomogeneous material, the approximate wavenumber can be viewed as
a complex number, where the imaginary part is responsible for wave ampli-
tude attenuation. This approximation enables us to search for approximate
spectral elements that solve the problem with small system sizes. Several such
elements are formed and their superiority over the conventional time domain
finite elements is demonstrated. It is shown that even the series solution of
the governing equation can be used to construct spectral elements. The ap-
plication of FGM in smoothing the reflected pulse that is generated at the
bi-material interface is also demonstrated.

5.2 Depth-wise Functionally Graded Beam

In this section, SFEs are developed for both anisotropic and inhomogeneous
beams for shear deformation with lateral contraction, which is also known as
Herrmann–Mindlin theory (HMT). The effect of temperature is also consid-
ered in the formulation.

The displacement assumed for this theory is already given in Section 4.4.1.
The linear strains in the presence of temperature field, obtained from Equa-
tion (4.21) are

εxx = u,x − zφ,x − α(z)T (z) , εzz = ψ − α(z)T (z) , γxz = −φ + w,x + zψ,x ,
(5.25)

where α and T are the depth-dependent coefficient of thermal expansion and
temperature field. The non-zero stresses are related to these strains by

{σ} =

⎧⎨
⎩

σxx

σzz

τxz

⎫⎬
⎭ =

⎡
⎣ Q̄11(z) Q̄13(z) 0

Q̄13(z) Q̄33(z) 0
0 0 Q̄55(z)

⎤
⎦
⎧⎨
⎩

εxx

εzz

γxz

⎫⎬
⎭ = [Q(z)]{ε} , (5.26)

where the Q̄ij(z)s are the depth-dependent elements of the constitutive ma-
trix. For anisotropic homogeneous materials like fiber reinforced composites
(FRC) they are constants and their expressions are given in the previous
chapter in terms of ply-angle and composite properties (see also [50]). For
inhomogeneous (but isotropic) materials [Q̄] becomes

E(z)
1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 (1 − ν)/2

⎤
⎦ , (5.27)

where E(z) and ν are Young’s modulus and Poisson’s ratio. Here, Poisson’s
ratio is assumed constant. However, Young’s modulus and α vary over the
depth of the beam.

Following the regular procedure of Hamiltonian formulation, the four gov-
erning equations corresponding to four dof, u, ψ, w and φ are



136 5 Wave Propagation in One-dimensional Inhomogeneous Structures

I◦ü − I1φ̈ − A11u,xx +B11φ,xx −A13ψ,x = 0 , (5.28)

KII2ψ̈+I1ẅ+A31u,x−B31φ,x+A33ψ−B55 (w,xx − φ,x)−KdD55ψ,xx−LT = 0 ,
(5.29)

I◦ẅ + I1ψ̈ − A55 (w,xx − φx) − B55ψ,xx = 0 , (5.30)

I2φ̈−I1ü−A55 (w,x − φ)−B55ψ,x +B11u,xx −D11φ,xx +B13ψ,x = 0 , (5.31)

and the four associated force boundary conditions are

A11u,x −B11φ,x +A13ψ − NT = Nx , B55 (w,x − φ) + KdD55ψ,x = Qx ,
(5.32)

A55 (w,x −φ)+B55ψ,x = Vx , −B11u,x +D11φ,x −B13ψ +MT = Mx . (5.33)

In the above equations, the stiffness coefficients and the mass moments in-
tegrated over the cross-section are defined in the same way as before (see
Equations (4.29) and (4.30)). KI and Kd are the correction factors intro-
duced to compensate for the approximations introduced in the analysis [2].
Note that the governing equations and force boundary conditions are slightly
different than the equations in Section 4.4.1, where the thermal effect was not
considered.

The contributions from the temperature field come from the thermal forces
NT , MT and LT defined as

[NT , MT ] =
∫ z2

z1

α(z){Q11(z) + Q13(z)}[T (z) , zT (z)] bdz , (5.34)

LT =
∫ z2

z1

α(z){Q13(z) + Q33(z)}T (z) bdz . (5.35)

It is to be noted that the effect of the temperature field is limited to the force
boundary conditions for the assumed displacement field of FSDT. However,
in the present formulation, the Poisson’s contraction results in a term in the
governing equation (LT ), which will be treated as a body force.

Reduction to FSDT

The displacement field for FSDT is obtained by omitting the contractional
dof ψ from the description of W as

U(x, y, z, t) = u◦(x, t) − zφ(x, t) , W (x, y, z, t) = w◦(x, t) . (5.36)

The resulting governing PDEs in terms of the three degrees of freedom (u◦,
w◦ and φ) are:

δu : I◦ü◦ − I1φ̈ − A11u,◦xx +B11φ,xx = 0 , (5.37)

δw◦ : I◦ẅ◦ − A55

(
w◦

,xx − φx

)
= 0 , (5.38)
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δφ : I2φ̈ − I1ü◦ + B11u
◦,xx −D11φ,xx −A55

(
w◦

,x − φ
)

= 0 . (5.39)

Associated force boundary conditions are

A11u
◦,x −B11φ,x −NT = Nx , (5.40)

A55 (w◦,x −φ) = Vx , −B11u
◦,x +D11φ,x +MT = Mx , (5.41)

where all the coefficients and mass moments are as defined before.

5.2.1 Spectral Finite Element Formulation

Following the same procedure as in Section 4.4.1, i.e., substituting Equa-
tion (4.31) in the governing equations (without the thermal loading part), the
same Equation (4.32) is obtained, which results in the 8th-order characteris-
tic polynomial given in Equation (4.34). Variation of these roots with ωn is
discussed in the next section for a particular material distribution.

For the FSDT case, the wavematrix W is

[W ] =

⎡
⎣ A11k

2 − I◦ω2
n 0 −B11k

2 + I1ω
2
n

−B11k
2 + I1ω

2
n jA55k D11k

2 + A55 − I2ω
2
n

0 A55k
2 − I◦ω2

n −jA55k

⎤
⎦ , (5.42)

where all the integrated parameters are as defined before. Thus, in this case,
Nv = 3 and p = 2, i.e., there are six wavenumbers (eigenvalues).

The coefficients of the spectrum relation in both cases are real valued
and frequency dependent although the roots can be complex for some values
of ωn. There are no closed form solutions of these roots and they must be
found numerically, and are solved by the method of companion matrix . Once
the variation of the wavenumbers with frequency is known, the variation of
group speeds ci

g, defined as dω/d�(ki) can be computed numerically, where �
denotes the real part of a complex number. In the following example, we take
a beam structure and analyze it for its spectrum and dispersion relation and
thereby draw several important conclusions.

5.2.2 The Spectrum and Dispersion Relation

The beam has 0.001 m width and 0.05 m depth. There are three layers in the
beam. The top layer is made up of steel of 0.01 m thickness. The bottom layer
is made up of ceramic of 0.031 m thickness. In between, there is an FGM layer
of 0.009 m thickness, in which properties vary smoothly from that of steel to
ceramic according to a power law, where the exponent n is set to 1.0. Material
properties of steel are taken as E = 210 GPa, ρ = 7800 kg/m3, while those of
ceramic is E = 390 GPa and ρ = 3950 kg/m3.

Figure 5.4 shows the spectrum relation of the beam with the material
properties as stated before. To elicit the difference between the HMT and
the FSDT, the spectrum relation for the same beam in terms of FSDT is
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Fig. 5.4. Spectrum relation : solid line - HMT, dashed line FSDT, ka, kb, kc and
ks denote axial, bending, contraction and shear wavenumber, respectively

plotted (in dashed lines) in the same figure. In the figure, ka, kb, ks and kc

denote the axial, bending, shear and contraction wavenumbers , respectively.
The wavenumbers plotted in the negative side of the ordinate denote the
imaginary part of the wavenumbers. The frequencies at which the imaginary
wavenumbers become real are called the cut-off frequencies, whose expressions
were given earlier. More discussions on these frequencies are given in the next
section. As is seen from the figure, the bending mode of FSDT matches the
bending mode of HMT upto 40 kHz. There is always a difference in the axial
modes of HMT and FSDT, which is more pronounced above 20 kHz. Although
this difference is not clear in this figure for frequencies below 20 kHz, the
dispersion relation (Figure 5.5) will reveal this feature clearly. In both axial
and bending modes, the HMT predicts a higher gradient for the wavenumbers.
The shear modes of the HMT and the FSDT match well upto 90 kHz. Above
this frequency, the shear mode of FSDT overlaps the contraction mode of the
HMT. However, the dispersion of these modes is quite different.

The dispersion relation of this beam model for both the HMT and the
FSDT is plotted in Figure 5.5. The figure suggests that there is always a
difference between the axial speeds predicted by the HMT and the FSDT. This
difference is maximum near the second cut-off frequency and later decreases.
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The bending speed predicted by the HMT and the FSDT is equal upto 20
kHz and beyond this frequency the difference between the two increases. The
shear speeds are equal upto about 70 kHz but above this they behave quite
differently. The shear speed predicted by the HMT dips and slowly regains
a lower value than that of FSDT. This behavior can be attributed to the
appearance of the contraction mode. The contraction speed at high frequencies
matches the shear speed of the FSDT. It is important to note that there are
propagating axial and bending modes for all frequencies, whereas, shear and
contraction mode appear only when the frequency exceeds the respective cut-
off frequencies.
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Fig. 5.5. Dispersion relation: solid line - HMT, dashed line FSDT, Ca, Cb, Cc and
Cs denote axial, bending, contraction and shear group speeds, respectively

5.2.3 Effect of Gradation on the Cut-off Frequencies

Since the propagating modes appear only when the loading frequency exceeds
the cut-off frequency, variation of the later with FGM parameters is impor-
tant for response prediction. Explicit forms of the cut-off frequencies can be
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Fig. 5.6. Variation of the cut-off frequencies

obtained from the spectrum relation. Substituting k = 0 in the spectrum re-
lation and solving for ω, the non-trivial roots are ωc1 =

√
(I◦A55)/(I◦I2 − I2

1 )
and ωc2 =

√
(I◦A33)/(I◦I2 − I2

1 ). These expressions for the beam geometry
in the above example yield, ωc1 = 53.132 and ωc2 = 89.087 kHz, which are
exactly the points from where the propagating shear and contraction mode
are generated.

As the expressions for the cut-off frequencies suggest, they depend upon
the FGM content of the beam (quantified by hfgm/h, where hfgm is the thick-
ness of the FGM layer and h is the total beam thickness) and the gradation in
the FGM layer (i.e., n for power law variation Equation (2.48)). For the same
beam, the thickness of the FGM layer is varied from 0% to 100% for a range of
values of the parameter n. The variation is plotted in Figure 5.6. As is shown
in the figure, ωc1 shows non-linear variation with FGM content, whereas, ωc2

shows linear variation. Both the frequencies decrease with FGM content when
n is less than 1. When n = 1, ωc2 becomes independent of the FGM content,
whereas, ωc1 decreases slowly. Although it is not shown here, ωc1 becomes
independent of the FGM content for n = 1.2. For all values of n above 1,
the cut-off frequencies increase monotonically with the FGM content. Hence,
it is an added advantage of using FGM, where propagation of higher order
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modes can be suppressed by increasing the FGM content, thereby increasing
the range of validity of the FSDT.

Once we have the spectrum relation the SFE formulation can be started.
As before, two types of elements can be formulated. One is the two-noded
finite length element and the other is the one-noded infinite length element
or the throw-off element. These elements have four dofs per node as is shown
in Figure (4.1). The element formulation was given in the previous chapter,
Section 4.4.4.

Stress Computation

The expressions for stress and strain can be found using Equation (4.45)
and Equation (4.47) for the finite length element and similar expressions for
the infinite length element. Using Equation (5.25) along with the previous
equations, the strains at a point (x, z) of an element can be related to the
nodal displacements of that element by

εxx =
8∑

i=1

−jkie
−jkix [R1i − zR4i] [T1]−1{û} − α(z)T (z) ,

εzz =
8∑

i=1

e−jkixR2i[T1]−1{û} − α(z)T (z) ,

γxz =
8∑

i=1

e−jkix [−R4i − jkiR3i − jzkiR2i] [T1]−1{û} .

In matrix form, the above equation can be written

{ε} = [B1 B2 . . . B8][D(x)][T1]−1{û} − {ε}T , (5.43)

where

Bi =

⎡
⎣ −jki(R1i − zR4i)

R2i

−R4i − jkiR3i − jzkiR2i

⎤
⎦ , (5.44)

and {ε}T is the thermal (eigen) strain due to temperature whose elements are
−α(z)T (z){1 1 0}. The stress–strain relation (using the Q̄ matrix) can now
be used to compute the stresses. Note that the above expressions are to be
evaluated at each frequency ωn.

Effect of the Temperature Field

As shown earlier, due to the temperature field, both body forces and nodal
forces are generated. For the finite length element, the nodal force vector due
to the temperature field is {f̂}n

T = {NT , 0 , 0 , −MT , −NT , 0 , 0 , MT } .
The body force vector {b} is {0 , −LT , 0 , 0} and the nodal force due to this
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load can be obtained by applying the variational principle in the frequency
domain (see [9]), which yields the load vector {f̂}n

TB

{f̂}n
TB =

∫ L

0

∫ z2

z1

[N ]Tn{b} bdzdx , [N ]n = [R]n[D(x)]n[T1]−1
n , (5.45)

where [N ]n is the shape function matrix at frequency ωn, which can be ob-
tained by combining Equation (4.45) and Equation (4.47). The equilibrium
equation at the nth frequency step becomes

{f̂}n − {f̂}n
T − {f̂}n

TB = [K]n{û}n . (5.46)

This body force term is absent in the FSDT-based SFE.

5.2.4 Computation of the Temperature Field

The problem of finding the temperature distribution through the thickness
of the beam is solved independently and prior to the analysis of deformation
due to mechanical loading. This is done by solving the one-dimensional heat
conduction equation with prescribed boundary condition. The complexity of
the problem increases because of the inhomogeneous structure of the beam.
The thermal conductivity of the beam material is denoted by k(z) at depth z
and the governing equation of the temperature distribution is

d(k(z)dT/dz)/dz = 0 , T (z1) = Tb , T (z2) = Tt , (5.47)

where Tt and Tb are the temperatures at the top and bottom layer of the beam.
Integrating Equation (5.47) twice and satisfying the boundary condition we
get the expression for the temperature at any depth as

T (z) = Tb +
∫ z

z1

C1/k(z) dz , C1 = (Tt − Tb)/
∫ z2

z1

1/k(z) dz . (5.48)

It is assumed that k(z) varies according to the power law or exponential law
given before. Once the temperature field is known, NT , MT and LT can be
computed using Equations (5.34) and (5.35).

5.3 Wave Propagation Analysis: Depth-wise Graded
Beam (HMT)

In this section, numerical experiments are performed to demonstrate the accu-
racy and efficiency of the depth-wise graded SFE. First, the element is used to
model an inhomogeneous beam subjected to mechanical loading only and the
response is compared with other existing time domain FEs and SFEs. Next,
the effect of the inhomogeneity on the contractional mode is studied. Also,
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the variation of the stresses and their deviation from FSDT are studied in
detail. Finally, the beam is subjected to a prescribed temperature field at the
top and the bottom layer, along with a mechanical loading. The temperature
distribution within the beam is computed first and subsequently the response
of the beam for this thermo-mechanical loading is obtained.

5.3.1 Validation of the Formulated SFE
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Fig. 5.7. Axial velocity at tip of the beam

The beam used earlier for analyzing the spectrum and dispersion relation
is considered again and the cantilever boundary condition is imposed. The
beam is subjected to an impact loading and its response is measured and
compared with existing FEs and SFEs. Two types of load are considered, a
broadband pulse loading and a modulated pulse loading. Further, two broad-
band pulses are used. The first one has relatively low frequency and is used
to compare with 2-D FE analysis. Although this load does not excite the con-
traction mode of HMT, the frequency demands a very fine mesh in the FE
analysis and any loading with higher frequency content will require a much
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finer FE mesh and in turn a larger FE system size. Therefore, FE compar-
ison is limited to this relatively low frequency loading. The second load has
a higher frequency content so that all the modes are excited. A modulated
pulse is used to segregate the propagating modes.
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Fig. 5.8. Transverse velocity at tip of the beam

Response to Broadband Pulse

The pulse load with a comparatively smaller band is shown in Figure 5.3.
As is seen in the figure, the load has a frequency content of around 46 kHz,
which means (see the dispersion relation (Figure 5.5)) only the axial and
bending modes will be excited. Hence, the beam will essentially behave like
an elementary (Euler–Bernoulli) beam. The load is applied at the free end of
the beam and velocity is measured at the same point. The same beam is also
modeled with two-dimensional FEs for comparison. Two different types of 1-D
SFE models are considered, the present element (HMT) and the Timoshenko
beam model (FSDT) (Section 5.2). The 1-D spectral model consists of a single
beam element, one end fixed, which results in a system matrix of size [4×4] for
HMT and [3×3] for FSDT, which need to be inverted at each frequency step.
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In comparison, the 2-D model of the beam consists of 400 triangular plane
stress FEs, which results in a system size of [500×16], where 500 is the number
of active dof and 16 is the half bandwidth. This large banded matrix needs to
be inverted at each time step, where Newmark’s time integration scheme with
1µs step size is adopted. Needless to say, the cost of the computation involved
in the FE analysis is many orders higher than the cost of the SFE analysis.
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To take care of the inhomogeneity in the FE model, material properties
are first evaluated at the nodes by following a particular variation. Within
each element, it is assumed that the material properties at any point can
be described by the same shape functions that describe the displacements
and the geometry. Hence, the material properties can be obtained for each
Gauss point while the numerical integration is performed. The force input for
spectral analysis is sampled at 1 µs time steps with 16384 FFT points.

First, the load is applied axially at the free end of the beam and the axial
velocity (of the mid-depth of the FGM layer) at the same point is measured
and plotted in Figure 5.7. In the figure, the peak at 0.1 ms is the incident part
of the pulse. The wave then propagates towards the fixed end, is reflected at
the boundary and moves towards the free end and appears at the tip at around
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Fig. 5.10. Transverse velocity at the tip of the beam

0.3 ms. As is seen in the figure, 2-D FE and the present spectral element
agree quite well, whereas, the FSDT SFE has differences in the occurrence of
reflection from the boundary. This is expected, since, the dispersion relation
suggests that the axial speed for FSDT is higher than that of HMT for all
frequencies.

Next, the same load is applied in the transverse direction at the tip and the
transverse velocity at the same point is measured, and plotted in Figure 5.8.
It can be seen from the figure that all three responses agree quite well with
each other. This is due to the fact that at low frequencies (below 40 kHz)
there is very little or no difference in the bending speeds for the HMT and
FSDT theory (see Figure 5.5). Figures 5.7 and 5.8 establish the accuracy and
efficiency of the formulated SFE. They also demonstrate the need for higher
order waveguides, especially at high frequencies. It is important to note that
the response in Figure 5.8 is the history of ẇ, i.e., Ẇ at z = 0. In the FSDT,
Ẇ is the same at all points of the cross-section and equal to what is shown in
Figure 5.8. For HMT, there can be variation in Ẇ over the depth of the beam
and it can be markedly different from ẇ, specially for thicker cross-sections.

To have sufficient contribution from the contractional mode, the frequency
content of the impact should extend beyond the second cut-off frequency, ωc2.
To this end, another pulse loading is considered, whose time and frequency
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Fig. 5.11. Contractional velocity at the tip of the beam

domain representation is shown in Figure 5.9. This pulse has a very small
duration (10 µs) and a frequency content of around 340 kHz, which is sufficient
to force propagation of the contraction mode. This load is again applied at
the tip of the cantilever beam in the Z direction and transverse velocity at
the same point (z = 0) is measured, and plotted in Figure 5.10 along with the
response from FSDT analysis. Comparing the two responses, it can be seen
that there is considerable difference in the peak magnitude even though both
velocities are measured at the reference plane (z = 0). The HMT predicts a
peak velocity of about 4×10−05 m/s, whereas, FSDT predicts peak velocity of
less than 3×10−05 m/s. This indicates that FSDT overestimates the stiffness
of the beam. Further, there is a period shift in the FSDT response, marked by
early appearance of the reflections from the boundary. In the FSDT response,
the reflection appears at around 400 µs, whereas, in HMT, the bulk of the
reflection arrives at around 550 µs. This difference is due to the higher bending
speed at higher frequencies, as predicted by FSDT.

Coming to the contribution of the contractional mode, again we note that
the maximum amplitude of ẇ in Figure 5.10 (given by HMT) is 4.0 × 10−05

m/s. For the same load and the same beam, the contractional velocity ψ̇ is
plotted in Figure 5.11. As is seen in the figure, the contractional velocity
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Fig. 5.12. Transverse velocity at the tip of the beam

shows high dispersiveness in the form of multiple oscillations. It shows reflec-
tions from the fixed end at around 550 µs, as found in the transverse velocity
response. Further, contractional velocity has considerable magnitude over the
initial part of the response and maximum amplitude of ψ̇ is 1.2 × 10−03 s−1,
which is 30 times higher than max|ẇ|. Hence, considerable difference between
the top and bottom layer velocities and the reference plane velocity can be
expected. Figure 5.12 shows the variation of Ẇ at the top, bottom and ref-
erence plane. The figure shows that maximum Ẇ at the steel layer is 1.53
×10−04 m/s, at the FGM layer is 0.38 ×10−04 m/s and at the ceramic layer
is 1.3 ×10−04 m/s, i.e., the difference in the peak velocity between the top
and bottom layer is about 0.2 × 10−04 m/s, which is about 57% of the max-
imum reference plane velocity. Although predominant over only a very small
domain, this differential nature is neglected by the FSDT.

5.3.2 Lamb Wave Propagation in FSDT and HMT Beams

The responses shown so far are superpositions of all the propagating/ evanes-
cent modes. There are three propagating modes (axial, bending and shear)
in FSDT, whereas, HMT has an additional contraction mode along with the
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Fig. 5.13. Model for Lamb wave study
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Fig. 5.14. Modulated pulse load applied to the beam

FSDT modes. These modes individually propagate with the group speeds
shown in the dispersion relation. If one wants to study the principal compo-
nents of the response (i.e., the propagating modes) individually, then wide-
band pulse loading will not be useful due to the dependency of the speeds on
the frequency. Instead, a modulated pulse (monochromatic) will force each in-
dividual mode to travel at its group (constant) speed. If the central frequency
of the modulated pulse is so chosen that all propagating modes occur (this in-
formation can be obtained from the dispersion relation), then all these modes
can be captured graphically if they are allowed to propagate for sufficient
length.

Having this strategy in mind, a pulse load modulated at 200 kHz is applied
to an infinite beam as shown in Figure 5.13. The beam is impacted at point
C and the response is measured at point D, 4.0 m away from the impact site.
The frequency domain representation of the load is shown in Figure 5.14. The
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Fig. 5.15. Axial velocity history: the modes in order of appearance are contraction,
shear, axial and bending with the FSDT response shifted for clarity

load has 150 µs duration, and is shown in the inset. The previous dispersion
relation is also superposed in the same figure. As can be seen, all the modes
propagate at this frequency. For HMT, the group speeds at this frequency
are: ca = 5.73 km/s, cb = 3.78 km/s, cs = 5.98 km/s and cc = 9.58 km/s.
For the given propagating distance, the time required for each mode to reach
the point D will be as follows: ta = 0.798 ms, tb = 1.157 ms, ts = 0.768
ms and tc = 0.517 ms, where the subscripts after t denote the usual modes.
Similarly, for the propagating waves described by FSDT: ca = 6.235 km/s, cb

= 5.125 km/s and cs = 9.62 km/s, which give ta = 0.742 ms, tb = 0.880 ms
and ts = 0.516 ms. These values will be compared with the time of arrival of
the beam responses.

The load is first applied axially and the axial velocity at D is measured
and plotted in Figure 5.15. The arrival times calculated earlier are also plot-
ted with a star mark. As is seen there, the arrival of the different modes are
predicted accurately by the dispersion relation for both FSDT and HMT. The
propagating modes of FSDT are of considerable magnitude and can be iden-
tified easily, however, the bending response for HMT is very small compared
to the other modes and cannot be detected easily. In any case, the bending
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Fig. 5.16. Transverse velocity history: the modes in order of appearance are con-
traction, shear, axial and bending with the FSDT response shifted for clarity

response is not pre-dominant in axial motion. Next, the load is applied in the
transverse direction and the transverse velocity (at the reference plane) at
point D is measured and plotted in Figure 5.16. Here again, the arrival times
are well predicted. In HMT response, the contraction mode has very small
magnitude compared to the bending mode.

5.3.3 Effect of Gradation on Stress Waves

In this study, the justification for using the HMT over FSDT is given by com-
paring the stress wave responses. By virtue of the displacement field assumed
at the beginning, HMT results normal stress σzz, which is zero in FSDT. This
is one major drawback of FSDT, as will be shown in the later part of this
section.

For this analysis, a deep beam is taken with slenderness ratio 5. The beam
has a width of 0.001 m, length of 2.0 m and total depth of 0.4 m. The beam
is made up of ceramic, steel (material properties as given before) and a FGM
layer in between the ceramic and steel layer. The steel layer is 0.12 m thick
and the ceramic layer is 0.2 m thick. The load of Figure 5.3 is applied at



152 5 Wave Propagation in One-dimensional Inhomogeneous Structures

0 0.2 0.4 0.6 0.8 1

x 10
−3

−2

0

2

4

z=0.0

0 0.2 0.4 0.6 0.8 1

x 10
−3

−4

−2

0

2

4

σ xx
 , 

N
/m

2

z=0.10

0 0.2 0.4 0.6 0.8 1

x 10
−3

−1

0

1

2

Time, sec

z=−0.14
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the tip of the beam, first in the axial direction and then in the transverse
direction. Stress histories are measured at the midpoint of the cantilever beam
at three different z locations, z = 0, i.e., midpoint of FGM layer, z = 0.10,
i.e., midpoint of the steel layer and z = −0.14, i.e., midpoint of the ceramic
layer, respectively. The beam is also analyzed for FSDT and the stresses are
measured at the same locations and superposed over the HMT responses.

Axial stress is measured for the axial loading and the results are shown
in Figure 5.17. As the figure suggests, the FGM and steel layer carry almost
equal stresses, followed by the ceramic layer. The same trend is visible in the
FSDT responses and in addition, the magnitude of the stresses predicted by
the two theories are almost equal. However, for the metal and FGM layer,
the FSDT results suffer period error, i.e., the peak stresses occur at an early
time instant compared to the HMT response. For the stress measured at the
ceramic layer, this deviation is absent.

Next the normal and shear stresses are measured for a transverse tip load.
Figure 5.18 shows the variation of the normal stress σzz at three points in the
cross-section of the beam, for which there is no FSDT response to compare
with. In this case, however, stress is maximum in the ceramic layer, followed



5.3 Wave Propagation Analysis: Depth-wise Graded Beam (HMT) 153

by the FGM layer and the metal layer is least stressed. This stress state within
the beam is completely neglected in the FSDT.
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Fig. 5.18. Normal stress history

The shear stress (τxz) variation is plotted in Figure 5.19 for both HMT
and FSDT. In this case, considerable difference can be observed in the peak
magnitude for the FGM and ceramic layer, however, for the steel layer the
difference is not so significant. The FSDT always predicts lower shear stress
compared to that predicted by the HMT. Moreover, the difference can be
noticed in the time of the occurrence of the stress peaks. This is due to the
differences in the group speeds of the various modes.

This study shows that, the FSDT generates a stress field that suffers ei-
ther magnitude error or period error in comparison to the HMT and fails to
predict the normal stress in the thickness direction, which is quite significant.
Thus, the stress state predicted by FSDT may not give the real picture of the
dynamics of the beam and hence the prediction.

5.3.4 Coupled Thermoelastic Wave Propagation

In most practical applications of FGM, the structure is normally subjected
to mechanical loading along with a specified temperature field. It was shown
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in Section 5.2 that the specified temperature field induces body and surface
(nodal) forces, which, although demands coupled thermo-mechanical analysis,
can be analyzed separately from the mechanical loading. To this end, the con-
figuration of the beam used in the verification study is taken along with the
same material properties and boundary conditions. An axial and a transverse
load of 1 kN magnitude are applied at the tip of a cantilever beam. The tem-
perature is specified only on half of the beam. This applied temperature field
is different at the ceramic (bottom) and metal (top) layer (see Figure 5.20a).
Thermal expansion coefficients of steel and ceramic are taken as 14.0×10−6

and 7.0 ×10−6 ◦C−1. Coefficient of thermal conductivity for steel and ceramic
is taken as 20 and 1 W/m/◦C. It is assumed that both the mechanical and
thermal loading follow the same variation over time, which is given by Fig-
ure 5.3. The peak temperature rise ∆T1 and ∆T2 specified in this case are 5
and 10◦C. Responses are compared between thermo-mechanical loading and
mechanical loading, as predicted by HMT.

First, the thermal equation is solved independently to find the depth-wise
variation within the beam. This known temperature field helps us to compute
the thermal force resultants (with respect to x) NT , MT and LT (see Equations
(5.34) and (5.35)). As discussed in Section 5.2, the thermal field results in axial
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load and moments at the nodes and a body force in the contractional mode,
which in turn generates nodal forces in all dof. The structure is modeled with
two SE as shown in Figure 5.20 and the temperature is specified in element
2.

1 kN

( b )

( a )

∆

 2 1

1 2 3

T1

∆ T 2

1 kN

Fig. 5.20. Beam model in thermoelastic study (a) the load and boundary conditions
(b) the SFE discretization

It is important to note that in the mechanical loading case only two loads
are acting at the tip of the beam, one in the axial direction, another in the
transverse direction. However, in the thermo-mechanical case, other than these
two loads, there are eight extra concentrated loads. Four of them act at the
tip of the beam (node 3) and are of the same sign as the mechanical loads and
thus reinforce them. The rest of the loads act at the mid-point of the beam
(node 2) in the opposite direction of the loads at the tip. Thus, while the
tip loads induce positive velocity, central loads induce negative velocity. The
waves generated from these loadings are further reflected at the fixed end and
change their sign. All these activities are visible in the responses measured at
the tip of the beam and shown in Figure 5.21. In all the subfigures, the solid
line denotes the response due to pure mechanical loading and the broken line
denotes the response due to thermo-mechanical loading.

Figure 5.21 shows the variation of the axial, contractional and the trans-
verse velocity for the two different loadings. For both mechanical and thermo-
mechanical responses, there is negative velocity at around 400 µs, which is
the reflected wave generated at the fixed end from the tip load. The effect
of the central load is seen in the form of negative velocity at around 200 µs,
which travels only 0.5 m to reach the tip of the beam. Reflection of this wave
(from the fixed end) travels 1.5 m and is visible in the form of positive velocity
at around 300 µs. In comparison, the wave generated at the tip travels 2.0
m and hence arrives late. Also, it can be seen that the presence of the ther-
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mal field greatly magnifies the pure mechanical response, which depends upon
the specified temperature rise. The ratio of the maximum axial velocity for
thermo-mechanical loading and the maximum axial velocity for mechanical
loading is 2.14, which indicates the major contribution of the thermal field.

In the variation of the contractional velocity, the thermo-mechanical re-
sponse shows considerable dispersiveness compared to the mechanical re-
sponse. The ratio of the maximum amplitudes in this case is 1.9, which again
shows the strong effect of the thermal field.

For the variation of the transverse velocity, as opposed to the previous
cases, the response due to the mechanical loading is of the same order as
the thermo-mechanical load response. This is because the moment generated
due to the thermal load is of very small magnitude compared to the trans-
verse mechanical load and the axial load has little bearing on the transverse
response.

On the whole it can be said that the effect of the thermal field is predomi-
nant over the axial and contractional modes, which again justifies the need for
considering the HMT for thermomechanical analysis as opposed to the FSDT.
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5.4 Length-wise Graded Beam: FSDT

In the previous formulation for FSDT elements, the material properties are
assumed constant over the length of the beam, which may not always be the
case. In this section, we extend the previous formulation for lengthwise graded
beam, which brings out several new features of the inhomogeneous wave. In
this formulation, the non-zero stresses are related to the non-zero strains by

{σ} =
{

σxx

τxz

}
= f(x)

[
Q̄11(z) 0

0 Q̄55(z)

]{
εxx

γxz

}
= f(x)[Q]{ε} , (5.49)

where f(x) denotes the x dependency of the inhomogeneity, which in general
can be any function. Similarly, density of the material is also assumed to vary
in both x and z direction as

ρ(x, z) = ρ◦(z)s(x) . (5.50)

The governing equations in terms of the unknown displacement field are

(f(x)A11u,x −f(x)B11φ,x ),x −I◦s(x)ü + I1s(x)φ̈ = 0 , (5.51)

−(f(x)B11u,x −f(x)D11φ,x ),x +f(x)A55 (w,x − φ) − I2s(x)φ̈ + I1s(x)ü = 0 ,
(5.52)

(f(x)A55 (w,x − φ)),x −I◦s(x)ẅ = 0 , (5.53)

and the three associated force boundary conditions are

f(x)(A11u,x −B11φ,x ) = Nx , (5.54)

f(x)A55 (w,x −φ) = Vx , −f(x)B11u,x +f(x)D11φ,x = Mx , (5.55)

where Nx, Vx and Mx are the applied nodal axial force, shear force and bend-
ing moments, respectively. The stiffness coefficients and the mass moments
are as defined before.

The governing PDEs, Equations (5.51)–(5.53), are not solvable readily for
arbitrary f(x) and s(x) and some assumption on their forms is necessary
before proceeding further. In this formulation, the exponential variation is
assumed for both functions, i.e.,

f(x) = eαx , s(x) = eβx , (5.56)

where α and β are the inhomogeneous parameters, which control the grada-
tion. They may or may not be equal to each other. However, when they are
equal the governing PDEs are exactly solvable as they become equations with
constant coefficients. When β 	= α, some approximation is necessary to keep
the equations in the same constant coefficient form.

Substituting Equation (5.56) in Equations (5.51)–(5.53), the new set of
governing PDEs are
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A11(αu,x +u,xx ) − B11(αφ,x +φ,xx ) − I◦γü + I1γφ̈ = 0 , (5.57)

−B11(αu,x +u,xx ) + D11(αφ,x +φ,xx ) + A55(w,x −φ) − I2γφ̈ + I1γü = 0 ,
(5.58)

A55(α(w,x −φ) + w,xx −φ,x ) − I◦γẅ = 0 , (5.59)

where γ = e(β−α)x. When α = β, γ = 1 and the equations are exactly solvable
in the frequency domain. When α 	= β, γ can be evaluated approximately at
some representative point in the element, xc, as γ = e(β−α)xc , thus rendering
the equations once again solvable exactly.

5.4.1 Spectral Finite Element Formulation

For the element formulation, the new set of governing equations, Equa-
tions (5.57)–(5.59) will be considered. The wave matrix (Nv = 3, p = 2)
with �2 = k2 + jkα becomes,

[W ] =

⎡
⎣ A11�

2 − I◦γω2
n 0 −B11�

2 + I1γω2
n

−B11�
2 + I1γω2

n jA55k D11�
2 + A55 − I2γω2

n

0 A55�
2 − I◦γω2

n −A55(jk − α)

⎤
⎦ , (5.60)

which yields the spectrum relation as

Q1k
6 + Q2k

5 + Q3k
4 + Q4k

3 + Q5k
2 + Q6k + Q7 = 0 . (5.61)

Variation of these roots with ωn is discussed in the next section for a particular
material. The coefficients Q1 − Q7 are

Q1 = A11D11A55 − B2
11A55 ,

Q2 = 3jA11αD11A55 − 3jB2
11αA55 ,

Q3 = −3A11D11α
2A55 − A11D11I◦γω2 + 2B11I1γω2A55

− I◦γω2D11A55 + 3B2
11α

2A55 − A11γI2ω
2A55 +

+ B2
11I◦γω2 ,

Q4 = 2jB2
11αI◦γω2 − 2jI◦γω2D11αA55 + jB2

11α
3A55

+ 4jB11αI1γω2A55 − jA11α
3D11A55

− 2jA11αD11I◦γω2 − 2jA11αγI2ω
2A55 ,

Q5 = −I2
1γ2ω4A55 − A11A55I◦γω2 + I2

◦γ2ω4D11

+ A11α
2D11I◦γω2 − 2B11α

2I1γω2A55 + I◦γ
2ω4I2A55

+ A11γ
2I2ω

4I◦ − 2B11I1γ
2ω4I◦ + I◦γω2D11α

2A55

− B2
11α

2I◦γω2 + A11α
2γI2ω

2A55 ,
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Q6 = −2jB11αI1γ
2ω4I◦ − jI2

1γ2ω4A55α + jA11αγ2I2ω
4I◦

+ jI◦γ
2ω4I2A55α + jI2

◦γ2ω4D11α − jA11αA55I◦γω2 ,

Q7 = −I2
◦γ3ω6I2 + I2

1γ3ω6I◦ + I2
◦γ2ω4A55 .

The spectrum relation is solved using the companion matrix method de-
scribed earlier. The properties of the wavenumbers and the group velocities
are discussed in detail in the next section.

5.4.2 Effect of Gradation on the Spectrum and Dispersion
Relation

A steel beam with the following material properties is considered: Young’s
modulus E = 210 GPa, shear modulus G = 80.76 GPa, Poisson’s ratio ν =
0.3 and density ρ = 7800 kg/m3. The beam has 0.1 m width and 0.1 m
thickness. The beam is considered homogeneous in the thickness direction and
inhomogeneous in the longitudinal direction. The inhomogeneous parameters
α and β (with β = α) are varied from 0 to 30 in four steps.

Figure 5.22 shows the spectrum relation of the beam for different values of
the α and β. In the figure, ka, kb and ks denote the axial, bending and shear
wavenumbers, respectively. The wavenumbers plotted on the negative side of
the ordinate denote the imaginary part of the wavenumbers. For α = 0 = β,
the beam is homogeneous and the wavenumbers are exactly the solutions of
the spectrum equation known previously (see [9]). This variation has been
known for a long time and more on this can be found for isotropic material
(see [9]), depth-wise inhomogeneous material (Section 5.2) and anisotropic
material [39]. There is one property of the wavenumbers, where attention was
not focused before. That is, the wavenumbers do not possess non-zero real and
imaginary parts, simultaneously. However, the situation changes dramatically,
when nonzero values are assigned to α (and β). As the figure suggests, with
increasing magnitude of α (as indicated by the arrows), cut-off frequencies ap-
pear for all the modes. The wavenumbers simultaneously possess both nonzero
real and imaginary parts, which implies attenuation of the wave magnitude
while it propagates. At high frequencies, the real parts of the wavenumbers
converge to their homogeneous counterpart, whereas, the imaginary parts take
the value α/2. Also it is evident that the effect of α is more pronounced in
the axial mode as shown by comparatively large shifts of the axial cut-off
frequency.

The dispersion relation is plotted in Figure 5.23 where axial, bending and
shear modes are denoted as Ca, Cb and Cs, respectively. For a given frequency,
the presence of positive group speed indicates propagation of that particular
mode. As the figure suggests, for α = 0, axial and bending modes propagate,
whereas the shear mode propagates only when the frequency exceeds the cut-
off frequency, before which it is non-existant. However, non-zero α (and β)
introduces cut-off frequencies in axial and bending modes, which means, if
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Fig. 5.22. Spectrum relation : ka, kb and ks denote axial, bending and shear
wavenumber, respectively (α increases in the direction of arrows and β = α)

the highest frequency content of the loading is less than the lowest cut-off fre-
quency (given by the bending mode) there will be no response in the structure,
i.e., gradation of materials will act as a high-pass filter.

5.4.3 Effect of Gradation on the Cut-off Frequencies

Since the propagating modes appear only when the load frequency exceeds
the lowest cut-off frequency, variation of the latter with FGM parameters is
important for response prediction. As opposed to the earlier relatively simple
cases (FSDT and HMT), explicit forms of the cut-off frequencies cannot be
obtained from the spectrum relation. This is because, in this case the cut-off
frequency cannot be obtained by substituting k = 0 in the spectrum relation
and solving for ω. To solve for the cut-off frequencies, we note that they are the
frequencies where the imaginary wavenumbers take the value −α/2. Hence,
following the two steps described below, the equation governing the cut-off
frequencies can be obtained. The steps are: first, substitute k = kr +jki in the
spectrum relation and then substitute zero for kr, thus obtaining the governing
equation for the imaginary part of the wavenumbers. Next, substitute ki =
−α/2 and arrange the equation in descending powers of ωn. The equation can
be written as
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Fig. 5.23. Dispersion relation : Ca, Cb and Cs denote axial, bending and shear
group speeds, respectively (α increases in the direction of arrows and β = α)

A1ω
6
n + A2ω

4
n + A3ω

2
n + A4 = 0 , (5.62)

where the Ai are complex valued and contain material properties and α as
parameters. Thus, for a fixed base material (steel in this case), the cut-off
frequencies can be varied by varying α, and the required response can be
obtained. In this way, mode selection for a particular load frequency as well
as complete blocking is possible by tuning the inhomogeneous parameter.

To see the variation of the cut-off frequencies with α, we solve Equa-
tion (5.62), for a range of values of α and plotted in Figure 5.24. As is shown
in the figure, for α = 0, there is only one cut-off frequency (which belongs
to the shear mode). For non-zero α, the axial and bending modes also have
cut-off frequencies. All these frequencies vary in a non-linear fashion for low
α values and at higher values they are fairly linear with α. The gradient,
∂ωc/∂α is maximum for axial mode and gradually the axial cut-off frequency
reaches the shear cut-off frequency. The bending mode cut-off frequency has
the lowest value for a given α and is least affected by gradation (in terms of
the gradient).

From Figure 5.24, certain conclusions can be drawn. For a given single
frequency excitation, the gradation can be used to obtain the desired modal
response from the structure. Let us consider a (modulated pulse) loading with
a center frequency of 30 kHz. Then, for α < α1, all the modes will participate
in the response, as is shown in the figure. For α1 < α < α2, only axial and
bending modes will participate and for α2 < α < α3, the response will be
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Fig. 5.24. Variation of cut-off frequencies with α (β = α)

due to the bending mode only. If α is increased beyond α3, there will be no
response in the structure as all the modes are effectively blocked (damped
out). Thus, gradation can be used effectively for selecting Lamb wave modes.

Once we have the spectrum relation the SFEs are formed following the
same steps as outlined earlier.

5.5 Numerical Examples

In this section, numerical experiments are performed to demonstrate the effect
of length-wise gradation. The effect of the inhomogeneity on the mechanical
response is studied by suitably varying the inhomogeneous parameters α and
β. Finally, the smoothing effect of graded material is studied by applying it
to stress waves.

5.5.1 Effect of the Inhomogeneity

To study the effect of α and β, two different sets of these parameters are
taken to model the inhomogeneity. In the first set, β is always equal to α
and α is varied from 0.5 to 2.0 in four steps. The same cantilever beam as
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Fig. 5.25. Variation of axial velocity with α (β = α)

in the previous example is also taken here along with the same axial and
transverse tip loading. The axial and transverse velocities at the tip of the
beam are measured and plotted in Figure. 5.25 and 5.26, respectively. Fig-
ure 5.25 shows the variation of the axial velocity for different α (hence, β)
values. The figure suggests that, the incident and reflected wave amplitudes
decrease with increasing α. The rate at which the velocity decreases is given
by the quantity ∂umax/∂α, which is different for different α and is computed
for discrete values of the α chosen. They are −0.1135, −0.0701 and −0.0433
(all are in 10−04 m2/s), for α = 1.0, 1.5 and 2.0, respectively. Thus the effect
of inhomogeneity in reducing amplitude is dominant in the initial phase and
later these effects decrease. However, there is no change in the wave speed, as
suggested by the same arrival time of the reflected pulse. This is because of
the equal magnitude of the inhomogeneous parameters. The same features are
visible in Figure 5.26, which shows the variation of the transverse velocities
for different α values. Even here, the magnitude decreases with increase in
α, keeping the bending wave speed constant in each case. However, the rate
∂wmax/∂α is higher in this case given by −0.9757, −0.5950 and −0.3628 (in
10−04 m2/s), for α = 1.0, 1.5 and 2.0, respectively. Thus inhomogeneity has a
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Fig. 5.26. Variation of transverse velocity with α (β = α)

greater effect over the transverse velocity when it comes to the reduction of
amplitude.

In the second set, α is fixed at 1.0 and β is varied from 0.9 to 1.2 in
four steps. Figure 5.27 shows the variation of the axial velocities for different
β values. As the figure suggests, there is no change in the magnitude of the
incident pulse with varying β. However, with increasing β, both the magnitude
of the reflected pulse and the axial speed decrease, as is evident in the late
arrival of the reflected pulses. As α is fixed, the contribution from the modulus
to the wave speed is constant.

However, with increasing β, the inertial contribution increases and hence
the decrement of the wave speeds. Also, it can be concluded that the incident
wave magnitude has very little bearing on the inertia of the beam, compared
to the variation of the reflected wave.

In Figure 5.28, the transverse velocity histories are plotted. For clarity, they
are separated into two pairs. The same traits of the axial velocity histories
are also present here. There is no change in the magnitude of the incident
pulse but the appearance of the reflections from the boundary is delayed with
increasing β.
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Fig. 5.27. Variation of axial velocity with β (α = 1.0), shifted for clarity

Overall, this example shows the individual effect of the inhomogeneous
parameters and the use of inhomogeneous parameters as a way of controlling
the response of a structure by controlling the gradation.

5.5.2 Elimination of the Reflection from Material Boundary

As demonstrated using a rod waveguide, the advantages of using FGM are
shown in this example by eliminating reflections in the stress waves originating
at a bi-material interface.

In Section 5.1.2, the use of a FGM layer in eliminating reflections due to
a material interface was demonstrated for a bi-material rod. We demonstrate
the same here for a bi-material beam. Two cantilever beams are considered
for this purpose, having the same geometry as the previous examples (L = 1.0
m, b = 0.1 m and h = 0.1 m). There are two different materials. One is steel
and the other is aluminum, with material properties as given before. Two
different material distributions in the beams are shown in Figure 5.29. In the
bi-material beam, from the fixed end to the midpoint of the beam, the material
is steel and the rest is aluminum. Thus the material boundary is located at
the mid-point of the beam. In the second beam, half of the steel material is
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Fig. 5.28. Variation of axial velocity with β (α = 1.0), shifted for clarity
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Fig. 5.29. Cantilever beam models in example 3, (a) bi-material beam, (b) bi-
material beam with graded interface
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Fig. 5.30. Smoothing of axial stress

replaced by a graded material, which has steel properties at the left end and
aluminum properties at the right end. Thus the inhomogeneous parameters,
α and β in this case take the value of −4.3944 and −4.2435, respectively.
The beams are impacted at the tip by an axial and transverse load of 1.0 N.
The axial and shear stresses are measured at the mid-point of the aluminum
region, i.e., 0.25 m away from the free end of the beam.

Figure 5.30 shows the variation in axial stress for both beams. As is evident
from the figure, the bi-material beam (in the absence of gradation) shows two
extra reflections at around 250 µs and 350 µs, other than the reflection from
the fixed end (at 450 µs). The magnitude of this reflected pulse is around
50% of the original incident pulse. However, the magnitude of the physical
boundary reflected pulse is increased by almost 100%, which is a disadvantage
incurred by the gradation. As a possible explanation, it can be stated that the
energy of the suppressed waveform at the material interface is transmitted
to the physical boundary and thus enhances the amplitude of the reflected
pulse. However, by the elimination of the extra reflections, the structures are
subjected to fewer tension–compression cycles. Figure 5.31 shows the variation
in shear stress, which shows clearly the suppressed peaks from scattering at
the material interfaces. In general, the stress history is reasonably smoothed
in the presence of graded materials. Also, it is to be noted that in all cases,
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the incident waves are unchanged. This is because the gradation is effective
only after the stress wave passes through the material.

So far, several SFE models have been developed for wave propagation anal-
ysis in inhomogeneous 1-D waveguides. In all higher order SFE formulations,
the companion matrix method was used to compute the wavenumbers and
the SVD method was used to compute the wave amplitudes. The idea of ap-
proximate SFE is introduced in the formulation of inhomogeneous rod and
length-wise graded FSDT SFEs. The elements are meant for both FGM and
composite materials, where the the depth-wise integrated stiffness parameters
take care of the anisotropy or inhomogeneity (during integration). It has been
found that the presence of a FGM layer in structures results in significant
difference in the response from its parent material beams (steel and ceramic
for example) due to the presence of coupled stiffness and inertial parameters.
Inclusion of FGM has proven to be an effective way to smooth stress jumps
in bi-material beams.

Two significant features that result from the introduction of the Poisson’s
contraction in the model are the extra propagating (contraction) mode and the
increased dispersiveness of the axial wave. These two features were elegantly
captured by the SFEs. Now, the question one needs to answer is when are the
higher order effects (specially Poisson’s contraction effects) significant. Two
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main factors that determine the need for Poisson’s contraction in the models
are the load spectrum and the cut-off frequency of the contractional mode.
The cut-off frequency is, in turn, dependent on the depth of the beam. The
higher the depth, the lower the cut-off frequency. If the frequency band of the
input signal supersedes the cut-off frequency, Poisson’s contraction effect will
be significant. In an attempt to quantify this idea, closed form expressions for
the cut-off frequencies are given. Effect of contraction on the spectrum and
the dispersion relation in comparison to the FSDT, is also shown in the study.

The length-wise graded shear flexible beam improves the modeling of in-
homogeneous structures over the previously developed shear flexible SFE. In
this case, the inhomogeneity is considered both in the direction of wave prop-
agation (as considered in the rod element formulation) and normal to it. This
is the most general case of inhomogeneity. It is shown that the desired re-
sponse can be obtained, in particular, modes of Lamb waves can be chosen
by suitably varying the gradation. Further, either the wave amplitude or the
speed can be varied, alone, by fixing one parameter and varying the other.
One advantage of gradation is the minimization or complete elimination of
reflections from the material interfaces. This aspect is clearly demonstrated
through a numerical example.



6

Wave Propagation in Two-dimensional
Anisotropic Structures

Layered media are encountered in various natural (soil, wood, tissue, etc.)
and artificial (bi-material, fibre reinforced composite, graded materials etc.)
structural systems. Composite structural components are made up of a stack
of layers (called ply or lamina) to form a laminate. These classes of materi-
als can be both anisotropic and inhomogeneous. Further, these systems are
required to resist harsh environments, such as impact load, high temperature
load, etc. in their lifetime. Hence, analysis of these layered systems for such
loading is important and requires critical attention.

The analysis of layered media is traditionally carried over in transfer ma-
trix form where the displacements and stresses of one interface are related to
the other interface by a system matrix. This matrix is assembled for more
than one layer and the resulting system needs to be solved after imposing the
boundary conditions. The SFEM, applied to 2-D layered media is not vastly
different from the transfer matrix based method. However, the stiffness matrix
form along with the exact representation of the layer makes it more efficient
for modeling multiple layers and analyzing high frequency impact loading.

As discussed before, SFE for layered media was formulated using a solution
obtained by the method of potentials, which is applicable only to isotropic
materials. For anisotropic and inhomogeneous media, among the available
methodologies, the Partial Wave Technique (PWT) is a suitable option. In
this chapter, SFEs are formed using this method, where the SVD method
(described in 1-D waveguide formulation) is utilized to obtain the wave am-
plitudes, which is essential for constructing the partial waves. In the PWT
based method of Lamb wave analysis, once the partial waves are found, the
wave coefficients are made to satisfy the prescribed boundary conditions, i.e.,
two non-zero tractions specified at the top and bottom of the layer. In our case,
the formulation is slightly different, as no specific problem oriented boundary
conditions are imposed. Thus a system matrix is established, which relates
the tractions at the interface to the interfacial displacements. This gener-
alization enables the use of the system matrix as a finite element dynamic
stiffness matrix, although formulated in the frequency/wavenumber domain.
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These matrices can be assembled to model different layers of different ply-
orientation or inhomogeneity, which obviates the necessity for cumbersome
computation associated with multilayer analysis (e.g., see [102]). The only
shortcoming of the method is that each spectral layer element (SLE) can ac-
commodate only one fiber angle, thus for different ply-stacking sequences the
number of elements will be at least equal to the number of different ply-angles
in the stacking.

One advantage of the present formulation is the ease in capturing the
Lamb wave [23] propagation in anisotropic/inhomogeneous plate. By defini-
tion, the Lamb waves are guided waves propagating in a domain bounded by
two parallel traction-free surfaces. The importance of Lamb waves in NDE ap-
plications lies in its ability to inspect large areas at a time by propagating long
distances without attenuation. Hence, these waves find immense application
in structural health monitoring. Historically, the dispersion relation (phase
velocity frequency relation) for anisotropic materials was given first by Solie
and Auld [103], where PWT were used. However, the relation was obtained
for a (001)-cut copper plate. Subsequent investigations on modeling aspects of
Lamb waves were carried out by several researchers [21]. Finite element mod-
eling of Lamb waves was performed by Verdict et al. [104]. On the basis of
discrete layer theory and a multiple integral transform an analytical-numerical
approach is given by Veidt et al. [105]. A coupled FE-normal mode expansion
method is given by Moulin et al., [106]. Similarly a boundary element nor-
mal mode expansion method is given by Zhao and Rose [107]. The present
formulation by virtue of a frequency wavenumber domain representation of
solution is an inexpensive way of constructing the Lamb wave modes as well
as predicting time domain signals.

6.1 Two-dimensional Initial Boundary Value Problem

It is assumed that there is no heat conduction in and out of the system,
the displacements are small, material is homogeneous and anisotropic and the
domain is 2-D Euclidean space. The general elastodynamic equation of motion
for 3-D is given by

σij,j = ρ(x1, x2, x3)üi , σij = Cijkl(x1, x2, x3)εkl , εij = (ui,j + uj,i)/2 ,
(6.1)

where comma (,) and dot (˙) denote partial differentiation with respect to the
spatial variables and time, respectively.

For a 2-D model with orthotropic material construction, the complexity of
the above equation can be further reduced by the following assumptions. The
non-zero displacements are u1 = u and u3 = w in the direction x1 = x and
x3 = z, respectively (see Figure 6.1). Then the non-zero strains are related to
these displacements by

εxx = ux , εzz = wz , εxz = uz + wx . (6.2)
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Fig. 6.1. Sign conventions of (a) throw-off spectral element (b) layer element

The non-zero stresses are then related to the strains by the relation

σxx = Q11εxx + Q13εzz , σzz = Q13εxx + Q33εzz , σxz = Q55εxz , (6.3)

where Qij are the stiffness coefficients, which depend on the ply layup, its
orientation and the z coordinate of the layer. Substituting Equation (6.3) in
Equation (6.1) and imposing the assumptions, the elastodynamic equation for
2-D homogeneous orthotropic media is given by

Q11uxx + (Q13 + Q55)wxz + Q55uzz = ρü ,

Q55wxx + (Q13 + Q55)uxz + Q33wzz = ρẅ . (6.4)

As mentioned in Chapter 3, here, we will attempt to reduce the governing
PDEs to a set of ODEs. For this, we need to remove two variables from the
system and introduce two new parameters instead. To achieve this, we will
take the Fourier transform in time and the Fourier series in space. With this
assumption, the spectral form of the displacement field becomes

u(x, z, t) =
N−1∑
n=1

M−1∑
m=1

û(z, ηm, ωn)
{

sin(ηmx)
cos(ηmx)

}
e−jωnt , (6.5)
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w(x, z, t) =
N−1∑
n=1

M−1∑
m=1

ŵ(z, ηm, ωn)
{

cos(ηmx)
sin(ηmx)

}
e−jωnt , (6.6)

where ωn is the discrete angular frequency and ηm is the discrete horizontal
wavenumber. As the assumed field suggests, for M → ∞, the model will
have infinite extent in the positive and negative X direction, although the
domain is finite in the Z direction, i.e., it will be a layered structure. In
particular, the domain can be written as Ω = [−∞,+∞] × [0, L], where L
is the thickness of the layer. The boundaries of any layer will be specified
by a fixed value of z. The X dependency of the displacement field (sine or
cosine) will be determined based upon the loading pattern. In all subsequent
formulation and computation, a symmetric load pattern will be considered,
i.e., sin(ηmx) for u and cos(ηmx) for w. The real computational domain is
Ωc = [−XL/2,+XL/2] × [0, L], where XL is the X window length. Discrete
values of ηm depend upon XL and the number of mode shapes (M) chosen.

This displacement field reduces the governing equations to a set of ODEs

Aû′′ + Bû′ + Cû = 0 , û = {û ŵ} , (6.7)

where prime denotes differentiation with respect to z. The matrices A, B and
C are

A =
[

Q55 0
0 Q33

]
, B =

[
0 −(Q13 + Q55)ηm

(Q13 + Q55)ηm 0

]
, (6.8)

C =
[
−η2

mQ11 + ρω2
n 0

0 −η2
mQ55 + ρω2

n

]
. (6.9)

The associated boundary conditions are the specifications of the stresses
σzz and σxz at the layer interfaces. From Equation (6.3), the stresses are
related to the unknowns by

ŝ = Dû′+Eû , ŝ = {σzz σxz} , D =
[

0 Q33

Q55 0

]
, E =

[
ηmQ13 0

0 −ηmQ55

]
.

(6.10)
The original boundary value problem (BVP) reduces to finding û, which sat-
isfies Equation (6.7) for all z ∈ Ωc, and the specification of û or ŝ at z = 0 or
z = L. Once the solution is obtained for different values of z in the frequency-
wavenumber domain (Z − η − ω domain, for given values of ωn and ηm), the
summation over ηm will bring the solution back to the Z −X −ω domain and
the inverse FFT will bring the solution back to time domain, i.e., Z − X − t
domain.

The solutions to these ODEs are of the form u◦e−jkz and w◦e−jkz, which
yields the PEP

W{u◦} = 0 ,W = −k2A − jkB + C , {u◦} = {u◦ w◦} , (6.11)

where W is the wave matrix given by
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W =
[
−k2Q55 − η2

mQ11 + ρω2
n jkηm(Q13 + Q55)

−jkηm(Q13 + Q55) −k2Q33 − η2
mQ55 + ρω2

n

]
. (6.12)

The singularity condition of W yields the following equation for determining
the spectrum relation

Q33Q55k
4 + {(Q11Q33 − 2Q13Q55 − Q2

13)η
2
m − ρω2

n(Q33 + Q55)}k2

+ {Q11Q55η
4
m − ρω2

nη2
m(Q11 + Q55) + ρ2ω4

n} = 0 . (6.13)

It is to be noted that for each value of ηm and ωn, there are four values of k, de-
noted by klmn, l = 1, . . . , 4, which will be obtained by solving Equation (6.13).
Explicit solution of the wavenumber k is klnm = ±

√
−b ±

√
b2 − 4ac, where

a, b and c are the coefficients of k4, k2 and k0, respectively, in Equation (6.13).
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Fig. 6.2. Variation of wavenumber with ωn (ηm = 10)

There are certain properties of the wavenumbers which will be explored
now. As can be seen from Equation 6.13, for ηm = 0, the equation is readily
solvable to give the roots ±ω

√
ρ/Q33 and ±ω

√
ρ/Q55. Since none of the ρ,

Q33 or Q55 can be negative or zero, these roots are always real and linear with
ω. When ηm is not zero, k becomes zero for ω satisfying

Q11Q55η
4
m − ρω2

nη2
m(Q11 + Q55) + ρ2ω4

n = 0
i.e., (Q11η

2
m − ρω2)(Q55η

2
m − ρω2) = 0

i.e., ω = ηm

√
Q11/ρ , ηm

√
Q55/ρ , (6.14)
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which are the cut-off frequencies. For frequencies lower than the cut-off fre-
quencies, the roots are imaginary and non-propagating and above these fre-
quencies, the roots are real and propagating. For isotropic materials the cut-off
frequencies are given by cpη and csη [108]. The current expressions for the cut-
off frequencies are also reducible to that of isotropic materials if we identify
Q11 and Q55 with λ + 2µ and µ, respectively, where λ and µ are the Lame
parameters. If we identify the QP wave with Q33 (or Q11) and the QSV wave
with Q55, then as the cut-off frequencies suggest, for the same value of ηm,
it is the QSV wave that becomes propagating first, since Q11 > Q55. In Fig-
ure 6.2, the wavenumbers are plotted for three different ply-angles, 0◦, 45◦

and 90◦. For all the ply-angles, Q33 and Q55 are assumed 9.69 GPa and 4.13
GPa, respectively. For Q11 and Q13, the following values are assumed. For
0◦, Q11 = 146.3 GPa and Q13 = 2.98 GPa, for 45◦, Q11 = 44.62 GPa and
Q13 = 1.62 GPa and for 90◦, Q11 = 9.69 GPa and Q13 = 2.54 GPa. In Fig-
ure 6.2, the imaginary part of the wavenumbers is plotted in the horizontal
plane and the real part in the vertical plane. Further, the imaginary part of
the wavenumbers for 0◦ and 90◦ are plotted in the positive side, whereas for
45◦ it is plotted in the negative side, for distinction. Two different ηm values
are considered. The linear variation of the real part of the wavenumbers are
for ηm = 0 and rest of the plots are for ηm = 10. As discussed previously,
the slope of the linear portion depends upon Q33 and Q55 and as they are
equal for all ply-angles, this part is common for all ply-angles. The difference
comes in the imaginary part and the cut-off frequencies. Two different cut-off
frequencies are seen in the figure for each ply-angle, where the largest value
is for 0◦ ply-angle because of the large Q11 value. Further, the shear cut-off
frequency is the same for all ply-angles as Q55 is equal in all the cases.

Once, the required wavenumbers k are obtained, for which the wave matrix
W is singular, the solution u◦ at frequency ωn and wavenumber ηm is

unm = R11C1e
−jk1x + R12C2e

−jk2x + R13C3e
−jk3x + R14C4e

−jk4x , (6.15)

wnm = R21C1e
−jk1x + R22C2e

−jk2x + R23C3e
−jk3x + R24C4e

−jk4x , (6.16)

where Rij are the amplitude coefficients to be determined and are called wave
amplitudes. As outlined before, following the method of SVD, Rij are obtained
from the wave matrix W evaluated at wavenumber ki.

6.2 Spectral Element for Doubly Bounded Media

Once the four wavenumbers and wave amplitudes are known, the four partial
waves can be constructed and the displacement field can be written as a linear
combination of the partial waves. Each partial wave is given by

ai =
{

ui

wi

}
=

{
R1i

R2i

}
e−jkiz

{
sin(ηmx)
cos(ηmx)

}
e−jωnt , i = 1 . . . 4 , (6.17)
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and the total solution is

u =
4∑

i=1

Ciai . (6.18)

6.2.1 Finite Layer Element (FLE)

Once the solutions of u and w are obtained in the form of Equations (6.15)
and (6.16) for each value of ωn and ηm, the same procedure as outlined in
the 1-D element formulation is employed to obtain the element dynamic stiff-
ness matrix at ωn and ηm. Thus, the nodal displacements are related to the
unknown constants by

{u1nm v1nm u2nm v2nm}T = [T1nm]{C1 C2 C3 C4}T , (6.19)

i.e.,
{û}nm = [T1]nm{C}nm . (6.20)

Using Equation (6.10), nodal tractions are related to the constants by

{t̂}nm = [T2]nm{C}nm , {t̂}nm = {σzz1 , σxz1 , σzz2 , σxz2} , (6.21)

where inhomogeneity of the material is utilized while evaluating the tractions
at the nodes.

Explicit forms of T2nm and T1nm are

T1 =

⎡
⎢⎢⎣

R11 R12 R13 R14

R21 R22 R23 R24

R11e
(−jk1L) R12e

(−jk2L) R13e
(+jk1L) R14e

(+jk2L)

R21e
(−jk1L) R22e

(−jk2L) R23e
(+jk1L) R24e

(+jk2L)

⎤
⎥⎥⎦ , (6.22)

T2(1, p) = −Q55(−jR1pkp − ηR2p) ,

T2(2, p) = jQ33R2pkp − Q13ηR1p ,

T2(3, p) = Q55(−jR1pkp − ηR2p)e(−jkpL)

T2(4, p) = {−jQ33R2pkp + Q13ηR1p}e(−jkpL) ,

where p ranges from 1 to 4.
Thus, the dynamic stiffness matrix becomes

[K̂]nm = [T2]nm[T1]−1
nm , (6.23)

which is of size 4×4 having ωn and ηm as parameters. This matrix represents
the dynamics of an entire layer of any length L at frequency ωn and horizon-
tal wavenumber ηm. Consequently, this small matrix acts as a substitute for
the global stiffness matrix of FE modeling, whose size, depending upon the
thickness of the layer, will be many orders larger than the SLE size.
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6.2.2 Infinite Layer Element (ILE)

This is the 2-D counter part of the 1-D throw-off element. The element is for-
mulated by considering only the forward moving components, which means no
reflection will come back from the boundary. This element acts as a conduit
to throw away energy from the system and is very effective in modeling the
infinite domain in the Z direction. This element is also used to impose absorb-
ing boundary conditions or to introduce maximum damping in the structure.
The element has only one edge where the displacements are to be measured
and tractions are to be specified. The displacement field for this element (at
ωn and ηm) is

unm = R11C1nme−jk1z + R12C2nme−jk2z , (6.24)

wnm = R21C1nme−jk1z + R22C2nme−jk2z , (6.25)

where it is assumed that k1 and k2 have positive real parts. Following the same
procedure as before, displacement at node 1 can be related to the constants
Ci, i = 1, 2 as

{û}nm = [T1]nm{C}nm . (6.26)

Similarly, tractions at node 1 can be related to the constants as

{tx1 ty1}T
nm = [T2]nm{C1nm C2nm}T , i.e., {t̂}nm = [T2]nm{C}nm .

(6.27)
Explicit forms of the matrix T1 and T2 are

T1(ILE) = T1(FLE)(1 : 2, 1 : 2) , T2(ILE) = T2(FLE)(1 : 2, 1 : 2) . (6.28)

The dynamic stiffness for the homogeneous infinite half space becomes

[K̂]nm = [T2]nm[T1]−1
nm , (6.29)

which is a 2 × 2 complex matrix.

6.2.3 Expressions for Stresses and Strains

From the displacement field (Equations (6.15) and (6.16)), the strain–displacement
and stress–strain relations, the matrix of strain nodal displacement relation
and the stress nodal displacement relation can be established as

ε = BT1
−1û , σ = QBT1

−1û , ε = {εxx, εzz, εxz} , σ = {σxx, σzz, σxz} ,
(6.30)

where the elements of B (size 3× 4) are described in terms of the wave am-
plitude matrix R as

B(1, p) = R1pηe−jkpz , B(2, p) = −jR2pkpe
−jkpz ,

B(3, p) = −(jR1pkp + R2pη)e−jkpz , p = 1, . . . , 4 . (6.31)
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Here z is the point of strain measurement. The elasticity matrix Q is

Q =

⎡
⎣Q11 Q13 0

Q13 Q33 0
0 0 Q55

⎤
⎦ . (6.32)

6.2.4 Prescription of Boundary Conditions

Essential boundary conditions are prescribed in the usual way as is done in FE
methods, where the nodal displacements are arrested or released depending
upon the nature of the boundary conditions. The applied tractions are pre-
scribed at the nodes. It is assumed that the loading function (for symmetric
loading) can be written as

F (x, z, t) = δ(z − zj)

(
M∑

m=1

amcos(ηmx)

)(
N−1∑
n=0

f̂ne(−jωnt)

)
, (6.33)

where δ denotes the Dirac delta function, zj is the Z coordinate of the point
where the load is applied and the z dependency is fixed by suitably choosing
the node where the load is prescribed. No variation of load along the Z di-
rection is allowed in this analysis. f̂n are the Fourier transform coefficients of
the time dependent part of the load, which are computed by FFT, and am

are the Fourier series coefficients of the x dependent part of the load.
There are two summations involved in the solution and two associated

windows, one in time T and the other in space XL. The discrete frequencies
ωn and the discrete horizontal wavenumber ηm are related to these windows
by the number of data points N and M chosen in each summation, i.e.,

ωn = 2nπ/T = 2nπ/(N∆t) , ηm = 2(m − 1)π/XL = 2(m − 1)π/(M∆x) ,
(6.34)

where ∆t and ∆x are the temporal and spatial sample rate, respectively.

6.2.5 Determination of Lamb Wave Modes

As defined earlier, the Lamb waves are guided waves (see Figure 6.3), prop-
agating in a free plate and the two lateral guiding surfaces are traction free.
There are two main approaches to the analysis of Lamb waves. The first one
is the method of potentials. In this method, Helmholtz decomposition of the
displacement field is obtained and the governing equations are uncoupled and
written in terms of the potentials. Solutions are sought for these potentials,
which contain four arbitrary constants. The displacement field and the stresses
are expressed in terms of the potentials and the imposition of traction-free
upper and lower surfaces generates the necessary condition for finding the
unknown constants and the dispersion equation (see [102]). The advantage of
this method is that the symmetric and anti-symmetric modes can be isolated
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Fig. 6.3. (a) Symmetric Lamb wave propagation; (b) anti-symmetric Lamb wave
propagation

during formulation (see Figure 6.3(a),(b)). However, the method is applicable
only to the isotropic waveguides.

The second approach is based on the PWT, which is discussed below in
detail. In the SLE formulation, there are two summations in the solutions.
The outer one is over the discrete frequencies and the inner one is over the
discrete horizontal wavenumbers. Each partial wave of Equation (6.18) satis-
fies the governing PDEs (Equation (6.4)) and the coefficients Ci as a whole
satisfy any prescribed boundary conditions. As long as the prescribed natural
boundary conditions are non-homogeneous, no restriction upon the horizon-
tal wavenumber η is imposed and that leads to a double summation solu-
tion of the displacement field. However, that is not the case for traction-free
boundary conditions on the two surfaces, which are the necessary condition
for generating Lamb waves. The governing discrete equation for a finite layer
(Equation (6.23)) in this case becomes

[K̂(ηm, ωn)]nm{û}nm = 0 , (6.35)

and we are interested in a non-trivial u. Hence, the stiffness matrix K̂ must
be singular, i.e., det(K̂(ηm, ωn)) = 0, which gives the required relation be-
tween ηm and ωn. Since, ωn is made to vary independently, the above relation
must be solved for ηm to render the stiffness matrix singular, i.e., ηm cannot
vary independently. More precisely, for each value of ωn there is a set of val-
ues of horizontal wavenumber ηm (one for each mode) and for each value of
ωn and ηm there are four vertical wavenumbers knm. The difference in this
case is in the value of ηm, which is to be solved for, as opposed to its ex-
pression in Equation (6.34) and M is the number of Lamb modes considered
rather than Fourier modes. Now, for each set of (ωn, ηm, knml), l = 1, . . . , 4,
K̂ will be singular and Cl, l = 1, . . . , 4 will be in the null space of K̂. Now
using Equation (6.18), the total solution can be constructed. Following nor-
mal practice, the traction-free boundary conditions (i.e., σzz, σxz = 0) are
prescribed at z = ∓h/2. Using Equation (6.30), the governing equation for Ci

and ηm becomes

[W2(ηm, ωn)]{C}nm = 0 ,C = {C1, C2, C3, C4} , (6.36)

where W2 is another form of the stiffness matrix K̂ and is given by
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W2(1, p) = (Q11◦R(1, p)η − jQ13◦R(2, p)kp)ejkph/2 ,

W2(2, p) = (Q11◦R(1, p)η − jQ13◦R(2, p)kp)e−jkph/2 ,

W2(3, p) = Q55◦(−R(1, p)kp + jR(2, p)η)ejkph/2 ,

W2(4, p) = Q55◦(−R(1, p)kp + jR(2, p)η)e−jkph/2 .

The dispersion relation is det{W2} = 0, which will yield ηm(ωn) and the
phase speed for Lamb waves cnm will be given by ωn/ηm. Once the values
of ηm are known for the desired number of modes, the elements of Cnm are
obtained by the technique of SVD as described earlier to find the elements
of R. Summing over all the Lamb modes, the solution for each frequency is
obtained.

6.3 Numerical Examples

The developed spectral element is validated first to establish its accuracy
and efficiency with respect to conventional 2-D FE solutions. Subsequently,
propagation of lamb waves through layered media is studied for different ply-
angles.

6.3.1 Propagation of Surface and Interface Waves

Wave propagation in an asymmetrically stacked composite layer is studied in
this section and the results are compared with 2-D FE solutions. The material
used is GFRP composite whose material properties were defined earlier. The
ply-sequence considered is [0◦10/90◦10/0◦10], where each lamina is 0.01 m thick.
This large thickness is chosen to differentiate between the incident and the
reflected pulse, although any layer thickness can be chosen. The layered system
is impacted by a high frequency loading, as shown in Figure 6.4, where the
bottom of the layer is fixed. The time history of the high frequency load along
with its spectrum is shown in Figure 5.3.

The load is applied at the center of the top layer first in the Z direction,
which generates primarily QP waves, and then in the X direction, which
generates primarily QSV waves. The response of the structure is measured at
several locations along the surface and interfaces. For FE analysis, the layer
is modeled with 3600, three-noded plane-strain FEs. In comparison, there are
only three FLEs in the spectral model. The FE model results in a global
system matrix of size 3656 × 126, whereas, the spectral model results in a
global system matrix (dynamic stiffness matrix) of size 6 × 6. While solving
via FE analysis, Newmark’s time integration is adopted with a time increment
of 1 µs. For the spectral analysis, the load is sampled at 48.83 Hz with 2048 (N
in Equation (6.33)) FFT points. Further, for the spatial variation, 32 Fourier
series coefficients (M in Equation (6.33)) are considered. For the concentrated
load, all the am are equal to 2/XL, where XL is the window length in the X
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Fig. 6.5. QP wave at the surface (point 1); solid line SE, dashed line 2-D FE

direction, here taken as 1.0 m, as per the FE model. Since, the time domain
response is real, the computation of displacements (or velocities) needs to
be carried out only upto the Nyquist frequency. Hence, the global stiffness
matrix needs to be inverted 1024× 32 times. This computational requirement
is many orders smaller than the requirement of the FE analysis. Further, a
typical simulation in FE takes 110 s of CPU time, whereas, a SE run takes 14
s on a Compaq Alpha Server ES40 with DEC compiler.
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Fig. 6.6. QP wave at the interface (point 4), solid line SE, dashed line 2-D FE

Before discussing the velocity histories, a few points need to be considered.
When a velocity wave encounters a stiffer zone, the reflected wave has equal
magnitude and opposite sign to that of the incident wave. As opposed to
that, when the wave encounters a zone of comparatively lower stiffness, the
reflected wave has equal amplitude and the same sign as that of the incident
wave. These phenomena are best visible in the reflections from the fixed end
(infinite stiffness) and the free end (zero stiffness) of a structure. However,
reflected waves are also generated at the interfaces of laminates because of the
mismatch in the impedance. In the present model, propagation is considered
in the direction of ply-stacking and there is a nominal change in stiffness in
that direction, due to the change in laminae angle. Hence, the magnitude of
the reflected waves from the interface will not be large enough to be visible, in
comparison to the boundary generated waves. Thus whatever reflections are
present in the velocity or stress history are solely due to reflections from the
boundary.

For the load applied in the Z direction at point 1, the Z directional velocity
ẇ, is measured at points marked 1, 4, and 5 (see Figure 6.4). The velocity
history of these nodes are plotted in Figures. 6.5–6.7. In Figure 6.5, the peak at
100 µs is the direct effect of the load. For this kind of loading, the propagating
wave is essentially a QP wave. In this case, the inverted peak at around
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Fig. 6.7. QP wave at the interface (point 5), solid line SE, dashed line 2-D FE

3.2 × 10−4 s is the reflection from the fixed end, i.e., at z = 0.3 m. Again at
the fixed end, the wave is inverted and shows up at around 5.4 ×10−4 s. This
figure also shows the excellent agreement between the FE and SLE responses.

Next, the ẇ history at the first interface (z = 0.1 m, point marked 4) is
plotted in Figure 6.6. The response in this case does not start at 100 µs as
before, but at 130 µs. This is due to the time taken for propagation in the
first layer, i.e., 0◦ laminate. Subsequent reflections at around 2.9 ×10−4 s and
3.6 ×10−4 s are due to the reflections from the fixed edge (z = 0.3 m) and
free edge (z = 0.0 m), respectively. Further, the peak at around 5.0 ×10−4 s
is the second reflection from the fixed edge.

For the ẇ history measured at the second interface (z = 0.2 m, point
marked 5) and the response is plotted in Figure 6.7 the main peak comes
down to 1.67 ×10−4 s because of the large travel distance. The QP wave
velocity at 90◦ laminate is less than that in the 0◦ laminate and hence the
increase (above 1.6 ×10−4) in propagation time. There are reflections from
the fixed end (inverted peak at around 2.46 ×10−4 s), reflections from the free
end (inverted peak at 4.0 ×10−4 s) and second reflections from the fixed end
(peak at around 4.7 ×10−4 s). The SLE captures these reflections quite well,
and except for the last reflection, the response matches satisfactorily with the
FE response.
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Fig. 6.8. QSV wave at the surface (point 2); solid line - SE, dashed line - 2-D FE

Next, the same load is applied at point 1 in the X direction. For this load,
primarily QSV waves are generated. There will be no wave at the impact
point and the X directional velocity u̇ is measured at the surface points 2
and 3 and plotted in Figures 6.8 and 6.9, respectively. In both cases, several
reflections from the fixed ends are visible. As before, good agreement between
the FE and the SLE responses can be observed. These responses establish the
developed SLE in terms of accuracy, efficiency and cheap cost of computation.

6.3.2 Propagation of Lamb Wave

An angle-ply lamina of 2 mm thickness is considered for the Lamb wave prop-
agation study. Analysis is performed for three different fiber directions, 0◦,
45◦ and 90◦. Material properties of the composite are as taken before.

The dispersion relation (relation between cp = ω/η and ω) is usually left in
the form of a determinant equal to zero because of its complexity. Hence, solu-
tion of this kind of implicit equation requires special treatment. The solution
in particular is multi-valued, unbounded and complex (although the real part
is of interest). One way to solve these equations is to appeal to the strategies of
non-linear optimization, which are based on non-linear least square methods.
There are several choices of algorithms, like the trust-region dogleg method,
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Fig. 6.9. QSV wave at the surface (point 5); solid line - SE, dashed line - 2-D FE

Gauss Newton method with a line search, or Levenberg Merquardt method
with line search. Here, the MATLAB function fsolve is used and for the de-
fault option for medium scale optimization, the trust-region dogleg method is
adopted, which is a variant of Powell’s dogleg method [109].

Apart from the choice of algorithm there are other subtle issues in root
capturing for the solution of wavenumbers as the solutions are complicated in
nature. Moreover, except the first one or two modes, all the other roots escape
to infinity at low frequency. For isotropic materials, these cut-off frequencies
are known a priori. However, no expressions can be found for anisotropic ma-
terials and generally, the modes (solutions) should be tracked backwards, i.e.,
from the high frequency to the low frequency region. In general two strategies
are essential to capture all the modes within a given frequency band. Initially,
the whole region should be scanned for different values of the initial guess,
where the initial guess should remain constant for the whole frequency range.
These sweeps open up all the modes in that region, although they are not
completely traced. Subsequently, each individual mode should be followed to
the end of the domain or to a pre-set high value of the solution. For this
case, the initial guess should be changed for each frequency to the solution
of the previous frequency step. Also, sometimes it is necessary to reduce the
frequency step in the vicinity of high mode gradients. Once the Lamb modes
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Fig. 6.10. Lamb wave modes for 0◦ ply-angle
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Fig. 6.11. Lamb Wave propagation for 0◦ ply-angle, L = 320h
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Fig. 6.12. Lamb Wave propagation for 0◦ ply-angle, L = 320h

are generated they are fed back into the frequency loop to produce the fre-
quency domain solution of the Lamb wave propagation, which through IFFT
produces the time domain signal. As the Lamb modes are generated first,
they need to be stored separately. To this end data are collected from the
generated modes at several discrete points over the whole frequency range.
Next, a cubic spline interpolation is performed for a very fine frequency step
within the same range. While generating the time domain data, interpolation
is performed from these finely graded data to get the phase speed (hence, η).

To get the time history of the propagating Lamb waves a modulated pulse
of 200 kHz center frequency is applied at one end of an infinite plate and X
and Z velocities are measured for a propagating distance of 320h, where h
is the thickness of the plate. While studying the time domain representation,
the thickness of the plate is taken as 10 mm, which amounts to a frequency-
thickness value of 2. This increased thickness is taken because for this value, at
least three modes will be excited in all the cases, as shown by their respective
dispersion curves (Figures 6.10, 6.13 and 6.16).

In all the dispersion plots of the Lamb modes, the abscissa is given in
terms of frequency times the thickness. Figure 6.10 shows the first 10 Lamb
modes for fiber angle 0◦. As is seen in the figure, the first anti-symmetric mode
(Mode 1) converges to a value of 1719 m/s in a range of 1 MHz-mm, where all
the other modes converge. In analogy to the isotropic case, this is the velocity
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Fig. 6.13. Lamb wave modes for 45◦ ply angle

of the Rayleigh surface waves in 0◦ fiber laminae. The first symmetric mode
(Mode 2) starts above 10000 m/s and drops suddenly at around 1.3 MHz-mm
to converge to 1719 m/s, before which it has fairly constant value. All the
other higher order modes escape to infinity at various points in the frequency
range. Also the symmetric and the anti-symmetric pair of each mode escape
almost at the same frequency.

Propagation of these modes are plotted in Figure 6.11 and 6.12 for the first
three modes (a◦, s◦ and a1), here referred to as Mode 1, 2 and 3 respectively.
In Figure 6.11, the Z velocity history is plotted, whereas in Figure 6.12 the X
velocity history is plotted. The figures readily show the different propagating
modes, each corresponds to one blob. It is to be noted that, the wave propa-
gation velocity is given by the group speed (and not the phase speed). Hence,
Figure 6.10 will not help us to predict the appearances of different modes.
However, as Figure 6.11 and 6.12 suggest, mode 2 has a lower group speed
than mode 1 and mode 3 has a group speed much higher than both mode
1 and 2. One difference in the u̇ and ẇ history can be observed. For u̇, the
higher mode generates velocity of comparatively less magnitude, whereas, for
ẇ, the magnitude is highest.

Next the fiber angle is changed to 45◦ and the Lamb modes are plotted in
Figure 6.13. Here, the phase velocity of Mode 1 (a◦) is lower than the previous
values for 0◦ (1690 m/s). Also, the initial phase velocity of Mode 2 (s◦) has
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Fig. 6.14. Lamb wave propagation for 45◦ ply angle, L = 320h

come down to less than 6000 m/s in comparison to its 0◦ counterpart (10000
m/s). Further, the cut-off frequencies of all the higher modes are smaller than
in the previous case. Also there are considerable differences in these cut-off
frequencies for each pair of symmetric and anti-symmetric modes, which is
absent in the 0◦ case. Also the number of modes is increased to 11 from 10 in
the previous case. The time domain representations of the propagating waves
are shown in Figures 6.14 and 6.15. In this case, however, the second mode
has higher group velocity than the first mode and the third mode has the
highest group speed.

Finally, the fiber angle is changed to 90◦ and the resulting dispersion rela-
tion is plotted in Figure 6.16. The shifting of the modes to the left of the figure
continues as the number of modes is increased to 12. Further, the first sym-
metric mode has come down to 2600 m/s and the first anti-symmetric mode
is reduced to a converged speed of 1510 m/s. For these modes the propagating
Lamb wave is plotted in Figure 6.17 and 6.18 for u̇ and ẇ, respectively. As the
figures suggest, mode 2 again has lower group speed compared to mode 1 and
mode 3 has higher speed than both mode 1 and 2. However, the difference
between the mode 3 group speed and mode 2 group speed is not much, as
opposed to the previous cases.

The study of Lamb wave propagation reveals some important effects of ply-
angle. It is observed that the increase in the ply-angle increases the number
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Fig. 6.15. Lamb wave propagation for 45◦ ply angle, L = 320h
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Fig. 6.16. Lamb wave modes for 90◦ ply-angle
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Fig. 6.17. Lamb wave propagation for 90◦ ply-angle, L = 320h
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Fig. 6.18. Lamb wave propagation for 90◦ ply-angle, L = 320h
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of active modes within a defined frequency range and reduces the cut-off
frequencies and the phase speeds of a particular mode. Moreover, the difference
in the cut-off frequencies increases with increasing ply-angle.

This chapter discusses the development and application of a SFE to ana-
lyze wave propagation in a layered anisotropic media. The element captures
the response of the layered system to impact loading quite efficiently com-
pared to the conventional FE modeling. Propagation of surface and interface
waves are also shown in a layered structure. Further, Lamb modes are com-
puted for a composite laminate for different ply-orientation and the effect of
different modes on the time domain response is investigated.



7

Wave Propagation in Two-dimensional
Inhomogeneous Structures

In the previous chapter we discussed the development of SFE and wave prop-
agation aspects of layered homogeneous anisotropic media. In this chapter,
inhomogeneous (isotropic or anisotropic) layered media are studied using a
different set of SFEs.

As discussed before, inhomogeneous media like FGM generate wave equa-
tions with spatially dependent coefficients. The SLE for inhomogeneous mate-
rial takes into account exponential material property variation in the direction
of wave propagation. The element is a generalization of the beam element de-
veloped in Section 5.4. In general, the modulus and density vary in different
ways and thus at least two parameters are necessary for complete descrip-
tion of the variation. The proposed SLE is exact when the same parameter
describes the moduli and density variation, much like the beam element. How-
ever, even if a second parameter is introduced for density variation, the ele-
ment works quite satisfactorily (for small variation), although an approximate
dispersion relation is obtained. However, the approximate wavenumbers bring
all the features of the inhomogeneous wave [24] as both real and imaginary
parts are simultaneously non-zero (which cause simultaneous propagation and
attenuation of the wave).

Along with the development of SFE for elastic analysis, SFE for thermo-
elastic analysis under dynamic theory is also formulated for both anisotropic
and inhomogeneous material. For these elements, temperature is an extra
degree of freedom.

7.1 SLE Formulation: Inhomogeneous Media

For the inhomogeneous layer, the general elastodynamic equation (Equa-
tion (6.1)) is simplified for 2-D media, with principal motions in the X-Z
plane (see Figure 6.1), with the assumption that the material properties vary
only in the Z direction. Then the non-zero stresses are related to the strains
by the relation
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σxx = Q11(z)εxx+Q13(z)εzz , σzz = Q13(z)εxx+Q33(z)εzz , σxz = Q55(z)εxz ,
(7.1)

where Qij are the stiffness coefficients, which depend on the ply-layup, its ori-
entation and z coordinate of the layer. Substituting Equation (7.1) in Equa-
tion (6.1), the elastodynamic equations for a 2-D inhomogeneous orthotropic
media are

Q11uxx + (Q13 + Q55)wxz + Q55uzz + Q′
55(uz + wx) = ρ(z)ü ,

Q55wxx + (Q13 + Q55)uxz + Q33wzz + Q′
13ux + Q′

33wz = ρ(z)ẅ , (7.2)

where prime denotes differentiation with respect to z. The displacement field is
assumed in the same way as taken for the anisotropic material (Equations (6.5)
and (6.6)).

Following the same procedure used in the last chapter, a set of ODEs is
obtained (see Equation (6.7)), where the matrices A, B and C (all functions
of z) are given by

A =
[

Q55(z) 0
0 Q33(z)

]
,B =

[
Q′

55(z) −(Q13(z) + Q55(z))ηm

(Q13(z) + Q55(z))ηm Q′
33(z)

]
,

(7.3)

C =
[
−η2

mQ11(z) + ρ(z)ω2
n −Q′

55(z)ηm

Q′
13(z)ηm −η2

mQ55(z) + ρ(z)ω2
n

]
. (7.4)

Thus the effect of inhomogeneity manifests in terms of the diagonal terms in
B and the off-diagonal terms in C, which are zero for homogeneous material.
The associated boundary conditions are the specifications of stresses σzz and
σxz at the layer interfaces. From Equation (6.3), stresses are related to the
unknowns in the same way as Equation (6.10), where

ŝ = Dû′+Eû , ŝ = {σzz σxz} , D =
[

0 Q33

Q55 0

]
, E =

[
ηmQ13 0

0 −ηmQ55

]
,

(7.5)
where D and E are also functions of z. Any kind of inhomogeneity can be
tackled in this formulation, provided the BVP is solved numerically. However,
there is a special case for which the BVP is exactly solvable, and this is taken
up next.

7.1.1 Exact Formulation

Let us assume that the material property variation is exponential, i.e.,

Qij(z) = Qij◦eαz , ρ(z) = ρ◦eβz , (7.6)

where Qij◦ and ρ◦ are constant properties of the background homogeneous
material. Substituting Equation (7.6) in Equations (7.3) and (7.4) we get
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A =
[

Q55◦ 0
0 Q33◦

]
eαz ,B =

[
αQ55◦ −(Q13◦ + Q55◦)ηm

(Q13◦ + Q55◦)ηm αQ33◦

]
eαz ,

(7.7)

C =
[
−η2

mQ11◦ + ρ◦ω2
nγ −αQ55◦ηm

αQ13◦ηm −η2
mQ55◦ + ρ◦ω2

nγ

]
eαz , γ = e(β−α)z. (7.8)

Substituting Equations (7.7) and (7.8) in Equation (7.2) and cancelling the
eαz term, another equation is obtained in which the elements of the matrices
A and B are constant, but the elements of C have z dependency in terms of
γ. If β is equal to α then γ = 1 and all the matrices become constant with
respect to z. Then the solutions are in the form of u◦e−jkz and w◦e−jkz, where
u◦, w◦ and k, the vertical (Z direction) wavenumbers, are the unknowns.

However, for the more general case β 	= α, we can proceed in the same
way and can naively assume that the ejkz type of solution is still possible
(as assumed in rod formulation, Section 5.1), which will yield an approximate
solution. Since, the z dependency needs to be avoided, γ can be evaluated at
some point within the domain and can be used as a representative value for γ.
Here, γ is evaluated at z = L/2. Substituting these solutions in Equation (7.2)
for the matrices given by Equations (7.7) and (7.8), the problem becomes one
of finding non-trivial u◦, w◦ from the equation

W{u◦} = 0 ,W = −k2A − jkB + C , {u◦} = {u◦ w◦} , (7.9)

where W is the wave matrix. Thus, in the 2-D layered media, Nv = 2 and the
order of the PEP p = 2, which yields four eigenvalues (wavenumbers). The
wave matrix in explicit form is
[−k2Q55◦ − η2

mQ11◦ + ρ◦ω2
nγ − jkQ55◦α jkηm(Q13◦ + Q55◦) − Q55◦αηm

−jkηm(Q13◦ + Q55◦) + Q13◦αηm −k2Q33◦ − η2
mQ55◦ + ρ◦ω2

nγ − jkQ33◦α

]
.

(7.10)

The singularity condition of W yields

Q33◦Q55◦k4 + 2jQ55◦Q33◦k3

+ {(Q11◦Q33◦ − 2Q13◦Q55◦ − Q2
13◦)η

2
m (7.11)

− ρ◦ω2
n(Q33 + Q55)γ − Q55◦Q33◦α2}k2

+ {jα(Q11◦Q33◦ − 2Q13◦Q55◦ − Q2
13◦)η

2
m − jαρ◦ω2

n(Q33◦ + Q55◦)γ}k
+ {Q55◦Q13◦α2η2

m + Q11◦Q55◦η4
m

− ρ◦ω2
nη2

m(Q11◦ + Q55◦)γ + ρ2
◦ω

4
nγ2} = 0 , (7.12)

which is the required spectrum relation. It is to be noted that for each value
of ηm and ωn, there are four values of k, denoted by klmn, l = 1, . . . , 4, which
will be obtained by solving the spectrum relation.

There are several extra features of this spectrum relation compared to its
homogeneous material counterpart (Equation (6.13)). First of all, the coeffi-
cient of k3 and k are non-zero and complex, which means the roots are not
complex conjugate to each other, as opposed to the homogeneous case. This
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implies that the notion of the forward and backward moving wave is some-
what blurred in this case. However, this notion, which is effective for element
formulation can be retained by looking at the signs of the real part only. Thus,
a wavenumber with a positive real part denotes a forward propagating wave
and a negative real part denotes a backward propagating wave, although their
imaginary parts may have any sign.

Secondly, in the case of homogeneous material, the roots are either totally
real or totally complex, i.e., at no value of ωn or ηm do the wavenumbers
possess both real and imaginary (non-trivial) parts. However, in the present
situation this kind of solution is quite natural because of the existence of
non-zero coefficients for k3 and k. For the same reason, the notion of the cut-
off frequency is also absent. However, one can find the cut-off frequencies by
setting the constant part in Equation (7.12) equal to zero, i.e.,

ρ2
◦ω

4
nγ2 − ρ◦ω2

nη2
m(Q11◦ + Q55◦)γ + Q55◦Q13◦α2η2

m +
Q11◦Q55◦η4

m = 0, (7.13)

and the ω that satisfies this relation will be called the cut-off frequency. Thus
both the ideas of forward (or backward) propagating wave and the cut-off
frequency need to be modified in the inhomogeneous case.
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The behavior of the roots will be more clearly visible if a particular ma-
terial is considered and the spectrum relation is solved for its material prop-
erties. For this purpose, the layer is assumed to be of 0.1 m thickness, and
the material properties vary from steel to ceramic. The material properties
of steel are taken as follows: Young’s modulus E = 210 GPa, poisson’s ratio
ν = 0.3 and density ρ = 7800 kg/m3. Similarly, for ceramic, E = 390 GPa,
ν = 0.3 and ρ = 3950 kg/m3. For these material properties and exponential
variation, inhomogeneous parameters, α and β become 6.19 m−1 and −6.80
m−1, respectively.
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Figure 7.1 shows the variation of the wavenumbers with ω, for ηm = 0.
Both homogeneous (marked by ±H1 and ±H2) and inhomogeneous cases are
considered. For the background homogeneous (steel) material, the wavenum-
bers are linearly varying with ω (they are actually given by ±ω

√
ρ/Q33 and

±ωn

√
ρ/Q55) as is shown in the figure. Also, the roots are symmetric about

k = 0 and real. Compared to them, the wavenumbers of inhomogeneous ma-
terials simultaneously possess both real and imaginary parts. The real parts
are symmetric about k = 0 and the imaginary parts are symmetric about
k = −3.158. At higher frequencies, along with the propagating real parts
there is a constant imaginary part of this magnitude, which will be respon-
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sible for attenuation of wave amplitudes. For non-zero ηm, the wavenumbers
are plotted in Figure 7.2. Also the wavenumbers corresponding to the homo-
geneous material are plotted in the same figure and their real and imaginary
parts are marked by RHi and IHi, respectively. The symmetricity of the roots
(about k = 0) is evident here. Further, the cut-off frequencies can be identified
clearly, before which the roots are imaginary. However, the behavior is con-
siderably different in the inhomogeneous case. Here again, real and imaginary
parts coexist. Further, the real and imaginary parts are symmetric about the
previous values, i.e., k = 0 and k = −3.158, respectively. Both the figures
suggest that, at higher frequencies, the roots become closer to their homoge-
neous counterpart, along with an imaginary part of constant magnitude. In
the homogeneous case, the cut-off frequencies are approximately at 3548 Hz
and 6613 Hz, as shown in the figure. Also, it is seen that there is no frequency
where both the real and the imaginary parts are zero in the inhomogeneous
case. The reason for the absence of this frequency in the inhomogeneous case
can be explained with the help of Figure 7.3. The figure shows the variation
of ω with η, where any point on the curve satisfies Equation (7.13). For the
homogeneous case, the cut-off frequencies are cpη and csη and are shown by
the two dashed straight lines. However, for inhomogeneous material, the figure
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suggests that once η 	= 0, there is no cut-off frequency before 11.7 kHz, and
that is the reason for the absence of zero wavenumber for η = 5. Moreover,
for the homogeneous case, at any η, there are always two cut-off frequencies.
However, for inhomogeneous material, upto around 40 kHz, there is only one
cut-off frequency and afterwards, the bifurcation leads to the appearance of
another.

The element formulation is carried out in the same way as shown for the
anisotropic layer, with the wavenumbers computed above. The matrices T1

for the finite (Equation (6.22)) and infinite layer (Equation (6.28)) remains
the same in this case. However, T2 (Equation (6.23)) differs as it takes into
account the spatial variation of the elastic moduli.

7.2 Numerical Examples

The developed spectral element for exponential material property variation is
used to study the stress wave propagation through layered media. In particu-
lar, attention is given to the stress smoothing effect of FGM. Subsequently, the
propagation of Lamb waves through inhomogeneous waveguides is studied.
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Fig. 7.4. Layer model for verification

7.2.1 Propagation of Stress Waves

In this section, the formulated element is employed to study the stress wave
propagation in a layered media. In particular, inter-layer normal (σzz) and
shear (σxz) stresses are of great concern as they are the root cause of failure
in a layered structure. The layered system shown in Figure 7.4 is considered
in this study. Tractions are specified in both the X and Z direction, where
the same broadband load history (Figure 5.3) is applied.
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Fig. 7.5. Stress wave propagation , σzz due to tz

First, traction is applied in the Z direction and normal stress σzz is mea-
sured at points 1, 2 and 3 (Figure 7.4). The normalized (with respect to the
maximum magnitude in each case ) measured stresses are shown in Figure 7.5.
As is seen in the figure, at the surface the stress history profile is exactly the
same as the applied traction, which is expected. However, at the interfaces
the initial peak appears after a certain interval of time due to the finite prop-
agation speed. Further, multiple reflections are visible at the interfaces, which
results in both tensile and compressive stresses. For the stress wave measured
at the second interface, the first positive peak is the reflection from the fixed
end and the subsequent negative peak is the reflection from the free end. It
is important to note that the normal stress at a FGM-metal interface is half
of that at the ceramic-FGM interface and this attenuation of stresses can be
attained with the use of FGM.

The shear stresses generated at the interfaces due to this load are plotted
in the right two subplots of Figure 7.6. No shear stress is generated at the
top surface and at the interfaces their magnitude is very much less than the
normal stresses.

Next, the load is applied in the X direction and the shear stresses at the
surface and interfaces are measured at an X coordinate of 0.1 m and plotted
in Figure 7.7. As usual, the surface stress wave is the same as the applied
stress, whereas, the main interface wave peaks are of opposite sign. Further,
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Fig. 7.6. Stress wave propagation, σxz due to tz and σzz due to tx
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204 7 Wave Propagation in Two-dimensional Inhomogeneous Structures

the reflections from the fixed and free ends follow the same trend as the normal
stress. The normal stresses generated at the interfaces due to this traction are
plotted in the left two subplots of Figure 7.6. Again several reversals of stresses
are visible, particularly for the second interface.

The above example shows the general stress pattern that exists in a layered
media for applied normal and shear tractions and the effect of boundaries on
these stresses. In particular, the boundaries generate stress waves, which may
be as strong as the original pulse (especially for the shear stresses). Further, if
the energy is trapped in a layer, these stress waves may cause severe damage
in the absence of a suitable dissipation mechanism.

7.2.2 Propagation of Lamb Waves

A layer of 2 mm thickness is considered initially to generate the Lamb wave
modes. Analysis is performed for both homogeneous and inhomogeneous mate-
rials. The background homogeneous material is taken as steel, whose material
properties are as assumed before. To model the FGM layer, the inhomoge-
neous parameters α and β are set at 2000 m−1 and −2000 m−1, respectively.
The dispersion relation (relation between cp = ω/η and ω) is obtained using
the procedure outlined in the anisotropic layer case.
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Fig. 7.9. Lamb wave propagation for homogeneous layer: L = 320h, Ha0, Hs0 and
Ha1 are the homogeneous material modes

To get the time history of the propagating Lamb waves, as in the anisotropic
case, a modulated pulse of 200 kHz center frequency ωc, is applied at one end
of an infinite plate and the X and Z velocities are measured for a propagating
distance of 320h, where h is the thickness of the plate. Here h is taken as
12.5 mm, which amounts to a frequency-thickness (ωch) value of 2.5. This
thickness will excite three modes for both homogeneous and inhomogeneous
material, as is shown in the dispersion curve (Figure 7.8). Thus it is ωch that
controls the magnitude of the phase speed and the same value can be attained
for different h by suitably changing the ωc. Similarly, for inhomogeneous ma-
terial with exponential variation, it is the product of α or β with h (denoted
αh or βh) that matters and not the individual value of α, β or h. Hence, for
a new value of h = 2 mm, α should be changed to (2000 × 2)/12.5, i.e., 320
m−1 and β to −320 m−1.

In all the plots of the Lamb modes the abscissa is given in terms of ωch
and the plots are valid for αh = 4 and βh = −4. Figure 7.8 shows the first
six Lamb modes for steel (marked Ha0, Hs0, etc.) and the first four modes
for FGM (marked Is0, Is1 etc.). For steel, as the figure suggests, first anti-
symmetric mode (Ha0) and first symmetric mode (Hs0) converge to a value
of 3000 m/s at a value of 5 MHz-mm, where all the other modes converge at
various later values of ωch. This is the velocity of the Rayleigh surface waves
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Fig. 7.10. Lamb wave propagation for homogeneous layer: L = 320h, Ha0, Hs0
and Ha1 are the homogeneous material modes

(cR). The Hs0 starts at about 5800 m/s and drops gradually to the value of
cR. All the other higher order modes escape to infinity at various points of
ωch and the corresponding frequencies are the cut-off frequencies. However,
the symmetric and anti-symmetric pair of each mode escape at different ωch.

In comparison, for FGM, Ia0 always has lower phase speed than Hs0, al-
though for all the other modes, starting from Is0, phase speed is higher than
the corresponding phase speed of the homogeneous material. However, the
slopes at any point in the modes differ widely from their homogeneous coun-
terpart, which suggests wide variation in the group speed and correspondingly
in the order of the appearance of different propagating modes. It can be noted
that, for FGM, cR is smaller than the steel cR, which implies that the distur-
bance propagates slowly in the FGM surface, compared to the metal surface.
Moreover, the cut-off frequencies are also greater than that of steel, which
implies, for a given frequency range, fewer modes will propagate in FGM than
that in steel, which may be advantageous if properly utilized.

Propagation of these modes for steel are plotted in Figure 7.9 (X velocity
u̇) and 7.10 (Z velocity ẇ) for first three modes (a◦, s◦ and a1). Similarly,
the modes of FGM are plotted in Figures 7.11 (u̇) and 7.12 (ẇ). The figures
readily show the different propagating modes, each corresponds to one blob.
As Figure 7.9 and 7.10 suggest, for steel, mode s0 has a lower cg than mode a0
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Fig. 7.11. Lamb wave propagation for inhomogeneous layer: L = 320h, Ia0, Is0
and Ia1 are the inhomogeneous material modes

and mode a1 has a cg higher than both mode a0 and mode s0. One difference
in the u̇ and ẇ history can be observed. In u̇, mode a1 generates the velocity
of highest magnitude, whereas, for ẇ, the magnitude is lowest for mode a1.
In comparison, in FGM, mode s0 has higher cg than mode a0, although mode
a1 has a cg in between mode a0 and s0. Moreover, mode a1 has the highest
velocity for both u̇ and ẇ.

If the modes of FGM and steel are compared, it can be seen that the cg

of mode Ia0 is lower than that of mode Ha0, as shown by the appearance
of the first mode after and before 1.5 ms. There is a drastic difference in the
cg of Hs0 and Is0, which totally changes the order of the modes for metal
and FGM. However, the cg of the mode Ia1 is lower than that of mode Ha1

by a small amount. Thus the order of the appearance of the modes can be
altogether different in FGM (from the background homogeneous material),
and mode selection or cancellation is possible. For example, if an FGM is
prepared with the current values of α and β and a time window is chosen
below 2 ms (depending upon the geometry of the structure), mode s0 can be
captured, which is not possible in the homogeneous case.
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and Ia1 are the inhomogeneous material modes

7.3 SLE Formulation: Thermoelastic Analysis

In the subsequent derivations, Cijkl, βij and Kij denote the elements of the
elasticity, thermoelasticity and heat conductivity tensor, respectively, whereas,
σij and εij denote the components of the stress and strain tensor, respectively.
Also, T , T◦ and η denote material temperature, ambient temperature and
temperature rise, T − T◦, respectively.

The governing equation for a linear coupled dynamic thermoelasticity
when applied to inhomogeneous anisotropic material, in the absence of body
force and heat source, takes the form

σij,j = ρüi , σij = Cijklεkl − βij(η − t1η̇) , (7.14)

ρCe(η̇ + t2η̈) + T◦βij(ε̇ij + τ◦ε̈ij) − (Kijη,j),i = 0 , i, j = 1, 3 , (7.15)

where ui are the components of the displacement field. The ρ and Ce denote
density and thermal capacity, respectively. The t1, t2 are the first and second
thermal relaxation parameters for the Green–Lindsay (GL) model and τ◦ is the
thermal relaxation time for the Lord–Shulman (LS) model. Equations (7.14)
and (7.15) encompass both the GL and the LS model. To convert to the GL
model, τ◦ should be set to zero, whereas, to convert to the LS model, t1 = 0
and t2 = τ◦ should be enforced.
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Fig. 7.13. Layer element and associated dof

7.3.1 Inhomogeneous Anisotropic Material

The governing equation for linear coupled dynamic thermoelasticity when ap-
plied to an anisotropic and inhomogeneous material and 2-D geometry is ob-
tained from Equations (7.14) and Equations (7.15) by imposing the following
assumptions. It is assumed that all the variables are functions of only x1 = x
and x3 = z and u2 = 0. Under these conditions Equation (7.14) becomes

Q11uxx + Q13wxz + Q55(uzz + wxz) + Q′
55(uz + wx)

−β11ηx + t1β11η̇x = ρü

Q13uxz + Q33wzz + Q55(uxz + wxx) + Q′
13ux + Q′

33wz

−β33ηz − β′
33η + t1β33η̇z + t1β

′
33η̇ = ρẅ . (7.16)

Similarly, the heat conduction equation (Equation (7.15)) becomes

ρCe(t2η̈ + η̇) + T◦β11(u̇x + τ◦üx) + T◦β33(ẇx + τ◦ẅz) −
K11ηxx − K33ηzz − K ′

33ηz = 0 , (7.17)

The essential boundary conditions associated with these equations are the
specifications of u, w or η. The natural boundary conditions are the specifi-
cations of the surface tractions (tx or tz) and heat flow rate qx or qz in the
frequency domain. The tractions are specified as

tx = σxxnx + σxznz , tx = σxznx + σzznz , (7.18)

whereas, from the generalized relation

qi = −Kijη,j − τ◦q̇i , (7.19)

the heat flow rate in the frequency domain becomes
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qx = −ψK11η,xnx , qz = −ψK33η,znz , ψ = (1 + jτ◦ωn)−1 . (7.20)

The displacement and the thermal field are assumed to be a synthesis of
the frequency and wavenumbers, both horizontal and vertical, as

⎧⎨
⎩

u(x, z, t)
w(x, z, t)
η(x, z, t)

⎫⎬
⎭ =

N−1∑
n=0

M∑
m=1

⎧⎨
⎩

û(z, ηm, ωn)
ŵ(z, ηm, ωn)
η̂(z, ηm, ωn)

⎫⎬
⎭ e−j(ηmx−ωnt) , (7.21)

where ωn is the discrete angular frequency, ηm is the discrete horizontal
wavenumber.

To get the expressions for û(z), ŵ(z) and η̂(z), Equation (7.21) needs to
be substituted in Equations (7.16) and (7.17), which results in three ODEs
for û(z), ŵ(z) and η̂(z), where ωn and ηm will be present as parameters. The
equation in matrix–vector notation is

Aû′′ + Bû′ + Cû = 0 , û = {û ŵ η̂} . (7.22)

The matrices A, B and C (all functions of z) are

A =

⎡
⎣Q55 0 0

0 Q33 0
0 0 −K33

⎤
⎦ , (7.23)

B =

⎡
⎣ Q′

55 −j(Q13 + Q55)ηm 0
−j(Q13 + Q55)ηm Q′

33 β33(jt1ωn − 1)
0 β33T◦ωn(j − τ◦ωn) −K′

33

⎤
⎦ , (7.24)

C =

⎡
⎣ −η2

mQ11 + ρω2
n −jQ′

55ηm β11ηm(j + t1ωn)
−jQ′

13ηm −η2
mQ55 + ρω2

n β′
33(jt1ωn − 1)

T◦ωnηmβ11(1 + jτ◦ωn) 0 −ρCeω
2
nt2 + k11η

2
m + jρCeωn

⎤
⎦ .

(7.25)

Here again, the effect of inhomogeneity manifests in terms of diagonal terms
in B and off-diagonal terms in C, which are zero for homogeneous material.
The associated boundary conditions are the specifications of stresses σzz and
σxz and the heat flux at the layer interfaces, which are related to the unknowns
as

ŝ = Dû′ + Eû , ŝ = {σzz σxz qz} , (7.26)

where,

D =

⎡
⎣ 0 Q33 0

Q55 0 0
0 0 −K33

⎤
⎦ , E =

⎡
⎣−jηmQ13 0 β33(jt1ωn − 1)

0 −jηmQ55 0
0 0 0

⎤
⎦ ,

(7.27)
and the matrices are functions of z. The BVP reduces to finding û, which
satisfies Equation (7.22) for all z ∈ Ωc and the specification of û or ŝ at
z = 0 or z = L. Once the solution is obtained for different values of z in
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the frequency–wavenumber domain, the time domain solution is obtained by
following the same procedure as outlined earlier.

Any kind of inhomogeneity can be tackled in this formulation if the BVP
is solved numerically. However, as we have seen before, there is a special case
for which the BVP is exactly solvable, and this is taken up next.

Exact Formulation

Let us assume that the material property variation is exponential, i.e.,

[Qij(z),Kij(z), βij(z) = [Qij◦,Kij◦, βij◦]eαz , ρ(z) = ρ◦eβz , (7.28)

where Qij◦, Kij◦, βij◦ and ρ◦ are constants. Substituting Equation (7.28) in
Equations (7.24) and (7.25) we get

A =

⎡
⎣Q55◦ 0 0

0 Q33◦ 0
0 0 −K33◦

⎤
⎦ eαz , (7.29)

B =

⎡
⎣ αQ55◦ −j(Q13◦ + Q55◦)ηm 0
−j(Q13◦ + Q55◦)ηm αQ33◦ β33(jt1ωn − 1)

0 β33T◦ωn(j − τ◦ωn) −αK33◦

⎤
⎦ eαz (7.30)

C =

⎡
⎣ −η2

mQ11◦ + ρ◦ω2
nγ −jαQ55◦ηm β11ηm(j + t1ωn)

−jαQ13◦ηm −η2
mQ55◦ + ρ◦ω2

nγ αβ33◦(jt1ωn − 1)
T◦ωnηmβ11(1 + jτ◦ωn) 0 −ρCeω

2
nt2γ + k11η

2
m + jρCeωnγ

⎤
⎦ ,

(7.31)

where γ = e(β−α)z and the elements of C are to be multiplied by exp (αz).
Substituting Equations (7.29), (7.30) and (7.31) in Equation (7.22) and can-
celling the eαz term, another equation is obtained in which the matrices A
and B are of constant coefficients, but C has a z dependency in terms of γ. If
β is equal to α then γ = 1 and all the matrices become constants. Then the
solutions are in the form of u◦e−jkz , w◦e−jkz and η◦e−jkz, where u◦, w◦, η◦
and k, the vertical (Z direction) wavenumbers, are unknowns.

However, for the more general case β 	= α, we again assume that the ejkz

type of solution is still possible, which will yield an approximate solution.
The γ is again evaluated at z = L/2. Substituting these solutions in Equa-
tion (7.22) for the matrices given by Equations (7.29), (7.30) and (7.31), the
problem becomes one of finding nontrivial u◦, w◦, η◦ from the equation

W{u◦} = 0 ,W = −k2A − jkB + C , {u◦} = {u◦ w◦ η◦} , (7.32)

where W is the wave matrix. Elements of W are

W11 = −k2Q55 − η2
mQ11 + ρω2

n − jkαQ55

W12 = −kηm(Q13 + Q55) − jηmαQ55
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W13 = β11ηm(j + t1ωn)
W21 = −kηm(Q13 + Q55) − jηmαQ13

W22 = −k2Q33 − η2
mQ55 + ρω2

nγ − jkαQ33

W23 = −jkβ33(jt1ωn − 1) − αβ33(1 − jt1ωn)
W31 = T◦ηmωnβ11(1 + jτ◦ωn)
W32 = −jkT◦ωnβ33(j − τ◦ωn)
W33 = k2K33 + η2

mK11 + ρCeωn(j − t2ωn) + jkαK33 . (7.33)

Thus, in this case, Nv = 3 and p = 2, i.e., there are six wavenumbers which are
the roots of the characteristics equation, i.e., the spectrum relation (obtained
from the singularity condition of W)

C1k
6 + C2k

5 + C3k
4 + C4k

3 + C5k
2 + C6k + C7 = 0 , (7.34)

where Ci = Ci(ωn, ηm, etc.). Explicit forms of the coefficients Ci are omitted
here as they are too lengthy. It is to be noted that for each value of ηm and ωn,
there are six values of k, denoted by klmn, l = 1, . . . , 6, which will be obtained
by solving the spectrum relation.

7.3.2 Discussion on the Properties of Wavenumbers

The coefficients in Equation (7.34) are complex (except C1) and thus the roots
are not complex conjugate to each other. Further, the expression governing
the cut-off frequencies (given by C7 = 0), is not in simple enough form to make
quick estimations. In this situation, it is necessary to study the wavenumbers
and the cut-off frequency variation numerically for a particular material. A
GFRP composite layer is considered with the following material properties:

E1 = 144.4 GPa, E3 = 9.632 GPa, ν13 = 0.3 , ν23 = 0.02 ,

G13 = 4.12 GPa , ρ = 1389kg/m3 , α11 = 6.36 × 10−6 , α33 = 32.6 × 10−6 ,

K11 = 204 × 105W/m2 , K33 = K11 , T◦ = 300K , τ◦ = 0 ,
t1 = 0.5 × 10−6s , t2 = t1 , Ce = 940 .

(7.35)

It is to be noted that we have taken a rather unrealistic value for K11 (and
K33 in turn). This is to bring the thermal wavenumber to the same order as
that of the mechanical wavenumber. However, the actual value is only 204 and
consequently, the actual value of the wavenumber is approximately 100

√
10

times the computed value. The material is made inhomogeneous by setting the
gradation parameters, α and β equal to 100. For comparison, the homogeneous
anisotropic case is also considered side by side. In the subsequent plots of
wavenumber variation, R and I in the superscript denote real and imaginary
part, respectively.

Figure 7.14 shows the wavenumber variation for ηm = 0. In the figure,
k1 and k2 denote the elastic modes and k3 is the thermal mode. The left
subplot indicates the homogeneous case, where the right one indicates the
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Fig. 7.14. Variation of wavenumber with ωn, ηm = 0, θ = 0◦

graded material (∆ denotes both α and β). The arrows show the thermal
wavenumbers, which are scaled down by changing the values of Kii. As the
figure suggests, the effect of the inhomogeneity is dominant in the mechanical
wavenumbers, where even at ηm = 0, cut-off frequencies appear, similar to the
inhomogeneous layer wavenumbers, shown previously. The thermal wavenum-
bers are least affected due to this gradation. It is to be noted that, all the
imaginary components of the wavenumbers are symmetric about −50 m−1,
which is exactly −∆/2.

Figure 7.15 shows the variation in the wavenumbers for ηm = 10 m−1. A
similar trend to the previous figure can be seen here. The thermal wavenumber
is not susceptible to gradation at all, whereas, the mechanical wavenumbers
develop higher cut-off frequencies (at around 3 kHz (k2) and 16 kHz (k1))
compared to the homogeneous wavenumbers. All the modes have non-zero
imaginary part at higher frequencies, which enables the modulation of wave
magnitude while propagating. As in the previous cases, the imaginary parts
of the wavenumbers are symmetric about −∆/2.

It is to be noted that the earlier definition of cut-off frequency is not valid
here, since the wavenumbers are not purely real or imaginary. The governing
equation for cut-off frequencies is given by C7 = 0, which in expanded form is

c1ω
6 + c2ω

5 + c3ω
4 + c4ω

3 + c5ω
2 + c6ω + c7 = 0 . (7.36)
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As the equation suggests there are six roots of ω, which may be complex, since
the coefficients ci are complex. However, it is only the real positive roots that
are of physical significance. This is because the k−ω space that is considered in
the analysis contains only positive real ω. The explicit forms of the coefficients
are

c1 = −ρ3Cet2 ,

c2 = jρ3Ce − jT◦τ◦η2
mβ2

11t1ρ ,

c3 = T◦τ◦η2
mβ2

11ρ + ρ2Q55η
2
mCet2 + ρ2k11η

2
m + Q11η

2
mρ2Cet2 − T◦η2

mβ2
11t1ρ ,

c4 = −jQ11η
2
mρ2Ce − jρ2Q55η

2
mCe − jT◦η2

mβ2
11ρ + jT◦τ◦η4

mβ2
11t1Q55

+ jT◦τ◦η2
mβ11α

2Q55β33t1 ,

c5 = −Q11η
4
mQ55ρCet2 − Q11η

4
mρK11 − ρQ55η

4
mK11 − T◦τ◦η4

mβ2
11Q55

+ T◦η4
mβ2

11t1Q55 + T◦τ◦η2
mβ11α

2Q55β33 + T◦η2
mβ11α

2Q55β33t1

− α2Q13η
2
mQ55ρCet2 ,

c6 = jT◦η4
mβ2

11Q55 + jQ11η
4
mQ55ρCe + jT◦η2

mβ11α
2Q55β33

+ jα2Q13η
2
mQ55ρCe ,

c7 = Q11η
6
mQ55K11 + α2Q13η

4
mQ55K11 . (7.37)

As the expressions suggest, c2, c4 and c6 are essentially imaginary and the
remaining coefficients are real. The presence of these imaginary coefficients
renders the cut-off frequency imaginary, which is of no physical significance.
The real and imaginary parts of the cut-off frequencies are shown in Fig-
ure 7.16. As seen in the figure, initially there is only one cut-off frequency and
another one appears when ηm ≥ 6. At these frequencies the absolute value
of the wavenumber is zero. For example, at ηm = 10, the non-zero values
of the real cut-off frequencies are 4.9 and 15.7 kHz. These points are shown
as circles in Figure 7.15. It is evident that at this frequency both the real
and the imaginary part of the pertinent wavenumber are zero. The real cut-
off frequencies (after discarding the negative roots) correspond to the elastic
modes. The remaining two roots are imaginary and they signify the presence
of a propagating thermal mode at all frequencies. Further, the real roots vary
in a non-linear fashion with ηm.

Once, the required wavenumbers k are obtained, for which the wave matrix
W is singular, u◦ is written as before

{u◦}nm = [R]3×6[Λ]6×6{a}6×1 , (7.38)

where the matrices are as described previously. Following the SVD method R
is obtained.

7.3.3 Finite Layer Element (FLE)

Using Equation (7.38) for each value of ωn and ηm, the nodal variables are
related to the constants Ai as
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{u1nm v1nm Θ1nm u2nm v2nm Θ2nm}T = [T1nm]{A1 A2 A3 A4 A5 A6}T ,
(7.39)

i.e.,
{û}nm = [T1]nm{A}nm . (7.40)

The matrix T1nm consists of the elements of Rnm suitably multiplied by
e−jkinmL , i = 1, . . . , 6, and its explicit form is given by

T1(p, q) = R(p, q) , p = 1 . . . 3 , q = 1, . . . , 6 ,

T1(p, q) = R(p − 3, q)e−jkqL , p = 4, . . . , 6 , q = 1, . . . , 6 . (7.41)

Similarly, the nodal traction and heat flux vectors are related to the unknown
constants by the relation

{t̂}nm = [T2]nm{A}nm , (7.42)

where the elements of T2nm are given by

T2(1, p) = jQ55◦(R1pkp + ηR2p) ,

T2(2, p) = jQ33◦R2pkp + jQ13◦ηR1pψ2β33 ,

T2(3, p) = −jψ1R3pkpK33◦ ,

T2(4, p) = −jQ55◦eαL(R1pkp + ηR2p)e(−jkpL) ,

T2(5, p) = {−jQ33◦R2pkp − jQ13◦ηR1p − R3pψ2β33◦}e(−jkpL+αL) ,

T2(6, p) = jψ1R3pkpK33◦e(−jkpL+αL) . (7.43)

Thus, the 6 × 6 element dynamic stiffness matrix is obtained as

[K̂]nm = [T2]nm[T1]−1
nm . (7.44)

7.3.4 Infinite Layer Element (ILE)

Following the same procedure as defined, nodal variables of node 1 can be
related to the constants by

{û}nm = [T1]nm{A}nm . (7.45)

Similarly, the tractions and the heat flux at node 1 can be related to the
constants by

{tx1 tz1 qz1}T
nm = [T2]nm{A1nm A2nm A3nm}T , i.e., {t̂}nm = [T2]nm{A}nm .

(7.46)
Explicit forms of the matrix T1 and T2 are

T1(ILE) = T1(FLE)(1 : 3, 1 : 3) , T2(ILE) = T2(FLE)(1 : 3, 1 : 3) . (7.47)

The tractions at node 1 can be related to the displacements at node 1 to
obtain the dynamic stiffness matrix as

{t̂}nm = [T2]nm[T1]−1
nm{û} = [K̂]nm{û}nm , (7.48)

where K̂nm is the (3 × 3) element stiffness matrix.
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7.3.5 Homogeneous Anisotropic Material

It is to be noted that one can deduce the dynamic stiffness matrix from Equa-
tions (7.44) and (7.48) by substituting α = 0 = β and γ = 1.

7.4 Numerical Examples

Most of the examples covered in this section are for homogeneous anisotropic
material, as gradation has very little effect on the thermal response. We first
study the effect of different parameters on the response of a layered structure.
Simultaneously, the developed spectral element is validated to establish its
accuracy and efficiency with respect to the conventional purely elastic 2-D
FE solutions. Also the responses of a generally stacked laminate structure are
analysed for thermal flux and mechanical pulse loading. Next, the stress wave
propagation through layered anisotropic media is studied. Subsequently, me-
chanical and thermal wave propagation due to specified temperature shock is
analyzed. Finally, the effect of gradation on mechanical and thermal response
is demonstrated.

7.4.1 Effect of the Relaxation Parameters - Symmetric Ply-layup

Wave propagation in a symmetrically stacked composite layer is studied in
this section and the results of pure elastic analyses are compared with 2-D
FE solutions. The layers are made up of GFRP composites whose material
properties are as assumed previously in the example involving wavenumber
computation. The ply sequence considered is [0◦10], where each lamina is 1 mm
thick. The bottom of the layered system is assumed fixed. The objective is
to validate the present element, show its efficiency and study the effect of t1
and t2 on the response. It is expected that the effect of these parameters will
be more pronounced at higher frequencies. For this reason, the same pulse
loading as in previous examples is considered (Figure 5.3).

First, the layered system is impacted in the Z direction, at the center of the
top surface (z = 0), as is shown in Figure 7.17. This kind of loading primarily
generates QP waves. The response of the structure, in terms of the velocity
in the Z direction, is measured at the same location. The FE analysis is
carried out for this loading and geometry, where the effect of thermoelasticity
is neglected. For FE analysis, the layer is modeled with 1200, 3-noded plane-
strain FEs. In comparison, there is only one FLE in the spectral model. The
FE model results in a global system matrix of size 1215 × 42, whereas, the
spectral model results in a global system matrix (dynamic stiffness matrix)
of size 3 × 3. While solving via FE analysis, Newmark’s time integration is
adopted with a time step of 1 µs. For spectral analysis, the load is sampled
at 48.83 Hz with 2048 (N in Equation 6.33) FFT points. Further, for spatial
variation, 32 Fourier series coefficients (M in Equation 6.33) are considered.
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First, the GL model is taken for which τ◦ = 0, although t1 and t2 are non-
zero. The simulation is carried out for three values of t1, keeping t2 = 0. Then,
t2 is varied keeping t1 fixed at zero. These results are plotted in Figure 7.18
and 7.19, respectively. Figure 7.18 shows the variation in mechanical responses
for different values of t1. As the figure suggests, increase in t1 decreases the
impedance of the structure as the magnitudes of both the initial velocity and
subsequent reflection increase. Also, for the case of t1 = 1.0×10−11, the effect
of thermo-elastic coupling is not so strong and the response matches exactly
with the FE analysis result. Similar variation of the mechanical responses can
be observed for the variation of t2 (shown in Figure 7.19). It is interesting to
note that for the values of t1 and t2 outside the range taken in this analysis,
the response is insensitive to the parametric change. Thus the effect is strongly
felt only within this region of variation, i.e., ti = 1.0×10−11 to ti = 1.0×10−09

s.
Although the effect of t1 and t2 can be felt strongly in the GL model, the

one-parameter LS model (only τ◦) shows no sensitivity to the variation. For
the previously applied low frequency loading, the LS model shows negligible
variation and hence is not shown graphically. Quantitatively it can be said
that, for a variation of τ◦ from 10−06 to 10−09, only 0.12% difference is ob-
served in the maximum response. It is important to note that the effect of the
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thermal relaxation parameters on the mechanical wavenumbers may be negli-
gible, although they may have a significant effect on the thermal wavenumber
and speeds. However, the responses (both mechanical and thermal) are pre-
dominantly built on the mechanical wavenumbers and that is the reason for
their lack of sensitivity.

For the same symmetric ply-layup and loading (Figure 5.3), applied at
the same location as before, the Z velocity, ẇ is measured at the surface
and the two interfaces, points marked by 1, 2 and 3, respectively, whose Z
coordinates are 0.0 m, 0.005 m and 0.01 m. The measured responses are plotted
in Figure 7.20. As shown in the figure, a small attenuation is visible, which is
due to the presence of the thermal field. Further, the shift in the appearance of
each waveform is due to the small time taken for propagation over a distance
of 5 mm.
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Fig. 7.20. Surface and interfacial waves, ẇ, due to mechanical loading

7.4.2 Interfacial Waves: Thermal and Mechanical Loading

Next, we consider an asymmetric ply-layup ([0◦5/90◦5/0◦5], see Figure 7.17)
where the lamina thickness is kept the same as before. The material is GFRP,
whose properties are specified in Section 7.3.2. The high frequency load is
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Fig. 7.21. Surface and interfacial waves, ẇ, due to mechanical loading, asymmetric
ply-stacking

again applied at the mid-point of the top surface (point 1) and ẇ is measured
at the surface (point 1) and the two interfaces (points marked by 2 and 3)
and plotted in Figure 7.21. The figure reveals that there are two significant
differences in the waveforms compared to the symmetric ply case. First, there
is no tangible difference in the amplitudes of the two interfacial waves and
second, their magnitudes are larger than the surface wave magnitude, which
is an artefact of the coupled thermo-elastic field. Also, the asymmetry gives
rise to dispersion, which is not so dominant in the symmetric ply-stacking
layer.

Overall, this example shows the propagation of surface and interfacial
waves in composite layers triggered due to both mechanical and thermal load-
ing.

7.4.3 Propagation of Stress Waves

In this section, the formulated element is employed to study stress wave prop-
agation in layered media. The same layered system as the previous example
is taken in this study for both symmetric and asymmetric ply-orientations.
Tractions are specified in both X and Z directions, where the previous load
history (Figure 5.3) is applied. In this study the GL model is used and to find
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Fig. 7.22. Surface and interfacial waves, ẇ, due to thermal loading, symmetric
ply-stacking

the effect of the thermal relaxation parameters, two sets of data are consid-
ered. In the first set, t1 and t2 are assumed to be 10−06 and 10−12, whereas,
in the second set t1 and t2 are taken as zero. In all the subsequent figures
showing variation of stresses, the left subplots represent the first set and the
right subplots represent the second set.

First, traction is applied in the Z direction at point 1, and the normal
stress σzz is measured at the surface and two interfaces. The normalized
stresses (with respect to the surface stress of set 1) are shown in Figures 7.23
and 7.24, for symmetric and asymmetric lay-up, respectively. As is seen in
the figure, at the surface the stress history profile is exactly the same as the
applied traction, which is expected. However, at the interfaces, the peak ap-
pears after a certain interval of time, which is not discernible in symmetric
ply-layup although clearly visible in asymmetric ply-layup. This time lag is
due to the finite propagation speed, which is lower in 90◦ lamina. Further,
multiple reflections are visible at the interfaces, which result in both tensile
and compressive stresses. These stresses will be responsible for delamination
or matrix cracking, if they exceed the allowable limit. The effect of t1 and t2
can be seen in the reduction of the peak interfacial stresses and magnifica-
tion of the reflected interfacial stresses. However, the surface stresses remain
unaffected. Thus classical thermo-elastic analysis overestimates the peak in-
terfacial stresses and underestimates the reflected interfacial stresses.
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Fig. 7.23. Surface and interfacial stresses, σzz, due to tz, symmetric ply-stacking
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Fig. 7.24. Surface and interfacial stresses, σzz, due to tz, asymmetric ply-stacking
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Fig. 7.25. Surface and interfacial stresses, σxz, due to tx, symmetric ply-stacking
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Fig. 7.26. Surface and interfacial stresses, σxz, due to tx, asymmetric ply-stacking
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Fig. 7.27. Surface and interfacial stresses, σxx, due to tx, symmetric ply-stacking

Next, the load is applied in the X direction at point 1 and shear stress (τxz)
is measured at the surface and interfaces at an X coordinate of 0.01 m (points
marked by 4, 5 and 6, respectively). Variation of the shear stresses are shown
in Figures 7.25 and 7.26. As usual, the surface stress waves are the same as
the applied stress. However, dispersion occurs at the interfaces, which is more
visible in the asymmetric layup. As observed previously, the presence of non-
zero t1 and t2 does not affect the surface stress profile. However, they decrease
the maximum magnitude of the interfacial stress waves in both symmetric and
asymmetric lay-up. This difference in magnitude is larger in the asymmetric
case. This overestimation of the shear stress (by the classical thermo-elastic
theory) may become crucial for high thermal environment, where accurate
prediction and economy in design are essential.

Finally, for tx, variation of σxx is plotted in Figures 7.27 and 7.28. As the
figures suggest, remarkable changes can be observed in stress distribution in
the presence of non-zero t1 and t2. Here the surface stresses are also affected,
which was not the case in the previous example. It is evident that for non-
zero t1 and t2, the top surface is in compression and the second interface is
in tension. However, for zero t1 and t2, the stress state is completely reversed
and the reversal of the surface stress is visible, which is observed in both
symmetric and asymmetric cases. In the asymmetric case, in addition, the
magnitude of the second interfacial stress is larger than that of the symmetric
case. Further, the effect of these parameters is larger in the asymmetric lay-
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Fig. 7.28. Surface and interfacial stresses, σxx, due to tx, asymmetric ply-stacking

up. The smoothing of the stresses at the surface, due to the presence of time
parameters is beneficial for the structure.

7.4.4 Propagation of Thermal Waves

In this example, the propagation of thermal and mechanical waves due to
temperature burst is investigated. The same layered structure (Figure 7.17) of
previous examples is considered with symmetric ply-orientation. Temperature
is specified at the top of the layer at point 1, whose time dependency is in
the form of the previously applied loading (Figure 5.3). The Z velocity ẇ and
temperature T are measured at the surface and at the first interface (points
1 and 2, respectively). Figure 7.29 shows the variation of ẇ (left subplot) and
temperature (right subplot). As the magnitude of the velocity history suggests,
the effect of the thermal shock is negligible on the mechanical field and is
mostly compressive. The velocity profile of the interface shows discernible
shift in time, which is due to comparatively low mechanical group speed.

As expected, the surface temperature history is exactly the same as the
load history of Figure 5.3. However, the temperature at the interface has neg-
ligible magnitude compared to the surface temperature, although the pattern
remains the same. Thus, the localized nature of the temperature field in space
and time is again ascertained.
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Fig. 7.29. Surface and interfacial mechanical waves due to thermal shock, symmet-
ric ply-stacking

7.4.5 Effect of Inhomogeneity

In this section the effect of inhomogeneity on the thermal and mechanical
waves due to thermal excitation is studied. A GFRP laminate of 10 mm thick-
ness is chosen for this purpose. The top layer is subjected to a concentrated
heat flux of unit amplitude and the bottom layer is fixed and the temperature
is maintained at zero. Thermal and mechanical responses are measured at the
surface. The layer is graded in the z direction exponentially, where α and β are
set at 800. Figure 7.30 shows the variation of temperature (normalized with
respect to the maximum value) measured at the point of impact. The figure
shows that inhomogeneity has nominal effect on the incident pulse, whereas
the decaying is marginally affected by the gradation.

Figure 7.31 shows the variation of transverse velocity, which reveals that
the gradation has a significant effect on the response, where the peak am-
plitude is decreased by about 10%. Thus, for this thin layer, gradation has
greater influence on the mechanical wave than the thermal wave.
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Fig. 7.30. Temperature profile at the surface and inside the layer
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Fig. 7.31. Transverse velocity ẇ, at the surface and inside the layer
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7.5 Wave Motion in Anisotropic and Inhomogeneous
Plate

Although, there is a wealth of literature on the development of a composite
plate element, there are few reports on the transient dynamic analysis in gen-
eral and wave propagation analysis in particular. A few related works on the
numerical modeling of the impact behavior of composite materials published
so far are given here, but the list is in no way exhaustive. The modeling of
particulate-loaded composite material is reported by Arias et al. [110], where
a new model is implemented in a code, which validates experimental results.
Closed form solutions for peak load and response due to small mass impact
is given in [111], where the analysis is based on the Hertzian contact. The
response of laminated composite plate under low velocity impact is studied
by performing experiments and the result is validated by commercial software
packages [112]. Similar experiments are conducted on glass/epoxy laminated
composite plates for low velocity impact in [113]. The dynamic response of
laminated composite plate is obtained by the strip element method, where the
effect of rotary inertia is included [114]. Using effective laminate stiffness, an
analytical model for wave propagation in multi-directional composite is pro-
posed in [115]. Analysis of symmetric laminate to obtain the nature of impact
response is done in [116]. Lee et al. [117] analyzed a composite folded plate
structure, where third-order plate theory (TPT) was used. There are other
studies on wave propagation in laminates due to low-velocity impact, mostly
carried out by Mal and Lih [118], [119], [120], [121] and [122]. Further, wave
propagation in composite laminate for antiplane loading was studied by Ma
and Huang [123], where closed form expressions were found for displacements
and stresses.

The spectral plate element (SPE) was developed by Doyle [9] for isotropic
materials, where the in-plane and out of plane motions are not coupled and
hence can be analyzed separately. For out-of-plane motion, Doyle formulated
a wavenumber transform solution where the only unknown variable w(x, y, t)
was assumed to be given by

w(x, y, t) =
∑

n

∑
m

w̃nm exp(−jηmy) exp(−jωnt) . (7.49)

This displacement field generated the stiffness matrix for flexural motion,
which is subsequently augmented to the stiffness matrix of the in-plane mo-
tion. This plate element was used to model folded plate structures [124], which
was also implemented in parallel computers (see [125] and [126]). Recently, this
plate formulation for isotropic material has been extended to model cracked
plate [127]. In this chapter, we extend the capability of the spectral formula-
tion for anisotropic and inhomogeneous plate structures.

In the formulation of the SPE for in-plane motion, i.e., SLEs developed in
Section 7.1, the wavenumbers are computed by the method of companion ma-
trix and then the singular value decomposition (SVD) method is employed to
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compute the wave amplitudes. Although this method is quite efficient, as the
previous elements demonstrate, formulation of the companion matrix proves
to be cumbersome and prone to human error, especially when the system size
is large, as is typical for plates and shells. Thus there is a need to automate
the whole procedure for finding the wavenumbers and wave amplitudes. In
this chapter, we use the concept of latent roots and right latent eigenvector
of the system matrix (the wave matrix) to compute the wavenumber and the
amplitude ratio matrix and the whole problem is posed as a PEP, as discussed
before. As algorithms are available now for solving any PEP, even when it is
not regular, the method is implemented in the spectral element formulation
and tested for its performance in terms of speed and accuracy. Thus, signifi-
cant changes are made in the element level stiffness matrix formulation, which
sets the path for the formulation of other higher order spectral elements, like
higher order plates and shells.

In this book, formulations are presented only for anisotropic materials.
However, the extension to FGM is straightforward as is shown in the beam el-
ements development. Since, the material properties are assumed to be graded
only in the direction normal to the direction of wave propagation, the grada-
tion does not affect the governing equations. Only the depth-wise integrated
properties change and they are evaluated using the gradation rule chosen to
model the FGM.

The next section deals with the SPE formulation for CLPT. The spec-
trum relations are analyzed in detail for both anisotropic and inhomogeneous
plates. Subsequently, the variation of cut-off frequency with wavenumber is
investigated. Next, the details of the element formulations are presented. The
developed plate elements are employed to study wave propagation in a plate
with ply-drop and to capture the first symmetric and anti-symmetric Lamb
waves.

7.5.1 SPE Formulation: CLPT

According to the CLPT, the displacement field is

U(x, y, z, t) = u(x, y, t) − z∂w/∂x ,

V (x, y, z, t) = v(x, y, t) − z∂w/∂y ,

W (x, y, z, t) = w(x, y, t) ,

where, u, v and w are the displacement components of the reference plane in
the X, Y and Z directions, respectively and z is measured downward positive
(see Figure 7.32).

The associated non-zero strains are⎧⎨
⎩

εxx

εyy

εxy

⎫⎬
⎭ =

⎧⎨
⎩

∂u/∂x
∂v/∂y

∂u/∂y + ∂v/∂x

⎫⎬
⎭ +

⎧⎨
⎩

−z∂2w/∂x2

−z∂2w/∂y2

−2z∂2w/∂x∂y

⎫⎬
⎭ = {ε◦} + {ε1} ,(7.50)
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Fig. 7.32. Displacements and stress resultants of the spectral plate element (CLPT
and FLPT): for CLPT φ = ∂w/∂x and ψ is absent

where εxx and εyy are the normal strains in the X and the Y directions,
respectively and εxy is the in-plane shear strain. The corresponding normal
and shear stresses are related to these strains by the relation

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ =

⎡
⎣ Q̄11 Q̄12 0

Q̄12 Q̄22 0
0 0 Q̄66

⎤
⎦
⎧⎨
⎩

εxx

εyy

εxy

⎫⎬
⎭ , (7.51)

where Q̄ij are the elements of the anisotropic constitutive matrix. The expres-
sions for Q̄ij in terms of the elastic constants and ply-angles are given in [50].
The force resultants are defined in terms of these stresses as⎧⎨

⎩
Nxx

Nyy

Nxy

⎫⎬
⎭ =

∫
A

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ dA ,

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

∫
A

z

⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ dA . (7.52)

Substituting Equations (7.51) and (7.50) in Equation (7.52), the relation be-
tween the force resultants and the displacement field is obtained as

⎧⎨
⎩

Nxx

Nyy

Nxy

⎫⎬
⎭ =

⎡
⎣A11 A12 0

A12 A22 0
0 0 A66

⎤
⎦ {ε◦} +

⎡
⎣B11 B12 0

B12 B22 0
0 0 B66

⎤
⎦ {ε1} , (7.53)

⎧⎨
⎩

Mxx

Myy

Mxy

⎫⎬
⎭ =

⎡
⎣B11 B12 0

B12 B22 0
0 0 B66

⎤
⎦ {ε◦} +

⎡
⎣D11 D12 0

D12 D22 0
0 0 D66

⎤
⎦ {ε1} , (7.54)

where the elements Aij , Bij and Dij are defined as

[Aij , Bij ,Dij ] =
∫

A

Q̄ij [1 , z , z2] dz . (7.55)

Note that the above expression is valid for FGM also, where Q̄ij will be a
function of z (power or exponential law [128]) instead of being constant, as in
the anisotropic case.
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The kinetic energy (K) and the potential energy (P ) are defined in terms
of the displacement field and stresses as

K = (1/2)
∫

V

ρ(U̇2 + V̇ 2 + Ẇ 2) dV , (7.56)

P = (1/2)
∫

V

(σxxεxx + σyyεyy + σxyεxy) dV . (7.57)

Applying Hamilton’s principle, the governing equations can be written in
terms of these force resultants as

∂Nxx/∂x + ∂Nxy/∂y = I◦ü − I1∂ẅ/∂x , (7.58)

∂Nxy/∂x + ∂Nyy/∂y = I◦v̈ − I1∂ẅ/∂y , (7.59)

∂2Mxx/∂xx + 2∂2Mxy/∂xy + ∂2Myy/∂yy = I◦ẅ − I2(∂2ẅ/∂xx + ∂2ẅ/∂yy)
+I1(∂u̇/∂x + ∂v̇/∂y) , (7.60)

where the mass moments are defined as

[I◦ , I1 , I2] =
∫

A

ρ[1 , z , z2] dz . (7.61)

For FGM, I◦ , I1 and I2 can be evaluated using the same expression, where
the only change is ρ = ρ(z).

The governing equations can be further expanded in terms of the displace-
ment components. However, because of their complexity, they are not given
here and can be found in [50]. The associated boundary conditions are

N̄xx = Nxxnx + Nxyny , N̄yy = Nxynx + Nyyny , (7.62)

M̄xx = −Mxxnx − Mxyny , (7.63)

V̄x = (∂Mxx/∂x + 2∂Mxy/∂y − I1ü + I2∂ẅ/∂x)nx

+ (∂Mxy/∂x + 2∂Myy/∂y − I1v̈ + I2∂ẅ/∂y)ny , (7.64)

where N̄xx and N̄yy are the applied normal forces in the X and Y direction,
M̄xx and M̄yy are the applied moments about the Y and X axes and V̄x is
the applied shear force in the Z direction.

The SPE formulation begins by assuming the same kind of solution for the
displacement field as taken for the layer element formulation, i.e., time har-
monic waves are sought and the Fourier series is employed in the Y direction.
Thus,

u(x, y, t) =
N−1∑
n=0

M∑
m=1

û(x)
{

cos(ηmy)
sin(ηmy)

}
e−jωnt , (7.65)
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v(x, y, t) =
N−1∑
n=0

M∑
m=1

v̂(x)
{

sin(ηmy)
cos(ηmy)

}
e−jωnt , (7.66)

w(x, y, t) =
N−1∑
n=0

M∑
m=1

ŵ(x)
{

cos(ηmy)
sin(ηmy)

}
e−jωnt , (7.67)

where again the cosine or sine dependency is chosen based on the symmetry
or anti-symmetry of the applied load about the X axis.

Substituting Equations (7.65)–(7.67) in Equations (7.58)–(7.60), a set of
ODEs is obtained for the unknowns û(x), v̂(x) and ŵ(x). Since these ODEs
have constant coefficients, their solutions can be written as ũe−jkx, ṽe−jkx and
w̃e−jkx, where k is the wavenumber in the X direction, yet to be determined
and ũ, ṽ and w̃ are the unknown constants. Substituting these assumed forms
in the set of ODEs, a PEP is posed to find (v, k), such that,

Ψ(k)v = (k4A4 + k3A3 + k2A2 + kA1 + A0)v = 0 , v 	= 0 , (7.68)

where Ai ∈ C3×3, k is an eigenvalue and v is the corresponding right eigen-
vector. The matrices Ai are

A0 =

⎡
⎣−A66η

2
m + I◦ω2

n 0 0
0 −A22η

2
m + I◦ω2

n −B22η
3
m + I1ω

2
nηm

0 −B22η
3
m + I1ω

2
nηm −D22η

4
m + I◦ω2

n + I2ω
2
nη2

m

⎤
⎦ ,

(7.69)

A1 =

⎡
⎣ 0 −jηm(A12 + A66) −jη2

m(B12 + 2B66) + jI1ω
2
n

jηm(A12 + A66) 0 0
jη2

m(B12 + 2B66) − jI1ω
2
n 0 0

⎤
⎦ ,

(7.70)

A2 =

⎡
⎣−A11 0 0

0 −A66 −ηm(B12 + 2B66)
0 −ηm(B12 + 2B66) −η2

m(2D12 + 4D66) + I2ω
2
n

⎤
⎦ , (7.71)

A3 =

⎡
⎣ 0 0 −jB11

0 0 0
jB11 0 0

⎤
⎦ , (7.72)

A4 =

⎡
⎣0 0 0

0 0 0
0 0 −D11

⎤
⎦ . (7.73)

It can be noticed that A4 is singular, thus the lambda matrix Ψ(k) is not
regular [41] and admits infinite eigenvalues [129].

The PEP is solved by the methods described before. In this case, the
spectrum relation is a quartic polynomial of m = k2,

p(m) = m4 + C1m
3 + C2m

2 + C3m + C4 , Ci ∈ C , (7.74)
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which generates a companion matrix of order 4. In both the methods of
wavenumber computation described earlier, an eigenvalue solver is employed,
where for the QZ algorithm the cost of computation is ∼ 30n3 and extra
∼ 16n3 for eigenvector computation (n is the order of the matrix). Since, the
order of the companion matrix in the second method is three times that of the
first method, the cost is 27 times more, which is significant as this computation
is to be performed N ×M times. Further, since Ψ(k) is not regular, there are
infinite eigenvalues and caution should be exercised in rejecting those roots.
However, the second method is advantageous because it obviates the necessity
for obtaining the lengthy expressions for Ci in Equation (7.74).

In the subsequent computation, both the methods are investigated for their
effectiveness. It is found that for a single computation, the companion matrix
method takes 0.03 s of CPU time, 0.0661 s of real time and 6991 floating point
operations (flops), whereas, the linearized PEP method takes 0.02 s of CPU
time, 0.0686 s of real time and 276735 flops, where all the computations are
performed in a SUN Solaris workstation. Thus, the second method is faster
than the companion matrix method although significantly more flops are
involved. In the companion matrix method, although the expressions for Ci

are manageable, they are not given here because of their complexity.

7.5.2 Computation of Wavenumber: Anisotropic Plate

The polynomial governing the wavenumbers (Equation (7.74)) is solved by
considering a graphite–epoxy (AS/3501) plate of 10 mm thickness with
the material properties given in Equation (7.35). Two different ply-stacking
sequences are considered, one symmetric [010] and the other asymmetric
[05/905]. The Y wavenumber, ηm is fixed at 50 for all the wavenumber com-
putations. The real and imaginary part of the wavenumbers are shown in
Figures 7.33 and 7.34, respectively. The points in the abscissa marked 1, 2
and 3 denote the cut-off frequencies and they are at 3, 13.7 and 21 kHz. Two
roots are equal before point 1, and they are denoted by k1,2. Thus, before
point 1, there are only four non-zero real roots (±k1,2) and eight non-zero
imaginary roots (±k1,2, ±k3 and ±k4). After point 1, one of the k1,2 becomes
pure real and another one becomes pure imaginary and there is only an imag-
inary root at high frequency. These roots correspond to the bending mode, w.
It can be further noticed that before point 1, these wavenumbers (k1,2) simul-
taneously possess both real and imaginary parts, which implies these modes
are attenuated while propagating. Thus, there exist inhomogeneous waves in
anisotropic composite plate [24]. The points marked 2 and 3 are the two cut-
off frequencies, since the roots k3 and k4 become real at this point from their
imaginary values. These roots correspond to the inplane motion, i.e., u and v
displacements.

Next, the asymmetric ply-sequence is considered (Figures 7.35 and 7.36),
for which the wavenumber pattern remains qualitatively the same. The cut-off
frequencies are at 5.3, 13.8 and 60 kHz, where the first one corresponds to the
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Fig. 7.33. Real part of wavenumbers, symmetric sequence
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Fig. 7.34. Imaginary part of wavenumbers, symmetric sequence
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bending mode and the last two correspond to the inplane motion. In compari-
son to symmetric ply-stacking, it can be said that the first and the third cut-off
frequencies are of higher magnitude than their symmetric counterparts and
the rate of increment is higher in the third cut-off frequency. Further, the mag-
nitudes of all wavenumbers are increased. Significantly, at higher frequency,
the third wavenumber k3 has lower magnitude than the bending wavenum-
bers (one of k1,2) as opposed to the symmetric case. Similar trends are visible
in the imaginary part of the wavenumbers, where the magnitude is higher in
all cases (almost double) than the imaginary wavenumbers of the symmetric
sequence. Thus attenuation of the propagating modes is comparatively higher
in the asymmetric case.
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Fig. 7.35. Real part of wavenumbers, asymmetric sequence

The cut-off frequencies can be obtained from Equation (7.74) by letting
k = 0 and solving for ωn. The governing equation for the cut-off frequency
becomes

a0ω
6
n + a1ω

4
n + a2ω

2
n + a3 = 0 , (7.75)

where ai are material property and wavenumber ηm dependent coefficients
given as

a0 = I2
◦I2η

2 + I3
◦ − I◦I2

1I2 , (7.76)
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Fig. 7.36. Imaginary part of wavenumbers, asymmetric sequence

a1 = −I2
◦D22η

4−I2
◦ (A22+A66)η2−I◦I2η

4(A66+A22)+A66η
4I2

1 +2I◦B22η4I1 ,
(7.77)

a2 = −I◦B2
22η

6 + A66η
4A22I◦ + A66η

6I◦D22 − 2A66η
6B22I1

+ I◦A22η
6D22 + A66η

6A22I2 , (7.78)

a3 = A66η
8(−A22D22 + B2

22) . (7.79)

When Equation (7.75) is solved for different ηm, the variation of the cut-off
frequencies with ηm can be obtained. This variation is given in Figure 7.37. As
is shown in the figure, variation of the cut-off frequency for the bending mode
ω1,2 follows a non-linear pattern, whereas the other two increase linearly.
Although not evident from this figure, close inspection will reveal that the
pattern for ω3 is the same for both symmetric and asymmetric cases. Since
it is the magnitude of A12 that has not changed with ply-angle, it can be
concluded that ω3 is proportional to the ratio of

√
A12/ρ. Further, there is

no variation in ω1,2 for changing ply-stacking, whereas, for ω4, the effect is
maximum. Thus, with the help of this figure, the location of the points 1, 2
and 3 in Figures 7.33- 7.36 can be explained.

7.5.3 Computation of Wavenumber: Inhomogeneous Plate

The polynomial governing the wavenumbers (i.e., Equation (7.74)) is solved by
considering a steel FGM ceramic plate with the following material properties.



238 7 Wave Propagation in Two-dimensional Inhomogeneous Structures

0 20 40 60 80 100
0

20

40

60

80

100

120

140

Wavenumber, η
m

, [1/m]

C
ut

−
of

f f
re

qu
en

cy
, [

kH
z]

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Wavenumber, η
m

, [1/m]

C
ut

−
of

f f
re

qu
en

cy
, [

kH
z]

Inplane 

Inplane 

[0
10

] [0
5
/90

5
] 

ω
3
 

ω
4
 

ω
4
 

ω
3
 ω

1,2
 

ω
1,2

 

Fig. 7.37. Variation of cut-off frequency with ηm
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Fig. 7.39. Imaginary part of the wavenumbers

Es = 210.0 GPa , Ec = 390.00 GPa , Gs = 80.0 GPa , Gc = 137.0 GPa ,

ρs = 7800 kg/m3
, ρc = 3950.0 kg/m3

, hs = 0.01m = h, hc = 0.03m ,
(7.80)

where the subscript s and c denote steel and ceramic, respectively. and h is the
thickness of the FGM layer. This depth-wise distribution of materials results
in non-zero Bij and I1.

The Y wavenumber, ηm is fixed at 50 for all the wavenumber computation.
The real and imaginary parts of the wavenumbers are shown in Figures 7.38
and 7.39, respectively. The points in the abscissa marked 1, 2 and 3 denote
the frequencies where the real wavenumbers become imaginary and vice versa.
These frequencies are called the cut-off frequencies and they are at 34.1, 39.17
and 69.12 kHz. Two roots are equal before point 1, and are denoted k1,2.
Thus, before point 1, there are only four non-zero real roots (±k1,2) and eight
non-zero imaginary roots (±k1,2, ±k3 and ±k4). After point 2, one of the
k1,2 becomes pure real and another one becomes pure imaginary and is the
only imaginary root at high frequency. These roots correspond to the bending
mode, w. It can be further noticed that before point 1, these wavenumbers
(k1,2) simultaneously possess both real and imaginary parts, which implies
these modes are attenuated while propagating. Thus, there exists an inho-
mogeneous wave in FGM plate, which is also found in composite plate. The
points marked 1 and 3 are the two cut-off frequencies, where the roots k3 and
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k4 become real from their imaginary values. These roots correspond to the
inplane motion, i.e., u and v displacements.
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Fig. 7.40. Variation of cut-off frequency with ηm

As in the anisotropic case, the cut-off frequencies can be obtained from
Equation (7.74) by letting k = 0 and solving for ωn. The governing equation
for the cut-off frequency becomes

a0ω
6
n + a1ω

4
n + a2ω

2
n + a3 = 0 , (7.81)

where ai are material property and wavenumber ηm dependent coefficients.
When Equation (7.81) is solved for different ηm, the variation of the cut-off
frequencies with ηm can be obtained. This variation is given in Figure 7.40.
As is shown in the figure, variation of the cut-off frequency for the bending
mode, ω1,2, follows a non-linear pattern, whereas, the other two are linear.
At higher values of ηm, this frequency exceeds the in-plane cut-off frequency,
ω3. Thus, with the help of this figure, the location of the points 1, 2 and 3 in
Figures 7.38 and 7.39 can be explained.

Once, the wavenumbers are known, computation of the wave amplitudes
are performed either by the SVD technique or by the method of linearized
PEP. The wavenumbers and wave amplitudes are essential for the SPE for-
mulation, which is taken up next. Two different elements are formulated in
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this study, one with a semi-bounded geometry and the other one with a half-
space geometry.

7.5.4 The Finite Plate Element

The geometry of the semi-bounded plate element is shown in Figure 7.32. It
has four dof per node, three displacements in three coordinate directions and
one rotational dof about the Y axis. Thus, there are a total of eight dofs per
element, which are the unknowns. The displacement at any x coordinate of
the plate (in the frequency wavenumber domain) can be written as a linear
combination of all its solution given by

ũ =
8∑

i=1

aiφie
−jkix , ũ = {ũ, ṽ, w̃}T , φi ∈ C3×1 , (7.82)

where φi are the columns of the wave matrix. The ai are the unknown con-
stants, which must be expressed in terms of the nodal variables. This step can
be viewed as transformation from the generalized coordinate to the physical
coordinate. To do so, let us write the displacement field in a matrix vector
multiplication form as

{ũ} =

⎧⎨
⎩

û(x, ωn)
v̂(x, ωn)
ŵ(x, ωn)

⎫⎬
⎭ =

⎡
⎣φ11 . . . φ18

φ21 . . . φ28

φ31 . . . φ38

⎤
⎦
⎡
⎢⎢⎢⎣

e−jk1x 0 . . . 0
0 e−jk2x . . . 0
...

. . . . . .
...

0 . . . . . . e−jk8x

⎤
⎥⎥⎥⎦ {a} ,

(7.83)
where kp+4 = −kp , (p = 1, . . . , 4) and the elements of φi are written as
φpi , (p = 1, . . . , 3). In concise notation the above equation becomes

{ũ}n,m = [Φ]n,m[Λ(x)]n,m{a}n,m , (7.84)

where n,m is introduced in the subscript to remind us that all these expres-
sions are evaluated at a particular value of ωn and ηm. [Λ(x)]nm is a diagonal
matrix of order 8 × 8 whose ith element is e−jkix. [Φ]n,m (= [φ1 · · ·φ8]) is
the wave amplitude matrix. an,m is the vector of eight unknown constants to
be determined. These unknown constants are expressed in terms of the nodal
displacements by evaluating Equation (7.84) at the two nodes, i.e., at x = 0
and x = L. In doing so, we get

{û}n,m =
{

ũ1

ũ2

}
n

= [T1]n,m{a}n,m , ũi = {ui , vi , wi , (∂w/∂x)i} (7.85)

where ũ1 and ũ2 are the nodal displacements of node 1 and node 2, respec-
tively. The elements of [T1]n,m are
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T1(m,n) = Φ(m,n) , m = 1, . . . , 3 , n = 1, . . . , 8
T1(m,n) = −jkpΦ(m − 4, p)e−jknL , m = 5, . . . , 7 , n = 1, . . . , 8
T1(4, n) = −jknΦ(3, n) , n = 1, . . . , 8
T1(8, n) = −jknΦ(7, n) , n = 1, . . . , 8 .

Before advancing further, it is to be noted that the element has edges par-
allel to the Y axis, hence at the plate boundary nx = ±1 and ny = 0.
These relations are to be utilized in the force-displacement relation. Us-
ing the force boundary conditions Equations (7.62)–(7.64), the force vector
{f}nm = {N̄xx , N̄yy , V̄x , M̄xx}n,m can be written in terms of the unknown
constants {a}n,m as {f}n,m = [P]n,m{a}n,m. When the force vector is eval-
uated at node 1 and node 2, (substituting nx = ±1) nodal force vectors are
obtained and can be related to {a}n,m by

{f̂}n,m =
{

f̃1
f̃2

}
n,m

=
[

P(0)
P(L)

]
n,m

{a}n,m = [T2]n,m{a}n,m . (7.86)

Equations (7.85) and (7.86) together yield the relation between the nodal force
and nodal displacement vector at frequency ωn and wavenumber ηm as

{f̂}n,m = [T2]n,m[T1]−1
n,m{û}n,m = [K]n,m{û}n,m , (7.87)

where [K]n,m is the dynamic stiffness matrix at frequency ωn and wavenumber
ηm of order 8 × 8. The explicit form of the matrix [T2]n,m (n = 1, . . . , 8) is

T2(1, n) = jknA11Φ(1, n) − ηA12Φ(2, n) − k2
nB11Φ(3, n) − η2B12Φ(3, n) ,

T2(2, n) = ηA66Φ(1, n) + jknA66Φ(2, n) + 2jB66knηΦ(3, n) ,

T2(3, n) = k2
nB11Φ(1, n) + jB12knηΦ(2, n) + jk3

nD11Φ(3, n) + jD12knη2Φ(3, n)
+ 2η2B66Φ(1, n) + 2jknηB66Φ(2, n) + 4jknη2D66Φ(3, n) ,

T2(4, n) = −jknB11Φ(1, n) + ηB12Φ(2, n) + k2
nD11Φ(3, n) + η2D12Φ(3, n) ,

T2(m,n) = −T2(m − 4, n)e−jknL ,m = 5, . . . , 8 .

7.5.5 Semi-infinite or Throw-off Plate Element

For the infinite domain element, only the forward propagating modes are
considered. The displacement field (at frequency ωn and wavenumber ηm)
becomes

{ũ}n,m =
4∑

m=1

φme−jkmxam = [Φ]n,m[Λ(x)]n,m{a}n,m , (7.88)

where [Φ]n,m and [Λ(x)]n,m is now of order 4 × 4. The {a}n,m is a vector of
four unknown constants. Evaluating the above expression at node 1 (x = 0),
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the nodal displacements are related to these constants through the matrix
[T1]n,m as

{û}n,m = {ũ1}n,m = [Φ]n,m[Λ(0)]n,m{a}n,m = [T1]n,m{a}n,m , (7.89)

where [T1]n,m is now a matrix of dimension 4× 4. Similarly, the nodal forces
at node 1 can be related to the unknown constants as

{f̂}n,m = {f̃1}n,m = [P(0)]n{a}n,m = [T2]n,m{a}n,m . (7.90)

Using Equations (7.89) and (7.90), nodal forces at node 1 are related to the
nodal displacements at node 1 as

{f̂}n,m = [T2]n,m[T1]−1
n,m{û}n,m = [K]n,m{û}n,m , (7.91)

where [K]n,m is the element dynamic stiffness matrix of dimension 4 × 4 at
frequency ωn and wavenumber ηm. The [T1]n,m and [T2]n,m are the first 4×4
truncated part of the matrices [T1]n,m and [T2]n,m of the finite plate element.

7.6 Numerical Examples

The developed spectral element is employed to analyze a plate with ply-drop
to show the efficiency of the present element in modelling complex and compu-
tationally expensive structures. Next, Lamb wave propagation in anisotropic
plate is captured and the effect of axial-flexural coupling on the Lamb wave
is demonstrated.

7.6.1 Wave Propagation in Plate with Ply-drop

Beam structures with ply-drop are analyzed in Chapter 4. However, in the
present example, we consider the 2-D state of the stress. The aim here is
to see how an extra dimension can alter the response of the structure. The
present SPE can model this kind of structure easily and thus the analysis of
ply-dropped plate subjected to impulse loading is quite viable. To this end
the plate configuration shown in Figure 7.41 is considered. The plate is made
up of GFRP composites and is 3.0 m long in the Y direction and 0.9 m in the
X direction. It is fixed at one end and free at the other edge. The material
properties are as taken before and each lamina is 1.0 mm thick. The plate is
divided into three regions along the X direction. From the fixed end to 0.3
m, there are 10 layers in the plate. For the next 0.3 m, the plate has eight
laminas and the last 0.3 m has six laminas. The plate is modeled with three
finite SPEs (CLPT), which result in a system size of 12 × 12.

The plate is impacted at the mid-point of the free end by a concentrated
load whose time dependency is the same as taken previously, i.e., as given in
Figure 5.3. The load is first applied in the X direction and the X velocity
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Fig. 7.43. Variation of transverse velocity: solid line – ply-drop, dashed line –
uniform plate

is measured at the impact point. The measured velocity history is plotted in
Figure 7.42. The same structure is also analyzed for uniform ply-stacking (10
layers) and the result is superimposed in the same figure. It is evident from
the figure that ply-drop affects the stiffness of the plate considerably, as there
is an increment in the maximum amplitude of about 90%. This reduction
of stiffness is also visible in the reflection from the boundary. The reflection
from the boundary appears at the same instance in both the cases, which
indicates that there is not much alteration in the group speed due to the ply-
drop. However, there are two extra reflections (inverted peaks at around 175
µs and 240 µs) in the response from the ply-drop plate before the arrival of
the boundary reflection, which originate at the ply-drop junctions due to the
mismatch in impedance.

Next, the plate is impacted at the same point in the Z direction and the
Z velocity is measured at the same point(Figure 7.43). Simultaneously, the
response of the uniform plate is also plotted in the same figure. As noticed
before, there is considerable difference in the peak amplitudes (almost a fac-
tor of 2), which follows the same pattern of axial velocity history. The extra
reflections originated at the interfaces are also visible (starting at around 250
µs), which are not present in the uniform plate response. However, there is
no deviation in the arrival time of the boundary reflection, which denotes
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the closeness of the bending group speed in both cases. Overall, this exam-
ple shows the efficiency of the present element in modeling structures with
discontinuity and bringing out the essential dynamic characteristics.

7.6.2 Propagation of Lamb waves

The final example is the propagation of Lamb waves in a GFRP plate with the
same material properties as taken before. The propagating distance is taken
as 2.0 m and to get rid of the boundary reflections, two throw-off SPEs are
used. In between, the finite plate is modeled with four SPEs, which together
with the throw-off elements generate a system size of [16×16]. Lamb waves are
generated in this plate by applying a tone burst signal with center frequency
of 50 kHz and a bandwidth of 20 kHz. Three lamina sequences are considered,
one symmetric, [010], and two asymmetric, [05/455] and [05/905].
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Fig. 7.44. Lamb wave due to X load, profiles are shifted for clarity

First the load is applied in the X direction and both the X and the Z
velocity histories are plotted in Figure 7.44. The figure shows that the first
symmetric (s0) and anti-symmetric (a0) modes are captured by the plate
element. This is expected, since the plate element used for modeling is based on
the CLPT. For the symmetric laminate, there is no axial–flexural coupling and
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the X velocity history shows only the axial mode (s0). However, for increasing
coupling, the bending mode, a0, appears in the X velocity history, as is shown
in the left subfigure. The figure also shows the relative movement of the modes,
which clearly shows that the Lamb wave speed is maximum for [010] sequence
and minimum for [05/905] sequence, for both s0 and a0 modes. The change
in the s0 mode speed is more between the [010] and [05/455] case, compared
to the change between the [05/455] and [05/905] case. For transverse velocity
history (plotted in the right subfigure), as expected, there is no response for
symmetric ply-sequence (since there is no coupling). However, for asymmetric
lay-up, both bending and stretching modes are present. Further, variation of
the group speed for the a0 mode (shown by the movement of the a0 blobs) is
easily detectable for varying asymmetry.

Next the load is applied in the Z direction and both the X and the Z
velocity histories are plotted in Figure 7.45. The left subfigure shows the
variation of the X velocity. Again in this case, symmetric laminate generates
no axial response, which starts only for asymmetric ply-sequences. As the
figure suggests, for asymmetric lay-up, energy is concentrated more in the s0

mode (higher amplitude). Also, the group speed variation is nominal for the
s0 mode, whereas, detectable variation can be observed for the a0 mode. The
right subfigure shows the variation of the Z velocity. As is seen in the figure,
symmetric laminates are devoid of the s0 mode, which shows up only for the
asymmetric ply-stacking. The wave energy is now concentrated more in the
bending mode (a0), as the relatively large amplitude suggests. This example
shows the possible application of the present SPE for modeling and simulation
of Lamb wave propagation in composite laminate.

In summary, a set of spectral elements are developed to analyze wave
propagation in layered media. The elements cover anisotropic and inhomo-
geneous materials for both purely elastic and thermoelastic analysis for high
frequency mechanical loading or thermal shock. These elements capture the
essential response of layered systems to impact loading quite accurately and
efficiently compared to conventional FE analysis. Stress state within a multi-
layered system reveals trapping of energy and multiple reversal of stresses,
which may prove fatal to the safety of the structure. Lamb wave modes are
also computed for inhomogeneous material and the effect of gradation on the
time domain response is investigated. It is shown that for inhomogeneous ma-
terial, the behavior can be totally different from the background homogeneous
material and the order of the appearance of different modes may differ. Thus,
mode selection can be performed by suitably varying the gradation. Moreover,
inhomogeneity increases the cut-off frequency of the Lamb modes and thus
the number of active modes within a given frequency range decreases with the
increasing gradation.

The SFEs developed to analyze generalized thermoelastic wave propaga-
tion in anisotropic and inhomogeneous layered media can accommodate both
the GL and LS theory. Numerical examples using these elements reveal that
the relaxation parameters of the GL model have considerable effect on the
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Fig. 7.45. Lamb wave due to Z load, profiles are shifted for clarity

mechanical and thermal responses, unlike the single parameter LS model. At
higher frequencies, a coupled thermoelastic solution is necessary as the ther-
mal field alters the mechanical field considerably. Studies of the surface and
interface waves in thermoelastic media reveal that the thermal wave propaga-
tion is highly localized in time and space as it quickly attains a steady state
value. Effects of the time parameters remain predominant as long as the wave
contribution to the thermal field remains substantial. It is also found that
the classical thermoelasticity overestimates the stress field as the presence of
non-zero relaxation parameters decrease their magnitude considerably.

Spectral plate elements are developed by exactly solving the governing
partial differential equations of CLPT in the frequency wavenumber domain.
The elements are formulated using robust algorithms of SVD and PEP, which
minimize human intervention and reduce the possibility of human error. The
variation of the wavenumbers is obtained, which reveals the inhomogeneous
nature of the propagating waves. The element efficiently captures the wave
solution of layered anisotropic plate subjected to impact loading. The cost
of computation is many orders less than any conventional FE analysis. The
plate element is used to model complex structures like plates with ply-drop,
where the responses capture the essential features of the propagating wave in
bounded media. Further, Lamb waves are captured and variation of the first
symmetric and anti-symmetric modes with laminae sequence is demonstrated.



8

Solution of Inverse Problems: Source and
System Identification

The aim of the present chapter is to use the formulated spectral elements
of the previous chapters to solve some difficult practical problems of great
industrial significance. To start with, one important application of the spec-
tral formulation is in solving inverse problems, e.g., source identification and
parameter estimation. Because of the frequency domain formulation of spec-
tral elements, where the input and output responses are algebraically con-
nected through the transfer function, force (external disturbance) reconstruc-
tion can be performed with relative ease compared to any FE based methods.
Similarly, material property identification by a classical optimization based
method, which requires multiple evaluation of the objective function (in this
case spectral solution), is computationally feasible because of small spectral
system sizes. The SLE developed in Section 6.1 is used in the following exam-
ple to reconstruct the applied broadband force. Similarly, the SLE developed
in Section 7.1 for inhomogeneous layered media is used to identify background
homogeneous material properties and inhomogeneous parameters.

8.1 Force Identification

There are many forces (some of which are high frequency excitations) to which
structures are frequently subjected throughout their lifetime and which initi-
ate damage and crack growth in these materials. Identification of these forces
is thus an important issue in the health monitoring aspect of these structures.
It is one of the fundamental inverse problems.

Several reports are available in the literature on force reconstruction from
measured responses in both time and frequency domain methods. Stevens [130]
has presented an overview of the force identification process for the case of
linear vibration systems. Hillary and Ewins [131] investigated the problems of
sinusoidal load identification in a cantilever beam and the determination of im-
pact forces acting on aircraft turbine blades with a least-square method. Ory
et al. [132] used the William’s method [133] with a time integration scheme
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to identify the shock loading applied on a beam. Bateman et al. [134] pre-
sented two force reconstruction techniques, i.e., sum of weighted acceleration
and deconvolution, to evaluate the impact test for a nuclear transportation
cask. Michaels and Pao [135] presented a deconvolution method, which was
applied to determine the orientation and time dependent amplitude of the
input force from the transient response of a plate. Recently, Huang [136] used
an algorithm based on the conjugate gradient method to estimate the un-
known external forces in the inverse non-linear force vibration problems. Ma
et al. [137] presented an inverse method based on Kalman filter and recursive
least square method to estimate impulsive loads on lumped mass structural
systems. They applied this method to a beam structural system [138] to esti-
mate sinusoidal forces. Chang and Sun [139], Yen and Wu [140], [141], and Wu
et al. [142] used time domain methods to determine transverse impact force
on composite laminate. Recently, some regularization methods are presented
by Jacquelin et al. [143] to recover an experimental force. Yu and Chan [144]
used frequency domain methods to identify moving force on bridges. Liu et
al. [145] used a hybrid numerical method to identify transient loads in com-
posite laminates. The convenience and versatility of SFE in conjunction with
experimental data are demonstrated earlier to predict force history in a mono-
material beam [146], bi-material beam [147], isotropic plates [148], orthotropic
plates [149], isotropic layered media [150].

There are many instances where the cost of a prototype or difficulty in
obtaining a suitable physical model for impact testing precludes any experi-
mental evaluation and numerical simulation becomes the only option for pa-
rameter estimation. Also, several difficulties are associated with wave propa-
gation experiments performed over finite length models in terms of noise and
boundary reflections. For accurate force prediction, a complete trace of the
measured signal is required. The experimentally generated signal is required
to be truncated at some point. Choosing the point of truncation requires
critical consideration since valuable information may be lost in premature
truncation. For a dispersive system, in particular, caution should be exercised
in the selection of these truncation points as the wave response will not die
down completely within the chosen time window. In this work, FE responses
were taken as surrogate experimental results. Since experimental outputs are
always truncated at some point depending upon the constraints of the set-up,
data acquisition system and other facilities, the FE response should be taken
such that it simulates closely the experimental results. When this truncated
response is given as input to the SFE solver, the force data can be recon-
structed by performing the inverse analysis. The same idea is used in this
work to identify the applied impact force from the FE responses.

8.1.1 Force Reconstruction from Truncated Response

The basic idea of force identification in frequency domain analysis is presented
below. Since the whole spectral formulation is in the frequency/wavenumber
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domain, the response is related to the input through the transfer function as

Ỹ (ωn, ηm) = H̃(ωn, ηm)X̃(ωn, ηm) , (8.1)

where X̃(ωn, ηm) is the transformation of the input (say, load), Ỹ (ωn, ηm) is
the transform of the output (typically, velocity, strain, etc.), and H̃(ωn, ηm)
is the system transfer function. Now, input force can be obtained easily by
dividing the transform of the response by the transfer function, that is,

X̃(ωn, ηm) = Ỹ (ωn, ηm)/H̃(ωn, ηm) . (8.2)

Thus, if the response is known at some point, then the disturbance that caused
it can be computed. This is one of the distinct advantages of the spectral
approach in its ability to solve inverse problems.

In general, Ỹ (ωn, ηm) will be experimental data, typically the transform
of the strain history [150]. In this work, FE analysis output is taken as a
replacement for experimental output and when this response is fed into the
spectral solver, the applied force can be reconstructed. It is to be noted that
the present model is a second-order system, where in most cases the waves
are non-dispersive in nature. The tracking of reflection is quite simple in such
systems.
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Fig. 8.1. FE response truncated at several points
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The anisotropic layered system in the verification study (Section 6.3.1)
is taken here and the same load (Figure 5.3) is applied at point 1. The FE
signal taken as a substitute for experimental output is the response of Fig-
ure 6.5, shown as a dashed line. This FE signal is truncated at three different
times (tc), 1000, 500 and 250 µs. The truncated responses are shown in Fig-
ure 8.1. When these responses are given as input to the spectral solver, force
history comes as an output. These histories are plotted in Figure 8.2 for the
three different cut-off points. As is seen in the figure, for the truncation time
of 1000 µs, the reconstructed force history matches almost exactly with the
original force history. The second and third truncated signals (tc = 500 and
250 µs, respectively) also generate the initial form of the load history quite
accurately. However, the second truncated signal registers an inverted peak
at around 700 µs and the third signal shows another extra peak at around
350 µs, which are not present in the original history. These responses arise
because of the removal of the later part of the FE response. Thus, the peak
at 700 µs arises due to the removal of the second and subsequent reflections
from the fixed end and the peak at 350 µs is due to the removal of the first
reflection from the fixed end. Hence, if it is known that there is only one im-
pact load and only the duration and magnitude of that load is desired, FE
response (or the experiment output) can be truncated at any point after the
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main peak. This exercise further demonstrates the inherent efficiency of the
spectral formulation in source reconstruction.

8.2 Material Property Identification

Estimation of the material parameters belongs to the category of parameter
identification and is very important in aircraft industries from an aging point
of view. Moreover, for existing structures, all the experiments involved in the
estimation procedure must be some kind of non-destructive testing. There are
few works reported in the literature that deal with the estimation of material
properties through judicious use of the experimentally obtained structural re-
sponse and the response of the mathematical model of the structure. These
methods belong to the more general class of solution techniques called Mixed
Numerical/Experimental Technique (MNET). Methods belonging to this class
differ among themselves in the data that are chosen for comparison and in the
method of updating the design variables. For example, Sol et al. [151] dealt
with the eigenvalues and eigenmodes of the structures and an error functional
was constructed and minimized. Kim et al. [152] estimated the heat capacity
of composites by adopting the same approach, where the error functional was
the sum of the squared differences of measured and computed temperature.
However, all of them used the same numerical technique, i.e., non-linear opti-
mization with constraints, which falls in the category of classical optimization.

The technique adopted here for estimating the material properties is
named the Pulse Propagation Technique (PPT). Here, the structure will be
subjected to pulse loading at some point and its response will be measured at
another point. This response will be recorded and compared with the response
of the numerical model of the structure. Initially, the numerical model of the
structure will not be accurate enough to produce the experimentally measured
response exactly. The squared difference in the two responses represents the
cost function, which needs to be minimized, where the design variables are
the material properties. Thus the problem of estimating the unknown mate-
rial parameters becomes a problem of non-linear optimization, since the cost
function is dependent upon the material constants in a non-linear fashion.
The method of non-linear optimization requires computation of the struc-
tural response a great number of times, which means heavy computation cost
if the structure is modeled by FEs. In this situation, the SLE model of the
structure is most suitable as a single spectral element can replace thousands
of FEs. In this way, spectral formulation is tailor-made for material property
estimation by non-linear optimization. This concept was successfully utilized
by Al-Khoury et al. ([153], [154]) for isotropic multi-layer systems, where the
pavement layer moduli and thickness were estimated. The SLE developed
there was based on Helmholtz decomposition and hence was applicable only
to isotropic homogeneous materials.
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There is no existing work that relates the classical optimization tech-
nique to material property estimation for graded materials. The existing small
amount of literature has dealt with this problem by non-classical methods of
optimization. Nakamura et al. [155] used a Kalman filter technique along with
instrumented micro-indentation to estimate FGM through-thickness compo-
sitional variation and a rule-of-mixture parameter that defines effective prop-
erties of FGM. Han et al. [156] used a genetic algorithm (GA) to estimate
material properties of FGM, where a layer element was used which accom-
modates quadratic material property variation. Liu et al. [157] used a neural
network along with a layer element and combined Genetic algorithm and non-
linear least square method [158] to estimate material properties. In the next
section, the SLE developed in Section 7.1 is used to estimate the elastic prop-
erties and inhomogeneous parameters of a graded layer structure.

8.2.1 Estimation of Material Properties: Inhomogeneous Layer

Estimation of the material properties through PPT requires a non-linear least
square formulation where the statement of the problem is

min
q

M∑
1

ei(q)2 , q ∈ RN , (8.3)

i.e., a function e : RN → RM is to be minimized in a least square sense. The
function is defined as the difference between the experimentally measured
response (e.g., velocity or voltage) and the numerically obtained response.

In the present case, N is the number of design variables for which esti-
mations will be obtained. M is the number of experimental data items which
is twice the number of sensor points (real and imaginary parts), where the
response of the structure is recorded. The recorded signal will be transformed
into the frequency domain and optimization will be performed at each fre-
quency step.

The layered structure shown in Figure 7.4 and the load applied to it (Fig-
ure 5.3) are considered to verify the above method. The response (ẇ) is mea-
sured at node 1 and this response is used for all the parametric estimation,
hence, M=2 in this case (the real and imaginary part). As the method de-
mands that N should be ≤ M , at most two variables can be estimated simul-
taneously. In this study, the elastic moduli, density and the inhomogeneous
parameters are all estimated individually and in one case α and β are esti-
mated simultaneously. The optimization is performed with box-constraints,
i.e., lower and upper bounds are specified for all the variables. The optimiza-
tion is performed by the MATLAB function lsqnonlin, where the Levenberg–
Merquardt algorithm is used. The tolerances in residue and function values
are set at 1.0 × 10−09 for all estimations. The variables are estimated for 100
frequency points, which cover up to 4 kHz.
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Figure 8.3 shows the estimation of the Young’s modulus of the background
homogeneous material, i.e., steel, whose actual value is 210 GPa. It can be
seen that, except for a few points (no more than 10% of the total number), the
estimated values are quite close to the exact value, which is shown by the firm
line. Similarly, estimation of the shear modulus G◦ is shown in Figure 8.4 and
as the figure suggests, the convergence is far better in this case (the exact value
is 80.76 GPa, as shown by the firm line). The estimation of density ρ◦ (exact
value is 7800 kg/m3) shows a different trend. Initially, for low frequencies the
effect of inertia is not so dominant and this is reflected in the poor estimation
for ω < 2 kHz. However, for higher ω, the estimation is quite close to the exact
value. Finally, the inhomogeneous parameters are estimated, first individually
(shown in the upper two subplots of Figure 8.6) and next simultaneously
(lower two subplots of Figure 8.6). As the figure suggests, estimation of α is
comparatively better than that for β, which may be due to the approximate
nature of the treatment of β. Since, β is associated with inertia, initially
its estimation is very poor (like density). Also it can be noticed that the
estimation becomes poor (nominally for α and considerably for β) if both
parameters are considered simultaneously. However, at higher frequencies the
estimated values become quite close to the exact values.

Two applications of the developed SLEs are discussed in this chapter.
First, the solution of the inverse problems of source identification, and sec-
ond, material parameter estimation. The anisotropic SLE is used to regener-
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Fig. 8.6. Estimation of inhomogeneous parameters, α and β

ate a broadband pulse load from the measured truncated response, which is
straightforward in SFEM because of its frequency domain based formulation.
The effect of the truncation point is demonstrated and it is shown that for
modeling pulse loading, most of the measured response history is redundant.
Next, the inhomogeneous layer element is used to estimate inhomogeneous
material properties. The estimation is carried out by posing the inverse prob-
lem as non-linear optimization in the frequency domain. It is shown that
satisfactory convergence can be achieved by this method. The small system
size of SLE is fully utilized in this method.

The next important inverse problem of great practical value is Structural
Health Monitoring (SHM), where the presence and location of damage in a
composite structure need to be determined. Since, SHM is a high frequency
activity (requires probing force with high frequency content), SFEM is an
ideal candidate as a modeling tool. The use of SFEM for SHM applications is
discussed in great detail in the next two chapters.
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Application of SFEM to SHM: Simplified
Damage Models

Structural Health Monitoring (SHM) is a class of inverse problem wherein
the state of structures requires to be determined using a predefined input
and the measured output(s). In composite structures, delamination is the
common type of failure. If the size of the delamination is very small, it results
in negligible loss of stiffness and hence lower vibrational modes will be least
affected. Hence, SHM studies require high frequency content inputs (loads)
and SFEM provides a very efficient mathematical model for this purpose. The
main requirements of SHM are simplified damage models and efficient damage
detection studies. While the former is addressed in this chapter, the later is
dealt with in the next chapter. In this chapter, various simplified damage
models for single and multiple delaminations, fiber breakage, surface breaking
cracks and degraded zones are formulated. Numerical examples are provided
to show the wave scattering due to a crack front.

9.1 Various Damage Identification Techniques

Composite structures provide opportunities for weight reduction, tailoring
the material, integrating control surfaces in the form of embedded transduc-
ers, etc., which are not possible with conventional metallic structures. Since
very few such high-importance composite structures have completed signifi-
cant number of years of design life, the damage tolerance of these structures
is yet to be explored. Unlike the design of metal structures, this informa-
tion has not been incorporated into the design process. Therefore, a potential
barrier at present is that the composite structures can have internal defects
that are difficult to detect but need frequent monitoring to assess their vul-
nerability. Although, matrix cracking, fiber breakage, fiber debonding, etc.
initiate the damage that occurs in laminated composites, inter-laminar crack-
ing or delamination is most important and can grow, thus reducing the life
of the structure. This is because, in contrast to their in-plane properties,
transverse tensile and inter-laminar shear strengths are quite low. Standard
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non-destructive techniques (NDT) such as ultrasonic, fractographic, thermo-
graphic or tomographic imaging techniques require that the vicinity of the
damage is known a priori and that the portion being inspected is readily
accessible [10]. These limitations make them very expensive for damage de-
tection in aircraft or spacecraft structures, which are large and also need
frequent inspection. Therefore an in-service global/local damage detection
(health monitoring) system is essential, which, with built-in transducers, can
frequently monitor the integrity of the structure and determine the location
and extent of damage. To meet this requirement, one needs a highly efficient
computing tool that can simulate the response of damaged structures with
minimum human interaction. Here, the word “efficient” emphasizes reduced
modeling complexity, computation time and constraints on the memory re-
quirement in the on-board computer. Also, issues related to signal processing
are expected to play a significant role.

9.1.1 Techniques for Modeling Delamination

Delaminations in composites are usually modeled using beams, plates or shells
with appropriate kinematics. The technique used in [159] to model a through-
width delamination subdivides the beam into a delamination region (sublam-
inates) and two integral regions (base laminates) on either side of the delami-
nation region. Each of these sublaminates and base laminates is modeled as a
Euler beam and the whole structure is solved satisfying the global boundary
conditions. For one-dimensional beam elements, additional axial forces give
rise to a net resultant internal bending moment, which creates differential
stretching of the sublaminates above and below the plane of delamination.
The assumption made in [159] is that the axial forces in these sublaminates
are equal and opposite (i.e., if one is under compression, the other is under
tension by the same amount). This does not hold when the delamination is
not at the mid-plane or the ply-stacking is not balanced. Therefore this im-
balance gives rise to an axial load in the defect-free segments. The model used
in [160] to study the effect of delamination on natural frequency is also based
on engineering beam theory. However, this model uses 2-D beam elements
and therefore eliminates the shortcoming discussed above. It also includes the
effect of contact between the delaminated surfaces and can allow independent
extensional and bending stiffness.

In [161] two different types of finite elements are considered for the healthy
and delaminated elements. For the healthy elements, all the lamina are as-
sumed to have the same transverse and longitudinal displacements at a typical
cross-section, but each lamina can rotate by a different amount from the oth-
ers depending on its material and geometrical properties. This is also called
the “layer-wise constant shear kinematics”. The delaminated element has the
same transverse and axial displacement at both ends of the element. Only
the rotation is different along the element length of each lamina. In the same
direction Reference [162] used layer-wise plate theory for modeling delamina-
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tion in plates where delaminations were simulated by step discontinuity at the
interfaces.

Modeling performed in [163] assumes opening and closing action at the re-
gion of delamination. Here it is considered that after delamination, partially
intact matrix and fibers still fill the delamination gap. The contact effect be-
tween the delaminated sublaminates is modeled as a distributed non-linear
soft spring between them. The spring is assumed non-linear because when
the delamination opens beyond some small amplitude constraints, the spring
effect becomes zero; on the other hand, when the vibration mode does not
tend to open the delamination, the delaminated sublaminates have the same
flexural displacements and slopes. This non-linear spring is then simplified
to a combination of a few linear springs. Such modeling provides better rep-
resentation of the practical problem. In many mechanical components under
fatigue loading, such delamination can grow, leaving non-linear modes in vi-
bration characteristics. Related measurements in a metal beam with a fatigue
crack can be found in [164]. Williams [133] proposed a generalized theory
of delaminated plates using a global/local variational approach. This theory
uses unique coupling between the global and local displacement fields in two
different length scales and is a generalization of the earlier proposed theories
based on “layer-wise constant shear kinematics”.

However, these global/local analyses are based on a semi-analytic approach
and are difficult to incorporate for transient dynamic and wave-based diag-
nostic problems as focused on in the present chapter. From the reported work
discussed above, it can be seen that a more versatile approach suitable for
automated modeling of delamination for dynamic problems is required. This
chapter addresses related modeling issues considering 1-D waveguides with-
out the effect of contact non-linearity. For this purpose, we will use the 1-D
waveguide models formulated in earlier chapters as the basic building block
for efficient modeling and analysis of delamination.

9.1.2 Modeling Issues in Structural Health Monitoring

The presence of delamination or any other modes of damage changes the
structural dynamic characteristics and can be traced in natural frequencies,
mode shapes, phase, dynamic strain and stress wave patterns, etc. Significant
research has been reported on the effect of delamination on natural frequencies
and mode shapes and strategies have been developed to identify the location
of delamination using changes in these modal parameters [160], [161], [165],
[166], [167].

Tracy and Pardoen [160] found that if the delamination is in a region of
mode shape where the shear force is very high, there will be considerable
degradation in natural frequency, which is otherwise not significant. Hence,
by studying the mode shapes and the corresponding natural frequencies, an
estimation of the location of delamination can be made. Lakshminarayana
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and Jebaraj [168] used the first four bending and torsional modes and corre-
sponding changes in natural frequencies to estimate the location of a crack in
a beam. It is reported that if the crack is located at the peak/trough positions
of the strain mode shapes, then percentage change in the frequency would be
higher for the corresponding modes. It is also found that if the crack is located
at the nodal points of the strain mode shapes, then the percentage change in
the frequency values would be lower for the corresponding modes.

Schulz et al. [169] used damage force to identify the elements having dam-
age. The method suggested by them requires the system matrix (dynamic
stiffness matrix) of the healthy structure to be stored at each frequency. Dis-
placements measured at each node for the damaged structure along with the
stored system matrix can be used here to identify the elements with damage.
This method is independent of the excitation force, which can be uniform,
random or uncorrelated. However, it requires measurements at a large num-
ber of points on the structure to locate the damage with moderate accuracy.
The system size becomes exponentially large, requiring a large storage space.

Not much work has been reported in the area of damage identification
using stress wave propagation compared to that with vibration and modal
analysis and testing. The reason may primarily be attributed to (1) the limi-
tations of available finite element analysis in solving wave propagation problem
in large structures, and (2) difficulty in modeling a finite complicated domain
using semi-analytic methods (such as the transfer function method, spectral
analysis, wavelet analysis etc.).

9.2 Modeling Wave Scattering due to Multiple
Delaminations and Inclusions

Extensive tailorablity of fiber reinforced laminated composite and thin film
type layered structures has led to the present-day state of the art in smart
structures and micro-electromechanical systems (MEMS). Such structures are
potential candidates for specific and complex applications due to their multi-
functionality. From the viewpoint of the mechanical performance, very high
stiffness-to-weight ratio is one of the well exploited functionalities. There are
also special structural designs of interest, where the effect of stiffness coupling
is used for flextensional and shear induced actuation and shape [170]. Also, for
smart structural applications, laminated composite structures can be designed
as the host structures with a diverse range of micro-sensors and actuators and
even have the entire electronics [171] embedded in them. In recent times, many
other applications of laminated composite materials have appeared, such as
active control of sound [172], which are of less structural importance and are
fabricated to meet multi-physics requirements in MEMS devices, integrated
circuits operating in extreme environments.

Delamination and debonding of devices embedded in laminated composite
structures is one crucial damage mode [163], [173], [174]. When such an inte-
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grated heterogeneous system is exposed to highly transient dynamic or fatigue
loading, for example in the flexbeam of helicopter rotor-blades [175], multiple
waves in the low to high frequency ranges are generated. At minute interfaces
between heterogeneous stiffness and mass systems, considerable change in the
nearfield effects may occur due to the scattering of waves. One crucial out-
come of such phenomena is the development of dynamic stress intensity at
the delaminations tips [3]. This may enhance the formation of delamination
in locations of severe stress discontinuities. Modern composite structures with
several embedded microdevices need special treatment based on simulation at
the design stage. Further, for operational composite structures, health moni-
toring becomes an important issue due to the high cost of obtaining test data
and its post-processing to identify the delaminated or debonded configurations
in interior locations. To address such issues in the context of structural health
monitoring systems, wave based diagnostics and related modeling complexi-
ties have been discussed [176], [177], [175], [178], [179], [180]. Several defects
and composite material aging changes the characteristic structural behavior.
Also, non-ideal boundaries and finite geometry make model based prediction
difficult to match with test data. To alleviate such difficulties, one may seek
most of the numerical analysis data to be in the form of digital signals. In
this chapter, we take the advantages of FFT coupled with SFEM developed
in the previous chapters to solve wave propagation and its interaction with
delaminations and debonding of strip inclusions embedded inside laminated
composite.

In most real life situations, it is observed that one or more delaminations
across the thickness of the laminated structure produce membrane flexural
torsional coupling. Therefore, even in the presence of only in-plane or tor-
sional loading, flexural waves are generated, which are dispersive in nature.
As the total thickness increases, additional shear waves and then higher order
antisymmetric and symmetric Lamb wave modes become dominant with wave
speeds exceeding the in-plane wave speed. This implies that the modeling of
delaminated configurations in conventional FE analysis to capture the propa-
gating stress waves requires a very fine mesh. Also, the delamination tips may
need further mesh refinement, which makes an efficient analysis of the global
behavior very difficult.

On the other hand, in modeling approaches based on wave propagation, it
is possible to identify the presence of damage using certain simplified assump-
tions, such as equivalent material degradation [178] at the crack or delami-
nation interface. Such a model incurs changes in the speeds of different wave
modes (longitudinal, flexural, shear) and hence the wavenumbers associated
with those modes. In another approach [177], [175], a set of scattering ma-
trices are derived based on the reflection and transmission of incident waves
at structural boundaries; the phase change due to the presence of damage
at different frequencies can be used to quantify the damage. However, here
one needs a sensor and an actuator confining the damage, and then use of
a controller to cancel the resonances and anti-resonances due to structural
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boundaries through a dereverberated transfer function (DTF). Also, in the
above approach, a detailed model of delamination or debonding and hence the
scattering of coupled waves at and inside the damage cannot be incorporated.
Further, these analytical models are limited by the possibility of algebraic
manipulation in closed form, which is often very cumbersome when dealing
with axial–flexural shear coupled wave propagation in composite structures.
Since, most of the analytical formulations available in the literature are based
on isotropic material configuration with a symmetrically placed single dam-
age model, a general framework needs to be explored considering multiple
delaminations and debonding of inclusions.

In a continuum mechanics formulation for damage or inclusion, one can
use a mixed variational formulation in the local model to capture the lo-
calized stress field accurately. An assumed stress field for the local damage
region and assumed displacement for the global region can generally be used
[181]. Here, one can consider an appropriate damage-dependent constitutive
model [182] based on the continuum damage mechanics for the local region,
and an equivalent fiber matrix mixture constitutive model [50] for the global
region. However, such a detailed model is computationally intensive in the
context of structural health monitoring and identification of damage using
model based prediction and diagnostic wave propagation. In such problems,
the available simplified distributed parameter approach is to neglect the rel-
ative rotation of the damaged and healthy sections (in the case of beams and
plates) and treat the structures with Euler–Bernoulli (beams) and Kirchhoff
(plates) type kinematics. Such models have been verified experimentally in
[175] in the context of wave propagation in delaminated isotropic helicopter
flexbeams, and in [163] in the context of natural frequency change in a first-
order shear deformable composite beam with delamination and the associated
contact non-linearity in the low frequency dynamics. Also, such a simplified
model can be found useful while modeling advanced composite with stitching
[183] and various other types of material interfaces. Considering axial–flexural
shear coupled wave propagation in composite beams (see Chapter 4), a spec-
tral element for delaminated beams has been developed that will be discussed
in this chapter. In this formulation based on SFEM, the exact dynamics of the
internal debonded sublaminates are also taken into account. This formulation
then condenses out the FE nodal information of the internal waveguides, and
hence allows one to replace a healthy composite beam segment with this spec-
tral element where delamination exists. Although the reported models, e.g.,
[163], [180], use constant rotation of the interface between the damaged and
healthy segment, they are not capable of capturing the differential rotation of
individual debonded sublaminates at their interfacial cross-section with the
base laminates. This is also an important effect to consider for thickness-wise
multiple delaminations or other forms of damage and inclusion. This restric-
tion due to constant shear kinematics can be eliminated using the approach
reported in [162], where the layer-wise kinematics allows individual sublam-
inates to rotate by different amounts. A similar approach has been used in
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[184], where the formulation uses a penalty function to impose appropriate
constraints at the interface between the base laminates and the multiple sub-
laminates. In [185] and [186] the interface is assumed to translate and rotate
in a rigid-body mode. Thus, the normal plane is assumed continuous across
the base laminate thickness and is hence not affected by the stress discontinu-
ity in the two delaminated faces at the tip due to Mode-I and Mode-II stable
delaminations. However, this assumption may not be adequate, since strong
coupling between the displacement components may exist in the case of asym-
metric ply-stacking, asymmetry among the sublaminates (due to inclusions of
different material) and discontinuity in the stiffness and inertia due to foreign
inclusions such as MEMS devices and integrated electronics.

In the present chapter, we extend the above concept to model the indi-
vidual sublaminates or strip inclusions. SFEMs developed in earlier chapters
are used to model the individual sublaminates, base laminates and strip inclu-
sions. A layer-wise constant shear kinematics is then imposed at the interfaces
of sublaminates and base laminates. Equilibrium of the discretized system is
obtained using the multi-point constraints (MPC) in the Fourier domain asso-
ciated with the nodal displacement components and the force components at
these interfaces. This allows us to model small local rotations of the individ-
ual sublaminates and the base laminates at the interface in an average sense.
Also, the model is a general one, where the length-wise multiple delamina-
tions of debonding between strip inclusions can be modeled easily. Another
advantage of the proposed model is that both the frequency domain changes
in phase and amplitude of scattered waves in the presence of delaminations
or strip inclusions as well as the time domain change in the response, can be
computed efficiently with the help of FFT [187].

9.3 Spectral Element with Embedded Delamination

The location of the nodes of the spectral elements for a delaminated beam
is shown in Figure 9.1. In the absence of delamination, one spectral element
between node 1 and node 2 is sufficient for analysis. The presence of delam-
ination when treated as a structural discontinuity by neglecting the effect of
stress singularity at the delamination tip, increases the number of elements
from one to four. Six more nodes are introduced to model individual base
laminates and sublaminates. For the sublaminate-elements (elements 3 and
4) the nodes are located at the mid-plane of the sublaminates and element
lengths are equal to the length of the delamination.

The kinematic assumption for the interface of base laminate and sublam-
inates is that the cross-section remains straight, i.e., the slope is continuous
and constant at the interface. Under this assumption, one can obtain the
following equations:
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û0
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and similarly,
û6 = S1û7 , û8 = S2û7 . (9.3)

Here all the vectors are marked with overhead hat to indicate that the vari-
ables are discretized in the frequency domain. Using these we can map the
displacements at sublaminate element nodes 3, 5 (on the left interface) and
6, 8 (on the right interface) in terms of displacements of base laminate nodes
4 (on the left interface) and 7 (on the right interface), respectively (see Fig-
ure 9.2). S1 and S2 are the 3 × 3 transformation matrices given by

S1 =

⎡
⎣1 0 h2

0 1 0
0 0 1

⎤
⎦ , S2 =

⎡
⎣1 0 −h1

0 1 0
0 0 1

⎤
⎦ . (9.4)

From the equilibrium of the left interface AB (Figure 9.3), we can draw the
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following force balance equation
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which, in matrix form can be written as

f̂4 + S1
T f̂3 + S2

T f̂5 = 0 . (9.6)

Similarly, from the equilibrium of the right interface CD, we can get

f̂7 + S1
T f̂6 + S2

T f̂8 = 0 . (9.7)

The element equilibrium equation for the jth element (j = 1, 2 for base lami-
nates, j = 3, 4 for sublaminates) with nodes p and q can be written as

K̂(j)
(6×6)

{
ûp

ûq

}
=

{
f̂p
f̂q

}
. (9.8)

This equation can be rewritten using 3× 3 submatrices of the stiffness matrix
as [

K̂(j)
11 K̂(j)

12

K̂(j)
21 K̂(j)

22

]

(6×6)

{
ûp

ûq

}
=

{
f̂p
f̂q

}
. (9.9)
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The above equation for the local element 1 can be written as
[
K̂(1)

11 K̂(1)
12

K̂(1)
21 K̂(1)

22

]

(6×6)

{
û1

û4

}
=

{
f̂1
f̂4

}
. (9.10)

For the local element 2,
[
K̂(2)

11 K̂(2)
12

K̂(2)
21 K̂(2)

22

]

(6×6)

{
û7

û2

}
=
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f̂7
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}
. (9.11)

For the local element 3,
[
K̂(3)

11 K̂(3)
12

K̂(3)
21 K̂(3)

22

]

(6×6)

{
û5

û8

}
=

{
f̂5
f̂8

}
. (9.12)

Expressing û5 and û8 in terms of û4 and û7 respectively (Equations (9.2)
and (9.3)) and premultiplying both sides by S2

T , we get
[
S2

T K̂(3)
11S2 S2

T K̂(3)
12S2

S2
T K̂(3)

21S2 S2
T K̂(3)

22S2

]

(6×6)

{
û4

û7

}
=

{
S2

T f̂5
S2

T f̂8

}
. (9.13)

For the local element 4,
[
K̂(4)

11 K̂(4)
12

K̂(4)
21 K̂(4)

22

]

(6×6)

{
û3

û6

}
=
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f̂3
f̂6

}
. (9.14)

Similarly expressing û3 and û6 in terms of û4 and û7 respectively (Equa-
tions (9.1)–(9.3)) and premultiplying both sides by S1

T , we get
[
S1
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11S1 S1
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S1
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û4

û7
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}
. (9.15)

After assembly of the above equations for the four local elements (two base
laminates and two sublaminates) and subsequent use of Equations (9.6) and
(9.7) yield the following form

ˆ̄̄K

⎧⎪⎪⎨
⎪⎪⎩

û1

û4

û7

û2

⎫⎪⎪⎬
⎪⎪⎭

=
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⎪⎪⎩

f̂1
0
0
f̂2

⎫⎪⎪⎬
⎪⎪⎭

, (9.16)

where ˆ̄̄K is
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On condensation of the dof at the internal nodes 4 and 7, the final form of
the equilibrium equation is obtained as

ˆ̄K(6×6)

{
û1

û2

}
=

{
f̂1
f̂2

}
, (9.17)

where ˆ̄K is the reconstructed stiffness matrix for the spectral element with
embedded delamination. Now, one only needs to replace the usual spectral ele-
ment with this spectral element wherever a possible delamination may exist in
composite beams and frame structures, keeping the original nodes unaltered.
Hence, it is evident that insertion of this element on a modular approach is
suitable for faster modeling and accurate prediction of delaminations in com-
posite beams and frames with partial measurement of sensor signals. This is
one of the requirements for online SHM.

9.3.1 Modeling Distributed Contact Between Delaminated
Surfaces

In the above formulation we have not considered the effect of distributed
contact between the delaminated surfaces, at the top from the sublaminate
(4) and at the bottom from the sublaminate (3) (Figure 9.4). Although the
spectral element is developed to study the interaction of diagnostic waves
with the delamination and its effect captured at the distant measurement
points, the objective in this section is to incorporate the additional effect
due to a linearly distributed contact at the delaminated zones comprising the
grain boundary of the matrix phase and the chopped fibers. In the present
study, this is modeled as a viscoelastic layer between the delaminated surfaces.
This model not only includes the effect of interfacial frictional slip under
Mode-II fracture but also can be used as a linearized model to restrict the
interpenetration and frictional contact under Mode-I fracture. However, more
complex models considering a non-linear spring to restrict the occurrence
of the incompatible modes due to interpenetration can be developed. Such
aspects have been studied semi-analytically in [163].

Figure 9.4 shows the delaminated zone between two delaminated surfaces.
Let us consider the distributed spring constants Kx and Kz and the dis-
tributed viscous damping coefficients Cx and Cz. The spectral amplitude of
the distributed contact force vectors Γ̂t acting on the top surface of sublami-
nate (3) and Γ̂b acting on the bottom surface sublaminate (4) and consisting
of longitudinal force along x, transverse force along z and moment about y
due to relative motion between the top and bottom surfaces can be expressed
as
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Fig. 9.4. Distributed contact idealized through distributed linear spring K and dis-
tributed linear viscous damper C between the delaminated surfaces. The waveguides
(4) and (3) represents the top and bottom sublaminates respectively as shown in
Figure 9.1

Γ̂t =

⎡
⎣ Kx + iωnCx 0

0 Kz + iωnCz

zbt(Kx + iωnCx) 0

⎤
⎦
{

ûb − ût

ŵb − ŵt

}
= K∗ (ûb − ût) , (9.18)

Γ̂b = −Γ̂t , (9.19)

where the subscripts t and b respectively indicate the quantities associated
with the top surface of the sublaminate (3) and the bottom surface of the
sublaminate (4). In Equation (9.18), zbt is the depth of separation between
the delaminated surfaces. Considering the displacement field according to the
Timoshenko beam theory in Equation (4.21), the top surface displacement
vector ût for sublaminate (3) can be expressed as

ût =
{

ût

ŵt

}
=

[
1 0 z

(3)
t

0 1 0

]
û(x, ωn)(3) = S̄1û(x, ωn)(3) (9.20)

and similarly, the bottom surface displacement vector ûb for sublaminate (4)
can be expressed as

ûb =
{

ûb

ŵb

}
=

[
1 0 z

(4)
b

0 1 0

]
û(x, ωn)(4) = S̄2û(x, ωn)(4) (9.21)

where z
(3)
t denotes the depth of the top surface measured from the local ref-

erence plane of the sublaminate (3) and z
(4)
b denotes the depth of the bottom

surface measured from the local reference plane of the sublaminate (4). Using
the generic displacement vector û(x, ωn)(3) and û(x, ωn)(4) in terms of the
spectral element shape function matrices and nodal displacement vectors a
consistent nodal force vector can be formed. Thus, for sublaminate (3), the

consistent nodal force vector is f̂e
(3)

=
∫ L

0
ℵ̂eT (3)

Γ̂tdx .
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9.4 Numerical Studies on Wave Scattering due to Single
Delamination in Composite Beam

The response obtained using the spectral element for delamination is first com-
pared with the standard 2-D constant strain FEM results. Next, the element
is used to study wave scattering in delaminated composite beams of various
configurations. While comparing the response from the spectral element model
and the FEM, the delaminated surfaces are left free, and hence they behave
as free surfaces without any mechanism to restrict interpenetration. However,
such simplification allows relative slip between the two delaminated surfaces
under linear approximation and are seldom treated in pure Mode-II loading
of a cracked elastic continuum. Under Mode-II loading, only shear transfer
can occur between the base laminates and the sublaminates. In such a case,
interpenetration of the delaminated surfaces causing incompatible modes does
not occur. However, the following FEM analysis helps us clarify such behavior
in detail.
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Fig. 9.5. Single frequency tone-burst sinusoidal pulse modulated at 20 kHz using
trapezoidal window. The spectral amplitude f̂ over the frequency axis is shown inset

9.4.1 Comparison with 2-D FEM

A graphite–epoxy cantilever beam of length 800 mm and having a cross-
sectional area 16 mm thickness × 10 mm width is considered for this study.
A 50 mm mid-plane delamination is introduced at a distance 400 mm from
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the root of the beam. Modeling is done using one single spectral element with
4096 FFT sampling points (∆ω = 48.828 Hz). In FE analysis, a fine mesh
consisting of 2560 constant strain triangular elements is used. Here the element
size is comparable with the wavelength of the applied excitation. Plane-stress
condition in the vertical XZ plane is used. A single frequency pulse modulated
at 20 kHz (Figure 9.5) is applied transversely at the tip cross-section.

Fig. 9.6. Snapshot of the deformed FE mesh taken at the region of the delamination
at t = 0.84 ms. The nodal displacements are magnified 105 times
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Fig. 9.7. Comparison of the transverse velocity ẇ history computed at the tip of
the cantilever using spectral element and 2-D constant strain triangular FEM

A snapshot of the deformed FE mesh at 0.84ms having maximum slip between
the delaminated surfaces at the mid-length of the delamination is shown in
Figure 9.6. Nodal displacements have been magnified 105 times for ease of
viewing. The cross-sections of the beam at vertical interfaces between sub-
laminates and base laminates can be seen to be straight even in this deformed
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state. This justifies the assumption made regarding the rotational continu-
ity (Equations (9.1)–(9.3)) of the base laminate and sublaminate waveguide
nodes at the interfaces during construction of the spectral element. Also it can
be seen from Figure 9.6 that there is no interpenetration of the sublaminates
and the deformation at the delaminated surfaces is primarily in-plane. For
this reason, while considering the same type of Mode-II loading as considered
here, the spectral element without the contribution of distributed contact is
used in the rest of the numerical simulations. Plots of ẇ at the mid-node of
the tip cross-section predicted by the spectral element and 2-D FE analysis
are shown in Figure 9.7. The first blob appearing in the time history is the
incident wave. The next smaller one is the reflection generated by the delam-
ination, which acts as a structural discontinuity; the last one is the reflected
wave from the root of the beam. The incident wave matches well with the
FEM results. However little difference in phase can be noticed in the reflected
waves.

9.4.2 Identification of Delamination Location from Scattered Wave

To identify the location of delamination from the wave scattering wave, a
graphite–epoxy [0]10 cantilever beam of length L = 2 m having a cross-
sectional area 10 mm × 10 mm is considered (Figure 9.8). A mid-plane delam-
ination of size 20 mm is introduced at a distance L1 = 1.2 m from the free end.
A modulated sinusoidal pulse (Figure 9.5) is applied transversely at the free
end i.e., node 2 of the single spectral element used in the analysis. The flexu-
ral group speed cg = dωn/dkj = 2 4

√
D11ω2

n/I0, being a function of frequency
is dispersive in nature. Therefore to locate a delamination with distinct ar-
rival time of reflected waves from the delamination tip, one has to use a single
frequency tone-burst signal that propagates non-dispersively. Use of such a sig-
nal in structural health monitoring experiments can be found in [188], [189].
The transverse velocity at node 2 (Figure 9.8) is plotted for both healthy

Delamination

1 2

z

x

L1
L

Fig. 9.8. Configuration of a cantilever beam with mid-plane delamination (L = 2
m, L1 = 1.2 m)

and delaminated configurations. For the healthy case, the immediate incident
wave and the reflected wave from the fixed end can be seen in Figure 9.9.
For the delaminated case, one more reflection arrives from the delamination
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Fig. 9.9. Transverse velocity ẇ at the cantilever tip due to modulated sine pulse
transversely applied at the same location

tip. The group speed of the flexural wave (cg) is 3850 m/s. It should take
2L/cg ≈ 1040µs for the reflection from the root to arrive at the tip. For the
reflection generated at the delamination tip this should be 2L1/cg ≈ 625µs.
These values are found to match very closely the results shown in Figure 9.9.
For the same transversely applied load, the rotational velocity history at the
free end shows reflections of the same nature (Figure 9.10) and at the same
time.

9.4.3 Effect of Delamination at Ply-drops

Next, we consider a delamination in the region of ply-drops in a cantilever
beam. In a health monitoring application, detection of such a delamination
near ply-drops, composite joints or other structural discontinuities is essen-
tial at an early stage. If the delamination length is small, the same modeling
strategy as used above can be assumed to be valid here. A cantilever beam
with the same material properties as used in the previous illustration and with
ply-drops (Figure 9.11) is considered. The model has five plies dropped from
the top, out of 15 plies on the fixed end side of the cantilever. A 20mm long
delamination is considered at the location of the ply-drops. Only two spectral
elements are used in the model. Transverse velocity histories at the free end
are plotted in Figure 9.12. For the healthy case, two reflections can be seen;
first, one from the ply-drop due to a sudden change in the thickness, and the
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Fig. 9.10. Rotational velocity φ̇ at the cantilever tip due to modulated sine pulse
transversely applied at the same location

second one from the fixed end of the beam. For the second case with delamina-
tion, the reflection from the ply-drop region is seen to be intensified showing
a distinct blob. In actual measurement, one can use a second transducer pair
to generate the incident pulse and to measure the reflected pulse both on the
fixed-end side of the beam. Thus, by measuring the reflected waves on both
sides of the delamination, it is possible to predict the length of the delamina-
tion very accurately. Also, the reference structural database can be updated
in the presence of any local material degradation by correlating the measured
signal and simulated signal using the present spectral element model.

1 2 3

L

Delamination
z

x

f(t)

L

1 2

Fig. 9.11. Configuration of the cantilever beam showing a delamination in the
region of ply-drops. L = 1 m, L′ = 1.5 m
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Fig. 9.12. Transverse velocity ẇ at the free end due to modulated sine pulse applied
transversely at the free end of the cantilever beam with ply-drops

9.4.4 Sensitivity of the Delaminated Configuration

To study the effects of variation in location, depth and length of delami-
nation on reflected and transmitted waves, an infinitely long beam is taken
(Figure 9.13). The beam boundaries are assumed to be at infinity to exclude
unwanted boundary reflections that can distort the actual scattered wave at
the delamination tip. In our model, throw-off spectral elements are connected
to both the ends of a spectral element of length L = 1.2m.

f(t)

1 2Z

L
2L L 1

Delamination

x

z

Fig. 9.13. An infinite beam considered for sensitivity analysis of delamination lo-
cation (L1), depth (Z) and length (L2). Distance between the nodes, L = 2m
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Effect of Location Variation

A mid-plane delamination (Z = 0 in Figure 9.13) of length 20mm is con-
sidered, to observe the effect of location variation. The distance of the right
delamination-tip from node 2 (i.e., L1) is varied from 0.13m to 1.08m. Mod-
ulated sine pulse (Figure 9.5) is applied at node 2 in the transverse direction
and the transverse velocities at node 2 and at node 1 are computed for varying
location of the delamination. Response at node 2, which shows an immediate
incident wave and reflected wave, is plotted in Figure 9.14. Response at node
1, which shows an immediate transmitted wave, is plotted in Figure 9.15. A
linear relationship of the arrival time of the reflected wave with the location of
delamination is clear from the plot in Figure 9.14. Therefore, measurement of
the reflected wave can provide a good estimate of the location of the delamina-
tion. However there is no appreciable variation in the case of the transmitted
wave (Figure 9.15).
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Fig. 9.14. Transverse velocity ẇ computed at node 2 for different locations (L1) of
the delamination

Effect of Depth Variation

To study the effect of delamination depth (Z) variation on the reflected wave,
a 20mm long delamination (shown in Figure 9.13) is considered. The delam-
ination depth is varied from −9mm to +9mm in steps of 1mm from the
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Fig. 9.15. Transverse velocity ẇ computed at node 1 for different locations (L1) of
the delamination

mid-plane of the beam. Transverse velocity at node 2 is computed for a trans-
versely applied pulse (Figure 9.5) at the same point. The plot in Figure 9.16
shows only the arrival of the reflected wave from the delamination tip for
different Z. A non-linear relationship between the amplitude of the reflected
wave and the depth of delamination can be noticed. The variations are sym-
metric about the mid-plane, which can be attributed to the dominance of the
term z3 in the flexural response. The strongest reflection occurs for a delam-
ination at the mid-plane and its intensity reduces as the delamination moves
away from the mid-plane. This can be explained by the fact that the highest
change in stiffness occurs when the delamination is at the mid-plane.

Effect of Length Variation

Keeping the right tip of the delamination at a fixed distance L1 = 0.6m
from node 2 (see Figure 9.13), delamination length L2 is varied from 20mm
to 215mm with an increment of 5mm at every step. The transverse veloc-
ity is plotted in Figure 9.17 for the same modulated sine pulse (Figure 9.5)
transversely applied at node 2. Variation in the amplitude of the reflected
wave from the delamination tip due to variation in the delamination length is
found to be periodic in nature. It diminishes near those values of the delami-
nation lengths that are multiples of half the group wavelength λg. The group
speed for the symmetric sublaminates is calculated as cg = 2724m/s. Now,
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Fig. 9.16. Transverse velocity ẇ history showing the reflected wave for different
depths (Z) of delamination

considering the frequency of excitation ν = 20 kHz, we compute the group
wavelength as

λg = cg/ν ≈ 136mm. (9.22)

The reason for this periodicity of λg/2 can be attributed to the cancellation or
amplification of scattered waves from two delamination tips. For those lengths
of delamination which are near multiples of λg/2, the reflection generated by
one delamination tip is attenuated by the reflection generated by the other
tip, being out of phase. Complete cancellation of the reflection is not possible
because of some unavoidable dispersiveness of the scattered wave.

9.5 A Sublaminate-wise Constant Shear Kinematics
Model for Multiple Delaminations and Strip Inclusions

While modeling the delaminations in composite structures, spatial discretiza-
tion becomes difficult with standard finite elements. Generally available finite
element packages use plate-bending elements or degenerated shell elements,
which cannot be used in the interfacial regions where more than one sublam-
inate form the base laminate. Moreover, due to the significant difference in
the order of the thickness and planar dimensions, planar or solid elements,
when used at the interfaces, yield enormous system size. In addition, there is
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Fig. 9.17. Transverse velocity ẇ history computed at node 2 for different lengths
(L2) of delamination

always high computational cost to handle such a large system size to capture
highly transient pulse propagation. Use of a high frequency modulated pulse
has been found efficient as in the wave-based diagnostics in smart SHM. In
the present study, a systematic derivation is presented to model the interfaces
between the base laminate and multiple sublaminates in a general form. When
one of the intermediate sublaminates are of different material configuration,
it can be treated as a strip inclusion. The idea is to capture the wave trans-
mission and scattering at these delamination tips or at the interfaces between
the inclusions and the host materials using a diagnostic signal. The SFEM
discussed in Chapter 4 is used as the basic building block for the spectral
interface model.

In this section, our main objective is to construct and solve a set of con-
strained equations in the Fourier domain (consistent with the framework of
SFEM) for multiple delaminations and inclusions by allowing discontinuity in
the rotation θy of the cross-sectional plane between two sublaminates above
and below delaminations. The delaminated configuration is shown in Fig-
ure 9.18. This also allows a particular sublaminate made of different materials
to be treated as strip inclusion debonded from the host materials. For sim-
plicity, we assume that the dynamics of the delaminations or slip between
the inclusion and host materials is governed by Mode-II fracture process, ex-
cluding any effect of Mode-I fracture (opening and closing of delaminations
causing interpenetration and incompatibility in the z direction).
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Fig. 9.18. Schematic diagram showing multiple through-width delaminations in a
laminated composite beam
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Fig. 9.19. Interfacial nodes taking part in constrained kinematics of base lami-
nate and sublaminates or debonded strip inclusions with (b) or without (a) a third
delaminated surface

The formulation is generalized by considering two cases as shown in Fig-
ure 9.19. In case (a) (Figure 9.19(a)), two consecutive nodes p and q are
considered on the interface, which connect two elements on opposite sides of
the interface. Since, there is no delamination between node p and node q,
in-plane displacements and rotation of normal planes at these nodes can be
constrained as

uo
p + zpqθyp = uo

q , θyp = θyq , (9.23a)

where zpq is the distance along the z direction between the node p and node
q. In case (b) (Figure 9.19(b)), a single delamination is considered between
node p and node q, which are on the same face on the interface. Each of these
nodes belongs to the element representing one of the sublaminate above or
below the delamination. Node q′ on the other side of the interface belongs to
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the element representing the base laminate. Since, under the assumption of
sublaminate-wise constant shear, the normal plane passing through node q′

has to rotate in a rigid body mode, the discontinuous plane passing through
node p and node q must rotate in a constrained manner. Such constraint can
be imposed as follows. The interface in the region including node p and node
q′ is already defined in Equation (9.23a) representing the case (a). Now, one
needs to construct the constrained equations for interfacing the node p and
node q. This can be expressed as

uo
p + zptθyp = uo

q + zqbθyq (9.23b)

where zpt is the depth of the top surface of the sublaminate containing node p
and measured from the corresponding element local reference line. Similarly,
zqb is the depth of the bottom surface of the sublaminate containing node
q and measured from the corresponding element local reference line. For all
other nodal displacement components associated with the node p and node q,
the equations for constraints can be written as

vo
p = vo

q , wo
p = wo

q , θxp = θxq , θzp = θzq . (9.23c)

Implementation of the above displacement constraints can be automated
to model multiple delaminations or inclusions across the thickness as well as
for different variations of such configuration at various locations along the
length of a beam. Equations (9.23a)–(9.23c) can be assembled at the global
level with appropriate transformation to form the MPC equation in the nodal
displacement vector. Let us consider Equation (9.23a) obtained in case (a)
along with Equation (9.23c). We can write these six equations in matrix form
as ⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 zpq 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûo
p
...

θ̂zp

ûo
q
...

θ̂zq

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 0 . (9.24a)

Now, for example, if the node numbering is p, p + 1 and q, q + 1 for the two
elements connected to the interface, then Equation (9.24a) can be rewritten
as [

Cu1 0

∣∣∣∣∣ Cu2 0

]{
TT ûg

p

TT ûg
q

}
= 0 (9.24b)

where Cu1 and Cu2 are the two 6 × 6 submatrices in Equation (9.24a). A
similar form is also obtained for interface in case (b). Finally, all these equa-
tions of displacement constraints can be assembled to form a single matrix
equation at the global level, which is given by
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Cuûg = 0 . (9.24c)

Next, the equilibrium of the nodal forces at each interface is to be established.
This is obtained as ∑

p

S′T
p f̂ep = f̂ , (9.25a)

where the summation sign stands for all the nodes in a particular cross-section.
f̂ is the applied load vector at the interface under consideration. For an element
with nodes numbered p, p + 1 and the node p on the interface,

S′
p =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 hp 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.25b)

hp is the distance of the node p in the z direction measured from the bottom
surface of the beam. Equation (9.25b) can be rewritten in terms of the element
nodal displacement vector at the global level as

∑
p

S′
pTT K̂e

pTûg
p = TT f̂g . (9.25c)

Equation (9.25c) can be assembled to form a single matrix equation involving
force constraints at the global level, which is given by

Cf ûg = f ′ . (9.25d)

Now, we use two diagonal matrices of penalty parameters αu and αf to im-
pose displacement constraints in Equation (9.24c) and force constraints in
Equation (9.25d) to minimize the stationary potential

∏̂
=

1
2
ûgT

K̂gûg − ûgT

f̂g +
1
2

(Cuûg)T
αu (Cuûg)

+
1
2

(Cf ûg − f ′)T
αu (Cf ûg − f ′) (9.26)

in the frequency domain for each ωn. Minimizing the above potential with
respect to the global displacement vector ûg, we get the spectral finite element
equilibrium equation

(
K̂g + Cu

T αuCu + Cf
T αfCf

)
ûg = f̂g + Cf

T αf f ′ . (9.27)

Note that the constraint equations (Equations (9.24c) and (9.25d)) involve
dissimilar dofs, whose motion is governed by the stiffness coefficients Ajl and
inertial coefficients M, which are of varying order. Therefore, use of penalty
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parameters αu and αf consistent with the associated dofs to achieve sufficient
numerical accuracy [190] is important. Note the order of the values in the
additional entries in the updated dynamic stiffness matrix in Equation (9.27),
that is

O
(
Cu

T Cu

)
≈ (−6, 0) , O

(
Cf

T Cf

)
≈ O

(
min

(
k̂e2

jj

)
,max

(
k̂e2

jj

))
,

(9.28)
because in Cu, the entries are either 1 or zpq (depth of composite beam sub-
laminates are typically in the order of millimeters). These lead to

αujj =
∣∣∣k̂e

jj

∣∣∣× 109 , αf jj =
∣∣∣k̂e−1

jj

∣∣∣× 103 (9.29)

as a convenient choice of the penalty parameters while solving the constrained
system in Equation (9.27).

9.6 Spectral Elements with Embedded Transverse Crack

9.6.1 Element-internal Discretization and Kinematic Assumptions

Configuration of the spectral element with embedded transverse crack and
the element-internal discretization details are shown in Figure 9.20. In the
absence of any crack, a single spectral element between node 1 and node
2 (Figure 9.20(a)) is sufficient to capture the exact dynamics of the shear
deformable composite beam, which has been described in Section 4.4.4. Let
us consider a transverse crack in a beam that requires explicit definition by
three additional parameters. These three parameters are (1) the span-wise
location of the transverse crack (x = L1 + ∆L/2 as shown in Figure 9.20(a),
L1 and ∆L will be defined later), (2) the thickness-wise location of the bot-
tom crack-tip (z = d1), (3) the thickness-wise location of the top crack-tip
(z = d2, h = d2 −d1 is the crack depth). We assume that the transverse crack
is a through-width crack (along the y direction) which allows the modeling
to be accomplished using one-dimensional waveguides. The element-internal
discretization as shown in Figure 9.20(b) produces six internal waveguides
numbered (1) to (6). For all these elements, a total of ten additional nodes
apart from the node 1 and node 2 will appear in the formulation, and the
dofs associated with them will be condensed out systematically. As a result,
a simple two-node element can be used to model the transverse crack in a
metallic or composite beam, where faster and repeated analysis with accept-
able accuracy will be of prime importance for damage identification studies
and various SHM applications in conjunction with a wave-based diagnostic
signal.

Since the main objective behind using such a model is to improve upon
the various available approximate models based on equivalent flexibility, em-
pirical crack-functions etc., it is essential for the proposed element-internal
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Fig. 9.20. Schematic diagram of the transverse crack configuration. (a) The 2-
node spectral element configuration with embedded transverse crack. (b) Element
internal discretization through the two base laminates (waveguides (1) and (2)),
two continuous sublaminates (waveguides (5) at the bottom and (6) at the top) and
two discontinuous sublaminates (waveguides (3) and (4)) to represent the crack.
Locations of the internal element nodes 3− 12 are shown which are later condensed
out. (c) Use of linear viscoelastic contact model between the crack surfaces

discretization technique (Figure 9.20) that any spurious scattering effect be
avoided. It can be seen in Figure 9.20 that the elements (3) and (4) are ex-
pected to behave as hanging elements, especially when their lengths become
longer. This can be avoided in two ways. Either a bound on the length of the
elements (3) and (4) in terms of the incident wavelength should be imposed
or appropriate constraints on the top and bottom surfaces of elements (3) and
(4) should be imposed while choosing longer lengths.

Calculations for implementing both options are presented below. A bound
on the length of the hanging elements is imposed for comparison with stan-
dard finite element results and other numerical simulations. The constrained
equations for unbounded length of the hanging elements are formulated after
the basic element formulation.
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We consider equal lengths of hanging laminates denoted by ∆L/2 as shown
in Figure 9.20(b). For any arbitrary dynamic excitation involving multiple
harmonics, the bound on the length of the hanging laminates is imposed in
terms of the smallest group wavelength, which is given by

∆L < Min (λg) , λg = cg/ν , (9.30)

where cg is the group wave velocity defined as cg = dω/dk, k is the wavenum-
ber, ν = ω/2π is the excitation frequency. As the frequency increases, the
group wavelength λg decreases. Note that λg is the same as the wavelength
λ = c/ν for single frequency excitation (c the phase velocity), but is different
from λ for a band-limited excitation about a central frequency. Considering
the arrival of the waves through the uncracked base laminates, Equation (9.30)
can now can be used to eliminate any spurious scattering of wave in an ap-
proximate manner.

The kinematic assumption adopted in the present formulation is that the
cross-sectional interfaces between the base laminate, the sublaminates and the
hanging laminates remain straight, i.e., the slope is continuous and constant
at these interfaces. Under this assumption, one can relate the nodal dofs at
the interfaces as follows:

û7 =

⎧⎨
⎩

ûo
7

ω̂7

φ̂7

⎫⎬
⎭ =

⎧⎨
⎩

ûo
5 + h1φ̂5

ω̂5

φ̂5

⎫⎬
⎭ = S1û5 , (9.31)

û8 =

⎧⎨
⎩

ûo
8

ω̂8

φ̂8

⎫⎬
⎭ =

⎧⎨
⎩

ûo
5 + h2φ̂5

ω̂5

φ̂5

⎫⎬
⎭ = S2û5 , (9.32)

û9 =

⎧⎨
⎩

û0
9

ω̂9

φ̂9

⎫⎬
⎭ =

⎧⎨
⎩

û0
5 + h3φ̂5

ω̂5

φ̂5

⎫⎬
⎭ = S3û5 , (9.33)

and similarly,

û10 = S1û6 , û11 = S2û6 , û12 = S3û6 , (9.34)

where

S1 =

⎡
⎣1 0 h1

0 1 0
0 0 1

⎤
⎦ , S2 =

⎡
⎣1 0 h2

0 1 0
0 0 1

⎤
⎦ , S3 =

⎡
⎣1 0 h3

0 1 0
0 0 1

⎤
⎦ . (9.35)

Interface Equilibrium of Forces

Considering the left interface between the base laminate and sublaminates
(Figure 9.20), the equilibrium of the associated nodal forces can be written as
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⎧⎨
⎩

N̂5

V̂5

M̂5

⎫⎬
⎭ +

⎧⎨
⎩

N̂7

V̂7

M̂7 + h1N̂7

⎫⎬
⎭ +

⎧⎨
⎩

N̂8

V̂8

M̂8 + h2N̂8

⎫⎬
⎭ +

⎧⎨
⎩

N̂9

V̂9

M̂9 + h3N̂9

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ ,

(9.36)
which, in matrix form and with the help of Equation (9.35), can be expressed
as

f̂5 + S1
T f̂7 + S2

T f̂8 + S3
T f̂9 = 0 . (9.37)

Similarly, considering the right interface between the base laminate and sub-
laminates (Figure 9.20), the equilibrium of the associated nodal forces can be
expressed as

f̂6 + S1
T f̂10 + S2

T f̂11 + S3
T f̂12 = 0 . (9.38)

At the crack surface,
f̂3 + f̂4 = 0 , (9.39)

and under the assumption of no contact between the crack surfaces, f̂3 = 0
and f̂4 = 0. The effect of contact between the crack surfaces will be dealt with
as a separate case later.

Assembly of the Element-internal Waveguides

The element equilibrium equation for the jth element-internal waveguide (j =
1, 2 for base laminates, j = 5, 6 for sublaminates and j = 3, 4 for hanging
laminates as shown in Figure 9.20) with nodes p and q can be expressed
generically as [

K̂(j)
11 K̂(j)

12

K̂(j)
21 K̂(j)

22

]

(6×6)

{
ûp

ûq

}
=

{
f̂p
f̂q

}
. (9.40)

The above equation, for the internal element (1) is
[
K̂(1)

11 K̂(1)
12

K̂(1)
21 K̂(1)

22

]

(6×6)

{
û1

û5

}
=

{
f̂1
f̂5

}
, (9.41)

or for the internal element (2),
[
K̂(2)

11 K̂(2)
12

K̂(2)
21 K̂(2)

22

]

(6×6)

{
û6

û2

}
=

{
f̂6
f̂2

}
, (9.42)

Similarly, for the internal element (3), we have
[
K̂(3)

11 K̂(3)
12

K̂(3)
21 K̂(3)

22

]

(6×6)

{
û8

û3

}
=

{
f̂8
f̂3

}
. (9.43)

Expressing û8 in terms of û5 with the help of Equation (9.32) and premulti-
plying both sides of Equation (9.43) by S2

T , we get
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[
S2

T K̂(3)
11S2 S2

T K̂(3)
12

S2
T K̂(3)

21S2 S2
T K̂(3)

22

]

(6×6)

{
û5

û3

}
=

{
S2

T f̂8
S2

T f̂3

}
. (9.44)

The equilibrium equation for the internal element (4) is
[
K̂(4)

11 K̂(4)
12

K̂(4)
21 K̂(4)

22

]

(6×6)

{
û4

û11

}
=

{
f̂4
f̂11

}
. (9.45)

Expressing û11 in terms of û6 with the help of Equation (9.34) and premul-
tiplying both sides of Equation (9.45) by S2

T , we get
[
S2

T K̂(4)
11 S2

T K̂(4)
12S2

S2
T K̂(4)

21 S2
T K̂(4)

22S2

]

(6×6)

{
û4

û6

}
=

{
S2

T f̂4
S2

T f̂11

}
. (9.46)

The element equilibrium equation for the internal element (5) is
[
K̂(5)

11 K̂(5)
12

K̂(5)
21 K̂(5)

22

]

(6×6)

{
û7

û10

}
=

{
f̂7
f̂10

}
. (9.47)

Expressing û7 and û10 in terms of û5 and û6 respectively with the help of
Equations (9.31)–(9.34) and premultiplying both sides of Equation (9.47) by
S1

T , we get
[
S1

T K̂(5)
11S1 S1

T K̂(5)
12S1

S1
T K̂(5)

21S1 S1
T K̂(5)

22S1

]

(6×6)

{
û5

û5

}
=

{
S1

T f̂7
S1

T f̂10

}
. (9.48)

The element equilibrium equation for the internal element (6) is
[
K̂(6)

11 K̂(6)
12

K̂(6)
21 K̂(6)

22

]

(6×6)

{
û9

û12

}
=

{
f̂9
f̂12

}
. (9.49)

Expressing û9 and û12 in terms of û5 and û6 respectively with the help of
Equations (9.33) and (9.34) and premultiplying both sides of Equation (9.49)
by S3

T , we get
[
S3

T K̂(6)
11S3 S3

T K̂(6)
12S3

S3
T K̂(6)

21S3 S3
T K̂(6)

22S3

]

(6×6)

{
û5

û6

}
=

{
S3

T f̂9
S3

T f̂12

}
. (9.50)

9.6.2 Modeling Dynamic Contact Between Crack Surfaces

Although the present SFE with embedded transverse crack has been developed
to study the interaction of diagnostic waves with the crack and its effect cap-
tured at distant measurement locations, the effect of dynamic frictional con-
tact and viscosity due to the polymer matrix grain boundary and broken fiber
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fragments in the composite can also be modeled. Similar models for delami-
nation can be found in [163, 180]. However, a more complex model includes
a non-linear spring to restrict the occurrence of incompatible opening-closing
modes due to inter-penetration. This development will not be attempted here.
Figure 9.20(c) shows the transverse crack surfaces and the associated hang-
ing laminates (3) and (4). The motion of the crack surfaces is approximated
through the motion of node 3 and node 4. Let us assume that the distributed
spring and viscoelastic contact force along the crack surfaces can be lumped
on node 3 and node 4 as

{
f̂3
f̂4

}
=

[
K̂∗ −K̂∗

−K̂∗ K̂∗

]
(6×6)

{
û4

û3

}
, (9.51)

where

K̂∗ =

⎡
⎣ (Ku + iωCu) 0 0

0 (Kw + iωCw) 0
0 0 (Kφ + iωCφ)

⎤
⎦ , (9.52)

Ku, Kw, Kφ are the spring stiffnesses and Cu, Cw and Cφ are the viscous
damping coefficients associated with relative longitudinal displacement, trans-
verse displacement and rotation between node 3 and node 4.

After assembling the element equilibrium equations for the six internal
elements (Equations (9.41)–(9.49)) and subsequently using Equations (9.37)–
(9.39) and Equation (9.51), we get

⎡
⎢⎢⎢⎢⎢⎢⎣

K11 K12 0 0 0 0
K21 K22 K23 0 K25 0
0 K32 K33 K34 0 0
0 0 K43 K44 K45 0
0 K52 0 K54 K55 K56

0 0 0 0 K65 K66

⎤
⎥⎥⎥⎥⎥⎥⎦

(18×18)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

û1

û5

û3

û4

û6

û2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f̂1
0
0
0
0
f̂2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (9.53)

where
K11 = K̂(1)

11 , K12 = K̂(1)
12 , K21 = K̂(1)

21 ,

K22 = K̂(1)
22 + S1

T K̂(5)
11S1 + S2

T K̂(3)
11S2 + S3

T K̂(6)
11S3 ,

K23 = S2
T K̂(3)

12 , K25 = S1
T K̂(5)

12S1 + S3
T K̂(6)

12S3 , K32 = K̂(3)
21S1 ,

K33 = K̂(3)
22 + S2

T K∗ , K34 = −S2
T K∗ , K43 = −S2

T K∗ ,

K44 = K̂(4)
11 + S2

T K∗ , K45 = K̂(4)
12S2 ,

K52 = S1
T K̂(5)

21S1 + S3
T K̂(6)

21S3 , K54 = S2
T K̂(4)

21 ,

K55 = K̂(2)
11 + S1

T K̂(5)
22S1 + S2

T K̂(4)
22S2 + S3

T K̂(6)
22S3 , K56 = K̂(2)

12 ,

K65 = K̂(2)
21 , K66 = K̂(2)

22 .
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Fig. 9.21. Representation of the base laminates, sublaminates and hanging lami-
nates by spectral elements for (a) top surface-breaking crack and (b) bottom surface-
breaking crack

9.6.3 Modeling Surface-breaking Cracks

The surface-breaking cracks can be considered in the same framework as for-
mulated above. Figure 9.21(a) and (b) show the internal elements for the top
and bottom surface-breaking cracks respectively. The only differences in these
cases compared to the embedded transverse crack is that here the number
of elements and nodes representing the top sublaminates (element (6)) and
bottom sublaminates (element 5) (in Figure 9.20(b) are absent. Therefore,
by removing these element equilibrium equations while assembling, one can
obtain the modified form of Equation (9.53) for the top and bottom surface-
breaking cracks.

Super-element Level Condensation

We first condense out the dofs at the crack surfaces (i.e. node 3 and node 4),
which reduces Equation (9.53) to

⎡
⎢⎢⎣

K̄11 K̄12 0 0
K̄21 K̄22 K̄23 0
0 K̄32 K̄33 K̄34

0 0 K̄43 K̄44

⎤
⎥⎥⎦

(12×12)

⎧⎪⎪⎨
⎪⎪⎩

û1

û5

û6

û2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

f̂1
0
0
f̂2

⎫⎪⎪⎬
⎪⎪⎭

, (9.54)

where

K̄11 = K11 , K̄12 = K12 , K̄21 = K21 , K̄22 = K22 + K23K∗
35 ,

K̄23 = K25 + K23K∗
36 , K̄32 = K52 + K54K∗

45 ,

K̄33 = K55 + K54K∗
46 , K̄34 = K56 , K̄43 = K65 ,

K̄44 = K66 , K∗
45 = (K44 − K43K33

−1K34)−1K43K33
−1K32 ,

K∗
46 = −(K44 − K43K33

−1K34)−1K45 ,

K35
∗ = −(K33

−1K32 + K33
−1K34K45

∗) , K∗
36 = −K33

−1K34K46
∗ .

In the second step, we condense out the dofs at node 5 and node 6, which yields
the final form of the equilibrium equation representing a two-node element
with embedded transverse crack, and can be expressed as
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[
ˆ̄K11

ˆ̄K12

ˆ̄Ki21 ˆ̄K22

]

(6×6)

{
û1

û2

}
=

{
f̂1
f̂2

}
, (9.55)

where

ˆ̄K11 = K11 + K12K∗
51 , ˆ̄K12 = K12K∗

52 , ˆ̄K21 = K43K∗
61 ,

ˆ̄K22 = K44 + K43K∗
62 , K∗

61 = (K33 − K32K−1
22 K23)

−1
K32K−1

22 K21 ,

K∗
62 = −(K33 − K32K−1

22 K23)
−1

K34 ,

K∗
51 = −(K−1

22 K21 + K−1
22 K23K∗

61) , K∗
52 = −K−1

22 K23K∗
62 .

Now, again one only needs to replace the spectral element for the healthy beam
with this spectral element wherever the presence of a transverse crack is to
be accounted for. To emphasize the novel use of this element for applications
in SHM, its numerical performance is compared with standard plane-stress
finite element simulations in Section 9.7.1. Before proceeding further with
the numerical studies, the constrained formulation to accommodate longer
hanging laminates (3) and (4) by enforcing displacement continuities, which
is an alternative option to Equation (9.30), is discussed below.

9.6.4 Distributed Constraints at the Interfaces Between
Sublaminates and Hanging Laminates

For longer lengths of sublaminates (5) and (6) and intermediate hanging lam-
inates (3) and (4) shown in Figure 9.20(b), especially when ∆L > Min(λg)
as discussed in the context of Equation (9.30), interfacial slip and other dis-
continuities at the horizontal interfaces between the hanging laminates and
the top and bottom sublaminates may become significant for certain wave
interactions and need to be restricted. This requires displacement continuity
between the surface displacements of a hanging laminate and the neighboring
sublaminate, which can be expressed as

û(x)(j)t = û(x)(l)b , (9.56)

where the superscripts (j) and (l) indicates the element numbers and the sub-
scripts t and b indicate the top or bottom surface respectively. While modeling
delamination along with fiber fracture, such constraints can be removed. It
can be seen from Figure 9.20(a) that there are four such horizontal interfaces
where constraints need to be imposed otherwise. Considering element (5) and
element (3), Equation (9.56) can be expanded using the generic field variables
as ⎡

⎣1 0 z
(5)
t

0 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

ûo

ω̂

φ̂

⎫⎬
⎭

(5)

=

⎡
⎣1 0 z

(3)
b

0 1 0
0 0 1

⎤
⎦
⎧⎨
⎩

ûo

ω̂

φ̂

⎫⎬
⎭

(3)

. (9.57)
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Further, using element shape functions in Equation (9.57), we get

H(5)
t ℵ(x, ωn)(5)û(5) = H(3)

b ℵ(x, ωn)(3)û(3) . (9.58)

Similarly for the other three interfaces, the constraints are

H(5)
t ℵ(x, ωn)(5)û(5) = H(4)

b ℵ(x, ωn)(4)û(4) , (9.59)

H(3)
t ℵ(x, ωn)(3)û(3) = H(6)

b ℵ(x, ωn)(6)û(6) , (9.60)

H(4)
t ℵ(x, ωn)(4)û(4) = H(6)

b ℵ(x, ωn)(6)û(6) . (9.61)

The nodal displacement vectors û(5)T

= {ûT
8 ûT

3 } and û(4)T

= {ûT
4 ûT

11} can
now be transformed using Equation (9.53) in the above Equations (9.58)–
(9.61) and the internal nodes can be condensed out systematically. To illus-
trate further, let us consider the constraint for the first interface as given by
Equation (9.58), which can be rewritten after transformation as

[
C̄11 C̄12

C̄21 C̄22

]
(6×6)

{
û5

û6

}
=

{
0
0

}
. (9.62)

Since in Equation (9.62), û5 and û6 are the internal nodal vectors, they are
mapped onto node 1 and node 2. This second step with the help of Equa-
tion (9.54), gives

[
C11 C12

C21 C22

]
(6×6)

{
û1

û2

}
=

{
0
0

}
⇒ C(x, ωn)(1)ûe = 0 . (9.63)

Similar constraints for the other three horizontal interfaces can be obtained in
the same way, where C(x, ωn)(j), j = 1, · · · , 4 are the matrices of coefficients
associated with the multi-point constraints mapped on the dofs of the two-
node element with embedded transverse crack. Introducing a diagonal matrix
of penalty parameters α and minimizing the potential in the frequency do-
main [191], the updated dynamic stiffness matrix for the element with embed-
ded transverse crack incorporating unbounded length of the internal hanging
laminates can be expressed as

ˆ̄KU = ˆ̄K + ˆ̄KC , (9.64)

where
ˆ̄KC =

∫ ∆L/2

0

(
C(1)T

αC(1) + C(3)T

αC(3)
)

dx

+
∫ ∆L

∆L/2

(
C(2)T

αC(2) + C(4)T

αC(4)
)

dx .

(9.65)
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9.7 Numerical Simulations

The modular approach towards addition of a new element in the library of
SFEs involves only three additional input parameters to model a transverse
crack. These additional inputs are span-wise location of the crack (L1+∆L/2),
and depth-wise location of the top and bottom crack-tips (d1, d2). Although,
the effect of crack-tip singularity is not included in the local analysis, it is
essential to validate the performance of the proposed element for wave-based
diagnostics and SHM applications, where most damage models are approx-
imated by springs or equivalent change in the constitutive model for faster
analysis. In the following section, response of a unidirectional composite can-
tilever beam with mid-span surface-breaking fiber fracture to a high frequency
pulse loading is simulated using the developed SFE and the response is com-
pared with a detailed 2-D FE model.

9.7.1 Comparison with 2-D FEM

A uni-directional graphite–epoxy cantilever beam of length 800mm and hav-
ing a cross-section 16mm (thickness) × 10mm (width) is considered for this
study. An 8mm deep top surface-breaking crack is introduced at mid-span
of the beam. The same pulse loading as in previous examples (Figure 5.3)
is applied at the tip of the cantilever beam in the transverse direction. SFE
analysis is carried out using a single SFE with embedded crack. In all numer-
ical simulations, the length of the hanging laminates ∆L/2 is chosen using
Equation (9.30). 16384 FFT sampling points (∆ω = 12.2070Hz) are used for
the forward and inverse transform of the loading and response, respectively.
In the detailed FE analysis, the fine mesh consists of 5120 constant strain tri-
angular elements under plane-stress conditions in the X −Z plane. Newmark
time integration with time step ∆t = 1µs is used. Here the element size is
comparable with the wavelength of the applied excitation. The pulse load is
applied consistently in the transverse direction at the tip cross-section of the
FE model.

Figure 9.22 shows the plots of ẇ history at the mid-node of the tip cross-
section predicted by SFE and detail 2-D FE analysis. After the incident pulse,
the effect of the crack due to wave scattering at around 0.55 − 0.6ms can be
seen. The peak amplitude of the velocity history and its arrival time matches
very well with the 2-D FE prediction. However, a small additional peak before
the main peak amplitude can be seen, which is due to several approximations
made in the proposed modeling compared to the actual local crack-tip be-
havior. Indeed, the overall trend of the response predicted by the proposed
spectral element can be seen as reliable, in terms of the arrival time of the
broadband wave scattered from the crack, as well as the associated peak am-
plitude in the signal. Another important aspect we need to mention in this
context is that the inter-penetration of the crack surfaces of the breathing
crack in the detailed 2-D FE analysis (in the absence of contact elements) was
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Fig. 9.22. Comparison of the transverse velocity ẇ history at the mid-plane of the
tip of the cantilever beam predicted by the single spectral element and detailed 2-D
FE models under high frequency pulse loading (Figure 5.3)

found to occur much beyond the time window shown in Figure 9.22 and had
neglible amplitude (relative displacement between the crack surfaces). Hence
this can be considered less significant for transient wave-based diagnostics.
However, long duration monitoring under sustained loading and associated
incremental crack-growth related study need further strategy for FE model-
based identification of frequency dependent dynamic contact forces, which can
be used then in the present spectral element for more accurate analysis.

9.7.2 Identification of Crack Location from Scattered Wave

To identify the location of a crack from the scattered wave through numerical
simulation, the same graphite–epoxy cantilever beam as considered earlier
is used. Compared to the 8mm deep surface-breaking crack in Figure 9.22,
Figure 9.23 shows the ẇ history at the cantilever tip of the beam with a
mid-span 8mm deep embedded crack introduced symmetrically across the
thickness. From the group speed of the flexural wave the time of arrival of the
flexural wave is estimated and is shown by ∗ on Figure 9.23. Although the
time of arrival is the same for both the surface-breaking crack and embedded
crack, which is obvious, a smaller blob visible at 0.58ms is due to the presence
of the embedded crack.
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Fig. 9.23. Transverse velocity ẇ history at the cantilever tip due to a high frequency
pulse (Figure 5.3) applied at the cantilever tip in the transverse direction for a mid-
span 8 mm deep embedded crack placed symmetrically across the beam thickness.
∗ shows the analytical estimate of the arrival time of the reflected wave from the
crack

Next we consider a sinusoidal pulse modulated at 20 kHz as shown in
Figure 9.5 for wave-based interrogation of the cracked beam. Such a pulse
will contain maximum energy within a very small frequency band and the
peak energy will be at the frequency at which it is modulated.

Using this modulated pulse applied at the cantilever tip in the transverse
direction, the transverse velocity ẇ at the cantilever tip is simulated. Fig-
ure 9.24 shows the response for a mid-span 8 mm deep top surface-breaking
crack.

Figure 9.25 shows the response for a mid-span 8 mm deep embedded crack.
Analytical estimate of the arrival time (t = 2l/cg, cg = 1944.59 m/s) of the
reflected pulse is shown in the figures by ∗. The simulated arrival time is
found to match very closely with the analytical estimates. It can be seen from
Figures 9.24 and 9.25 that the reflected wave amplitude from the embedded
crack is slightly higher than those due to the surface-breaking crack of the
same depth and same load.
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Fig. 9.24. Transverse velocity ẇ at the cantilever tip due to modulated sine pulse
transversely applied at the tip of the cantilever with a mid-span 8 mm deep top
surface-breaking crack

9.7.3 Sensitivity of the Crack Configuration

Numerical simulations with varying crack depth and contact stiffnesses of
the crack surfaces produce no visible fluctuation in the scattered waves from
the embedded crack under the present loading in the flexural shear mode.
However, the surface-breaking crack with variation in the crack depth and
contact stiffnesses of the crack surfaces shows significant changes in the scat-
tered waves, which are plotted in Figure 9.26 and 9.27, respectively. As the
crack depth becomes more than half the beam thickness (16 mm), additional
peaks after the first reflection can be seen in Figure 9.26. In Figure 9.27, the
contact stiffness between the crack surfaces is varied using a stiffness factor
β, where only the surface-normal contact stiffness is considered and is as-
sumed to be K∗ = βQ11. Apart from the main reflected wave from the crack
at around 1 ms, which indicates the crack location, Figure 9.27 shows small
amplitude of additional scattering for contact stiffness smaller than Q11, and
significant amplitude additional scattering for contact stiffness more than Q11,
which can be considered as a stiff inclusion. In the present one-dimensional
model, the higher order Lamb wave modes, especially the thickness stretching
mode, are not accounted for. From the simulations, it appears that for iden-
tification of the crack configuration completely, especially the crack depth
and thickness-wise location, a higher-order Lamb wave model based on high
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Fig. 9.25. Transverse velocity ẇ at the cantilever tip due to modulated sine pulse
transversely applied at the tip of the cantilever with a mid-span 8 mm deep embed-
ded crack

frequency excitation in flexural shear thickness stretching modes may be nec-
essary. Such data can be used to develop efficient soft computing tools for
crack identification.

9.8 Spectral Finite Element Model for Damage
Estimation

Spectral analysis and associated numerical techniques for studying wave in-
teraction with material interfaces are particularly suitable for damage diag-
nostics. In the same way as in interrogation strategies using acoustic devices,
computational simulation techniques based on spectral analysis can be effi-
ciently integrated in SHM software. The potential of such strategies is reported
in [192], [193].

The basic steps in developing the SFEM for the degraded laminated com-
posite beam are as follows. Considering a general ply-stacking sequence (un-
balanced), the axial–flexural–shear coupled wave equation for a first-order
shear deformable beam is formed. The spectral element for coupled wave prop-
agation in such a beam involves two nodes at the end of the element and a
standard finite element assembly. The frequency response as well as temporal
response can be obtained in this approach under any general dynamic loading.
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Fig. 9.26. Transverse velocity ẇ at the cantilever tip due to modulated sine pulse
transversely applied at the tip of the cantilever with a top surface-breaking crack of
varying depth. No contact between the surfaces is assumed

For characteristic wave propagation in such a beam, the high frequency limit
is imposed by the unmodeled kinematics that may cause higher Lamb wave
modes (first symmetric stretching mode and higher, and third anti-symmetric
stretching mode and higher). Hence, the bandwidth of any attached acoustic
device needs to be operated within the above limits. In the present model,
one such spectral element with degraded ply properties is considered. We
represent the degraded laminate constitutive property under plane-stress or
plane-strain condition by

⎧⎨
⎩

σxx

σzz

τxz

⎫⎬
⎭ =

⎡
⎣α11Q11 α13Q13 0

α13Q13 α33Q33 0
0 0 α55Q55

⎤
⎦
⎧⎨
⎩

εxx

εzz

γxz

⎫⎬
⎭ , (9.66)

where z is the laminate thickness direction and x is the longitudinal direction
(0◦ fiber direction). αij are degradation factors, which are unity for healthy
laminates.

The element nodal dofs are condensed after the assembly of two undam-
aged elements on both sides of the damaged zone. Finally, it is possible to de-
scribe the damage configuration just by prescribing three sets of parameters:
(1) the degradation factors (αij) describing the damaged laminate (Equa-
tion (9.66)); (2) the approximate span-wise location of one of the interface
between the undamaged and damaged zone; and (3) the length of the dam-
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Fig. 9.27. Transverse velocity ẇ at the cantilever tip due to modulated sine pulse
transversely applied at the tip of the cantilever with a top surface-breaking crack
with varying contact stiffnesses (K∗ = βQ11). Crack depth is 8 mm

aged zone. Considering a similar assembly technique, models for delamination
and a large transverse crack can be found in [194, 195].

2

2

Degraded zone

3 2

(a)

(b)

L 1 L
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1
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5 6 4 21 3
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Fig. 9.28. (a) Composite beam segment with degraded zone of size L2. The whole
segment is represented by the end nodes 1 and 2 of the spectral element. (b) Element
local configuration showing the internal element numbers (1), (2) and (3) by circles
and the associated nodes 1–3, 2–4, and 5–6
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9.8.1 Spectral Element with Embedded Degraded Zone

The location of the two nodes of spectral elements with an embedded degraded
zone in a beam is shown in Figure 9.28(a). In the absence of degradation,
one spectral element between node 1 and node 2 is sufficient for analysis.
The presence of degradation, when treated as a structural discontinuity by
neglecting the effect of stress singularity at the delamination tip, increases
the number of elements from one to three as shown in Figure 9.28(b). Four
more nodes are introduced to model the degraded zone (element (3)) and the
surrounding undamaged zones (elements (1) and (2)). In a practical situation,
it may so happen that the matrix crack density in laminates may decrease with
some gradation from the damaged zone. In such a case, the elements (1) and
(3) can be used with such graded laminate properties, based on the same
constitutive model as discussed in Equation (9.66).

The kinematic assumption of continuity of displacements and rotations at
the internal element nodes 3,5 and 4,6 leads to

û5 =
{

û0
5 ω̂5 φ̂5

}T

= û3 , û6 =
{

û0
6 ω̂6 φ̂6

}T

= û4 . (9.67)

From equilibrium of the nodal forces and moments at the left interface (be-
tween nodes 3 and 5) and at the right interfaces (between nodes 4 and 6), we
get respectively

f̂3 + f̂5 = 0 , f̂4 + f̂6 = 0 . (9.68)

The element equilibrium equation for the jth internal element (j = 1, 2, 3)
with nodes p and q can be written as

[
K̂(j)

11 K̂(j)
12

K̂(j)
21 K̂(j)

22

]

(6×6)

{
ûp

ûq

}
=

{
f̂p
f̂q

}
. (9.69)

Assembling Equation (9.69) for the three internal elements (1), (2) and (3),
we get

⎡
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. (9.70)

On condensation of the dofs at the internal nodes 3 and 4 and assuming no
load is applied to the damaged zone, Equation (9.70) becomes

K̂(6×6)

{
û1

û2

}
=

{
f̂1
f̂2

}
, (9.71)

where the submatrices of the new dynamic stiffness matrix K̂ are defined as
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Equation (9.71) is the equilibrium equation for the spectral element with
embedded degraded zone, where only the dofs at the end nodes 1,2 need to
be used while forming the global system of a damaged structure.

9.9 Numerical Simulations

To simulate the effect of stiffness degradation on the diagnostic signal, a
graphite–epoxy cantilever beam of length 0.8 m, thickness 16 mm and width
10 mm is considered. All the plies are assumed to be of equal thickness with
stacking sequence (040/9080/040). A 20 mm long degraded zone is introduced
at 0.3 mm from the fixed end of the beam. The finite element model of the
beam consists of a single damaged spectral element under plane stress condi-
tions in the X −Z plane (Figure 9.28). It is assumed that all the 90◦ plies are
degraded with the same factor, α11 (Equation (9.66)) in the longitudinal mode.
In the transverse and shear modes, the plies are assumed to be undamaged.
In a practical situation, however, the transverse and shear moduli will also
have degradation but their effect on the damaged structural response under
flexural wave excitation (as in the present case) will be negligible compared
to that due to degradation in the longitudinal elastic modulus. A sinusoidal
pulse modulated at 20 kHz (shown in Figure 9.5) is applied in the transverse
direction (parallel to the Z-axis) at the tip. 2048 FFT sampling points are
used in the analysis. Transverse velocity histories at the tip of the beam due
to the variation in degradation of cross-ply are shown in Figure 9.29. As seen
in this figure, the first pulse appearing at 0.5 − 0.75 ms is the incident wave.
The next smaller pulses seen at higher degradation (smaller values of α11) are
reflections from the two ends of the degraded zone. Here we assume that the
plies were degraded uniformly within the degraded zone. To study the effect
of the length of the degraded zone, we consider the same cantilever beam with
one of the interfaces fixed at 0.4 m from the tip. The length of the degraded
zone is varied by moving the other interface towards the fixed end from 0.1 m
to 0.4 m. The last case represents one half of the beam on the fixed end side
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Fig. 9.29. Transverse velocity history due to variation in the degradation factor α11

using a narrow-band diagnostic signal (Figure 9.5). Length of the degraded zone is
20 mm

of the beam as degraded. The variation of the transverse velocity histories
at the tip of the beam with the variation of the size of the degraded zone is
shown in Figure 9.30 for α11 = 0.2. From the figure it can be seen that for
a smaller size degraded zone with higher degradation (smaller values of α),
both reflections from the two interfaces are easily detectable.

In the above numerical simulations, a narrow-band modulated pulse is used
as diagnostic signal, which is typically generated using inter-digital transduc-
ers (IDTs) for SHM. In order to study the difference between the response of
the damage due to degradation in the effective ply properties and that due
to large delamination or transverse cracks in ply groups, we consider three
different damage configurations as shown in Figure 9.32. The models for de-
lamination and the transverse crack are formulated in Section 9.3 and 9.5,
respectively. Figure 9.33 shows the transverse velocity histories at the tip of
the beam for these three types of damage configuration with a broadband
pulse applied at the tip. The peaks R1, R2 and R3 indicate reflections from
the front interface (for transverse crack only one discontinuity), reflections
from the second interface (towards the fixed-end side) and reflections from
the fixed end of the beam, respectively. Although, the interrogating signal
generates multiple waves at different characteristic dispersions, and hence are
expected to contain the maximum amount of information it is possible to
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Fig. 9.30. Transverse velocity histories due to variation in the length of the degraded
zone with narrow-band diagnostic signal (Figure 9.5). Degradation factor α11 = 0.2

0
0.25

0.5
0.75

1
1.25

1.5 0.1

0.15

0.2

0.25

0.3

0.35

0.4
−10

−5

0

5

10

15

20

Length of degraded
zone (m) 

Time (msec) 

T
ra

ns
ve

rs
e 

ve
lo

ci
ty

 (
m

m
/s

ec
) 

Fig. 9.31. Transverse velocity histories due to variation in the length of the degraded
zone with broadband diagnostic signal (Fig. 5.3). Degradation factor α11 = 0.2
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Fig. 9.32. Different damage configurations considered for comparative diagnostic
response. (a) Stiffness degradation of length 20 mm, degradation factor α11 = 0.2;
(b) delamination of length 20 mm; and (c) transverse crack of depth 4 mm

extract from the damaged zone, the simple temporal signal in comparison
with a base-line signal (as in Figure 9.33) is not of much help except some
correlation with the approximate location of the damage. Therefore, it ap-
pears important that certain appropriate estimation techniques involving the
statistical nature of the broadband spectral data be developed, where both
the model-generated data (as often generated by using different semi-analytic
wave analysis techniques, standard FEM and the present SFEM) as well as
the on-line measured data can be used. Towards this development, a neural
network model suited to handling broadband spectral data through SFEM is
developed. This is discussed in [196].

This chapter gives a complete overview of the applications of spectral finite
element modeling and analysis to structural health monitoring of composite
beam type structures. The chapter goes into the details of novel modeling,
analysis and damage diagnostic techniques using SFEMs. These are summa-
rized item-wise in the paragraphs to follow.

Spectral element for delaminated beams
A spectral element to model the wave scattering in a composite beam with
delamination is presented. Complete description of the delamination by in-
putting just three quantities (local coordinates of delamination tip and de-
lamination length) wherever the delamination is to be inserted, and compact
matrix computation shows the usefulness of the element. Excellent perfor-
mance of the element is observed when comparing the response with 2-D FE
analysis. Also, cross-checks are performed to identify the location of delami-
nation by wave scattering modeled with the proposed element. Sensitivity of
the global structural response due to variation in the delamination location,
depth and length is investigated. Interestingly, a periodicity of half the group
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Fig. 9.33. Transverse velocity histories showing a comparison of the response of
the cantilever beam with three different damage configurations (Figure 9.32) with
broadband pulse

wavelength in the length of delamination is found to amplify the amplitude
of the wave reflection from the near delamination tip. More detailed modeling
of this aspect may be important for future developments. While developing
the FFT based efficient spectral finite element model, potential use of scat-
tered wave measurement to off-line and on-line structural health monitoring
software has been kept as the immediate goal. For validation of the measured
signal, this spectral element for delamination can be inserted in the finite
element model based on the known configuration of single or multiple delam-
inations. Also, for the construction of an accurate reference structural model
of any aging skeletal component, and for frequency domain identification of
multiple delaminations in composite beams and frames, any number of such
spectral elements can be inserted in the finite element model easily, keeping
the system size reasonable.

Spectral element transversely cracked beams
A simplified spectral element model for transverse cracks is formulated using
simplified beam kinematics for the twin purpose of studying wave scattering
from the crack as well as using it for damage diagnostics. The beam kine-
matics in this case gives rise to a hanging interface, which is modelled using
distributed springs. The beam kinematics is changed a little to incorporate
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modeling of surface-breaking cracks. A number of parametric studies are per-
formed to show the nature of scattering from the crack face. Comparisons of
results with FEM show good agreement.

Spectral element for degraded regions
The formulation of this element is very similar to the previous two cases
except that the constitutive models in the degraded zone are perturbed using
a degradation parameter. Even here, a number of parametric studies were
conducted to determine the extent of wave scattering as a function of the
degradation parameters and the degraded zone length. One can observe that
through the beam kinematics spectral model, synergy is brought about in
handling different types of damage.
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Application of SFEM to SHM: Efficient
Damage Detection Techniques

In this chapter the damage model derived in Chapter 9 will be used to develop
numerical algorithms for damage detection studies. This chapter will present
four such algorithms, namely, spectral power flow, the damage force indicator,
genetic algorithms and the artificial neural network (ANN).

10.1 Strategies for Identification of Damage in
Composites

With the increasing use of composites as structural materials in aerospace
and other industries, there is a growing need for identification of delamina-
tion and other modes of damage as part of the structural health monitoring
and structural integrity evaluation. Several methods based on vibration char-
acteristics for structural health monitoring have been reviewed in [10]. In more
recent times in this direction, new sophisticated strategies for damage iden-
tification using modal parameters have been studied extensively [197], [198],
[199], [200], [167]. Since modal parameters depend on the material property
and geometry, the change in natural frequencies, mode shape curvature etc.
can be used to locate damage in structures without knowing the excitation
force when linear analysis is adequate. Lim and Kashangaki [201] located dam-
age in space truss structures by computing Euclidian distances between the
measured mode shapes and the best achievable eigenvectors. The best achiev-
able eigenvectors are the projection of the measured mode shapes onto the
subspace defined by the refined analytical model of structure and measured
frequencies. Liu [202] used direct minimization of residue in the eigenequation
for identification and damage detection in trusses using modal data. Man-
ning [203] used active member transfer function data in conjunction with
an ANN to detect damage in structures. It relies on training a neural net-
work using active member transfer function pole/zero information to classify
damaged structural measurements and predicts the degree of damage in a
structure. The active members (transducers) that are already present in the
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controlled structure can be utilized for this purpose (input and output for in-
terrogation). However, modal methods are not very sensitive to the small size
delaminations which are of practical interest, and can be very cumbersome as
well as computationally expensive when implementing in practice for on-line
health monitoring. In most methods based on modal parameters, it is assumed
that the modes under consideration are affected by damage. As pointed out in
[200] the change in individual natural frequencies due to slight damage may
become insignificant and may fall within measurement error. In practical sit-
uations, this can considerably reduce the effectiveness of the prediction. With
a view to alleviating such difficulty, results of broadband analysis using the
spectral element for delaminated beams are discussed in this chapter.

Wave propagation analysis has been used extensively in non-destructive
techniques (NDT). However, in the context of intelligent health monitoring
tasks, there are several possibilities that such wave propagation analysis can
be employed along with certain emphasis on efficient modeling and signal pro-
cessing aspects. Zhang et al. [204] used broadband excitation and frequency
domain measurement using remotely placed transducers and transmittance
function to interrogate damage in beams. Valdes and Soutis [188] investi-
gated how low frequency Lamb waves can be used to detect delaminations in
thick composite plates. In their experiment with surface mounted piezoelec-
tric transducers, artificially induced delamination of the order of 1 cm2 was
identified from reflections generated at the damaged region. Feasibility studies
on diagnostic Lamb waves using active transducer elements have been carried
out by Lin and Yuan [205].

Doyle [176] used the spectral element method for a metallic beam along
with experimental data and a genetic algorithm to identify the location and
size of a transverse crack in a beam. Spectral analysis using strip elements for
wave scattering in composite plates and cylinders with crack has been car-
ried out in [206], [64], [207], [192]. In these studies based on the strip element
method, the characteristic wave equation is solved in wavenumber space (k-
space). The spectral amplitudes are derived from a series approximation of
Green’s function that involves computation of eigenvalues and right and left
eigenvectors. On the other hand, in SFEM, the characteristic coupled wave
equations are solved in k-space, but the spectral amplitudes are computed in
terms of coupled wave coefficients and by solving the finite element system at
each FFT sampling frequency point (typically 512− 8192 points) irrespective
of eigenvalues over a broad frequency band. This makes SFEM computation-
ally much faster than other methods. Keeping this advantage of SFEM in
mind, in this study, we use the spectral element for delaminated beams for
model based identification and sensitivity studies of single and multiple delam-
inations in composite beams. The studies reported in this chapter also show
the possibility of using similar elements for automated modeling and efficient
software development for on-line structural health monitoring. In addition,
there are many inherent features in spectral analysis such as identification
of damping (which was discussed in Chapter 3), handling inverse problems
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for force identification [208], [209] model update and digital signal processing.
These can be implemented easily within the proposed framework for use in
conjunction with on-line measurement.

In this chapter, the spectral element for a delaminated beam is used to
evaluate a damage force indicator derived from the healthy structural model
and the nodal force spectrum for the damaged structure. As a process of
interrogation in structural health monitoring, this damage force indicator can
be obtained by post-processing the measured data. This strategy was proposed
by Schulz et al. [169] where the healthy structural model was constructed using
standard finite elements. However, when using a standard finite element mesh,
one needs to have force measurements at these finite element nodes. This
requires several sensors to be placed at the locations of the finite element
nodes. When force measurements are not possible directly, the same can be
identified by solving the inverse problem [210] using other signals. Apart from
the fact that such an inverse identification task can efficiently be handled by
spectral analysis [208], the greatest advantage in using the spectral element
for a delaminated beam in the structural model is that a uniform beam with
a single delamination anywhere inside the beam needs only two end-nodes.
The beam can be of any length with any type of boundary condition that
can be linearized. Hence, the maximum requirement in this case is only four
measurement points (top and bottom surfaces at each of the two nodes). This
can be useful in reducing the hardware to a great extent. Lee and Shin [211]
studied the effect of random noise on a damage indicator based on the spectral
element method, which shows that reliability of the prediction can be very high
even in the case of a maximum noise-to-signal ratio of nearly 10%. With such
improvement, on-line health monitoring of large composite framed structures
becomes much easier.

Genetic algorithms (GAs) are powerful and widely applicable stochastic
search and optimization algorithms based on the principle of natural selec-
tion and genetic evolution [212], [213]. Because of their wide applicability
and versatility, they are receiving increasing attention for solving engineer-
ing optimization problems, e.g., structural design [214], [215], [216], [217],
[218], parameter estimation [219], optimal control in smart structures [220],
[221], [222] and damage detection [223], [224]. The conventional calculus based
search technique uses the gradient of the function to find local minima or max-
ima. These search techniques are problem dependent and can work well for
simple and smooth functions. Practical problems in mechanics (like we are
trying to solve here) are very complex having a finite number of discontinu-
ities, and hence gradient-based search methods cannot handle such problems
efficiently. On the contrary, the main advantage of GAs lies in their robust-
ness in handling non-smooth problems. In other words, the global optimum
configuration can be captured without getting locked on to local ones. An-
other principal advantage is that GAs can handle most objective functional
spaces with or without constraints that represent the required physics of the
problem.
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In solid mechanics and elastodynamics, the complexity of the damage iden-
tification problem has led many researchers to adopt GAs. Doyle [209] devel-
oped a genetic algorithm for determining the location of structural impact.
Stavroulakis [210] used GA as a soft computing tool for the identification
of cracks using a boundary element method. Mares and Surace [223] applied
GAs with the residual force method for the identification of damage in elas-
tic solids. The residual force method is based on conventional modal analysis
and is derived from the stiffness matrix of the damaged structure. The ex-
perimental results have been simulated by adding random noise to natural
frequencies and mode shapes. Friswell et al. [224] used natural frequencies as
the measuring parameter in the objective functions. In this study a search
was performed to locate an element with damage in a system of very few ele-
ments. Modeling of damage was done in an ad hoc manner by using stiffness
reduction. Therefore the achievements of the search cannot be seen as very
significant one since a priori knowledge regarding which modes are affected
due to the existence of damage, are are not available. This particular aspect of
the global structural model-independent identification process in smart struc-
tural health monitoring will play an important role in further developments of
software and systems. The present study is focused on developing automated
SFE estimation in the frequency domain integrated with GA specially tailored
for a fast and efficient damage identification strategy.

Damage identification is essentially an inverse problem, wherein the dam-
age needs to be detected using the measured input and output signals and
previously updated system parameters. The best way to handle the identifi-
cation task is to start with a transfer function or FRF and construct certain
measures to estimate the state of damage. Conventional techniques such as
time domain FEM are extremely difficult to apply for such problems due to
the enormous computational cost to obtain a transfer function. Frequency
domain analysis is ideally suited to such problems since FRFs are a direct
by-product of the approach.

Modeling wave scattering in delaminated composite beams by a spectral
element was derived in the last chapter. The results produced show that wave
scattering can be used very effectively for detecting delamination, its location
or extent in composite structures. However, to study the basic behavior of
wave scattering due to the presence of a delamination, either semi-infinite or
very long beam segments were considered in the above studies, thus eliminat-
ing the effects of boundary reflections. On the contrary, real life structures are
of finite lengths. This allows the presence of many boundary reflections when
broadband or single frequency tone-burst signals are introduced to interro-
gate the damage configuration. Therefore it becomes difficult to distinguish
the scattered waveform due to delamination from temporal signals. Also, in
model based predictions using the spectral element, it has been observed that
final observation and identification processes using temporal responses need an
enormous number of data-points to give sufficient resolution in frequency do-
main filtering, noise elimination and waveform reconstruction. Therefore, for
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a better identification procedure, it appears more attractive to use frequency
domain information directly [176]. It is also more realistic in the context of
on-line measurements since sensors are required (as long as the signal is sen-
sitive to delamination configurations) [180]. However, the frequency domain
response is difficult to correlate directly with the delamination configuration.
This problem becomes more complex in the presence of multiple delamina-
tions (of unknown number). The damage force indicator [180], [169], which
uses the frequency spectrum of displacement vectors, can be experienced best
in a system with very few elements, if accurately modeled. Hence, it can be
effectively used for identifying the damage zone modeled by a long spectral
element for a delaminated beam with a pair of transducers placed at the two
boundary-nodes of the beam. However, to locate delamination more precisely
inside the zone (without increasing the number of transducers), the need for a
second level of local identification strategy arises. Therefore to identify delam-
ination from the frequency domain response for finite short beams of practical
interest, we need to depend on some optimizing techniques like GAs. Aided
by the fast and accurate computation power of the spectral element, GAs can
extract the delamination configuration from remotely measured responses.

At the end of this chapter, we attempt to exploit the concept behind GA
and Multi-layer Perceptron (MLP) to predict the damage configuration and
parameters for a built-in, model based strategy for smart structural health
monitoring. The known parameters are only the healthy structural configu-
ration (mass, stiffness and damping matrices updated from previous phases
of monitoring), sensor measurements, actuation load and environmental load.
In the present context, one can think of various damage configurations. Here
we restrict the complexity to a known number of delaminations. Typically,
each configuration results in a solution-space in the same way as the individ-
ual population of living species performs with their genetic inheritance in the
living world. Therefore, we consider this similarity to develop an automated
procedure to decide what possible damage configuration(s) might have pro-
duced the observed fluctuation in the measured signals. An MLP feedforward
neural network is trained using an error back propagation gradient descent
algorithm to deal with a broadband spectral data as a diagnostic signal for
the estimation of damage parameters.

10.2 Spectral Power Flow

The spectral power [225]

P̂ =
1
2
f̂T [iωnû]∗ (10.1)

is defined as the product of force vector and complex conjugate of the velocity
vector at a material point. These quantities can easily be computed by post-
processing the spectral element nodal results.
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10.2.1 Properties of Spectral Power

(1) Real part of the spectral power is space invariant
Let us consider the coupled wave propagation involving u◦, w◦ and θy. Lateral
motion and torsional motion are excluded to reduce the level of algebraic
manipulation. Expanding Equation (10.1) after substituting for f̂ and û, we
have

P̂ = −1
2
iωn

[(
A1111û,x +A1113θ̂y,x

)
û∗ + A5511 (ŵ,x +φ) ŵ∗

+
(
A1113û,x +A1133θ̂y,x

)
θ̂∗y

]
. (10.2a)

Differentiating with respect to x and simplifying using the wave equations in
u◦, w◦ and θy, we get

∂P̂

∂x
= −1

2
iωn

[
−ω2

nM11 (ûoûo∗ + ŵoŵo∗) + A1111û
o,x ûo∗,x +A5511ŵ

o,x ŵo∗,x

+
(
A5511 − ω2

nM33

)
θ̂y θ̂∗y + A1133θ̂y,x θ̂∗y,x −ω2

nM13

(
θ̂yûo∗ + ûθ̂∗y

)

+A5511

(
θ̂yŵo∗,x +θ̂∗yŵo,x

)
+ A1113

(
θ̂y,x ûo∗,x +θ̂∗y,x ûo,x

)]
. (10.2b)

Note that in Equation (10.2b), the right-hand side is purely an imaginary
quantity. Therefore, by equating the real part and imaginary part of the spec-
tral power P̂ = P̂R + iP̂I , we get

∂P̂R

∂x
= 0 . (10.2c)

That is the real part of the power is space invariant.
(2) Real part of the spectral power indicates the amount of energy trapped in
a structural member
Using Equation (10.2a), it can be shown that for a purely longitudinal wave

ûo = ũ1e
−ik1x + ũ2e

−ik1(L−x) , (10.3a)

where k1 is the longitudinal wavenumber, the real part of the spectral power

P̂R =
1
2
ωnk1A1111 [−ũ1ũ

∗
1 + ũ2ũ

∗
2] (10.3b)

is a stationary quantity and vanishes when

|ũ1| = |ũ2| , (10.3c)

that is when the forward and backward propagating waves are of the same
amplitude. This necessitates the two longitudinal forces (N̂x1 and N̂x2) at the
boundaries either being equal and opposite in sign and hence self-equilibrating
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or such that the wave coefficients ũ1 and ũ2 are with relative phase φ1 − φ2

given by

ei(φ1−φ2) =
N̂x2 − N̂x1e

ik1L

N̂x2eik1L − N̂x1

. (10.3d)

Similar conclusions can be drawn from the purely transverse flexural waves

ŵo = ũ9e
−ik9x + ũ10e

−ik9(L−x) + ũ11e
−k9x + ũ12e

−k9(L−x) , (10.3e)

θ̂y = R5,9ũ9e
−ik9x + R5,10ũ10e

−ik9(L−x) + R5,11ũ11e
−k9x

+R5,12ũ12e
−k9(L−x) , (10.3f)

P̂R =
1
2
ωnk9

[
−

(
A5511 + A1133R5,9R

∗
5,9

)
ũ9ũ

∗
9

+
(
A5511 + A1133R5,10R

∗
5,9

)
ũ10ũ

∗
10

]
. (10.3g)

From Equation (10.3g), it is clear that the real part of the spectral power is
stationary and vanishes when

|R5,9ũ9| = |R5,10ũ10| (10.3h)

that is when the forward and backward propagating wave components in
transverse as well as rotational motions are of the same amplitude, since
R5,9 = −R5,10 and R5,11 = −R5,12. This can happen when the pair of bound-
ary forces (transverse shear forces and moments) are self-equilibrating in na-
ture or they are of the same amplitude and generate a relative phase between
the forward and backward propagating wave coefficients similar to that in
Equation (10.3d). In addition, note that in the real part of the spectral power,
there is no contribution of the evanescent wave component.
(3) The imaginary part of the spectral power carries the phase information
Here we illustrate the traveling nature of the power wave. Let us consider
longitudinal wave propagation (Equation (10.3a)). Using Equation (10.1), the
imaginary part of the spectral power is obtained as

P̂I = P̃1e
−i2k1x − P̃ ∗

1 ei2k1x (10.4a)

where the power wave coefficients P̃1 and −P̃ ∗
1 (∗ indicates complex con-

jugation) associated with the forward and backward traveling power wave
components are given by

P̃1 =
1
2
iωnk1A1111ũ1ũ

∗
2e

ik1L . (10.4b)

Therefore, if there is no change in the geometry and material properties be-
tween the two boundary nodes, the traveling wave causes flow of power, which
has equal amplitudes in the forward and backward propagating power waves
as seen in Equation (10.4a).
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10.2.2 Measurement of Wave Scattering due to Delaminations and
Inclusions Using Spectral Power

From the earlier discussions, it is quite clear that any structural discontinuity
inside a structural member creates scattered waves by changing the wave
coefficients by a certain factor called the “scattering coefficient”. This, in
turn, causes changes in energy transmission and hence, power flow. To study
the effect of delaminations and strip inclusions on the scattered waves, we
consider two nodal points (1 and 2) along the beam x-axis with associated
spectral power P̂1 and P̂2 on the two sides of the delaminations or inclusions.
Then we construct a measure of the scattered power as

∆ =
n2∑

n=n1

∣∣∣P̂ (ωn)h − P̂ (ωn)d

∣∣∣∣∣∣P̂ (ωn)h

∣∣∣ (10.5)

where P̂ (ωn)h and P̂ (ωn)d are, respectively, the scattered power P̂1 − P̂2 for
the healthy structure and the structure with discontinuities. We denote the
power measure in Equation (10.5) over the frequency band n = [n1, n2]. In the
numerical simulations, we estimate the effect of delaminations and inclusions
using three frequency bands: low (ωn = 1 Hz − 1 kHz), medium (ωn = 1 kHz
− 10 kHz) and high (ωn = 10 kHz − 100 kHz).

10.3 Power Flow Studies on Wave Scattering due to
Delaminations and Strip Inclusion in Composite Beam

10.3.1 Wave Scattering due to Single Delamination

A graphite–epoxy unidirectional [0◦] composite cantilever beam with single
mid-plane delamination is considered as shown in Figure 10.1. The objective
here is to estimate the effect of wave scattering from the delamination tip
due to different sizes Ld of the mid-plane delamination. A broadband load
of duration 50 µs and dominant frequency content upto 40 kHz as shown in
Figure 4.5 is applied at the tip of the cantilever. Two measurement nodes
1 and 2 shown in Figure 10.1 are used to compute the scattered power ∆
(Equation (10.5) at the low frequency, medium frequency and high frequency
bands. For delamination lengths Ld = 1 cm and 5 cm, the spectra of scattered
power are plotted in Figure 10.2 over a frequency range of 100 kHz. Greater
scattering due to the 5 cm long delamination can be seen in this plot. Next,
the feasibility of using the scattered power to characterize the severity of
the delamination configuration is studied. For this purpose, the delamination
length Ld is varied from 1 cm to 10 cm in steps of 0.5 cm. The scattered
power in low frequency, medium frequency and high frequency bands is plotted
in Figure 10.3. From this plot it is clear that small delaminations did not
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influence the energy transmission in low frequency and medium frequency
bands. For increasing length of delamination, the order of scattered power
increases almost linearly over the medium frequency band. Although the plot
shows sudden jumps in the order of scattered power in the medium and high
frequency bands, the mean levels have steady increases for increasing size of
delamination.

dL
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0.8

0.2

Fig. 10.1. A cantilever beam with single mid-plane delamination of length Ld.
Nodal locations 1 and 2 for estimation of spectral power are shown. All dimensions
are in metres
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Fig. 10.2. Spectrum of scattered power due to delaminations of length 1 cm and 5
cm



316 10 SFEM for SHM

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Delamination Length L
d
 (cm)

lo
g(

∆)

Low Frequency   
Medium Frequency
High Frequency  

Fig. 10.3. Scattered power in low frequency (1 Hz–1 kHz), medium frequency
(1 kHz–10 kHz) and high frequency (10 kHz–100 kHz) bands for varying length of
single delamination

10.3.2 Wave Scattering due to Length-wise Multiple
Delaminations

Here we consider length-wise multiple delaminations in the same graphite–
epoxy cantilever beam as considered earlier. Figure 10.4 shows the beam with
three mid-plane delaminations of the same length. The broadband transverse
load (Figure 4.5) is applied at the cantilever tip. The location of the mea-
surement nodes 1 and 2 used to compute the scattered power measure ∆ are
shown in Figure 10.4. In the numerical simulations, we consider three dif-
ferent cases containing one, two and three delaminations from the left side,
respectively. Figure 10.5 shows the spectrum of scattered power due to one
delamination and three delamination over the high frequency band. Very lit-
tle difference in the spectra can be seen in the plots. Figure 10.6 shows a
comparison of the three cases in low frequency, medium frequency and high
frequency bands. It can be seen from this plot that increasing the number of
mid-plane delaminations of the size considered in the simulation is less likely
to alter the power flow significantly in the low frequency band. Change in
the order of scattered power in the medium frequency band linearly increases
with increasing number of delaminations, whereas a significant change is seen
over the high frequency band.
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Fig. 10.4. A cantilever beam with length-wise multiple delaminations. Nodal loca-
tions 1 and 2 for estimation of spectral power are shown
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Fig. 10.5. Spectrum of scattered power over the high frequency band due to length-
wise increasing number of delaminations

10.3.3 Wave Scattering due to Depth-wise Multiple Delaminations

Impact type loading on laminated composite structures may often cause
depth-wise multiple delamination growing from the face opposite to the load-
ing face. That is, at the bottommost interlaminar region. The size of delamina-
tion can be expected to be larger due to the higher interlaminar stress gradient.
When such damage occurs, it is essential to monitor the load carrying capac-
ity of the damaged structures, possibly using diagnostic wave measurements.
Figure 10.7 shows a configuration with three delaminations with progressively
increasing size towards the bottom face of the unidirectional graphite–epoxy
composite cantilever beam as considered in the earlier studies. In the numeri-
cal simulations we consider three cases, one, two and three delaminations from
the bottom face, respectively. The location of measurement nodes 1 and 2 for
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Fig. 10.6. Scattered power at low frequency (1 Hz − 1 kHz), medium frequency
(1 kHz − 10 kHz) and high frequency (10 kHz − 100 kHz) bands for length-wise
increasing number of delaminations.
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Fig. 10.7. A cantilever beam with depth-wise multiple delaminations. Location of
the nodes 1 and 2 for estimation of spectral power is shown. All dimensions are in
meters

computation of the scattered power in shown in Figure 10.7. Figure 10.8 shows
plots of the scattered power measure in the low frequency, medium frequency
and high frequency bands. It can be seen that in the medium frequency band,
the configuration with three delaminations creates less scattering than the
configuration with two bottommost delaminations, which makes direct cor-
relation difficult. This can be attributed to the shift in the peaks as well as
the appearance of several additional peaks (Figure 10.9) due to modification
in structural discontinuities, as was observed in the context of variation of
delamination length (Figure 10.3). However, the high frequency band pro-
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vides good correlation for an increasing number of delaminations, as seen in
Figure 10.8.
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Fig. 10.8. Scattered power at low frequency (1 Hz − 1 kHz), medium frequency
(1 kHz − 10 kHz) and high frequency (10 kHz − 100 kHz) bands for depth-wise
increasing number of delaminations

10.4 Wave Scattering due to Strip Inclusion

10.4.1 Power Flow in a Semi-infinite Strip Inclusion with Bounded
Media: Effect of Change in the Material Properties

In this section, we study the effect of strip inclusion in laminated composite
beams. Modeling of such an inclusion and the associated wave scattering effect
is simplified using the constrained interfaces at the end of the strip inclusions
and hence by considering it as a debonded sublaminate with different material
properties and bounded in viscoelastic medium, as discussed in the context of
SFEM.

In laminated composite, the healthy interlaminar region and the delam-
inated surfaces are exposed to friction contact due to the presence of loose
fibers and matrix grain boundaries. Similarly, any foreign material system
such as electronic chips, MEMS devices, embedded sensors and actuators, etc.,
also experience dislocation from the host structures through the surrounding
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Fig. 10.9. Spectrum of scattered power in the medium frequency and high frequency
bands due to depth-wise increasing number of delaminations

interfaces. Although, the model presented in this section accounts for the
viscoelastic behavior of such dislocations, only the effects of friction contact
(distributed spring stiffness Kx and Kz) are considered in the following simu-
lations. Propagation of longitudinal and flexural waves in the presence of such
distributed spring stiffness are studied first. For this purpose, a semi-infinite
unidirectional graphite–epoxy sublaminate constrained by distributed spring
stiffness Kx and Kz at the top and bottom surfaces is considered as shown
in Figure 10.10. The base laminate A (thickness 16mm), the top and bottom
sublaminates B and C (thickness 6mm each), the strip inclusion D (thickness
4mm) and the distributed media E (of negligible thickness at the interlaminar
region) modeled using spring stiffness (Kx,Kz) are shown in the figure. Re-
flection and transmission of waves propagating through the base laminate A
occur at the vertical interface. The transmitted waves when propagate through
the strip inclusion D interact with the distributed spring in longitudinal and
transverse motion. To study this behavior, we apply a broadband load (shown
in Figure 4.5) longitudinally at the left end of D, which is semi-infinite at the
other end.

Figure 10.11 shows the propagation of longitudinal waves as they travel
from the interface at the left end to the right end. Kx = 1 × 107 N/m and
kj → kj(1 − iη), η = 1 × 10−3 are used. Note the non-dispersive nature of
the longitudinal wave after incidence (the initial peak). At increasing distance
from the interface, this effect dies down. For varying spring stiffness Kx, the
spectral power P̂ (given in Equation (10.1)) at x = 0.4m away from the left
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end is plotted in Figure 10.12. It can be seen from the plots that for increasing
values of Kx, additional peaks appear in low frequency to high frequency
bands. Interestingly, the number of peaks is greater for the imaginary part
of the spectral power than the real part of the spectral power. This can be
attributed to the fact that all the incident energy is transmitted from the left
end to the right end, apart from the small amount of spatial loss due to the
presence of the damping factor η in the wavenumber. Hence the power level,
which is governed by the real part, remains almost unchanged. The significant
change appears in the imaginary part of the spectral power, which carries the
phase information.

(K z, Kx )

B

D

C

E

E

A

Fig. 10.10. Strip inclusion bounded in distributed spring in a laminated composite
semi-infinite beam

Next the same broadband load (Figure 4.5) is applied in the transverse
direction at the left end of D. The propagation of flexural waves is shown
in Figure 10.13. The incident wave amplitude changes due to the dispersive
nature of the flexural and shear modes, which is unaltered by the distributed
spring stiffness Kz. However, at a later time, additional waves of smaller
amplitude and low phase modulation appear, which are otherwise absent when
Kz = 0. For different orders of magnitude of Kz, the spectral power at x =
0.1m away from the left end is plotted in Figure 10.14. Unlike the case of
longitudinal waves in Figure 10.12, here the power flow is almost unaltered
for Kz up to 1 × 107 N/m. It can be observed that for Kz = 1 × 109 N/m,
the real part of the spectral power is decreased for load frequencies above 50
kHz, and additional peaks appear in the imaginary part of the spectral power.
Such an effect can be attributed to very high spring stiffness, which actually
tends to form a few stop-bands by blocking the energy transmission at low
and medium frequencies.

10.4.2 Effect of Change in the Material Properties of a Strip
Inclusion

To study the effect of changes in material properties, especially stiffness of
the strip inclusion, the same graphite–epoxy unidirectional cantilever beam
with a 5 cm long and 4 mm thick strip inclusion is considered as shown in
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Fig. 10.11. Propagation of longitudinal wave in a graphite–epoxy unidirectional
composite semi-infinite beam bounded in distributed uniform spring stiffness Kx =
1 × 107 N/m at the top and bottom surfaces

Figure 10.15. Similar analysis can be applied while monitoring the health
of the composite beam structures with degraded material properties at sub-
laminate level. For an assumed change or degradation in the elastic moduli
of

C̄′ = αC̄ (10.6)

where, C̄′ is the modified elasticity matrix for the composite, C̄ is the orig-
inal elasticity matrix and α is a matrix of degradation factors for simplicity.
In such a case, the wavenumbers kj for the sublaminate waveguides with de-
graded material properties also change. Hence, the amount of scattering at
the interfaces as well as the propagation of individual wave components in
individual waveguides also change. In the present numerical simulations, we
assume Kx = 0 and Kz = 0 and α is assumed same (scalar) for all the elastic
moduli. Figure 10.16 shows plots of the scattered power measured in the low,
medium and high frequency bands for varying α. From the results, direct cor-
relation becomes difficult, especially in the medium and high frequency bands.
In the low frequency band, however, significant order change in the scattered
power for α = 0.4 can be seen for which the scattered power is plotted over
the frequency axis in Figure 10.17 in comparison with α = 0.9. The spectrum
shows significant change in the peaks at low frequency, which produced a high
level of scattering for α = 0.4. Similar inference can also be drawn from the
appearance of peaks in the medium and high frequency bands for α = 0.5.
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Fig. 10.12. Change in spectral power due to variation in distributed spring stiffness
Kx in propagation of longitudinal wave in graphite–epoxy unidirectional composite
semi-infinite beam bounded in distributed uniform spring stiffness. Measurement
location is x = 0.4 m

The presence of wave scattered from the fixed and free ends of the cantilever
also interact with the scattered waves from the interface alone and amplify the
amplitude of the waves trapped between the two interfaces, the fixed and free
ends of the cantilever. These higher wave amplitudes contribute to the higher
level of scattered power compared to any single or multiple delaminations (in
Figures 10.3, 10.6 and 10.8) as can be seen in Figure 10.16.

10.5 Damage Force Indicator for SFEM

The concept of damage force has been used in [165] to derive a damage indi-
cator for detecting the elements having flaws. The dynamic stiffness matrix
of the reference healthy structure along with the nodal displacements of the
damaged structure are required to find which elements contain damage. This
technique bounds the damage location within the region of the sensing points.
Keeping the objective of on-line health monitoring in mind, a similar strategy
is implemented here. But the basic difference is that the finite element sys-
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Fig. 10.13. Propagation of flexural wave in a graphite–epoxy unidirectional compos-
ite semi-infinite beam bounded in distributed uniform spring stiffness Kz = 1× 105

N/m (shown with thick solid lines) at the top and bottom surfaces. The solid lines
show the responses for Kz = 0

tem is constructed entirely in the frequency domain under the framework of
SFEM. And one advantage is that a much lower number of sensors are suffi-
cient, since the number of measurements complying with SFEM dof is many
orders smaller than that required when using conventional FEM. The only
limiting factor when using fewer sensors is that the measured signal must be
reliable enough to differentiate the effect of wave scattering in the presence
of slight damage along with the effect of damping. For polymer composite,
this is an important issue because a sensor placed too far from the damage
location may not be able to capture the measurable fluctuations when damage
is present.

The global dynamic stiffness matrix of the healthy structure K̂h(ωn) at
each FFT sampling frequency ωn is obtained using a standard finite element
assembly for all spectral elements. The spectral amplitude of global displace-
ment vector û consists of axial displacement ûo, transverse displacement ŵ
and rotation φ̂ at each node. Now, the damage force vector is defined as

∆f̂ = K̂hûd − f̂d (10.7)

where the subscript h denotes healthy structure and d denotes for delam-
inated structure. If delamination occurs, the vector ∆f̂ will have non-zero
entries only at the dofs connected to the elements with damage. The above
expression requires the excitation force (f̂d) or the internal forces at the nodes
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Fig. 10.14. Change in spectral power due to variation in distributed spring stiffness
Kz in propagation of flexural wave in graphite–epoxy unidirectional composite semi-
infinite beam bounded in distributed uniform spring stiffness. Measurement location
is x = 0.1 m
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Fig. 10.15. A graphite–epoxy cantilever beam with a strip inclusion. Location of
the nodes 1 and 2 for estimation of spectral power is shown. All dimensions are in
metres
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to be known. Direct measurement of this requires force sensors and may not
always be feasible [165]. The damage indicator proposed by Schulz [165] over-
comes this limitation by computing the damage force directly as K̂hûd. In this
section, the same expression is used assuming the vector f̂d is unknown in the
simulation. However, in SFEM, the inverse problem can be solved to obtain f̂d
from other types of signal measurement such as displacements, strains or their
rates. For delamination identification, we already have the spectral element
for delamination that can be inserted in the healthy structure by comparing
some indicator from experimentally obtained and post-processed signals. For
this purpose, a combined force vector r̂(ωn) is considered

r̂(ωn) = ∆f̂ + f̂d = K̂hûd . (10.8)

Multiplying r̂ by transpose of its complex conjugate r̂∗, we get one (m × m)
square matrix R̂(ωn):

R̂(ωn) = r̂r̂∗ (10.9)

where m is the total number of dofs in the model. Now, if the delamination
is expected in the ith element, the existing element can be replaced by the
spectral element for delamination. There will be non-zero diagonal entries in
R̂(ωn) corresponding to the dofs associated with the ith element. The rest of
the diagonal entries will be zero. The magnitude of these non-zero diagonal
entries will depend on the applied load, and the configuration of delamination.
Summing up the absolute values of the diagonal entries in R̂(ωn) over all
frequency steps n = 1, · · · , N (N = Nyquist frequency in FFT), a damage
force indicator vector d of length m is obtained as

di =
∑
ωn

|R̂ii| , i ∈ [1, m] , n = 1, . . . , N . (10.10)

10.6 Numerical Simulation of Global Identification
Process in Delaminated Composite Beams Using the
Damage Force Indicator

This section deals with numerical simulations showing the efficient use of the
spectral element for a delaminated beam in the identification process. Also, the
effect of delamination configuration on the damage indicator is investigated.
During real-life health monitoring, similar results may be expected if accurate
measurements and signal conditioning can be performed.

10.6.1 Effect of Single Delamination

One infinite graphite–epoxy beam of 10 mm × 10 mm cross-section is consid-
ered as shown in Figure 10.18. Eight SFEs of equal length (100 mm) are as-
sumed between two throw-off elements at the ends. K̂h is stored for each FFT
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Fig. 10.18. An infinite beam considered to study the identification of delaminations
using a damage force indicator

sampling frequency. A broadband load (Figure 4.5) is applied in transverse di-
rection (dof-26) on the right node of the 8th element. Each time one mid-plane
delamination of length 20 mm is introduced (Figure 10.19(a)) in one of these
elements and ûd is computed. The damage force indicator d is computed for
each of these delamination configurations using Equations (10.7)–(10.10) and
plotted in Figure 10.20. Peaks at the dofs associated with the delaminated
elements can be seen in the bar-plots. All the entries in d are normalized
with respect to Max(d), separately for transverse and rotational dofs. It is
also found that d is in decreasing order from the point of application of load.
This is because of attenuation and gradual dissipation of energy in a slightly
damped system. Some small non-zero amplitudes of d can be noticed at the
dof of the applied load (i = 26) for all cases. This appears because the applied
load was not eliminated from the dof while computing d, presuming it to be
an unknown in a practical problem (see Equation (10.8)).
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Fig. 10.19. Different configurations considered for the infinite beam with delami-
nation; (a) with single delamination and (b) with multiple delaminations
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Fig. 10.20. Normalized damage force indicator d for (a) transverse and (b) ro-
tational dofs for different configurations (varying location of a single delamination
shown in Figure 10.19(a)) modeled using single spectral element for delamination

10.6.2 Effect of Multiple Delaminations

For the same infinite beam and applied load as considered in the last example
(Figure 10.18), multiple delaminations are introduced progressively, i.e., first
in element 1, then simultaneously in element 1 and element 2 and so on (see
Figure 10.19(b)). For these varying configuration, normalized d is plotted
in Figure 10.21. Normalization is done with respect to the maximum of d
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Fig. 10.21. Normalized damage force indicator d for (a) transverse and (b) rota-
tional dofs for different configurations (varying number of delaminations shown in
Figure 10.19(b)) modeled using one spectral element for each delamination

among all the delaminated configurations. But, due to this normalization, no
peaks for the first configuration are visible. The peaks are also not in any
ordered magnitude as in the previous study. This can be attributed to the
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interference between the reflected waves generated by different delamination
tips. Computation time to obtain d is plotted in Figure 10.22. This shows cubic
polynomial time complexity [226] of computation for increasing numbers of
delaminations. Therefore with this same identification strategy and further
development of spectral elements for plates and shells, a real-scale structural
health monitoring task appears tractable.
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Fig. 10.22. Computation time for damage force indicator in the case of an increasing
number of delaminations (shown in Figure 10.19(b))

10.6.3 Sensitivity of Damage Force Indicator due to Variation in
Delamination Size

The aim of the following studies is to determine whether the damage force
indicator can also quantify the intensity of the delamination. For this pur-
pose, a 2 m long spectral element for delamination with throw-off elements
connected to both ends is considered (Figure 10.23). The width of the beam
is kept fixed at 10 mm, while the beam thickness is varied from 10 mm to 20
mm in uniform steps of 2 mm. For each different beam thickness, the length
of mid-plane delamination is varied from 10 mm to 100 mm in uniform steps
of 5 mm in both directions equally about the center. Component of d for the
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Fig. 10.23. Infinite beam with single delamination for sensitivity analysis of delam-
ination parameters on damage force indicator. The node numbers (in bold letters)
and the dofs are shown

transverse and rotational dofs at node 2 (i.e., d5 and d6) are computed for
all of these configurations and are plotted in Figures 10.24 and 10.25. Ex-
ponential increments in d with the delamination length are observed for the
transverse case. This shows that with increasing delamination length, change
in the dynamic response increases exponentially. However, the variation with
beam thickness for a fixed size of delamination is not monotonous. For the
rotational dofs, these fluctuations are more pronounced. The transverse dam-
age force indicator is a minimum for a delamination length of 10 mm when
the beam thickness is 20 mm; and maximum when they are 100 mm and 16
mm, respectively. Next, the real part of the dynamic stiffness component ˆ̄K

e
22

(transverse motion at left node 1) for the delamination configuration corre-
sponding to the minimum and maximum of d are plotted over the frequency
axis in Figures 10.26 and 10.27. Similar plots of K̂33 (rotational motion at
left node 1) are shown in Figures 10.28 and 10.29. The plots clearly show
considerable deviation in the stiffness component between delaminated and
healthy configurations when the damage force indicator reaches its maximum
value. Changes in the locations of poles and zeros in the frequency spectrum
are the effect of structural discontinuity at the delamination tips. It can be
observed in Figures 10.26, 10.27, 10.28 and 10.29 that delaminations of length
10 mm are less likely to alter the dynamic stiffness in the low frequency range
and therefore low frequency modal methods may fail to capture the effect of
damage, unless broadband estimation is carried out.

10.6.4 Sensitivity of Damage Force Indicator due to Variation in
Delamination Depth

For the same element length and different beam thicknesses considered in the
previous study, the location of the delamination along thickness was varied
from z = −3mm to z = +3mm. Delamination length was kept fixed at
20mm. Damage force indicators in transverse and rotational dofs are plotted
respectively in Figures 10.30 and 10.31.
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Fig. 10.24. Damage force indicator for transverse dofs at node 2 (Figure 10.23)
for different lengths of single delamination (z = 0) and various beam thicknesses.
Delamination length is varied from its center, left and right simultaneously by equal
amounts
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Fig. 10.25. Damage force indicator for rotational dofs at node 2 (Figure 10.23)
for different lengths of single delamination (z = 0) and various beam thicknesses.
Delamination length is varied from its center, left and right simultaneously by equal
amounts
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Fig. 10.26. Real part of dynamic stiffness component ˆ̄K
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delamination length = 10 mm, beam thickness = 16 mm) damage force indicator in
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Fig. 10.27. Real part of dynamic stiffness component ˆ̄K
e
22 for maximum (z = 0,

delamination length = 100 mm, beam thickness = 16 mm) damage force indicator
in transverse dof (Figure 10.24)
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Fig. 10.28. Real part of dynamic stiffness component ˆ̄K
e
33 for minimum (z = 0,

delamination length = 10 mm, beam thickness = 18 mm) damage force indicator in
rotational dof (Figure 10.25)
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Fig. 10.29. Real part of dynamic stiffness component ˆ̄K
e
33 for maximum (z = 0,

delamination length = 100 mm, beam thickness = 18 mm) damage force indicator
in rotational dof (Figure 10.25)
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Fig. 10.30. Relative damage force indicator for transverse dofs at node 2 (Fig-
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Due to significant scale variation in the damage force indicator with change
in beam thickness, the magnitudes are plotted relative to Min(d) (sepa-
rately for transverse and rotational dofs) for corresponding beam thicknesses.
With variation in the delamination depth, a non-linear relationship symmet-
ric about the mid-plane (z = 0) is observed in Figures 10.30 and 10.31. In
the case of the transverse dof (Figure 10.30), the depth for which the minima
occurs (zero value in the plot for some beam thicknesses), is different for dif-
ferent beam thickness. However, they are always maximum for a mid-plane
delamination. In the case of the rotational dof (Figure 10.31), the maxima
does not always occur for a mid-plane delamination. From these plots, it can
be concluded that for thin beams, the effect of mid-plane delamination can
be captured with maximum reliability. Whereas, for asymmetrically delami-
nated beams, predictions are much easier for moderate thicknesses. However,
the dynamic stiffness components ˆ̄K

e
22 plotted in Figures 10.32 and 10.33 cor-

responding to the minimum and maximum of d and ˆ̄K
e
33 in Figures 10.34 and

10.34 show minor differences from the undelaminated beam. This shows that
strategies based on modal analysis may not be very effective for predicting
the depth-wise location of delaminations.
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Fig. 10.32. Real part of dynamic stiffness component ˆ̄K
e
22 for minimum damage

force indicator in transverse dof (Figure 10.30). Magnitudes are plotted relative to
Min(d) for corresponding beam thicknesses
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Fig. 10.33. Real part of dynamic stiffness component ˆ̄K
e
22 for maximum damage

force indicator in transverse dof (Figure 10.30). Magnitudes are plotted relative to
Min(d) for corresponding beam thicknesses

10.7 Genetic Algorithm (GA) for Delamination
Identification

In an identification strategy, one may possibly locate the delaminations and
their sizes by extremizing certain norms constructed from experimentally ob-
tained data and model data for delaminations of unknown location and size.
Standard terminologies and the basic framework of GA can be found in [212]
and are not discussed in this section. Coello and Christiansen [218] discussed
various strategies in genetic operations proposed by various researchers in
the context of multi-objective GA. An overview of GA derived in the present
study is schematically presented in Figure 10.36.

Two major features here are (1) selection from an enlarged sampling space,
consisting of parent and offspring pools, and (2) prohibition of duplicate chro-
mosomes in the early generations using constraints and instructions for pun-
ishment and killing of abnormal offspring. At this stage, it is necessary to
correlate some of the standard terminologies used in GA as follows.

• Chromosome – The damage configuration in coded form
• Genes – The individual parameters or variables representing the damage

configuration
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Fig. 10.34. Real part of dynamic stiffness component ˆ̄K33 for minimum damage
force indicator in rotational dof (Figure 10.31). Magnitudes are plotted relative to
Min(d) for corresponding beam thicknesses

• Phenotype – Decoded solution or the possible damaged configuration of
the structure

• Genotype – Encoded solution or the set of values of the variables in
binary string in our problem, that represents the damaged structure when
decoded

10.7.1 Objective Functions in GA for Delamination Identification

Performance of a GA largely depends upon the objective function. With a
smooth function or a function with few local extrema, GAs converge more
rapidly than a function with a large number of ups and downs. In this sec-
tion, we first examine the behavior of different possible objective functions.
Two physical parameters, namely the displacement and the frequency domain
power (spectral power), are tested on a cantilever beam and a fixed beam with
a single delamination.

10.7.2 Displacement-based Objective Functions

Four possible displacement-based objective functions are examined. These
functions J1, J2, J3 and J4 can be derived from the baseline or experimen-
tal response (generated with known configuration in the absence of actual
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Fig. 10.35. Real part of dynamic stiffness component ˆ̄K33 for maximum damage
force indicator in rotational dof (Figure 10.31). Magnitudes are plotted relative to
Min(d) for corresponding beam thicknesses

experimental data) with the simulated response and are expressed as

J1 =

[
1 +

1
N

∑
n

∣∣ûo
comp − ûo

expt

∣∣∣∣ûo
expt

∣∣
]−1

, (10.11)

J2 =

[
1 +

1
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∑
n
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, (10.12)
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(10.14)

The above computations require spectral amplitudes at a spectral element
node at each FFT sampling frequency (ωn). The subscript “comp” in the
above equations indicates the simulated data from SFEM. The subscript
“expt” denotes baseline data. For identification using multi-node responses,
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Fig. 10.36. Flowchart of genetic search

the function construction is a straightforward representation in vector form.
All of these are maximizing functions and they achieve the maximum value
(equal to 1) when the simulated results (hence the damage configuration)
match with the experimental (filtered) data. Through genetic evolution over
generations, more phenotypes (each having a particular delaminated configu-
ration) can be expected to have maximized values of the objective function,
and this convergence is estimated by the average fitness (average values of the
objective function) of the population.

The configuration of the delamination in the cantilever beam and the fixed
beam are shown respectively in Figures 10.37 and 10.38. A unidirectional
graphite–epoxy 0o ply-stacking sequence is used in all the case studies. The
sensitivity of J with respect to each of the three delamination parameters
(tip location L, delamination length and layer depth) on these functions are
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studied separately, keeping the other two parameters fixed. In the study of
delamination location, the reference data is generated by introducing a 20mm
mid-plane delamination at location L = 250mm. Broadband transverse load
(Gaussian history) is applied at node 2. The delamination location is varied
from L = 0 to 500mm and the corresponding objective functions are com-
puted. For the cantilever beam, the functions are plotted in Figure 10.39 and
for the fixed beam in Figure 10.40. None of these functions is smooth; all of
them have many local discontinuities (poles and zeros in the spectrum). This
non-smooth behavior is inherent to any elastodynamic problem. The most im-
portant feature here that one should examine is the bandwidth of the search
variable (here L) around the optimum point, where function values are higher
than those in neighboring regions. This bandwidth is found to be almost equal
for all functions.
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Fig. 10.37. Configurations of cantilever beams considered to examine the sensitivity
of GA objective functions
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Fig. 10.38. Configurations of fixed beams considered to examine the sensitivity of
GA objective functions

In the case of depth z, the function values are plotted in Figure 10.41 for
the cantilever beam and in Figure 10.42 for the fixed beam. The reference
response data is generated with a 20mm long delamination at a depth z =
−3mm. It is interesting to note here that while using the functions based
on the transverse and rotational components of the response (i.e., J2 and
J3 respectively), the maximum fitness value of 1 occurs at the actual depth
location of the delamination and also at a depth which is the mirror image
of the actual depth about the mid-plane (i.e., −z). However, the other two
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Fig. 10.39. GA objective functions J1 to J4 (Equations (10.11)–(10.14)) plotted
with varying location of delamination for cantilever beams
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Fig. 10.40. GA objective functions J1 to J4 (Equations (10.11)–(10.14)) plotted
with varying location of delamination for fixed beams
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functions (i.e., J1 and J4) do not behave in this way. This can be explained by
the fact that the net bending stress for these two delamination configurations
(one at a depth which is the mirror image of other about the mid-plane) are
identical at any instant of time. The net axial stress, however, is different due
to the axial–flexural coupling. In modal analysis, this type of motion is termed
anti-symmetric thickness shear mode. However, compared to the earlier cases
for search of L, the overall nature of the functions is found to be quite smooth.
A direct conclusion that can be drawn from this study is that the function
J4 will be most suitable for identification of depth from mixed-mode wave
propagation.
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Fig. 10.41. GA objective functions J1 to J4 (Equations (10.11)–(10.14)) plotted
with varying depth of delamination for cantilever beams

All the functions are found to be most well behaved when it comes to
delamination length or size identification. The reference data is generated for
a delamination of length 20mm located at distance L = 250mm from the
left node and at the mid-plane of the beams. In the plots (Figure 10.43 and
Figure 10.44), it can be seen that functions J2 and J3 overlap.

10.7.3 Power-based Objective Functions

The displacement-based objective functions studied in the previous section
are quite well behaved except for the delamination location (L). Search for a
better function is extended with the spectral power flow [227] expressed as
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Fig. 10.42. GA objective functions J1 to J4 (Equations (10.11)–(10.14)) plotted
with varying depth of delamination for fixed beams
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Fig. 10.43. GA objective functions J1 to J4 (Equations (10.11)–(10.14)) plotted
with varying size of delamination for cantilever beams
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Fig. 10.44. GA objective functions J1 to J4 (Equations (10.11)–(10.14)) plotted
with varying size of delamination for fixed beams

P̂ (x, ωn) = f̂(x, ωn)T (iωnû(x, ωn))∗ (10.15)

where the superscript * represents the complex conjugate. The reason for
choosing power as a measure is that for a non-dissipative medium, the real
part of it is space invariant. The objective function based on spectral power
is derived as
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(10.16)

The fitness plot of the function J5 for identification of location L is shown in
Figure 10.45 in comparison with the displacement-based function J4. However,
J5 can in no way be said to be better behaved than J4. Also, it shows many
more fluctuations compared to the other displacement-based functions. Hence,
it stresses the fact that any quadratic measure as objective function (represen-
tative of the energy components in different frequency bands) will have similar
drawbacks and one needs to explore further for better functional space. This
can provide improved performance of GA-based identification strategies for
non-smooth problems as in the present case. Other directions to improve the
performance such as rank-based non-domination [228] and immune diversity
[222] are less likely to ensure global optima unless better objective functions
(e.g., J4 in the present case which includes the effect of axial–flexural coupling)
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are used. Similar observation in the context of a benchmark problem called
the Travelling Salesman Problem (TSP) can be found in [229]. In the present
study, we restrict simulations to using only the objective functions discussed
so far and show the performance of the proposed GA-based identification
strategy in terms of the accuracy of the converged result and computational
cost in the following section.
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Fig. 10.45. GA objective functions J4 and J5 (Equations (10.14) and (10.16))
plotted with varying location of delamination for (a) cantilever and (b) fixed beams

10.8 Case Studies with a Cantilever Beam

The cantilever beam shown in Figure 10.37 is now considered for identifica-
tion. Short duration Gaussian excitation having frequency content up to 40
kHz is applied at the cantilever tip in the transverse direction. First, single
parameter identification is performed. Later, it is extended to two parame-
ters and finally three-parameter identification is performed. Unless otherwise
mentioned, function J2 is considered the objective function. Although J4 is
ideal as discussed earlier, the reason for choosing J2 is to demonstrate the
efficiency of the proposed SFEM-GA strategy in terms of computational cost
as well as accuracy, while using an inferior objective function. In the present
work, a general purpose research code comprising several modules has been
developed to implement the proposed SFEM-GA strategy and is ported on
an IBM-RS/6000 high performance computer in serial mode.

10.8.1 Identification of Delamination Location

In this case study, the size and depth of delamination is assumed to be known.
The reference data is generated by considering a 20mm delamination at a
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depth z = −2 mm. The location of delamination X from the root is identified
with the following input data.

Variable limits : 0 ≤ X ≤ 500mm
Population size : 15
Crossover type : two point
Selection type : deterministic

Crossover rate pc : 0.6
Mutation rate pm : 0.04

The fitness curve is given in Figure 10.46. Location of the delamination
(X = 200mm) is identified exactly. The number of generations passed is
24. In total 251 function evaluations are performed and the time required to
complete this computation is only 25min. Note that the structural analysis
here must involve the dynamics up to the frequency content of the excitation
signal (here 40 kHz). Such high frequency excitation is particularly useful
when smaller damage zones (typically a few centimeters in most aerospace
composite beams and panels) need to be detected. The plot in Figure 10.46
shows that the run reached a very good fitness value at generation 14. The
total number of function evaluations up to generation 14 is 161 and the cor-
responding computation time is found to be 17min. The computational cost
shows many orders of improvement over the available GA-based strategies
for similar problem complexity and accuracy. Similar improvement can be
observed in all the other case studies presented below.
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Fig. 10.46. Fitness curve of the GA run for identification of delamination location
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10.8.2 Identification of Delamination Size

In this case study, the delamination size (X) is considered as the only unknown
parameter. The delamination location (L = 200mm) and depth (z = −2mm)
are presumed to be known parameters. The input data for the GA run is given
below.

Variable limits : 0 ≤ X ≤ 50mm
Population size : 7
Crossover type : two point
Selection type : deterministic

Crossover rate pc : 0.6
Mutation rate pm : 0.04

A lower population size was considered because of the reduced complexity
of the problem as discussed in the context of Figures 10.43 and 10.44. The
exact size of the delamination (X = 20mm) is identified from the search. The
fitness curve is given in Figure 10.47. The number of generations passed is six.
A total of 25 function evaluations is performed and total computation time
is only 3min. Much better performance is found with this problem compared
to location identification. This was expected as the fitness function behaves
much better with variations in delamination size. The narrow bound in the
variable limits is also another reason for this better convergence.
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Fig. 10.47. Fitness curve of the GA run for identification of delamination size
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10.8.3 Identification of Delamination Location and Size

In this case study, two variables, delamination location (X1) and its size (X2)
are identified in a single run. The delamination depth (z = −2mm) is assumed
to be the only known parameter. The input data for the GA run is shown
below.

Variable limits : 0 ≤ X1 ≤ 500mm ; 0 ≤ X2 ≤ 50mm
Population size : 20
Crossover type : two point
Selection type : deterministic

Crossover rate pc : 0.6
Mutation rate pm : 0.04

The fitness curve is given in Figure 10.48. The search results are tabulated
in Table 10.1. The number of generations passed is 39. In total, 438 function
evaluations are performed and the total computation time is 41min.

Table 10.1. Results of genetic search for delamination location and size

Parameter Actual value Identified value

Location (X1) 250 mm 250 mm
Size (X2) 20 mm 19.9 mm

10.8.4 Identification of Delamination Location, Size and Depth

In this case study, all three parameters of a delamination; i.e., delamination
location (X1), its size (X2) and depth (X3) are identified in a single GA run.
Since the function J2 is not sensitive to the delamination depth, function J4

is used instead. The input data for the GA run is shown below.

Variable limits : 0 ≤ X1 ≤ 500mm ; 0 ≤ X2 ≤ 50mm ;
− 4mm≤ X3 ≤ + 4 mm

Population size : 20
Crossover type : two point
Selection type : deterministic

Crossover rate pc : 0.8
Mutation rate pm : 0.1

The crossover and mutation rates are increased to enable better exploration
of the solution space. The fitness curve over the generations is shown in Fig-
ure 10.49. The results of the search are tabulated in Table 10.2. The number of
generations required for convergence is 72. A total of 660 function evaluations
are performed and total computation time is 2 hr and 52min. Total computa-
tion time is comparatively higher than the previous studies. This is because



350 10 SFEM for SHM

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Generation

F
itn

es
s

Maximum Fitness
Average Fitness

Fig. 10.48. Fitness curve of the GA run for identification of delamination location
and size.

the function J4 needs all three displacement components, which increases the
computation time inside the fitness evaluation module (Figure 10.36). The
net time is indeed very much attractive considering the complexity involved
in the problem.

Table 10.2. Results of genetic search for delamination location, depth and size

Parameter Actual value Identified value

Location (X1) 200 mm 200 mm
Size (X2) 20 mm 20 mm
Depth (X3) −1 mm from −1 mm from

mid-plane mid-plane

10.8.5 Effect of Delamination Near the Boundary

In all the case studies presented so far, we have considered baseline config-
urations having delamination near the mid-span of the beam. Moreover, the
proposed SFEM-GA based identification is oriented towards wave-based diag-
nostics, where most of the reported literature deals with semi-infinite models
or models with artificially introduced absorbing (radiating) boundary con-
ditions to eliminate boundary scattering. Hence, in a real-life situations, the
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Fig. 10.49. Fitness curve of the GA run for identification of delamination location,
depth and size

integrated structural health monitoring systems and identification tools based
on such a strategy may perform poorly. To study the performance of the pro-
posed SFEM-GA, the following two case studies are made by considering
baseline configurations of the cantilever beam (dimensions are shown in Fig-
ure 10.37) with a 50 mm delamination at the fixed end. In the first baseline
configuration, it is a mid-plane delamination. Figure 10.50 shows the plots
of the objective function J4 for three subpopulations with delamination at
z = 0 (mid-plane), z = −3mm, z = +3mm respectively, and with varying
delamination length. In the second baseline configuration, the delamination is
at z = +3mm. Figure 10.51 shows the plots of the objective function J4 for
three subpopulations with delaminations at z = +3mm, z = 0, z = −3mm
respectively, and with varying delamination length. Two distinct features are
clear from these plots. One is the robust performance of the proposed SFEM-
GA in the of presence of strong boundary scattering and delamination at
the structural boundary. The second feature is that the subpopulations with
z = ±3mm in the first case (Figure 10.50) and the sub-populations with
z = 0,−3mm in the second case (Figure 10.51) are less likely to affect the
evolution process even in the presence of high rates of mutation and cross-
over. This can be attributed to the efficient modeling of axial–flexural shear
coupled waveguides and the property of the objective function J4 as discussed
in Section 10.7.2.
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Fig. 10.50. The GA objective function J4 (Equation (10.14)) plotted with varying
length of delamination starting from the cantilever fixed end for baseline configura-
tion of 50mm long mid-plane delamination at the fixed end and

10.9 Neural Network Integrated with SFEM

An MLP feedforward neural network using an error back propagation (BP)
algorithm is trained and tested to estimate (1) the span-wise location of the
damage (L1), (2) the approximate length of the degraded zone (L2) and (3)
the stiffness degradation factors αij for damage in the composite beam. De-
tailed discussion on such network models can be found in [230]. A schematic
flow-chart on the use of frequency domain spectral analysis tools and model-
generated data to train and test neural networks was reported in [231]. The
main difference in the strategy developed here compared to that reported
in [231] is that the measurement is assumed to be carried out at a single
sensor location, especially for univariate data (i.e., data containing the in-
formation of a single damage configuration), whereas in [231] the data from
several sensor locations (as many as the number of input nodes) at a particu-
lar frequency need to be fed as inputs while using that network. In the present
model, we assume that broadband spectral data is available from a single sen-
sor measurement. In SFEM, the spectral band ranges from ω1 to ωN , where N
is the Nyquist frequency. Hence the number of input nodes in the input layer
needs to be fixed by considering the frequency resolution in the model during
training. Therefore, if one needs to use the complete spectrum of the vector
û(ωn)i (for beam it consists of ûo, ŵ and φ̂) at the nth sampling frequency
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Fig. 10.51. The GA objective function J4 (Equation (10.14)) plotted with varying
length of delamination starting from the cantilever fixed end for baseline configura-
tion of 50mm long offset delamination (z = +3 mm) at the fixed end

and from the ith sensor location, then N complete sets (each containing three
displacement components) of neurons in the input layer can be included. The
network model is shown in Figure 10.52. Since the broadband spectral data
consist of real and imaginary components at every sampling frequency, the
number of neurons in the input layers is assigned as follows. First the am-
plitude and phase of the spectral data for each displacement component are
computed at each sampling frequency. This doubles the length of the data ar-
ray. Figure 10.53 shows typical spectra of amplitude and phase of transverse
displacement used as the network input. The data set corresponding to the
first sample (at ωn = 0) is removed as it does not contribute to the dynamic
characteristics. The input data to the input layer are formed by adding one
additional element of unity as input bias with the previous array.

The output from the neurons in the output layer are the damage loca-
tion (L1), the length of degraded zone (L2) and the stiffness degradation
factor α11 (in general a set of αij as seen in Equation (9.66) depending on
the importance and reliability of the diagnostic measurement). It should be
noted that for higher resolution spectral data obtained through the simula-
tion or measurements for neural network training, the number of neurons in
the input layer will increase in proportion. As a result, the number of hidden
layers and the number of neurons in each of these hidden layers also must
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Fig. 10.52. Multi-layer perceptrons feed forward neural network for estimation of
damage parameters from broadband spectral data

increase to provide optimal evolution of the information pattern to be embed-
ded in the network. However, there is an inherent drawback to such a large
network in that an excessive number of hidden layers causes slower conver-
gence in the learning when using error back propagation. Hence, for better
network performance when dealing with spectral data having low, medium or
high resolution, it is essential to restrict the number of neurons in the input
layers. Depending on the resolution (frequency sampling) and the extent of
useful diagnostic information, any FFT spectral data set can be transformed
to a data set with pre-assigned and smaller dimension but having the same
bandwidth. Although we restrict our study to estimation of a single dam-
age configuration, the model shown in Figure 10.52 can be extended to a
two-dimensional network to deal with broadband spectral data from multiple
sensor locations. Obviously, in such a case it would be more practical to use
a number of measurement sensors in proportion to the number of damage
incidents to be monitored. However, dealing with problems of such enormous
complexity remains a future area of development.

The following network details are chosen for the training and performance
testing. The same graphite–epoxy cantilever beam with one damage configura-
tion (defined by the damage parameters L1, L2 and α11) as discussed earlier is
considered. One single spectral element with embedded degraded zone is used
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Fig. 10.53. Typical amplitude and phase spectra of transverse displacement used
as the neural network input

to generate the data sets. Only the transverse displacement spectrum ŵ(ωn)
obtained at the tip of the cantilever is used. Training is carried out in sequen-
tial mode using S data sets. For each of these cases, the SFEM computation
is performed through automated scripts by varying the damage parameters
randomly. The number of neurons in the input layer is fixed at 1023 (511
neurons for amplitude, 511 neurons for phase and one neuron for bias). The
amplitudes are normalized as

y(0)
n = 1.6

(
w̄n − Min[wn, θn]S

Max[wn, θn]S − Min[wn, θn]S

)
− 0.8 ∈ [−0.8, 0.8] , (10.17)

w̄n = log10 |ŵ(ωn)| , θn = tan−1

(
Im[ŵ(ωn)]
Re[ŵ(ωn)]

)
∈ [0, 2π] (10.18)

and the phases are normalized as

y(0)
n = 1.6

(
θn − Min[wn, θn]S

Max[wn, θn]S − Min[wn, θn]S

)
− 0.8 ∈ [−0.8, 0.8] , (10.19)

where Max[ ]S and Min[ ]S are respectively the maximum and minimum val-
ues in the S input data set. The S output data sets are also normalized in a
similar way within the range [−0.8, 0.8]. In the present numerical study, we
have only one hidden layer having 512 neurons. The synaptic weights between
the neurons of the input layer and the neurons of the hidden layer are initial-
ized as a matrix w(0)(1)(512×1023). The synaptic weights between the neurons
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of the hidden layer and the neurons of the output layer are initialized as a
matrix w(0)(2)(3×512). Both w(0)(1)(512×1023) and w(0)(2)(3×512) consist of normally
distributed random numbers (with mean zero, variance one and standard de-
viation one).

Feedforward Computation

Following the standard algorithm for the feedforward MLP network [230], the
input to the mth neuron in the lth layer during the rth learning step can be
expressed as

v(r)(l)m =
N∑

n=1

w(r)(l)mny(r)(l−1)
n , (10.20)

where y(r)(l−1)
n is the output of the nth neuron in the previous layer l−1 at the

rth learning step. w(r)(l)mn is the synaptic weight of the mth neuron in the lth
layer that is fed from neuron n in layer l−1. In the present case y(r)(0)n = y

(0)
n

is the input spectral data in normalized form as given in Equations (10.18) and
(10.19), y

(0)
1 = +1 is the bias to one neuron in the input layer. y(r)(2)m ,m =

1, 2, 3, is the output of the three neurons in the output layer at the rth learning
step, where o(2) = {L1 L2 α11}T is the expected output vector from the
three neurons in the output layer. The output of the mth neuron in the lth
layer through the activation function of the input to the mth neuron can be
expressed as

y(r)(l)m = Φ(l)
m

(
v(r)(l)m

)
. (10.21)

In the present case, a bipolar sigmoidal function

Φ(l)
m =

1 − ev(r)(l)
m

1 + ev(r)
(l)
m

(10.22)

is used as the activation function in all neurons in the hidden layer as well as
in the output layer. The error signal at the output of the mth neuron in the
output layer l = 2 is defined as

e(r)(lm) = o(l)
m − y(r)(l)m . (10.23)

For a total number of M neurons in the output layer, the Mean Squared
Error (MSE) in the network output when training in sequential mode over S
training data sets is then defined as

MSE =
1

2S

M∑
m=1

[
e(r)(L)

m

]2

. (10.24)

During supervised learning, the MSE, which is also called the training error
(TE), is used as the stopping criteria over the number of epochs (number
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of learning steps) when training is performed. Additional quantifications of
network performance are given by the MSE during testing, which is also called
the generalization error (GE), and the total error is given by

total error =
S × TE + S′ × GE

(S + S′)
, (10.25)

where S′ is the number of test data sets.

Error Back Propagation

The error in the output signal from the neuron in the output layer (given
in Equation (10.23)) is back propagated using a gradient descent algorithm,
where the local gradient is computed as

δ(r)(l)m =

⎧⎪⎪⎨
⎪⎪⎩

(e(r)m)(L)φm
(L)′ for neuron m in output layer L

φm
(l)′

∑
n

δ(r)(l+1)
n w(r)(l+1)

nm for neuron m in hidden layer l ,

(10.26)
where φ(r)m

(l)′ denotes differentiation with respect to the function argument
defined in Equations (10.21) and (10.22). In the next epoch r + 1, the synap-
tic weights connecting layer l to layer l + 1 are updated according to the
generalized delta rule [232] as

w(r + 1)(l)mn = w(r)(l)mn + ∆w(r)(l)mn , (10.27)

∆w(r)(l)mn = β(l)∆w(r − 1)l
mn + η(l)δ(r)(l)m y(r)(l−1)

m , (10.28)

where η(l) is the learning rate parameter and β(l) is the momentum constant
for the neurons in layer l.

For optimal performance of the network, especially in the present problem
where the amount of input spectral data is voluminous and highly non-smooth,
it is important to choose the learning rate parameters for each of the layers
carefully. After observation of the numerical performance of the network over
a small number of training data sets as a trial, the learning rate parameters
for the neurons in the hidden layer and output layer were fixed at η(1) = 0.03
and η(2) = 0.03. Without using any momentum constant (β(l)=0) for addi-
tional stability, good convergence of the MSE has been achieved along with
closely matching damage parameters. The numerical results are presented in
the following section.

10.10 Numerical Results and Discussion

The case study performed here is with the spectrum of the transverse displace-
ment ŵ(ωn) at the tip of the 0.8 m long graphite–epoxy cantilever beam with
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single damage configuration subjected to the broadband pulse (Figure 4.5) ap-
plied in transverse direction at the tip. From SFE computation, spectral data
having 512 sampling points up to the Nyquist frequency are taken directly
into the neural network training and testing. Sampling is done at ∆ω = 97.66
Hz. No frequency scaling or dimensionality reduction is made when the data
are taken for normalization. Sets of damage parameters used during genera-
tion of input data sets for training and testing are taken as combination of
two different sets S1 and S2, where

S1 : L1 ∈ [0.1 m, 0.6 m] in steps of 0.1 m
L2 ∈ [0.01 m, 0.21 m] in steps of 0.05 m
α11 ∈ [0.1, 0.9] in steps of 0.2

S2 : L1 ∈ [0.2 m, 0.45 m] in steps of 0.05 m
L2 ∈ [0.01 m, 0.26 m] in steps of 0.05 m
α11 ∈ [0.1, 0.85] in steps of 0.15

The total number of training data sets is 316 and the total number of test
data sets is 20 (randomly selected from S1).

Table 10.3. Error-level in the network output after 600 epochs.

L1 L2 α11

(TE)1/2 0.0095 0.0304 0.0115

(GE)1/2 0.0224 0.0265 0.0632

(total error)1/2 0.0141 0.0100 0.0332
Maximum error 0.0412 0.0632 0.1749

Table 10.3 shows the error-level in the network output after 600 epochs.
It can be seen that the error in α11 is highest. Although one can proceed
with training the network further to obtain optimal network parameters, the
network performance at the end of 600 epochs shows acceptable accuracy in
estimating the damage parameters. The accuracy of these results is discussed
next.

Figure 10.54(a) and (b) show the nature of neural estimation compared
to the actual values of L1 during training and testing respectively. Similar
comparisons for L2 and α are shown in Figure 10.55(a) and (b) and Fig-
ure 10.56(a) and (b) respectively. It can be seen from these figures that L1

is estimated most accurately, except for test sample number 18. Correspond-
ing actual damage parameters are L1 = 0.3 m, L2 = 0.15 m and α11 = 0.3.
Interestingly, L2 = 0.15 m represents, comparatively, a large-size damage.
But the L1 = 0.3 m i.e., the first interface where the waves are scattered, is
sufficiently far away, hence is expected to transmit less energy through the
first interface into the damaged zone. The corresponding α11 = 0.3 indicates
very high degradation in stiffness, so that it is obvious that only a very small
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Fig. 10.54. Actual and estimated values of damage location L1 during (a) training
and (b) testing at the end of 600 epochs

amount of energy is left to scatter back from the second interface (with L2

information) and arrive at the measurement location (cantilever tip). This is
why L2 is predicted with maximum deviation from the actual for test sample
number 18. Subsequently, α11 is also predicted for this sample with maximum
error (see Table 10.3). Table 10.3 indicates small training and testing errors,
which shows the generalization capability of the network. However, the overall
estimate of the damage parameters is made with acceptable accuracy.

Effect of Noise

Noise is inherent to any spectral estimation from on-line sensor signals, es-
pecially in SHM based on acoustic wave excitation. This is because of (1)
features due to manufacturing defects in the structure, (2) ambient environ-
ment and interference in the sensor hardware, (3) limitations on the trans-
ducer bandwidth, and (4) other unknown sources of scattered waves which
are unaccounted for in the case of finite element model-based training of the
neural network. Therefore, it is important to study the effect of different lev-
els of noise on the network, which has already been trained. To numerically
simulate such a situation, random noise is added to some of the test data
sets. This is done by adding noise to the amplitude and phase of the spectra
separately. Only those data sets are selected for which the addition of noise
does not exceed the normalization range [−0.8, 0.8] for which that network
has already been trained.
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Fig. 10.55. Actual and estimated values of damage size L2 during (a) training and
(b) testing at the end of 600 epochs
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Fig. 10.56. Actual and estimated values of stiffness degradation factor α11 during
(a) training and (b) testing at the end of 600 epochs
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Fig. 10.57. Percentage deviation of estimated L1 compared to the actuals when
using a noisy input to the neural network during testing
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Fig. 10.58. Percentage deviation of estimated L2 compared to the actuals when
using a noisy input to the neural network during testing
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Fig. 10.59. Percentage deviation of estimated α11 compared to the actuals while
using noisy input to the neural network during testing

Figure 10.57, 10.58 and 10.59 show the percentage deviation of the esti-
mated L1, L2 and α11 with respect to the actual values in the presence of a
noise-to-signal ratio up to 10%. In these figures, the results are shown for three
different sets A, B and C of damage parameters. These three sets correspond
to test sample numbers 4, 6 and 8 (see Figure 10.54 − 10.56). It can be seen
from Figure 10.58 that L2 is highly sensitive to noise, whereas Figure 10.59
shows that α11 is less sensitive to noise until high noise-to-signal levels are
present. It can also be noted from Figure 10.56 and 10.59 that α11 of Set B
(test sample number 6) is estimated accurately and so also is L1 of Set B (as
seen from Figure 10.54 and 10.57). On the other hand, since the estimation
of L2 of Set B is less accurate in the absence of noise (see Figure 10.55), it is
further affected leading to a higher sensitivity to noise.

This chapter gives a complete overview of damage detection techniques
used in the SFEM environment for structural health monitoring of composite
beam structures. The chapter details novel modeling, analysis and damage
diagnostic techniques using SFEMs. These are summarized item-wise in the
following paragraphs.

In this chapter four different damage detection methodologies are explored.
In the first approach, damage is detected by estimating the energy trapped in
the structures due to broadband loading at different frequency levels. This is
accomplished through the estimation of spectral power. Studies are performed
for both single and multiple delaminations of different sizes and also for a beam
with stripped inclusions.
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The next method explored is the damage force method, wherein the dam-
age is located using the healthy stiffness and the damaged response. This can
be applied practically to any type of damage. The method is demonstrated us-
ing simulated experimental results for both single and multiple delamination
detection.

A genetic algorithm integrated with spectral estimation suited to efficient
identification of delamination in composite beams has also been developed.
With this model-based approach, just a few transducer nodes appear suffi-
cient for measurements in delaminated beams and connected structures. Var-
ious objective functions in GA are explored to determine the efficiency of the
proposed algorithm under the SFE environment. The results show good GA
performance in terms of computational efficiency compared with many other
damage detection techniques.

The well-known MLP feedforward network trained using an error back
propagation algorithm is used owing to its previously successful applications
in damage identification problems. Its simplicity of implementation in soft-
ware and hardware is exploited. The network is designed in such a way that
model-generated spectral data from SFEM for training as well as on-line mea-
surement can be accommodated easily. The performance shows acceptable ac-
curacy for the estimated damage parameters. The study also shows that the
estimated size of a degraded zone is highly sensitive to measurement noise.
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Spectral Finite Element Method for Active
Wave Control

The concept of broadband control in flexible structure has evolved over recent
times. Tremendous technological success in the field of smart structures and
MEMS has laid the path towards implementation of such concepts. Structures
made of multi-functional composites have provided a wide range of platforms
for precision sensing, distributed actuation and control related applications.
Most of the mathematical frameworks behind the control systems normally
use the frequency domain characteristics of the system. Since the basic foun-
dation of SFEM is in the frequency domain, these aspects will be fully ex-
ploited in the present chapter, while developing a finite element model with
integrated control algorithm for the control of a distributed flexible structure.
The approach uses SFEM developed earlier to model the dynamics of the
host structures. The control element, namely the sensor and the actuator,
will be modeled through an active spectral finite element (ASFE). This chap-
ter supplements Chapter 2 in giving a complete overview of the constituent
models for different smart sensors/actuators. Towards the end, a case study
of helicopter cabin noise reduction is presented.

11.1 Challenges in Designing Active Broadband Control
Systems

Broadband control is important for many flexible structures with stringent
vibration and noise level specifications and subjected to broadband loading. In
most aerospace structures, such as helicopters, launch vehicles, satellites and
spacecraft, many component-level vibrations contribute to the system-level
noise spectrum, which is broadband. This is unlike the control requirement
for steady-state vibration in machinery, where passive devices can perform
efficiently. Almost all broadband control systems require active devices to
augment the band-limited performance of passive devices.

In terms of high amplitudes of structural vibration and noise, gearbox
transmitted noise in helicopters, launch load induced noise in launch vehicle
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firing, etc., fall into a category where a high-powered fatigue-tolerant active
control system is the only option. Traditionally, an acoustic blanket covers
many flexible parts of a helicopter fuselage, and electrohydraulic actuators
are used at the gearbox fuselage interface. The concept of transmission-path
treatment by providing active struts for gearbox mounts has been found suit-
able for active vibration/noise control (AVC)/(ANC) systems. A 10–20 dB
reduction in the helicopter cabin noise spectrum within the frequency band
10 Hz − 5 kHz has been targeted [233]. Launch vehicles impart high levels of
vibration to spacecraft during launch. The vibration environment is defined
over several frequency bands (1) transient vibration < 80 Hz, (2) random vi-
bration 20–2000 Hz, and (3) pyrotechnique shock 100–10000 Hz. Loads from
transient vibrations define spacecraft design of primary structures such as
spacecraft bus, solar panels and antenna support, instruments mounts, etc.,
Loads from random vibrations define the design of spacecraft light structures
such as antenna and solar panels, and shock loads define the design of elec-
tronic components and instruments. Spacecraft must survive the combination
vibration environment. This involves broadband control and needs to be cost-
effective for short launch duration [234].

On the other hand, instrument jitter during air and space-born measure-
ments, micro-gravity isolation in satellites and spacecraft, etc., fall into a
category where a low-powered, lightweight but high precision active control
system is required throughout the design life [235].

In the following sections, first we discuss the available strategies for vibra-
tion and wave control. Next, active material systems (piezoelectric and magne-
tostrictive) integrated with composite beam structure are considered. Differ-
ent active composite material models are developed. The active spectral finite
element model (ASFEM) is then developed for broadband control of vibration
and waves in skeletal structures with generalized sensor/actuator configura-
tion. Numerical simulations of the effect of distributed actuator dynamics and
active control of wave transmission in helicopter gearbox support-struts are
carried out. Optimal control strategies using frequency domain power flow
are developed. Numerical simulation of the optimal broadband control of a
composite beam network with piezoelectric fiber composite (PFC) actuators
and point sensors for non-collocated feedback is carried out.

11.1.1 Strategies for Vibration and Wave Control

The design of smart structural systems based on the control of the first few
resonant modes individually are most common in practice. For many vibra-
tion control applications, this serves as the control objective, since the modal
energy is distributed over he first few resonant modes only. The basic steps
in the development of such active control system models can be described as
follows.

• Assume appropriate kinematics and constitutive model. For actuators
or load cells mounted on the host structure, appropriate lumping of
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the control force and actuator inertia can be considered. For surface-
bonded or embedded layered sensors/actuators, the same kinematics as
the host structure with additional constraints (e.g., shear-lag to model
active/passive constrained layers, discontinuous function to represent in-
terfacial slip while handling inclusions, air-gap, etc.,) may be needed.

• Adopt an application-specific control scheme. For a known harmonic dis-
turbance, the control force can be applied in the open-loop having optimal
phase difference with the mechanical disturbance. The actuator force can
be directly specified to add on the equivalent mechanical force vector. For
unknown dynamic loading, and as required in most stable controller de-
signs, closed-loop control schemes are adopted. The initial configuration
of the error sensors, whose placements and numbers are fixed based on op-
timal control performance (observability and controllability), can be used
for feedback or feedforward control. These error measurements are consid-
ered inputs to the controller under design. The controller output vector is
used as the input electrical signal to the actuators. For off-line optimal con-
trol design based on conventional optimization techniques, the above steps
are repeated at every iteration while extremizing the cost function(s). For
off-line optimal control design based on soft-computing tools (e.g., genetic
algorithm), the solution space can be explored directly.

• Once all the system parameters (stiffness, mass, damping, electromechan-
ical properties of sensors and actuators, sensor locations, actuator loca-
tions, actuator input, etc.,) for a particular configuration are available,
develop the global model for the passive structure and the senor/actuator
segment using analytical, finite element or boundary element techniques.
In certain cases of electromechanical coupling, the system matrices can be
decoupled into passive and active components. For the fully coupled elec-
tromechanical case, the analytical solution can be obtained for only a few
electromechanical boundary conditions. However, for mounted actuators
or load cells, this is not a problem when lumping the effect of actuator
stiffness, inertia and force in the respective system matrices.

• Adopt suitable methods of system solution in temporal or modal space.
When the discretized system size is large, appropriate reduced-order mod-
eling techniques can be used. Dynamic condensation, proper orthogonal
decomposition (POD) or a system equivalent reduction expansion process
(SEREP), among many reduced-order modeling techniques, are found use-
ful. Based on the formalism of the control cost function construction, a
state-space model (first-order representation) is often used instead of a
direct second-order representation. This is particularly suitable for con-
ventional designs based on a quadratic regulator approach, where the
state-space plant matrix, the input/output matrix along with the required
weighting matrices are introduced. Peak response specifications are gener-
ally found to be linear matrix functions of the design variables, which al-
lows them to be incorporated within the design framework without increas-
ing the complexity of the optimization [164]. In time marching schemes
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(e.g., Newmark time integration), when designing the optimal control sys-
tem the control cost function is minimized, including special control system
features (e.g., gain scheduling, feedback delay, etc.). When modal analysis
is adopted, the modified dynamic stiffness matrix (including the contri-
bution of sensor, controller and actuator parameters) are to be optimized
so that the prescribed modes are controlled. In this approach, the control
efficiency is quantified in terms of reduction in the modal amplitude level
in the frequency response.

• Once the range of control system parameters, and the sensor/actuator col-
location pattern are obtained, sensitivity and stability studies are carried
out. Sensitivity studies are important to identify the most effective solution
space of the design parameters. This also helps in visualizing the devia-
tion in the desired response due to control uncertainty and measurement
noise. With the narrowed-down solution space of the design parameters
thus obtained, the loci of the roots of the characteristic system, i.e., poles
(resonances) and zeros (anti-resonances) of the system transfer function
for varying design parameters are studied. The range of design parameters
that produces a root locus on the right-half phase-plane are unstable and
are avoided in the final design. A secondary objective is often in terms
of control of transient disturbances, which is to minimize the transient
response time of the controller.

• For a real-time automatic control system, the off-line design stages dis-
cussed above are augmented by an adaptive filter that tunes the control
gains in the presence of measurement errors and uncertainty [236]. Also,
there are certain drawbacks to the finite-dimensional design when used
to control a distributed parameter system, such as control spillover. This
is the result of insufficient modes considered in the MIMO state-space
model. Although adaptive filters can augment the performance of off-line
design based on a finite number of states, better modeling techniques for
distributed parameter system are often advantageous. Many such recent
techniques for structural vibration and waves based on the exact solution
of the wave equations are available and these are the main aspect of study
in the present chapter.

The most commonly used system for structural vibration control consists
of active/passive tuned mass damper (TMD) devices [237], [238]. Several types
of TMD devices are available in industry. Many of them consist of a combi-
nation of lumped masses, springs and viscoelastic rod/beam/solid block type
structures. Also, various configurations based on electrohydraulic damping
mechanisms, electrorheological (ER) fluid, magnetically controlled reaction
mass and magnetic valve type damping mechanisms are available. Shape mem-
ory alloys (SMAs) have also been used in TMD for building structural control
[239]. In TMD devices, the combined effect of spring, mass and passive damper
is used. A single such device is capable of controlling a single mode or a few
closely-spaced modes at most. On the other hand, in TMD devices with con-
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strained viscoelastic layers, modes within a somewhat broader frequency band
can be controlled. Multiple TMD devices can be used for multi-mode control.
A general treatment of finite element computational models based on com-
plex modes for a large structure having multiple TMD devices can be found
in [240]. Optimization of the performance of TMD devices over a specified
frequency band has also been reported [241].

In active devices, typically based on PZT layers/stacks, a much wider
design space can be effectively used. Anderson et al. [242] developed a pack-
aged flexible PZT strip with integrated electronics for active vibration control.
Using these devices 5–10 % damping of a single mode within the frequency
range 10–200 Hz was reported. Although conventional active/passive TMD
devices find application mostly in civil engineering structural controls, active
damping systems with integrated electronics are now being used extensively
in aerospace applications, ranging from instrument jitter control to launch
vehicle vibration isolation to spacecraft component-level and system-level sta-
bilization [243], [242], [244], [245].

Both active/passive devices as a subsystem or active layers bonded or em-
bedded in composite for distributed actuation require accurate modeling and
analysis. Simpler structures with distributed actuator layers can be modeled
using semi-numerical approaches, such as the Rayleigh–Ritz method, assumed
modes method, Galerkin’s method and the collocation method [246]. However,
for complex configurations, a finite element method is used. For narrowband
applications involving the control of a few lower modes, the solution of a finite
element system in modal coordinates is computationally efficient compared to
direct time integration [201]. However, in the case of displacement, velocity
and acceleration feedback, in general the modified non-symmetric system ma-
trices cause loss of orthogonality. For this reason, special care is required when
using the natural modes. Also, the number of steps in matrix computation in-
creases. Beside this, one would require a fine finite element mesh to minimize
any unwanted discretization error in capturing the coupled electromechanical
or magnetomechanical field. As the number of modes under consideration in-
creases, especially in broadband applications, the computational cost becomes
significantly higher.

In contrast to the modal approach for broadband control, the wave ap-
proach is based on the solution of a finite set of traveling waves. Instead of
the active/passive control systems for structural vibration (standing waves)
as discussed above, wave-absorbing controllers are the only viable solution for
controlling disturbance propagation in flexible structures. References [247],
[248] and [249] developed transfer function based models and point control
forces to cancel the traveling waves in skeletal structures. The basic objec-
tive here is to completely cancel the unwanted component(s) of the original
traveling waves. In a similar direction, a wave-absorbing control model for
piezotransducers bonded to an isotropic beam was developed in [250].

Apart from the fact that in the available transfer function based models for
wave control, which are semi-analytical in nature, and hence applicable to a
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specific sensor/actuator collocation and structural boundary, the implementa-
tion of a generic closed-loop control model is not possible. In most broadband
control applications, criticality of the problem can be summarized as follows.
Fundamental limits on the performance of the available active control sys-
tems are found at low and high frequencies. The low frequency limit is caused
by the nearfield of the secondary source corrupting the output of the error
sensor [251]. In all the feedforward wave cancellation-based active control sys-
tems described in the literature [252, 253, 254, 255], this happens because
the nearfield information is not inherent to the controller input. Therefore,
restrictions regarding the relative placements of sensors and actuators must
be made when adopting such control systems. Also, it is true that dispersive
wave speed (group speed) increases with increasing frequency and hence the
arrival of nearfield noise is difficult to identify in complex interconnections of
structural components. Experiments on a metallic beam show that such a high
frequency limit on the error signal delay increases for reduced flexural rigidity
[251]. Also at the component level, this effect becomes manifold, which must
be captured accurately from the integrated mechanics. As a complementary
strategy, one can consider adaptive tuning of the filter to compensate the cu-
mulative error in phase and amplitude of the actuator input signal [251], [256],
[246]. However, such adaptation may always be fast enough against high fre-
quency transient loading. In another direction, feedback control of wave trans-
mission has been studied in [257, 258, 259]. In these studies, stabilization of
the close-loop plant was carried out. This can be viewed as augmentation of
the feedforward wave cancellation of incoherent noise on the error sensors by
minimizing certain cost functions. Similar wave absorbing techniques using
transfer function-based methods were proposed, which considered the exact
solution to the wave equation in the frequency domain [248, 249, 250]. Essen-
tially, in these studies, and also in our present approach, the main objective
of the feedback control effort is the local or low-authority control (LAC) of
the transmitted waves.

However, the effect of the distributed actuator dynamics related to such
applications has been little studied. Although analytical in nature, and re-
stricted to continuous cantilever beams, similar reported studies have shown
the possibility of using fewer distributed actuators with strain sensors for the
control of multiple waves. While mounting packaged TMD devices or inte-
grated active layers, the original poles and zeros of the system transfer func-
tion (even under open-loop conditions) can experience significant sliding due
to the added component-level dynamics [260].

Although significant development in the robustness of the control system
has been reported in the literature, the effect of finite actuator dynamics
in the control of distributed parameter systems still remains a core problem
area from the stability point of view. Such stability problems encountered in
distributed space structures were discussed in [261]. Noyer and Hanagud [262]
proposed a Laplace domain model for optimal control of beam structures
including actuator dynamics. In the present study, we prefer visualization
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of the closed-loop responses (hence locations of poles and zeros along the
frequency axis) directly, since the ASFE model proposed in this chapter is
computationally more efficient than equivalent state-space or Laplace domain
models.

In [263, 264] frequency domain models based on SFEM were employed
for open-loop feedforward and closed-loop PID feedback control. Exact ac-
tuator dynamics and electromechanical boundary scattering were considered
in these models. This enables one to analyze multiply connected beams with
arbitrary geometry, and non-collocated as well as distributed sensor–actuator
configurations. This concept is the basic framework of ASFEM developed in
this chapter, and it accounts for the axial–flexural wave coupling due to out of
plane bending actuation and the anisotropic electromagnetic properties across
the beam thickness.

11.1.2 Active LAC of Structural Waves

LAC implies that the control law is based only on information from the vicinity
of the actuator. Typically, collocated actuators and sensors are used for LAC,
because if the actuators and the sensors are collocated and dual (their product
is power) then the input-output transfer function is positive real, with an
alternating pole zero structure and phase bounded by ±90◦ [265, 266]. If, in
addition, the compensator applied to the structure is strictly positive real then
the closed-loop system is guaranteed to be stable and the compensator will
add damping to the structure. Also, the corresponding modeling and analysis
become straightforward. Once, stability is guaranteed in LAC, it makes a
perfect compliment for global or high authority control (HAC). By providing
broadband increase in damping, local controller(s) make the flexible modes
robust in the roll-off region and improve performance at higher frequencies,
where HAC is not designed to work [258, 267].

However, a collocated sensor/actuator configuration is not the best op-
tion for LAC for two reasons. First, for control of dispersive waves at high
frequencies, time delay in collocated feedback can be higher than the arrival
time of wave packets. This is bound to produce phase difference and loss
of coherence, and hence sensor–actuator collocation may not always be the
best choice. Instead, such incoherence can be exploited to obtain the optimal
control performance. Second is that a non-collocated sensor/actuator config-
uration may yield less power requirement for the same broadband control
objective. This would require analysis of the non-collocated sensor/actuator
configurations for LAC.

Although earlier studies on structural wave propagation in infinite or semi-
infinite rods and beams form the basis for understanding the overall system
behavior, they are not adequate for modeling complex configurations. This is
because, structural boundaries and material interfaces may produce signifi-
cant distortion and scattering of the original traveling waves. Consideration
of the trapped energy in a structural member will be an important factor for a
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control system, designed for spatially local attenuation of kinetic energy com-
ponents at different frequencies. In the studies [268], [269] on finite beams, it
is predicted that a single wave (axial or flexural or torsional) can be controlled
completely by minimizing the power flow corresponding to the control force
with the associated degree of freedom. But in many situations, considerations
such as actuator dynamics and coupling between the different types of waves
may require one to use multiple actuators.

In the case studies reported in this chapter, we model the control perfor-
mance of axial–flexural coupled wave. The optimal performance that can be
realized is also discussed. As suggested by [269], coupling between the axial
and flexural waves can be modeled by an equivalent asymmetric scattering
termination for one-dimensional structural members. An experimental study
by [269] supporting this model reveals that control of one wave type (axial
or flexural) results in standing waves in both types, if the scattered waves
from terminations are not effectively controlled. Since, the exact coupling be-
tween various wave types was not studied in the available literature, it was
concluded in the study [270] that the effective control of all the waves would
require at least one actuator per wave type. An experimental investigation
supporting this conclusion can be found in [246]. The experimental study by
[233] also indicates that the coupling between axial and flexural waves will be
important due to the presence of transverse dynamic loading along with the
primary axial loads.

As mentioned above the control of wave transmissions is essentially local or
low authority control (LAC). Therefore, a general framework to develop com-
putational model is required, which can deal with arbitrary sensor/actuator
collocation. Distributed actuator dynamics with non-collocated feedback is
not tractable in the modal method. In methods based on traveling waves and
transfer function matrices, a number of complicated and application-specific
algebraic manipulation makes the analysis cumbersome. Further, optimiza-
tion of such non-collocated sensor/actuator configuration for broadband LAC
applications is a challenging task.

11.2 Externally Mounted Passive/Active Devices

Use of bulk transducer material with piezoelectric, magnetostrictive, electro-
opto-mechanical and electromagnetic properties have long been exploited in
the ultrasonic, ferroelectric and optical devices. For structural vibration and
wave related applications, they are comparatively new in modeling, design,
fabrication and range of applications. The additional issues, namely the dis-
tributed actuator dynamics, actuation bandwidth, actuator authority etc. are
some of the important aspects which are being addressed for vibration and
wave related applications. Also, issues in integration of these bulk materials
with the host composite structures have provided a new dimension in design.
Subsequently, accurate modeling, analysis and understanding of different ac-
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tuation and sensing mechanisms play an important role in the cost-effective
technology development. The most commonly used piezoelectric material is
the lead zirconium titanate (PZT) with varying crystal structures [271, 272].
At present, several categories of PZT (hard and soft) are available in wafer,
deposited thin-film, powder and fiber forms [273, 274]. PZT wafers (typical
thickness is of the order of milimeters to micrometers) polarized with uni-
form surface electrodes or polarized with Interdigital Electrodes (IDEs) can be
used in the surface-bonded or embedded form in a laminated composite with
ply cut-outs or resin pockets. PZT powder mixed with polymer matrix and re-
inforcing fibers can be manufactured using appropriate curing methods in the
presence of a polarizing field. Piezoelectric fibers of various shapes and binder
matrix with improved conductivity can be used to manufacture the piezo-
electric fiber composite (PFC). In all these active composites, the effects of
residual stress, low compaction, dielectric breakdown and electrical insulation
are major manufacturing issues that are intense areas of research, which will
help in improving the performance of such active composite for broadband, re-
liable sensing and control applications. Among the magnetostrictive materials
for structural sensing and actuation, Terfenol-D (TbxDy1−xFe2) appears to be
the best candidate, having a wide linear constitutive relation, small hysteresis
and high actuator authority. However, for both PZT and Terfenol-D, hystere-
sis and a non-linear constitutive relation is common, and an appropriate DC
bias electric/magnetic field is required to achieve best results. Terfenol-D in
the form of rod as well as powder mixed with polymer matrix in composite
[275] can be used for structural actuation.

Table 11.1. Comparison of solid state actuation materials with their bulk properties

PZT 5H PVDF PMN Terfenol-D Nitinol

Actuation piezo- (31) piezo electro- magneto- SMA
Mechanism ceramic film strictive strictive

Max. Strain 0.13% 0.07% 0.1% 0.2% 2%-8%

Modulus (GPa) 60.6 2 64.5 29.7 28(m), 90(a)

Density (kg/m3) 7500 1780 7800 9250 7100

Actuation 6.83 0.28 4.13 6.42 252-4032
Energy Density
(J/kg)

Hysteresis 10% >10% <1% 2% High

Temperature -20o to 200oC Low 0o to 40oC High -
Range

Bandwidth 100kHz 100kHz 100kHz <10kHz <5Hz

Table 11.1 shows a comparison of of the properties of bulk PZT 5H (hard),
PVDF, PMN, Terfenol-D and Nitinol. PZT 5H is commonly used for high
actuator authority and high dielectric breakdown voltage in structural control.
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Polyvenyl difluoride (PVDF) is commonly used as a thin-film sensor. Lead
magnesium niobet (PMN) falls into the category of electrostrictive material
with quadratic non-linearity in the constitutive relation, and can be used for
sensing and low strength actuation. Terfenol-D is commonly used in structural
actuation with high actuator authority. However, excessive heating and weight
due to its magnetic housing and magnetizing coil limit its wider application.
Nitinol is the industrial name of nickel titanium alloy and shows the shape
memory effect due to diffusionless transformation between its martensitic and
austenitic microstructures. The temperature-induced transformation, which is
primarily responsible for the shape-memory effect, is commonly exploited for
static shape control and low-frequency vibration control. The stress-induced
superelastic effect also helps providing a high passive damping feature of shape
memory alloys (SMAs) in vibration and wave control applications.

For sensing and active control of vibration and waves, the frequency band-
width of the transducer is one important parameter, which provides their
operational limits in terms of frequency range of excitation. For vibration and
wave sensing, any measurement at the higher end of the frequency bandwidth
is likely to introduce high signal-to-noise ratio in the sensor output. On the
other hand, for vibration and wave control applications, the requirement of
any actuation at the higher end of the bandwidth and above may cause con-
trol spill-over. As can be seen in Table 11.1 Nitinol is suitable only for low
frequency applications, whereas Terfenol-D and PZTs are suitable for medium
and high frequency applications, respectively.

Apart from the piezoelectric or magnetostrictive composite, which are
recent developments, packaged sensors and actuators have been commonly
used in structural vibration and waves [276, 270, 277]. Figures 11.1 and 11.2
show the typical configurations of a packaged magnetostrictive rod actuator
and piezoelectric stack actuator. Similar actuators have been used to con-
trol the gearbox-induced noise transmission in a helicopter cabin, as reported
in [270, 233]. In such packaged transducers with housing, multi-modal con-
trol can be obtained using suitable block-force (provided by pre-stressing the
core) and different directional mounts having a group of such transducers.
Also, additional tuned mass can be used to provide passive damping features.
However, for multi-modal control, one needs to have an adaptive feedforward
or feedback algorithm and error sensors in to guide these actuators.

On the other hand, when using distributed actuators bonded or embed-
ded in composite, one can use the active material properties and geometry
as design parameters for the required distributed actuator dynamics. Craw-
ley and Luis [278] developed an analytical model to study the strain-induced
actuation due to surface bonded and embedded piezoelectric layers. Piezo-
electric strain transfer assuming shear-lag through the bonding layer showed
hyperbolic variation of strain as a function of the length, the thickness and
the shear modulus of the bonding layer and the beam-to-piezoelectric stiffness
ratio. In the same work [278], a scaling analysis was also carried out to study
the effect of coupling between the piezoelectric actuator and the host beam
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Fig. 11.1. Configuration of the packaged magnetostrictive/piezoelectric transduc-
ers. (a) Magnetostrictive rod actuator. (b) Piezoelectric stack actuator. (c) Piezo-
electric stack pair
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Fig. 11.2. Piezoelectric stack pair

structure. It was found that the active damping for rate feedback control of
a specified mode is only dependent on the actuator material properties, when
the geometry of the actuator and host beam structure is scaled by constant
value. Such analysis also brings out the fact that the optimal placement of
the actuator should be at the region of high average strain.

However, the application of distributed actuators for broadband structural
control as opposed to single mode control is not directly amenable from this
framework. Also, for wave control applications, one needs to draw a ratio-
nale between the optimal placement of actuators in terms of high average
strain transfer as well as sensor collocation with maximum response sensitiv-
ity. This particular aspect of optimal broadband control is focussed on the
numerical simulations presented in this chapter. Apart from the modeling is-
sues discussed above, the residual stress developed during the manufacture of
integrated actuator and additional pre-stressing arrangement needs to be de-
signed based on specific application. For example, in [277] a packaged layered
actuator with dual force/strain sensing capability was devloped for distributed
actuation and control. A force/strain feedback mixing coefficient and thickness
and length of the actuator layer were considered as design parameters.

A layered sensor and actuator configuration is suitable to model and ana-
lyze using elementary or shear deformable beam/plate kinematics [279, 280,
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281]. Multiple sensor and actuator layers have been modeled [280] using mul-
tiple potential degrees of freedom along with a layer-wise kinematics. Cai et
al. [172] presented a technique based on a 2-D elasticity solution for multi-
ple piezoelectric layers. To accommodate the effect of adhesive interface be-
tween the surface bonded active layer and host beam structure, additional
constrained shear layer damping has been studied in the work [282, 283, 284].

Currently a number of designs are available which use PZT ceramic fibers,
magneto-elastic inclusions and conventional matrix. The coupled electro-
mechanical field and boundary conditions at the matrix-fiber interfaces are
the main aspect of micromechanical modeling in these types of multi-phase
composite. In conventional fiber reinforced brittle matrix composite, the ho-
mogenization techniques based on periodic representative volume elements
(RVEs) are used [285]. Treatment of additional non-linear effects such as
strain softening in polymeric composites can be found in the work of Sluis
et al. [286]. Finite element prediction of PFC properties of electroded PZT
was reported in [46]. Following this development, experimental investigation
for standardizing the design of PFC with IDEs for structural actuation was
carried out in [274]. For model validation, uniform field models of PFCs with
circular and square PZT fibers were developed. The 3-D constitutive models
of bulk electromechanical properties of the constituents were homogenized.
To achieve this, the boundary conditions at RVEs were imposed, which is the
same as in microscopic composite. This is known as the repeating element ap-
proach, and has been used extensively in modeling. The only difficulty, which
is due to non-uniformities of IDEs, were modeled assuming uniform electric
field between the IDEs and this was found satisfactory in comparison with the
experimental results. Also these models perform well in the linear and high
frequency regime. Following the performance standardization of these PFCs
as distributed actuators and sensors, the main task remains how they can be
deployed for better control applications. In the particular case of transverse
bending actuation [287, 273], PFCs have been found suitable. It is found that
the required conformity of active fiber composite with the host structure can
also be achieved due to their tailorability in choosing fiber volume fraction,
orientation and electrical properties of the matrix [273, 288, 289].

Although various issues related to the fabrication, constitutive modeling,
packaging and reliability, etc., of PFCs have been addressed, application of
such PFCs for distributed structural actuation in vibration and wave control
related applications are very few [290]. Also, there are destabilizing effects
of such distributed but finite actuator dynamics on the control performance,
especially for non-collocated feedback, which needs to be accurately dealt with
in the framework of a distributed parameter model. In the present study, we
consider the effect of integration of similar PFC actuators and sensors with
the host composite beam structures on their control performance as one of the
key issues. We also consider the broadband actuation and sensing capability
(up to kHz range) of these PFCs to develop a linear wave mechanics based
structure-control interaction model.
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11.3 Modeling Distributed Transducer Devices
Integrated with Composite Structures

Before obtaining a distributed parameter model for an integrated active/ pas-
sive material system to be used for structural wave control applications, it
is essential to incorporate the key features of these material assemblies accu-
rately. Several literature and finite element models are at present available for
carrying out detailed 2-D/3-D analysis and design for smart transducers [291],
[292]. These transducers externally bonded or embedded inside the composite
when acting as sensors, generate electrical signals (with the help of appro-
priate circuit and signal-processors) due the induced mechanical strain. On
the other hand, when they are designed as actuators, they induce mechanical
strain in the host structure due to the application of an electromagnetic field.
In the present study, we consider only piezoelectric (e.g., PZT) and magne-
tostrictive materials (e.g., Terfenol-D) as bulk transducer materials. Modeling
surface-bonded and embedded wafers or thin-film type structures as well as
stacked actuators fitted in composite rod/beam segments are considered. A
more complicated material system in the form of inter-digital transducers
(IDEs), which are often used in MEMS, ultrasonics and surface acoustic wave
(SAW) applications, are derived next. Use of piezoelectric fiber composite
(PFC), which is a more recent development in distributed structural actua-
tion technology, has introduced the possibility of using active fiber composite
in various forms. Although simplified models of different PFCs based on ho-
mogenization have been developed [274], such constitutive models have not
been applied to study their distributed actuation capabilities for structural
wave control or SAW type applications. At the end of the following section, a
uniform field model of PFCs is derived, which is studied later in the context
of distributed actuator dynamics.

Host Composite

Piezoelectric Stack
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−
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Z

x 3

1x
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. . . . . V
−

X

Z
Piezoelectric Patches

x1

x 2

x 3

Host Composite

. . . . .
−
V

(a) (b)

Fig. 11.3. Configuration of piezoelectric transducer integrated with host compos-
ite beams. (a) Piezoelectric stack configuration with the equivalent parallel plate
capacitor model. (b) Piezoelectric patches adhesively bonded or embedded in host
laminated composite and the equivalent parallel plate capacitor model
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Figure. 11.3(a) and (b) show the active composite beam segments with
piezostack and layers respectively. A similar configuration is also possible for
Terfenol-D rod, stack and matrix patch with magnetostrictive particles. How-
ever, for Terfenol-D rod or stack, the magnetic coil assembly and housing can
be modeled with appropriate additional mass and stiffness lumping. For ma-
trix patch with magnetostrictive particles, the magnetic coil assembly can also
be modeled in similar way. However, since the present work is not supported
by any fabrication and experimental design, these modeling aspects are not
considered. Assuming perfect bonding between the stack or layers with the
electrodes and the host structures, the beam kinematics can be defined as for a
Euler–Bernoulli beam or first-order shear deformable beam. For concise repre-
sentation, we proceed with the constitutive model and equation of motion for
the first-order shear deformable beam, and these can be reduced to the Euler–
Bernoulli (thin beam) model by imposing shear deformation φ−w,x = 0. For
sensing, we assume a single layer with output electric field E(x, t) due to the
mechanical strain. For actuation with layered configuration (Figure 11.3), we
assume multiple layers with input electric field E(x, t) in each layer. To arrive
at the constitutive model, we start with the constitutive model of the bulk
active materials and then reduce it to a plane stress constitutive model in the
X−Z plane. The derivations for piezoeletric actuators are presented in detail.
The same procedure is also applicable to bulk magnetostrictive materials in
rod or layered form.

11.3.1 Plane Stress Constitutive Model of Stacked and Layered
Piezoelectric Composite

The constitutive model for piezoelectric composite is derived on similar lines
to that done for laminated composite in Chapter 2. We shall first consider
the orthotropic constitutive model of the composite lamina and the piezo-
electric layers in the material coordinate system (x1, x2, x3) as shown in Fig-
ure. 11.3(b). The complete three-dimensional orthotropic constitutive model
[293] can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ31

σ12

D1

D2

D3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CE
11 CE

12 CE
13 0 0 0 0 0 −e31

CE
12 CE

22 CE
23 0 0 0 0 0 −e32

CE
13 CE

23 CE
33 0 0 0 0 0 −e33

0 0 0 CE
44 0 0 0 −e24 0

0 0 0 0 CE
55 0 −e15 0 0

0 0 0 0 0 CE
66 0 0 0

0 0 0 0 e15 0 εε
11 0 0

0 0 0 e24 0 0 0 εε
22 0

e31 e32 e33 0 0 0 0 0 εε
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
{

ε11 ε22 ε33 2ε23 2ε31 2ε12 E1 E2 E3

}T
, (11.1)
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where σij and εij are respectively the stress and strain components in the
material coordinate system (x1, x2, x3), which makes an angle θ with the ply
coordinate system (X,Y,Z) as shown in Figure 11.3(b). For the piezoelectric
layers, Di are the components of electric displacement in the plane normal
to the direction i. Ei are the components of electric field −∇ϕ (ϕ being the
electric potential) along the direction i. In Equation (11.1), C is the elastic-
ity matrix. eij and εε

ij respectively represent the electromechanical coupling
coefficients and dielectric constants. The superscript E in CE

ij indicates the
stiffness measured under prescribed electric field E. The superscript ε asso-
ciated with εε

ij indicates the dielectric constants measured under prescribed
mechanical strain ε. Under linear range of transduction, constant values of
CE

ij and εε
ij are used for a particular grade of PZT. Transformation of the con-

jugate variables, i.e., (σ, ε) and (D,E) from the material coordinate system
(x1, x2, x3) to the ply-local coordinate system (X,Y,Z) can be carried out by
following [50] as {

σ
D

}
= T

[
C̄ −ē
ēT ε̄

]
T T

{
ε
E

}
, (11.2)

where the transformation matrix T is of the form

T =
[
T11 0
0 T22

]
, (11.3)

T11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 θ sin2 θ 0 0 0 −2 cos θ sin θ
sin2 θ cos2 θ 0 0 0 2 cos θ sin θ

0 0 1 0 0 0
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0

cos θ sin θ − cos θ sin θ 0 0 0 cos2 θ − sin2 θ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (11.4)

T22 =

⎡
⎣ cos2 θ sin2 θ 0

sin2 θ cos2 θ 0
0 0 1

⎤
⎦ . (11.5)

θ is the angle of orientation of (x1, x2) system with respect to (X,Y ) in Fig-
ure. 11.3. The constitutive relation in the ply coordinate thus finally can be
expressed as
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=
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C̄11 C̄12 C̄13 0 0 C̄16 0 0 −ē31

C̄12 C̄22 C̄23 0 0 C̄26 0 0 −ē32

C̄13 C̄23 C̄33 0 0 C̄36 0 0 −ē33

0 0 0 C̄44 C̄45 0 −ē14 −ē24 0
0 0 0 C̄45 C̄55 0 −ē15 −ē25 0

C̄16 C̄26 C̄36 0 0 C̄66 0 0 −ē36

0 0 0 ē14 ē15 0 ε̄11 ε̄12 0
0 0 0 ē24 ē25 0 ε̄12 ε̄22 0

ē31 ē32 ē33 0 0 ē36 0 0 ε̄33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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×
{

εxx εyy εzz γyz γzx γxy Ex Ey Ez

}T
, (11.6)

where γyz = 2εyz, γzx = 2εzx, γxy = 2εxy.
Since the composite beams with embedded piezoelectric patches are con-

sidered, a plane stress condition in the vertical X − Z plane (Figure 11.3)
needs to be developed from the three-dimensional constitutive relation as in
Equation (11.6). In addition, only the application of the electric field along
the Z-axis and the corresponding surface charge in the electrodes parallel to
the X − Y plane associated with electric displacement Dz will be sufficient
to describe the transduction for layered configuration. For piezoelectric stack
configuration, this will be discussed next. Now, for the layered configuration
(with parallel electrodes in the X − Y plane), treatment in vertical X − Z
plane is equivalent to neglecting the effect of electric displacements Dx and Dy

in the planes Y −Z and X −Z parallel to which there are no electrodes. Im-
posing σyy = 0, τxy = 0, τyz = 0, Dx = 0 and Dy = 0 in Equation (11.6) and
eliminating the out-of-plane strains εyy, γxy and γyz and the electric fields Ex

and Ey, the reduced form of the constitutive relation for piezoelectric layered
configurations can be expressed as

⎧⎪⎪⎨
⎪⎪⎩

σxx

σzz

τzx

Dz

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

Q̄11 Q̄13 0 −¯̄e31

Q̄13 Q̄33 0 −¯̄e33

0 0 Q̄55 0
¯̄e31 ¯̄e33 0 ¯̄ε33

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εxx

εzz

γzx

Ez

⎫⎪⎪⎬
⎪⎪⎭

, (11.7)

where

Q̄11 = C̄11 +
1
∆

[
C̄12(C̄26C̄16 − C̄66C̄12) + C̄16(C̄26C̄12 − C̄22C̄16)

]
, (11.8a)

Q̄13 = C̄13 +
1
∆

[
C̄12(C̄26C̄36 − C̄66C̄23) + C̄16(C̄26C̄23 − C̄22C̄36)

]
, (11.8b)

Q̄33 = C̄33 +
1
∆

[
C̄23(C̄26C̄36 − C̄66C̄23) + C̄36(C̄26C̄23 − C̄22C̄36)

]
, (11.8c)

Q̄55 = C̄55 − C̄2
45/C̄44 , (11.8d)

¯̄e31 = ē31 −
1
∆

[
ē32(C̄12C̄66 − C̄16C̄26) + ē36(C̄16C̄22 − C̄12C̄26)

]
, (11.8e)

¯̄e33 = ē33 −
1
∆

[
ē32(C̄23C̄66 − C̄26C̄36) + ē36(C̄22C̄36 − C̄23C̄26)

]
, (11.8f)

¯̄ε33 = ε̄33 +
1
∆

[
ē36(C̄22ē36 − C̄26ē32) + ē32(ē32C̄66 − C̄26ē36)

]
, (11.8g)

∆ = −C̄2
26 + C̄22C̄66 . (11.8h)

For piezoelectric layered configuration (Figure 11.3(b)) with assumed shear
deformable kinematics in the X − Z plane, the required constitutive model
from Equation (11.7) finally becomes



11.3 Modeling Distributed Transducer Devices 381

⎧⎨
⎩

σxx

τzx

Dz

⎫⎬
⎭ =

⎡
⎣ Q̄11 0 −¯̄e31

0 Q̄55 0
¯̄e31 0 ¯̄ε33

⎤
⎦
⎧⎨
⎩

εxx

γzx

Ez

⎫⎬
⎭ . (11.9)

The above equation also holds for passive fiber reinforced polymer matrix
composite layers with ¯̄e31 = 0 and ¯̄ε33 almost negligible compared to the
piezoelectric materials.

For piezoelectric stack configuration Figure 11.3(a), the constitutive model
becomes ⎧⎨

⎩
σxx

τzx

Dx

⎫⎬
⎭ =

⎡
⎣ Q̄33 0 −¯̄e33

0 Q̄55 0
¯̄e33 0 ¯̄ε33

⎤
⎦
⎧⎨
⎩

εxx

γzx

Ex

⎫⎬
⎭ , (11.10)

as the actuation of the stack happens along the X direction, which is the same
as the direction vector of the electric field, i.e., x3 as shown in Figure 11.3(a)
having material coordinate (x1, x2, x3) for the individual stack. For passive
fiber reinforced polymer matrix composite, the constitutive model remains
the same as discussed in the context of Equation (11.9).

11.3.2 Constitutive Model for Piezoelectric Fiber Composite
(PFC)

Use of PFCs for structural actuation is discussed in Section 11.2. In the
following section, we derive a constitutive model of the PFC based on shear
stress transfer from active fiber to the surrounding matrix and a uniform
field model of the representative volume element (RVE). Also, the frequency
dependent dielectric property of the active fiber and viscoelastic properties
of the polymer matrix are considered in the model. Typical configuration of
the PFC actuator bonded with the host composite beam structure is shown
in Figure 11.4.

The RVE of the two-phase piezoceramic matrix composite system can be
described by one quadrant axisymmetric model about the x3 axis. Here, h
is the total depth of a single PFC layer, p is the uniform spacing of IDEs
spanning along x1, and b is the width of each electrode. Similar configuration
with uniform square packing circular fiber and rectangular packing square
fiber is also possible [274]. Before obtaining the uniform field model as reported
in [274], we first consider the nature of stress transfer from the active fiber to
the surrounding matrix. The objective is to obtain an equivalent constitutive
model from the bulk properties of piezo fiber and matrix. This is then used
in the uniform field model.

Let us consider a uniform circular fiber of length L embedded in matrix as
shown in Figure 11.5. The constitutive relation for linear orthotropic piezo-
electric material excluding the uncoupled shear modes, can be expressed using
[293] as
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. (11.11)

The material coordinate system is (x1, x2, x3) as shown in Figure 11.5. For
pure piezoceramic, CE

11 = CE
22, CE

23 = CE
13, e32 = e31. Under dynamic actua-

tion, the electric field consists of DC and AC components, thus

E = EDC + EAC . (11.12)

Due to the presence of the AC field with frequency ω, the dielectric will have
frequency dependence. Here, a non-resonant model [274] can be used, where
it is assumed that the polarization relaxation modes and the internal electro-
mechanical resonance are outside the frequency range (typically 1 Hz to 10
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kHz) of interest. In this approach, the complex dielectric of bulk piezoceramic
can be expressed as

εε = ε(1 − jd) − j

ωρ
, (11.13)

where ε is the real dielectric constant, d is the dielectric loss factor and ρ is
the resistivity. Similarly, to include the effect of piezoelectric shunting and
mechanical losses, the elastic coefficients can be replaced by their complex
equivalent as

CE = C(1 − jηf ) , (11.14)

where C is the real elastic coefficient and ηf is the frequency dependent me-
chanical loss factor in piezoceramic fiber. A detailed characterization of the
above complex properties of bulk PZT can be found in [274]. For matrix phase,
all eij are zero, and their mechanical and dielectric properties are represented
without superscripts. Similarly, for inactive fibers in the host structure, all eij

and εε
ij have negligible effect. The rate dependence of the viscoelastic matrix

in bulk form can be included in the constitutive model as

C = C′ + jC′′ , (11.15)

where C ′ and C ′′ are respectively the real and imaginary components of the
complex modulus and are characterized by the frequency dependent loss factor

ηm =
C ′

C ′′ . (11.16)

For fibers perfectly bonded in the matrix, a shear lag model accurately
described the stress transfer in composite. Such a shear lag model has been
used in [294] to study active fiber fragmentation in PFC. Following this model,
the fiber axial load in the RVE (shown in Figure 11.5) is transferred to the
fiber according the relation

dσf
33

dx
= H(uf − um) , (11.17)

where σf
33 is the stress in the fiber and is assumed constant at the cross-section

located at x (Figure 11.5). uf is the axial displacement at surface (r = Rf ) of
the fiber. um is the axial displacement at r = Rm in the matrix and is assumed
to be unaffected by the shear stress transferred from the fiber-matrix interface.
In PFCs, Rm is typically taken as half of the center-to-center distance between
the fibers. H is a constant for given bulk material properties and geometry
of RVE. Differentiating both side of Equation (11.17) once with respect to x,
we get

d2σf
33

dx2
= H(

duf

dx
− dum

dx
) . (11.18)

duf/dx is the axial strain in the fiber and is related to the fiber stress through
the constitutive relation Equation (11.11) as
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σf
33 = CE

33

duf

dx
− e33E3 . (11.19)

Substituting Equation (11.19) in Equation (11.18) and assuming E3 and ε33 =
dum/dx as constants in the RVE, we get a second-order differential equation
in σf

33 with constant coefficients, which is given by

d2σf
33

dx2
− H

CE
33

σf
33 − H

(
e33E3

CE
33

− ε33

)
= 0 . (11.20)

Solution of Equation (11.20) is of the form

σf
33 = CE

33 − e33E3 + S1e

(√
H/CE

11

)
x + S2e

−
(√

H/CE
11

)
x

, (11.21)

where S1 and S2 are constants of integration and depend on the stress bound-
ary conditions at the fiber ends. To obtain explicit form for the constant H,
we need to equate the fiber axial force with the transferred shear force at the
fiber-matrix interface. At surface r = Rf , this can be written as

πR2
fdσf

33 = −2πRfτ(Rf )dx , (11.22)

where τ(Rf ) is the fiber surface shear stress. The shear strain can be expressed
as

du

dr
=

τ(r)
C55

=
Rfτ(Rf )

rC55
. (11.23)

Integrating Equation (11.23) over the region of tress transfer, i.e., r = Rf to
r = Rm and using Equations (11.17) and (11.22), we get

H =
2C55

R2
f ln

(
Rm

Rf

) . (11.24)

Assuming the PFCs are bonded on the surface of the host composite (Fig-
ure 11.4) the stress boundary condition at the fiber ends (x = 0, L) becomes
σf

33 = 0. However, for embedded PFCs, one needs to use a dynamic stress
boundary obtained from purely mechanical analysis of the host composite
without embedded PFCs. This is beyond the scope of the present study and
hence will not be attempted. Now, after eliminating S1 and S2 from Equa-
tion (11.17) by substituting the above stress boundary conditions at the fiber
ends, the axial stress in the fiber can be expressed as

σ(x)f
33 =

(
CE

33ε33 − e33E3

)
ψσ , (11.25)

where ψσ is the axial stress recovery factor given by

ψσ = 1 −
cosh

[√
H

CE
33

(
L
2 − x

)]

cosh
(√

H
CE

33

L
2

) . (11.26)
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The shear stress transferred to the matrix can be expressed as

τ(r, x) =
(
CE

33ε33 − e33E3

)
ψτ , (11.27)

where ψτ is the shear stress recovery factor given by

ψτ =
(

Rf

r

)
1√

2ln
(

Rm

Rf

)
√

C55

CE
33

sinh
[√

H
CE

33

(
L
2 − x

)]

sinh
[√

H
CE

33

L
2

] . (11.28)

Effect of Stress Recovery in PFC

To obtain maximum actuator authority for prescribed bulk material properties
while designing PFCs, one needs to have maximum specific actuation, given
by

σSA =
∫

σf
33dAdx∫
dAdx

(11.29)

with the shear stress τ at the fiber ends below the allowable shear stress for
fiber-matrix debonding. Now, for prescribed mechanical strain and electrical
input (voltage or current), maximizing σSA means maximizing the axial stress
recovery factor ψσ with respect to the fiber volume in the RVE. And to ensure
that fiber fragmentation does not occur for the chosen fiber length L, the shear
stress at the fiber-matrix interface at the fiber ends must be kept below the
allowable shear stress (τmax) for fiber-matrix debonding, i.e.,

|τ(Rf , 0)| = |τ(Rf , L)| < τmax . (11.30)

Figures 11.6 and 11.7 show the variations in ψσ and ψτ along the length of the
fiber. From Figure 11.6 it can be seen that for a specified fiber radius Rf , the
order of the shear stress at the fiber-matrix interface at the fiber ends is almost
constant and of the same order as the axial stress irrespective of the fiber
length. On the other hand Figure. 11.7 shows that for specified fiber length,
the shear stress at the fiber-matrix interface near the fiber ends can be much
higher than the axial stress developed in fibers of higher radius. Note that for a
particular fiber length and radius, maximum axial stress is developed over the
fiber span x having σf

33 ≈ 1. Therefore, this span can be defined as the specific
length of the PFC, since it is actually a measure of the distributed actuation.
Also note that the specific actuation σSA in Equation (11.29) represents the
same information for a specified electromechanical loading.

For a particular structural dynamic actuation and optimal control perfor-
mance of PFC, the fiber length constraint has something to do with the control
cost function and is problem specific. Before obtaining the optimal length of
PFC actuators based on analysis of the host structure with integrated PFCs
and error sensors, we need a macroscopic constitutive model, which can be
used to accurately capture the microscopic behavior of PFCs. The uniform
field model as discussed earlier is considered for this purpose.
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Uniform Field Model

Although the uniform field model, in some cases, violates the compatibility
and equilibrium of electrostatics, it provides a sufficiently accurate macro-
scopic constitutive model in the case of large material mismatches between
the individual phases. The finite element predictions as well as the experimen-
tal characterization reported in [46] validates this fact. In addition, various
analyses in closed form can be carried out based on this model while optimiz-
ing the actuator authority of PFCs.

Let us consider the RVE shown in the inset of Figure 11.4, which is a
one quadrant fibermatrix mixture with a segment of electrode on the top
surface. Figure 11.8 shows the corresponding representation of the equivalent
multi-phase mixture of the RVE having fiber volume fraction νf

1 νf
2 νf

3 through
the cases A, B and C. The basic assumption here is that the electric field
in the active fiber is dominated by the component E3, although there will
be dominance of component E2 near the electrodes, which is neglected. The

E

E E
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ν
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ν 3
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Phase
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Fig. 11.8. Representative volume element (RVE) showing the uniform field model
geometry. Case A, B and C represent the individual two-phase mixtures. E indicates
the direction of electric field (same as the direction of the polarization vector)

complete phase mixture is obtained from the combination of the three cases.
The effective properties from one case is substituted for the properties of the
piezoceramic fiber phase (f) in the next case. The matrix phase is denoted by
m. For each case (A, B, C), the piezoceramic phase (f) is kept fully orthotropic
to accommodate the higher degree of anisotropy that a composite produces.
While obtaining the mixture in the three cases sequentially, the first step is
to identify the field variables which are equal in both phases. In case A, these
fields are ε11, σ22, ε33 and E3. The conjugate of these fields can be obtained
by rearranging Equation (11.11) (without superscript E for matrix phase) in
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the two phases as
⎧⎪⎪⎨
⎪⎪⎩

σ11

ε22

σ33

D3

⎫⎪⎪⎬
⎪⎪⎭

f,m

= Af,m

⎧⎪⎪⎨
⎪⎪⎩

ε11

σ22

ε33

E3

⎫⎪⎪⎬
⎪⎪⎭

f,m

, (11.31)

where the elements of the matrix Af,m are functions of the bulk material
properties (elastic coefficients, electromechanical coupling factors and dielec-
tric coefficients) of the two phases. The average fields can be expressed as
the linear combination (weighted with the volume fraction of the phases) of
Equation (11.31) as

⎧⎪⎪⎨
⎪⎪⎩

σ̄11

ε̄22

σ̄33

D̄3

⎫⎪⎪⎬
⎪⎪⎭

= νf
2

⎧⎪⎪⎨
⎪⎪⎩

σ11

ε22

σ33

D3

⎫⎪⎪⎬
⎪⎪⎭

f

+ νm
2

⎧⎪⎪⎨
⎪⎪⎩

σ11

ε22

σ33

D3

⎫⎪⎪⎬
⎪⎪⎭

m

= Ā

⎧⎪⎪⎨
⎪⎪⎩

ε̄11

σ̄22

ε̄33

Ē3

⎫⎪⎪⎬
⎪⎪⎭

, (11.32)

where Ā = νf
2 Af +νm

2 Am. Rearranging the average conjugate fields obtained
from Equation (11.32), the equivalent constitutive model for Case A can be
written as ⎧⎪⎪⎨

⎪⎪⎩

σ̄11

σ̄22

σ̄33

D̄3

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

C̄11 C̄12 C̄13 −ē31

C̄12 C̄22 C̄23 −ē32

C̄13 C̄23 C̄33 −ē33

ē31 ē32 ē33 ε̄33

⎤
⎥⎥⎦

A

⎧⎪⎪⎨
⎪⎪⎩

ε̄11

ε̄22

ε̄33

Ē3

⎫⎪⎪⎬
⎪⎪⎭

, (11.33)

where

C̄11 = (CE
11ν

f
2 + C11ν

m
2 ) − 1

∆1
νf
2 νm

2 (C12 − CE
12)

2 , (11.34a)

C̄12 =
1

∆1
(CE

12C11ν
f
2 + C12C

E
22ν

m
2 ) , (11.34b)

C̄22 =
1

∆1
CE

22C11 , (11.34c)

C̄13 = (CE
13ν

f
2 + C12ν

m
2 ) − 1

∆1
νf
2 νm

2 (C12 − CE
12)(C12 − CE

23) , (11.34d)

C̄23 =
1

∆1
(CE

23C11ν
f
2 + C12C

E
22ν

m
2 ) , (11.34e)

C̄33 = (CE
33ν

f
2 + C11ν

m
2 ) − 1

∆1
νf
2 νm

2 (C12 − CE
23)

2 , (11.34f)

ē31 = e31ν
f
2 +

1
∆1

e32ν
f
2 νm

2 (C12 − CE
12) , (11.34g)

ē32 =
1

∆1
e32ν

f
2 C11 , (11.34h)
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ē33 = e33ν
f
2 +

1
∆1

e32ν
f
2 νm

2 (C12 − CE
23) , (11.34i)

ε̄33 = (εε
33ν

f
2 + ε33ν

m
2 )

1
∆1

e2
32ν

f
2 νm

2 , (11.34j)

∆1 = C11ν
f
2 + CE

22ν
m
2 . (11.34k)

Since the direction of the electric field (direction of polarization) is assumed
to be uniform, the equivalent constitutive model in Case B is obtained by
interchanging the subcripts 1 and 2 with the independent fields in both phases;
i.e., σ11, ε2, ε3 and E3. Case C accommodates the effect of the region below
the electrode, where the independent field variables in both phases are ε11,
ε22, σ33 and D3. Following the same reasoning as in Equation (11.34), here
we can write ⎧⎪⎪⎨

⎪⎪⎩

σ11

σ22

ε33

E3

⎫⎪⎪⎬
⎪⎪⎭

f,m

= Cf,m

⎧⎪⎪⎨
⎪⎪⎩

ε11

ε22

σ33

D3

⎫⎪⎪⎬
⎪⎪⎭

f,m

. (11.35)

Unlike Case A and B, the macroscopic mechanical properties are dominated
by the piezoceramic phase, and this is consistent with the assumption that
the matrix phase does not contribute to the mechanical response in Case C.
Thus the equivalent fields are

σ̄11 = σf
11 , σ̄22 = σf

22 , ε̄33 = εf
33 (11.36a)

Ē3 = νf
3 Ef

3 + νf
3 Em

3 , (11.36b)

where the electric field strength depends on the separation of the piezoceramic
phase from the electrode and the electrode geometry. Therefore, combination
of Case C with Cases A and B depends on the nature of piezoceramic fiber
and IDE width and spacing. Typically, for uniform packing circular/square
fiber (νf

1 = νf
2 ), the line fraction of piezoceramic phase νf

3 is obtained as the
ratio of the electric field path length from the Case A (or Case B) and the
total path length between the electrode surfaces (Figure 11.4), i.e.,

νf
3 =

p/2
p/2 + νm

2 h/2
=

p/h

p/h + (1 − νf
2 )

(b << p) . (11.37)

whereas for rectangular packing (the packing fraction X2 can be as high as
0.92), there can be negligible separation between the piezoceramic phase and
the electrodes and therefore

νf
3 =

p/h

p/h + (1 − X2)
(b << p) (11.38)

Also, this localized influence of electric field path on the piezoceramic phase
needs to be accounted for first rather than the effect of the fields along the
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fiber length. Hence, the accurate equivalent constitutive relation based on the
uniform field model for rectangular packing PFC should follow the combina-
tion C → A → B, and for uniform packing PFC, the combination should be
A → B → C. A detailed discussion of these issues and related procedure for
experimental characterization can be found in [46]. Now for Case C, following
the averaging of fields from Equations (11.36) as

⎧⎪⎪⎨
⎪⎪⎩

σ̄11
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ε̄33

Ē3

⎫⎪⎪⎬
⎪⎪⎭
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⎧⎪⎪⎨
⎪⎪⎩
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σ22

σ33
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⎫⎪⎪⎬
⎪⎪⎭

f

+

⎧⎪⎪⎨
⎪⎪⎩

σ11

σ22

σ33

νm
3 E3

⎫⎪⎪⎬
⎪⎪⎭

m

= C̄

⎧⎪⎪⎨
⎪⎪⎩

ε̄11

ε̄22

σ̄33

D̄3

⎫⎪⎪⎬
⎪⎪⎭

(11.39)

and rearranging, we get the effective constitutive model for case C as
⎧⎪⎪⎨
⎪⎪⎩

σ̄11
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σ̄33
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C̄11 C̄12 C̄13 −ē31

C̄12 C̄22 C̄23 −ē32
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ē31 ē32 ē33 ε̄33

⎤
⎥⎥⎦
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ε̄22

ε̄33

Ē3

⎫⎪⎪⎬
⎪⎪⎭

, (11.40)

where
C̄jk = Cjk +

1
∆3

νm
3 e3je3k , (11.41a)

ē3j =
1

∆3
ε33e3j , (11.41b)

ε̄33 =
1

∆3
ε33ε

ε
33 , (11.41c)

∆3 = νf
2 ε33 + νm

3 εε
33 . (11.41d)

Following the sequence for combination of the three cases as discussed
earlier, the effective constitutive model for the RVE is obtained as
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, (11.42)

where the effective shear moduli, unlike in the uniform field model, are ob-
tained from the phase morphology, and they can be expressed as

Ceff
kk = Cm

kk

Cf
kk(1 + νf ) + Cm

kk(1 − νf )

Cm
kk(1 + νf ) + Cf

kk(1 − νf )
, νf = νf

1 νf
2 νf

3 . (11.43)

In the numerical simulations carried out in the latter part of this chap-
ter, we use a one-dimensional model of actuation using surface bonded PFC,
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where Ceff
33 affects the actuator stiffness, eeff

33 affects the actuator authority
and εeff33 affects the electrical energy consumption. It can be seen from Equa-
tions (11.34) (Case A) that along the length of the fiber between the IDEs,
C̄33, C̄13 and C̄11 follow one-dimensional parallel rules of mixtures softened
by the matrix, which reduces the transverse clamping effects on the piezo-
ceramics. On the other hand, C̄22, C̄23 and C̄12 essentially follow the series
rules of mixtures, with the latter two introducing the Poisson’s effects. From
Equations (11.41) (Case C), it can be seen that C̄11 is modified due to the
electrical influence of the matrix phase. This additional term is the difference
between the short-circuit and the open-circuit stiffness for the piezoceramic
phase. When dielectric mismatch is low (εε

33 = ε33) or the matrix fraction be-
low the electrode is small (νm

3 → 0), the above additional stiffening term also
vanishes and a nearly short-circuit condition is realized. For more electrically
isolated piezoceramic phase (open-circuit condition), the effective dielectric
term is simply a series capacitor combination as seen in Equation (11.41c)
and the factor of reduction by which the electric field reaches the piezoce-
ramic phase is ε33/∆3. Use of carbon filler with conventional polymer matrix
has shown significant increase in the field strength under open-circuit condi-
tions [46]. Figure. 11.9 shows the variation in the effective PFC stiffness Ceff

33

in the actuator longitudinal direction for varying volume fraction of piezoce-
ramic fiber (PZT 5H) for different stiffness mismatches (CE

33/C33). Properties
of neat resin with no conductive filler are used for the matrix phase. The
variation is linear for a particular stiffness mismatch and the PFC recovers
the fiber stiffness at higher volume fraction of fiber. Figure 11.10 shows the
variation in the effective PFC actuator authority for varying volume fraction
of piezoceramic fiber for different dielectric mismatches (εε

33/ε33). It can be
seen that for higher dielectric mismatch, only a moderate actuator authority
can be obtained at very high volume fraction of fiber. For low dielectric mis-
match, this is considerably higher for higher volume fraction of fiber. This can
be attributed to the lower clamping effect on eeff

33 due to the dielectric of the
matrix phase.

As has been discussed earlier in Section 11.3.2, the PFC actuator length
constraint for specified PFC effective properties (hence specified actuator au-
thority) for vibration and wave control will depend on the required control
authority defined by the control cost function. The design issues involved in
the integrated smart structural system are discussed below.

11.3.3 Design Steps for Broadband Control

Once the bulk material properties of PFC and the IDE geometry are available,
one can compute the minimum specific actuation length that can sustain the
allowable shear stress due to the assumed electromechanical loading as dis-
cussed in Section 11.3.2. After obtaining the effective properties of the chosen
PFC actuator as discussed in Section 11.3.2 and its optimal placement, a cou-
pled broadband analysis considering the distributed PFC actuator dynamics
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needs to be carried out. Since a closed form solution for multiple modal control
over broad frequency band is not possible, optimal PFC actuator configura-
tion (length, placement and electrical input) can be obtained by extremizing
one or more cost functions over a broadband by iteration, which can be the
most general strategy. However, the preliminary information regarding opti-
mal actuator configuration for static and steady-state requirement available
in closed form [278] can be used as the initial configuration for optimal con-
trol. Also, any additional constraint due to actuator electrical saturation and
limited power supply can be imposed for practical applications. Figure 11.11
represents the above design steps for PFC distributed actuation for broadband
structural control.

Stress recovery,
Fiber fragmentation,

fiber−matrix debonding

IDE geometry

Bulk properties,

Actuator authority

Sensor−actuator
placement

Actuator length,
Specific actuation

Constraints
(Electrical power,

actuator saturation)

Optimal control
cost functions

Control authority

Fig. 11.11. Schematic diagram showing the design steps for PFC distributed actu-
ation for broadband structural control

In the following sections, first we derive an ASFEM for closed-loop broad-
band control of vibration and waves in composite skeletal structures. The
basic framework of the model is based on the SFEs presented in the earlier
chapters of the book. Next the effect of distributed PFC actuator dynamics
for broadband control is studied using the developed ASFEM. A case study
of the active feedback control of multiple wave transmission in helicopter
gearbox support-struts is carried out, which brings out the various advan-
tages of ASFEM while dealing with various complexities related to the finite
and integrated strut–actuator dynamics and non-collocated feedback control
of waves. Further, to develop an efficient and model-based optimal control
design methodology, an optimal spectral control scheme based power-flow is
developed and integrated with the ASFEM. Performance of this scheme is
analyzed using numerical simulation of a MIMO system.
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11.4 Active Spectral Finite Element Model

In this model, the beam network is discretized and classified into three dif-
ferent classes of elements. These classes are (1) the spectral element for finite
beams with mechanical and passive properties, (2) the distributed or point
sensors and (3) the distributed or point actuators. A schematic diagram of
a sensor–actuator element configuration is shown in Figure 11.12. Here, it
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Actuator Element
Feedback Controller
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x sp
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p

p

q

q

q

Fig. 11.12. Sensor–actuator element configuration for active spectral finite element
model

is assumed that the controller output for a single actuator can be designed
based on a feedback signal constructed from a group of sensors. Furthermore,
in Figure 11.12, the connectivity between the pth sensor and the qth actuator
is also shown, where the sensor response is measured at the local coordinate
system (Xp

s , Zp
s ) and the actuation force is provided at the local coordinate

system (Xq
a , Zq

a).

11.4.1 Spectral Element for Finite Beams

The SFEM for composite beams derived in Chapters 4 and 5 can be used here
to represent the dynamics. Repeating the element-level equations involving the
nodal displacement vector

ûe = {ûo
1 ŵ1 θ̂1 ûo

2 ŵ2 θ̂2}T , (11.44a)

and the nodal force vector

f̂e = {N̂1 V̂1 M̂1 N̂2 V̂2 M̂2}T , (11.44b)
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we have
û(x, ωn) = ℵ(x, ωn)ûe , f̂e = K̂eûe , (11.44c)

where ℵ is the exact spectral element shape function matrix and K̂e is the
exact element dynamic stiffness matrix. The transformation of the element
equilibrium equation from local element coordinate system to the global co-
ordinate system is carried out as

ûe = ΓÛ , f̂e = Γf̂ = ΓT K̂eΓÛ , (11.44d)

where Γ is the orthogonal coordinate transformation matrix [1].

11.4.2 Sensor Element

For illustrative purposes, a point sensor has been considered in the modeling.
However, it should be noted that the formulation does allow for distributed
sensors such as piezoelectric film sensors. The force balance equations for the
sensor element are identical in form to Equations (11.44c) and (11.44d). Based
on the response measured by a displacement sensor (s), which is located at
(xsp

, zsp
) in the pth sensor element (denoted by subscript sp), the actuator

input spectrum can be expressed with the help of Equation (11.44c) as

η̂u(xsp
, zsp

, ωn) = (jωn)mα

⎡
⎣ 6∑

j=1

(
ℵ1j − zsp

ℵ3j

)
ûe

j

⎤
⎦ , (11.45a)

when the longitudinal displacement is measured, and

η̂w(xsp
, zsp

, ωn) = (jωn)mα

⎡
⎣ 6∑

j=1

ℵ2j û
e
j

⎤
⎦ , (11.45b)

when the transverse displacement is measured. In Equation (11.45a) and
(11.45b), α is the sensor sensitivity parameter and m = 0, 1, and 2, for
displacement, velocity, and acceleration spectra, respectively. Similarly, if a
strain sensor is used, one can write the actuator input spectrum as

η̂ε(xsp
, zsp

, ωn) = (jωn)mα

⎡
⎣ 6∑

j=1

(
∂ℵ1j

∂x
− zsp

∂ℵ3j

∂x

)
ûe

j

⎤
⎦ . (11.45c)

11.4.3 Actuator Element

In the formulation of ASFEM presented here, we consider the PID (propor-
tional, integral and derivative) feedback control scheme [295]. Other types of
frequency domain control schemes, such as feedforward control, can also be
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implemented. Controller output in the form of current spectrum (Î) (or volt-
age spectrum ϕ̂) for the qth actuator, and the resulting field (magnetic field
Ĥ for magnetostrictive material or electric field Ê for piezoelectric material)
can be written as

Î =
∑

p

γη̂ , Ĥ = βÎ , η̂ = (η̂u, η̂w, η̂ε) , (11.46)

where η̂ is given by Equation (11.45a), (11.45c). The constant γ is a scalar
gain, and β is the actuator sensitivity parameter introduced to account for the
actuator assembly and packaging properties (e.g., the solinoid configuration
for packaged Terfenol-D rod actuator [296], voltage-to-electric field conversion
factor for plane-polarized PZT wafers, etc.). Next, after substituting for Ĥ
from the magnetomechanical (or electromechanical) force boundary condition
(Equation (11.56a)and(11.56b)) into Equation (11.46) and following the same
procedure as used for discretizing the purely mechanical domain using SFE,
the force balance equation for the qth actuator element (denoted by subscript
aq) in actuator local coordinate system can be obtained as

f̂e
aq

= K̂e
aq

ûe
aq

+
[
Aeff

33 0 − Beff
33 − Am

33 0 Bm
33

]T

aq
βγη̂ , (11.47)

where [
Aeff

33 , Beff
33

]
=

∫
eeff
33 [1, z]dA (11.48)

defines the equivalent mechanical stiffness due to effective magnetomechanical
(or electromechanical) coupling coefficient eeff

33 (see Equation (11.42) for PFC)
for actuation in the longitudinal mode. A similar vector with non-zero second
and fifth elements in Equation (11.47) for actuation in the shear mode can
also be used. After substituting η̂ in terms of the sensor element shape func-
tion matrix (ℵ) and the corresponding nodal displacement vector (ûe) from
Equation (11.45a)and(11.45b), the Equation (11.48) can be re-written as

f̂e
aq

= K̂e
aq

ûe
aq

+ K̂e
aq←sp

{û}e
sp

, (11.49)

where, the notation K̂e
aq←sp

is introduced to represent the sensor–actuator
stiffness influence matrix (SASIM). Equation (11.44d) is followed to obtain
the transformation of displacements and forces at the actuator nodes from
the local coordinate system to the global coordinate system. This procedure
leads to the final expression for the qth actuator element with the pth feedback
sensor, which is given by

f̂aq
= ΓT

aq
K̂e

aq
Γaq

Ûaq
+ ΓT

aq
K̂e

aq←sp
Γsp

Ûsp
. (11.50)

Hence, the assembled closed-loop MIMO system with general sensor–actuator
configuration in the ASFEM is obtained in the form
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⎧⎪⎨
⎪⎩

f̂sp

...
f̂aq

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

ΓT
sp

K̂e
sp

Γsp
. . . 0

...
. . .

...
ΓT

aq
K̂e

aq←sp
Γsp

. . . ΓT
aq

K̂e
aq

Γaq

⎤
⎥⎦
⎧⎪⎨
⎪⎩

Ûsp

...
Ûaq

⎫⎪⎬
⎪⎭ . (11.51)

As evident from the above derivation, restrictions are not placed on sensor
and actuator locations. Also, in terms of the computational cost and broad-
band analysis capabilities, the proposed ASFEM is a better option compared
to the conventional state-space model which is of very high order and several
accuracy related problems due to error in model-order reduction, modal trun-
cation, etc., need to be addressed before they can be applied for broadband
LAC. So far as the LAC is concerned, after combining the displacement (or
strain) field generated by the primary disturbance (external mechanical load)
and the secondary sources (actuators), one can obtain the wave coefficient
vector ũ for a subdomain Ω of interest as

ũΩ = T̂−1
Ω

[
K̂ + K̂(xs)a←s

]−1

f̂Ω . (11.52)

At this stage, if a transfer function based concept of wave cancellation is
chosen to design the controller, Equation (11.52) provides a direct way to
carry out identification of the appropriate control gains for known sensor and
actuator locations that will reduce certain elements of ũΩ to zero, and hence
the corresponding wave components can be controlled. However, the analytical
approach to achieve this is limited by the fact that one cannot obtain an
explicit expression for the dependence of local wave components on sensor and
actuator locations and other control parameters for a complex problem, which
may have more than one discretized subdomain. Hence, a semi-automated
scheme integrated with ASFEM is chosen to analyze the spatially rediscretized
system by changing sensor locations or actuator locations on an iterative
basis. This is feasible because of the fast computation and small system size
permitted by ASFEM.

11.4.4 Numerical Implementation

As the first step, the input time dependent forces or disturbances are decom-
posed into Fourier components using the forward FFT. Note that all of the
element-level operations as well as the global system-level operations are car-
ried out at each discrete frequency ωn. Except for this basic difference, the
proposed program architecture is almost identical (for an open-loop configu-
ration) to a finite element program in terms of features such as input, assem-
blage, solving of the system, and the output. For a closed-loop system, we use
Equation(11.51) to implement the explicit form of the global dynamic stiffness
matrix at a particular frequency, which is in most cases, neither banded nor
symmetric. Here, a non-symmetric sparse complex matrix inversion routine is
used as part of the global system solver. After solving the closed-loop system
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at each frequency, the time history of displacements, strains, stresses, etc., are
then post-processed using inverse FFT.

11.5 Effect of Broadband Distributed Actuator
Dynamics

Here we consider a composite cantilever beam with surface-bonded PFC to
study the effect of distributed actuator dynamics on broadband control of
the transverse response of the cantilever tip under transverse impact type
loading at the tip. Essentially the control point of interest for LAC in this
case is the cantilever tip. This requires a feedback sensor to be placed at the
same location. It is well known that the optimal placement of an actuator is
dictated by the location of high average strain [278]. Hence, while controlling
the static or first mode shape under tip loading on a cantilever beam, it is
essential that the actuator be placed at the root of the cantilever beam. For
velocity feedback with a collocated sensor, Crawley and Luis [278] have shown
that the damping of a particular vibration mode when using surface-bonded
PZT wafer, can be expressed as

ξ =
e31γẇ

2M̂ω0LB

ψhBb

(6 + ψ)

[
φ̂(x2),x −φ̂(x1),x

]
, (11.53)

where γẇ is the velocity feedback gain, ω0 is the natural frequency associated
with the mode, M is the modal mass, LB is the length of the beam, b is the
width of the beam, hb is the thickness of the beam, ψ = (CBhB)/(CPZThB) is
the effective stiffness ratio for a PZT wafer thickness of hB. φ̂(x2),x −φ̂(x1),x
is the difference between the gradients of the strain mode shape at the two
ends (x1, x2) of the PZT actuator. With the specified actuator-to-beam length
scale, the maximum modal damping of a single mode is obtained for maximum
feedback gain

(γẇ)max =
EmaxhPZT

ω0ŵmax
, (11.54)

where Emax is the saturation electric field. Note that when the feedback sen-
sor is placed non-collocated with the actuator, the sensor output signal will
have a phase difference with the modal strain at the actuator ends and the
effect can be destabilizing for a phase difference of more that 180o. Similar
consequences will also be evident when controlling more than one mode us-
ing the same configuration. For example, when controlling the second mode
along with the first mode, one has to overcome the difficulty of almost zero
average modal strain around the strain node (point of zero modal strain) at
x = 0.216LB. Two options are available to overcome this difficulty. One is to
use segmented actuators, where one actuator located at x < 0.216LB must be
driven 180◦ out of phase with a second actuator located at x > 0.216LB. Ob-
viously, control over a greater number of modes means more strain nodes and
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hence more segmented actuators. Also, the possibility of interaction between
the controlled modes and modal spillover for multiple segmented actuators be-
comes evident. This necessitates the requirement for an appropriate optimal
control strategy. The second option for multi-modal control is to use a single
actuator at the root of the cantilever beam with optimal length of actuator and
frequency-weighted optimal gain while using a non-collocated sensor. Direct
feedback from the control point of interest is found to be more suitable when a
large number of modes over a broad frequency band are to be controlled. The
fundamental behavior of this non-collocated sensor–actuator configuration for
LAC resembles that of disturbance propagation in a structural network [297].

In the following numerical simulation, the sensitivity of the PFC actua-
tor length (actuator located at the cantilever root) while using the velocity
feedback from the sensor (located at the cantilever tip) is studied. The con-
figuration is shown in Figure 11.13. The beam is of length L = 1m, thick-

x
L

s
L

PID controller
F(t)

Point Sensor

 Z

X

PFC actuator

a

Fig. 11.13. A composite cantilever beam with surface bonded PFC actuator and
non-collocated velocity feedback sensor placed at x = xs for broadband local control
at the tip

ness 2 cm. AS/3501-6 graphite–epoxy material properties with ply-stacking
sequence [0◦5/90◦5] are considered. Assuming Euler–Bernoulli beam kinemat-
ics, the coupled electromechanical wave equation can be expressed as

ρAüo − A33u
o,xx +B33w,xxx +Aeff

33E3,x = 0 , (11.55a)

ρAẅ − B33u
o,xxx +D33w,xxxx +Beff

33 E3,xx = 0 . (11.55b)

The force boundary conditions are

A33u
o,x −B33w,xx −Aeff

33E3 = Nx , (11.56a)

B33u
o,xx −D33w,xxx −Beff

33 E3,x = Vx , (11.56b)

−B33u
o,x +D33w,xx +Beff

33 E3 = Mx . (11.56c)

In Equations (11.55) and (11.56), the mechanical stiffness coefficients Aij ,
Bij , Dij are defined in Equation (4.29) and the electromechanical stiffness
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coefficients Aeff
ij and Beff

ij are described in Equation (11.48). One actuator
element and one composite beam element (with a point sensor in it) are used
in the ASFEM.

The beam is subjected to impact loading (Figure 4.5) in the transverse
direction at the cantilever tip. Note that under such loading, which is likely
to excite many higher order modes, the control analysis becomes challenging
because of the additional axial–flexural coupling due to the unsymmetric ply-
stacking sequence. Control of multiple spectral peaks in the frequency response
of the transverse tip displacement is considered as the local control objective.
If satisfied, this requirement will also ensure the stability of the close-loop
system, as all the resonant modes will be damped and hence the poles will
be moved to the left-half of the complex phase-plane. Also, the possibility of
modal truncation over a sufficiently large frequency band can be eliminated.
It is important to note that the waves that will travel from tip to the fixed end
of the beam will be of the same order of magnitude as the incident impact.
It is also necessary that the scattered axial and flexural waves from the fixed
end be suppressed. This is also one reason, apart from those discussed in
the context of Equations (11.53) and (11.54), for which the PFC actuator is
placed adjacent to the fixed end. The sensor is assumed at x = xs, which is
considered near the tip for direct velocity feedback to the actuator in advance.

A non-dimensional scalar feedback gain g is derived from the feedback gain
γ (Equation (11.46)) to perform the parametric study. These two quantities
are related by g = (coαβ)γ/Eo, where Eo is a reference AC voltage and
co is the speed of sound in air. An optimal closed-loop performance, which
corresponds to La = 0.25 m, xs = 1.0 m (at the tip) and g = 3.4 × 106 is
shown in Figure 11.14.

From Figure 11.14, which shows the locations of the forced resonances
and anti-resonances along the frequency axis and the corresponding spectral
amplitudes of transverse displacement at the tip, it can be seen that the con-
figuration is able to suppress most of the resonant modes. Further, we study
the effect of parametric variation on the amplitude level over the frequency
range 0–20 kHz under consideration. First, it is assumed that the feedback
gain g chosen above is optimal and is not sensitive to small variation in other
parameters, such as La and xs. La is slowly varied from 0.15 m to 0.35 m, cor-
responding to the velocity feedback from various sensor locations xs moving
away from the cantilever tip (Figure 11.13). The integral effect of the change
in the amplitude level of the closed-loop response (transverse displacement at
the tip) over the whole frequency range is evaluated using the control cost
function

∏̂
=

N/2∑
n=1

(20.0)
[
log10|ŵ(ωn)2open| − log10|ŵ(ωn)2close|

]
(11.57)

In Figure 11.15, the sensitivity of
∏̂

is shown by a two-dimensional solu-
tion space involving the actuator length La and sensor location xs. This
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Fig. 11.15. Performance of actuator and control point interaction by variation in
total amplitude level of transverse tip response
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plot confirms the result of Figure 11.14 that one optimum solution exists
at (xs/L = 1.0, La/L = 0.25), and yields a total reduction of 6.025 dB

in
∏̂

. Figure 11.15 also predicts that another solution exists at (xs/L = 1.0,
La/L = 0.15). It is clear from the plot that a sensor placed at less than 0.96 m
never performs effectively over the significant resonant modes. Whereas, the
collocated configuration at less than 0.8 m may not produce stable perfor-
mance.

11.6 Active Control of Multiple Waves in Helicopter
Gearbox Support Struts: Numerical Simulation Using
ASFEM

In the previous section we discussed the issues and possible solutions to deal
with distributed actuator dynamics for broadband control. In the present case
study, we focus on the issues and possible solutions to deal with the problem of
controlling multiple wave transmissions in helicopter gearbox support struts
fitted with Terfenol-D packaged actuators. ASFEM is used for numerical sim-
ulation of feedback control performance and the effect of sensor–actuator con-
figuration.

Helicopter cabin noise reduction has received considerable attention over
the last two decades. With interior noise reduction, passenger comfort as well
as operational ease can be improved along with the enhancement of structural
fatigue life. The main rotor and gearbox mechanisms serve as the main sources
(see Figure 11.16) of persistent acoustic disturbances while quick changes
in gear teeth movement and aero-elastic events associated with maneuver
transitions can result in transient acoustic disturbances. In many helicopters,
the entire gearbox assembly is mounted on a set of vertical and inclined struts
[298, 299]. The transient and persistent disturbances generated by the gearbox
mechanisms as well as the main rotor are transmitted through the struts into
the fuselage; this transmission is one of the main sources of structure-borne
noise in a helicopter cabin. The frequency components associated with this
noise are within the bandwidth extending up to 6 kHz [300, 301].

Among many approaches pursued to realize cabin noise reduction, control
of waves transmitted through the noise path such as struts has been found
to be viable. An early initiative in this regard is due to Westland Helicopters
Ltd. During the late 1980s, they demonstrated that considerable reduction
of the average vibration level can be achieved by using an Active Control of
Structural Response (ACSR) system at the blade passing frequency of 17.5 Hz
[298, 302]. An electrohydraulic actuator is used in this low frequency applica-
tion. Recently, the application of active wave control in the gearbox support
strut at high frequencies was carried out in a major group effort as part of
the Reduction of Helicopter Interior Noise (RHINO) project. This project in-
volved Westland Helicopters Ltd., Agusta, and others [270]. As reported in
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Fig. 11.16. Shematic diagram showing the sources of noise in a helicopter

this work, an actual helicopter strut was tested in a test rig under realistic
loading conditions. A primary source in the form of a shaker was used to ex-
cite the system at the upstream end-plate of the strut, and a group of three
secondary sources in the form of magnetostrictive actuators were mounted in
parallel to the strut. The choice of the driving voltage inputs (i.e., ampli-
tudes and phases) to the actuators was based on minimizing the sum of the
squared responses measured by six error sensors at the downstream end-plate.
The location of the compliant ring for the secondary actuator group housing
was chosen based on earlier studies on structural wave control in ducts and
beams [276, 251, 303]. As reported in the study [270], an adaptive multiple
actuator feedforward control scheme produced energy attenuation of up to 40
dB at the downstream interface of the strut over different discrete frequencies
in the range extending to 1.25 kHz. Development of an ANC system for the
S-76 helicopter by Sikorsky Aircraft Corporation has also been reported [304],
[305].

Although active material integrated finite struts have been used exten-
sively in experimental studies of full-scale systems, related analytical efforts
have focused primarily on infinite struts. Pelinescu and Balachandran [233]
also developed integrated mechanics models for finite struts and used them
for open-loop studies of longitudinal and flexural wave transmission. In their
models, the strut is treated as a homogeneous cylindrical waveguide, and the
actuators are also modeled as waveguides. In a related study by Ortel and Bal-
achandran [306], these models are used to develop closed-loop schemes for con-
trol of flexural wave transmission. Although these studies represent progress
towards analytical development of an integrated active system, in order to
use them for realistic configurations, the following features need to be taken
into account in the modeling: (a) the effects of structural boundaries, joints,
and other local discontinuities that can be important in the high-frequency
range, (b) the steady-state axial and transverse loading, and (c) the coupling
between longitudinal and flexural waves. In addition, the developed models
need to be amenable to establishing schemes for controlling wave transmis-
sion over a broad frequency range that includes multiple spectral peaks as in
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the present problem. However, models of realistic systems including the above
features are not amenable to analytical solutions. Efforts in the following work
have been directed towards using ASFEM to analyze and design the active
strut system for optimal performance.

Apart from ASFEM, similar Fourier domain representations and transfer
function concepts were developed in [247] and [307]. These transfer function
based methods were later extended to adaptive control of structural waves
for minimizing the transmitted power flow through one-dimensional elastic
members [268, 269]. For distributed structural networks, the concept of LAC
(Section 11.1.2) of traveling waves has also been developed and studied using
a feedback compensator [253]. However, the aspects of distributed sensing and
actuation and issues such as actuator dynamics have not been addressed in
the above studies based on the transfer function concept.

From the above mentioned studies, it is noted that as complexity in the
structural geometry and in applying the transfer function analysis increases,
the control analysis involves extensive computations. On the other hand, the
ASFEM can be efficient from a computational viewpoint due to its generalized
matrix assembly procedure and easy post-processing.

11.6.1 Active Strut System

Helicopter gearbox support struts can be idealized as monolithic cylindrical
shells with appropriate end sections to support bearings. As reported in [270],
the ring frequency of the EH101 strut is typically 22.5 kHz. A high ring
frequency is indicative of the dominance of torsional and warping modes in the
overall response. Based on the disturbance frequency range, it was concluded
in this study that the torsional motion is unlikely to be excited and that the
resonances associated with warping motions are too high to affect the control
performance significantly. Hence, for simplicity, only axial and flexural modes
are considered in the model development following the analytical studies in
[233].

The cylindrical strut is modeled as a beam with stiffness-equivalent solid
cross-section. Terfenol-D rod-type actuators including the actuator housing
are considered to be mounted on either the strut ends or on the surface with
the help of rigid rings. In Chapter 4, an accurate mechanical model of a
uniform cylindrical strut/tube shows that a new propagating mode (radial
mode) causing strong dispersiveness in other modes appears above the cut-off
frequency of 8.5 kHz. However, this cut-off can be considered very high com-
pared to the major noise spectrum. In order to allow for dynamic boundary
conditions, the strut ends are considered under dynamic reaction by the gear-
box and fuselage interfaces. As noted in the study [233], this configuration is
an idealization made to suit linear analysis.

In this case study, we use a feedback scheme based on the responses mea-
sured by downstream displacement or strain sensors. This model-based scheme
requires accurate modeling of actuator-induced strain in the host structure to
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capture the near-field effects. With a good model, it is believed that the anal-
ysis and control design effort may be carried out with a lower number of
actuators than that required for a feedforward scheme.

We consider linear coupled magneto-elastic equations for the Terfenol-D
rod-type actuator [296] given by

ε33 = seff
33σ33 + deff

33H3 , B3 = deff
33σ3 + µeff

33H3 . (11.58)

The significance of the notation and the corresponding units are in accordance
with the IEEE Standard [308], where the direction 3 represents the axial di-
rection of the rod shaped magnetostrictive actuator, seff

33 = (Ceff
33 )−1 is the

effective compliance, dm
33 = seff

33eeff
33 is the effective magnetostrictive constant,

µeff
33 is the effective magnetic permeability. B is the magnetic flux density nor-

mal to the rod cross-section and H3 is the the magnetic field strength. The
effective material properties can be obtained from the bulk properties of mag-
netostrictive materials [308]. It is assumed that a linear strain magnetic field
strength (ε−H) characteristic can be used to describe the actuator. This can
be realized by using an appropriate DC bias magnetic field H0. Further details
can be found in [296]. The design value of H0 needs to be determined from
the analysis. If the actuator specification does not meet this required value of
H0, then, the use of more similar actuators in a group can be an option. The
governing equation of motion and dynamic force-boundary equations for the
magneto-elastic domain can be obtained as in Equations (11.55) and (11.56).

11.6.2 Numerical Simulations

Following the work of [233], the finite-length strut considered is a 1.0 m long
hollow cylindrical aluminum strut with 7.62 cm outer diameter and 6.35 cm
inner diameter. Harmonic loads are applied at the strut ends in longitudi-
nal and transverse directions. As considered in [233], such dynamic loading
represents a simplified model of high impedance gearbox reaction at one end
and reaction from the bearing at the fuselage interface. A cylindrical mag-
netostrictive actuator with rod-shaped Terfenol-D core is chosen due to their
high force capability. Such an actuator has its own housing and reaction mass
[301]. These aspects can also be accurately modeled in ASFEM if the effec-
tive stiffness and mass distributions are known for packaged actuators. Based
on the strut geometry considered here and the loading conditions to be con-
sidered, it is known that the longitudinal motion is expected to contribute
substantially to the total kinetic energy at the fuselage interface. The main
objective of numerical simulation here is to control the transmitted waves
at the strut–fuselage interface. With these in mind, the first case considered
below has to do with the control of longitudinal wave transmission.

Control of Longitudinal Wave Transmission

In Figure 11.17, an actuator located at the strut–fuselage interface is shown
along with a point velocity feedback sensor mounted at a distance xs from the
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gearbox end of the strut. This system is described by two spectral elements,
one an actuator element and the other a strut element. The results obtained
in the uncontrolled and controlled cases are shown in Figure 11.18. With the
actuator, the system resonances are shifted to lower frequencies and it appears
that the magnitude of frequency shift increases linearly with the mode number.
A non-dimensional scalar velocity feedback gain g defined as

g = (αβγ)/(noIo/co) (11.59)

is used, where α and β are, respectively, the sensitivity parameters for sensor
and actuator as discussed in Section 11.4. γ is the constant gain, no is the
number of specific turns in the actuator coil, Io is a nominal r.m.s. coil cur-
rent, and co is the speed of sound in air. In all the numerical studies conducted
here, the values of the different quantities are α = 1, β = 1, no = 1×106 m−1,
Io = 1A r.m.s., and co = 340m/s. The sensor is located at the strut–fuselage
interface (i.e., xs = 1.0m), and the parameter g for velocity feedback is in-
creased in the range from 3.4 to 34. It is seen that the sensor–actuator collo-
cated configuration (Figure 11.17) can be used to attain considerable displace-
ment response attenuation throughout the frequency bandwidth of interest.
Similar displacement response attenuation at targeted frequencies based on
an analog feedforward scheme for the same sensor–actuator configuration was
reported in [233].

x s
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Fig. 11.17. Active strut for control of longitudinal wave transmission. Maximum
amplitudes of representative multi-harmonic loading f̂max are shown

Since it may be difficult to place the sensor at the actuator base exactly,
an alternative configuration is used wherein the sensor is placed away from
the actuator base. The results obtained for the configurations xs = 0.9m and
xs = 0.8m for g = 17.0 (optimal in Figure 11.18) are shown in Figure 11.19.
It is observed that xs = 0.9m may be the preferred sensor location, since
for this choice, the response close to the fourth mode resonance location is
completely suppressed. For the non-collocated case xs = 0.8m, although the
largest suppression is at the frequency location close to the resonance of the
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Fig. 11.18. Longitudinal displacement at strut–fuselage interface in uncontrolled
cases and controlled cases with different gain values. The sensor is collocated with
the actuator at strut end (xs = 1.0 m)

second mode, suppression at the location close to the resonance of the fourth
mode is not as good as that obtained for the case xs = 0.9m. However, in
this latter case, suppression at the location near the resonance of the second
mode is not as good as that obtained with xs = 0.8m.

In some designs, it may be necessary to use a group of actuators rather
than one actuator to realize the required actuator force. Such actuator groups
have been used in earlier work [270]. In this study, performance of three sec-
ondary magnetostrictive actuators in a group (hosted by a steel endcap) was
studied in an experimental arrangement. Input to the actuators was decided
based on the measurement from one error sensor located on the upstream
side of the actuator. The actuators were driven in phase to control longitudi-
nal wave transmission through a strut, and they were driven out of phase to
control flexural wave transmission. To illustrate the applicability of the AS-
FEM for actuator group configurations, here, the active strut illustrated in
Figure 11.20(a) is considered. There are two actuators in the actuator group
here, and these are represented by the spectral elements 3–5 and 4–6 in the
modeling, as shown in Figure 11.20(b). Apart from these two elements, the
computational model consists of four other elements, which include one sen-
sor element (2–7) downstream of the actuators. The base ring is modeled as a
rigid link (4–2–3). Next, results generated for this configuration with different
actuator group locations xa with xs = 0.9 m is shown in Figure 11.21, and
for different sensor locations xs with xa = 0.8 m is shown in Figure 11.22. For
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each actuator, g = 8.5 (one half of the optimal value obtained previously for
the one actuator case) and both of the actuators receive identical inputs. In
all cases, attenuation at locations close to the resonance of the first mode is
considerable but less than that obtained at other frequency locations. In Fig-
ures 11.21 and 11.22, a zero (anti-resonance) is introduced in the closed-loop
system (other zeros lie towards infinity along the frequency axis, and fewer in
number than the number of poles, meaning the system is a realizable one) at a
frequency close to the resonance frequency of the second mode (or pole) of the
open-loop system. Interestingly, this corresponds with the second root-locus
of the open-loop system transfer function moving towards a closed-loop zero
as the control effort is increased (meaning the mode is a stabilizable one).
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Fig. 11.21. Longitudinal displacement at strut-fuselage interface in uncontrolled
case and controlled cases for different actuator group locations. Sensor location at
xs = 0.9 m in all three cases, and control gain parameter g = 8.5 for each actuator

Control of Flexural Wave Transmission

Figure 11.23 shows the active strut configuration for the control of flexural
wave transmission. A single transverse actuator is placed at xa as in [233], and
a single point velocity feedback sensor is placed downstream of the actuator.
In the study [306] and also here, it was found that the introduction of sin-
gle and multiple actuators alters the resonance of the system. Mechanically,
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Fig. 11.22. Longitudinal displacement at strut-fuselage interface in uncontrolled
case and controlled cases for actuator group location at xa = 0.8 m and sensor
location at xs = 0.9 m

therefore, the presence of a dead actuator may cause considerable change in
the open-loop system due to the stiffness and inertia of the actuator. The
spectral characteristics also suggest the presence of secondary axial–flexural
coupled modes; these are due to the scattering of the incident flexural wave
producing additional longitudinal waves at the strut–actuator interface. This
observation indicates the need for considering the dynamics of distributed
actuation in similar broadband (multiple tone) structural control problems.
In Figure 11.24, responses of the closed-loop system with different values of
g are shown for xa = 0.6m, xs = 1.0m. Good attenuation is obtained at
all frequency locations except for the first mode resonance close to 5 kHz.
The locations of the zeros observed in the open-loop system also appear to
be unchanged in the closed-loop cases. In Figure 11.25, the sensor is shifted
away from the strut–fuselage interface to xs = 0.9m. The trends are similar
to those seen in the context of Figure 11.24, except that a few zeros disappear.
The results are suggestive of the inability to achieve response attenuation at
locations close to the first resonance location of the open-loop system. This in-
dicates the requirement for an additional damping mechanism to absorb high
energy that is associated with the first mode. However, in most helicopters,
such damping mechanisms already exist along with elastomeric bearings to
augment the performance.
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Fig. 11.25. Transverse displacement at strut–fuselage interface in uncontrolled case
and controlled cases with different gain values, xa = 0.6 m, xs = 0.9 m

Control of Axial–Flexural Coupled Wave Transmission

One of the main objectives of the numerical study is to investigate coupled
axial–flexural wave transmission. A two-actuator configuration chosen for this
purpose is shown in Figure 11.26. One of these actuators is inclined at an an-
gle θ with respect to the longitudinal axis of the strut. Control inputs to
both actuators are based on a single error sensor response. Based on the
results presented in the earlier subsections, sensor location is chosen to be
xs = 0.9m which is an “optimal” location for the greatest number of axial
and flexural modes. Uncontrolled and controlled longitudinal displacements
at the strut–fuselage interface is plotted in Figure 11.27. Overall performance
of the simultaneous control of axial–flexural wave transmission is shown by
the kinetic energy spectrum at the strut–fuselage interface in Figure 11.28
for varying θ. The appearance of a number of secondary axial–flexural cou-
pled modes can be seen in these figures. It can be seen that the additional
secondary modes do not contribute significantly to the axial displacement re-
sponse compared to those due to the primary modes. However, this is not the
case for the flexural displacement response, where the primary modal ampli-
tudes are influenced considerably by the secondary coupled modes, leading to
shifts in the locations of poles and zeros of the closed-loop system.

While constructing the closed-loop system, it is assumed that the sensor
outputs corresponding to both longitudinal and transverse forced frequency
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responses are available from the chosen sensor location. The longitudinal and
inclined actuators are driven based on these measured longitudinal and trans-
verse responses, respectively. Among different sets of parametric values con-
sidered for velocity feedback gains (gu for longitudinal actuator and gw for
inclined actuator) and xs considered earlier for control of axial and flexural
waves separately, the best results are achieved for gu = 17.0 and gw = 340.
From the results, it can be seen that with a constant gain velocity feedback
scheme, an increase in the effort to control flexural waves leads to less atten-
uation in the longitudinal response.

Modeling efforts presented here may be used as a basis for carrying out
path treatment for helicopter cabin noise. In such cases, it is of interest to
know the level of energy attenuation at the spatial location of interest; here,
the strut–fuselage interface. The kinetic energy has contributions from lon-
gitudinal (primary) and transverse (secondary) motions. In order to analyze
the distribution of the total kinetic energy among its longitudinal and trans-
verse components in the closed-loop system, Figure 11.29 is presented. Plots
of the normalized spectrum of relative amplitudes of kinetic energy Êu (for
longitudinal motions) and Êw (for transverse motions) at the strut–fuselage
interface are shown in this figure. The corresponding expressions are



11.7 Optimal Control Based on ASFEM and Power Flow 415

Eu =
|(ûo)2|

|(ûo)2| + |ŵ2|
, Ew = 1 − Eu , (11.60)

where ûo and ŵ are the spectral amplitudes of longitudinal and transverse
displacements, respectively, at the strut–fuselage interface. From this figure,
it can be said that the kinetic energy associated with the significant transverse
modes is attenuated, except at frequency locations close to the first transverse
resonance mode and the other three modes associated with resonances near
5.2 kHz and 6.8 kHz.
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Fig. 11.29. Distribution of kinetic energy into longitudinal and transverse compo-
nents at strut–fuselage interface in uncontrolled and controlled cases for θ = 90o

11.7 Optimal Control Based on ASFEM and Power Flow

In this section we propose a broadband optimal control strategy based on the
ASFEM (derived in Section 11.4) and spectral power (Equation (10.1). An
upper-bound to the electrical input (voltage) is used as a constraint in the
optimal control.

In structural acoustics control problems, the primary concern is the sound
power radiated by the structure, which forms dense modal space and is broad-
band in nature. On the other hand, in structural wave propagation problems
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related to the present context, the broadband control performance is depicted
in terms of response (displacement, velocity or acceleration) amplitude or
kinetic energy level at the control points. Here, we consider the physical sig-
nificance of the structural power (as in structural acoustics) in the sense that
it constitutes the characteristics of both displacements and stresses generated
at critical structural members [268]. In the proposed model, the frequency do-
main power (see Section 10.2) at the desired points (spectral element nodes)
are computed as a post-processing operation on the controlled system re-
sponse. In ASFEM, the power flow computation becomes very accurate and
efficient, capturing all the necessary structural complexities. Hence, the am-
plitudes of the complex power at the spectral element node(s) close to the
control point(s) are considered to construct a quadratic performance mea-
sure at each discrete frequency (FFT sampling frequency ωn). We shall see
that such a frequency domain measure can be used for frequency weighting of
feedback gain, and its variation has an upper bound in terms of actuator sat-
uration (or allowable voltage into PFC below dielectric breakdown voltage).
This leads to one possibility of optimizing the feedback gain spectrum so that
all the structural modes within the chosen frequency band can effectively be
controlled, provided that the sensor–actuator locations and connectivities are
admissible from a control system design point of view. One of the main advan-
tage of such optimal control integrated with ASFEM is that the system size is
very small. This means a frequency domain equivalent of the very high order
state-space plant is already in place. But in all traditional MIMO optimal
feedback based on frequency weighting through linear-quadratic (LQ) design
[295], the controller order required is roughly the same as the full-order plant
of the structure. Through ASFEM, we can have a very small plant, which
is also accurate over a broad frequency band. Therefore the possibility of a
robust and much lower order controller (compared to that in full-order state
feedback) can be achieved through ASFEM and PID feedback with a group of
sensors and actuators. In the present work, only the issues related to model-
based structure-control estimation are discussed, which are essentially off-line.
Digital controller design based on such an analysis needs further study and is
a future area of research.

11.7.1 Linear Quadratic Optimal Control Using Spectral Power

As a distributed measure of the controlled structural response, we consider
frequency domain power flow at the spectral element nodes which is defined
as the product of the nodal force vector and conjugate of the nodal velocity
vector. In matrix notation, this is expressed as

P̂ (ωn)e = f̂eT

(jωnûe)∗ . (11.61)

Various properties of the spectral power as a measure of disturbance prop-
agation were discussed in Section 10.2. Considering power expression for an
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element internal point (x, z), it was shown that the real part of the com-
plex power is constant over a uniform element domain and the spatial rate of
change of total power is purely imaginary, i.e., Re[∂P̂ /∂x] = 0. This implies
that the real part of complex power is the contribution from farfield distur-
bance transmitted through the structural joints. The imaginary part amounts
to the energy trapped in the element, which is essentially the nearfield effect
on the sensor. Since, we emphasize the accuracy of the feedback signal from
the sensor near the control point in LAC, one possible approach is to consider
the power amplitude. Here, we choose a linear quadratic performance mea-
sure {Hctrl} for the closed-loop system subjected to an upper-bound {Edrv}
of the actuator input voltages. For multiple LAC objectives the elements of
the matrix measure to be achieved are expressed as

Hctrl =
|P̂ (ωn)0| − |P̂ (ωn)m|

|P̂ (ωn)0|
> 0 , Edrv = |Ê(ωn)max|−|γ(ωn)mη̂(ωn)m| > 0 .

(11.62)
The subscripts ctrl and drv stand for the control points (for LAC) and driving
points (actuator element nodes), respectively. The amplitude of Ê(ωn)max rep-
resents the allowable peak voltage to the PFC actuator and the corresponding
frequency range depends on the capacity of the voltage amplifier being used.
It is to be noted that ωn must be considered within the actuator bandwidth
to match the numerically simulated performance. In ASFEM, all the required
matrix computations for open-loop as well as closed-loop are performed at ev-
ery discrete frequency ωn. Equation (11.51) is solved for unit amplitude of the
FFT signal for an external mechanical disturbance. After solving the system,
the actual frequency response for displacement, force, power and controller
input output transfer function are obtained by convolving with the original
mechanical loading spectrum. Constrained optimization of power flow at the
control points, which is governed by Equation (11.62), is performed at ωn. As
shown in Equation (11.62), frequency weighting of the feedback gain γ(ωn) at
ωn for a sensor sp is obtained by maximizing Hctrl with constraint Edrv > 0
using a non-uniform iterative scheme. Here, subscript m represents the mth it-
eration at a particular ωn and subscript 0 represents the uncontrolled system.
In ASFEM, the spatially discretized model is much smaller in size than other
MIMO models. Taking advantage of this aspect, a semi-automated scheme is
integrated with ASFEM to achieve optimal location of sensors and actuators.

11.7.2 Broadband Control of a Three-member Composite Beam
Network

In the following numerical simulations, a three-member composite beam net-
work is considered with the objective of controlling one of its nodal displace-
ments over a frequency band of 10 kHz. The Y-shaped network is made of
three AS/3501-6 graphite–epoxy composite beam members connected through
a common rigid joint (node 1) as shown in Figure 11.30. The free end (node
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11) of the network is subjected to impact type excitation (Figure 4.5). The
local control objective is framed as the simultaneous control of horizontal dis-
placement u as well as transverse displacement w at the common joint (node
1) of the network with the minimum number of PFC actuators of prescribed
length.

From the nature of the considered structural geometry and boundary con-
ditions, it can be said that there will be multiple scattered waves, which are
axial–flexural coupled. Therefore, significant nearfield will exist at the sensors
placed near node 1. However, at the initial stage of disturbance propagation,
there will be only the dominant transmitted wave component arriving at node
1 from the free end side. But, at later stages of time, the effect of multiple
scattering, amounting to a major part of the trapped energy in the fixed end
portions, will increase. Based on this behavior, we assume four PFC actuators
(each of length 0.15 m) at the locations shown in Figure 11.30.
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Fig. 11.30. A Three-member composite beam network with non-collocated sensor–
actuator configuration to control waves at the network joint. (a) Schematic diagram
of the feedback model. (b) Spectral element configuration
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Fig. 11.31. Optimized closed-loop performance showing displacement amplitude in
X direction at the control point (node 1 in Figure 11.30)
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Fig. 11.32. Optimized closed-loop performance showing displacement amplitude in
Z direction at the control point (node 1 in Figure 11.30)
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Fig. 11.33. Optimized closed-loop performance showing optimized power flow at
the control point (node 1 in Figure 11.30)
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For direct velocity feedback to these actuators, we consider three point
sensors near node 1 (Figure 11.30). Sensor s1 is used for transverse velocity
(jωnŵ) feedback to the actuator pair a1. Sensors s2 and s3 are used for axial
velocity feedback (jωnû) in ±135o rotated coordinate systems which are local
to the two inclined members. All of these three sensors are assumed at 0.1 m
from node 1. The spectral element configuration of the above closed-loop sys-
tem is schematically represented in Figure 11.30(b) showing the mechanical
and active element nodes in SFEM. The spatially discretized system size is
27×27 including three sensor nodes and three actuator elements. Constrained
optimization as discussed in Section 11.7.1 for the control point (node 1) is
carried out assuming an allowable specific actuator input voltage of 9 kV/cm
to each of the PFC actuators. To control the primary disturbance transmitted
from node 11 towards the control point, the actuator pair a1 is placed at 0.45
m from the control point node 1. In Figure 11.31 and 11.32 respectively, the
horizontal and transverse displacements corresponding to the optimal closed-
loop performance are plotted. Figure 11.33 shows the closed-loop constrained
power amplitude spectrum at the control point. Frequency weighted feed-
back gain amplitude log |γ| for the three actuators is plotted in Figure 11.34.
From Figures 11.31, 11.32 and 11.33, it can be seen that the controlled per-
formance at different frequency bands over the resonant modes are similar
in the power amplitude spectrum and the displacement amplitude spectrum.
Therefore, optimization of the constrained power flow proves to be an effective
strategy for active distributed control of structural waves. However, in both
the horizontal and transverse responses, the performance near 0.6 and 4 kHz
may not be satisfactory. This can be attributed to the fact that only power
amplitude was optimized. Real and imaginary components of the closed-loop
power (which constituted the farfield and nearfield effects, respectively, due
to asynchronized phase) were not optimized separately. Therefore, the current
optimization scheme has worked on an average basis by considering both the
amplitude of nearfield and farfield disturbances, and not by considering the
associated phase information.

This chapter is focused on the development of SFEM integrated with
control algorithms for the analysis and design of MIMO control systems for
structural vibration and broadband wave control applications. An overview
of the problem complexity and the modeling difficulties encountered in exist-
ing modeling techniques is presented. Some of the main issues in distributed
parameter control system modeling, namely the control-spillover due to insuf-
ficient modal information, stability of the LAC instead of global control, finite
actuator dynamics, single actuator multi-modal control, etc., are discussed.
Constitutive modeling of layered piezoelectric materials surface-bonded or em-
bedded in host composite structures are presented. Modeling of PFC based on
a uniform field model is presented. Design criteria for such PFCs in surface-
bonded or embedded form, which becomes an ideal candidate for distributed
structural actuation, is outlined considering the structural performance, ac-
tuator authority and overall control authority of the integrated system. Next,
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the ASFEM is derived considering PID feedback sensors and distributed ac-
tuators in non-collocated form. The resulting closed-loop model is shown to
be a very high-dimensional one but having discretized system size as small
as the total number of sensor nodes, actuator nodes and structural bound-
ary nodes. This demonstrates the suitability of ASFEM in broadband control
where many vibration modes participate in the dynamics, and a conventional
state-space model needs very large system size for accurate MIMO system re-
alization and optimal control design. Numerical simulations are carried out to
study the effect of distributed actuator dynamics. A case study on the active
control of multiple waves in a helicopter gearbox support strut is presented.
The effect of sensor–actuator location in non-collocated feedback is studied.
Also, the study shows a systematic approach towards the development of a
single actuator multi-mode control system. To this end an optimal control
algorithm based on ASFEM and spectral power flow is developed and im-
plemented. Numerical simulations are presented to demonstrate the optimal
control performance of a beam network with non-collocated point sensors and
distributed PFC actuators.
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